* elfxx-mips.c (mips_elf_calculate_relocation): Decay
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
167 GOTs). */
168 long max_unref_got_dynindx;
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx;
172 };
173
174 /* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
176
177 struct mips_elf_link_hash_entry
178 {
179 struct elf_link_hash_entry root;
180
181 /* External symbol information. */
182 EXTR esym;
183
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 this symbol. */
186 unsigned int possibly_dynamic_relocs;
187
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
190 bfd_boolean readonly_reloc;
191
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index;
195
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 p. 4-20. */
200 bfd_boolean no_fn_stub;
201
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
204 asection *fn_stub;
205
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
208 bfd_boolean need_fn_stub;
209
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
212 asection *call_stub;
213
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection *call_fp_stub;
217
218 /* Are we forced local? .*/
219 bfd_boolean forced_local;
220 };
221
222 /* MIPS ELF linker hash table. */
223
224 struct mips_elf_link_hash_table
225 {
226 struct elf_link_hash_table root;
227 #if 0
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231 #endif
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
237 entry is set to the address of __rld_obj_head as in IRIX5. */
238 bfd_boolean use_rld_obj_head;
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 bfd_vma rld_value;
241 /* This is set if we see any mips16 stub sections. */
242 bfd_boolean mips16_stubs_seen;
243 };
244
245 /* Structure used to pass information to mips_elf_output_extsym. */
246
247 struct extsym_info
248 {
249 bfd *abfd;
250 struct bfd_link_info *info;
251 struct ecoff_debug_info *debug;
252 const struct ecoff_debug_swap *swap;
253 bfd_boolean failed;
254 };
255
256 /* The names of the runtime procedure table symbols used on IRIX5. */
257
258 static const char * const mips_elf_dynsym_rtproc_names[] =
259 {
260 "_procedure_table",
261 "_procedure_string_table",
262 "_procedure_table_size",
263 NULL
264 };
265
266 /* These structures are used to generate the .compact_rel section on
267 IRIX5. */
268
269 typedef struct
270 {
271 unsigned long id1; /* Always one? */
272 unsigned long num; /* Number of compact relocation entries. */
273 unsigned long id2; /* Always two? */
274 unsigned long offset; /* The file offset of the first relocation. */
275 unsigned long reserved0; /* Zero? */
276 unsigned long reserved1; /* Zero? */
277 } Elf32_compact_rel;
278
279 typedef struct
280 {
281 bfd_byte id1[4];
282 bfd_byte num[4];
283 bfd_byte id2[4];
284 bfd_byte offset[4];
285 bfd_byte reserved0[4];
286 bfd_byte reserved1[4];
287 } Elf32_External_compact_rel;
288
289 typedef struct
290 {
291 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype : 4; /* Relocation types. See below. */
293 unsigned int dist2to : 8;
294 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst; /* KONST field. See below. */
296 unsigned long vaddr; /* VADDR to be relocated. */
297 } Elf32_crinfo;
298
299 typedef struct
300 {
301 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype : 4; /* Relocation types. See below. */
303 unsigned int dist2to : 8;
304 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst; /* KONST field. See below. */
306 } Elf32_crinfo2;
307
308 typedef struct
309 {
310 bfd_byte info[4];
311 bfd_byte konst[4];
312 bfd_byte vaddr[4];
313 } Elf32_External_crinfo;
314
315 typedef struct
316 {
317 bfd_byte info[4];
318 bfd_byte konst[4];
319 } Elf32_External_crinfo2;
320
321 /* These are the constants used to swap the bitfields in a crinfo. */
322
323 #define CRINFO_CTYPE (0x1)
324 #define CRINFO_CTYPE_SH (31)
325 #define CRINFO_RTYPE (0xf)
326 #define CRINFO_RTYPE_SH (27)
327 #define CRINFO_DIST2TO (0xff)
328 #define CRINFO_DIST2TO_SH (19)
329 #define CRINFO_RELVADDR (0x7ffff)
330 #define CRINFO_RELVADDR_SH (0)
331
332 /* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335 #define CRF_MIPS_LONG 1
336 #define CRF_MIPS_SHORT 0
337
338 /* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
340
341 (type) (konst)
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
346 */
347
348 #define CRT_MIPS_REL32 0xa
349 #define CRT_MIPS_WORD 0xb
350 #define CRT_MIPS_GPHI_LO 0xc
351 #define CRT_MIPS_JMPAD 0xd
352
353 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357 \f
358 /* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
360
361 typedef struct runtime_pdr {
362 bfd_vma adr; /* Memory address of start of procedure. */
363 long regmask; /* Save register mask. */
364 long regoffset; /* Save register offset. */
365 long fregmask; /* Save floating point register mask. */
366 long fregoffset; /* Save floating point register offset. */
367 long frameoffset; /* Frame size. */
368 short framereg; /* Frame pointer register. */
369 short pcreg; /* Offset or reg of return pc. */
370 long irpss; /* Index into the runtime string table. */
371 long reserved;
372 struct exception_info *exception_info;/* Pointer to exception array. */
373 } RPDR, *pRPDR;
374 #define cbRPDR sizeof (RPDR)
375 #define rpdNil ((pRPDR) 0)
376 \f
377 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
379 static void ecoff_swap_rpdr_out
380 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
381 static bfd_boolean mips_elf_create_procedure_table
382 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
383 struct ecoff_debug_info *));
384 static bfd_boolean mips_elf_check_mips16_stubs
385 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
386 static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
388 static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
390 static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
392 static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394 #if 0
395 static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397 #endif
398 static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
400 static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
402 static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
404 static bfd_boolean mips_elf_output_extsym
405 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
406 static int gptab_compare PARAMS ((const void *, const void *));
407 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
408 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
409 static struct mips_got_info *mips_elf_got_info
410 PARAMS ((bfd *, asection **));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
438 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
439 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
441 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
442 static bfd_boolean mips_elf_create_compact_rel_section
443 PARAMS ((bfd *, struct bfd_link_info *));
444 static bfd_boolean mips_elf_create_got_section
445 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
446 static asection *mips_elf_create_msym_section
447 PARAMS ((bfd *));
448 static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
450 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
451 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
452 bfd_boolean *, bfd_boolean));
453 static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
455 static bfd_boolean mips_elf_perform_relocation
456 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
457 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
458 bfd_boolean));
459 static bfd_boolean mips_elf_stub_section_p
460 PARAMS ((bfd *, asection *));
461 static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd *, unsigned int));
463 static bfd_boolean mips_elf_create_dynamic_relocation
464 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
465 struct mips_elf_link_hash_entry *, asection *,
466 bfd_vma, bfd_vma *, asection *));
467 static void mips_set_isa_flags PARAMS ((bfd *));
468 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
469 static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
471 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
472 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
473 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
474 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
475 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
476
477 static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type));
480 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
481 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
482 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
483 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
484 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
485 static int mips_elf_merge_gots PARAMS ((void **, void *));
486 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
487 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
488 static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info *));
490 static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd *, struct mips_got_info *, bfd *));
492 static struct mips_got_info *mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info *, bfd *));
494
495 /* This will be used when we sort the dynamic relocation records. */
496 static bfd *reldyn_sorting_bfd;
497
498 /* Nonzero if ABFD is using the N32 ABI. */
499
500 #define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502
503 /* Nonzero if ABFD is using the N64 ABI. */
504 #define ABI_64_P(abfd) \
505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
506
507 /* Nonzero if ABFD is using NewABI conventions. */
508 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509
510 /* The IRIX compatibility level we are striving for. */
511 #define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513
514 /* Whether we are trying to be compatible with IRIX at all. */
515 #define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
517
518 /* The name of the options section. */
519 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
521
522 /* The name of the stub section. */
523 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
525
526 /* The size of an external REL relocation. */
527 #define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
529
530 /* The size of an external dynamic table entry. */
531 #define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533
534 /* The size of a GOT entry. */
535 #define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
537
538 /* The size of a symbol-table entry. */
539 #define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
541
542 /* The default alignment for sections, as a power of two. */
543 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
545
546 /* Get word-sized data. */
547 #define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549
550 /* Put out word-sized data. */
551 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 (ABI_64_P (abfd) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
555
556 /* Add a dynamic symbol table-entry. */
557 #ifdef BFD64
558 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562 #else
563 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
565 ? (abort (), FALSE) \
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
567 #endif
568
569 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
572 /* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
589 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591 #define MINUS_ONE (((bfd_vma)0) - 1)
592
593 /* The number of local .got entries we reserve. */
594 #define MIPS_RESERVED_GOTNO (2)
595
596 /* The offset of $gp from the beginning of the .got section. */
597 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599 /* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
603 /* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
605 #define STUB_LW(abfd) \
606 ((ABI_64_P (abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
609 #define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611 #define STUB_JALR 0x0320f809 /* jal t9 */
612 #define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614 #define MIPS_FUNCTION_STUB_SIZE (16)
615
616 /* The name of the dynamic interpreter. This is put in the .interp
617 section. */
618
619 #define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
623
624 #ifdef BFD64
625 #define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
627 #define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629 #define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631 #define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633 #else
634 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
635 #define ELF_R_SYM(bfd, i) \
636 (ELF32_R_SYM (i))
637 #define ELF_R_TYPE(bfd, i) \
638 (ELF32_R_TYPE (i))
639 #define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
641 #endif
642 \f
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
645
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
654
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
661
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
669 $f0/$f1 and $2/$3.)
670
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
674
675 We record any stubs that we find in the symbol table. */
676
677 #define FN_STUB ".mips16.fn."
678 #define CALL_STUB ".mips16.call."
679 #define CALL_FP_STUB ".mips16.call.fp."
680 \f
681 /* Look up an entry in a MIPS ELF linker hash table. */
682
683 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
686 (copy), (follow)))
687
688 /* Traverse a MIPS ELF linker hash table. */
689
690 #define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
692 (&(table)->root, \
693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
694 (info)))
695
696 /* Get the MIPS ELF linker hash table from a link_info structure. */
697
698 #define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
700
701 /* Create an entry in a MIPS ELF linker hash table. */
702
703 static struct bfd_hash_entry *
704 mips_elf_link_hash_newfunc (entry, table, string)
705 struct bfd_hash_entry *entry;
706 struct bfd_hash_table *table;
707 const char *string;
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == (struct mips_elf_link_hash_entry *) NULL)
715 ret = ((struct mips_elf_link_hash_entry *)
716 bfd_hash_allocate (table,
717 sizeof (struct mips_elf_link_hash_entry)));
718 if (ret == (struct mips_elf_link_hash_entry *) NULL)
719 return (struct bfd_hash_entry *) ret;
720
721 /* Call the allocation method of the superclass. */
722 ret = ((struct mips_elf_link_hash_entry *)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 table, string));
725 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 {
727 /* Set local fields. */
728 memset (&ret->esym, 0, sizeof (EXTR));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
731 ret->esym.ifd = -2;
732 ret->possibly_dynamic_relocs = 0;
733 ret->readonly_reloc = FALSE;
734 ret->min_dyn_reloc_index = 0;
735 ret->no_fn_stub = FALSE;
736 ret->fn_stub = NULL;
737 ret->need_fn_stub = FALSE;
738 ret->call_stub = NULL;
739 ret->call_fp_stub = NULL;
740 ret->forced_local = FALSE;
741 }
742
743 return (struct bfd_hash_entry *) ret;
744 }
745
746 bfd_boolean
747 _bfd_mips_elf_new_section_hook (abfd, sec)
748 bfd *abfd;
749 asection *sec;
750 {
751 struct _mips_elf_section_data *sdata;
752 bfd_size_type amt = sizeof (*sdata);
753
754 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
755 if (sdata == NULL)
756 return FALSE;
757 sec->used_by_bfd = (PTR) sdata;
758
759 return _bfd_elf_new_section_hook (abfd, sec);
760 }
761 \f
762 /* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
764
765 bfd_boolean
766 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
767 bfd *abfd;
768 asection *section;
769 struct ecoff_debug_info *debug;
770 {
771 HDRR *symhdr;
772 const struct ecoff_debug_swap *swap;
773 char *ext_hdr = NULL;
774
775 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
776 memset (debug, 0, sizeof (*debug));
777
778 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
779 if (ext_hdr == NULL && swap->external_hdr_size != 0)
780 goto error_return;
781
782 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
783 swap->external_hdr_size))
784 goto error_return;
785
786 symhdr = &debug->symbolic_header;
787 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788
789 /* The symbolic header contains absolute file offsets and sizes to
790 read. */
791 #define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
793 debug->ptr = NULL; \
794 else \
795 { \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
799 goto error_return; \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
802 goto error_return; \
803 }
804
805 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
807 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
808 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
809 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
810 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 union aux_ext *);
812 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
813 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
814 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
815 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
816 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
817 #undef READ
818
819 debug->fdr = NULL;
820 debug->adjust = NULL;
821
822 return TRUE;
823
824 error_return:
825 if (ext_hdr != NULL)
826 free (ext_hdr);
827 if (debug->line != NULL)
828 free (debug->line);
829 if (debug->external_dnr != NULL)
830 free (debug->external_dnr);
831 if (debug->external_pdr != NULL)
832 free (debug->external_pdr);
833 if (debug->external_sym != NULL)
834 free (debug->external_sym);
835 if (debug->external_opt != NULL)
836 free (debug->external_opt);
837 if (debug->external_aux != NULL)
838 free (debug->external_aux);
839 if (debug->ss != NULL)
840 free (debug->ss);
841 if (debug->ssext != NULL)
842 free (debug->ssext);
843 if (debug->external_fdr != NULL)
844 free (debug->external_fdr);
845 if (debug->external_rfd != NULL)
846 free (debug->external_rfd);
847 if (debug->external_ext != NULL)
848 free (debug->external_ext);
849 return FALSE;
850 }
851 \f
852 /* Swap RPDR (runtime procedure table entry) for output. */
853
854 static void
855 ecoff_swap_rpdr_out (abfd, in, ex)
856 bfd *abfd;
857 const RPDR *in;
858 struct rpdr_ext *ex;
859 {
860 H_PUT_S32 (abfd, in->adr, ex->p_adr);
861 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
862 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
863 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
864 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
865 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866
867 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
868 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869
870 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871 #if 0 /* FIXME */
872 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
873 #endif
874 }
875
876 /* Create a runtime procedure table from the .mdebug section. */
877
878 static bfd_boolean
879 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
880 PTR handle;
881 bfd *abfd;
882 struct bfd_link_info *info;
883 asection *s;
884 struct ecoff_debug_info *debug;
885 {
886 const struct ecoff_debug_swap *swap;
887 HDRR *hdr = &debug->symbolic_header;
888 RPDR *rpdr, *rp;
889 struct rpdr_ext *erp;
890 PTR rtproc;
891 struct pdr_ext *epdr;
892 struct sym_ext *esym;
893 char *ss, **sv;
894 char *str;
895 bfd_size_type size;
896 bfd_size_type count;
897 unsigned long sindex;
898 unsigned long i;
899 PDR pdr;
900 SYMR sym;
901 const char *no_name_func = _("static procedure (no name)");
902
903 epdr = NULL;
904 rpdr = NULL;
905 esym = NULL;
906 ss = NULL;
907 sv = NULL;
908
909 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910
911 sindex = strlen (no_name_func) + 1;
912 count = hdr->ipdMax;
913 if (count > 0)
914 {
915 size = swap->external_pdr_size;
916
917 epdr = (struct pdr_ext *) bfd_malloc (size * count);
918 if (epdr == NULL)
919 goto error_return;
920
921 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
922 goto error_return;
923
924 size = sizeof (RPDR);
925 rp = rpdr = (RPDR *) bfd_malloc (size * count);
926 if (rpdr == NULL)
927 goto error_return;
928
929 size = sizeof (char *);
930 sv = (char **) bfd_malloc (size * count);
931 if (sv == NULL)
932 goto error_return;
933
934 count = hdr->isymMax;
935 size = swap->external_sym_size;
936 esym = (struct sym_ext *) bfd_malloc (size * count);
937 if (esym == NULL)
938 goto error_return;
939
940 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
941 goto error_return;
942
943 count = hdr->issMax;
944 ss = (char *) bfd_malloc (count);
945 if (ss == NULL)
946 goto error_return;
947 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
948 goto error_return;
949
950 count = hdr->ipdMax;
951 for (i = 0; i < (unsigned long) count; i++, rp++)
952 {
953 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
954 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->adr = sym.value;
956 rp->regmask = pdr.regmask;
957 rp->regoffset = pdr.regoffset;
958 rp->fregmask = pdr.fregmask;
959 rp->fregoffset = pdr.fregoffset;
960 rp->frameoffset = pdr.frameoffset;
961 rp->framereg = pdr.framereg;
962 rp->pcreg = pdr.pcreg;
963 rp->irpss = sindex;
964 sv[i] = ss + sym.iss;
965 sindex += strlen (sv[i]) + 1;
966 }
967 }
968
969 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
970 size = BFD_ALIGN (size, 16);
971 rtproc = (PTR) bfd_alloc (abfd, size);
972 if (rtproc == NULL)
973 {
974 mips_elf_hash_table (info)->procedure_count = 0;
975 goto error_return;
976 }
977
978 mips_elf_hash_table (info)->procedure_count = count + 2;
979
980 erp = (struct rpdr_ext *) rtproc;
981 memset (erp, 0, sizeof (struct rpdr_ext));
982 erp++;
983 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
984 strcpy (str, no_name_func);
985 str += strlen (no_name_func) + 1;
986 for (i = 0; i < count; i++)
987 {
988 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 strcpy (str, sv[i]);
990 str += strlen (sv[i]) + 1;
991 }
992 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993
994 /* Set the size and contents of .rtproc section. */
995 s->_raw_size = size;
996 s->contents = (bfd_byte *) rtproc;
997
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s->link_order_head = (struct bfd_link_order *) NULL;
1001
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012
1013 return TRUE;
1014
1015 error_return:
1016 if (epdr != NULL)
1017 free (epdr);
1018 if (rpdr != NULL)
1019 free (rpdr);
1020 if (esym != NULL)
1021 free (esym);
1022 if (ss != NULL)
1023 free (ss);
1024 if (sv != NULL)
1025 free (sv);
1026 return FALSE;
1027 }
1028
1029 /* Check the mips16 stubs for a particular symbol, and see if we can
1030 discard them. */
1031
1032 static bfd_boolean
1033 mips_elf_check_mips16_stubs (h, data)
1034 struct mips_elf_link_hash_entry *h;
1035 PTR data ATTRIBUTE_UNUSED;
1036 {
1037 if (h->root.root.type == bfd_link_hash_warning)
1038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039
1040 if (h->fn_stub != NULL
1041 && ! h->need_fn_stub)
1042 {
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h->fn_stub->_raw_size = 0;
1047 h->fn_stub->_cooked_size = 0;
1048 h->fn_stub->flags &= ~SEC_RELOC;
1049 h->fn_stub->reloc_count = 0;
1050 h->fn_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_stub->_raw_size = 0;
1060 h->call_stub->_cooked_size = 0;
1061 h->call_stub->flags &= ~SEC_RELOC;
1062 h->call_stub->reloc_count = 0;
1063 h->call_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 if (h->call_fp_stub != NULL
1067 && h->root.other == STO_MIPS16)
1068 {
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h->call_fp_stub->_raw_size = 0;
1073 h->call_fp_stub->_cooked_size = 0;
1074 h->call_fp_stub->flags &= ~SEC_RELOC;
1075 h->call_fp_stub->reloc_count = 0;
1076 h->call_fp_stub->flags |= SEC_EXCLUDE;
1077 }
1078
1079 return TRUE;
1080 }
1081 \f
1082 bfd_reloc_status_type
1083 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1084 relocateable, data, gp)
1085 bfd *abfd;
1086 asymbol *symbol;
1087 arelent *reloc_entry;
1088 asection *input_section;
1089 bfd_boolean relocateable;
1090 PTR data;
1091 bfd_vma gp;
1092 {
1093 bfd_vma relocation;
1094 unsigned long insn;
1095 unsigned long val;
1096
1097 if (bfd_is_com_section (symbol->section))
1098 relocation = 0;
1099 else
1100 relocation = symbol->value;
1101
1102 relocation += symbol->section->output_section->vma;
1103 relocation += symbol->section->output_offset;
1104
1105 if (reloc_entry->address > input_section->_cooked_size)
1106 return bfd_reloc_outofrange;
1107
1108 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1109
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry->howto->src_mask == 0)
1112 {
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val = reloc_entry->addend;
1115 }
1116 else
1117 {
1118 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1119 if (val & 0x8000)
1120 val -= 0x10000;
1121 }
1122
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1126 if (! relocateable
1127 || (symbol->flags & BSF_SECTION_SYM) != 0)
1128 val += relocation - gp;
1129
1130 insn = (insn & ~0xffff) | (val & 0xffff);
1131 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1132
1133 if (relocateable)
1134 reloc_entry->address += input_section->output_offset;
1135
1136 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1592 }
1593
1594 static int
1595 mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598 {
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606 }
1607
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613 static hashval_t
1614 mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616 {
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626 }
1627
1628 static int
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632 {
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1641 }
1642 \f
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1644
1645 static asection *
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649 {
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 4))
1667 return NULL;
1668 }
1669 return sreloc;
1670 }
1671
1672 /* Returns the GOT section for ABFD. */
1673
1674 static asection *
1675 mips_elf_got_section (abfd, maybe_excluded)
1676 bfd *abfd;
1677 bfd_boolean maybe_excluded;
1678 {
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
1684 }
1685
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694 {
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
1707 return g;
1708 }
1709
1710 /* Returns the GOT offset at which the indicated address can be found.
1711 If there is not yet a GOT entry for this value, create one. Returns
1712 -1 if no satisfactory GOT offset can be found. */
1713
1714 static bfd_vma
1715 mips_elf_local_got_index (abfd, ibfd, info, value)
1716 bfd *abfd, *ibfd;
1717 struct bfd_link_info *info;
1718 bfd_vma value;
1719 {
1720 asection *sgot;
1721 struct mips_got_info *g;
1722 struct mips_got_entry *entry;
1723
1724 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1725
1726 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1727 if (entry)
1728 return entry->gotidx;
1729 else
1730 return MINUS_ONE;
1731 }
1732
1733 /* Returns the GOT index for the global symbol indicated by H. */
1734
1735 static bfd_vma
1736 mips_elf_global_got_index (abfd, ibfd, h)
1737 bfd *abfd, *ibfd;
1738 struct elf_link_hash_entry *h;
1739 {
1740 bfd_vma index;
1741 asection *sgot;
1742 struct mips_got_info *g, *gg;
1743 long global_got_dynindx = 0;
1744
1745 gg = g = mips_elf_got_info (abfd, &sgot);
1746 if (g->bfd2got && ibfd)
1747 {
1748 struct mips_got_entry e, *p;
1749
1750 BFD_ASSERT (h->dynindx >= 0);
1751
1752 g = mips_elf_got_for_ibfd (g, ibfd);
1753 if (g->next != gg)
1754 {
1755 e.abfd = ibfd;
1756 e.symndx = -1;
1757 e.d.h = (struct mips_elf_link_hash_entry *)h;
1758
1759 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1760
1761 BFD_ASSERT (p->gotidx > 0);
1762 return p->gotidx;
1763 }
1764 }
1765
1766 if (gg->global_gotsym != NULL)
1767 global_got_dynindx = gg->global_gotsym->dynindx;
1768
1769 /* Once we determine the global GOT entry with the lowest dynamic
1770 symbol table index, we must put all dynamic symbols with greater
1771 indices into the GOT. That makes it easy to calculate the GOT
1772 offset. */
1773 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1774 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1775 * MIPS_ELF_GOT_SIZE (abfd));
1776 BFD_ASSERT (index < sgot->_raw_size);
1777
1778 return index;
1779 }
1780
1781 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1782 are supposed to be placed at small offsets in the GOT, i.e.,
1783 within 32KB of GP. Return the index into the GOT for this page,
1784 and store the offset from this entry to the desired address in
1785 OFFSETP, if it is non-NULL. */
1786
1787 static bfd_vma
1788 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1789 bfd *abfd, *ibfd;
1790 struct bfd_link_info *info;
1791 bfd_vma value;
1792 bfd_vma *offsetp;
1793 {
1794 asection *sgot;
1795 struct mips_got_info *g;
1796 bfd_vma index;
1797 struct mips_got_entry *entry;
1798
1799 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1800
1801 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1802 (value + 0x8000)
1803 & (~(bfd_vma)0xffff));
1804
1805 if (!entry)
1806 return MINUS_ONE;
1807
1808 index = entry->gotidx;
1809
1810 if (offsetp)
1811 *offsetp = value - entry->d.address;
1812
1813 return index;
1814 }
1815
1816 /* Find a GOT entry whose higher-order 16 bits are the same as those
1817 for value. Return the index into the GOT for this entry. */
1818
1819 static bfd_vma
1820 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1821 bfd *abfd, *ibfd;
1822 struct bfd_link_info *info;
1823 bfd_vma value;
1824 bfd_boolean external;
1825 {
1826 asection *sgot;
1827 struct mips_got_info *g;
1828 struct mips_got_entry *entry;
1829
1830 if (! external)
1831 {
1832 /* Although the ABI says that it is "the high-order 16 bits" that we
1833 want, it is really the %high value. The complete value is
1834 calculated with a `addiu' of a LO16 relocation, just as with a
1835 HI16/LO16 pair. */
1836 value = mips_elf_high (value) << 16;
1837 }
1838
1839 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1840
1841 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1842 if (entry)
1843 return entry->gotidx;
1844 else
1845 return MINUS_ONE;
1846 }
1847
1848 /* Returns the offset for the entry at the INDEXth position
1849 in the GOT. */
1850
1851 static bfd_vma
1852 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1853 bfd *dynobj;
1854 bfd *output_bfd;
1855 bfd *input_bfd;
1856 bfd_vma index;
1857 {
1858 asection *sgot;
1859 bfd_vma gp;
1860 struct mips_got_info *g;
1861
1862 g = mips_elf_got_info (dynobj, &sgot);
1863 gp = _bfd_get_gp_value (output_bfd)
1864 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1865
1866 return sgot->output_section->vma + sgot->output_offset + index - gp;
1867 }
1868
1869 /* Create a local GOT entry for VALUE. Return the index of the entry,
1870 or -1 if it could not be created. */
1871
1872 static struct mips_got_entry *
1873 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1874 bfd *abfd, *ibfd;
1875 struct mips_got_info *gg;
1876 asection *sgot;
1877 bfd_vma value;
1878 {
1879 struct mips_got_entry entry, **loc;
1880 struct mips_got_info *g;
1881
1882 entry.abfd = NULL;
1883 entry.symndx = -1;
1884 entry.d.address = value;
1885
1886 g = mips_elf_got_for_ibfd (gg, ibfd);
1887 if (g == NULL)
1888 {
1889 g = mips_elf_got_for_ibfd (gg, abfd);
1890 BFD_ASSERT (g != NULL);
1891 }
1892
1893 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1894 INSERT);
1895 if (*loc)
1896 return *loc;
1897
1898 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1899
1900 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1901
1902 if (! *loc)
1903 return NULL;
1904
1905 memcpy (*loc, &entry, sizeof entry);
1906
1907 if (g->assigned_gotno >= g->local_gotno)
1908 {
1909 (*loc)->gotidx = -1;
1910 /* We didn't allocate enough space in the GOT. */
1911 (*_bfd_error_handler)
1912 (_("not enough GOT space for local GOT entries"));
1913 bfd_set_error (bfd_error_bad_value);
1914 return NULL;
1915 }
1916
1917 MIPS_ELF_PUT_WORD (abfd, value,
1918 (sgot->contents + entry.gotidx));
1919
1920 return *loc;
1921 }
1922
1923 /* Sort the dynamic symbol table so that symbols that need GOT entries
1924 appear towards the end. This reduces the amount of GOT space
1925 required. MAX_LOCAL is used to set the number of local symbols
1926 known to be in the dynamic symbol table. During
1927 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1928 section symbols are added and the count is higher. */
1929
1930 static bfd_boolean
1931 mips_elf_sort_hash_table (info, max_local)
1932 struct bfd_link_info *info;
1933 unsigned long max_local;
1934 {
1935 struct mips_elf_hash_sort_data hsd;
1936 struct mips_got_info *g;
1937 bfd *dynobj;
1938
1939 dynobj = elf_hash_table (info)->dynobj;
1940
1941 g = mips_elf_got_info (dynobj, NULL);
1942
1943 hsd.low = NULL;
1944 hsd.max_unref_got_dynindx =
1945 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1946 /* In the multi-got case, assigned_gotno of the master got_info
1947 indicate the number of entries that aren't referenced in the
1948 primary GOT, but that must have entries because there are
1949 dynamic relocations that reference it. Since they aren't
1950 referenced, we move them to the end of the GOT, so that they
1951 don't prevent other entries that are referenced from getting
1952 too large offsets. */
1953 - (g->next ? g->assigned_gotno : 0);
1954 hsd.max_non_got_dynindx = max_local;
1955 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1956 elf_hash_table (info)),
1957 mips_elf_sort_hash_table_f,
1958 &hsd);
1959
1960 /* There should have been enough room in the symbol table to
1961 accommodate both the GOT and non-GOT symbols. */
1962 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1963 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1964 <= elf_hash_table (info)->dynsymcount);
1965
1966 /* Now we know which dynamic symbol has the lowest dynamic symbol
1967 table index in the GOT. */
1968 g->global_gotsym = hsd.low;
1969
1970 return TRUE;
1971 }
1972
1973 /* If H needs a GOT entry, assign it the highest available dynamic
1974 index. Otherwise, assign it the lowest available dynamic
1975 index. */
1976
1977 static bfd_boolean
1978 mips_elf_sort_hash_table_f (h, data)
1979 struct mips_elf_link_hash_entry *h;
1980 PTR data;
1981 {
1982 struct mips_elf_hash_sort_data *hsd
1983 = (struct mips_elf_hash_sort_data *) data;
1984
1985 if (h->root.root.type == bfd_link_hash_warning)
1986 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1987
1988 /* Symbols without dynamic symbol table entries aren't interesting
1989 at all. */
1990 if (h->root.dynindx == -1)
1991 return TRUE;
1992
1993 /* Global symbols that need GOT entries that are not explicitly
1994 referenced are marked with got offset 2. Those that are
1995 referenced get a 1, and those that don't need GOT entries get
1996 -1. */
1997 if (h->root.got.offset == 2)
1998 {
1999 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2000 hsd->low = (struct elf_link_hash_entry *) h;
2001 h->root.dynindx = hsd->max_unref_got_dynindx++;
2002 }
2003 else if (h->root.got.offset != 1)
2004 h->root.dynindx = hsd->max_non_got_dynindx++;
2005 else
2006 {
2007 h->root.dynindx = --hsd->min_got_dynindx;
2008 hsd->low = (struct elf_link_hash_entry *) h;
2009 }
2010
2011 return TRUE;
2012 }
2013
2014 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2015 symbol table index lower than any we've seen to date, record it for
2016 posterity. */
2017
2018 static bfd_boolean
2019 mips_elf_record_global_got_symbol (h, abfd, info, g)
2020 struct elf_link_hash_entry *h;
2021 bfd *abfd;
2022 struct bfd_link_info *info;
2023 struct mips_got_info *g;
2024 {
2025 struct mips_got_entry entry, **loc;
2026
2027 /* A global symbol in the GOT must also be in the dynamic symbol
2028 table. */
2029 if (h->dynindx == -1)
2030 {
2031 switch (ELF_ST_VISIBILITY (h->other))
2032 {
2033 case STV_INTERNAL:
2034 case STV_HIDDEN:
2035 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2036 break;
2037 }
2038 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2039 return FALSE;
2040 }
2041
2042 entry.abfd = abfd;
2043 entry.symndx = -1;
2044 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2045
2046 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2047 INSERT);
2048
2049 /* If we've already marked this entry as needing GOT space, we don't
2050 need to do it again. */
2051 if (*loc)
2052 return TRUE;
2053
2054 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2055
2056 if (! *loc)
2057 return FALSE;
2058
2059 entry.gotidx = -1;
2060 memcpy (*loc, &entry, sizeof entry);
2061
2062 if (h->got.offset != MINUS_ONE)
2063 return TRUE;
2064
2065 /* By setting this to a value other than -1, we are indicating that
2066 there needs to be a GOT entry for H. Avoid using zero, as the
2067 generic ELF copy_indirect_symbol tests for <= 0. */
2068 h->got.offset = 1;
2069
2070 return TRUE;
2071 }
2072
2073 /* Reserve space in G for a GOT entry containing the value of symbol
2074 SYMNDX in input bfd ABDF, plus ADDEND. */
2075
2076 static bfd_boolean
2077 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2078 bfd *abfd;
2079 long symndx;
2080 bfd_vma addend;
2081 struct mips_got_info *g;
2082 {
2083 struct mips_got_entry entry, **loc;
2084
2085 entry.abfd = abfd;
2086 entry.symndx = symndx;
2087 entry.d.addend = addend;
2088 loc = (struct mips_got_entry **)
2089 htab_find_slot (g->got_entries, &entry, INSERT);
2090
2091 if (*loc)
2092 return TRUE;
2093
2094 entry.gotidx = g->local_gotno++;
2095
2096 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2097
2098 if (! *loc)
2099 return FALSE;
2100
2101 memcpy (*loc, &entry, sizeof entry);
2102
2103 return TRUE;
2104 }
2105 \f
2106 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2107
2108 static hashval_t
2109 mips_elf_bfd2got_entry_hash (entry_)
2110 const PTR entry_;
2111 {
2112 const struct mips_elf_bfd2got_hash *entry
2113 = (struct mips_elf_bfd2got_hash *)entry_;
2114
2115 return entry->bfd->id;
2116 }
2117
2118 /* Check whether two hash entries have the same bfd. */
2119
2120 static int
2121 mips_elf_bfd2got_entry_eq (entry1, entry2)
2122 const PTR entry1;
2123 const PTR entry2;
2124 {
2125 const struct mips_elf_bfd2got_hash *e1
2126 = (const struct mips_elf_bfd2got_hash *)entry1;
2127 const struct mips_elf_bfd2got_hash *e2
2128 = (const struct mips_elf_bfd2got_hash *)entry2;
2129
2130 return e1->bfd == e2->bfd;
2131 }
2132
2133 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2134 be the master GOT data. */
2135
2136 static struct mips_got_info *
2137 mips_elf_got_for_ibfd (g, ibfd)
2138 struct mips_got_info *g;
2139 bfd *ibfd;
2140 {
2141 struct mips_elf_bfd2got_hash e, *p;
2142
2143 if (! g->bfd2got)
2144 return g;
2145
2146 e.bfd = ibfd;
2147 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2148 return p ? p->g : NULL;
2149 }
2150
2151 /* Create one separate got for each bfd that has entries in the global
2152 got, such that we can tell how many local and global entries each
2153 bfd requires. */
2154
2155 static int
2156 mips_elf_make_got_per_bfd (entryp, p)
2157 void **entryp;
2158 void *p;
2159 {
2160 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2161 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2162 htab_t bfd2got = arg->bfd2got;
2163 struct mips_got_info *g;
2164 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2165 void **bfdgotp;
2166
2167 /* Find the got_info for this GOT entry's input bfd. Create one if
2168 none exists. */
2169 bfdgot_entry.bfd = entry->abfd;
2170 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2171 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2172
2173 if (bfdgot != NULL)
2174 g = bfdgot->g;
2175 else
2176 {
2177 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2178 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2179
2180 if (bfdgot == NULL)
2181 {
2182 arg->obfd = 0;
2183 return 0;
2184 }
2185
2186 *bfdgotp = bfdgot;
2187
2188 bfdgot->bfd = entry->abfd;
2189 bfdgot->g = g = (struct mips_got_info *)
2190 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2191 if (g == NULL)
2192 {
2193 arg->obfd = 0;
2194 return 0;
2195 }
2196
2197 g->global_gotsym = NULL;
2198 g->global_gotno = 0;
2199 g->local_gotno = 0;
2200 g->assigned_gotno = -1;
2201 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2202 mips_elf_multi_got_entry_eq,
2203 (htab_del) NULL);
2204 if (g->got_entries == NULL)
2205 {
2206 arg->obfd = 0;
2207 return 0;
2208 }
2209
2210 g->bfd2got = NULL;
2211 g->next = NULL;
2212 }
2213
2214 /* Insert the GOT entry in the bfd's got entry hash table. */
2215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2216 if (*entryp != NULL)
2217 return 1;
2218
2219 *entryp = entry;
2220
2221 if (entry->symndx >= 0 || entry->d.h->forced_local)
2222 ++g->local_gotno;
2223 else
2224 ++g->global_gotno;
2225
2226 return 1;
2227 }
2228
2229 /* Attempt to merge gots of different input bfds. Try to use as much
2230 as possible of the primary got, since it doesn't require explicit
2231 dynamic relocations, but don't use bfds that would reference global
2232 symbols out of the addressable range. Failing the primary got,
2233 attempt to merge with the current got, or finish the current got
2234 and then make make the new got current. */
2235
2236 static int
2237 mips_elf_merge_gots (bfd2got_, p)
2238 void **bfd2got_;
2239 void *p;
2240 {
2241 struct mips_elf_bfd2got_hash *bfd2got
2242 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2244 unsigned int lcount = bfd2got->g->local_gotno;
2245 unsigned int gcount = bfd2got->g->global_gotno;
2246 unsigned int maxcnt = arg->max_count;
2247
2248 /* If we don't have a primary GOT and this is not too big, use it as
2249 a starting point for the primary GOT. */
2250 if (! arg->primary && lcount + gcount <= maxcnt)
2251 {
2252 arg->primary = bfd2got->g;
2253 arg->primary_count = lcount + gcount;
2254 }
2255 /* If it looks like we can merge this bfd's entries with those of
2256 the primary, merge them. The heuristics is conservative, but we
2257 don't have to squeeze it too hard. */
2258 else if (arg->primary
2259 && (arg->primary_count + lcount + gcount) <= maxcnt)
2260 {
2261 struct mips_got_info *g = bfd2got->g;
2262 int old_lcount = arg->primary->local_gotno;
2263 int old_gcount = arg->primary->global_gotno;
2264
2265 bfd2got->g = arg->primary;
2266
2267 htab_traverse (g->got_entries,
2268 mips_elf_make_got_per_bfd,
2269 arg);
2270 if (arg->obfd == NULL)
2271 return 0;
2272
2273 htab_delete (g->got_entries);
2274 /* We don't have to worry about releasing memory of the actual
2275 got entries, since they're all in the master got_entries hash
2276 table anyway. */
2277
2278 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2279 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2280
2281 arg->primary_count = arg->primary->local_gotno
2282 + arg->primary->global_gotno;
2283 }
2284 /* If we can merge with the last-created got, do it. */
2285 else if (arg->current
2286 && arg->current_count + lcount + gcount <= maxcnt)
2287 {
2288 struct mips_got_info *g = bfd2got->g;
2289 int old_lcount = arg->current->local_gotno;
2290 int old_gcount = arg->current->global_gotno;
2291
2292 bfd2got->g = arg->current;
2293
2294 htab_traverse (g->got_entries,
2295 mips_elf_make_got_per_bfd,
2296 arg);
2297 if (arg->obfd == NULL)
2298 return 0;
2299
2300 htab_delete (g->got_entries);
2301
2302 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2303 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2304
2305 arg->current_count = arg->current->local_gotno
2306 + arg->current->global_gotno;
2307 }
2308 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2309 fits; if it turns out that it doesn't, we'll get relocation
2310 overflows anyway. */
2311 else
2312 {
2313 bfd2got->g->next = arg->current;
2314 arg->current = bfd2got->g;
2315
2316 arg->current_count = lcount + gcount;
2317 }
2318
2319 return 1;
2320 }
2321
2322 /* If passed a NULL mips_got_info in the argument, set the marker used
2323 to tell whether a global symbol needs a got entry (in the primary
2324 got) to the given VALUE.
