* elfxx-mips.c (mips_elf_calculate_relocation): For R_MIPS_JALR,
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590 #define MINUS_TWO (((bfd_vma)0) - 2)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. */
603 #define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607 #define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
612 #define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616 #define MIPS_FUNCTION_STUB_SIZE (16)
617
618 /* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621 #define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626 #ifdef BFD64
627 #define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629 #define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631 #define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633 #define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635 #else
636 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637 #define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639 #define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641 #define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643 #endif
644 \f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679 #define FN_STUB ".mips16.fn."
680 #define CALL_STUB ".mips16.call."
681 #define CALL_FP_STUB ".mips16.call.fp."
682 \f
683 /* Look up an entry in a MIPS ELF linker hash table. */
684
685 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690 /* Traverse a MIPS ELF linker hash table. */
691
692 #define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698 /* Get the MIPS ELF linker hash table from a link_info structure. */
699
700 #define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703 /* Create an entry in a MIPS ELF linker hash table. */
704
705 static struct bfd_hash_entry *
706 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741 }
742
743 bfd_boolean
744 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745 {
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755 }
756 \f
757 /* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760 bfd_boolean
761 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763 {
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784 #define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810 #undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842 }
843 \f
844 /* Swap RPDR (runtime procedure table entry) for output. */
845
846 static void
847 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848 {
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860 #if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862 #endif
863 }
864
865 /* Create a runtime procedure table from the .mdebug section. */
866
867 static bfd_boolean
868 mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871 {
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013 }
1014
1015 /* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018 static bfd_boolean
1019 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021 {
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->size = 0;
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
1043 h->call_stub->size = 0;
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
1055 h->call_fp_stub->size = 0;
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
1061 return TRUE;
1062 }
1063 \f
1064 bfd_reloc_status_type
1065 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
1068 {
1069 bfd_vma relocation;
1070 bfd_signed_vma val;
1071 bfd_reloc_status_type status;
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1082 return bfd_reloc_outofrange;
1083
1084 /* Set val to the offset into the section or symbol. */
1085 val = reloc_entry->addend;
1086
1087 _bfd_mips_elf_sign_extend (val, 16);
1088
1089 /* Adjust val for the final section location and GP value. If we
1090 are producing relocatable output, we don't want to do this for
1091 an external symbol. */
1092 if (! relocatable
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
1096 if (reloc_entry->howto->partial_inplace)
1097 {
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
1103 }
1104 else
1105 reloc_entry->addend = val;
1106
1107 if (relocatable)
1108 reloc_entry->address += input_section->output_offset;
1109
1110 return bfd_reloc_ok;
1111 }
1112
1113 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118 struct mips_hi16
1119 {
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124 };
1125
1126 /* FIXME: This should not be a static variable. */
1127
1128 static struct mips_hi16 *mips_hi16_list;
1129
1130 /* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139 bfd_reloc_status_type
1140 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144 {
1145 struct mips_hi16 *n;
1146
1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164 }
1165
1166 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170 bfd_reloc_status_type
1171 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174 {
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185 }
1186
1187 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191 bfd_reloc_status_type
1192 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195 {
1196 bfd_vma vallo;
1197
1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234 }
1235
1236 /* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240 bfd_reloc_status_type
1241 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245 {
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
1300
1301 return bfd_reloc_ok;
1302 }
1303 \f
1304 /* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307 static void
1308 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
1310 {
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313 }
1314
1315 static void
1316 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
1318 {
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321 }
1322
1323 static void
1324 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
1326 {
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333 }
1334
1335 static void
1336 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
1338 {
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348 }
1349 \f
1350 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354 void
1355 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
1357 {
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364 }
1365
1366 void
1367 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
1369 {
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376 }
1377
1378 /* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384 void
1385 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
1387 {
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395 }
1396
1397 void
1398 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
1400 {
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408 }
1409
1410 /* Swap in an options header. */
1411
1412 void
1413 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
1415 {
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420 }
1421
1422 /* Swap out an options header. */
1423
1424 void
1425 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
1427 {
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432 }
1433 \f
1434 /* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437 static int
1438 sort_dynamic_relocs (const void *arg1, const void *arg2)
1439 {
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
1442
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1445
1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1447 }
1448
1449 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451 static int
1452 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1453 {
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464 }
1465
1466
1467 /* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
1481 static bfd_boolean
1482 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1483 {
1484 struct extsym_info *einfo = data;
1485 bfd_boolean strip;
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
1492 strip = FALSE;
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
1497 strip = TRUE;
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
1504 else
1505 strip = FALSE;
1506
1507 if (strip)
1508 return TRUE;
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
1614 else if (h->root.needs_plt)
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
1617 bfd_boolean no_fn_stub = h->no_fn_stub;
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642 #if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644 #endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
1652 einfo->failed = TRUE;
1653 return FALSE;
1654 }
1655
1656 return TRUE;
1657 }
1658
1659 /* A comparison routine used to sort .gptab entries. */
1660
1661 static int
1662 gptab_compare (const void *p1, const void *p2)
1663 {
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668 }
1669 \f
1670 /* Functions to manage the got entry hash table. */
1671
1672 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675 static INLINE hashval_t
1676 mips_elf_hash_bfd_vma (bfd_vma addr)
1677 {
1678 #ifdef BFD64
1679 return addr + (addr >> 32);
1680 #else
1681 return addr;
1682 #endif
1683 }
1684
1685 /* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
1689 static hashval_t
1690 mips_elf_got_entry_hash (const void *entry_)
1691 {
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
1694 return entry->symndx
1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
1699 }
1700
1701 static int
1702 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1703 {
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711 }
1712
1713 /* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718 static hashval_t
1719 mips_elf_multi_got_entry_hash (const void *entry_)
1720 {
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730 }
1731
1732 static int
1733 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1734 {
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
1743 }
1744 \f
1745 /* Returns the dynamic relocation section for DYNOBJ. */
1746
1747 static asection *
1748 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1749 {
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1767 return NULL;
1768 }
1769 return sreloc;
1770 }
1771
1772 /* Returns the GOT section for ABFD. */
1773
1774 static asection *
1775 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1776 {
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
1782 }
1783
1784 /* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788 static struct mips_got_info *
1789 mips_elf_got_info (bfd *abfd, asection **sgotp)
1790 {
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
1794 sgot = mips_elf_got_section (abfd, TRUE);
1795 BFD_ASSERT (sgot != NULL);
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
1803 return g;
1804 }
1805
1806 /* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810 static bfd_vma
1811 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
1813 {
1814 asection *sgot;
1815 struct mips_got_info *g;
1816 struct mips_got_entry *entry;
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
1825 }
1826
1827 /* Returns the GOT index for the global symbol indicated by H. */
1828
1829 static bfd_vma
1830 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1831 {
1832 bfd_vma index;
1833 asection *sgot;
1834 struct mips_got_info *g, *gg;
1835 long global_got_dynindx = 0;
1836
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
1841
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
1851 p = htab_find (g->got_entries, &e);
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1867 * MIPS_ELF_GOT_SIZE (abfd));
1868 BFD_ASSERT (index < sgot->size);
1869
1870 return index;
1871 }
1872
1873 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879 static bfd_vma
1880 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
1882 {
1883 asection *sgot;
1884 struct mips_got_info *g;
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
1893
1894 if (!entry)
1895 return MINUS_ONE;
1896
1897 index = entry->gotidx;
1898
1899 if (offsetp)
1900 *offsetp = value - entry->d.address;
1901
1902 return index;
1903 }
1904
1905 /* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908 static bfd_vma
1909 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
1911 {
1912 asection *sgot;
1913 struct mips_got_info *g;
1914 struct mips_got_entry *entry;
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
1932 }
1933
1934 /* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937 static bfd_vma
1938 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
1940 {
1941 asection *sgot;
1942 bfd_vma gp;
1943 struct mips_got_info *g;
1944
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1948
1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
1950 }
1951
1952 /* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
1955 static struct mips_got_entry *
1956 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
1959 {
1960 struct mips_got_entry entry, **loc;
1961 struct mips_got_info *g;
1962
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
1978
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
1985
1986 memcpy (*loc, &entry, sizeof entry);
1987
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
1990 (*loc)->gotidx = -1;
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
2002 }
2003
2004 /* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
2011 static bfd_boolean
2012 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2013 {
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
2020 g = mips_elf_got_info (dynobj, NULL);
2021
2022 hsd.low = NULL;
2023 hsd.max_unref_got_dynindx =
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
2040 accommodate both the GOT and non-GOT symbols. */
2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
2047 g->global_gotsym = hsd.low;
2048
2049 return TRUE;
2050 }
2051
2052 /* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
2056 static bfd_boolean
2057 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2058 {
2059 struct mips_elf_hash_sort_data *hsd = data;
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
2067 return TRUE;
2068
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
2087 return TRUE;
2088 }
2089
2090 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
2094 static bfd_boolean
2095 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
2098 {
2099 struct mips_got_entry entry, **loc;
2100
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2110 break;
2111 }
2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2113 return FALSE;
2114 }
2115
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
2132
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
2136 if (h->got.offset != MINUS_ONE)
2137 return TRUE;
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
2144 return TRUE;
2145 }
2146
2147 /* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150 static bfd_boolean
2151 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
2153 {
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
2171
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175 }
2176 \f
2177 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179 static hashval_t
2180 mips_elf_bfd2got_entry_hash (const void *entry_)
2181 {
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186 }
2187
2188 /* Check whether two hash entries have the same bfd. */
2189
2190 static int
2191 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2192 {
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199 }
2200
2201 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2202 be the master GOT data. */
2203
2204 static struct mips_got_info *
2205 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2206 {
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
2213 p = htab_find (g->bfd2got, &e);
2214 return p ? p->g : NULL;
2215 }
2216
2217 /* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221 static int
2222 mips_elf_make_got_per_bfd (void **entryp, void *p)
2223 {
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
2230
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2266 mips_elf_multi_got_entry_eq, NULL);
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
2281
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290 }
2291
2292 /* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299 static int
2300 mips_elf_merge_gots (void **bfd2got_, void *p)
2301 {
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
2308
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
2376
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381 }
2382
2383 /* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2394 marked as not eligible for lazy resolution through a function
2395 stub. */
2396 static int
2397 mips_elf_set_global_got_offset (void **entryp, void *p)
2398 {
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423 }
2424
2425 /* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427 static int
2428 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2429 {
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438 }
2439
2440 /* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446 static int
2447 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2448 {
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
2462
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
2482
2483 return 1;
2484 }
2485
2486 /* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488 static void
2489 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2490 {
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502 }
2503
2504 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506 static bfd_vma
2507 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2508 {
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
2519
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521 }
2522
2523 /* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526 static bfd_boolean
2527 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
2530 {
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2537 mips_elf_bfd2got_entry_eq, NULL);
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
2582 NULL);
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
2603
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
2629
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2702 }
2703 while (g);
2704
2705 got->size = (gg->next->local_gotno
2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2707
2708 return TRUE;
2709 }
2710
2711 \f
2712 /* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715 static const Elf_Internal_Rela *
2716 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
2719 {
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731 }
2732
2733 /* Return whether a relocation is against a local symbol. */
2734
2735 static bfd_boolean
2736 mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
2740 {
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
2751 return TRUE;
2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2753 return TRUE;
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2765 if (h->root.forced_local)
2766 return TRUE;
2767 }
2768
2769 return FALSE;
2770 }
2771 \f
2772 /* Sign-extend VALUE, which has the indicated number of BITS. */
2773
2774 bfd_vma
2775 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2776 {
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782 }
2783
2784 /* Return non-zero if the indicated VALUE has overflowed the maximum
2785 range expressible by a signed number with the indicated number of
2786 BITS. */
2787
2788 static bfd_boolean
2789 mips_elf_overflow_p (bfd_vma value, int bits)
2790 {
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
2795 return TRUE;
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
2798 return TRUE;
2799
2800 /* All is well. */
2801 return FALSE;
2802 }
2803
2804 /* Calculate the %high function. */
2805
2806 static bfd_vma
2807 mips_elf_high (bfd_vma value)
2808 {
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810 }
2811
2812 /* Calculate the %higher function. */
2813
2814 static bfd_vma
2815 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2816 {
2817 #ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819 #else
2820 abort ();
2821 return MINUS_ONE;
2822 #endif
2823 }
2824
2825 /* Calculate the %highest function. */
2826
2827 static bfd_vma
2828 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2829 {
2830 #ifdef BFD64
2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2832 #else
2833 abort ();
2834 return MINUS_ONE;
2835 #endif
2836 }
2837 \f
2838 /* Create the .compact_rel section. */
2839
2840 static bfd_boolean
2841 mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2843 {
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2857 return FALSE;
2858
2859 s->size = sizeof (Elf32_External_compact_rel);
2860 }
2861
2862 return TRUE;
2863 }
2864
2865 /* Create the .got section to hold the global offset table. */
2866
2867 static bfd_boolean
2868 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
2870 {
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
2874 struct bfd_link_hash_entry *bh;
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
2898 || ! bfd_set_section_alignment (abfd, s, 4))
2899 return FALSE;
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
2904 bh = NULL;
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2908 return FALSE;
2909
2910 h = (struct elf_link_hash_entry *) bh;
2911 h->non_elf = 0;
2912 h->def_regular = 1;
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2917 return FALSE;
2918
2919 amt = sizeof (struct mips_got_info);
2920 g = bfd_alloc (abfd, amt);
2921 if (g == NULL)
2922 return FALSE;
2923 g->global_gotsym = NULL;
2924 g->global_gotno = 0;
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2927 g->bfd2got = NULL;
2928 g->next = NULL;
2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2930 mips_elf_got_entry_eq, NULL);
2931 if (g->got_entries == NULL)
2932 return FALSE;
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953 static bfd_reloc_status_type
2954 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
2963 {
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
2985 /* TRUE if the symbol referred to by this relocation is a local
2986 symbol. */
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
2994 /* TRUE if overflow occurred during the calculation of the
2995 relocation value. */
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
3008 overflowed_p = FALSE;
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3014 local_sections, FALSE);
3015 was_local_p = local_p;
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
3036 symbol += sym->st_value;
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
3075 if (strcmp (*namep, "_gp_disp") == 0
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
3083 gp_disp_p = TRUE;
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
3140 if (r_type != R_MIPS16_26 && !info->relocatable
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
3161 else if (r_type == R_MIPS16_26 && !info->relocatable
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
3191 BFD_ASSERT (sec->size > 0);
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
3197 *require_jalxp = (!info->relocatable
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3202 local_sections, TRUE);
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
3208 case R_MIPS_GOT_PAGE:
3209 case R_MIPS_GOT_OFST:
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3213 if (local_p || r_type == R_MIPS_GOT_OFST)
3214 break;
3215 /* Fall through. */
3216
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3233 input_bfd,
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
3238 && h->root.def_regular))
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3262 abfd, input_bfd, g);
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
3335 break;
3336
3337 case R_MIPS_GNU_REL16_S2:
3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3352 else
3353 {
3354 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3355 overflowed_p = (value >> 26) != ((p + 4) >> 28);
3356 }
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_HI16:
3361 if (!gp_disp_p)
3362 {
3363 value = mips_elf_high (addend + symbol);
3364 value &= howto->dst_mask;
3365 }
3366 else
3367 {
3368 value = mips_elf_high (addend + gp - p);
3369 overflowed_p = mips_elf_overflow_p (value, 16);
3370 }
3371 break;
3372
3373 case R_MIPS_LO16:
3374 if (!gp_disp_p)
3375 value = (symbol + addend) & howto->dst_mask;
3376 else
3377 {
3378 value = addend + gp - p + 4;
3379 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3380 for overflow. But, on, say, IRIX5, relocations against
3381 _gp_disp are normally generated from the .cpload
3382 pseudo-op. It generates code that normally looks like
3383 this:
3384
3385 lui $gp,%hi(_gp_disp)
3386 addiu $gp,$gp,%lo(_gp_disp)
3387 addu $gp,$gp,$t9
3388
3389 Here $t9 holds the address of the function being called,
3390 as required by the MIPS ELF ABI. The R_MIPS_LO16
3391 relocation can easily overflow in this situation, but the
3392 R_MIPS_HI16 relocation will handle the overflow.
3393 Therefore, we consider this a bug in the MIPS ABI, and do
3394 not check for overflow here. */
3395 }
3396 break;
3397
3398 case R_MIPS_LITERAL:
3399 /* Because we don't merge literal sections, we can handle this
3400 just like R_MIPS_GPREL16. In the long run, we should merge
3401 shared literals, and then we will need to additional work
3402 here. */
3403
3404 /* Fall through. */
3405
3406 case R_MIPS16_GPREL:
3407 /* The R_MIPS16_GPREL performs the same calculation as
3408 R_MIPS_GPREL16, but stores the relocated bits in a different
3409 order. We don't need to do anything special here; the
3410 differences are handled in mips_elf_perform_relocation. */
3411 case R_MIPS_GPREL16:
3412 /* Only sign-extend the addend if it was extracted from the
3413 instruction. If the addend was separate, leave it alone,
3414 otherwise we may lose significant bits. */
3415 if (howto->partial_inplace)
3416 addend = _bfd_mips_elf_sign_extend (addend, 16);
3417 value = symbol + addend - gp;
3418 /* If the symbol was local, any earlier relocatable links will
3419 have adjusted its addend with the gp offset, so compensate
3420 for that now. Don't do it for symbols forced local in this
3421 link, though, since they won't have had the gp offset applied
3422 to them before. */
3423 if (was_local_p)
3424 value += gp0;
3425 overflowed_p = mips_elf_overflow_p (value, 16);
3426 break;
3427
3428 case R_MIPS_GOT16:
3429 case R_MIPS_CALL16:
3430 if (local_p)
3431 {
3432 bfd_boolean forced;
3433
3434 /* The special case is when the symbol is forced to be local. We
3435 need the full address in the GOT since no R_MIPS_LO16 relocation
3436 follows. */
3437 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3438 local_sections, FALSE);
3439 value = mips_elf_got16_entry (abfd, input_bfd, info,
3440 symbol + addend, forced);
3441 if (value == MINUS_ONE)
3442 return bfd_reloc_outofrange;
3443 value
3444 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3445 abfd, input_bfd, value);
3446 overflowed_p = mips_elf_overflow_p (value, 16);
3447 break;
3448 }
3449
3450 /* Fall through. */
3451
3452 case R_MIPS_GOT_DISP:
3453 got_disp:
3454 value = g;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GPREL32:
3459 value = (addend + symbol + gp0 - gp);
3460 if (!save_addend)
3461 value &= howto->dst_mask;
3462 break;
3463
3464 case R_MIPS_PC16:
3465 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3466 overflowed_p = mips_elf_overflow_p (value, 16);
3467 break;
3468
3469 case R_MIPS_GOT_HI16:
3470 case R_MIPS_CALL_HI16:
3471 /* We're allowed to handle these two relocations identically.
3472 The dynamic linker is allowed to handle the CALL relocations
3473 differently by creating a lazy evaluation stub. */
3474 value = g;
3475 value = mips_elf_high (value);
3476 value &= howto->dst_mask;
3477 break;
3478
3479 case R_MIPS_GOT_LO16:
3480 case R_MIPS_CALL_LO16:
3481 value = g & howto->dst_mask;
3482 break;
3483
3484 case R_MIPS_GOT_PAGE:
3485 /* GOT_PAGE relocations that reference non-local symbols decay
3486 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3487 0. */
3488 if (! local_p)
3489 goto got_disp;
3490 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3491 if (value == MINUS_ONE)
3492 return bfd_reloc_outofrange;
3493 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3494 abfd, input_bfd, value);
3495 overflowed_p = mips_elf_overflow_p (value, 16);
3496 break;
3497
3498 case R_MIPS_GOT_OFST:
3499 if (local_p)
3500 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3501 else
3502 value = addend;
3503 overflowed_p = mips_elf_overflow_p (value, 16);
3504 break;
3505
3506 case R_MIPS_SUB:
3507 value = symbol - addend;
3508 value &= howto->dst_mask;
3509 break;
3510
3511 case R_MIPS_HIGHER:
3512 value = mips_elf_higher (addend + symbol);
3513 value &= howto->dst_mask;
3514 break;
3515
3516 case R_MIPS_HIGHEST:
3517 value = mips_elf_highest (addend + symbol);
3518 value &= howto->dst_mask;
3519 break;
3520
3521 case R_MIPS_SCN_DISP:
3522 value = symbol + addend - sec->output_offset;
3523 value &= howto->dst_mask;
3524 break;
3525
3526 case R_MIPS_JALR:
3527 /* This relocation is only a hint. In some cases, we optimize
3528 it into a bal instruction. But we don't try to optimize
3529 branches to the PLT; that will wind up wasting time. */
3530 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
3531 return bfd_reloc_continue;
3532 value = symbol + addend;
3533 break;
3534
3535 case R_MIPS_PJUMP:
3536 case R_MIPS_GNU_VTINHERIT:
3537 case R_MIPS_GNU_VTENTRY:
3538 /* We don't do anything with these at present. */
3539 return bfd_reloc_continue;
3540
3541 default:
3542 /* An unrecognized relocation type. */
3543 return bfd_reloc_notsupported;
3544 }
3545
3546 /* Store the VALUE for our caller. */
3547 *valuep = value;
3548 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3549 }
3550
3551 /* Obtain the field relocated by RELOCATION. */
3552
3553 static bfd_vma
3554 mips_elf_obtain_contents (reloc_howto_type *howto,
3555 const Elf_Internal_Rela *relocation,
3556 bfd *input_bfd, bfd_byte *contents)
3557 {
3558 bfd_vma x;
3559 bfd_byte *location = contents + relocation->r_offset;
3560
3561 /* Obtain the bytes. */
3562 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3563
3564 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3565 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3566 && bfd_little_endian (input_bfd))
3567 /* The two 16-bit words will be reversed on a little-endian system.
3568 See mips_elf_perform_relocation for more details. */
3569 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3570
3571 return x;
3572 }
3573
3574 /* It has been determined that the result of the RELOCATION is the
3575 VALUE. Use HOWTO to place VALUE into the output file at the
3576 appropriate position. The SECTION is the section to which the
3577 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3578 for the relocation must be either JAL or JALX, and it is
3579 unconditionally converted to JALX.
3580
3581 Returns FALSE if anything goes wrong. */
3582
3583 static bfd_boolean
3584 mips_elf_perform_relocation (struct bfd_link_info *info,
3585 reloc_howto_type *howto,
3586 const Elf_Internal_Rela *relocation,
3587 bfd_vma value, bfd *input_bfd,
3588 asection *input_section, bfd_byte *contents,
3589 bfd_boolean require_jalx)
3590 {
3591 bfd_vma x;
3592 bfd_byte *location;
3593 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3594
3595 /* Figure out where the relocation is occurring. */
3596 location = contents + relocation->r_offset;
3597
3598 /* Obtain the current value. */
3599 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3600
3601 /* Clear the field we are setting. */
3602 x &= ~howto->dst_mask;
3603
3604 /* If this is the R_MIPS16_26 relocation, we must store the
3605 value in a funny way. */
3606 if (r_type == R_MIPS16_26)
3607 {
3608 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3609 Most mips16 instructions are 16 bits, but these instructions
3610 are 32 bits.
3611
3612 The format of these instructions is:
3613
3614 +--------------+--------------------------------+
3615 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3616 +--------------+--------------------------------+
3617 ! Immediate 15:0 !
3618 +-----------------------------------------------+
3619
3620 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3621 Note that the immediate value in the first word is swapped.
3622
3623 When producing a relocatable object file, R_MIPS16_26 is
3624 handled mostly like R_MIPS_26. In particular, the addend is
3625 stored as a straight 26-bit value in a 32-bit instruction.
3626 (gas makes life simpler for itself by never adjusting a
3627 R_MIPS16_26 reloc to be against a section, so the addend is
3628 always zero). However, the 32 bit instruction is stored as 2
3629 16-bit values, rather than a single 32-bit value. In a
3630 big-endian file, the result is the same; in a little-endian
3631 file, the two 16-bit halves of the 32 bit value are swapped.
3632 This is so that a disassembler can recognize the jal
3633 instruction.
