MIPS: Fix the encoding of immediates with microMIPS JALX
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system. */
2094
2095 static inline bfd_boolean
2096 mips16_reloc_p (int r_type)
2097 {
2098 switch (r_type)
2099 {
2100 case R_MIPS16_26:
2101 case R_MIPS16_GPREL:
2102 case R_MIPS16_GOT16:
2103 case R_MIPS16_CALL16:
2104 case R_MIPS16_HI16:
2105 case R_MIPS16_LO16:
2106 case R_MIPS16_TLS_GD:
2107 case R_MIPS16_TLS_LDM:
2108 case R_MIPS16_TLS_DTPREL_HI16:
2109 case R_MIPS16_TLS_DTPREL_LO16:
2110 case R_MIPS16_TLS_GOTTPREL:
2111 case R_MIPS16_TLS_TPREL_HI16:
2112 case R_MIPS16_TLS_TPREL_LO16:
2113 return TRUE;
2114
2115 default:
2116 return FALSE;
2117 }
2118 }
2119
2120 /* Check if a microMIPS reloc. */
2121
2122 static inline bfd_boolean
2123 micromips_reloc_p (unsigned int r_type)
2124 {
2125 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2126 }
2127
2128 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2129 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2130 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2131
2132 static inline bfd_boolean
2133 micromips_reloc_shuffle_p (unsigned int r_type)
2134 {
2135 return (micromips_reloc_p (r_type)
2136 && r_type != R_MICROMIPS_PC7_S1
2137 && r_type != R_MICROMIPS_PC10_S1);
2138 }
2139
2140 static inline bfd_boolean
2141 got16_reloc_p (int r_type)
2142 {
2143 return (r_type == R_MIPS_GOT16
2144 || r_type == R_MIPS16_GOT16
2145 || r_type == R_MICROMIPS_GOT16);
2146 }
2147
2148 static inline bfd_boolean
2149 call16_reloc_p (int r_type)
2150 {
2151 return (r_type == R_MIPS_CALL16
2152 || r_type == R_MIPS16_CALL16
2153 || r_type == R_MICROMIPS_CALL16);
2154 }
2155
2156 static inline bfd_boolean
2157 got_disp_reloc_p (unsigned int r_type)
2158 {
2159 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2160 }
2161
2162 static inline bfd_boolean
2163 got_page_reloc_p (unsigned int r_type)
2164 {
2165 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2166 }
2167
2168 static inline bfd_boolean
2169 got_lo16_reloc_p (unsigned int r_type)
2170 {
2171 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2172 }
2173
2174 static inline bfd_boolean
2175 call_hi16_reloc_p (unsigned int r_type)
2176 {
2177 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2178 }
2179
2180 static inline bfd_boolean
2181 call_lo16_reloc_p (unsigned int r_type)
2182 {
2183 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2184 }
2185
2186 static inline bfd_boolean
2187 hi16_reloc_p (int r_type)
2188 {
2189 return (r_type == R_MIPS_HI16
2190 || r_type == R_MIPS16_HI16
2191 || r_type == R_MICROMIPS_HI16
2192 || r_type == R_MIPS_PCHI16);
2193 }
2194
2195 static inline bfd_boolean
2196 lo16_reloc_p (int r_type)
2197 {
2198 return (r_type == R_MIPS_LO16
2199 || r_type == R_MIPS16_LO16
2200 || r_type == R_MICROMIPS_LO16
2201 || r_type == R_MIPS_PCLO16);
2202 }
2203
2204 static inline bfd_boolean
2205 mips16_call_reloc_p (int r_type)
2206 {
2207 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2208 }
2209
2210 static inline bfd_boolean
2211 jal_reloc_p (int r_type)
2212 {
2213 return (r_type == R_MIPS_26
2214 || r_type == R_MIPS16_26
2215 || r_type == R_MICROMIPS_26_S1);
2216 }
2217
2218 static inline bfd_boolean
2219 aligned_pcrel_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_PC18_S3
2222 || r_type == R_MIPS_PC19_S2);
2223 }
2224
2225 static inline bfd_boolean
2226 micromips_branch_reloc_p (int r_type)
2227 {
2228 return (r_type == R_MICROMIPS_26_S1
2229 || r_type == R_MICROMIPS_PC16_S1
2230 || r_type == R_MICROMIPS_PC10_S1
2231 || r_type == R_MICROMIPS_PC7_S1);
2232 }
2233
2234 static inline bfd_boolean
2235 tls_gd_reloc_p (unsigned int r_type)
2236 {
2237 return (r_type == R_MIPS_TLS_GD
2238 || r_type == R_MIPS16_TLS_GD
2239 || r_type == R_MICROMIPS_TLS_GD);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_ldm_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_LDM
2246 || r_type == R_MIPS16_TLS_LDM
2247 || r_type == R_MICROMIPS_TLS_LDM);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_gottprel_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_GOTTPREL
2254 || r_type == R_MIPS16_TLS_GOTTPREL
2255 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2256 }
2257
2258 void
2259 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2260 bfd_boolean jal_shuffle, bfd_byte *data)
2261 {
2262 bfd_vma first, second, val;
2263
2264 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2265 return;
2266
2267 /* Pick up the first and second halfwords of the instruction. */
2268 first = bfd_get_16 (abfd, data);
2269 second = bfd_get_16 (abfd, data + 2);
2270 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2271 val = first << 16 | second;
2272 else if (r_type != R_MIPS16_26)
2273 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2274 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2275 else
2276 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2277 | ((first & 0x1f) << 21) | second);
2278 bfd_put_32 (abfd, val, data);
2279 }
2280
2281 void
2282 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2283 bfd_boolean jal_shuffle, bfd_byte *data)
2284 {
2285 bfd_vma first, second, val;
2286
2287 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2288 return;
2289
2290 val = bfd_get_32 (abfd, data);
2291 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2292 {
2293 second = val & 0xffff;
2294 first = val >> 16;
2295 }
2296 else if (r_type != R_MIPS16_26)
2297 {
2298 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2299 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2300 }
2301 else
2302 {
2303 second = val & 0xffff;
2304 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2305 | ((val >> 21) & 0x1f);
2306 }
2307 bfd_put_16 (abfd, second, data + 2);
2308 bfd_put_16 (abfd, first, data);
2309 }
2310
2311 bfd_reloc_status_type
2312 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2313 arelent *reloc_entry, asection *input_section,
2314 bfd_boolean relocatable, void *data, bfd_vma gp)
2315 {
2316 bfd_vma relocation;
2317 bfd_signed_vma val;
2318 bfd_reloc_status_type status;
2319
2320 if (bfd_is_com_section (symbol->section))
2321 relocation = 0;
2322 else
2323 relocation = symbol->value;
2324
2325 relocation += symbol->section->output_section->vma;
2326 relocation += symbol->section->output_offset;
2327
2328 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2329 return bfd_reloc_outofrange;
2330
2331 /* Set val to the offset into the section or symbol. */
2332 val = reloc_entry->addend;
2333
2334 _bfd_mips_elf_sign_extend (val, 16);
2335
2336 /* Adjust val for the final section location and GP value. If we
2337 are producing relocatable output, we don't want to do this for
2338 an external symbol. */
2339 if (! relocatable
2340 || (symbol->flags & BSF_SECTION_SYM) != 0)
2341 val += relocation - gp;
2342
2343 if (reloc_entry->howto->partial_inplace)
2344 {
2345 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2346 (bfd_byte *) data
2347 + reloc_entry->address);
2348 if (status != bfd_reloc_ok)
2349 return status;
2350 }
2351 else
2352 reloc_entry->addend = val;
2353
2354 if (relocatable)
2355 reloc_entry->address += input_section->output_offset;
2356
2357 return bfd_reloc_ok;
2358 }
2359
2360 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2361 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2362 that contains the relocation field and DATA points to the start of
2363 INPUT_SECTION. */
2364
2365 struct mips_hi16
2366 {
2367 struct mips_hi16 *next;
2368 bfd_byte *data;
2369 asection *input_section;
2370 arelent rel;
2371 };
2372
2373 /* FIXME: This should not be a static variable. */
2374
2375 static struct mips_hi16 *mips_hi16_list;
2376
2377 /* A howto special_function for REL *HI16 relocations. We can only
2378 calculate the correct value once we've seen the partnering
2379 *LO16 relocation, so just save the information for later.
2380
2381 The ABI requires that the *LO16 immediately follow the *HI16.
2382 However, as a GNU extension, we permit an arbitrary number of
2383 *HI16s to be associated with a single *LO16. This significantly
2384 simplies the relocation handling in gcc. */
2385
2386 bfd_reloc_status_type
2387 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2388 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2389 asection *input_section, bfd *output_bfd,
2390 char **error_message ATTRIBUTE_UNUSED)
2391 {
2392 struct mips_hi16 *n;
2393
2394 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2395 return bfd_reloc_outofrange;
2396
2397 n = bfd_malloc (sizeof *n);
2398 if (n == NULL)
2399 return bfd_reloc_outofrange;
2400
2401 n->next = mips_hi16_list;
2402 n->data = data;
2403 n->input_section = input_section;
2404 n->rel = *reloc_entry;
2405 mips_hi16_list = n;
2406
2407 if (output_bfd != NULL)
2408 reloc_entry->address += input_section->output_offset;
2409
2410 return bfd_reloc_ok;
2411 }
2412
2413 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2414 like any other 16-bit relocation when applied to global symbols, but is
2415 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2416
2417 bfd_reloc_status_type
2418 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2419 void *data, asection *input_section,
2420 bfd *output_bfd, char **error_message)
2421 {
2422 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2423 || bfd_is_und_section (bfd_get_section (symbol))
2424 || bfd_is_com_section (bfd_get_section (symbol)))
2425 /* The relocation is against a global symbol. */
2426 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2427 input_section, output_bfd,
2428 error_message);
2429
2430 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2431 input_section, output_bfd, error_message);
2432 }
2433
2434 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2435 is a straightforward 16 bit inplace relocation, but we must deal with
2436 any partnering high-part relocations as well. */
2437
2438 bfd_reloc_status_type
2439 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2440 void *data, asection *input_section,
2441 bfd *output_bfd, char **error_message)
2442 {
2443 bfd_vma vallo;
2444 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2445
2446 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2447 return bfd_reloc_outofrange;
2448
2449 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2450 location);
2451 vallo = bfd_get_32 (abfd, location);
2452 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2453 location);
2454
2455 while (mips_hi16_list != NULL)
2456 {
2457 bfd_reloc_status_type ret;
2458 struct mips_hi16 *hi;
2459
2460 hi = mips_hi16_list;
2461
2462 /* R_MIPS*_GOT16 relocations are something of a special case. We
2463 want to install the addend in the same way as for a R_MIPS*_HI16
2464 relocation (with a rightshift of 16). However, since GOT16
2465 relocations can also be used with global symbols, their howto
2466 has a rightshift of 0. */
2467 if (hi->rel.howto->type == R_MIPS_GOT16)
2468 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2469 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2470 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2471 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2473
2474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2475 carry or borrow will induce a change of +1 or -1 in the high part. */
2476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2477
2478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2479 hi->input_section, output_bfd,
2480 error_message);
2481 if (ret != bfd_reloc_ok)
2482 return ret;
2483
2484 mips_hi16_list = hi->next;
2485 free (hi);
2486 }
2487
2488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2489 input_section, output_bfd,
2490 error_message);
2491 }
2492
2493 /* A generic howto special_function. This calculates and installs the
2494 relocation itself, thus avoiding the oft-discussed problems in
2495 bfd_perform_relocation and bfd_install_relocation. */
2496
2497 bfd_reloc_status_type
2498 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2500 asection *input_section, bfd *output_bfd,
2501 char **error_message ATTRIBUTE_UNUSED)
2502 {
2503 bfd_signed_vma val;
2504 bfd_reloc_status_type status;
2505 bfd_boolean relocatable;
2506
2507 relocatable = (output_bfd != NULL);
2508
2509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2510 return bfd_reloc_outofrange;
2511
2512 /* Build up the field adjustment in VAL. */
2513 val = 0;
2514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2515 {
2516 /* Either we're calculating the final field value or we have a
2517 relocation against a section symbol. Add in the section's
2518 offset or address. */
2519 val += symbol->section->output_section->vma;
2520 val += symbol->section->output_offset;
2521 }
2522
2523 if (!relocatable)
2524 {
2525 /* We're calculating the final field value. Add in the symbol's value
2526 and, if pc-relative, subtract the address of the field itself. */
2527 val += symbol->value;
2528 if (reloc_entry->howto->pc_relative)
2529 {
2530 val -= input_section->output_section->vma;
2531 val -= input_section->output_offset;
2532 val -= reloc_entry->address;
2533 }
2534 }
2535
2536 /* VAL is now the final adjustment. If we're keeping this relocation
2537 in the output file, and if the relocation uses a separate addend,
2538 we just need to add VAL to that addend. Otherwise we need to add
2539 VAL to the relocation field itself. */
2540 if (relocatable && !reloc_entry->howto->partial_inplace)
2541 reloc_entry->addend += val;
2542 else
2543 {
2544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2545
2546 /* Add in the separate addend, if any. */
2547 val += reloc_entry->addend;
2548
2549 /* Add VAL to the relocation field. */
2550 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2551 location);
2552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2553 location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
2556
2557 if (status != bfd_reloc_ok)
2558 return status;
2559 }
2560
2561 if (relocatable)
2562 reloc_entry->address += input_section->output_offset;
2563
2564 return bfd_reloc_ok;
2565 }
2566 \f
2567 /* Swap an entry in a .gptab section. Note that these routines rely
2568 on the equivalence of the two elements of the union. */
2569
2570 static void
2571 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2572 Elf32_gptab *in)
2573 {
2574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2576 }
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2580 Elf32_External_gptab *ex)
2581 {
2582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2588 Elf32_External_compact_rel *ex)
2589 {
2590 H_PUT_32 (abfd, in->id1, ex->id1);
2591 H_PUT_32 (abfd, in->num, ex->num);
2592 H_PUT_32 (abfd, in->id2, ex->id2);
2593 H_PUT_32 (abfd, in->offset, ex->offset);
2594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2596 }
2597
2598 static void
2599 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2600 Elf32_External_crinfo *ex)
2601 {
2602 unsigned long l;
2603
2604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2608 H_PUT_32 (abfd, l, ex->info);
2609 H_PUT_32 (abfd, in->konst, ex->konst);
2610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2611 }
2612 \f
2613 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2614 routines swap this structure in and out. They are used outside of
2615 BFD, so they are globally visible. */
2616
2617 void
2618 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2619 Elf32_RegInfo *in)
2620 {
2621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2627 }
2628
2629 void
2630 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2631 Elf32_External_RegInfo *ex)
2632 {
2633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2639 }
2640
2641 /* In the 64 bit ABI, the .MIPS.options section holds register
2642 information in an Elf64_Reginfo structure. These routines swap
2643 them in and out. They are globally visible because they are used
2644 outside of BFD. These routines are here so that gas can call them
2645 without worrying about whether the 64 bit ABI has been included. */
2646
2647 void
2648 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2649 Elf64_Internal_RegInfo *in)
2650 {
2651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2658 }
2659
2660 void
2661 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2662 Elf64_External_RegInfo *ex)
2663 {
2664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2671 }
2672
2673 /* Swap in an options header. */
2674
2675 void
2676 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2677 Elf_Internal_Options *in)
2678 {
2679 in->kind = H_GET_8 (abfd, ex->kind);
2680 in->size = H_GET_8 (abfd, ex->size);
2681 in->section = H_GET_16 (abfd, ex->section);
2682 in->info = H_GET_32 (abfd, ex->info);
2683 }
2684
2685 /* Swap out an options header. */
2686
2687 void
2688 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2689 Elf_External_Options *ex)
2690 {
2691 H_PUT_8 (abfd, in->kind, ex->kind);
2692 H_PUT_8 (abfd, in->size, ex->size);
2693 H_PUT_16 (abfd, in->section, ex->section);
2694 H_PUT_32 (abfd, in->info, ex->info);
2695 }
2696
2697 /* Swap in an abiflags structure. */
2698
2699 void
2700 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2701 const Elf_External_ABIFlags_v0 *ex,
2702 Elf_Internal_ABIFlags_v0 *in)
2703 {
2704 in->version = H_GET_16 (abfd, ex->version);
2705 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2706 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2707 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2708 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2709 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2710 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2711 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2712 in->ases = H_GET_32 (abfd, ex->ases);
2713 in->flags1 = H_GET_32 (abfd, ex->flags1);
2714 in->flags2 = H_GET_32 (abfd, ex->flags2);
2715 }
2716
2717 /* Swap out an abiflags structure. */
2718
2719 void
2720 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2721 const Elf_Internal_ABIFlags_v0 *in,
2722 Elf_External_ABIFlags_v0 *ex)
2723 {
2724 H_PUT_16 (abfd, in->version, ex->version);
2725 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2726 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2727 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2728 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2729 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2730 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2731 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2732 H_PUT_32 (abfd, in->ases, ex->ases);
2733 H_PUT_32 (abfd, in->flags1, ex->flags1);
2734 H_PUT_32 (abfd, in->flags2, ex->flags2);
2735 }
2736 \f
2737 /* This function is called via qsort() to sort the dynamic relocation
2738 entries by increasing r_symndx value. */
2739
2740 static int
2741 sort_dynamic_relocs (const void *arg1, const void *arg2)
2742 {
2743 Elf_Internal_Rela int_reloc1;
2744 Elf_Internal_Rela int_reloc2;
2745 int diff;
2746
2747 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2748 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2749
2750 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2751 if (diff != 0)
2752 return diff;
2753
2754 if (int_reloc1.r_offset < int_reloc2.r_offset)
2755 return -1;
2756 if (int_reloc1.r_offset > int_reloc2.r_offset)
2757 return 1;
2758 return 0;
2759 }
2760
2761 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2762
2763 static int
2764 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2765 const void *arg2 ATTRIBUTE_UNUSED)
2766 {
2767 #ifdef BFD64
2768 Elf_Internal_Rela int_reloc1[3];
2769 Elf_Internal_Rela int_reloc2[3];
2770
2771 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2772 (reldyn_sorting_bfd, arg1, int_reloc1);
2773 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2774 (reldyn_sorting_bfd, arg2, int_reloc2);
2775
2776 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2777 return -1;
2778 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2779 return 1;
2780
2781 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2782 return -1;
2783 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2784 return 1;
2785 return 0;
2786 #else
2787 abort ();
2788 #endif
2789 }
2790
2791
2792 /* This routine is used to write out ECOFF debugging external symbol
2793 information. It is called via mips_elf_link_hash_traverse. The
2794 ECOFF external symbol information must match the ELF external
2795 symbol information. Unfortunately, at this point we don't know
2796 whether a symbol is required by reloc information, so the two
2797 tables may wind up being different. We must sort out the external
2798 symbol information before we can set the final size of the .mdebug
2799 section, and we must set the size of the .mdebug section before we
2800 can relocate any sections, and we can't know which symbols are
2801 required by relocation until we relocate the sections.
2802 Fortunately, it is relatively unlikely that any symbol will be
2803 stripped but required by a reloc. In particular, it can not happen
2804 when generating a final executable. */
2805
2806 static bfd_boolean
2807 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2808 {
2809 struct extsym_info *einfo = data;
2810 bfd_boolean strip;
2811 asection *sec, *output_section;
2812
2813 if (h->root.indx == -2)
2814 strip = FALSE;
2815 else if ((h->root.def_dynamic
2816 || h->root.ref_dynamic
2817 || h->root.type == bfd_link_hash_new)
2818 && !h->root.def_regular
2819 && !h->root.ref_regular)
2820 strip = TRUE;
2821 else if (einfo->info->strip == strip_all
2822 || (einfo->info->strip == strip_some
2823 && bfd_hash_lookup (einfo->info->keep_hash,
2824 h->root.root.root.string,
2825 FALSE, FALSE) == NULL))
2826 strip = TRUE;
2827 else
2828 strip = FALSE;
2829
2830 if (strip)
2831 return TRUE;
2832
2833 if (h->esym.ifd == -2)
2834 {
2835 h->esym.jmptbl = 0;
2836 h->esym.cobol_main = 0;
2837 h->esym.weakext = 0;
2838 h->esym.reserved = 0;
2839 h->esym.ifd = ifdNil;
2840 h->esym.asym.value = 0;
2841 h->esym.asym.st = stGlobal;
2842
2843 if (h->root.root.type == bfd_link_hash_undefined
2844 || h->root.root.type == bfd_link_hash_undefweak)
2845 {
2846 const char *name;
2847
2848 /* Use undefined class. Also, set class and type for some
2849 special symbols. */
2850 name = h->root.root.root.string;
2851 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2852 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2853 {
2854 h->esym.asym.sc = scData;
2855 h->esym.asym.st = stLabel;
2856 h->esym.asym.value = 0;
2857 }
2858 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2859 {
2860 h->esym.asym.sc = scAbs;
2861 h->esym.asym.st = stLabel;
2862 h->esym.asym.value =
2863 mips_elf_hash_table (einfo->info)->procedure_count;
2864 }
2865 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2866 {
2867 h->esym.asym.sc = scAbs;
2868 h->esym.asym.st = stLabel;
2869 h->esym.asym.value = elf_gp (einfo->abfd);
2870 }
2871 else
2872 h->esym.asym.sc = scUndefined;
2873 }
2874 else if (h->root.root.type != bfd_link_hash_defined
2875 && h->root.root.type != bfd_link_hash_defweak)
2876 h->esym.asym.sc = scAbs;
2877 else
2878 {
2879 const char *name;
2880
2881 sec = h->root.root.u.def.section;
2882 output_section = sec->output_section;
2883
2884 /* When making a shared library and symbol h is the one from
2885 the another shared library, OUTPUT_SECTION may be null. */
2886 if (output_section == NULL)
2887 h->esym.asym.sc = scUndefined;
2888 else
2889 {
2890 name = bfd_section_name (output_section->owner, output_section);
2891
2892 if (strcmp (name, ".text") == 0)
2893 h->esym.asym.sc = scText;
2894 else if (strcmp (name, ".data") == 0)
2895 h->esym.asym.sc = scData;
2896 else if (strcmp (name, ".sdata") == 0)
2897 h->esym.asym.sc = scSData;
2898 else if (strcmp (name, ".rodata") == 0
2899 || strcmp (name, ".rdata") == 0)
2900 h->esym.asym.sc = scRData;
2901 else if (strcmp (name, ".bss") == 0)
2902 h->esym.asym.sc = scBss;
2903 else if (strcmp (name, ".sbss") == 0)
2904 h->esym.asym.sc = scSBss;
2905 else if (strcmp (name, ".init") == 0)
2906 h->esym.asym.sc = scInit;
2907 else if (strcmp (name, ".fini") == 0)
2908 h->esym.asym.sc = scFini;
2909 else
2910 h->esym.asym.sc = scAbs;
2911 }
2912 }
2913
2914 h->esym.asym.reserved = 0;
2915 h->esym.asym.index = indexNil;
2916 }
2917
2918 if (h->root.root.type == bfd_link_hash_common)
2919 h->esym.asym.value = h->root.root.u.c.size;
2920 else if (h->root.root.type == bfd_link_hash_defined
2921 || h->root.root.type == bfd_link_hash_defweak)
2922 {
2923 if (h->esym.asym.sc == scCommon)
2924 h->esym.asym.sc = scBss;
2925 else if (h->esym.asym.sc == scSCommon)
2926 h->esym.asym.sc = scSBss;
2927
2928 sec = h->root.root.u.def.section;
2929 output_section = sec->output_section;
2930 if (output_section != NULL)
2931 h->esym.asym.value = (h->root.root.u.def.value
2932 + sec->output_offset
2933 + output_section->vma);
2934 else
2935 h->esym.asym.value = 0;
2936 }
2937 else
2938 {
2939 struct mips_elf_link_hash_entry *hd = h;
2940
2941 while (hd->root.root.type == bfd_link_hash_indirect)
2942 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2943
2944 if (hd->needs_lazy_stub)
2945 {
2946 BFD_ASSERT (hd->root.plt.plist != NULL);
2947 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2948 /* Set type and value for a symbol with a function stub. */
2949 h->esym.asym.st = stProc;
2950 sec = hd->root.root.u.def.section;
2951 if (sec == NULL)
2952 h->esym.asym.value = 0;
2953 else
2954 {
2955 output_section = sec->output_section;
2956 if (output_section != NULL)
2957 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2958 + sec->output_offset
2959 + output_section->vma);
2960 else
2961 h->esym.asym.value = 0;
2962 }
2963 }
2964 }
2965
2966 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2967 h->root.root.root.string,
2968 &h->esym))
2969 {
2970 einfo->failed = TRUE;
2971 return FALSE;
2972 }
2973
2974 return TRUE;
2975 }
2976
2977 /* A comparison routine used to sort .gptab entries. */
2978
2979 static int
2980 gptab_compare (const void *p1, const void *p2)
2981 {
2982 const Elf32_gptab *a1 = p1;
2983 const Elf32_gptab *a2 = p2;
2984
2985 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2986 }
2987 \f
2988 /* Functions to manage the got entry hash table. */
2989
2990 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2991 hash number. */
2992
2993 static INLINE hashval_t
2994 mips_elf_hash_bfd_vma (bfd_vma addr)
2995 {
2996 #ifdef BFD64
2997 return addr + (addr >> 32);
2998 #else
2999 return addr;
3000 #endif
3001 }
3002
3003 static hashval_t
3004 mips_elf_got_entry_hash (const void *entry_)
3005 {
3006 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3007
3008 return (entry->symndx
3009 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3010 + (entry->tls_type == GOT_TLS_LDM ? 0
3011 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3012 : entry->symndx >= 0 ? (entry->abfd->id
3013 + mips_elf_hash_bfd_vma (entry->d.addend))
3014 : entry->d.h->root.root.root.hash));
3015 }
3016
3017 static int
3018 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3019 {
3020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3022
3023 return (e1->symndx == e2->symndx
3024 && e1->tls_type == e2->tls_type
3025 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3026 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3027 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3028 && e1->d.addend == e2->d.addend)
3029 : e2->abfd && e1->d.h == e2->d.h));
3030 }
3031
3032 static hashval_t
3033 mips_got_page_ref_hash (const void *ref_)
3034 {
3035 const struct mips_got_page_ref *ref;
3036
3037 ref = (const struct mips_got_page_ref *) ref_;
3038 return ((ref->symndx >= 0
3039 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3040 : ref->u.h->root.root.root.hash)
3041 + mips_elf_hash_bfd_vma (ref->addend));
3042 }
3043
3044 static int
3045 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3046 {
3047 const struct mips_got_page_ref *ref1, *ref2;
3048
3049 ref1 = (const struct mips_got_page_ref *) ref1_;
3050 ref2 = (const struct mips_got_page_ref *) ref2_;
3051 return (ref1->symndx == ref2->symndx
3052 && (ref1->symndx < 0
3053 ? ref1->u.h == ref2->u.h
3054 : ref1->u.abfd == ref2->u.abfd)
3055 && ref1->addend == ref2->addend);
3056 }
3057
3058 static hashval_t
3059 mips_got_page_entry_hash (const void *entry_)
3060 {
3061 const struct mips_got_page_entry *entry;
3062
3063 entry = (const struct mips_got_page_entry *) entry_;
3064 return entry->sec->id;
3065 }
3066
3067 static int
3068 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3069 {
3070 const struct mips_got_page_entry *entry1, *entry2;
3071
3072 entry1 = (const struct mips_got_page_entry *) entry1_;
3073 entry2 = (const struct mips_got_page_entry *) entry2_;
3074 return entry1->sec == entry2->sec;
3075 }
3076 \f
3077 /* Create and return a new mips_got_info structure. */
3078
3079 static struct mips_got_info *
3080 mips_elf_create_got_info (bfd *abfd)
3081 {
3082 struct mips_got_info *g;
3083
3084 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3085 if (g == NULL)
3086 return NULL;
3087
3088 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3089 mips_elf_got_entry_eq, NULL);
3090 if (g->got_entries == NULL)
3091 return NULL;
3092
3093 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3094 mips_got_page_ref_eq, NULL);
3095 if (g->got_page_refs == NULL)
3096 return NULL;
3097
3098 return g;
3099 }
3100
3101 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3102 CREATE_P and if ABFD doesn't already have a GOT. */
3103
3104 static struct mips_got_info *
3105 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3106 {
3107 struct mips_elf_obj_tdata *tdata;
3108
3109 if (!is_mips_elf (abfd))
3110 return NULL;
3111
3112 tdata = mips_elf_tdata (abfd);
3113 if (!tdata->got && create_p)
3114 tdata->got = mips_elf_create_got_info (abfd);
3115 return tdata->got;
3116 }
3117
3118 /* Record that ABFD should use output GOT G. */
3119
3120 static void
3121 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3122 {
3123 struct mips_elf_obj_tdata *tdata;
3124
3125 BFD_ASSERT (is_mips_elf (abfd));
3126 tdata = mips_elf_tdata (abfd);
3127 if (tdata->got)
3128 {
3129 /* The GOT structure itself and the hash table entries are
3130 allocated to a bfd, but the hash tables aren't. */
3131 htab_delete (tdata->got->got_entries);
3132 htab_delete (tdata->got->got_page_refs);
3133 if (tdata->got->got_page_entries)
3134 htab_delete (tdata->got->got_page_entries);
3135 }
3136 tdata->got = g;
3137 }
3138
3139 /* Return the dynamic relocation section. If it doesn't exist, try to
3140 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3141 if creation fails. */
3142
3143 static asection *
3144 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3145 {
3146 const char *dname;
3147 asection *sreloc;
3148 bfd *dynobj;
3149
3150 dname = MIPS_ELF_REL_DYN_NAME (info);
3151 dynobj = elf_hash_table (info)->dynobj;
3152 sreloc = bfd_get_linker_section (dynobj, dname);
3153 if (sreloc == NULL && create_p)
3154 {
3155 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3156 (SEC_ALLOC
3157 | SEC_LOAD
3158 | SEC_HAS_CONTENTS
3159 | SEC_IN_MEMORY
3160 | SEC_LINKER_CREATED
3161 | SEC_READONLY));
3162 if (sreloc == NULL
3163 || ! bfd_set_section_alignment (dynobj, sreloc,
3164 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3165 return NULL;
3166 }
3167 return sreloc;
3168 }
3169
3170 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3171
3172 static int
3173 mips_elf_reloc_tls_type (unsigned int r_type)
3174 {
3175 if (tls_gd_reloc_p (r_type))
3176 return GOT_TLS_GD;
3177
3178 if (tls_ldm_reloc_p (r_type))
3179 return GOT_TLS_LDM;
3180
3181 if (tls_gottprel_reloc_p (r_type))
3182 return GOT_TLS_IE;
3183
3184 return GOT_TLS_NONE;
3185 }
3186
3187 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3188
3189 static int
3190 mips_tls_got_entries (unsigned int type)
3191 {
3192 switch (type)
3193 {
3194 case GOT_TLS_GD:
3195 case GOT_TLS_LDM:
3196 return 2;
3197
3198 case GOT_TLS_IE:
3199 return 1;
3200
3201 case GOT_TLS_NONE:
3202 return 0;
3203 }
3204 abort ();
3205 }
3206
3207 /* Count the number of relocations needed for a TLS GOT entry, with
3208 access types from TLS_TYPE, and symbol H (or a local symbol if H
3209 is NULL). */
3210
3211 static int
3212 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3213 struct elf_link_hash_entry *h)
3214 {
3215 int indx = 0;
3216 bfd_boolean need_relocs = FALSE;
3217 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3218
3219 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3220 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3221 indx = h->dynindx;
3222
3223 if ((bfd_link_pic (info) || indx != 0)
3224 && (h == NULL
3225 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3226 || h->root.type != bfd_link_hash_undefweak))
3227 need_relocs = TRUE;
3228
3229 if (!need_relocs)
3230 return 0;
3231
3232 switch (tls_type)
3233 {
3234 case GOT_TLS_GD:
3235 return indx != 0 ? 2 : 1;
3236
3237 case GOT_TLS_IE:
3238 return 1;
3239
3240 case GOT_TLS_LDM:
3241 return bfd_link_pic (info) ? 1 : 0;
3242
3243 default:
3244 return 0;
3245 }
3246 }
3247
3248 /* Add the number of GOT entries and TLS relocations required by ENTRY
3249 to G. */
3250
3251 static void
3252 mips_elf_count_got_entry (struct bfd_link_info *info,
3253 struct mips_got_info *g,
3254 struct mips_got_entry *entry)
3255 {
3256 if (entry->tls_type)
3257 {
3258 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3259 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3260 entry->symndx < 0
3261 ? &entry->d.h->root : NULL);
3262 }