2325
2326 If passed a pointer G to a mips_got_info in the argument (it must
2327 not be the primary GOT), compute the offset from the beginning of
2328 the (primary) GOT section to the entry in G corresponding to the
2329 global symbol. G's assigned_gotno must contain the index of the
2330 first available global GOT entry in G. VALUE must contain the size
2331 of a GOT entry in bytes. For each global GOT entry that requires a
2332 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2333 marked as not elligible for lazy resolution through a function
2334 stub. */
2335 static int
2336 mips_elf_set_global_got_offset (entryp, p)
2337 void **entryp;
2338 void *p;
2339 {
2340 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2341 struct mips_elf_set_global_got_offset_arg *arg
2342 = (struct mips_elf_set_global_got_offset_arg *)p;
2343 struct mips_got_info *g = arg->g;
2344
2345 if (entry->abfd != NULL && entry->symndx == -1
2346 && entry->d.h->root.dynindx != -1)
2347 {
2348 if (g)
2349 {
2350 BFD_ASSERT (g->global_gotsym == NULL);
2351
2352 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2353 /* We can't do lazy update of GOT entries for
2354 non-primary GOTs since the PLT entries don't use the
2355 right offsets, so punt at it for now. */
2356 entry->d.h->no_fn_stub = TRUE;
2357 if (arg->info->shared
2358 || (elf_hash_table (arg->info)->dynamic_sections_created
2359 && ((entry->d.h->root.elf_link_hash_flags
2360 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2361 && ((entry->d.h->root.elf_link_hash_flags
2362 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2363 ++arg->needed_relocs;
2364 }
2365 else
2366 entry->d.h->root.got.offset = arg->value;
2367 }
2368
2369 return 1;
2370 }
2371
2372 /* Follow indirect and warning hash entries so that each got entry
2373 points to the final symbol definition. P must point to a pointer
2374 to the hash table we're traversing. Since this traversal may
2375 modify the hash table, we set this pointer to NULL to indicate
2376 we've made a potentially-destructive change to the hash table, so
2377 the traversal must be restarted. */
2378 static int
2379 mips_elf_resolve_final_got_entry (entryp, p)
2380 void **entryp;
2381 void *p;
2382 {
2383 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2384 htab_t got_entries = *(htab_t *)p;
2385
2386 if (entry->abfd != NULL && entry->symndx == -1)
2387 {
2388 struct mips_elf_link_hash_entry *h = entry->d.h;
2389
2390 while (h->root.root.type == bfd_link_hash_indirect
2391 || h->root.root.type == bfd_link_hash_warning)
2392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2393
2394 if (entry->d.h == h)
2395 return 1;
2396
2397 entry->d.h = h;
2398
2399 /* If we can't find this entry with the new bfd hash, re-insert
2400 it, and get the traversal restarted. */
2401 if (! htab_find (got_entries, entry))
2402 {
2403 htab_clear_slot (got_entries, entryp);
2404 entryp = htab_find_slot (got_entries, entry, INSERT);
2405 if (! *entryp)
2406 *entryp = entry;
2407 /* Abort the traversal, since the whole table may have
2408 moved, and leave it up to the parent to restart the
2409 process. */
2410 *(htab_t *)p = NULL;
2411 return 0;
2412 }
2413 /* We might want to decrement the global_gotno count, but it's
2414 either too early or too late for that at this point. */
2415 }
2416
2417 return 1;
2418 }
2419
2420 /* Turn indirect got entries in a got_entries table into their final
2421 locations. */
2422 static void
2423 mips_elf_resolve_final_got_entries (g)
2424 struct mips_got_info *g;
2425 {
2426 htab_t got_entries;
2427
2428 do
2429 {
2430 got_entries = g->got_entries;
2431
2432 htab_traverse (got_entries,
2433 mips_elf_resolve_final_got_entry,
2434 &got_entries);
2435 }
2436 while (got_entries == NULL);
2437 }
2438
2439 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2440 the primary GOT. */
2441 static bfd_vma
2442 mips_elf_adjust_gp (abfd, g, ibfd)
2443 bfd *abfd;
2444 struct mips_got_info *g;
2445 bfd *ibfd;
2446 {
2447 if (g->bfd2got == NULL)
2448 return 0;
2449
2450 g = mips_elf_got_for_ibfd (g, ibfd);
2451 if (! g)
2452 return 0;
2453
2454 BFD_ASSERT (g->next);
2455
2456 g = g->next;
2457
2458 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2459 }
2460
2461 /* Turn a single GOT that is too big for 16-bit addressing into
2462 a sequence of GOTs, each one 16-bit addressable. */
2463
2464 static bfd_boolean
2465 mips_elf_multi_got (abfd, info, g, got, pages)
2466 bfd *abfd;
2467 struct bfd_link_info *info;
2468 struct mips_got_info *g;
2469 asection *got;
2470 bfd_size_type pages;
2471 {
2472 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2473 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2474 struct mips_got_info *gg;
2475 unsigned int assign;
2476
2477 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2478 mips_elf_bfd2got_entry_eq,
2479 (htab_del) NULL);
2480 if (g->bfd2got == NULL)
2481 return FALSE;
2482
2483 got_per_bfd_arg.bfd2got = g->bfd2got;
2484 got_per_bfd_arg.obfd = abfd;
2485 got_per_bfd_arg.info = info;
2486
2487 /* Count how many GOT entries each input bfd requires, creating a
2488 map from bfd to got info while at that. */
2489 mips_elf_resolve_final_got_entries (g);
2490 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2491 if (got_per_bfd_arg.obfd == NULL)
2492 return FALSE;
2493
2494 got_per_bfd_arg.current = NULL;
2495 got_per_bfd_arg.primary = NULL;
2496 /* Taking out PAGES entries is a worst-case estimate. We could
2497 compute the maximum number of pages that each separate input bfd
2498 uses, but it's probably not worth it. */
2499 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2500 / MIPS_ELF_GOT_SIZE (abfd))
2501 - MIPS_RESERVED_GOTNO - pages);
2502
2503 /* Try to merge the GOTs of input bfds together, as long as they
2504 don't seem to exceed the maximum GOT size, choosing one of them
2505 to be the primary GOT. */
2506 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2507 if (got_per_bfd_arg.obfd == NULL)
2508 return FALSE;
2509
2510 /* If we find any suitable primary GOT, create an empty one. */
2511 if (got_per_bfd_arg.primary == NULL)
2512 {
2513 g->next = (struct mips_got_info *)
2514 bfd_alloc (abfd, sizeof (struct mips_got_info));
2515 if (g->next == NULL)
2516 return FALSE;
2517
2518 g->next->global_gotsym = NULL;
2519 g->next->global_gotno = 0;
2520 g->next->local_gotno = 0;
2521 g->next->assigned_gotno = 0;
2522 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2523 mips_elf_multi_got_entry_eq,
2524 (htab_del) NULL);
2525 if (g->next->got_entries == NULL)
2526 return FALSE;
2527 g->next->bfd2got = NULL;
2528 }
2529 else
2530 g->next = got_per_bfd_arg.primary;
2531 g->next->next = got_per_bfd_arg.current;
2532
2533 /* GG is now the master GOT, and G is the primary GOT. */
2534 gg = g;
2535 g = g->next;
2536
2537 /* Map the output bfd to the primary got. That's what we're going
2538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2539 didn't mark in check_relocs, and we want a quick way to find it.
2540 We can't just use gg->next because we're going to reverse the
2541 list. */
2542 {
2543 struct mips_elf_bfd2got_hash *bfdgot;
2544 void **bfdgotp;
2545
2546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2548
2549 if (bfdgot == NULL)
2550 return FALSE;
2551
2552 bfdgot->bfd = abfd;
2553 bfdgot->g = g;
2554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2555
2556 BFD_ASSERT (*bfdgotp == NULL);
2557 *bfdgotp = bfdgot;
2558 }
2559
2560 /* The IRIX dynamic linker requires every symbol that is referenced
2561 in a dynamic relocation to be present in the primary GOT, so
2562 arrange for them to appear after those that are actually
2563 referenced.
2564
2565 GNU/Linux could very well do without it, but it would slow down
2566 the dynamic linker, since it would have to resolve every dynamic
2567 symbol referenced in other GOTs more than once, without help from
2568 the cache. Also, knowing that every external symbol has a GOT
2569 helps speed up the resolution of local symbols too, so GNU/Linux
2570 follows IRIX's practice.
2571
2572 The number 2 is used by mips_elf_sort_hash_table_f to count
2573 global GOT symbols that are unreferenced in the primary GOT, with
2574 an initial dynamic index computed from gg->assigned_gotno, where
2575 the number of unreferenced global entries in the primary GOT is
2576 preserved. */
2577 if (1)
2578 {
2579 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2580 g->global_gotno = gg->global_gotno;
2581 set_got_offset_arg.value = 2;
2582 }
2583 else
2584 {
2585 /* This could be used for dynamic linkers that don't optimize
2586 symbol resolution while applying relocations so as to use
2587 primary GOT entries or assuming the symbol is locally-defined.
2588 With this code, we assign lower dynamic indices to global
2589 symbols that are not referenced in the primary GOT, so that
2590 their entries can be omitted. */
2591 gg->assigned_gotno = 0;
2592 set_got_offset_arg.value = -1;
2593 }
2594
2595 /* Reorder dynamic symbols as described above (which behavior
2596 depends on the setting of VALUE). */
2597 set_got_offset_arg.g = NULL;
2598 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2599 &set_got_offset_arg);
2600 set_got_offset_arg.value = 1;
2601 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2602 &set_got_offset_arg);
2603 if (! mips_elf_sort_hash_table (info, 1))
2604 return FALSE;
2605
2606 /* Now go through the GOTs assigning them offset ranges.
2607 [assigned_gotno, local_gotno[ will be set to the range of local
2608 entries in each GOT. We can then compute the end of a GOT by
2609 adding local_gotno to global_gotno. We reverse the list and make
2610 it circular since then we'll be able to quickly compute the
2611 beginning of a GOT, by computing the end of its predecessor. To
2612 avoid special cases for the primary GOT, while still preserving
2613 assertions that are valid for both single- and multi-got links,
2614 we arrange for the main got struct to have the right number of
2615 global entries, but set its local_gotno such that the initial
2616 offset of the primary GOT is zero. Remember that the primary GOT
2617 will become the last item in the circular linked list, so it
2618 points back to the master GOT. */
2619 gg->local_gotno = -g->global_gotno;
2620 gg->global_gotno = g->global_gotno;
2621 assign = 0;
2622 gg->next = gg;
2623
2624 do
2625 {
2626 struct mips_got_info *gn;
2627
2628 assign += MIPS_RESERVED_GOTNO;
2629 g->assigned_gotno = assign;
2630 g->local_gotno += assign + pages;
2631 assign = g->local_gotno + g->global_gotno;
2632
2633 /* Take g out of the direct list, and push it onto the reversed
2634 list that gg points to. */
2635 gn = g->next;
2636 g->next = gg->next;
2637 gg->next = g;
2638 g = gn;
2639 }
2640 while (g);
2641
2642 got->_raw_size = (gg->next->local_gotno
2643 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2644
2645 return TRUE;
2646 }
2647
2648 \f
2649 /* Returns the first relocation of type r_type found, beginning with
2650 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2651
2652 static const Elf_Internal_Rela *
2653 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2654 bfd *abfd ATTRIBUTE_UNUSED;
2655 unsigned int r_type;
2656 const Elf_Internal_Rela *relocation;
2657 const Elf_Internal_Rela *relend;
2658 {
2659 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2660 immediately following. However, for the IRIX6 ABI, the next
2661 relocation may be a composed relocation consisting of several
2662 relocations for the same address. In that case, the R_MIPS_LO16
2663 relocation may occur as one of these. We permit a similar
2664 extension in general, as that is useful for GCC. */
2665 while (relocation < relend)
2666 {
2667 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2668 return relocation;
2669
2670 ++relocation;
2671 }
2672
2673 /* We didn't find it. */
2674 bfd_set_error (bfd_error_bad_value);
2675 return NULL;
2676 }
2677
2678 /* Return whether a relocation is against a local symbol. */
2679
2680 static bfd_boolean
2681 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2682 check_forced)
2683 bfd *input_bfd;
2684 const Elf_Internal_Rela *relocation;
2685 asection **local_sections;
2686 bfd_boolean check_forced;
2687 {
2688 unsigned long r_symndx;
2689 Elf_Internal_Shdr *symtab_hdr;
2690 struct mips_elf_link_hash_entry *h;
2691 size_t extsymoff;
2692
2693 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2694 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2695 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2696
2697 if (r_symndx < extsymoff)
2698 return TRUE;
2699 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2700 return TRUE;
2701
2702 if (check_forced)
2703 {
2704 /* Look up the hash table to check whether the symbol
2705 was forced local. */
2706 h = (struct mips_elf_link_hash_entry *)
2707 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2708 /* Find the real hash-table entry for this symbol. */
2709 while (h->root.root.type == bfd_link_hash_indirect
2710 || h->root.root.type == bfd_link_hash_warning)
2711 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2712 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2713 return TRUE;
2714 }
2715
2716 return FALSE;
2717 }
2718 \f
2719 /* Sign-extend VALUE, which has the indicated number of BITS. */
2720
2721 static bfd_vma
2722 mips_elf_sign_extend (value, bits)
2723 bfd_vma value;
2724 int bits;
2725 {
2726 if (value & ((bfd_vma) 1 << (bits - 1)))
2727 /* VALUE is negative. */
2728 value |= ((bfd_vma) - 1) << bits;
2729
2730 return value;
2731 }
2732
2733 /* Return non-zero if the indicated VALUE has overflowed the maximum
2734 range expressable by a signed number with the indicated number of
2735 BITS. */
2736
2737 static bfd_boolean
2738 mips_elf_overflow_p (value, bits)
2739 bfd_vma value;
2740 int bits;
2741 {
2742 bfd_signed_vma svalue = (bfd_signed_vma) value;
2743
2744 if (svalue > (1 << (bits - 1)) - 1)
2745 /* The value is too big. */
2746 return TRUE;
2747 else if (svalue < -(1 << (bits - 1)))
2748 /* The value is too small. */
2749 return TRUE;
2750
2751 /* All is well. */
2752 return FALSE;
2753 }
2754
2755 /* Calculate the %high function. */
2756
2757 static bfd_vma
2758 mips_elf_high (value)
2759 bfd_vma value;
2760 {
2761 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2762 }
2763
2764 /* Calculate the %higher function. */
2765
2766 static bfd_vma
2767 mips_elf_higher (value)
2768 bfd_vma value ATTRIBUTE_UNUSED;
2769 {
2770 #ifdef BFD64
2771 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2772 #else
2773 abort ();
2774 return (bfd_vma) -1;
2775 #endif
2776 }
2777
2778 /* Calculate the %highest function. */
2779
2780 static bfd_vma
2781 mips_elf_highest (value)
2782 bfd_vma value ATTRIBUTE_UNUSED;
2783 {
2784 #ifdef BFD64
2785 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2786 #else
2787 abort ();
2788 return (bfd_vma) -1;
2789 #endif
2790 }
2791 \f
2792 /* Create the .compact_rel section. */
2793
2794 static bfd_boolean
2795 mips_elf_create_compact_rel_section (abfd, info)
2796 bfd *abfd;
2797 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2798 {
2799 flagword flags;
2800 register asection *s;
2801
2802 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2803 {
2804 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2805 | SEC_READONLY);
2806
2807 s = bfd_make_section (abfd, ".compact_rel");
2808 if (s == NULL
2809 || ! bfd_set_section_flags (abfd, s, flags)
2810 || ! bfd_set_section_alignment (abfd, s,
2811 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2812 return FALSE;
2813
2814 s->_raw_size = sizeof (Elf32_External_compact_rel);
2815 }
2816
2817 return TRUE;
2818 }
2819
2820 /* Create the .got section to hold the global offset table. */
2821
2822 static bfd_boolean
2823 mips_elf_create_got_section (abfd, info, maybe_exclude)
2824 bfd *abfd;
2825 struct bfd_link_info *info;
2826 bfd_boolean maybe_exclude;
2827 {
2828 flagword flags;
2829 register asection *s;
2830 struct elf_link_hash_entry *h;
2831 struct bfd_link_hash_entry *bh;
2832 struct mips_got_info *g;
2833 bfd_size_type amt;
2834
2835 /* This function may be called more than once. */
2836 s = mips_elf_got_section (abfd, TRUE);
2837 if (s)
2838 {
2839 if (! maybe_exclude)
2840 s->flags &= ~SEC_EXCLUDE;
2841 return TRUE;
2842 }
2843
2844 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2845 | SEC_LINKER_CREATED);
2846
2847 if (maybe_exclude)
2848 flags |= SEC_EXCLUDE;
2849
2850 s = bfd_make_section (abfd, ".got");
2851 if (s == NULL
2852 || ! bfd_set_section_flags (abfd, s, flags)
2853 || ! bfd_set_section_alignment (abfd, s, 4))
2854 return FALSE;
2855
2856 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2857 linker script because we don't want to define the symbol if we
2858 are not creating a global offset table. */
2859 bh = NULL;
2860 if (! (_bfd_generic_link_add_one_symbol
2861 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2862 (bfd_vma) 0, (const char *) NULL, FALSE,
2863 get_elf_backend_data (abfd)->collect, &bh)))
2864 return FALSE;
2865
2866 h = (struct elf_link_hash_entry *) bh;
2867 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2868 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2869 h->type = STT_OBJECT;
2870
2871 if (info->shared
2872 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2873 return FALSE;
2874
2875 amt = sizeof (struct mips_got_info);
2876 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2877 if (g == NULL)
2878 return FALSE;
2879 g->global_gotsym = NULL;
2880 g->local_gotno = MIPS_RESERVED_GOTNO;
2881 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2882 g->bfd2got = NULL;
2883 g->next = NULL;
2884 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2885 mips_elf_got_entry_eq,
2886 (htab_del) NULL);
2887 if (g->got_entries == NULL)
2888 return FALSE;
2889 mips_elf_section_data (s)->u.got_info = g;
2890 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2891 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2892
2893 return TRUE;
2894 }
2895
2896 /* Returns the .msym section for ABFD, creating it if it does not
2897 already exist. Returns NULL to indicate error. */
2898
2899 static asection *
2900 mips_elf_create_msym_section (abfd)
2901 bfd *abfd;
2902 {
2903 asection *s;
2904
2905 s = bfd_get_section_by_name (abfd, ".msym");
2906 if (!s)
2907 {
2908 s = bfd_make_section (abfd, ".msym");
2909 if (!s
2910 || !bfd_set_section_flags (abfd, s,
2911 SEC_ALLOC
2912 | SEC_LOAD
2913 | SEC_HAS_CONTENTS
2914 | SEC_LINKER_CREATED
2915 | SEC_READONLY)
2916 || !bfd_set_section_alignment (abfd, s,
2917 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2918 return NULL;
2919 }
2920
2921 return s;
2922 }
2923 \f
2924 /* Calculate the value produced by the RELOCATION (which comes from
2925 the INPUT_BFD). The ADDEND is the addend to use for this
2926 RELOCATION; RELOCATION->R_ADDEND is ignored.
2927
2928 The result of the relocation calculation is stored in VALUEP.
2929 REQUIRE_JALXP indicates whether or not the opcode used with this
2930 relocation must be JALX.
2931
2932 This function returns bfd_reloc_continue if the caller need take no
2933 further action regarding this relocation, bfd_reloc_notsupported if
2934 something goes dramatically wrong, bfd_reloc_overflow if an
2935 overflow occurs, and bfd_reloc_ok to indicate success. */
2936
2937 static bfd_reloc_status_type
2938 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2939 relocation, addend, howto, local_syms,
2940 local_sections, valuep, namep,
2941 require_jalxp, save_addend)
2942 bfd *abfd;
2943 bfd *input_bfd;
2944 asection *input_section;
2945 struct bfd_link_info *info;
2946 const Elf_Internal_Rela *relocation;
2947 bfd_vma addend;
2948 reloc_howto_type *howto;
2949 Elf_Internal_Sym *local_syms;
2950 asection **local_sections;
2951 bfd_vma *valuep;
2952 const char **namep;
2953 bfd_boolean *require_jalxp;
2954 bfd_boolean save_addend;
2955 {
2956 /* The eventual value we will return. */
2957 bfd_vma value;
2958 /* The address of the symbol against which the relocation is
2959 occurring. */
2960 bfd_vma symbol = 0;
2961 /* The final GP value to be used for the relocatable, executable, or
2962 shared object file being produced. */
2963 bfd_vma gp = MINUS_ONE;
2964 /* The place (section offset or address) of the storage unit being
2965 relocated. */
2966 bfd_vma p;
2967 /* The value of GP used to create the relocatable object. */
2968 bfd_vma gp0 = MINUS_ONE;
2969 /* The offset into the global offset table at which the address of
2970 the relocation entry symbol, adjusted by the addend, resides
2971 during execution. */
2972 bfd_vma g = MINUS_ONE;
2973 /* The section in which the symbol referenced by the relocation is
2974 located. */
2975 asection *sec = NULL;
2976 struct mips_elf_link_hash_entry *h = NULL;
2977 /* TRUE if the symbol referred to by this relocation is a local
2978 symbol. */
2979 bfd_boolean local_p, was_local_p;
2980 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2981 bfd_boolean gp_disp_p = FALSE;
2982 Elf_Internal_Shdr *symtab_hdr;
2983 size_t extsymoff;
2984 unsigned long r_symndx;
2985 int r_type;
2986 /* TRUE if overflow occurred during the calculation of the
2987 relocation value. */
2988 bfd_boolean overflowed_p;
2989 /* TRUE if this relocation refers to a MIPS16 function. */
2990 bfd_boolean target_is_16_bit_code_p = FALSE;
2991
2992 /* Parse the relocation. */
2993 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2994 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2995 p = (input_section->output_section->vma
2996 + input_section->output_offset
2997 + relocation->r_offset);
2998
2999 /* Assume that there will be no overflow. */
3000 overflowed_p = FALSE;
3001
3002 /* Figure out whether or not the symbol is local, and get the offset
3003 used in the array of hash table entries. */
3004 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3005 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3006 local_sections, FALSE);
3007 was_local_p = local_p;
3008 if (! elf_bad_symtab (input_bfd))
3009 extsymoff = symtab_hdr->sh_info;
3010 else
3011 {
3012 /* The symbol table does not follow the rule that local symbols
3013 must come before globals. */
3014 extsymoff = 0;
3015 }
3016
3017 /* Figure out the value of the symbol. */
3018 if (local_p)
3019 {
3020 Elf_Internal_Sym *sym;
3021
3022 sym = local_syms + r_symndx;
3023 sec = local_sections[r_symndx];
3024
3025 symbol = sec->output_section->vma + sec->output_offset;
3026 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3027 || (sec->flags & SEC_MERGE))
3028 symbol += sym->st_value;
3029 if ((sec->flags & SEC_MERGE)
3030 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3031 {
3032 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3033 addend -= symbol;
3034 addend += sec->output_section->vma + sec->output_offset;
3035 }
3036
3037 /* MIPS16 text labels should be treated as odd. */
3038 if (sym->st_other == STO_MIPS16)
3039 ++symbol;
3040
3041 /* Record the name of this symbol, for our caller. */
3042 *namep = bfd_elf_string_from_elf_section (input_bfd,
3043 symtab_hdr->sh_link,
3044 sym->st_name);
3045 if (*namep == '\0')
3046 *namep = bfd_section_name (input_bfd, sec);
3047
3048 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3049 }
3050 else
3051 {
3052 /* For global symbols we look up the symbol in the hash-table. */
3053 h = ((struct mips_elf_link_hash_entry *)
3054 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3055 /* Find the real hash-table entry for this symbol. */
3056 while (h->root.root.type == bfd_link_hash_indirect
3057 || h->root.root.type == bfd_link_hash_warning)
3058 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3059
3060 /* Record the name of this symbol, for our caller. */
3061 *namep = h->root.root.root.string;
3062
3063 /* See if this is the special _gp_disp symbol. Note that such a
3064 symbol must always be a global symbol. */
3065 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3066 && ! NEWABI_P (input_bfd))
3067 {
3068 /* Relocations against _gp_disp are permitted only with
3069 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3070 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3071 return bfd_reloc_notsupported;
3072
3073 gp_disp_p = TRUE;
3074 }
3075 /* If this symbol is defined, calculate its address. Note that
3076 _gp_disp is a magic symbol, always implicitly defined by the
3077 linker, so it's inappropriate to check to see whether or not
3078 its defined. */
3079 else if ((h->root.root.type == bfd_link_hash_defined
3080 || h->root.root.type == bfd_link_hash_defweak)
3081 && h->root.root.u.def.section)
3082 {
3083 sec = h->root.root.u.def.section;
3084 if (sec->output_section)
3085 symbol = (h->root.root.u.def.value
3086 + sec->output_section->vma
3087 + sec->output_offset);
3088 else
3089 symbol = h->root.root.u.def.value;
3090 }
3091 else if (h->root.root.type == bfd_link_hash_undefweak)
3092 /* We allow relocations against undefined weak symbols, giving
3093 it the value zero, so that you can undefined weak functions
3094 and check to see if they exist by looking at their
3095 addresses. */
3096 symbol = 0;
3097 else if (info->shared
3098 && !info->no_undefined
3099 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3100 symbol = 0;
3101 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3102 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3103 {
3104 /* If this is a dynamic link, we should have created a
3105 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3106 in in _bfd_mips_elf_create_dynamic_sections.