3634
3635 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3636 instruction stored as two 16-bit values. The addend A is the
3637 contents of the targ26 field. The calculation is the same as
3638 R_MIPS_26. When storing the calculated value, reorder the
3639 immediate value as shown above, and don't forget to store the
3640 value as two 16-bit values.
3641
3642 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3643 defined as
3644
3645 big-endian:
3646 +--------+----------------------+
3647 | | |
3648 | | targ26-16 |
3649 |31 26|25 0|
3650 +--------+----------------------+
3651
3652 little-endian:
3653 +----------+------+-------------+
3654 | | | |
3655 | sub1 | | sub2 |
3656 |0 9|10 15|16 31|
3657 +----------+--------------------+
3658 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3659 ((sub1 << 16) | sub2)).
3660
3661 When producing a relocatable object file, the calculation is
3662 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3663 When producing a fully linked file, the calculation is
3664 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3665 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3666
3667 if (!info->relocatable)
3668 /* Shuffle the bits according to the formula above. */
3669 value = (((value & 0x1f0000) << 5)
3670 | ((value & 0x3e00000) >> 5)
3671 | (value & 0xffff));
3672 }
3673 else if (r_type == R_MIPS16_GPREL)
3674 {
3675 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3676 mode. A typical instruction will have a format like this:
3677
3678 +--------------+--------------------------------+
3679 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3680 +--------------+--------------------------------+
3681 ! Major ! rx ! ry ! Imm 4:0 !
3682 +--------------+--------------------------------+
3683
3684 EXTEND is the five bit value 11110. Major is the instruction
3685 opcode.
3686
3687 This is handled exactly like R_MIPS_GPREL16, except that the
3688 addend is retrieved and stored as shown in this diagram; that
3689 is, the Imm fields above replace the V-rel16 field.
3690
3691 All we need to do here is shuffle the bits appropriately. As
3692 above, the two 16-bit halves must be swapped on a
3693 little-endian system. */
3694 value = (((value & 0x7e0) << 16)
3695 | ((value & 0xf800) << 5)
3696 | (value & 0x1f));
3697 }
3698
3699 /* Set the field. */
3700 x |= (value & howto->dst_mask);
3701
3702 /* If required, turn JAL into JALX. */
3703 if (require_jalx)
3704 {
3705 bfd_boolean ok;
3706 bfd_vma opcode = x >> 26;
3707 bfd_vma jalx_opcode;
3708
3709 /* Check to see if the opcode is already JAL or JALX. */
3710 if (r_type == R_MIPS16_26)
3711 {
3712 ok = ((opcode == 0x6) || (opcode == 0x7));
3713 jalx_opcode = 0x7;
3714 }
3715 else
3716 {
3717 ok = ((opcode == 0x3) || (opcode == 0x1d));
3718 jalx_opcode = 0x1d;
3719 }
3720
3721 /* If the opcode is not JAL or JALX, there's a problem. */
3722 if (!ok)
3723 {
3724 (*_bfd_error_handler)
3725 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3726 input_bfd,
3727 input_section,
3728 (unsigned long) relocation->r_offset);
3729 bfd_set_error (bfd_error_bad_value);
3730 return FALSE;
3731 }
3732
3733 /* Make this the JALX opcode. */
3734 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3735 }
3736
3737 /* On the RM9000, bal is faster than jal, because bal uses branch
3738 prediction hardware. If we are linking for the RM9000, and we
3739 see jal, and bal fits, use it instead. Note that this
3740 transformation should be safe for all architectures. */
3741 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
3742 && !info->relocatable
3743 && !require_jalx
3744 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
3745 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
3746 {
3747 bfd_vma addr;
3748 bfd_vma dest;
3749 bfd_signed_vma off;
3750
3751 addr = (input_section->output_section->vma
3752 + input_section->output_offset
3753 + relocation->r_offset
3754 + 4);
3755 if (r_type == R_MIPS_26)
3756 dest = (value << 2) | ((addr >> 28) << 28);
3757 else
3758 dest = value;
3759 off = dest - addr;
3760 if (off <= 0x1ffff && off >= -0x20000)
3761 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
3762 }
3763
3764 /* Swap the high- and low-order 16 bits on little-endian systems
3765 when doing a MIPS16 relocation. */
3766 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3767 && bfd_little_endian (input_bfd))
3768 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3769
3770 /* Put the value into the output. */
3771 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3772 return TRUE;
3773 }
3774
3775 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3776
3777 static bfd_boolean
3778 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3779 {
3780 const char *name = bfd_get_section_name (abfd, section);
3781
3782 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3783 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3784 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3785 }
3786 \f
3787 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3788
3789 static void
3790 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3791 {
3792 asection *s;
3793
3794 s = mips_elf_rel_dyn_section (abfd, FALSE);
3795 BFD_ASSERT (s != NULL);
3796
3797 if (s->size == 0)
3798 {
3799 /* Make room for a null element. */
3800 s->size += MIPS_ELF_REL_SIZE (abfd);
3801 ++s->reloc_count;
3802 }
3803 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3804 }
3805
3806 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3807 is the original relocation, which is now being transformed into a
3808 dynamic relocation. The ADDENDP is adjusted if necessary; the
3809 caller should store the result in place of the original addend. */
3810
3811 static bfd_boolean
3812 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3813 struct bfd_link_info *info,
3814 const Elf_Internal_Rela *rel,
3815 struct mips_elf_link_hash_entry *h,
3816 asection *sec, bfd_vma symbol,
3817 bfd_vma *addendp, asection *input_section)
3818 {
3819 Elf_Internal_Rela outrel[3];
3820 asection *sreloc;
3821 bfd *dynobj;
3822 int r_type;
3823 long indx;
3824 bfd_boolean defined_p;
3825
3826 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3827 dynobj = elf_hash_table (info)->dynobj;
3828 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3829 BFD_ASSERT (sreloc != NULL);
3830 BFD_ASSERT (sreloc->contents != NULL);
3831 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3832 < sreloc->size);
3833
3834 outrel[0].r_offset =
3835 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3836 outrel[1].r_offset =
3837 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3838 outrel[2].r_offset =
3839 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3840
3841 #if 0
3842 /* We begin by assuming that the offset for the dynamic relocation
3843 is the same as for the original relocation. We'll adjust this
3844 later to reflect the correct output offsets. */
3845 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3846 {
3847 outrel[1].r_offset = rel[1].r_offset;
3848 outrel[2].r_offset = rel[2].r_offset;
3849 }
3850 else
3851 {
3852 /* Except that in a stab section things are more complex.
3853 Because we compress stab information, the offset given in the
3854 relocation may not be the one we want; we must let the stabs
3855 machinery tell us the offset. */
3856 outrel[1].r_offset = outrel[0].r_offset;
3857 outrel[2].r_offset = outrel[0].r_offset;
3858 /* If we didn't need the relocation at all, this value will be
3859 -1. */
3860 if (outrel[0].r_offset == MINUS_ONE)
3861 skip = TRUE;
3862 }
3863 #endif
3864
3865 if (outrel[0].r_offset == MINUS_ONE)
3866 /* The relocation field has been deleted. */
3867 return TRUE;
3868
3869 if (outrel[0].r_offset == MINUS_TWO)
3870 {
3871 /* The relocation field has been converted into a relative value of
3872 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3873 the field to be fully relocated, so add in the symbol's value. */
3874 *addendp += symbol;
3875 return TRUE;
3876 }
3877
3878 /* We must now calculate the dynamic symbol table index to use
3879 in the relocation. */
3880 if (h != NULL
3881 && (! info->symbolic || !h->root.def_regular)
3882 /* h->root.dynindx may be -1 if this symbol was marked to
3883 become local. */
3884 && h->root.dynindx != -1)
3885 {
3886 indx = h->root.dynindx;
3887 if (SGI_COMPAT (output_bfd))
3888 defined_p = h->root.def_regular;
3889 else
3890 /* ??? glibc's ld.so just adds the final GOT entry to the
3891 relocation field. It therefore treats relocs against
3892 defined symbols in the same way as relocs against
3893 undefined symbols. */
3894 defined_p = FALSE;
3895 }
3896 else
3897 {
3898 if (sec != NULL && bfd_is_abs_section (sec))
3899 indx = 0;
3900 else if (sec == NULL || sec->owner == NULL)
3901 {
3902 bfd_set_error (bfd_error_bad_value);
3903 return FALSE;
3904 }
3905 else
3906 {
3907 indx = elf_section_data (sec->output_section)->dynindx;
3908 if (indx == 0)
3909 abort ();
3910 }
3911
3912 /* Instead of generating a relocation using the section
3913 symbol, we may as well make it a fully relative
3914 relocation. We want to avoid generating relocations to
3915 local symbols because we used to generate them
3916 incorrectly, without adding the original symbol value,
3917 which is mandated by the ABI for section symbols. In
3918 order to give dynamic loaders and applications time to
3919 phase out the incorrect use, we refrain from emitting
3920 section-relative relocations. It's not like they're
3921 useful, after all. This should be a bit more efficient
3922 as well. */
3923 /* ??? Although this behavior is compatible with glibc's ld.so,
3924 the ABI says that relocations against STN_UNDEF should have
3925 a symbol value of 0. Irix rld honors this, so relocations
3926 against STN_UNDEF have no effect. */
3927 if (!SGI_COMPAT (output_bfd))
3928 indx = 0;
3929 defined_p = TRUE;
3930 }
3931
3932 /* If the relocation was previously an absolute relocation and
3933 this symbol will not be referred to by the relocation, we must
3934 adjust it by the value we give it in the dynamic symbol table.
3935 Otherwise leave the job up to the dynamic linker. */
3936 if (defined_p && r_type != R_MIPS_REL32)
3937 *addendp += symbol;
3938
3939 /* The relocation is always an REL32 relocation because we don't
3940 know where the shared library will wind up at load-time. */
3941 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3942 R_MIPS_REL32);
3943 /* For strict adherence to the ABI specification, we should
3944 generate a R_MIPS_64 relocation record by itself before the
3945 _REL32/_64 record as well, such that the addend is read in as
3946 a 64-bit value (REL32 is a 32-bit relocation, after all).
3947 However, since none of the existing ELF64 MIPS dynamic
3948 loaders seems to care, we don't waste space with these
3949 artificial relocations. If this turns out to not be true,
3950 mips_elf_allocate_dynamic_relocation() should be tweaked so
3951 as to make room for a pair of dynamic relocations per
3952 invocation if ABI_64_P, and here we should generate an
3953 additional relocation record with R_MIPS_64 by itself for a
3954 NULL symbol before this relocation record. */
3955 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3956 ABI_64_P (output_bfd)
3957 ? R_MIPS_64
3958 : R_MIPS_NONE);
3959 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3960
3961 /* Adjust the output offset of the relocation to reference the
3962 correct location in the output file. */
3963 outrel[0].r_offset += (input_section->output_section->vma
3964 + input_section->output_offset);
3965 outrel[1].r_offset += (input_section->output_section->vma
3966 + input_section->output_offset);
3967 outrel[2].r_offset += (input_section->output_section->vma
3968 + input_section->output_offset);
3969
3970 /* Put the relocation back out. We have to use the special
3971 relocation outputter in the 64-bit case since the 64-bit
3972 relocation format is non-standard. */
3973 if (ABI_64_P (output_bfd))
3974 {
3975 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3976 (output_bfd, &outrel[0],
3977 (sreloc->contents
3978 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3979 }
3980 else
3981 bfd_elf32_swap_reloc_out
3982 (output_bfd, &outrel[0],
3983 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3984
3985 /* We've now added another relocation. */
3986 ++sreloc->reloc_count;
3987
3988 /* Make sure the output section is writable. The dynamic linker
3989 will be writing to it. */
3990 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3991 |= SHF_WRITE;
3992
3993 /* On IRIX5, make an entry of compact relocation info. */
3994 if (IRIX_COMPAT (output_bfd) == ict_irix5)
3995 {
3996 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3997 bfd_byte *cr;
3998
3999 if (scpt)
4000 {
4001 Elf32_crinfo cptrel;
4002
4003 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4004 cptrel.vaddr = (rel->r_offset
4005 + input_section->output_section->vma
4006 + input_section->output_offset);
4007 if (r_type == R_MIPS_REL32)
4008 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4009 else
4010 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4011 mips_elf_set_cr_dist2to (cptrel, 0);
4012 cptrel.konst = *addendp;
4013
4014 cr = (scpt->contents
4015 + sizeof (Elf32_External_compact_rel));
4016 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4017 ((Elf32_External_crinfo *) cr
4018 + scpt->reloc_count));
4019 ++scpt->reloc_count;
4020 }
4021 }
4022
4023 return TRUE;
4024 }
4025 \f
4026 /* Return the MACH for a MIPS e_flags value. */
4027
4028 unsigned long
4029 _bfd_elf_mips_mach (flagword flags)
4030 {
4031 switch (flags & EF_MIPS_MACH)
4032 {
4033 case E_MIPS_MACH_3900:
4034 return bfd_mach_mips3900;
4035
4036 case E_MIPS_MACH_4010:
4037 return bfd_mach_mips4010;
4038
4039 case E_MIPS_MACH_4100:
4040 return bfd_mach_mips4100;
4041
4042 case E_MIPS_MACH_4111:
4043 return bfd_mach_mips4111;
4044
4045 case E_MIPS_MACH_4120:
4046 return bfd_mach_mips4120;
4047
4048 case E_MIPS_MACH_4650:
4049 return bfd_mach_mips4650;
4050
4051 case E_MIPS_MACH_5400:
4052 return bfd_mach_mips5400;
4053
4054 case E_MIPS_MACH_5500:
4055 return bfd_mach_mips5500;
4056
4057 case E_MIPS_MACH_9000:
4058 return bfd_mach_mips9000;
4059
4060 case E_MIPS_MACH_SB1:
4061 return bfd_mach_mips_sb1;
4062
4063 default:
4064 switch (flags & EF_MIPS_ARCH)
4065 {
4066 default:
4067 case E_MIPS_ARCH_1:
4068 return bfd_mach_mips3000;
4069 break;
4070
4071 case E_MIPS_ARCH_2:
4072 return bfd_mach_mips6000;
4073 break;
4074
4075 case E_MIPS_ARCH_3:
4076 return bfd_mach_mips4000;
4077 break;
4078
4079 case E_MIPS_ARCH_4:
4080 return bfd_mach_mips8000;
4081 break;
4082
4083 case E_MIPS_ARCH_5:
4084 return bfd_mach_mips5;
4085 break;
4086
4087 case E_MIPS_ARCH_32:
4088 return bfd_mach_mipsisa32;
4089 break;
4090
4091 case E_MIPS_ARCH_64:
4092 return bfd_mach_mipsisa64;
4093 break;
4094
4095 case E_MIPS_ARCH_32R2:
4096 return bfd_mach_mipsisa32r2;
4097 break;
4098
4099 case E_MIPS_ARCH_64R2:
4100 return bfd_mach_mipsisa64r2;
4101 break;
4102 }
4103 }
4104
4105 return 0;
4106 }
4107
4108 /* Return printable name for ABI. */
4109
4110 static INLINE char *
4111 elf_mips_abi_name (bfd *abfd)
4112 {
4113 flagword flags;
4114
4115 flags = elf_elfheader (abfd)->e_flags;
4116 switch (flags & EF_MIPS_ABI)
4117 {
4118 case 0:
4119 if (ABI_N32_P (abfd))
4120 return "N32";
4121 else if (ABI_64_P (abfd))
4122 return "64";
4123 else
4124 return "none";
4125 case E_MIPS_ABI_O32:
4126 return "O32";
4127 case E_MIPS_ABI_O64:
4128 return "O64";
4129 case E_MIPS_ABI_EABI32:
4130 return "EABI32";
4131 case E_MIPS_ABI_EABI64:
4132 return "EABI64";
4133 default:
4134 return "unknown abi";
4135 }
4136 }
4137 \f
4138 /* MIPS ELF uses two common sections. One is the usual one, and the
4139 other is for small objects. All the small objects are kept
4140 together, and then referenced via the gp pointer, which yields
4141 faster assembler code. This is what we use for the small common
4142 section. This approach is copied from ecoff.c. */
4143 static asection mips_elf_scom_section;
4144 static asymbol mips_elf_scom_symbol;
4145 static asymbol *mips_elf_scom_symbol_ptr;
4146
4147 /* MIPS ELF also uses an acommon section, which represents an
4148 allocated common symbol which may be overridden by a
4149 definition in a shared library. */
4150 static asection mips_elf_acom_section;
4151 static asymbol mips_elf_acom_symbol;
4152 static asymbol *mips_elf_acom_symbol_ptr;
4153
4154 /* Handle the special MIPS section numbers that a symbol may use.
4155 This is used for both the 32-bit and the 64-bit ABI. */
4156
4157 void
4158 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4159 {
4160 elf_symbol_type *elfsym;
4161
4162 elfsym = (elf_symbol_type *) asym;
4163 switch (elfsym->internal_elf_sym.st_shndx)
4164 {
4165 case SHN_MIPS_ACOMMON:
4166 /* This section is used in a dynamically linked executable file.
4167 It is an allocated common section. The dynamic linker can
4168 either resolve these symbols to something in a shared
4169 library, or it can just leave them here. For our purposes,
4170 we can consider these symbols to be in a new section. */
4171 if (mips_elf_acom_section.name == NULL)
4172 {
4173 /* Initialize the acommon section. */
4174 mips_elf_acom_section.name = ".acommon";
4175 mips_elf_acom_section.flags = SEC_ALLOC;
4176 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4177 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4178 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4179 mips_elf_acom_symbol.name = ".acommon";
4180 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4181 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4182 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4183 }
4184 asym->section = &mips_elf_acom_section;
4185 break;
4186
4187 case SHN_COMMON:
4188 /* Common symbols less than the GP size are automatically
4189 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4190 if (asym->value > elf_gp_size (abfd)
4191 || IRIX_COMPAT (abfd) == ict_irix6)
4192 break;
4193 /* Fall through. */
4194 case SHN_MIPS_SCOMMON:
4195 if (mips_elf_scom_section.name == NULL)
4196 {
4197 /* Initialize the small common section. */
4198 mips_elf_scom_section.name = ".scommon";
4199 mips_elf_scom_section.flags = SEC_IS_COMMON;
4200 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4201 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4202 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4203 mips_elf_scom_symbol.name = ".scommon";
4204 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4205 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4206 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4207 }
4208 asym->section = &mips_elf_scom_section;
4209 asym->value = elfsym->internal_elf_sym.st_size;
4210 break;
4211
4212 case SHN_MIPS_SUNDEFINED:
4213 asym->section = bfd_und_section_ptr;
4214 break;
4215
4216 case SHN_MIPS_TEXT:
4217 {
4218 asection *section = bfd_get_section_by_name (abfd, ".text");
4219
4220 BFD_ASSERT (SGI_COMPAT (abfd));
4221 if (section != NULL)
4222 {
4223 asym->section = section;
4224 /* MIPS_TEXT is a bit special, the address is not an offset
4225 to the base of the .text section. So substract the section
4226 base address to make it an offset. */
4227 asym->value -= section->vma;
4228 }
4229 }
4230 break;
4231
4232 case SHN_MIPS_DATA:
4233 {
4234 asection *section = bfd_get_section_by_name (abfd, ".data");
4235
4236 BFD_ASSERT (SGI_COMPAT (abfd));
4237 if (section != NULL)
4238 {
4239 asym->section = section;
4240 /* MIPS_DATA is a bit special, the address is not an offset
4241 to the base of the .data section. So substract the section
4242 base address to make it an offset. */
4243 asym->value -= section->vma;
4244 }
4245 }
4246 break;
4247 }
4248 }
4249 \f
4250 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4251 relocations against two unnamed section symbols to resolve to the
4252 same address. For example, if we have code like:
4253
4254 lw $4,%got_disp(.data)($gp)
4255 lw $25,%got_disp(.text)($gp)
4256 jalr $25
4257
4258 then the linker will resolve both relocations to .data and the program
4259 will jump there rather than to .text.
4260
4261 We can work around this problem by giving names to local section symbols.
4262 This is also what the MIPSpro tools do. */
4263
4264 bfd_boolean
4265 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4266 {
4267 return SGI_COMPAT (abfd);
4268 }
4269 \f
4270 /* Work over a section just before writing it out. This routine is
4271 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4272 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4273 a better way. */
4274
4275 bfd_boolean
4276 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4277 {
4278 if (hdr->sh_type == SHT_MIPS_REGINFO
4279 && hdr->sh_size > 0)
4280 {
4281 bfd_byte buf[4];
4282
4283 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4284 BFD_ASSERT (hdr->contents == NULL);
4285
4286 if (bfd_seek (abfd,
4287 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4288 SEEK_SET) != 0)
4289 return FALSE;
4290 H_PUT_32 (abfd, elf_gp (abfd), buf);
4291 if (bfd_bwrite (buf, 4, abfd) != 4)
4292 return FALSE;
4293 }
4294
4295 if (hdr->sh_type == SHT_MIPS_OPTIONS
4296 && hdr->bfd_section != NULL
4297 && mips_elf_section_data (hdr->bfd_section) != NULL
4298 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4299 {
4300 bfd_byte *contents, *l, *lend;
4301
4302 /* We stored the section contents in the tdata field in the
4303 set_section_contents routine. We save the section contents
4304 so that we don't have to read them again.
4305 At this point we know that elf_gp is set, so we can look
4306 through the section contents to see if there is an
4307 ODK_REGINFO structure. */
4308
4309 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4310 l = contents;
4311 lend = contents + hdr->sh_size;
4312 while (l + sizeof (Elf_External_Options) <= lend)
4313 {
4314 Elf_Internal_Options intopt;
4315
4316 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4317 &intopt);
4318 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4319 {
4320 bfd_byte buf[8];
4321
4322 if (bfd_seek (abfd,
4323 (hdr->sh_offset
4324 + (l - contents)
4325 + sizeof (Elf_External_Options)
4326 + (sizeof (Elf64_External_RegInfo) - 8)),
4327 SEEK_SET) != 0)
4328 return FALSE;
4329 H_PUT_64 (abfd, elf_gp (abfd), buf);
4330 if (bfd_bwrite (buf, 8, abfd) != 8)
4331 return FALSE;
4332 }
4333 else if (intopt.kind == ODK_REGINFO)
4334 {
4335 bfd_byte buf[4];
4336
4337 if (bfd_seek (abfd,
4338 (hdr->sh_offset
4339 + (l - contents)
4340 + sizeof (Elf_External_Options)
4341 + (sizeof (Elf32_External_RegInfo) - 4)),
4342 SEEK_SET) != 0)
4343 return FALSE;
4344 H_PUT_32 (abfd, elf_gp (abfd), buf);
4345 if (bfd_bwrite (buf, 4, abfd) != 4)
4346 return FALSE;
4347 }
4348 l += intopt.size;
4349 }
4350 }
4351
4352 if (hdr->bfd_section != NULL)
4353 {
4354 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4355
4356 if (strcmp (name, ".sdata") == 0
4357 || strcmp (name, ".lit8") == 0
4358 || strcmp (name, ".lit4") == 0)
4359 {
4360 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4361 hdr->sh_type = SHT_PROGBITS;
4362 }
4363 else if (strcmp (name, ".sbss") == 0)
4364 {
4365 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4366 hdr->sh_type = SHT_NOBITS;
4367 }
4368 else if (strcmp (name, ".srdata") == 0)
4369 {
4370 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4371 hdr->sh_type = SHT_PROGBITS;
4372 }
4373 else if (strcmp (name, ".compact_rel") == 0)
4374 {
4375 hdr->sh_flags = 0;
4376 hdr->sh_type = SHT_PROGBITS;
4377 }
4378 else if (strcmp (name, ".rtproc") == 0)
4379 {
4380 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4381 {
4382 unsigned int adjust;
4383
4384 adjust = hdr->sh_size % hdr->sh_addralign;
4385 if (adjust != 0)
4386 hdr->sh_size += hdr->sh_addralign - adjust;
4387 }
4388 }
4389 }
4390
4391 return TRUE;
4392 }
4393
4394 /* Handle a MIPS specific section when reading an object file. This
4395 is called when elfcode.h finds a section with an unknown type.