3263 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3264 g->local_gotno += 1;
3265 else
3266 g->global_gotno += 1;
3267 }
3268
3269 /* Output a simple dynamic relocation into SRELOC. */
3270
3271 static void
3272 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3273 asection *sreloc,
3274 unsigned long reloc_index,
3275 unsigned long indx,
3276 int r_type,
3277 bfd_vma offset)
3278 {
3279 Elf_Internal_Rela rel[3];
3280
3281 memset (rel, 0, sizeof (rel));
3282
3283 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3284 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3285
3286 if (ABI_64_P (output_bfd))
3287 {
3288 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3289 (output_bfd, &rel[0],
3290 (sreloc->contents
3291 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3292 }
3293 else
3294 bfd_elf32_swap_reloc_out
3295 (output_bfd, &rel[0],
3296 (sreloc->contents
3297 + reloc_index * sizeof (Elf32_External_Rel)));
3298 }
3299
3300 /* Initialize a set of TLS GOT entries for one symbol. */
3301
3302 static void
3303 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3304 struct mips_got_entry *entry,
3305 struct mips_elf_link_hash_entry *h,
3306 bfd_vma value)
3307 {
3308 struct mips_elf_link_hash_table *htab;
3309 int indx;
3310 asection *sreloc, *sgot;
3311 bfd_vma got_offset, got_offset2;
3312 bfd_boolean need_relocs = FALSE;
3313
3314 htab = mips_elf_hash_table (info);
3315 if (htab == NULL)
3316 return;
3317
3318 sgot = htab->sgot;
3319
3320 indx = 0;
3321 if (h != NULL)
3322 {
3323 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3324
3325 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3326 &h->root)
3327 && (!bfd_link_pic (info)
3328 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3329 indx = h->root.dynindx;
3330 }
3331
3332 if (entry->tls_initialized)
3333 return;
3334
3335 if ((bfd_link_pic (info) || indx != 0)
3336 && (h == NULL
3337 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3338 || h->root.type != bfd_link_hash_undefweak))
3339 need_relocs = TRUE;
3340
3341 /* MINUS_ONE means the symbol is not defined in this object. It may not
3342 be defined at all; assume that the value doesn't matter in that
3343 case. Otherwise complain if we would use the value. */
3344 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3345 || h->root.root.type == bfd_link_hash_undefweak);
3346
3347 /* Emit necessary relocations. */
3348 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3349 got_offset = entry->gotidx;
3350
3351 switch (entry->tls_type)
3352 {
3353 case GOT_TLS_GD:
3354 /* General Dynamic. */
3355 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3356
3357 if (need_relocs)
3358 {
3359 mips_elf_output_dynamic_relocation
3360 (abfd, sreloc, sreloc->reloc_count++, indx,
3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3362 sgot->output_offset + sgot->output_section->vma + got_offset);
3363
3364 if (indx)
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset2);
3369 else
3370 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3371 sgot->contents + got_offset2);
3372 }
3373 else
3374 {
3375 MIPS_ELF_PUT_WORD (abfd, 1,
3376 sgot->contents + got_offset);
3377 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3378 sgot->contents + got_offset2);
3379 }
3380 break;
3381
3382 case GOT_TLS_IE:
3383 /* Initial Exec model. */
3384 if (need_relocs)
3385 {
3386 if (indx == 0)
3387 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3388 sgot->contents + got_offset);
3389 else
3390 MIPS_ELF_PUT_WORD (abfd, 0,
3391 sgot->contents + got_offset);
3392
3393 mips_elf_output_dynamic_relocation
3394 (abfd, sreloc, sreloc->reloc_count++, indx,
3395 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3396 sgot->output_offset + sgot->output_section->vma + got_offset);
3397 }
3398 else
3399 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3400 sgot->contents + got_offset);
3401 break;
3402
3403 case GOT_TLS_LDM:
3404 /* The initial offset is zero, and the LD offsets will include the
3405 bias by DTP_OFFSET. */
3406 MIPS_ELF_PUT_WORD (abfd, 0,
3407 sgot->contents + got_offset
3408 + MIPS_ELF_GOT_SIZE (abfd));
3409
3410 if (!bfd_link_pic (info))
3411 MIPS_ELF_PUT_WORD (abfd, 1,
3412 sgot->contents + got_offset);
3413 else
3414 mips_elf_output_dynamic_relocation
3415 (abfd, sreloc, sreloc->reloc_count++, indx,
3416 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3417 sgot->output_offset + sgot->output_section->vma + got_offset);
3418 break;
3419
3420 default:
3421 abort ();
3422 }
3423
3424 entry->tls_initialized = TRUE;
3425 }
3426
3427 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3428 for global symbol H. .got.plt comes before the GOT, so the offset
3429 will be negative. */
3430
3431 static bfd_vma
3432 mips_elf_gotplt_index (struct bfd_link_info *info,
3433 struct elf_link_hash_entry *h)
3434 {
3435 bfd_vma got_address, got_value;
3436 struct mips_elf_link_hash_table *htab;
3437
3438 htab = mips_elf_hash_table (info);
3439 BFD_ASSERT (htab != NULL);
3440
3441 BFD_ASSERT (h->plt.plist != NULL);
3442 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3443
3444 /* Calculate the address of the associated .got.plt entry. */
3445 got_address = (htab->sgotplt->output_section->vma
3446 + htab->sgotplt->output_offset
3447 + (h->plt.plist->gotplt_index
3448 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3449
3450 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3451 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3452 + htab->root.hgot->root.u.def.section->output_offset
3453 + htab->root.hgot->root.u.def.value);
3454
3455 return got_address - got_value;
3456 }
3457
3458 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3459 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3460 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3461 offset can be found. */
3462
3463 static bfd_vma
3464 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3465 bfd_vma value, unsigned long r_symndx,
3466 struct mips_elf_link_hash_entry *h, int r_type)
3467 {
3468 struct mips_elf_link_hash_table *htab;
3469 struct mips_got_entry *entry;
3470
3471 htab = mips_elf_hash_table (info);
3472 BFD_ASSERT (htab != NULL);
3473
3474 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3475 r_symndx, h, r_type);
3476 if (!entry)
3477 return MINUS_ONE;
3478
3479 if (entry->tls_type)
3480 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3481 return entry->gotidx;
3482 }
3483
3484 /* Return the GOT index of global symbol H in the primary GOT. */
3485
3486 static bfd_vma
3487 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3488 struct elf_link_hash_entry *h)
3489 {
3490 struct mips_elf_link_hash_table *htab;
3491 long global_got_dynindx;
3492 struct mips_got_info *g;
3493 bfd_vma got_index;
3494
3495 htab = mips_elf_hash_table (info);
3496 BFD_ASSERT (htab != NULL);
3497
3498 global_got_dynindx = 0;
3499 if (htab->global_gotsym != NULL)
3500 global_got_dynindx = htab->global_gotsym->dynindx;
3501
3502 /* Once we determine the global GOT entry with the lowest dynamic
3503 symbol table index, we must put all dynamic symbols with greater
3504 indices into the primary GOT. That makes it easy to calculate the
3505 GOT offset. */
3506 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3507 g = mips_elf_bfd_got (obfd, FALSE);
3508 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3509 * MIPS_ELF_GOT_SIZE (obfd));
3510 BFD_ASSERT (got_index < htab->sgot->size);
3511
3512 return got_index;
3513 }
3514
3515 /* Return the GOT index for the global symbol indicated by H, which is
3516 referenced by a relocation of type R_TYPE in IBFD. */
3517
3518 static bfd_vma
3519 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3520 struct elf_link_hash_entry *h, int r_type)
3521 {
3522 struct mips_elf_link_hash_table *htab;
3523 struct mips_got_info *g;
3524 struct mips_got_entry lookup, *entry;
3525 bfd_vma gotidx;
3526
3527 htab = mips_elf_hash_table (info);
3528 BFD_ASSERT (htab != NULL);
3529
3530 g = mips_elf_bfd_got (ibfd, FALSE);
3531 BFD_ASSERT (g);
3532
3533 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3534 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3535 return mips_elf_primary_global_got_index (obfd, info, h);
3536
3537 lookup.abfd = ibfd;
3538 lookup.symndx = -1;
3539 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3540 entry = htab_find (g->got_entries, &lookup);
3541 BFD_ASSERT (entry);
3542
3543 gotidx = entry->gotidx;
3544 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3545
3546 if (lookup.tls_type)
3547 {
3548 bfd_vma value = MINUS_ONE;
3549
3550 if ((h->root.type == bfd_link_hash_defined
3551 || h->root.type == bfd_link_hash_defweak)
3552 && h->root.u.def.section->output_section)
3553 value = (h->root.u.def.value
3554 + h->root.u.def.section->output_offset
3555 + h->root.u.def.section->output_section->vma);
3556
3557 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3558 }
3559 return gotidx;
3560 }
3561
3562 /* Find a GOT page entry that points to within 32KB of VALUE. These
3563 entries are supposed to be placed at small offsets in the GOT, i.e.,
3564 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3565 entry could be created. If OFFSETP is nonnull, use it to return the
3566 offset of the GOT entry from VALUE. */
3567
3568 static bfd_vma
3569 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3570 bfd_vma value, bfd_vma *offsetp)
3571 {
3572 bfd_vma page, got_index;
3573 struct mips_got_entry *entry;
3574
3575 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3576 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3577 NULL, R_MIPS_GOT_PAGE);
3578
3579 if (!entry)
3580 return MINUS_ONE;
3581
3582 got_index = entry->gotidx;
3583
3584 if (offsetp)
3585 *offsetp = value - entry->d.address;
3586
3587 return got_index;
3588 }
3589
3590 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3591 EXTERNAL is true if the relocation was originally against a global
3592 symbol that binds locally. */
3593
3594 static bfd_vma
3595 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3596 bfd_vma value, bfd_boolean external)
3597 {
3598 struct mips_got_entry *entry;
3599
3600 /* GOT16 relocations against local symbols are followed by a LO16
3601 relocation; those against global symbols are not. Thus if the
3602 symbol was originally local, the GOT16 relocation should load the
3603 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3604 if (! external)
3605 value = mips_elf_high (value) << 16;
3606
3607 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3608 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3609 same in all cases. */
3610 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3611 NULL, R_MIPS_GOT16);
3612 if (entry)
3613 return entry->gotidx;
3614 else
3615 return MINUS_ONE;
3616 }
3617
3618 /* Returns the offset for the entry at the INDEXth position
3619 in the GOT. */
3620
3621 static bfd_vma
3622 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3623 bfd *input_bfd, bfd_vma got_index)
3624 {
3625 struct mips_elf_link_hash_table *htab;
3626 asection *sgot;
3627 bfd_vma gp;
3628
3629 htab = mips_elf_hash_table (info);
3630 BFD_ASSERT (htab != NULL);
3631
3632 sgot = htab->sgot;
3633 gp = _bfd_get_gp_value (output_bfd)
3634 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3635
3636 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3637 }
3638
3639 /* Create and return a local GOT entry for VALUE, which was calculated
3640 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3641 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3642 instead. */
3643
3644 static struct mips_got_entry *
3645 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3646 bfd *ibfd, bfd_vma value,
3647 unsigned long r_symndx,
3648 struct mips_elf_link_hash_entry *h,
3649 int r_type)
3650 {
3651 struct mips_got_entry lookup, *entry;
3652 void **loc;
3653 struct mips_got_info *g;
3654 struct mips_elf_link_hash_table *htab;
3655 bfd_vma gotidx;
3656
3657 htab = mips_elf_hash_table (info);
3658 BFD_ASSERT (htab != NULL);
3659
3660 g = mips_elf_bfd_got (ibfd, FALSE);
3661 if (g == NULL)
3662 {
3663 g = mips_elf_bfd_got (abfd, FALSE);
3664 BFD_ASSERT (g != NULL);
3665 }
3666
3667 /* This function shouldn't be called for symbols that live in the global
3668 area of the GOT. */
3669 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3670
3671 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3672 if (lookup.tls_type)
3673 {
3674 lookup.abfd = ibfd;
3675 if (tls_ldm_reloc_p (r_type))
3676 {
3677 lookup.symndx = 0;
3678 lookup.d.addend = 0;
3679 }
3680 else if (h == NULL)
3681 {
3682 lookup.symndx = r_symndx;
3683 lookup.d.addend = 0;
3684 }
3685 else
3686 {
3687 lookup.symndx = -1;
3688 lookup.d.h = h;
3689 }
3690
3691 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3692 BFD_ASSERT (entry);
3693
3694 gotidx = entry->gotidx;
3695 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3696
3697 return entry;
3698 }
3699
3700 lookup.abfd = NULL;
3701 lookup.symndx = -1;
3702 lookup.d.address = value;
3703 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3704 if (!loc)
3705 return NULL;
3706
3707 entry = (struct mips_got_entry *) *loc;
3708 if (entry)
3709 return entry;
3710
3711 if (g->assigned_low_gotno > g->assigned_high_gotno)
3712 {
3713 /* We didn't allocate enough space in the GOT. */
3714 (*_bfd_error_handler)
3715 (_("not enough GOT space for local GOT entries"));
3716 bfd_set_error (bfd_error_bad_value);
3717 return NULL;
3718 }
3719
3720 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3721 if (!entry)
3722 return NULL;
3723
3724 if (got16_reloc_p (r_type)
3725 || call16_reloc_p (r_type)
3726 || got_page_reloc_p (r_type)
3727 || got_disp_reloc_p (r_type))
3728 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3729 else
3730 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3731
3732 *entry = lookup;
3733 *loc = entry;
3734
3735 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3736
3737 /* These GOT entries need a dynamic relocation on VxWorks. */
3738 if (htab->is_vxworks)
3739 {
3740 Elf_Internal_Rela outrel;
3741 asection *s;
3742 bfd_byte *rloc;
3743 bfd_vma got_address;
3744
3745 s = mips_elf_rel_dyn_section (info, FALSE);
3746 got_address = (htab->sgot->output_section->vma
3747 + htab->sgot->output_offset
3748 + entry->gotidx);
3749
3750 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3751 outrel.r_offset = got_address;
3752 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3753 outrel.r_addend = value;
3754 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3755 }
3756
3757 return entry;
3758 }
3759
3760 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3761 The number might be exact or a worst-case estimate, depending on how
3762 much information is available to elf_backend_omit_section_dynsym at
3763 the current linking stage. */
3764
3765 static bfd_size_type
3766 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3767 {
3768 bfd_size_type count;
3769
3770 count = 0;
3771 if (bfd_link_pic (info)
3772 || elf_hash_table (info)->is_relocatable_executable)
3773 {
3774 asection *p;
3775 const struct elf_backend_data *bed;
3776
3777 bed = get_elf_backend_data (output_bfd);
3778 for (p = output_bfd->sections; p ; p = p->next)
3779 if ((p->flags & SEC_EXCLUDE) == 0
3780 && (p->flags & SEC_ALLOC) != 0
3781 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3782 ++count;
3783 }
3784 return count;
3785 }
3786
3787 /* Sort the dynamic symbol table so that symbols that need GOT entries
3788 appear towards the end. */
3789
3790 static bfd_boolean
3791 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3792 {
3793 struct mips_elf_link_hash_table *htab;
3794 struct mips_elf_hash_sort_data hsd;
3795 struct mips_got_info *g;
3796
3797 if (elf_hash_table (info)->dynsymcount == 0)
3798 return TRUE;
3799
3800 htab = mips_elf_hash_table (info);
3801 BFD_ASSERT (htab != NULL);
3802
3803 g = htab->got_info;
3804 if (g == NULL)
3805 return TRUE;
3806
3807 hsd.low = NULL;
3808 hsd.max_unref_got_dynindx
3809 = hsd.min_got_dynindx
3810 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3811 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3812 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3813 elf_hash_table (info)),
3814 mips_elf_sort_hash_table_f,
3815 &hsd);
3816
3817 /* There should have been enough room in the symbol table to
3818 accommodate both the GOT and non-GOT symbols. */
3819 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3820 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3821 == elf_hash_table (info)->dynsymcount);
3822 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3823 == g->global_gotno);
3824
3825 /* Now we know which dynamic symbol has the lowest dynamic symbol
3826 table index in the GOT. */
3827 htab->global_gotsym = hsd.low;
3828
3829 return TRUE;
3830 }
3831
3832 /* If H needs a GOT entry, assign it the highest available dynamic
3833 index. Otherwise, assign it the lowest available dynamic
3834 index. */
3835
3836 static bfd_boolean
3837 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3838 {
3839 struct mips_elf_hash_sort_data *hsd = data;
3840
3841 /* Symbols without dynamic symbol table entries aren't interesting
3842 at all. */
3843 if (h->root.dynindx == -1)
3844 return TRUE;
3845
3846 switch (h->global_got_area)
3847 {
3848 case GGA_NONE:
3849 h->root.dynindx = hsd->max_non_got_dynindx++;
3850 break;
3851
3852 case GGA_NORMAL:
3853 h->root.dynindx = --hsd->min_got_dynindx;
3854 hsd->low = (struct elf_link_hash_entry *) h;
3855 break;
3856
3857 case GGA_RELOC_ONLY:
3858 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 h->root.dynindx = hsd->max_unref_got_dynindx++;
3861 break;
3862 }
3863
3864 return TRUE;
3865 }
3866
3867 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3868 (which is owned by the caller and shouldn't be added to the
3869 hash table directly). */
3870
3871 static bfd_boolean
3872 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3873 struct mips_got_entry *lookup)
3874 {
3875 struct mips_elf_link_hash_table *htab;
3876 struct mips_got_entry *entry;
3877 struct mips_got_info *g;
3878 void **loc, **bfd_loc;
3879
3880 /* Make sure there's a slot for this entry in the master GOT. */
3881 htab = mips_elf_hash_table (info);
3882 g = htab->got_info;
3883 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3884 if (!loc)
3885 return FALSE;
3886
3887 /* Populate the entry if it isn't already. */
3888 entry = (struct mips_got_entry *) *loc;
3889 if (!entry)
3890 {
3891 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3892 if (!entry)
3893 return FALSE;
3894
3895 lookup->tls_initialized = FALSE;
3896 lookup->gotidx = -1;
3897 *entry = *lookup;
3898 *loc = entry;
3899 }
3900
3901 /* Reuse the same GOT entry for the BFD's GOT. */
3902 g = mips_elf_bfd_got (abfd, TRUE);
3903 if (!g)
3904 return FALSE;
3905
3906 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3907 if (!bfd_loc)
3908 return FALSE;
3909
3910 if (!*bfd_loc)
3911 *bfd_loc = entry;
3912 return TRUE;
3913 }
3914
3915 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3916 entry for it. FOR_CALL is true if the caller is only interested in
3917 using the GOT entry for calls. */
3918
3919 static bfd_boolean
3920 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3921 bfd *abfd, struct bfd_link_info *info,
3922 bfd_boolean for_call, int r_type)
3923 {
3924 struct mips_elf_link_hash_table *htab;
3925 struct mips_elf_link_hash_entry *hmips;
3926 struct mips_got_entry entry;
3927 unsigned char tls_type;
3928
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3931
3932 hmips = (struct mips_elf_link_hash_entry *) h;
3933 if (!for_call)
3934 hmips->got_only_for_calls = FALSE;
3935
3936 /* A global symbol in the GOT must also be in the dynamic symbol
3937 table. */
3938 if (h->dynindx == -1)
3939 {
3940 switch (ELF_ST_VISIBILITY (h->other))
3941 {
3942 case STV_INTERNAL:
3943 case STV_HIDDEN:
3944 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3945 break;
3946 }
3947 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3948 return FALSE;
3949 }
3950
3951 tls_type = mips_elf_reloc_tls_type (r_type);
3952 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3953 hmips->global_got_area = GGA_NORMAL;
3954
3955 entry.abfd = abfd;
3956 entry.symndx = -1;
3957 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3958 entry.tls_type = tls_type;
3959 return mips_elf_record_got_entry (info, abfd, &entry);
3960 }
3961
3962 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3963 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3964
3965 static bfd_boolean
3966 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3967 struct bfd_link_info *info, int r_type)
3968 {
3969 struct mips_elf_link_hash_table *htab;
3970 struct mips_got_info *g;
3971 struct mips_got_entry entry;
3972
3973 htab = mips_elf_hash_table (info);
3974 BFD_ASSERT (htab != NULL);
3975
3976 g = htab->got_info;
3977 BFD_ASSERT (g != NULL);
3978
3979 entry.abfd = abfd;
3980 entry.symndx = symndx;
3981 entry.d.addend = addend;
3982 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3983 return mips_elf_record_got_entry (info, abfd, &entry);
3984 }
3985
3986 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3987 H is the symbol's hash table entry, or null if SYMNDX is local
3988 to ABFD. */
3989
3990 static bfd_boolean
3991 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3992 long symndx, struct elf_link_hash_entry *h,
3993 bfd_signed_vma addend)
3994 {
3995 struct mips_elf_link_hash_table *htab;
3996 struct mips_got_info *g1, *g2;
3997 struct mips_got_page_ref lookup, *entry;
3998 void **loc, **bfd_loc;
3999
4000 htab = mips_elf_hash_table (info);
4001 BFD_ASSERT (htab != NULL);
4002
4003 g1 = htab->got_info;
4004 BFD_ASSERT (g1 != NULL);
4005
4006 if (h)
4007 {
4008 lookup.symndx = -1;
4009 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4010 }
4011 else
4012 {
4013 lookup.symndx = symndx;
4014 lookup.u.abfd = abfd;
4015 }
4016 lookup.addend = addend;
4017 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4018 if (loc == NULL)
4019 return FALSE;
4020
4021 entry = (struct mips_got_page_ref *) *loc;
4022 if (!entry)
4023 {
4024 entry = bfd_alloc (abfd, sizeof (*entry));
4025 if (!entry)
4026 return FALSE;
4027
4028 *entry = lookup;
4029 *loc = entry;
4030 }
4031
4032 /* Add the same entry to the BFD's GOT. */
4033 g2 = mips_elf_bfd_got (abfd, TRUE);
4034 if (!g2)
4035 return FALSE;
4036
4037 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4038 if (!bfd_loc)
4039 return FALSE;
4040
4041 if (!*bfd_loc)
4042 *bfd_loc = entry;
4043
4044 return TRUE;
4045 }
4046
4047 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4048
4049 static void
4050 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4051 unsigned int n)
4052 {
4053 asection *s;
4054 struct mips_elf_link_hash_table *htab;
4055
4056 htab = mips_elf_hash_table (info);
4057 BFD_ASSERT (htab != NULL);
4058
4059 s = mips_elf_rel_dyn_section (info, FALSE);
4060 BFD_ASSERT (s != NULL);
4061
4062 if (htab->is_vxworks)
4063 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4064 else
4065 {
4066 if (s->size == 0)
4067 {
4068 /* Make room for a null element. */
4069 s->size += MIPS_ELF_REL_SIZE (abfd);
4070 ++s->reloc_count;
4071 }
4072 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4073 }
4074 }
4075 \f
4076 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4077 mips_elf_traverse_got_arg structure. Count the number of GOT
4078 entries and TLS relocs. Set DATA->value to true if we need
4079 to resolve indirect or warning symbols and then recreate the GOT. */
4080
4081 static int
4082 mips_elf_check_recreate_got (void **entryp, void *data)
4083 {
4084 struct mips_got_entry *entry;
4085 struct mips_elf_traverse_got_arg *arg;
4086
4087 entry = (struct mips_got_entry *) *entryp;
4088 arg = (struct mips_elf_traverse_got_arg *) data;
4089 if (entry->abfd != NULL && entry->symndx == -1)
4090 {
4091 struct mips_elf_link_hash_entry *h;
4092
4093 h = entry->d.h;
4094 if (h->root.root.type == bfd_link_hash_indirect
4095 || h->root.root.type == bfd_link_hash_warning)
4096 {
4097 arg->value = TRUE;
4098 return 0;
4099 }
4100 }
4101 mips_elf_count_got_entry (arg->info, arg->g, entry);
4102 return 1;
4103 }
4104
4105 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4106 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4107 converting entries for indirect and warning symbols into entries
4108 for the target symbol. Set DATA->g to null on error. */
4109
4110 static int
4111 mips_elf_recreate_got (void **entryp, void *data)
4112 {
4113 struct mips_got_entry new_entry, *entry;
4114 struct mips_elf_traverse_got_arg *arg;
4115 void **slot;
4116
4117 entry = (struct mips_got_entry *) *entryp;
4118 arg = (struct mips_elf_traverse_got_arg *) data;
4119 if (entry->abfd != NULL
4120 && entry->symndx == -1
4121 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4122 || entry->d.h->root.root.type == bfd_link_hash_warning))
4123 {
4124 struct mips_elf_link_hash_entry *h;
4125
4126 new_entry = *entry;
4127 entry = &new_entry;
4128 h = entry->d.h;
4129 do
4130 {
4131 BFD_ASSERT (h->global_got_area == GGA_NONE);
4132 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4133 }
4134 while (h->root.root.type == bfd_link_hash_indirect
4135 || h->root.root.type == bfd_link_hash_warning);
4136 entry->d.h = h;
4137 }
4138 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4139 if (slot == NULL)
4140 {
4141 arg->g = NULL;
4142 return 0;
4143 }
4144 if (*slot == NULL)
4145 {
4146 if (entry == &new_entry)
4147 {
4148 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4149 if (!entry)
4150 {
4151 arg->g = NULL;
4152 return 0;
4153 }
4154 *entry = new_entry;
4155 }
4156 *slot = entry;
4157 mips_elf_count_got_entry (arg->info, arg->g, entry);
4158 }
4159 return 1;
4160 }
4161
4162 /* Return the maximum number of GOT page entries required for RANGE. */
4163
4164 static bfd_vma
4165 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4166 {
4167 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4168 }
4169
4170 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4171
4172 static bfd_boolean
4173 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4174 asection *sec, bfd_signed_vma addend)
4175 {
4176 struct mips_got_info *g = arg->g;
4177 struct mips_got_page_entry lookup, *entry;
4178 struct mips_got_page_range **range_ptr, *range;
4179 bfd_vma old_pages, new_pages;
4180 void **loc;
4181
4182 /* Find the mips_got_page_entry hash table entry for this section. */
4183 lookup.sec = sec;
4184 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4185 if (loc == NULL)
4186 return FALSE;
4187
4188 /* Create a mips_got_page_entry if this is the first time we've
4189 seen the section. */
4190 entry = (struct mips_got_page_entry *) *loc;
4191 if (!entry)
4192 {
4193 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4194 if (!entry)
4195 return FALSE;
4196
4197 entry->sec = sec;
4198 *loc = entry;
4199 }
4200
4201 /* Skip over ranges whose maximum extent cannot share a page entry
4202 with ADDEND. */
4203 range_ptr = &entry->ranges;
4204 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4205 range_ptr = &(*range_ptr)->next;
4206
4207 /* If we scanned to the end of the list, or found a range whose
4208 minimum extent cannot share a page entry with ADDEND, create
4209 a new singleton range. */
4210 range = *range_ptr;
4211 if (!range || addend < range->min_addend - 0xffff)
4212 {
4213 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4214 if (!range)
4215 return FALSE;
4216
4217 range->next = *range_ptr;
4218 range->min_addend = addend;
4219 range->max_addend = addend;
4220
4221 *range_ptr = range;
4222 entry->num_pages++;
4223 g->page_gotno++;
4224 return TRUE;
4225 }
4226
4227 /* Remember how many pages the old range contributed. */
4228 old_pages = mips_elf_pages_for_range (range);
4229
4230 /* Update the ranges. */
4231 if (addend < range->min_addend)
4232 range->min_addend = addend;
4233 else if (addend > range->max_addend)
4234 {
4235 if (range->next && addend >= range->next->min_addend - 0xffff)
4236 {
4237 old_pages += mips_elf_pages_for_range (range->next);
4238 range->max_addend = range->next->max_addend;
4239 range->next = range->next->next;
4240 }
4241 else
4242 range->max_addend = addend;
4243 }
4244
4245 /* Record any change in the total estimate. */
4246 new_pages = mips_elf_pages_for_range (range);
4247 if (old_pages != new_pages)
4248 {
4249 entry->num_pages += new_pages - old_pages;
4250 g->page_gotno += new_pages - old_pages;
4251 }
4252
4253 return TRUE;
4254 }
4255
4256 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4257 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4258 whether the page reference described by *REFP needs a GOT page entry,
4259 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4260
4261 static bfd_boolean
4262 mips_elf_resolve_got_page_ref (void **refp, void *data)
4263 {
4264 struct mips_got_page_ref *ref;
4265 struct mips_elf_traverse_got_arg *arg;
4266 struct mips_elf_link_hash_table *htab;
4267 asection *sec;
4268 bfd_vma addend;
4269
4270 ref = (struct mips_got_page_ref *) *refp;
4271 arg = (struct mips_elf_traverse_got_arg *) data;
4272 htab = mips_elf_hash_table (arg->info);
4273
4274 if (ref->symndx < 0)
4275 {
4276 struct mips_elf_link_hash_entry *h;
4277
4278 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4279 h = ref->u.h;
4280 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4281 return 1;
4282
4283 /* Ignore undefined symbols; we'll issue an error later if
4284 appropriate. */
4285 if (!((h->root.root.type == bfd_link_hash_defined
4286 || h->root.root.type == bfd_link_hash_defweak)
4287 && h->root.root.u.def.section))
4288 return 1;
4289
4290 sec = h->root.root.u.def.section;
4291 addend = h->root.root.u.def.value + ref->addend;
4292 }
4293 else
4294 {
4295 Elf_Internal_Sym *isym;
4296
4297 /* Read in the symbol. */
4298 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4299 ref->symndx);
4300 if (isym == NULL)
4301 {
4302 arg->g = NULL;
4303 return 0;
4304 }
4305
4306 /* Get the associated input section. */
4307 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4308 if (sec == NULL)
4309 {
4310 arg->g = NULL;
4311 return 0;
4312 }
4313
4314 /* If this is a mergable section, work out the section and offset
4315 of the merged data. For section symbols, the addend specifies
4316 of the offset _of_ the first byte in the data, otherwise it
4317 specifies the offset _from_ the first byte. */
4318 if (sec->flags & SEC_MERGE)
4319 {
4320 void *secinfo;
4321
4322 secinfo = elf_section_data (sec)->sec_info;
4323 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4324 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4325 isym->st_value + ref->addend);
4326 else
4327 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4328 isym->st_value) + ref->addend;
4329 }
4330 else
4331 addend = isym->st_value + ref->addend;
4332 }
4333 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4334 {
4335 arg->g = NULL;
4336 return 0;
4337 }
4338 return 1;
4339 }
4340
4341 /* If any entries in G->got_entries are for indirect or warning symbols,
4342 replace them with entries for the target symbol. Convert g->got_page_refs
4343 into got_page_entry structures and estimate the number of page entries
4344 that they require. */
4345
4346 static bfd_boolean
4347 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4348 struct mips_got_info *g)
4349 {
4350 struct mips_elf_traverse_got_arg tga;
4351 struct mips_got_info oldg;
4352
4353 oldg = *g;
4354
4355 tga.info = info;
4356 tga.g = g;
4357 tga.value = FALSE;
4358 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4359 if (tga.value)
4360 {
4361 *g = oldg;
4362 g->got_entries = htab_create (htab_size (oldg.got_entries),
4363 mips_elf_got_entry_hash,
4364 mips_elf_got_entry_eq, NULL);
4365 if (!g->got_entries)
4366 return FALSE;
4367
4368 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4369 if (!tga.g)
4370 return FALSE;
4371
4372 htab_delete (oldg.got_entries);
4373 }
4374
4375 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4376 mips_got_page_entry_eq, NULL);
4377 if (g->got_page_entries == NULL)
4378 return FALSE;
4379
4380 tga.info = info;
4381 tga.g = g;
4382 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4383
4384 return TRUE;
4385 }
4386
4387 /* Return true if a GOT entry for H should live in the local rather than
4388 global GOT area. */
4389
4390 static bfd_boolean
4391 mips_use_local_got_p (struct bfd_link_info *info,
4392 struct mips_elf_link_hash_entry *h)
4393 {
4394 /* Symbols that aren't in the dynamic symbol table must live in the
4395 local GOT. This includes symbols that are completely undefined
4396 and which therefore don't bind locally. We'll report undefined
4397 symbols later if appropriate. */
4398 if (h->root.dynindx == -1)
4399 return TRUE;
4400
4401 /* Symbols that bind locally can (and in the case of forced-local
4402 symbols, must) live in the local GOT. */
4403 if (h->got_only_for_calls
4404 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4405 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4406 return TRUE;
4407
4408 /* If this is an executable that must provide a definition of the symbol,
4409 either though PLTs or copy relocations, then that address should go in
4410 the local rather than global GOT. */
4411 if (bfd_link_executable (info) && h->has_static_relocs)
4412 return TRUE;
4413
4414 return FALSE;
4415 }
4416
4417 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4418 link_info structure. Decide whether the hash entry needs an entry in
4419 the global part of the primary GOT, setting global_got_area accordingly.