3107 Otherwise, we should define the symbol with a value of 0.
3108 FIXME: It should probably get into the symbol table
3109 somehow as well. */
3110 BFD_ASSERT (! info->shared);
3111 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3112 symbol = 0;
3113 }
3114 else
3115 {
3116 if (! ((*info->callbacks->undefined_symbol)
3117 (info, h->root.root.root.string, input_bfd,
3118 input_section, relocation->r_offset,
3119 (!info->shared || info->no_undefined
3120 || ELF_ST_VISIBILITY (h->root.other)))))
3121 return bfd_reloc_undefined;
3122 symbol = 0;
3123 }
3124
3125 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3126 }
3127
3128 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3129 need to redirect the call to the stub, unless we're already *in*
3130 a stub. */
3131 if (r_type != R_MIPS16_26 && !info->relocateable
3132 && ((h != NULL && h->fn_stub != NULL)
3133 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3134 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3135 && !mips_elf_stub_section_p (input_bfd, input_section))
3136 {
3137 /* This is a 32- or 64-bit call to a 16-bit function. We should
3138 have already noticed that we were going to need the
3139 stub. */
3140 if (local_p)
3141 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3142 else
3143 {
3144 BFD_ASSERT (h->need_fn_stub);
3145 sec = h->fn_stub;
3146 }
3147
3148 symbol = sec->output_section->vma + sec->output_offset;
3149 }
3150 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3151 need to redirect the call to the stub. */
3152 else if (r_type == R_MIPS16_26 && !info->relocateable
3153 && h != NULL
3154 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3155 && !target_is_16_bit_code_p)
3156 {
3157 /* If both call_stub and call_fp_stub are defined, we can figure
3158 out which one to use by seeing which one appears in the input
3159 file. */
3160 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3161 {
3162 asection *o;
3163
3164 sec = NULL;
3165 for (o = input_bfd->sections; o != NULL; o = o->next)
3166 {
3167 if (strncmp (bfd_get_section_name (input_bfd, o),
3168 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3169 {
3170 sec = h->call_fp_stub;
3171 break;
3172 }
3173 }
3174 if (sec == NULL)
3175 sec = h->call_stub;
3176 }
3177 else if (h->call_stub != NULL)
3178 sec = h->call_stub;
3179 else
3180 sec = h->call_fp_stub;
3181
3182 BFD_ASSERT (sec->_raw_size > 0);
3183 symbol = sec->output_section->vma + sec->output_offset;
3184 }
3185
3186 /* Calls from 16-bit code to 32-bit code and vice versa require the
3187 special jalx instruction. */
3188 *require_jalxp = (!info->relocateable
3189 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3190 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3191
3192 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3193 local_sections, TRUE);
3194
3195 /* If we haven't already determined the GOT offset, or the GP value,
3196 and we're going to need it, get it now. */
3197 switch (r_type)
3198 {
3199 case R_MIPS_GOT_PAGE:
3200 /* If we didn't create a dynamic index for this symbol, it can
3201 be regarded as local. */
3202 if (local_p || ! h || h->root.dynindx < 0)
3203 break;
3204 /* Fall through. */
3205
3206 case R_MIPS_CALL16:
3207 case R_MIPS_GOT16:
3208 case R_MIPS_GOT_DISP:
3209 case R_MIPS_GOT_HI16:
3210 case R_MIPS_CALL_HI16:
3211 case R_MIPS_GOT_LO16:
3212 case R_MIPS_CALL_LO16:
3213 /* Find the index into the GOT where this value is located. */
3214 if (!local_p)
3215 {
3216 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3217 GOT_PAGE relocation that decays to GOT_DISP because the
3218 symbol turns out to be global. The addend is then added
3219 as GOT_OFST. */
3220 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3221 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3222 input_bfd,
3223 (struct elf_link_hash_entry *) h);
3224 if (! elf_hash_table(info)->dynamic_sections_created
3225 || (info->shared
3226 && (info->symbolic || h->root.dynindx == -1)
3227 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3228 {
3229 /* This is a static link or a -Bsymbolic link. The
3230 symbol is defined locally, or was forced to be local.
3231 We must initialize this entry in the GOT. */
3232 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3233 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3234 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3235 }
3236 }
3237 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3238 /* There's no need to create a local GOT entry here; the
3239 calculation for a local GOT16 entry does not involve G. */
3240 break;
3241 else
3242 {
3243 g = mips_elf_local_got_index (abfd, input_bfd,
3244 info, symbol + addend);
3245 if (g == MINUS_ONE)
3246 return bfd_reloc_outofrange;
3247 }
3248
3249 /* Convert GOT indices to actual offsets. */
3250 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3251 abfd, input_bfd, g);
3252 break;
3253
3254 case R_MIPS_HI16:
3255 case R_MIPS_LO16:
3256 case R_MIPS16_GPREL:
3257 case R_MIPS_GPREL16:
3258 case R_MIPS_GPREL32:
3259 case R_MIPS_LITERAL:
3260 gp0 = _bfd_get_gp_value (input_bfd);
3261 gp = _bfd_get_gp_value (abfd);
3262 if (elf_hash_table (info)->dynobj)
3263 gp += mips_elf_adjust_gp (abfd,
3264 mips_elf_got_info
3265 (elf_hash_table (info)->dynobj, NULL),
3266 input_bfd);
3267 break;
3268
3269 default:
3270 break;
3271 }
3272
3273 /* Figure out what kind of relocation is being performed. */
3274 switch (r_type)
3275 {
3276 case R_MIPS_NONE:
3277 return bfd_reloc_continue;
3278
3279 case R_MIPS_16:
3280 value = symbol + mips_elf_sign_extend (addend, 16);
3281 overflowed_p = mips_elf_overflow_p (value, 16);
3282 break;
3283
3284 case R_MIPS_32:
3285 case R_MIPS_REL32:
3286 case R_MIPS_64:
3287 if ((info->shared
3288 || (elf_hash_table (info)->dynamic_sections_created
3289 && h != NULL
3290 && ((h->root.elf_link_hash_flags
3291 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3292 && ((h->root.elf_link_hash_flags
3293 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3294 && r_symndx != 0
3295 && (input_section->flags & SEC_ALLOC) != 0)
3296 {
3297 /* If we're creating a shared library, or this relocation is
3298 against a symbol in a shared library, then we can't know
3299 where the symbol will end up. So, we create a relocation
3300 record in the output, and leave the job up to the dynamic
3301 linker. */
3302 value = addend;
3303 if (!mips_elf_create_dynamic_relocation (abfd,
3304 info,
3305 relocation,
3306 h,
3307 sec,
3308 symbol,
3309 &value,
3310 input_section))
3311 return bfd_reloc_undefined;
3312 }
3313 else
3314 {
3315 if (r_type != R_MIPS_REL32)
3316 value = symbol + addend;
3317 else
3318 value = addend;
3319 }
3320 value &= howto->dst_mask;
3321 break;
3322
3323 case R_MIPS_PC32:
3324 case R_MIPS_PC64:
3325 case R_MIPS_GNU_REL_LO16:
3326 value = symbol + addend - p;
3327 value &= howto->dst_mask;
3328 break;
3329
3330 case R_MIPS_GNU_REL16_S2:
3331 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3332 overflowed_p = mips_elf_overflow_p (value, 18);
3333 value = (value >> 2) & howto->dst_mask;
3334 break;
3335
3336 case R_MIPS_GNU_REL_HI16:
3337 /* Instead of subtracting 'p' here, we should be subtracting the
3338 equivalent value for the LO part of the reloc, since the value
3339 here is relative to that address. Because that's not easy to do,
3340 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3341 the comment there for more information. */
3342 value = mips_elf_high (addend + symbol - p);
3343 value &= howto->dst_mask;
3344 break;
3345
3346 case R_MIPS16_26:
3347 /* The calculation for R_MIPS16_26 is just the same as for an
3348 R_MIPS_26. It's only the storage of the relocated field into
3349 the output file that's different. That's handled in
3350 mips_elf_perform_relocation. So, we just fall through to the
3351 R_MIPS_26 case here. */
3352 case R_MIPS_26:
3353 if (local_p)
3354 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3355 else
3356 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_HI16:
3361 if (!gp_disp_p)
3362 {
3363 value = mips_elf_high (addend + symbol);
3364 value &= howto->dst_mask;
3365 }
3366 else
3367 {
3368 value = mips_elf_high (addend + gp - p);
3369 overflowed_p = mips_elf_overflow_p (value, 16);
3370 }
3371 break;
3372
3373 case R_MIPS_LO16:
3374 if (!gp_disp_p)
3375 value = (symbol + addend) & howto->dst_mask;
3376 else
3377 {
3378 value = addend + gp - p + 4;
3379 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3380 for overflow. But, on, say, IRIX5, relocations against
3381 _gp_disp are normally generated from the .cpload
3382 pseudo-op. It generates code that normally looks like
3383 this:
3384
3385 lui $gp,%hi(_gp_disp)
3386 addiu $gp,$gp,%lo(_gp_disp)
3387 addu $gp,$gp,$t9
3388
3389 Here $t9 holds the address of the function being called,
3390 as required by the MIPS ELF ABI. The R_MIPS_LO16
3391 relocation can easily overflow in this situation, but the
3392 R_MIPS_HI16 relocation will handle the overflow.
3393 Therefore, we consider this a bug in the MIPS ABI, and do
3394 not check for overflow here. */
3395 }
3396 break;
3397
3398 case R_MIPS_LITERAL:
3399 /* Because we don't merge literal sections, we can handle this
3400 just like R_MIPS_GPREL16. In the long run, we should merge
3401 shared literals, and then we will need to additional work
3402 here. */
3403
3404 /* Fall through. */
3405
3406 case R_MIPS16_GPREL:
3407 /* The R_MIPS16_GPREL performs the same calculation as
3408 R_MIPS_GPREL16, but stores the relocated bits in a different
3409 order. We don't need to do anything special here; the
3410 differences are handled in mips_elf_perform_relocation. */
3411 case R_MIPS_GPREL16:
3412 /* Only sign-extend the addend if it was extracted from the
3413 instruction. If the addend was separate, leave it alone,
3414 otherwise we may lose significant bits. */
3415 if (howto->partial_inplace)
3416 addend = mips_elf_sign_extend (addend, 16);
3417 value = symbol + addend - gp;
3418 /* If the symbol was local, any earlier relocatable links will
3419 have adjusted its addend with the gp offset, so compensate
3420 for that now. Don't do it for symbols forced local in this
3421 link, though, since they won't have had the gp offset applied
3422 to them before. */
3423 if (was_local_p)
3424 value += gp0;
3425 overflowed_p = mips_elf_overflow_p (value, 16);
3426 break;
3427
3428 case R_MIPS_GOT16:
3429 case R_MIPS_CALL16:
3430 if (local_p)
3431 {
3432 bfd_boolean forced;
3433
3434 /* The special case is when the symbol is forced to be local. We
3435 need the full address in the GOT since no R_MIPS_LO16 relocation
3436 follows. */
3437 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3438 local_sections, FALSE);
3439 value = mips_elf_got16_entry (abfd, input_bfd, info,
3440 symbol + addend, forced);
3441 if (value == MINUS_ONE)
3442 return bfd_reloc_outofrange;
3443 value
3444 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3445 abfd, input_bfd, value);
3446 overflowed_p = mips_elf_overflow_p (value, 16);
3447 break;
3448 }
3449
3450 /* Fall through. */
3451
3452 case R_MIPS_GOT_DISP:
3453 got_disp:
3454 value = g;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GPREL32:
3459 value = (addend + symbol + gp0 - gp);
3460 if (!save_addend)
3461 value &= howto->dst_mask;
3462 break;
3463
3464 case R_MIPS_PC16:
3465 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3466 overflowed_p = mips_elf_overflow_p (value, 16);
3467 break;
3468
3469 case R_MIPS_GOT_HI16:
3470 case R_MIPS_CALL_HI16:
3471 /* We're allowed to handle these two relocations identically.
3472 The dynamic linker is allowed to handle the CALL relocations
3473 differently by creating a lazy evaluation stub. */
3474 value = g;
3475 value = mips_elf_high (value);
3476 value &= howto->dst_mask;
3477 break;
3478
3479 case R_MIPS_GOT_LO16:
3480 case R_MIPS_CALL_LO16:
3481 value = g & howto->dst_mask;
3482 break;
3483
3484 case R_MIPS_GOT_PAGE:
3485 /* GOT_PAGE relocations that reference non-local symbols decay
3486 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3487 0. */
3488 if (! (local_p || ! h || h->root.dynindx < 0))
3489 goto got_disp;
3490 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3491 if (value == MINUS_ONE)
3492 return bfd_reloc_outofrange;
3493 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3494 abfd, input_bfd, value);
3495 overflowed_p = mips_elf_overflow_p (value, 16);
3496 break;
3497
3498 case R_MIPS_GOT_OFST:
3499 if (local_p || ! h || h->root.dynindx < 0)
3500 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3501 else
3502 value = addend;
3503 overflowed_p = mips_elf_overflow_p (value, 16);
3504 break;
3505
3506 case R_MIPS_SUB:
3507 value = symbol - addend;
3508 value &= howto->dst_mask;
3509 break;
3510
3511 case R_MIPS_HIGHER:
3512 value = mips_elf_higher (addend + symbol);
3513 value &= howto->dst_mask;
3514 break;
3515
3516 case R_MIPS_HIGHEST:
3517 value = mips_elf_highest (addend + symbol);
3518 value &= howto->dst_mask;
3519 break;
3520
3521 case R_MIPS_SCN_DISP:
3522 value = symbol + addend - sec->output_offset;
3523 value &= howto->dst_mask;
3524 break;
3525
3526 case R_MIPS_PJUMP:
3527 case R_MIPS_JALR:
3528 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3529 hint; we could improve performance by honoring that hint. */
3530 return bfd_reloc_continue;
3531
3532 case R_MIPS_GNU_VTINHERIT:
3533 case R_MIPS_GNU_VTENTRY:
3534 /* We don't do anything with these at present. */
3535 return bfd_reloc_continue;
3536
3537 default:
3538 /* An unrecognized relocation type. */
3539 return bfd_reloc_notsupported;
3540 }
3541
3542 /* Store the VALUE for our caller. */
3543 *valuep = value;
3544 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3545 }
3546
3547 /* Obtain the field relocated by RELOCATION. */
3548
3549 static bfd_vma
3550 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3551 reloc_howto_type *howto;
3552 const Elf_Internal_Rela *relocation;
3553 bfd *input_bfd;
3554 bfd_byte *contents;
3555 {
3556 bfd_vma x;
3557 bfd_byte *location = contents + relocation->r_offset;
3558
3559 /* Obtain the bytes. */
3560 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3561
3562 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3563 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3564 && bfd_little_endian (input_bfd))
3565 /* The two 16-bit words will be reversed on a little-endian system.
3566 See mips_elf_perform_relocation for more details. */
3567 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3568
3569 return x;
3570 }
3571
3572 /* It has been determined that the result of the RELOCATION is the
3573 VALUE. Use HOWTO to place VALUE into the output file at the
3574 appropriate position. The SECTION is the section to which the
3575 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3576 for the relocation must be either JAL or JALX, and it is
3577 unconditionally converted to JALX.
3578
3579 Returns FALSE if anything goes wrong. */
3580
3581 static bfd_boolean
3582 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3583 input_section, contents, require_jalx)
3584 struct bfd_link_info *info;
3585 reloc_howto_type *howto;
3586 const Elf_Internal_Rela *relocation;
3587 bfd_vma value;
3588 bfd *input_bfd;
3589 asection *input_section;
3590 bfd_byte *contents;
3591 bfd_boolean require_jalx;
3592 {
3593 bfd_vma x;
3594 bfd_byte *location;
3595 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3596
3597 /* Figure out where the relocation is occurring. */
3598 location = contents + relocation->r_offset;
3599
3600 /* Obtain the current value. */
3601 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3602
3603 /* Clear the field we are setting. */
3604 x &= ~howto->dst_mask;
3605
3606 /* If this is the R_MIPS16_26 relocation, we must store the
3607 value in a funny way. */
3608 if (r_type == R_MIPS16_26)
3609 {
3610 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3611 Most mips16 instructions are 16 bits, but these instructions
3612 are 32 bits.
3613
3614 The format of these instructions is:
3615
3616 +--------------+--------------------------------+
3617 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3618 +--------------+--------------------------------+
3619 ! Immediate 15:0 !
3620 +-----------------------------------------------+
3621
3622 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3623 Note that the immediate value in the first word is swapped.
3624
3625 When producing a relocateable object file, R_MIPS16_26 is
3626 handled mostly like R_MIPS_26. In particular, the addend is
3627 stored as a straight 26-bit value in a 32-bit instruction.
3628 (gas makes life simpler for itself by never adjusting a
3629 R_MIPS16_26 reloc to be against a section, so the addend is
3630 always zero). However, the 32 bit instruction is stored as 2
3631 16-bit values, rather than a single 32-bit value. In a
3632 big-endian file, the result is the same; in a little-endian
3633 file, the two 16-bit halves of the 32 bit value are swapped.
3634 This is so that a disassembler can recognize the jal
3635 instruction.
3636
3637 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3638 instruction stored as two 16-bit values. The addend A is the
3639 contents of the targ26 field. The calculation is the same as
3640 R_MIPS_26. When storing the calculated value, reorder the
3641 immediate value as shown above, and don't forget to store the
3642 value as two 16-bit values.
3643
3644 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3645 defined as
3646
3647 big-endian:
3648 +--------+----------------------+
3649 | | |
3650 | | targ26-16 |
3651 |31 26|25 0|
3652 +--------+----------------------+
3653
3654 little-endian:
3655 +----------+------+-------------+
3656 | | | |
3657 | sub1 | | sub2 |
3658 |0 9|10 15|16 31|
3659 +----------+--------------------+
3660 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3661 ((sub1 << 16) | sub2)).
3662
3663 When producing a relocateable object file, the calculation is
3664 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3665 When producing a fully linked file, the calculation is
3666 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3667 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3668
3669 if (!info->relocateable)
3670 /* Shuffle the bits according to the formula above. */
3671 value = (((value & 0x1f0000) << 5)
3672 | ((value & 0x3e00000) >> 5)
3673 | (value & 0xffff));
3674 }
3675 else if (r_type == R_MIPS16_GPREL)
3676 {
3677 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3678 mode. A typical instruction will have a format like this:
3679
3680 +--------------+--------------------------------+
3681 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3682 +--------------+--------------------------------+
3683 ! Major ! rx ! ry ! Imm 4:0 !
3684 +--------------+--------------------------------+
3685
3686 EXTEND is the five bit value 11110. Major is the instruction
3687 opcode.
3688
3689 This is handled exactly like R_MIPS_GPREL16, except that the
3690 addend is retrieved and stored as shown in this diagram; that
3691 is, the Imm fields above replace the V-rel16 field.
3692
3693 All we need to do here is shuffle the bits appropriately. As
3694 above, the two 16-bit halves must be swapped on a
3695 little-endian system. */
3696 value = (((value & 0x7e0) << 16)
3697 | ((value & 0xf800) << 5)
3698 | (value & 0x1f));
3699 }
3700
3701 /* Set the field. */
3702 x |= (value & howto->dst_mask);
3703
3704 /* If required, turn JAL into JALX. */
3705 if (require_jalx)
3706 {
3707 bfd_boolean ok;
3708 bfd_vma opcode = x >> 26;
3709 bfd_vma jalx_opcode;
3710
3711 /* Check to see if the opcode is already JAL or JALX. */
3712 if (r_type == R_MIPS16_26)
3713 {
3714 ok = ((opcode == 0x6) || (opcode == 0x7));
3715 jalx_opcode = 0x7;
3716 }
3717 else
3718 {
3719 ok = ((opcode == 0x3) || (opcode == 0x1d));
3720 jalx_opcode = 0x1d;
3721 }
3722
3723 /* If the opcode is not JAL or JALX, there's a problem. */
3724 if (!ok)
3725 {
3726 (*_bfd_error_handler)
3727 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3728 bfd_archive_filename (input_bfd),
3729 input_section->name,
3730 (unsigned long) relocation->r_offset);
3731 bfd_set_error (bfd_error_bad_value);
3732 return FALSE;
3733 }
3734
3735 /* Make this the JALX opcode. */
3736 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3737 }
3738
3739 /* Swap the high- and low-order 16 bits on little-endian systems
3740 when doing a MIPS16 relocation. */
3741 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3742 && bfd_little_endian (input_bfd))
3743 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3744
3745 /* Put the value into the output. */
3746 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3747 return TRUE;
3748 }
3749
3750 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3751
3752 static bfd_boolean
3753 mips_elf_stub_section_p (abfd, section)
3754 bfd *abfd ATTRIBUTE_UNUSED;
3755 asection *section;
3756 {
3757 const char *name = bfd_get_section_name (abfd, section);
3758
3759 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3760 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3761 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3762 }
3763 \f
3764 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3765
3766 static void
3767 mips_elf_allocate_dynamic_relocations (abfd, n)
3768 bfd *abfd;
3769 unsigned int n;
3770 {
3771 asection *s;
3772
3773 s = mips_elf_rel_dyn_section (abfd, FALSE);
3774 BFD_ASSERT (s != NULL);
3775
3776 if (s->_raw_size == 0)
3777 {
3778 /* Make room for a null element. */
3779 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3780 ++s->reloc_count;
3781 }
3782 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3783 }
3784
3785 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3786 is the original relocation, which is now being transformed into a
3787 dynamic relocation. The ADDENDP is adjusted if necessary; the
3788 caller should store the result in place of the original addend. */
3789
3790 static bfd_boolean
3791 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3792 symbol, addendp, input_section)
3793 bfd *output_bfd;
3794 struct bfd_link_info *info;
3795 const Elf_Internal_Rela *rel;
3796 struct mips_elf_link_hash_entry *h;
3797 asection *sec;
3798 bfd_vma symbol;
3799 bfd_vma *addendp;
3800 asection *input_section;
3801 {
3802 Elf_Internal_Rela outrel[3];
3803 bfd_boolean skip;
3804 asection *sreloc;
3805 bfd *dynobj;
3806 int r_type;
3807
3808 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3809 dynobj = elf_hash_table (info)->dynobj;
3810 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3811 BFD_ASSERT (sreloc != NULL);
3812 BFD_ASSERT (sreloc->contents != NULL);
3813 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3814 < sreloc->_raw_size);
3815
3816 skip = FALSE;
3817 outrel[0].r_offset =
3818 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3819 outrel[1].r_offset =
3820 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3821 outrel[2].r_offset =
3822 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3823
3824 #if 0
3825 /* We begin by assuming that the offset for the dynamic relocation
3826 is the same as for the original relocation. We'll adjust this
3827 later to reflect the correct output offsets. */
3828 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3829 {
3830 outrel[1].r_offset = rel[1].r_offset;
3831 outrel[2].r_offset = rel[2].r_offset;
3832 }
3833 else
3834 {
3835 /* Except that in a stab section things are more complex.
3836 Because we compress stab information, the offset given in the
3837 relocation may not be the one we want; we must let the stabs
3838 machinery tell us the offset. */
3839 outrel[1].r_offset = outrel[0].r_offset;
3840 outrel[2].r_offset = outrel[0].r_offset;
3841 /* If we didn't need the relocation at all, this value will be
3842 -1. */
3843 if (outrel[0].r_offset == (bfd_vma) -1)
3844 skip = TRUE;
3845 }
3846 #endif
3847
3848 if (outrel[0].r_offset == (bfd_vma) -1
3849 || outrel[0].r_offset == (bfd_vma) -2)
3850 skip = TRUE;
3851
3852 /* If we've decided to skip this relocation, just output an empty
3853 record. Note that R_MIPS_NONE == 0, so that this call to memset
3854 is a way of setting R_TYPE to R_MIPS_NONE. */
3855 if (skip)
3856 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3857 else
3858 {
3859 long indx;
3860
3861 /* We must now calculate the dynamic symbol table index to use
3862 in the relocation. */
3863 if (h != NULL
3864 && (! info->symbolic || (h->root.elf_link_hash_flags
3865 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3866 {
3867 indx = h->root.dynindx;
3868 /* h->root.dynindx may be -1 if this symbol was marked to
3869 become local. */
3870 if (indx == -1)
3871 indx = 0;
3872 }
3873 else
3874 {
3875 if (sec != NULL && bfd_is_abs_section (sec))
3876 indx = 0;
3877 else if (sec == NULL || sec->owner == NULL)
3878 {
3879 bfd_set_error (bfd_error_bad_value);
3880 return FALSE;
3881 }
3882 else
3883 {
3884 indx = elf_section_data (sec->output_section)->dynindx;
3885 if (indx == 0)
3886 abort ();
3887 }
3888
3889 /* Instead of generating a relocation using the section
3890 symbol, we may as well make it a fully relative
3891 relocation. We want to avoid generating relocations to
3892 local symbols because we used to generate them
3893 incorrectly, without adding the original symbol value,
3894 which is mandated by the ABI for section symbols. In
3895 order to give dynamic loaders and applications time to
3896 phase out the incorrect use, we refrain from emitting
3897 section-relative relocations. It's not like they're
3898 useful, after all. This should be a bit more efficient
3899 as well. */
3900 indx = 0;
3901 }
3902
3903 /* If the relocation was previously an absolute relocation and
3904 this symbol will not be referred to by the relocation, we must
3905 adjust it by the value we give it in the dynamic symbol table.
3906 Otherwise leave the job up to the dynamic linker. */
3907 if (!indx && r_type != R_MIPS_REL32)
3908 *addendp += symbol;
3909
3910 /* The relocation is always an REL32 relocation because we don't
3911 know where the shared library will wind up at load-time. */
3912 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3913 R_MIPS_REL32);
3914 /* For strict adherence to the ABI specification, we should
3915 generate a R_MIPS_64 relocation record by itself before the
3916 _REL32/_64 record as well, such that the addend is read in as
3917 a 64-bit value (REL32 is a 32-bit relocation, after all).
3918 However, since none of the existing ELF64 MIPS dynamic
3919 loaders seems to care, we don't waste space with these
3920 artificial relocations. If this turns out to not be true,
3921 mips_elf_allocate_dynamic_relocation() should be tweaked so
3922 as to make room for a pair of dynamic relocations per
3923 invocation if ABI_64_P, and here we should generate an
3924 additional relocation record with R_MIPS_64 by itself for a
3925 NULL symbol before this relocation record. */
3926 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3927 ABI_64_P (output_bfd)
3928 ? R_MIPS_64
3929 : R_MIPS_NONE);
3930 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3931 R_MIPS_NONE);
3932
3933 /* Adjust the output offset of the relocation to reference the
3934 correct location in the output file. */
3935 outrel[0].r_offset += (input_section->output_section->vma
3936 + input_section->output_offset);
3937 outrel[1].r_offset += (input_section->output_section->vma
3938 + input_section->output_offset);
3939 outrel[2].r_offset += (input_section->output_section->vma
3940 + input_section->output_offset);
3941 }
3942
3943 /* Put the relocation back out. We have to use the special
3944 relocation outputter in the 64-bit case since the 64-bit
3945 relocation format is non-standard. */
3946 if (ABI_64_P (output_bfd))
3947 {
3948 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3949 (output_bfd, &outrel[0],
3950 (sreloc->contents
3951 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3952 }
3953 else
3954 bfd_elf32_swap_reloc_out
3955 (output_bfd, &outrel[0],
3956 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3957
3958 /* Record the index of the first relocation referencing H. This
3959 information is later emitted in the .msym section. */
3960 if (h != NULL
3961 && (h->min_dyn_reloc_index == 0
3962 || sreloc->reloc_count < h->min_dyn_reloc_index))
3963 h->min_dyn_reloc_index = sreloc->reloc_count;
3964
3965 /* We've now added another relocation. */
3966 ++sreloc->reloc_count;
3967
3968 /* Make sure the output section is writable. The dynamic linker
3969 will be writing to it. */
3970 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3971 |= SHF_WRITE;
3972
3973 /* On IRIX5, make an entry of compact relocation info. */
3974 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3975 {
3976 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3977 bfd_byte *cr;
3978
3979 if (scpt)
3980 {
3981 Elf32_crinfo cptrel;
3982
3983 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3984 cptrel.vaddr = (rel->r_offset
3985 + input_section->output_section->vma
3986 + input_section->output_offset);
3987 if (r_type == R_MIPS_REL32)
3988 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3989 else
3990 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3991 mips_elf_set_cr_dist2to (cptrel, 0);
3992 cptrel.konst = *addendp;
3993
3994 cr = (scpt->contents
3995 + sizeof (Elf32_External_compact_rel));
3996 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3997 ((Elf32_External_crinfo *) cr
3998 + scpt->reloc_count));
3999 ++scpt->reloc_count;
4000 }
4001 }
4002
4003 return TRUE;
4004 }
4005 \f
4006 /* Return the MACH for a MIPS e_flags value. */
4007
4008 unsigned long
4009 _bfd_elf_mips_mach (flags)
4010 flagword flags;
4011 {
4012 switch (flags & EF_MIPS_MACH)
4013 {
4014 case E_MIPS_MACH_3900:
4015 return bfd_mach_mips3900;
4016
4017 case E_MIPS_MACH_4010:
4018 return bfd_mach_mips4010;
4019
4020 case E_MIPS_MACH_4100:
4021 return bfd_mach_mips4100;
4022
4023 case E_MIPS_MACH_4111:
4024 return bfd_mach_mips4111;
4025
4026 case E_MIPS_MACH_4120:
4027 return bfd_mach_mips4120;
4028
4029 case E_MIPS_MACH_4650:
4030 return bfd_mach_mips4650;
4031
4032 case E_MIPS_MACH_5400:
4033 return bfd_mach_mips5400;
4034
4035 case E_MIPS_MACH_5500:
4036 return bfd_mach_mips5500;
4037
4038 case E_MIPS_MACH_SB1:
4039 return bfd_mach_mips_sb1;
4040
4041 default:
4042 switch (flags & EF_MIPS_ARCH)
4043 {
4044 default:
4045 case E_MIPS_ARCH_1:
4046 return bfd_mach_mips3000;
4047 break;
4048
4049 case E_MIPS_ARCH_2:
4050 return bfd_mach_mips6000;
4051 break;
4052
4053 case E_MIPS_ARCH_3:
4054 return bfd_mach_mips4000;
4055 break;
4056
4057 case E_MIPS_ARCH_4:
4058 return bfd_mach_mips8000;
4059 break;
4060
4061 case E_MIPS_ARCH_5:
4062 return bfd_mach_mips5;
4063 break;
4064
4065 case E_MIPS_ARCH_32:
4066 return bfd_mach_mipsisa32;
4067 break;
4068
4069 case E_MIPS_ARCH_64:
4070 return bfd_mach_mipsisa64;
4071 break;
4072
4073 case E_MIPS_ARCH_32R2:
4074 return bfd_mach_mipsisa32r2;
4075 break;
4076 }
4077 }
4078
4079 return 0;
4080 }
4081
4082 /* Return printable name for ABI. */
4083
4084 static INLINE char *
4085 elf_mips_abi_name (abfd)
4086 bfd *abfd;
4087 {
4088 flagword flags;
4089
4090 flags = elf_elfheader (abfd)->e_flags;
4091 switch (flags & EF_MIPS_ABI)
4092 {
4093 case 0:
4094 if (ABI_N32_P (abfd))
4095 return "N32";
4096 else if (ABI_64_P (abfd))
4097 return "64";
4098 else
4099 return "none";
4100 case E_MIPS_ABI_O32:
4101 return "O32";
4102 case E_MIPS_ABI_O64:
4103 return "O64";
4104 case E_MIPS_ABI_EABI32:
4105 return "EABI32";
4106 case E_MIPS_ABI_EABI64:
4107 return "EABI64";
4108 default:
4109 return "unknown abi";
4110 }
4111 }
4112 \f
4113 /* MIPS ELF uses two common sections. One is the usual one, and the
4114 other is for small objects. All the small objects are kept
4115 together, and then referenced via the gp pointer, which yields
4116 faster assembler code. This is what we use for the small common
4117 section. This approach is copied from ecoff.c. */
4118 static asection mips_elf_scom_section;
4119 static asymbol mips_elf_scom_symbol;
4120 static asymbol *mips_elf_scom_symbol_ptr;
4121
4122 /* MIPS ELF also uses an acommon section, which represents an
4123 allocated common symbol which may be overridden by a
4124 definition in a shared library. */
4125 static asection mips_elf_acom_section;
4126 static asymbol mips_elf_acom_symbol;
4127 static asymbol *mips_elf_acom_symbol_ptr;
4128
4129 /* Handle the special MIPS section numbers that a symbol may use.
