2003-05-07 Eric Christopher <echristo@redhat.com>
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
194
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
198 p. 4-20. */
199 bfd_boolean no_fn_stub;
200
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
203 asection *fn_stub;
204
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
207 bfd_boolean need_fn_stub;
208
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
211 asection *call_stub;
212
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
216
217 /* Are we forced local? .*/
218 bfd_boolean forced_local;
219 };
220
221 /* MIPS ELF linker hash table. */
222
223 struct mips_elf_link_hash_table
224 {
225 struct elf_link_hash_table root;
226 #if 0
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
230 #endif
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
236 entry is set to the address of __rld_obj_head as in IRIX5. */
237 bfd_boolean use_rld_obj_head;
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
239 bfd_vma rld_value;
240 /* This is set if we see any mips16 stub sections. */
241 bfd_boolean mips16_stubs_seen;
242 };
243
244 /* Structure used to pass information to mips_elf_output_extsym. */
245
246 struct extsym_info
247 {
248 bfd *abfd; struct bfd_link_info *info;
249 struct ecoff_debug_info *debug;
250 const struct ecoff_debug_swap *swap;
251 bfd_boolean failed;
252 };
253
254 /* The names of the runtime procedure table symbols used on IRIX5. */
255
256 static const char * const mips_elf_dynsym_rtproc_names[] =
257 {
258 "_procedure_table",
259 "_procedure_string_table",
260 "_procedure_table_size",
261 NULL
262 };
263
264 /* These structures are used to generate the .compact_rel section on
265 IRIX5. */
266
267 typedef struct
268 {
269 unsigned long id1; /* Always one? */
270 unsigned long num; /* Number of compact relocation entries. */
271 unsigned long id2; /* Always two? */
272 unsigned long offset; /* The file offset of the first relocation. */
273 unsigned long reserved0; /* Zero? */
274 unsigned long reserved1; /* Zero? */
275 } Elf32_compact_rel;
276
277 typedef struct
278 {
279 bfd_byte id1[4];
280 bfd_byte num[4];
281 bfd_byte id2[4];
282 bfd_byte offset[4];
283 bfd_byte reserved0[4];
284 bfd_byte reserved1[4];
285 } Elf32_External_compact_rel;
286
287 typedef struct
288 {
289 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
290 unsigned int rtype : 4; /* Relocation types. See below. */
291 unsigned int dist2to : 8;
292 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
293 unsigned long konst; /* KONST field. See below. */
294 unsigned long vaddr; /* VADDR to be relocated. */
295 } Elf32_crinfo;
296
297 typedef struct
298 {
299 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
300 unsigned int rtype : 4; /* Relocation types. See below. */
301 unsigned int dist2to : 8;
302 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
303 unsigned long konst; /* KONST field. See below. */
304 } Elf32_crinfo2;
305
306 typedef struct
307 {
308 bfd_byte info[4];
309 bfd_byte konst[4];
310 bfd_byte vaddr[4];
311 } Elf32_External_crinfo;
312
313 typedef struct
314 {
315 bfd_byte info[4];
316 bfd_byte konst[4];
317 } Elf32_External_crinfo2;
318
319 /* These are the constants used to swap the bitfields in a crinfo. */
320
321 #define CRINFO_CTYPE (0x1)
322 #define CRINFO_CTYPE_SH (31)
323 #define CRINFO_RTYPE (0xf)
324 #define CRINFO_RTYPE_SH (27)
325 #define CRINFO_DIST2TO (0xff)
326 #define CRINFO_DIST2TO_SH (19)
327 #define CRINFO_RELVADDR (0x7ffff)
328 #define CRINFO_RELVADDR_SH (0)
329
330 /* A compact relocation info has long (3 words) or short (2 words)
331 formats. A short format doesn't have VADDR field and relvaddr
332 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
333 #define CRF_MIPS_LONG 1
334 #define CRF_MIPS_SHORT 0
335
336 /* There are 4 types of compact relocation at least. The value KONST
337 has different meaning for each type:
338
339 (type) (konst)
340 CT_MIPS_REL32 Address in data
341 CT_MIPS_WORD Address in word (XXX)
342 CT_MIPS_GPHI_LO GP - vaddr
343 CT_MIPS_JMPAD Address to jump
344 */
345
346 #define CRT_MIPS_REL32 0xa
347 #define CRT_MIPS_WORD 0xb
348 #define CRT_MIPS_GPHI_LO 0xc
349 #define CRT_MIPS_JMPAD 0xd
350
351 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
352 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
353 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
354 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
355 \f
356 /* The structure of the runtime procedure descriptor created by the
357 loader for use by the static exception system. */
358
359 typedef struct runtime_pdr {
360 bfd_vma adr; /* Memory address of start of procedure. */
361 long regmask; /* Save register mask. */
362 long regoffset; /* Save register offset. */
363 long fregmask; /* Save floating point register mask. */
364 long fregoffset; /* Save floating point register offset. */
365 long frameoffset; /* Frame size. */
366 short framereg; /* Frame pointer register. */
367 short pcreg; /* Offset or reg of return pc. */
368 long irpss; /* Index into the runtime string table. */
369 long reserved;
370 struct exception_info *exception_info;/* Pointer to exception array. */
371 } RPDR, *pRPDR;
372 #define cbRPDR sizeof (RPDR)
373 #define rpdNil ((pRPDR) 0)
374 \f
375 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
376 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
377 static void ecoff_swap_rpdr_out
378 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
379 static bfd_boolean mips_elf_create_procedure_table
380 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
381 struct ecoff_debug_info *));
382 static bfd_boolean mips_elf_check_mips16_stubs
383 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
384 static void bfd_mips_elf32_swap_gptab_in
385 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
386 static void bfd_mips_elf32_swap_gptab_out
387 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
388 static void bfd_elf32_swap_compact_rel_out
389 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
390 static void bfd_elf32_swap_crinfo_out
391 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
392 #if 0
393 static void bfd_mips_elf_swap_msym_in
394 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
395 #endif
396 static void bfd_mips_elf_swap_msym_out
397 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
398 static int sort_dynamic_relocs
399 PARAMS ((const void *, const void *));
400 static int sort_dynamic_relocs_64
401 PARAMS ((const void *, const void *));
402 static bfd_boolean mips_elf_output_extsym
403 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
404 static int gptab_compare PARAMS ((const void *, const void *));
405 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
406 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
407 static struct mips_got_info *mips_elf_got_info
408 PARAMS ((bfd *, asection **));
409 static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
410 static bfd_vma mips_elf_local_got_index
411 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
412 static bfd_vma mips_elf_global_got_index
413 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
414 static bfd_vma mips_elf_got_page
415 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
416 static bfd_vma mips_elf_got16_entry
417 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
418 static bfd_vma mips_elf_got_offset_from_index
419 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
420 static struct mips_got_entry *mips_elf_create_local_got_entry
421 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
422 static bfd_boolean mips_elf_sort_hash_table
423 PARAMS ((struct bfd_link_info *, unsigned long));
424 static bfd_boolean mips_elf_sort_hash_table_f
425 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
426 static bfd_boolean mips_elf_record_local_got_symbol
427 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
428 static bfd_boolean mips_elf_record_global_got_symbol
429 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
430 struct mips_got_info *));
431 static const Elf_Internal_Rela *mips_elf_next_relocation
432 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
433 const Elf_Internal_Rela *));
434 static bfd_boolean mips_elf_local_relocation_p
435 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
436 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
437 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
438 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
441 static bfd_boolean mips_elf_create_compact_rel_section
442 PARAMS ((bfd *, struct bfd_link_info *));
443 static bfd_boolean mips_elf_create_got_section
444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
445 static asection *mips_elf_create_msym_section
446 PARAMS ((bfd *));
447 static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
451 bfd_boolean *, bfd_boolean));
452 static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
454 static bfd_boolean mips_elf_perform_relocation
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
457 bfd_boolean));
458 static bfd_boolean mips_elf_stub_section_p
459 PARAMS ((bfd *, asection *));
460 static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
462 static bfd_boolean mips_elf_create_dynamic_relocation
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
466 static void mips_set_isa_flags PARAMS ((bfd *));
467 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468 static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
470 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
472 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
473 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
475
476 static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484 static int mips_elf_merge_gots PARAMS ((void **, void *));
485 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487 static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489 static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491 static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
493
494 /* This will be used when we sort the dynamic relocation records. */
495 static bfd *reldyn_sorting_bfd;
496
497 /* Nonzero if ABFD is using the N32 ABI. */
498
499 #define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
501
502 /* Nonzero if ABFD is using the N64 ABI. */
503 #define ABI_64_P(abfd) \
504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
505
506 /* Nonzero if ABFD is using NewABI conventions. */
507 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
508
509 /* The IRIX compatibility level we are striving for. */
510 #define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
512
513 /* Whether we are trying to be compatible with IRIX at all. */
514 #define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
516
517 /* The name of the options section. */
518 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
519 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
520
521 /* The name of the stub section. */
522 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
523 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
524
525 /* The size of an external REL relocation. */
526 #define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
528
529 /* The size of an external dynamic table entry. */
530 #define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
532
533 /* The size of a GOT entry. */
534 #define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
536
537 /* The size of a symbol-table entry. */
538 #define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
540
541 /* The default alignment for sections, as a power of two. */
542 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
543 (get_elf_backend_data (abfd)->s->log_file_align)
544
545 /* Get word-sized data. */
546 #define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
548
549 /* Put out word-sized data. */
550 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
551 (ABI_64_P (abfd) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
554
555 /* Add a dynamic symbol table-entry. */
556 #ifdef BFD64
557 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
561 #else
562 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
564 ? (abort (), FALSE) \
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
566 #endif
567
568 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
570
571 /* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
587
588 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590 #define MINUS_ONE (((bfd_vma)0) - 1)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
604 #define STUB_LW(abfd) \
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610 #define STUB_JALR 0x0320f809 /* jal t9 */
611 #define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613 #define MIPS_FUNCTION_STUB_SIZE (16)
614
615 /* The name of the dynamic interpreter. This is put in the .interp
616 section. */
617
618 #define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
622
623 #ifdef BFD64
624 #define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
626 #define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628 #define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630 #define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
632 #else
633 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
634 #define ELF_R_SYM(bfd, i) \
635 (ELF32_R_SYM (i))
636 #define ELF_R_TYPE(bfd, i) \
637 (ELF32_R_TYPE (i))
638 #define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
640 #endif
641 \f
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
644
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
653
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
660
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
668 $f0/$f1 and $2/$3.)
669
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
673
674 We record any stubs that we find in the symbol table. */
675
676 #define FN_STUB ".mips16.fn."
677 #define CALL_STUB ".mips16.call."
678 #define CALL_FP_STUB ".mips16.call.fp."
679 \f
680 /* Look up an entry in a MIPS ELF linker hash table. */
681
682 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
685 (copy), (follow)))
686
687 /* Traverse a MIPS ELF linker hash table. */
688
689 #define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
691 (&(table)->root, \
692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
693 (info)))
694
695 /* Get the MIPS ELF linker hash table from a link_info structure. */
696
697 #define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
699
700 /* Create an entry in a MIPS ELF linker hash table. */
701
702 static struct bfd_hash_entry *
703 mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
706 const char *string;
707 {
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
732 ret->readonly_reloc = FALSE;
733 ret->min_dyn_reloc_index = 0;
734 ret->no_fn_stub = FALSE;
735 ret->fn_stub = NULL;
736 ret->need_fn_stub = FALSE;
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
739 ret->forced_local = FALSE;
740 }
741
742 return (struct bfd_hash_entry *) ret;
743 }
744
745 bfd_boolean
746 _bfd_mips_elf_new_section_hook (abfd, sec)
747 bfd *abfd;
748 asection *sec;
749 {
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
752
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
754 if (sdata == NULL)
755 return FALSE;
756 sec->used_by_bfd = (PTR) sdata;
757
758 return _bfd_elf_new_section_hook (abfd, sec);
759 }
760 \f
761 /* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
763
764 bfd_boolean
765 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
766 bfd *abfd;
767 asection *section;
768 struct ecoff_debug_info *debug;
769 {
770 HDRR *symhdr;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
773
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
776
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
779 goto error_return;
780
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
783 goto error_return;
784
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
787
788 /* The symbolic header contains absolute file offsets and sizes to
789 read. */
790 #define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
792 debug->ptr = NULL; \
793 else \
794 { \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
798 goto error_return; \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
801 goto error_return; \
802 }
803
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
810 union aux_ext *);
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
816 #undef READ
817
818 debug->fdr = NULL;
819 debug->adjust = NULL;
820
821 return TRUE;
822
823 error_return:
824 if (ext_hdr != NULL)
825 free (ext_hdr);
826 if (debug->line != NULL)
827 free (debug->line);
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
839 free (debug->ss);
840 if (debug->ssext != NULL)
841 free (debug->ssext);
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
848 return FALSE;
849 }
850 \f
851 /* Swap RPDR (runtime procedure table entry) for output. */
852
853 static void
854 ecoff_swap_rpdr_out (abfd, in, ex)
855 bfd *abfd;
856 const RPDR *in;
857 struct rpdr_ext *ex;
858 {
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
865
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
868
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
870 #if 0 /* FIXME */
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
872 #endif
873 }
874
875 /* Create a runtime procedure table from the .mdebug section. */
876
877 static bfd_boolean
878 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
879 PTR handle;
880 bfd *abfd;
881 struct bfd_link_info *info;
882 asection *s;
883 struct ecoff_debug_info *debug;
884 {
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
887 RPDR *rpdr, *rp;
888 struct rpdr_ext *erp;
889 PTR rtproc;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
892 char *ss, **sv;
893 char *str;
894 bfd_size_type size;
895 bfd_size_type count;
896 unsigned long sindex;
897 unsigned long i;
898 PDR pdr;
899 SYMR sym;
900 const char *no_name_func = _("static procedure (no name)");
901
902 epdr = NULL;
903 rpdr = NULL;
904 esym = NULL;
905 ss = NULL;
906 sv = NULL;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909
910 sindex = strlen (no_name_func) + 1;
911 count = hdr->ipdMax;
912 if (count > 0)
913 {
914 size = swap->external_pdr_size;
915
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
917 if (epdr == NULL)
918 goto error_return;
919
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
921 goto error_return;
922
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
925 if (rpdr == NULL)
926 goto error_return;
927
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
930 if (sv == NULL)
931 goto error_return;
932
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
936 if (esym == NULL)
937 goto error_return;
938
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
940 goto error_return;
941
942 count = hdr->issMax;
943 ss = (char *) bfd_malloc (count);
944 if (ss == NULL)
945 goto error_return;
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
947 goto error_return;
948
949 count = hdr->ipdMax;
950 for (i = 0; i < (unsigned long) count; i++, rp++)
951 {
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
954 rp->adr = sym.value;
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
962 rp->irpss = sindex;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
965 }
966 }
967
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
971 if (rtproc == NULL)
972 {
973 mips_elf_hash_table (info)->procedure_count = 0;
974 goto error_return;
975 }
976
977 mips_elf_hash_table (info)->procedure_count = count + 2;
978
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
981 erp++;
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
986 {
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
988 strcpy (str, sv[i]);
989 str += strlen (sv[i]) + 1;
990 }
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
992
993 /* Set the size and contents of .rtproc section. */
994 s->_raw_size = size;
995 s->contents = (bfd_byte *) rtproc;
996
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1000
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011
1012 return TRUE;
1013
1014 error_return:
1015 if (epdr != NULL)
1016 free (epdr);
1017 if (rpdr != NULL)
1018 free (rpdr);
1019 if (esym != NULL)
1020 free (esym);
1021 if (ss != NULL)
1022 free (ss);
1023 if (sv != NULL)
1024 free (sv);
1025 return FALSE;
1026 }
1027
1028 /* Check the mips16 stubs for a particular symbol, and see if we can
1029 discard them. */
1030
1031 static bfd_boolean
1032 mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1035 {
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1038
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1041 {
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1050 }
1051
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1054 {
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1063 }
1064
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1067 {
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1076 }
1077
1078 return TRUE;
1079 }
1080 \f
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1083 relocateable, data, gp)
1084 bfd *abfd;
1085 asymbol *symbol;
1086 arelent *reloc_entry;
1087 asection *input_section;
1088 bfd_boolean relocateable;
1089 PTR data;
1090 bfd_vma gp;
1091 {
1092 bfd_vma relocation;
1093 unsigned long insn;
1094 unsigned long val;
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1103
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1106
1107 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1108
1109 /* Set val to the offset into the section or symbol. */
1110 if (reloc_entry->howto->src_mask == 0)
1111 {
1112 /* This case occurs with the 64-bit MIPS ELF ABI. */
1113 val = reloc_entry->addend;
1114 }
1115 else
1116 {
1117 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1118 if (val & 0x8000)
1119 val -= 0x10000;
1120 }
1121
1122 /* Adjust val for the final section location and GP value. If we
1123 are producing relocateable output, we don't want to do this for
1124 an external symbol. */
1125 if (! relocateable
1126 || (symbol->flags & BSF_SECTION_SYM) != 0)
1127 val += relocation - gp;
1128
1129 insn = (insn & ~0xffff) | (val & 0xffff);
1130 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1131
1132 if (relocateable)
1133 reloc_entry->address += input_section->output_offset;
1134
1135 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1136 return bfd_reloc_overflow;
1137
1138 return bfd_reloc_ok;
1139 }
1140 \f
1141 /* Swap an entry in a .gptab section. Note that these routines rely
1142 on the equivalence of the two elements of the union. */
1143
1144 static void
1145 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1146 bfd *abfd;
1147 const Elf32_External_gptab *ex;
1148 Elf32_gptab *in;
1149 {
1150 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1151 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1152 }
1153
1154 static void
1155 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1156 bfd *abfd;
1157 const Elf32_gptab *in;
1158 Elf32_External_gptab *ex;
1159 {
1160 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1161 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1162 }
1163
1164 static void
1165 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1166 bfd *abfd;
1167 const Elf32_compact_rel *in;
1168 Elf32_External_compact_rel *ex;
1169 {
1170 H_PUT_32 (abfd, in->id1, ex->id1);
1171 H_PUT_32 (abfd, in->num, ex->num);
1172 H_PUT_32 (abfd, in->id2, ex->id2);
1173 H_PUT_32 (abfd, in->offset, ex->offset);
1174 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1175 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1176 }
1177
1178 static void
1179 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1180 bfd *abfd;
1181 const Elf32_crinfo *in;
1182 Elf32_External_crinfo *ex;
1183 {
1184 unsigned long l;
1185
1186 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1187 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1188 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1189 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1190 H_PUT_32 (abfd, l, ex->info);
1191 H_PUT_32 (abfd, in->konst, ex->konst);
1192 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1193 }
1194
1195 #if 0
1196 /* Swap in an MSYM entry. */
1197
1198 static void
1199 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1200 bfd *abfd;
1201 const Elf32_External_Msym *ex;
1202 Elf32_Internal_Msym *in;
1203 {
1204 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1205 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1206 }
1207 #endif
1208 /* Swap out an MSYM entry. */
1209
1210 static void
1211 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1212 bfd *abfd;
1213 const Elf32_Internal_Msym *in;
1214 Elf32_External_Msym *ex;
1215 {
1216 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1217 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1218 }
1219 \f
1220 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1221 routines swap this structure in and out. They are used outside of
1222 BFD, so they are globally visible. */
1223
1224 void
1225 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1226 bfd *abfd;
1227 const Elf32_External_RegInfo *ex;
1228 Elf32_RegInfo *in;
1229 {
1230 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1231 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1232 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1233 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1234 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1235 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1236 }
1237
1238 void
1239 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1240 bfd *abfd;
1241 const Elf32_RegInfo *in;
1242 Elf32_External_RegInfo *ex;
1243 {
1244 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1245 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1246 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1247 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1248 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1249 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1250 }
1251
1252 /* In the 64 bit ABI, the .MIPS.options section holds register
1253 information in an Elf64_Reginfo structure. These routines swap
1254 them in and out. They are globally visible because they are used
1255 outside of BFD. These routines are here so that gas can call them
1256 without worrying about whether the 64 bit ABI has been included. */
1257
1258 void
1259 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1260 bfd *abfd;
1261 const Elf64_External_RegInfo *ex;
1262 Elf64_Internal_RegInfo *in;
1263 {
1264 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1265 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1266 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1267 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1268 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1269 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1270 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1271 }
1272
1273 void
1274 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1275 bfd *abfd;
1276 const Elf64_Internal_RegInfo *in;
1277 Elf64_External_RegInfo *ex;
1278 {
1279 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1280 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1281 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1282 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1283 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1284 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1285 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1286 }
1287
1288 /* Swap in an options header. */
1289
1290 void
1291 bfd_mips_elf_swap_options_in (abfd, ex, in)
1292 bfd *abfd;
1293 const Elf_External_Options *ex;
1294 Elf_Internal_Options *in;
1295 {
1296 in->kind = H_GET_8 (abfd, ex->kind);
1297 in->size = H_GET_8 (abfd, ex->size);
1298 in->section = H_GET_16 (abfd, ex->section);
1299 in->info = H_GET_32 (abfd, ex->info);
1300 }
1301
1302 /* Swap out an options header. */
1303
1304 void
1305 bfd_mips_elf_swap_options_out (abfd, in, ex)
1306 bfd *abfd;
1307 const Elf_Internal_Options *in;
1308 Elf_External_Options *ex;
1309 {
1310 H_PUT_8 (abfd, in->kind, ex->kind);
1311 H_PUT_8 (abfd, in->size, ex->size);
1312 H_PUT_16 (abfd, in->section, ex->section);
1313 H_PUT_32 (abfd, in->info, ex->info);
1314 }
1315 \f
1316 /* This function is called via qsort() to sort the dynamic relocation
1317 entries by increasing r_symndx value. */
1318
1319 static int
1320 sort_dynamic_relocs (arg1, arg2)
1321 const PTR arg1;
1322 const PTR arg2;
1323 {
1324 Elf_Internal_Rela int_reloc1;
1325 Elf_Internal_Rela int_reloc2;
1326
1327 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1329
1330 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1331 }
1332
1333 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1334
1335 static int
1336 sort_dynamic_relocs_64 (arg1, arg2)
1337 const PTR arg1;
1338 const PTR arg2;
1339 {
1340 Elf_Internal_Rela int_reloc1[3];
1341 Elf_Internal_Rela int_reloc2[3];
1342
1343 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1344 (reldyn_sorting_bfd, arg1, int_reloc1);
1345 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1346 (reldyn_sorting_bfd, arg2, int_reloc2);
1347
1348 return (ELF64_R_SYM (int_reloc1[0].r_info)
1349 - ELF64_R_SYM (int_reloc2[0].r_info));
1350 }
1351
1352
1353 /* This routine is used to write out ECOFF debugging external symbol
1354 information. It is called via mips_elf_link_hash_traverse. The
1355 ECOFF external symbol information must match the ELF external
1356 symbol information. Unfortunately, at this point we don't know
1357 whether a symbol is required by reloc information, so the two
1358 tables may wind up being different. We must sort out the external
1359 symbol information before we can set the final size of the .mdebug
1360 section, and we must set the size of the .mdebug section before we
1361 can relocate any sections, and we can't know which symbols are
1362 required by relocation until we relocate the sections.
1363 Fortunately, it is relatively unlikely that any symbol will be
1364 stripped but required by a reloc. In particular, it can not happen
1365 when generating a final executable. */
1366
1367 static bfd_boolean
1368 mips_elf_output_extsym (h, data)
1369 struct mips_elf_link_hash_entry *h;
1370 PTR data;
1371 {
1372 struct extsym_info *einfo = (struct extsym_info *) data;
1373 bfd_boolean strip;
1374 asection *sec, *output_section;
1375
1376 if (h->root.root.type == bfd_link_hash_warning)
1377 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1378
1379 if (h->root.indx == -2)
1380 strip = FALSE;
1381 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1382 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1383 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1385 strip = TRUE;
1386 else if (einfo->info->strip == strip_all
1387 || (einfo->info->strip == strip_some
1388 && bfd_hash_lookup (einfo->info->keep_hash,
1389 h->root.root.root.string,
1390 FALSE, FALSE) == NULL))
1391 strip = TRUE;
1392 else
1393 strip = FALSE;
1394
1395 if (strip)
1396 return TRUE;
1397
1398 if (h->esym.ifd == -2)
1399 {
1400 h->esym.jmptbl = 0;
1401 h->esym.cobol_main = 0;
1402 h->esym.weakext = 0;
1403 h->esym.reserved = 0;
1404 h->esym.ifd = ifdNil;
1405 h->esym.asym.value = 0;
1406 h->esym.asym.st = stGlobal;
1407
1408 if (h->root.root.type == bfd_link_hash_undefined
1409 || h->root.root.type == bfd_link_hash_undefweak)
1410 {
1411 const char *name;
1412
1413 /* Use undefined class. Also, set class and type for some
1414 special symbols. */
1415 name = h->root.root.root.string;
1416 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1417 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1418 {
1419 h->esym.asym.sc = scData;
1420 h->esym.asym.st = stLabel;
1421 h->esym.asym.value = 0;
1422 }
1423 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1424 {
1425 h->esym.asym.sc = scAbs;
1426 h->esym.asym.st = stLabel;
1427 h->esym.asym.value =
1428 mips_elf_hash_table (einfo->info)->procedure_count;
1429 }
1430 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1431 {
1432 h->esym.asym.sc = scAbs;
1433 h->esym.asym.st = stLabel;
1434 h->esym.asym.value = elf_gp (einfo->abfd);
1435 }
1436 else
1437 h->esym.asym.sc = scUndefined;
1438 }
1439 else if (h->root.root.type != bfd_link_hash_defined
1440 && h->root.root.type != bfd_link_hash_defweak)
1441 h->esym.asym.sc = scAbs;
1442 else
1443 {
1444 const char *name;
1445
1446 sec = h->root.root.u.def.section;
1447 output_section = sec->output_section;
1448
1449 /* When making a shared library and symbol h is the one from
1450 the another shared library, OUTPUT_SECTION may be null. */
1451 if (output_section == NULL)
1452 h->esym.asym.sc = scUndefined;
1453 else
1454 {
1455 name = bfd_section_name (output_section->owner, output_section);
1456
1457 if (strcmp (name, ".text") == 0)
1458 h->esym.asym.sc = scText;
1459 else if (strcmp (name, ".data") == 0)
1460 h->esym.asym.sc = scData;
1461 else if (strcmp (name, ".sdata") == 0)
1462 h->esym.asym.sc = scSData;
1463 else if (strcmp (name, ".rodata") == 0
1464 || strcmp (name, ".rdata") == 0)
1465 h->esym.asym.sc = scRData;
1466 else if (strcmp (name, ".bss") == 0)
1467 h->esym.asym.sc = scBss;
1468 else if (strcmp (name, ".sbss") == 0)
1469 h->esym.asym.sc = scSBss;
1470 else if (strcmp (name, ".init") == 0)
1471 h->esym.asym.sc = scInit;
1472 else if (strcmp (name, ".fini") == 0)
1473 h->esym.asym.sc = scFini;
1474 else
1475 h->esym.asym.sc = scAbs;
1476 }
1477 }
1478
1479 h->esym.asym.reserved = 0;
1480 h->esym.asym.index = indexNil;
1481 }
1482
1483 if (h->root.root.type == bfd_link_hash_common)
1484 h->esym.asym.value = h->root.root.u.c.size;
1485 else if (h->root.root.type == bfd_link_hash_defined
1486 || h->root.root.type == bfd_link_hash_defweak)
1487 {
1488 if (h->esym.asym.sc == scCommon)
1489 h->esym.asym.sc = scBss;
1490 else if (h->esym.asym.sc == scSCommon)
1491 h->esym.asym.sc = scSBss;
1492
1493 sec = h->root.root.u.def.section;
1494 output_section = sec->output_section;
1495 if (output_section != NULL)
1496 h->esym.asym.value = (h->root.root.u.def.value
1497 + sec->output_offset
1498 + output_section->vma);
1499 else
1500 h->esym.asym.value = 0;
1501 }
1502 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1503 {
1504 struct mips_elf_link_hash_entry *hd = h;
1505 bfd_boolean no_fn_stub = h->no_fn_stub;
1506
1507 while (hd->root.root.type == bfd_link_hash_indirect)
1508 {
1509 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1510 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1511 }
1512
1513 if (!no_fn_stub)
1514 {
1515 /* Set type and value for a symbol with a function stub. */
1516 h->esym.asym.st = stProc;
1517 sec = hd->root.root.u.def.section;
1518 if (sec == NULL)
1519 h->esym.asym.value = 0;
1520 else
1521 {
1522 output_section = sec->output_section;
1523 if (output_section != NULL)
1524 h->esym.asym.value = (hd->root.plt.offset
1525 + sec->output_offset
1526 + output_section->vma);
1527 else
1528 h->esym.asym.value = 0;
1529 }
1530 #if 0 /* FIXME? */
1531 h->esym.ifd = 0;
1532 #endif
1533 }
1534 }
1535
1536 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1537 h->root.root.root.string,
1538 &h->esym))
1539 {
1540 einfo->failed = TRUE;
1541 return FALSE;
1542 }
1543
1544 return TRUE;
1545 }
1546
1547 /* A comparison routine used to sort .gptab entries. */
1548
1549 static int
1550 gptab_compare (p1, p2)
1551 const PTR p1;
1552 const PTR p2;
1553 {
1554 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1555 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1556
1557 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1558 }
1559 \f
1560 /* Functions to manage the got entry hash table. */
1561
1562 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1563 hash number. */
1564
1565 static INLINE hashval_t
1566 mips_elf_hash_bfd_vma (addr)
1567 bfd_vma addr;
1568 {
1569 #ifdef BFD64
1570 return addr + (addr >> 32);
1571 #else
1572 return addr;
1573 #endif
1574 }
1575
1576 /* got_entries only match if they're identical, except for gotidx, so
1577 use all fields to compute the hash, and compare the appropriate
1578 union members. */
1579
1580 static hashval_t
1581 mips_elf_got_entry_hash (entry_)
1582 const PTR entry_;
1583 {
1584 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1585
1586 return entry->symndx
1587 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1588 : entry->abfd->id
1589 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1590 : entry->d.h->root.root.root.hash));
1591 }
1592
1593 static int
1594 mips_elf_got_entry_eq (entry1, entry2)
1595 const PTR entry1;
1596 const PTR entry2;
1597 {
1598 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1599 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1600
1601 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1602 && (! e1->abfd ? e1->d.address == e2->d.address
1603 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1604 : e1->d.h == e2->d.h);
1605 }
1606
1607 /* multi_got_entries are still a match in the case of global objects,
1608 even if the input bfd in which they're referenced differs, so the
1609 hash computation and compare functions are adjusted
1610 accordingly. */
1611
1612 static hashval_t
1613 mips_elf_multi_got_entry_hash (entry_)
1614 const PTR entry_;
1615 {
1616 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1617
1618 return entry->symndx
1619 + (! entry->abfd
1620 ? mips_elf_hash_bfd_vma (entry->d.address)
1621 : entry->symndx >= 0
1622 ? (entry->abfd->id
1623 + mips_elf_hash_bfd_vma (entry->d.addend))
1624 : entry->d.h->root.root.root.hash);
1625 }
1626
1627 static int
1628 mips_elf_multi_got_entry_eq (entry1, entry2)
1629 const PTR entry1;
1630 const PTR entry2;
1631 {
1632 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1633 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1634
1635 return e1->symndx == e2->symndx
1636 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1637 : e1->abfd == NULL || e2->abfd == NULL
1638 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1639 : e1->d.h == e2->d.h);
1640 }
1641 \f
1642 /* Returns the dynamic relocation section for DYNOBJ. */
1643
1644 static asection *
1645 mips_elf_rel_dyn_section (dynobj, create_p)
1646 bfd *dynobj;
1647 bfd_boolean create_p;
1648 {
1649 static const char dname[] = ".rel.dyn";
1650 asection *sreloc;
1651
1652 sreloc = bfd_get_section_by_name (dynobj, dname);
1653 if (sreloc == NULL && create_p)
1654 {
1655 sreloc = bfd_make_section (dynobj, dname);
1656 if (sreloc == NULL
1657 || ! bfd_set_section_flags (dynobj, sreloc,
1658 (SEC_ALLOC
1659 | SEC_LOAD
1660 | SEC_HAS_CONTENTS
1661 | SEC_IN_MEMORY
1662 | SEC_LINKER_CREATED
1663 | SEC_READONLY))
1664 || ! bfd_set_section_alignment (dynobj, sreloc,
1665 4))
1666 return NULL;
1667 }
1668 return sreloc;
1669 }
1670
1671 /* Returns the GOT section for ABFD. */
1672
1673 static asection *
1674 mips_elf_got_section (abfd, maybe_excluded)
1675 bfd *abfd;
1676 bfd_boolean maybe_excluded;
1677 {
1678 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1679 if (sgot == NULL
1680 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1681 return NULL;
1682 return sgot;
1683 }
1684
1685 /* Returns the GOT information associated with the link indicated by
1686 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1687 section. */
1688
1689 static struct mips_got_info *
1690 mips_elf_got_info (abfd, sgotp)
1691 bfd *abfd;
1692 asection **sgotp;
1693 {
1694 asection *sgot;
1695 struct mips_got_info *g;
1696
1697 sgot = mips_elf_got_section (abfd, TRUE);
1698 BFD_ASSERT (sgot != NULL);
1699 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1700 g = mips_elf_section_data (sgot)->u.got_info;
1701 BFD_ASSERT (g != NULL);
1702
1703 if (sgotp)
1704 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1705
1706 return g;
1707 }
1708
1709 /* Obtain the lowest dynamic index of a symbol that was assigned a
1710 global GOT entry. */
1711 static long
1712 mips_elf_get_global_gotsym_index (abfd)
1713 bfd *abfd;
1714 {
1715 asection *sgot;
1716 struct mips_got_info *g;
1717
1718 if (abfd == NULL)
1719 return 0;
1720
1721 sgot = mips_elf_got_section (abfd, TRUE);
1722 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1723 return 0;
1724
1725 g = mips_elf_section_data (sgot)->u.got_info;
1726 if (g == NULL || g->global_gotsym == NULL)
1727 return 0;
1728
1729 return g->global_gotsym->dynindx;
1730 }
1731
1732 /* Returns the GOT offset at which the indicated address can be found.