4420 Count the number of global symbols that are in the primary GOT only
4421 because they have relocations against them (reloc_only_gotno). */
4422
4423 static int
4424 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4425 {
4426 struct bfd_link_info *info;
4427 struct mips_elf_link_hash_table *htab;
4428 struct mips_got_info *g;
4429
4430 info = (struct bfd_link_info *) data;
4431 htab = mips_elf_hash_table (info);
4432 g = htab->got_info;
4433 if (h->global_got_area != GGA_NONE)
4434 {
4435 /* Make a final decision about whether the symbol belongs in the
4436 local or global GOT. */
4437 if (mips_use_local_got_p (info, h))
4438 /* The symbol belongs in the local GOT. We no longer need this
4439 entry if it was only used for relocations; those relocations
4440 will be against the null or section symbol instead of H. */
4441 h->global_got_area = GGA_NONE;
4442 else if (htab->is_vxworks
4443 && h->got_only_for_calls
4444 && h->root.plt.plist->mips_offset != MINUS_ONE)
4445 /* On VxWorks, calls can refer directly to the .got.plt entry;
4446 they don't need entries in the regular GOT. .got.plt entries
4447 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4448 h->global_got_area = GGA_NONE;
4449 else if (h->global_got_area == GGA_RELOC_ONLY)
4450 {
4451 g->reloc_only_gotno++;
4452 g->global_gotno++;
4453 }
4454 }
4455 return 1;
4456 }
4457 \f
4458 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4459 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4460
4461 static int
4462 mips_elf_add_got_entry (void **entryp, void *data)
4463 {
4464 struct mips_got_entry *entry;
4465 struct mips_elf_traverse_got_arg *arg;
4466 void **slot;
4467
4468 entry = (struct mips_got_entry *) *entryp;
4469 arg = (struct mips_elf_traverse_got_arg *) data;
4470 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4471 if (!slot)
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 if (!*slot)
4477 {
4478 *slot = entry;
4479 mips_elf_count_got_entry (arg->info, arg->g, entry);
4480 }
4481 return 1;
4482 }
4483
4484 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4485 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4486
4487 static int
4488 mips_elf_add_got_page_entry (void **entryp, void *data)
4489 {
4490 struct mips_got_page_entry *entry;
4491 struct mips_elf_traverse_got_arg *arg;
4492 void **slot;
4493
4494 entry = (struct mips_got_page_entry *) *entryp;
4495 arg = (struct mips_elf_traverse_got_arg *) data;
4496 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4497 if (!slot)
4498 {
4499 arg->g = NULL;
4500 return 0;
4501 }
4502 if (!*slot)
4503 {
4504 *slot = entry;
4505 arg->g->page_gotno += entry->num_pages;
4506 }
4507 return 1;
4508 }
4509
4510 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4511 this would lead to overflow, 1 if they were merged successfully,
4512 and 0 if a merge failed due to lack of memory. (These values are chosen
4513 so that nonnegative return values can be returned by a htab_traverse
4514 callback.) */
4515
4516 static int
4517 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4518 struct mips_got_info *to,
4519 struct mips_elf_got_per_bfd_arg *arg)
4520 {
4521 struct mips_elf_traverse_got_arg tga;
4522 unsigned int estimate;
4523
4524 /* Work out how many page entries we would need for the combined GOT. */
4525 estimate = arg->max_pages;
4526 if (estimate >= from->page_gotno + to->page_gotno)
4527 estimate = from->page_gotno + to->page_gotno;
4528
4529 /* And conservatively estimate how many local and TLS entries
4530 would be needed. */
4531 estimate += from->local_gotno + to->local_gotno;
4532 estimate += from->tls_gotno + to->tls_gotno;
4533
4534 /* If we're merging with the primary got, any TLS relocations will
4535 come after the full set of global entries. Otherwise estimate those
4536 conservatively as well. */
4537 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4538 estimate += arg->global_count;
4539 else
4540 estimate += from->global_gotno + to->global_gotno;
4541
4542 /* Bail out if the combined GOT might be too big. */
4543 if (estimate > arg->max_count)
4544 return -1;
4545
4546 /* Transfer the bfd's got information from FROM to TO. */
4547 tga.info = arg->info;
4548 tga.g = to;
4549 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4550 if (!tga.g)
4551 return 0;
4552
4553 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4554 if (!tga.g)
4555 return 0;
4556
4557 mips_elf_replace_bfd_got (abfd, to);
4558 return 1;
4559 }
4560
4561 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4562 as possible of the primary got, since it doesn't require explicit
4563 dynamic relocations, but don't use bfds that would reference global
4564 symbols out of the addressable range. Failing the primary got,
4565 attempt to merge with the current got, or finish the current got
4566 and then make make the new got current. */
4567
4568 static bfd_boolean
4569 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4570 struct mips_elf_got_per_bfd_arg *arg)
4571 {
4572 unsigned int estimate;
4573 int result;
4574
4575 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4576 return FALSE;
4577
4578 /* Work out the number of page, local and TLS entries. */
4579 estimate = arg->max_pages;
4580 if (estimate > g->page_gotno)
4581 estimate = g->page_gotno;
4582 estimate += g->local_gotno + g->tls_gotno;
4583
4584 /* We place TLS GOT entries after both locals and globals. The globals
4585 for the primary GOT may overflow the normal GOT size limit, so be
4586 sure not to merge a GOT which requires TLS with the primary GOT in that
4587 case. This doesn't affect non-primary GOTs. */
4588 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4589
4590 if (estimate <= arg->max_count)
4591 {
4592 /* If we don't have a primary GOT, use it as
4593 a starting point for the primary GOT. */
4594 if (!arg->primary)
4595 {
4596 arg->primary = g;
4597 return TRUE;
4598 }
4599
4600 /* Try merging with the primary GOT. */
4601 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4602 if (result >= 0)
4603 return result;
4604 }
4605
4606 /* If we can merge with the last-created got, do it. */
4607 if (arg->current)
4608 {
4609 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4610 if (result >= 0)
4611 return result;
4612 }
4613
4614 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4615 fits; if it turns out that it doesn't, we'll get relocation
4616 overflows anyway. */
4617 g->next = arg->current;
4618 arg->current = g;
4619
4620 return TRUE;
4621 }
4622
4623 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4624 to GOTIDX, duplicating the entry if it has already been assigned
4625 an index in a different GOT. */
4626
4627 static bfd_boolean
4628 mips_elf_set_gotidx (void **entryp, long gotidx)
4629 {
4630 struct mips_got_entry *entry;
4631
4632 entry = (struct mips_got_entry *) *entryp;
4633 if (entry->gotidx > 0)
4634 {
4635 struct mips_got_entry *new_entry;
4636
4637 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4638 if (!new_entry)
4639 return FALSE;
4640
4641 *new_entry = *entry;
4642 *entryp = new_entry;
4643 entry = new_entry;
4644 }
4645 entry->gotidx = gotidx;
4646 return TRUE;
4647 }
4648
4649 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4650 mips_elf_traverse_got_arg in which DATA->value is the size of one
4651 GOT entry. Set DATA->g to null on failure. */
4652
4653 static int
4654 mips_elf_initialize_tls_index (void **entryp, void *data)
4655 {
4656 struct mips_got_entry *entry;
4657 struct mips_elf_traverse_got_arg *arg;
4658
4659 /* We're only interested in TLS symbols. */
4660 entry = (struct mips_got_entry *) *entryp;
4661 if (entry->tls_type == GOT_TLS_NONE)
4662 return 1;
4663
4664 arg = (struct mips_elf_traverse_got_arg *) data;
4665 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4666 {
4667 arg->g = NULL;
4668 return 0;
4669 }
4670
4671 /* Account for the entries we've just allocated. */
4672 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4673 return 1;
4674 }
4675
4676 /* A htab_traverse callback for GOT entries, where DATA points to a
4677 mips_elf_traverse_got_arg. Set the global_got_area of each global
4678 symbol to DATA->value. */
4679
4680 static int
4681 mips_elf_set_global_got_area (void **entryp, void *data)
4682 {
4683 struct mips_got_entry *entry;
4684 struct mips_elf_traverse_got_arg *arg;
4685
4686 entry = (struct mips_got_entry *) *entryp;
4687 arg = (struct mips_elf_traverse_got_arg *) data;
4688 if (entry->abfd != NULL
4689 && entry->symndx == -1
4690 && entry->d.h->global_got_area != GGA_NONE)
4691 entry->d.h->global_got_area = arg->value;
4692 return 1;
4693 }
4694
4695 /* A htab_traverse callback for secondary GOT entries, where DATA points
4696 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4697 and record the number of relocations they require. DATA->value is
4698 the size of one GOT entry. Set DATA->g to null on failure. */
4699
4700 static int
4701 mips_elf_set_global_gotidx (void **entryp, void *data)
4702 {
4703 struct mips_got_entry *entry;
4704 struct mips_elf_traverse_got_arg *arg;
4705
4706 entry = (struct mips_got_entry *) *entryp;
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (entry->abfd != NULL
4709 && entry->symndx == -1
4710 && entry->d.h->global_got_area != GGA_NONE)
4711 {
4712 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4713 {
4714 arg->g = NULL;
4715 return 0;
4716 }
4717 arg->g->assigned_low_gotno += 1;
4718
4719 if (bfd_link_pic (arg->info)
4720 || (elf_hash_table (arg->info)->dynamic_sections_created
4721 && entry->d.h->root.def_dynamic
4722 && !entry->d.h->root.def_regular))
4723 arg->g->relocs += 1;
4724 }
4725
4726 return 1;
4727 }
4728
4729 /* A htab_traverse callback for GOT entries for which DATA is the
4730 bfd_link_info. Forbid any global symbols from having traditional
4731 lazy-binding stubs. */
4732
4733 static int
4734 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4735 {
4736 struct bfd_link_info *info;
4737 struct mips_elf_link_hash_table *htab;
4738 struct mips_got_entry *entry;
4739
4740 entry = (struct mips_got_entry *) *entryp;
4741 info = (struct bfd_link_info *) data;
4742 htab = mips_elf_hash_table (info);
4743 BFD_ASSERT (htab != NULL);
4744
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->needs_lazy_stub)
4748 {
4749 entry->d.h->needs_lazy_stub = FALSE;
4750 htab->lazy_stub_count--;
4751 }
4752
4753 return 1;
4754 }
4755
4756 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4757 the primary GOT. */
4758 static bfd_vma
4759 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4760 {
4761 if (!g->next)
4762 return 0;
4763
4764 g = mips_elf_bfd_got (ibfd, FALSE);
4765 if (! g)
4766 return 0;
4767
4768 BFD_ASSERT (g->next);
4769
4770 g = g->next;
4771
4772 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4773 * MIPS_ELF_GOT_SIZE (abfd);
4774 }
4775
4776 /* Turn a single GOT that is too big for 16-bit addressing into
4777 a sequence of GOTs, each one 16-bit addressable. */
4778
4779 static bfd_boolean
4780 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4781 asection *got, bfd_size_type pages)
4782 {
4783 struct mips_elf_link_hash_table *htab;
4784 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4785 struct mips_elf_traverse_got_arg tga;
4786 struct mips_got_info *g, *gg;
4787 unsigned int assign, needed_relocs;
4788 bfd *dynobj, *ibfd;
4789
4790 dynobj = elf_hash_table (info)->dynobj;
4791 htab = mips_elf_hash_table (info);
4792 BFD_ASSERT (htab != NULL);
4793
4794 g = htab->got_info;
4795
4796 got_per_bfd_arg.obfd = abfd;
4797 got_per_bfd_arg.info = info;
4798 got_per_bfd_arg.current = NULL;
4799 got_per_bfd_arg.primary = NULL;
4800 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4801 / MIPS_ELF_GOT_SIZE (abfd))
4802 - htab->reserved_gotno);
4803 got_per_bfd_arg.max_pages = pages;
4804 /* The number of globals that will be included in the primary GOT.
4805 See the calls to mips_elf_set_global_got_area below for more
4806 information. */
4807 got_per_bfd_arg.global_count = g->global_gotno;
4808
4809 /* Try to merge the GOTs of input bfds together, as long as they
4810 don't seem to exceed the maximum GOT size, choosing one of them
4811 to be the primary GOT. */
4812 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4813 {
4814 gg = mips_elf_bfd_got (ibfd, FALSE);
4815 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4816 return FALSE;
4817 }
4818
4819 /* If we do not find any suitable primary GOT, create an empty one. */
4820 if (got_per_bfd_arg.primary == NULL)
4821 g->next = mips_elf_create_got_info (abfd);
4822 else
4823 g->next = got_per_bfd_arg.primary;
4824 g->next->next = got_per_bfd_arg.current;
4825
4826 /* GG is now the master GOT, and G is the primary GOT. */
4827 gg = g;
4828 g = g->next;
4829
4830 /* Map the output bfd to the primary got. That's what we're going
4831 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4832 didn't mark in check_relocs, and we want a quick way to find it.
4833 We can't just use gg->next because we're going to reverse the
4834 list. */
4835 mips_elf_replace_bfd_got (abfd, g);
4836
4837 /* Every symbol that is referenced in a dynamic relocation must be
4838 present in the primary GOT, so arrange for them to appear after
4839 those that are actually referenced. */
4840 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4841 g->global_gotno = gg->global_gotno;
4842
4843 tga.info = info;
4844 tga.value = GGA_RELOC_ONLY;
4845 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4846 tga.value = GGA_NORMAL;
4847 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4848
4849 /* Now go through the GOTs assigning them offset ranges.
4850 [assigned_low_gotno, local_gotno[ will be set to the range of local
4851 entries in each GOT. We can then compute the end of a GOT by
4852 adding local_gotno to global_gotno. We reverse the list and make
4853 it circular since then we'll be able to quickly compute the
4854 beginning of a GOT, by computing the end of its predecessor. To
4855 avoid special cases for the primary GOT, while still preserving
4856 assertions that are valid for both single- and multi-got links,
4857 we arrange for the main got struct to have the right number of
4858 global entries, but set its local_gotno such that the initial
4859 offset of the primary GOT is zero. Remember that the primary GOT
4860 will become the last item in the circular linked list, so it
4861 points back to the master GOT. */
4862 gg->local_gotno = -g->global_gotno;
4863 gg->global_gotno = g->global_gotno;
4864 gg->tls_gotno = 0;
4865 assign = 0;
4866 gg->next = gg;
4867
4868 do
4869 {
4870 struct mips_got_info *gn;
4871
4872 assign += htab->reserved_gotno;
4873 g->assigned_low_gotno = assign;
4874 g->local_gotno += assign;
4875 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4876 g->assigned_high_gotno = g->local_gotno - 1;
4877 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4878
4879 /* Take g out of the direct list, and push it onto the reversed
4880 list that gg points to. g->next is guaranteed to be nonnull after
4881 this operation, as required by mips_elf_initialize_tls_index. */
4882 gn = g->next;
4883 g->next = gg->next;
4884 gg->next = g;
4885
4886 /* Set up any TLS entries. We always place the TLS entries after
4887 all non-TLS entries. */
4888 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4889 tga.g = g;
4890 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4891 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4892 if (!tga.g)
4893 return FALSE;
4894 BFD_ASSERT (g->tls_assigned_gotno == assign);
4895
4896 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4897 g = gn;
4898
4899 /* Forbid global symbols in every non-primary GOT from having
4900 lazy-binding stubs. */
4901 if (g)
4902 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4903 }
4904 while (g);
4905
4906 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4907
4908 needed_relocs = 0;
4909 for (g = gg->next; g && g->next != gg; g = g->next)
4910 {
4911 unsigned int save_assign;
4912
4913 /* Assign offsets to global GOT entries and count how many
4914 relocations they need. */
4915 save_assign = g->assigned_low_gotno;
4916 g->assigned_low_gotno = g->local_gotno;
4917 tga.info = info;
4918 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4919 tga.g = g;
4920 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4921 if (!tga.g)
4922 return FALSE;
4923 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4924 g->assigned_low_gotno = save_assign;
4925
4926 if (bfd_link_pic (info))
4927 {
4928 g->relocs += g->local_gotno - g->assigned_low_gotno;
4929 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4930 + g->next->global_gotno
4931 + g->next->tls_gotno
4932 + htab->reserved_gotno);
4933 }
4934 needed_relocs += g->relocs;
4935 }
4936 needed_relocs += g->relocs;
4937
4938 if (needed_relocs)
4939 mips_elf_allocate_dynamic_relocations (dynobj, info,
4940 needed_relocs);
4941
4942 return TRUE;
4943 }
4944
4945 \f
4946 /* Returns the first relocation of type r_type found, beginning with
4947 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4948
4949 static const Elf_Internal_Rela *
4950 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4951 const Elf_Internal_Rela *relocation,
4952 const Elf_Internal_Rela *relend)
4953 {
4954 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4955
4956 while (relocation < relend)
4957 {
4958 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4959 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4960 return relocation;
4961
4962 ++relocation;
4963 }
4964
4965 /* We didn't find it. */
4966 return NULL;
4967 }
4968
4969 /* Return whether an input relocation is against a local symbol. */
4970
4971 static bfd_boolean
4972 mips_elf_local_relocation_p (bfd *input_bfd,
4973 const Elf_Internal_Rela *relocation,
4974 asection **local_sections)
4975 {
4976 unsigned long r_symndx;
4977 Elf_Internal_Shdr *symtab_hdr;
4978 size_t extsymoff;
4979
4980 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4982 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4983
4984 if (r_symndx < extsymoff)
4985 return TRUE;
4986 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4987 return TRUE;
4988
4989 return FALSE;
4990 }
4991 \f
4992 /* Sign-extend VALUE, which has the indicated number of BITS. */
4993
4994 bfd_vma
4995 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4996 {
4997 if (value & ((bfd_vma) 1 << (bits - 1)))
4998 /* VALUE is negative. */
4999 value |= ((bfd_vma) - 1) << bits;
5000
5001 return value;
5002 }
5003
5004 /* Return non-zero if the indicated VALUE has overflowed the maximum
5005 range expressible by a signed number with the indicated number of
5006 BITS. */
5007
5008 static bfd_boolean
5009 mips_elf_overflow_p (bfd_vma value, int bits)
5010 {
5011 bfd_signed_vma svalue = (bfd_signed_vma) value;
5012
5013 if (svalue > (1 << (bits - 1)) - 1)
5014 /* The value is too big. */
5015 return TRUE;
5016 else if (svalue < -(1 << (bits - 1)))
5017 /* The value is too small. */
5018 return TRUE;
5019
5020 /* All is well. */
5021 return FALSE;
5022 }
5023
5024 /* Calculate the %high function. */
5025
5026 static bfd_vma
5027 mips_elf_high (bfd_vma value)
5028 {
5029 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5030 }
5031
5032 /* Calculate the %higher function. */
5033
5034 static bfd_vma
5035 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5036 {
5037 #ifdef BFD64
5038 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5039 #else
5040 abort ();
5041 return MINUS_ONE;
5042 #endif
5043 }
5044
5045 /* Calculate the %highest function. */
5046
5047 static bfd_vma
5048 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5049 {
5050 #ifdef BFD64
5051 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5052 #else
5053 abort ();
5054 return MINUS_ONE;
5055 #endif
5056 }
5057 \f
5058 /* Create the .compact_rel section. */
5059
5060 static bfd_boolean
5061 mips_elf_create_compact_rel_section
5062 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5063 {
5064 flagword flags;
5065 register asection *s;
5066
5067 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5068 {
5069 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5070 | SEC_READONLY);
5071
5072 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5073 if (s == NULL
5074 || ! bfd_set_section_alignment (abfd, s,
5075 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5076 return FALSE;
5077
5078 s->size = sizeof (Elf32_External_compact_rel);
5079 }
5080
5081 return TRUE;
5082 }
5083
5084 /* Create the .got section to hold the global offset table. */
5085
5086 static bfd_boolean
5087 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5088 {
5089 flagword flags;
5090 register asection *s;
5091 struct elf_link_hash_entry *h;
5092 struct bfd_link_hash_entry *bh;
5093 struct mips_elf_link_hash_table *htab;
5094
5095 htab = mips_elf_hash_table (info);
5096 BFD_ASSERT (htab != NULL);
5097
5098 /* This function may be called more than once. */
5099 if (htab->sgot)
5100 return TRUE;
5101
5102 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5103 | SEC_LINKER_CREATED);
5104
5105 /* We have to use an alignment of 2**4 here because this is hardcoded
5106 in the function stub generation and in the linker script. */
5107 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s, 4))
5110 return FALSE;
5111 htab->sgot = s;
5112
5113 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5114 linker script because we don't want to define the symbol if we
5115 are not creating a global offset table. */
5116 bh = NULL;
5117 if (! (_bfd_generic_link_add_one_symbol
5118 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5119 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5120 return FALSE;
5121
5122 h = (struct elf_link_hash_entry *) bh;
5123 h->non_elf = 0;
5124 h->def_regular = 1;
5125 h->type = STT_OBJECT;
5126 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5127 elf_hash_table (info)->hgot = h;
5128
5129 if (bfd_link_pic (info)
5130 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5131 return FALSE;
5132
5133 htab->got_info = mips_elf_create_got_info (abfd);
5134 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5135 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5136
5137 /* We also need a .got.plt section when generating PLTs. */
5138 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5139 SEC_ALLOC | SEC_LOAD
5140 | SEC_HAS_CONTENTS
5141 | SEC_IN_MEMORY
5142 | SEC_LINKER_CREATED);
5143 if (s == NULL)
5144 return FALSE;
5145 htab->sgotplt = s;
5146
5147 return TRUE;
5148 }
5149 \f
5150 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5151 __GOTT_INDEX__ symbols. These symbols are only special for
5152 shared objects; they are not used in executables. */
5153
5154 static bfd_boolean
5155 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5156 {
5157 return (mips_elf_hash_table (info)->is_vxworks
5158 && bfd_link_pic (info)
5159 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5160 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5161 }
5162
5163 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5164 require an la25 stub. See also mips_elf_local_pic_function_p,
5165 which determines whether the destination function ever requires a
5166 stub. */
5167
5168 static bfd_boolean
5169 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5170 bfd_boolean target_is_16_bit_code_p)
5171 {
5172 /* We specifically ignore branches and jumps from EF_PIC objects,
5173 where the onus is on the compiler or programmer to perform any
5174 necessary initialization of $25. Sometimes such initialization
5175 is unnecessary; for example, -mno-shared functions do not use
5176 the incoming value of $25, and may therefore be called directly. */
5177 if (PIC_OBJECT_P (input_bfd))
5178 return FALSE;
5179
5180 switch (r_type)
5181 {
5182 case R_MIPS_26:
5183 case R_MIPS_PC16:
5184 case R_MIPS_PC21_S2:
5185 case R_MIPS_PC26_S2:
5186 case R_MICROMIPS_26_S1:
5187 case R_MICROMIPS_PC7_S1:
5188 case R_MICROMIPS_PC10_S1:
5189 case R_MICROMIPS_PC16_S1:
5190 case R_MICROMIPS_PC23_S2:
5191 return TRUE;
5192
5193 case R_MIPS16_26:
5194 return !target_is_16_bit_code_p;
5195
5196 default:
5197 return FALSE;