4130 This is used for both the 32-bit and the 64-bit ABI. */
4131
4132 void
4133 _bfd_mips_elf_symbol_processing (abfd, asym)
4134 bfd *abfd;
4135 asymbol *asym;
4136 {
4137 elf_symbol_type *elfsym;
4138
4139 elfsym = (elf_symbol_type *) asym;
4140 switch (elfsym->internal_elf_sym.st_shndx)
4141 {
4142 case SHN_MIPS_ACOMMON:
4143 /* This section is used in a dynamically linked executable file.
4144 It is an allocated common section. The dynamic linker can
4145 either resolve these symbols to something in a shared
4146 library, or it can just leave them here. For our purposes,
4147 we can consider these symbols to be in a new section. */
4148 if (mips_elf_acom_section.name == NULL)
4149 {
4150 /* Initialize the acommon section. */
4151 mips_elf_acom_section.name = ".acommon";
4152 mips_elf_acom_section.flags = SEC_ALLOC;
4153 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4154 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4155 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4156 mips_elf_acom_symbol.name = ".acommon";
4157 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4158 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4159 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4160 }
4161 asym->section = &mips_elf_acom_section;
4162 break;
4163
4164 case SHN_COMMON:
4165 /* Common symbols less than the GP size are automatically
4166 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4167 if (asym->value > elf_gp_size (abfd)
4168 || IRIX_COMPAT (abfd) == ict_irix6)
4169 break;
4170 /* Fall through. */
4171 case SHN_MIPS_SCOMMON:
4172 if (mips_elf_scom_section.name == NULL)
4173 {
4174 /* Initialize the small common section. */
4175 mips_elf_scom_section.name = ".scommon";
4176 mips_elf_scom_section.flags = SEC_IS_COMMON;
4177 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4178 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4179 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4180 mips_elf_scom_symbol.name = ".scommon";
4181 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4182 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4183 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4184 }
4185 asym->section = &mips_elf_scom_section;
4186 asym->value = elfsym->internal_elf_sym.st_size;
4187 break;
4188
4189 case SHN_MIPS_SUNDEFINED:
4190 asym->section = bfd_und_section_ptr;
4191 break;
4192
4193 #if 0 /* for SGI_COMPAT */
4194 case SHN_MIPS_TEXT:
4195 asym->section = mips_elf_text_section_ptr;
4196 break;
4197
4198 case SHN_MIPS_DATA:
4199 asym->section = mips_elf_data_section_ptr;
4200 break;
4201 #endif
4202 }
4203 }
4204 \f
4205 /* Work over a section just before writing it out. This routine is
4206 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4207 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4208 a better way. */
4209
4210 bfd_boolean
4211 _bfd_mips_elf_section_processing (abfd, hdr)
4212 bfd *abfd;
4213 Elf_Internal_Shdr *hdr;
4214 {
4215 if (hdr->sh_type == SHT_MIPS_REGINFO
4216 && hdr->sh_size > 0)
4217 {
4218 bfd_byte buf[4];
4219
4220 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4221 BFD_ASSERT (hdr->contents == NULL);
4222
4223 if (bfd_seek (abfd,
4224 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4225 SEEK_SET) != 0)
4226 return FALSE;
4227 H_PUT_32 (abfd, elf_gp (abfd), buf);
4228 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4229 return FALSE;
4230 }
4231
4232 if (hdr->sh_type == SHT_MIPS_OPTIONS
4233 && hdr->bfd_section != NULL
4234 && mips_elf_section_data (hdr->bfd_section) != NULL
4235 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4236 {
4237 bfd_byte *contents, *l, *lend;
4238
4239 /* We stored the section contents in the tdata field in the
4240 set_section_contents routine. We save the section contents
4241 so that we don't have to read them again.
4242 At this point we know that elf_gp is set, so we can look
4243 through the section contents to see if there is an
4244 ODK_REGINFO structure. */
4245
4246 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4247 l = contents;
4248 lend = contents + hdr->sh_size;
4249 while (l + sizeof (Elf_External_Options) <= lend)
4250 {
4251 Elf_Internal_Options intopt;
4252
4253 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4254 &intopt);
4255 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4256 {
4257 bfd_byte buf[8];
4258
4259 if (bfd_seek (abfd,
4260 (hdr->sh_offset
4261 + (l - contents)
4262 + sizeof (Elf_External_Options)
4263 + (sizeof (Elf64_External_RegInfo) - 8)),
4264 SEEK_SET) != 0)
4265 return FALSE;
4266 H_PUT_64 (abfd, elf_gp (abfd), buf);
4267 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4268 return FALSE;
4269 }
4270 else if (intopt.kind == ODK_REGINFO)
4271 {
4272 bfd_byte buf[4];
4273
4274 if (bfd_seek (abfd,
4275 (hdr->sh_offset
4276 + (l - contents)
4277 + sizeof (Elf_External_Options)
4278 + (sizeof (Elf32_External_RegInfo) - 4)),
4279 SEEK_SET) != 0)
4280 return FALSE;
4281 H_PUT_32 (abfd, elf_gp (abfd), buf);
4282 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4283 return FALSE;
4284 }
4285 l += intopt.size;
4286 }
4287 }
4288
4289 if (hdr->bfd_section != NULL)
4290 {
4291 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4292
4293 if (strcmp (name, ".sdata") == 0
4294 || strcmp (name, ".lit8") == 0
4295 || strcmp (name, ".lit4") == 0)
4296 {
4297 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4298 hdr->sh_type = SHT_PROGBITS;
4299 }
4300 else if (strcmp (name, ".sbss") == 0)
4301 {
4302 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4303 hdr->sh_type = SHT_NOBITS;
4304 }
4305 else if (strcmp (name, ".srdata") == 0)
4306 {
4307 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4308 hdr->sh_type = SHT_PROGBITS;
4309 }
4310 else if (strcmp (name, ".compact_rel") == 0)
4311 {
4312 hdr->sh_flags = 0;
4313 hdr->sh_type = SHT_PROGBITS;
4314 }
4315 else if (strcmp (name, ".rtproc") == 0)
4316 {
4317 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4318 {
4319 unsigned int adjust;
4320
4321 adjust = hdr->sh_size % hdr->sh_addralign;
4322 if (adjust != 0)
4323 hdr->sh_size += hdr->sh_addralign - adjust;
4324 }
4325 }
4326 }
4327
4328 return TRUE;
4329 }
4330
4331 /* Handle a MIPS specific section when reading an object file. This
4332 is called when elfcode.h finds a section with an unknown type.
4333 This routine supports both the 32-bit and 64-bit ELF ABI.
4334
4335 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4336 how to. */
4337
4338 bfd_boolean
4339 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4340 bfd *abfd;
4341 Elf_Internal_Shdr *hdr;
4342 const char *name;
4343 {
4344 flagword flags = 0;
4345
4346 /* There ought to be a place to keep ELF backend specific flags, but
4347 at the moment there isn't one. We just keep track of the
4348 sections by their name, instead. Fortunately, the ABI gives
4349 suggested names for all the MIPS specific sections, so we will
4350 probably get away with this. */
4351 switch (hdr->sh_type)
4352 {
4353 case SHT_MIPS_LIBLIST:
4354 if (strcmp (name, ".liblist") != 0)
4355 return FALSE;
4356 break;
4357 case SHT_MIPS_MSYM:
4358 if (strcmp (name, ".msym") != 0)
4359 return FALSE;
4360 break;
4361 case SHT_MIPS_CONFLICT:
4362 if (strcmp (name, ".conflict") != 0)
4363 return FALSE;
4364 break;
4365 case SHT_MIPS_GPTAB:
4366 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4367 return FALSE;
4368 break;
4369 case SHT_MIPS_UCODE:
4370 if (strcmp (name, ".ucode") != 0)
4371 return FALSE;
4372 break;
4373 case SHT_MIPS_DEBUG:
4374 if (strcmp (name, ".mdebug") != 0)
4375 return FALSE;
4376 flags = SEC_DEBUGGING;
4377 break;
4378 case SHT_MIPS_REGINFO:
4379 if (strcmp (name, ".reginfo") != 0
4380 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4381 return FALSE;
4382 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4383 break;
4384 case SHT_MIPS_IFACE:
4385 if (strcmp (name, ".MIPS.interfaces") != 0)
4386 return FALSE;
4387 break;
4388 case SHT_MIPS_CONTENT:
4389 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4390 return FALSE;
4391 break;
4392 case SHT_MIPS_OPTIONS:
4393 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4394 return FALSE;
4395 break;
4396 case SHT_MIPS_DWARF:
4397 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4398 return FALSE;
4399 break;
4400 case SHT_MIPS_SYMBOL_LIB:
4401 if (strcmp (name, ".MIPS.symlib") != 0)
4402 return FALSE;
4403 break;
4404 case SHT_MIPS_EVENTS:
4405 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4406 && strncmp (name, ".MIPS.post_rel",
4407 sizeof ".MIPS.post_rel" - 1) != 0)
4408 return FALSE;
4409 break;
4410 default:
4411 return FALSE;
4412 }
4413
4414 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4415 return FALSE;
4416
4417 if (flags)
4418 {
4419 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4420 (bfd_get_section_flags (abfd,
4421 hdr->bfd_section)
4422 | flags)))
4423 return FALSE;
4424 }
4425
4426 /* FIXME: We should record sh_info for a .gptab section. */
4427
4428 /* For a .reginfo section, set the gp value in the tdata information
4429 from the contents of this section. We need the gp value while
4430 processing relocs, so we just get it now. The .reginfo section
4431 is not used in the 64-bit MIPS ELF ABI. */
4432 if (hdr->sh_type == SHT_MIPS_REGINFO)
4433 {
4434 Elf32_External_RegInfo ext;
4435 Elf32_RegInfo s;
4436
4437 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4438 (file_ptr) 0,
4439 (bfd_size_type) sizeof ext))
4440 return FALSE;
4441 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4442 elf_gp (abfd) = s.ri_gp_value;
4443 }
4444
4445 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4446 set the gp value based on what we find. We may see both
4447 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4448 they should agree. */
4449 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4450 {
4451 bfd_byte *contents, *l, *lend;
4452
4453 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4454 if (contents == NULL)
4455 return FALSE;
4456 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4457 (file_ptr) 0, hdr->sh_size))
4458 {
4459 free (contents);
4460 return FALSE;
4461 }
4462 l = contents;
4463 lend = contents + hdr->sh_size;
4464 while (l + sizeof (Elf_External_Options) <= lend)
4465 {
4466 Elf_Internal_Options intopt;
4467
4468 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4469 &intopt);
4470 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4471 {
4472 Elf64_Internal_RegInfo intreg;
4473
4474 bfd_mips_elf64_swap_reginfo_in
4475 (abfd,
4476 ((Elf64_External_RegInfo *)
4477 (l + sizeof (Elf_External_Options))),
4478 &intreg);
4479 elf_gp (abfd) = intreg.ri_gp_value;
4480 }
4481 else if (intopt.kind == ODK_REGINFO)
4482 {
4483 Elf32_RegInfo intreg;
4484
4485 bfd_mips_elf32_swap_reginfo_in
4486 (abfd,
4487 ((Elf32_External_RegInfo *)
4488 (l + sizeof (Elf_External_Options))),
4489 &intreg);
4490 elf_gp (abfd) = intreg.ri_gp_value;
4491 }
4492 l += intopt.size;
4493 }
4494 free (contents);
4495 }
4496
4497 return TRUE;
4498 }
4499
4500 /* Set the correct type for a MIPS ELF section. We do this by the
4501 section name, which is a hack, but ought to work. This routine is
4502 used by both the 32-bit and the 64-bit ABI. */
4503
4504 bfd_boolean
4505 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4506 bfd *abfd;
4507 Elf_Internal_Shdr *hdr;
4508 asection *sec;
4509 {
4510 register const char *name;
4511
4512 name = bfd_get_section_name (abfd, sec);
4513
4514 if (strcmp (name, ".liblist") == 0)
4515 {
4516 hdr->sh_type = SHT_MIPS_LIBLIST;
4517 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4518 /* The sh_link field is set in final_write_processing. */
4519 }
4520 else if (strcmp (name, ".conflict") == 0)
4521 hdr->sh_type = SHT_MIPS_CONFLICT;
4522 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4523 {
4524 hdr->sh_type = SHT_MIPS_GPTAB;
4525 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4526 /* The sh_info field is set in final_write_processing. */
4527 }
4528 else if (strcmp (name, ".ucode") == 0)
4529 hdr->sh_type = SHT_MIPS_UCODE;
4530 else if (strcmp (name, ".mdebug") == 0)
4531 {
4532 hdr->sh_type = SHT_MIPS_DEBUG;
4533 /* In a shared object on IRIX 5.3, the .mdebug section has an
4534 entsize of 0. FIXME: Does this matter? */
4535 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4536 hdr->sh_entsize = 0;
4537 else
4538 hdr->sh_entsize = 1;
4539 }
4540 else if (strcmp (name, ".reginfo") == 0)
4541 {
4542 hdr->sh_type = SHT_MIPS_REGINFO;
4543 /* In a shared object on IRIX 5.3, the .reginfo section has an
4544 entsize of 0x18. FIXME: Does this matter? */
4545 if (SGI_COMPAT (abfd))
4546 {
4547 if ((abfd->flags & DYNAMIC) != 0)
4548 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4549 else
4550 hdr->sh_entsize = 1;
4551 }
4552 else
4553 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4554 }
4555 else if (SGI_COMPAT (abfd)
4556 && (strcmp (name, ".hash") == 0
4557 || strcmp (name, ".dynamic") == 0
4558 || strcmp (name, ".dynstr") == 0))
4559 {
4560 if (SGI_COMPAT (abfd))
4561 hdr->sh_entsize = 0;
4562 #if 0
4563 /* This isn't how the IRIX6 linker behaves. */
4564 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4565 #endif
4566 }
4567 else if (strcmp (name, ".got") == 0
4568 || strcmp (name, ".srdata") == 0
4569 || strcmp (name, ".sdata") == 0
4570 || strcmp (name, ".sbss") == 0
4571 || strcmp (name, ".lit4") == 0
4572 || strcmp (name, ".lit8") == 0)
4573 hdr->sh_flags |= SHF_MIPS_GPREL;
4574 else if (strcmp (name, ".MIPS.interfaces") == 0)
4575 {
4576 hdr->sh_type = SHT_MIPS_IFACE;
4577 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4578 }
4579 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4580 {
4581 hdr->sh_type = SHT_MIPS_CONTENT;
4582 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4583 /* The sh_info field is set in final_write_processing. */
4584 }
4585 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4586 {
4587 hdr->sh_type = SHT_MIPS_OPTIONS;
4588 hdr->sh_entsize = 1;
4589 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4590 }
4591 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4592 hdr->sh_type = SHT_MIPS_DWARF;
4593 else if (strcmp (name, ".MIPS.symlib") == 0)
4594 {
4595 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4596 /* The sh_link and sh_info fields are set in
4597 final_write_processing. */
4598 }
4599 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4600 || strncmp (name, ".MIPS.post_rel",
4601 sizeof ".MIPS.post_rel" - 1) == 0)
4602 {
4603 hdr->sh_type = SHT_MIPS_EVENTS;
4604 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4605 /* The sh_link field is set in final_write_processing. */
4606 }
4607 else if (strcmp (name, ".msym") == 0)
4608 {
4609 hdr->sh_type = SHT_MIPS_MSYM;
4610 hdr->sh_flags |= SHF_ALLOC;
4611 hdr->sh_entsize = 8;
4612 }
4613
4614 /* The generic elf_fake_sections will set up REL_HDR using the
4615 default kind of relocations. But, we may actually need both
4616 kinds of relocations, so we set up the second header here.
4617
4618 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4619 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4620 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4621 of the resulting empty .rela.<section> sections starts with
4622 sh_offset == object size, and ld doesn't allow that. While the check
4623 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4624 avoided by not emitting those useless sections in the first place. */
4625 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4626 && (sec->flags & SEC_RELOC) != 0)
4627 {
4628 struct bfd_elf_section_data *esd;
4629 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4630
4631 esd = elf_section_data (sec);
4632 BFD_ASSERT (esd->rel_hdr2 == NULL);
4633 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4634 if (!esd->rel_hdr2)
4635 return FALSE;
4636 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p);
4637 }
4638
4639 return TRUE;
4640 }
4641
4642 /* Given a BFD section, try to locate the corresponding ELF section
4643 index. This is used by both the 32-bit and the 64-bit ABI.
4644 Actually, it's not clear to me that the 64-bit ABI supports these,
4645 but for non-PIC objects we will certainly want support for at least
4646 the .scommon section. */
4647
4648 bfd_boolean
4649 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4650 bfd *abfd ATTRIBUTE_UNUSED;
4651 asection *sec;
4652 int *retval;
4653 {
4654 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4655 {
4656 *retval = SHN_MIPS_SCOMMON;
4657 return TRUE;
4658 }
4659 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4660 {
4661 *retval = SHN_MIPS_ACOMMON;
4662 return TRUE;
4663 }
4664 return FALSE;
4665 }
4666 \f
4667 /* Hook called by the linker routine which adds symbols from an object
4668 file. We must handle the special MIPS section numbers here. */
4669
4670 bfd_boolean
4671 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4672 bfd *abfd;
4673 struct bfd_link_info *info;
4674 const Elf_Internal_Sym *sym;
4675 const char **namep;
4676 flagword *flagsp ATTRIBUTE_UNUSED;
4677 asection **secp;
4678 bfd_vma *valp;
4679 {
4680 if (SGI_COMPAT (abfd)
4681 && (abfd->flags & DYNAMIC) != 0
4682 && strcmp (*namep, "_rld_new_interface") == 0)
4683 {
4684 /* Skip IRIX5 rld entry name. */
4685 *namep = NULL;
4686 return TRUE;
4687 }
4688
4689 switch (sym->st_shndx)
4690 {
4691 case SHN_COMMON:
4692 /* Common symbols less than the GP size are automatically
4693 treated as SHN_MIPS_SCOMMON symbols. */
4694 if (sym->st_size > elf_gp_size (abfd)
4695 || IRIX_COMPAT (abfd) == ict_irix6)
4696 break;
4697 /* Fall through. */
4698 case SHN_MIPS_SCOMMON:
4699 *secp = bfd_make_section_old_way (abfd, ".scommon");
4700 (*secp)->flags |= SEC_IS_COMMON;
4701 *valp = sym->st_size;
4702 break;
4703
4704 case SHN_MIPS_TEXT:
4705 /* This section is used in a shared object. */
4706 if (elf_tdata (abfd)->elf_text_section == NULL)
4707 {
4708 asymbol *elf_text_symbol;
4709 asection *elf_text_section;
4710 bfd_size_type amt = sizeof (asection);
4711
4712 elf_text_section = bfd_zalloc (abfd, amt);
4713 if (elf_text_section == NULL)
4714 return FALSE;
4715
4716 amt = sizeof (asymbol);
4717 elf_text_symbol = bfd_zalloc (abfd, amt);
4718 if (elf_text_symbol == NULL)
4719 return FALSE;
4720
4721 /* Initialize the section. */
4722
4723 elf_tdata (abfd)->elf_text_section = elf_text_section;
4724 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4725
4726 elf_text_section->symbol = elf_text_symbol;
4727 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4728
4729 elf_text_section->name = ".text";
4730 elf_text_section->flags = SEC_NO_FLAGS;
4731 elf_text_section->output_section = NULL;
4732 elf_text_section->owner = abfd;
4733 elf_text_symbol->name = ".text";
4734 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4735 elf_text_symbol->section = elf_text_section;
4736 }
4737 /* This code used to do *secp = bfd_und_section_ptr if
4738 info->shared. I don't know why, and that doesn't make sense,
4739 so I took it out. */
4740 *secp = elf_tdata (abfd)->elf_text_section;
4741 break;
4742
4743 case SHN_MIPS_ACOMMON:
4744 /* Fall through. XXX Can we treat this as allocated data? */
4745 case SHN_MIPS_DATA:
4746 /* This section is used in a shared object. */
4747 if (elf_tdata (abfd)->elf_data_section == NULL)
4748 {
4749 asymbol *elf_data_symbol;
4750 asection *elf_data_section;
4751 bfd_size_type amt = sizeof (asection);
4752
4753 elf_data_section = bfd_zalloc (abfd, amt);
4754 if (elf_data_section == NULL)
4755 return FALSE;
4756
4757 amt = sizeof (asymbol);
4758 elf_data_symbol = bfd_zalloc (abfd, amt);
4759 if (elf_data_symbol == NULL)
4760 return FALSE;
4761
4762 /* Initialize the section. */
4763
4764 elf_tdata (abfd)->elf_data_section = elf_data_section;
4765 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4766
4767 elf_data_section->symbol = elf_data_symbol;
4768 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4769
4770 elf_data_section->name = ".data";
4771 elf_data_section->flags = SEC_NO_FLAGS;
4772 elf_data_section->output_section = NULL;
4773 elf_data_section->owner = abfd;
4774 elf_data_symbol->name = ".data";
4775 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4776 elf_data_symbol->section = elf_data_section;
4777 }
4778 /* This code used to do *secp = bfd_und_section_ptr if
4779 info->shared. I don't know why, and that doesn't make sense,
4780 so I took it out. */
4781 *secp = elf_tdata (abfd)->elf_data_section;
4782 break;
4783
4784 case SHN_MIPS_SUNDEFINED:
4785 *secp = bfd_und_section_ptr;
4786 break;
4787 }
4788
4789 if (SGI_COMPAT (abfd)
4790 && ! info->shared
4791 && info->hash->creator == abfd->xvec
4792 && strcmp (*namep, "__rld_obj_head") == 0)
4793 {
4794 struct elf_link_hash_entry *h;
4795 struct bfd_link_hash_entry *bh;
4796
4797 /* Mark __rld_obj_head as dynamic. */
4798 bh = NULL;
4799 if (! (_bfd_generic_link_add_one_symbol
4800 (info, abfd, *namep, BSF_GLOBAL, *secp,
4801 (bfd_vma) *valp, (const char *) NULL, FALSE,
4802 get_elf_backend_data (abfd)->collect, &bh)))
4803 return FALSE;
4804
4805 h = (struct elf_link_hash_entry *) bh;
4806 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4807 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4808 h->type = STT_OBJECT;
4809
4810 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4811 return FALSE;
4812
4813 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4814 }
4815
4816 /* If this is a mips16 text symbol, add 1 to the value to make it
4817 odd. This will cause something like .word SYM to come up with
4818 the right value when it is loaded into the PC. */
4819 if (sym->st_other == STO_MIPS16)
4820 ++*valp;
4821
4822 return TRUE;
4823 }
4824
4825 /* This hook function is called before the linker writes out a global
4826 symbol. We mark symbols as small common if appropriate. This is
4827 also where we undo the increment of the value for a mips16 symbol. */
4828
4829 bfd_boolean
4830 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4831 bfd *abfd ATTRIBUTE_UNUSED;
4832 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4833 const char *name ATTRIBUTE_UNUSED;
4834 Elf_Internal_Sym *sym;
4835 asection *input_sec;
4836 {
4837 /* If we see a common symbol, which implies a relocatable link, then
4838 if a symbol was small common in an input file, mark it as small
4839 common in the output file. */
4840 if (sym->st_shndx == SHN_COMMON
4841 && strcmp (input_sec->name, ".scommon") == 0)
4842 sym->st_shndx = SHN_MIPS_SCOMMON;
4843
4844 if (sym->st_other == STO_MIPS16
4845 && (sym->st_value & 1) != 0)
4846 --sym->st_value;
4847
4848 return TRUE;
4849 }
4850 \f
4851 /* Functions for the dynamic linker. */
4852
4853 /* Create dynamic sections when linking against a dynamic object. */
4854
4855 bfd_boolean
4856 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4857 bfd *abfd;
4858 struct bfd_link_info *info;
4859 {
4860 struct elf_link_hash_entry *h;
4861 struct bfd_link_hash_entry *bh;
4862 flagword flags;
4863 register asection *s;
4864 const char * const *namep;
4865
4866 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4867 | SEC_LINKER_CREATED | SEC_READONLY);
4868
4869 /* Mips ABI requests the .dynamic section to be read only. */
4870 s = bfd_get_section_by_name (abfd, ".dynamic");
4871 if (s != NULL)
4872 {
4873 if (! bfd_set_section_flags (abfd, s, flags))
4874 return FALSE;
4875 }
4876
4877 /* We need to create .got section. */
4878 if (! mips_elf_create_got_section (abfd, info, FALSE))
4879 return FALSE;
4880
4881 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4882 return FALSE;
4883
4884 /* Create the .msym section on IRIX6. It is used by the dynamic
4885 linker to speed up dynamic relocations, and to avoid computing
4886 the ELF hash for symbols. */
4887 if (IRIX_COMPAT (abfd) == ict_irix6
4888 && !mips_elf_create_msym_section (abfd))
4889 return FALSE;
4890
4891 /* Create .stub section. */
4892 if (bfd_get_section_by_name (abfd,
4893 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4894 {
4895 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4896 if (s == NULL
4897 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4898 || ! bfd_set_section_alignment (abfd, s,
4899 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4900 return FALSE;
4901 }
4902
4903 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4904 && !info->shared
4905 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4906 {
4907 s = bfd_make_section (abfd, ".rld_map");
4908 if (s == NULL
4909 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4910 || ! bfd_set_section_alignment (abfd, s,
4911 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4912 return FALSE;
4913 }
4914
4915 /* On IRIX5, we adjust add some additional symbols and change the
4916 alignments of several sections. There is no ABI documentation
4917 indicating that this is necessary on IRIX6, nor any evidence that
4918 the linker takes such action. */
4919 if (IRIX_COMPAT (abfd) == ict_irix5)
4920 {
4921 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4922 {
4923 bh = NULL;
4924 if (! (_bfd_generic_link_add_one_symbol
4925 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4926 (bfd_vma) 0, (const char *) NULL, FALSE,
4927 get_elf_backend_data (abfd)->collect, &bh)))
4928 return FALSE;
4929
4930 h = (struct elf_link_hash_entry *) bh;
4931 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4932 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4933 h->type = STT_SECTION;
4934
4935 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4936 return FALSE;
4937 }
4938
4939 /* We need to create a .compact_rel section. */
4940 if (SGI_COMPAT (abfd))
4941 {
4942 if (!mips_elf_create_compact_rel_section (abfd, info))
4943 return FALSE;
4944 }
4945
4946 /* Change alignments of some sections. */
4947 s = bfd_get_section_by_name (abfd, ".hash");
4948 if (s != NULL)
4949 bfd_set_section_alignment (abfd, s, 4);
4950 s = bfd_get_section_by_name (abfd, ".dynsym");
4951 if (s != NULL)
4952 bfd_set_section_alignment (abfd, s, 4);
4953 s = bfd_get_section_by_name (abfd, ".dynstr");
4954 if (s != NULL)
4955 bfd_set_section_alignment (abfd, s, 4);
4956 s = bfd_get_section_by_name (abfd, ".reginfo");
4957 if (s != NULL)
4958 bfd_set_section_alignment (abfd, s, 4);
4959 s = bfd_get_section_by_name (abfd, ".dynamic");
4960 if (s != NULL)
4961 bfd_set_section_alignment (abfd, s, 4);
4962 }
4963
4964 if (!info->shared)
4965 {
4966 const char *name;
4967
4968 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4969 bh = NULL;
4970 if (!(_bfd_generic_link_add_one_symbol
4971 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4972 (bfd_vma) 0, (const char *) NULL, FALSE,
4973 get_elf_backend_data (abfd)->collect, &bh)))
4974 return FALSE;
4975
4976 h = (struct elf_link_hash_entry *) bh;
4977 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4978 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4979 h->type = STT_SECTION;
4980
4981 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4982 return FALSE;
4983
4984 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4985 {
4986 /* __rld_map is a four byte word located in the .data section
4987 and is filled in by the rtld to contain a pointer to
4988 the _r_debug structure. Its symbol value will be set in
4989 _bfd_mips_elf_finish_dynamic_symbol. */
4990 s = bfd_get_section_by_name (abfd, ".rld_map");
4991 BFD_ASSERT (s != NULL);
4992
4993 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4994 bh = NULL;
4995 if (!(_bfd_generic_link_add_one_symbol
4996 (info, abfd, name, BSF_GLOBAL, s,
4997 (bfd_vma) 0, (const char *) NULL, FALSE,
4998 get_elf_backend_data (abfd)->collect, &bh)))
4999 return FALSE;
5000
5001 h = (struct elf_link_hash_entry *) bh;
5002 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5003 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5004 h->type = STT_OBJECT;
5005
5006 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5007 return FALSE;
5008 }
5009 }
5010
5011 return TRUE;
5012 }
5013 \f
5014 /* Look through the relocs for a section during the first phase, and
5015 allocate space in the global offset table. */
5016
5017 bfd_boolean
5018 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5019 bfd *abfd;
5020 struct bfd_link_info *info;
5021 asection *sec;
5022 const Elf_Internal_Rela *relocs;
5023 {
5024 const char *name;
5025 bfd *dynobj;
5026 Elf_Internal_Shdr *symtab_hdr;
5027 struct elf_link_hash_entry **sym_hashes;
5028 struct mips_got_info *g;
5029 size_t extsymoff;
5030 const Elf_Internal_Rela *rel;
5031 const Elf_Internal_Rela *rel_end;
5032 asection *sgot;
5033 asection *sreloc;
5034 struct elf_backend_data *bed;
5035
5036 if (info->relocateable)
5037 return TRUE;
5038
5039 dynobj = elf_hash_table (info)->dynobj;
5040 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5041 sym_hashes = elf_sym_hashes (abfd);
5042 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5043
5044 /* Check for the mips16 stub sections. */
5045
5046 name = bfd_get_section_name (abfd, sec);
5047 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5048 {
5049 unsigned long r_symndx;
5050
5051 /* Look at the relocation information to figure out which symbol
5052 this is for. */
5053
5054 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5055
5056 if (r_symndx < extsymoff
5057 || sym_hashes[r_symndx - extsymoff] == NULL)
5058 {
5059 asection *o;
5060
5061 /* This stub is for a local symbol. This stub will only be
5062 needed if there is some relocation in this BFD, other
5063 than a 16 bit function call, which refers to this symbol. */
5064 for (o = abfd->sections; o != NULL; o = o->next)
5065 {
5066 Elf_Internal_Rela *sec_relocs;
5067 const Elf_Internal_Rela *r, *rend;
5068
5069 /* We can ignore stub sections when looking for relocs. */
5070 if ((o->flags & SEC_RELOC) == 0
5071 || o->reloc_count == 0
5072 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5073 sizeof FN_STUB - 1) == 0
5074 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5075 sizeof CALL_STUB - 1) == 0
5076 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5077 sizeof CALL_FP_STUB - 1) == 0)
5078 continue;
5079
5080 sec_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
5081 (abfd, o, (PTR) NULL,
5082 (Elf_Internal_Rela *) NULL,
5083 info->keep_memory));
5084 if (sec_relocs == NULL)
5085 return FALSE;
5086
5087 rend = sec_relocs + o->reloc_count;
5088 for (r = sec_relocs; r < rend; r++)
5089 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5090 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5091 break;
5092
5093 if (elf_section_data (o)->relocs != sec_relocs)
5094 free (sec_relocs);
5095
5096 if (r < rend)
5097 break;
5098 }
5099
5100 if (o == NULL)
5101 {
5102 /* There is no non-call reloc for this stub, so we do
5103 not need it. Since this function is called before
5104 the linker maps input sections to output sections, we
5105 can easily discard it by setting the SEC_EXCLUDE
5106 flag. */
5107 sec->flags |= SEC_EXCLUDE;
5108 return TRUE;
5109 }
5110
5111 /* Record this stub in an array of local symbol stubs for
5112 this BFD. */
5113 if (elf_tdata (abfd)->local_stubs == NULL)
5114 {
5115 unsigned long symcount;
5116 asection **n;
5117 bfd_size_type amt;
5118
5119 if (elf_bad_symtab (abfd))
5120 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5121 else
5122 symcount = symtab_hdr->sh_info;
5123 amt = symcount * sizeof (asection *);
5124 n = (asection **) bfd_zalloc (abfd, amt);
5125 if (n == NULL)
5126 return FALSE;
5127 elf_tdata (abfd)->local_stubs = n;
5128 }
5129
5130 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5131
5132 /* We don't need to set mips16_stubs_seen in this case.