1733 If there is not yet a GOT entry for this value, create one. Returns
1734 -1 if no satisfactory GOT offset can be found. */
1735
1736 static bfd_vma
1737 mips_elf_local_got_index (abfd, ibfd, info, value)
1738 bfd *abfd, *ibfd;
1739 struct bfd_link_info *info;
1740 bfd_vma value;
1741 {
1742 asection *sgot;
1743 struct mips_got_info *g;
1744 struct mips_got_entry *entry;
1745
1746 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1747
1748 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1749 if (entry)
1750 return entry->gotidx;
1751 else
1752 return MINUS_ONE;
1753 }
1754
1755 /* Returns the GOT index for the global symbol indicated by H. */
1756
1757 static bfd_vma
1758 mips_elf_global_got_index (abfd, ibfd, h)
1759 bfd *abfd, *ibfd;
1760 struct elf_link_hash_entry *h;
1761 {
1762 bfd_vma index;
1763 asection *sgot;
1764 struct mips_got_info *g, *gg;
1765 long global_got_dynindx = 0;
1766
1767 gg = g = mips_elf_got_info (abfd, &sgot);
1768 if (g->bfd2got && ibfd)
1769 {
1770 struct mips_got_entry e, *p;
1771
1772 BFD_ASSERT (h->dynindx >= 0);
1773
1774 g = mips_elf_got_for_ibfd (g, ibfd);
1775 if (g->next != gg)
1776 {
1777 e.abfd = ibfd;
1778 e.symndx = -1;
1779 e.d.h = (struct mips_elf_link_hash_entry *)h;
1780
1781 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1782
1783 BFD_ASSERT (p->gotidx > 0);
1784 return p->gotidx;
1785 }
1786 }
1787
1788 if (gg->global_gotsym != NULL)
1789 global_got_dynindx = gg->global_gotsym->dynindx;
1790
1791 /* Once we determine the global GOT entry with the lowest dynamic
1792 symbol table index, we must put all dynamic symbols with greater
1793 indices into the GOT. That makes it easy to calculate the GOT
1794 offset. */
1795 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1796 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1797 * MIPS_ELF_GOT_SIZE (abfd));
1798 BFD_ASSERT (index < sgot->_raw_size);
1799
1800 return index;
1801 }
1802
1803 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1804 are supposed to be placed at small offsets in the GOT, i.e.,
1805 within 32KB of GP. Return the index into the GOT for this page,
1806 and store the offset from this entry to the desired address in
1807 OFFSETP, if it is non-NULL. */
1808
1809 static bfd_vma
1810 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1811 bfd *abfd, *ibfd;
1812 struct bfd_link_info *info;
1813 bfd_vma value;
1814 bfd_vma *offsetp;
1815 {
1816 asection *sgot;
1817 struct mips_got_info *g;
1818 bfd_vma index;
1819 struct mips_got_entry *entry;
1820
1821 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1822
1823 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1824 (value + 0x8000)
1825 & (~(bfd_vma)0xffff));
1826
1827 if (!entry)
1828 return MINUS_ONE;
1829
1830 index = entry->gotidx;
1831
1832 if (offsetp)
1833 *offsetp = value - entry->d.address;
1834
1835 return index;
1836 }
1837
1838 /* Find a GOT entry whose higher-order 16 bits are the same as those
1839 for value. Return the index into the GOT for this entry. */
1840
1841 static bfd_vma
1842 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1843 bfd *abfd, *ibfd;
1844 struct bfd_link_info *info;
1845 bfd_vma value;
1846 bfd_boolean external;
1847 {
1848 asection *sgot;
1849 struct mips_got_info *g;
1850 struct mips_got_entry *entry;
1851
1852 if (! external)
1853 {
1854 /* Although the ABI says that it is "the high-order 16 bits" that we
1855 want, it is really the %high value. The complete value is
1856 calculated with a `addiu' of a LO16 relocation, just as with a
1857 HI16/LO16 pair. */
1858 value = mips_elf_high (value) << 16;
1859 }
1860
1861 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1862
1863 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1864 if (entry)
1865 return entry->gotidx;
1866 else
1867 return MINUS_ONE;
1868 }
1869
1870 /* Returns the offset for the entry at the INDEXth position
1871 in the GOT. */
1872
1873 static bfd_vma
1874 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1875 bfd *dynobj;
1876 bfd *output_bfd;
1877 bfd *input_bfd;
1878 bfd_vma index;
1879 {
1880 asection *sgot;
1881 bfd_vma gp;
1882 struct mips_got_info *g;
1883
1884 g = mips_elf_got_info (dynobj, &sgot);
1885 gp = _bfd_get_gp_value (output_bfd)
1886 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1887
1888 return sgot->output_section->vma + sgot->output_offset + index - gp;
1889 }
1890
1891 /* Create a local GOT entry for VALUE. Return the index of the entry,
1892 or -1 if it could not be created. */
1893
1894 static struct mips_got_entry *
1895 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1896 bfd *abfd, *ibfd;
1897 struct mips_got_info *gg;
1898 asection *sgot;
1899 bfd_vma value;
1900 {
1901 struct mips_got_entry entry, **loc;
1902 struct mips_got_info *g;
1903
1904 entry.abfd = NULL;
1905 entry.symndx = -1;
1906 entry.d.address = value;
1907
1908 g = mips_elf_got_for_ibfd (gg, ibfd);
1909 if (g == NULL)
1910 {
1911 g = mips_elf_got_for_ibfd (gg, abfd);
1912 BFD_ASSERT (g != NULL);
1913 }
1914
1915 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1916 INSERT);
1917 if (*loc)
1918 return *loc;
1919
1920 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1921
1922 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1923
1924 if (! *loc)
1925 return NULL;
1926
1927 memcpy (*loc, &entry, sizeof entry);
1928
1929 if (g->assigned_gotno >= g->local_gotno)
1930 {
1931 (*loc)->gotidx = -1;
1932 /* We didn't allocate enough space in the GOT. */
1933 (*_bfd_error_handler)
1934 (_("not enough GOT space for local GOT entries"));
1935 bfd_set_error (bfd_error_bad_value);
1936 return NULL;
1937 }
1938
1939 MIPS_ELF_PUT_WORD (abfd, value,
1940 (sgot->contents + entry.gotidx));
1941
1942 return *loc;
1943 }
1944
1945 /* Sort the dynamic symbol table so that symbols that need GOT entries
1946 appear towards the end. This reduces the amount of GOT space
1947 required. MAX_LOCAL is used to set the number of local symbols
1948 known to be in the dynamic symbol table. During
1949 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1950 section symbols are added and the count is higher. */
1951
1952 static bfd_boolean
1953 mips_elf_sort_hash_table (info, max_local)
1954 struct bfd_link_info *info;
1955 unsigned long max_local;
1956 {
1957 struct mips_elf_hash_sort_data hsd;
1958 struct mips_got_info *g;
1959 bfd *dynobj;
1960
1961 dynobj = elf_hash_table (info)->dynobj;
1962
1963 g = mips_elf_got_info (dynobj, NULL);
1964
1965 hsd.low = NULL;
1966 hsd.max_unref_got_dynindx =
1967 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1968 /* In the multi-got case, assigned_gotno of the master got_info
1969 indicate the number of entries that aren't referenced in the
1970 primary GOT, but that must have entries because there are
1971 dynamic relocations that reference it. Since they aren't
1972 referenced, we move them to the end of the GOT, so that they
1973 don't prevent other entries that are referenced from getting
1974 too large offsets. */
1975 - (g->next ? g->assigned_gotno : 0);
1976 hsd.max_non_got_dynindx = max_local;
1977 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1978 elf_hash_table (info)),
1979 mips_elf_sort_hash_table_f,
1980 &hsd);
1981
1982 /* There should have been enough room in the symbol table to
1983 accommodate both the GOT and non-GOT symbols. */
1984 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1985 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1986 <= elf_hash_table (info)->dynsymcount);
1987
1988 /* Now we know which dynamic symbol has the lowest dynamic symbol
1989 table index in the GOT. */
1990 g->global_gotsym = hsd.low;
1991
1992 return TRUE;
1993 }
1994
1995 /* If H needs a GOT entry, assign it the highest available dynamic
1996 index. Otherwise, assign it the lowest available dynamic
1997 index. */
1998
1999 static bfd_boolean
2000 mips_elf_sort_hash_table_f (h, data)
2001 struct mips_elf_link_hash_entry *h;
2002 PTR data;
2003 {
2004 struct mips_elf_hash_sort_data *hsd
2005 = (struct mips_elf_hash_sort_data *) data;
2006
2007 if (h->root.root.type == bfd_link_hash_warning)
2008 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2009
2010 /* Symbols without dynamic symbol table entries aren't interesting
2011 at all. */
2012 if (h->root.dynindx == -1)
2013 return TRUE;
2014
2015 /* Global symbols that need GOT entries that are not explicitly
2016 referenced are marked with got offset 2. Those that are
2017 referenced get a 1, and those that don't need GOT entries get
2018 -1. */
2019 if (h->root.got.offset == 2)
2020 {
2021 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2022 hsd->low = (struct elf_link_hash_entry *) h;
2023 h->root.dynindx = hsd->max_unref_got_dynindx++;
2024 }
2025 else if (h->root.got.offset != 1)
2026 h->root.dynindx = hsd->max_non_got_dynindx++;
2027 else
2028 {
2029 h->root.dynindx = --hsd->min_got_dynindx;
2030 hsd->low = (struct elf_link_hash_entry *) h;
2031 }
2032
2033 return TRUE;
2034 }
2035
2036 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2037 symbol table index lower than any we've seen to date, record it for
2038 posterity. */
2039
2040 static bfd_boolean
2041 mips_elf_record_global_got_symbol (h, abfd, info, g)
2042 struct elf_link_hash_entry *h;
2043 bfd *abfd;
2044 struct bfd_link_info *info;
2045 struct mips_got_info *g;
2046 {
2047 struct mips_got_entry entry, **loc;
2048
2049 /* A global symbol in the GOT must also be in the dynamic symbol
2050 table. */
2051 if (h->dynindx == -1)
2052 {
2053 switch (ELF_ST_VISIBILITY (h->other))
2054 {
2055 case STV_INTERNAL:
2056 case STV_HIDDEN:
2057 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2058 break;
2059 }
2060 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2061 return FALSE;
2062 }
2063
2064 entry.abfd = abfd;
2065 entry.symndx = -1;
2066 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2067
2068 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2069 INSERT);
2070
2071 /* If we've already marked this entry as needing GOT space, we don't
2072 need to do it again. */
2073 if (*loc)
2074 return TRUE;
2075
2076 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2077
2078 if (! *loc)
2079 return FALSE;
2080
2081 entry.gotidx = -1;
2082 memcpy (*loc, &entry, sizeof entry);
2083
2084 if (h->got.offset != MINUS_ONE)
2085 return TRUE;
2086
2087 /* By setting this to a value other than -1, we are indicating that
2088 there needs to be a GOT entry for H. Avoid using zero, as the
2089 generic ELF copy_indirect_symbol tests for <= 0. */
2090 h->got.offset = 1;
2091
2092 return TRUE;
2093 }
2094
2095 /* Reserve space in G for a GOT entry containing the value of symbol
2096 SYMNDX in input bfd ABDF, plus ADDEND. */
2097
2098 static bfd_boolean
2099 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2100 bfd *abfd;
2101 long symndx;
2102 bfd_vma addend;
2103 struct mips_got_info *g;
2104 {
2105 struct mips_got_entry entry, **loc;
2106
2107 entry.abfd = abfd;
2108 entry.symndx = symndx;
2109 entry.d.addend = addend;
2110 loc = (struct mips_got_entry **)
2111 htab_find_slot (g->got_entries, &entry, INSERT);
2112
2113 if (*loc)
2114 return TRUE;
2115
2116 entry.gotidx = g->local_gotno++;
2117
2118 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2119
2120 if (! *loc)
2121 return FALSE;
2122
2123 memcpy (*loc, &entry, sizeof entry);
2124
2125 return TRUE;
2126 }
2127 \f
2128 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2129
2130 static hashval_t
2131 mips_elf_bfd2got_entry_hash (entry_)
2132 const PTR entry_;
2133 {
2134 const struct mips_elf_bfd2got_hash *entry
2135 = (struct mips_elf_bfd2got_hash *)entry_;
2136
2137 return entry->bfd->id;
2138 }
2139
2140 /* Check whether two hash entries have the same bfd. */
2141
2142 static int
2143 mips_elf_bfd2got_entry_eq (entry1, entry2)
2144 const PTR entry1;
2145 const PTR entry2;
2146 {
2147 const struct mips_elf_bfd2got_hash *e1
2148 = (const struct mips_elf_bfd2got_hash *)entry1;
2149 const struct mips_elf_bfd2got_hash *e2
2150 = (const struct mips_elf_bfd2got_hash *)entry2;
2151
2152 return e1->bfd == e2->bfd;
2153 }
2154
2155 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2156 be the master GOT data. */
2157
2158 static struct mips_got_info *
2159 mips_elf_got_for_ibfd (g, ibfd)
2160 struct mips_got_info *g;
2161 bfd *ibfd;
2162 {
2163 struct mips_elf_bfd2got_hash e, *p;
2164
2165 if (! g->bfd2got)
2166 return g;
2167
2168 e.bfd = ibfd;
2169 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2170 return p ? p->g : NULL;
2171 }
2172
2173 /* Create one separate got for each bfd that has entries in the global
2174 got, such that we can tell how many local and global entries each
2175 bfd requires. */
2176
2177 static int
2178 mips_elf_make_got_per_bfd (entryp, p)
2179 void **entryp;
2180 void *p;
2181 {
2182 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2183 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2184 htab_t bfd2got = arg->bfd2got;
2185 struct mips_got_info *g;
2186 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2187 void **bfdgotp;
2188
2189 /* Find the got_info for this GOT entry's input bfd. Create one if
2190 none exists. */
2191 bfdgot_entry.bfd = entry->abfd;
2192 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2193 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2194
2195 if (bfdgot != NULL)
2196 g = bfdgot->g;
2197 else
2198 {
2199 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2200 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2201
2202 if (bfdgot == NULL)
2203 {
2204 arg->obfd = 0;
2205 return 0;
2206 }
2207
2208 *bfdgotp = bfdgot;
2209
2210 bfdgot->bfd = entry->abfd;
2211 bfdgot->g = g = (struct mips_got_info *)
2212 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2213 if (g == NULL)
2214 {
2215 arg->obfd = 0;
2216 return 0;
2217 }
2218
2219 g->global_gotsym = NULL;
2220 g->global_gotno = 0;
2221 g->local_gotno = 0;
2222 g->assigned_gotno = -1;
2223 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2224 mips_elf_multi_got_entry_eq,
2225 (htab_del) NULL);
2226 if (g->got_entries == NULL)
2227 {
2228 arg->obfd = 0;
2229 return 0;
2230 }
2231
2232 g->bfd2got = NULL;
2233 g->next = NULL;
2234 }
2235
2236 /* Insert the GOT entry in the bfd's got entry hash table. */
2237 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2238 if (*entryp != NULL)
2239 return 1;
2240
2241 *entryp = entry;
2242
2243 if (entry->symndx >= 0 || entry->d.h->forced_local)
2244 ++g->local_gotno;
2245 else
2246 ++g->global_gotno;
2247
2248 return 1;
2249 }
2250
2251 /* Attempt to merge gots of different input bfds. Try to use as much
2252 as possible of the primary got, since it doesn't require explicit
2253 dynamic relocations, but don't use bfds that would reference global
2254 symbols out of the addressable range. Failing the primary got,
2255 attempt to merge with the current got, or finish the current got
2256 and then make make the new got current. */
2257
2258 static int
2259 mips_elf_merge_gots (bfd2got_, p)
2260 void **bfd2got_;
2261 void *p;
2262 {
2263 struct mips_elf_bfd2got_hash *bfd2got
2264 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2265 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2266 unsigned int lcount = bfd2got->g->local_gotno;
2267 unsigned int gcount = bfd2got->g->global_gotno;
2268 unsigned int maxcnt = arg->max_count;
2269
2270 /* If we don't have a primary GOT and this is not too big, use it as
2271 a starting point for the primary GOT. */
2272 if (! arg->primary && lcount + gcount <= maxcnt)
2273 {
2274 arg->primary = bfd2got->g;
2275 arg->primary_count = lcount + gcount;
2276 }
2277 /* If it looks like we can merge this bfd's entries with those of
2278 the primary, merge them. The heuristics is conservative, but we
2279 don't have to squeeze it too hard. */
2280 else if (arg->primary
2281 && (arg->primary_count + lcount + gcount) <= maxcnt)
2282 {
2283 struct mips_got_info *g = bfd2got->g;
2284 int old_lcount = arg->primary->local_gotno;
2285 int old_gcount = arg->primary->global_gotno;
2286
2287 bfd2got->g = arg->primary;
2288
2289 htab_traverse (g->got_entries,
2290 mips_elf_make_got_per_bfd,
2291 arg);
2292 if (arg->obfd == NULL)
2293 return 0;
2294
2295 htab_delete (g->got_entries);
2296 /* We don't have to worry about releasing memory of the actual
2297 got entries, since they're all in the master got_entries hash
2298 table anyway. */
2299
2300 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2301 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2302
2303 arg->primary_count = arg->primary->local_gotno
2304 + arg->primary->global_gotno;
2305 }
2306 /* If we can merge with the last-created got, do it. */
2307 else if (arg->current
2308 && arg->current_count + lcount + gcount <= maxcnt)
2309 {
2310 struct mips_got_info *g = bfd2got->g;
2311 int old_lcount = arg->current->local_gotno;
2312 int old_gcount = arg->current->global_gotno;
2313
2314 bfd2got->g = arg->current;
2315
2316 htab_traverse (g->got_entries,
2317 mips_elf_make_got_per_bfd,
2318 arg);
2319 if (arg->obfd == NULL)
2320 return 0;
2321
2322 htab_delete (g->got_entries);
2323
2324 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2325 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2326
2327 arg->current_count = arg->current->local_gotno
2328 + arg->current->global_gotno;
2329 }
2330 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2331 fits; if it turns out that it doesn't, we'll get relocation
2332 overflows anyway. */
2333 else
2334 {
2335 bfd2got->g->next = arg->current;
2336 arg->current = bfd2got->g;
2337
2338 arg->current_count = lcount + gcount;
2339 }
2340
2341 return 1;
2342 }
2343
2344 /* If passed a NULL mips_got_info in the argument, set the marker used
2345 to tell whether a global symbol needs a got entry (in the primary
2346 got) to the given VALUE.
2347
2348 If passed a pointer G to a mips_got_info in the argument (it must
2349 not be the primary GOT), compute the offset from the beginning of
2350 the (primary) GOT section to the entry in G corresponding to the
2351 global symbol. G's assigned_gotno must contain the index of the
2352 first available global GOT entry in G. VALUE must contain the size
2353 of a GOT entry in bytes. For each global GOT entry that requires a
2354 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2355 marked as not elligible for lazy resolution through a function
2356 stub. */
2357 static int
2358 mips_elf_set_global_got_offset (entryp, p)
2359 void **entryp;
2360 void *p;
2361 {
2362 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2363 struct mips_elf_set_global_got_offset_arg *arg
2364 = (struct mips_elf_set_global_got_offset_arg *)p;
2365 struct mips_got_info *g = arg->g;
2366
2367 if (entry->abfd != NULL && entry->symndx == -1
2368 && entry->d.h->root.dynindx != -1)
2369 {
2370 if (g)
2371 {
2372 BFD_ASSERT (g->global_gotsym == NULL);
2373
2374 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2375 /* We can't do lazy update of GOT entries for
2376 non-primary GOTs since the PLT entries don't use the
2377 right offsets, so punt at it for now. */
2378 entry->d.h->no_fn_stub = TRUE;
2379 if (arg->info->shared
2380 || (elf_hash_table (arg->info)->dynamic_sections_created
2381 && ((entry->d.h->root.elf_link_hash_flags
2382 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2383 && ((entry->d.h->root.elf_link_hash_flags
2384 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2385 ++arg->needed_relocs;
2386 }
2387 else
2388 entry->d.h->root.got.offset = arg->value;
2389 }
2390
2391 return 1;
2392 }
2393
2394 /* Follow indirect and warning hash entries so that each got entry
2395 points to the final symbol definition. P must point to a pointer
2396 to the hash table we're traversing. Since this traversal may
2397 modify the hash table, we set this pointer to NULL to indicate
2398 we've made a potentially-destructive change to the hash table, so
2399 the traversal must be restarted. */
2400 static int
2401 mips_elf_resolve_final_got_entry (entryp, p)
2402 void **entryp;
2403 void *p;
2404 {
2405 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2406 htab_t got_entries = *(htab_t *)p;
2407
2408 if (entry->abfd != NULL && entry->symndx == -1)
2409 {
2410 struct mips_elf_link_hash_entry *h = entry->d.h;
2411
2412 while (h->root.root.type == bfd_link_hash_indirect
2413 || h->root.root.type == bfd_link_hash_warning)
2414 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2415
2416 if (entry->d.h == h)
2417 return 1;
2418
2419 entry->d.h = h;
2420
2421 /* If we can't find this entry with the new bfd hash, re-insert
2422 it, and get the traversal restarted. */
2423 if (! htab_find (got_entries, entry))
2424 {
2425 htab_clear_slot (got_entries, entryp);
2426 entryp = htab_find_slot (got_entries, entry, INSERT);
2427 if (! *entryp)
2428 *entryp = entry;
2429 /* Abort the traversal, since the whole table may have
2430 moved, and leave it up to the parent to restart the
2431 process. */
2432 *(htab_t *)p = NULL;
2433 return 0;
2434 }
2435 /* We might want to decrement the global_gotno count, but it's
2436 either too early or too late for that at this point. */
2437 }
2438
2439 return 1;
2440 }
2441
2442 /* Turn indirect got entries in a got_entries table into their final
2443 locations. */
2444 static void
2445 mips_elf_resolve_final_got_entries (g)
2446 struct mips_got_info *g;
2447 {
2448 htab_t got_entries;
2449
2450 do
2451 {
2452 got_entries = g->got_entries;
2453
2454 htab_traverse (got_entries,
2455 mips_elf_resolve_final_got_entry,
2456 &got_entries);
2457 }
2458 while (got_entries == NULL);
2459 }
2460
2461 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2462 the primary GOT. */
2463 static bfd_vma
2464 mips_elf_adjust_gp (abfd, g, ibfd)
2465 bfd *abfd;
2466 struct mips_got_info *g;
2467 bfd *ibfd;
2468 {
2469 if (g->bfd2got == NULL)
2470 return 0;
2471
2472 g = mips_elf_got_for_ibfd (g, ibfd);
2473 if (! g)
2474 return 0;
2475
2476 BFD_ASSERT (g->next);
2477
2478 g = g->next;
2479
2480 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2481 }
2482
2483 /* Turn a single GOT that is too big for 16-bit addressing into
2484 a sequence of GOTs, each one 16-bit addressable. */
2485
2486 static bfd_boolean
2487 mips_elf_multi_got (abfd, info, g, got, pages)
2488 bfd *abfd;
2489 struct bfd_link_info *info;
2490 struct mips_got_info *g;
2491 asection *got;
2492 bfd_size_type pages;
2493 {
2494 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2495 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2496 struct mips_got_info *gg;
2497 unsigned int assign;
2498
2499 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2500 mips_elf_bfd2got_entry_eq,
2501 (htab_del) NULL);
2502 if (g->bfd2got == NULL)
2503 return FALSE;
2504
2505 got_per_bfd_arg.bfd2got = g->bfd2got;
2506 got_per_bfd_arg.obfd = abfd;
2507 got_per_bfd_arg.info = info;
2508
2509 /* Count how many GOT entries each input bfd requires, creating a
2510 map from bfd to got info while at that. */
2511 mips_elf_resolve_final_got_entries (g);
2512 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2513 if (got_per_bfd_arg.obfd == NULL)
2514 return FALSE;
2515
2516 got_per_bfd_arg.current = NULL;
2517 got_per_bfd_arg.primary = NULL;
2518 /* Taking out PAGES entries is a worst-case estimate. We could
2519 compute the maximum number of pages that each separate input bfd
2520 uses, but it's probably not worth it. */
2521 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2522 / MIPS_ELF_GOT_SIZE (abfd))
2523 - MIPS_RESERVED_GOTNO - pages);
2524
2525 /* Try to merge the GOTs of input bfds together, as long as they
2526 don't seem to exceed the maximum GOT size, choosing one of them
2527 to be the primary GOT. */
2528 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2529 if (got_per_bfd_arg.obfd == NULL)
2530 return FALSE;
2531
2532 /* If we find any suitable primary GOT, create an empty one. */
2533 if (got_per_bfd_arg.primary == NULL)
2534 {
2535 g->next = (struct mips_got_info *)
2536 bfd_alloc (abfd, sizeof (struct mips_got_info));
2537 if (g->next == NULL)
2538 return FALSE;
2539
2540 g->next->global_gotsym = NULL;
2541 g->next->global_gotno = 0;
2542 g->next->local_gotno = 0;
2543 g->next->assigned_gotno = 0;
2544 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2545 mips_elf_multi_got_entry_eq,
2546 (htab_del) NULL);
2547 if (g->next->got_entries == NULL)
2548 return FALSE;
2549 g->next->bfd2got = NULL;
2550 }
2551 else
2552 g->next = got_per_bfd_arg.primary;
2553 g->next->next = got_per_bfd_arg.current;
2554
2555 /* GG is now the master GOT, and G is the primary GOT. */
2556 gg = g;
2557 g = g->next;
2558
2559 /* Map the output bfd to the primary got. That's what we're going
2560 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2561 didn't mark in check_relocs, and we want a quick way to find it.
2562 We can't just use gg->next because we're going to reverse the
2563 list. */
2564 {
2565 struct mips_elf_bfd2got_hash *bfdgot;
2566 void **bfdgotp;
2567
2568 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2569 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2570
2571 if (bfdgot == NULL)
2572 return FALSE;
2573
2574 bfdgot->bfd = abfd;
2575 bfdgot->g = g;
2576 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2577
2578 BFD_ASSERT (*bfdgotp == NULL);
2579 *bfdgotp = bfdgot;
2580 }
2581
2582 /* The IRIX dynamic linker requires every symbol that is referenced
2583 in a dynamic relocation to be present in the primary GOT, so
2584 arrange for them to appear after those that are actually
2585 referenced.
2586
2587 GNU/Linux could very well do without it, but it would slow down
2588 the dynamic linker, since it would have to resolve every dynamic
2589 symbol referenced in other GOTs more than once, without help from
2590 the cache. Also, knowing that every external symbol has a GOT
2591 helps speed up the resolution of local symbols too, so GNU/Linux
2592 follows IRIX's practice.
2593
2594 The number 2 is used by mips_elf_sort_hash_table_f to count
2595 global GOT symbols that are unreferenced in the primary GOT, with
2596 an initial dynamic index computed from gg->assigned_gotno, where
2597 the number of unreferenced global entries in the primary GOT is
2598 preserved. */
2599 if (1)
2600 {
2601 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2602 g->global_gotno = gg->global_gotno;
2603 set_got_offset_arg.value = 2;
2604 }
2605 else
2606 {
2607 /* This could be used for dynamic linkers that don't optimize
2608 symbol resolution while applying relocations so as to use
2609 primary GOT entries or assuming the symbol is locally-defined.
2610 With this code, we assign lower dynamic indices to global
2611 symbols that are not referenced in the primary GOT, so that
2612 their entries can be omitted. */
2613 gg->assigned_gotno = 0;
2614 set_got_offset_arg.value = -1;
2615 }
2616
2617 /* Reorder dynamic symbols as described above (which behavior
2618 depends on the setting of VALUE). */
2619 set_got_offset_arg.g = NULL;
2620 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2621 &set_got_offset_arg);
2622 set_got_offset_arg.value = 1;
2623 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2624 &set_got_offset_arg);
2625 if (! mips_elf_sort_hash_table (info, 1))
2626 return FALSE;
2627
2628 /* Now go through the GOTs assigning them offset ranges.
2629 [assigned_gotno, local_gotno[ will be set to the range of local
2630 entries in each GOT. We can then compute the end of a GOT by
2631 adding local_gotno to global_gotno. We reverse the list and make
2632 it circular since then we'll be able to quickly compute the
2633 beginning of a GOT, by computing the end of its predecessor. To
2634 avoid special cases for the primary GOT, while still preserving
2635 assertions that are valid for both single- and multi-got links,
2636 we arrange for the main got struct to have the right number of
2637 global entries, but set its local_gotno such that the initial
2638 offset of the primary GOT is zero. Remember that the primary GOT
2639 will become the last item in the circular linked list, so it
2640 points back to the master GOT. */
2641 gg->local_gotno = -g->global_gotno;
2642 gg->global_gotno = g->global_gotno;
2643 assign = 0;
2644 gg->next = gg;
2645
2646 do
2647 {
2648 struct mips_got_info *gn;
2649
2650 assign += MIPS_RESERVED_GOTNO;
2651 g->assigned_gotno = assign;
2652 g->local_gotno += assign + pages;
2653 assign = g->local_gotno + g->global_gotno;
2654
2655 /* Take g out of the direct list, and push it onto the reversed
2656 list that gg points to. */
2657 gn = g->next;
2658 g->next = gg->next;
2659 gg->next = g;
2660 g = gn;
2661 }
2662 while (g);
2663
2664 got->_raw_size = (gg->next->local_gotno
2665 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2666
2667 return TRUE;
2668 }
2669
2670 \f
2671 /* Returns the first relocation of type r_type found, beginning with
2672 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2673
2674 static const Elf_Internal_Rela *
2675 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2676 bfd *abfd ATTRIBUTE_UNUSED;
2677 unsigned int r_type;
2678 const Elf_Internal_Rela *relocation;
2679 const Elf_Internal_Rela *relend;
2680 {
2681 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2682 immediately following. However, for the IRIX6 ABI, the next
2683 relocation may be a composed relocation consisting of several
2684 relocations for the same address. In that case, the R_MIPS_LO16
2685 relocation may occur as one of these. We permit a similar
2686 extension in general, as that is useful for GCC. */
2687 while (relocation < relend)
2688 {
2689 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2690 return relocation;
2691
2692 ++relocation;
2693 }
2694
2695 /* We didn't find it. */
2696 bfd_set_error (bfd_error_bad_value);
2697 return NULL;
2698 }
2699
2700 /* Return whether a relocation is against a local symbol. */
2701
2702 static bfd_boolean
2703 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2704 check_forced)
2705 bfd *input_bfd;
2706 const Elf_Internal_Rela *relocation;
2707 asection **local_sections;
2708 bfd_boolean check_forced;
2709 {
2710 unsigned long r_symndx;
2711 Elf_Internal_Shdr *symtab_hdr;
2712 struct mips_elf_link_hash_entry *h;
2713 size_t extsymoff;
2714
2715 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2716 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2717 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2718
2719 if (r_symndx < extsymoff)
2720 return TRUE;
2721 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2722 return TRUE;
2723
2724 if (check_forced)
2725 {
2726 /* Look up the hash table to check whether the symbol
2727 was forced local. */
2728 h = (struct mips_elf_link_hash_entry *)
2729 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2730 /* Find the real hash-table entry for this symbol. */
2731 while (h->root.root.type == bfd_link_hash_indirect
2732 || h->root.root.type == bfd_link_hash_warning)
2733 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2734 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2735 return TRUE;
2736 }
2737
2738 return FALSE;
2739 }
2740 \f
2741 /* Sign-extend VALUE, which has the indicated number of BITS. */
2742
2743 static bfd_vma
2744 mips_elf_sign_extend (value, bits)
2745 bfd_vma value;
2746 int bits;
2747 {
2748 if (value & ((bfd_vma) 1 << (bits - 1)))
2749 /* VALUE is negative. */
2750 value |= ((bfd_vma) - 1) << bits;
2751
2752 return value;
2753 }
2754
2755 /* Return non-zero if the indicated VALUE has overflowed the maximum
2756 range expressable by a signed number with the indicated number of
2757 BITS. */
2758
2759 static bfd_boolean
2760 mips_elf_overflow_p (value, bits)
2761 bfd_vma value;
2762 int bits;
2763 {
2764 bfd_signed_vma svalue = (bfd_signed_vma) value;
2765
2766 if (svalue > (1 << (bits - 1)) - 1)
2767 /* The value is too big. */
2768 return TRUE;
2769 else if (svalue < -(1 << (bits - 1)))
2770 /* The value is too small. */
2771 return TRUE;
2772
2773 /* All is well. */
2774 return FALSE;
2775 }
2776
2777 /* Calculate the %high function. */
2778
2779 static bfd_vma
2780 mips_elf_high (value)
2781 bfd_vma value;
2782 {
2783 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2784 }
2785
2786 /* Calculate the %higher function. */
2787
2788 static bfd_vma
2789 mips_elf_higher (value)
2790 bfd_vma value ATTRIBUTE_UNUSED;
2791 {
2792 #ifdef BFD64
2793 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2794 #else
2795 abort ();
2796 return (bfd_vma) -1;
2797 #endif
2798 }
2799
2800 /* Calculate the %highest function. */
2801
2802 static bfd_vma
2803 mips_elf_highest (value)
2804 bfd_vma value ATTRIBUTE_UNUSED;
2805 {
2806 #ifdef BFD64
2807 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2808 #else
2809 abort ();
2810 return (bfd_vma) -1;
2811 #endif
2812 }
2813 \f
2814 /* Create the .compact_rel section. */
2815
2816 static bfd_boolean
2817 mips_elf_create_compact_rel_section (abfd, info)
2818 bfd *abfd;
2819 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2820 {
2821 flagword flags;
2822 register asection *s;
2823
2824 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2825 {
2826 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2827 | SEC_READONLY);
2828
2829 s = bfd_make_section (abfd, ".compact_rel");
2830 if (s == NULL
2831 || ! bfd_set_section_flags (abfd, s, flags)
2832 || ! bfd_set_section_alignment (abfd, s,
2833 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2834 return FALSE;
2835
2836 s->_raw_size = sizeof (Elf32_External_compact_rel);
2837 }
2838
2839 return TRUE;
2840 }
2841
2842 /* Create the .got section to hold the global offset table. */
2843
2844 static bfd_boolean
2845 mips_elf_create_got_section (abfd, info, maybe_exclude)
2846 bfd *abfd;
2847 struct bfd_link_info *info;
2848 bfd_boolean maybe_exclude;
2849 {
2850 flagword flags;
2851 register asection *s;
2852 struct elf_link_hash_entry *h;
2853 struct bfd_link_hash_entry *bh;
2854 struct mips_got_info *g;
2855 bfd_size_type amt;
2856
2857 /* This function may be called more than once. */
2858 s = mips_elf_got_section (abfd, TRUE);
2859 if (s)
2860 {
2861 if (! maybe_exclude)
2862 s->flags &= ~SEC_EXCLUDE;
2863 return TRUE;
2864 }
2865
2866 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2867 | SEC_LINKER_CREATED);
2868
2869 if (maybe_exclude)
2870 flags |= SEC_EXCLUDE;
2871
2872 s = bfd_make_section (abfd, ".got");
2873 if (s == NULL
2874 || ! bfd_set_section_flags (abfd, s, flags)
2875 || ! bfd_set_section_alignment (abfd, s, 4))
2876 return FALSE;
2877
2878 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2879 linker script because we don't want to define the symbol if we
2880 are not creating a global offset table. */
2881 bh = NULL;
2882 if (! (_bfd_generic_link_add_one_symbol
2883 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2884 (bfd_vma) 0, (const char *) NULL, FALSE,
2885 get_elf_backend_data (abfd)->collect, &bh)))
2886 return FALSE;
2887
2888 h = (struct elf_link_hash_entry *) bh;
2889 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2890 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2891 h->type = STT_OBJECT;
2892
2893 if (info->shared
2894 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2895 return FALSE;
2896
2897 amt = sizeof (struct mips_got_info);
2898 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2899 if (g == NULL)
2900 return FALSE;
2901 g->global_gotsym = NULL;
2902 g->local_gotno = MIPS_RESERVED_GOTNO;
2903 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2904 g->bfd2got = NULL;
2905 g->next = NULL;
2906 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2907 mips_elf_got_entry_eq,
2908 (htab_del) NULL);
2909 if (g->got_entries == NULL)
2910 return FALSE;
2911 mips_elf_section_data (s)->u.got_info = g;
2912 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2913 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2914
2915 return TRUE;
2916 }
2917
2918 /* Returns the .msym section for ABFD, creating it if it does not
2919 already exist. Returns NULL to indicate error. */
2920
2921 static asection *
2922 mips_elf_create_msym_section (abfd)
2923 bfd *abfd;
2924 {
2925 asection *s;
2926
2927 s = bfd_get_section_by_name (abfd, ".msym");
2928 if (!s)
2929 {
2930 s = bfd_make_section (abfd, ".msym");
2931 if (!s
2932 || !bfd_set_section_flags (abfd, s,
2933 SEC_ALLOC
2934 | SEC_LOAD
2935 | SEC_HAS_CONTENTS
2936 | SEC_LINKER_CREATED
2937 | SEC_READONLY)
2938 || !bfd_set_section_alignment (abfd, s,
2939 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2940 return NULL;
2941 }
2942
2943 return s;
2944 }
2945 \f
2946 /* Calculate the value produced by the RELOCATION (which comes from
2947 the INPUT_BFD). The ADDEND is the addend to use for this
2948 RELOCATION; RELOCATION->R_ADDEND is ignored.
2949
2950 The result of the relocation calculation is stored in VALUEP.
2951 REQUIRE_JALXP indicates whether or not the opcode used with this
2952 relocation must be JALX.