5198 }
5199 }
5200 \f
5201 /* Calculate the value produced by the RELOCATION (which comes from
5202 the INPUT_BFD). The ADDEND is the addend to use for this
5203 RELOCATION; RELOCATION->R_ADDEND is ignored.
5204
5205 The result of the relocation calculation is stored in VALUEP.
5206 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5207 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5208
5209 This function returns bfd_reloc_continue if the caller need take no
5210 further action regarding this relocation, bfd_reloc_notsupported if
5211 something goes dramatically wrong, bfd_reloc_overflow if an
5212 overflow occurs, and bfd_reloc_ok to indicate success. */
5213
5214 static bfd_reloc_status_type
5215 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5216 asection *input_section,
5217 struct bfd_link_info *info,
5218 const Elf_Internal_Rela *relocation,
5219 bfd_vma addend, reloc_howto_type *howto,
5220 Elf_Internal_Sym *local_syms,
5221 asection **local_sections, bfd_vma *valuep,
5222 const char **namep,
5223 bfd_boolean *cross_mode_jump_p,
5224 bfd_boolean save_addend)
5225 {
5226 /* The eventual value we will return. */
5227 bfd_vma value;
5228 /* The address of the symbol against which the relocation is
5229 occurring. */
5230 bfd_vma symbol = 0;
5231 /* The final GP value to be used for the relocatable, executable, or
5232 shared object file being produced. */
5233 bfd_vma gp;
5234 /* The place (section offset or address) of the storage unit being
5235 relocated. */
5236 bfd_vma p;
5237 /* The value of GP used to create the relocatable object. */
5238 bfd_vma gp0;
5239 /* The offset into the global offset table at which the address of
5240 the relocation entry symbol, adjusted by the addend, resides
5241 during execution. */
5242 bfd_vma g = MINUS_ONE;
5243 /* The section in which the symbol referenced by the relocation is
5244 located. */
5245 asection *sec = NULL;
5246 struct mips_elf_link_hash_entry *h = NULL;
5247 /* TRUE if the symbol referred to by this relocation is a local
5248 symbol. */
5249 bfd_boolean local_p, was_local_p;
5250 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5251 bfd_boolean gp_disp_p = FALSE;
5252 /* TRUE if the symbol referred to by this relocation is
5253 "__gnu_local_gp". */
5254 bfd_boolean gnu_local_gp_p = FALSE;
5255 Elf_Internal_Shdr *symtab_hdr;
5256 size_t extsymoff;
5257 unsigned long r_symndx;
5258 int r_type;
5259 /* TRUE if overflow occurred during the calculation of the
5260 relocation value. */
5261 bfd_boolean overflowed_p;
5262 /* TRUE if this relocation refers to a MIPS16 function. */
5263 bfd_boolean target_is_16_bit_code_p = FALSE;
5264 bfd_boolean target_is_micromips_code_p = FALSE;
5265 struct mips_elf_link_hash_table *htab;
5266 bfd *dynobj;
5267
5268 dynobj = elf_hash_table (info)->dynobj;
5269 htab = mips_elf_hash_table (info);
5270 BFD_ASSERT (htab != NULL);
5271
5272 /* Parse the relocation. */
5273 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5274 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5275 p = (input_section->output_section->vma
5276 + input_section->output_offset
5277 + relocation->r_offset);
5278
5279 /* Assume that there will be no overflow. */
5280 overflowed_p = FALSE;
5281
5282 /* Figure out whether or not the symbol is local, and get the offset
5283 used in the array of hash table entries. */
5284 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5285 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5286 local_sections);
5287 was_local_p = local_p;
5288 if (! elf_bad_symtab (input_bfd))
5289 extsymoff = symtab_hdr->sh_info;
5290 else
5291 {
5292 /* The symbol table does not follow the rule that local symbols
5293 must come before globals. */
5294 extsymoff = 0;
5295 }
5296
5297 /* Figure out the value of the symbol. */
5298 if (local_p)
5299 {
5300 Elf_Internal_Sym *sym;
5301
5302 sym = local_syms + r_symndx;
5303 sec = local_sections[r_symndx];
5304
5305 symbol = sec->output_section->vma + sec->output_offset;
5306 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5307 || (sec->flags & SEC_MERGE))
5308 symbol += sym->st_value;
5309 if ((sec->flags & SEC_MERGE)
5310 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5311 {
5312 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5313 addend -= symbol;
5314 addend += sec->output_section->vma + sec->output_offset;
5315 }
5316
5317 /* MIPS16/microMIPS text labels should be treated as odd. */
5318 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5319 ++symbol;
5320
5321 /* Record the name of this symbol, for our caller. */
5322 *namep = bfd_elf_string_from_elf_section (input_bfd,
5323 symtab_hdr->sh_link,
5324 sym->st_name);
5325 if (*namep == '\0')
5326 *namep = bfd_section_name (input_bfd, sec);
5327
5328 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5329 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5330 }
5331 else
5332 {
5333 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5334
5335 /* For global symbols we look up the symbol in the hash-table. */
5336 h = ((struct mips_elf_link_hash_entry *)
5337 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5338 /* Find the real hash-table entry for this symbol. */
5339 while (h->root.root.type == bfd_link_hash_indirect
5340 || h->root.root.type == bfd_link_hash_warning)
5341 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5342
5343 /* Record the name of this symbol, for our caller. */
5344 *namep = h->root.root.root.string;
5345
5346 /* See if this is the special _gp_disp symbol. Note that such a
5347 symbol must always be a global symbol. */
5348 if (strcmp (*namep, "_gp_disp") == 0
5349 && ! NEWABI_P (input_bfd))
5350 {
5351 /* Relocations against _gp_disp are permitted only with
5352 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5353 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5354 return bfd_reloc_notsupported;
5355
5356 gp_disp_p = TRUE;
5357 }
5358 /* See if this is the special _gp symbol. Note that such a
5359 symbol must always be a global symbol. */
5360 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5361 gnu_local_gp_p = TRUE;
5362
5363
5364 /* If this symbol is defined, calculate its address. Note that
5365 _gp_disp is a magic symbol, always implicitly defined by the
5366 linker, so it's inappropriate to check to see whether or not
5367 its defined. */
5368 else if ((h->root.root.type == bfd_link_hash_defined
5369 || h->root.root.type == bfd_link_hash_defweak)
5370 && h->root.root.u.def.section)
5371 {
5372 sec = h->root.root.u.def.section;
5373 if (sec->output_section)
5374 symbol = (h->root.root.u.def.value
5375 + sec->output_section->vma
5376 + sec->output_offset);
5377 else
5378 symbol = h->root.root.u.def.value;
5379 }
5380 else if (h->root.root.type == bfd_link_hash_undefweak)
5381 /* We allow relocations against undefined weak symbols, giving
5382 it the value zero, so that you can undefined weak functions
5383 and check to see if they exist by looking at their
5384 addresses. */
5385 symbol = 0;
5386 else if (info->unresolved_syms_in_objects == RM_IGNORE
5387 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5388 symbol = 0;
5389 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5390 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5391 {
5392 /* If this is a dynamic link, we should have created a
5393 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5394 in in _bfd_mips_elf_create_dynamic_sections.
5395 Otherwise, we should define the symbol with a value of 0.
5396 FIXME: It should probably get into the symbol table
5397 somehow as well. */
5398 BFD_ASSERT (! bfd_link_pic (info));
5399 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5400 symbol = 0;
5401 }
5402 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5403 {
5404 /* This is an optional symbol - an Irix specific extension to the
5405 ELF spec. Ignore it for now.
5406 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5407 than simply ignoring them, but we do not handle this for now.
5408 For information see the "64-bit ELF Object File Specification"
5409 which is available from here:
5410 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5411 symbol = 0;
5412 }
5413 else if ((*info->callbacks->undefined_symbol)
5414 (info, h->root.root.root.string, input_bfd,
5415 input_section, relocation->r_offset,
5416 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5417 || ELF_ST_VISIBILITY (h->root.other)))
5418 {
5419 return bfd_reloc_undefined;
5420 }
5421 else
5422 {
5423 return bfd_reloc_notsupported;
5424 }
5425
5426 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5427 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5428 }
5429
5430 /* If this is a reference to a 16-bit function with a stub, we need
5431 to redirect the relocation to the stub unless:
5432
5433 (a) the relocation is for a MIPS16 JAL;
5434
5435 (b) the relocation is for a MIPS16 PIC call, and there are no
5436 non-MIPS16 uses of the GOT slot; or
5437
5438 (c) the section allows direct references to MIPS16 functions. */
5439 if (r_type != R_MIPS16_26
5440 && !bfd_link_relocatable (info)
5441 && ((h != NULL
5442 && h->fn_stub != NULL
5443 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5444 || (local_p
5445 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5446 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5447 && !section_allows_mips16_refs_p (input_section))
5448 {
5449 /* This is a 32- or 64-bit call to a 16-bit function. We should
5450 have already noticed that we were going to need the
5451 stub. */
5452 if (local_p)
5453 {
5454 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5455 value = 0;
5456 }
5457 else
5458 {
5459 BFD_ASSERT (h->need_fn_stub);
5460 if (h->la25_stub)
5461 {
5462 /* If a LA25 header for the stub itself exists, point to the
5463 prepended LUI/ADDIU sequence. */
5464 sec = h->la25_stub->stub_section;
5465 value = h->la25_stub->offset;
5466 }
5467 else
5468 {
5469 sec = h->fn_stub;
5470 value = 0;
5471 }
5472 }
5473
5474 symbol = sec->output_section->vma + sec->output_offset + value;
5475 /* The target is 16-bit, but the stub isn't. */
5476 target_is_16_bit_code_p = FALSE;
5477 }
5478 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5479 to a standard MIPS function, we need to redirect the call to the stub.
5480 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5481 indirect calls should use an indirect stub instead. */
5482 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5483 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5484 || (local_p
5485 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5486 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5487 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5488 {
5489 if (local_p)
5490 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5491 else
5492 {
5493 /* If both call_stub and call_fp_stub are defined, we can figure
5494 out which one to use by checking which one appears in the input
5495 file. */
5496 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5497 {
5498 asection *o;
5499
5500 sec = NULL;
5501 for (o = input_bfd->sections; o != NULL; o = o->next)
5502 {
5503 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5504 {
5505 sec = h->call_fp_stub;
5506 break;
5507 }
5508 }
5509 if (sec == NULL)
5510 sec = h->call_stub;
5511 }
5512 else if (h->call_stub != NULL)
5513 sec = h->call_stub;
5514 else
5515 sec = h->call_fp_stub;
5516 }
5517
5518 BFD_ASSERT (sec->size > 0);
5519 symbol = sec->output_section->vma + sec->output_offset;
5520 }
5521 /* If this is a direct call to a PIC function, redirect to the
5522 non-PIC stub. */
5523 else if (h != NULL && h->la25_stub
5524 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5525 target_is_16_bit_code_p))
5526 symbol = (h->la25_stub->stub_section->output_section->vma
5527 + h->la25_stub->stub_section->output_offset
5528 + h->la25_stub->offset);
5529 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5530 entry is used if a standard PLT entry has also been made. In this
5531 case the symbol will have been set by mips_elf_set_plt_sym_value
5532 to point to the standard PLT entry, so redirect to the compressed
5533 one. */
5534 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5535 && !bfd_link_relocatable (info)
5536 && h != NULL
5537 && h->use_plt_entry
5538 && h->root.plt.plist->comp_offset != MINUS_ONE
5539 && h->root.plt.plist->mips_offset != MINUS_ONE)
5540 {
5541 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5542
5543 sec = htab->splt;
5544 symbol = (sec->output_section->vma
5545 + sec->output_offset
5546 + htab->plt_header_size
5547 + htab->plt_mips_offset
5548 + h->root.plt.plist->comp_offset
5549 + 1);
5550
5551 target_is_16_bit_code_p = !micromips_p;
5552 target_is_micromips_code_p = micromips_p;
5553 }
5554
5555 /* Make sure MIPS16 and microMIPS are not used together. */
5556 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5557 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5558 {
5559 (*_bfd_error_handler)
5560 (_("MIPS16 and microMIPS functions cannot call each other"));
5561 return bfd_reloc_notsupported;
5562 }
5563
5564 /* Calls from 16-bit code to 32-bit code and vice versa require the
5565 mode change. However, we can ignore calls to undefined weak symbols,
5566 which should never be executed at runtime. This exception is important
5567 because the assembly writer may have "known" that any definition of the
5568 symbol would be 16-bit code, and that direct jumps were therefore
5569 acceptable. */
5570 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5571 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5572 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5573 || (r_type == R_MICROMIPS_26_S1
5574 && !target_is_micromips_code_p)
5575 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5576 && (target_is_16_bit_code_p
5577 || target_is_micromips_code_p))));
5578
5579 local_p = (h == NULL || mips_use_local_got_p (info, h));
5580
5581 gp0 = _bfd_get_gp_value (input_bfd);
5582 gp = _bfd_get_gp_value (abfd);
5583 if (htab->got_info)
5584 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5585
5586 if (gnu_local_gp_p)
5587 symbol = gp;
5588
5589 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5590 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5591 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5592 if (got_page_reloc_p (r_type) && !local_p)
5593 {
5594 r_type = (micromips_reloc_p (r_type)
5595 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5596 addend = 0;
5597 }
5598
5599 /* If we haven't already determined the GOT offset, and we're going
5600 to need it, get it now. */
5601 switch (r_type)
5602 {
5603 case R_MIPS16_CALL16:
5604 case R_MIPS16_GOT16:
5605 case R_MIPS_CALL16:
5606 case R_MIPS_GOT16:
5607 case R_MIPS_GOT_DISP:
5608 case R_MIPS_GOT_HI16:
5609 case R_MIPS_CALL_HI16:
5610 case R_MIPS_GOT_LO16:
5611 case R_MIPS_CALL_LO16:
5612 case R_MICROMIPS_CALL16:
5613 case R_MICROMIPS_GOT16:
5614 case R_MICROMIPS_GOT_DISP:
5615 case R_MICROMIPS_GOT_HI16:
5616 case R_MICROMIPS_CALL_HI16:
5617 case R_MICROMIPS_GOT_LO16:
5618 case R_MICROMIPS_CALL_LO16:
5619 case R_MIPS_TLS_GD:
5620 case R_MIPS_TLS_GOTTPREL:
5621 case R_MIPS_TLS_LDM:
5622 case R_MIPS16_TLS_GD:
5623 case R_MIPS16_TLS_GOTTPREL:
5624 case R_MIPS16_TLS_LDM:
5625 case R_MICROMIPS_TLS_GD:
5626 case R_MICROMIPS_TLS_GOTTPREL:
5627 case R_MICROMIPS_TLS_LDM:
5628 /* Find the index into the GOT where this value is located. */
5629 if (tls_ldm_reloc_p (r_type))
5630 {
5631 g = mips_elf_local_got_index (abfd, input_bfd, info,
5632 0, 0, NULL, r_type);
5633 if (g == MINUS_ONE)
5634 return bfd_reloc_outofrange;
5635 }
5636 else if (!local_p)
5637 {
5638 /* On VxWorks, CALL relocations should refer to the .got.plt
5639 entry, which is initialized to point at the PLT stub. */
5640 if (htab->is_vxworks
5641 && (call_hi16_reloc_p (r_type)
5642 || call_lo16_reloc_p (r_type)
5643 || call16_reloc_p (r_type)))
5644 {
5645 BFD_ASSERT (addend == 0);
5646 BFD_ASSERT (h->root.needs_plt);
5647 g = mips_elf_gotplt_index (info, &h->root);
5648 }
5649 else
5650 {
5651 BFD_ASSERT (addend == 0);
5652 g = mips_elf_global_got_index (abfd, info, input_bfd,
5653 &h->root, r_type);
5654 if (!TLS_RELOC_P (r_type)
5655 && !elf_hash_table (info)->dynamic_sections_created)
5656 /* This is a static link. We must initialize the GOT entry. */
5657 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5658 }
5659 }
5660 else if (!htab->is_vxworks
5661 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5662 /* The calculation below does not involve "g". */
5663 break;
5664 else
5665 {
5666 g = mips_elf_local_got_index (abfd, input_bfd, info,
5667 symbol + addend, r_symndx, h, r_type);
5668 if (g == MINUS_ONE)
5669 return bfd_reloc_outofrange;
5670 }
5671
5672 /* Convert GOT indices to actual offsets. */
5673 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5674 break;
5675 }
5676
5677 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5678 symbols are resolved by the loader. Add them to .rela.dyn. */
5679 if (h != NULL && is_gott_symbol (info, &h->root))
5680 {
5681 Elf_Internal_Rela outrel;
5682 bfd_byte *loc;
5683 asection *s;
5684
5685 s = mips_elf_rel_dyn_section (info, FALSE);
5686 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5687
5688 outrel.r_offset = (input_section->output_section->vma
5689 + input_section->output_offset
5690 + relocation->r_offset);
5691 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5692 outrel.r_addend = addend;
5693 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5694
5695 /* If we've written this relocation for a readonly section,
5696 we need to set DF_TEXTREL again, so that we do not delete the
5697 DT_TEXTREL tag. */
5698 if (MIPS_ELF_READONLY_SECTION (input_section))
5699 info->flags |= DF_TEXTREL;
5700
5701 *valuep = 0;
5702 return bfd_reloc_ok;
5703 }
5704
5705 /* Figure out what kind of relocation is being performed. */
5706 switch (r_type)
5707 {
5708 case R_MIPS_NONE:
5709 return bfd_reloc_continue;
5710
5711 case R_MIPS_16:
5712 if (howto->partial_inplace)
5713 addend = _bfd_mips_elf_sign_extend (addend, 16);
5714 value = symbol + addend;
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5717
5718 case R_MIPS_32:
5719 case R_MIPS_REL32:
5720 case R_MIPS_64:
5721 if ((bfd_link_pic (info)
5722 || (htab->root.dynamic_sections_created
5723 && h != NULL
5724 && h->root.def_dynamic
5725 && !h->root.def_regular
5726 && !h->has_static_relocs))
5727 && r_symndx != STN_UNDEF
5728 && (h == NULL
5729 || h->root.root.type != bfd_link_hash_undefweak
5730 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5731 && (input_section->flags & SEC_ALLOC) != 0)
5732 {
5733 /* If we're creating a shared library, then we can't know
5734 where the symbol will end up. So, we create a relocation
5735 record in the output, and leave the job up to the dynamic
5736 linker. We must do the same for executable references to
5737 shared library symbols, unless we've decided to use copy
5738 relocs or PLTs instead. */
5739 value = addend;
5740 if (!mips_elf_create_dynamic_relocation (abfd,
5741 info,
5742 relocation,
5743 h,
5744 sec,
5745 symbol,
5746 &value,
5747 input_section))
5748 return bfd_reloc_undefined;
5749 }
5750 else
5751 {
5752 if (r_type != R_MIPS_REL32)
5753 value = symbol + addend;
5754 else
5755 value = addend;
5756 }
5757 value &= howto->dst_mask;
5758 break;
5759
5760 case R_MIPS_PC32:
5761 value = symbol + addend - p;
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS16_26:
5766 /* The calculation for R_MIPS16_26 is just the same as for an
5767 R_MIPS_26. It's only the storage of the relocated field into
5768 the output file that's different. That's handled in
5769 mips_elf_perform_relocation. So, we just fall through to the
5770 R_MIPS_26 case here. */
5771 case R_MIPS_26:
5772 case R_MICROMIPS_26_S1:
5773 {
5774 unsigned int shift;
5775
5776 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5777 the correct ISA mode selector and bit 1 must be 0. */
5778 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5779 return bfd_reloc_outofrange;
5780
5781 /* Shift is 2, unusually, for microMIPS JALX. */
5782 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5783
5784 if (was_local_p)
5785 value = addend | ((p + 4) & (0xfc000000 << shift));
5786 else if (howto->partial_inplace)
5787 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5788 else
5789 value = addend;
5790 value = (value + symbol) >> shift;
5791 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5792 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5793 value &= howto->dst_mask;
5794 }
5795 break;
5796
5797 case R_MIPS_TLS_DTPREL_HI16:
5798 case R_MIPS16_TLS_DTPREL_HI16:
5799 case R_MICROMIPS_TLS_DTPREL_HI16:
5800 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5801 & howto->dst_mask);
5802 break;
5803
5804 case R_MIPS_TLS_DTPREL_LO16:
5805 case R_MIPS_TLS_DTPREL32:
5806 case R_MIPS_TLS_DTPREL64:
5807 case R_MIPS16_TLS_DTPREL_LO16:
5808 case R_MICROMIPS_TLS_DTPREL_LO16:
5809 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_TLS_TPREL_HI16:
5813 case R_MIPS16_TLS_TPREL_HI16:
5814 case R_MICROMIPS_TLS_TPREL_HI16:
5815 value = (mips_elf_high (addend + symbol - tprel_base (info))
5816 & howto->dst_mask);
5817 break;
5818
5819 case R_MIPS_TLS_TPREL_LO16:
5820 case R_MIPS_TLS_TPREL32:
5821 case R_MIPS_TLS_TPREL64:
5822 case R_MIPS16_TLS_TPREL_LO16:
5823 case R_MICROMIPS_TLS_TPREL_LO16:
5824 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5825 break;
5826
5827 case R_MIPS_HI16:
5828 case R_MIPS16_HI16:
5829 case R_MICROMIPS_HI16:
5830 if (!gp_disp_p)
5831 {
5832 value = mips_elf_high (addend + symbol);
5833 value &= howto->dst_mask;
5834 }
5835 else
5836 {
5837 /* For MIPS16 ABI code we generate this sequence
5838 0: li $v0,%hi(_gp_disp)
5839 4: addiupc $v1,%lo(_gp_disp)
5840 8: sll $v0,16
5841 12: addu $v0,$v1
5842 14: move $gp,$v0
5843 So the offsets of hi and lo relocs are the same, but the
5844 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5845 ADDIUPC clears the low two bits of the instruction address,
5846 so the base is ($t9 + 4) & ~3. */
5847 if (r_type == R_MIPS16_HI16)
5848 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5849 /* The microMIPS .cpload sequence uses the same assembly
5850 instructions as the traditional psABI version, but the
5851 incoming $t9 has the low bit set. */
5852 else if (r_type == R_MICROMIPS_HI16)
5853 value = mips_elf_high (addend + gp - p - 1);
5854 else
5855 value = mips_elf_high (addend + gp - p);
5856 overflowed_p = mips_elf_overflow_p (value, 16);
5857 }
5858 break;
5859
5860 case R_MIPS_LO16:
5861 case R_MIPS16_LO16:
5862 case R_MICROMIPS_LO16:
5863 case R_MICROMIPS_HI0_LO16:
5864 if (!gp_disp_p)
5865 value = (symbol + addend) & howto->dst_mask;
5866 else
5867 {
5868 /* See the comment for R_MIPS16_HI16 above for the reason
5869 for this conditional. */
5870 if (r_type == R_MIPS16_LO16)
5871 value = addend + gp - (p & ~(bfd_vma) 0x3);
5872 else if (r_type == R_MICROMIPS_LO16
5873 || r_type == R_MICROMIPS_HI0_LO16)
5874 value = addend + gp - p + 3;
5875 else
5876 value = addend + gp - p + 4;
5877 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5878 for overflow. But, on, say, IRIX5, relocations against
5879 _gp_disp are normally generated from the .cpload
5880 pseudo-op. It generates code that normally looks like
5881 this:
5882
5883 lui $gp,%hi(_gp_disp)
5884 addiu $gp,$gp,%lo(_gp_disp)
5885 addu $gp,$gp,$t9
5886
5887 Here $t9 holds the address of the function being called,
5888 as required by the MIPS ELF ABI. The R_MIPS_LO16
5889 relocation can easily overflow in this situation, but the
5890 R_MIPS_HI16 relocation will handle the overflow.
5891 Therefore, we consider this a bug in the MIPS ABI, and do
5892 not check for overflow here. */
5893 }
5894 break;
5895
5896 case R_MIPS_LITERAL:
5897 case R_MICROMIPS_LITERAL:
5898 /* Because we don't merge literal sections, we can handle this
5899 just like R_MIPS_GPREL16. In the long run, we should merge
5900 shared literals, and then we will need to additional work
5901 here. */
5902
5903 /* Fall through. */
5904
5905 case R_MIPS16_GPREL:
5906 /* The R_MIPS16_GPREL performs the same calculation as
5907 R_MIPS_GPREL16, but stores the relocated bits in a different
5908 order. We don't need to do anything special here; the
5909 differences are handled in mips_elf_perform_relocation. */
5910 case R_MIPS_GPREL16:
5911 case R_MICROMIPS_GPREL7_S2:
5912 case R_MICROMIPS_GPREL16:
5913 /* Only sign-extend the addend if it was extracted from the
5914 instruction. If the addend was separate, leave it alone,
5915 otherwise we may lose significant bits. */
5916 if (howto->partial_inplace)
5917 addend = _bfd_mips_elf_sign_extend (addend, 16);
5918 value = symbol + addend - gp;
5919 /* If the symbol was local, any earlier relocatable links will
5920 have adjusted its addend with the gp offset, so compensate
5921 for that now. Don't do it for symbols forced local in this
5922 link, though, since they won't have had the gp offset applied
5923 to them before. */
5924 if (was_local_p)
5925 value += gp0;
5926 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5927 overflowed_p = mips_elf_overflow_p (value, 16);
5928 break;
5929
5930 case R_MIPS16_GOT16:
5931 case R_MIPS16_CALL16:
5932 case R_MIPS_GOT16:
5933 case R_MIPS_CALL16:
5934 case R_MICROMIPS_GOT16:
5935 case R_MICROMIPS_CALL16:
5936 /* VxWorks does not have separate local and global semantics for
5937 R_MIPS*_GOT16; every relocation evaluates to "G". */
5938 if (!htab->is_vxworks && local_p)
5939 {
5940 value = mips_elf_got16_entry (abfd, input_bfd, info,
5941 symbol + addend, !was_local_p);
5942 if (value == MINUS_ONE)
5943 return bfd_reloc_outofrange;
5944 value
5945 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5946 overflowed_p = mips_elf_overflow_p (value, 16);
5947 break;
5948 }
5949
5950 /* Fall through. */
5951
5952 case R_MIPS_TLS_GD:
5953 case R_MIPS_TLS_GOTTPREL:
5954 case R_MIPS_TLS_LDM:
5955 case R_MIPS_GOT_DISP:
5956 case R_MIPS16_TLS_GD:
5957 case R_MIPS16_TLS_GOTTPREL:
5958 case R_MIPS16_TLS_LDM:
5959 case R_MICROMIPS_TLS_GD:
5960 case R_MICROMIPS_TLS_GOTTPREL:
5961 case R_MICROMIPS_TLS_LDM:
5962 case R_MICROMIPS_GOT_DISP:
5963 value = g;
5964 overflowed_p = mips_elf_overflow_p (value, 16);
5965 break;
5966
5967 case R_MIPS_GPREL32:
5968 value = (addend + symbol + gp0 - gp);
5969 if (!save_addend)
5970 value &= howto->dst_mask;
5971 break;
5972
5973 case R_MIPS_PC16:
5974 case R_MIPS_GNU_REL16_S2:
5975 if (howto->partial_inplace)
5976 addend = _bfd_mips_elf_sign_extend (addend, 18);
5977
5978 if ((symbol + addend) & 3)
5979 return bfd_reloc_outofrange;
5980
5981 value = symbol + addend - p;
5982 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5983 overflowed_p = mips_elf_overflow_p (value, 18);
5984 value >>= howto->rightshift;
5985 value &= howto->dst_mask;
5986 break;
5987
5988 case R_MIPS_PC21_S2:
5989 if (howto->partial_inplace)
5990 addend = _bfd_mips_elf_sign_extend (addend, 23);
5991
5992 if ((symbol + addend) & 3)
5993 return bfd_reloc_outofrange;
5994
5995 value = symbol + addend - p;
5996 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5997 overflowed_p = mips_elf_overflow_p (value, 23);
5998 value >>= howto->rightshift;
5999 value &= howto->dst_mask;
6000 break;
6001
6002 case R_MIPS_PC26_S2:
6003 if (howto->partial_inplace)
6004 addend = _bfd_mips_elf_sign_extend (addend, 28);
6005
6006 if ((symbol + addend) & 3)
6007 return bfd_reloc_outofrange;
6008
6009 value = symbol + addend - p;
6010 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6011 overflowed_p = mips_elf_overflow_p (value, 28);
6012 value >>= howto->rightshift;
6013 value &= howto->dst_mask;
6014 break;
6015
6016 case R_MIPS_PC18_S3:
6017 if (howto->partial_inplace)
6018 addend = _bfd_mips_elf_sign_extend (addend, 21);
6019
6020 if ((symbol + addend) & 7)
6021 return bfd_reloc_outofrange;
6022
6023 value = symbol + addend - ((p | 7) ^ 7);
6024 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6025 overflowed_p = mips_elf_overflow_p (value, 21);
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
6038 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6039 overflowed_p = mips_elf_overflow_p (value, 21);
6040 value >>= howto->rightshift;
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PCHI16:
6045 value = mips_elf_high (symbol + addend - p);
6046 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 overflowed_p = mips_elf_overflow_p (value, 16);
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PCLO16:
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 16);
6054 value = symbol + addend - p;
6055 value &= howto->dst_mask;
6056 break;
6057
6058 case R_MICROMIPS_PC7_S1:
6059 if (howto->partial_inplace)
6060 addend = _bfd_mips_elf_sign_extend (addend, 8);
6061 value = symbol + addend - p;
6062 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6063 overflowed_p = mips_elf_overflow_p (value, 8);
6064 value >>= howto->rightshift;
6065 value &= howto->dst_mask;
6066 break;
6067
6068 case R_MICROMIPS_PC10_S1:
6069 if (howto->partial_inplace)
6070 addend = _bfd_mips_elf_sign_extend (addend, 11);
6071 value = symbol + addend - p;
6072 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6073 overflowed_p = mips_elf_overflow_p (value, 11);
6074 value >>= howto->rightshift;
6075 value &= howto->dst_mask;
6076 break;
6077
6078 case R_MICROMIPS_PC16_S1:
6079 if (howto->partial_inplace)
6080 addend = _bfd_mips_elf_sign_extend (addend, 17);
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MICROMIPS_PC23_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 25);
6091 value = symbol + addend - ((p | 3) ^ 3);
6092 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6093 overflowed_p = mips_elf_overflow_p (value, 25);
6094 value >>= howto->rightshift;
6095 value &= howto->dst_mask;
6096 break;
6097
6098 case R_MIPS_GOT_HI16:
6099 case R_MIPS_CALL_HI16:
6100 case R_MICROMIPS_GOT_HI16:
6101 case R_MICROMIPS_CALL_HI16:
6102 /* We're allowed to handle these two relocations identically.