5133 That flag is used to see whether we need to look through
5134 the global symbol table for stubs. We don't need to set
5135 it here, because we just have a local stub. */
5136 }
5137 else
5138 {
5139 struct mips_elf_link_hash_entry *h;
5140
5141 h = ((struct mips_elf_link_hash_entry *)
5142 sym_hashes[r_symndx - extsymoff]);
5143
5144 /* H is the symbol this stub is for. */
5145
5146 h->fn_stub = sec;
5147 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5148 }
5149 }
5150 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5151 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5152 {
5153 unsigned long r_symndx;
5154 struct mips_elf_link_hash_entry *h;
5155 asection **loc;
5156
5157 /* Look at the relocation information to figure out which symbol
5158 this is for. */
5159
5160 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5161
5162 if (r_symndx < extsymoff
5163 || sym_hashes[r_symndx - extsymoff] == NULL)
5164 {
5165 /* This stub was actually built for a static symbol defined
5166 in the same file. We assume that all static symbols in
5167 mips16 code are themselves mips16, so we can simply
5168 discard this stub. Since this function is called before
5169 the linker maps input sections to output sections, we can
5170 easily discard it by setting the SEC_EXCLUDE flag. */
5171 sec->flags |= SEC_EXCLUDE;
5172 return TRUE;
5173 }
5174
5175 h = ((struct mips_elf_link_hash_entry *)
5176 sym_hashes[r_symndx - extsymoff]);
5177
5178 /* H is the symbol this stub is for. */
5179
5180 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5181 loc = &h->call_fp_stub;
5182 else
5183 loc = &h->call_stub;
5184
5185 /* If we already have an appropriate stub for this function, we
5186 don't need another one, so we can discard this one. Since
5187 this function is called before the linker maps input sections
5188 to output sections, we can easily discard it by setting the
5189 SEC_EXCLUDE flag. We can also discard this section if we
5190 happen to already know that this is a mips16 function; it is
5191 not necessary to check this here, as it is checked later, but
5192 it is slightly faster to check now. */
5193 if (*loc != NULL || h->root.other == STO_MIPS16)
5194 {
5195 sec->flags |= SEC_EXCLUDE;
5196 return TRUE;
5197 }
5198
5199 *loc = sec;
5200 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5201 }
5202
5203 if (dynobj == NULL)
5204 {
5205 sgot = NULL;
5206 g = NULL;
5207 }
5208 else
5209 {
5210 sgot = mips_elf_got_section (dynobj, FALSE);
5211 if (sgot == NULL)
5212 g = NULL;
5213 else
5214 {
5215 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5216 g = mips_elf_section_data (sgot)->u.got_info;
5217 BFD_ASSERT (g != NULL);
5218 }
5219 }
5220
5221 sreloc = NULL;
5222 bed = get_elf_backend_data (abfd);
5223 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5224 for (rel = relocs; rel < rel_end; ++rel)
5225 {
5226 unsigned long r_symndx;
5227 unsigned int r_type;
5228 struct elf_link_hash_entry *h;
5229
5230 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5231 r_type = ELF_R_TYPE (abfd, rel->r_info);
5232
5233 if (r_symndx < extsymoff)
5234 h = NULL;
5235 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5236 {
5237 (*_bfd_error_handler)
5238 (_("%s: Malformed reloc detected for section %s"),
5239 bfd_archive_filename (abfd), name);
5240 bfd_set_error (bfd_error_bad_value);
5241 return FALSE;
5242 }
5243 else
5244 {
5245 h = sym_hashes[r_symndx - extsymoff];
5246
5247 /* This may be an indirect symbol created because of a version. */
5248 if (h != NULL)
5249 {
5250 while (h->root.type == bfd_link_hash_indirect)
5251 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5252 }
5253 }
5254
5255 /* Some relocs require a global offset table. */
5256 if (dynobj == NULL || sgot == NULL)
5257 {
5258 switch (r_type)
5259 {
5260 case R_MIPS_GOT16:
5261 case R_MIPS_CALL16:
5262 case R_MIPS_CALL_HI16:
5263 case R_MIPS_CALL_LO16:
5264 case R_MIPS_GOT_HI16:
5265 case R_MIPS_GOT_LO16:
5266 case R_MIPS_GOT_PAGE:
5267 case R_MIPS_GOT_OFST:
5268 case R_MIPS_GOT_DISP:
5269 if (dynobj == NULL)
5270 elf_hash_table (info)->dynobj = dynobj = abfd;
5271 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5272 return FALSE;
5273 g = mips_elf_got_info (dynobj, &sgot);
5274 break;
5275
5276 case R_MIPS_32:
5277 case R_MIPS_REL32:
5278 case R_MIPS_64:
5279 if (dynobj == NULL
5280 && (info->shared || h != NULL)
5281 && (sec->flags & SEC_ALLOC) != 0)
5282 elf_hash_table (info)->dynobj = dynobj = abfd;
5283 break;
5284
5285 default:
5286 break;
5287 }
5288 }
5289
5290 if (!h && (r_type == R_MIPS_CALL_LO16
5291 || r_type == R_MIPS_GOT_LO16
5292 || r_type == R_MIPS_GOT_DISP))
5293 {
5294 /* We may need a local GOT entry for this relocation. We
5295 don't count R_MIPS_GOT_PAGE because we can estimate the
5296 maximum number of pages needed by looking at the size of
5297 the segment. Similar comments apply to R_MIPS_GOT16 and
5298 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5299 R_MIPS_CALL_HI16 because these are always followed by an
5300 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5301 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5302 rel->r_addend, g))
5303 return FALSE;
5304 }
5305
5306 switch (r_type)
5307 {
5308 case R_MIPS_CALL16:
5309 if (h == NULL)
5310 {
5311 (*_bfd_error_handler)
5312 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5313 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5314 bfd_set_error (bfd_error_bad_value);
5315 return FALSE;
5316 }
5317 /* Fall through. */
5318
5319 case R_MIPS_CALL_HI16:
5320 case R_MIPS_CALL_LO16:
5321 if (h != NULL)
5322 {
5323 /* This symbol requires a global offset table entry. */
5324 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5325 return FALSE;
5326
5327 /* We need a stub, not a plt entry for the undefined
5328 function. But we record it as if it needs plt. See
5329 elf_adjust_dynamic_symbol in elflink.h. */
5330 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5331 h->type = STT_FUNC;
5332 }
5333 break;
5334
5335 case R_MIPS_GOT_PAGE:
5336 /* If this is a global, overridable symbol, GOT_PAGE will
5337 decay to GOT_DISP, so we'll need a GOT entry for it. */
5338 if (h == NULL)
5339 break;
5340 else
5341 {
5342 struct mips_elf_link_hash_entry *hmips =
5343 (struct mips_elf_link_hash_entry *) h;
5344
5345 while (hmips->root.root.type == bfd_link_hash_indirect
5346 || hmips->root.root.type == bfd_link_hash_warning)
5347 hmips = (struct mips_elf_link_hash_entry *)
5348 hmips->root.root.u.i.link;
5349
5350 if ((hmips->root.root.type == bfd_link_hash_defined
5351 || hmips->root.root.type == bfd_link_hash_defweak)
5352 && hmips->root.root.u.def.section
5353 && ! (info->shared && ! info->symbolic
5354 && ! (hmips->root.elf_link_hash_flags
5355 & ELF_LINK_FORCED_LOCAL))
5356 /* If we've encountered any other relocation
5357 referencing the symbol, we'll have marked it as
5358 dynamic, and, even though we might be able to get
5359 rid of the GOT entry should we know for sure all
5360 previous relocations were GOT_PAGE ones, at this
5361 point we can't tell, so just keep using the
5362 symbol as dynamic. This is very important in the
5363 multi-got case, since we don't decide whether to
5364 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5365 the symbol is dynamic, we'll need a GOT entry for
5366 every GOT in which the symbol is referenced with
5367 a GOT_PAGE relocation. */
5368 && hmips->root.dynindx == -1)
5369 break;
5370 }
5371 /* Fall through. */
5372
5373 case R_MIPS_GOT16:
5374 case R_MIPS_GOT_HI16:
5375 case R_MIPS_GOT_LO16:
5376 case R_MIPS_GOT_DISP:
5377 /* This symbol requires a global offset table entry. */
5378 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5379 return FALSE;
5380 break;
5381
5382 case R_MIPS_32:
5383 case R_MIPS_REL32:
5384 case R_MIPS_64:
5385 if ((info->shared || h != NULL)
5386 && (sec->flags & SEC_ALLOC) != 0)
5387 {
5388 if (sreloc == NULL)
5389 {
5390 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5391 if (sreloc == NULL)
5392 return FALSE;
5393 }
5394 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5395 if (info->shared)
5396 {
5397 /* When creating a shared object, we must copy these
5398 reloc types into the output file as R_MIPS_REL32
5399 relocs. We make room for this reloc in the
5400 .rel.dyn reloc section. */
5401 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5402 if ((sec->flags & MIPS_READONLY_SECTION)
5403 == MIPS_READONLY_SECTION)
5404 /* We tell the dynamic linker that there are
5405 relocations against the text segment. */
5406 info->flags |= DF_TEXTREL;
5407 }
5408 else
5409 {
5410 struct mips_elf_link_hash_entry *hmips;
5411
5412 /* We only need to copy this reloc if the symbol is
5413 defined in a dynamic object. */
5414 hmips = (struct mips_elf_link_hash_entry *) h;
5415 ++hmips->possibly_dynamic_relocs;
5416 if ((sec->flags & MIPS_READONLY_SECTION)
5417 == MIPS_READONLY_SECTION)
5418 /* We need it to tell the dynamic linker if there
5419 are relocations against the text segment. */
5420 hmips->readonly_reloc = TRUE;
5421 }
5422
5423 /* Even though we don't directly need a GOT entry for
5424 this symbol, a symbol must have a dynamic symbol
5425 table index greater that DT_MIPS_GOTSYM if there are
5426 dynamic relocations against it. */
5427 if (h != NULL)
5428 {
5429 if (dynobj == NULL)
5430 elf_hash_table (info)->dynobj = dynobj = abfd;
5431 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5432 return FALSE;
5433 g = mips_elf_got_info (dynobj, &sgot);
5434 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5435 return FALSE;
5436 }
5437 }
5438
5439 if (SGI_COMPAT (abfd))
5440 mips_elf_hash_table (info)->compact_rel_size +=
5441 sizeof (Elf32_External_crinfo);
5442 break;
5443
5444 case R_MIPS_26:
5445 case R_MIPS_GPREL16:
5446 case R_MIPS_LITERAL:
5447 case R_MIPS_GPREL32:
5448 if (SGI_COMPAT (abfd))
5449 mips_elf_hash_table (info)->compact_rel_size +=
5450 sizeof (Elf32_External_crinfo);
5451 break;
5452
5453 /* This relocation describes the C++ object vtable hierarchy.
5454 Reconstruct it for later use during GC. */
5455 case R_MIPS_GNU_VTINHERIT:
5456 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5457 return FALSE;
5458 break;
5459
5460 /* This relocation describes which C++ vtable entries are actually
5461 used. Record for later use during GC. */
5462 case R_MIPS_GNU_VTENTRY:
5463 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5464 return FALSE;
5465 break;
5466
5467 default:
5468 break;
5469 }
5470
5471 /* We must not create a stub for a symbol that has relocations
5472 related to taking the function's address. */
5473 switch (r_type)
5474 {
5475 default:
5476 if (h != NULL)
5477 {
5478 struct mips_elf_link_hash_entry *mh;
5479
5480 mh = (struct mips_elf_link_hash_entry *) h;
5481 mh->no_fn_stub = TRUE;
5482 }
5483 break;
5484 case R_MIPS_CALL16:
5485 case R_MIPS_CALL_HI16:
5486 case R_MIPS_CALL_LO16:
5487 break;
5488 }
5489
5490 /* If this reloc is not a 16 bit call, and it has a global
5491 symbol, then we will need the fn_stub if there is one.
5492 References from a stub section do not count. */
5493 if (h != NULL
5494 && r_type != R_MIPS16_26
5495 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5496 sizeof FN_STUB - 1) != 0
5497 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5498 sizeof CALL_STUB - 1) != 0
5499 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5500 sizeof CALL_FP_STUB - 1) != 0)
5501 {
5502 struct mips_elf_link_hash_entry *mh;
5503
5504 mh = (struct mips_elf_link_hash_entry *) h;
5505 mh->need_fn_stub = TRUE;
5506 }
5507 }
5508
5509 return TRUE;
5510 }
5511 \f
5512 bfd_boolean
5513 _bfd_mips_relax_section (abfd, sec, link_info, again)
5514 bfd *abfd;
5515 asection *sec;
5516 struct bfd_link_info *link_info;
5517 bfd_boolean *again;
5518 {
5519 Elf_Internal_Rela *internal_relocs;
5520 Elf_Internal_Rela *irel, *irelend;
5521 Elf_Internal_Shdr *symtab_hdr;
5522 bfd_byte *contents = NULL;
5523 bfd_byte *free_contents = NULL;
5524 size_t extsymoff;
5525 bfd_boolean changed_contents = FALSE;
5526 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5527 Elf_Internal_Sym *isymbuf = NULL;
5528
5529 /* We are not currently changing any sizes, so only one pass. */
5530 *again = FALSE;
5531
5532 if (link_info->relocateable)
5533 return TRUE;
5534
5535 internal_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
5536 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
5537 link_info->keep_memory));
5538 if (internal_relocs == NULL)
5539 return TRUE;
5540
5541 irelend = internal_relocs + sec->reloc_count
5542 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5543 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5544 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5545
5546 for (irel = internal_relocs; irel < irelend; irel++)
5547 {
5548 bfd_vma symval;
5549 bfd_signed_vma sym_offset;
5550 unsigned int r_type;
5551 unsigned long r_symndx;
5552 asection *sym_sec;
5553 unsigned long instruction;
5554
5555 /* Turn jalr into bgezal, and jr into beq, if they're marked
5556 with a JALR relocation, that indicate where they jump to.
5557 This saves some pipeline bubbles. */
5558 r_type = ELF_R_TYPE (abfd, irel->r_info);
5559 if (r_type != R_MIPS_JALR)
5560 continue;
5561
5562 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5563 /* Compute the address of the jump target. */
5564 if (r_symndx >= extsymoff)
5565 {
5566 struct mips_elf_link_hash_entry *h
5567 = ((struct mips_elf_link_hash_entry *)
5568 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5569
5570 while (h->root.root.type == bfd_link_hash_indirect
5571 || h->root.root.type == bfd_link_hash_warning)
5572 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5573
5574 /* If a symbol is undefined, or if it may be overridden,
5575 skip it. */
5576 if (! ((h->root.root.type == bfd_link_hash_defined
5577 || h->root.root.type == bfd_link_hash_defweak)
5578 && h->root.root.u.def.section)
5579 || (link_info->shared && ! link_info->symbolic
5580 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5581 continue;
5582
5583 sym_sec = h->root.root.u.def.section;
5584 if (sym_sec->output_section)
5585 symval = (h->root.root.u.def.value
5586 + sym_sec->output_section->vma
5587 + sym_sec->output_offset);
5588 else
5589 symval = h->root.root.u.def.value;
5590 }
5591 else
5592 {
5593 Elf_Internal_Sym *isym;
5594
5595 /* Read this BFD's symbols if we haven't done so already. */
5596 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5597 {
5598 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5599 if (isymbuf == NULL)
5600 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5601 symtab_hdr->sh_info, 0,
5602 NULL, NULL, NULL);
5603 if (isymbuf == NULL)
5604 goto relax_return;
5605 }
5606
5607 isym = isymbuf + r_symndx;
5608 if (isym->st_shndx == SHN_UNDEF)
5609 continue;
5610 else if (isym->st_shndx == SHN_ABS)
5611 sym_sec = bfd_abs_section_ptr;
5612 else if (isym->st_shndx == SHN_COMMON)
5613 sym_sec = bfd_com_section_ptr;
5614 else
5615 sym_sec
5616 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5617 symval = isym->st_value
5618 + sym_sec->output_section->vma
5619 + sym_sec->output_offset;
5620 }
5621
5622 /* Compute branch offset, from delay slot of the jump to the
5623 branch target. */
5624 sym_offset = (symval + irel->r_addend)
5625 - (sec_start + irel->r_offset + 4);
5626
5627 /* Branch offset must be properly aligned. */
5628 if ((sym_offset & 3) != 0)
5629 continue;
5630
5631 sym_offset >>= 2;
5632
5633 /* Check that it's in range. */
5634 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5635 continue;
5636
5637 /* Get the section contents if we haven't done so already. */
5638 if (contents == NULL)
5639 {
5640 /* Get cached copy if it exists. */
5641 if (elf_section_data (sec)->this_hdr.contents != NULL)
5642 contents = elf_section_data (sec)->this_hdr.contents;
5643 else
5644 {
5645 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5646 if (contents == NULL)
5647 goto relax_return;
5648
5649 free_contents = contents;
5650 if (! bfd_get_section_contents (abfd, sec, contents,
5651 (file_ptr) 0, sec->_raw_size))
5652 goto relax_return;
5653 }
5654 }
5655
5656 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5657
5658 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5659 if ((instruction & 0xfc1fffff) == 0x0000f809)
5660 instruction = 0x04110000;
5661 /* If it was jr <reg>, turn it into b <target>. */
5662 else if ((instruction & 0xfc1fffff) == 0x00000008)
5663 instruction = 0x10000000;
5664 else
5665 continue;
5666
5667 instruction |= (sym_offset & 0xffff);
5668 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5669 changed_contents = TRUE;
5670 }
5671
5672 if (contents != NULL
5673 && elf_section_data (sec)->this_hdr.contents != contents)
5674 {
5675 if (!changed_contents && !link_info->keep_memory)
5676 free (contents);
5677 else
5678 {
5679 /* Cache the section contents for elf_link_input_bfd. */
5680 elf_section_data (sec)->this_hdr.contents = contents;
5681 }
5682 }
5683 return TRUE;
5684
5685 relax_return:
5686 if (free_contents != NULL)
5687 free (free_contents);
5688 return FALSE;
5689 }
5690 \f
5691 /* Adjust a symbol defined by a dynamic object and referenced by a
5692 regular object. The current definition is in some section of the
5693 dynamic object, but we're not including those sections. We have to
5694 change the definition to something the rest of the link can
5695 understand. */
5696
5697 bfd_boolean
5698 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5699 struct bfd_link_info *info;
5700 struct elf_link_hash_entry *h;
5701 {
5702 bfd *dynobj;
5703 struct mips_elf_link_hash_entry *hmips;
5704 asection *s;
5705
5706 dynobj = elf_hash_table (info)->dynobj;
5707
5708 /* Make sure we know what is going on here. */
5709 BFD_ASSERT (dynobj != NULL
5710 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5711 || h->weakdef != NULL
5712 || ((h->elf_link_hash_flags
5713 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5714 && (h->elf_link_hash_flags
5715 & ELF_LINK_HASH_REF_REGULAR) != 0
5716 && (h->elf_link_hash_flags
5717 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5718
5719 /* If this symbol is defined in a dynamic object, we need to copy
5720 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5721 file. */
5722 hmips = (struct mips_elf_link_hash_entry *) h;
5723 if (! info->relocateable
5724 && hmips->possibly_dynamic_relocs != 0
5725 && (h->root.type == bfd_link_hash_defweak
5726 || (h->elf_link_hash_flags
5727 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5728 {
5729 mips_elf_allocate_dynamic_relocations (dynobj,
5730 hmips->possibly_dynamic_relocs);
5731 if (hmips->readonly_reloc)
5732 /* We tell the dynamic linker that there are relocations
5733 against the text segment. */
5734 info->flags |= DF_TEXTREL;
5735 }
5736
5737 /* For a function, create a stub, if allowed. */
5738 if (! hmips->no_fn_stub
5739 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5740 {
5741 if (! elf_hash_table (info)->dynamic_sections_created)
5742 return TRUE;
5743
5744 /* If this symbol is not defined in a regular file, then set
5745 the symbol to the stub location. This is required to make
5746 function pointers compare as equal between the normal
5747 executable and the shared library. */
5748 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5749 {
5750 /* We need .stub section. */
5751 s = bfd_get_section_by_name (dynobj,
5752 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5753 BFD_ASSERT (s != NULL);
5754
5755 h->root.u.def.section = s;
5756 h->root.u.def.value = s->_raw_size;
5757
5758 /* XXX Write this stub address somewhere. */
5759 h->plt.offset = s->_raw_size;
5760
5761 /* Make room for this stub code. */
5762 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5763
5764 /* The last half word of the stub will be filled with the index
5765 of this symbol in .dynsym section. */
5766 return TRUE;
5767 }
5768 }
5769 else if ((h->type == STT_FUNC)
5770 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5771 {
5772 /* This will set the entry for this symbol in the GOT to 0, and
5773 the dynamic linker will take care of this. */
5774 h->root.u.def.value = 0;
5775 return TRUE;
5776 }
5777
5778 /* If this is a weak symbol, and there is a real definition, the
5779 processor independent code will have arranged for us to see the
5780 real definition first, and we can just use the same value. */
5781 if (h->weakdef != NULL)
5782 {
5783 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5784 || h->weakdef->root.type == bfd_link_hash_defweak);
5785 h->root.u.def.section = h->weakdef->root.u.def.section;
5786 h->root.u.def.value = h->weakdef->root.u.def.value;
5787 return TRUE;
5788 }
5789
5790 /* This is a reference to a symbol defined by a dynamic object which
5791 is not a function. */
5792
5793 return TRUE;
5794 }
5795 \f
5796 /* This function is called after all the input files have been read,
5797 and the input sections have been assigned to output sections. We
5798 check for any mips16 stub sections that we can discard. */
5799
5800 bfd_boolean
5801 _bfd_mips_elf_always_size_sections (output_bfd, info)
5802 bfd *output_bfd;
5803 struct bfd_link_info *info;
5804 {
5805 asection *ri;
5806
5807 bfd *dynobj;
5808 asection *s;
5809 struct mips_got_info *g;
5810 int i;
5811 bfd_size_type loadable_size = 0;
5812 bfd_size_type local_gotno;
5813 bfd *sub;
5814
5815 /* The .reginfo section has a fixed size. */
5816 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5817 if (ri != NULL)
5818 bfd_set_section_size (output_bfd, ri,
5819 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5820
5821 if (! (info->relocateable
5822 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5823 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5824 mips_elf_check_mips16_stubs,
5825 (PTR) NULL);
5826
5827 dynobj = elf_hash_table (info)->dynobj;
5828 if (dynobj == NULL)
5829 /* Relocatable links don't have it. */
5830 return TRUE;
5831
5832 g = mips_elf_got_info (dynobj, &s);
5833 if (s == NULL)
5834 return TRUE;
5835
5836 /* Calculate the total loadable size of the output. That
5837 will give us the maximum number of GOT_PAGE entries
5838 required. */
5839 for (sub = info->input_bfds; sub; sub = sub->link_next)
5840 {
5841 asection *subsection;
5842
5843 for (subsection = sub->sections;
5844 subsection;
5845 subsection = subsection->next)
5846 {
5847 if ((subsection->flags & SEC_ALLOC) == 0)
5848 continue;
5849 loadable_size += ((subsection->_raw_size + 0xf)
5850 &~ (bfd_size_type) 0xf);
5851 }
5852 }
5853
5854 /* There has to be a global GOT entry for every symbol with
5855 a dynamic symbol table index of DT_MIPS_GOTSYM or
5856 higher. Therefore, it make sense to put those symbols
5857 that need GOT entries at the end of the symbol table. We
5858 do that here. */
5859 if (! mips_elf_sort_hash_table (info, 1))
5860 return FALSE;
5861
5862 if (g->global_gotsym != NULL)
5863 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5864 else
5865 /* If there are no global symbols, or none requiring
5866 relocations, then GLOBAL_GOTSYM will be NULL. */
5867 i = 0;
5868
5869 /* In the worst case, we'll get one stub per dynamic symbol, plus
5870 one to account for the dummy entry at the end required by IRIX
5871 rld. */
5872 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5873
5874 /* Assume there are two loadable segments consisting of
5875 contiguous sections. Is 5 enough? */
5876 local_gotno = (loadable_size >> 16) + 5;
5877
5878 g->local_gotno += local_gotno;
5879 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5880
5881 g->global_gotno = i;
5882 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5883
5884 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5885 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5886 return FALSE;
5887
5888 return TRUE;
5889 }
5890
5891 /* Set the sizes of the dynamic sections. */
5892
5893 bfd_boolean
5894 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5895 bfd *output_bfd;
5896 struct bfd_link_info *info;
5897 {
5898 bfd *dynobj;
5899 asection *s;
5900 bfd_boolean reltext;
5901
5902 dynobj = elf_hash_table (info)->dynobj;
5903 BFD_ASSERT (dynobj != NULL);
5904
5905 if (elf_hash_table (info)->dynamic_sections_created)
5906 {
5907 /* Set the contents of the .interp section to the interpreter. */
5908 if (! info->shared)
5909 {
5910 s = bfd_get_section_by_name (dynobj, ".interp");
5911 BFD_ASSERT (s != NULL);
5912 s->_raw_size
5913 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5914 s->contents
5915 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5916 }
5917 }
5918
5919 /* The check_relocs and adjust_dynamic_symbol entry points have
5920 determined the sizes of the various dynamic sections. Allocate
5921 memory for them. */
5922 reltext = FALSE;
5923 for (s = dynobj->sections; s != NULL; s = s->next)
5924 {
5925 const char *name;
5926 bfd_boolean strip;
5927
5928 /* It's OK to base decisions on the section name, because none
5929 of the dynobj section names depend upon the input files. */
5930 name = bfd_get_section_name (dynobj, s);
5931
5932 if ((s->flags & SEC_LINKER_CREATED) == 0)
5933 continue;
5934
5935 strip = FALSE;
5936
5937 if (strncmp (name, ".rel", 4) == 0)
5938 {
5939 if (s->_raw_size == 0)
5940 {
5941 /* We only strip the section if the output section name
5942 has the same name. Otherwise, there might be several
5943 input sections for this output section. FIXME: This
5944 code is probably not needed these days anyhow, since
5945 the linker now does not create empty output sections. */
5946 if (s->output_section != NULL
5947 && strcmp (name,
5948 bfd_get_section_name (s->output_section->owner,
5949 s->output_section)) == 0)
5950 strip = TRUE;
5951 }
5952 else
5953 {
5954 const char *outname;
5955 asection *target;
5956
5957 /* If this relocation section applies to a read only
5958 section, then we probably need a DT_TEXTREL entry.