2953
2954 This function returns bfd_reloc_continue if the caller need take no
2955 further action regarding this relocation, bfd_reloc_notsupported if
2956 something goes dramatically wrong, bfd_reloc_overflow if an
2957 overflow occurs, and bfd_reloc_ok to indicate success. */
2958
2959 static bfd_reloc_status_type
2960 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2961 relocation, addend, howto, local_syms,
2962 local_sections, valuep, namep,
2963 require_jalxp, save_addend)
2964 bfd *abfd;
2965 bfd *input_bfd;
2966 asection *input_section;
2967 struct bfd_link_info *info;
2968 const Elf_Internal_Rela *relocation;
2969 bfd_vma addend;
2970 reloc_howto_type *howto;
2971 Elf_Internal_Sym *local_syms;
2972 asection **local_sections;
2973 bfd_vma *valuep;
2974 const char **namep;
2975 bfd_boolean *require_jalxp;
2976 bfd_boolean save_addend;
2977 {
2978 /* The eventual value we will return. */
2979 bfd_vma value;
2980 /* The address of the symbol against which the relocation is
2981 occurring. */
2982 bfd_vma symbol = 0;
2983 /* The final GP value to be used for the relocatable, executable, or
2984 shared object file being produced. */
2985 bfd_vma gp = MINUS_ONE;
2986 /* The place (section offset or address) of the storage unit being
2987 relocated. */
2988 bfd_vma p;
2989 /* The value of GP used to create the relocatable object. */
2990 bfd_vma gp0 = MINUS_ONE;
2991 /* The offset into the global offset table at which the address of
2992 the relocation entry symbol, adjusted by the addend, resides
2993 during execution. */
2994 bfd_vma g = MINUS_ONE;
2995 /* The section in which the symbol referenced by the relocation is
2996 located. */
2997 asection *sec = NULL;
2998 struct mips_elf_link_hash_entry *h = NULL;
2999 /* TRUE if the symbol referred to by this relocation is a local
3000 symbol. */
3001 bfd_boolean local_p, was_local_p;
3002 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3003 bfd_boolean gp_disp_p = FALSE;
3004 Elf_Internal_Shdr *symtab_hdr;
3005 size_t extsymoff;
3006 unsigned long r_symndx;
3007 int r_type;
3008 /* TRUE if overflow occurred during the calculation of the
3009 relocation value. */
3010 bfd_boolean overflowed_p;
3011 /* TRUE if this relocation refers to a MIPS16 function. */
3012 bfd_boolean target_is_16_bit_code_p = FALSE;
3013
3014 /* Parse the relocation. */
3015 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3016 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3017 p = (input_section->output_section->vma
3018 + input_section->output_offset
3019 + relocation->r_offset);
3020
3021 /* Assume that there will be no overflow. */
3022 overflowed_p = FALSE;
3023
3024 /* Figure out whether or not the symbol is local, and get the offset
3025 used in the array of hash table entries. */
3026 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3027 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3028 local_sections, FALSE);
3029 was_local_p = local_p;
3030 if (! elf_bad_symtab (input_bfd))
3031 extsymoff = symtab_hdr->sh_info;
3032 else
3033 {
3034 /* The symbol table does not follow the rule that local symbols
3035 must come before globals. */
3036 extsymoff = 0;
3037 }
3038
3039 /* Figure out the value of the symbol. */
3040 if (local_p)
3041 {
3042 Elf_Internal_Sym *sym;
3043
3044 sym = local_syms + r_symndx;
3045 sec = local_sections[r_symndx];
3046
3047 symbol = sec->output_section->vma + sec->output_offset;
3048 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3049 || (sec->flags & SEC_MERGE))
3050 symbol += sym->st_value;
3051 if ((sec->flags & SEC_MERGE)
3052 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3053 {
3054 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3055 addend -= symbol;
3056 addend += sec->output_section->vma + sec->output_offset;
3057 }
3058
3059 /* MIPS16 text labels should be treated as odd. */
3060 if (sym->st_other == STO_MIPS16)
3061 ++symbol;
3062
3063 /* Record the name of this symbol, for our caller. */
3064 *namep = bfd_elf_string_from_elf_section (input_bfd,
3065 symtab_hdr->sh_link,
3066 sym->st_name);
3067 if (*namep == '\0')
3068 *namep = bfd_section_name (input_bfd, sec);
3069
3070 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3071 }
3072 else
3073 {
3074 /* For global symbols we look up the symbol in the hash-table. */
3075 h = ((struct mips_elf_link_hash_entry *)
3076 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3077 /* Find the real hash-table entry for this symbol. */
3078 while (h->root.root.type == bfd_link_hash_indirect
3079 || h->root.root.type == bfd_link_hash_warning)
3080 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3081
3082 /* Record the name of this symbol, for our caller. */
3083 *namep = h->root.root.root.string;
3084
3085 /* See if this is the special _gp_disp symbol. Note that such a
3086 symbol must always be a global symbol. */
3087 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3088 && ! NEWABI_P (input_bfd))
3089 {
3090 /* Relocations against _gp_disp are permitted only with
3091 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3092 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3093 return bfd_reloc_notsupported;
3094
3095 gp_disp_p = TRUE;
3096 }
3097 /* If this symbol is defined, calculate its address. Note that
3098 _gp_disp is a magic symbol, always implicitly defined by the
3099 linker, so it's inappropriate to check to see whether or not
3100 its defined. */
3101 else if ((h->root.root.type == bfd_link_hash_defined
3102 || h->root.root.type == bfd_link_hash_defweak)
3103 && h->root.root.u.def.section)
3104 {
3105 sec = h->root.root.u.def.section;
3106 if (sec->output_section)
3107 symbol = (h->root.root.u.def.value
3108 + sec->output_section->vma
3109 + sec->output_offset);
3110 else
3111 symbol = h->root.root.u.def.value;
3112 }
3113 else if (h->root.root.type == bfd_link_hash_undefweak)
3114 /* We allow relocations against undefined weak symbols, giving
3115 it the value zero, so that you can undefined weak functions
3116 and check to see if they exist by looking at their
3117 addresses. */
3118 symbol = 0;
3119 else if (info->shared
3120 && !info->no_undefined
3121 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3122 symbol = 0;
3123 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3124 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3125 {
3126 /* If this is a dynamic link, we should have created a
3127 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3128 in in _bfd_mips_elf_create_dynamic_sections.
3129 Otherwise, we should define the symbol with a value of 0.
3130 FIXME: It should probably get into the symbol table
3131 somehow as well. */
3132 BFD_ASSERT (! info->shared);
3133 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3134 symbol = 0;
3135 }
3136 else
3137 {
3138 if (! ((*info->callbacks->undefined_symbol)
3139 (info, h->root.root.root.string, input_bfd,
3140 input_section, relocation->r_offset,
3141 (!info->shared || info->no_undefined
3142 || ELF_ST_VISIBILITY (h->root.other)))))
3143 return bfd_reloc_undefined;
3144 symbol = 0;
3145 }
3146
3147 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3148 }
3149
3150 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3151 need to redirect the call to the stub, unless we're already *in*
3152 a stub. */
3153 if (r_type != R_MIPS16_26 && !info->relocateable
3154 && ((h != NULL && h->fn_stub != NULL)
3155 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3156 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3157 && !mips_elf_stub_section_p (input_bfd, input_section))
3158 {
3159 /* This is a 32- or 64-bit call to a 16-bit function. We should
3160 have already noticed that we were going to need the
3161 stub. */
3162 if (local_p)
3163 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3164 else
3165 {
3166 BFD_ASSERT (h->need_fn_stub);
3167 sec = h->fn_stub;
3168 }
3169
3170 symbol = sec->output_section->vma + sec->output_offset;
3171 }
3172 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3173 need to redirect the call to the stub. */
3174 else if (r_type == R_MIPS16_26 && !info->relocateable
3175 && h != NULL
3176 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3177 && !target_is_16_bit_code_p)
3178 {
3179 /* If both call_stub and call_fp_stub are defined, we can figure
3180 out which one to use by seeing which one appears in the input
3181 file. */
3182 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3183 {
3184 asection *o;
3185
3186 sec = NULL;
3187 for (o = input_bfd->sections; o != NULL; o = o->next)
3188 {
3189 if (strncmp (bfd_get_section_name (input_bfd, o),
3190 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3191 {
3192 sec = h->call_fp_stub;
3193 break;
3194 }
3195 }
3196 if (sec == NULL)
3197 sec = h->call_stub;
3198 }
3199 else if (h->call_stub != NULL)
3200 sec = h->call_stub;
3201 else
3202 sec = h->call_fp_stub;
3203
3204 BFD_ASSERT (sec->_raw_size > 0);
3205 symbol = sec->output_section->vma + sec->output_offset;
3206 }
3207
3208 /* Calls from 16-bit code to 32-bit code and vice versa require the
3209 special jalx instruction. */
3210 *require_jalxp = (!info->relocateable
3211 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3212 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3213
3214 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3215 local_sections, TRUE);
3216
3217 /* If we haven't already determined the GOT offset, or the GP value,
3218 and we're going to need it, get it now. */
3219 switch (r_type)
3220 {
3221 case R_MIPS_GOT_PAGE:
3222 case R_MIPS_GOT_OFST:
3223 /* If this symbol got a global GOT entry, we have to decay
3224 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
3225 local_p = local_p || ! h
3226 || (h->root.dynindx
3227 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3228 ->dynobj));
3229 if (local_p || r_type == R_MIPS_GOT_OFST)
3230 break;
3231 /* Fall through. */
3232
3233 case R_MIPS_CALL16:
3234 case R_MIPS_GOT16:
3235 case R_MIPS_GOT_DISP:
3236 case R_MIPS_GOT_HI16:
3237 case R_MIPS_CALL_HI16:
3238 case R_MIPS_GOT_LO16:
3239 case R_MIPS_CALL_LO16:
3240 /* Find the index into the GOT where this value is located. */
3241 if (!local_p)
3242 {
3243 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3244 GOT_PAGE relocation that decays to GOT_DISP because the
3245 symbol turns out to be global. The addend is then added
3246 as GOT_OFST. */
3247 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3248 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3249 input_bfd,
3250 (struct elf_link_hash_entry *) h);
3251 if (! elf_hash_table(info)->dynamic_sections_created
3252 || (info->shared
3253 && (info->symbolic || h->root.dynindx == -1)
3254 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3255 {
3256 /* This is a static link or a -Bsymbolic link. The
3257 symbol is defined locally, or was forced to be local.
3258 We must initialize this entry in the GOT. */
3259 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3260 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3261 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3262 }
3263 }
3264 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3265 /* There's no need to create a local GOT entry here; the
3266 calculation for a local GOT16 entry does not involve G. */
3267 break;
3268 else
3269 {
3270 g = mips_elf_local_got_index (abfd, input_bfd,
3271 info, symbol + addend);
3272 if (g == MINUS_ONE)
3273 return bfd_reloc_outofrange;
3274 }
3275
3276 /* Convert GOT indices to actual offsets. */
3277 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3278 abfd, input_bfd, g);
3279 break;
3280
3281 case R_MIPS_HI16:
3282 case R_MIPS_LO16:
3283 case R_MIPS16_GPREL:
3284 case R_MIPS_GPREL16:
3285 case R_MIPS_GPREL32:
3286 case R_MIPS_LITERAL:
3287 gp0 = _bfd_get_gp_value (input_bfd);
3288 gp = _bfd_get_gp_value (abfd);
3289 if (elf_hash_table (info)->dynobj)
3290 gp += mips_elf_adjust_gp (abfd,
3291 mips_elf_got_info
3292 (elf_hash_table (info)->dynobj, NULL),
3293 input_bfd);
3294 break;
3295
3296 default:
3297 break;
3298 }
3299
3300 /* Figure out what kind of relocation is being performed. */
3301 switch (r_type)
3302 {
3303 case R_MIPS_NONE:
3304 return bfd_reloc_continue;
3305
3306 case R_MIPS_16:
3307 value = symbol + mips_elf_sign_extend (addend, 16);
3308 overflowed_p = mips_elf_overflow_p (value, 16);
3309 break;
3310
3311 case R_MIPS_32:
3312 case R_MIPS_REL32:
3313 case R_MIPS_64:
3314 if ((info->shared
3315 || (elf_hash_table (info)->dynamic_sections_created
3316 && h != NULL
3317 && ((h->root.elf_link_hash_flags
3318 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3319 && ((h->root.elf_link_hash_flags
3320 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3321 && r_symndx != 0
3322 && (input_section->flags & SEC_ALLOC) != 0)
3323 {
3324 /* If we're creating a shared library, or this relocation is
3325 against a symbol in a shared library, then we can't know
3326 where the symbol will end up. So, we create a relocation
3327 record in the output, and leave the job up to the dynamic
3328 linker. */
3329 value = addend;
3330 if (!mips_elf_create_dynamic_relocation (abfd,
3331 info,
3332 relocation,
3333 h,
3334 sec,
3335 symbol,
3336 &value,
3337 input_section))
3338 return bfd_reloc_undefined;
3339 }
3340 else
3341 {
3342 if (r_type != R_MIPS_REL32)
3343 value = symbol + addend;
3344 else
3345 value = addend;
3346 }
3347 value &= howto->dst_mask;
3348 break;
3349
3350 case R_MIPS_PC32:
3351 case R_MIPS_PC64:
3352 case R_MIPS_GNU_REL_LO16:
3353 value = symbol + addend - p;
3354 value &= howto->dst_mask;
3355 break;
3356
3357 case R_MIPS_GNU_REL16_S2:
3358 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3359 overflowed_p = mips_elf_overflow_p (value, 18);
3360 value = (value >> 2) & howto->dst_mask;
3361 break;
3362
3363 case R_MIPS_GNU_REL_HI16:
3364 /* Instead of subtracting 'p' here, we should be subtracting the
3365 equivalent value for the LO part of the reloc, since the value
3366 here is relative to that address. Because that's not easy to do,
3367 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3368 the comment there for more information. */
3369 value = mips_elf_high (addend + symbol - p);
3370 value &= howto->dst_mask;
3371 break;
3372
3373 case R_MIPS16_26:
3374 /* The calculation for R_MIPS16_26 is just the same as for an
3375 R_MIPS_26. It's only the storage of the relocated field into
3376 the output file that's different. That's handled in
3377 mips_elf_perform_relocation. So, we just fall through to the
3378 R_MIPS_26 case here. */
3379 case R_MIPS_26:
3380 if (local_p)
3381 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3382 else
3383 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3384 value &= howto->dst_mask;
3385 break;
3386
3387 case R_MIPS_HI16:
3388 if (!gp_disp_p)
3389 {
3390 value = mips_elf_high (addend + symbol);
3391 value &= howto->dst_mask;
3392 }
3393 else
3394 {
3395 value = mips_elf_high (addend + gp - p);
3396 overflowed_p = mips_elf_overflow_p (value, 16);
3397 }
3398 break;
3399
3400 case R_MIPS_LO16:
3401 if (!gp_disp_p)
3402 value = (symbol + addend) & howto->dst_mask;
3403 else
3404 {
3405 value = addend + gp - p + 4;
3406 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3407 for overflow. But, on, say, IRIX5, relocations against
3408 _gp_disp are normally generated from the .cpload
3409 pseudo-op. It generates code that normally looks like
3410 this:
3411
3412 lui $gp,%hi(_gp_disp)
3413 addiu $gp,$gp,%lo(_gp_disp)
3414 addu $gp,$gp,$t9
3415
3416 Here $t9 holds the address of the function being called,
3417 as required by the MIPS ELF ABI. The R_MIPS_LO16
3418 relocation can easily overflow in this situation, but the
3419 R_MIPS_HI16 relocation will handle the overflow.
3420 Therefore, we consider this a bug in the MIPS ABI, and do
3421 not check for overflow here. */
3422 }
3423 break;
3424
3425 case R_MIPS_LITERAL:
3426 /* Because we don't merge literal sections, we can handle this
3427 just like R_MIPS_GPREL16. In the long run, we should merge
3428 shared literals, and then we will need to additional work
3429 here. */
3430
3431 /* Fall through. */
3432
3433 case R_MIPS16_GPREL:
3434 /* The R_MIPS16_GPREL performs the same calculation as
3435 R_MIPS_GPREL16, but stores the relocated bits in a different
3436 order. We don't need to do anything special here; the
3437 differences are handled in mips_elf_perform_relocation. */
3438 case R_MIPS_GPREL16:
3439 /* Only sign-extend the addend if it was extracted from the
3440 instruction. If the addend was separate, leave it alone,
3441 otherwise we may lose significant bits. */
3442 if (howto->partial_inplace)
3443 addend = mips_elf_sign_extend (addend, 16);
3444 value = symbol + addend - gp;
3445 /* If the symbol was local, any earlier relocatable links will
3446 have adjusted its addend with the gp offset, so compensate
3447 for that now. Don't do it for symbols forced local in this
3448 link, though, since they won't have had the gp offset applied
3449 to them before. */
3450 if (was_local_p)
3451 value += gp0;
3452 overflowed_p = mips_elf_overflow_p (value, 16);
3453 break;
3454
3455 case R_MIPS_GOT16:
3456 case R_MIPS_CALL16:
3457 if (local_p)
3458 {
3459 bfd_boolean forced;
3460
3461 /* The special case is when the symbol is forced to be local. We
3462 need the full address in the GOT since no R_MIPS_LO16 relocation
3463 follows. */
3464 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3465 local_sections, FALSE);
3466 value = mips_elf_got16_entry (abfd, input_bfd, info,
3467 symbol + addend, forced);
3468 if (value == MINUS_ONE)
3469 return bfd_reloc_outofrange;
3470 value
3471 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3472 abfd, input_bfd, value);
3473 overflowed_p = mips_elf_overflow_p (value, 16);
3474 break;
3475 }
3476
3477 /* Fall through. */
3478
3479 case R_MIPS_GOT_DISP:
3480 got_disp:
3481 value = g;
3482 overflowed_p = mips_elf_overflow_p (value, 16);
3483 break;
3484
3485 case R_MIPS_GPREL32:
3486 value = (addend + symbol + gp0 - gp);
3487 if (!save_addend)
3488 value &= howto->dst_mask;
3489 break;
3490
3491 case R_MIPS_PC16:
3492 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3493 overflowed_p = mips_elf_overflow_p (value, 16);
3494 break;
3495
3496 case R_MIPS_GOT_HI16:
3497 case R_MIPS_CALL_HI16:
3498 /* We're allowed to handle these two relocations identically.
3499 The dynamic linker is allowed to handle the CALL relocations
3500 differently by creating a lazy evaluation stub. */
3501 value = g;
3502 value = mips_elf_high (value);
3503 value &= howto->dst_mask;
3504 break;
3505
3506 case R_MIPS_GOT_LO16:
3507 case R_MIPS_CALL_LO16:
3508 value = g & howto->dst_mask;
3509 break;
3510
3511 case R_MIPS_GOT_PAGE:
3512 /* GOT_PAGE relocations that reference non-local symbols decay
3513 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3514 0. */
3515 if (! local_p)
3516 goto got_disp;
3517 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3518 if (value == MINUS_ONE)
3519 return bfd_reloc_outofrange;
3520 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3521 abfd, input_bfd, value);
3522 overflowed_p = mips_elf_overflow_p (value, 16);
3523 break;
3524
3525 case R_MIPS_GOT_OFST:
3526 if (local_p)
3527 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3528 else
3529 value = addend;
3530 overflowed_p = mips_elf_overflow_p (value, 16);
3531 break;
3532
3533 case R_MIPS_SUB:
3534 value = symbol - addend;
3535 value &= howto->dst_mask;
3536 break;
3537
3538 case R_MIPS_HIGHER:
3539 value = mips_elf_higher (addend + symbol);
3540 value &= howto->dst_mask;
3541 break;
3542
3543 case R_MIPS_HIGHEST:
3544 value = mips_elf_highest (addend + symbol);
3545 value &= howto->dst_mask;
3546 break;
3547
3548 case R_MIPS_SCN_DISP:
3549 value = symbol + addend - sec->output_offset;
3550 value &= howto->dst_mask;
3551 break;
3552
3553 case R_MIPS_PJUMP:
3554 case R_MIPS_JALR:
3555 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3556 hint; we could improve performance by honoring that hint. */
3557 return bfd_reloc_continue;
3558
3559 case R_MIPS_GNU_VTINHERIT:
3560 case R_MIPS_GNU_VTENTRY:
3561 /* We don't do anything with these at present. */
3562 return bfd_reloc_continue;
3563
3564 default:
3565 /* An unrecognized relocation type. */
3566 return bfd_reloc_notsupported;
3567 }
3568
3569 /* Store the VALUE for our caller. */
3570 *valuep = value;
3571 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3572 }
3573
3574 /* Obtain the field relocated by RELOCATION. */
3575
3576 static bfd_vma
3577 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3578 reloc_howto_type *howto;
3579 const Elf_Internal_Rela *relocation;
3580 bfd *input_bfd;
3581 bfd_byte *contents;
3582 {
3583 bfd_vma x;
3584 bfd_byte *location = contents + relocation->r_offset;
3585
3586 /* Obtain the bytes. */
3587 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3588
3589 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3590 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3591 && bfd_little_endian (input_bfd))
3592 /* The two 16-bit words will be reversed on a little-endian system.
3593 See mips_elf_perform_relocation for more details. */
3594 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3595
3596 return x;
3597 }
3598
3599 /* It has been determined that the result of the RELOCATION is the
3600 VALUE. Use HOWTO to place VALUE into the output file at the
3601 appropriate position. The SECTION is the section to which the
3602 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3603 for the relocation must be either JAL or JALX, and it is
3604 unconditionally converted to JALX.
3605
3606 Returns FALSE if anything goes wrong. */
3607
3608 static bfd_boolean
3609 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3610 input_section, contents, require_jalx)
3611 struct bfd_link_info *info;
3612 reloc_howto_type *howto;
3613 const Elf_Internal_Rela *relocation;
3614 bfd_vma value;
3615 bfd *input_bfd;
3616 asection *input_section;
3617 bfd_byte *contents;
3618 bfd_boolean require_jalx;
3619 {
3620 bfd_vma x;
3621 bfd_byte *location;
3622 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3623
3624 /* Figure out where the relocation is occurring. */
3625 location = contents + relocation->r_offset;
3626
3627 /* Obtain the current value. */
3628 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3629
3630 /* Clear the field we are setting. */
3631 x &= ~howto->dst_mask;
3632
3633 /* If this is the R_MIPS16_26 relocation, we must store the
3634 value in a funny way. */
3635 if (r_type == R_MIPS16_26)
3636 {
3637 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3638 Most mips16 instructions are 16 bits, but these instructions
3639 are 32 bits.
3640
3641 The format of these instructions is:
3642
3643 +--------------+--------------------------------+
3644 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3645 +--------------+--------------------------------+
3646 ! Immediate 15:0 !
3647 +-----------------------------------------------+
3648
3649 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3650 Note that the immediate value in the first word is swapped.
3651
3652 When producing a relocateable object file, R_MIPS16_26 is
3653 handled mostly like R_MIPS_26. In particular, the addend is
3654 stored as a straight 26-bit value in a 32-bit instruction.
3655 (gas makes life simpler for itself by never adjusting a
3656 R_MIPS16_26 reloc to be against a section, so the addend is
3657 always zero). However, the 32 bit instruction is stored as 2
3658 16-bit values, rather than a single 32-bit value. In a
3659 big-endian file, the result is the same; in a little-endian
3660 file, the two 16-bit halves of the 32 bit value are swapped.
3661 This is so that a disassembler can recognize the jal
3662 instruction.
3663
3664 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3665 instruction stored as two 16-bit values. The addend A is the
3666 contents of the targ26 field. The calculation is the same as
3667 R_MIPS_26. When storing the calculated value, reorder the
3668 immediate value as shown above, and don't forget to store the
3669 value as two 16-bit values.
3670
3671 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3672 defined as
3673
3674 big-endian:
3675 +--------+----------------------+
3676 | | |
3677 | | targ26-16 |
3678 |31 26|25 0|
3679 +--------+----------------------+
3680
3681 little-endian:
3682 +----------+------+-------------+
3683 | | | |
3684 | sub1 | | sub2 |
3685 |0 9|10 15|16 31|
3686 +----------+--------------------+
3687 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3688 ((sub1 << 16) | sub2)).
3689
3690 When producing a relocateable object file, the calculation is
3691 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3692 When producing a fully linked file, the calculation is
3693 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3694 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3695
3696 if (!info->relocateable)
3697 /* Shuffle the bits according to the formula above. */
3698 value = (((value & 0x1f0000) << 5)
3699 | ((value & 0x3e00000) >> 5)
3700 | (value & 0xffff));
3701 }
3702 else if (r_type == R_MIPS16_GPREL)
3703 {
3704 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3705 mode. A typical instruction will have a format like this:
3706
3707 +--------------+--------------------------------+
3708 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3709 +--------------+--------------------------------+
3710 ! Major ! rx ! ry ! Imm 4:0 !
3711 +--------------+--------------------------------+
3712
3713 EXTEND is the five bit value 11110. Major is the instruction
3714 opcode.
3715
3716 This is handled exactly like R_MIPS_GPREL16, except that the
3717 addend is retrieved and stored as shown in this diagram; that
3718 is, the Imm fields above replace the V-rel16 field.
3719
3720 All we need to do here is shuffle the bits appropriately. As
3721 above, the two 16-bit halves must be swapped on a
3722 little-endian system. */
3723 value = (((value & 0x7e0) << 16)
3724 | ((value & 0xf800) << 5)
3725 | (value & 0x1f));
3726 }
3727
3728 /* Set the field. */
3729 x |= (value & howto->dst_mask);
3730
3731 /* If required, turn JAL into JALX. */
3732 if (require_jalx)
3733 {
3734 bfd_boolean ok;
3735 bfd_vma opcode = x >> 26;
3736 bfd_vma jalx_opcode;
3737
3738 /* Check to see if the opcode is already JAL or JALX. */
3739 if (r_type == R_MIPS16_26)
3740 {
3741 ok = ((opcode == 0x6) || (opcode == 0x7));
3742 jalx_opcode = 0x7;
3743 }
3744 else
3745 {
3746 ok = ((opcode == 0x3) || (opcode == 0x1d));
3747 jalx_opcode = 0x1d;
3748 }
3749
3750 /* If the opcode is not JAL or JALX, there's a problem. */
3751 if (!ok)
3752 {
3753 (*_bfd_error_handler)
3754 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3755 bfd_archive_filename (input_bfd),
3756 input_section->name,
3757 (unsigned long) relocation->r_offset);
3758 bfd_set_error (bfd_error_bad_value);
3759 return FALSE;
3760 }
3761
3762 /* Make this the JALX opcode. */
3763 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3764 }
3765
3766 /* Swap the high- and low-order 16 bits on little-endian systems
3767 when doing a MIPS16 relocation. */
3768 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3769 && bfd_little_endian (input_bfd))
3770 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3771
3772 /* Put the value into the output. */
3773 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3774 return TRUE;
3775 }
3776
3777 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3778
3779 static bfd_boolean
3780 mips_elf_stub_section_p (abfd, section)
3781 bfd *abfd ATTRIBUTE_UNUSED;
3782 asection *section;
3783 {
3784 const char *name = bfd_get_section_name (abfd, section);
3785
3786 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3787 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3788 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3789 }
3790 \f
3791 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3792
3793 static void
3794 mips_elf_allocate_dynamic_relocations (abfd, n)
3795 bfd *abfd;
3796 unsigned int n;
3797 {
3798 asection *s;
3799
3800 s = mips_elf_rel_dyn_section (abfd, FALSE);
3801 BFD_ASSERT (s != NULL);
3802
3803 if (s->_raw_size == 0)
3804 {
3805 /* Make room for a null element. */
3806 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3807 ++s->reloc_count;
3808 }
3809 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3810 }
3811
3812 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3813 is the original relocation, which is now being transformed into a
3814 dynamic relocation. The ADDENDP is adjusted if necessary; the
3815 caller should store the result in place of the original addend. */
3816
3817 static bfd_boolean
3818 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3819 symbol, addendp, input_section)
3820 bfd *output_bfd;
3821 struct bfd_link_info *info;
3822 const Elf_Internal_Rela *rel;
3823 struct mips_elf_link_hash_entry *h;
3824 asection *sec;
3825 bfd_vma symbol;
3826 bfd_vma *addendp;
3827 asection *input_section;
3828 {
3829 Elf_Internal_Rela outrel[3];
3830 bfd_boolean skip;
3831 asection *sreloc;
3832 bfd *dynobj;
3833 int r_type;
3834
3835 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3836 dynobj = elf_hash_table (info)->dynobj;
3837 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3838 BFD_ASSERT (sreloc != NULL);
3839 BFD_ASSERT (sreloc->contents != NULL);
3840 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3841 < sreloc->_raw_size);
3842
3843 skip = FALSE;
3844 outrel[0].r_offset =
3845 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3846 outrel[1].r_offset =
3847 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3848 outrel[2].r_offset =
3849 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3850
3851 #if 0
3852 /* We begin by assuming that the offset for the dynamic relocation
3853 is the same as for the original relocation. We'll adjust this
3854 later to reflect the correct output offsets. */
3855 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3856 {
3857 outrel[1].r_offset = rel[1].r_offset;
3858 outrel[2].r_offset = rel[2].r_offset;
3859 }
3860 else
3861 {
3862 /* Except that in a stab section things are more complex.