4396 This routine supports both the 32-bit and 64-bit ELF ABI.
4397
4398 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4399 how to. */
4400
4401 bfd_boolean
4402 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4403 const char *name)
4404 {
4405 flagword flags = 0;
4406
4407 /* There ought to be a place to keep ELF backend specific flags, but
4408 at the moment there isn't one. We just keep track of the
4409 sections by their name, instead. Fortunately, the ABI gives
4410 suggested names for all the MIPS specific sections, so we will
4411 probably get away with this. */
4412 switch (hdr->sh_type)
4413 {
4414 case SHT_MIPS_LIBLIST:
4415 if (strcmp (name, ".liblist") != 0)
4416 return FALSE;
4417 break;
4418 case SHT_MIPS_MSYM:
4419 if (strcmp (name, ".msym") != 0)
4420 return FALSE;
4421 break;
4422 case SHT_MIPS_CONFLICT:
4423 if (strcmp (name, ".conflict") != 0)
4424 return FALSE;
4425 break;
4426 case SHT_MIPS_GPTAB:
4427 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4428 return FALSE;
4429 break;
4430 case SHT_MIPS_UCODE:
4431 if (strcmp (name, ".ucode") != 0)
4432 return FALSE;
4433 break;
4434 case SHT_MIPS_DEBUG:
4435 if (strcmp (name, ".mdebug") != 0)
4436 return FALSE;
4437 flags = SEC_DEBUGGING;
4438 break;
4439 case SHT_MIPS_REGINFO:
4440 if (strcmp (name, ".reginfo") != 0
4441 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4442 return FALSE;
4443 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4444 break;
4445 case SHT_MIPS_IFACE:
4446 if (strcmp (name, ".MIPS.interfaces") != 0)
4447 return FALSE;
4448 break;
4449 case SHT_MIPS_CONTENT:
4450 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4451 return FALSE;
4452 break;
4453 case SHT_MIPS_OPTIONS:
4454 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4455 return FALSE;
4456 break;
4457 case SHT_MIPS_DWARF:
4458 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4459 return FALSE;
4460 break;
4461 case SHT_MIPS_SYMBOL_LIB:
4462 if (strcmp (name, ".MIPS.symlib") != 0)
4463 return FALSE;
4464 break;
4465 case SHT_MIPS_EVENTS:
4466 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4467 && strncmp (name, ".MIPS.post_rel",
4468 sizeof ".MIPS.post_rel" - 1) != 0)
4469 return FALSE;
4470 break;
4471 default:
4472 return FALSE;
4473 }
4474
4475 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4476 return FALSE;
4477
4478 if (flags)
4479 {
4480 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4481 (bfd_get_section_flags (abfd,
4482 hdr->bfd_section)
4483 | flags)))
4484 return FALSE;
4485 }
4486
4487 /* FIXME: We should record sh_info for a .gptab section. */
4488
4489 /* For a .reginfo section, set the gp value in the tdata information
4490 from the contents of this section. We need the gp value while
4491 processing relocs, so we just get it now. The .reginfo section
4492 is not used in the 64-bit MIPS ELF ABI. */
4493 if (hdr->sh_type == SHT_MIPS_REGINFO)
4494 {
4495 Elf32_External_RegInfo ext;
4496 Elf32_RegInfo s;
4497
4498 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4499 &ext, 0, sizeof ext))
4500 return FALSE;
4501 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4502 elf_gp (abfd) = s.ri_gp_value;
4503 }
4504
4505 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4506 set the gp value based on what we find. We may see both
4507 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4508 they should agree. */
4509 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4510 {
4511 bfd_byte *contents, *l, *lend;
4512
4513 contents = bfd_malloc (hdr->sh_size);
4514 if (contents == NULL)
4515 return FALSE;
4516 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4517 0, hdr->sh_size))
4518 {
4519 free (contents);
4520 return FALSE;
4521 }
4522 l = contents;
4523 lend = contents + hdr->sh_size;
4524 while (l + sizeof (Elf_External_Options) <= lend)
4525 {
4526 Elf_Internal_Options intopt;
4527
4528 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4529 &intopt);
4530 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4531 {
4532 Elf64_Internal_RegInfo intreg;
4533
4534 bfd_mips_elf64_swap_reginfo_in
4535 (abfd,
4536 ((Elf64_External_RegInfo *)
4537 (l + sizeof (Elf_External_Options))),
4538 &intreg);
4539 elf_gp (abfd) = intreg.ri_gp_value;
4540 }
4541 else if (intopt.kind == ODK_REGINFO)
4542 {
4543 Elf32_RegInfo intreg;
4544
4545 bfd_mips_elf32_swap_reginfo_in
4546 (abfd,
4547 ((Elf32_External_RegInfo *)
4548 (l + sizeof (Elf_External_Options))),
4549 &intreg);
4550 elf_gp (abfd) = intreg.ri_gp_value;
4551 }
4552 l += intopt.size;
4553 }
4554 free (contents);
4555 }
4556
4557 return TRUE;
4558 }
4559
4560 /* Set the correct type for a MIPS ELF section. We do this by the
4561 section name, which is a hack, but ought to work. This routine is
4562 used by both the 32-bit and the 64-bit ABI. */
4563
4564 bfd_boolean
4565 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4566 {
4567 register const char *name;
4568
4569 name = bfd_get_section_name (abfd, sec);
4570
4571 if (strcmp (name, ".liblist") == 0)
4572 {
4573 hdr->sh_type = SHT_MIPS_LIBLIST;
4574 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
4575 /* The sh_link field is set in final_write_processing. */
4576 }
4577 else if (strcmp (name, ".conflict") == 0)
4578 hdr->sh_type = SHT_MIPS_CONFLICT;
4579 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4580 {
4581 hdr->sh_type = SHT_MIPS_GPTAB;
4582 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4583 /* The sh_info field is set in final_write_processing. */
4584 }
4585 else if (strcmp (name, ".ucode") == 0)
4586 hdr->sh_type = SHT_MIPS_UCODE;
4587 else if (strcmp (name, ".mdebug") == 0)
4588 {
4589 hdr->sh_type = SHT_MIPS_DEBUG;
4590 /* In a shared object on IRIX 5.3, the .mdebug section has an
4591 entsize of 0. FIXME: Does this matter? */
4592 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4593 hdr->sh_entsize = 0;
4594 else
4595 hdr->sh_entsize = 1;
4596 }
4597 else if (strcmp (name, ".reginfo") == 0)
4598 {
4599 hdr->sh_type = SHT_MIPS_REGINFO;
4600 /* In a shared object on IRIX 5.3, the .reginfo section has an
4601 entsize of 0x18. FIXME: Does this matter? */
4602 if (SGI_COMPAT (abfd))
4603 {
4604 if ((abfd->flags & DYNAMIC) != 0)
4605 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4606 else
4607 hdr->sh_entsize = 1;
4608 }
4609 else
4610 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4611 }
4612 else if (SGI_COMPAT (abfd)
4613 && (strcmp (name, ".hash") == 0
4614 || strcmp (name, ".dynamic") == 0
4615 || strcmp (name, ".dynstr") == 0))
4616 {
4617 if (SGI_COMPAT (abfd))
4618 hdr->sh_entsize = 0;
4619 #if 0
4620 /* This isn't how the IRIX6 linker behaves. */
4621 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4622 #endif
4623 }
4624 else if (strcmp (name, ".got") == 0
4625 || strcmp (name, ".srdata") == 0
4626 || strcmp (name, ".sdata") == 0
4627 || strcmp (name, ".sbss") == 0
4628 || strcmp (name, ".lit4") == 0
4629 || strcmp (name, ".lit8") == 0)
4630 hdr->sh_flags |= SHF_MIPS_GPREL;
4631 else if (strcmp (name, ".MIPS.interfaces") == 0)
4632 {
4633 hdr->sh_type = SHT_MIPS_IFACE;
4634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4635 }
4636 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4637 {
4638 hdr->sh_type = SHT_MIPS_CONTENT;
4639 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4640 /* The sh_info field is set in final_write_processing. */
4641 }
4642 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4643 {
4644 hdr->sh_type = SHT_MIPS_OPTIONS;
4645 hdr->sh_entsize = 1;
4646 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4647 }
4648 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4649 hdr->sh_type = SHT_MIPS_DWARF;
4650 else if (strcmp (name, ".MIPS.symlib") == 0)
4651 {
4652 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4653 /* The sh_link and sh_info fields are set in
4654 final_write_processing. */
4655 }
4656 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4657 || strncmp (name, ".MIPS.post_rel",
4658 sizeof ".MIPS.post_rel" - 1) == 0)
4659 {
4660 hdr->sh_type = SHT_MIPS_EVENTS;
4661 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4662 /* The sh_link field is set in final_write_processing. */
4663 }
4664 else if (strcmp (name, ".msym") == 0)
4665 {
4666 hdr->sh_type = SHT_MIPS_MSYM;
4667 hdr->sh_flags |= SHF_ALLOC;
4668 hdr->sh_entsize = 8;
4669 }
4670
4671 /* The generic elf_fake_sections will set up REL_HDR using the default
4672 kind of relocations. We used to set up a second header for the
4673 non-default kind of relocations here, but only NewABI would use
4674 these, and the IRIX ld doesn't like resulting empty RELA sections.
4675 Thus we create those header only on demand now. */
4676
4677 return TRUE;
4678 }
4679
4680 /* Given a BFD section, try to locate the corresponding ELF section
4681 index. This is used by both the 32-bit and the 64-bit ABI.
4682 Actually, it's not clear to me that the 64-bit ABI supports these,
4683 but for non-PIC objects we will certainly want support for at least
4684 the .scommon section. */
4685
4686 bfd_boolean
4687 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4688 asection *sec, int *retval)
4689 {
4690 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4691 {
4692 *retval = SHN_MIPS_SCOMMON;
4693 return TRUE;
4694 }
4695 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4696 {
4697 *retval = SHN_MIPS_ACOMMON;
4698 return TRUE;
4699 }
4700 return FALSE;
4701 }
4702 \f
4703 /* Hook called by the linker routine which adds symbols from an object
4704 file. We must handle the special MIPS section numbers here. */
4705
4706 bfd_boolean
4707 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4708 Elf_Internal_Sym *sym, const char **namep,
4709 flagword *flagsp ATTRIBUTE_UNUSED,
4710 asection **secp, bfd_vma *valp)
4711 {
4712 if (SGI_COMPAT (abfd)
4713 && (abfd->flags & DYNAMIC) != 0
4714 && strcmp (*namep, "_rld_new_interface") == 0)
4715 {
4716 /* Skip IRIX5 rld entry name. */
4717 *namep = NULL;
4718 return TRUE;
4719 }
4720
4721 switch (sym->st_shndx)
4722 {
4723 case SHN_COMMON:
4724 /* Common symbols less than the GP size are automatically
4725 treated as SHN_MIPS_SCOMMON symbols. */
4726 if (sym->st_size > elf_gp_size (abfd)
4727 || IRIX_COMPAT (abfd) == ict_irix6)
4728 break;
4729 /* Fall through. */
4730 case SHN_MIPS_SCOMMON:
4731 *secp = bfd_make_section_old_way (abfd, ".scommon");
4732 (*secp)->flags |= SEC_IS_COMMON;
4733 *valp = sym->st_size;
4734 break;
4735
4736 case SHN_MIPS_TEXT:
4737 /* This section is used in a shared object. */
4738 if (elf_tdata (abfd)->elf_text_section == NULL)
4739 {
4740 asymbol *elf_text_symbol;
4741 asection *elf_text_section;
4742 bfd_size_type amt = sizeof (asection);
4743
4744 elf_text_section = bfd_zalloc (abfd, amt);
4745 if (elf_text_section == NULL)
4746 return FALSE;
4747
4748 amt = sizeof (asymbol);
4749 elf_text_symbol = bfd_zalloc (abfd, amt);
4750 if (elf_text_symbol == NULL)
4751 return FALSE;
4752
4753 /* Initialize the section. */
4754
4755 elf_tdata (abfd)->elf_text_section = elf_text_section;
4756 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4757
4758 elf_text_section->symbol = elf_text_symbol;
4759 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4760
4761 elf_text_section->name = ".text";
4762 elf_text_section->flags = SEC_NO_FLAGS;
4763 elf_text_section->output_section = NULL;
4764 elf_text_section->owner = abfd;
4765 elf_text_symbol->name = ".text";
4766 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4767 elf_text_symbol->section = elf_text_section;
4768 }
4769 /* This code used to do *secp = bfd_und_section_ptr if
4770 info->shared. I don't know why, and that doesn't make sense,
4771 so I took it out. */
4772 *secp = elf_tdata (abfd)->elf_text_section;
4773 break;
4774
4775 case SHN_MIPS_ACOMMON:
4776 /* Fall through. XXX Can we treat this as allocated data? */
4777 case SHN_MIPS_DATA:
4778 /* This section is used in a shared object. */
4779 if (elf_tdata (abfd)->elf_data_section == NULL)
4780 {
4781 asymbol *elf_data_symbol;
4782 asection *elf_data_section;
4783 bfd_size_type amt = sizeof (asection);
4784
4785 elf_data_section = bfd_zalloc (abfd, amt);
4786 if (elf_data_section == NULL)
4787 return FALSE;
4788
4789 amt = sizeof (asymbol);
4790 elf_data_symbol = bfd_zalloc (abfd, amt);
4791 if (elf_data_symbol == NULL)
4792 return FALSE;
4793
4794 /* Initialize the section. */
4795
4796 elf_tdata (abfd)->elf_data_section = elf_data_section;
4797 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4798
4799 elf_data_section->symbol = elf_data_symbol;
4800 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4801
4802 elf_data_section->name = ".data";
4803 elf_data_section->flags = SEC_NO_FLAGS;
4804 elf_data_section->output_section = NULL;
4805 elf_data_section->owner = abfd;
4806 elf_data_symbol->name = ".data";
4807 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4808 elf_data_symbol->section = elf_data_section;
4809 }
4810 /* This code used to do *secp = bfd_und_section_ptr if
4811 info->shared. I don't know why, and that doesn't make sense,
4812 so I took it out. */
4813 *secp = elf_tdata (abfd)->elf_data_section;
4814 break;
4815
4816 case SHN_MIPS_SUNDEFINED:
4817 *secp = bfd_und_section_ptr;
4818 break;
4819 }
4820
4821 if (SGI_COMPAT (abfd)
4822 && ! info->shared
4823 && info->hash->creator == abfd->xvec
4824 && strcmp (*namep, "__rld_obj_head") == 0)
4825 {
4826 struct elf_link_hash_entry *h;
4827 struct bfd_link_hash_entry *bh;
4828
4829 /* Mark __rld_obj_head as dynamic. */
4830 bh = NULL;
4831 if (! (_bfd_generic_link_add_one_symbol
4832 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4833 get_elf_backend_data (abfd)->collect, &bh)))
4834 return FALSE;
4835
4836 h = (struct elf_link_hash_entry *) bh;
4837 h->non_elf = 0;
4838 h->def_regular = 1;
4839 h->type = STT_OBJECT;
4840
4841 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4842 return FALSE;
4843
4844 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4845 }
4846
4847 /* If this is a mips16 text symbol, add 1 to the value to make it
4848 odd. This will cause something like .word SYM to come up with
4849 the right value when it is loaded into the PC. */
4850 if (sym->st_other == STO_MIPS16)
4851 ++*valp;
4852
4853 return TRUE;
4854 }
4855
4856 /* This hook function is called before the linker writes out a global
4857 symbol. We mark symbols as small common if appropriate. This is
4858 also where we undo the increment of the value for a mips16 symbol. */
4859
4860 bfd_boolean
4861 _bfd_mips_elf_link_output_symbol_hook
4862 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4863 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4864 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4865 {
4866 /* If we see a common symbol, which implies a relocatable link, then
4867 if a symbol was small common in an input file, mark it as small
4868 common in the output file. */
4869 if (sym->st_shndx == SHN_COMMON
4870 && strcmp (input_sec->name, ".scommon") == 0)
4871 sym->st_shndx = SHN_MIPS_SCOMMON;
4872
4873 if (sym->st_other == STO_MIPS16)
4874 sym->st_value &= ~1;
4875
4876 return TRUE;
4877 }
4878 \f
4879 /* Functions for the dynamic linker. */
4880
4881 /* Create dynamic sections when linking against a dynamic object. */
4882
4883 bfd_boolean
4884 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4885 {
4886 struct elf_link_hash_entry *h;
4887 struct bfd_link_hash_entry *bh;
4888 flagword flags;
4889 register asection *s;
4890 const char * const *namep;
4891
4892 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4893 | SEC_LINKER_CREATED | SEC_READONLY);
4894
4895 /* Mips ABI requests the .dynamic section to be read only. */
4896 s = bfd_get_section_by_name (abfd, ".dynamic");
4897 if (s != NULL)
4898 {
4899 if (! bfd_set_section_flags (abfd, s, flags))
4900 return FALSE;
4901 }
4902
4903 /* We need to create .got section. */
4904 if (! mips_elf_create_got_section (abfd, info, FALSE))
4905 return FALSE;
4906
4907 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4908 return FALSE;
4909
4910 /* Create .stub section. */
4911 if (bfd_get_section_by_name (abfd,
4912 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4913 {
4914 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4915 if (s == NULL
4916 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4917 || ! bfd_set_section_alignment (abfd, s,
4918 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4919 return FALSE;
4920 }
4921
4922 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4923 && !info->shared
4924 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4925 {
4926 s = bfd_make_section (abfd, ".rld_map");
4927 if (s == NULL
4928 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4929 || ! bfd_set_section_alignment (abfd, s,
4930 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4931 return FALSE;
4932 }
4933
4934 /* On IRIX5, we adjust add some additional symbols and change the
4935 alignments of several sections. There is no ABI documentation
4936 indicating that this is necessary on IRIX6, nor any evidence that
4937 the linker takes such action. */
4938 if (IRIX_COMPAT (abfd) == ict_irix5)
4939 {
4940 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4941 {
4942 bh = NULL;
4943 if (! (_bfd_generic_link_add_one_symbol
4944 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4945 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4946 return FALSE;
4947
4948 h = (struct elf_link_hash_entry *) bh;
4949 h->non_elf = 0;
4950 h->def_regular = 1;
4951 h->type = STT_SECTION;
4952
4953 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4954 return FALSE;
4955 }
4956
4957 /* We need to create a .compact_rel section. */
4958 if (SGI_COMPAT (abfd))
4959 {
4960 if (!mips_elf_create_compact_rel_section (abfd, info))
4961 return FALSE;
4962 }
4963
4964 /* Change alignments of some sections. */
4965 s = bfd_get_section_by_name (abfd, ".hash");
4966 if (s != NULL)
4967 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4968 s = bfd_get_section_by_name (abfd, ".dynsym");
4969 if (s != NULL)
4970 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4971 s = bfd_get_section_by_name (abfd, ".dynstr");
4972 if (s != NULL)
4973 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4974 s = bfd_get_section_by_name (abfd, ".reginfo");
4975 if (s != NULL)
4976 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4977 s = bfd_get_section_by_name (abfd, ".dynamic");
4978 if (s != NULL)
4979 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4980 }
4981
4982 if (!info->shared)
4983 {
4984 const char *name;
4985
4986 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4987 bh = NULL;
4988 if (!(_bfd_generic_link_add_one_symbol
4989 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4990 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4991 return FALSE;
4992
4993 h = (struct elf_link_hash_entry *) bh;
4994 h->non_elf = 0;
4995 h->def_regular = 1;
4996 h->type = STT_SECTION;
4997
4998 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4999 return FALSE;
5000
5001 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5002 {
5003 /* __rld_map is a four byte word located in the .data section
5004 and is filled in by the rtld to contain a pointer to
5005 the _r_debug structure. Its symbol value will be set in
5006 _bfd_mips_elf_finish_dynamic_symbol. */
5007 s = bfd_get_section_by_name (abfd, ".rld_map");
5008 BFD_ASSERT (s != NULL);
5009
5010 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5011 bh = NULL;
5012 if (!(_bfd_generic_link_add_one_symbol
5013 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
5014 get_elf_backend_data (abfd)->collect, &bh)))
5015 return FALSE;
5016
5017 h = (struct elf_link_hash_entry *) bh;
5018 h->non_elf = 0;
5019 h->def_regular = 1;
5020 h->type = STT_OBJECT;
5021
5022 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5023 return FALSE;
5024 }
5025 }
5026
5027 return TRUE;
5028 }
5029 \f
5030 /* Look through the relocs for a section during the first phase, and
5031 allocate space in the global offset table. */
5032
5033 bfd_boolean
5034 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5035 asection *sec, const Elf_Internal_Rela *relocs)
5036 {
5037 const char *name;
5038 bfd *dynobj;
5039 Elf_Internal_Shdr *symtab_hdr;
5040 struct elf_link_hash_entry **sym_hashes;
5041 struct mips_got_info *g;
5042 size_t extsymoff;
5043 const Elf_Internal_Rela *rel;
5044 const Elf_Internal_Rela *rel_end;
5045 asection *sgot;
5046 asection *sreloc;
5047 const struct elf_backend_data *bed;
5048
5049 if (info->relocatable)
5050 return TRUE;
5051
5052 dynobj = elf_hash_table (info)->dynobj;
5053 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5054 sym_hashes = elf_sym_hashes (abfd);
5055 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5056
5057 /* Check for the mips16 stub sections. */
5058
5059 name = bfd_get_section_name (abfd, sec);
5060 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5061 {
5062 unsigned long r_symndx;
5063
5064 /* Look at the relocation information to figure out which symbol
5065 this is for. */
5066
5067 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5068
5069 if (r_symndx < extsymoff
5070 || sym_hashes[r_symndx - extsymoff] == NULL)
5071 {
5072 asection *o;
5073
5074 /* This stub is for a local symbol. This stub will only be
5075 needed if there is some relocation in this BFD, other
5076 than a 16 bit function call, which refers to this symbol. */
5077 for (o = abfd->sections; o != NULL; o = o->next)
5078 {
5079 Elf_Internal_Rela *sec_relocs;
5080 const Elf_Internal_Rela *r, *rend;
5081
5082 /* We can ignore stub sections when looking for relocs. */
5083 if ((o->flags & SEC_RELOC) == 0
5084 || o->reloc_count == 0
5085 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5086 sizeof FN_STUB - 1) == 0
5087 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5088 sizeof CALL_STUB - 1) == 0
5089 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5090 sizeof CALL_FP_STUB - 1) == 0)
5091 continue;
5092
5093 sec_relocs
5094 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5095 info->keep_memory);
5096 if (sec_relocs == NULL)
5097 return FALSE;
5098
5099 rend = sec_relocs + o->reloc_count;
5100 for (r = sec_relocs; r < rend; r++)
5101 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5102 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5103 break;
5104
5105 if (elf_section_data (o)->relocs != sec_relocs)
5106 free (sec_relocs);
5107
5108 if (r < rend)
5109 break;
5110 }
5111
5112 if (o == NULL)
5113 {
5114 /* There is no non-call reloc for this stub, so we do
5115 not need it. Since this function is called before
5116 the linker maps input sections to output sections, we
5117 can easily discard it by setting the SEC_EXCLUDE
5118 flag. */
5119 sec->flags |= SEC_EXCLUDE;
5120 return TRUE;
5121 }
5122
5123 /* Record this stub in an array of local symbol stubs for
5124 this BFD. */
5125 if (elf_tdata (abfd)->local_stubs == NULL)
5126 {
5127 unsigned long symcount;
5128 asection **n;
5129 bfd_size_type amt;
5130
5131 if (elf_bad_symtab (abfd))
5132 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5133 else
5134 symcount = symtab_hdr->sh_info;
5135 amt = symcount * sizeof (asection *);
5136 n = bfd_zalloc (abfd, amt);
5137 if (n == NULL)
5138 return FALSE;
5139 elf_tdata (abfd)->local_stubs = n;
5140 }
5141
5142 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5143
5144 /* We don't need to set mips16_stubs_seen in this case.