5959 If the relocation section is .rel.dyn, we always
5960 assert a DT_TEXTREL entry rather than testing whether
5961 there exists a relocation to a read only section or
5962 not. */
5963 outname = bfd_get_section_name (output_bfd,
5964 s->output_section);
5965 target = bfd_get_section_by_name (output_bfd, outname + 4);
5966 if ((target != NULL
5967 && (target->flags & SEC_READONLY) != 0
5968 && (target->flags & SEC_ALLOC) != 0)
5969 || strcmp (outname, ".rel.dyn") == 0)
5970 reltext = TRUE;
5971
5972 /* We use the reloc_count field as a counter if we need
5973 to copy relocs into the output file. */
5974 if (strcmp (name, ".rel.dyn") != 0)
5975 s->reloc_count = 0;
5976
5977 /* If combreloc is enabled, elf_link_sort_relocs() will
5978 sort relocations, but in a different way than we do,
5979 and before we're done creating relocations. Also, it
5980 will move them around between input sections'
5981 relocation's contents, so our sorting would be
5982 broken, so don't let it run. */
5983 info->combreloc = 0;
5984 }
5985 }
5986 else if (strncmp (name, ".got", 4) == 0)
5987 {
5988 /* _bfd_mips_elf_always_size_sections() has already done
5989 most of the work, but some symbols may have been mapped
5990 to versions that we must now resolve in the got_entries
5991 hash tables. */
5992 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5993 struct mips_got_info *g = gg;
5994 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5995 unsigned int needed_relocs = 0;
5996
5997 if (gg->next)
5998 {
5999 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6000 set_got_offset_arg.info = info;
6001
6002 mips_elf_resolve_final_got_entries (gg);
6003 for (g = gg->next; g && g->next != gg; g = g->next)
6004 {
6005 unsigned int save_assign;
6006
6007 mips_elf_resolve_final_got_entries (g);
6008
6009 /* Assign offsets to global GOT entries. */
6010 save_assign = g->assigned_gotno;
6011 g->assigned_gotno = g->local_gotno;
6012 set_got_offset_arg.g = g;
6013 set_got_offset_arg.needed_relocs = 0;
6014 htab_traverse (g->got_entries,
6015 mips_elf_set_global_got_offset,
6016 &set_got_offset_arg);
6017 needed_relocs += set_got_offset_arg.needed_relocs;
6018 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6019 <= g->global_gotno);
6020
6021 g->assigned_gotno = save_assign;
6022 if (info->shared)
6023 {
6024 needed_relocs += g->local_gotno - g->assigned_gotno;
6025 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6026 + g->next->global_gotno
6027 + MIPS_RESERVED_GOTNO);
6028 }
6029 }
6030
6031 if (needed_relocs)
6032 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6033 }
6034 }
6035 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6036 {
6037 /* IRIX rld assumes that the function stub isn't at the end
6038 of .text section. So put a dummy. XXX */
6039 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6040 }
6041 else if (! info->shared
6042 && ! mips_elf_hash_table (info)->use_rld_obj_head
6043 && strncmp (name, ".rld_map", 8) == 0)
6044 {
6045 /* We add a room for __rld_map. It will be filled in by the
6046 rtld to contain a pointer to the _r_debug structure. */
6047 s->_raw_size += 4;
6048 }
6049 else if (SGI_COMPAT (output_bfd)
6050 && strncmp (name, ".compact_rel", 12) == 0)
6051 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6052 else if (strcmp (name, ".msym") == 0)
6053 s->_raw_size = (sizeof (Elf32_External_Msym)
6054 * (elf_hash_table (info)->dynsymcount
6055 + bfd_count_sections (output_bfd)));
6056 else if (strncmp (name, ".init", 5) != 0)
6057 {
6058 /* It's not one of our sections, so don't allocate space. */
6059 continue;
6060 }
6061
6062 if (strip)
6063 {
6064 _bfd_strip_section_from_output (info, s);
6065 continue;
6066 }
6067
6068 /* Allocate memory for the section contents. */
6069 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6070 if (s->contents == NULL && s->_raw_size != 0)
6071 {
6072 bfd_set_error (bfd_error_no_memory);
6073 return FALSE;
6074 }
6075 }
6076
6077 if (elf_hash_table (info)->dynamic_sections_created)
6078 {
6079 /* Add some entries to the .dynamic section. We fill in the
6080 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6081 must add the entries now so that we get the correct size for
6082 the .dynamic section. The DT_DEBUG entry is filled in by the
6083 dynamic linker and used by the debugger. */
6084 if (! info->shared)
6085 {
6086 /* SGI object has the equivalence of DT_DEBUG in the
6087 DT_MIPS_RLD_MAP entry. */
6088 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6089 return FALSE;
6090 if (!SGI_COMPAT (output_bfd))
6091 {
6092 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6093 return FALSE;
6094 }
6095 }
6096 else
6097 {
6098 /* Shared libraries on traditional mips have DT_DEBUG. */
6099 if (!SGI_COMPAT (output_bfd))
6100 {
6101 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6102 return FALSE;
6103 }
6104 }
6105
6106 if (reltext && SGI_COMPAT (output_bfd))
6107 info->flags |= DF_TEXTREL;
6108
6109 if ((info->flags & DF_TEXTREL) != 0)
6110 {
6111 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6112 return FALSE;
6113 }
6114
6115 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6116 return FALSE;
6117
6118 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6119 {
6120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6121 return FALSE;
6122
6123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6124 return FALSE;
6125
6126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6127 return FALSE;
6128 }
6129
6130 if (SGI_COMPAT (output_bfd))
6131 {
6132 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
6133 return FALSE;
6134 }
6135
6136 if (SGI_COMPAT (output_bfd))
6137 {
6138 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
6139 return FALSE;
6140 }
6141
6142 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6143 {
6144 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
6145 return FALSE;
6146
6147 s = bfd_get_section_by_name (dynobj, ".liblist");
6148 BFD_ASSERT (s != NULL);
6149
6150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
6151 return FALSE;
6152 }
6153
6154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6155 return FALSE;
6156
6157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6158 return FALSE;
6159
6160 #if 0
6161 /* Time stamps in executable files are a bad idea. */
6162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6163 return FALSE;
6164 #endif
6165
6166 #if 0 /* FIXME */
6167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6168 return FALSE;
6169 #endif
6170
6171 #if 0 /* FIXME */
6172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6173 return FALSE;
6174 #endif
6175
6176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6177 return FALSE;
6178
6179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6180 return FALSE;
6181
6182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6183 return FALSE;
6184
6185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6186 return FALSE;
6187
6188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6189 return FALSE;
6190
6191 if (IRIX_COMPAT (dynobj) == ict_irix5
6192 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6193 return FALSE;
6194
6195 if (IRIX_COMPAT (dynobj) == ict_irix6
6196 && (bfd_get_section_by_name
6197 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6198 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6199 return FALSE;
6200
6201 if (bfd_get_section_by_name (dynobj, ".msym")
6202 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
6203 return FALSE;
6204 }
6205
6206 return TRUE;
6207 }
6208 \f
6209 /* Relocate a MIPS ELF section. */
6210
6211 bfd_boolean
6212 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6213 contents, relocs, local_syms, local_sections)
6214 bfd *output_bfd;
6215 struct bfd_link_info *info;
6216 bfd *input_bfd;
6217 asection *input_section;
6218 bfd_byte *contents;
6219 Elf_Internal_Rela *relocs;
6220 Elf_Internal_Sym *local_syms;
6221 asection **local_sections;
6222 {
6223 Elf_Internal_Rela *rel;
6224 const Elf_Internal_Rela *relend;
6225 bfd_vma addend = 0;
6226 bfd_boolean use_saved_addend_p = FALSE;
6227 struct elf_backend_data *bed;
6228
6229 bed = get_elf_backend_data (output_bfd);
6230 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6231 for (rel = relocs; rel < relend; ++rel)
6232 {
6233 const char *name;
6234 bfd_vma value;
6235 reloc_howto_type *howto;
6236 bfd_boolean require_jalx;
6237 /* TRUE if the relocation is a RELA relocation, rather than a
6238 REL relocation. */
6239 bfd_boolean rela_relocation_p = TRUE;
6240 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6241 const char * msg = (const char *) NULL;
6242
6243 /* Find the relocation howto for this relocation. */
6244 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6245 {
6246 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6247 64-bit code, but make sure all their addresses are in the
6248 lowermost or uppermost 32-bit section of the 64-bit address
6249 space. Thus, when they use an R_MIPS_64 they mean what is
6250 usually meant by R_MIPS_32, with the exception that the
6251 stored value is sign-extended to 64 bits. */
6252 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6253
6254 /* On big-endian systems, we need to lie about the position
6255 of the reloc. */
6256 if (bfd_big_endian (input_bfd))
6257 rel->r_offset += 4;
6258 }
6259 else
6260 /* NewABI defaults to RELA relocations. */
6261 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6262 NEWABI_P (input_bfd)
6263 && (MIPS_RELOC_RELA_P
6264 (input_bfd, input_section,
6265 rel - relocs)));
6266
6267 if (!use_saved_addend_p)
6268 {
6269 Elf_Internal_Shdr *rel_hdr;
6270
6271 /* If these relocations were originally of the REL variety,
6272 we must pull the addend out of the field that will be
6273 relocated. Otherwise, we simply use the contents of the
6274 RELA relocation. To determine which flavor or relocation
6275 this is, we depend on the fact that the INPUT_SECTION's
6276 REL_HDR is read before its REL_HDR2. */
6277 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6278 if ((size_t) (rel - relocs)
6279 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6280 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6281 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6282 {
6283 /* Note that this is a REL relocation. */
6284 rela_relocation_p = FALSE;
6285
6286 /* Get the addend, which is stored in the input file. */
6287 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6288 contents);
6289 addend &= howto->src_mask;
6290 addend <<= howto->rightshift;
6291
6292 /* For some kinds of relocations, the ADDEND is a
6293 combination of the addend stored in two different
6294 relocations. */
6295 if (r_type == R_MIPS_HI16
6296 || r_type == R_MIPS_GNU_REL_HI16
6297 || (r_type == R_MIPS_GOT16
6298 && mips_elf_local_relocation_p (input_bfd, rel,
6299 local_sections, FALSE)))
6300 {
6301 bfd_vma l;
6302 const Elf_Internal_Rela *lo16_relocation;
6303 reloc_howto_type *lo16_howto;
6304 unsigned int lo;
6305
6306 /* The combined value is the sum of the HI16 addend,
6307 left-shifted by sixteen bits, and the LO16
6308 addend, sign extended. (Usually, the code does
6309 a `lui' of the HI16 value, and then an `addiu' of
6310 the LO16 value.)
6311
6312 Scan ahead to find a matching LO16 relocation. */
6313 if (r_type == R_MIPS_GNU_REL_HI16)
6314 lo = R_MIPS_GNU_REL_LO16;
6315 else
6316 lo = R_MIPS_LO16;
6317 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6318 rel, relend);
6319 if (lo16_relocation == NULL)
6320 return FALSE;
6321
6322 /* Obtain the addend kept there. */
6323 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6324 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6325 input_bfd, contents);
6326 l &= lo16_howto->src_mask;
6327 l <<= lo16_howto->rightshift;
6328 l = mips_elf_sign_extend (l, 16);
6329
6330 addend <<= 16;
6331
6332 /* Compute the combined addend. */
6333 addend += l;
6334
6335 /* If PC-relative, subtract the difference between the
6336 address of the LO part of the reloc and the address of
6337 the HI part. The relocation is relative to the LO
6338 part, but mips_elf_calculate_relocation() doesn't
6339 know its address or the difference from the HI part, so
6340 we subtract that difference here. See also the
6341 comment in mips_elf_calculate_relocation(). */
6342 if (r_type == R_MIPS_GNU_REL_HI16)
6343 addend -= (lo16_relocation->r_offset - rel->r_offset);
6344 }
6345 else if (r_type == R_MIPS16_GPREL)
6346 {
6347 /* The addend is scrambled in the object file. See
6348 mips_elf_perform_relocation for details on the
6349 format. */
6350 addend = (((addend & 0x1f0000) >> 5)
6351 | ((addend & 0x7e00000) >> 16)
6352 | (addend & 0x1f));
6353 }
6354 }
6355 else
6356 addend = rel->r_addend;
6357 }
6358
6359 if (info->relocateable)
6360 {
6361 Elf_Internal_Sym *sym;
6362 unsigned long r_symndx;
6363
6364 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6365 && bfd_big_endian (input_bfd))
6366 rel->r_offset -= 4;
6367
6368 /* Since we're just relocating, all we need to do is copy
6369 the relocations back out to the object file, unless
6370 they're against a section symbol, in which case we need
6371 to adjust by the section offset, or unless they're GP
6372 relative in which case we need to adjust by the amount
6373 that we're adjusting GP in this relocateable object. */
6374
6375 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6376 FALSE))
6377 /* There's nothing to do for non-local relocations. */
6378 continue;
6379
6380 if (r_type == R_MIPS16_GPREL
6381 || r_type == R_MIPS_GPREL16
6382 || r_type == R_MIPS_GPREL32
6383 || r_type == R_MIPS_LITERAL)
6384 addend -= (_bfd_get_gp_value (output_bfd)
6385 - _bfd_get_gp_value (input_bfd));
6386
6387 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6388 sym = local_syms + r_symndx;
6389 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6390 /* Adjust the addend appropriately. */
6391 addend += local_sections[r_symndx]->output_offset;
6392
6393 if (howto->partial_inplace)
6394 {
6395 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6396 then we only want to write out the high-order 16 bits.
6397 The subsequent R_MIPS_LO16 will handle the low-order bits.
6398 */
6399 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6400 || r_type == R_MIPS_GNU_REL_HI16)
6401 addend = mips_elf_high (addend);
6402 else if (r_type == R_MIPS_HIGHER)
6403 addend = mips_elf_higher (addend);
6404 else if (r_type == R_MIPS_HIGHEST)
6405 addend = mips_elf_highest (addend);
6406 }
6407
6408 if (rela_relocation_p)
6409 /* If this is a RELA relocation, just update the addend.
6410 We have to cast away constness for REL. */
6411 rel->r_addend = addend;
6412 else
6413 {
6414 /* Otherwise, we have to write the value back out. Note
6415 that we use the source mask, rather than the
6416 destination mask because the place to which we are
6417 writing will be source of the addend in the final
6418 link. */
6419 addend >>= howto->rightshift;
6420 addend &= howto->src_mask;
6421
6422 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6423 /* See the comment above about using R_MIPS_64 in the 32-bit
6424 ABI. Here, we need to update the addend. It would be
6425 possible to get away with just using the R_MIPS_32 reloc
6426 but for endianness. */
6427 {
6428 bfd_vma sign_bits;
6429 bfd_vma low_bits;
6430 bfd_vma high_bits;
6431
6432 if (addend & ((bfd_vma) 1 << 31))
6433 #ifdef BFD64
6434 sign_bits = ((bfd_vma) 1 << 32) - 1;
6435 #else
6436 sign_bits = -1;
6437 #endif
6438 else
6439 sign_bits = 0;
6440
6441 /* If we don't know that we have a 64-bit type,
6442 do two separate stores. */
6443 if (bfd_big_endian (input_bfd))
6444 {
6445 /* Store the sign-bits (which are most significant)
6446 first. */
6447 low_bits = sign_bits;
6448 high_bits = addend;
6449 }
6450 else
6451 {
6452 low_bits = addend;
6453 high_bits = sign_bits;
6454 }
6455 bfd_put_32 (input_bfd, low_bits,
6456 contents + rel->r_offset);
6457 bfd_put_32 (input_bfd, high_bits,
6458 contents + rel->r_offset + 4);
6459 continue;
6460 }
6461
6462 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6463 input_bfd, input_section,
6464 contents, FALSE))
6465 return FALSE;
6466 }
6467
6468 /* Go on to the next relocation. */
6469 continue;
6470 }
6471
6472 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6473 relocations for the same offset. In that case we are
6474 supposed to treat the output of each relocation as the addend
6475 for the next. */
6476 if (rel + 1 < relend
6477 && rel->r_offset == rel[1].r_offset
6478 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6479 use_saved_addend_p = TRUE;
6480 else
6481 use_saved_addend_p = FALSE;
6482
6483 addend >>= howto->rightshift;
6484
6485 /* Figure out what value we are supposed to relocate. */
6486 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6487 input_section, info, rel,
6488 addend, howto, local_syms,
6489 local_sections, &value,
6490 &name, &require_jalx,
6491 use_saved_addend_p))
6492 {
6493 case bfd_reloc_continue:
6494 /* There's nothing to do. */
6495 continue;
6496
6497 case bfd_reloc_undefined:
6498 /* mips_elf_calculate_relocation already called the
6499 undefined_symbol callback. There's no real point in
6500 trying to perform the relocation at this point, so we
6501 just skip ahead to the next relocation. */
6502 continue;
6503
6504 case bfd_reloc_notsupported:
6505 msg = _("internal error: unsupported relocation error");
6506 info->callbacks->warning
6507 (info, msg, name, input_bfd, input_section, rel->r_offset);
6508 return FALSE;
6509
6510 case bfd_reloc_overflow:
6511 if (use_saved_addend_p)
6512 /* Ignore overflow until we reach the last relocation for
6513 a given location. */
6514 ;
6515 else
6516 {
6517 BFD_ASSERT (name != NULL);
6518 if (! ((*info->callbacks->reloc_overflow)
6519 (info, name, howto->name, (bfd_vma) 0,
6520 input_bfd, input_section, rel->r_offset)))
6521 return FALSE;
6522 }
6523 break;
6524
6525 case bfd_reloc_ok:
6526 break;
6527
6528 default:
6529 abort ();
6530 break;
6531 }
6532
6533 /* If we've got another relocation for the address, keep going
6534 until we reach the last one. */
6535 if (use_saved_addend_p)
6536 {
6537 addend = value;
6538 continue;
6539 }
6540
6541 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6542 /* See the comment above about using R_MIPS_64 in the 32-bit
6543 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6544 that calculated the right value. Now, however, we
6545 sign-extend the 32-bit result to 64-bits, and store it as a
6546 64-bit value. We are especially generous here in that we
6547 go to extreme lengths to support this usage on systems with
6548 only a 32-bit VMA. */
6549 {
6550 bfd_vma sign_bits;
6551 bfd_vma low_bits;
6552 bfd_vma high_bits;
6553
6554 if (value & ((bfd_vma) 1 << 31))
6555 #ifdef BFD64
6556 sign_bits = ((bfd_vma) 1 << 32) - 1;
6557 #else
6558 sign_bits = -1;
6559 #endif
6560 else
6561 sign_bits = 0;
6562
6563 /* If we don't know that we have a 64-bit type,
6564 do two separate stores. */
6565 if (bfd_big_endian (input_bfd))
6566 {
6567 /* Undo what we did above. */
6568 rel->r_offset -= 4;
6569 /* Store the sign-bits (which are most significant)
6570 first. */
6571 low_bits = sign_bits;
6572 high_bits = value;
6573 }
6574 else
6575 {
6576 low_bits = value;
6577 high_bits = sign_bits;
6578 }
6579 bfd_put_32 (input_bfd, low_bits,
6580 contents + rel->r_offset);
6581 bfd_put_32 (input_bfd, high_bits,
6582 contents + rel->r_offset + 4);
6583 continue;
6584 }
6585
6586 /* Actually perform the relocation. */
6587 if (! mips_elf_perform_relocation (info, howto, rel, value,
6588 input_bfd, input_section,
6589 contents, require_jalx))
6590 return FALSE;
6591 }
6592
6593 return TRUE;
6594 }
6595 \f
6596 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6597 adjust it appropriately now. */
6598
6599 static void
6600 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6601 bfd *abfd ATTRIBUTE_UNUSED;
6602 const char *name;
6603 Elf_Internal_Sym *sym;
6604 {
6605 /* The linker script takes care of providing names and values for
6606 these, but we must place them into the right sections. */
6607 static const char* const text_section_symbols[] = {
6608 "_ftext",
6609 "_etext",
6610 "__dso_displacement",
6611 "__elf_header",
6612 "__program_header_table",
6613 NULL
6614 };
6615
6616 static const char* const data_section_symbols[] = {
6617 "_fdata",
6618 "_edata",
6619 "_end",
6620 "_fbss",
6621 NULL
6622 };
6623
6624 const char* const *p;
6625 int i;
6626
6627 for (i = 0; i < 2; ++i)
6628 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6629 *p;
6630 ++p)
6631 if (strcmp (*p, name) == 0)
6632 {
6633 /* All of these symbols are given type STT_SECTION by the
6634 IRIX6 linker. */
6635 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6636
6637 /* The IRIX linker puts these symbols in special sections. */
6638 if (i == 0)
6639 sym->st_shndx = SHN_MIPS_TEXT;
6640 else
6641 sym->st_shndx = SHN_MIPS_DATA;
6642
6643 break;
6644 }
6645 }
6646
6647 /* Finish up dynamic symbol handling. We set the contents of various
6648 dynamic sections here. */
6649
6650 bfd_boolean
6651 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6652 bfd *output_bfd;
6653 struct bfd_link_info *info;
6654 struct elf_link_hash_entry *h;
6655 Elf_Internal_Sym *sym;
6656 {
6657 bfd *dynobj;
6658 bfd_vma gval;
6659 asection *sgot;
6660 asection *smsym;
6661 struct mips_got_info *g, *gg;
6662 const char *name;
6663 struct mips_elf_link_hash_entry *mh;
6664
6665 dynobj = elf_hash_table (info)->dynobj;
6666 gval = sym->st_value;
6667 mh = (struct mips_elf_link_hash_entry *) h;
6668
6669 if (h->plt.offset != (bfd_vma) -1)
6670 {
6671 asection *s;
6672 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6673
6674 /* This symbol has a stub. Set it up. */
6675
6676 BFD_ASSERT (h->dynindx != -1);
6677
6678 s = bfd_get_section_by_name (dynobj,
6679 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6680 BFD_ASSERT (s != NULL);
6681
6682 /* FIXME: Can h->dynindex be more than 64K? */
6683 if (h->dynindx & 0xffff0000)
6684 return FALSE;
6685
6686 /* Fill the stub. */
6687 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6688 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6689 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6690 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6691
6692 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6693 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6694
6695 /* Mark the symbol as undefined. plt.offset != -1 occurs
6696 only for the referenced symbol. */
6697 sym->st_shndx = SHN_UNDEF;
6698
6699 /* The run-time linker uses the st_value field of the symbol
6700 to reset the global offset table entry for this external
6701 to its stub address when unlinking a shared object. */
6702 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6703 sym->st_value = gval;
6704 }
6705
6706 BFD_ASSERT (h->dynindx != -1
6707 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6708
6709 sgot = mips_elf_got_section (dynobj, FALSE);
6710 BFD_ASSERT (sgot != NULL);
6711 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6712 g = mips_elf_section_data (sgot)->u.got_info;
6713 BFD_ASSERT (g != NULL);
6714
6715 /* Run through the global symbol table, creating GOT entries for all
6716 the symbols that need them. */
6717 if (g->global_gotsym != NULL
6718 && h->dynindx >= g->global_gotsym->dynindx)
6719 {
6720 bfd_vma offset;
6721 bfd_vma value;
6722
6723 if (sym->st_value)
6724 value = sym->st_value;
6725 else
6726 {
6727 /* For an entity defined in a shared object, this will be
6728 NULL. (For functions in shared objects for
6729 which we have created stubs, ST_VALUE will be non-NULL.
6730 That's because such the functions are now no longer defined
6731 in a shared object.) */
6732
6733 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6734 || h->root.type == bfd_link_hash_undefweak)
6735 value = 0;
6736 else
6737 value = h->root.u.def.value;
6738 }
6739 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6740 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6741 }
6742
6743 if (g->next && h->dynindx != -1)
6744 {
6745 struct mips_got_entry e, *p;
6746 bfd_vma offset;
6747 bfd_vma value;
6748 Elf_Internal_Rela rel[3];
6749 bfd_vma addend = 0;
6750
6751 gg = g;
6752
6753 e.abfd = output_bfd;
6754 e.symndx = -1;
6755 e.d.h = (struct mips_elf_link_hash_entry *)h;
6756
6757 if (info->shared
6758 || h->root.type == bfd_link_hash_undefined
6759 || h->root.type == bfd_link_hash_undefweak)
6760 value = 0;
6761 else if (sym->st_value)
6762 value = sym->st_value;
6763 else
6764 value = h->root.u.def.value;
6765
6766 memset (rel, 0, sizeof (rel));
6767 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6768
6769 for (g = g->next; g->next != gg; g = g->next)
6770 {
6771 if (g->got_entries
6772 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6773 &e)))
6774 {
6775 offset = p->gotidx;
6776 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6777
6778 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6779
6780 if ((info->shared
6781 || (elf_hash_table (info)->dynamic_sections_created
6782 && p->d.h != NULL
6783 && ((p->d.h->root.elf_link_hash_flags
6784 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6785 && ((p->d.h->root.elf_link_hash_flags
6786 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6787 && ! (mips_elf_create_dynamic_relocation
6788 (output_bfd, info, rel,
6789 e.d.h, NULL, value, &addend, sgot)))
6790 return FALSE;
6791 BFD_ASSERT (addend == 0);
6792 }
6793 }
6794 }
6795
6796 /* Create a .msym entry, if appropriate. */
6797 smsym = bfd_get_section_by_name (dynobj, ".msym");
6798 if (smsym)
6799 {
6800 Elf32_Internal_Msym msym;
6801
6802 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6803 /* It is undocumented what the `1' indicates, but IRIX6 uses
6804 this value. */
6805 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6806 bfd_mips_elf_swap_msym_out
6807 (dynobj, &msym,
6808 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6809 }
6810
6811 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6812 name = h->root.root.string;
6813 if (strcmp (name, "_DYNAMIC") == 0
6814 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6815 sym->st_shndx = SHN_ABS;
6816 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6817 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6818 {
6819 sym->st_shndx = SHN_ABS;
6820 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6821 sym->st_value = 1;
6822 }
6823 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6824 {
6825 sym->st_shndx = SHN_ABS;
6826 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6827 sym->st_value = elf_gp (output_bfd);
6828 }
6829 else if (SGI_COMPAT (output_bfd))
6830 {
6831 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6832 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6833 {
6834 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6835 sym->st_other = STO_PROTECTED;
6836 sym->st_value = 0;
6837 sym->st_shndx = SHN_MIPS_DATA;
6838 }
6839 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6840 {
6841 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6842 sym->st_other = STO_PROTECTED;
6843 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6844 sym->st_shndx = SHN_ABS;
6845 }
6846 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6847 {
6848 if (h->type == STT_FUNC)
6849 sym->st_shndx = SHN_MIPS_TEXT;
6850 else if (h->type == STT_OBJECT)
6851 sym->st_shndx = SHN_MIPS_DATA;
6852 }
6853 }
6854
6855 /* Handle the IRIX6-specific symbols. */
6856 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6857 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6858
6859 if (! info->shared)
6860 {
6861 if (! mips_elf_hash_table (info)->use_rld_obj_head
6862 && (strcmp (name, "__rld_map") == 0
6863 || strcmp (name, "__RLD_MAP") == 0))
6864 {
6865 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6866 BFD_ASSERT (s != NULL);
6867 sym->st_value = s->output_section->vma + s->output_offset;
6868 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6869 if (mips_elf_hash_table (info)->rld_value == 0)
6870 mips_elf_hash_table (info)->rld_value = sym->st_value;
6871 }
6872 else if (mips_elf_hash_table (info)->use_rld_obj_head
6873 && strcmp (name, "__rld_obj_head") == 0)
6874 {
6875 /* IRIX6 does not use a .rld_map section. */
6876 if (IRIX_COMPAT (output_bfd) == ict_irix5
6877 || IRIX_COMPAT (output_bfd) == ict_none)
6878 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6879 != NULL);
6880 mips_elf_hash_table (info)->rld_value = sym->st_value;
6881 }
6882 }
6883
6884 /* If this is a mips16 symbol, force the value to be even. */
6885 if (sym->st_other == STO_MIPS16
6886 && (sym->st_value & 1) != 0)
6887 --sym->st_value;
6888
6889 return TRUE;
6890 }
6891
6892 /* Finish up the dynamic sections. */
6893
6894 bfd_boolean
6895 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6896 bfd *output_bfd;
6897 struct bfd_link_info *info;
6898 {
6899 bfd *dynobj;
6900 asection *sdyn;
6901 asection *sgot;
6902 struct mips_got_info *gg, *g;
6903
6904 dynobj = elf_hash_table (info)->dynobj;
6905
6906 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6907
6908 sgot = mips_elf_got_section (dynobj, FALSE);
6909 if (sgot == NULL)
6910 gg = g = NULL;
6911 else
6912 {
6913 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6914 gg = mips_elf_section_data (sgot)->u.got_info;
6915 BFD_ASSERT (gg != NULL);
6916 g = mips_elf_got_for_ibfd (gg, output_bfd);
6917 BFD_ASSERT (g != NULL);
6918 }
6919
6920 if (elf_hash_table (info)->dynamic_sections_created)
6921 {
6922 bfd_byte *b;
6923
6924 BFD_ASSERT (sdyn != NULL);
6925 BFD_ASSERT (g != NULL);
6926
6927 for (b = sdyn->contents;
6928 b < sdyn->contents + sdyn->_raw_size;
6929 b += MIPS_ELF_DYN_SIZE (dynobj))
6930 {
6931 Elf_Internal_Dyn dyn;
6932 const char *name;
6933 size_t elemsize;
6934 asection *s;
6935 bfd_boolean swap_out_p;
6936
6937 /* Read in the current dynamic entry. */
6938 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6939
6940 /* Assume that we're going to modify it and write it out. */
6941 swap_out_p = TRUE;
6942
6943 switch (dyn.d_tag)
6944 {
6945 case DT_RELENT:
6946 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6947 BFD_ASSERT (s != NULL);
6948 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6949 break;
6950
6951 case DT_STRSZ:
6952 /* Rewrite DT_STRSZ. */
6953 dyn.d_un.d_val =
6954 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6955 break;
6956
6957 case DT_PLTGOT:
6958 name = ".got";
6959 goto get_vma;
6960 case DT_MIPS_CONFLICT:
6961 name = ".conflict";
6962 goto get_vma;
6963 case DT_MIPS_LIBLIST:
6964 name = ".liblist";
6965 get_vma:
6966 s = bfd_get_section_by_name (output_bfd, name);
6967 BFD_ASSERT (s != NULL);
6968 dyn.d_un.d_ptr = s->vma;
6969 break;
6970
6971 case DT_MIPS_RLD_VERSION:
6972 dyn.d_un.d_val = 1; /* XXX */
6973 break;
6974
6975 case DT_MIPS_FLAGS:
6976 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6977 break;
6978
6979 case DT_MIPS_CONFLICTNO:
6980 name = ".conflict";
6981 elemsize = sizeof (Elf32_Conflict);
6982 goto set_elemno;
6983
6984 case DT_MIPS_LIBLISTNO:
6985 name = ".liblist";
6986 elemsize = sizeof (Elf32_Lib);
6987 set_elemno:
6988 s = bfd_get_section_by_name (output_bfd, name);
6989 if (s != NULL)
6990 {
6991 if (s->_cooked_size != 0)
6992 dyn.d_un.d_val = s->_cooked_size / elemsize;
6993 else
6994 dyn.d_un.d_val = s->_raw_size / elemsize;
6995 }
6996 else
6997 dyn.d_un.d_val = 0;
6998 break;
6999
7000 case DT_MIPS_TIME_STAMP:
7001 time ((time_t *) &dyn.d_un.d_val);
7002 break;
7003
7004 case DT_MIPS_ICHECKSUM:
7005 /* XXX FIXME: */
7006 swap_out_p = FALSE;
7007 break;
7008
7009 case DT_MIPS_IVERSION:
7010 /* XXX FIXME: */
7011 swap_out_p = FALSE;
7012 break;
7013
7014 case DT_MIPS_BASE_ADDRESS:
7015 s = output_bfd->sections;
7016 BFD_ASSERT (s != NULL);
7017 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7018 break;
7019
7020 case DT_MIPS_LOCAL_GOTNO:
7021 dyn.d_un.d_val = g->local_gotno;
7022 break;
7023
7024 case DT_MIPS_UNREFEXTNO:
7025 /* The index into the dynamic symbol table which is the
7026 entry of the first external symbol that is not
7027 referenced within the same object. */
7028 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7029 break;
7030
7031 case DT_MIPS_GOTSYM:
7032 if (gg->global_gotsym)
7033 {
7034 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7035 break;
7036 }
7037 /* In case if we don't have global got symbols we default
7038 to setting DT_MIPS_GOTSYM to the same value as
7039 DT_MIPS_SYMTABNO, so we just fall through. */
7040
7041 case DT_MIPS_SYMTABNO:
7042 name = ".dynsym";
7043 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7044 s = bfd_get_section_by_name (output_bfd, name);
7045 BFD_ASSERT (s != NULL);
7046
7047 if (s->_cooked_size != 0)
7048 dyn.d_un.d_val = s->_cooked_size / elemsize;
7049 else
7050 dyn.d_un.d_val = s->_raw_size / elemsize;
7051 break;
7052
7053 case DT_MIPS_HIPAGENO:
7054 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7055 break;
7056
7057 case DT_MIPS_RLD_MAP:
7058 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7059 break;
7060
7061 case DT_MIPS_OPTIONS:
7062 s = (bfd_get_section_by_name
7063 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7064 dyn.d_un.d_ptr = s->vma;
7065 break;
7066
7067 case DT_MIPS_MSYM:
7068 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7069 dyn.d_un.d_ptr = s->vma;
7070 break;
7071
7072 default:
7073 swap_out_p = FALSE;
7074 break;
7075 }
7076
7077 if (swap_out_p)
7078 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7079 (dynobj, &dyn, b);
7080 }
7081 }
7082
7083 /* The first entry of the global offset table will be filled at
7084 runtime. The second entry will be used by some runtime loaders.