3863 Because we compress stab information, the offset given in the
3864 relocation may not be the one we want; we must let the stabs
3865 machinery tell us the offset. */
3866 outrel[1].r_offset = outrel[0].r_offset;
3867 outrel[2].r_offset = outrel[0].r_offset;
3868 /* If we didn't need the relocation at all, this value will be
3869 -1. */
3870 if (outrel[0].r_offset == (bfd_vma) -1)
3871 skip = TRUE;
3872 }
3873 #endif
3874
3875 if (outrel[0].r_offset == (bfd_vma) -1
3876 || outrel[0].r_offset == (bfd_vma) -2)
3877 skip = TRUE;
3878
3879 /* If we've decided to skip this relocation, just output an empty
3880 record. Note that R_MIPS_NONE == 0, so that this call to memset
3881 is a way of setting R_TYPE to R_MIPS_NONE. */
3882 if (skip)
3883 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3884 else
3885 {
3886 long indx;
3887
3888 /* We must now calculate the dynamic symbol table index to use
3889 in the relocation. */
3890 if (h != NULL
3891 && (! info->symbolic || (h->root.elf_link_hash_flags
3892 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3893 {
3894 indx = h->root.dynindx;
3895 /* h->root.dynindx may be -1 if this symbol was marked to
3896 become local. */
3897 if (indx == -1)
3898 indx = 0;
3899 }
3900 else
3901 {
3902 if (sec != NULL && bfd_is_abs_section (sec))
3903 indx = 0;
3904 else if (sec == NULL || sec->owner == NULL)
3905 {
3906 bfd_set_error (bfd_error_bad_value);
3907 return FALSE;
3908 }
3909 else
3910 {
3911 indx = elf_section_data (sec->output_section)->dynindx;
3912 if (indx == 0)
3913 abort ();
3914 }
3915
3916 /* Instead of generating a relocation using the section
3917 symbol, we may as well make it a fully relative
3918 relocation. We want to avoid generating relocations to
3919 local symbols because we used to generate them
3920 incorrectly, without adding the original symbol value,
3921 which is mandated by the ABI for section symbols. In
3922 order to give dynamic loaders and applications time to
3923 phase out the incorrect use, we refrain from emitting
3924 section-relative relocations. It's not like they're
3925 useful, after all. This should be a bit more efficient
3926 as well. */
3927 indx = 0;
3928 }
3929
3930 /* If the relocation was previously an absolute relocation and
3931 this symbol will not be referred to by the relocation, we must
3932 adjust it by the value we give it in the dynamic symbol table.
3933 Otherwise leave the job up to the dynamic linker. */
3934 if (!indx && r_type != R_MIPS_REL32)
3935 *addendp += symbol;
3936
3937 /* The relocation is always an REL32 relocation because we don't
3938 know where the shared library will wind up at load-time. */
3939 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3940 R_MIPS_REL32);
3941 /* For strict adherence to the ABI specification, we should
3942 generate a R_MIPS_64 relocation record by itself before the
3943 _REL32/_64 record as well, such that the addend is read in as
3944 a 64-bit value (REL32 is a 32-bit relocation, after all).
3945 However, since none of the existing ELF64 MIPS dynamic
3946 loaders seems to care, we don't waste space with these
3947 artificial relocations. If this turns out to not be true,
3948 mips_elf_allocate_dynamic_relocation() should be tweaked so
3949 as to make room for a pair of dynamic relocations per
3950 invocation if ABI_64_P, and here we should generate an
3951 additional relocation record with R_MIPS_64 by itself for a
3952 NULL symbol before this relocation record. */
3953 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3954 ABI_64_P (output_bfd)
3955 ? R_MIPS_64
3956 : R_MIPS_NONE);
3957 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3958 R_MIPS_NONE);
3959
3960 /* Adjust the output offset of the relocation to reference the
3961 correct location in the output file. */
3962 outrel[0].r_offset += (input_section->output_section->vma
3963 + input_section->output_offset);
3964 outrel[1].r_offset += (input_section->output_section->vma
3965 + input_section->output_offset);
3966 outrel[2].r_offset += (input_section->output_section->vma
3967 + input_section->output_offset);
3968 }
3969
3970 /* Put the relocation back out. We have to use the special
3971 relocation outputter in the 64-bit case since the 64-bit
3972 relocation format is non-standard. */
3973 if (ABI_64_P (output_bfd))
3974 {
3975 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3976 (output_bfd, &outrel[0],
3977 (sreloc->contents
3978 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3979 }
3980 else
3981 bfd_elf32_swap_reloc_out
3982 (output_bfd, &outrel[0],
3983 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3984
3985 /* Record the index of the first relocation referencing H. This
3986 information is later emitted in the .msym section. */
3987 if (h != NULL
3988 && (h->min_dyn_reloc_index == 0
3989 || sreloc->reloc_count < h->min_dyn_reloc_index))
3990 h->min_dyn_reloc_index = sreloc->reloc_count;
3991
3992 /* We've now added another relocation. */
3993 ++sreloc->reloc_count;
3994
3995 /* Make sure the output section is writable. The dynamic linker
3996 will be writing to it. */
3997 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3998 |= SHF_WRITE;
3999
4000 /* On IRIX5, make an entry of compact relocation info. */
4001 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4002 {
4003 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4004 bfd_byte *cr;
4005
4006 if (scpt)
4007 {
4008 Elf32_crinfo cptrel;
4009
4010 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4011 cptrel.vaddr = (rel->r_offset
4012 + input_section->output_section->vma
4013 + input_section->output_offset);
4014 if (r_type == R_MIPS_REL32)
4015 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4016 else
4017 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4018 mips_elf_set_cr_dist2to (cptrel, 0);
4019 cptrel.konst = *addendp;
4020
4021 cr = (scpt->contents
4022 + sizeof (Elf32_External_compact_rel));
4023 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4024 ((Elf32_External_crinfo *) cr
4025 + scpt->reloc_count));
4026 ++scpt->reloc_count;
4027 }
4028 }
4029
4030 return TRUE;
4031 }
4032 \f
4033 /* Return the MACH for a MIPS e_flags value. */
4034
4035 unsigned long
4036 _bfd_elf_mips_mach (flags)
4037 flagword flags;
4038 {
4039 switch (flags & EF_MIPS_MACH)
4040 {
4041 case E_MIPS_MACH_3900:
4042 return bfd_mach_mips3900;
4043
4044 case E_MIPS_MACH_4010:
4045 return bfd_mach_mips4010;
4046
4047 case E_MIPS_MACH_4100:
4048 return bfd_mach_mips4100;
4049
4050 case E_MIPS_MACH_4111:
4051 return bfd_mach_mips4111;
4052
4053 case E_MIPS_MACH_4120:
4054 return bfd_mach_mips4120;
4055
4056 case E_MIPS_MACH_4650:
4057 return bfd_mach_mips4650;
4058
4059 case E_MIPS_MACH_5400:
4060 return bfd_mach_mips5400;
4061
4062 case E_MIPS_MACH_5500:
4063 return bfd_mach_mips5500;
4064
4065 case E_MIPS_MACH_SB1:
4066 return bfd_mach_mips_sb1;
4067
4068 default:
4069 switch (flags & EF_MIPS_ARCH)
4070 {
4071 default:
4072 case E_MIPS_ARCH_1:
4073 return bfd_mach_mips3000;
4074 break;
4075
4076 case E_MIPS_ARCH_2:
4077 return bfd_mach_mips6000;
4078 break;
4079
4080 case E_MIPS_ARCH_3:
4081 return bfd_mach_mips4000;
4082 break;
4083
4084 case E_MIPS_ARCH_4:
4085 return bfd_mach_mips8000;
4086 break;
4087
4088 case E_MIPS_ARCH_5:
4089 return bfd_mach_mips5;
4090 break;
4091
4092 case E_MIPS_ARCH_32:
4093 return bfd_mach_mipsisa32;
4094 break;
4095
4096 case E_MIPS_ARCH_64:
4097 return bfd_mach_mipsisa64;
4098 break;
4099
4100 case E_MIPS_ARCH_32R2:
4101 return bfd_mach_mipsisa32r2;
4102 break;
4103 }
4104 }
4105
4106 return 0;
4107 }
4108
4109 /* Return printable name for ABI. */
4110
4111 static INLINE char *
4112 elf_mips_abi_name (abfd)
4113 bfd *abfd;
4114 {
4115 flagword flags;
4116
4117 flags = elf_elfheader (abfd)->e_flags;
4118 switch (flags & EF_MIPS_ABI)
4119 {
4120 case 0:
4121 if (ABI_N32_P (abfd))
4122 return "N32";
4123 else if (ABI_64_P (abfd))
4124 return "64";
4125 else
4126 return "none";
4127 case E_MIPS_ABI_O32:
4128 return "O32";
4129 case E_MIPS_ABI_O64:
4130 return "O64";
4131 case E_MIPS_ABI_EABI32:
4132 return "EABI32";
4133 case E_MIPS_ABI_EABI64:
4134 return "EABI64";
4135 default:
4136 return "unknown abi";
4137 }
4138 }
4139 \f
4140 /* MIPS ELF uses two common sections. One is the usual one, and the
4141 other is for small objects. All the small objects are kept
4142 together, and then referenced via the gp pointer, which yields
4143 faster assembler code. This is what we use for the small common
4144 section. This approach is copied from ecoff.c. */
4145 static asection mips_elf_scom_section;
4146 static asymbol mips_elf_scom_symbol;
4147 static asymbol *mips_elf_scom_symbol_ptr;
4148
4149 /* MIPS ELF also uses an acommon section, which represents an
4150 allocated common symbol which may be overridden by a
4151 definition in a shared library. */
4152 static asection mips_elf_acom_section;
4153 static asymbol mips_elf_acom_symbol;
4154 static asymbol *mips_elf_acom_symbol_ptr;
4155
4156 /* Handle the special MIPS section numbers that a symbol may use.
4157 This is used for both the 32-bit and the 64-bit ABI. */
4158
4159 void
4160 _bfd_mips_elf_symbol_processing (abfd, asym)
4161 bfd *abfd;
4162 asymbol *asym;
4163 {
4164 elf_symbol_type *elfsym;
4165
4166 elfsym = (elf_symbol_type *) asym;
4167 switch (elfsym->internal_elf_sym.st_shndx)
4168 {
4169 case SHN_MIPS_ACOMMON:
4170 /* This section is used in a dynamically linked executable file.
4171 It is an allocated common section. The dynamic linker can
4172 either resolve these symbols to something in a shared
4173 library, or it can just leave them here. For our purposes,
4174 we can consider these symbols to be in a new section. */
4175 if (mips_elf_acom_section.name == NULL)
4176 {
4177 /* Initialize the acommon section. */
4178 mips_elf_acom_section.name = ".acommon";
4179 mips_elf_acom_section.flags = SEC_ALLOC;
4180 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4181 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4182 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4183 mips_elf_acom_symbol.name = ".acommon";
4184 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4185 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4186 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4187 }
4188 asym->section = &mips_elf_acom_section;
4189 break;
4190
4191 case SHN_COMMON:
4192 /* Common symbols less than the GP size are automatically
4193 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4194 if (asym->value > elf_gp_size (abfd)
4195 || IRIX_COMPAT (abfd) == ict_irix6)
4196 break;
4197 /* Fall through. */
4198 case SHN_MIPS_SCOMMON:
4199 if (mips_elf_scom_section.name == NULL)
4200 {
4201 /* Initialize the small common section. */
4202 mips_elf_scom_section.name = ".scommon";
4203 mips_elf_scom_section.flags = SEC_IS_COMMON;
4204 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4205 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4206 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4207 mips_elf_scom_symbol.name = ".scommon";
4208 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4209 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4210 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4211 }
4212 asym->section = &mips_elf_scom_section;
4213 asym->value = elfsym->internal_elf_sym.st_size;
4214 break;
4215
4216 case SHN_MIPS_SUNDEFINED:
4217 asym->section = bfd_und_section_ptr;
4218 break;
4219
4220 #if 0 /* for SGI_COMPAT */
4221 case SHN_MIPS_TEXT:
4222 asym->section = mips_elf_text_section_ptr;
4223 break;
4224
4225 case SHN_MIPS_DATA:
4226 asym->section = mips_elf_data_section_ptr;
4227 break;
4228 #endif
4229 }
4230 }
4231 \f
4232 /* Work over a section just before writing it out. This routine is
4233 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4234 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4235 a better way. */
4236
4237 bfd_boolean
4238 _bfd_mips_elf_section_processing (abfd, hdr)
4239 bfd *abfd;
4240 Elf_Internal_Shdr *hdr;
4241 {
4242 if (hdr->sh_type == SHT_MIPS_REGINFO
4243 && hdr->sh_size > 0)
4244 {
4245 bfd_byte buf[4];
4246
4247 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4248 BFD_ASSERT (hdr->contents == NULL);
4249
4250 if (bfd_seek (abfd,
4251 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4252 SEEK_SET) != 0)
4253 return FALSE;
4254 H_PUT_32 (abfd, elf_gp (abfd), buf);
4255 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4256 return FALSE;
4257 }
4258
4259 if (hdr->sh_type == SHT_MIPS_OPTIONS
4260 && hdr->bfd_section != NULL
4261 && mips_elf_section_data (hdr->bfd_section) != NULL
4262 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4263 {
4264 bfd_byte *contents, *l, *lend;
4265
4266 /* We stored the section contents in the tdata field in the
4267 set_section_contents routine. We save the section contents
4268 so that we don't have to read them again.
4269 At this point we know that elf_gp is set, so we can look
4270 through the section contents to see if there is an
4271 ODK_REGINFO structure. */
4272
4273 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4274 l = contents;
4275 lend = contents + hdr->sh_size;
4276 while (l + sizeof (Elf_External_Options) <= lend)
4277 {
4278 Elf_Internal_Options intopt;
4279
4280 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4281 &intopt);
4282 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4283 {
4284 bfd_byte buf[8];
4285
4286 if (bfd_seek (abfd,
4287 (hdr->sh_offset
4288 + (l - contents)
4289 + sizeof (Elf_External_Options)
4290 + (sizeof (Elf64_External_RegInfo) - 8)),
4291 SEEK_SET) != 0)
4292 return FALSE;
4293 H_PUT_64 (abfd, elf_gp (abfd), buf);
4294 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4295 return FALSE;
4296 }
4297 else if (intopt.kind == ODK_REGINFO)
4298 {
4299 bfd_byte buf[4];
4300
4301 if (bfd_seek (abfd,
4302 (hdr->sh_offset
4303 + (l - contents)
4304 + sizeof (Elf_External_Options)
4305 + (sizeof (Elf32_External_RegInfo) - 4)),
4306 SEEK_SET) != 0)
4307 return FALSE;
4308 H_PUT_32 (abfd, elf_gp (abfd), buf);
4309 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4310 return FALSE;
4311 }
4312 l += intopt.size;
4313 }
4314 }
4315
4316 if (hdr->bfd_section != NULL)
4317 {
4318 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4319
4320 if (strcmp (name, ".sdata") == 0
4321 || strcmp (name, ".lit8") == 0
4322 || strcmp (name, ".lit4") == 0)
4323 {
4324 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4325 hdr->sh_type = SHT_PROGBITS;
4326 }
4327 else if (strcmp (name, ".sbss") == 0)
4328 {
4329 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4330 hdr->sh_type = SHT_NOBITS;
4331 }
4332 else if (strcmp (name, ".srdata") == 0)
4333 {
4334 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4335 hdr->sh_type = SHT_PROGBITS;
4336 }
4337 else if (strcmp (name, ".compact_rel") == 0)
4338 {
4339 hdr->sh_flags = 0;
4340 hdr->sh_type = SHT_PROGBITS;
4341 }
4342 else if (strcmp (name, ".rtproc") == 0)
4343 {
4344 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4345 {
4346 unsigned int adjust;
4347
4348 adjust = hdr->sh_size % hdr->sh_addralign;
4349 if (adjust != 0)
4350 hdr->sh_size += hdr->sh_addralign - adjust;
4351 }
4352 }
4353 }
4354
4355 return TRUE;
4356 }
4357
4358 /* Handle a MIPS specific section when reading an object file. This
4359 is called when elfcode.h finds a section with an unknown type.
4360 This routine supports both the 32-bit and 64-bit ELF ABI.
4361
4362 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4363 how to. */
4364
4365 bfd_boolean
4366 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4367 bfd *abfd;
4368 Elf_Internal_Shdr *hdr;
4369 const char *name;
4370 {
4371 flagword flags = 0;
4372
4373 /* There ought to be a place to keep ELF backend specific flags, but
4374 at the moment there isn't one. We just keep track of the
4375 sections by their name, instead. Fortunately, the ABI gives
4376 suggested names for all the MIPS specific sections, so we will
4377 probably get away with this. */
4378 switch (hdr->sh_type)
4379 {
4380 case SHT_MIPS_LIBLIST:
4381 if (strcmp (name, ".liblist") != 0)
4382 return FALSE;
4383 break;
4384 case SHT_MIPS_MSYM:
4385 if (strcmp (name, ".msym") != 0)
4386 return FALSE;
4387 break;
4388 case SHT_MIPS_CONFLICT:
4389 if (strcmp (name, ".conflict") != 0)
4390 return FALSE;
4391 break;
4392 case SHT_MIPS_GPTAB:
4393 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4394 return FALSE;
4395 break;
4396 case SHT_MIPS_UCODE:
4397 if (strcmp (name, ".ucode") != 0)
4398 return FALSE;
4399 break;
4400 case SHT_MIPS_DEBUG:
4401 if (strcmp (name, ".mdebug") != 0)
4402 return FALSE;
4403 flags = SEC_DEBUGGING;
4404 break;
4405 case SHT_MIPS_REGINFO:
4406 if (strcmp (name, ".reginfo") != 0
4407 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4408 return FALSE;
4409 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4410 break;
4411 case SHT_MIPS_IFACE:
4412 if (strcmp (name, ".MIPS.interfaces") != 0)
4413 return FALSE;
4414 break;
4415 case SHT_MIPS_CONTENT:
4416 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4417 return FALSE;
4418 break;
4419 case SHT_MIPS_OPTIONS:
4420 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4421 return FALSE;
4422 break;
4423 case SHT_MIPS_DWARF:
4424 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4425 return FALSE;
4426 break;
4427 case SHT_MIPS_SYMBOL_LIB:
4428 if (strcmp (name, ".MIPS.symlib") != 0)
4429 return FALSE;
4430 break;
4431 case SHT_MIPS_EVENTS:
4432 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4433 && strncmp (name, ".MIPS.post_rel",
4434 sizeof ".MIPS.post_rel" - 1) != 0)
4435 return FALSE;
4436 break;
4437 default:
4438 return FALSE;
4439 }
4440
4441 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4442 return FALSE;
4443
4444 if (flags)
4445 {
4446 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4447 (bfd_get_section_flags (abfd,
4448 hdr->bfd_section)
4449 | flags)))
4450 return FALSE;
4451 }
4452
4453 /* FIXME: We should record sh_info for a .gptab section. */
4454
4455 /* For a .reginfo section, set the gp value in the tdata information
4456 from the contents of this section. We need the gp value while
4457 processing relocs, so we just get it now. The .reginfo section
4458 is not used in the 64-bit MIPS ELF ABI. */
4459 if (hdr->sh_type == SHT_MIPS_REGINFO)
4460 {
4461 Elf32_External_RegInfo ext;
4462 Elf32_RegInfo s;
4463
4464 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4465 (file_ptr) 0,
4466 (bfd_size_type) sizeof ext))
4467 return FALSE;
4468 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4469 elf_gp (abfd) = s.ri_gp_value;
4470 }
4471
4472 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4473 set the gp value based on what we find. We may see both
4474 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4475 they should agree. */
4476 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4477 {
4478 bfd_byte *contents, *l, *lend;
4479
4480 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4481 if (contents == NULL)
4482 return FALSE;
4483 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4484 (file_ptr) 0, hdr->sh_size))
4485 {
4486 free (contents);
4487 return FALSE;
4488 }
4489 l = contents;
4490 lend = contents + hdr->sh_size;
4491 while (l + sizeof (Elf_External_Options) <= lend)
4492 {
4493 Elf_Internal_Options intopt;
4494
4495 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4496 &intopt);
4497 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4498 {
4499 Elf64_Internal_RegInfo intreg;
4500
4501 bfd_mips_elf64_swap_reginfo_in
4502 (abfd,
4503 ((Elf64_External_RegInfo *)
4504 (l + sizeof (Elf_External_Options))),
4505 &intreg);
4506 elf_gp (abfd) = intreg.ri_gp_value;
4507 }
4508 else if (intopt.kind == ODK_REGINFO)
4509 {
4510 Elf32_RegInfo intreg;
4511
4512 bfd_mips_elf32_swap_reginfo_in
4513 (abfd,
4514 ((Elf32_External_RegInfo *)
4515 (l + sizeof (Elf_External_Options))),
4516 &intreg);
4517 elf_gp (abfd) = intreg.ri_gp_value;
4518 }
4519 l += intopt.size;
4520 }
4521 free (contents);
4522 }
4523
4524 return TRUE;
4525 }
4526
4527 /* Set the correct type for a MIPS ELF section. We do this by the
4528 section name, which is a hack, but ought to work. This routine is
4529 used by both the 32-bit and the 64-bit ABI. */
4530
4531 bfd_boolean
4532 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4533 bfd *abfd;
4534 Elf_Internal_Shdr *hdr;
4535 asection *sec;
4536 {
4537 register const char *name;
4538
4539 name = bfd_get_section_name (abfd, sec);
4540
4541 if (strcmp (name, ".liblist") == 0)
4542 {
4543 hdr->sh_type = SHT_MIPS_LIBLIST;
4544 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4545 /* The sh_link field is set in final_write_processing. */
4546 }
4547 else if (strcmp (name, ".conflict") == 0)
4548 hdr->sh_type = SHT_MIPS_CONFLICT;
4549 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4550 {
4551 hdr->sh_type = SHT_MIPS_GPTAB;
4552 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4553 /* The sh_info field is set in final_write_processing. */
4554 }
4555 else if (strcmp (name, ".ucode") == 0)
4556 hdr->sh_type = SHT_MIPS_UCODE;
4557 else if (strcmp (name, ".mdebug") == 0)
4558 {
4559 hdr->sh_type = SHT_MIPS_DEBUG;
4560 /* In a shared object on IRIX 5.3, the .mdebug section has an
4561 entsize of 0. FIXME: Does this matter? */
4562 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4563 hdr->sh_entsize = 0;
4564 else
4565 hdr->sh_entsize = 1;
4566 }
4567 else if (strcmp (name, ".reginfo") == 0)
4568 {
4569 hdr->sh_type = SHT_MIPS_REGINFO;
4570 /* In a shared object on IRIX 5.3, the .reginfo section has an
4571 entsize of 0x18. FIXME: Does this matter? */
4572 if (SGI_COMPAT (abfd))
4573 {
4574 if ((abfd->flags & DYNAMIC) != 0)
4575 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4576 else
4577 hdr->sh_entsize = 1;
4578 }
4579 else
4580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4581 }
4582 else if (SGI_COMPAT (abfd)
4583 && (strcmp (name, ".hash") == 0
4584 || strcmp (name, ".dynamic") == 0
4585 || strcmp (name, ".dynstr") == 0))
4586 {
4587 if (SGI_COMPAT (abfd))
4588 hdr->sh_entsize = 0;
4589 #if 0
4590 /* This isn't how the IRIX6 linker behaves. */
4591 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4592 #endif
4593 }
4594 else if (strcmp (name, ".got") == 0
4595 || strcmp (name, ".srdata") == 0
4596 || strcmp (name, ".sdata") == 0
4597 || strcmp (name, ".sbss") == 0
4598 || strcmp (name, ".lit4") == 0
4599 || strcmp (name, ".lit8") == 0)
4600 hdr->sh_flags |= SHF_MIPS_GPREL;
4601 else if (strcmp (name, ".MIPS.interfaces") == 0)
4602 {
4603 hdr->sh_type = SHT_MIPS_IFACE;
4604 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4605 }
4606 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4607 {
4608 hdr->sh_type = SHT_MIPS_CONTENT;
4609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4610 /* The sh_info field is set in final_write_processing. */
4611 }
4612 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4613 {
4614 hdr->sh_type = SHT_MIPS_OPTIONS;
4615 hdr->sh_entsize = 1;
4616 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4617 }
4618 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4619 hdr->sh_type = SHT_MIPS_DWARF;
4620 else if (strcmp (name, ".MIPS.symlib") == 0)
4621 {
4622 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4623 /* The sh_link and sh_info fields are set in
4624 final_write_processing. */
4625 }
4626 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4627 || strncmp (name, ".MIPS.post_rel",
4628 sizeof ".MIPS.post_rel" - 1) == 0)
4629 {
4630 hdr->sh_type = SHT_MIPS_EVENTS;
4631 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4632 /* The sh_link field is set in final_write_processing. */
4633 }
4634 else if (strcmp (name, ".msym") == 0)
4635 {
4636 hdr->sh_type = SHT_MIPS_MSYM;
4637 hdr->sh_flags |= SHF_ALLOC;
4638 hdr->sh_entsize = 8;
4639 }
4640
4641 /* The generic elf_fake_sections will set up REL_HDR using the
4642 default kind of relocations. But, we may actually need both
4643 kinds of relocations, so we set up the second header here.
4644
4645 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4646 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4647 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4648 of the resulting empty .rela.<section> sections starts with
4649 sh_offset == object size, and ld doesn't allow that. While the check
4650 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4651 avoided by not emitting those useless sections in the first place. */
4652 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4653 && (sec->flags & SEC_RELOC) != 0)
4654 {
4655 struct bfd_elf_section_data *esd;
4656 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4657
4658 esd = elf_section_data (sec);
4659 BFD_ASSERT (esd->rel_hdr2 == NULL);
4660 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4661 if (!esd->rel_hdr2)
4662 return FALSE;
4663 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p);
4664 }
4665
4666 return TRUE;
4667 }
4668
4669 /* Given a BFD section, try to locate the corresponding ELF section
4670 index. This is used by both the 32-bit and the 64-bit ABI.
4671 Actually, it's not clear to me that the 64-bit ABI supports these,
4672 but for non-PIC objects we will certainly want support for at least
4673 the .scommon section. */
4674
4675 bfd_boolean
4676 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4677 bfd *abfd ATTRIBUTE_UNUSED;
4678 asection *sec;
4679 int *retval;
4680 {
4681 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4682 {
4683 *retval = SHN_MIPS_SCOMMON;
4684 return TRUE;
4685 }
4686 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4687 {
4688 *retval = SHN_MIPS_ACOMMON;
4689 return TRUE;
4690 }
4691 return FALSE;
4692 }
4693 \f
4694 /* Hook called by the linker routine which adds symbols from an object
4695 file. We must handle the special MIPS section numbers here. */
4696
4697 bfd_boolean
4698 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4699 bfd *abfd;
4700 struct bfd_link_info *info;
4701 const Elf_Internal_Sym *sym;
4702 const char **namep;
4703 flagword *flagsp ATTRIBUTE_UNUSED;
4704 asection **secp;
4705 bfd_vma *valp;
4706 {
4707 if (SGI_COMPAT (abfd)
4708 && (abfd->flags & DYNAMIC) != 0
4709 && strcmp (*namep, "_rld_new_interface") == 0)
4710 {
4711 /* Skip IRIX5 rld entry name. */
4712 *namep = NULL;
4713 return TRUE;
4714 }
4715
4716 switch (sym->st_shndx)
4717 {
4718 case SHN_COMMON:
4719 /* Common symbols less than the GP size are automatically
4720 treated as SHN_MIPS_SCOMMON symbols. */
4721 if (sym->st_size > elf_gp_size (abfd)
4722 || IRIX_COMPAT (abfd) == ict_irix6)
4723 break;
4724 /* Fall through. */
4725 case SHN_MIPS_SCOMMON:
4726 *secp = bfd_make_section_old_way (abfd, ".scommon");
4727 (*secp)->flags |= SEC_IS_COMMON;
4728 *valp = sym->st_size;
4729 break;
4730
4731 case SHN_MIPS_TEXT:
4732 /* This section is used in a shared object. */
4733 if (elf_tdata (abfd)->elf_text_section == NULL)
4734 {
4735 asymbol *elf_text_symbol;
4736 asection *elf_text_section;
4737 bfd_size_type amt = sizeof (asection);
4738
4739 elf_text_section = bfd_zalloc (abfd, amt);
4740 if (elf_text_section == NULL)
4741 return FALSE;
4742
4743 amt = sizeof (asymbol);
4744 elf_text_symbol = bfd_zalloc (abfd, amt);
4745 if (elf_text_symbol == NULL)
4746 return FALSE;
4747
4748 /* Initialize the section. */
4749
4750 elf_tdata (abfd)->elf_text_section = elf_text_section;
4751 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4752
4753 elf_text_section->symbol = elf_text_symbol;
4754 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4755
4756 elf_text_section->name = ".text";
4757 elf_text_section->flags = SEC_NO_FLAGS;
4758 elf_text_section->output_section = NULL;
4759 elf_text_section->owner = abfd;
4760 elf_text_symbol->name = ".text";
4761 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4762 elf_text_symbol->section = elf_text_section;
4763 }
4764 /* This code used to do *secp = bfd_und_section_ptr if
4765 info->shared. I don't know why, and that doesn't make sense,
4766 so I took it out. */
4767 *secp = elf_tdata (abfd)->elf_text_section;
4768 break;
4769
4770 case SHN_MIPS_ACOMMON:
4771 /* Fall through. XXX Can we treat this as allocated data? */
4772 case SHN_MIPS_DATA:
4773 /* This section is used in a shared object. */
4774 if (elf_tdata (abfd)->elf_data_section == NULL)
4775 {
4776 asymbol *elf_data_symbol;
4777 asection *elf_data_section;
4778 bfd_size_type amt = sizeof (asection);
4779
4780 elf_data_section = bfd_zalloc (abfd, amt);
4781 if (elf_data_section == NULL)
4782 return FALSE;
4783
4784 amt = sizeof (asymbol);
4785 elf_data_symbol = bfd_zalloc (abfd, amt);
4786 if (elf_data_symbol == NULL)
4787 return FALSE;
4788
4789 /* Initialize the section. */
4790
4791 elf_tdata (abfd)->elf_data_section = elf_data_section;
4792 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4793
4794 elf_data_section->symbol = elf_data_symbol;
4795 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4796
4797 elf_data_section->name = ".data";
4798 elf_data_section->flags = SEC_NO_FLAGS;
4799 elf_data_section->output_section = NULL;
4800 elf_data_section->owner = abfd;
4801 elf_data_symbol->name = ".data";
4802 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4803 elf_data_symbol->section = elf_data_section;
4804 }
4805 /* This code used to do *secp = bfd_und_section_ptr if
4806 info->shared. I don't know why, and that doesn't make sense,
4807 so I took it out. */
4808 *secp = elf_tdata (abfd)->elf_data_section;
4809 break;
4810
4811 case SHN_MIPS_SUNDEFINED:
4812 *secp = bfd_und_section_ptr;
4813 break;
4814 }
4815
4816 if (SGI_COMPAT (abfd)
4817 && ! info->shared
4818 && info->hash->creator == abfd->xvec
4819 && strcmp (*namep, "__rld_obj_head") == 0)
4820 {
4821 struct elf_link_hash_entry *h;
4822 struct bfd_link_hash_entry *bh;
4823
4824 /* Mark __rld_obj_head as dynamic. */
4825 bh = NULL;
4826 if (! (_bfd_generic_link_add_one_symbol
4827 (info, abfd, *namep, BSF_GLOBAL, *secp,
4828 (bfd_vma) *valp, (const char *) NULL, FALSE,
4829 get_elf_backend_data (abfd)->collect, &bh)))
4830 return FALSE;
4831
4832 h = (struct elf_link_hash_entry *) bh;
4833 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4834 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4835 h->type = STT_OBJECT;
4836
4837 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4838 return FALSE;
4839
4840 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4841 }
4842
4843 /* If this is a mips16 text symbol, add 1 to the value to make it
4844 odd. This will cause something like .word SYM to come up with
4845 the right value when it is loaded into the PC. */
4846 if (sym->st_other == STO_MIPS16)
4847 ++*valp;
4848
4849 return TRUE;
4850 }
4851
4852 /* This hook function is called before the linker writes out a global
4853 symbol. We mark symbols as small common if appropriate. This is
4854 also where we undo the increment of the value for a mips16 symbol. */
4855
4856 bfd_boolean
4857 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4858 bfd *abfd ATTRIBUTE_UNUSED;
4859 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4860 const char *name ATTRIBUTE_UNUSED;
4861 Elf_Internal_Sym *sym;
4862 asection *input_sec;
4863 {
4864 /* If we see a common symbol, which implies a relocatable link, then
4865 if a symbol was small common in an input file, mark it as small
4866 common in the output file. */
4867 if (sym->st_shndx == SHN_COMMON
4868 && strcmp (input_sec->name, ".scommon") == 0)
4869 sym->st_shndx = SHN_MIPS_SCOMMON;
4870
4871 if (sym->st_other == STO_MIPS16
4872 && (sym->st_value & 1) != 0)
4873 --sym->st_value;
4874
4875 return TRUE;
4876 }
4877 \f
4878 /* Functions for the dynamic linker. */
4879
4880 /* Create dynamic sections when linking against a dynamic object. */
4881
4882 bfd_boolean
4883 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4884 bfd *abfd;
4885 struct bfd_link_info *info;
4886 {
4887 struct elf_link_hash_entry *h;
4888 struct bfd_link_hash_entry *bh;
4889 flagword flags;
4890 register asection *s;
4891 const char * const *namep;
4892
4893 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4894 | SEC_LINKER_CREATED | SEC_READONLY);
4895
4896 /* Mips ABI requests the .dynamic section to be read only. */
4897 s = bfd_get_section_by_name (abfd, ".dynamic");
4898 if (s != NULL)
4899 {
4900 if (! bfd_set_section_flags (abfd, s, flags))
4901 return FALSE;
4902 }
4903
4904 /* We need to create .got section. */
4905 if (! mips_elf_create_got_section (abfd, info, FALSE))
4906 return FALSE;
4907
4908 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4909 return FALSE;
4910
4911 /* Create the .msym section on IRIX6. It is used by the dynamic
4912 linker to speed up dynamic relocations, and to avoid computing
4913 the ELF hash for symbols. */
4914 if (IRIX_COMPAT (abfd) == ict_irix6
4915 && !mips_elf_create_msym_section (abfd))
4916 return FALSE;
4917
4918 /* Create .stub section. */
4919 if (bfd_get_section_by_name (abfd,
4920 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4921 {
4922 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4923 if (s == NULL
4924 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4925 || ! bfd_set_section_alignment (abfd, s,
4926 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4927 return FALSE;
4928 }
4929
4930 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4931 && !info->shared
4932 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4933 {
4934 s = bfd_make_section (abfd, ".rld_map");
4935 if (s == NULL
4936 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4937 || ! bfd_set_section_alignment (abfd, s,
4938 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4939 return FALSE;
4940 }
4941
4942 /* On IRIX5, we adjust add some additional symbols and change the
4943 alignments of several sections. There is no ABI documentation
4944 indicating that this is necessary on IRIX6, nor any evidence that
4945 the linker takes such action. */
4946 if (IRIX_COMPAT (abfd) == ict_irix5)
4947 {
4948 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4949 {
4950 bh = NULL;
4951 if (! (_bfd_generic_link_add_one_symbol
4952 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4953 (bfd_vma) 0, (const char *) NULL, FALSE,
4954 get_elf_backend_data (abfd)->collect, &bh)))
4955 return FALSE;
4956
4957 h = (struct elf_link_hash_entry *) bh;
4958 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4959 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4960 h->type = STT_SECTION;
4961
4962 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4963 return FALSE;
4964 }
4965
4966 /* We need to create a .compact_rel section. */
4967 if (SGI_COMPAT (abfd))
4968 {
4969 if (!mips_elf_create_compact_rel_section (abfd, info))
4970 return FALSE;
4971 }
4972
4973 /* Change alignments of some sections. */
4974 s = bfd_get_section_by_name (abfd, ".hash");
4975 if (s != NULL)
4976 bfd_set_section_alignment (abfd, s, 4);
4977 s = bfd_get_section_by_name (abfd, ".dynsym");
4978 if (s != NULL)
4979 bfd_set_section_alignment (abfd, s, 4);
4980 s = bfd_get_section_by_name (abfd, ".dynstr");
4981 if (s != NULL)
4982 bfd_set_section_alignment (abfd, s, 4);
4983 s = bfd_get_section_by_name (abfd, ".reginfo");
4984 if (s != NULL)
4985 bfd_set_section_alignment (abfd, s, 4);
4986 s = bfd_get_section_by_name (abfd, ".dynamic");
4987 if (s != NULL)
4988 bfd_set_section_alignment (abfd, s, 4);
4989 }
4990
4991 if (!info->shared)
4992 {
4993 const char *name;
4994
4995 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4996 bh = NULL;
4997 if (!(_bfd_generic_link_add_one_symbol
4998 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4999 (bfd_vma) 0, (const char *) NULL, FALSE,
5000 get_elf_backend_data (abfd)->collect, &bh)))
5001 return FALSE;
5002
5003 h = (struct elf_link_hash_entry *) bh;
5004 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5005 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5006 h->type = STT_SECTION;
5007
5008 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5009 return FALSE;
5010
5011 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5012 {
5013 /* __rld_map is a four byte word located in the .data section
5014 and is filled in by the rtld to contain a pointer to
5015 the _r_debug structure. Its symbol value will be set in
5016 _bfd_mips_elf_finish_dynamic_symbol. */
5017 s = bfd_get_section_by_name (abfd, ".rld_map");
5018 BFD_ASSERT (s != NULL);
5019
5020 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5021 bh = NULL;
5022 if (!(_bfd_generic_link_add_one_symbol
5023 (info, abfd, name, BSF_GLOBAL, s,
5024 (bfd_vma) 0, (const char *) NULL, FALSE,
5025 get_elf_backend_data (abfd)->collect, &bh)))
5026 return FALSE;
5027
5028 h = (struct elf_link_hash_entry *) bh;
5029 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5030 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5031 h->type = STT_OBJECT;
5032
5033 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5034 return FALSE;
5035 }
5036 }
5037
5038 return TRUE;
5039 }
5040 \f
5041 /* Look through the relocs for a section during the first phase, and
5042 allocate space in the global offset table. */
5043
5044 bfd_boolean
5045 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5046 bfd *abfd;
5047 struct bfd_link_info *info;
5048 asection *sec;
5049 const Elf_Internal_Rela *relocs;
5050 {
5051 const char *name;
5052 bfd *dynobj;
5053 Elf_Internal_Shdr *symtab_hdr;
5054 struct elf_link_hash_entry **sym_hashes;
5055 struct mips_got_info *g;
5056 size_t extsymoff;
5057 const Elf_Internal_Rela *rel;
5058 const Elf_Internal_Rela *rel_end;
5059 asection *sgot;
5060 asection *sreloc;
5061 struct elf_backend_data *bed;
5062
5063 if (info->relocateable)
5064 return TRUE;
5065
5066 dynobj = elf_hash_table (info)->dynobj;
5067 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5068 sym_hashes = elf_sym_hashes (abfd);
5069 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5070
5071 /* Check for the mips16 stub sections. */
5072
5073 name = bfd_get_section_name (abfd, sec);
5074 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5075 {
5076 unsigned long r_symndx;
5077
5078 /* Look at the relocation information to figure out which symbol
5079 this is for. */
5080
5081 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5082
5083 if (r_symndx < extsymoff
5084 || sym_hashes[r_symndx - extsymoff] == NULL)
5085 {
5086 asection *o;
5087
5088 /* This stub is for a local symbol. This stub will only be
5089 needed if there is some relocation in this BFD, other
5090 than a 16 bit function call, which refers to this symbol. */
5091 for (o = abfd->sections; o != NULL; o = o->next)
5092 {
5093 Elf_Internal_Rela *sec_relocs;
5094 const Elf_Internal_Rela *r, *rend;
5095
5096 /* We can ignore stub sections when looking for relocs. */
5097 if ((o->flags & SEC_RELOC) == 0
5098 || o->reloc_count == 0
5099 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5100 sizeof FN_STUB - 1) == 0
5101 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5102 sizeof CALL_STUB - 1) == 0
5103 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5104 sizeof CALL_FP_STUB - 1) == 0)
5105 continue;
5106
5107 sec_relocs
5108 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5109 (Elf_Internal_Rela *) NULL,
5110 info->keep_memory);
5111 if (sec_relocs == NULL)
5112 return FALSE;
5113
5114 rend = sec_relocs + o->reloc_count;
5115 for (r = sec_relocs; r < rend; r++)
5116 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5117 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5118 break;
5119
5120 if (elf_section_data (o)->relocs != sec_relocs)
5121 free (sec_relocs);
5122
5123 if (r < rend)
5124 break;
5125 }
5126
5127 if (o == NULL)
5128 {
5129 /* There is no non-call reloc for this stub, so we do
5130 not need it. Since this function is called before
5131 the linker maps input sections to output sections, we
5132 can easily discard it by setting the SEC_EXCLUDE
5133 flag. */
5134 sec->flags |= SEC_EXCLUDE;
5135 return TRUE;
5136 }
5137
5138 /* Record this stub in an array of local symbol stubs for
5139 this BFD. */
5140 if (elf_tdata (abfd)->local_stubs == NULL)
5141 {
5142 unsigned long symcount;
5143 asection **n;
5144 bfd_size_type amt;
5145
5146 if (elf_bad_symtab (abfd))
5147 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5148 else
5149 symcount = symtab_hdr->sh_info;
5150 amt = symcount * sizeof (asection *);
5151 n = (asection **) bfd_zalloc (abfd, amt);
5152 if (n == NULL)
5153 return FALSE;
5154 elf_tdata (abfd)->local_stubs = n;
5155 }
5156
5157 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5158
5159 /* We don't need to set mips16_stubs_seen in this case.