5145 That flag is used to see whether we need to look through
5146 the global symbol table for stubs. We don't need to set
5147 it here, because we just have a local stub. */
5148 }
5149 else
5150 {
5151 struct mips_elf_link_hash_entry *h;
5152
5153 h = ((struct mips_elf_link_hash_entry *)
5154 sym_hashes[r_symndx - extsymoff]);
5155
5156 /* H is the symbol this stub is for. */
5157
5158 h->fn_stub = sec;
5159 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5160 }
5161 }
5162 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5163 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5164 {
5165 unsigned long r_symndx;
5166 struct mips_elf_link_hash_entry *h;
5167 asection **loc;
5168
5169 /* Look at the relocation information to figure out which symbol
5170 this is for. */
5171
5172 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5173
5174 if (r_symndx < extsymoff
5175 || sym_hashes[r_symndx - extsymoff] == NULL)
5176 {
5177 /* This stub was actually built for a static symbol defined
5178 in the same file. We assume that all static symbols in
5179 mips16 code are themselves mips16, so we can simply
5180 discard this stub. Since this function is called before
5181 the linker maps input sections to output sections, we can
5182 easily discard it by setting the SEC_EXCLUDE flag. */
5183 sec->flags |= SEC_EXCLUDE;
5184 return TRUE;
5185 }
5186
5187 h = ((struct mips_elf_link_hash_entry *)
5188 sym_hashes[r_symndx - extsymoff]);
5189
5190 /* H is the symbol this stub is for. */
5191
5192 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5193 loc = &h->call_fp_stub;
5194 else
5195 loc = &h->call_stub;
5196
5197 /* If we already have an appropriate stub for this function, we
5198 don't need another one, so we can discard this one. Since
5199 this function is called before the linker maps input sections
5200 to output sections, we can easily discard it by setting the
5201 SEC_EXCLUDE flag. We can also discard this section if we
5202 happen to already know that this is a mips16 function; it is
5203 not necessary to check this here, as it is checked later, but
5204 it is slightly faster to check now. */
5205 if (*loc != NULL || h->root.other == STO_MIPS16)
5206 {
5207 sec->flags |= SEC_EXCLUDE;
5208 return TRUE;
5209 }
5210
5211 *loc = sec;
5212 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5213 }
5214
5215 if (dynobj == NULL)
5216 {
5217 sgot = NULL;
5218 g = NULL;
5219 }
5220 else
5221 {
5222 sgot = mips_elf_got_section (dynobj, FALSE);
5223 if (sgot == NULL)
5224 g = NULL;
5225 else
5226 {
5227 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5228 g = mips_elf_section_data (sgot)->u.got_info;
5229 BFD_ASSERT (g != NULL);
5230 }
5231 }
5232
5233 sreloc = NULL;
5234 bed = get_elf_backend_data (abfd);
5235 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5236 for (rel = relocs; rel < rel_end; ++rel)
5237 {
5238 unsigned long r_symndx;
5239 unsigned int r_type;
5240 struct elf_link_hash_entry *h;
5241
5242 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5243 r_type = ELF_R_TYPE (abfd, rel->r_info);
5244
5245 if (r_symndx < extsymoff)
5246 h = NULL;
5247 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5248 {
5249 (*_bfd_error_handler)
5250 (_("%B: Malformed reloc detected for section %s"),
5251 abfd, name);
5252 bfd_set_error (bfd_error_bad_value);
5253 return FALSE;
5254 }
5255 else
5256 {
5257 h = sym_hashes[r_symndx - extsymoff];
5258
5259 /* This may be an indirect symbol created because of a version. */
5260 if (h != NULL)
5261 {
5262 while (h->root.type == bfd_link_hash_indirect)
5263 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5264 }
5265 }
5266
5267 /* Some relocs require a global offset table. */
5268 if (dynobj == NULL || sgot == NULL)
5269 {
5270 switch (r_type)
5271 {
5272 case R_MIPS_GOT16:
5273 case R_MIPS_CALL16:
5274 case R_MIPS_CALL_HI16:
5275 case R_MIPS_CALL_LO16:
5276 case R_MIPS_GOT_HI16:
5277 case R_MIPS_GOT_LO16:
5278 case R_MIPS_GOT_PAGE:
5279 case R_MIPS_GOT_OFST:
5280 case R_MIPS_GOT_DISP:
5281 if (dynobj == NULL)
5282 elf_hash_table (info)->dynobj = dynobj = abfd;
5283 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5284 return FALSE;
5285 g = mips_elf_got_info (dynobj, &sgot);
5286 break;
5287
5288 case R_MIPS_32:
5289 case R_MIPS_REL32:
5290 case R_MIPS_64:
5291 if (dynobj == NULL
5292 && (info->shared || h != NULL)
5293 && (sec->flags & SEC_ALLOC) != 0)
5294 elf_hash_table (info)->dynobj = dynobj = abfd;
5295 break;
5296
5297 default:
5298 break;
5299 }
5300 }
5301
5302 if (!h && (r_type == R_MIPS_CALL_LO16
5303 || r_type == R_MIPS_GOT_LO16
5304 || r_type == R_MIPS_GOT_DISP))
5305 {
5306 /* We may need a local GOT entry for this relocation. We
5307 don't count R_MIPS_GOT_PAGE because we can estimate the
5308 maximum number of pages needed by looking at the size of
5309 the segment. Similar comments apply to R_MIPS_GOT16 and
5310 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5311 R_MIPS_CALL_HI16 because these are always followed by an
5312 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5313 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5314 rel->r_addend, g))
5315 return FALSE;
5316 }
5317
5318 switch (r_type)
5319 {
5320 case R_MIPS_CALL16:
5321 if (h == NULL)
5322 {
5323 (*_bfd_error_handler)
5324 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5325 abfd, (unsigned long) rel->r_offset);
5326 bfd_set_error (bfd_error_bad_value);
5327 return FALSE;
5328 }
5329 /* Fall through. */
5330
5331 case R_MIPS_CALL_HI16:
5332 case R_MIPS_CALL_LO16:
5333 if (h != NULL)
5334 {
5335 /* This symbol requires a global offset table entry. */
5336 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5337 return FALSE;
5338
5339 /* We need a stub, not a plt entry for the undefined
5340 function. But we record it as if it needs plt. See
5341 _bfd_elf_adjust_dynamic_symbol. */
5342 h->needs_plt = 1;
5343 h->type = STT_FUNC;
5344 }
5345 break;
5346
5347 case R_MIPS_GOT_PAGE:
5348 /* If this is a global, overridable symbol, GOT_PAGE will
5349 decay to GOT_DISP, so we'll need a GOT entry for it. */
5350 if (h == NULL)
5351 break;
5352 else
5353 {
5354 struct mips_elf_link_hash_entry *hmips =
5355 (struct mips_elf_link_hash_entry *) h;
5356
5357 while (hmips->root.root.type == bfd_link_hash_indirect
5358 || hmips->root.root.type == bfd_link_hash_warning)
5359 hmips = (struct mips_elf_link_hash_entry *)
5360 hmips->root.root.u.i.link;
5361
5362 if (hmips->root.def_regular
5363 && ! (info->shared && ! info->symbolic
5364 && ! hmips->root.forced_local))
5365 break;
5366 }
5367 /* Fall through. */
5368
5369 case R_MIPS_GOT16:
5370 case R_MIPS_GOT_HI16:
5371 case R_MIPS_GOT_LO16:
5372 case R_MIPS_GOT_DISP:
5373 /* This symbol requires a global offset table entry. */
5374 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5375 return FALSE;
5376 break;
5377
5378 case R_MIPS_32:
5379 case R_MIPS_REL32:
5380 case R_MIPS_64:
5381 if ((info->shared || h != NULL)
5382 && (sec->flags & SEC_ALLOC) != 0)
5383 {
5384 if (sreloc == NULL)
5385 {
5386 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5387 if (sreloc == NULL)
5388 return FALSE;
5389 }
5390 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5391 if (info->shared)
5392 {
5393 /* When creating a shared object, we must copy these
5394 reloc types into the output file as R_MIPS_REL32
5395 relocs. We make room for this reloc in the
5396 .rel.dyn reloc section. */
5397 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5398 if ((sec->flags & MIPS_READONLY_SECTION)
5399 == MIPS_READONLY_SECTION)
5400 /* We tell the dynamic linker that there are
5401 relocations against the text segment. */
5402 info->flags |= DF_TEXTREL;
5403 }
5404 else
5405 {
5406 struct mips_elf_link_hash_entry *hmips;
5407
5408 /* We only need to copy this reloc if the symbol is
5409 defined in a dynamic object. */
5410 hmips = (struct mips_elf_link_hash_entry *) h;
5411 ++hmips->possibly_dynamic_relocs;
5412 if ((sec->flags & MIPS_READONLY_SECTION)
5413 == MIPS_READONLY_SECTION)
5414 /* We need it to tell the dynamic linker if there
5415 are relocations against the text segment. */
5416 hmips->readonly_reloc = TRUE;
5417 }
5418
5419 /* Even though we don't directly need a GOT entry for
5420 this symbol, a symbol must have a dynamic symbol
5421 table index greater that DT_MIPS_GOTSYM if there are
5422 dynamic relocations against it. */
5423 if (h != NULL)
5424 {
5425 if (dynobj == NULL)
5426 elf_hash_table (info)->dynobj = dynobj = abfd;
5427 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5428 return FALSE;
5429 g = mips_elf_got_info (dynobj, &sgot);
5430 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5431 return FALSE;
5432 }
5433 }
5434
5435 if (SGI_COMPAT (abfd))
5436 mips_elf_hash_table (info)->compact_rel_size +=
5437 sizeof (Elf32_External_crinfo);
5438 break;
5439
5440 case R_MIPS_26:
5441 case R_MIPS_GPREL16:
5442 case R_MIPS_LITERAL:
5443 case R_MIPS_GPREL32:
5444 if (SGI_COMPAT (abfd))
5445 mips_elf_hash_table (info)->compact_rel_size +=
5446 sizeof (Elf32_External_crinfo);
5447 break;
5448
5449 /* This relocation describes the C++ object vtable hierarchy.
5450 Reconstruct it for later use during GC. */
5451 case R_MIPS_GNU_VTINHERIT:
5452 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5453 return FALSE;
5454 break;
5455
5456 /* This relocation describes which C++ vtable entries are actually
5457 used. Record for later use during GC. */
5458 case R_MIPS_GNU_VTENTRY:
5459 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5460 return FALSE;
5461 break;
5462
5463 default:
5464 break;
5465 }
5466
5467 /* We must not create a stub for a symbol that has relocations
5468 related to taking the function's address. */
5469 switch (r_type)
5470 {
5471 default:
5472 if (h != NULL)
5473 {
5474 struct mips_elf_link_hash_entry *mh;
5475
5476 mh = (struct mips_elf_link_hash_entry *) h;
5477 mh->no_fn_stub = TRUE;
5478 }
5479 break;
5480 case R_MIPS_CALL16:
5481 case R_MIPS_CALL_HI16:
5482 case R_MIPS_CALL_LO16:
5483 case R_MIPS_JALR:
5484 break;
5485 }
5486
5487 /* If this reloc is not a 16 bit call, and it has a global
5488 symbol, then we will need the fn_stub if there is one.
5489 References from a stub section do not count. */
5490 if (h != NULL
5491 && r_type != R_MIPS16_26
5492 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5493 sizeof FN_STUB - 1) != 0
5494 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5495 sizeof CALL_STUB - 1) != 0
5496 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5497 sizeof CALL_FP_STUB - 1) != 0)
5498 {
5499 struct mips_elf_link_hash_entry *mh;
5500
5501 mh = (struct mips_elf_link_hash_entry *) h;
5502 mh->need_fn_stub = TRUE;
5503 }
5504 }
5505
5506 return TRUE;
5507 }
5508 \f
5509 bfd_boolean
5510 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5511 struct bfd_link_info *link_info,
5512 bfd_boolean *again)
5513 {
5514 Elf_Internal_Rela *internal_relocs;
5515 Elf_Internal_Rela *irel, *irelend;
5516 Elf_Internal_Shdr *symtab_hdr;
5517 bfd_byte *contents = NULL;
5518 size_t extsymoff;
5519 bfd_boolean changed_contents = FALSE;
5520 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5521 Elf_Internal_Sym *isymbuf = NULL;
5522
5523 /* We are not currently changing any sizes, so only one pass. */
5524 *again = FALSE;
5525
5526 if (link_info->relocatable)
5527 return TRUE;
5528
5529 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5530 link_info->keep_memory);
5531 if (internal_relocs == NULL)
5532 return TRUE;
5533
5534 irelend = internal_relocs + sec->reloc_count
5535 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5536 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5537 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5538
5539 for (irel = internal_relocs; irel < irelend; irel++)
5540 {
5541 bfd_vma symval;
5542 bfd_signed_vma sym_offset;
5543 unsigned int r_type;
5544 unsigned long r_symndx;
5545 asection *sym_sec;
5546 unsigned long instruction;
5547
5548 /* Turn jalr into bgezal, and jr into beq, if they're marked
5549 with a JALR relocation, that indicate where they jump to.
5550 This saves some pipeline bubbles. */
5551 r_type = ELF_R_TYPE (abfd, irel->r_info);
5552 if (r_type != R_MIPS_JALR)
5553 continue;
5554
5555 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5556 /* Compute the address of the jump target. */
5557 if (r_symndx >= extsymoff)
5558 {
5559 struct mips_elf_link_hash_entry *h
5560 = ((struct mips_elf_link_hash_entry *)
5561 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5562
5563 while (h->root.root.type == bfd_link_hash_indirect
5564 || h->root.root.type == bfd_link_hash_warning)
5565 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5566
5567 /* If a symbol is undefined, or if it may be overridden,
5568 skip it. */
5569 if (! ((h->root.root.type == bfd_link_hash_defined
5570 || h->root.root.type == bfd_link_hash_defweak)
5571 && h->root.root.u.def.section)
5572 || (link_info->shared && ! link_info->symbolic
5573 && !h->root.forced_local))
5574 continue;
5575
5576 sym_sec = h->root.root.u.def.section;
5577 if (sym_sec->output_section)
5578 symval = (h->root.root.u.def.value
5579 + sym_sec->output_section->vma
5580 + sym_sec->output_offset);
5581 else
5582 symval = h->root.root.u.def.value;
5583 }
5584 else
5585 {
5586 Elf_Internal_Sym *isym;
5587
5588 /* Read this BFD's symbols if we haven't done so already. */
5589 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5590 {
5591 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5592 if (isymbuf == NULL)
5593 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5594 symtab_hdr->sh_info, 0,
5595 NULL, NULL, NULL);
5596 if (isymbuf == NULL)
5597 goto relax_return;
5598 }
5599
5600 isym = isymbuf + r_symndx;
5601 if (isym->st_shndx == SHN_UNDEF)
5602 continue;
5603 else if (isym->st_shndx == SHN_ABS)
5604 sym_sec = bfd_abs_section_ptr;
5605 else if (isym->st_shndx == SHN_COMMON)
5606 sym_sec = bfd_com_section_ptr;
5607 else
5608 sym_sec
5609 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5610 symval = isym->st_value
5611 + sym_sec->output_section->vma
5612 + sym_sec->output_offset;
5613 }
5614
5615 /* Compute branch offset, from delay slot of the jump to the
5616 branch target. */
5617 sym_offset = (symval + irel->r_addend)
5618 - (sec_start + irel->r_offset + 4);
5619
5620 /* Branch offset must be properly aligned. */
5621 if ((sym_offset & 3) != 0)
5622 continue;
5623
5624 sym_offset >>= 2;
5625
5626 /* Check that it's in range. */
5627 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5628 continue;
5629
5630 /* Get the section contents if we haven't done so already. */
5631 if (contents == NULL)
5632 {
5633 /* Get cached copy if it exists. */
5634 if (elf_section_data (sec)->this_hdr.contents != NULL)
5635 contents = elf_section_data (sec)->this_hdr.contents;
5636 else
5637 {
5638 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5639 goto relax_return;
5640 }
5641 }
5642
5643 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5644
5645 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5646 if ((instruction & 0xfc1fffff) == 0x0000f809)
5647 instruction = 0x04110000;
5648 /* If it was jr <reg>, turn it into b <target>. */
5649 else if ((instruction & 0xfc1fffff) == 0x00000008)
5650 instruction = 0x10000000;
5651 else
5652 continue;
5653
5654 instruction |= (sym_offset & 0xffff);
5655 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5656 changed_contents = TRUE;
5657 }
5658
5659 if (contents != NULL
5660 && elf_section_data (sec)->this_hdr.contents != contents)
5661 {
5662 if (!changed_contents && !link_info->keep_memory)
5663 free (contents);
5664 else
5665 {
5666 /* Cache the section contents for elf_link_input_bfd. */
5667 elf_section_data (sec)->this_hdr.contents = contents;
5668 }
5669 }
5670 return TRUE;
5671
5672 relax_return:
5673 if (contents != NULL
5674 && elf_section_data (sec)->this_hdr.contents != contents)
5675 free (contents);
5676 return FALSE;
5677 }
5678 \f
5679 /* Adjust a symbol defined by a dynamic object and referenced by a
5680 regular object. The current definition is in some section of the
5681 dynamic object, but we're not including those sections. We have to
5682 change the definition to something the rest of the link can
5683 understand. */
5684
5685 bfd_boolean
5686 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5687 struct elf_link_hash_entry *h)
5688 {
5689 bfd *dynobj;
5690 struct mips_elf_link_hash_entry *hmips;
5691 asection *s;
5692
5693 dynobj = elf_hash_table (info)->dynobj;
5694
5695 /* Make sure we know what is going on here. */
5696 BFD_ASSERT (dynobj != NULL
5697 && (h->needs_plt
5698 || h->u.weakdef != NULL
5699 || (h->def_dynamic
5700 && h->ref_regular
5701 && !h->def_regular)));
5702
5703 /* If this symbol is defined in a dynamic object, we need to copy
5704 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5705 file. */
5706 hmips = (struct mips_elf_link_hash_entry *) h;
5707 if (! info->relocatable
5708 && hmips->possibly_dynamic_relocs != 0
5709 && (h->root.type == bfd_link_hash_defweak
5710 || !h->def_regular))
5711 {
5712 mips_elf_allocate_dynamic_relocations (dynobj,
5713 hmips->possibly_dynamic_relocs);
5714 if (hmips->readonly_reloc)
5715 /* We tell the dynamic linker that there are relocations
5716 against the text segment. */
5717 info->flags |= DF_TEXTREL;
5718 }
5719
5720 /* For a function, create a stub, if allowed. */
5721 if (! hmips->no_fn_stub
5722 && h->needs_plt)
5723 {
5724 if (! elf_hash_table (info)->dynamic_sections_created)
5725 return TRUE;
5726
5727 /* If this symbol is not defined in a regular file, then set
5728 the symbol to the stub location. This is required to make
5729 function pointers compare as equal between the normal
5730 executable and the shared library. */
5731 if (!h->def_regular)
5732 {
5733 /* We need .stub section. */
5734 s = bfd_get_section_by_name (dynobj,
5735 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5736 BFD_ASSERT (s != NULL);
5737
5738 h->root.u.def.section = s;
5739 h->root.u.def.value = s->size;
5740
5741 /* XXX Write this stub address somewhere. */
5742 h->plt.offset = s->size;
5743
5744 /* Make room for this stub code. */
5745 s->size += MIPS_FUNCTION_STUB_SIZE;
5746
5747 /* The last half word of the stub will be filled with the index
5748 of this symbol in .dynsym section. */
5749 return TRUE;
5750 }
5751 }
5752 else if ((h->type == STT_FUNC)
5753 && !h->needs_plt)
5754 {
5755 /* This will set the entry for this symbol in the GOT to 0, and
5756 the dynamic linker will take care of this. */
5757 h->root.u.def.value = 0;
5758 return TRUE;
5759 }
5760
5761 /* If this is a weak symbol, and there is a real definition, the
5762 processor independent code will have arranged for us to see the
5763 real definition first, and we can just use the same value. */
5764 if (h->u.weakdef != NULL)
5765 {
5766 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5767 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5768 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5769 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5770 return TRUE;
5771 }
5772
5773 /* This is a reference to a symbol defined by a dynamic object which
5774 is not a function. */
5775
5776 return TRUE;
5777 }
5778 \f
5779 /* This function is called after all the input files have been read,
5780 and the input sections have been assigned to output sections. We
5781 check for any mips16 stub sections that we can discard. */
5782
5783 bfd_boolean
5784 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5785 struct bfd_link_info *info)
5786 {
5787 asection *ri;
5788
5789 bfd *dynobj;
5790 asection *s;
5791 struct mips_got_info *g;
5792 int i;
5793 bfd_size_type loadable_size = 0;
5794 bfd_size_type local_gotno;
5795 bfd *sub;
5796
5797 /* The .reginfo section has a fixed size. */
5798 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5799 if (ri != NULL)
5800 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5801
5802 if (! (info->relocatable
5803 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5804 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5805 mips_elf_check_mips16_stubs, NULL);
5806
5807 dynobj = elf_hash_table (info)->dynobj;
5808 if (dynobj == NULL)
5809 /* Relocatable links don't have it. */
5810 return TRUE;
5811
5812 g = mips_elf_got_info (dynobj, &s);
5813 if (s == NULL)
5814 return TRUE;
5815
5816 /* Calculate the total loadable size of the output. That
5817 will give us the maximum number of GOT_PAGE entries
5818 required. */
5819 for (sub = info->input_bfds; sub; sub = sub->link_next)
5820 {
5821 asection *subsection;
5822
5823 for (subsection = sub->sections;
5824 subsection;
5825 subsection = subsection->next)
5826 {
5827 if ((subsection->flags & SEC_ALLOC) == 0)
5828 continue;
5829 loadable_size += ((subsection->size + 0xf)
5830 &~ (bfd_size_type) 0xf);
5831 }
5832 }
5833
5834 /* There has to be a global GOT entry for every symbol with
5835 a dynamic symbol table index of DT_MIPS_GOTSYM or
5836 higher. Therefore, it make sense to put those symbols
5837 that need GOT entries at the end of the symbol table. We
5838 do that here. */
5839 if (! mips_elf_sort_hash_table (info, 1))
5840 return FALSE;
5841
5842 if (g->global_gotsym != NULL)
5843 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5844 else
5845 /* If there are no global symbols, or none requiring
5846 relocations, then GLOBAL_GOTSYM will be NULL. */
5847 i = 0;
5848
5849 /* In the worst case, we'll get one stub per dynamic symbol, plus
5850 one to account for the dummy entry at the end required by IRIX
5851 rld. */
5852 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5853
5854 /* Assume there are two loadable segments consisting of
5855 contiguous sections. Is 5 enough? */
5856 local_gotno = (loadable_size >> 16) + 5;
5857
5858 g->local_gotno += local_gotno;
5859 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5860
5861 g->global_gotno = i;
5862 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5863
5864 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5865 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5866 return FALSE;
5867
5868 return TRUE;
5869 }
5870
5871 /* Set the sizes of the dynamic sections. */
5872
5873 bfd_boolean
5874 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5875 struct bfd_link_info *info)
5876 {
5877 bfd *dynobj;
5878 asection *s;
5879 bfd_boolean reltext;
5880
5881 dynobj = elf_hash_table (info)->dynobj;
5882 BFD_ASSERT (dynobj != NULL);
5883
5884 if (elf_hash_table (info)->dynamic_sections_created)
5885 {
5886 /* Set the contents of the .interp section to the interpreter. */
5887 if (info->executable)
5888 {
5889 s = bfd_get_section_by_name (dynobj, ".interp");
5890 BFD_ASSERT (s != NULL);
5891 s->size
5892 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5893 s->contents
5894 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5895 }
5896 }
5897
5898 /* The check_relocs and adjust_dynamic_symbol entry points have
5899 determined the sizes of the various dynamic sections. Allocate
5900 memory for them. */
5901 reltext = FALSE;
5902 for (s = dynobj->sections; s != NULL; s = s->next)
5903 {
5904 const char *name;
5905 bfd_boolean strip;
5906
5907 /* It's OK to base decisions on the section name, because none
5908 of the dynobj section names depend upon the input files. */
5909 name = bfd_get_section_name (dynobj, s);
5910
5911 if ((s->flags & SEC_LINKER_CREATED) == 0)
5912 continue;
5913
5914 strip = FALSE;
5915
5916 if (strncmp (name, ".rel", 4) == 0)
5917 {
5918 if (s->size == 0)
5919 {
5920 /* We only strip the section if the output section name
5921 has the same name. Otherwise, there might be several
5922 input sections for this output section. FIXME: This
5923 code is probably not needed these days anyhow, since
5924 the linker now does not create empty output sections. */
5925 if (s->output_section != NULL
5926 && strcmp (name,
5927 bfd_get_section_name (s->output_section->owner,
5928 s->output_section)) == 0)
5929 strip = TRUE;
5930 }
5931 else
5932 {
5933 const char *outname;
5934 asection *target;
5935
5936 /* If this relocation section applies to a read only
5937 section, then we probably need a DT_TEXTREL entry.