6103 The dynamic linker is allowed to handle the CALL relocations
6104 differently by creating a lazy evaluation stub. */
6105 value = g;
6106 value = mips_elf_high (value);
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_GOT_LO16:
6111 case R_MIPS_CALL_LO16:
6112 case R_MICROMIPS_GOT_LO16:
6113 case R_MICROMIPS_CALL_LO16:
6114 value = g & howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_GOT_PAGE:
6118 case R_MICROMIPS_GOT_PAGE:
6119 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6120 if (value == MINUS_ONE)
6121 return bfd_reloc_outofrange;
6122 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6123 overflowed_p = mips_elf_overflow_p (value, 16);
6124 break;
6125
6126 case R_MIPS_GOT_OFST:
6127 case R_MICROMIPS_GOT_OFST:
6128 if (local_p)
6129 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6130 else
6131 value = addend;
6132 overflowed_p = mips_elf_overflow_p (value, 16);
6133 break;
6134
6135 case R_MIPS_SUB:
6136 case R_MICROMIPS_SUB:
6137 value = symbol - addend;
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHER:
6142 case R_MICROMIPS_HIGHER:
6143 value = mips_elf_higher (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_HIGHEST:
6148 case R_MICROMIPS_HIGHEST:
6149 value = mips_elf_highest (addend + symbol);
6150 value &= howto->dst_mask;
6151 break;
6152
6153 case R_MIPS_SCN_DISP:
6154 case R_MICROMIPS_SCN_DISP:
6155 value = symbol + addend - sec->output_offset;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MIPS_JALR:
6160 case R_MICROMIPS_JALR:
6161 /* This relocation is only a hint. In some cases, we optimize
6162 it into a bal instruction. But we don't try to optimize
6163 when the symbol does not resolve locally. */
6164 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6165 return bfd_reloc_continue;
6166 value = symbol + addend;
6167 break;
6168
6169 case R_MIPS_PJUMP:
6170 case R_MIPS_GNU_VTINHERIT:
6171 case R_MIPS_GNU_VTENTRY:
6172 /* We don't do anything with these at present. */
6173 return bfd_reloc_continue;
6174
6175 default:
6176 /* An unrecognized relocation type. */
6177 return bfd_reloc_notsupported;
6178 }
6179
6180 /* Store the VALUE for our caller. */
6181 *valuep = value;
6182 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6183 }
6184
6185 /* Obtain the field relocated by RELOCATION. */
6186
6187 static bfd_vma
6188 mips_elf_obtain_contents (reloc_howto_type *howto,
6189 const Elf_Internal_Rela *relocation,
6190 bfd *input_bfd, bfd_byte *contents)
6191 {
6192 bfd_vma x = 0;
6193 bfd_byte *location = contents + relocation->r_offset;
6194 unsigned int size = bfd_get_reloc_size (howto);
6195
6196 /* Obtain the bytes. */
6197 if (size != 0)
6198 x = bfd_get (8 * size, input_bfd, location);
6199
6200 return x;
6201 }
6202
6203 /* It has been determined that the result of the RELOCATION is the
6204 VALUE. Use HOWTO to place VALUE into the output file at the
6205 appropriate position. The SECTION is the section to which the
6206 relocation applies.
6207 CROSS_MODE_JUMP_P is true if the relocation field
6208 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6209
6210 Returns FALSE if anything goes wrong. */
6211
6212 static bfd_boolean
6213 mips_elf_perform_relocation (struct bfd_link_info *info,
6214 reloc_howto_type *howto,
6215 const Elf_Internal_Rela *relocation,
6216 bfd_vma value, bfd *input_bfd,
6217 asection *input_section, bfd_byte *contents,
6218 bfd_boolean cross_mode_jump_p)
6219 {
6220 bfd_vma x;
6221 bfd_byte *location;
6222 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6223 unsigned int size;
6224
6225 /* Figure out where the relocation is occurring. */
6226 location = contents + relocation->r_offset;
6227
6228 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6229
6230 /* Obtain the current value. */
6231 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6232
6233 /* Clear the field we are setting. */
6234 x &= ~howto->dst_mask;
6235
6236 /* Set the field. */
6237 x |= (value & howto->dst_mask);
6238
6239 /* If required, turn JAL into JALX. */
6240 if (cross_mode_jump_p && jal_reloc_p (r_type))
6241 {
6242 bfd_boolean ok;
6243 bfd_vma opcode = x >> 26;
6244 bfd_vma jalx_opcode;
6245
6246 /* Check to see if the opcode is already JAL or JALX. */
6247 if (r_type == R_MIPS16_26)
6248 {
6249 ok = ((opcode == 0x6) || (opcode == 0x7));
6250 jalx_opcode = 0x7;
6251 }
6252 else if (r_type == R_MICROMIPS_26_S1)
6253 {
6254 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6255 jalx_opcode = 0x3c;
6256 }
6257 else
6258 {
6259 ok = ((opcode == 0x3) || (opcode == 0x1d));
6260 jalx_opcode = 0x1d;
6261 }
6262
6263 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6264 convert J or JALS to JALX. */
6265 if (!ok)
6266 {
6267 (*_bfd_error_handler)
6268 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6269 input_bfd,
6270 input_section,
6271 (unsigned long) relocation->r_offset);
6272 bfd_set_error (bfd_error_bad_value);
6273 return FALSE;
6274 }
6275
6276 /* Make this the JALX opcode. */
6277 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6278 }
6279
6280 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6281 range. */
6282 if (!bfd_link_relocatable (info)
6283 && !cross_mode_jump_p
6284 && ((JAL_TO_BAL_P (input_bfd)
6285 && r_type == R_MIPS_26
6286 && (x >> 26) == 0x3) /* jal addr */
6287 || (JALR_TO_BAL_P (input_bfd)
6288 && r_type == R_MIPS_JALR
6289 && x == 0x0320f809) /* jalr t9 */
6290 || (JR_TO_B_P (input_bfd)
6291 && r_type == R_MIPS_JALR
6292 && x == 0x03200008))) /* jr t9 */
6293 {
6294 bfd_vma addr;
6295 bfd_vma dest;
6296 bfd_signed_vma off;
6297
6298 addr = (input_section->output_section->vma
6299 + input_section->output_offset
6300 + relocation->r_offset
6301 + 4);
6302 if (r_type == R_MIPS_26)
6303 dest = (value << 2) | ((addr >> 28) << 28);
6304 else
6305 dest = value;
6306 off = dest - addr;
6307 if (off <= 0x1ffff && off >= -0x20000)
6308 {
6309 if (x == 0x03200008) /* jr t9 */
6310 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6311 else
6312 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6313 }
6314 }
6315
6316 /* Put the value into the output. */
6317 size = bfd_get_reloc_size (howto);
6318 if (size != 0)
6319 bfd_put (8 * size, input_bfd, x, location);
6320
6321 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6322 location);
6323
6324 return TRUE;
6325 }
6326 \f
6327 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
6332 static bfd_boolean
6333 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6334 struct bfd_link_info *info,
6335 const Elf_Internal_Rela *rel,
6336 struct mips_elf_link_hash_entry *h,
6337 asection *sec, bfd_vma symbol,
6338 bfd_vma *addendp, asection *input_section)
6339 {
6340 Elf_Internal_Rela outrel[3];
6341 asection *sreloc;
6342 bfd *dynobj;
6343 int r_type;
6344 long indx;
6345 bfd_boolean defined_p;
6346 struct mips_elf_link_hash_table *htab;
6347
6348 htab = mips_elf_hash_table (info);
6349 BFD_ASSERT (htab != NULL);
6350
6351 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6352 dynobj = elf_hash_table (info)->dynobj;
6353 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6354 BFD_ASSERT (sreloc != NULL);
6355 BFD_ASSERT (sreloc->contents != NULL);
6356 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6357 < sreloc->size);
6358
6359 outrel[0].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6361 if (ABI_64_P (output_bfd))
6362 {
6363 outrel[1].r_offset =
6364 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6365 outrel[2].r_offset =
6366 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6367 }
6368
6369 if (outrel[0].r_offset == MINUS_ONE)
6370 /* The relocation field has been deleted. */
6371 return TRUE;
6372
6373 if (outrel[0].r_offset == MINUS_TWO)
6374 {
6375 /* The relocation field has been converted into a relative value of
6376 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6377 the field to be fully relocated, so add in the symbol's value. */
6378 *addendp += symbol;
6379 return TRUE;
6380 }
6381
6382 /* We must now calculate the dynamic symbol table index to use
6383 in the relocation. */
6384 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6385 {
6386 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6387 indx = h->root.dynindx;
6388 if (SGI_COMPAT (output_bfd))
6389 defined_p = h->root.def_regular;
6390 else
6391 /* ??? glibc's ld.so just adds the final GOT entry to the
6392 relocation field. It therefore treats relocs against
6393 defined symbols in the same way as relocs against
6394 undefined symbols. */
6395 defined_p = FALSE;
6396 }
6397 else
6398 {
6399 if (sec != NULL && bfd_is_abs_section (sec))
6400 indx = 0;
6401 else if (sec == NULL || sec->owner == NULL)
6402 {
6403 bfd_set_error (bfd_error_bad_value);
6404 return FALSE;
6405 }
6406 else
6407 {
6408 indx = elf_section_data (sec->output_section)->dynindx;
6409 if (indx == 0)
6410 {
6411 asection *osec = htab->root.text_index_section;
6412 indx = elf_section_data (osec)->dynindx;
6413 }
6414 if (indx == 0)
6415 abort ();
6416 }
6417
6418 /* Instead of generating a relocation using the section
6419 symbol, we may as well make it a fully relative
6420 relocation. We want to avoid generating relocations to
6421 local symbols because we used to generate them
6422 incorrectly, without adding the original symbol value,
6423 which is mandated by the ABI for section symbols. In
6424 order to give dynamic loaders and applications time to
6425 phase out the incorrect use, we refrain from emitting
6426 section-relative relocations. It's not like they're
6427 useful, after all. This should be a bit more efficient
6428 as well. */
6429 /* ??? Although this behavior is compatible with glibc's ld.so,
6430 the ABI says that relocations against STN_UNDEF should have
6431 a symbol value of 0. Irix rld honors this, so relocations
6432 against STN_UNDEF have no effect. */
6433 if (!SGI_COMPAT (output_bfd))
6434 indx = 0;
6435 defined_p = TRUE;
6436 }
6437
6438 /* If the relocation was previously an absolute relocation and
6439 this symbol will not be referred to by the relocation, we must
6440 adjust it by the value we give it in the dynamic symbol table.
6441 Otherwise leave the job up to the dynamic linker. */
6442 if (defined_p && r_type != R_MIPS_REL32)
6443 *addendp += symbol;
6444
6445 if (htab->is_vxworks)
6446 /* VxWorks uses non-relative relocations for this. */
6447 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6448 else
6449 /* The relocation is always an REL32 relocation because we don't
6450 know where the shared library will wind up at load-time. */
6451 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6452 R_MIPS_REL32);
6453
6454 /* For strict adherence to the ABI specification, we should
6455 generate a R_MIPS_64 relocation record by itself before the
6456 _REL32/_64 record as well, such that the addend is read in as
6457 a 64-bit value (REL32 is a 32-bit relocation, after all).
6458 However, since none of the existing ELF64 MIPS dynamic
6459 loaders seems to care, we don't waste space with these
6460 artificial relocations. If this turns out to not be true,
6461 mips_elf_allocate_dynamic_relocation() should be tweaked so
6462 as to make room for a pair of dynamic relocations per
6463 invocation if ABI_64_P, and here we should generate an
6464 additional relocation record with R_MIPS_64 by itself for a
6465 NULL symbol before this relocation record. */
6466 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6467 ABI_64_P (output_bfd)
6468 ? R_MIPS_64
6469 : R_MIPS_NONE);
6470 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6471
6472 /* Adjust the output offset of the relocation to reference the
6473 correct location in the output file. */
6474 outrel[0].r_offset += (input_section->output_section->vma
6475 + input_section->output_offset);
6476 outrel[1].r_offset += (input_section->output_section->vma
6477 + input_section->output_offset);
6478 outrel[2].r_offset += (input_section->output_section->vma
6479 + input_section->output_offset);
6480
6481 /* Put the relocation back out. We have to use the special
6482 relocation outputter in the 64-bit case since the 64-bit
6483 relocation format is non-standard. */
6484 if (ABI_64_P (output_bfd))
6485 {
6486 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6487 (output_bfd, &outrel[0],
6488 (sreloc->contents
6489 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6490 }
6491 else if (htab->is_vxworks)
6492 {
6493 /* VxWorks uses RELA rather than REL dynamic relocations. */
6494 outrel[0].r_addend = *addendp;
6495 bfd_elf32_swap_reloca_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents
6498 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6499 }
6500 else
6501 bfd_elf32_swap_reloc_out
6502 (output_bfd, &outrel[0],
6503 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6504
6505 /* We've now added another relocation. */
6506 ++sreloc->reloc_count;
6507
6508 /* Make sure the output section is writable. The dynamic linker
6509 will be writing to it. */
6510 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6511 |= SHF_WRITE;
6512
6513 /* On IRIX5, make an entry of compact relocation info. */
6514 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6515 {
6516 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6517 bfd_byte *cr;
6518
6519 if (scpt)
6520 {
6521 Elf32_crinfo cptrel;
6522
6523 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6524 cptrel.vaddr = (rel->r_offset
6525 + input_section->output_section->vma
6526 + input_section->output_offset);
6527 if (r_type == R_MIPS_REL32)
6528 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6529 else
6530 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6531 mips_elf_set_cr_dist2to (cptrel, 0);
6532 cptrel.konst = *addendp;
6533
6534 cr = (scpt->contents
6535 + sizeof (Elf32_External_compact_rel));
6536 mips_elf_set_cr_relvaddr (cptrel, 0);
6537 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6538 ((Elf32_External_crinfo *) cr
6539 + scpt->reloc_count));
6540 ++scpt->reloc_count;
6541 }
6542 }
6543
6544 /* If we've written this relocation for a readonly section,
6545 we need to set DF_TEXTREL again, so that we do not delete the
6546 DT_TEXTREL tag. */
6547 if (MIPS_ELF_READONLY_SECTION (input_section))
6548 info->flags |= DF_TEXTREL;
6549
6550 return TRUE;
6551 }
6552 \f
6553 /* Return the MACH for a MIPS e_flags value. */
6554
6555 unsigned long
6556 _bfd_elf_mips_mach (flagword flags)
6557 {
6558 switch (flags & EF_MIPS_MACH)
6559 {
6560 case E_MIPS_MACH_3900:
6561 return bfd_mach_mips3900;
6562
6563 case E_MIPS_MACH_4010:
6564 return bfd_mach_mips4010;
6565
6566 case E_MIPS_MACH_4100:
6567 return bfd_mach_mips4100;
6568
6569 case E_MIPS_MACH_4111:
6570 return bfd_mach_mips4111;
6571
6572 case E_MIPS_MACH_4120:
6573 return bfd_mach_mips4120;
6574
6575 case E_MIPS_MACH_4650:
6576 return bfd_mach_mips4650;
6577
6578 case E_MIPS_MACH_5400:
6579 return bfd_mach_mips5400;
6580
6581 case E_MIPS_MACH_5500:
6582 return bfd_mach_mips5500;
6583
6584 case E_MIPS_MACH_5900:
6585 return bfd_mach_mips5900;
6586
6587 case E_MIPS_MACH_9000:
6588 return bfd_mach_mips9000;
6589
6590 case E_MIPS_MACH_SB1:
6591 return bfd_mach_mips_sb1;
6592
6593 case E_MIPS_MACH_LS2E:
6594 return bfd_mach_mips_loongson_2e;
6595
6596 case E_MIPS_MACH_LS2F:
6597 return bfd_mach_mips_loongson_2f;
6598
6599 case E_MIPS_MACH_LS3A:
6600 return bfd_mach_mips_loongson_3a;
6601
6602 case E_MIPS_MACH_OCTEON3:
6603 return bfd_mach_mips_octeon3;
6604
6605 case E_MIPS_MACH_OCTEON2:
6606 return bfd_mach_mips_octeon2;
6607
6608 case E_MIPS_MACH_OCTEON:
6609 return bfd_mach_mips_octeon;
6610
6611 case E_MIPS_MACH_XLR:
6612 return bfd_mach_mips_xlr;
6613
6614 default:
6615 switch (flags & EF_MIPS_ARCH)
6616 {
6617 default:
6618 case E_MIPS_ARCH_1:
6619 return bfd_mach_mips3000;
6620
6621 case E_MIPS_ARCH_2:
6622 return bfd_mach_mips6000;
6623
6624 case E_MIPS_ARCH_3:
6625 return bfd_mach_mips4000;
6626
6627 case E_MIPS_ARCH_4:
6628 return bfd_mach_mips8000;
6629
6630 case E_MIPS_ARCH_5:
6631 return bfd_mach_mips5;
6632
6633 case E_MIPS_ARCH_32:
6634 return bfd_mach_mipsisa32;
6635
6636 case E_MIPS_ARCH_64:
6637 return bfd_mach_mipsisa64;
6638
6639 case E_MIPS_ARCH_32R2:
6640 return bfd_mach_mipsisa32r2;
6641
6642 case E_MIPS_ARCH_64R2:
6643 return bfd_mach_mipsisa64r2;
6644
6645 case E_MIPS_ARCH_32R6:
6646 return bfd_mach_mipsisa32r6;
6647
6648 case E_MIPS_ARCH_64R6:
6649 return bfd_mach_mipsisa64r6;
6650 }
6651 }
6652
6653 return 0;
6654 }
6655
6656 /* Return printable name for ABI. */
6657
6658 static INLINE char *
6659 elf_mips_abi_name (bfd *abfd)
6660 {
6661 flagword flags;
6662
6663 flags = elf_elfheader (abfd)->e_flags;
6664 switch (flags & EF_MIPS_ABI)
6665 {
6666 case 0:
6667 if (ABI_N32_P (abfd))
6668 return "N32";
6669 else if (ABI_64_P (abfd))
6670 return "64";
6671 else
6672 return "none";
6673 case E_MIPS_ABI_O32:
6674 return "O32";
6675 case E_MIPS_ABI_O64:
6676 return "O64";
6677 case E_MIPS_ABI_EABI32:
6678 return "EABI32";
6679 case E_MIPS_ABI_EABI64:
6680 return "EABI64";
6681 default:
6682 return "unknown abi";
6683 }
6684 }
6685 \f
6686 /* MIPS ELF uses two common sections. One is the usual one, and the
6687 other is for small objects. All the small objects are kept
6688 together, and then referenced via the gp pointer, which yields
6689 faster assembler code. This is what we use for the small common
6690 section. This approach is copied from ecoff.c. */
6691 static asection mips_elf_scom_section;
6692 static asymbol mips_elf_scom_symbol;
6693 static asymbol *mips_elf_scom_symbol_ptr;
6694
6695 /* MIPS ELF also uses an acommon section, which represents an
6696 allocated common symbol which may be overridden by a
6697 definition in a shared library. */
6698 static asection mips_elf_acom_section;
6699 static asymbol mips_elf_acom_symbol;
6700 static asymbol *mips_elf_acom_symbol_ptr;
6701
6702 /* This is used for both the 32-bit and the 64-bit ABI. */
6703
6704 void
6705 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6706 {
6707 elf_symbol_type *elfsym;
6708
6709 /* Handle the special MIPS section numbers that a symbol may use. */
6710 elfsym = (elf_symbol_type *) asym;
6711 switch (elfsym->internal_elf_sym.st_shndx)
6712 {
6713 case SHN_MIPS_ACOMMON:
6714 /* This section is used in a dynamically linked executable file.
6715 It is an allocated common section. The dynamic linker can
6716 either resolve these symbols to something in a shared
6717 library, or it can just leave them here. For our purposes,
6718 we can consider these symbols to be in a new section. */
6719 if (mips_elf_acom_section.name == NULL)
6720 {
6721 /* Initialize the acommon section. */
6722 mips_elf_acom_section.name = ".acommon";
6723 mips_elf_acom_section.flags = SEC_ALLOC;
6724 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6725 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6726 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6727 mips_elf_acom_symbol.name = ".acommon";
6728 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6729 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6730 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6731 }
6732 asym->section = &mips_elf_acom_section;
6733 break;
6734
6735 case SHN_COMMON:
6736 /* Common symbols less than the GP size are automatically
6737 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6738 if (asym->value > elf_gp_size (abfd)
6739 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6740 || IRIX_COMPAT (abfd) == ict_irix6)
6741 break;
6742 /* Fall through. */
6743 case SHN_MIPS_SCOMMON:
6744 if (mips_elf_scom_section.name == NULL)
6745 {
6746 /* Initialize the small common section. */
6747 mips_elf_scom_section.name = ".scommon";
6748 mips_elf_scom_section.flags = SEC_IS_COMMON;
6749 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6750 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6751 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6752 mips_elf_scom_symbol.name = ".scommon";
6753 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6754 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6755 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6756 }
6757 asym->section = &mips_elf_scom_section;
6758 asym->value = elfsym->internal_elf_sym.st_size;
6759 break;
6760
6761 case SHN_MIPS_SUNDEFINED:
6762 asym->section = bfd_und_section_ptr;
6763 break;
6764
6765 case SHN_MIPS_TEXT:
6766 {
6767 asection *section = bfd_get_section_by_name (abfd, ".text");
6768
6769 if (section != NULL)
6770 {
6771 asym->section = section;
6772 /* MIPS_TEXT is a bit special, the address is not an offset
6773 to the base of the .text section. So substract the section
6774 base address to make it an offset. */
6775 asym->value -= section->vma;
6776 }
6777 }
6778 break;
6779
6780 case SHN_MIPS_DATA:
6781 {
6782 asection *section = bfd_get_section_by_name (abfd, ".data");
6783
6784 if (section != NULL)
6785 {
6786 asym->section = section;
6787 /* MIPS_DATA is a bit special, the address is not an offset
6788 to the base of the .data section. So substract the section
6789 base address to make it an offset. */
6790 asym->value -= section->vma;
6791 }
6792 }
6793 break;
6794 }
6795
6796 /* If this is an odd-valued function symbol, assume it's a MIPS16
6797 or microMIPS one. */
6798 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6799 && (asym->value & 1) != 0)
6800 {
6801 asym->value--;
6802 if (MICROMIPS_P (abfd))
6803 elfsym->internal_elf_sym.st_other
6804 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6805 else
6806 elfsym->internal_elf_sym.st_other
6807 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6808 }
6809 }
6810 \f
6811 /* Implement elf_backend_eh_frame_address_size. This differs from
6812 the default in the way it handles EABI64.
6813
6814 EABI64 was originally specified as an LP64 ABI, and that is what
6815 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6816 historically accepted the combination of -mabi=eabi and -mlong32,
6817 and this ILP32 variation has become semi-official over time.
6818 Both forms use elf32 and have pointer-sized FDE addresses.
6819
6820 If an EABI object was generated by GCC 4.0 or above, it will have
6821 an empty .gcc_compiled_longXX section, where XX is the size of longs
6822 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6823 have no special marking to distinguish them from LP64 objects.
6824
6825 We don't want users of the official LP64 ABI to be punished for the
6826 existence of the ILP32 variant, but at the same time, we don't want
6827 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6828 We therefore take the following approach:
6829
6830 - If ABFD contains a .gcc_compiled_longXX section, use it to
6831 determine the pointer size.
6832
6833 - Otherwise check the type of the first relocation. Assume that
6834 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6835
6836 - Otherwise punt.
6837
6838 The second check is enough to detect LP64 objects generated by pre-4.0
6839 compilers because, in the kind of output generated by those compilers,
6840 the first relocation will be associated with either a CIE personality
6841 routine or an FDE start address. Furthermore, the compilers never
6842 used a special (non-pointer) encoding for this ABI.
6843
6844 Checking the relocation type should also be safe because there is no
6845 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6846 did so. */
6847
6848 unsigned int
6849 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6850 {
6851 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6852 return 8;
6853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6854 {
6855 bfd_boolean long32_p, long64_p;
6856
6857 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6858 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6859 if (long32_p && long64_p)
6860 return 0;
6861 if (long32_p)
6862 return 4;
6863 if (long64_p)
6864 return 8;
6865
6866 if (sec->reloc_count > 0
6867 && elf_section_data (sec)->relocs != NULL
6868 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6869 == R_MIPS_64))
6870 return 8;
6871
6872 return 0;
6873 }
6874 return 4;
6875 }
6876 \f
6877 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6878 relocations against two unnamed section symbols to resolve to the
6879 same address. For example, if we have code like:
6880
6881 lw $4,%got_disp(.data)($gp)
6882 lw $25,%got_disp(.text)($gp)
6883 jalr $25
6884
6885 then the linker will resolve both relocations to .data and the program
6886 will jump there rather than to .text.