5160 That flag is used to see whether we need to look through
5161 the global symbol table for stubs. We don't need to set
5162 it here, because we just have a local stub. */
5163 }
5164 else
5165 {
5166 struct mips_elf_link_hash_entry *h;
5167
5168 h = ((struct mips_elf_link_hash_entry *)
5169 sym_hashes[r_symndx - extsymoff]);
5170
5171 /* H is the symbol this stub is for. */
5172
5173 h->fn_stub = sec;
5174 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5175 }
5176 }
5177 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5178 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5179 {
5180 unsigned long r_symndx;
5181 struct mips_elf_link_hash_entry *h;
5182 asection **loc;
5183
5184 /* Look at the relocation information to figure out which symbol
5185 this is for. */
5186
5187 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5188
5189 if (r_symndx < extsymoff
5190 || sym_hashes[r_symndx - extsymoff] == NULL)
5191 {
5192 /* This stub was actually built for a static symbol defined
5193 in the same file. We assume that all static symbols in
5194 mips16 code are themselves mips16, so we can simply
5195 discard this stub. Since this function is called before
5196 the linker maps input sections to output sections, we can
5197 easily discard it by setting the SEC_EXCLUDE flag. */
5198 sec->flags |= SEC_EXCLUDE;
5199 return TRUE;
5200 }
5201
5202 h = ((struct mips_elf_link_hash_entry *)
5203 sym_hashes[r_symndx - extsymoff]);
5204
5205 /* H is the symbol this stub is for. */
5206
5207 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5208 loc = &h->call_fp_stub;
5209 else
5210 loc = &h->call_stub;
5211
5212 /* If we already have an appropriate stub for this function, we
5213 don't need another one, so we can discard this one. Since
5214 this function is called before the linker maps input sections
5215 to output sections, we can easily discard it by setting the
5216 SEC_EXCLUDE flag. We can also discard this section if we
5217 happen to already know that this is a mips16 function; it is
5218 not necessary to check this here, as it is checked later, but
5219 it is slightly faster to check now. */
5220 if (*loc != NULL || h->root.other == STO_MIPS16)
5221 {
5222 sec->flags |= SEC_EXCLUDE;
5223 return TRUE;
5224 }
5225
5226 *loc = sec;
5227 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5228 }
5229
5230 if (dynobj == NULL)
5231 {
5232 sgot = NULL;
5233 g = NULL;
5234 }
5235 else
5236 {
5237 sgot = mips_elf_got_section (dynobj, FALSE);
5238 if (sgot == NULL)
5239 g = NULL;
5240 else
5241 {
5242 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5243 g = mips_elf_section_data (sgot)->u.got_info;
5244 BFD_ASSERT (g != NULL);
5245 }
5246 }
5247
5248 sreloc = NULL;
5249 bed = get_elf_backend_data (abfd);
5250 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5251 for (rel = relocs; rel < rel_end; ++rel)
5252 {
5253 unsigned long r_symndx;
5254 unsigned int r_type;
5255 struct elf_link_hash_entry *h;
5256
5257 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5258 r_type = ELF_R_TYPE (abfd, rel->r_info);
5259
5260 if (r_symndx < extsymoff)
5261 h = NULL;
5262 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5263 {
5264 (*_bfd_error_handler)
5265 (_("%s: Malformed reloc detected for section %s"),
5266 bfd_archive_filename (abfd), name);
5267 bfd_set_error (bfd_error_bad_value);
5268 return FALSE;
5269 }
5270 else
5271 {
5272 h = sym_hashes[r_symndx - extsymoff];
5273
5274 /* This may be an indirect symbol created because of a version. */
5275 if (h != NULL)
5276 {
5277 while (h->root.type == bfd_link_hash_indirect)
5278 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5279 }
5280 }
5281
5282 /* Some relocs require a global offset table. */
5283 if (dynobj == NULL || sgot == NULL)
5284 {
5285 switch (r_type)
5286 {
5287 case R_MIPS_GOT16:
5288 case R_MIPS_CALL16:
5289 case R_MIPS_CALL_HI16:
5290 case R_MIPS_CALL_LO16:
5291 case R_MIPS_GOT_HI16:
5292 case R_MIPS_GOT_LO16:
5293 case R_MIPS_GOT_PAGE:
5294 case R_MIPS_GOT_OFST:
5295 case R_MIPS_GOT_DISP:
5296 if (dynobj == NULL)
5297 elf_hash_table (info)->dynobj = dynobj = abfd;
5298 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5299 return FALSE;
5300 g = mips_elf_got_info (dynobj, &sgot);
5301 break;
5302
5303 case R_MIPS_32:
5304 case R_MIPS_REL32:
5305 case R_MIPS_64:
5306 if (dynobj == NULL
5307 && (info->shared || h != NULL)
5308 && (sec->flags & SEC_ALLOC) != 0)
5309 elf_hash_table (info)->dynobj = dynobj = abfd;
5310 break;
5311
5312 default:
5313 break;
5314 }
5315 }
5316
5317 if (!h && (r_type == R_MIPS_CALL_LO16
5318 || r_type == R_MIPS_GOT_LO16
5319 || r_type == R_MIPS_GOT_DISP))
5320 {
5321 /* We may need a local GOT entry for this relocation. We
5322 don't count R_MIPS_GOT_PAGE because we can estimate the
5323 maximum number of pages needed by looking at the size of
5324 the segment. Similar comments apply to R_MIPS_GOT16 and
5325 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5326 R_MIPS_CALL_HI16 because these are always followed by an
5327 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5328 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5329 rel->r_addend, g))
5330 return FALSE;
5331 }
5332
5333 switch (r_type)
5334 {
5335 case R_MIPS_CALL16:
5336 if (h == NULL)
5337 {
5338 (*_bfd_error_handler)
5339 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5340 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5341 bfd_set_error (bfd_error_bad_value);
5342 return FALSE;
5343 }
5344 /* Fall through. */
5345
5346 case R_MIPS_CALL_HI16:
5347 case R_MIPS_CALL_LO16:
5348 if (h != NULL)
5349 {
5350 /* This symbol requires a global offset table entry. */
5351 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5352 return FALSE;
5353
5354 /* We need a stub, not a plt entry for the undefined
5355 function. But we record it as if it needs plt. See
5356 elf_adjust_dynamic_symbol in elflink.h. */
5357 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5358 h->type = STT_FUNC;
5359 }
5360 break;
5361
5362 case R_MIPS_GOT_PAGE:
5363 /* If this is a global, overridable symbol, GOT_PAGE will
5364 decay to GOT_DISP, so we'll need a GOT entry for it. */
5365 if (h == NULL)
5366 break;
5367 else
5368 {
5369 struct mips_elf_link_hash_entry *hmips =
5370 (struct mips_elf_link_hash_entry *) h;
5371
5372 while (hmips->root.root.type == bfd_link_hash_indirect
5373 || hmips->root.root.type == bfd_link_hash_warning)
5374 hmips = (struct mips_elf_link_hash_entry *)
5375 hmips->root.root.u.i.link;
5376
5377 if ((hmips->root.root.type == bfd_link_hash_defined
5378 || hmips->root.root.type == bfd_link_hash_defweak)
5379 && hmips->root.root.u.def.section
5380 && ! (info->shared && ! info->symbolic
5381 && ! (hmips->root.elf_link_hash_flags
5382 & ELF_LINK_FORCED_LOCAL))
5383 /* If we've encountered any other relocation
5384 referencing the symbol, we'll have marked it as
5385 dynamic, and, even though we might be able to get
5386 rid of the GOT entry should we know for sure all
5387 previous relocations were GOT_PAGE ones, at this
5388 point we can't tell, so just keep using the
5389 symbol as dynamic. This is very important in the
5390 multi-got case, since we don't decide whether to
5391 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5392 the symbol is dynamic, we'll need a GOT entry for
5393 every GOT in which the symbol is referenced with
5394 a GOT_PAGE relocation. */
5395 && hmips->root.dynindx == -1)
5396 break;
5397 }
5398 /* Fall through. */
5399
5400 case R_MIPS_GOT16:
5401 case R_MIPS_GOT_HI16:
5402 case R_MIPS_GOT_LO16:
5403 case R_MIPS_GOT_DISP:
5404 /* This symbol requires a global offset table entry. */
5405 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5406 return FALSE;
5407 break;
5408
5409 case R_MIPS_32:
5410 case R_MIPS_REL32:
5411 case R_MIPS_64:
5412 if ((info->shared || h != NULL)
5413 && (sec->flags & SEC_ALLOC) != 0)
5414 {
5415 if (sreloc == NULL)
5416 {
5417 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5418 if (sreloc == NULL)
5419 return FALSE;
5420 }
5421 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5422 if (info->shared)
5423 {
5424 /* When creating a shared object, we must copy these
5425 reloc types into the output file as R_MIPS_REL32
5426 relocs. We make room for this reloc in the
5427 .rel.dyn reloc section. */
5428 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5429 if ((sec->flags & MIPS_READONLY_SECTION)
5430 == MIPS_READONLY_SECTION)
5431 /* We tell the dynamic linker that there are
5432 relocations against the text segment. */
5433 info->flags |= DF_TEXTREL;
5434 }
5435 else
5436 {
5437 struct mips_elf_link_hash_entry *hmips;
5438
5439 /* We only need to copy this reloc if the symbol is
5440 defined in a dynamic object. */
5441 hmips = (struct mips_elf_link_hash_entry *) h;
5442 ++hmips->possibly_dynamic_relocs;
5443 if ((sec->flags & MIPS_READONLY_SECTION)
5444 == MIPS_READONLY_SECTION)
5445 /* We need it to tell the dynamic linker if there
5446 are relocations against the text segment. */
5447 hmips->readonly_reloc = TRUE;
5448 }
5449
5450 /* Even though we don't directly need a GOT entry for
5451 this symbol, a symbol must have a dynamic symbol
5452 table index greater that DT_MIPS_GOTSYM if there are
5453 dynamic relocations against it. */
5454 if (h != NULL)
5455 {
5456 if (dynobj == NULL)
5457 elf_hash_table (info)->dynobj = dynobj = abfd;
5458 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5459 return FALSE;
5460 g = mips_elf_got_info (dynobj, &sgot);
5461 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5462 return FALSE;
5463 }
5464 }
5465
5466 if (SGI_COMPAT (abfd))
5467 mips_elf_hash_table (info)->compact_rel_size +=
5468 sizeof (Elf32_External_crinfo);
5469 break;
5470
5471 case R_MIPS_26:
5472 case R_MIPS_GPREL16:
5473 case R_MIPS_LITERAL:
5474 case R_MIPS_GPREL32:
5475 if (SGI_COMPAT (abfd))
5476 mips_elf_hash_table (info)->compact_rel_size +=
5477 sizeof (Elf32_External_crinfo);
5478 break;
5479
5480 /* This relocation describes the C++ object vtable hierarchy.
5481 Reconstruct it for later use during GC. */
5482 case R_MIPS_GNU_VTINHERIT:
5483 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5484 return FALSE;
5485 break;
5486
5487 /* This relocation describes which C++ vtable entries are actually
5488 used. Record for later use during GC. */
5489 case R_MIPS_GNU_VTENTRY:
5490 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5491 return FALSE;
5492 break;
5493
5494 default:
5495 break;
5496 }
5497
5498 /* We must not create a stub for a symbol that has relocations
5499 related to taking the function's address. */
5500 switch (r_type)
5501 {
5502 default:
5503 if (h != NULL)
5504 {
5505 struct mips_elf_link_hash_entry *mh;
5506
5507 mh = (struct mips_elf_link_hash_entry *) h;
5508 mh->no_fn_stub = TRUE;
5509 }
5510 break;
5511 case R_MIPS_CALL16:
5512 case R_MIPS_CALL_HI16:
5513 case R_MIPS_CALL_LO16:
5514 break;
5515 }
5516
5517 /* If this reloc is not a 16 bit call, and it has a global
5518 symbol, then we will need the fn_stub if there is one.
5519 References from a stub section do not count. */
5520 if (h != NULL
5521 && r_type != R_MIPS16_26
5522 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5523 sizeof FN_STUB - 1) != 0
5524 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5525 sizeof CALL_STUB - 1) != 0
5526 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5527 sizeof CALL_FP_STUB - 1) != 0)
5528 {
5529 struct mips_elf_link_hash_entry *mh;
5530
5531 mh = (struct mips_elf_link_hash_entry *) h;
5532 mh->need_fn_stub = TRUE;
5533 }
5534 }
5535
5536 return TRUE;
5537 }
5538 \f
5539 bfd_boolean
5540 _bfd_mips_relax_section (abfd, sec, link_info, again)
5541 bfd *abfd;
5542 asection *sec;
5543 struct bfd_link_info *link_info;
5544 bfd_boolean *again;
5545 {
5546 Elf_Internal_Rela *internal_relocs;
5547 Elf_Internal_Rela *irel, *irelend;
5548 Elf_Internal_Shdr *symtab_hdr;
5549 bfd_byte *contents = NULL;
5550 bfd_byte *free_contents = NULL;
5551 size_t extsymoff;
5552 bfd_boolean changed_contents = FALSE;
5553 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5554 Elf_Internal_Sym *isymbuf = NULL;
5555
5556 /* We are not currently changing any sizes, so only one pass. */
5557 *again = FALSE;
5558
5559 if (link_info->relocateable)
5560 return TRUE;
5561
5562 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5563 (Elf_Internal_Rela *) NULL,
5564 link_info->keep_memory);
5565 if (internal_relocs == NULL)
5566 return TRUE;
5567
5568 irelend = internal_relocs + sec->reloc_count
5569 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5571 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5572
5573 for (irel = internal_relocs; irel < irelend; irel++)
5574 {
5575 bfd_vma symval;
5576 bfd_signed_vma sym_offset;
5577 unsigned int r_type;
5578 unsigned long r_symndx;
5579 asection *sym_sec;
5580 unsigned long instruction;
5581
5582 /* Turn jalr into bgezal, and jr into beq, if they're marked
5583 with a JALR relocation, that indicate where they jump to.
5584 This saves some pipeline bubbles. */
5585 r_type = ELF_R_TYPE (abfd, irel->r_info);
5586 if (r_type != R_MIPS_JALR)
5587 continue;
5588
5589 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5590 /* Compute the address of the jump target. */
5591 if (r_symndx >= extsymoff)
5592 {
5593 struct mips_elf_link_hash_entry *h
5594 = ((struct mips_elf_link_hash_entry *)
5595 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5596
5597 while (h->root.root.type == bfd_link_hash_indirect
5598 || h->root.root.type == bfd_link_hash_warning)
5599 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5600
5601 /* If a symbol is undefined, or if it may be overridden,
5602 skip it. */
5603 if (! ((h->root.root.type == bfd_link_hash_defined
5604 || h->root.root.type == bfd_link_hash_defweak)
5605 && h->root.root.u.def.section)
5606 || (link_info->shared && ! link_info->symbolic
5607 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5608 continue;
5609
5610 sym_sec = h->root.root.u.def.section;
5611 if (sym_sec->output_section)
5612 symval = (h->root.root.u.def.value
5613 + sym_sec->output_section->vma
5614 + sym_sec->output_offset);
5615 else
5616 symval = h->root.root.u.def.value;
5617 }
5618 else
5619 {
5620 Elf_Internal_Sym *isym;
5621
5622 /* Read this BFD's symbols if we haven't done so already. */
5623 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5624 {
5625 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5626 if (isymbuf == NULL)
5627 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5628 symtab_hdr->sh_info, 0,
5629 NULL, NULL, NULL);
5630 if (isymbuf == NULL)
5631 goto relax_return;
5632 }
5633
5634 isym = isymbuf + r_symndx;
5635 if (isym->st_shndx == SHN_UNDEF)
5636 continue;
5637 else if (isym->st_shndx == SHN_ABS)
5638 sym_sec = bfd_abs_section_ptr;
5639 else if (isym->st_shndx == SHN_COMMON)
5640 sym_sec = bfd_com_section_ptr;
5641 else
5642 sym_sec
5643 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5644 symval = isym->st_value
5645 + sym_sec->output_section->vma
5646 + sym_sec->output_offset;
5647 }
5648
5649 /* Compute branch offset, from delay slot of the jump to the
5650 branch target. */
5651 sym_offset = (symval + irel->r_addend)
5652 - (sec_start + irel->r_offset + 4);
5653
5654 /* Branch offset must be properly aligned. */
5655 if ((sym_offset & 3) != 0)
5656 continue;
5657
5658 sym_offset >>= 2;
5659
5660 /* Check that it's in range. */
5661 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5662 continue;
5663
5664 /* Get the section contents if we haven't done so already. */
5665 if (contents == NULL)
5666 {
5667 /* Get cached copy if it exists. */
5668 if (elf_section_data (sec)->this_hdr.contents != NULL)
5669 contents = elf_section_data (sec)->this_hdr.contents;
5670 else
5671 {
5672 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5673 if (contents == NULL)
5674 goto relax_return;
5675
5676 free_contents = contents;
5677 if (! bfd_get_section_contents (abfd, sec, contents,
5678 (file_ptr) 0, sec->_raw_size))
5679 goto relax_return;
5680 }
5681 }
5682
5683 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5684
5685 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5686 if ((instruction & 0xfc1fffff) == 0x0000f809)
5687 instruction = 0x04110000;
5688 /* If it was jr <reg>, turn it into b <target>. */
5689 else if ((instruction & 0xfc1fffff) == 0x00000008)
5690 instruction = 0x10000000;
5691 else
5692 continue;
5693
5694 instruction |= (sym_offset & 0xffff);
5695 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5696 changed_contents = TRUE;
5697 }
5698
5699 if (contents != NULL
5700 && elf_section_data (sec)->this_hdr.contents != contents)
5701 {
5702 if (!changed_contents && !link_info->keep_memory)
5703 free (contents);
5704 else
5705 {
5706 /* Cache the section contents for elf_link_input_bfd. */
5707 elf_section_data (sec)->this_hdr.contents = contents;
5708 }
5709 }
5710 return TRUE;
5711
5712 relax_return:
5713 if (free_contents != NULL)
5714 free (free_contents);
5715 return FALSE;
5716 }
5717 \f
5718 /* Adjust a symbol defined by a dynamic object and referenced by a
5719 regular object. The current definition is in some section of the
5720 dynamic object, but we're not including those sections. We have to
5721 change the definition to something the rest of the link can
5722 understand. */
5723
5724 bfd_boolean
5725 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5726 struct bfd_link_info *info;
5727 struct elf_link_hash_entry *h;
5728 {
5729 bfd *dynobj;
5730 struct mips_elf_link_hash_entry *hmips;
5731 asection *s;
5732
5733 dynobj = elf_hash_table (info)->dynobj;
5734
5735 /* Make sure we know what is going on here. */
5736 BFD_ASSERT (dynobj != NULL
5737 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5738 || h->weakdef != NULL
5739 || ((h->elf_link_hash_flags
5740 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5741 && (h->elf_link_hash_flags
5742 & ELF_LINK_HASH_REF_REGULAR) != 0
5743 && (h->elf_link_hash_flags
5744 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5745
5746 /* If this symbol is defined in a dynamic object, we need to copy
5747 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5748 file. */
5749 hmips = (struct mips_elf_link_hash_entry *) h;
5750 if (! info->relocateable
5751 && hmips->possibly_dynamic_relocs != 0
5752 && (h->root.type == bfd_link_hash_defweak
5753 || (h->elf_link_hash_flags
5754 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5755 {
5756 mips_elf_allocate_dynamic_relocations (dynobj,
5757 hmips->possibly_dynamic_relocs);
5758 if (hmips->readonly_reloc)
5759 /* We tell the dynamic linker that there are relocations
5760 against the text segment. */
5761 info->flags |= DF_TEXTREL;
5762 }
5763
5764 /* For a function, create a stub, if allowed. */
5765 if (! hmips->no_fn_stub
5766 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5767 {
5768 if (! elf_hash_table (info)->dynamic_sections_created)
5769 return TRUE;
5770
5771 /* If this symbol is not defined in a regular file, then set
5772 the symbol to the stub location. This is required to make
5773 function pointers compare as equal between the normal
5774 executable and the shared library. */
5775 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5776 {
5777 /* We need .stub section. */
5778 s = bfd_get_section_by_name (dynobj,
5779 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5780 BFD_ASSERT (s != NULL);
5781
5782 h->root.u.def.section = s;
5783 h->root.u.def.value = s->_raw_size;
5784
5785 /* XXX Write this stub address somewhere. */
5786 h->plt.offset = s->_raw_size;
5787
5788 /* Make room for this stub code. */
5789 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5790
5791 /* The last half word of the stub will be filled with the index
5792 of this symbol in .dynsym section. */
5793 return TRUE;
5794 }
5795 }
5796 else if ((h->type == STT_FUNC)
5797 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5798 {
5799 /* This will set the entry for this symbol in the GOT to 0, and
5800 the dynamic linker will take care of this. */
5801 h->root.u.def.value = 0;
5802 return TRUE;
5803 }
5804
5805 /* If this is a weak symbol, and there is a real definition, the
5806 processor independent code will have arranged for us to see the
5807 real definition first, and we can just use the same value. */
5808 if (h->weakdef != NULL)
5809 {
5810 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5811 || h->weakdef->root.type == bfd_link_hash_defweak);
5812 h->root.u.def.section = h->weakdef->root.u.def.section;
5813 h->root.u.def.value = h->weakdef->root.u.def.value;
5814 return TRUE;
5815 }
5816
5817 /* This is a reference to a symbol defined by a dynamic object which
5818 is not a function. */
5819
5820 return TRUE;
5821 }
5822 \f
5823 /* This function is called after all the input files have been read,
5824 and the input sections have been assigned to output sections. We
5825 check for any mips16 stub sections that we can discard. */
5826
5827 bfd_boolean
5828 _bfd_mips_elf_always_size_sections (output_bfd, info)
5829 bfd *output_bfd;
5830 struct bfd_link_info *info;
5831 {
5832 asection *ri;
5833
5834 bfd *dynobj;
5835 asection *s;
5836 struct mips_got_info *g;
5837 int i;
5838 bfd_size_type loadable_size = 0;
5839 bfd_size_type local_gotno;
5840 bfd *sub;
5841
5842 /* The .reginfo section has a fixed size. */
5843 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5844 if (ri != NULL)
5845 bfd_set_section_size (output_bfd, ri,
5846 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5847
5848 if (! (info->relocateable
5849 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5850 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5851 mips_elf_check_mips16_stubs,
5852 (PTR) NULL);
5853
5854 dynobj = elf_hash_table (info)->dynobj;
5855 if (dynobj == NULL)
5856 /* Relocatable links don't have it. */
5857 return TRUE;
5858
5859 g = mips_elf_got_info (dynobj, &s);
5860 if (s == NULL)
5861 return TRUE;
5862
5863 /* Calculate the total loadable size of the output. That
5864 will give us the maximum number of GOT_PAGE entries
5865 required. */
5866 for (sub = info->input_bfds; sub; sub = sub->link_next)
5867 {
5868 asection *subsection;
5869
5870 for (subsection = sub->sections;
5871 subsection;
5872 subsection = subsection->next)
5873 {
5874 if ((subsection->flags & SEC_ALLOC) == 0)
5875 continue;
5876 loadable_size += ((subsection->_raw_size + 0xf)
5877 &~ (bfd_size_type) 0xf);
5878 }
5879 }
5880
5881 /* There has to be a global GOT entry for every symbol with
5882 a dynamic symbol table index of DT_MIPS_GOTSYM or
5883 higher. Therefore, it make sense to put those symbols
5884 that need GOT entries at the end of the symbol table. We
5885 do that here. */
5886 if (! mips_elf_sort_hash_table (info, 1))
5887 return FALSE;
5888
5889 if (g->global_gotsym != NULL)
5890 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5891 else
5892 /* If there are no global symbols, or none requiring
5893 relocations, then GLOBAL_GOTSYM will be NULL. */
5894 i = 0;
5895
5896 /* In the worst case, we'll get one stub per dynamic symbol, plus
5897 one to account for the dummy entry at the end required by IRIX
5898 rld. */
5899 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5900
5901 /* Assume there are two loadable segments consisting of
5902 contiguous sections. Is 5 enough? */
5903 local_gotno = (loadable_size >> 16) + 5;
5904
5905 g->local_gotno += local_gotno;
5906 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5907
5908 g->global_gotno = i;
5909 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5910
5911 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5912 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5913 return FALSE;
5914
5915 return TRUE;
5916 }
5917
5918 /* Set the sizes of the dynamic sections. */
5919
5920 bfd_boolean
5921 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5922 bfd *output_bfd;
5923 struct bfd_link_info *info;
5924 {
5925 bfd *dynobj;
5926 asection *s;
5927 bfd_boolean reltext;
5928
5929 dynobj = elf_hash_table (info)->dynobj;
5930 BFD_ASSERT (dynobj != NULL);
5931
5932 if (elf_hash_table (info)->dynamic_sections_created)
5933 {
5934 /* Set the contents of the .interp section to the interpreter. */
5935 if (! info->shared)
5936 {
5937 s = bfd_get_section_by_name (dynobj, ".interp");
5938 BFD_ASSERT (s != NULL);
5939 s->_raw_size
5940 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5941 s->contents
5942 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5943 }
5944 }
5945
5946 /* The check_relocs and adjust_dynamic_symbol entry points have
5947 determined the sizes of the various dynamic sections. Allocate
5948 memory for them. */
5949 reltext = FALSE;
5950 for (s = dynobj->sections; s != NULL; s = s->next)
5951 {
5952 const char *name;
5953 bfd_boolean strip;
5954
5955 /* It's OK to base decisions on the section name, because none
5956 of the dynobj section names depend upon the input files. */
5957 name = bfd_get_section_name (dynobj, s);
5958
5959 if ((s->flags & SEC_LINKER_CREATED) == 0)
5960 continue;
5961
5962 strip = FALSE;
5963
5964 if (strncmp (name, ".rel", 4) == 0)
5965 {
5966 if (s->_raw_size == 0)
5967 {
5968 /* We only strip the section if the output section name
5969 has the same name. Otherwise, there might be several
5970 input sections for this output section. FIXME: This
5971 code is probably not needed these days anyhow, since
5972 the linker now does not create empty output sections. */
5973 if (s->output_section != NULL
5974 && strcmp (name,
5975 bfd_get_section_name (s->output_section->owner,
5976 s->output_section)) == 0)
5977 strip = TRUE;
5978 }
5979 else
5980 {
5981 const char *outname;
5982 asection *target;
5983
5984 /* If this relocation section applies to a read only
5985 section, then we probably need a DT_TEXTREL entry.