5938 If the relocation section is .rel.dyn, we always
5939 assert a DT_TEXTREL entry rather than testing whether
5940 there exists a relocation to a read only section or
5941 not. */
5942 outname = bfd_get_section_name (output_bfd,
5943 s->output_section);
5944 target = bfd_get_section_by_name (output_bfd, outname + 4);
5945 if ((target != NULL
5946 && (target->flags & SEC_READONLY) != 0
5947 && (target->flags & SEC_ALLOC) != 0)
5948 || strcmp (outname, ".rel.dyn") == 0)
5949 reltext = TRUE;
5950
5951 /* We use the reloc_count field as a counter if we need
5952 to copy relocs into the output file. */
5953 if (strcmp (name, ".rel.dyn") != 0)
5954 s->reloc_count = 0;
5955
5956 /* If combreloc is enabled, elf_link_sort_relocs() will
5957 sort relocations, but in a different way than we do,
5958 and before we're done creating relocations. Also, it
5959 will move them around between input sections'
5960 relocation's contents, so our sorting would be
5961 broken, so don't let it run. */
5962 info->combreloc = 0;
5963 }
5964 }
5965 else if (strncmp (name, ".got", 4) == 0)
5966 {
5967 /* _bfd_mips_elf_always_size_sections() has already done
5968 most of the work, but some symbols may have been mapped
5969 to versions that we must now resolve in the got_entries
5970 hash tables. */
5971 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5972 struct mips_got_info *g = gg;
5973 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5974 unsigned int needed_relocs = 0;
5975
5976 if (gg->next)
5977 {
5978 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5979 set_got_offset_arg.info = info;
5980
5981 mips_elf_resolve_final_got_entries (gg);
5982 for (g = gg->next; g && g->next != gg; g = g->next)
5983 {
5984 unsigned int save_assign;
5985
5986 mips_elf_resolve_final_got_entries (g);
5987
5988 /* Assign offsets to global GOT entries. */
5989 save_assign = g->assigned_gotno;
5990 g->assigned_gotno = g->local_gotno;
5991 set_got_offset_arg.g = g;
5992 set_got_offset_arg.needed_relocs = 0;
5993 htab_traverse (g->got_entries,
5994 mips_elf_set_global_got_offset,
5995 &set_got_offset_arg);
5996 needed_relocs += set_got_offset_arg.needed_relocs;
5997 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5998 <= g->global_gotno);
5999
6000 g->assigned_gotno = save_assign;
6001 if (info->shared)
6002 {
6003 needed_relocs += g->local_gotno - g->assigned_gotno;
6004 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6005 + g->next->global_gotno
6006 + MIPS_RESERVED_GOTNO);
6007 }
6008 }
6009
6010 if (needed_relocs)
6011 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6012 }
6013 }
6014 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6015 {
6016 /* IRIX rld assumes that the function stub isn't at the end
6017 of .text section. So put a dummy. XXX */
6018 s->size += MIPS_FUNCTION_STUB_SIZE;
6019 }
6020 else if (! info->shared
6021 && ! mips_elf_hash_table (info)->use_rld_obj_head
6022 && strncmp (name, ".rld_map", 8) == 0)
6023 {
6024 /* We add a room for __rld_map. It will be filled in by the
6025 rtld to contain a pointer to the _r_debug structure. */
6026 s->size += 4;
6027 }
6028 else if (SGI_COMPAT (output_bfd)
6029 && strncmp (name, ".compact_rel", 12) == 0)
6030 s->size += mips_elf_hash_table (info)->compact_rel_size;
6031 else if (strncmp (name, ".init", 5) != 0)
6032 {
6033 /* It's not one of our sections, so don't allocate space. */
6034 continue;
6035 }
6036
6037 if (strip)
6038 {
6039 _bfd_strip_section_from_output (info, s);
6040 continue;
6041 }
6042
6043 /* Allocate memory for the section contents. */
6044 s->contents = bfd_zalloc (dynobj, s->size);
6045 if (s->contents == NULL && s->size != 0)
6046 {
6047 bfd_set_error (bfd_error_no_memory);
6048 return FALSE;
6049 }
6050 }
6051
6052 if (elf_hash_table (info)->dynamic_sections_created)
6053 {
6054 /* Add some entries to the .dynamic section. We fill in the
6055 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6056 must add the entries now so that we get the correct size for
6057 the .dynamic section. The DT_DEBUG entry is filled in by the
6058 dynamic linker and used by the debugger. */
6059 if (! info->shared)
6060 {
6061 /* SGI object has the equivalence of DT_DEBUG in the
6062 DT_MIPS_RLD_MAP entry. */
6063 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6064 return FALSE;
6065 if (!SGI_COMPAT (output_bfd))
6066 {
6067 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6068 return FALSE;
6069 }
6070 }
6071 else
6072 {
6073 /* Shared libraries on traditional mips have DT_DEBUG. */
6074 if (!SGI_COMPAT (output_bfd))
6075 {
6076 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6077 return FALSE;
6078 }
6079 }
6080
6081 if (reltext && SGI_COMPAT (output_bfd))
6082 info->flags |= DF_TEXTREL;
6083
6084 if ((info->flags & DF_TEXTREL) != 0)
6085 {
6086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6087 return FALSE;
6088 }
6089
6090 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6091 return FALSE;
6092
6093 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6094 {
6095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6096 return FALSE;
6097
6098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6099 return FALSE;
6100
6101 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6102 return FALSE;
6103 }
6104
6105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6106 return FALSE;
6107
6108 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6109 return FALSE;
6110
6111 #if 0
6112 /* Time stamps in executable files are a bad idea. */
6113 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6114 return FALSE;
6115 #endif
6116
6117 #if 0 /* FIXME */
6118 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6119 return FALSE;
6120 #endif
6121
6122 #if 0 /* FIXME */
6123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6124 return FALSE;
6125 #endif
6126
6127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6128 return FALSE;
6129
6130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6131 return FALSE;
6132
6133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6134 return FALSE;
6135
6136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6137 return FALSE;
6138
6139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6140 return FALSE;
6141
6142 if (IRIX_COMPAT (dynobj) == ict_irix5
6143 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6144 return FALSE;
6145
6146 if (IRIX_COMPAT (dynobj) == ict_irix6
6147 && (bfd_get_section_by_name
6148 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6149 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6150 return FALSE;
6151 }
6152
6153 return TRUE;
6154 }
6155 \f
6156 /* Relocate a MIPS ELF section. */
6157
6158 bfd_boolean
6159 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6160 bfd *input_bfd, asection *input_section,
6161 bfd_byte *contents, Elf_Internal_Rela *relocs,
6162 Elf_Internal_Sym *local_syms,
6163 asection **local_sections)
6164 {
6165 Elf_Internal_Rela *rel;
6166 const Elf_Internal_Rela *relend;
6167 bfd_vma addend = 0;
6168 bfd_boolean use_saved_addend_p = FALSE;
6169 const struct elf_backend_data *bed;
6170
6171 bed = get_elf_backend_data (output_bfd);
6172 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6173 for (rel = relocs; rel < relend; ++rel)
6174 {
6175 const char *name;
6176 bfd_vma value;
6177 reloc_howto_type *howto;
6178 bfd_boolean require_jalx;
6179 /* TRUE if the relocation is a RELA relocation, rather than a
6180 REL relocation. */
6181 bfd_boolean rela_relocation_p = TRUE;
6182 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6183 const char *msg;
6184
6185 /* Find the relocation howto for this relocation. */
6186 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6187 {
6188 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6189 64-bit code, but make sure all their addresses are in the
6190 lowermost or uppermost 32-bit section of the 64-bit address
6191 space. Thus, when they use an R_MIPS_64 they mean what is
6192 usually meant by R_MIPS_32, with the exception that the
6193 stored value is sign-extended to 64 bits. */
6194 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6195
6196 /* On big-endian systems, we need to lie about the position
6197 of the reloc. */
6198 if (bfd_big_endian (input_bfd))
6199 rel->r_offset += 4;
6200 }
6201 else
6202 /* NewABI defaults to RELA relocations. */
6203 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6204 NEWABI_P (input_bfd)
6205 && (MIPS_RELOC_RELA_P
6206 (input_bfd, input_section,
6207 rel - relocs)));
6208
6209 if (!use_saved_addend_p)
6210 {
6211 Elf_Internal_Shdr *rel_hdr;
6212
6213 /* If these relocations were originally of the REL variety,
6214 we must pull the addend out of the field that will be
6215 relocated. Otherwise, we simply use the contents of the
6216 RELA relocation. To determine which flavor or relocation
6217 this is, we depend on the fact that the INPUT_SECTION's
6218 REL_HDR is read before its REL_HDR2. */
6219 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6220 if ((size_t) (rel - relocs)
6221 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6222 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6223 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6224 {
6225 /* Note that this is a REL relocation. */
6226 rela_relocation_p = FALSE;
6227
6228 /* Get the addend, which is stored in the input file. */
6229 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6230 contents);
6231 addend &= howto->src_mask;
6232
6233 /* For some kinds of relocations, the ADDEND is a
6234 combination of the addend stored in two different
6235 relocations. */
6236 if (r_type == R_MIPS_HI16
6237 || (r_type == R_MIPS_GOT16
6238 && mips_elf_local_relocation_p (input_bfd, rel,
6239 local_sections, FALSE)))
6240 {
6241 bfd_vma l;
6242 const Elf_Internal_Rela *lo16_relocation;
6243 reloc_howto_type *lo16_howto;
6244
6245 /* The combined value is the sum of the HI16 addend,
6246 left-shifted by sixteen bits, and the LO16
6247 addend, sign extended. (Usually, the code does
6248 a `lui' of the HI16 value, and then an `addiu' of
6249 the LO16 value.)
6250
6251 Scan ahead to find a matching LO16 relocation.
6252
6253 According to the MIPS ELF ABI, the R_MIPS_LO16
6254 relocation must be immediately following.
6255 However, for the IRIX6 ABI, the next relocation
6256 may be a composed relocation consisting of
6257 several relocations for the same address. In
6258 that case, the R_MIPS_LO16 relocation may occur
6259 as one of these. We permit a similar extension
6260 in general, as that is useful for GCC. */
6261 lo16_relocation = mips_elf_next_relocation (input_bfd,
6262 R_MIPS_LO16,
6263 rel, relend);
6264 if (lo16_relocation == NULL)
6265 return FALSE;
6266
6267 /* Obtain the addend kept there. */
6268 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6269 R_MIPS_LO16, FALSE);
6270 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6271 input_bfd, contents);
6272 l &= lo16_howto->src_mask;
6273 l <<= lo16_howto->rightshift;
6274 l = _bfd_mips_elf_sign_extend (l, 16);
6275
6276 addend <<= 16;
6277
6278 /* Compute the combined addend. */
6279 addend += l;
6280 }
6281 else if (r_type == R_MIPS16_GPREL)
6282 {
6283 /* The addend is scrambled in the object file. See
6284 mips_elf_perform_relocation for details on the
6285 format. */
6286 addend = (((addend & 0x1f0000) >> 5)
6287 | ((addend & 0x7e00000) >> 16)
6288 | (addend & 0x1f));
6289 }
6290 else
6291 addend <<= howto->rightshift;
6292 }
6293 else
6294 addend = rel->r_addend;
6295 }
6296
6297 if (info->relocatable)
6298 {
6299 Elf_Internal_Sym *sym;
6300 unsigned long r_symndx;
6301
6302 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6303 && bfd_big_endian (input_bfd))
6304 rel->r_offset -= 4;
6305
6306 /* Since we're just relocating, all we need to do is copy
6307 the relocations back out to the object file, unless
6308 they're against a section symbol, in which case we need
6309 to adjust by the section offset, or unless they're GP
6310 relative in which case we need to adjust by the amount
6311 that we're adjusting GP in this relocatable object. */
6312
6313 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6314 FALSE))
6315 /* There's nothing to do for non-local relocations. */
6316 continue;
6317
6318 if (r_type == R_MIPS16_GPREL
6319 || r_type == R_MIPS_GPREL16
6320 || r_type == R_MIPS_GPREL32
6321 || r_type == R_MIPS_LITERAL)
6322 addend -= (_bfd_get_gp_value (output_bfd)
6323 - _bfd_get_gp_value (input_bfd));
6324
6325 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6326 sym = local_syms + r_symndx;
6327 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6328 /* Adjust the addend appropriately. */
6329 addend += local_sections[r_symndx]->output_offset;
6330
6331 if (rela_relocation_p)
6332 /* If this is a RELA relocation, just update the addend. */
6333 rel->r_addend = addend;
6334 else
6335 {
6336 if (r_type == R_MIPS_HI16
6337 || r_type == R_MIPS_GOT16)
6338 addend = mips_elf_high (addend);
6339 else if (r_type == R_MIPS_HIGHER)
6340 addend = mips_elf_higher (addend);
6341 else if (r_type == R_MIPS_HIGHEST)
6342 addend = mips_elf_highest (addend);
6343 else
6344 addend >>= howto->rightshift;
6345
6346 /* We use the source mask, rather than the destination
6347 mask because the place to which we are writing will be
6348 source of the addend in the final link. */
6349 addend &= howto->src_mask;
6350
6351 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6352 /* See the comment above about using R_MIPS_64 in the 32-bit
6353 ABI. Here, we need to update the addend. It would be
6354 possible to get away with just using the R_MIPS_32 reloc
6355 but for endianness. */
6356 {
6357 bfd_vma sign_bits;
6358 bfd_vma low_bits;
6359 bfd_vma high_bits;
6360
6361 if (addend & ((bfd_vma) 1 << 31))
6362 #ifdef BFD64
6363 sign_bits = ((bfd_vma) 1 << 32) - 1;
6364 #else
6365 sign_bits = -1;
6366 #endif
6367 else
6368 sign_bits = 0;
6369
6370 /* If we don't know that we have a 64-bit type,
6371 do two separate stores. */
6372 if (bfd_big_endian (input_bfd))
6373 {
6374 /* Store the sign-bits (which are most significant)
6375 first. */
6376 low_bits = sign_bits;
6377 high_bits = addend;
6378 }
6379 else
6380 {
6381 low_bits = addend;
6382 high_bits = sign_bits;
6383 }
6384 bfd_put_32 (input_bfd, low_bits,
6385 contents + rel->r_offset);
6386 bfd_put_32 (input_bfd, high_bits,
6387 contents + rel->r_offset + 4);
6388 continue;
6389 }
6390
6391 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6392 input_bfd, input_section,
6393 contents, FALSE))
6394 return FALSE;
6395 }
6396
6397 /* Go on to the next relocation. */
6398 continue;
6399 }
6400
6401 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6402 relocations for the same offset. In that case we are
6403 supposed to treat the output of each relocation as the addend
6404 for the next. */
6405 if (rel + 1 < relend
6406 && rel->r_offset == rel[1].r_offset
6407 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6408 use_saved_addend_p = TRUE;
6409 else
6410 use_saved_addend_p = FALSE;
6411
6412 /* Figure out what value we are supposed to relocate. */
6413 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6414 input_section, info, rel,
6415 addend, howto, local_syms,
6416 local_sections, &value,
6417 &name, &require_jalx,
6418 use_saved_addend_p))
6419 {
6420 case bfd_reloc_continue:
6421 /* There's nothing to do. */
6422 continue;
6423
6424 case bfd_reloc_undefined:
6425 /* mips_elf_calculate_relocation already called the
6426 undefined_symbol callback. There's no real point in
6427 trying to perform the relocation at this point, so we
6428 just skip ahead to the next relocation. */
6429 continue;
6430
6431 case bfd_reloc_notsupported:
6432 msg = _("internal error: unsupported relocation error");
6433 info->callbacks->warning
6434 (info, msg, name, input_bfd, input_section, rel->r_offset);
6435 return FALSE;
6436
6437 case bfd_reloc_overflow:
6438 if (use_saved_addend_p)
6439 /* Ignore overflow until we reach the last relocation for
6440 a given location. */
6441 ;
6442 else
6443 {
6444 BFD_ASSERT (name != NULL);
6445 if (! ((*info->callbacks->reloc_overflow)
6446 (info, NULL, name, howto->name, (bfd_vma) 0,
6447 input_bfd, input_section, rel->r_offset)))
6448 return FALSE;
6449 }
6450 break;
6451
6452 case bfd_reloc_ok:
6453 break;
6454
6455 default:
6456 abort ();
6457 break;
6458 }
6459
6460 /* If we've got another relocation for the address, keep going
6461 until we reach the last one. */
6462 if (use_saved_addend_p)
6463 {
6464 addend = value;
6465 continue;
6466 }
6467
6468 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6469 /* See the comment above about using R_MIPS_64 in the 32-bit
6470 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6471 that calculated the right value. Now, however, we
6472 sign-extend the 32-bit result to 64-bits, and store it as a
6473 64-bit value. We are especially generous here in that we
6474 go to extreme lengths to support this usage on systems with
6475 only a 32-bit VMA. */
6476 {
6477 bfd_vma sign_bits;
6478 bfd_vma low_bits;
6479 bfd_vma high_bits;
6480
6481 if (value & ((bfd_vma) 1 << 31))
6482 #ifdef BFD64
6483 sign_bits = ((bfd_vma) 1 << 32) - 1;
6484 #else
6485 sign_bits = -1;
6486 #endif
6487 else
6488 sign_bits = 0;
6489
6490 /* If we don't know that we have a 64-bit type,
6491 do two separate stores. */
6492 if (bfd_big_endian (input_bfd))
6493 {
6494 /* Undo what we did above. */
6495 rel->r_offset -= 4;
6496 /* Store the sign-bits (which are most significant)
6497 first. */
6498 low_bits = sign_bits;
6499 high_bits = value;
6500 }
6501 else
6502 {
6503 low_bits = value;
6504 high_bits = sign_bits;
6505 }
6506 bfd_put_32 (input_bfd, low_bits,
6507 contents + rel->r_offset);
6508 bfd_put_32 (input_bfd, high_bits,
6509 contents + rel->r_offset + 4);
6510 continue;
6511 }
6512
6513 /* Actually perform the relocation. */
6514 if (! mips_elf_perform_relocation (info, howto, rel, value,
6515 input_bfd, input_section,
6516 contents, require_jalx))
6517 return FALSE;
6518 }
6519
6520 return TRUE;
6521 }
6522 \f
6523 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6524 adjust it appropriately now. */
6525
6526 static void
6527 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6528 const char *name, Elf_Internal_Sym *sym)
6529 {
6530 /* The linker script takes care of providing names and values for
6531 these, but we must place them into the right sections. */
6532 static const char* const text_section_symbols[] = {
6533 "_ftext",
6534 "_etext",
6535 "__dso_displacement",
6536 "__elf_header",
6537 "__program_header_table",
6538 NULL
6539 };
6540
6541 static const char* const data_section_symbols[] = {
6542 "_fdata",
6543 "_edata",
6544 "_end",
6545 "_fbss",
6546 NULL
6547 };
6548
6549 const char* const *p;
6550 int i;
6551
6552 for (i = 0; i < 2; ++i)
6553 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6554 *p;
6555 ++p)
6556 if (strcmp (*p, name) == 0)
6557 {
6558 /* All of these symbols are given type STT_SECTION by the
6559 IRIX6 linker. */
6560 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6561 sym->st_other = STO_PROTECTED;
6562
6563 /* The IRIX linker puts these symbols in special sections. */
6564 if (i == 0)
6565 sym->st_shndx = SHN_MIPS_TEXT;
6566 else
6567 sym->st_shndx = SHN_MIPS_DATA;
6568
6569 break;
6570 }
6571 }
6572
6573 /* Finish up dynamic symbol handling. We set the contents of various
6574 dynamic sections here. */
6575
6576 bfd_boolean
6577 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6578 struct bfd_link_info *info,
6579 struct elf_link_hash_entry *h,
6580 Elf_Internal_Sym *sym)
6581 {
6582 bfd *dynobj;
6583 asection *sgot;
6584 struct mips_got_info *g, *gg;
6585 const char *name;
6586
6587 dynobj = elf_hash_table (info)->dynobj;
6588
6589 if (h->plt.offset != MINUS_ONE)
6590 {
6591 asection *s;
6592 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6593
6594 /* This symbol has a stub. Set it up. */
6595
6596 BFD_ASSERT (h->dynindx != -1);
6597
6598 s = bfd_get_section_by_name (dynobj,
6599 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6600 BFD_ASSERT (s != NULL);
6601
6602 /* FIXME: Can h->dynindex be more than 64K? */
6603 if (h->dynindx & 0xffff0000)
6604 return FALSE;
6605
6606 /* Fill the stub. */
6607 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6608 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6609 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6610 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6611
6612 BFD_ASSERT (h->plt.offset <= s->size);
6613 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6614
6615 /* Mark the symbol as undefined. plt.offset != -1 occurs
6616 only for the referenced symbol. */
6617 sym->st_shndx = SHN_UNDEF;
6618
6619 /* The run-time linker uses the st_value field of the symbol
6620 to reset the global offset table entry for this external
6621 to its stub address when unlinking a shared object. */
6622 sym->st_value = (s->output_section->vma + s->output_offset
6623 + h->plt.offset);
6624 }
6625
6626 BFD_ASSERT (h->dynindx != -1
6627 || h->forced_local);
6628
6629 sgot = mips_elf_got_section (dynobj, FALSE);
6630 BFD_ASSERT (sgot != NULL);
6631 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6632 g = mips_elf_section_data (sgot)->u.got_info;
6633 BFD_ASSERT (g != NULL);
6634
6635 /* Run through the global symbol table, creating GOT entries for all
6636 the symbols that need them. */
6637 if (g->global_gotsym != NULL
6638 && h->dynindx >= g->global_gotsym->dynindx)
6639 {
6640 bfd_vma offset;
6641 bfd_vma value;
6642
6643 value = sym->st_value;
6644 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6645 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6646 }
6647
6648 if (g->next && h->dynindx != -1)
6649 {
6650 struct mips_got_entry e, *p;
6651 bfd_vma entry;
6652 bfd_vma offset;
6653
6654 gg = g;
6655
6656 e.abfd = output_bfd;
6657 e.symndx = -1;
6658 e.d.h = (struct mips_elf_link_hash_entry *)h;
6659
6660 for (g = g->next; g->next != gg; g = g->next)
6661 {
6662 if (g->got_entries
6663 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6664 &e)))
6665 {
6666 offset = p->gotidx;
6667 if (info->shared
6668 || (elf_hash_table (info)->dynamic_sections_created
6669 && p->d.h != NULL
6670 && p->d.h->root.def_dynamic
6671 && !p->d.h->root.def_regular))
6672 {
6673 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6674 the various compatibility problems, it's easier to mock
6675 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6676 mips_elf_create_dynamic_relocation to calculate the
6677 appropriate addend. */
6678 Elf_Internal_Rela rel[3];
6679
6680 memset (rel, 0, sizeof (rel));
6681 if (ABI_64_P (output_bfd))
6682 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6683 else
6684 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6685 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6686
6687 entry = 0;
6688 if (! (mips_elf_create_dynamic_relocation
6689 (output_bfd, info, rel,
6690 e.d.h, NULL, sym->st_value, &entry, sgot)))
6691 return FALSE;
6692 }
6693 else
6694 entry = sym->st_value;
6695 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6696 }
6697 }
6698 }
6699
6700 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6701 name = h->root.root.string;
6702 if (strcmp (name, "_DYNAMIC") == 0
6703 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6704 sym->st_shndx = SHN_ABS;
6705 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6706 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6707 {
6708 sym->st_shndx = SHN_ABS;
6709 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6710 sym->st_value = 1;
6711 }
6712 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6713 {
6714 sym->st_shndx = SHN_ABS;
6715 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6716 sym->st_value = elf_gp (output_bfd);
6717 }
6718 else if (SGI_COMPAT (output_bfd))
6719 {
6720 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6721 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6722 {
6723 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6724 sym->st_other = STO_PROTECTED;
6725 sym->st_value = 0;
6726 sym->st_shndx = SHN_MIPS_DATA;
6727 }
6728 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6729 {
6730 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6731 sym->st_other = STO_PROTECTED;
6732 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6733 sym->st_shndx = SHN_ABS;
6734 }
6735 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6736 {
6737 if (h->type == STT_FUNC)
6738 sym->st_shndx = SHN_MIPS_TEXT;
6739 else if (h->type == STT_OBJECT)
6740 sym->st_shndx = SHN_MIPS_DATA;
6741 }
6742 }
6743
6744 /* Handle the IRIX6-specific symbols. */
6745 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6746 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6747
6748 if (! info->shared)
6749 {
6750 if (! mips_elf_hash_table (info)->use_rld_obj_head
6751 && (strcmp (name, "__rld_map") == 0
6752 || strcmp (name, "__RLD_MAP") == 0))
6753 {
6754 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6755 BFD_ASSERT (s != NULL);
6756 sym->st_value = s->output_section->vma + s->output_offset;
6757 bfd_put_32 (output_bfd, 0, s->contents);
6758 if (mips_elf_hash_table (info)->rld_value == 0)
6759 mips_elf_hash_table (info)->rld_value = sym->st_value;
6760 }
6761 else if (mips_elf_hash_table (info)->use_rld_obj_head
6762 && strcmp (name, "__rld_obj_head") == 0)
6763 {
6764 /* IRIX6 does not use a .rld_map section. */
6765 if (IRIX_COMPAT (output_bfd) == ict_irix5
6766 || IRIX_COMPAT (output_bfd) == ict_none)
6767 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6768 != NULL);
6769 mips_elf_hash_table (info)->rld_value = sym->st_value;
6770 }
6771 }
6772
6773 /* If this is a mips16 symbol, force the value to be even. */
6774 if (sym->st_other == STO_MIPS16)
6775 sym->st_value &= ~1;
6776
6777 return TRUE;
6778 }
6779
6780 /* Finish up the dynamic sections. */
6781
6782 bfd_boolean
6783 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6784 struct bfd_link_info *info)
6785 {
6786 bfd *dynobj;
6787 asection *sdyn;
6788 asection *sgot;
6789 struct mips_got_info *gg, *g;
6790
6791 dynobj = elf_hash_table (info)->dynobj;
6792
6793 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6794
6795 sgot = mips_elf_got_section (dynobj, FALSE);
6796 if (sgot == NULL)
6797 gg = g = NULL;
6798 else
6799 {
6800 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6801 gg = mips_elf_section_data (sgot)->u.got_info;
6802 BFD_ASSERT (gg != NULL);
6803 g = mips_elf_got_for_ibfd (gg, output_bfd);
6804 BFD_ASSERT (g != NULL);
6805 }
6806
6807 if (elf_hash_table (info)->dynamic_sections_created)
6808 {
6809 bfd_byte *b;
6810
6811 BFD_ASSERT (sdyn != NULL);
6812 BFD_ASSERT (g != NULL);
6813
6814 for (b = sdyn->contents;
6815 b < sdyn->contents + sdyn->size;
6816 b += MIPS_ELF_DYN_SIZE (dynobj))
6817 {
6818 Elf_Internal_Dyn dyn;
6819 const char *name;
6820 size_t elemsize;
6821 asection *s;
6822 bfd_boolean swap_out_p;
6823
6824 /* Read in the current dynamic entry. */
6825 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6826
6827 /* Assume that we're going to modify it and write it out. */
6828 swap_out_p = TRUE;
6829
6830 switch (dyn.d_tag)
6831 {
6832 case DT_RELENT:
6833 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6834 BFD_ASSERT (s != NULL);
6835 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6836 break;
6837
6838 case DT_STRSZ:
6839 /* Rewrite DT_STRSZ. */
6840 dyn.d_un.d_val =
6841 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6842 break;
6843
6844 case DT_PLTGOT:
6845 name = ".got";
6846 s = bfd_get_section_by_name (output_bfd, name);
6847 BFD_ASSERT (s != NULL);
6848 dyn.d_un.d_ptr = s->vma;
6849 break;
6850
6851 case DT_MIPS_RLD_VERSION:
6852 dyn.d_un.d_val = 1; /* XXX */
6853 break;
6854
6855 case DT_MIPS_FLAGS:
6856 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6857 break;
6858
6859 case DT_MIPS_TIME_STAMP:
6860 time ((time_t *) &dyn.d_un.d_val);
6861 break;
6862
6863 case DT_MIPS_ICHECKSUM:
6864 /* XXX FIXME: */
6865 swap_out_p = FALSE;
6866 break;
6867
6868 case DT_MIPS_IVERSION:
6869 /* XXX FIXME: */
6870 swap_out_p = FALSE;
6871 break;
6872
6873 case DT_MIPS_BASE_ADDRESS:
6874 s = output_bfd->sections;
6875 BFD_ASSERT (s != NULL);
6876 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6877 break;
6878
6879 case DT_MIPS_LOCAL_GOTNO:
6880 dyn.d_un.d_val = g->local_gotno;
6881 break;
6882
6883 case DT_MIPS_UNREFEXTNO:
6884 /* The index into the dynamic symbol table which is the
6885 entry of the first external symbol that is not
6886 referenced within the same object. */
6887 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6888 break;
6889
6890 case DT_MIPS_GOTSYM:
6891 if (gg->global_gotsym)
6892 {
6893 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6894 break;
6895 }
6896 /* In case if we don't have global got symbols we default
6897 to setting DT_MIPS_GOTSYM to the same value as
6898 DT_MIPS_SYMTABNO, so we just fall through. */
6899
6900 case DT_MIPS_SYMTABNO:
6901 name = ".dynsym";
6902 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6903 s = bfd_get_section_by_name (output_bfd, name);
6904 BFD_ASSERT (s != NULL);
6905
6906 dyn.d_un.d_val = s->size / elemsize;
6907 break;
6908
6909 case DT_MIPS_HIPAGENO:
6910 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6911 break;
6912
6913 case DT_MIPS_RLD_MAP:
6914 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6915 break;
6916
6917 case DT_MIPS_OPTIONS:
6918 s = (bfd_get_section_by_name
6919 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6920 dyn.d_un.d_ptr = s->vma;
6921 break;
6922
6923 case DT_RELSZ:
6924 /* Reduce DT_RELSZ to account for any relocations we
6925 decided not to make. This is for the n64 irix rld,
6926 which doesn't seem to apply any relocations if there
6927 are trailing null entries. */
6928 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6929 dyn.d_un.d_val = (s->reloc_count
6930 * (ABI_64_P (output_bfd)
6931 ? sizeof (Elf64_Mips_External_Rel)
6932 : sizeof (Elf32_External_Rel)));
6933 break;
6934
6935 default:
6936 swap_out_p = FALSE;
6937 break;
6938 }
6939
6940 if (swap_out_p)
6941 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6942 (dynobj, &dyn, b);
6943 }
6944 }
6945
6946 /* The first entry of the global offset table will be filled at
6947 runtime. The second entry will be used by some runtime loaders.