6887
6888 We can work around this problem by giving names to local section symbols.
6889 This is also what the MIPSpro tools do. */
6890
6891 bfd_boolean
6892 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6893 {
6894 return SGI_COMPAT (abfd);
6895 }
6896 \f
6897 /* Work over a section just before writing it out. This routine is
6898 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6899 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6900 a better way. */
6901
6902 bfd_boolean
6903 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6904 {
6905 if (hdr->sh_type == SHT_MIPS_REGINFO
6906 && hdr->sh_size > 0)
6907 {
6908 bfd_byte buf[4];
6909
6910 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6911 BFD_ASSERT (hdr->contents == NULL);
6912
6913 if (bfd_seek (abfd,
6914 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6915 SEEK_SET) != 0)
6916 return FALSE;
6917 H_PUT_32 (abfd, elf_gp (abfd), buf);
6918 if (bfd_bwrite (buf, 4, abfd) != 4)
6919 return FALSE;
6920 }
6921
6922 if (hdr->sh_type == SHT_MIPS_OPTIONS
6923 && hdr->bfd_section != NULL
6924 && mips_elf_section_data (hdr->bfd_section) != NULL
6925 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6926 {
6927 bfd_byte *contents, *l, *lend;
6928
6929 /* We stored the section contents in the tdata field in the
6930 set_section_contents routine. We save the section contents
6931 so that we don't have to read them again.
6932 At this point we know that elf_gp is set, so we can look
6933 through the section contents to see if there is an
6934 ODK_REGINFO structure. */
6935
6936 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6937 l = contents;
6938 lend = contents + hdr->sh_size;
6939 while (l + sizeof (Elf_External_Options) <= lend)
6940 {
6941 Elf_Internal_Options intopt;
6942
6943 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6944 &intopt);
6945 if (intopt.size < sizeof (Elf_External_Options))
6946 {
6947 (*_bfd_error_handler)
6948 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6949 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6950 break;
6951 }
6952 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6953 {
6954 bfd_byte buf[8];
6955
6956 if (bfd_seek (abfd,
6957 (hdr->sh_offset
6958 + (l - contents)
6959 + sizeof (Elf_External_Options)
6960 + (sizeof (Elf64_External_RegInfo) - 8)),
6961 SEEK_SET) != 0)
6962 return FALSE;
6963 H_PUT_64 (abfd, elf_gp (abfd), buf);
6964 if (bfd_bwrite (buf, 8, abfd) != 8)
6965 return FALSE;
6966 }
6967 else if (intopt.kind == ODK_REGINFO)
6968 {
6969 bfd_byte buf[4];
6970
6971 if (bfd_seek (abfd,
6972 (hdr->sh_offset
6973 + (l - contents)
6974 + sizeof (Elf_External_Options)
6975 + (sizeof (Elf32_External_RegInfo) - 4)),
6976 SEEK_SET) != 0)
6977 return FALSE;
6978 H_PUT_32 (abfd, elf_gp (abfd), buf);
6979 if (bfd_bwrite (buf, 4, abfd) != 4)
6980 return FALSE;
6981 }
6982 l += intopt.size;
6983 }
6984 }
6985
6986 if (hdr->bfd_section != NULL)
6987 {
6988 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6989
6990 /* .sbss is not handled specially here because the GNU/Linux
6991 prelinker can convert .sbss from NOBITS to PROGBITS and
6992 changing it back to NOBITS breaks the binary. The entry in
6993 _bfd_mips_elf_special_sections will ensure the correct flags
6994 are set on .sbss if BFD creates it without reading it from an
6995 input file, and without special handling here the flags set
6996 on it in an input file will be followed. */
6997 if (strcmp (name, ".sdata") == 0
6998 || strcmp (name, ".lit8") == 0
6999 || strcmp (name, ".lit4") == 0)
7000 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7001 else if (strcmp (name, ".srdata") == 0)
7002 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7003 else if (strcmp (name, ".compact_rel") == 0)
7004 hdr->sh_flags = 0;
7005 else if (strcmp (name, ".rtproc") == 0)
7006 {
7007 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7008 {
7009 unsigned int adjust;
7010
7011 adjust = hdr->sh_size % hdr->sh_addralign;
7012 if (adjust != 0)
7013 hdr->sh_size += hdr->sh_addralign - adjust;
7014 }
7015 }
7016 }
7017
7018 return TRUE;
7019 }
7020
7021 /* Handle a MIPS specific section when reading an object file. This
7022 is called when elfcode.h finds a section with an unknown type.
7023 This routine supports both the 32-bit and 64-bit ELF ABI.
7024
7025 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7026 how to. */
7027
7028 bfd_boolean
7029 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7030 Elf_Internal_Shdr *hdr,
7031 const char *name,
7032 int shindex)
7033 {
7034 flagword flags = 0;
7035
7036 /* There ought to be a place to keep ELF backend specific flags, but
7037 at the moment there isn't one. We just keep track of the
7038 sections by their name, instead. Fortunately, the ABI gives
7039 suggested names for all the MIPS specific sections, so we will
7040 probably get away with this. */
7041 switch (hdr->sh_type)
7042 {
7043 case SHT_MIPS_LIBLIST:
7044 if (strcmp (name, ".liblist") != 0)
7045 return FALSE;
7046 break;
7047 case SHT_MIPS_MSYM:
7048 if (strcmp (name, ".msym") != 0)
7049 return FALSE;
7050 break;
7051 case SHT_MIPS_CONFLICT:
7052 if (strcmp (name, ".conflict") != 0)
7053 return FALSE;
7054 break;
7055 case SHT_MIPS_GPTAB:
7056 if (! CONST_STRNEQ (name, ".gptab."))
7057 return FALSE;
7058 break;
7059 case SHT_MIPS_UCODE:
7060 if (strcmp (name, ".ucode") != 0)
7061 return FALSE;
7062 break;
7063 case SHT_MIPS_DEBUG:
7064 if (strcmp (name, ".mdebug") != 0)
7065 return FALSE;
7066 flags = SEC_DEBUGGING;
7067 break;
7068 case SHT_MIPS_REGINFO:
7069 if (strcmp (name, ".reginfo") != 0
7070 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7071 return FALSE;
7072 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7073 break;
7074 case SHT_MIPS_IFACE:
7075 if (strcmp (name, ".MIPS.interfaces") != 0)
7076 return FALSE;
7077 break;
7078 case SHT_MIPS_CONTENT:
7079 if (! CONST_STRNEQ (name, ".MIPS.content"))
7080 return FALSE;
7081 break;
7082 case SHT_MIPS_OPTIONS:
7083 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7084 return FALSE;
7085 break;
7086 case SHT_MIPS_ABIFLAGS:
7087 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7088 return FALSE;
7089 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7090 break;
7091 case SHT_MIPS_DWARF:
7092 if (! CONST_STRNEQ (name, ".debug_")
7093 && ! CONST_STRNEQ (name, ".zdebug_"))
7094 return FALSE;
7095 break;
7096 case SHT_MIPS_SYMBOL_LIB:
7097 if (strcmp (name, ".MIPS.symlib") != 0)
7098 return FALSE;
7099 break;
7100 case SHT_MIPS_EVENTS:
7101 if (! CONST_STRNEQ (name, ".MIPS.events")
7102 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7103 return FALSE;
7104 break;
7105 default:
7106 break;
7107 }
7108
7109 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7110 return FALSE;
7111
7112 if (flags)
7113 {
7114 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7115 (bfd_get_section_flags (abfd,
7116 hdr->bfd_section)
7117 | flags)))
7118 return FALSE;
7119 }
7120
7121 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7122 {
7123 Elf_External_ABIFlags_v0 ext;
7124
7125 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7126 &ext, 0, sizeof ext))
7127 return FALSE;
7128 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7129 &mips_elf_tdata (abfd)->abiflags);
7130 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7131 return FALSE;
7132 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7133 }
7134
7135 /* FIXME: We should record sh_info for a .gptab section. */
7136
7137 /* For a .reginfo section, set the gp value in the tdata information
7138 from the contents of this section. We need the gp value while
7139 processing relocs, so we just get it now. The .reginfo section
7140 is not used in the 64-bit MIPS ELF ABI. */
7141 if (hdr->sh_type == SHT_MIPS_REGINFO)
7142 {
7143 Elf32_External_RegInfo ext;
7144 Elf32_RegInfo s;
7145
7146 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7147 &ext, 0, sizeof ext))
7148 return FALSE;
7149 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7150 elf_gp (abfd) = s.ri_gp_value;
7151 }
7152
7153 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7154 set the gp value based on what we find. We may see both
7155 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7156 they should agree. */
7157 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7158 {
7159 bfd_byte *contents, *l, *lend;
7160
7161 contents = bfd_malloc (hdr->sh_size);
7162 if (contents == NULL)
7163 return FALSE;
7164 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7165 0, hdr->sh_size))
7166 {
7167 free (contents);
7168 return FALSE;
7169 }
7170 l = contents;
7171 lend = contents + hdr->sh_size;
7172 while (l + sizeof (Elf_External_Options) <= lend)
7173 {
7174 Elf_Internal_Options intopt;
7175
7176 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7177 &intopt);
7178 if (intopt.size < sizeof (Elf_External_Options))
7179 {
7180 (*_bfd_error_handler)
7181 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7182 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7183 break;
7184 }
7185 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7186 {
7187 Elf64_Internal_RegInfo intreg;
7188
7189 bfd_mips_elf64_swap_reginfo_in
7190 (abfd,
7191 ((Elf64_External_RegInfo *)
7192 (l + sizeof (Elf_External_Options))),
7193 &intreg);
7194 elf_gp (abfd) = intreg.ri_gp_value;
7195 }
7196 else if (intopt.kind == ODK_REGINFO)
7197 {
7198 Elf32_RegInfo intreg;
7199
7200 bfd_mips_elf32_swap_reginfo_in
7201 (abfd,
7202 ((Elf32_External_RegInfo *)
7203 (l + sizeof (Elf_External_Options))),
7204 &intreg);
7205 elf_gp (abfd) = intreg.ri_gp_value;
7206 }
7207 l += intopt.size;
7208 }
7209 free (contents);
7210 }
7211
7212 return TRUE;
7213 }
7214
7215 /* Set the correct type for a MIPS ELF section. We do this by the
7216 section name, which is a hack, but ought to work. This routine is
7217 used by both the 32-bit and the 64-bit ABI. */
7218
7219 bfd_boolean
7220 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7221 {
7222 const char *name = bfd_get_section_name (abfd, sec);
7223
7224 if (strcmp (name, ".liblist") == 0)
7225 {
7226 hdr->sh_type = SHT_MIPS_LIBLIST;
7227 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7228 /* The sh_link field is set in final_write_processing. */
7229 }
7230 else if (strcmp (name, ".conflict") == 0)
7231 hdr->sh_type = SHT_MIPS_CONFLICT;
7232 else if (CONST_STRNEQ (name, ".gptab."))
7233 {
7234 hdr->sh_type = SHT_MIPS_GPTAB;
7235 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7236 /* The sh_info field is set in final_write_processing. */
7237 }
7238 else if (strcmp (name, ".ucode") == 0)
7239 hdr->sh_type = SHT_MIPS_UCODE;
7240 else if (strcmp (name, ".mdebug") == 0)
7241 {
7242 hdr->sh_type = SHT_MIPS_DEBUG;
7243 /* In a shared object on IRIX 5.3, the .mdebug section has an
7244 entsize of 0. FIXME: Does this matter? */
7245 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7246 hdr->sh_entsize = 0;
7247 else
7248 hdr->sh_entsize = 1;
7249 }
7250 else if (strcmp (name, ".reginfo") == 0)
7251 {
7252 hdr->sh_type = SHT_MIPS_REGINFO;
7253 /* In a shared object on IRIX 5.3, the .reginfo section has an
7254 entsize of 0x18. FIXME: Does this matter? */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if ((abfd->flags & DYNAMIC) != 0)
7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 else
7260 hdr->sh_entsize = 1;
7261 }
7262 else
7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7264 }
7265 else if (SGI_COMPAT (abfd)
7266 && (strcmp (name, ".hash") == 0
7267 || strcmp (name, ".dynamic") == 0
7268 || strcmp (name, ".dynstr") == 0))
7269 {
7270 if (SGI_COMPAT (abfd))
7271 hdr->sh_entsize = 0;
7272 #if 0
7273 /* This isn't how the IRIX6 linker behaves. */
7274 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7275 #endif
7276 }
7277 else if (strcmp (name, ".got") == 0
7278 || strcmp (name, ".srdata") == 0
7279 || strcmp (name, ".sdata") == 0
7280 || strcmp (name, ".sbss") == 0
7281 || strcmp (name, ".lit4") == 0
7282 || strcmp (name, ".lit8") == 0)
7283 hdr->sh_flags |= SHF_MIPS_GPREL;
7284 else if (strcmp (name, ".MIPS.interfaces") == 0)
7285 {
7286 hdr->sh_type = SHT_MIPS_IFACE;
7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7288 }
7289 else if (CONST_STRNEQ (name, ".MIPS.content"))
7290 {
7291 hdr->sh_type = SHT_MIPS_CONTENT;
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 /* The sh_info field is set in final_write_processing. */
7294 }
7295 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7296 {
7297 hdr->sh_type = SHT_MIPS_OPTIONS;
7298 hdr->sh_entsize = 1;
7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7300 }
7301 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7302 {
7303 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7304 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7305 }
7306 else if (CONST_STRNEQ (name, ".debug_")
7307 || CONST_STRNEQ (name, ".zdebug_"))
7308 {
7309 hdr->sh_type = SHT_MIPS_DWARF;
7310
7311 /* Irix facilities such as libexc expect a single .debug_frame
7312 per executable, the system ones have NOSTRIP set and the linker
7313 doesn't merge sections with different flags so ... */
7314 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7315 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7316 }
7317 else if (strcmp (name, ".MIPS.symlib") == 0)
7318 {
7319 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7320 /* The sh_link and sh_info fields are set in
7321 final_write_processing. */
7322 }
7323 else if (CONST_STRNEQ (name, ".MIPS.events")
7324 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7325 {
7326 hdr->sh_type = SHT_MIPS_EVENTS;
7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7328 /* The sh_link field is set in final_write_processing. */
7329 }
7330 else if (strcmp (name, ".msym") == 0)
7331 {
7332 hdr->sh_type = SHT_MIPS_MSYM;
7333 hdr->sh_flags |= SHF_ALLOC;
7334 hdr->sh_entsize = 8;
7335 }
7336
7337 /* The generic elf_fake_sections will set up REL_HDR using the default
7338 kind of relocations. We used to set up a second header for the
7339 non-default kind of relocations here, but only NewABI would use
7340 these, and the IRIX ld doesn't like resulting empty RELA sections.
7341 Thus we create those header only on demand now. */
7342
7343 return TRUE;
7344 }
7345
7346 /* Given a BFD section, try to locate the corresponding ELF section
7347 index. This is used by both the 32-bit and the 64-bit ABI.
7348 Actually, it's not clear to me that the 64-bit ABI supports these,
7349 but for non-PIC objects we will certainly want support for at least
7350 the .scommon section. */
7351
7352 bfd_boolean
7353 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7354 asection *sec, int *retval)
7355 {
7356 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7357 {
7358 *retval = SHN_MIPS_SCOMMON;
7359 return TRUE;
7360 }
7361 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7362 {
7363 *retval = SHN_MIPS_ACOMMON;
7364 return TRUE;
7365 }
7366 return FALSE;
7367 }
7368 \f
7369 /* Hook called by the linker routine which adds symbols from an object
7370 file. We must handle the special MIPS section numbers here. */
7371
7372 bfd_boolean
7373 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7374 Elf_Internal_Sym *sym, const char **namep,
7375 flagword *flagsp ATTRIBUTE_UNUSED,
7376 asection **secp, bfd_vma *valp)
7377 {
7378 if (SGI_COMPAT (abfd)
7379 && (abfd->flags & DYNAMIC) != 0
7380 && strcmp (*namep, "_rld_new_interface") == 0)
7381 {
7382 /* Skip IRIX5 rld entry name. */
7383 *namep = NULL;
7384 return TRUE;
7385 }
7386
7387 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7388 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7389 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7390 a magic symbol resolved by the linker, we ignore this bogus definition
7391 of _gp_disp. New ABI objects do not suffer from this problem so this
7392 is not done for them. */
7393 if (!NEWABI_P(abfd)
7394 && (sym->st_shndx == SHN_ABS)
7395 && (strcmp (*namep, "_gp_disp") == 0))
7396 {
7397 *namep = NULL;
7398 return TRUE;
7399 }
7400
7401 switch (sym->st_shndx)
7402 {
7403 case SHN_COMMON:
7404 /* Common symbols less than the GP size are automatically
7405 treated as SHN_MIPS_SCOMMON symbols. */
7406 if (sym->st_size > elf_gp_size (abfd)
7407 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7408 || IRIX_COMPAT (abfd) == ict_irix6)
7409 break;
7410 /* Fall through. */
7411 case SHN_MIPS_SCOMMON:
7412 *secp = bfd_make_section_old_way (abfd, ".scommon");
7413 (*secp)->flags |= SEC_IS_COMMON;
7414 *valp = sym->st_size;
7415 break;
7416
7417 case SHN_MIPS_TEXT:
7418 /* This section is used in a shared object. */
7419 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7420 {
7421 asymbol *elf_text_symbol;
7422 asection *elf_text_section;
7423 bfd_size_type amt = sizeof (asection);
7424
7425 elf_text_section = bfd_zalloc (abfd, amt);
7426 if (elf_text_section == NULL)
7427 return FALSE;
7428
7429 amt = sizeof (asymbol);
7430 elf_text_symbol = bfd_zalloc (abfd, amt);
7431 if (elf_text_symbol == NULL)
7432 return FALSE;
7433
7434 /* Initialize the section. */
7435
7436 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7437 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7438
7439 elf_text_section->symbol = elf_text_symbol;
7440 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7441
7442 elf_text_section->name = ".text";
7443 elf_text_section->flags = SEC_NO_FLAGS;
7444 elf_text_section->output_section = NULL;
7445 elf_text_section->owner = abfd;
7446 elf_text_symbol->name = ".text";
7447 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7448 elf_text_symbol->section = elf_text_section;
7449 }
7450 /* This code used to do *secp = bfd_und_section_ptr if
7451 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7452 so I took it out. */
7453 *secp = mips_elf_tdata (abfd)->elf_text_section;
7454 break;
7455
7456 case SHN_MIPS_ACOMMON:
7457 /* Fall through. XXX Can we treat this as allocated data? */
7458 case SHN_MIPS_DATA:
7459 /* This section is used in a shared object. */
7460 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7461 {
7462 asymbol *elf_data_symbol;
7463 asection *elf_data_section;
7464 bfd_size_type amt = sizeof (asection);
7465
7466 elf_data_section = bfd_zalloc (abfd, amt);
7467 if (elf_data_section == NULL)
7468 return FALSE;
7469
7470 amt = sizeof (asymbol);
7471 elf_data_symbol = bfd_zalloc (abfd, amt);
7472 if (elf_data_symbol == NULL)
7473 return FALSE;
7474
7475 /* Initialize the section. */
7476
7477 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7478 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7479
7480 elf_data_section->symbol = elf_data_symbol;
7481 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7482
7483 elf_data_section->name = ".data";
7484 elf_data_section->flags = SEC_NO_FLAGS;
7485 elf_data_section->output_section = NULL;
7486 elf_data_section->owner = abfd;
7487 elf_data_symbol->name = ".data";
7488 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7489 elf_data_symbol->section = elf_data_section;
7490 }
7491 /* This code used to do *secp = bfd_und_section_ptr if
7492 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7493 so I took it out. */
7494 *secp = mips_elf_tdata (abfd)->elf_data_section;
7495 break;
7496
7497 case SHN_MIPS_SUNDEFINED:
7498 *secp = bfd_und_section_ptr;
7499 break;
7500 }
7501
7502 if (SGI_COMPAT (abfd)
7503 && ! bfd_link_pic (info)
7504 && info->output_bfd->xvec == abfd->xvec
7505 && strcmp (*namep, "__rld_obj_head") == 0)
7506 {
7507 struct elf_link_hash_entry *h;
7508 struct bfd_link_hash_entry *bh;
7509
7510 /* Mark __rld_obj_head as dynamic. */
7511 bh = NULL;
7512 if (! (_bfd_generic_link_add_one_symbol
7513 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7514 get_elf_backend_data (abfd)->collect, &bh)))
7515 return FALSE;
7516
7517 h = (struct elf_link_hash_entry *) bh;
7518 h->non_elf = 0;
7519 h->def_regular = 1;
7520 h->type = STT_OBJECT;
7521
7522 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7523 return FALSE;
7524
7525 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7526 mips_elf_hash_table (info)->rld_symbol = h;
7527 }
7528
7529 /* If this is a mips16 text symbol, add 1 to the value to make it
7530 odd. This will cause something like .word SYM to come up with
7531 the right value when it is loaded into the PC. */
7532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7533 ++*valp;
7534
7535 return TRUE;
7536 }
7537
7538 /* This hook function is called before the linker writes out a global
7539 symbol. We mark symbols as small common if appropriate. This is
7540 also where we undo the increment of the value for a mips16 symbol. */
7541
7542 int
7543 _bfd_mips_elf_link_output_symbol_hook
7544 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7545 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7546 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7547 {
7548 /* If we see a common symbol, which implies a relocatable link, then
7549 if a symbol was small common in an input file, mark it as small
7550 common in the output file. */
7551 if (sym->st_shndx == SHN_COMMON
7552 && strcmp (input_sec->name, ".scommon") == 0)
7553 sym->st_shndx = SHN_MIPS_SCOMMON;
7554
7555 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7556 sym->st_value &= ~1;
7557
7558 return 1;
7559 }
7560 \f
7561 /* Functions for the dynamic linker. */
7562
7563 /* Create dynamic sections when linking against a dynamic object. */
7564
7565 bfd_boolean
7566 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7567 {
7568 struct elf_link_hash_entry *h;
7569 struct bfd_link_hash_entry *bh;
7570 flagword flags;
7571 register asection *s;
7572 const char * const *namep;
7573 struct mips_elf_link_hash_table *htab;
7574
7575 htab = mips_elf_hash_table (info);
7576 BFD_ASSERT (htab != NULL);
7577
7578 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7579 | SEC_LINKER_CREATED | SEC_READONLY);
7580
7581 /* The psABI requires a read-only .dynamic section, but the VxWorks
7582 EABI doesn't. */
7583 if (!htab->is_vxworks)
7584 {
7585 s = bfd_get_linker_section (abfd, ".dynamic");
7586 if (s != NULL)
7587 {
7588 if (! bfd_set_section_flags (abfd, s, flags))
7589 return FALSE;
7590 }
7591 }
7592
7593 /* We need to create .got section. */
7594 if (!mips_elf_create_got_section (abfd, info))
7595 return FALSE;
7596
7597 if (! mips_elf_rel_dyn_section (info, TRUE))
7598 return FALSE;
7599
7600 /* Create .stub section. */
7601 s = bfd_make_section_anyway_with_flags (abfd,
7602 MIPS_ELF_STUB_SECTION_NAME (abfd),
7603 flags | SEC_CODE);
7604 if (s == NULL
7605 || ! bfd_set_section_alignment (abfd, s,
7606 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7607 return FALSE;
7608 htab->sstubs = s;
7609
7610 if (!mips_elf_hash_table (info)->use_rld_obj_head
7611 && bfd_link_executable (info)
7612 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7613 {
7614 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7615 flags &~ (flagword) SEC_READONLY);
7616 if (s == NULL
7617 || ! bfd_set_section_alignment (abfd, s,
7618 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7619 return FALSE;
7620 }
7621
7622 /* On IRIX5, we adjust add some additional symbols and change the
7623 alignments of several sections. There is no ABI documentation
7624 indicating that this is necessary on IRIX6, nor any evidence that
7625 the linker takes such action. */
7626 if (IRIX_COMPAT (abfd) == ict_irix5)
7627 {
7628 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7629 {
7630 bh = NULL;
7631 if (! (_bfd_generic_link_add_one_symbol
7632 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7633 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7634 return FALSE;
7635
7636 h = (struct elf_link_hash_entry *) bh;
7637 h->non_elf = 0;
7638 h->def_regular = 1;
7639 h->type = STT_SECTION;
7640
7641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7642 return FALSE;
7643 }
7644
7645 /* We need to create a .compact_rel section. */
7646 if (SGI_COMPAT (abfd))
7647 {
7648 if (!mips_elf_create_compact_rel_section (abfd, info))
7649 return FALSE;
7650 }
7651
7652 /* Change alignments of some sections. */
7653 s = bfd_get_linker_section (abfd, ".hash");
7654 if (s != NULL)
7655 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7656
7657 s = bfd_get_linker_section (abfd, ".dynsym");
7658 if (s != NULL)
7659 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7660
7661 s = bfd_get_linker_section (abfd, ".dynstr");
7662 if (s != NULL)
7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664
7665 /* ??? */
7666 s = bfd_get_section_by_name (abfd, ".reginfo");
7667 if (s != NULL)
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
7670 s = bfd_get_linker_section (abfd, ".dynamic");
7671 if (s != NULL)
7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7673 }
7674
7675 if (bfd_link_executable (info))
7676 {
7677 const char *name;
7678
7679 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7680 bh = NULL;
7681 if (!(_bfd_generic_link_add_one_symbol
7682 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7683 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7684 return FALSE;
7685
7686 h = (struct elf_link_hash_entry *) bh;
7687 h->non_elf = 0;
7688 h->def_regular = 1;
7689 h->type = STT_SECTION;
7690
7691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7692 return FALSE;
7693
7694 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7695 {
7696 /* __rld_map is a four byte word located in the .data section
7697 and is filled in by the rtld to contain a pointer to
7698 the _r_debug structure. Its symbol value will be set in
7699 _bfd_mips_elf_finish_dynamic_symbol. */
7700 s = bfd_get_linker_section (abfd, ".rld_map");
7701 BFD_ASSERT (s != NULL);
7702
7703 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7704 bh = NULL;
7705 if (!(_bfd_generic_link_add_one_symbol
7706 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7707 get_elf_backend_data (abfd)->collect, &bh)))
7708 return FALSE;
7709
7710 h = (struct elf_link_hash_entry *) bh;
7711 h->non_elf = 0;
7712 h->def_regular = 1;
7713 h->type = STT_OBJECT;
7714
7715 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7716 return FALSE;
7717 mips_elf_hash_table (info)->rld_symbol = h;
7718 }
7719 }
7720
7721 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7722 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7723 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7724 return FALSE;
7725
7726 /* Cache the sections created above. */
7727 htab->splt = bfd_get_linker_section (abfd, ".plt");
7728 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7729 if (htab->is_vxworks)
7730 {
7731 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7732 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7733 }
7734 else
7735 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7736 if (!htab->sdynbss
7737 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7738 || !htab->srelplt
7739 || !htab->splt)
7740 abort ();
7741
7742 /* Do the usual VxWorks handling. */
7743 if (htab->is_vxworks
7744 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7745 return FALSE;
7746
7747 return TRUE;
7748 }
7749 \f
7750 /* Return true if relocation REL against section SEC is a REL rather than
7751 RELA relocation. RELOCS is the first relocation in the section and
7752 ABFD is the bfd that contains SEC. */
7753
7754 static bfd_boolean
7755 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7756 const Elf_Internal_Rela *relocs,
7757 const Elf_Internal_Rela *rel)
7758 {
7759 Elf_Internal_Shdr *rel_hdr;
7760 const struct elf_backend_data *bed;
7761
7762 /* To determine which flavor of relocation this is, we depend on the
7763 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7764 rel_hdr = elf_section_data (sec)->rel.hdr;
7765 if (rel_hdr == NULL)
7766 return FALSE;
7767 bed = get_elf_backend_data (abfd);
7768 return ((size_t) (rel - relocs)
7769 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7770 }
7771
7772 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7773 HOWTO is the relocation's howto and CONTENTS points to the contents
7774 of the section that REL is against. */
7775
7776 static bfd_vma
7777 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7778 reloc_howto_type *howto, bfd_byte *contents)
7779 {
7780 bfd_byte *location;
7781 unsigned int r_type;
7782 bfd_vma addend;
7783 bfd_vma bytes;
7784
7785 r_type = ELF_R_TYPE (abfd, rel->r_info);
7786 location = contents + rel->r_offset;
7787
7788 /* Get the addend, which is stored in the input file. */
7789 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7790 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7791 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7792
7793 addend = bytes & howto->src_mask;
7794
7795 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7796 accordingly. */
7797 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7798 addend <<= 1;
7799
7800 return addend;
7801 }
7802
7803 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7804 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7805 and update *ADDEND with the final addend. Return true on success
7806 or false if the LO16 could not be found. RELEND is the exclusive
7807 upper bound on the relocations for REL's section. */
7808
7809 static bfd_boolean
7810 mips_elf_add_lo16_rel_addend (bfd *abfd,
7811 const Elf_Internal_Rela *rel,
7812 const Elf_Internal_Rela *relend,
7813 bfd_byte *contents, bfd_vma *addend)
7814 {
7815 unsigned int r_type, lo16_type;
7816 const Elf_Internal_Rela *lo16_relocation;
7817 reloc_howto_type *lo16_howto;
7818 bfd_vma l;
7819
7820 r_type = ELF_R_TYPE (abfd, rel->r_info);
7821 if (mips16_reloc_p (r_type))
7822 lo16_type = R_MIPS16_LO16;
7823 else if (micromips_reloc_p (r_type))
7824 lo16_type = R_MICROMIPS_LO16;
7825 else if (r_type == R_MIPS_PCHI16)
7826 lo16_type = R_MIPS_PCLO16;
7827 else
7828 lo16_type = R_MIPS_LO16;
7829
7830 /* The combined value is the sum of the HI16 addend, left-shifted by
7831 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7832 code does a `lui' of the HI16 value, and then an `addiu' of the
7833 LO16 value.)
7834
7835 Scan ahead to find a matching LO16 relocation.
7836
7837 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7838 be immediately following. However, for the IRIX6 ABI, the next
7839 relocation may be a composed relocation consisting of several
7840 relocations for the same address. In that case, the R_MIPS_LO16
7841 relocation may occur as one of these. We permit a similar
7842 extension in general, as that is useful for GCC.