5986 If the relocation section is .rel.dyn, we always
5987 assert a DT_TEXTREL entry rather than testing whether
5988 there exists a relocation to a read only section or
5989 not. */
5990 outname = bfd_get_section_name (output_bfd,
5991 s->output_section);
5992 target = bfd_get_section_by_name (output_bfd, outname + 4);
5993 if ((target != NULL
5994 && (target->flags & SEC_READONLY) != 0
5995 && (target->flags & SEC_ALLOC) != 0)
5996 || strcmp (outname, ".rel.dyn") == 0)
5997 reltext = TRUE;
5998
5999 /* We use the reloc_count field as a counter if we need
6000 to copy relocs into the output file. */
6001 if (strcmp (name, ".rel.dyn") != 0)
6002 s->reloc_count = 0;
6003
6004 /* If combreloc is enabled, elf_link_sort_relocs() will
6005 sort relocations, but in a different way than we do,
6006 and before we're done creating relocations. Also, it
6007 will move them around between input sections'
6008 relocation's contents, so our sorting would be
6009 broken, so don't let it run. */
6010 info->combreloc = 0;
6011 }
6012 }
6013 else if (strncmp (name, ".got", 4) == 0)
6014 {
6015 /* _bfd_mips_elf_always_size_sections() has already done
6016 most of the work, but some symbols may have been mapped
6017 to versions that we must now resolve in the got_entries
6018 hash tables. */
6019 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6020 struct mips_got_info *g = gg;
6021 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6022 unsigned int needed_relocs = 0;
6023
6024 if (gg->next)
6025 {
6026 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6027 set_got_offset_arg.info = info;
6028
6029 mips_elf_resolve_final_got_entries (gg);
6030 for (g = gg->next; g && g->next != gg; g = g->next)
6031 {
6032 unsigned int save_assign;
6033
6034 mips_elf_resolve_final_got_entries (g);
6035
6036 /* Assign offsets to global GOT entries. */
6037 save_assign = g->assigned_gotno;
6038 g->assigned_gotno = g->local_gotno;
6039 set_got_offset_arg.g = g;
6040 set_got_offset_arg.needed_relocs = 0;
6041 htab_traverse (g->got_entries,
6042 mips_elf_set_global_got_offset,
6043 &set_got_offset_arg);
6044 needed_relocs += set_got_offset_arg.needed_relocs;
6045 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6046 <= g->global_gotno);
6047
6048 g->assigned_gotno = save_assign;
6049 if (info->shared)
6050 {
6051 needed_relocs += g->local_gotno - g->assigned_gotno;
6052 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6053 + g->next->global_gotno
6054 + MIPS_RESERVED_GOTNO);
6055 }
6056 }
6057
6058 if (needed_relocs)
6059 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6060 }
6061 }
6062 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6063 {
6064 /* IRIX rld assumes that the function stub isn't at the end
6065 of .text section. So put a dummy. XXX */
6066 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6067 }
6068 else if (! info->shared
6069 && ! mips_elf_hash_table (info)->use_rld_obj_head
6070 && strncmp (name, ".rld_map", 8) == 0)
6071 {
6072 /* We add a room for __rld_map. It will be filled in by the
6073 rtld to contain a pointer to the _r_debug structure. */
6074 s->_raw_size += 4;
6075 }
6076 else if (SGI_COMPAT (output_bfd)
6077 && strncmp (name, ".compact_rel", 12) == 0)
6078 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6079 else if (strcmp (name, ".msym") == 0)
6080 s->_raw_size = (sizeof (Elf32_External_Msym)
6081 * (elf_hash_table (info)->dynsymcount
6082 + bfd_count_sections (output_bfd)));
6083 else if (strncmp (name, ".init", 5) != 0)
6084 {
6085 /* It's not one of our sections, so don't allocate space. */
6086 continue;
6087 }
6088
6089 if (strip)
6090 {
6091 _bfd_strip_section_from_output (info, s);
6092 continue;
6093 }
6094
6095 /* Allocate memory for the section contents. */
6096 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6097 if (s->contents == NULL && s->_raw_size != 0)
6098 {
6099 bfd_set_error (bfd_error_no_memory);
6100 return FALSE;
6101 }
6102 }
6103
6104 if (elf_hash_table (info)->dynamic_sections_created)
6105 {
6106 /* Add some entries to the .dynamic section. We fill in the
6107 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6108 must add the entries now so that we get the correct size for
6109 the .dynamic section. The DT_DEBUG entry is filled in by the
6110 dynamic linker and used by the debugger. */
6111 if (! info->shared)
6112 {
6113 /* SGI object has the equivalence of DT_DEBUG in the
6114 DT_MIPS_RLD_MAP entry. */
6115 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6116 return FALSE;
6117 if (!SGI_COMPAT (output_bfd))
6118 {
6119 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6120 return FALSE;
6121 }
6122 }
6123 else
6124 {
6125 /* Shared libraries on traditional mips have DT_DEBUG. */
6126 if (!SGI_COMPAT (output_bfd))
6127 {
6128 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6129 return FALSE;
6130 }
6131 }
6132
6133 if (reltext && SGI_COMPAT (output_bfd))
6134 info->flags |= DF_TEXTREL;
6135
6136 if ((info->flags & DF_TEXTREL) != 0)
6137 {
6138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6139 return FALSE;
6140 }
6141
6142 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6143 return FALSE;
6144
6145 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6146 {
6147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6148 return FALSE;
6149
6150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6151 return FALSE;
6152
6153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6154 return FALSE;
6155 }
6156
6157 if (SGI_COMPAT (output_bfd))
6158 {
6159 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
6160 return FALSE;
6161 }
6162
6163 if (SGI_COMPAT (output_bfd))
6164 {
6165 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
6166 return FALSE;
6167 }
6168
6169 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6170 {
6171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
6172 return FALSE;
6173
6174 s = bfd_get_section_by_name (dynobj, ".liblist");
6175 BFD_ASSERT (s != NULL);
6176
6177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
6178 return FALSE;
6179 }
6180
6181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6182 return FALSE;
6183
6184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6185 return FALSE;
6186
6187 #if 0
6188 /* Time stamps in executable files are a bad idea. */
6189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6190 return FALSE;
6191 #endif
6192
6193 #if 0 /* FIXME */
6194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6195 return FALSE;
6196 #endif
6197
6198 #if 0 /* FIXME */
6199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6200 return FALSE;
6201 #endif
6202
6203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6204 return FALSE;
6205
6206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6207 return FALSE;
6208
6209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6210 return FALSE;
6211
6212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6213 return FALSE;
6214
6215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6216 return FALSE;
6217
6218 if (IRIX_COMPAT (dynobj) == ict_irix5
6219 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6220 return FALSE;
6221
6222 if (IRIX_COMPAT (dynobj) == ict_irix6
6223 && (bfd_get_section_by_name
6224 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6226 return FALSE;
6227
6228 if (bfd_get_section_by_name (dynobj, ".msym")
6229 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
6230 return FALSE;
6231 }
6232
6233 return TRUE;
6234 }
6235 \f
6236 /* Relocate a MIPS ELF section. */
6237
6238 bfd_boolean
6239 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6240 contents, relocs, local_syms, local_sections)
6241 bfd *output_bfd;
6242 struct bfd_link_info *info;
6243 bfd *input_bfd;
6244 asection *input_section;
6245 bfd_byte *contents;
6246 Elf_Internal_Rela *relocs;
6247 Elf_Internal_Sym *local_syms;
6248 asection **local_sections;
6249 {
6250 Elf_Internal_Rela *rel;
6251 const Elf_Internal_Rela *relend;
6252 bfd_vma addend = 0;
6253 bfd_boolean use_saved_addend_p = FALSE;
6254 struct elf_backend_data *bed;
6255
6256 bed = get_elf_backend_data (output_bfd);
6257 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6258 for (rel = relocs; rel < relend; ++rel)
6259 {
6260 const char *name;
6261 bfd_vma value;
6262 reloc_howto_type *howto;
6263 bfd_boolean require_jalx;
6264 /* TRUE if the relocation is a RELA relocation, rather than a
6265 REL relocation. */
6266 bfd_boolean rela_relocation_p = TRUE;
6267 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6268 const char * msg = (const char *) NULL;
6269
6270 /* Find the relocation howto for this relocation. */
6271 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6272 {
6273 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6274 64-bit code, but make sure all their addresses are in the
6275 lowermost or uppermost 32-bit section of the 64-bit address
6276 space. Thus, when they use an R_MIPS_64 they mean what is
6277 usually meant by R_MIPS_32, with the exception that the
6278 stored value is sign-extended to 64 bits. */
6279 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6280
6281 /* On big-endian systems, we need to lie about the position
6282 of the reloc. */
6283 if (bfd_big_endian (input_bfd))
6284 rel->r_offset += 4;
6285 }
6286 else
6287 /* NewABI defaults to RELA relocations. */
6288 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6289 NEWABI_P (input_bfd)
6290 && (MIPS_RELOC_RELA_P
6291 (input_bfd, input_section,
6292 rel - relocs)));
6293
6294 if (!use_saved_addend_p)
6295 {
6296 Elf_Internal_Shdr *rel_hdr;
6297
6298 /* If these relocations were originally of the REL variety,
6299 we must pull the addend out of the field that will be
6300 relocated. Otherwise, we simply use the contents of the
6301 RELA relocation. To determine which flavor or relocation
6302 this is, we depend on the fact that the INPUT_SECTION's
6303 REL_HDR is read before its REL_HDR2. */
6304 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6305 if ((size_t) (rel - relocs)
6306 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6307 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6308 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6309 {
6310 /* Note that this is a REL relocation. */
6311 rela_relocation_p = FALSE;
6312
6313 /* Get the addend, which is stored in the input file. */
6314 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6315 contents);
6316 addend &= howto->src_mask;
6317 addend <<= howto->rightshift;
6318
6319 /* For some kinds of relocations, the ADDEND is a
6320 combination of the addend stored in two different
6321 relocations. */
6322 if (r_type == R_MIPS_HI16
6323 || r_type == R_MIPS_GNU_REL_HI16
6324 || (r_type == R_MIPS_GOT16
6325 && mips_elf_local_relocation_p (input_bfd, rel,
6326 local_sections, FALSE)))
6327 {
6328 bfd_vma l;
6329 const Elf_Internal_Rela *lo16_relocation;
6330 reloc_howto_type *lo16_howto;
6331 unsigned int lo;
6332
6333 /* The combined value is the sum of the HI16 addend,
6334 left-shifted by sixteen bits, and the LO16
6335 addend, sign extended. (Usually, the code does
6336 a `lui' of the HI16 value, and then an `addiu' of
6337 the LO16 value.)
6338
6339 Scan ahead to find a matching LO16 relocation. */
6340 if (r_type == R_MIPS_GNU_REL_HI16)
6341 lo = R_MIPS_GNU_REL_LO16;
6342 else
6343 lo = R_MIPS_LO16;
6344 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6345 rel, relend);
6346 if (lo16_relocation == NULL)
6347 return FALSE;
6348
6349 /* Obtain the addend kept there. */
6350 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6351 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6352 input_bfd, contents);
6353 l &= lo16_howto->src_mask;
6354 l <<= lo16_howto->rightshift;
6355 l = mips_elf_sign_extend (l, 16);
6356
6357 addend <<= 16;
6358
6359 /* Compute the combined addend. */
6360 addend += l;
6361
6362 /* If PC-relative, subtract the difference between the
6363 address of the LO part of the reloc and the address of
6364 the HI part. The relocation is relative to the LO
6365 part, but mips_elf_calculate_relocation() doesn't
6366 know its address or the difference from the HI part, so
6367 we subtract that difference here. See also the
6368 comment in mips_elf_calculate_relocation(). */
6369 if (r_type == R_MIPS_GNU_REL_HI16)
6370 addend -= (lo16_relocation->r_offset - rel->r_offset);
6371 }
6372 else if (r_type == R_MIPS16_GPREL)
6373 {
6374 /* The addend is scrambled in the object file. See
6375 mips_elf_perform_relocation for details on the
6376 format. */
6377 addend = (((addend & 0x1f0000) >> 5)
6378 | ((addend & 0x7e00000) >> 16)
6379 | (addend & 0x1f));
6380 }
6381 }
6382 else
6383 addend = rel->r_addend;
6384 }
6385
6386 if (info->relocateable)
6387 {
6388 Elf_Internal_Sym *sym;
6389 unsigned long r_symndx;
6390
6391 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6392 && bfd_big_endian (input_bfd))
6393 rel->r_offset -= 4;
6394
6395 /* Since we're just relocating, all we need to do is copy
6396 the relocations back out to the object file, unless
6397 they're against a section symbol, in which case we need
6398 to adjust by the section offset, or unless they're GP
6399 relative in which case we need to adjust by the amount
6400 that we're adjusting GP in this relocateable object. */
6401
6402 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6403 FALSE))
6404 /* There's nothing to do for non-local relocations. */
6405 continue;
6406
6407 if (r_type == R_MIPS16_GPREL
6408 || r_type == R_MIPS_GPREL16
6409 || r_type == R_MIPS_GPREL32
6410 || r_type == R_MIPS_LITERAL)
6411 addend -= (_bfd_get_gp_value (output_bfd)
6412 - _bfd_get_gp_value (input_bfd));
6413
6414 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6415 sym = local_syms + r_symndx;
6416 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6417 /* Adjust the addend appropriately. */
6418 addend += local_sections[r_symndx]->output_offset;
6419
6420 if (howto->partial_inplace)
6421 {
6422 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6423 then we only want to write out the high-order 16 bits.
6424 The subsequent R_MIPS_LO16 will handle the low-order bits.
6425 */
6426 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6427 || r_type == R_MIPS_GNU_REL_HI16)
6428 addend = mips_elf_high (addend);
6429 else if (r_type == R_MIPS_HIGHER)
6430 addend = mips_elf_higher (addend);
6431 else if (r_type == R_MIPS_HIGHEST)
6432 addend = mips_elf_highest (addend);
6433 }
6434
6435 if (rela_relocation_p)
6436 /* If this is a RELA relocation, just update the addend.
6437 We have to cast away constness for REL. */
6438 rel->r_addend = addend;
6439 else
6440 {
6441 /* Otherwise, we have to write the value back out. Note
6442 that we use the source mask, rather than the
6443 destination mask because the place to which we are
6444 writing will be source of the addend in the final
6445 link. */
6446 addend >>= howto->rightshift;
6447 addend &= howto->src_mask;
6448
6449 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6450 /* See the comment above about using R_MIPS_64 in the 32-bit
6451 ABI. Here, we need to update the addend. It would be
6452 possible to get away with just using the R_MIPS_32 reloc
6453 but for endianness. */
6454 {
6455 bfd_vma sign_bits;
6456 bfd_vma low_bits;
6457 bfd_vma high_bits;
6458
6459 if (addend & ((bfd_vma) 1 << 31))
6460 #ifdef BFD64
6461 sign_bits = ((bfd_vma) 1 << 32) - 1;
6462 #else
6463 sign_bits = -1;
6464 #endif
6465 else
6466 sign_bits = 0;
6467
6468 /* If we don't know that we have a 64-bit type,
6469 do two separate stores. */
6470 if (bfd_big_endian (input_bfd))
6471 {
6472 /* Store the sign-bits (which are most significant)
6473 first. */
6474 low_bits = sign_bits;
6475 high_bits = addend;
6476 }
6477 else
6478 {
6479 low_bits = addend;
6480 high_bits = sign_bits;
6481 }
6482 bfd_put_32 (input_bfd, low_bits,
6483 contents + rel->r_offset);
6484 bfd_put_32 (input_bfd, high_bits,
6485 contents + rel->r_offset + 4);
6486 continue;
6487 }
6488
6489 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6490 input_bfd, input_section,
6491 contents, FALSE))
6492 return FALSE;
6493 }
6494
6495 /* Go on to the next relocation. */
6496 continue;
6497 }
6498
6499 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6500 relocations for the same offset. In that case we are
6501 supposed to treat the output of each relocation as the addend
6502 for the next. */
6503 if (rel + 1 < relend
6504 && rel->r_offset == rel[1].r_offset
6505 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6506 use_saved_addend_p = TRUE;
6507 else
6508 use_saved_addend_p = FALSE;
6509
6510 addend >>= howto->rightshift;
6511
6512 /* Figure out what value we are supposed to relocate. */
6513 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6514 input_section, info, rel,
6515 addend, howto, local_syms,
6516 local_sections, &value,
6517 &name, &require_jalx,
6518 use_saved_addend_p))
6519 {
6520 case bfd_reloc_continue:
6521 /* There's nothing to do. */
6522 continue;
6523
6524 case bfd_reloc_undefined:
6525 /* mips_elf_calculate_relocation already called the
6526 undefined_symbol callback. There's no real point in
6527 trying to perform the relocation at this point, so we
6528 just skip ahead to the next relocation. */
6529 continue;
6530
6531 case bfd_reloc_notsupported:
6532 msg = _("internal error: unsupported relocation error");
6533 info->callbacks->warning
6534 (info, msg, name, input_bfd, input_section, rel->r_offset);
6535 return FALSE;
6536
6537 case bfd_reloc_overflow:
6538 if (use_saved_addend_p)
6539 /* Ignore overflow until we reach the last relocation for
6540 a given location. */
6541 ;
6542 else
6543 {
6544 BFD_ASSERT (name != NULL);
6545 if (! ((*info->callbacks->reloc_overflow)
6546 (info, name, howto->name, (bfd_vma) 0,
6547 input_bfd, input_section, rel->r_offset)))
6548 return FALSE;
6549 }
6550 break;
6551
6552 case bfd_reloc_ok:
6553 break;
6554
6555 default:
6556 abort ();
6557 break;
6558 }
6559
6560 /* If we've got another relocation for the address, keep going
6561 until we reach the last one. */
6562 if (use_saved_addend_p)
6563 {
6564 addend = value;
6565 continue;
6566 }
6567
6568 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6569 /* See the comment above about using R_MIPS_64 in the 32-bit
6570 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6571 that calculated the right value. Now, however, we
6572 sign-extend the 32-bit result to 64-bits, and store it as a
6573 64-bit value. We are especially generous here in that we
6574 go to extreme lengths to support this usage on systems with
6575 only a 32-bit VMA. */
6576 {
6577 bfd_vma sign_bits;
6578 bfd_vma low_bits;
6579 bfd_vma high_bits;
6580
6581 if (value & ((bfd_vma) 1 << 31))
6582 #ifdef BFD64
6583 sign_bits = ((bfd_vma) 1 << 32) - 1;
6584 #else
6585 sign_bits = -1;
6586 #endif
6587 else
6588 sign_bits = 0;
6589
6590 /* If we don't know that we have a 64-bit type,
6591 do two separate stores. */
6592 if (bfd_big_endian (input_bfd))
6593 {
6594 /* Undo what we did above. */
6595 rel->r_offset -= 4;
6596 /* Store the sign-bits (which are most significant)
6597 first. */
6598 low_bits = sign_bits;
6599 high_bits = value;
6600 }
6601 else
6602 {
6603 low_bits = value;
6604 high_bits = sign_bits;
6605 }
6606 bfd_put_32 (input_bfd, low_bits,
6607 contents + rel->r_offset);
6608 bfd_put_32 (input_bfd, high_bits,
6609 contents + rel->r_offset + 4);
6610 continue;
6611 }
6612
6613 /* Actually perform the relocation. */
6614 if (! mips_elf_perform_relocation (info, howto, rel, value,
6615 input_bfd, input_section,
6616 contents, require_jalx))
6617 return FALSE;
6618 }
6619
6620 return TRUE;
6621 }
6622 \f
6623 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6624 adjust it appropriately now. */
6625
6626 static void
6627 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6628 bfd *abfd ATTRIBUTE_UNUSED;
6629 const char *name;
6630 Elf_Internal_Sym *sym;
6631 {
6632 /* The linker script takes care of providing names and values for
6633 these, but we must place them into the right sections. */
6634 static const char* const text_section_symbols[] = {
6635 "_ftext",
6636 "_etext",
6637 "__dso_displacement",
6638 "__elf_header",
6639 "__program_header_table",
6640 NULL
6641 };
6642
6643 static const char* const data_section_symbols[] = {
6644 "_fdata",
6645 "_edata",
6646 "_end",
6647 "_fbss",
6648 NULL
6649 };
6650
6651 const char* const *p;
6652 int i;
6653
6654 for (i = 0; i < 2; ++i)
6655 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6656 *p;
6657 ++p)
6658 if (strcmp (*p, name) == 0)
6659 {
6660 /* All of these symbols are given type STT_SECTION by the
6661 IRIX6 linker. */
6662 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6663
6664 /* The IRIX linker puts these symbols in special sections. */
6665 if (i == 0)
6666 sym->st_shndx = SHN_MIPS_TEXT;
6667 else
6668 sym->st_shndx = SHN_MIPS_DATA;
6669
6670 break;
6671 }
6672 }
6673
6674 /* Finish up dynamic symbol handling. We set the contents of various
6675 dynamic sections here. */
6676
6677 bfd_boolean
6678 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6679 bfd *output_bfd;
6680 struct bfd_link_info *info;
6681 struct elf_link_hash_entry *h;
6682 Elf_Internal_Sym *sym;
6683 {
6684 bfd *dynobj;
6685 bfd_vma gval;
6686 asection *sgot;
6687 asection *smsym;
6688 struct mips_got_info *g, *gg;
6689 const char *name;
6690 struct mips_elf_link_hash_entry *mh;
6691
6692 dynobj = elf_hash_table (info)->dynobj;
6693 gval = sym->st_value;
6694 mh = (struct mips_elf_link_hash_entry *) h;
6695
6696 if (h->plt.offset != (bfd_vma) -1)
6697 {
6698 asection *s;
6699 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6700
6701 /* This symbol has a stub. Set it up. */
6702
6703 BFD_ASSERT (h->dynindx != -1);
6704
6705 s = bfd_get_section_by_name (dynobj,
6706 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6707 BFD_ASSERT (s != NULL);
6708
6709 /* FIXME: Can h->dynindex be more than 64K? */
6710 if (h->dynindx & 0xffff0000)
6711 return FALSE;
6712
6713 /* Fill the stub. */
6714 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6715 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6716 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6717 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6718
6719 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6720 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6721
6722 /* Mark the symbol as undefined. plt.offset != -1 occurs
6723 only for the referenced symbol. */
6724 sym->st_shndx = SHN_UNDEF;
6725
6726 /* The run-time linker uses the st_value field of the symbol
6727 to reset the global offset table entry for this external
6728 to its stub address when unlinking a shared object. */
6729 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6730 sym->st_value = gval;
6731 }
6732
6733 BFD_ASSERT (h->dynindx != -1
6734 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6735
6736 sgot = mips_elf_got_section (dynobj, FALSE);
6737 BFD_ASSERT (sgot != NULL);
6738 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6739 g = mips_elf_section_data (sgot)->u.got_info;
6740 BFD_ASSERT (g != NULL);
6741
6742 /* Run through the global symbol table, creating GOT entries for all
6743 the symbols that need them. */
6744 if (g->global_gotsym != NULL
6745 && h->dynindx >= g->global_gotsym->dynindx)
6746 {
6747 bfd_vma offset;
6748 bfd_vma value;
6749
6750 if (sym->st_value)
6751 value = sym->st_value;
6752 else
6753 {
6754 /* For an entity defined in a shared object, this will be
6755 NULL. (For functions in shared objects for
6756 which we have created stubs, ST_VALUE will be non-NULL.
6757 That's because such the functions are now no longer defined
6758 in a shared object.) */
6759
6760 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6761 || h->root.type == bfd_link_hash_undefweak)
6762 value = 0;
6763 else
6764 value = h->root.u.def.value;
6765 }
6766 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6767 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6768 }
6769
6770 if (g->next && h->dynindx != -1)
6771 {
6772 struct mips_got_entry e, *p;
6773 bfd_vma offset;
6774 bfd_vma value;
6775 Elf_Internal_Rela rel[3];
6776 bfd_vma addend = 0;
6777
6778 gg = g;
6779
6780 e.abfd = output_bfd;
6781 e.symndx = -1;
6782 e.d.h = (struct mips_elf_link_hash_entry *)h;
6783
6784 if (info->shared
6785 || h->root.type == bfd_link_hash_undefined
6786 || h->root.type == bfd_link_hash_undefweak)
6787 value = 0;
6788 else if (sym->st_value)
6789 value = sym->st_value;
6790 else
6791 value = h->root.u.def.value;
6792
6793 memset (rel, 0, sizeof (rel));
6794 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6795
6796 for (g = g->next; g->next != gg; g = g->next)
6797 {
6798 if (g->got_entries
6799 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6800 &e)))
6801 {
6802 offset = p->gotidx;
6803 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6804
6805 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6806
6807 if ((info->shared
6808 || (elf_hash_table (info)->dynamic_sections_created
6809 && p->d.h != NULL
6810 && ((p->d.h->root.elf_link_hash_flags
6811 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6812 && ((p->d.h->root.elf_link_hash_flags
6813 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6814 && ! (mips_elf_create_dynamic_relocation
6815 (output_bfd, info, rel,
6816 e.d.h, NULL, value, &addend, sgot)))
6817 return FALSE;
6818 BFD_ASSERT (addend == 0);
6819 }
6820 }
6821 }
6822
6823 /* Create a .msym entry, if appropriate. */
6824 smsym = bfd_get_section_by_name (dynobj, ".msym");
6825 if (smsym)
6826 {
6827 Elf32_Internal_Msym msym;
6828
6829 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6830 /* It is undocumented what the `1' indicates, but IRIX6 uses
6831 this value. */
6832 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6833 bfd_mips_elf_swap_msym_out
6834 (dynobj, &msym,
6835 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6836 }
6837
6838 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6839 name = h->root.root.string;
6840 if (strcmp (name, "_DYNAMIC") == 0
6841 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6842 sym->st_shndx = SHN_ABS;
6843 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6844 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6845 {
6846 sym->st_shndx = SHN_ABS;
6847 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6848 sym->st_value = 1;
6849 }
6850 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6851 {
6852 sym->st_shndx = SHN_ABS;
6853 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6854 sym->st_value = elf_gp (output_bfd);
6855 }
6856 else if (SGI_COMPAT (output_bfd))
6857 {
6858 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6859 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6860 {
6861 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6862 sym->st_other = STO_PROTECTED;
6863 sym->st_value = 0;
6864 sym->st_shndx = SHN_MIPS_DATA;
6865 }
6866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6867 {
6868 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6869 sym->st_other = STO_PROTECTED;
6870 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6871 sym->st_shndx = SHN_ABS;
6872 }
6873 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6874 {
6875 if (h->type == STT_FUNC)
6876 sym->st_shndx = SHN_MIPS_TEXT;
6877 else if (h->type == STT_OBJECT)
6878 sym->st_shndx = SHN_MIPS_DATA;
6879 }
6880 }
6881
6882 /* Handle the IRIX6-specific symbols. */
6883 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6884 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6885
6886 if (! info->shared)
6887 {
6888 if (! mips_elf_hash_table (info)->use_rld_obj_head
6889 && (strcmp (name, "__rld_map") == 0
6890 || strcmp (name, "__RLD_MAP") == 0))
6891 {
6892 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6893 BFD_ASSERT (s != NULL);
6894 sym->st_value = s->output_section->vma + s->output_offset;
6895 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6896 if (mips_elf_hash_table (info)->rld_value == 0)
6897 mips_elf_hash_table (info)->rld_value = sym->st_value;
6898 }
6899 else if (mips_elf_hash_table (info)->use_rld_obj_head
6900 && strcmp (name, "__rld_obj_head") == 0)
6901 {
6902 /* IRIX6 does not use a .rld_map section. */
6903 if (IRIX_COMPAT (output_bfd) == ict_irix5
6904 || IRIX_COMPAT (output_bfd) == ict_none)
6905 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6906 != NULL);
6907 mips_elf_hash_table (info)->rld_value = sym->st_value;
6908 }
6909 }
6910
6911 /* If this is a mips16 symbol, force the value to be even. */
6912 if (sym->st_other == STO_MIPS16
6913 && (sym->st_value & 1) != 0)
6914 --sym->st_value;
6915
6916 return TRUE;
6917 }
6918
6919 /* Finish up the dynamic sections. */
6920
6921 bfd_boolean
6922 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6923 bfd *output_bfd;
6924 struct bfd_link_info *info;
6925 {
6926 bfd *dynobj;
6927 asection *sdyn;
6928 asection *sgot;
6929 struct mips_got_info *gg, *g;
6930
6931 dynobj = elf_hash_table (info)->dynobj;
6932
6933 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6934
6935 sgot = mips_elf_got_section (dynobj, FALSE);
6936 if (sgot == NULL)
6937 gg = g = NULL;
6938 else
6939 {
6940 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6941 gg = mips_elf_section_data (sgot)->u.got_info;
6942 BFD_ASSERT (gg != NULL);
6943 g = mips_elf_got_for_ibfd (gg, output_bfd);
6944 BFD_ASSERT (g != NULL);
6945 }
6946
6947 if (elf_hash_table (info)->dynamic_sections_created)
6948 {
6949 bfd_byte *b;
6950
6951 BFD_ASSERT (sdyn != NULL);
6952 BFD_ASSERT (g != NULL);
6953
6954 for (b = sdyn->contents;
6955 b < sdyn->contents + sdyn->_raw_size;
6956 b += MIPS_ELF_DYN_SIZE (dynobj))
6957 {
6958 Elf_Internal_Dyn dyn;
6959 const char *name;
6960 size_t elemsize;
6961 asection *s;
6962 bfd_boolean swap_out_p;
6963
6964 /* Read in the current dynamic entry. */
6965 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6966
6967 /* Assume that we're going to modify it and write it out. */
6968 swap_out_p = TRUE;
6969
6970 switch (dyn.d_tag)
6971 {
6972 case DT_RELENT:
6973 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6974 BFD_ASSERT (s != NULL);
6975 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6976 break;
6977
6978 case DT_STRSZ:
6979 /* Rewrite DT_STRSZ. */
6980 dyn.d_un.d_val =
6981 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6982 break;
6983
6984 case DT_PLTGOT:
6985 name = ".got";
6986 goto get_vma;
6987 case DT_MIPS_CONFLICT:
6988 name = ".conflict";
6989 goto get_vma;
6990 case DT_MIPS_LIBLIST:
6991 name = ".liblist";
6992 get_vma:
6993 s = bfd_get_section_by_name (output_bfd, name);
6994 BFD_ASSERT (s != NULL);
6995 dyn.d_un.d_ptr = s->vma;
6996 break;
6997
6998 case DT_MIPS_RLD_VERSION:
6999 dyn.d_un.d_val = 1; /* XXX */
7000 break;
7001
7002 case DT_MIPS_FLAGS:
7003 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7004 break;
7005
7006 case DT_MIPS_CONFLICTNO:
7007 name = ".conflict";
7008 elemsize = sizeof (Elf32_Conflict);
7009 goto set_elemno;
7010
7011 case DT_MIPS_LIBLISTNO:
7012 name = ".liblist";
7013 elemsize = sizeof (Elf32_Lib);
7014 set_elemno:
7015 s = bfd_get_section_by_name (output_bfd, name);
7016 if (s != NULL)
7017 {
7018 if (s->_cooked_size != 0)
7019 dyn.d_un.d_val = s->_cooked_size / elemsize;
7020 else
7021 dyn.d_un.d_val = s->_raw_size / elemsize;
7022 }
7023 else
7024 dyn.d_un.d_val = 0;
7025 break;
7026
7027 case DT_MIPS_TIME_STAMP:
7028 time ((time_t *) &dyn.d_un.d_val);
7029 break;
7030
7031 case DT_MIPS_ICHECKSUM:
7032 /* XXX FIXME: */
7033 swap_out_p = FALSE;
7034 break;
7035
7036 case DT_MIPS_IVERSION:
7037 /* XXX FIXME: */
7038 swap_out_p = FALSE;
7039 break;
7040
7041 case DT_MIPS_BASE_ADDRESS:
7042 s = output_bfd->sections;
7043 BFD_ASSERT (s != NULL);
7044 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7045 break;
7046
7047 case DT_MIPS_LOCAL_GOTNO:
7048 dyn.d_un.d_val = g->local_gotno;
7049 break;
7050
7051 case DT_MIPS_UNREFEXTNO:
7052 /* The index into the dynamic symbol table which is the
7053 entry of the first external symbol that is not
7054 referenced within the same object. */
7055 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7056 break;
7057
7058 case DT_MIPS_GOTSYM:
7059 if (gg->global_gotsym)
7060 {
7061 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7062 break;
7063 }
7064 /* In case if we don't have global got symbols we default
7065 to setting DT_MIPS_GOTSYM to the same value as
7066 DT_MIPS_SYMTABNO, so we just fall through. */
7067
7068 case DT_MIPS_SYMTABNO:
7069 name = ".dynsym";
7070 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7071 s = bfd_get_section_by_name (output_bfd, name);
7072 BFD_ASSERT (s != NULL);
7073
7074 if (s->_cooked_size != 0)
7075 dyn.d_un.d_val = s->_cooked_size / elemsize;
7076 else
7077 dyn.d_un.d_val = s->_raw_size / elemsize;
7078 break;
7079
7080 case DT_MIPS_HIPAGENO:
7081 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7082 break;
7083
7084 case DT_MIPS_RLD_MAP:
7085 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7086 break;
7087
7088 case DT_MIPS_OPTIONS:
7089 s = (bfd_get_section_by_name
7090 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7091 dyn.d_un.d_ptr = s->vma;
7092 break;
7093
7094 case DT_MIPS_MSYM:
7095 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7096 dyn.d_un.d_ptr = s->vma;
7097 break;
7098
7099 default:
7100 swap_out_p = FALSE;
7101 break;
7102 }
7103
7104 if (swap_out_p)
7105 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7106 (dynobj, &dyn, b);
7107 }
7108 }
7109
7110 /* The first entry of the global offset table will be filled at
7111 runtime. The second entry will be used by some runtime loaders.