6948 This isn't the case of IRIX rld. */
6949 if (sgot != NULL && sgot->size > 0)
6950 {
6951 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6952 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6953 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6954 }
6955
6956 if (sgot != NULL)
6957 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6958 = MIPS_ELF_GOT_SIZE (output_bfd);
6959
6960 /* Generate dynamic relocations for the non-primary gots. */
6961 if (gg != NULL && gg->next)
6962 {
6963 Elf_Internal_Rela rel[3];
6964 bfd_vma addend = 0;
6965
6966 memset (rel, 0, sizeof (rel));
6967 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6968
6969 for (g = gg->next; g->next != gg; g = g->next)
6970 {
6971 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6972
6973 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6974 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6975 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6976 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6977
6978 if (! info->shared)
6979 continue;
6980
6981 while (index < g->assigned_gotno)
6982 {
6983 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6984 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6985 if (!(mips_elf_create_dynamic_relocation
6986 (output_bfd, info, rel, NULL,
6987 bfd_abs_section_ptr,
6988 0, &addend, sgot)))
6989 return FALSE;
6990 BFD_ASSERT (addend == 0);
6991 }
6992 }
6993 }
6994
6995 {
6996 asection *s;
6997 Elf32_compact_rel cpt;
6998
6999 if (SGI_COMPAT (output_bfd))
7000 {
7001 /* Write .compact_rel section out. */
7002 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7003 if (s != NULL)
7004 {
7005 cpt.id1 = 1;
7006 cpt.num = s->reloc_count;
7007 cpt.id2 = 2;
7008 cpt.offset = (s->output_section->filepos
7009 + sizeof (Elf32_External_compact_rel));
7010 cpt.reserved0 = 0;
7011 cpt.reserved1 = 0;
7012 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7013 ((Elf32_External_compact_rel *)
7014 s->contents));
7015
7016 /* Clean up a dummy stub function entry in .text. */
7017 s = bfd_get_section_by_name (dynobj,
7018 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7019 if (s != NULL)
7020 {
7021 file_ptr dummy_offset;
7022
7023 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7024 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
7025 memset (s->contents + dummy_offset, 0,
7026 MIPS_FUNCTION_STUB_SIZE);
7027 }
7028 }
7029 }
7030
7031 /* We need to sort the entries of the dynamic relocation section. */
7032
7033 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7034
7035 if (s != NULL
7036 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7037 {
7038 reldyn_sorting_bfd = output_bfd;
7039
7040 if (ABI_64_P (output_bfd))
7041 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7042 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7043 else
7044 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7045 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7046 }
7047 }
7048
7049 return TRUE;
7050 }
7051
7052
7053 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7054
7055 static void
7056 mips_set_isa_flags (bfd *abfd)
7057 {
7058 flagword val;
7059
7060 switch (bfd_get_mach (abfd))
7061 {
7062 default:
7063 case bfd_mach_mips3000:
7064 val = E_MIPS_ARCH_1;
7065 break;
7066
7067 case bfd_mach_mips3900:
7068 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7069 break;
7070
7071 case bfd_mach_mips6000:
7072 val = E_MIPS_ARCH_2;
7073 break;
7074
7075 case bfd_mach_mips4000:
7076 case bfd_mach_mips4300:
7077 case bfd_mach_mips4400:
7078 case bfd_mach_mips4600:
7079 val = E_MIPS_ARCH_3;
7080 break;
7081
7082 case bfd_mach_mips4010:
7083 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7084 break;
7085
7086 case bfd_mach_mips4100:
7087 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7088 break;
7089
7090 case bfd_mach_mips4111:
7091 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7092 break;
7093
7094 case bfd_mach_mips4120:
7095 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7096 break;
7097
7098 case bfd_mach_mips4650:
7099 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7100 break;
7101
7102 case bfd_mach_mips5400:
7103 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7104 break;
7105
7106 case bfd_mach_mips5500:
7107 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7108 break;
7109
7110 case bfd_mach_mips9000:
7111 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7112 break;
7113
7114 case bfd_mach_mips5000:
7115 case bfd_mach_mips7000:
7116 case bfd_mach_mips8000:
7117 case bfd_mach_mips10000:
7118 case bfd_mach_mips12000:
7119 val = E_MIPS_ARCH_4;
7120 break;
7121
7122 case bfd_mach_mips5:
7123 val = E_MIPS_ARCH_5;
7124 break;
7125
7126 case bfd_mach_mips_sb1:
7127 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7128 break;
7129
7130 case bfd_mach_mipsisa32:
7131 val = E_MIPS_ARCH_32;
7132 break;
7133
7134 case bfd_mach_mipsisa64:
7135 val = E_MIPS_ARCH_64;
7136 break;
7137
7138 case bfd_mach_mipsisa32r2:
7139 val = E_MIPS_ARCH_32R2;
7140 break;
7141
7142 case bfd_mach_mipsisa64r2:
7143 val = E_MIPS_ARCH_64R2;
7144 break;
7145 }
7146 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7147 elf_elfheader (abfd)->e_flags |= val;
7148
7149 }
7150
7151
7152 /* The final processing done just before writing out a MIPS ELF object
7153 file. This gets the MIPS architecture right based on the machine
7154 number. This is used by both the 32-bit and the 64-bit ABI. */
7155
7156 void
7157 _bfd_mips_elf_final_write_processing (bfd *abfd,
7158 bfd_boolean linker ATTRIBUTE_UNUSED)
7159 {
7160 unsigned int i;
7161 Elf_Internal_Shdr **hdrpp;
7162 const char *name;
7163 asection *sec;
7164
7165 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7166 is nonzero. This is for compatibility with old objects, which used
7167 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7168 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7169 mips_set_isa_flags (abfd);
7170
7171 /* Set the sh_info field for .gptab sections and other appropriate
7172 info for each special section. */
7173 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7174 i < elf_numsections (abfd);
7175 i++, hdrpp++)
7176 {
7177 switch ((*hdrpp)->sh_type)
7178 {
7179 case SHT_MIPS_MSYM:
7180 case SHT_MIPS_LIBLIST:
7181 sec = bfd_get_section_by_name (abfd, ".dynstr");
7182 if (sec != NULL)
7183 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7184 break;
7185
7186 case SHT_MIPS_GPTAB:
7187 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7188 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7189 BFD_ASSERT (name != NULL
7190 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7191 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7192 BFD_ASSERT (sec != NULL);
7193 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7194 break;
7195
7196 case SHT_MIPS_CONTENT:
7197 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7198 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7199 BFD_ASSERT (name != NULL
7200 && strncmp (name, ".MIPS.content",
7201 sizeof ".MIPS.content" - 1) == 0);
7202 sec = bfd_get_section_by_name (abfd,
7203 name + sizeof ".MIPS.content" - 1);
7204 BFD_ASSERT (sec != NULL);
7205 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7206 break;
7207
7208 case SHT_MIPS_SYMBOL_LIB:
7209 sec = bfd_get_section_by_name (abfd, ".dynsym");
7210 if (sec != NULL)
7211 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7212 sec = bfd_get_section_by_name (abfd, ".liblist");
7213 if (sec != NULL)
7214 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7215 break;
7216
7217 case SHT_MIPS_EVENTS:
7218 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7219 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7220 BFD_ASSERT (name != NULL);
7221 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7222 sec = bfd_get_section_by_name (abfd,
7223 name + sizeof ".MIPS.events" - 1);
7224 else
7225 {
7226 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7227 sizeof ".MIPS.post_rel" - 1) == 0);
7228 sec = bfd_get_section_by_name (abfd,
7229 (name
7230 + sizeof ".MIPS.post_rel" - 1));
7231 }
7232 BFD_ASSERT (sec != NULL);
7233 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7234 break;
7235
7236 }
7237 }
7238 }
7239 \f
7240 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7241 segments. */
7242
7243 int
7244 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7245 {
7246 asection *s;
7247 int ret = 0;
7248
7249 /* See if we need a PT_MIPS_REGINFO segment. */
7250 s = bfd_get_section_by_name (abfd, ".reginfo");
7251 if (s && (s->flags & SEC_LOAD))
7252 ++ret;
7253
7254 /* See if we need a PT_MIPS_OPTIONS segment. */
7255 if (IRIX_COMPAT (abfd) == ict_irix6
7256 && bfd_get_section_by_name (abfd,
7257 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7258 ++ret;
7259
7260 /* See if we need a PT_MIPS_RTPROC segment. */
7261 if (IRIX_COMPAT (abfd) == ict_irix5
7262 && bfd_get_section_by_name (abfd, ".dynamic")
7263 && bfd_get_section_by_name (abfd, ".mdebug"))
7264 ++ret;
7265
7266 return ret;
7267 }
7268
7269 /* Modify the segment map for an IRIX5 executable. */
7270
7271 bfd_boolean
7272 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7273 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7274 {
7275 asection *s;
7276 struct elf_segment_map *m, **pm;
7277 bfd_size_type amt;
7278
7279 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7280 segment. */
7281 s = bfd_get_section_by_name (abfd, ".reginfo");
7282 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7283 {
7284 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7285 if (m->p_type == PT_MIPS_REGINFO)
7286 break;
7287 if (m == NULL)
7288 {
7289 amt = sizeof *m;
7290 m = bfd_zalloc (abfd, amt);
7291 if (m == NULL)
7292 return FALSE;
7293
7294 m->p_type = PT_MIPS_REGINFO;
7295 m->count = 1;
7296 m->sections[0] = s;
7297
7298 /* We want to put it after the PHDR and INTERP segments. */
7299 pm = &elf_tdata (abfd)->segment_map;
7300 while (*pm != NULL
7301 && ((*pm)->p_type == PT_PHDR
7302 || (*pm)->p_type == PT_INTERP))
7303 pm = &(*pm)->next;
7304
7305 m->next = *pm;
7306 *pm = m;
7307 }
7308 }
7309
7310 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7311 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7312 PT_MIPS_OPTIONS segment immediately following the program header
7313 table. */
7314 if (NEWABI_P (abfd)
7315 /* On non-IRIX6 new abi, we'll have already created a segment
7316 for this section, so don't create another. I'm not sure this
7317 is not also the case for IRIX 6, but I can't test it right
7318 now. */
7319 && IRIX_COMPAT (abfd) == ict_irix6)
7320 {
7321 for (s = abfd->sections; s; s = s->next)
7322 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7323 break;
7324
7325 if (s)
7326 {
7327 struct elf_segment_map *options_segment;
7328
7329 pm = &elf_tdata (abfd)->segment_map;
7330 while (*pm != NULL
7331 && ((*pm)->p_type == PT_PHDR
7332 || (*pm)->p_type == PT_INTERP))
7333 pm = &(*pm)->next;
7334
7335 amt = sizeof (struct elf_segment_map);
7336 options_segment = bfd_zalloc (abfd, amt);
7337 options_segment->next = *pm;
7338 options_segment->p_type = PT_MIPS_OPTIONS;
7339 options_segment->p_flags = PF_R;
7340 options_segment->p_flags_valid = TRUE;
7341 options_segment->count = 1;
7342 options_segment->sections[0] = s;
7343 *pm = options_segment;
7344 }
7345 }
7346 else
7347 {
7348 if (IRIX_COMPAT (abfd) == ict_irix5)
7349 {
7350 /* If there are .dynamic and .mdebug sections, we make a room
7351 for the RTPROC header. FIXME: Rewrite without section names. */
7352 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7353 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7354 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7355 {
7356 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7357 if (m->p_type == PT_MIPS_RTPROC)
7358 break;
7359 if (m == NULL)
7360 {
7361 amt = sizeof *m;
7362 m = bfd_zalloc (abfd, amt);
7363 if (m == NULL)
7364 return FALSE;
7365
7366 m->p_type = PT_MIPS_RTPROC;
7367
7368 s = bfd_get_section_by_name (abfd, ".rtproc");
7369 if (s == NULL)
7370 {
7371 m->count = 0;
7372 m->p_flags = 0;
7373 m->p_flags_valid = 1;
7374 }
7375 else
7376 {
7377 m->count = 1;
7378 m->sections[0] = s;
7379 }
7380
7381 /* We want to put it after the DYNAMIC segment. */
7382 pm = &elf_tdata (abfd)->segment_map;
7383 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7384 pm = &(*pm)->next;
7385 if (*pm != NULL)
7386 pm = &(*pm)->next;
7387
7388 m->next = *pm;
7389 *pm = m;
7390 }
7391 }
7392 }
7393 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7394 .dynstr, .dynsym, and .hash sections, and everything in
7395 between. */
7396 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7397 pm = &(*pm)->next)
7398 if ((*pm)->p_type == PT_DYNAMIC)
7399 break;
7400 m = *pm;
7401 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7402 {
7403 /* For a normal mips executable the permissions for the PT_DYNAMIC
7404 segment are read, write and execute. We do that here since
7405 the code in elf.c sets only the read permission. This matters
7406 sometimes for the dynamic linker. */
7407 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7408 {
7409 m->p_flags = PF_R | PF_W | PF_X;
7410 m->p_flags_valid = 1;
7411 }
7412 }
7413 if (m != NULL
7414 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7415 {
7416 static const char *sec_names[] =
7417 {
7418 ".dynamic", ".dynstr", ".dynsym", ".hash"
7419 };
7420 bfd_vma low, high;
7421 unsigned int i, c;
7422 struct elf_segment_map *n;
7423
7424 low = ~(bfd_vma) 0;
7425 high = 0;
7426 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7427 {
7428 s = bfd_get_section_by_name (abfd, sec_names[i]);
7429 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7430 {
7431 bfd_size_type sz;
7432
7433 if (low > s->vma)
7434 low = s->vma;
7435 sz = s->size;
7436 if (high < s->vma + sz)
7437 high = s->vma + sz;
7438 }
7439 }
7440
7441 c = 0;
7442 for (s = abfd->sections; s != NULL; s = s->next)
7443 if ((s->flags & SEC_LOAD) != 0
7444 && s->vma >= low
7445 && s->vma + s->size <= high)
7446 ++c;
7447
7448 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7449 n = bfd_zalloc (abfd, amt);
7450 if (n == NULL)
7451 return FALSE;
7452 *n = *m;
7453 n->count = c;
7454
7455 i = 0;
7456 for (s = abfd->sections; s != NULL; s = s->next)
7457 {
7458 if ((s->flags & SEC_LOAD) != 0
7459 && s->vma >= low
7460 && s->vma + s->size <= high)
7461 {
7462 n->sections[i] = s;
7463 ++i;
7464 }
7465 }
7466
7467 *pm = n;
7468 }
7469 }
7470
7471 return TRUE;
7472 }
7473 \f
7474 /* Return the section that should be marked against GC for a given
7475 relocation. */
7476
7477 asection *
7478 _bfd_mips_elf_gc_mark_hook (asection *sec,
7479 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7480 Elf_Internal_Rela *rel,
7481 struct elf_link_hash_entry *h,
7482 Elf_Internal_Sym *sym)
7483 {
7484 /* ??? Do mips16 stub sections need to be handled special? */
7485
7486 if (h != NULL)
7487 {
7488 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7489 {
7490 case R_MIPS_GNU_VTINHERIT:
7491 case R_MIPS_GNU_VTENTRY:
7492 break;
7493
7494 default:
7495 switch (h->root.type)
7496 {
7497 case bfd_link_hash_defined:
7498 case bfd_link_hash_defweak:
7499 return h->root.u.def.section;
7500
7501 case bfd_link_hash_common:
7502 return h->root.u.c.p->section;
7503
7504 default:
7505 break;
7506 }
7507 }
7508 }
7509 else
7510 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7511
7512 return NULL;
7513 }
7514
7515 /* Update the got entry reference counts for the section being removed. */
7516
7517 bfd_boolean
7518 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7519 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7520 asection *sec ATTRIBUTE_UNUSED,
7521 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7522 {
7523 #if 0
7524 Elf_Internal_Shdr *symtab_hdr;
7525 struct elf_link_hash_entry **sym_hashes;
7526 bfd_signed_vma *local_got_refcounts;
7527 const Elf_Internal_Rela *rel, *relend;
7528 unsigned long r_symndx;
7529 struct elf_link_hash_entry *h;
7530
7531 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7532 sym_hashes = elf_sym_hashes (abfd);
7533 local_got_refcounts = elf_local_got_refcounts (abfd);
7534
7535 relend = relocs + sec->reloc_count;
7536 for (rel = relocs; rel < relend; rel++)
7537 switch (ELF_R_TYPE (abfd, rel->r_info))
7538 {
7539 case R_MIPS_GOT16:
7540 case R_MIPS_CALL16:
7541 case R_MIPS_CALL_HI16:
7542 case R_MIPS_CALL_LO16:
7543 case R_MIPS_GOT_HI16:
7544 case R_MIPS_GOT_LO16:
7545 case R_MIPS_GOT_DISP:
7546 case R_MIPS_GOT_PAGE:
7547 case R_MIPS_GOT_OFST:
7548 /* ??? It would seem that the existing MIPS code does no sort
7549 of reference counting or whatnot on its GOT and PLT entries,
7550 so it is not possible to garbage collect them at this time. */
7551 break;
7552
7553 default:
7554 break;
7555 }
7556 #endif
7557
7558 return TRUE;
7559 }
7560 \f
7561 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7562 hiding the old indirect symbol. Process additional relocation
7563 information. Also called for weakdefs, in which case we just let
7564 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7565
7566 void
7567 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7568 struct elf_link_hash_entry *dir,
7569 struct elf_link_hash_entry *ind)
7570 {
7571 struct mips_elf_link_hash_entry *dirmips, *indmips;
7572
7573 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7574
7575 if (ind->root.type != bfd_link_hash_indirect)
7576 return;
7577
7578 dirmips = (struct mips_elf_link_hash_entry *) dir;
7579 indmips = (struct mips_elf_link_hash_entry *) ind;
7580 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7581 if (indmips->readonly_reloc)
7582 dirmips->readonly_reloc = TRUE;
7583 if (indmips->no_fn_stub)
7584 dirmips->no_fn_stub = TRUE;
7585 }
7586
7587 void
7588 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7589 struct elf_link_hash_entry *entry,
7590 bfd_boolean force_local)
7591 {
7592 bfd *dynobj;
7593 asection *got;
7594 struct mips_got_info *g;
7595 struct mips_elf_link_hash_entry *h;
7596
7597 h = (struct mips_elf_link_hash_entry *) entry;
7598 if (h->forced_local)
7599 return;
7600 h->forced_local = force_local;
7601
7602 dynobj = elf_hash_table (info)->dynobj;
7603 if (dynobj != NULL && force_local)
7604 {
7605 got = mips_elf_got_section (dynobj, FALSE);
7606 g = mips_elf_section_data (got)->u.got_info;
7607
7608 if (g->next)
7609 {
7610 struct mips_got_entry e;
7611 struct mips_got_info *gg = g;
7612
7613 /* Since we're turning what used to be a global symbol into a
7614 local one, bump up the number of local entries of each GOT
7615 that had an entry for it. This will automatically decrease
7616 the number of global entries, since global_gotno is actually
7617 the upper limit of global entries. */
7618 e.abfd = dynobj;
7619 e.symndx = -1;
7620 e.d.h = h;
7621
7622 for (g = g->next; g != gg; g = g->next)
7623 if (htab_find (g->got_entries, &e))
7624 {
7625 BFD_ASSERT (g->global_gotno > 0);
7626 g->local_gotno++;
7627 g->global_gotno--;
7628 }
7629
7630 /* If this was a global symbol forced into the primary GOT, we
7631 no longer need an entry for it. We can't release the entry
7632 at this point, but we must at least stop counting it as one
7633 of the symbols that required a forced got entry. */
7634 if (h->root.got.offset == 2)
7635 {
7636 BFD_ASSERT (gg->assigned_gotno > 0);
7637 gg->assigned_gotno--;
7638 }
7639 }
7640 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7641 /* If we haven't got through GOT allocation yet, just bump up the
7642 number of local entries, as this symbol won't be counted as