7085 This isn't the case of IRIX rld. */
7086 if (sgot != NULL && sgot->_raw_size > 0)
7087 {
7088 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7089 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7090 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7091 }
7092
7093 if (sgot != NULL)
7094 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7095 = MIPS_ELF_GOT_SIZE (output_bfd);
7096
7097 /* Generate dynamic relocations for the non-primary gots. */
7098 if (gg != NULL && gg->next)
7099 {
7100 Elf_Internal_Rela rel[3];
7101 bfd_vma addend = 0;
7102
7103 memset (rel, 0, sizeof (rel));
7104 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7105
7106 for (g = gg->next; g->next != gg; g = g->next)
7107 {
7108 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7109
7110 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7111 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7112 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7113 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7114
7115 if (! info->shared)
7116 continue;
7117
7118 while (index < g->assigned_gotno)
7119 {
7120 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7121 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7122 if (!(mips_elf_create_dynamic_relocation
7123 (output_bfd, info, rel, NULL,
7124 bfd_abs_section_ptr,
7125 0, &addend, sgot)))
7126 return FALSE;
7127 BFD_ASSERT (addend == 0);
7128 }
7129 }
7130 }
7131
7132 {
7133 asection *smsym;
7134 asection *s;
7135 Elf32_compact_rel cpt;
7136
7137 /* ??? The section symbols for the output sections were set up in
7138 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7139 symbols. Should we do so? */
7140
7141 smsym = bfd_get_section_by_name (dynobj, ".msym");
7142 if (smsym != NULL)
7143 {
7144 Elf32_Internal_Msym msym;
7145
7146 msym.ms_hash_value = 0;
7147 msym.ms_info = ELF32_MS_INFO (0, 1);
7148
7149 for (s = output_bfd->sections; s != NULL; s = s->next)
7150 {
7151 long dynindx = elf_section_data (s)->dynindx;
7152
7153 bfd_mips_elf_swap_msym_out
7154 (output_bfd, &msym,
7155 (((Elf32_External_Msym *) smsym->contents)
7156 + dynindx));
7157 }
7158 }
7159
7160 if (SGI_COMPAT (output_bfd))
7161 {
7162 /* Write .compact_rel section out. */
7163 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7164 if (s != NULL)
7165 {
7166 cpt.id1 = 1;
7167 cpt.num = s->reloc_count;
7168 cpt.id2 = 2;
7169 cpt.offset = (s->output_section->filepos
7170 + sizeof (Elf32_External_compact_rel));
7171 cpt.reserved0 = 0;
7172 cpt.reserved1 = 0;
7173 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7174 ((Elf32_External_compact_rel *)
7175 s->contents));
7176
7177 /* Clean up a dummy stub function entry in .text. */
7178 s = bfd_get_section_by_name (dynobj,
7179 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7180 if (s != NULL)
7181 {
7182 file_ptr dummy_offset;
7183
7184 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7185 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7186 memset (s->contents + dummy_offset, 0,
7187 MIPS_FUNCTION_STUB_SIZE);
7188 }
7189 }
7190 }
7191
7192 /* We need to sort the entries of the dynamic relocation section. */
7193
7194 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7195
7196 if (s != NULL
7197 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7198 {
7199 reldyn_sorting_bfd = output_bfd;
7200
7201 if (ABI_64_P (output_bfd))
7202 qsort ((Elf64_External_Rel *) s->contents + 1,
7203 (size_t) s->reloc_count - 1,
7204 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7205 else
7206 qsort ((Elf32_External_Rel *) s->contents + 1,
7207 (size_t) s->reloc_count - 1,
7208 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7209 }
7210 }
7211
7212 return TRUE;
7213 }
7214
7215
7216 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7217
7218 static void
7219 mips_set_isa_flags (abfd)
7220 bfd *abfd;
7221 {
7222 flagword val;
7223
7224 switch (bfd_get_mach (abfd))
7225 {
7226 default:
7227 case bfd_mach_mips3000:
7228 val = E_MIPS_ARCH_1;
7229 break;
7230
7231 case bfd_mach_mips3900:
7232 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7233 break;
7234
7235 case bfd_mach_mips6000:
7236 val = E_MIPS_ARCH_2;
7237 break;
7238
7239 case bfd_mach_mips4000:
7240 case bfd_mach_mips4300:
7241 case bfd_mach_mips4400:
7242 case bfd_mach_mips4600:
7243 val = E_MIPS_ARCH_3;
7244 break;
7245
7246 case bfd_mach_mips4010:
7247 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7248 break;
7249
7250 case bfd_mach_mips4100:
7251 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7252 break;
7253
7254 case bfd_mach_mips4111:
7255 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7256 break;
7257
7258 case bfd_mach_mips4120:
7259 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7260 break;
7261
7262 case bfd_mach_mips4650:
7263 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7264 break;
7265
7266 case bfd_mach_mips5400:
7267 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7268 break;
7269
7270 case bfd_mach_mips5500:
7271 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7272 break;
7273
7274 case bfd_mach_mips5000:
7275 case bfd_mach_mips8000:
7276 case bfd_mach_mips10000:
7277 case bfd_mach_mips12000:
7278 val = E_MIPS_ARCH_4;
7279 break;
7280
7281 case bfd_mach_mips5:
7282 val = E_MIPS_ARCH_5;
7283 break;
7284
7285 case bfd_mach_mips_sb1:
7286 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7287 break;
7288
7289 case bfd_mach_mipsisa32:
7290 val = E_MIPS_ARCH_32;
7291 break;
7292
7293 case bfd_mach_mipsisa64:
7294 val = E_MIPS_ARCH_64;
7295 break;
7296
7297 case bfd_mach_mipsisa32r2:
7298 val = E_MIPS_ARCH_32R2;
7299 break;
7300 }
7301 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7302 elf_elfheader (abfd)->e_flags |= val;
7303
7304 }
7305
7306
7307 /* The final processing done just before writing out a MIPS ELF object
7308 file. This gets the MIPS architecture right based on the machine
7309 number. This is used by both the 32-bit and the 64-bit ABI. */
7310
7311 void
7312 _bfd_mips_elf_final_write_processing (abfd, linker)
7313 bfd *abfd;
7314 bfd_boolean linker ATTRIBUTE_UNUSED;
7315 {
7316 unsigned int i;
7317 Elf_Internal_Shdr **hdrpp;
7318 const char *name;
7319 asection *sec;
7320
7321 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7322 is nonzero. This is for compatibility with old objects, which used
7323 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7324 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7325 mips_set_isa_flags (abfd);
7326
7327 /* Set the sh_info field for .gptab sections and other appropriate
7328 info for each special section. */
7329 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7330 i < elf_numsections (abfd);
7331 i++, hdrpp++)
7332 {
7333 switch ((*hdrpp)->sh_type)
7334 {
7335 case SHT_MIPS_MSYM:
7336 case SHT_MIPS_LIBLIST:
7337 sec = bfd_get_section_by_name (abfd, ".dynstr");
7338 if (sec != NULL)
7339 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7340 break;
7341
7342 case SHT_MIPS_GPTAB:
7343 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7344 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7345 BFD_ASSERT (name != NULL
7346 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7347 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7348 BFD_ASSERT (sec != NULL);
7349 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7350 break;
7351
7352 case SHT_MIPS_CONTENT:
7353 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7354 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7355 BFD_ASSERT (name != NULL
7356 && strncmp (name, ".MIPS.content",
7357 sizeof ".MIPS.content" - 1) == 0);
7358 sec = bfd_get_section_by_name (abfd,
7359 name + sizeof ".MIPS.content" - 1);
7360 BFD_ASSERT (sec != NULL);
7361 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7362 break;
7363
7364 case SHT_MIPS_SYMBOL_LIB:
7365 sec = bfd_get_section_by_name (abfd, ".dynsym");
7366 if (sec != NULL)
7367 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7368 sec = bfd_get_section_by_name (abfd, ".liblist");
7369 if (sec != NULL)
7370 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7371 break;
7372
7373 case SHT_MIPS_EVENTS:
7374 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7375 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7376 BFD_ASSERT (name != NULL);
7377 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7378 sec = bfd_get_section_by_name (abfd,
7379 name + sizeof ".MIPS.events" - 1);
7380 else
7381 {
7382 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7383 sizeof ".MIPS.post_rel" - 1) == 0);
7384 sec = bfd_get_section_by_name (abfd,
7385 (name
7386 + sizeof ".MIPS.post_rel" - 1));
7387 }
7388 BFD_ASSERT (sec != NULL);
7389 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7390 break;
7391
7392 }
7393 }
7394 }
7395 \f
7396 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7397 segments. */
7398
7399 int
7400 _bfd_mips_elf_additional_program_headers (abfd)
7401 bfd *abfd;
7402 {
7403 asection *s;
7404 int ret = 0;
7405
7406 /* See if we need a PT_MIPS_REGINFO segment. */
7407 s = bfd_get_section_by_name (abfd, ".reginfo");
7408 if (s && (s->flags & SEC_LOAD))
7409 ++ret;
7410
7411 /* See if we need a PT_MIPS_OPTIONS segment. */
7412 if (IRIX_COMPAT (abfd) == ict_irix6
7413 && bfd_get_section_by_name (abfd,
7414 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7415 ++ret;
7416
7417 /* See if we need a PT_MIPS_RTPROC segment. */
7418 if (IRIX_COMPAT (abfd) == ict_irix5
7419 && bfd_get_section_by_name (abfd, ".dynamic")
7420 && bfd_get_section_by_name (abfd, ".mdebug"))
7421 ++ret;
7422
7423 return ret;
7424 }
7425
7426 /* Modify the segment map for an IRIX5 executable. */
7427
7428 bfd_boolean
7429 _bfd_mips_elf_modify_segment_map (abfd)
7430 bfd *abfd;
7431 {
7432 asection *s;
7433 struct elf_segment_map *m, **pm;
7434 bfd_size_type amt;
7435
7436 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7437 segment. */
7438 s = bfd_get_section_by_name (abfd, ".reginfo");
7439 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7440 {
7441 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7442 if (m->p_type == PT_MIPS_REGINFO)
7443 break;
7444 if (m == NULL)
7445 {
7446 amt = sizeof *m;
7447 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7448 if (m == NULL)
7449 return FALSE;
7450
7451 m->p_type = PT_MIPS_REGINFO;
7452 m->count = 1;
7453 m->sections[0] = s;
7454
7455 /* We want to put it after the PHDR and INTERP segments. */
7456 pm = &elf_tdata (abfd)->segment_map;
7457 while (*pm != NULL
7458 && ((*pm)->p_type == PT_PHDR
7459 || (*pm)->p_type == PT_INTERP))
7460 pm = &(*pm)->next;
7461
7462 m->next = *pm;
7463 *pm = m;
7464 }
7465 }
7466
7467 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7468 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7469 PT_OPTIONS segment immediately following the program header
7470 table. */
7471 if (NEWABI_P (abfd)
7472 /* On non-IRIX6 new abi, we'll have already created a segment
7473 for this section, so don't create another. I'm not sure this
7474 is not also the case for IRIX 6, but I can't test it right
7475 now. */
7476 && IRIX_COMPAT (abfd) == ict_irix6)
7477 {
7478 for (s = abfd->sections; s; s = s->next)
7479 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7480 break;
7481
7482 if (s)
7483 {
7484 struct elf_segment_map *options_segment;
7485
7486 /* Usually, there's a program header table. But, sometimes
7487 there's not (like when running the `ld' testsuite). So,
7488 if there's no program header table, we just put the
7489 options segment at the end. */
7490 for (pm = &elf_tdata (abfd)->segment_map;
7491 *pm != NULL;
7492 pm = &(*pm)->next)
7493 if ((*pm)->p_type == PT_PHDR)
7494 break;
7495
7496 amt = sizeof (struct elf_segment_map);
7497 options_segment = bfd_zalloc (abfd, amt);
7498 options_segment->next = *pm;
7499 options_segment->p_type = PT_MIPS_OPTIONS;
7500 options_segment->p_flags = PF_R;
7501 options_segment->p_flags_valid = TRUE;
7502 options_segment->count = 1;
7503 options_segment->sections[0] = s;
7504 *pm = options_segment;
7505 }
7506 }
7507 else
7508 {
7509 if (IRIX_COMPAT (abfd) == ict_irix5)
7510 {
7511 /* If there are .dynamic and .mdebug sections, we make a room
7512 for the RTPROC header. FIXME: Rewrite without section names. */
7513 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7514 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7515 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7516 {
7517 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7518 if (m->p_type == PT_MIPS_RTPROC)
7519 break;
7520 if (m == NULL)
7521 {
7522 amt = sizeof *m;
7523 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7524 if (m == NULL)
7525 return FALSE;
7526
7527 m->p_type = PT_MIPS_RTPROC;
7528
7529 s = bfd_get_section_by_name (abfd, ".rtproc");
7530 if (s == NULL)
7531 {
7532 m->count = 0;
7533 m->p_flags = 0;
7534 m->p_flags_valid = 1;
7535 }
7536 else
7537 {
7538 m->count = 1;
7539 m->sections[0] = s;
7540 }
7541
7542 /* We want to put it after the DYNAMIC segment. */
7543 pm = &elf_tdata (abfd)->segment_map;
7544 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7545 pm = &(*pm)->next;
7546 if (*pm != NULL)
7547 pm = &(*pm)->next;
7548
7549 m->next = *pm;
7550 *pm = m;
7551 }
7552 }
7553 }
7554 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7555 .dynstr, .dynsym, and .hash sections, and everything in
7556 between. */
7557 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7558 pm = &(*pm)->next)
7559 if ((*pm)->p_type == PT_DYNAMIC)
7560 break;
7561 m = *pm;
7562 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7563 {
7564 /* For a normal mips executable the permissions for the PT_DYNAMIC
7565 segment are read, write and execute. We do that here since
7566 the code in elf.c sets only the read permission. This matters
7567 sometimes for the dynamic linker. */
7568 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7569 {
7570 m->p_flags = PF_R | PF_W | PF_X;
7571 m->p_flags_valid = 1;
7572 }
7573 }
7574 if (m != NULL
7575 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7576 {
7577 static const char *sec_names[] =
7578 {
7579 ".dynamic", ".dynstr", ".dynsym", ".hash"
7580 };
7581 bfd_vma low, high;
7582 unsigned int i, c;
7583 struct elf_segment_map *n;
7584
7585 low = 0xffffffff;
7586 high = 0;
7587 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7588 {
7589 s = bfd_get_section_by_name (abfd, sec_names[i]);
7590 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7591 {
7592 bfd_size_type sz;
7593
7594 if (low > s->vma)
7595 low = s->vma;
7596 sz = s->_cooked_size;
7597 if (sz == 0)
7598 sz = s->_raw_size;
7599 if (high < s->vma + sz)
7600 high = s->vma + sz;
7601 }
7602 }
7603
7604 c = 0;
7605 for (s = abfd->sections; s != NULL; s = s->next)
7606 if ((s->flags & SEC_LOAD) != 0
7607 && s->vma >= low
7608 && ((s->vma
7609 + (s->_cooked_size !=
7610 0 ? s->_cooked_size : s->_raw_size)) <= high))
7611 ++c;
7612
7613 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7614 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7615 if (n == NULL)
7616 return FALSE;
7617 *n = *m;
7618 n->count = c;
7619
7620 i = 0;
7621 for (s = abfd->sections; s != NULL; s = s->next)
7622 {
7623 if ((s->flags & SEC_LOAD) != 0
7624 && s->vma >= low
7625 && ((s->vma
7626 + (s->_cooked_size != 0 ?
7627 s->_cooked_size : s->_raw_size)) <= high))
7628 {
7629 n->sections[i] = s;
7630 ++i;
7631 }
7632 }
7633
7634 *pm = n;
7635 }
7636 }
7637
7638 return TRUE;
7639 }
7640 \f
7641 /* Return the section that should be marked against GC for a given
7642 relocation. */
7643
7644 asection *
7645 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7646 asection *sec;
7647 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7648 Elf_Internal_Rela *rel;
7649 struct elf_link_hash_entry *h;
7650 Elf_Internal_Sym *sym;
7651 {
7652 /* ??? Do mips16 stub sections need to be handled special? */
7653
7654 if (h != NULL)
7655 {
7656 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7657 {
7658 case R_MIPS_GNU_VTINHERIT:
7659 case R_MIPS_GNU_VTENTRY:
7660 break;
7661
7662 default:
7663 switch (h->root.type)
7664 {
7665 case bfd_link_hash_defined:
7666 case bfd_link_hash_defweak:
7667 return h->root.u.def.section;
7668
7669 case bfd_link_hash_common:
7670 return h->root.u.c.p->section;
7671
7672 default:
7673 break;
7674 }
7675 }
7676 }
7677 else
7678 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7679
7680 return NULL;
7681 }
7682
7683 /* Update the got entry reference counts for the section being removed. */
7684
7685 bfd_boolean
7686 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7687 bfd *abfd ATTRIBUTE_UNUSED;
7688 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7689 asection *sec ATTRIBUTE_UNUSED;
7690 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7691 {
7692 #if 0
7693 Elf_Internal_Shdr *symtab_hdr;
7694 struct elf_link_hash_entry **sym_hashes;
7695 bfd_signed_vma *local_got_refcounts;
7696 const Elf_Internal_Rela *rel, *relend;
7697 unsigned long r_symndx;
7698 struct elf_link_hash_entry *h;
7699
7700 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7701 sym_hashes = elf_sym_hashes (abfd);
7702 local_got_refcounts = elf_local_got_refcounts (abfd);
7703
7704 relend = relocs + sec->reloc_count;
7705 for (rel = relocs; rel < relend; rel++)
7706 switch (ELF_R_TYPE (abfd, rel->r_info))
7707 {
7708 case R_MIPS_GOT16:
7709 case R_MIPS_CALL16:
7710 case R_MIPS_CALL_HI16:
7711 case R_MIPS_CALL_LO16:
7712 case R_MIPS_GOT_HI16:
7713 case R_MIPS_GOT_LO16:
7714 case R_MIPS_GOT_DISP:
7715 case R_MIPS_GOT_PAGE:
7716 case R_MIPS_GOT_OFST:
7717 /* ??? It would seem that the existing MIPS code does no sort
7718 of reference counting or whatnot on its GOT and PLT entries,
7719 so it is not possible to garbage collect them at this time. */
7720 break;
7721
7722 default:
7723 break;
7724 }
7725 #endif
7726
7727 return TRUE;
7728 }
7729 \f
7730 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7731 hiding the old indirect symbol. Process additional relocation
7732 information. Also called for weakdefs, in which case we just let
7733 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7734
7735 void
7736 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7737 struct elf_backend_data *bed;
7738 struct elf_link_hash_entry *dir, *ind;
7739 {
7740 struct mips_elf_link_hash_entry *dirmips, *indmips;
7741
7742 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7743
7744 if (ind->root.type != bfd_link_hash_indirect)
7745 return;
7746
7747 dirmips = (struct mips_elf_link_hash_entry *) dir;
7748 indmips = (struct mips_elf_link_hash_entry *) ind;
7749 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7750 if (indmips->readonly_reloc)
7751 dirmips->readonly_reloc = TRUE;
7752 if (dirmips->min_dyn_reloc_index == 0
7753 || (indmips->min_dyn_reloc_index != 0
7754 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7755 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7756 if (indmips->no_fn_stub)
7757 dirmips->no_fn_stub = TRUE;
7758 }
7759
7760 void
7761 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7762 struct bfd_link_info *info;
7763 struct elf_link_hash_entry *entry;
7764 bfd_boolean force_local;
7765 {
7766 bfd *dynobj;
7767 asection *got;
7768 struct mips_got_info *g;
7769 struct mips_elf_link_hash_entry *h;
7770
7771 h = (struct mips_elf_link_hash_entry *) entry;
7772 if (h->forced_local)
7773 return;
7774 h->forced_local = TRUE;
7775
7776 dynobj = elf_hash_table (info)->dynobj;
7777 if (dynobj != NULL)
7778 {
7779 got = mips_elf_got_section (dynobj, FALSE);
7780 g = mips_elf_section_data (got)->u.got_info;
7781
7782 if (g->next)
7783 {
7784 struct mips_got_entry e;
7785 struct mips_got_info *gg = g;
7786
7787 /* Since we're turning what used to be a global symbol into a
7788 local one, bump up the number of local entries of each GOT
7789 that had an entry for it. This will automatically decrease
7790 the number of global entries, since global_gotno is actually
7791 the upper limit of global entries. */
7792 e.abfd = dynobj;
7793 e.symndx = -1;
7794 e.d.h = h;
7795
7796 for (g = g->next; g != gg; g = g->next)
7797 if (htab_find (g->got_entries, &e))
7798 {
7799 BFD_ASSERT (g->global_gotno > 0);
7800 g->local_gotno++;
7801 g->global_gotno--;
7802 }
7803
7804 /* If this was a global symbol forced into the primary GOT, we
7805 no longer need an entry for it. We can't release the entry
7806 at this point, but we must at least stop counting it as one
7807 of the symbols that required a forced got entry. */
7808 if (h->root.got.offset == 2)
7809 {
7810 BFD_ASSERT (gg->assigned_gotno > 0);
7811 gg->assigned_gotno--;
7812 }
7813 }
7814 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7815 /* If we haven't got through GOT allocation yet, just bump up the
7816 number of local entries, as this symbol won't be counted as
7817 global. */
7818 g->local_gotno++;
7819 else if (h->root.got.offset == 1)
7820 {
7821 /* If we're past non-multi-GOT allocation and this symbol had
7822 been marked for a global got entry, give it a local entry
7823 instead. */
7824 BFD_ASSERT (g->global_gotno > 0);
7825 g->local_gotno++;
7826 g->global_gotno--;
7827 }
7828 }
7829
7830 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7831 }
7832 \f
7833 #define PDR_SIZE 32
7834
7835 bfd_boolean
7836 _bfd_mips_elf_discard_info (abfd, cookie, info)
7837 bfd *abfd;
7838 struct elf_reloc_cookie *cookie;
7839 struct bfd_link_info *info;
7840 {
7841 asection *o;
7842 bfd_boolean ret = FALSE;
7843 unsigned char *tdata;
7844 size_t i, skip;
7845
7846 o = bfd_get_section_by_name (abfd, ".pdr");
7847 if (! o)
7848 return FALSE;
7849 if (o->_raw_size == 0)
7850 return FALSE;
7851 if (o->_raw_size % PDR_SIZE != 0)
7852 return FALSE;
7853 if (o->output_section != NULL
7854 && bfd_is_abs_section (o->output_section))
7855 return FALSE;
7856
7857 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7858 if (! tdata)
7859 return FALSE;
7860
7861 cookie->rels = (MNAME(abfd,_bfd_elf,link_read_relocs)
7862 (abfd, o, (PTR) NULL,
7863 (Elf_Internal_Rela *) NULL,
7864 info->keep_memory));
7865 if (!cookie->rels)
7866 {
7867 free (tdata);
7868 return FALSE;
7869 }
7870
7871 cookie->rel = cookie->rels;
7872 cookie->relend = cookie->rels + o->reloc_count;
7873
7874 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7875 {
7876 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7877 {
7878 tdata[i] = 1;
7879 skip ++;
7880 }
7881 }
7882
7883 if (skip != 0)
7884 {
7885 mips_elf_section_data (o)->u.tdata = tdata;
7886 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7887 ret = TRUE;
7888 }
7889 else
7890 free (tdata);
7891
7892 if (! info->keep_memory)
7893 free (cookie->rels);
7894
7895 return ret;
7896 }
7897
7898 bfd_boolean
7899 _bfd_mips_elf_ignore_discarded_relocs (sec)
7900 asection *sec;
7901 {
7902 if (strcmp (sec->name, ".pdr") == 0)
7903 return TRUE;
7904 return FALSE;
7905 }
7906
7907 bfd_boolean
7908 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7909 bfd *output_bfd;
7910 asection *sec;
7911 bfd_byte *contents;
7912 {
7913 bfd_byte *to, *from, *end;
7914 int i;
7915
7916 if (strcmp (sec->name, ".pdr") != 0)
7917 return FALSE;
7918
7919 if (mips_elf_section_data (sec)->u.tdata == NULL)
7920 return FALSE;
7921
7922 to = contents;
7923 end = contents + sec->_raw_size;
7924 for (from = contents, i = 0;
7925 from < end;
7926 from += PDR_SIZE, i++)
7927 {
7928 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7929 continue;
7930 if (to != from)
7931 memcpy (to, from, PDR_SIZE);
7932 to += PDR_SIZE;
7933 }
7934 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7935 (file_ptr) sec->output_offset,
7936 sec->_cooked_size);
7937 return TRUE;
7938 }
7939 \f
7940 /* MIPS ELF uses a special find_nearest_line routine in order the
7941 handle the ECOFF debugging information. */
7942
7943 struct mips_elf_find_line
7944 {
7945 struct ecoff_debug_info d;
7946 struct ecoff_find_line i;
7947 };
7948
7949 bfd_boolean
7950 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7951 functionname_ptr, line_ptr)
7952 bfd *abfd;
7953 asection *section;
7954 asymbol **symbols;
7955 bfd_vma offset;
7956 const char **filename_ptr;
7957 const char **functionname_ptr;
7958 unsigned int *line_ptr;
7959 {
7960 asection *msec;
7961
7962 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7963 filename_ptr, functionname_ptr,
7964 line_ptr))
7965 return TRUE;
7966
7967 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7968 filename_ptr, functionname_ptr,
7969 line_ptr,
7970 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7971 &elf_tdata (abfd)->dwarf2_find_line_info))
7972 return TRUE;
7973
7974 msec = bfd_get_section_by_name (abfd, ".mdebug");
7975 if (msec != NULL)
7976 {
7977 flagword origflags;
7978 struct mips_elf_find_line *fi;
7979 const struct ecoff_debug_swap * const swap =
7980 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7981
7982 /* If we are called during a link, mips_elf_final_link may have
7983 cleared the SEC_HAS_CONTENTS field. We force it back on here
7984 if appropriate (which it normally will be). */
7985 origflags = msec->flags;
7986 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7987 msec->flags |= SEC_HAS_CONTENTS;
7988
7989 fi = elf_tdata (abfd)->find_line_info;
7990 if (fi == NULL)
7991 {
7992 bfd_size_type external_fdr_size;
7993 char *fraw_src;
7994 char *fraw_end;
7995 struct fdr *fdr_ptr;
7996 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7997
7998 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7999 if (fi == NULL)
8000 {
8001 msec->flags = origflags;
8002 return FALSE;
8003 }
8004
8005 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8006 {
8007 msec->flags = origflags;
8008 return FALSE;
8009 }
8010
8011 /* Swap in the FDR information. */
8012 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8013 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8014 if (fi->d.fdr == NULL)
8015 {
8016 msec->flags = origflags;
8017 return FALSE;
8018 }
8019 external_fdr_size = swap->external_fdr_size;
8020 fdr_ptr = fi->d.fdr;
8021 fraw_src = (char *) fi->d.external_fdr;
8022 fraw_end = (fraw_src
8023 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8024 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8025 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8026
8027 elf_tdata (abfd)->find_line_info = fi;
8028
8029 /* Note that we don't bother to ever free this information.
8030 find_nearest_line is either called all the time, as in
8031 objdump -l, so the information should be saved, or it is
8032 rarely called, as in ld error messages, so the memory
8033 wasted is unimportant. Still, it would probably be a
8034 good idea for free_cached_info to throw it away. */
8035 }
8036
8037 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8038 &fi->i, filename_ptr, functionname_ptr,
8039 line_ptr))
8040 {
8041 msec->flags = origflags;
8042 return TRUE;
8043 }
8044
8045 msec->flags = origflags;
8046 }
8047
8048 /* Fall back on the generic ELF find_nearest_line routine. */
8049
8050 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8051 filename_ptr, functionname_ptr,
8052 line_ptr);
8053 }
8054 \f
8055 /* When are writing out the .options or .MIPS.options section,
8056 remember the bytes we are writing out, so that we can install the
8057 GP value in the section_processing routine. */
8058
8059 bfd_boolean
8060 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8061 bfd *abfd;
8062 sec_ptr section;
8063 PTR location;
8064 file_ptr offset;
8065 bfd_size_type count;
8066 {
8067 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8068 {
8069 bfd_byte *c;
8070
8071 if (elf_section_data (section) == NULL)
8072 {
8073 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8074 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8075 if (elf_section_data (section) == NULL)
8076 return FALSE;
8077 }
8078 c = mips_elf_section_data (section)->u.tdata;
8079 if (c == NULL)
8080 {
8081 bfd_size_type size;
8082
8083 if (section->_cooked_size != 0)
8084 size = section->_cooked_size;
8085 else
8086 size = section->_raw_size;
8087 c = (bfd_byte *) bfd_zalloc (abfd, size);
8088 if (c == NULL)
8089 return FALSE;
8090 mips_elf_section_data (section)->u.tdata = c;
8091 }
8092
8093 memcpy (c + offset, location, (size_t) count);
8094 }
8095
8096 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8097 count);
8098 }
8099
8100 /* This is almost identical to bfd_generic_get_... except that some
8101 MIPS relocations need to be handled specially. Sigh. */
8102
8103 bfd_byte *
8104 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8105 data, relocateable, symbols)
8106 bfd *abfd;
8107 struct bfd_link_info *link_info;
8108 struct bfd_link_order *link_order;
8109 bfd_byte *data;
8110 bfd_boolean relocateable;
8111 asymbol **symbols;
8112 {
8113 /* Get enough memory to hold the stuff */
8114 bfd *input_bfd = link_order->u.indirect.section->owner;
8115 asection *input_section = link_order->u.indirect.section;
8116
8117 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8118 arelent **reloc_vector = NULL;
8119 long reloc_count;
8120
8121 if (reloc_size < 0)
8122 goto error_return;
8123
8124 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8125 if (reloc_vector == NULL && reloc_size != 0)
8126 goto error_return;
8127
8128 /* read in the section */
8129 if (!bfd_get_section_contents (input_bfd,
8130 input_section,
8131 (PTR) data,
8132 (file_ptr) 0,
8133 input_section->_raw_size))
8134 goto error_return;
8135
8136 /* We're not relaxing the section, so just copy the size info */
8137 input_section->_cooked_size = input_section->_raw_size;
8138 input_section->reloc_done = TRUE;
8139
8140 reloc_count = bfd_canonicalize_reloc (input_bfd,
8141 input_section,
8142 reloc_vector,
8143 symbols);
8144 if (reloc_count < 0)
8145 goto error_return;
8146
8147 if (reloc_count > 0)
8148 {
8149 arelent **parent;
8150 /* for mips */
8151 int gp_found;
8152 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8153
8154 {
8155 struct bfd_hash_entry *h;
8156 struct bfd_link_hash_entry *lh;
8157 /* Skip all this stuff if we aren't mixing formats. */
8158 if (abfd && input_bfd
8159 && abfd->xvec == input_bfd->xvec)
8160 lh = 0;
8161 else
8162 {
8163 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8164 lh = (struct bfd_link_hash_entry *) h;
8165 }
8166 lookup:
8167 if (lh)
8168 {
8169 switch (lh->type)
8170 {
8171 case bfd_link_hash_undefined:
8172 case bfd_link_hash_undefweak:
8173 case bfd_link_hash_common:
8174 gp_found = 0;
8175 break;
8176 case bfd_link_hash_defined:
8177 case bfd_link_hash_defweak:
8178 gp_found = 1;
8179 gp = lh->u.def.value;
8180 break;
8181 case bfd_link_hash_indirect:
8182 case bfd_link_hash_warning:
8183 lh = lh->u.i.link;
8184 /* @@FIXME ignoring warning for now */
8185 goto lookup;
8186 case bfd_link_hash_new:
8187 default:
8188 abort ();
8189 }
8190 }
8191 else
8192 gp_found = 0;
8193 }
8194 /* end mips */
8195 for (parent = reloc_vector; *parent != (arelent *) NULL;
8196 parent++)
8197 {
8198 char *error_message = (char *) NULL;
8199 bfd_reloc_status_type r;
8200
8201 /* Specific to MIPS: Deal with relocation types that require
8202 knowing the gp of the output bfd. */
8203 asymbol *sym = *(*parent)->sym_ptr_ptr;
8204 if (bfd_is_abs_section (sym->section) && abfd)
8205 {
8206 /* The special_function wouldn't get called anyway. */
8207 }
8208 else if (!gp_found)
8209 {
8210 /* The gp isn't there; let the special function code
8211 fall over on its own. */
8212 }
8213 else if ((*parent)->howto->special_function
8214 == _bfd_mips_elf32_gprel16_reloc)
8215 {
8216 /* bypass special_function call */
8217 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8218 input_section, relocateable,
8219 (PTR) data, gp);
8220 goto skip_bfd_perform_relocation;
8221 }
8222 /* end mips specific stuff */
8223
8224 r = bfd_perform_relocation (input_bfd,
8225 *parent,
8226 (PTR) data,
8227 input_section,
8228 relocateable ? abfd : (bfd *) NULL,
8229 &error_message);
8230 skip_bfd_perform_relocation:
8231
8232 if (relocateable)
8233 {
8234 asection *os = input_section->output_section;
8235
8236 /* A partial link, so keep the relocs */
8237 os->orelocation[os->reloc_count] = *parent;
8238 os->reloc_count++;
8239 }
8240
8241 if (r != bfd_reloc_ok)
8242 {
8243 switch (r)
8244 {
8245 case bfd_reloc_undefined:
8246 if (!((*link_info->callbacks->undefined_symbol)
8247 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8248 input_bfd, input_section, (*parent)->address,
8249 TRUE)))
8250 goto error_return;
8251 break;
8252 case bfd_reloc_dangerous:
8253 BFD_ASSERT (error_message != (char *) NULL);
8254 if (!((*link_info->callbacks->reloc_dangerous)
8255 (link_info, error_message, input_bfd, input_section,
8256 (*parent)->address)))
8257 goto error_return;
8258 break;
8259 case bfd_reloc_overflow:
8260 if (!((*link_info->callbacks->reloc_overflow)
8261 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8262 (*parent)->howto->name, (*parent)->addend,
8263 input_bfd, input_section, (*parent)->address)))
8264 goto error_return;
8265 break;
8266 case bfd_reloc_outofrange:
8267 default:
8268 abort ();
8269 break;
8270 }
8271
8272 }
8273 }
8274 }
8275 if (reloc_vector != NULL)
8276 free (reloc_vector);
8277 return data;
8278
8279 error_return:
8280 if (reloc_vector != NULL)
8281 free (reloc_vector);
8282 return NULL;
8283 }
8284 \f
8285 /* Create a MIPS ELF linker hash table. */
8286
8287 struct bfd_link_hash_table *
8288 _bfd_mips_elf_link_hash_table_create (abfd)
8289 bfd *abfd;
8290 {
8291 struct mips_elf_link_hash_table *ret;
8292 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8293
8294 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8295 if (ret == (struct mips_elf_link_hash_table *) NULL)
8296 return NULL;
8297
8298 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8299 mips_elf_link_hash_newfunc))
8300 {
8301 free (ret);
8302 return NULL;
8303 }
8304
8305 #if 0
8306 /* We no longer use this. */
8307 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8308 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8309 #endif
8310 ret->procedure_count = 0;
8311 ret->compact_rel_size = 0;
8312 ret->use_rld_obj_head = FALSE;
8313 ret->rld_value = 0;
8314 ret->mips16_stubs_seen = FALSE;
8315
8316 return &ret->root.root;
8317 }
8318 \f
8319 /* We need to use a special link routine to handle the .reginfo and
8320 the .mdebug sections. We need to merge all instances of these
8321 sections together, not write them all out sequentially. */
8322
8323 bfd_boolean
8324 _bfd_mips_elf_final_link (abfd, info)
8325 bfd *abfd;
8326 struct bfd_link_info *info;
8327 {
8328 asection **secpp;
8329 asection *o;
8330 struct bfd_link_order *p;
8331 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8332 asection *rtproc_sec;
8333 Elf32_RegInfo reginfo;
8334 struct ecoff_debug_info debug;
8335 const struct ecoff_debug_swap *swap
8336 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8337 HDRR *symhdr = &debug.symbolic_header;
8338 PTR mdebug_handle = NULL;
8339 asection *s;
8340 EXTR esym;
8341 unsigned int i;
8342 bfd_size_type amt;
8343
8344 static const char * const secname[] =
8345 {
8346 ".text", ".init", ".fini", ".data",
8347 ".rodata", ".sdata", ".sbss", ".bss"
8348 };
8349 static const int sc[] =
8350 {
8351 scText, scInit, scFini, scData,
8352 scRData, scSData, scSBss, scBss
8353 };
8354
8355 /* If all the things we linked together were PIC, but we're
8356 producing an executable (rather than a shared object), then the
8357 resulting file is CPIC (i.e., it calls PIC code.) */
8358 if (!info->shared
8359 && !info->relocateable
8360 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
8361 {
8362 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
8363 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
8364 }
8365
8366 /* We'd carefully arranged the dynamic symbol indices, and then the
8367 generic size_dynamic_sections renumbered them out from under us.