7112 This isn't the case of IRIX rld. */
7113 if (sgot != NULL && sgot->_raw_size > 0)
7114 {
7115 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7116 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7117 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7118 }
7119
7120 if (sgot != NULL)
7121 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7122 = MIPS_ELF_GOT_SIZE (output_bfd);
7123
7124 /* Generate dynamic relocations for the non-primary gots. */
7125 if (gg != NULL && gg->next)
7126 {
7127 Elf_Internal_Rela rel[3];
7128 bfd_vma addend = 0;
7129
7130 memset (rel, 0, sizeof (rel));
7131 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7132
7133 for (g = gg->next; g->next != gg; g = g->next)
7134 {
7135 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7136
7137 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7138 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7139 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7140 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7141
7142 if (! info->shared)
7143 continue;
7144
7145 while (index < g->assigned_gotno)
7146 {
7147 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7148 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7149 if (!(mips_elf_create_dynamic_relocation
7150 (output_bfd, info, rel, NULL,
7151 bfd_abs_section_ptr,
7152 0, &addend, sgot)))
7153 return FALSE;
7154 BFD_ASSERT (addend == 0);
7155 }
7156 }
7157 }
7158
7159 {
7160 asection *smsym;
7161 asection *s;
7162 Elf32_compact_rel cpt;
7163
7164 /* ??? The section symbols for the output sections were set up in
7165 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7166 symbols. Should we do so? */
7167
7168 smsym = bfd_get_section_by_name (dynobj, ".msym");
7169 if (smsym != NULL)
7170 {
7171 Elf32_Internal_Msym msym;
7172
7173 msym.ms_hash_value = 0;
7174 msym.ms_info = ELF32_MS_INFO (0, 1);
7175
7176 for (s = output_bfd->sections; s != NULL; s = s->next)
7177 {
7178 long dynindx = elf_section_data (s)->dynindx;
7179
7180 bfd_mips_elf_swap_msym_out
7181 (output_bfd, &msym,
7182 (((Elf32_External_Msym *) smsym->contents)
7183 + dynindx));
7184 }
7185 }
7186
7187 if (SGI_COMPAT (output_bfd))
7188 {
7189 /* Write .compact_rel section out. */
7190 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7191 if (s != NULL)
7192 {
7193 cpt.id1 = 1;
7194 cpt.num = s->reloc_count;
7195 cpt.id2 = 2;
7196 cpt.offset = (s->output_section->filepos
7197 + sizeof (Elf32_External_compact_rel));
7198 cpt.reserved0 = 0;
7199 cpt.reserved1 = 0;
7200 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7201 ((Elf32_External_compact_rel *)
7202 s->contents));
7203
7204 /* Clean up a dummy stub function entry in .text. */
7205 s = bfd_get_section_by_name (dynobj,
7206 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7207 if (s != NULL)
7208 {
7209 file_ptr dummy_offset;
7210
7211 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7212 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7213 memset (s->contents + dummy_offset, 0,
7214 MIPS_FUNCTION_STUB_SIZE);
7215 }
7216 }
7217 }
7218
7219 /* We need to sort the entries of the dynamic relocation section. */
7220
7221 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7222
7223 if (s != NULL
7224 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7225 {
7226 reldyn_sorting_bfd = output_bfd;
7227
7228 if (ABI_64_P (output_bfd))
7229 qsort ((Elf64_External_Rel *) s->contents + 1,
7230 (size_t) s->reloc_count - 1,
7231 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7232 else
7233 qsort ((Elf32_External_Rel *) s->contents + 1,
7234 (size_t) s->reloc_count - 1,
7235 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7236 }
7237 }
7238
7239 return TRUE;
7240 }
7241
7242
7243 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7244
7245 static void
7246 mips_set_isa_flags (abfd)
7247 bfd *abfd;
7248 {
7249 flagword val;
7250
7251 switch (bfd_get_mach (abfd))
7252 {
7253 default:
7254 case bfd_mach_mips3000:
7255 val = E_MIPS_ARCH_1;
7256 break;
7257
7258 case bfd_mach_mips3900:
7259 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7260 break;
7261
7262 case bfd_mach_mips6000:
7263 val = E_MIPS_ARCH_2;
7264 break;
7265
7266 case bfd_mach_mips4000:
7267 case bfd_mach_mips4300:
7268 case bfd_mach_mips4400:
7269 case bfd_mach_mips4600:
7270 val = E_MIPS_ARCH_3;
7271 break;
7272
7273 case bfd_mach_mips4010:
7274 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7275 break;
7276
7277 case bfd_mach_mips4100:
7278 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7279 break;
7280
7281 case bfd_mach_mips4111:
7282 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7283 break;
7284
7285 case bfd_mach_mips4120:
7286 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7287 break;
7288
7289 case bfd_mach_mips4650:
7290 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7291 break;
7292
7293 case bfd_mach_mips5400:
7294 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7295 break;
7296
7297 case bfd_mach_mips5500:
7298 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7299 break;
7300
7301 case bfd_mach_mips5000:
7302 case bfd_mach_mips8000:
7303 case bfd_mach_mips10000:
7304 case bfd_mach_mips12000:
7305 val = E_MIPS_ARCH_4;
7306 break;
7307
7308 case bfd_mach_mips5:
7309 val = E_MIPS_ARCH_5;
7310 break;
7311
7312 case bfd_mach_mips_sb1:
7313 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7314 break;
7315
7316 case bfd_mach_mipsisa32:
7317 val = E_MIPS_ARCH_32;
7318 break;
7319
7320 case bfd_mach_mipsisa64:
7321 val = E_MIPS_ARCH_64;
7322 break;
7323
7324 case bfd_mach_mipsisa32r2:
7325 val = E_MIPS_ARCH_32R2;
7326 break;
7327 }
7328 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7329 elf_elfheader (abfd)->e_flags |= val;
7330
7331 }
7332
7333
7334 /* The final processing done just before writing out a MIPS ELF object
7335 file. This gets the MIPS architecture right based on the machine
7336 number. This is used by both the 32-bit and the 64-bit ABI. */
7337
7338 void
7339 _bfd_mips_elf_final_write_processing (abfd, linker)
7340 bfd *abfd;
7341 bfd_boolean linker ATTRIBUTE_UNUSED;
7342 {
7343 unsigned int i;
7344 Elf_Internal_Shdr **hdrpp;
7345 const char *name;
7346 asection *sec;
7347
7348 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7349 is nonzero. This is for compatibility with old objects, which used
7350 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7351 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7352 mips_set_isa_flags (abfd);
7353
7354 /* Set the sh_info field for .gptab sections and other appropriate
7355 info for each special section. */
7356 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7357 i < elf_numsections (abfd);
7358 i++, hdrpp++)
7359 {
7360 switch ((*hdrpp)->sh_type)
7361 {
7362 case SHT_MIPS_MSYM:
7363 case SHT_MIPS_LIBLIST:
7364 sec = bfd_get_section_by_name (abfd, ".dynstr");
7365 if (sec != NULL)
7366 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7367 break;
7368
7369 case SHT_MIPS_GPTAB:
7370 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7371 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7372 BFD_ASSERT (name != NULL
7373 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7374 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7375 BFD_ASSERT (sec != NULL);
7376 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7377 break;
7378
7379 case SHT_MIPS_CONTENT:
7380 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7381 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7382 BFD_ASSERT (name != NULL
7383 && strncmp (name, ".MIPS.content",
7384 sizeof ".MIPS.content" - 1) == 0);
7385 sec = bfd_get_section_by_name (abfd,
7386 name + sizeof ".MIPS.content" - 1);
7387 BFD_ASSERT (sec != NULL);
7388 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7389 break;
7390
7391 case SHT_MIPS_SYMBOL_LIB:
7392 sec = bfd_get_section_by_name (abfd, ".dynsym");
7393 if (sec != NULL)
7394 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7395 sec = bfd_get_section_by_name (abfd, ".liblist");
7396 if (sec != NULL)
7397 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7398 break;
7399
7400 case SHT_MIPS_EVENTS:
7401 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7402 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7403 BFD_ASSERT (name != NULL);
7404 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7405 sec = bfd_get_section_by_name (abfd,
7406 name + sizeof ".MIPS.events" - 1);
7407 else
7408 {
7409 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7410 sizeof ".MIPS.post_rel" - 1) == 0);
7411 sec = bfd_get_section_by_name (abfd,
7412 (name
7413 + sizeof ".MIPS.post_rel" - 1));
7414 }
7415 BFD_ASSERT (sec != NULL);
7416 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7417 break;
7418
7419 }
7420 }
7421 }
7422 \f
7423 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7424 segments. */
7425
7426 int
7427 _bfd_mips_elf_additional_program_headers (abfd)
7428 bfd *abfd;
7429 {
7430 asection *s;
7431 int ret = 0;
7432
7433 /* See if we need a PT_MIPS_REGINFO segment. */
7434 s = bfd_get_section_by_name (abfd, ".reginfo");
7435 if (s && (s->flags & SEC_LOAD))
7436 ++ret;
7437
7438 /* See if we need a PT_MIPS_OPTIONS segment. */
7439 if (IRIX_COMPAT (abfd) == ict_irix6
7440 && bfd_get_section_by_name (abfd,
7441 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7442 ++ret;
7443
7444 /* See if we need a PT_MIPS_RTPROC segment. */
7445 if (IRIX_COMPAT (abfd) == ict_irix5
7446 && bfd_get_section_by_name (abfd, ".dynamic")
7447 && bfd_get_section_by_name (abfd, ".mdebug"))
7448 ++ret;
7449
7450 return ret;
7451 }
7452
7453 /* Modify the segment map for an IRIX5 executable. */
7454
7455 bfd_boolean
7456 _bfd_mips_elf_modify_segment_map (abfd)
7457 bfd *abfd;
7458 {
7459 asection *s;
7460 struct elf_segment_map *m, **pm;
7461 bfd_size_type amt;
7462
7463 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7464 segment. */
7465 s = bfd_get_section_by_name (abfd, ".reginfo");
7466 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7467 {
7468 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7469 if (m->p_type == PT_MIPS_REGINFO)
7470 break;
7471 if (m == NULL)
7472 {
7473 amt = sizeof *m;
7474 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7475 if (m == NULL)
7476 return FALSE;
7477
7478 m->p_type = PT_MIPS_REGINFO;
7479 m->count = 1;
7480 m->sections[0] = s;
7481
7482 /* We want to put it after the PHDR and INTERP segments. */
7483 pm = &elf_tdata (abfd)->segment_map;
7484 while (*pm != NULL
7485 && ((*pm)->p_type == PT_PHDR
7486 || (*pm)->p_type == PT_INTERP))
7487 pm = &(*pm)->next;
7488
7489 m->next = *pm;
7490 *pm = m;
7491 }
7492 }
7493
7494 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7495 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7496 PT_OPTIONS segment immediately following the program header
7497 table. */
7498 if (NEWABI_P (abfd)
7499 /* On non-IRIX6 new abi, we'll have already created a segment
7500 for this section, so don't create another. I'm not sure this
7501 is not also the case for IRIX 6, but I can't test it right
7502 now. */
7503 && IRIX_COMPAT (abfd) == ict_irix6)
7504 {
7505 for (s = abfd->sections; s; s = s->next)
7506 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7507 break;
7508
7509 if (s)
7510 {
7511 struct elf_segment_map *options_segment;
7512
7513 /* Usually, there's a program header table. But, sometimes
7514 there's not (like when running the `ld' testsuite). So,
7515 if there's no program header table, we just put the
7516 options segment at the end. */
7517 for (pm = &elf_tdata (abfd)->segment_map;
7518 *pm != NULL;
7519 pm = &(*pm)->next)
7520 if ((*pm)->p_type == PT_PHDR)
7521 break;
7522
7523 amt = sizeof (struct elf_segment_map);
7524 options_segment = bfd_zalloc (abfd, amt);
7525 options_segment->next = *pm;
7526 options_segment->p_type = PT_MIPS_OPTIONS;
7527 options_segment->p_flags = PF_R;
7528 options_segment->p_flags_valid = TRUE;
7529 options_segment->count = 1;
7530 options_segment->sections[0] = s;
7531 *pm = options_segment;
7532 }
7533 }
7534 else
7535 {
7536 if (IRIX_COMPAT (abfd) == ict_irix5)
7537 {
7538 /* If there are .dynamic and .mdebug sections, we make a room
7539 for the RTPROC header. FIXME: Rewrite without section names. */
7540 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7541 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7542 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7543 {
7544 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7545 if (m->p_type == PT_MIPS_RTPROC)
7546 break;
7547 if (m == NULL)
7548 {
7549 amt = sizeof *m;
7550 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7551 if (m == NULL)
7552 return FALSE;
7553
7554 m->p_type = PT_MIPS_RTPROC;
7555
7556 s = bfd_get_section_by_name (abfd, ".rtproc");
7557 if (s == NULL)
7558 {
7559 m->count = 0;
7560 m->p_flags = 0;
7561 m->p_flags_valid = 1;
7562 }
7563 else
7564 {
7565 m->count = 1;
7566 m->sections[0] = s;
7567 }
7568
7569 /* We want to put it after the DYNAMIC segment. */
7570 pm = &elf_tdata (abfd)->segment_map;
7571 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7572 pm = &(*pm)->next;
7573 if (*pm != NULL)
7574 pm = &(*pm)->next;
7575
7576 m->next = *pm;
7577 *pm = m;
7578 }
7579 }
7580 }
7581 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7582 .dynstr, .dynsym, and .hash sections, and everything in
7583 between. */
7584 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7585 pm = &(*pm)->next)
7586 if ((*pm)->p_type == PT_DYNAMIC)
7587 break;
7588 m = *pm;
7589 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7590 {
7591 /* For a normal mips executable the permissions for the PT_DYNAMIC
7592 segment are read, write and execute. We do that here since
7593 the code in elf.c sets only the read permission. This matters
7594 sometimes for the dynamic linker. */
7595 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7596 {
7597 m->p_flags = PF_R | PF_W | PF_X;
7598 m->p_flags_valid = 1;
7599 }
7600 }
7601 if (m != NULL
7602 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7603 {
7604 static const char *sec_names[] =
7605 {
7606 ".dynamic", ".dynstr", ".dynsym", ".hash"
7607 };
7608 bfd_vma low, high;
7609 unsigned int i, c;
7610 struct elf_segment_map *n;
7611
7612 low = 0xffffffff;
7613 high = 0;
7614 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7615 {
7616 s = bfd_get_section_by_name (abfd, sec_names[i]);
7617 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7618 {
7619 bfd_size_type sz;
7620
7621 if (low > s->vma)
7622 low = s->vma;
7623 sz = s->_cooked_size;
7624 if (sz == 0)
7625 sz = s->_raw_size;
7626 if (high < s->vma + sz)
7627 high = s->vma + sz;
7628 }
7629 }
7630
7631 c = 0;
7632 for (s = abfd->sections; s != NULL; s = s->next)
7633 if ((s->flags & SEC_LOAD) != 0
7634 && s->vma >= low
7635 && ((s->vma
7636 + (s->_cooked_size !=
7637 0 ? s->_cooked_size : s->_raw_size)) <= high))
7638 ++c;
7639
7640 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7641 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7642 if (n == NULL)
7643 return FALSE;
7644 *n = *m;
7645 n->count = c;
7646
7647 i = 0;
7648 for (s = abfd->sections; s != NULL; s = s->next)
7649 {
7650 if ((s->flags & SEC_LOAD) != 0
7651 && s->vma >= low
7652 && ((s->vma
7653 + (s->_cooked_size != 0 ?
7654 s->_cooked_size : s->_raw_size)) <= high))
7655 {
7656 n->sections[i] = s;
7657 ++i;
7658 }
7659 }
7660
7661 *pm = n;
7662 }
7663 }
7664
7665 return TRUE;
7666 }
7667 \f
7668 /* Return the section that should be marked against GC for a given
7669 relocation. */
7670
7671 asection *
7672 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7673 asection *sec;
7674 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7675 Elf_Internal_Rela *rel;
7676 struct elf_link_hash_entry *h;
7677 Elf_Internal_Sym *sym;
7678 {
7679 /* ??? Do mips16 stub sections need to be handled special? */
7680
7681 if (h != NULL)
7682 {
7683 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7684 {
7685 case R_MIPS_GNU_VTINHERIT:
7686 case R_MIPS_GNU_VTENTRY:
7687 break;
7688
7689 default:
7690 switch (h->root.type)
7691 {
7692 case bfd_link_hash_defined:
7693 case bfd_link_hash_defweak:
7694 return h->root.u.def.section;
7695
7696 case bfd_link_hash_common:
7697 return h->root.u.c.p->section;
7698
7699 default:
7700 break;
7701 }
7702 }
7703 }
7704 else
7705 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7706
7707 return NULL;
7708 }
7709
7710 /* Update the got entry reference counts for the section being removed. */
7711
7712 bfd_boolean
7713 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7714 bfd *abfd ATTRIBUTE_UNUSED;
7715 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7716 asection *sec ATTRIBUTE_UNUSED;
7717 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7718 {
7719 #if 0
7720 Elf_Internal_Shdr *symtab_hdr;
7721 struct elf_link_hash_entry **sym_hashes;
7722 bfd_signed_vma *local_got_refcounts;
7723 const Elf_Internal_Rela *rel, *relend;
7724 unsigned long r_symndx;
7725 struct elf_link_hash_entry *h;
7726
7727 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7728 sym_hashes = elf_sym_hashes (abfd);
7729 local_got_refcounts = elf_local_got_refcounts (abfd);
7730
7731 relend = relocs + sec->reloc_count;
7732 for (rel = relocs; rel < relend; rel++)
7733 switch (ELF_R_TYPE (abfd, rel->r_info))
7734 {
7735 case R_MIPS_GOT16:
7736 case R_MIPS_CALL16:
7737 case R_MIPS_CALL_HI16:
7738 case R_MIPS_CALL_LO16:
7739 case R_MIPS_GOT_HI16:
7740 case R_MIPS_GOT_LO16:
7741 case R_MIPS_GOT_DISP:
7742 case R_MIPS_GOT_PAGE:
7743 case R_MIPS_GOT_OFST:
7744 /* ??? It would seem that the existing MIPS code does no sort
7745 of reference counting or whatnot on its GOT and PLT entries,
7746 so it is not possible to garbage collect them at this time. */
7747 break;
7748
7749 default:
7750 break;
7751 }
7752 #endif
7753
7754 return TRUE;
7755 }
7756 \f
7757 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7758 hiding the old indirect symbol. Process additional relocation
7759 information. Also called for weakdefs, in which case we just let
7760 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7761
7762 void
7763 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7764 struct elf_backend_data *bed;
7765 struct elf_link_hash_entry *dir, *ind;
7766 {
7767 struct mips_elf_link_hash_entry *dirmips, *indmips;
7768
7769 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7770
7771 if (ind->root.type != bfd_link_hash_indirect)
7772 return;
7773
7774 dirmips = (struct mips_elf_link_hash_entry *) dir;
7775 indmips = (struct mips_elf_link_hash_entry *) ind;
7776 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7777 if (indmips->readonly_reloc)
7778 dirmips->readonly_reloc = TRUE;
7779 if (dirmips->min_dyn_reloc_index == 0
7780 || (indmips->min_dyn_reloc_index != 0
7781 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7782 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7783 if (indmips->no_fn_stub)
7784 dirmips->no_fn_stub = TRUE;
7785 }
7786
7787 void
7788 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7789 struct bfd_link_info *info;
7790 struct elf_link_hash_entry *entry;
7791 bfd_boolean force_local;
7792 {
7793 bfd *dynobj;
7794 asection *got;
7795 struct mips_got_info *g;
7796 struct mips_elf_link_hash_entry *h;
7797
7798 h = (struct mips_elf_link_hash_entry *) entry;
7799 if (h->forced_local)
7800 return;
7801 h->forced_local = TRUE;
7802
7803 dynobj = elf_hash_table (info)->dynobj;
7804 if (dynobj != NULL)
7805 {
7806 got = mips_elf_got_section (dynobj, FALSE);
7807 g = mips_elf_section_data (got)->u.got_info;
7808
7809 if (g->next)
7810 {
7811 struct mips_got_entry e;
7812 struct mips_got_info *gg = g;
7813
7814 /* Since we're turning what used to be a global symbol into a
7815 local one, bump up the number of local entries of each GOT
7816 that had an entry for it. This will automatically decrease
7817 the number of global entries, since global_gotno is actually
7818 the upper limit of global entries. */
7819 e.abfd = dynobj;
7820 e.symndx = -1;
7821 e.d.h = h;
7822
7823 for (g = g->next; g != gg; g = g->next)
7824 if (htab_find (g->got_entries, &e))
7825 {
7826 BFD_ASSERT (g->global_gotno > 0);
7827 g->local_gotno++;
7828 g->global_gotno--;
7829 }
7830
7831 /* If this was a global symbol forced into the primary GOT, we
7832 no longer need an entry for it. We can't release the entry
7833 at this point, but we must at least stop counting it as one
7834 of the symbols that required a forced got entry. */
7835 if (h->root.got.offset == 2)
7836 {
7837 BFD_ASSERT (gg->assigned_gotno > 0);
7838 gg->assigned_gotno--;
7839 }
7840 }
7841 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7842 /* If we haven't got through GOT allocation yet, just bump up the
7843 number of local entries, as this symbol won't be counted as
7844 global. */
7845 g->local_gotno++;
7846 else if (h->root.got.offset == 1)
7847 {
7848 /* If we're past non-multi-GOT allocation and this symbol had
7849 been marked for a global got entry, give it a local entry
7850 instead. */
7851 BFD_ASSERT (g->global_gotno > 0);
7852 g->local_gotno++;
7853 g->global_gotno--;
7854 }
7855 }
7856
7857 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7858 }
7859 \f
7860 #define PDR_SIZE 32
7861
7862 bfd_boolean
7863 _bfd_mips_elf_discard_info (abfd, cookie, info)
7864 bfd *abfd;
7865 struct elf_reloc_cookie *cookie;
7866 struct bfd_link_info *info;
7867 {
7868 asection *o;
7869 bfd_boolean ret = FALSE;
7870 unsigned char *tdata;
7871 size_t i, skip;
7872
7873 o = bfd_get_section_by_name (abfd, ".pdr");
7874 if (! o)
7875 return FALSE;
7876 if (o->_raw_size == 0)
7877 return FALSE;
7878 if (o->_raw_size % PDR_SIZE != 0)
7879 return FALSE;
7880 if (o->output_section != NULL
7881 && bfd_is_abs_section (o->output_section))
7882 return FALSE;
7883
7884 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7885 if (! tdata)
7886 return FALSE;
7887
7888 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7889 (Elf_Internal_Rela *) NULL,
7890 info->keep_memory);
7891 if (!cookie->rels)
7892 {
7893 free (tdata);
7894 return FALSE;
7895 }
7896
7897 cookie->rel = cookie->rels;
7898 cookie->relend = cookie->rels + o->reloc_count;
7899
7900 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7901 {
7902 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7903 {
7904 tdata[i] = 1;
7905 skip ++;
7906 }
7907 }
7908
7909 if (skip != 0)
7910 {
7911 mips_elf_section_data (o)->u.tdata = tdata;
7912 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7913 ret = TRUE;
7914 }
7915 else
7916 free (tdata);
7917
7918 if (! info->keep_memory)
7919 free (cookie->rels);
7920
7921 return ret;
7922 }
7923
7924 bfd_boolean
7925 _bfd_mips_elf_ignore_discarded_relocs (sec)
7926 asection *sec;
7927 {
7928 if (strcmp (sec->name, ".pdr") == 0)
7929 return TRUE;
7930 return FALSE;
7931 }
7932
7933 bfd_boolean
7934 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7935 bfd *output_bfd;
7936 asection *sec;
7937 bfd_byte *contents;
7938 {
7939 bfd_byte *to, *from, *end;
7940 int i;
7941
7942 if (strcmp (sec->name, ".pdr") != 0)
7943 return FALSE;
7944
7945 if (mips_elf_section_data (sec)->u.tdata == NULL)
7946 return FALSE;
7947
7948 to = contents;
7949 end = contents + sec->_raw_size;
7950 for (from = contents, i = 0;
7951 from < end;
7952 from += PDR_SIZE, i++)
7953 {
7954 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7955 continue;
7956 if (to != from)
7957 memcpy (to, from, PDR_SIZE);
7958 to += PDR_SIZE;
7959 }
7960 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7961 (file_ptr) sec->output_offset,
7962 sec->_cooked_size);
7963 return TRUE;
7964 }
7965 \f
7966 /* MIPS ELF uses a special find_nearest_line routine in order the
7967 handle the ECOFF debugging information. */
7968
7969 struct mips_elf_find_line
7970 {
7971 struct ecoff_debug_info d;
7972 struct ecoff_find_line i;
7973 };
7974
7975 bfd_boolean
7976 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7977 functionname_ptr, line_ptr)
7978 bfd *abfd;
7979 asection *section;
7980 asymbol **symbols;
7981 bfd_vma offset;
7982 const char **filename_ptr;
7983 const char **functionname_ptr;
7984 unsigned int *line_ptr;
7985 {
7986 asection *msec;
7987
7988 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7989 filename_ptr, functionname_ptr,
7990 line_ptr))
7991 return TRUE;
7992
7993 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7994 filename_ptr, functionname_ptr,
7995 line_ptr,
7996 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7997 &elf_tdata (abfd)->dwarf2_find_line_info))
7998 return TRUE;
7999
8000 msec = bfd_get_section_by_name (abfd, ".mdebug");
8001 if (msec != NULL)
8002 {
8003 flagword origflags;
8004 struct mips_elf_find_line *fi;
8005 const struct ecoff_debug_swap * const swap =
8006 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8007
8008 /* If we are called during a link, mips_elf_final_link may have
8009 cleared the SEC_HAS_CONTENTS field. We force it back on here
8010 if appropriate (which it normally will be). */
8011 origflags = msec->flags;
8012 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8013 msec->flags |= SEC_HAS_CONTENTS;
8014
8015 fi = elf_tdata (abfd)->find_line_info;
8016 if (fi == NULL)
8017 {
8018 bfd_size_type external_fdr_size;
8019 char *fraw_src;
8020 char *fraw_end;
8021 struct fdr *fdr_ptr;
8022 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8023
8024 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
8025 if (fi == NULL)
8026 {
8027 msec->flags = origflags;
8028 return FALSE;
8029 }
8030
8031 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8032 {
8033 msec->flags = origflags;
8034 return FALSE;
8035 }
8036
8037 /* Swap in the FDR information. */
8038 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8039 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8040 if (fi->d.fdr == NULL)
8041 {
8042 msec->flags = origflags;
8043 return FALSE;
8044 }
8045 external_fdr_size = swap->external_fdr_size;
8046 fdr_ptr = fi->d.fdr;
8047 fraw_src = (char *) fi->d.external_fdr;
8048 fraw_end = (fraw_src
8049 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8050 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8051 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8052
8053 elf_tdata (abfd)->find_line_info = fi;
8054
8055 /* Note that we don't bother to ever free this information.
8056 find_nearest_line is either called all the time, as in
8057 objdump -l, so the information should be saved, or it is
8058 rarely called, as in ld error messages, so the memory
8059 wasted is unimportant. Still, it would probably be a
8060 good idea for free_cached_info to throw it away. */
8061 }
8062
8063 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8064 &fi->i, filename_ptr, functionname_ptr,
8065 line_ptr))
8066 {
8067 msec->flags = origflags;
8068 return TRUE;
8069 }
8070
8071 msec->flags = origflags;
8072 }
8073
8074 /* Fall back on the generic ELF find_nearest_line routine. */
8075
8076 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8077 filename_ptr, functionname_ptr,
8078 line_ptr);
8079 }
8080 \f
8081 /* When are writing out the .options or .MIPS.options section,
8082 remember the bytes we are writing out, so that we can install the
8083 GP value in the section_processing routine. */
8084
8085 bfd_boolean
8086 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8087 bfd *abfd;
8088 sec_ptr section;
8089 PTR location;
8090 file_ptr offset;
8091 bfd_size_type count;
8092 {
8093 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8094 {
8095 bfd_byte *c;
8096
8097 if (elf_section_data (section) == NULL)
8098 {
8099 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8100 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8101 if (elf_section_data (section) == NULL)
8102 return FALSE;
8103 }
8104 c = mips_elf_section_data (section)->u.tdata;
8105 if (c == NULL)
8106 {
8107 bfd_size_type size;
8108
8109 if (section->_cooked_size != 0)
8110 size = section->_cooked_size;
8111 else
8112 size = section->_raw_size;
8113 c = (bfd_byte *) bfd_zalloc (abfd, size);
8114 if (c == NULL)
8115 return FALSE;
8116 mips_elf_section_data (section)->u.tdata = c;
8117 }
8118
8119 memcpy (c + offset, location, (size_t) count);
8120 }
8121
8122 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8123 count);
8124 }
8125
8126 /* This is almost identical to bfd_generic_get_... except that some
8127 MIPS relocations need to be handled specially. Sigh. */
8128
8129 bfd_byte *
8130 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8131 data, relocateable, symbols)
8132 bfd *abfd;
8133 struct bfd_link_info *link_info;
8134 struct bfd_link_order *link_order;
8135 bfd_byte *data;
8136 bfd_boolean relocateable;
8137 asymbol **symbols;
8138 {
8139 /* Get enough memory to hold the stuff */
8140 bfd *input_bfd = link_order->u.indirect.section->owner;
8141 asection *input_section = link_order->u.indirect.section;
8142
8143 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8144 arelent **reloc_vector = NULL;
8145 long reloc_count;
8146
8147 if (reloc_size < 0)
8148 goto error_return;
8149
8150 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8151 if (reloc_vector == NULL && reloc_size != 0)
8152 goto error_return;
8153
8154 /* read in the section */
8155 if (!bfd_get_section_contents (input_bfd,
8156 input_section,
8157 (PTR) data,
8158 (file_ptr) 0,
8159 input_section->_raw_size))
8160 goto error_return;
8161
8162 /* We're not relaxing the section, so just copy the size info */
8163 input_section->_cooked_size = input_section->_raw_size;
8164 input_section->reloc_done = TRUE;
8165
8166 reloc_count = bfd_canonicalize_reloc (input_bfd,
8167 input_section,
8168 reloc_vector,
8169 symbols);
8170 if (reloc_count < 0)
8171 goto error_return;
8172
8173 if (reloc_count > 0)
8174 {
8175 arelent **parent;
8176 /* for mips */
8177 int gp_found;
8178 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8179
8180 {
8181 struct bfd_hash_entry *h;
8182 struct bfd_link_hash_entry *lh;
8183 /* Skip all this stuff if we aren't mixing formats. */
8184 if (abfd && input_bfd
8185 && abfd->xvec == input_bfd->xvec)
8186 lh = 0;
8187 else
8188 {
8189 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8190 lh = (struct bfd_link_hash_entry *) h;
8191 }
8192 lookup:
8193 if (lh)
8194 {
8195 switch (lh->type)
8196 {
8197 case bfd_link_hash_undefined:
8198 case bfd_link_hash_undefweak:
8199 case bfd_link_hash_common:
8200 gp_found = 0;
8201 break;
8202 case bfd_link_hash_defined:
8203 case bfd_link_hash_defweak:
8204 gp_found = 1;
8205 gp = lh->u.def.value;
8206 break;
8207 case bfd_link_hash_indirect:
8208 case bfd_link_hash_warning:
8209 lh = lh->u.i.link;
8210 /* @@FIXME ignoring warning for now */
8211 goto lookup;
8212 case bfd_link_hash_new:
8213 default:
8214 abort ();
8215 }
8216 }
8217 else
8218 gp_found = 0;
8219 }
8220 /* end mips */
8221 for (parent = reloc_vector; *parent != (arelent *) NULL;
8222 parent++)
8223 {
8224 char *error_message = (char *) NULL;
8225 bfd_reloc_status_type r;
8226
8227 /* Specific to MIPS: Deal with relocation types that require
8228 knowing the gp of the output bfd. */
8229 asymbol *sym = *(*parent)->sym_ptr_ptr;
8230 if (bfd_is_abs_section (sym->section) && abfd)
8231 {
8232 /* The special_function wouldn't get called anyway. */
8233 }
8234 else if (!gp_found)
8235 {
8236 /* The gp isn't there; let the special function code
8237 fall over on its own. */
8238 }
8239 else if ((*parent)->howto->special_function
8240 == _bfd_mips_elf32_gprel16_reloc)
8241 {
8242 /* bypass special_function call */
8243 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8244 input_section, relocateable,
8245 (PTR) data, gp);
8246 goto skip_bfd_perform_relocation;
8247 }
8248 /* end mips specific stuff */
8249
8250 r = bfd_perform_relocation (input_bfd,
8251 *parent,
8252 (PTR) data,
8253 input_section,
8254 relocateable ? abfd : (bfd *) NULL,
8255 &error_message);
8256 skip_bfd_perform_relocation:
8257
8258 if (relocateable)
8259 {
8260 asection *os = input_section->output_section;
8261
8262 /* A partial link, so keep the relocs */
8263 os->orelocation[os->reloc_count] = *parent;
8264 os->reloc_count++;
8265 }
8266
8267 if (r != bfd_reloc_ok)
8268 {
8269 switch (r)
8270 {
8271 case bfd_reloc_undefined:
8272 if (!((*link_info->callbacks->undefined_symbol)
8273 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8274 input_bfd, input_section, (*parent)->address,
8275 TRUE)))
8276 goto error_return;
8277 break;
8278 case bfd_reloc_dangerous:
8279 BFD_ASSERT (error_message != (char *) NULL);
8280 if (!((*link_info->callbacks->reloc_dangerous)
8281 (link_info, error_message, input_bfd, input_section,
8282 (*parent)->address)))
8283 goto error_return;
8284 break;
8285 case bfd_reloc_overflow:
8286 if (!((*link_info->callbacks->reloc_overflow)
8287 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8288 (*parent)->howto->name, (*parent)->addend,
8289 input_bfd, input_section, (*parent)->address)))
8290 goto error_return;
8291 break;
8292 case bfd_reloc_outofrange:
8293 default:
8294 abort ();
8295 break;
8296 }
8297
8298 }
8299 }
8300 }
8301 if (reloc_vector != NULL)
8302 free (reloc_vector);
8303 return data;
8304
8305 error_return:
8306 if (reloc_vector != NULL)
8307 free (reloc_vector);
8308 return NULL;
8309 }
8310 \f
8311 /* Create a MIPS ELF linker hash table. */
8312
8313 struct bfd_link_hash_table *
8314 _bfd_mips_elf_link_hash_table_create (abfd)
8315 bfd *abfd;
8316 {
8317 struct mips_elf_link_hash_table *ret;
8318 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8319
8320 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8321 if (ret == (struct mips_elf_link_hash_table *) NULL)
8322 return NULL;
8323
8324 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8325 mips_elf_link_hash_newfunc))
8326 {
8327 free (ret);
8328 return NULL;
8329 }
8330
8331 #if 0
8332 /* We no longer use this. */
8333 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8334 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8335 #endif
8336 ret->procedure_count = 0;
8337 ret->compact_rel_size = 0;
8338 ret->use_rld_obj_head = FALSE;
8339 ret->rld_value = 0;
8340 ret->mips16_stubs_seen = FALSE;
8341
8342 return &ret->root.root;
8343 }
8344 \f
8345 /* We need to use a special link routine to handle the .reginfo and
8346 the .mdebug sections. We need to merge all instances of these
8347 sections together, not write them all out sequentially. */
8348
8349 bfd_boolean
8350 _bfd_mips_elf_final_link (abfd, info)
8351 bfd *abfd;
8352 struct bfd_link_info *info;
8353 {
8354 asection **secpp;
8355 asection *o;
8356 struct bfd_link_order *p;
8357 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8358 asection *rtproc_sec;
8359 Elf32_RegInfo reginfo;
8360 struct ecoff_debug_info debug;
8361 const struct ecoff_debug_swap *swap
8362 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8363 HDRR *symhdr = &debug.symbolic_header;
8364 PTR mdebug_handle = NULL;
8365 asection *s;
8366 EXTR esym;
8367 unsigned int i;
8368 bfd_size_type amt;
8369
8370 static const char * const secname[] =
8371 {
8372 ".text", ".init", ".fini", ".data",
8373 ".rodata", ".sdata", ".sbss", ".bss"
8374 };
8375 static const int sc[] =
8376 {
8377 scText, scInit, scFini, scData,
8378 scRData, scSData, scSBss, scBss
8379 };
8380
8381 /* We'd carefully arranged the dynamic symbol indices, and then the
8382 generic size_dynamic_sections renumbered them out from under us.