7643 global. */
7644 g->local_gotno++;
7645 else if (h->root.got.offset == 1)
7646 {
7647 /* If we're past non-multi-GOT allocation and this symbol had
7648 been marked for a global got entry, give it a local entry
7649 instead. */
7650 BFD_ASSERT (g->global_gotno > 0);
7651 g->local_gotno++;
7652 g->global_gotno--;
7653 }
7654 }
7655
7656 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7657 }
7658 \f
7659 #define PDR_SIZE 32
7660
7661 bfd_boolean
7662 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7663 struct bfd_link_info *info)
7664 {
7665 asection *o;
7666 bfd_boolean ret = FALSE;
7667 unsigned char *tdata;
7668 size_t i, skip;
7669
7670 o = bfd_get_section_by_name (abfd, ".pdr");
7671 if (! o)
7672 return FALSE;
7673 if (o->size == 0)
7674 return FALSE;
7675 if (o->size % PDR_SIZE != 0)
7676 return FALSE;
7677 if (o->output_section != NULL
7678 && bfd_is_abs_section (o->output_section))
7679 return FALSE;
7680
7681 tdata = bfd_zmalloc (o->size / PDR_SIZE);
7682 if (! tdata)
7683 return FALSE;
7684
7685 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7686 info->keep_memory);
7687 if (!cookie->rels)
7688 {
7689 free (tdata);
7690 return FALSE;
7691 }
7692
7693 cookie->rel = cookie->rels;
7694 cookie->relend = cookie->rels + o->reloc_count;
7695
7696 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
7697 {
7698 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7699 {
7700 tdata[i] = 1;
7701 skip ++;
7702 }
7703 }
7704
7705 if (skip != 0)
7706 {
7707 mips_elf_section_data (o)->u.tdata = tdata;
7708 o->size -= skip * PDR_SIZE;
7709 ret = TRUE;
7710 }
7711 else
7712 free (tdata);
7713
7714 if (! info->keep_memory)
7715 free (cookie->rels);
7716
7717 return ret;
7718 }
7719
7720 bfd_boolean
7721 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7722 {
7723 if (strcmp (sec->name, ".pdr") == 0)
7724 return TRUE;
7725 return FALSE;
7726 }
7727
7728 bfd_boolean
7729 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7730 bfd_byte *contents)
7731 {
7732 bfd_byte *to, *from, *end;
7733 int i;
7734
7735 if (strcmp (sec->name, ".pdr") != 0)
7736 return FALSE;
7737
7738 if (mips_elf_section_data (sec)->u.tdata == NULL)
7739 return FALSE;
7740
7741 to = contents;
7742 end = contents + sec->size;
7743 for (from = contents, i = 0;
7744 from < end;
7745 from += PDR_SIZE, i++)
7746 {
7747 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7748 continue;
7749 if (to != from)
7750 memcpy (to, from, PDR_SIZE);
7751 to += PDR_SIZE;
7752 }
7753 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7754 sec->output_offset, sec->size);
7755 return TRUE;
7756 }
7757 \f
7758 /* MIPS ELF uses a special find_nearest_line routine in order the
7759 handle the ECOFF debugging information. */
7760
7761 struct mips_elf_find_line
7762 {
7763 struct ecoff_debug_info d;
7764 struct ecoff_find_line i;
7765 };
7766
7767 bfd_boolean
7768 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7769 asymbol **symbols, bfd_vma offset,
7770 const char **filename_ptr,
7771 const char **functionname_ptr,
7772 unsigned int *line_ptr)
7773 {
7774 asection *msec;
7775
7776 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7777 filename_ptr, functionname_ptr,
7778 line_ptr))
7779 return TRUE;
7780
7781 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7782 filename_ptr, functionname_ptr,
7783 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7784 &elf_tdata (abfd)->dwarf2_find_line_info))
7785 return TRUE;
7786
7787 msec = bfd_get_section_by_name (abfd, ".mdebug");
7788 if (msec != NULL)
7789 {
7790 flagword origflags;
7791 struct mips_elf_find_line *fi;
7792 const struct ecoff_debug_swap * const swap =
7793 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7794
7795 /* If we are called during a link, mips_elf_final_link may have
7796 cleared the SEC_HAS_CONTENTS field. We force it back on here
7797 if appropriate (which it normally will be). */
7798 origflags = msec->flags;
7799 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7800 msec->flags |= SEC_HAS_CONTENTS;
7801
7802 fi = elf_tdata (abfd)->find_line_info;
7803 if (fi == NULL)
7804 {
7805 bfd_size_type external_fdr_size;
7806 char *fraw_src;
7807 char *fraw_end;
7808 struct fdr *fdr_ptr;
7809 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7810
7811 fi = bfd_zalloc (abfd, amt);
7812 if (fi == NULL)
7813 {
7814 msec->flags = origflags;
7815 return FALSE;
7816 }
7817
7818 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7819 {
7820 msec->flags = origflags;
7821 return FALSE;
7822 }
7823
7824 /* Swap in the FDR information. */
7825 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7826 fi->d.fdr = bfd_alloc (abfd, amt);
7827 if (fi->d.fdr == NULL)
7828 {
7829 msec->flags = origflags;
7830 return FALSE;
7831 }
7832 external_fdr_size = swap->external_fdr_size;
7833 fdr_ptr = fi->d.fdr;
7834 fraw_src = (char *) fi->d.external_fdr;
7835 fraw_end = (fraw_src
7836 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7837 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7838 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7839
7840 elf_tdata (abfd)->find_line_info = fi;
7841
7842 /* Note that we don't bother to ever free this information.
7843 find_nearest_line is either called all the time, as in
7844 objdump -l, so the information should be saved, or it is
7845 rarely called, as in ld error messages, so the memory
7846 wasted is unimportant. Still, it would probably be a
7847 good idea for free_cached_info to throw it away. */
7848 }
7849
7850 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7851 &fi->i, filename_ptr, functionname_ptr,
7852 line_ptr))
7853 {
7854 msec->flags = origflags;
7855 return TRUE;
7856 }
7857
7858 msec->flags = origflags;
7859 }
7860
7861 /* Fall back on the generic ELF find_nearest_line routine. */
7862
7863 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7864 filename_ptr, functionname_ptr,
7865 line_ptr);
7866 }
7867 \f
7868 /* When are writing out the .options or .MIPS.options section,
7869 remember the bytes we are writing out, so that we can install the
7870 GP value in the section_processing routine. */
7871
7872 bfd_boolean
7873 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7874 const void *location,
7875 file_ptr offset, bfd_size_type count)
7876 {
7877 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7878 {
7879 bfd_byte *c;
7880
7881 if (elf_section_data (section) == NULL)
7882 {
7883 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7884 section->used_by_bfd = bfd_zalloc (abfd, amt);
7885 if (elf_section_data (section) == NULL)
7886 return FALSE;
7887 }
7888 c = mips_elf_section_data (section)->u.tdata;
7889 if (c == NULL)
7890 {
7891 c = bfd_zalloc (abfd, section->size);
7892 if (c == NULL)
7893 return FALSE;
7894 mips_elf_section_data (section)->u.tdata = c;
7895 }
7896
7897 memcpy (c + offset, location, count);
7898 }
7899
7900 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7901 count);
7902 }
7903
7904 /* This is almost identical to bfd_generic_get_... except that some
7905 MIPS relocations need to be handled specially. Sigh. */
7906
7907 bfd_byte *
7908 _bfd_elf_mips_get_relocated_section_contents
7909 (bfd *abfd,
7910 struct bfd_link_info *link_info,
7911 struct bfd_link_order *link_order,
7912 bfd_byte *data,
7913 bfd_boolean relocatable,
7914 asymbol **symbols)
7915 {
7916 /* Get enough memory to hold the stuff */
7917 bfd *input_bfd = link_order->u.indirect.section->owner;
7918 asection *input_section = link_order->u.indirect.section;
7919 bfd_size_type sz;
7920
7921 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7922 arelent **reloc_vector = NULL;
7923 long reloc_count;
7924
7925 if (reloc_size < 0)
7926 goto error_return;
7927
7928 reloc_vector = bfd_malloc (reloc_size);
7929 if (reloc_vector == NULL && reloc_size != 0)
7930 goto error_return;
7931
7932 /* read in the section */
7933 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7934 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
7935 goto error_return;
7936
7937 reloc_count = bfd_canonicalize_reloc (input_bfd,
7938 input_section,
7939 reloc_vector,
7940 symbols);
7941 if (reloc_count < 0)
7942 goto error_return;
7943
7944 if (reloc_count > 0)
7945 {
7946 arelent **parent;
7947 /* for mips */
7948 int gp_found;
7949 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7950
7951 {
7952 struct bfd_hash_entry *h;
7953 struct bfd_link_hash_entry *lh;
7954 /* Skip all this stuff if we aren't mixing formats. */
7955 if (abfd && input_bfd
7956 && abfd->xvec == input_bfd->xvec)
7957 lh = 0;
7958 else
7959 {
7960 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7961 lh = (struct bfd_link_hash_entry *) h;
7962 }
7963 lookup:
7964 if (lh)
7965 {
7966 switch (lh->type)
7967 {
7968 case bfd_link_hash_undefined:
7969 case bfd_link_hash_undefweak:
7970 case bfd_link_hash_common:
7971 gp_found = 0;
7972 break;
7973 case bfd_link_hash_defined:
7974 case bfd_link_hash_defweak:
7975 gp_found = 1;
7976 gp = lh->u.def.value;
7977 break;
7978 case bfd_link_hash_indirect:
7979 case bfd_link_hash_warning:
7980 lh = lh->u.i.link;
7981 /* @@FIXME ignoring warning for now */
7982 goto lookup;
7983 case bfd_link_hash_new:
7984 default:
7985 abort ();
7986 }
7987 }
7988 else
7989 gp_found = 0;
7990 }
7991 /* end mips */
7992 for (parent = reloc_vector; *parent != NULL; parent++)
7993 {
7994 char *error_message = NULL;
7995 bfd_reloc_status_type r;
7996
7997 /* Specific to MIPS: Deal with relocation types that require
7998 knowing the gp of the output bfd. */
7999 asymbol *sym = *(*parent)->sym_ptr_ptr;
8000 if (bfd_is_abs_section (sym->section) && abfd)
8001 {
8002 /* The special_function wouldn't get called anyway. */
8003 }
8004 else if (!gp_found)
8005 {
8006 /* The gp isn't there; let the special function code
8007 fall over on its own. */
8008 }
8009 else if ((*parent)->howto->special_function
8010 == _bfd_mips_elf32_gprel16_reloc)
8011 {
8012 /* bypass special_function call */
8013 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8014 input_section, relocatable,
8015 data, gp);
8016 goto skip_bfd_perform_relocation;
8017 }
8018 /* end mips specific stuff */
8019
8020 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8021 relocatable ? abfd : NULL,
8022 &error_message);
8023 skip_bfd_perform_relocation:
8024
8025 if (relocatable)
8026 {
8027 asection *os = input_section->output_section;
8028
8029 /* A partial link, so keep the relocs */
8030 os->orelocation[os->reloc_count] = *parent;
8031 os->reloc_count++;
8032 }
8033
8034 if (r != bfd_reloc_ok)
8035 {
8036 switch (r)
8037 {
8038 case bfd_reloc_undefined:
8039 if (!((*link_info->callbacks->undefined_symbol)
8040 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8041 input_bfd, input_section, (*parent)->address,
8042 TRUE)))
8043 goto error_return;
8044 break;
8045 case bfd_reloc_dangerous:
8046 BFD_ASSERT (error_message != NULL);
8047 if (!((*link_info->callbacks->reloc_dangerous)
8048 (link_info, error_message, input_bfd, input_section,
8049 (*parent)->address)))
8050 goto error_return;
8051 break;
8052 case bfd_reloc_overflow:
8053 if (!((*link_info->callbacks->reloc_overflow)
8054 (link_info, NULL,
8055 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8056 (*parent)->howto->name, (*parent)->addend,
8057 input_bfd, input_section, (*parent)->address)))
8058 goto error_return;
8059 break;
8060 case bfd_reloc_outofrange:
8061 default:
8062 abort ();
8063 break;
8064 }
8065
8066 }
8067 }
8068 }
8069 if (reloc_vector != NULL)
8070 free (reloc_vector);
8071 return data;
8072
8073 error_return:
8074 if (reloc_vector != NULL)
8075 free (reloc_vector);
8076 return NULL;
8077 }
8078 \f
8079 /* Create a MIPS ELF linker hash table. */
8080
8081 struct bfd_link_hash_table *
8082 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8083 {
8084 struct mips_elf_link_hash_table *ret;
8085 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8086
8087 ret = bfd_malloc (amt);
8088 if (ret == NULL)
8089 return NULL;
8090
8091 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8092 mips_elf_link_hash_newfunc))
8093 {
8094 free (ret);
8095 return NULL;
8096 }
8097
8098 #if 0
8099 /* We no longer use this. */
8100 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8101 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8102 #endif
8103 ret->procedure_count = 0;
8104 ret->compact_rel_size = 0;
8105 ret->use_rld_obj_head = FALSE;
8106 ret->rld_value = 0;
8107 ret->mips16_stubs_seen = FALSE;
8108
8109 return &ret->root.root;
8110 }
8111 \f
8112 /* We need to use a special link routine to handle the .reginfo and
8113 the .mdebug sections. We need to merge all instances of these
8114 sections together, not write them all out sequentially. */
8115
8116 bfd_boolean
8117 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8118 {
8119 asection **secpp;
8120 asection *o;
8121 struct bfd_link_order *p;
8122 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8123 asection *rtproc_sec;
8124 Elf32_RegInfo reginfo;
8125 struct ecoff_debug_info debug;
8126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8127 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8128 HDRR *symhdr = &debug.symbolic_header;
8129 void *mdebug_handle = NULL;
8130 asection *s;
8131 EXTR esym;
8132 unsigned int i;
8133 bfd_size_type amt;
8134
8135 static const char * const secname[] =
8136 {
8137 ".text", ".init", ".fini", ".data",
8138 ".rodata", ".sdata", ".sbss", ".bss"
8139 };
8140 static const int sc[] =
8141 {
8142 scText, scInit, scFini, scData,
8143 scRData, scSData, scSBss, scBss
8144 };
8145
8146 /* We'd carefully arranged the dynamic symbol indices, and then the
8147 generic size_dynamic_sections renumbered them out from under us.
8148 Rather than trying somehow to prevent the renumbering, just do
8149 the sort again. */
8150 if (elf_hash_table (info)->dynamic_sections_created)
8151 {
8152 bfd *dynobj;
8153 asection *got;
8154 struct mips_got_info *g;
8155 bfd_size_type dynsecsymcount;
8156
8157 /* When we resort, we must tell mips_elf_sort_hash_table what
8158 the lowest index it may use is. That's the number of section
8159 symbols we're going to add. The generic ELF linker only
8160 adds these symbols when building a shared object. Note that
8161 we count the sections after (possibly) removing the .options
8162 section above. */
8163
8164 dynsecsymcount = 0;
8165 if (info->shared)
8166 {
8167 asection * p;
8168
8169 for (p = abfd->sections; p ; p = p->next)
8170 if ((p->flags & SEC_EXCLUDE) == 0
8171 && (p->flags & SEC_ALLOC) != 0
8172 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8173 ++ dynsecsymcount;
8174 }
8175
8176 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
8177 return FALSE;
8178
8179 /* Make sure we didn't grow the global .got region. */
8180 dynobj = elf_hash_table (info)->dynobj;
8181 got = mips_elf_got_section (dynobj, FALSE);
8182 g = mips_elf_section_data (got)->u.got_info;
8183
8184 if (g->global_gotsym != NULL)
8185 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8186 - g->global_gotsym->dynindx)
8187 <= g->global_gotno);
8188 }
8189
8190 #if 0
8191 /* We want to set the GP value for ld -r. */
8192 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8193 include it, even though we don't process it quite right. (Some
8194 entries are supposed to be merged.) Empirically, we seem to be
8195 better off including it then not. */
8196 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8197 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8198 {
8199 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8200 {
8201 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8202 if (p->type == bfd_indirect_link_order)
8203 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8204 (*secpp)->link_order_head = NULL;
8205 bfd_section_list_remove (abfd, secpp);
8206 --abfd->section_count;
8207
8208 break;
8209 }
8210 }
8211
8212 /* We include .MIPS.options, even though we don't process it quite right.
8213 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8214 to be better off including it than not. */
8215 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8216 {
8217 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8218 {
8219 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8220 if (p->type == bfd_indirect_link_order)
8221 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8222 (*secpp)->link_order_head = NULL;
8223 bfd_section_list_remove (abfd, secpp);
8224 --abfd->section_count;
8225
8226 break;
8227 }
8228 }
8229 #endif
8230
8231 /* Get a value for the GP register. */
8232 if (elf_gp (abfd) == 0)
8233 {
8234 struct bfd_link_hash_entry *h;
8235
8236 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8237 if (h != NULL && h->type == bfd_link_hash_defined)
8238 elf_gp (abfd) = (h->u.def.value
8239 + h->u.def.section->output_section->vma
8240 + h->u.def.section->output_offset);
8241 else if (info->relocatable)
8242 {
8243 bfd_vma lo = MINUS_ONE;
8244
8245 /* Find the GP-relative section with the lowest offset. */
8246 for (o = abfd->sections; o != NULL; o = o->next)
8247 if (o->vma < lo
8248 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8249 lo = o->vma;
8250
8251 /* And calculate GP relative to that. */
8252 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8253 }
8254 else
8255 {
8256 /* If the relocate_section function needs to do a reloc
8257 involving the GP value, it should make a reloc_dangerous
8258 callback to warn that GP is not defined. */
8259 }
8260 }
8261
8262 /* Go through the sections and collect the .reginfo and .mdebug
8263 information. */
8264 reginfo_sec = NULL;
8265 mdebug_sec = NULL;
8266 gptab_data_sec = NULL;
8267 gptab_bss_sec = NULL;
8268 for (o = abfd->sections; o != NULL; o = o->next)
8269 {
8270 if (strcmp (o->name, ".reginfo") == 0)
8271 {
8272 memset (&reginfo, 0, sizeof reginfo);
8273
8274 /* We have found the .reginfo section in the output file.
8275 Look through all the link_orders comprising it and merge
8276 the information together. */
8277 for (p = o->link_order_head; p != NULL; p = p->next)
8278 {
8279 asection *input_section;
8280 bfd *input_bfd;
8281 Elf32_External_RegInfo ext;
8282 Elf32_RegInfo sub;
8283
8284 if (p->type != bfd_indirect_link_order)
8285 {
8286 if (p->type == bfd_data_link_order)
8287 continue;
8288 abort ();
8289 }
8290
8291 input_section = p->u.indirect.section;
8292 input_bfd = input_section->owner;
8293
8294 if (! bfd_get_section_contents (input_bfd, input_section,
8295 &ext, 0, sizeof ext))
8296 return FALSE;
8297
8298 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8299
8300 reginfo.ri_gprmask |= sub.ri_gprmask;
8301 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8302 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8303 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8304 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8305
8306 /* ri_gp_value is set by the function
8307 mips_elf32_section_processing when the section is
8308 finally written out. */
8309
8310 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8311 elf_link_input_bfd ignores this section. */
8312 input_section->flags &= ~SEC_HAS_CONTENTS;
8313 }
8314
8315 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8316 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
8317
8318 /* Skip this section later on (I don't think this currently
8319 matters, but someday it might). */
8320 o->link_order_head = NULL;
8321
8322 reginfo_sec = o;
8323 }
8324
8325 if (strcmp (o->name, ".mdebug") == 0)
8326 {
8327 struct extsym_info einfo;
8328 bfd_vma last;
8329
8330 /* We have found the .mdebug section in the output file.