8368 Rather than trying somehow to prevent the renumbering, just do
8369 the sort again. */
8370 if (elf_hash_table (info)->dynamic_sections_created)
8371 {
8372 bfd *dynobj;
8373 asection *got;
8374 struct mips_got_info *g;
8375
8376 /* When we resort, we must tell mips_elf_sort_hash_table what
8377 the lowest index it may use is. That's the number of section
8378 symbols we're going to add. The generic ELF linker only
8379 adds these symbols when building a shared object. Note that
8380 we count the sections after (possibly) removing the .options
8381 section above. */
8382 if (! mips_elf_sort_hash_table (info, (info->shared
8383 ? bfd_count_sections (abfd) + 1
8384 : 1)))
8385 return FALSE;
8386
8387 /* Make sure we didn't grow the global .got region. */
8388 dynobj = elf_hash_table (info)->dynobj;
8389 got = mips_elf_got_section (dynobj, FALSE);
8390 g = mips_elf_section_data (got)->u.got_info;
8391
8392 if (g->global_gotsym != NULL)
8393 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8394 - g->global_gotsym->dynindx)
8395 <= g->global_gotno);
8396 }
8397
8398 #if 0
8399 /* We want to set the GP value for ld -r. */
8400 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8401 include it, even though we don't process it quite right. (Some
8402 entries are supposed to be merged.) Empirically, we seem to be
8403 better off including it then not. */
8404 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8405 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8406 {
8407 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8408 {
8409 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8410 if (p->type == bfd_indirect_link_order)
8411 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8412 (*secpp)->link_order_head = NULL;
8413 bfd_section_list_remove (abfd, secpp);
8414 --abfd->section_count;
8415
8416 break;
8417 }
8418 }
8419
8420 /* We include .MIPS.options, even though we don't process it quite right.
8421 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8422 to be better off including it than not. */
8423 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8424 {
8425 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8426 {
8427 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8428 if (p->type == bfd_indirect_link_order)
8429 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8430 (*secpp)->link_order_head = NULL;
8431 bfd_section_list_remove (abfd, secpp);
8432 --abfd->section_count;
8433
8434 break;
8435 }
8436 }
8437 #endif
8438
8439 /* Get a value for the GP register. */
8440 if (elf_gp (abfd) == 0)
8441 {
8442 struct bfd_link_hash_entry *h;
8443
8444 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8445 if (h != (struct bfd_link_hash_entry *) NULL
8446 && h->type == bfd_link_hash_defined)
8447 elf_gp (abfd) = (h->u.def.value
8448 + h->u.def.section->output_section->vma
8449 + h->u.def.section->output_offset);
8450 else if (info->relocateable)
8451 {
8452 bfd_vma lo = MINUS_ONE;
8453
8454 /* Find the GP-relative section with the lowest offset. */
8455 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8456 if (o->vma < lo
8457 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8458 lo = o->vma;
8459
8460 /* And calculate GP relative to that. */
8461 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8462 }
8463 else
8464 {
8465 /* If the relocate_section function needs to do a reloc
8466 involving the GP value, it should make a reloc_dangerous
8467 callback to warn that GP is not defined. */
8468 }
8469 }
8470
8471 /* Go through the sections and collect the .reginfo and .mdebug
8472 information. */
8473 reginfo_sec = NULL;
8474 mdebug_sec = NULL;
8475 gptab_data_sec = NULL;
8476 gptab_bss_sec = NULL;
8477 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8478 {
8479 if (strcmp (o->name, ".reginfo") == 0)
8480 {
8481 memset (&reginfo, 0, sizeof reginfo);
8482
8483 /* We have found the .reginfo section in the output file.
8484 Look through all the link_orders comprising it and merge
8485 the information together. */
8486 for (p = o->link_order_head;
8487 p != (struct bfd_link_order *) NULL;
8488 p = p->next)
8489 {
8490 asection *input_section;
8491 bfd *input_bfd;
8492 Elf32_External_RegInfo ext;
8493 Elf32_RegInfo sub;
8494
8495 if (p->type != bfd_indirect_link_order)
8496 {
8497 if (p->type == bfd_data_link_order)
8498 continue;
8499 abort ();
8500 }
8501
8502 input_section = p->u.indirect.section;
8503 input_bfd = input_section->owner;
8504
8505 /* The linker emulation code has probably clobbered the
8506 size to be zero bytes. */
8507 if (input_section->_raw_size == 0)
8508 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8509
8510 if (! bfd_get_section_contents (input_bfd, input_section,
8511 (PTR) &ext,
8512 (file_ptr) 0,
8513 (bfd_size_type) sizeof ext))
8514 return FALSE;
8515
8516 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8517
8518 reginfo.ri_gprmask |= sub.ri_gprmask;
8519 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8520 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8521 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8522 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8523
8524 /* ri_gp_value is set by the function
8525 mips_elf32_section_processing when the section is
8526 finally written out. */
8527
8528 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8529 elf_link_input_bfd ignores this section. */
8530 input_section->flags &= ~SEC_HAS_CONTENTS;
8531 }
8532
8533 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8534 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8535
8536 /* Skip this section later on (I don't think this currently
8537 matters, but someday it might). */
8538 o->link_order_head = (struct bfd_link_order *) NULL;
8539
8540 reginfo_sec = o;
8541 }
8542
8543 if (strcmp (o->name, ".mdebug") == 0)
8544 {
8545 struct extsym_info einfo;
8546 bfd_vma last;
8547
8548 /* We have found the .mdebug section in the output file.
8549 Look through all the link_orders comprising it and merge
8550 the information together. */
8551 symhdr->magic = swap->sym_magic;
8552 /* FIXME: What should the version stamp be? */
8553 symhdr->vstamp = 0;
8554 symhdr->ilineMax = 0;
8555 symhdr->cbLine = 0;
8556 symhdr->idnMax = 0;
8557 symhdr->ipdMax = 0;
8558 symhdr->isymMax = 0;
8559 symhdr->ioptMax = 0;
8560 symhdr->iauxMax = 0;
8561 symhdr->issMax = 0;
8562 symhdr->issExtMax = 0;
8563 symhdr->ifdMax = 0;
8564 symhdr->crfd = 0;
8565 symhdr->iextMax = 0;
8566
8567 /* We accumulate the debugging information itself in the
8568 debug_info structure. */
8569 debug.line = NULL;
8570 debug.external_dnr = NULL;
8571 debug.external_pdr = NULL;
8572 debug.external_sym = NULL;
8573 debug.external_opt = NULL;
8574 debug.external_aux = NULL;
8575 debug.ss = NULL;
8576 debug.ssext = debug.ssext_end = NULL;
8577 debug.external_fdr = NULL;
8578 debug.external_rfd = NULL;
8579 debug.external_ext = debug.external_ext_end = NULL;
8580
8581 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8582 if (mdebug_handle == (PTR) NULL)
8583 return FALSE;
8584
8585 esym.jmptbl = 0;
8586 esym.cobol_main = 0;
8587 esym.weakext = 0;
8588 esym.reserved = 0;
8589 esym.ifd = ifdNil;
8590 esym.asym.iss = issNil;
8591 esym.asym.st = stLocal;
8592 esym.asym.reserved = 0;
8593 esym.asym.index = indexNil;
8594 last = 0;
8595 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8596 {
8597 esym.asym.sc = sc[i];
8598 s = bfd_get_section_by_name (abfd, secname[i]);
8599 if (s != NULL)
8600 {
8601 esym.asym.value = s->vma;
8602 last = s->vma + s->_raw_size;
8603 }
8604 else
8605 esym.asym.value = last;
8606 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8607 secname[i], &esym))
8608 return FALSE;
8609 }
8610
8611 for (p = o->link_order_head;
8612 p != (struct bfd_link_order *) NULL;
8613 p = p->next)
8614 {
8615 asection *input_section;
8616 bfd *input_bfd;
8617 const struct ecoff_debug_swap *input_swap;
8618 struct ecoff_debug_info input_debug;
8619 char *eraw_src;
8620 char *eraw_end;
8621
8622 if (p->type != bfd_indirect_link_order)
8623 {
8624 if (p->type == bfd_data_link_order)
8625 continue;
8626 abort ();
8627 }
8628
8629 input_section = p->u.indirect.section;
8630 input_bfd = input_section->owner;
8631
8632 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8633 || (get_elf_backend_data (input_bfd)
8634 ->elf_backend_ecoff_debug_swap) == NULL)
8635 {
8636 /* I don't know what a non MIPS ELF bfd would be
8637 doing with a .mdebug section, but I don't really
8638 want to deal with it. */
8639 continue;
8640 }
8641
8642 input_swap = (get_elf_backend_data (input_bfd)
8643 ->elf_backend_ecoff_debug_swap);
8644
8645 BFD_ASSERT (p->size == input_section->_raw_size);
8646
8647 /* The ECOFF linking code expects that we have already
8648 read in the debugging information and set up an
8649 ecoff_debug_info structure, so we do that now. */
8650 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8651 &input_debug))
8652 return FALSE;
8653
8654 if (! (bfd_ecoff_debug_accumulate
8655 (mdebug_handle, abfd, &debug, swap, input_bfd,
8656 &input_debug, input_swap, info)))
8657 return FALSE;
8658
8659 /* Loop through the external symbols. For each one with
8660 interesting information, try to find the symbol in
8661 the linker global hash table and save the information
8662 for the output external symbols. */
8663 eraw_src = input_debug.external_ext;
8664 eraw_end = (eraw_src
8665 + (input_debug.symbolic_header.iextMax
8666 * input_swap->external_ext_size));
8667 for (;
8668 eraw_src < eraw_end;
8669 eraw_src += input_swap->external_ext_size)
8670 {
8671 EXTR ext;
8672 const char *name;
8673 struct mips_elf_link_hash_entry *h;
8674
8675 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8676 if (ext.asym.sc == scNil
8677 || ext.asym.sc == scUndefined
8678 || ext.asym.sc == scSUndefined)
8679 continue;
8680
8681 name = input_debug.ssext + ext.asym.iss;
8682 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8683 name, FALSE, FALSE, TRUE);
8684 if (h == NULL || h->esym.ifd != -2)
8685 continue;
8686
8687 if (ext.ifd != -1)
8688 {
8689 BFD_ASSERT (ext.ifd
8690 < input_debug.symbolic_header.ifdMax);
8691 ext.ifd = input_debug.ifdmap[ext.ifd];
8692 }
8693
8694 h->esym = ext;
8695 }
8696
8697 /* Free up the information we just read. */
8698 free (input_debug.line);
8699 free (input_debug.external_dnr);
8700 free (input_debug.external_pdr);
8701 free (input_debug.external_sym);
8702 free (input_debug.external_opt);
8703 free (input_debug.external_aux);
8704 free (input_debug.ss);
8705 free (input_debug.ssext);
8706 free (input_debug.external_fdr);
8707 free (input_debug.external_rfd);
8708 free (input_debug.external_ext);
8709
8710 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8711 elf_link_input_bfd ignores this section. */
8712 input_section->flags &= ~SEC_HAS_CONTENTS;
8713 }
8714
8715 if (SGI_COMPAT (abfd) && info->shared)
8716 {
8717 /* Create .rtproc section. */
8718 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8719 if (rtproc_sec == NULL)
8720 {
8721 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8722 | SEC_LINKER_CREATED | SEC_READONLY);
8723
8724 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8725 if (rtproc_sec == NULL
8726 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8727 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8728 return FALSE;
8729 }
8730
8731 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8732 info, rtproc_sec,
8733 &debug))
8734 return FALSE;
8735 }
8736
8737 /* Build the external symbol information. */
8738 einfo.abfd = abfd;
8739 einfo.info = info;
8740 einfo.debug = &debug;
8741 einfo.swap = swap;
8742 einfo.failed = FALSE;
8743 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8744 mips_elf_output_extsym,
8745 (PTR) &einfo);
8746 if (einfo.failed)
8747 return FALSE;
8748
8749 /* Set the size of the .mdebug section. */
8750 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8751
8752 /* Skip this section later on (I don't think this currently
8753 matters, but someday it might). */
8754 o->link_order_head = (struct bfd_link_order *) NULL;
8755
8756 mdebug_sec = o;
8757 }
8758
8759 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8760 {
8761 const char *subname;
8762 unsigned int c;
8763 Elf32_gptab *tab;
8764 Elf32_External_gptab *ext_tab;
8765 unsigned int j;
8766
8767 /* The .gptab.sdata and .gptab.sbss sections hold
8768 information describing how the small data area would
8769 change depending upon the -G switch. These sections
8770 not used in executables files. */
8771 if (! info->relocateable)
8772 {
8773 for (p = o->link_order_head;
8774 p != (struct bfd_link_order *) NULL;
8775 p = p->next)
8776 {
8777 asection *input_section;
8778
8779 if (p->type != bfd_indirect_link_order)
8780 {
8781 if (p->type == bfd_data_link_order)
8782 continue;
8783 abort ();
8784 }
8785
8786 input_section = p->u.indirect.section;
8787
8788 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8789 elf_link_input_bfd ignores this section. */
8790 input_section->flags &= ~SEC_HAS_CONTENTS;
8791 }
8792
8793 /* Skip this section later on (I don't think this
8794 currently matters, but someday it might). */
8795 o->link_order_head = (struct bfd_link_order *) NULL;
8796
8797 /* Really remove the section. */
8798 for (secpp = &abfd->sections;
8799 *secpp != o;
8800 secpp = &(*secpp)->next)
8801 ;
8802 bfd_section_list_remove (abfd, secpp);
8803 --abfd->section_count;
8804
8805 continue;
8806 }
8807
8808 /* There is one gptab for initialized data, and one for
8809 uninitialized data. */
8810 if (strcmp (o->name, ".gptab.sdata") == 0)
8811 gptab_data_sec = o;
8812 else if (strcmp (o->name, ".gptab.sbss") == 0)
8813 gptab_bss_sec = o;
8814 else
8815 {
8816 (*_bfd_error_handler)
8817 (_("%s: illegal section name `%s'"),
8818 bfd_get_filename (abfd), o->name);
8819 bfd_set_error (bfd_error_nonrepresentable_section);
8820 return FALSE;
8821 }
8822
8823 /* The linker script always combines .gptab.data and
8824 .gptab.sdata into .gptab.sdata, and likewise for
8825 .gptab.bss and .gptab.sbss. It is possible that there is
8826 no .sdata or .sbss section in the output file, in which
8827 case we must change the name of the output section. */
8828 subname = o->name + sizeof ".gptab" - 1;
8829 if (bfd_get_section_by_name (abfd, subname) == NULL)
8830 {
8831 if (o == gptab_data_sec)
8832 o->name = ".gptab.data";
8833 else
8834 o->name = ".gptab.bss";
8835 subname = o->name + sizeof ".gptab" - 1;
8836 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8837 }
8838
8839 /* Set up the first entry. */
8840 c = 1;
8841 amt = c * sizeof (Elf32_gptab);
8842 tab = (Elf32_gptab *) bfd_malloc (amt);
8843 if (tab == NULL)
8844 return FALSE;
8845 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8846 tab[0].gt_header.gt_unused = 0;
8847
8848 /* Combine the input sections. */
8849 for (p = o->link_order_head;
8850 p != (struct bfd_link_order *) NULL;
8851 p = p->next)
8852 {
8853 asection *input_section;
8854 bfd *input_bfd;
8855 bfd_size_type size;
8856 unsigned long last;
8857 bfd_size_type gpentry;
8858
8859 if (p->type != bfd_indirect_link_order)
8860 {
8861 if (p->type == bfd_data_link_order)
8862 continue;
8863 abort ();
8864 }
8865
8866 input_section = p->u.indirect.section;
8867 input_bfd = input_section->owner;
8868
8869 /* Combine the gptab entries for this input section one
8870 by one. We know that the input gptab entries are
8871 sorted by ascending -G value. */
8872 size = bfd_section_size (input_bfd, input_section);
8873 last = 0;
8874 for (gpentry = sizeof (Elf32_External_gptab);
8875 gpentry < size;
8876 gpentry += sizeof (Elf32_External_gptab))
8877 {
8878 Elf32_External_gptab ext_gptab;
8879 Elf32_gptab int_gptab;
8880 unsigned long val;
8881 unsigned long add;
8882 bfd_boolean exact;
8883 unsigned int look;
8884
8885 if (! (bfd_get_section_contents
8886 (input_bfd, input_section, (PTR) &ext_gptab,
8887 (file_ptr) gpentry,
8888 (bfd_size_type) sizeof (Elf32_External_gptab))))
8889 {
8890 free (tab);
8891 return FALSE;
8892 }
8893
8894 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8895 &int_gptab);
8896 val = int_gptab.gt_entry.gt_g_value;
8897 add = int_gptab.gt_entry.gt_bytes - last;
8898
8899 exact = FALSE;
8900 for (look = 1; look < c; look++)
8901 {
8902 if (tab[look].gt_entry.gt_g_value >= val)
8903 tab[look].gt_entry.gt_bytes += add;
8904
8905 if (tab[look].gt_entry.gt_g_value == val)
8906 exact = TRUE;
8907 }
8908
8909 if (! exact)
8910 {
8911 Elf32_gptab *new_tab;
8912 unsigned int max;
8913
8914 /* We need a new table entry. */
8915 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8916 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8917 if (new_tab == NULL)
8918 {
8919 free (tab);
8920 return FALSE;
8921 }
8922 tab = new_tab;
8923 tab[c].gt_entry.gt_g_value = val;
8924 tab[c].gt_entry.gt_bytes = add;
8925
8926 /* Merge in the size for the next smallest -G
8927 value, since that will be implied by this new
8928 value. */
8929 max = 0;
8930 for (look = 1; look < c; look++)
8931 {
8932 if (tab[look].gt_entry.gt_g_value < val
8933 && (max == 0
8934 || (tab[look].gt_entry.gt_g_value
8935 > tab[max].gt_entry.gt_g_value)))
8936 max = look;
8937 }
8938 if (max != 0)
8939 tab[c].gt_entry.gt_bytes +=
8940 tab[max].gt_entry.gt_bytes;
8941
8942 ++c;
8943 }
8944
8945 last = int_gptab.gt_entry.gt_bytes;
8946 }
8947
8948 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8949 elf_link_input_bfd ignores this section. */
8950 input_section->flags &= ~SEC_HAS_CONTENTS;
8951 }
8952
8953 /* The table must be sorted by -G value. */
8954 if (c > 2)
8955 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8956
8957 /* Swap out the table. */
8958 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8959 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8960 if (ext_tab == NULL)
8961 {
8962 free (tab);
8963 return FALSE;
8964 }
8965
8966 for (j = 0; j < c; j++)
8967 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8968 free (tab);
8969
8970 o->_raw_size = c * sizeof (Elf32_External_gptab);
8971 o->contents = (bfd_byte *) ext_tab;
8972
8973 /* Skip this section later on (I don't think this currently
8974 matters, but someday it might). */
8975 o->link_order_head = (struct bfd_link_order *) NULL;
8976 }
8977 }
8978
8979 /* Invoke the regular ELF backend linker to do all the work. */
8980 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8981 return FALSE;
8982
8983 /* Now write out the computed sections. */
8984
8985 if (reginfo_sec != (asection *) NULL)
8986 {
8987 Elf32_External_RegInfo ext;
8988
8989 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8990 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8991 (file_ptr) 0,
8992 (bfd_size_type) sizeof ext))
8993 return FALSE;
8994 }
8995
8996 if (mdebug_sec != (asection *) NULL)
8997 {
8998 BFD_ASSERT (abfd->output_has_begun);
8999 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9000 swap, info,
9001 mdebug_sec->filepos))
9002 return FALSE;
9003
9004 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9005 }
9006
9007 if (gptab_data_sec != (asection *) NULL)
9008 {
9009 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9010 gptab_data_sec->contents,
9011 (file_ptr) 0,
9012 gptab_data_sec->_raw_size))
9013 return FALSE;
9014 }
9015
9016 if (gptab_bss_sec != (asection *) NULL)
9017 {
9018 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9019 gptab_bss_sec->contents,
9020 (file_ptr) 0,
9021 gptab_bss_sec->_raw_size))
9022 return FALSE;
9023 }
9024
9025 if (SGI_COMPAT (abfd))
9026 {
9027 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9028 if (rtproc_sec != NULL)
9029 {
9030 if (! bfd_set_section_contents (abfd, rtproc_sec,
9031 rtproc_sec->contents,
9032 (file_ptr) 0,
9033 rtproc_sec->_raw_size))
9034 return FALSE;
9035 }
9036 }
9037
9038 return TRUE;
9039 }
9040 \f
9041 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9042
9043 struct mips_mach_extension {
9044 unsigned long extension, base;
9045 };
9046
9047
9048 /* An array describing how BFD machines relate to one another. The entries
9049 are ordered topologically with MIPS I extensions listed last. */
9050
9051 static const struct mips_mach_extension mips_mach_extensions[] = {
9052 /* MIPS64 extensions. */
9053 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9054
9055 /* MIPS V extensions. */
9056 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9057
9058 /* R10000 extensions. */
9059 { bfd_mach_mips12000, bfd_mach_mips10000 },
9060
9061 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9062 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9063 better to allow vr5400 and vr5500 code to be merged anyway, since
9064 many libraries will just use the core ISA. Perhaps we could add
9065 some sort of ASE flag if this ever proves a problem. */
9066 { bfd_mach_mips5500, bfd_mach_mips5400 },
9067 { bfd_mach_mips5400, bfd_mach_mips5000 },
9068
9069 /* MIPS IV extensions. */
9070 { bfd_mach_mips5, bfd_mach_mips8000 },
9071 { bfd_mach_mips10000, bfd_mach_mips8000 },
9072 { bfd_mach_mips5000, bfd_mach_mips8000 },
9073
9074 /* VR4100 extensions. */
9075 { bfd_mach_mips4120, bfd_mach_mips4100 },
9076 { bfd_mach_mips4111, bfd_mach_mips4100 },
9077
9078 /* MIPS III extensions. */
9079 { bfd_mach_mips8000, bfd_mach_mips4000 },
9080 { bfd_mach_mips4650, bfd_mach_mips4000 },
9081 { bfd_mach_mips4600, bfd_mach_mips4000 },
9082 { bfd_mach_mips4400, bfd_mach_mips4000 },
9083 { bfd_mach_mips4300, bfd_mach_mips4000 },
9084 { bfd_mach_mips4100, bfd_mach_mips4000 },
9085 { bfd_mach_mips4010, bfd_mach_mips4000 },
9086
9087 /* MIPS32 extensions. */
9088 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9089
9090 /* MIPS II extensions. */
9091 { bfd_mach_mips4000, bfd_mach_mips6000 },
9092 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9093
9094 /* MIPS I extensions. */
9095 { bfd_mach_mips6000, bfd_mach_mips3000 },
9096 { bfd_mach_mips3900, bfd_mach_mips3000 }
9097 };
9098
9099
9100 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9101
9102 static bfd_boolean
9103 mips_mach_extends_p (base, extension)
9104 unsigned long base, extension;
9105 {
9106 size_t i;
9107
9108 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9109 if (extension == mips_mach_extensions[i].extension)
9110 extension = mips_mach_extensions[i].base;
9111
9112 return extension == base;
9113 }
9114
9115
9116 /* Return true if the given ELF header flags describe a 32-bit binary. */
9117
9118 static bfd_boolean
9119 mips_32bit_flags_p (flags)
9120 flagword flags;
9121 {
9122 return ((flags & EF_MIPS_32BITMODE) != 0
9123 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9124 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9125 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9126 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9127 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9128 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9129 }
9130
9131
9132 /* Merge backend specific data from an object file to the output
9133 object file when linking. */
9134
9135 bfd_boolean
9136 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9137 bfd *ibfd;
9138 bfd *obfd;
9139 {
9140 flagword old_flags;
9141 flagword new_flags;
9142 bfd_boolean ok;
9143 bfd_boolean null_input_bfd = TRUE;
9144 asection *sec;
9145
9146 /* Check if we have the same endianess */
9147 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9148 return FALSE;
9149
9150 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9151 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9152 return TRUE;
9153
9154 new_flags = elf_elfheader (ibfd)->e_flags;
9155 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9156 old_flags = elf_elfheader (obfd)->e_flags;
9157
9158 if (! elf_flags_init (obfd))
9159 {
9160 elf_flags_init (obfd) = TRUE;
9161 elf_elfheader (obfd)->e_flags = new_flags;
9162 elf_elfheader (obfd)->e_ident[EI_CLASS]
9163 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9164
9165 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9166 && bfd_get_arch_info (obfd)->the_default)
9167 {
9168 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9169 bfd_get_mach (ibfd)))
9170 return FALSE;
9171 }
9172
9173 return TRUE;
9174 }
9175
9176 /* Check flag compatibility. */
9177
9178 new_flags &= ~EF_MIPS_NOREORDER;
9179 old_flags &= ~EF_MIPS_NOREORDER;
9180
9181 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9182 doesn't seem to matter. */
9183 new_flags &= ~EF_MIPS_XGOT;
9184 old_flags &= ~EF_MIPS_XGOT;
9185
9186 if (new_flags == old_flags)
9187 return TRUE;
9188
9189 /* Check to see if the input BFD actually contains any sections.
9190 If not, its flags may not have been initialised either, but it cannot
9191 actually cause any incompatibility. */
9192 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9193 {
9194 /* Ignore synthetic sections and empty .text, .data and .bss sections
9195 which are automatically generated by gas. */
9196 if (strcmp (sec->name, ".reginfo")
9197 && strcmp (sec->name, ".mdebug")
9198 && ((!strcmp (sec->name, ".text")
9199 || !strcmp (sec->name, ".data")
9200 || !strcmp (sec->name, ".bss"))
9201 && sec->_raw_size != 0))
9202 {
9203 null_input_bfd = FALSE;
9204 break;
9205 }
9206 }
9207 if (null_input_bfd)
9208 return TRUE;
9209
9210 ok = TRUE;
9211
9212 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
9213 {
9214 new_flags &= ~EF_MIPS_PIC;
9215 old_flags &= ~EF_MIPS_PIC;
9216 (*_bfd_error_handler)
9217 (_("%s: linking PIC files with non-PIC files"),
9218 bfd_archive_filename (ibfd));
9219 ok = FALSE;
9220 }
9221
9222 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
9223 {
9224 new_flags &= ~EF_MIPS_CPIC;
9225 old_flags &= ~EF_MIPS_CPIC;
9226 (*_bfd_error_handler)
9227 (_("%s: linking abicalls files with non-abicalls files"),
9228 bfd_archive_filename (ibfd));
9229 ok = FALSE;
9230 }
9231
9232 /* Compare the ISAs. */
9233 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9234 {
9235 (*_bfd_error_handler)
9236 (_("%s: linking 32-bit code with 64-bit code"),
9237 bfd_archive_filename (ibfd));
9238 ok = FALSE;
9239 }
9240 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9241 {
9242 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9243 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9244 {
9245 /* Copy the architecture info from IBFD to OBFD. Also copy
9246 the 32-bit flag (if set) so that we continue to recognise
9247 OBFD as a 32-bit binary. */
9248 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9249 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9250 elf_elfheader (obfd)->e_flags
9251 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9252
9253 /* Copy across the ABI flags if OBFD doesn't use them
9254 and if that was what caused us to treat IBFD as 32-bit. */
9255 if ((old_flags & EF_MIPS_ABI) == 0
9256 && mips_32bit_flags_p (new_flags)
9257 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9258 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9259 }
9260 else
9261 {
9262 /* The ISAs aren't compatible. */
9263 (*_bfd_error_handler)
9264 (_("%s: linking %s module with previous %s modules"),
9265 bfd_archive_filename (ibfd),
9266 bfd_printable_name (ibfd),
9267 bfd_printable_name (obfd));
9268 ok = FALSE;
9269 }
9270 }
9271
9272 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9273 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9274
9275 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9276 does set EI_CLASS differently from any 32-bit ABI. */
9277 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9278 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9279 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9280 {
9281 /* Only error if both are set (to different values). */
9282 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9283 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9284 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9285 {
9286 (*_bfd_error_handler)
9287 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9288 bfd_archive_filename (ibfd),
9289 elf_mips_abi_name (ibfd),
9290 elf_mips_abi_name (obfd));
9291 ok = FALSE;
9292 }
9293 new_flags &= ~EF_MIPS_ABI;
9294 old_flags &= ~EF_MIPS_ABI;
9295 }
9296
9297 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9298 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9299 {
9300 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9301
9302 new_flags &= ~ EF_MIPS_ARCH_ASE;
9303 old_flags &= ~ EF_MIPS_ARCH_ASE;
9304 }
9305
9306 /* Warn about any other mismatches */
9307 if (new_flags != old_flags)
9308 {
9309 (*_bfd_error_handler)
9310 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9311 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9312 (unsigned long) old_flags);
9313 ok = FALSE;
9314 }
9315
9316 if (! ok)
9317 {
9318 bfd_set_error (bfd_error_bad_value);
9319 return FALSE;
9320 }
9321
9322 return TRUE;
9323 }
9324
9325 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9326
9327 bfd_boolean
9328 _bfd_mips_elf_set_private_flags (abfd, flags)
9329 bfd *abfd;
9330 flagword flags;
9331 {
9332 BFD_ASSERT (!elf_flags_init (abfd)
9333 || elf_elfheader (abfd)->e_flags == flags);
9334
9335 elf_elfheader (abfd)->e_flags = flags;
9336 elf_flags_init (abfd) = TRUE;
9337 return TRUE;
9338 }
9339
9340 bfd_boolean
9341 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9342 bfd *abfd;
9343 PTR ptr;
9344 {
9345 FILE *file = (FILE *) ptr;
9346
9347 BFD_ASSERT (abfd != NULL && ptr != NULL);
9348
9349 /* Print normal ELF private data. */
9350 _bfd_elf_print_private_bfd_data (abfd, ptr);
9351
9352 /* xgettext:c-format */
9353 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9354
9355 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9356 fprintf (file, _(" [abi=O32]"));
9357 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9358 fprintf (file, _(" [abi=O64]"));
9359 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9360 fprintf (file, _(" [abi=EABI32]"));
9361 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9362 fprintf (file, _(" [abi=EABI64]"));
9363 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9364 fprintf (file, _(" [abi unknown]"));
9365 else if (ABI_N32_P (abfd))
9366 fprintf (file, _(" [abi=N32]"));
9367 else if (ABI_64_P (abfd))
9368 fprintf (file, _(" [abi=64]"));
9369 else
9370 fprintf (file, _(" [no abi set]"));
9371
9372 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9373 fprintf (file, _(" [mips1]"));
9374 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9375 fprintf (file, _(" [mips2]"));
9376 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9377 fprintf (file, _(" [mips3]"));
9378 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9379 fprintf (file, _(" [mips4]"));
9380 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9381 fprintf (file, _(" [mips5]"));
9382 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9383 fprintf (file, _(" [mips32]"));
9384 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9385 fprintf (file, _(" [mips64]"));
9386 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9387 fprintf (file, _(" [mips32r2]"));
9388 else
9389 fprintf (file, _(" [unknown ISA]"));
9390
9391 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9392 fprintf (file, _(" [mdmx]"));
9393
9394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9395 fprintf (file, _(" [mips16]"));
9396
9397 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9398 fprintf (file, _(" [32bitmode]"));
9399 else
9400 fprintf (file, _(" [not 32bitmode]"));
9401
9402 fputc ('\n', file);
9403
9404 return TRUE;
9405 }