8383 Rather than trying somehow to prevent the renumbering, just do
8384 the sort again. */
8385 if (elf_hash_table (info)->dynamic_sections_created)
8386 {
8387 bfd *dynobj;
8388 asection *got;
8389 struct mips_got_info *g;
8390
8391 /* When we resort, we must tell mips_elf_sort_hash_table what
8392 the lowest index it may use is. That's the number of section
8393 symbols we're going to add. The generic ELF linker only
8394 adds these symbols when building a shared object. Note that
8395 we count the sections after (possibly) removing the .options
8396 section above. */
8397 if (! mips_elf_sort_hash_table (info, (info->shared
8398 ? bfd_count_sections (abfd) + 1
8399 : 1)))
8400 return FALSE;
8401
8402 /* Make sure we didn't grow the global .got region. */
8403 dynobj = elf_hash_table (info)->dynobj;
8404 got = mips_elf_got_section (dynobj, FALSE);
8405 g = mips_elf_section_data (got)->u.got_info;
8406
8407 if (g->global_gotsym != NULL)
8408 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8409 - g->global_gotsym->dynindx)
8410 <= g->global_gotno);
8411 }
8412
8413 #if 0
8414 /* We want to set the GP value for ld -r. */
8415 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8416 include it, even though we don't process it quite right. (Some
8417 entries are supposed to be merged.) Empirically, we seem to be
8418 better off including it then not. */
8419 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8420 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8421 {
8422 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8423 {
8424 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8425 if (p->type == bfd_indirect_link_order)
8426 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8427 (*secpp)->link_order_head = NULL;
8428 bfd_section_list_remove (abfd, secpp);
8429 --abfd->section_count;
8430
8431 break;
8432 }
8433 }
8434
8435 /* We include .MIPS.options, even though we don't process it quite right.
8436 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8437 to be better off including it than not. */
8438 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8439 {
8440 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8441 {
8442 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8443 if (p->type == bfd_indirect_link_order)
8444 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8445 (*secpp)->link_order_head = NULL;
8446 bfd_section_list_remove (abfd, secpp);
8447 --abfd->section_count;
8448
8449 break;
8450 }
8451 }
8452 #endif
8453
8454 /* Get a value for the GP register. */
8455 if (elf_gp (abfd) == 0)
8456 {
8457 struct bfd_link_hash_entry *h;
8458
8459 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8460 if (h != (struct bfd_link_hash_entry *) NULL
8461 && h->type == bfd_link_hash_defined)
8462 elf_gp (abfd) = (h->u.def.value
8463 + h->u.def.section->output_section->vma
8464 + h->u.def.section->output_offset);
8465 else if (info->relocateable)
8466 {
8467 bfd_vma lo = MINUS_ONE;
8468
8469 /* Find the GP-relative section with the lowest offset. */
8470 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8471 if (o->vma < lo
8472 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8473 lo = o->vma;
8474
8475 /* And calculate GP relative to that. */
8476 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8477 }
8478 else
8479 {
8480 /* If the relocate_section function needs to do a reloc
8481 involving the GP value, it should make a reloc_dangerous
8482 callback to warn that GP is not defined. */
8483 }
8484 }
8485
8486 /* Go through the sections and collect the .reginfo and .mdebug
8487 information. */
8488 reginfo_sec = NULL;
8489 mdebug_sec = NULL;
8490 gptab_data_sec = NULL;
8491 gptab_bss_sec = NULL;
8492 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8493 {
8494 if (strcmp (o->name, ".reginfo") == 0)
8495 {
8496 memset (&reginfo, 0, sizeof reginfo);
8497
8498 /* We have found the .reginfo section in the output file.
8499 Look through all the link_orders comprising it and merge
8500 the information together. */
8501 for (p = o->link_order_head;
8502 p != (struct bfd_link_order *) NULL;
8503 p = p->next)
8504 {
8505 asection *input_section;
8506 bfd *input_bfd;
8507 Elf32_External_RegInfo ext;
8508 Elf32_RegInfo sub;
8509
8510 if (p->type != bfd_indirect_link_order)
8511 {
8512 if (p->type == bfd_data_link_order)
8513 continue;
8514 abort ();
8515 }
8516
8517 input_section = p->u.indirect.section;
8518 input_bfd = input_section->owner;
8519
8520 /* The linker emulation code has probably clobbered the
8521 size to be zero bytes. */
8522 if (input_section->_raw_size == 0)
8523 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8524
8525 if (! bfd_get_section_contents (input_bfd, input_section,
8526 (PTR) &ext,
8527 (file_ptr) 0,
8528 (bfd_size_type) sizeof ext))
8529 return FALSE;
8530
8531 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8532
8533 reginfo.ri_gprmask |= sub.ri_gprmask;
8534 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8535 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8536 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8537 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8538
8539 /* ri_gp_value is set by the function
8540 mips_elf32_section_processing when the section is
8541 finally written out. */
8542
8543 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8544 elf_link_input_bfd ignores this section. */
8545 input_section->flags &= ~SEC_HAS_CONTENTS;
8546 }
8547
8548 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8549 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8550
8551 /* Skip this section later on (I don't think this currently
8552 matters, but someday it might). */
8553 o->link_order_head = (struct bfd_link_order *) NULL;
8554
8555 reginfo_sec = o;
8556 }
8557
8558 if (strcmp (o->name, ".mdebug") == 0)
8559 {
8560 struct extsym_info einfo;
8561 bfd_vma last;
8562
8563 /* We have found the .mdebug section in the output file.
8564 Look through all the link_orders comprising it and merge
8565 the information together. */
8566 symhdr->magic = swap->sym_magic;
8567 /* FIXME: What should the version stamp be? */
8568 symhdr->vstamp = 0;
8569 symhdr->ilineMax = 0;
8570 symhdr->cbLine = 0;
8571 symhdr->idnMax = 0;
8572 symhdr->ipdMax = 0;
8573 symhdr->isymMax = 0;
8574 symhdr->ioptMax = 0;
8575 symhdr->iauxMax = 0;
8576 symhdr->issMax = 0;
8577 symhdr->issExtMax = 0;
8578 symhdr->ifdMax = 0;
8579 symhdr->crfd = 0;
8580 symhdr->iextMax = 0;
8581
8582 /* We accumulate the debugging information itself in the
8583 debug_info structure. */
8584 debug.line = NULL;
8585 debug.external_dnr = NULL;
8586 debug.external_pdr = NULL;
8587 debug.external_sym = NULL;
8588 debug.external_opt = NULL;
8589 debug.external_aux = NULL;
8590 debug.ss = NULL;
8591 debug.ssext = debug.ssext_end = NULL;
8592 debug.external_fdr = NULL;
8593 debug.external_rfd = NULL;
8594 debug.external_ext = debug.external_ext_end = NULL;
8595
8596 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8597 if (mdebug_handle == (PTR) NULL)
8598 return FALSE;
8599
8600 esym.jmptbl = 0;
8601 esym.cobol_main = 0;
8602 esym.weakext = 0;
8603 esym.reserved = 0;
8604 esym.ifd = ifdNil;
8605 esym.asym.iss = issNil;
8606 esym.asym.st = stLocal;
8607 esym.asym.reserved = 0;
8608 esym.asym.index = indexNil;
8609 last = 0;
8610 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8611 {
8612 esym.asym.sc = sc[i];
8613 s = bfd_get_section_by_name (abfd, secname[i]);
8614 if (s != NULL)
8615 {
8616 esym.asym.value = s->vma;
8617 last = s->vma + s->_raw_size;
8618 }
8619 else
8620 esym.asym.value = last;
8621 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8622 secname[i], &esym))
8623 return FALSE;
8624 }
8625
8626 for (p = o->link_order_head;
8627 p != (struct bfd_link_order *) NULL;
8628 p = p->next)
8629 {
8630 asection *input_section;
8631 bfd *input_bfd;
8632 const struct ecoff_debug_swap *input_swap;
8633 struct ecoff_debug_info input_debug;
8634 char *eraw_src;
8635 char *eraw_end;
8636
8637 if (p->type != bfd_indirect_link_order)
8638 {
8639 if (p->type == bfd_data_link_order)
8640 continue;
8641 abort ();
8642 }
8643
8644 input_section = p->u.indirect.section;
8645 input_bfd = input_section->owner;
8646
8647 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8648 || (get_elf_backend_data (input_bfd)
8649 ->elf_backend_ecoff_debug_swap) == NULL)
8650 {
8651 /* I don't know what a non MIPS ELF bfd would be
8652 doing with a .mdebug section, but I don't really
8653 want to deal with it. */
8654 continue;
8655 }
8656
8657 input_swap = (get_elf_backend_data (input_bfd)
8658 ->elf_backend_ecoff_debug_swap);
8659
8660 BFD_ASSERT (p->size == input_section->_raw_size);
8661
8662 /* The ECOFF linking code expects that we have already
8663 read in the debugging information and set up an
8664 ecoff_debug_info structure, so we do that now. */
8665 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8666 &input_debug))
8667 return FALSE;
8668
8669 if (! (bfd_ecoff_debug_accumulate
8670 (mdebug_handle, abfd, &debug, swap, input_bfd,
8671 &input_debug, input_swap, info)))
8672 return FALSE;
8673
8674 /* Loop through the external symbols. For each one with
8675 interesting information, try to find the symbol in
8676 the linker global hash table and save the information
8677 for the output external symbols. */
8678 eraw_src = input_debug.external_ext;
8679 eraw_end = (eraw_src
8680 + (input_debug.symbolic_header.iextMax
8681 * input_swap->external_ext_size));
8682 for (;
8683 eraw_src < eraw_end;
8684 eraw_src += input_swap->external_ext_size)
8685 {
8686 EXTR ext;
8687 const char *name;
8688 struct mips_elf_link_hash_entry *h;
8689
8690 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8691 if (ext.asym.sc == scNil
8692 || ext.asym.sc == scUndefined
8693 || ext.asym.sc == scSUndefined)
8694 continue;
8695
8696 name = input_debug.ssext + ext.asym.iss;
8697 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8698 name, FALSE, FALSE, TRUE);
8699 if (h == NULL || h->esym.ifd != -2)
8700 continue;
8701
8702 if (ext.ifd != -1)
8703 {
8704 BFD_ASSERT (ext.ifd
8705 < input_debug.symbolic_header.ifdMax);
8706 ext.ifd = input_debug.ifdmap[ext.ifd];
8707 }
8708
8709 h->esym = ext;
8710 }
8711
8712 /* Free up the information we just read. */
8713 free (input_debug.line);
8714 free (input_debug.external_dnr);
8715 free (input_debug.external_pdr);
8716 free (input_debug.external_sym);
8717 free (input_debug.external_opt);
8718 free (input_debug.external_aux);
8719 free (input_debug.ss);
8720 free (input_debug.ssext);
8721 free (input_debug.external_fdr);
8722 free (input_debug.external_rfd);
8723 free (input_debug.external_ext);
8724
8725 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8726 elf_link_input_bfd ignores this section. */
8727 input_section->flags &= ~SEC_HAS_CONTENTS;
8728 }
8729
8730 if (SGI_COMPAT (abfd) && info->shared)
8731 {
8732 /* Create .rtproc section. */
8733 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8734 if (rtproc_sec == NULL)
8735 {
8736 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8737 | SEC_LINKER_CREATED | SEC_READONLY);
8738
8739 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8740 if (rtproc_sec == NULL
8741 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8742 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8743 return FALSE;
8744 }
8745
8746 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8747 info, rtproc_sec,
8748 &debug))
8749 return FALSE;
8750 }
8751
8752 /* Build the external symbol information. */
8753 einfo.abfd = abfd;
8754 einfo.info = info;
8755 einfo.debug = &debug;
8756 einfo.swap = swap;
8757 einfo.failed = FALSE;
8758 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8759 mips_elf_output_extsym,
8760 (PTR) &einfo);
8761 if (einfo.failed)
8762 return FALSE;
8763
8764 /* Set the size of the .mdebug section. */
8765 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8766
8767 /* Skip this section later on (I don't think this currently
8768 matters, but someday it might). */
8769 o->link_order_head = (struct bfd_link_order *) NULL;
8770
8771 mdebug_sec = o;
8772 }
8773
8774 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8775 {
8776 const char *subname;
8777 unsigned int c;
8778 Elf32_gptab *tab;
8779 Elf32_External_gptab *ext_tab;
8780 unsigned int j;
8781
8782 /* The .gptab.sdata and .gptab.sbss sections hold
8783 information describing how the small data area would
8784 change depending upon the -G switch. These sections
8785 not used in executables files. */
8786 if (! info->relocateable)
8787 {
8788 for (p = o->link_order_head;
8789 p != (struct bfd_link_order *) NULL;
8790 p = p->next)
8791 {
8792 asection *input_section;
8793
8794 if (p->type != bfd_indirect_link_order)
8795 {
8796 if (p->type == bfd_data_link_order)
8797 continue;
8798 abort ();
8799 }
8800
8801 input_section = p->u.indirect.section;
8802
8803 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8804 elf_link_input_bfd ignores this section. */
8805 input_section->flags &= ~SEC_HAS_CONTENTS;
8806 }
8807
8808 /* Skip this section later on (I don't think this
8809 currently matters, but someday it might). */
8810 o->link_order_head = (struct bfd_link_order *) NULL;
8811
8812 /* Really remove the section. */
8813 for (secpp = &abfd->sections;
8814 *secpp != o;
8815 secpp = &(*secpp)->next)
8816 ;
8817 bfd_section_list_remove (abfd, secpp);
8818 --abfd->section_count;
8819
8820 continue;
8821 }
8822
8823 /* There is one gptab for initialized data, and one for
8824 uninitialized data. */
8825 if (strcmp (o->name, ".gptab.sdata") == 0)
8826 gptab_data_sec = o;
8827 else if (strcmp (o->name, ".gptab.sbss") == 0)
8828 gptab_bss_sec = o;
8829 else
8830 {
8831 (*_bfd_error_handler)
8832 (_("%s: illegal section name `%s'"),
8833 bfd_get_filename (abfd), o->name);
8834 bfd_set_error (bfd_error_nonrepresentable_section);
8835 return FALSE;
8836 }
8837
8838 /* The linker script always combines .gptab.data and
8839 .gptab.sdata into .gptab.sdata, and likewise for
8840 .gptab.bss and .gptab.sbss. It is possible that there is
8841 no .sdata or .sbss section in the output file, in which
8842 case we must change the name of the output section. */
8843 subname = o->name + sizeof ".gptab" - 1;
8844 if (bfd_get_section_by_name (abfd, subname) == NULL)
8845 {
8846 if (o == gptab_data_sec)
8847 o->name = ".gptab.data";
8848 else
8849 o->name = ".gptab.bss";
8850 subname = o->name + sizeof ".gptab" - 1;
8851 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8852 }
8853
8854 /* Set up the first entry. */
8855 c = 1;
8856 amt = c * sizeof (Elf32_gptab);
8857 tab = (Elf32_gptab *) bfd_malloc (amt);
8858 if (tab == NULL)
8859 return FALSE;
8860 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8861 tab[0].gt_header.gt_unused = 0;
8862
8863 /* Combine the input sections. */
8864 for (p = o->link_order_head;
8865 p != (struct bfd_link_order *) NULL;
8866 p = p->next)
8867 {
8868 asection *input_section;
8869 bfd *input_bfd;
8870 bfd_size_type size;
8871 unsigned long last;
8872 bfd_size_type gpentry;
8873
8874 if (p->type != bfd_indirect_link_order)
8875 {
8876 if (p->type == bfd_data_link_order)
8877 continue;
8878 abort ();
8879 }
8880
8881 input_section = p->u.indirect.section;
8882 input_bfd = input_section->owner;
8883
8884 /* Combine the gptab entries for this input section one
8885 by one. We know that the input gptab entries are
8886 sorted by ascending -G value. */
8887 size = bfd_section_size (input_bfd, input_section);
8888 last = 0;
8889 for (gpentry = sizeof (Elf32_External_gptab);
8890 gpentry < size;
8891 gpentry += sizeof (Elf32_External_gptab))
8892 {
8893 Elf32_External_gptab ext_gptab;
8894 Elf32_gptab int_gptab;
8895 unsigned long val;
8896 unsigned long add;
8897 bfd_boolean exact;
8898 unsigned int look;
8899
8900 if (! (bfd_get_section_contents
8901 (input_bfd, input_section, (PTR) &ext_gptab,
8902 (file_ptr) gpentry,
8903 (bfd_size_type) sizeof (Elf32_External_gptab))))
8904 {
8905 free (tab);
8906 return FALSE;
8907 }
8908
8909 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8910 &int_gptab);
8911 val = int_gptab.gt_entry.gt_g_value;
8912 add = int_gptab.gt_entry.gt_bytes - last;
8913
8914 exact = FALSE;
8915 for (look = 1; look < c; look++)
8916 {
8917 if (tab[look].gt_entry.gt_g_value >= val)
8918 tab[look].gt_entry.gt_bytes += add;
8919
8920 if (tab[look].gt_entry.gt_g_value == val)
8921 exact = TRUE;
8922 }
8923
8924 if (! exact)
8925 {
8926 Elf32_gptab *new_tab;
8927 unsigned int max;
8928
8929 /* We need a new table entry. */
8930 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8931 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8932 if (new_tab == NULL)
8933 {
8934 free (tab);
8935 return FALSE;
8936 }
8937 tab = new_tab;
8938 tab[c].gt_entry.gt_g_value = val;
8939 tab[c].gt_entry.gt_bytes = add;
8940
8941 /* Merge in the size for the next smallest -G
8942 value, since that will be implied by this new
8943 value. */
8944 max = 0;
8945 for (look = 1; look < c; look++)
8946 {
8947 if (tab[look].gt_entry.gt_g_value < val
8948 && (max == 0
8949 || (tab[look].gt_entry.gt_g_value
8950 > tab[max].gt_entry.gt_g_value)))
8951 max = look;
8952 }
8953 if (max != 0)
8954 tab[c].gt_entry.gt_bytes +=
8955 tab[max].gt_entry.gt_bytes;
8956
8957 ++c;
8958 }
8959
8960 last = int_gptab.gt_entry.gt_bytes;
8961 }
8962
8963 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8964 elf_link_input_bfd ignores this section. */
8965 input_section->flags &= ~SEC_HAS_CONTENTS;
8966 }
8967
8968 /* The table must be sorted by -G value. */
8969 if (c > 2)
8970 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8971
8972 /* Swap out the table. */
8973 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8974 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8975 if (ext_tab == NULL)
8976 {
8977 free (tab);
8978 return FALSE;
8979 }
8980
8981 for (j = 0; j < c; j++)
8982 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8983 free (tab);
8984
8985 o->_raw_size = c * sizeof (Elf32_External_gptab);
8986 o->contents = (bfd_byte *) ext_tab;
8987
8988 /* Skip this section later on (I don't think this currently
8989 matters, but someday it might). */
8990 o->link_order_head = (struct bfd_link_order *) NULL;
8991 }
8992 }
8993
8994 /* Invoke the regular ELF backend linker to do all the work. */
8995 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8996 return FALSE;
8997
8998 /* Now write out the computed sections. */
8999
9000 if (reginfo_sec != (asection *) NULL)
9001 {
9002 Elf32_External_RegInfo ext;
9003
9004 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9005 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
9006 (file_ptr) 0,
9007 (bfd_size_type) sizeof ext))
9008 return FALSE;
9009 }
9010
9011 if (mdebug_sec != (asection *) NULL)
9012 {
9013 BFD_ASSERT (abfd->output_has_begun);
9014 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9015 swap, info,
9016 mdebug_sec->filepos))
9017 return FALSE;
9018
9019 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9020 }
9021
9022 if (gptab_data_sec != (asection *) NULL)
9023 {
9024 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9025 gptab_data_sec->contents,
9026 (file_ptr) 0,
9027 gptab_data_sec->_raw_size))
9028 return FALSE;
9029 }
9030
9031 if (gptab_bss_sec != (asection *) NULL)
9032 {
9033 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9034 gptab_bss_sec->contents,
9035 (file_ptr) 0,
9036 gptab_bss_sec->_raw_size))
9037 return FALSE;
9038 }
9039
9040 if (SGI_COMPAT (abfd))
9041 {
9042 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9043 if (rtproc_sec != NULL)
9044 {
9045 if (! bfd_set_section_contents (abfd, rtproc_sec,
9046 rtproc_sec->contents,
9047 (file_ptr) 0,
9048 rtproc_sec->_raw_size))
9049 return FALSE;
9050 }
9051 }
9052
9053 return TRUE;
9054 }
9055 \f
9056 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9057
9058 struct mips_mach_extension {
9059 unsigned long extension, base;
9060 };
9061
9062
9063 /* An array describing how BFD machines relate to one another. The entries
9064 are ordered topologically with MIPS I extensions listed last. */
9065
9066 static const struct mips_mach_extension mips_mach_extensions[] = {
9067 /* MIPS64 extensions. */
9068 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9069
9070 /* MIPS V extensions. */
9071 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9072
9073 /* R10000 extensions. */
9074 { bfd_mach_mips12000, bfd_mach_mips10000 },
9075
9076 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9077 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9078 better to allow vr5400 and vr5500 code to be merged anyway, since
9079 many libraries will just use the core ISA. Perhaps we could add
9080 some sort of ASE flag if this ever proves a problem. */
9081 { bfd_mach_mips5500, bfd_mach_mips5400 },
9082 { bfd_mach_mips5400, bfd_mach_mips5000 },
9083
9084 /* MIPS IV extensions. */
9085 { bfd_mach_mips5, bfd_mach_mips8000 },
9086 { bfd_mach_mips10000, bfd_mach_mips8000 },
9087 { bfd_mach_mips5000, bfd_mach_mips8000 },
9088
9089 /* VR4100 extensions. */
9090 { bfd_mach_mips4120, bfd_mach_mips4100 },
9091 { bfd_mach_mips4111, bfd_mach_mips4100 },
9092
9093 /* MIPS III extensions. */
9094 { bfd_mach_mips8000, bfd_mach_mips4000 },
9095 { bfd_mach_mips4650, bfd_mach_mips4000 },
9096 { bfd_mach_mips4600, bfd_mach_mips4000 },
9097 { bfd_mach_mips4400, bfd_mach_mips4000 },
9098 { bfd_mach_mips4300, bfd_mach_mips4000 },
9099 { bfd_mach_mips4100, bfd_mach_mips4000 },
9100 { bfd_mach_mips4010, bfd_mach_mips4000 },
9101
9102 /* MIPS32 extensions. */
9103 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9104
9105 /* MIPS II extensions. */
9106 { bfd_mach_mips4000, bfd_mach_mips6000 },
9107 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9108
9109 /* MIPS I extensions. */
9110 { bfd_mach_mips6000, bfd_mach_mips3000 },
9111 { bfd_mach_mips3900, bfd_mach_mips3000 }
9112 };
9113
9114
9115 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9116
9117 static bfd_boolean
9118 mips_mach_extends_p (base, extension)
9119 unsigned long base, extension;
9120 {
9121 size_t i;
9122
9123 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9124 if (extension == mips_mach_extensions[i].extension)
9125 extension = mips_mach_extensions[i].base;
9126
9127 return extension == base;
9128 }
9129
9130
9131 /* Return true if the given ELF header flags describe a 32-bit binary. */
9132
9133 static bfd_boolean
9134 mips_32bit_flags_p (flags)
9135 flagword flags;
9136 {
9137 return ((flags & EF_MIPS_32BITMODE) != 0
9138 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9139 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9140 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9141 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9142 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9143 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9144 }
9145
9146
9147 /* Merge backend specific data from an object file to the output
9148 object file when linking. */
9149
9150 bfd_boolean
9151 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9152 bfd *ibfd;
9153 bfd *obfd;
9154 {
9155 flagword old_flags;
9156 flagword new_flags;
9157 bfd_boolean ok;
9158 bfd_boolean null_input_bfd = TRUE;
9159 asection *sec;
9160
9161 /* Check if we have the same endianess */
9162 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9163 {
9164 (*_bfd_error_handler)
9165 (_("%s: endianness incompatible with that of the selected emulation"),
9166 bfd_archive_filename (ibfd));
9167 return FALSE;
9168 }
9169
9170 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9171 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9172 return TRUE;
9173
9174 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9175 {
9176 (*_bfd_error_handler)
9177 (_("%s: ABI is incompatible with that of the selected emulation"),
9178 bfd_archive_filename (ibfd));
9179 return FALSE;
9180 }
9181
9182 new_flags = elf_elfheader (ibfd)->e_flags;
9183 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9184 old_flags = elf_elfheader (obfd)->e_flags;
9185
9186 if (! elf_flags_init (obfd))
9187 {
9188 elf_flags_init (obfd) = TRUE;
9189 elf_elfheader (obfd)->e_flags = new_flags;
9190 elf_elfheader (obfd)->e_ident[EI_CLASS]
9191 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9192
9193 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9194 && bfd_get_arch_info (obfd)->the_default)
9195 {
9196 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9197 bfd_get_mach (ibfd)))
9198 return FALSE;
9199 }
9200
9201 return TRUE;
9202 }
9203
9204 /* Check flag compatibility. */
9205
9206 new_flags &= ~EF_MIPS_NOREORDER;
9207 old_flags &= ~EF_MIPS_NOREORDER;
9208
9209 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9210 doesn't seem to matter. */
9211 new_flags &= ~EF_MIPS_XGOT;
9212 old_flags &= ~EF_MIPS_XGOT;
9213
9214 if (new_flags == old_flags)
9215 return TRUE;
9216
9217 /* Check to see if the input BFD actually contains any sections.
9218 If not, its flags may not have been initialised either, but it cannot
9219 actually cause any incompatibility. */
9220 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9221 {
9222 /* Ignore synthetic sections and empty .text, .data and .bss sections
9223 which are automatically generated by gas. */
9224 if (strcmp (sec->name, ".reginfo")
9225 && strcmp (sec->name, ".mdebug")
9226 && ((!strcmp (sec->name, ".text")
9227 || !strcmp (sec->name, ".data")
9228 || !strcmp (sec->name, ".bss"))
9229 && sec->_raw_size != 0))
9230 {
9231 null_input_bfd = FALSE;
9232 break;
9233 }
9234 }
9235 if (null_input_bfd)
9236 return TRUE;
9237
9238 ok = TRUE;
9239
9240 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9241 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9242 {
9243 (*_bfd_error_handler)
9244 (_("%s: warning: linking PIC files with non-PIC files"),
9245 bfd_archive_filename (ibfd));
9246 ok = TRUE;
9247 }
9248
9249 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9250 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9251 if (! (new_flags & EF_MIPS_PIC))
9252 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9253
9254 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9255 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9256
9257 /* Compare the ISAs. */
9258 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9259 {
9260 (*_bfd_error_handler)
9261 (_("%s: linking 32-bit code with 64-bit code"),
9262 bfd_archive_filename (ibfd));
9263 ok = FALSE;
9264 }
9265 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9266 {
9267 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9268 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9269 {
9270 /* Copy the architecture info from IBFD to OBFD. Also copy
9271 the 32-bit flag (if set) so that we continue to recognise
9272 OBFD as a 32-bit binary. */
9273 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9274 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9275 elf_elfheader (obfd)->e_flags
9276 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9277
9278 /* Copy across the ABI flags if OBFD doesn't use them
9279 and if that was what caused us to treat IBFD as 32-bit. */
9280 if ((old_flags & EF_MIPS_ABI) == 0
9281 && mips_32bit_flags_p (new_flags)
9282 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9283 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9284 }
9285 else
9286 {
9287 /* The ISAs aren't compatible. */
9288 (*_bfd_error_handler)
9289 (_("%s: linking %s module with previous %s modules"),
9290 bfd_archive_filename (ibfd),
9291 bfd_printable_name (ibfd),
9292 bfd_printable_name (obfd));
9293 ok = FALSE;
9294 }
9295 }
9296
9297 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9298 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9299
9300 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9301 does set EI_CLASS differently from any 32-bit ABI. */
9302 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9303 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9304 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9305 {
9306 /* Only error if both are set (to different values). */
9307 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9308 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9309 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9310 {
9311 (*_bfd_error_handler)
9312 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9313 bfd_archive_filename (ibfd),
9314 elf_mips_abi_name (ibfd),
9315 elf_mips_abi_name (obfd));
9316 ok = FALSE;
9317 }
9318 new_flags &= ~EF_MIPS_ABI;
9319 old_flags &= ~EF_MIPS_ABI;
9320 }
9321
9322 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9323 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9324 {
9325 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9326
9327 new_flags &= ~ EF_MIPS_ARCH_ASE;
9328 old_flags &= ~ EF_MIPS_ARCH_ASE;
9329 }
9330
9331 /* Warn about any other mismatches */
9332 if (new_flags != old_flags)
9333 {
9334 (*_bfd_error_handler)
9335 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9336 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9337 (unsigned long) old_flags);
9338 ok = FALSE;
9339 }
9340
9341 if (! ok)
9342 {
9343 bfd_set_error (bfd_error_bad_value);
9344 return FALSE;
9345 }
9346
9347 return TRUE;
9348 }
9349
9350 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9351
9352 bfd_boolean
9353 _bfd_mips_elf_set_private_flags (abfd, flags)
9354 bfd *abfd;
9355 flagword flags;
9356 {
9357 BFD_ASSERT (!elf_flags_init (abfd)
9358 || elf_elfheader (abfd)->e_flags == flags);
9359
9360 elf_elfheader (abfd)->e_flags = flags;
9361 elf_flags_init (abfd) = TRUE;
9362 return TRUE;
9363 }
9364
9365 bfd_boolean
9366 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9367 bfd *abfd;
9368 PTR ptr;
9369 {
9370 FILE *file = (FILE *) ptr;
9371
9372 BFD_ASSERT (abfd != NULL && ptr != NULL);
9373
9374 /* Print normal ELF private data. */
9375 _bfd_elf_print_private_bfd_data (abfd, ptr);
9376
9377 /* xgettext:c-format */
9378 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9379
9380 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9381 fprintf (file, _(" [abi=O32]"));
9382 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9383 fprintf (file, _(" [abi=O64]"));
9384 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9385 fprintf (file, _(" [abi=EABI32]"));
9386 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9387 fprintf (file, _(" [abi=EABI64]"));
9388 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9389 fprintf (file, _(" [abi unknown]"));
9390 else if (ABI_N32_P (abfd))
9391 fprintf (file, _(" [abi=N32]"));
9392 else if (ABI_64_P (abfd))
9393 fprintf (file, _(" [abi=64]"));
9394 else
9395 fprintf (file, _(" [no abi set]"));
9396
9397 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9398 fprintf (file, _(" [mips1]"));
9399 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9400 fprintf (file, _(" [mips2]"));
9401 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9402 fprintf (file, _(" [mips3]"));
9403 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9404 fprintf (file, _(" [mips4]"));
9405 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9406 fprintf (file, _(" [mips5]"));
9407 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9408 fprintf (file, _(" [mips32]"));
9409 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9410 fprintf (file, _(" [mips64]"));
9411 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9412 fprintf (file, _(" [mips32r2]"));
9413 else
9414 fprintf (file, _(" [unknown ISA]"));
9415
9416 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9417 fprintf (file, _(" [mdmx]"));
9418
9419 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9420 fprintf (file, _(" [mips16]"));
9421
9422 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9423 fprintf (file, _(" [32bitmode]"));
9424 else
9425 fprintf (file, _(" [not 32bitmode]"));
9426
9427 fputc ('\n', file);
9428
9429 return TRUE;
9430 }