8331 Look through all the link_orders comprising it and merge
8332 the information together. */
8333 symhdr->magic = swap->sym_magic;
8334 /* FIXME: What should the version stamp be? */
8335 symhdr->vstamp = 0;
8336 symhdr->ilineMax = 0;
8337 symhdr->cbLine = 0;
8338 symhdr->idnMax = 0;
8339 symhdr->ipdMax = 0;
8340 symhdr->isymMax = 0;
8341 symhdr->ioptMax = 0;
8342 symhdr->iauxMax = 0;
8343 symhdr->issMax = 0;
8344 symhdr->issExtMax = 0;
8345 symhdr->ifdMax = 0;
8346 symhdr->crfd = 0;
8347 symhdr->iextMax = 0;
8348
8349 /* We accumulate the debugging information itself in the
8350 debug_info structure. */
8351 debug.line = NULL;
8352 debug.external_dnr = NULL;
8353 debug.external_pdr = NULL;
8354 debug.external_sym = NULL;
8355 debug.external_opt = NULL;
8356 debug.external_aux = NULL;
8357 debug.ss = NULL;
8358 debug.ssext = debug.ssext_end = NULL;
8359 debug.external_fdr = NULL;
8360 debug.external_rfd = NULL;
8361 debug.external_ext = debug.external_ext_end = NULL;
8362
8363 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8364 if (mdebug_handle == NULL)
8365 return FALSE;
8366
8367 esym.jmptbl = 0;
8368 esym.cobol_main = 0;
8369 esym.weakext = 0;
8370 esym.reserved = 0;
8371 esym.ifd = ifdNil;
8372 esym.asym.iss = issNil;
8373 esym.asym.st = stLocal;
8374 esym.asym.reserved = 0;
8375 esym.asym.index = indexNil;
8376 last = 0;
8377 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8378 {
8379 esym.asym.sc = sc[i];
8380 s = bfd_get_section_by_name (abfd, secname[i]);
8381 if (s != NULL)
8382 {
8383 esym.asym.value = s->vma;
8384 last = s->vma + s->size;
8385 }
8386 else
8387 esym.asym.value = last;
8388 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8389 secname[i], &esym))
8390 return FALSE;
8391 }
8392
8393 for (p = o->link_order_head; p != NULL; p = p->next)
8394 {
8395 asection *input_section;
8396 bfd *input_bfd;
8397 const struct ecoff_debug_swap *input_swap;
8398 struct ecoff_debug_info input_debug;
8399 char *eraw_src;
8400 char *eraw_end;
8401
8402 if (p->type != bfd_indirect_link_order)
8403 {
8404 if (p->type == bfd_data_link_order)
8405 continue;
8406 abort ();
8407 }
8408
8409 input_section = p->u.indirect.section;
8410 input_bfd = input_section->owner;
8411
8412 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8413 || (get_elf_backend_data (input_bfd)
8414 ->elf_backend_ecoff_debug_swap) == NULL)
8415 {
8416 /* I don't know what a non MIPS ELF bfd would be
8417 doing with a .mdebug section, but I don't really
8418 want to deal with it. */
8419 continue;
8420 }
8421
8422 input_swap = (get_elf_backend_data (input_bfd)
8423 ->elf_backend_ecoff_debug_swap);
8424
8425 BFD_ASSERT (p->size == input_section->size);
8426
8427 /* The ECOFF linking code expects that we have already
8428 read in the debugging information and set up an
8429 ecoff_debug_info structure, so we do that now. */
8430 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8431 &input_debug))
8432 return FALSE;
8433
8434 if (! (bfd_ecoff_debug_accumulate
8435 (mdebug_handle, abfd, &debug, swap, input_bfd,
8436 &input_debug, input_swap, info)))
8437 return FALSE;
8438
8439 /* Loop through the external symbols. For each one with
8440 interesting information, try to find the symbol in
8441 the linker global hash table and save the information
8442 for the output external symbols. */
8443 eraw_src = input_debug.external_ext;
8444 eraw_end = (eraw_src
8445 + (input_debug.symbolic_header.iextMax
8446 * input_swap->external_ext_size));
8447 for (;
8448 eraw_src < eraw_end;
8449 eraw_src += input_swap->external_ext_size)
8450 {
8451 EXTR ext;
8452 const char *name;
8453 struct mips_elf_link_hash_entry *h;
8454
8455 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8456 if (ext.asym.sc == scNil
8457 || ext.asym.sc == scUndefined
8458 || ext.asym.sc == scSUndefined)
8459 continue;
8460
8461 name = input_debug.ssext + ext.asym.iss;
8462 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8463 name, FALSE, FALSE, TRUE);
8464 if (h == NULL || h->esym.ifd != -2)
8465 continue;
8466
8467 if (ext.ifd != -1)
8468 {
8469 BFD_ASSERT (ext.ifd
8470 < input_debug.symbolic_header.ifdMax);
8471 ext.ifd = input_debug.ifdmap[ext.ifd];
8472 }
8473
8474 h->esym = ext;
8475 }
8476
8477 /* Free up the information we just read. */
8478 free (input_debug.line);
8479 free (input_debug.external_dnr);
8480 free (input_debug.external_pdr);
8481 free (input_debug.external_sym);
8482 free (input_debug.external_opt);
8483 free (input_debug.external_aux);
8484 free (input_debug.ss);
8485 free (input_debug.ssext);
8486 free (input_debug.external_fdr);
8487 free (input_debug.external_rfd);
8488 free (input_debug.external_ext);
8489
8490 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8491 elf_link_input_bfd ignores this section. */
8492 input_section->flags &= ~SEC_HAS_CONTENTS;
8493 }
8494
8495 if (SGI_COMPAT (abfd) && info->shared)
8496 {
8497 /* Create .rtproc section. */
8498 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8499 if (rtproc_sec == NULL)
8500 {
8501 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8502 | SEC_LINKER_CREATED | SEC_READONLY);
8503
8504 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8505 if (rtproc_sec == NULL
8506 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8507 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8508 return FALSE;
8509 }
8510
8511 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8512 info, rtproc_sec,
8513 &debug))
8514 return FALSE;
8515 }
8516
8517 /* Build the external symbol information. */
8518 einfo.abfd = abfd;
8519 einfo.info = info;
8520 einfo.debug = &debug;
8521 einfo.swap = swap;
8522 einfo.failed = FALSE;
8523 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8524 mips_elf_output_extsym, &einfo);
8525 if (einfo.failed)
8526 return FALSE;
8527
8528 /* Set the size of the .mdebug section. */
8529 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
8530
8531 /* Skip this section later on (I don't think this currently
8532 matters, but someday it might). */
8533 o->link_order_head = NULL;
8534
8535 mdebug_sec = o;
8536 }
8537
8538 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8539 {
8540 const char *subname;
8541 unsigned int c;
8542 Elf32_gptab *tab;
8543 Elf32_External_gptab *ext_tab;
8544 unsigned int j;
8545
8546 /* The .gptab.sdata and .gptab.sbss sections hold
8547 information describing how the small data area would
8548 change depending upon the -G switch. These sections
8549 not used in executables files. */
8550 if (! info->relocatable)
8551 {
8552 for (p = o->link_order_head; p != NULL; p = p->next)
8553 {
8554 asection *input_section;
8555
8556 if (p->type != bfd_indirect_link_order)
8557 {
8558 if (p->type == bfd_data_link_order)
8559 continue;
8560 abort ();
8561 }
8562
8563 input_section = p->u.indirect.section;
8564
8565 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8566 elf_link_input_bfd ignores this section. */
8567 input_section->flags &= ~SEC_HAS_CONTENTS;
8568 }
8569
8570 /* Skip this section later on (I don't think this
8571 currently matters, but someday it might). */
8572 o->link_order_head = NULL;
8573
8574 /* Really remove the section. */
8575 for (secpp = &abfd->sections;
8576 *secpp != o;
8577 secpp = &(*secpp)->next)
8578 ;
8579 bfd_section_list_remove (abfd, secpp);
8580 --abfd->section_count;
8581
8582 continue;
8583 }
8584
8585 /* There is one gptab for initialized data, and one for
8586 uninitialized data. */
8587 if (strcmp (o->name, ".gptab.sdata") == 0)
8588 gptab_data_sec = o;
8589 else if (strcmp (o->name, ".gptab.sbss") == 0)
8590 gptab_bss_sec = o;
8591 else
8592 {
8593 (*_bfd_error_handler)
8594 (_("%s: illegal section name `%s'"),
8595 bfd_get_filename (abfd), o->name);
8596 bfd_set_error (bfd_error_nonrepresentable_section);
8597 return FALSE;
8598 }
8599
8600 /* The linker script always combines .gptab.data and
8601 .gptab.sdata into .gptab.sdata, and likewise for
8602 .gptab.bss and .gptab.sbss. It is possible that there is
8603 no .sdata or .sbss section in the output file, in which
8604 case we must change the name of the output section. */
8605 subname = o->name + sizeof ".gptab" - 1;
8606 if (bfd_get_section_by_name (abfd, subname) == NULL)
8607 {
8608 if (o == gptab_data_sec)
8609 o->name = ".gptab.data";
8610 else
8611 o->name = ".gptab.bss";
8612 subname = o->name + sizeof ".gptab" - 1;
8613 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8614 }
8615
8616 /* Set up the first entry. */
8617 c = 1;
8618 amt = c * sizeof (Elf32_gptab);
8619 tab = bfd_malloc (amt);
8620 if (tab == NULL)
8621 return FALSE;
8622 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8623 tab[0].gt_header.gt_unused = 0;
8624
8625 /* Combine the input sections. */
8626 for (p = o->link_order_head; p != NULL; p = p->next)
8627 {
8628 asection *input_section;
8629 bfd *input_bfd;
8630 bfd_size_type size;
8631 unsigned long last;
8632 bfd_size_type gpentry;
8633
8634 if (p->type != bfd_indirect_link_order)
8635 {
8636 if (p->type == bfd_data_link_order)
8637 continue;
8638 abort ();
8639 }
8640
8641 input_section = p->u.indirect.section;
8642 input_bfd = input_section->owner;
8643
8644 /* Combine the gptab entries for this input section one
8645 by one. We know that the input gptab entries are
8646 sorted by ascending -G value. */
8647 size = input_section->size;
8648 last = 0;
8649 for (gpentry = sizeof (Elf32_External_gptab);
8650 gpentry < size;
8651 gpentry += sizeof (Elf32_External_gptab))
8652 {
8653 Elf32_External_gptab ext_gptab;
8654 Elf32_gptab int_gptab;
8655 unsigned long val;
8656 unsigned long add;
8657 bfd_boolean exact;
8658 unsigned int look;
8659
8660 if (! (bfd_get_section_contents
8661 (input_bfd, input_section, &ext_gptab, gpentry,
8662 sizeof (Elf32_External_gptab))))
8663 {
8664 free (tab);
8665 return FALSE;
8666 }
8667
8668 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8669 &int_gptab);
8670 val = int_gptab.gt_entry.gt_g_value;
8671 add = int_gptab.gt_entry.gt_bytes - last;
8672
8673 exact = FALSE;
8674 for (look = 1; look < c; look++)
8675 {
8676 if (tab[look].gt_entry.gt_g_value >= val)
8677 tab[look].gt_entry.gt_bytes += add;
8678
8679 if (tab[look].gt_entry.gt_g_value == val)
8680 exact = TRUE;
8681 }
8682
8683 if (! exact)
8684 {
8685 Elf32_gptab *new_tab;
8686 unsigned int max;
8687
8688 /* We need a new table entry. */
8689 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8690 new_tab = bfd_realloc (tab, amt);
8691 if (new_tab == NULL)
8692 {
8693 free (tab);
8694 return FALSE;
8695 }
8696 tab = new_tab;
8697 tab[c].gt_entry.gt_g_value = val;
8698 tab[c].gt_entry.gt_bytes = add;
8699
8700 /* Merge in the size for the next smallest -G
8701 value, since that will be implied by this new
8702 value. */
8703 max = 0;
8704 for (look = 1; look < c; look++)
8705 {
8706 if (tab[look].gt_entry.gt_g_value < val
8707 && (max == 0
8708 || (tab[look].gt_entry.gt_g_value
8709 > tab[max].gt_entry.gt_g_value)))
8710 max = look;
8711 }
8712 if (max != 0)
8713 tab[c].gt_entry.gt_bytes +=
8714 tab[max].gt_entry.gt_bytes;
8715
8716 ++c;
8717 }
8718
8719 last = int_gptab.gt_entry.gt_bytes;
8720 }
8721
8722 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8723 elf_link_input_bfd ignores this section. */
8724 input_section->flags &= ~SEC_HAS_CONTENTS;
8725 }
8726
8727 /* The table must be sorted by -G value. */
8728 if (c > 2)
8729 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8730
8731 /* Swap out the table. */
8732 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8733 ext_tab = bfd_alloc (abfd, amt);
8734 if (ext_tab == NULL)
8735 {
8736 free (tab);
8737 return FALSE;
8738 }
8739
8740 for (j = 0; j < c; j++)
8741 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8742 free (tab);
8743
8744 o->size = c * sizeof (Elf32_External_gptab);
8745 o->contents = (bfd_byte *) ext_tab;
8746
8747 /* Skip this section later on (I don't think this currently
8748 matters, but someday it might). */
8749 o->link_order_head = NULL;
8750 }
8751 }
8752
8753 /* Invoke the regular ELF backend linker to do all the work. */
8754 if (!bfd_elf_final_link (abfd, info))
8755 return FALSE;
8756
8757 /* Now write out the computed sections. */
8758
8759 if (reginfo_sec != NULL)
8760 {
8761 Elf32_External_RegInfo ext;
8762
8763 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8764 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8765 return FALSE;
8766 }
8767
8768 if (mdebug_sec != NULL)
8769 {
8770 BFD_ASSERT (abfd->output_has_begun);
8771 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8772 swap, info,
8773 mdebug_sec->filepos))
8774 return FALSE;
8775
8776 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8777 }
8778
8779 if (gptab_data_sec != NULL)
8780 {
8781 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8782 gptab_data_sec->contents,
8783 0, gptab_data_sec->size))
8784 return FALSE;
8785 }
8786
8787 if (gptab_bss_sec != NULL)
8788 {
8789 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8790 gptab_bss_sec->contents,
8791 0, gptab_bss_sec->size))
8792 return FALSE;
8793 }
8794
8795 if (SGI_COMPAT (abfd))
8796 {
8797 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8798 if (rtproc_sec != NULL)
8799 {
8800 if (! bfd_set_section_contents (abfd, rtproc_sec,
8801 rtproc_sec->contents,
8802 0, rtproc_sec->size))
8803 return FALSE;
8804 }
8805 }
8806
8807 return TRUE;
8808 }
8809 \f
8810 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8811
8812 struct mips_mach_extension {
8813 unsigned long extension, base;
8814 };
8815
8816
8817 /* An array describing how BFD machines relate to one another. The entries
8818 are ordered topologically with MIPS I extensions listed last. */
8819
8820 static const struct mips_mach_extension mips_mach_extensions[] = {
8821 /* MIPS64 extensions. */
8822 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8823 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8824
8825 /* MIPS V extensions. */
8826 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8827
8828 /* R10000 extensions. */
8829 { bfd_mach_mips12000, bfd_mach_mips10000 },
8830
8831 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8832 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8833 better to allow vr5400 and vr5500 code to be merged anyway, since
8834 many libraries will just use the core ISA. Perhaps we could add
8835 some sort of ASE flag if this ever proves a problem. */
8836 { bfd_mach_mips5500, bfd_mach_mips5400 },
8837 { bfd_mach_mips5400, bfd_mach_mips5000 },
8838
8839 /* MIPS IV extensions. */
8840 { bfd_mach_mips5, bfd_mach_mips8000 },
8841 { bfd_mach_mips10000, bfd_mach_mips8000 },
8842 { bfd_mach_mips5000, bfd_mach_mips8000 },
8843 { bfd_mach_mips7000, bfd_mach_mips8000 },
8844 { bfd_mach_mips9000, bfd_mach_mips8000 },
8845
8846 /* VR4100 extensions. */
8847 { bfd_mach_mips4120, bfd_mach_mips4100 },
8848 { bfd_mach_mips4111, bfd_mach_mips4100 },
8849
8850 /* MIPS III extensions. */
8851 { bfd_mach_mips8000, bfd_mach_mips4000 },
8852 { bfd_mach_mips4650, bfd_mach_mips4000 },
8853 { bfd_mach_mips4600, bfd_mach_mips4000 },
8854 { bfd_mach_mips4400, bfd_mach_mips4000 },
8855 { bfd_mach_mips4300, bfd_mach_mips4000 },
8856 { bfd_mach_mips4100, bfd_mach_mips4000 },
8857 { bfd_mach_mips4010, bfd_mach_mips4000 },
8858
8859 /* MIPS32 extensions. */
8860 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8861
8862 /* MIPS II extensions. */
8863 { bfd_mach_mips4000, bfd_mach_mips6000 },
8864 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8865
8866 /* MIPS I extensions. */
8867 { bfd_mach_mips6000, bfd_mach_mips3000 },
8868 { bfd_mach_mips3900, bfd_mach_mips3000 }
8869 };
8870
8871
8872 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8873
8874 static bfd_boolean
8875 mips_mach_extends_p (unsigned long base, unsigned long extension)
8876 {
8877 size_t i;
8878
8879 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8880 if (extension == mips_mach_extensions[i].extension)
8881 extension = mips_mach_extensions[i].base;
8882
8883 return extension == base;
8884 }
8885
8886
8887 /* Return true if the given ELF header flags describe a 32-bit binary. */
8888
8889 static bfd_boolean
8890 mips_32bit_flags_p (flagword flags)
8891 {
8892 return ((flags & EF_MIPS_32BITMODE) != 0
8893 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8894 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8895 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8896 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8897 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8898 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8899 }
8900
8901
8902 /* Merge backend specific data from an object file to the output
8903 object file when linking. */
8904
8905 bfd_boolean
8906 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8907 {
8908 flagword old_flags;
8909 flagword new_flags;
8910 bfd_boolean ok;
8911 bfd_boolean null_input_bfd = TRUE;
8912 asection *sec;
8913
8914 /* Check if we have the same endianess */
8915 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8916 {
8917 (*_bfd_error_handler)
8918 (_("%B: endianness incompatible with that of the selected emulation"),
8919 ibfd);
8920 return FALSE;
8921 }
8922
8923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8925 return TRUE;
8926
8927 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8928 {
8929 (*_bfd_error_handler)
8930 (_("%B: ABI is incompatible with that of the selected emulation"),
8931 ibfd);
8932 return FALSE;
8933 }
8934
8935 new_flags = elf_elfheader (ibfd)->e_flags;
8936 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8937 old_flags = elf_elfheader (obfd)->e_flags;
8938
8939 if (! elf_flags_init (obfd))
8940 {
8941 elf_flags_init (obfd) = TRUE;
8942 elf_elfheader (obfd)->e_flags = new_flags;
8943 elf_elfheader (obfd)->e_ident[EI_CLASS]
8944 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8945
8946 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8947 && bfd_get_arch_info (obfd)->the_default)
8948 {
8949 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8950 bfd_get_mach (ibfd)))
8951 return FALSE;
8952 }
8953
8954 return TRUE;
8955 }
8956
8957 /* Check flag compatibility. */
8958
8959 new_flags &= ~EF_MIPS_NOREORDER;
8960 old_flags &= ~EF_MIPS_NOREORDER;
8961
8962 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8963 doesn't seem to matter. */
8964 new_flags &= ~EF_MIPS_XGOT;
8965 old_flags &= ~EF_MIPS_XGOT;
8966
8967 /* MIPSpro generates ucode info in n64 objects. Again, we should
8968 just be able to ignore this. */
8969 new_flags &= ~EF_MIPS_UCODE;
8970 old_flags &= ~EF_MIPS_UCODE;
8971
8972 if (new_flags == old_flags)
8973 return TRUE;
8974
8975 /* Check to see if the input BFD actually contains any sections.
8976 If not, its flags may not have been initialised either, but it cannot
8977 actually cause any incompatibility. */
8978 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8979 {
8980 /* Ignore synthetic sections and empty .text, .data and .bss sections
8981 which are automatically generated by gas. */
8982 if (strcmp (sec->name, ".reginfo")
8983 && strcmp (sec->name, ".mdebug")
8984 && (sec->size != 0
8985 || (strcmp (sec->name, ".text")
8986 && strcmp (sec->name, ".data")
8987 && strcmp (sec->name, ".bss"))))
8988 {
8989 null_input_bfd = FALSE;
8990 break;
8991 }
8992 }
8993 if (null_input_bfd)
8994 return TRUE;
8995
8996 ok = TRUE;
8997
8998 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8999 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9000 {
9001 (*_bfd_error_handler)
9002 (_("%B: warning: linking PIC files with non-PIC files"),
9003 ibfd);
9004 ok = TRUE;
9005 }
9006
9007 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9008 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9009 if (! (new_flags & EF_MIPS_PIC))
9010 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9011
9012 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9013 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9014
9015 /* Compare the ISAs. */
9016 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9017 {
9018 (*_bfd_error_handler)
9019 (_("%B: linking 32-bit code with 64-bit code"),
9020 ibfd);
9021 ok = FALSE;
9022 }
9023 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9024 {
9025 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9026 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9027 {
9028 /* Copy the architecture info from IBFD to OBFD. Also copy
9029 the 32-bit flag (if set) so that we continue to recognise
9030 OBFD as a 32-bit binary. */
9031 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9032 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9033 elf_elfheader (obfd)->e_flags
9034 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9035
9036 /* Copy across the ABI flags if OBFD doesn't use them
9037 and if that was what caused us to treat IBFD as 32-bit. */
9038 if ((old_flags & EF_MIPS_ABI) == 0
9039 && mips_32bit_flags_p (new_flags)
9040 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9041 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9042 }
9043 else
9044 {
9045 /* The ISAs aren't compatible. */
9046 (*_bfd_error_handler)
9047 (_("%B: linking %s module with previous %s modules"),
9048 ibfd,
9049 bfd_printable_name (ibfd),
9050 bfd_printable_name (obfd));
9051 ok = FALSE;
9052 }
9053 }
9054
9055 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9056 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9057
9058 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9059 does set EI_CLASS differently from any 32-bit ABI. */
9060 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9061 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9062 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9063 {
9064 /* Only error if both are set (to different values). */
9065 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9066 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9067 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9068 {
9069 (*_bfd_error_handler)
9070 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9071 ibfd,
9072 elf_mips_abi_name (ibfd),
9073 elf_mips_abi_name (obfd));
9074 ok = FALSE;
9075 }
9076 new_flags &= ~EF_MIPS_ABI;
9077 old_flags &= ~EF_MIPS_ABI;
9078 }
9079
9080 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9081 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9082 {
9083 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9084
9085 new_flags &= ~ EF_MIPS_ARCH_ASE;
9086 old_flags &= ~ EF_MIPS_ARCH_ASE;
9087 }
9088
9089 /* Warn about any other mismatches */
9090 if (new_flags != old_flags)
9091 {
9092 (*_bfd_error_handler)
9093 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9094 ibfd, (unsigned long) new_flags,
9095 (unsigned long) old_flags);
9096 ok = FALSE;
9097 }
9098
9099 if (! ok)
9100 {
9101 bfd_set_error (bfd_error_bad_value);
9102 return FALSE;
9103 }
9104
9105 return TRUE;
9106 }
9107
9108 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9109
9110 bfd_boolean
9111 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9112 {
9113 BFD_ASSERT (!elf_flags_init (abfd)
9114 || elf_elfheader (abfd)->e_flags == flags);
9115
9116 elf_elfheader (abfd)->e_flags = flags;
9117 elf_flags_init (abfd) = TRUE;
9118 return TRUE;
9119 }
9120
9121 bfd_boolean
9122 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9123 {
9124 FILE *file = ptr;
9125
9126 BFD_ASSERT (abfd != NULL && ptr != NULL);
9127
9128 /* Print normal ELF private data. */
9129 _bfd_elf_print_private_bfd_data (abfd, ptr);
9130
9131 /* xgettext:c-format */
9132 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9133
9134 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9135 fprintf (file, _(" [abi=O32]"));
9136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9137 fprintf (file, _(" [abi=O64]"));
9138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9139 fprintf (file, _(" [abi=EABI32]"));
9140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9141 fprintf (file, _(" [abi=EABI64]"));
9142 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9143 fprintf (file, _(" [abi unknown]"));
9144 else if (ABI_N32_P (abfd))
9145 fprintf (file, _(" [abi=N32]"));
9146 else if (ABI_64_P (abfd))
9147 fprintf (file, _(" [abi=64]"));
9148 else
9149 fprintf (file, _(" [no abi set]"));
9150
9151 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9152 fprintf (file, _(" [mips1]"));
9153 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9154 fprintf (file, _(" [mips2]"));
9155 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9156 fprintf (file, _(" [mips3]"));
9157 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9158 fprintf (file, _(" [mips4]"));
9159 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9160 fprintf (file, _(" [mips5]"));
9161 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9162 fprintf (file, _(" [mips32]"));
9163 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9164 fprintf (file, _(" [mips64]"));
9165 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9166 fprintf (file, _(" [mips32r2]"));
9167 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9168 fprintf (file, _(" [mips64r2]"));
9169 else
9170 fprintf (file, _(" [unknown ISA]"));
9171
9172 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9173 fprintf (file, _(" [mdmx]"));
9174
9175 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9176 fprintf (file, _(" [mips16]"));
9177
9178 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9179 fprintf (file, _(" [32bitmode]"));
9180 else
9181 fprintf (file, _(" [not 32bitmode]"));
9182
9183 fputc ('\n', file);
9184
9185 return TRUE;
9186 }
9187
9188 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9189 {
9190 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9191 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9192 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9193 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9194 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9195 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9196 { NULL, 0, 0, 0, 0 }
9197 };