7843
7844 In some cases GCC dead code elimination removes the LO16 but keeps
7845 the corresponding HI16. This is strictly speaking a violation of
7846 the ABI but not immediately harmful. */
7847 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7848 if (lo16_relocation == NULL)
7849 return FALSE;
7850
7851 /* Obtain the addend kept there. */
7852 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7853 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7854
7855 l <<= lo16_howto->rightshift;
7856 l = _bfd_mips_elf_sign_extend (l, 16);
7857
7858 *addend <<= 16;
7859 *addend += l;
7860 return TRUE;
7861 }
7862
7863 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7864 store the contents in *CONTENTS on success. Assume that *CONTENTS
7865 already holds the contents if it is nonull on entry. */
7866
7867 static bfd_boolean
7868 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7869 {
7870 if (*contents)
7871 return TRUE;
7872
7873 /* Get cached copy if it exists. */
7874 if (elf_section_data (sec)->this_hdr.contents != NULL)
7875 {
7876 *contents = elf_section_data (sec)->this_hdr.contents;
7877 return TRUE;
7878 }
7879
7880 return bfd_malloc_and_get_section (abfd, sec, contents);
7881 }
7882
7883 /* Make a new PLT record to keep internal data. */
7884
7885 static struct plt_entry *
7886 mips_elf_make_plt_record (bfd *abfd)
7887 {
7888 struct plt_entry *entry;
7889
7890 entry = bfd_zalloc (abfd, sizeof (*entry));
7891 if (entry == NULL)
7892 return NULL;
7893
7894 entry->stub_offset = MINUS_ONE;
7895 entry->mips_offset = MINUS_ONE;
7896 entry->comp_offset = MINUS_ONE;
7897 entry->gotplt_index = MINUS_ONE;
7898 return entry;
7899 }
7900
7901 /* Look through the relocs for a section during the first phase, and
7902 allocate space in the global offset table and record the need for
7903 standard MIPS and compressed procedure linkage table entries. */
7904
7905 bfd_boolean
7906 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7907 asection *sec, const Elf_Internal_Rela *relocs)
7908 {
7909 const char *name;
7910 bfd *dynobj;
7911 Elf_Internal_Shdr *symtab_hdr;
7912 struct elf_link_hash_entry **sym_hashes;
7913 size_t extsymoff;
7914 const Elf_Internal_Rela *rel;
7915 const Elf_Internal_Rela *rel_end;
7916 asection *sreloc;
7917 const struct elf_backend_data *bed;
7918 struct mips_elf_link_hash_table *htab;
7919 bfd_byte *contents;
7920 bfd_vma addend;
7921 reloc_howto_type *howto;
7922
7923 if (bfd_link_relocatable (info))
7924 return TRUE;
7925
7926 htab = mips_elf_hash_table (info);
7927 BFD_ASSERT (htab != NULL);
7928
7929 dynobj = elf_hash_table (info)->dynobj;
7930 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7931 sym_hashes = elf_sym_hashes (abfd);
7932 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7933
7934 bed = get_elf_backend_data (abfd);
7935 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7936
7937 /* Check for the mips16 stub sections. */
7938
7939 name = bfd_get_section_name (abfd, sec);
7940 if (FN_STUB_P (name))
7941 {
7942 unsigned long r_symndx;
7943
7944 /* Look at the relocation information to figure out which symbol
7945 this is for. */
7946
7947 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7948 if (r_symndx == 0)
7949 {
7950 (*_bfd_error_handler)
7951 (_("%B: Warning: cannot determine the target function for"
7952 " stub section `%s'"),
7953 abfd, name);
7954 bfd_set_error (bfd_error_bad_value);
7955 return FALSE;
7956 }
7957
7958 if (r_symndx < extsymoff
7959 || sym_hashes[r_symndx - extsymoff] == NULL)
7960 {
7961 asection *o;
7962
7963 /* This stub is for a local symbol. This stub will only be
7964 needed if there is some relocation in this BFD, other
7965 than a 16 bit function call, which refers to this symbol. */
7966 for (o = abfd->sections; o != NULL; o = o->next)
7967 {
7968 Elf_Internal_Rela *sec_relocs;
7969 const Elf_Internal_Rela *r, *rend;
7970
7971 /* We can ignore stub sections when looking for relocs. */
7972 if ((o->flags & SEC_RELOC) == 0
7973 || o->reloc_count == 0
7974 || section_allows_mips16_refs_p (o))
7975 continue;
7976
7977 sec_relocs
7978 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7979 info->keep_memory);
7980 if (sec_relocs == NULL)
7981 return FALSE;
7982
7983 rend = sec_relocs + o->reloc_count;
7984 for (r = sec_relocs; r < rend; r++)
7985 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7986 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7987 break;
7988
7989 if (elf_section_data (o)->relocs != sec_relocs)
7990 free (sec_relocs);
7991
7992 if (r < rend)
7993 break;
7994 }
7995
7996 if (o == NULL)
7997 {
7998 /* There is no non-call reloc for this stub, so we do
7999 not need it. Since this function is called before
8000 the linker maps input sections to output sections, we
8001 can easily discard it by setting the SEC_EXCLUDE
8002 flag. */
8003 sec->flags |= SEC_EXCLUDE;
8004 return TRUE;
8005 }
8006
8007 /* Record this stub in an array of local symbol stubs for
8008 this BFD. */
8009 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8010 {
8011 unsigned long symcount;
8012 asection **n;
8013 bfd_size_type amt;
8014
8015 if (elf_bad_symtab (abfd))
8016 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8017 else
8018 symcount = symtab_hdr->sh_info;
8019 amt = symcount * sizeof (asection *);
8020 n = bfd_zalloc (abfd, amt);
8021 if (n == NULL)
8022 return FALSE;
8023 mips_elf_tdata (abfd)->local_stubs = n;
8024 }
8025
8026 sec->flags |= SEC_KEEP;
8027 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8028
8029 /* We don't need to set mips16_stubs_seen in this case.
8030 That flag is used to see whether we need to look through
8031 the global symbol table for stubs. We don't need to set
8032 it here, because we just have a local stub. */
8033 }
8034 else
8035 {
8036 struct mips_elf_link_hash_entry *h;
8037
8038 h = ((struct mips_elf_link_hash_entry *)
8039 sym_hashes[r_symndx - extsymoff]);
8040
8041 while (h->root.root.type == bfd_link_hash_indirect
8042 || h->root.root.type == bfd_link_hash_warning)
8043 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8044
8045 /* H is the symbol this stub is for. */
8046
8047 /* If we already have an appropriate stub for this function, we
8048 don't need another one, so we can discard this one. Since
8049 this function is called before the linker maps input sections
8050 to output sections, we can easily discard it by setting the
8051 SEC_EXCLUDE flag. */
8052 if (h->fn_stub != NULL)
8053 {
8054 sec->flags |= SEC_EXCLUDE;
8055 return TRUE;
8056 }
8057
8058 sec->flags |= SEC_KEEP;
8059 h->fn_stub = sec;
8060 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8061 }
8062 }
8063 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8064 {
8065 unsigned long r_symndx;
8066 struct mips_elf_link_hash_entry *h;
8067 asection **loc;
8068
8069 /* Look at the relocation information to figure out which symbol
8070 this is for. */
8071
8072 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8073 if (r_symndx == 0)
8074 {
8075 (*_bfd_error_handler)
8076 (_("%B: Warning: cannot determine the target function for"
8077 " stub section `%s'"),
8078 abfd, name);
8079 bfd_set_error (bfd_error_bad_value);
8080 return FALSE;
8081 }
8082
8083 if (r_symndx < extsymoff
8084 || sym_hashes[r_symndx - extsymoff] == NULL)
8085 {
8086 asection *o;
8087
8088 /* This stub is for a local symbol. This stub will only be
8089 needed if there is some relocation (R_MIPS16_26) in this BFD
8090 that refers to this symbol. */
8091 for (o = abfd->sections; o != NULL; o = o->next)
8092 {
8093 Elf_Internal_Rela *sec_relocs;
8094 const Elf_Internal_Rela *r, *rend;
8095
8096 /* We can ignore stub sections when looking for relocs. */
8097 if ((o->flags & SEC_RELOC) == 0
8098 || o->reloc_count == 0
8099 || section_allows_mips16_refs_p (o))
8100 continue;
8101
8102 sec_relocs
8103 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8104 info->keep_memory);
8105 if (sec_relocs == NULL)
8106 return FALSE;
8107
8108 rend = sec_relocs + o->reloc_count;
8109 for (r = sec_relocs; r < rend; r++)
8110 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8111 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8112 break;
8113
8114 if (elf_section_data (o)->relocs != sec_relocs)
8115 free (sec_relocs);
8116
8117 if (r < rend)
8118 break;
8119 }
8120
8121 if (o == NULL)
8122 {
8123 /* There is no non-call reloc for this stub, so we do
8124 not need it. Since this function is called before
8125 the linker maps input sections to output sections, we
8126 can easily discard it by setting the SEC_EXCLUDE
8127 flag. */
8128 sec->flags |= SEC_EXCLUDE;
8129 return TRUE;
8130 }
8131
8132 /* Record this stub in an array of local symbol call_stubs for
8133 this BFD. */
8134 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8135 {
8136 unsigned long symcount;
8137 asection **n;
8138 bfd_size_type amt;
8139
8140 if (elf_bad_symtab (abfd))
8141 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8142 else
8143 symcount = symtab_hdr->sh_info;
8144 amt = symcount * sizeof (asection *);
8145 n = bfd_zalloc (abfd, amt);
8146 if (n == NULL)
8147 return FALSE;
8148 mips_elf_tdata (abfd)->local_call_stubs = n;
8149 }
8150
8151 sec->flags |= SEC_KEEP;
8152 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8153
8154 /* We don't need to set mips16_stubs_seen in this case.
8155 That flag is used to see whether we need to look through
8156 the global symbol table for stubs. We don't need to set
8157 it here, because we just have a local stub. */
8158 }
8159 else
8160 {
8161 h = ((struct mips_elf_link_hash_entry *)
8162 sym_hashes[r_symndx - extsymoff]);
8163
8164 /* H is the symbol this stub is for. */
8165
8166 if (CALL_FP_STUB_P (name))
8167 loc = &h->call_fp_stub;
8168 else
8169 loc = &h->call_stub;
8170
8171 /* If we already have an appropriate stub for this function, we
8172 don't need another one, so we can discard this one. Since
8173 this function is called before the linker maps input sections
8174 to output sections, we can easily discard it by setting the
8175 SEC_EXCLUDE flag. */
8176 if (*loc != NULL)
8177 {
8178 sec->flags |= SEC_EXCLUDE;
8179 return TRUE;
8180 }
8181
8182 sec->flags |= SEC_KEEP;
8183 *loc = sec;
8184 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8185 }
8186 }
8187
8188 sreloc = NULL;
8189 contents = NULL;
8190 for (rel = relocs; rel < rel_end; ++rel)
8191 {
8192 unsigned long r_symndx;
8193 unsigned int r_type;
8194 struct elf_link_hash_entry *h;
8195 bfd_boolean can_make_dynamic_p;
8196 bfd_boolean call_reloc_p;
8197 bfd_boolean constrain_symbol_p;
8198
8199 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8200 r_type = ELF_R_TYPE (abfd, rel->r_info);
8201
8202 if (r_symndx < extsymoff)
8203 h = NULL;
8204 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8205 {
8206 (*_bfd_error_handler)
8207 (_("%B: Malformed reloc detected for section %s"),
8208 abfd, name);
8209 bfd_set_error (bfd_error_bad_value);
8210 return FALSE;
8211 }
8212 else
8213 {
8214 h = sym_hashes[r_symndx - extsymoff];
8215 if (h != NULL)
8216 {
8217 while (h->root.type == bfd_link_hash_indirect
8218 || h->root.type == bfd_link_hash_warning)
8219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8220
8221 /* PR15323, ref flags aren't set for references in the
8222 same object. */
8223 h->root.non_ir_ref = 1;
8224 }
8225 }
8226
8227 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8228 relocation into a dynamic one. */
8229 can_make_dynamic_p = FALSE;
8230
8231 /* Set CALL_RELOC_P to true if the relocation is for a call,
8232 and if pointer equality therefore doesn't matter. */
8233 call_reloc_p = FALSE;
8234
8235 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8236 into account when deciding how to define the symbol.
8237 Relocations in nonallocatable sections such as .pdr and
8238 .debug* should have no effect. */
8239 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8240
8241 switch (r_type)
8242 {
8243 case R_MIPS_CALL16:
8244 case R_MIPS_CALL_HI16:
8245 case R_MIPS_CALL_LO16:
8246 case R_MIPS16_CALL16:
8247 case R_MICROMIPS_CALL16:
8248 case R_MICROMIPS_CALL_HI16:
8249 case R_MICROMIPS_CALL_LO16:
8250 call_reloc_p = TRUE;
8251 /* Fall through. */
8252
8253 case R_MIPS_GOT16:
8254 case R_MIPS_GOT_HI16:
8255 case R_MIPS_GOT_LO16:
8256 case R_MIPS_GOT_PAGE:
8257 case R_MIPS_GOT_OFST:
8258 case R_MIPS_GOT_DISP:
8259 case R_MIPS_TLS_GOTTPREL:
8260 case R_MIPS_TLS_GD:
8261 case R_MIPS_TLS_LDM:
8262 case R_MIPS16_GOT16:
8263 case R_MIPS16_TLS_GOTTPREL:
8264 case R_MIPS16_TLS_GD:
8265 case R_MIPS16_TLS_LDM:
8266 case R_MICROMIPS_GOT16:
8267 case R_MICROMIPS_GOT_HI16:
8268 case R_MICROMIPS_GOT_LO16:
8269 case R_MICROMIPS_GOT_PAGE:
8270 case R_MICROMIPS_GOT_OFST:
8271 case R_MICROMIPS_GOT_DISP:
8272 case R_MICROMIPS_TLS_GOTTPREL:
8273 case R_MICROMIPS_TLS_GD:
8274 case R_MICROMIPS_TLS_LDM:
8275 if (dynobj == NULL)
8276 elf_hash_table (info)->dynobj = dynobj = abfd;
8277 if (!mips_elf_create_got_section (dynobj, info))
8278 return FALSE;
8279 if (htab->is_vxworks && !bfd_link_pic (info))
8280 {
8281 (*_bfd_error_handler)
8282 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8283 abfd, (unsigned long) rel->r_offset);
8284 bfd_set_error (bfd_error_bad_value);
8285 return FALSE;
8286 }
8287 can_make_dynamic_p = TRUE;
8288 break;
8289
8290 case R_MIPS_NONE:
8291 case R_MIPS_JALR:
8292 case R_MICROMIPS_JALR:
8293 /* These relocations have empty fields and are purely there to
8294 provide link information. The symbol value doesn't matter. */
8295 constrain_symbol_p = FALSE;
8296 break;
8297
8298 case R_MIPS_GPREL16:
8299 case R_MIPS_GPREL32:
8300 case R_MIPS16_GPREL:
8301 case R_MICROMIPS_GPREL16:
8302 /* GP-relative relocations always resolve to a definition in a
8303 regular input file, ignoring the one-definition rule. This is
8304 important for the GP setup sequence in NewABI code, which
8305 always resolves to a local function even if other relocations
8306 against the symbol wouldn't. */
8307 constrain_symbol_p = FALSE;
8308 break;
8309
8310 case R_MIPS_32:
8311 case R_MIPS_REL32:
8312 case R_MIPS_64:
8313 /* In VxWorks executables, references to external symbols
8314 must be handled using copy relocs or PLT entries; it is not
8315 possible to convert this relocation into a dynamic one.
8316
8317 For executables that use PLTs and copy-relocs, we have a
8318 choice between converting the relocation into a dynamic
8319 one or using copy relocations or PLT entries. It is
8320 usually better to do the former, unless the relocation is
8321 against a read-only section. */
8322 if ((bfd_link_pic (info)
8323 || (h != NULL
8324 && !htab->is_vxworks
8325 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8326 && !(!info->nocopyreloc
8327 && !PIC_OBJECT_P (abfd)
8328 && MIPS_ELF_READONLY_SECTION (sec))))
8329 && (sec->flags & SEC_ALLOC) != 0)
8330 {
8331 can_make_dynamic_p = TRUE;
8332 if (dynobj == NULL)
8333 elf_hash_table (info)->dynobj = dynobj = abfd;
8334 }
8335 break;
8336
8337 case R_MIPS_26:
8338 case R_MIPS_PC16:
8339 case R_MIPS_PC21_S2:
8340 case R_MIPS_PC26_S2:
8341 case R_MIPS16_26:
8342 case R_MICROMIPS_26_S1:
8343 case R_MICROMIPS_PC7_S1:
8344 case R_MICROMIPS_PC10_S1:
8345 case R_MICROMIPS_PC16_S1:
8346 case R_MICROMIPS_PC23_S2:
8347 call_reloc_p = TRUE;
8348 break;
8349 }
8350
8351 if (h)
8352 {
8353 if (constrain_symbol_p)
8354 {
8355 if (!can_make_dynamic_p)
8356 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8357
8358 if (!call_reloc_p)
8359 h->pointer_equality_needed = 1;
8360
8361 /* We must not create a stub for a symbol that has
8362 relocations related to taking the function's address.
8363 This doesn't apply to VxWorks, where CALL relocs refer
8364 to a .got.plt entry instead of a normal .got entry. */
8365 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8366 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8367 }
8368
8369 /* Relocations against the special VxWorks __GOTT_BASE__ and
8370 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8371 room for them in .rela.dyn. */
8372 if (is_gott_symbol (info, h))
8373 {
8374 if (sreloc == NULL)
8375 {
8376 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8377 if (sreloc == NULL)
8378 return FALSE;
8379 }
8380 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8381 if (MIPS_ELF_READONLY_SECTION (sec))
8382 /* We tell the dynamic linker that there are
8383 relocations against the text segment. */
8384 info->flags |= DF_TEXTREL;
8385 }
8386 }
8387 else if (call_lo16_reloc_p (r_type)
8388 || got_lo16_reloc_p (r_type)
8389 || got_disp_reloc_p (r_type)
8390 || (got16_reloc_p (r_type) && htab->is_vxworks))
8391 {
8392 /* We may need a local GOT entry for this relocation. We
8393 don't count R_MIPS_GOT_PAGE because we can estimate the
8394 maximum number of pages needed by looking at the size of
8395 the segment. Similar comments apply to R_MIPS*_GOT16 and
8396 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8397 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8398 R_MIPS_CALL_HI16 because these are always followed by an
8399 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8400 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8401 rel->r_addend, info, r_type))
8402 return FALSE;
8403 }
8404
8405 if (h != NULL
8406 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8407 ELF_ST_IS_MIPS16 (h->other)))
8408 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8409
8410 switch (r_type)
8411 {
8412 case R_MIPS_CALL16:
8413 case R_MIPS16_CALL16:
8414 case R_MICROMIPS_CALL16:
8415 if (h == NULL)
8416 {
8417 (*_bfd_error_handler)
8418 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8419 abfd, (unsigned long) rel->r_offset);
8420 bfd_set_error (bfd_error_bad_value);
8421 return FALSE;
8422 }
8423 /* Fall through. */
8424
8425 case R_MIPS_CALL_HI16:
8426 case R_MIPS_CALL_LO16:
8427 case R_MICROMIPS_CALL_HI16:
8428 case R_MICROMIPS_CALL_LO16:
8429 if (h != NULL)
8430 {
8431 /* Make sure there is room in the regular GOT to hold the
8432 function's address. We may eliminate it in favour of
8433 a .got.plt entry later; see mips_elf_count_got_symbols. */
8434 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8435 r_type))
8436 return FALSE;
8437
8438 /* We need a stub, not a plt entry for the undefined
8439 function. But we record it as if it needs plt. See
8440 _bfd_elf_adjust_dynamic_symbol. */
8441 h->needs_plt = 1;
8442 h->type = STT_FUNC;
8443 }
8444 break;
8445
8446 case R_MIPS_GOT_PAGE:
8447 case R_MICROMIPS_GOT_PAGE:
8448 case R_MIPS16_GOT16:
8449 case R_MIPS_GOT16:
8450 case R_MIPS_GOT_HI16:
8451 case R_MIPS_GOT_LO16:
8452 case R_MICROMIPS_GOT16:
8453 case R_MICROMIPS_GOT_HI16:
8454 case R_MICROMIPS_GOT_LO16:
8455 if (!h || got_page_reloc_p (r_type))
8456 {
8457 /* This relocation needs (or may need, if h != NULL) a
8458 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8459 know for sure until we know whether the symbol is
8460 preemptible. */
8461 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8462 {
8463 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8464 return FALSE;
8465 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8466 addend = mips_elf_read_rel_addend (abfd, rel,
8467 howto, contents);
8468 if (got16_reloc_p (r_type))
8469 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8470 contents, &addend);
8471 else
8472 addend <<= howto->rightshift;
8473 }
8474 else
8475 addend = rel->r_addend;
8476 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8477 h, addend))
8478 return FALSE;
8479
8480 if (h)
8481 {
8482 struct mips_elf_link_hash_entry *hmips =
8483 (struct mips_elf_link_hash_entry *) h;
8484
8485 /* This symbol is definitely not overridable. */
8486 if (hmips->root.def_regular
8487 && ! (bfd_link_pic (info) && ! info->symbolic
8488 && ! hmips->root.forced_local))
8489 h = NULL;
8490 }
8491 }
8492 /* If this is a global, overridable symbol, GOT_PAGE will
8493 decay to GOT_DISP, so we'll need a GOT entry for it. */
8494 /* Fall through. */
8495
8496 case R_MIPS_GOT_DISP:
8497 case R_MICROMIPS_GOT_DISP:
8498 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8499 FALSE, r_type))
8500 return FALSE;
8501 break;
8502
8503 case R_MIPS_TLS_GOTTPREL:
8504 case R_MIPS16_TLS_GOTTPREL:
8505 case R_MICROMIPS_TLS_GOTTPREL:
8506 if (bfd_link_pic (info))
8507 info->flags |= DF_STATIC_TLS;
8508 /* Fall through */
8509
8510 case R_MIPS_TLS_LDM:
8511 case R_MIPS16_TLS_LDM:
8512 case R_MICROMIPS_TLS_LDM:
8513 if (tls_ldm_reloc_p (r_type))
8514 {
8515 r_symndx = STN_UNDEF;
8516 h = NULL;
8517 }
8518 /* Fall through */
8519
8520 case R_MIPS_TLS_GD:
8521 case R_MIPS16_TLS_GD:
8522 case R_MICROMIPS_TLS_GD:
8523 /* This symbol requires a global offset table entry, or two
8524 for TLS GD relocations. */
8525 if (h != NULL)
8526 {
8527 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8528 FALSE, r_type))
8529 return FALSE;
8530 }
8531 else
8532 {
8533 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8534 rel->r_addend,
8535 info, r_type))
8536 return FALSE;
8537 }
8538 break;
8539
8540 case R_MIPS_32:
8541 case R_MIPS_REL32:
8542 case R_MIPS_64:
8543 /* In VxWorks executables, references to external symbols
8544 are handled using copy relocs or PLT stubs, so there's
8545 no need to add a .rela.dyn entry for this relocation. */
8546 if (can_make_dynamic_p)
8547 {
8548 if (sreloc == NULL)
8549 {
8550 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8551 if (sreloc == NULL)
8552 return FALSE;
8553 }
8554 if (bfd_link_pic (info) && h == NULL)
8555 {
8556 /* When creating a shared object, we must copy these
8557 reloc types into the output file as R_MIPS_REL32
8558 relocs. Make room for this reloc in .rel(a).dyn. */
8559 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8560 if (MIPS_ELF_READONLY_SECTION (sec))
8561 /* We tell the dynamic linker that there are
8562 relocations against the text segment. */
8563 info->flags |= DF_TEXTREL;
8564 }
8565 else
8566 {
8567 struct mips_elf_link_hash_entry *hmips;
8568
8569 /* For a shared object, we must copy this relocation
8570 unless the symbol turns out to be undefined and
8571 weak with non-default visibility, in which case
8572 it will be left as zero.
8573
8574 We could elide R_MIPS_REL32 for locally binding symbols
8575 in shared libraries, but do not yet do so.
8576
8577 For an executable, we only need to copy this
8578 reloc if the symbol is defined in a dynamic
8579 object. */
8580 hmips = (struct mips_elf_link_hash_entry *) h;
8581 ++hmips->possibly_dynamic_relocs;
8582 if (MIPS_ELF_READONLY_SECTION (sec))
8583 /* We need it to tell the dynamic linker if there
8584 are relocations against the text segment. */
8585 hmips->readonly_reloc = TRUE;
8586 }
8587 }
8588
8589 if (SGI_COMPAT (abfd))
8590 mips_elf_hash_table (info)->compact_rel_size +=
8591 sizeof (Elf32_External_crinfo);
8592 break;
8593
8594 case R_MIPS_26:
8595 case R_MIPS_GPREL16:
8596 case R_MIPS_LITERAL:
8597 case R_MIPS_GPREL32:
8598 case R_MICROMIPS_26_S1:
8599 case R_MICROMIPS_GPREL16:
8600 case R_MICROMIPS_LITERAL:
8601 case R_MICROMIPS_GPREL7_S2:
8602 if (SGI_COMPAT (abfd))
8603 mips_elf_hash_table (info)->compact_rel_size +=
8604 sizeof (Elf32_External_crinfo);
8605 break;
8606
8607 /* This relocation describes the C++ object vtable hierarchy.
8608 Reconstruct it for later use during GC. */
8609 case R_MIPS_GNU_VTINHERIT:
8610 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8611 return FALSE;
8612 break;
8613
8614 /* This relocation describes which C++ vtable entries are actually
8615 used. Record for later use during GC. */
8616 case R_MIPS_GNU_VTENTRY:
8617 BFD_ASSERT (h != NULL);
8618 if (h != NULL
8619 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8620 return FALSE;
8621 break;
8622
8623 default:
8624 break;
8625 }
8626
8627 /* Record the need for a PLT entry. At this point we don't know
8628 yet if we are going to create a PLT in the first place, but
8629 we only record whether the relocation requires a standard MIPS
8630 or a compressed code entry anyway. If we don't make a PLT after
8631 all, then we'll just ignore these arrangements. Likewise if
8632 a PLT entry is not created because the symbol is satisfied
8633 locally. */
8634 if (h != NULL
8635 && jal_reloc_p (r_type)
8636 && !SYMBOL_CALLS_LOCAL (info, h))
8637 {
8638 if (h->plt.plist == NULL)
8639 h->plt.plist = mips_elf_make_plt_record (abfd);
8640 if (h->plt.plist == NULL)
8641 return FALSE;
8642
8643 if (r_type == R_MIPS_26)
8644 h->plt.plist->need_mips = TRUE;
8645 else
8646 h->plt.plist->need_comp = TRUE;
8647 }
8648
8649 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8650 if there is one. We only need to handle global symbols here;
8651 we decide whether to keep or delete stubs for local symbols
8652 when processing the stub's relocations. */
8653 if (h != NULL
8654 && !mips16_call_reloc_p (r_type)
8655 && !section_allows_mips16_refs_p (sec))
8656 {
8657 struct mips_elf_link_hash_entry *mh;
8658
8659 mh = (struct mips_elf_link_hash_entry *) h;
8660 mh->need_fn_stub = TRUE;
8661 }
8662
8663 /* Refuse some position-dependent relocations when creating a
8664 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8665 not PIC, but we can create dynamic relocations and the result
8666 will be fine. Also do not refuse R_MIPS_LO16, which can be
8667 combined with R_MIPS_GOT16. */
8668 if (bfd_link_pic (info))
8669 {
8670 switch (r_type)
8671 {
8672 case R_MIPS16_HI16:
8673 case R_MIPS_HI16:
8674 case R_MIPS_HIGHER:
8675 case R_MIPS_HIGHEST:
8676 case R_MICROMIPS_HI16:
8677 case R_MICROMIPS_HIGHER:
8678 case R_MICROMIPS_HIGHEST:
8679 /* Don't refuse a high part relocation if it's against
8680 no symbol (e.g. part of a compound relocation). */
8681 if (r_symndx == STN_UNDEF)
8682 break;
8683
8684 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8685 and has a special meaning. */
8686 if (!NEWABI_P (abfd) && h != NULL
8687 && strcmp (h->root.root.string, "_gp_disp") == 0)
8688 break;
8689
8690 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8691 if (is_gott_symbol (info, h))
8692 break;
8693
8694 /* FALLTHROUGH */
8695
8696 case R_MIPS16_26:
8697 case R_MIPS_26:
8698 case R_MICROMIPS_26_S1:
8699 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8700 (*_bfd_error_handler)
8701 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8702 abfd, howto->name,
8703 (h) ? h->root.root.string : "a local symbol");
8704 bfd_set_error (bfd_error_bad_value);
8705 return FALSE;
8706 default:
8707 break;
8708 }
8709 }
8710 }
8711
8712 return TRUE;
8713 }
8714 \f
8715 bfd_boolean
8716 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8717 struct bfd_link_info *link_info,
8718 bfd_boolean *again)
8719 {
8720 Elf_Internal_Rela *internal_relocs;
8721 Elf_Internal_Rela *irel, *irelend;
8722 Elf_Internal_Shdr *symtab_hdr;
8723 bfd_byte *contents = NULL;
8724 size_t extsymoff;
8725 bfd_boolean changed_contents = FALSE;
8726 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8727 Elf_Internal_Sym *isymbuf = NULL;
8728
8729 /* We are not currently changing any sizes, so only one pass. */
8730 *again = FALSE;
8731
8732 if (bfd_link_relocatable (link_info))
8733 return TRUE;
8734
8735 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8736 link_info->keep_memory);
8737 if (internal_relocs == NULL)
8738 return TRUE;
8739
8740 irelend = internal_relocs + sec->reloc_count
8741 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8742 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8743 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8744
8745 for (irel = internal_relocs; irel < irelend; irel++)
8746 {
8747 bfd_vma symval;
8748 bfd_signed_vma sym_offset;
8749 unsigned int r_type;
8750 unsigned long r_symndx;
8751 asection *sym_sec;
8752 unsigned long instruction;
8753
8754 /* Turn jalr into bgezal, and jr into beq, if they're marked
8755 with a JALR relocation, that indicate where they jump to.
8756 This saves some pipeline bubbles. */
8757 r_type = ELF_R_TYPE (abfd, irel->r_info);
8758 if (r_type != R_MIPS_JALR)
8759 continue;
8760
8761 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8762 /* Compute the address of the jump target. */
8763 if (r_symndx >= extsymoff)
8764 {
8765 struct mips_elf_link_hash_entry *h
8766 = ((struct mips_elf_link_hash_entry *)
8767 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8768
8769 while (h->root.root.type == bfd_link_hash_indirect
8770 || h->root.root.type == bfd_link_hash_warning)
8771 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8772
8773 /* If a symbol is undefined, or if it may be overridden,
8774 skip it. */
8775 if (! ((h->root.root.type == bfd_link_hash_defined
8776 || h->root.root.type == bfd_link_hash_defweak)
8777 && h->root.root.u.def.section)
8778 || (bfd_link_pic (link_info) && ! link_info->symbolic
8779 && !h->root.forced_local))
8780 continue;
8781
8782 sym_sec = h->root.root.u.def.section;
8783 if (sym_sec->output_section)
8784 symval = (h->root.root.u.def.value
8785 + sym_sec->output_section->vma
8786 + sym_sec->output_offset);
8787 else
8788 symval = h->root.root.u.def.value;
8789 }
8790 else
8791 {
8792 Elf_Internal_Sym *isym;
8793
8794 /* Read this BFD's symbols if we haven't done so already. */
8795 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8796 {
8797 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8798 if (isymbuf == NULL)
8799 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8800 symtab_hdr->sh_info, 0,
8801 NULL, NULL, NULL);
8802 if (isymbuf == NULL)
8803 goto relax_return;
8804 }
8805
8806 isym = isymbuf + r_symndx;
8807 if (isym->st_shndx == SHN_UNDEF)
8808 continue;
8809 else if (isym->st_shndx == SHN_ABS)
8810 sym_sec = bfd_abs_section_ptr;
8811 else if (isym->st_shndx == SHN_COMMON)
8812 sym_sec = bfd_com_section_ptr;
8813 else
8814 sym_sec
8815 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8816 symval = isym->st_value
8817 + sym_sec->output_section->vma
8818 + sym_sec->output_offset;
8819 }
8820
8821 /* Compute branch offset, from delay slot of the jump to the
8822 branch target. */
8823 sym_offset = (symval + irel->r_addend)
8824 - (sec_start + irel->r_offset + 4);
8825
8826 /* Branch offset must be properly aligned. */
8827 if ((sym_offset & 3) != 0)
8828 continue;
8829
8830 sym_offset >>= 2;
8831
8832 /* Check that it's in range. */
8833 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8834 continue;
8835
8836 /* Get the section contents if we haven't done so already. */
8837 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8838 goto relax_return;
8839
8840 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8841
8842 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8843 if ((instruction & 0xfc1fffff) == 0x0000f809)
8844 instruction = 0x04110000;
8845 /* If it was jr <reg>, turn it into b <target>. */
8846 else if ((instruction & 0xfc1fffff) == 0x00000008)
8847 instruction = 0x10000000;
8848 else
8849 continue;
8850
8851 instruction |= (sym_offset & 0xffff);
8852 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8853 changed_contents = TRUE;
8854 }
8855
8856 if (contents != NULL
8857 && elf_section_data (sec)->this_hdr.contents != contents)
8858 {
8859 if (!changed_contents && !link_info->keep_memory)
8860 free (contents);
8861 else
8862 {
8863 /* Cache the section contents for elf_link_input_bfd. */
8864 elf_section_data (sec)->this_hdr.contents = contents;
8865 }
8866 }
8867 return TRUE;
8868
8869 relax_return:
8870 if (contents != NULL
8871 && elf_section_data (sec)->this_hdr.contents != contents)
8872 free (contents);
8873 return FALSE;
8874 }
8875 \f
8876 /* Allocate space for global sym dynamic relocs. */
8877
8878 static bfd_boolean
8879 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8880 {
8881 struct bfd_link_info *info = inf;
8882 bfd *dynobj;
8883 struct mips_elf_link_hash_entry *hmips;
8884 struct mips_elf_link_hash_table *htab;
8885
8886 htab = mips_elf_hash_table (info);
8887 BFD_ASSERT (htab != NULL);
8888
8889 dynobj = elf_hash_table (info)->dynobj;
8890 hmips = (struct mips_elf_link_hash_entry *) h;
8891
8892 /* VxWorks executables are handled elsewhere; we only need to
8893 allocate relocations in shared objects. */
8894 if (htab->is_vxworks && !bfd_link_pic (info))
8895 return TRUE;
8896
8897 /* Ignore indirect symbols. All relocations against such symbols
8898 will be redirected to the target symbol. */
8899 if (h->root.type == bfd_link_hash_indirect)
8900 return TRUE;
8901
8902 /* If this symbol is defined in a dynamic object, or we are creating
8903 a shared library, we will need to copy any R_MIPS_32 or
8904 R_MIPS_REL32 relocs against it into the output file. */
8905 if (! bfd_link_relocatable (info)
8906 && hmips->possibly_dynamic_relocs != 0
8907 && (h->root.type == bfd_link_hash_defweak
8908 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8909 || bfd_link_pic (info)))
8910 {
8911 bfd_boolean do_copy = TRUE;
8912
8913 if (h->root.type == bfd_link_hash_undefweak)
8914 {
8915 /* Do not copy relocations for undefined weak symbols with
8916 non-default visibility. */
8917 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8918 do_copy = FALSE;
8919
8920 /* Make sure undefined weak symbols are output as a dynamic
8921 symbol in PIEs. */
8922 else if (h->dynindx == -1 && !h->forced_local)
8923 {
8924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8925 return FALSE;
8926 }
8927 }
8928
8929 if (do_copy)
8930 {
8931 /* Even though we don't directly need a GOT entry for this symbol,
8932 the SVR4 psABI requires it to have a dynamic symbol table
8933 index greater that DT_MIPS_GOTSYM if there are dynamic
8934 relocations against it.
8935
8936 VxWorks does not enforce the same mapping between the GOT
8937 and the symbol table, so the same requirement does not
8938 apply there. */
8939 if (!htab->is_vxworks)
8940 {
8941 if (hmips->global_got_area > GGA_RELOC_ONLY)
8942 hmips->global_got_area = GGA_RELOC_ONLY;
8943 hmips->got_only_for_calls = FALSE;
8944 }
8945
8946 mips_elf_allocate_dynamic_relocations
8947 (dynobj, info, hmips->possibly_dynamic_relocs);
8948 if (hmips->readonly_reloc)
8949 /* We tell the dynamic linker that there are relocations
8950 against the text segment. */
8951 info->flags |= DF_TEXTREL;
8952 }
8953 }
8954
8955 return TRUE;
8956 }
8957
8958 /* Adjust a symbol defined by a dynamic object and referenced by a
8959 regular object. The current definition is in some section of the
8960 dynamic object, but we're not including those sections. We have to
8961 change the definition to something the rest of the link can
8962 understand. */
8963
8964 bfd_boolean
8965 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8966 struct elf_link_hash_entry *h)
8967 {
8968 bfd *dynobj;
8969 struct mips_elf_link_hash_entry *hmips;
8970 struct mips_elf_link_hash_table *htab;
8971
8972 htab = mips_elf_hash_table (info);
8973 BFD_ASSERT (htab != NULL);
8974
8975 dynobj = elf_hash_table (info)->dynobj;
8976 hmips = (struct mips_elf_link_hash_entry *) h;
8977
8978 /* Make sure we know what is going on here. */
8979 BFD_ASSERT (dynobj != NULL
8980 && (h->needs_plt
8981 || h->u.weakdef != NULL
8982 || (h->def_dynamic
8983 && h->ref_regular
8984 && !h->def_regular)));
8985
8986 hmips = (struct mips_elf_link_hash_entry *) h;
8987
8988 /* If there are call relocations against an externally-defined symbol,
8989 see whether we can create a MIPS lazy-binding stub for it. We can
8990 only do this if all references to the function are through call
8991 relocations, and in that case, the traditional lazy-binding stubs
8992 are much more efficient than PLT entries.
8993
8994 Traditional stubs are only available on SVR4 psABI-based systems;
8995 VxWorks always uses PLTs instead. */
8996 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8997 {
8998 if (! elf_hash_table (info)->dynamic_sections_created)
8999 return TRUE;
9000
9001 /* If this symbol is not defined in a regular file, then set
9002 the symbol to the stub location. This is required to make
9003 function pointers compare as equal between the normal
9004 executable and the shared library. */
9005 if (!h->def_regular)
9006 {
9007 hmips->needs_lazy_stub = TRUE;
9008 htab->lazy_stub_count++;
9009 return TRUE;
9010 }
9011 }
9012 /* As above, VxWorks requires PLT entries for externally-defined
9013 functions that are only accessed through call relocations.
9014
9015 Both VxWorks and non-VxWorks targets also need PLT entries if there
9016 are static-only relocations against an externally-defined function.
9017 This can technically occur for shared libraries if there are
9018 branches to the symbol, although it is unlikely that this will be
9019 used in practice due to the short ranges involved. It can occur
9020 for any relative or absolute relocation in executables; in that
9021 case, the PLT entry becomes the function's canonical address. */
9022 else if (((h->needs_plt && !hmips->no_fn_stub)
9023 || (h->type == STT_FUNC && hmips->has_static_relocs))
9024 && htab->use_plts_and_copy_relocs
9025 && !SYMBOL_CALLS_LOCAL (info, h)
9026 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9027 && h->root.type == bfd_link_hash_undefweak))
9028 {
9029 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9030 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9031
9032 /* If this is the first symbol to need a PLT entry, then make some
9033 basic setup. Also work out PLT entry sizes. We'll need them
9034 for PLT offset calculations. */
9035 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9036 {
9037 BFD_ASSERT (htab->sgotplt->size == 0);
9038 BFD_ASSERT (htab->plt_got_index == 0);
9039
9040 /* If we're using the PLT additions to the psABI, each PLT
9041 entry is 16 bytes and the PLT0 entry is 32 bytes.
9042 Encourage better cache usage by aligning. We do this
9043 lazily to avoid pessimizing traditional objects. */
9044 if (!htab->is_vxworks
9045 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9046 return FALSE;
9047
9048 /* Make sure that .got.plt is word-aligned. We do this lazily
9049 for the same reason as above. */
9050 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9051 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9052 return FALSE;
9053
9054 /* On non-VxWorks targets, the first two entries in .got.plt
9055 are reserved. */
9056 if (!htab->is_vxworks)
9057 htab->plt_got_index
9058 += (get_elf_backend_data (dynobj)->got_header_size
9059 / MIPS_ELF_GOT_SIZE (dynobj));
9060
9061 /* On VxWorks, also allocate room for the header's
9062 .rela.plt.unloaded entries. */
9063 if (htab->is_vxworks && !bfd_link_pic (info))
9064 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9065
9066 /* Now work out the sizes of individual PLT entries. */
9067 if (htab->is_vxworks && bfd_link_pic (info))
9068 htab->plt_mips_entry_size
9069 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9070 else if (htab->is_vxworks)
9071 htab->plt_mips_entry_size
9072 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9073 else if (newabi_p)
9074 htab->plt_mips_entry_size
9075 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9076 else if (!micromips_p)
9077 {
9078 htab->plt_mips_entry_size
9079 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9080 htab->plt_comp_entry_size
9081 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9082 }
9083 else if (htab->insn32)
9084 {
9085 htab->plt_mips_entry_size
9086 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9087 htab->plt_comp_entry_size
9088 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9089 }
9090 else
9091 {
9092 htab->plt_mips_entry_size
9093 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9094 htab->plt_comp_entry_size
9095 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9096 }
9097 }
9098
9099 if (h->plt.plist == NULL)
9100 h->plt.plist = mips_elf_make_plt_record (dynobj);
9101 if (h->plt.plist == NULL)
9102 return FALSE;
9103
9104 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9105 n32 or n64, so always use a standard entry there.
9106
9107 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9108 all MIPS16 calls will go via that stub, and there is no benefit
9109 to having a MIPS16 entry. And in the case of call_stub a
9110 standard entry actually has to be used as the stub ends with a J
9111 instruction. */
9112 if (newabi_p
9113 || htab->is_vxworks
9114 || hmips->call_stub
9115 || hmips->call_fp_stub)
9116 {
9117 h->plt.plist->need_mips = TRUE;
9118 h->plt.plist->need_comp = FALSE;
9119 }
9120
9121 /* Otherwise, if there are no direct calls to the function, we
9122 have a free choice of whether to use standard or compressed
9123 entries. Prefer microMIPS entries if the object is known to
9124 contain microMIPS code, so that it becomes possible to create
9125 pure microMIPS binaries. Prefer standard entries otherwise,
9126 because MIPS16 ones are no smaller and are usually slower. */
9127 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9128 {
9129 if (micromips_p)
9130 h->plt.plist->need_comp = TRUE;
9131 else
9132 h->plt.plist->need_mips = TRUE;
9133 }
9134
9135 if (h->plt.plist->need_mips)
9136 {
9137 h->plt.plist->mips_offset = htab->plt_mips_offset;
9138 htab->plt_mips_offset += htab->plt_mips_entry_size;
9139 }
9140 if (h->plt.plist->need_comp)
9141 {
9142 h->plt.plist->comp_offset = htab->plt_comp_offset;
9143 htab->plt_comp_offset += htab->plt_comp_entry_size;
9144 }
9145
9146 /* Reserve the corresponding .got.plt entry now too. */
9147 h->plt.plist->gotplt_index = htab->plt_got_index++;
9148
9149 /* If the output file has no definition of the symbol, set the
9150 symbol's value to the address of the stub. */
9151 if (!bfd_link_pic (info) && !h->def_regular)
9152 hmips->use_plt_entry = TRUE;
9153
9154 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9155 htab->srelplt->size += (htab->is_vxworks
9156 ? MIPS_ELF_RELA_SIZE (dynobj)
9157 : MIPS_ELF_REL_SIZE (dynobj));
9158
9159 /* Make room for the .rela.plt.unloaded relocations. */
9160 if (htab->is_vxworks && !bfd_link_pic (info))
9161 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9162
9163 /* All relocations against this symbol that could have been made
9164 dynamic will now refer to the PLT entry instead. */
9165 hmips->possibly_dynamic_relocs = 0;
9166
9167 return TRUE;
9168 }
9169
9170 /* If this is a weak symbol, and there is a real definition, the
9171 processor independent code will have arranged for us to see the
9172 real definition first, and we can just use the same value. */
9173 if (h->u.weakdef != NULL)
9174 {
9175 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9176 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9177 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9178 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9179 return TRUE;
9180 }
9181
9182 /* Otherwise, there is nothing further to do for symbols defined
9183 in regular objects. */
9184 if (h->def_regular)
9185 return TRUE;
9186
9187 /* There's also nothing more to do if we'll convert all relocations
9188 against this symbol into dynamic relocations. */
9189 if (!hmips->has_static_relocs)
9190 return TRUE;
9191
9192 /* We're now relying on copy relocations. Complain if we have
9193 some that we can't convert. */
9194 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9195 {
9196 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9197 "dynamic symbol %s"),
9198 h->root.root.string);
9199 bfd_set_error (bfd_error_bad_value);
9200 return FALSE;
9201 }
9202
9203 /* We must allocate the symbol in our .dynbss section, which will
9204 become part of the .bss section of the executable. There will be
9205 an entry for this symbol in the .dynsym section. The dynamic
9206 object will contain position independent code, so all references
9207 from the dynamic object to this symbol will go through the global
9208 offset table. The dynamic linker will use the .dynsym entry to
9209 determine the address it must put in the global offset table, so
9210 both the dynamic object and the regular object will refer to the
9211 same memory location for the variable. */
9212
9213 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9214 {
9215 if (htab->is_vxworks)
9216 htab->srelbss->size += sizeof (Elf32_External_Rela);
9217 else
9218 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9219 h->needs_copy = 1;
9220 }
9221
9222 /* All relocations against this symbol that could have been made
9223 dynamic will now refer to the local copy instead. */
9224 hmips->possibly_dynamic_relocs = 0;
9225
9226 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9227 }
9228 \f
9229 /* This function is called after all the input files have been read,
9230 and the input sections have been assigned to output sections. We
9231 check for any mips16 stub sections that we can discard. */
9232
9233 bfd_boolean
9234 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9235 struct bfd_link_info *info)
9236 {
9237 asection *sect;
9238 struct mips_elf_link_hash_table *htab;
9239 struct mips_htab_traverse_info hti;
9240
9241 htab = mips_elf_hash_table (info);
9242 BFD_ASSERT (htab != NULL);
9243
9244 /* The .reginfo section has a fixed size. */
9245 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9246 if (sect != NULL)
9247 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9248
9249 /* The .MIPS.abiflags section has a fixed size. */
9250 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9251 if (sect != NULL)
9252 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9253
9254 hti.info = info;
9255 hti.output_bfd = output_bfd;
9256 hti.error = FALSE;
9257 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9258 mips_elf_check_symbols, &hti);
9259 if (hti.error)
9260 return FALSE;
9261
9262 return TRUE;
9263 }
9264
9265 /* If the link uses a GOT, lay it out and work out its size. */
9266
9267 static bfd_boolean
9268 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9269 {
9270 bfd *dynobj;
9271 asection *s;
9272 struct mips_got_info *g;
9273 bfd_size_type loadable_size = 0;
9274 bfd_size_type page_gotno;
9275 bfd *ibfd;
9276 struct mips_elf_traverse_got_arg tga;
9277 struct mips_elf_link_hash_table *htab;
9278
9279 htab = mips_elf_hash_table (info);
9280 BFD_ASSERT (htab != NULL);
9281
9282 s = htab->sgot;
9283 if (s == NULL)
9284 return TRUE;
9285
9286 dynobj = elf_hash_table (info)->dynobj;
9287 g = htab->got_info;
9288
9289 /* Allocate room for the reserved entries. VxWorks always reserves
9290 3 entries; other objects only reserve 2 entries. */
9291 BFD_ASSERT (g->assigned_low_gotno == 0);
9292 if (htab->is_vxworks)
9293 htab->reserved_gotno = 3;
9294 else
9295 htab->reserved_gotno = 2;
9296 g->local_gotno += htab->reserved_gotno;
9297 g->assigned_low_gotno = htab->reserved_gotno;
9298
9299 /* Decide which symbols need to go in the global part of the GOT and
9300 count the number of reloc-only GOT symbols. */
9301 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9302
9303 if (!mips_elf_resolve_final_got_entries (info, g))
9304 return FALSE;
9305
9306 /* Calculate the total loadable size of the output. That
9307 will give us the maximum number of GOT_PAGE entries
9308 required. */
9309 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9310 {
9311 asection *subsection;
9312
9313 for (subsection = ibfd->sections;
9314 subsection;
9315 subsection = subsection->next)
9316 {
9317 if ((subsection->flags & SEC_ALLOC) == 0)
9318 continue;
9319 loadable_size += ((subsection->size + 0xf)
9320 &~ (bfd_size_type) 0xf);
9321 }
9322 }
9323
9324 if (htab->is_vxworks)
9325 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9326 relocations against local symbols evaluate to "G", and the EABI does
9327 not include R_MIPS_GOT_PAGE. */
9328 page_gotno = 0;
9329 else
9330 /* Assume there are two loadable segments consisting of contiguous
9331 sections. Is 5 enough? */
9332 page_gotno = (loadable_size >> 16) + 5;
9333
9334 /* Choose the smaller of the two page estimates; both are intended to be
9335 conservative. */
9336 if (page_gotno > g->page_gotno)
9337 page_gotno = g->page_gotno;
9338
9339 g->local_gotno += page_gotno;
9340 g->assigned_high_gotno = g->local_gotno - 1;
9341
9342 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9343 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9344 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9345
9346 /* VxWorks does not support multiple GOTs. It initializes $gp to
9347 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9348 dynamic loader. */
9349 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9350 {
9351 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9352 return FALSE;
9353 }
9354 else
9355 {
9356 /* Record that all bfds use G. This also has the effect of freeing
9357 the per-bfd GOTs, which we no longer need. */
9358 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9359 if (mips_elf_bfd_got (ibfd, FALSE))
9360 mips_elf_replace_bfd_got (ibfd, g);
9361 mips_elf_replace_bfd_got (output_bfd, g);
9362
9363 /* Set up TLS entries. */
9364 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9365 tga.info = info;
9366 tga.g = g;
9367 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9368 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9369 if (!tga.g)
9370 return FALSE;
9371 BFD_ASSERT (g->tls_assigned_gotno
9372 == g->global_gotno + g->local_gotno + g->tls_gotno);
9373
9374 /* Each VxWorks GOT entry needs an explicit relocation. */
9375 if (htab->is_vxworks && bfd_link_pic (info))
9376 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9377
9378 /* Allocate room for the TLS relocations. */
9379 if (g->relocs)
9380 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9381 }
9382
9383 return TRUE;
9384 }
9385
9386 /* Estimate the size of the .MIPS.stubs section. */
9387
9388 static void
9389 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9390 {
9391 struct mips_elf_link_hash_table *htab;
9392 bfd_size_type dynsymcount;
9393
9394 htab = mips_elf_hash_table (info);
9395 BFD_ASSERT (htab != NULL);
9396
9397 if (htab->lazy_stub_count == 0)
9398 return;
9399
9400 /* IRIX rld assumes that a function stub isn't at the end of the .text
9401 section, so add a dummy entry to the end. */
9402 htab->lazy_stub_count++;
9403
9404 /* Get a worst-case estimate of the number of dynamic symbols needed.
9405 At this point, dynsymcount does not account for section symbols
9406 and count_section_dynsyms may overestimate the number that will
9407 be needed. */
9408 dynsymcount = (elf_hash_table (info)->dynsymcount
9409 + count_section_dynsyms (output_bfd, info));
9410
9411 /* Determine the size of one stub entry. There's no disadvantage
9412 from using microMIPS code here, so for the sake of pure-microMIPS
9413 binaries we prefer it whenever there's any microMIPS code in
9414 output produced at all. This has a benefit of stubs being
9415 shorter by 4 bytes each too, unless in the insn32 mode. */
9416 if (!MICROMIPS_P (output_bfd))
9417 htab->function_stub_size = (dynsymcount > 0x10000
9418 ? MIPS_FUNCTION_STUB_BIG_SIZE
9419 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9420 else if (htab->insn32)
9421 htab->function_stub_size = (dynsymcount > 0x10000
9422 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9423 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9424 else
9425 htab->function_stub_size = (dynsymcount > 0x10000
9426 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9427 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9428
9429 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9430 }
9431
9432 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9433 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9434 stub, allocate an entry in the stubs section. */
9435
9436 static bfd_boolean
9437 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9438 {
9439 struct mips_htab_traverse_info *hti = data;
9440 struct mips_elf_link_hash_table *htab;
9441 struct bfd_link_info *info;
9442 bfd *output_bfd;
9443
9444 info = hti->info;
9445 output_bfd = hti->output_bfd;
9446 htab = mips_elf_hash_table (info);
9447 BFD_ASSERT (htab != NULL);
9448
9449 if (h->needs_lazy_stub)
9450 {
9451 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9452 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9453 bfd_vma isa_bit = micromips_p;
9454
9455 BFD_ASSERT (htab->root.dynobj != NULL);
9456 if (h->root.plt.plist == NULL)
9457 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9458 if (h->root.plt.plist == NULL)
9459 {
9460 hti->error = TRUE;
9461 return FALSE;
9462 }
9463 h->root.root.u.def.section = htab->sstubs;
9464 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9465 h->root.plt.plist->stub_offset = htab->sstubs->size;
9466 h->root.other = other;
9467 htab->sstubs->size += htab->function_stub_size;
9468 }
9469 return TRUE;
9470 }
9471
9472 /* Allocate offsets in the stubs section to each symbol that needs one.
9473 Set the final size of the .MIPS.stub section. */
9474
9475 static bfd_boolean
9476 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9477 {
9478 bfd *output_bfd = info->output_bfd;
9479 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9480 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9481 bfd_vma isa_bit = micromips_p;
9482 struct mips_elf_link_hash_table *htab;
9483 struct mips_htab_traverse_info hti;
9484 struct elf_link_hash_entry *h;
9485 bfd *dynobj;
9486
9487 htab = mips_elf_hash_table (info);
9488 BFD_ASSERT (htab != NULL);
9489
9490 if (htab->lazy_stub_count == 0)
9491 return TRUE;
9492
9493 htab->sstubs->size = 0;
9494 hti.info = info;
9495 hti.output_bfd = output_bfd;
9496 hti.error = FALSE;
9497 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9498 if (hti.error)
9499 return FALSE;
9500 htab->sstubs->size += htab->function_stub_size;
9501 BFD_ASSERT (htab->sstubs->size
9502 == htab->lazy_stub_count * htab->function_stub_size);
9503
9504 dynobj = elf_hash_table (info)->dynobj;
9505 BFD_ASSERT (dynobj != NULL);
9506 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9507 if (h == NULL)
9508 return FALSE;
9509 h->root.u.def.value = isa_bit;
9510 h->other = other;
9511 h->type = STT_FUNC;
9512
9513 return TRUE;
9514 }
9515
9516 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9517 bfd_link_info. If H uses the address of a PLT entry as the value
9518 of the symbol, then set the entry in the symbol table now. Prefer
9519 a standard MIPS PLT entry. */
9520
9521 static bfd_boolean
9522 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9523 {
9524 struct bfd_link_info *info = data;
9525 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9526 struct mips_elf_link_hash_table *htab;
9527 unsigned int other;
9528 bfd_vma isa_bit;
9529 bfd_vma val;
9530
9531 htab = mips_elf_hash_table (info);
9532 BFD_ASSERT (htab != NULL);
9533
9534 if (h->use_plt_entry)
9535 {
9536 BFD_ASSERT (h->root.plt.plist != NULL);
9537 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9538 || h->root.plt.plist->comp_offset != MINUS_ONE);
9539
9540 val = htab->plt_header_size;
9541 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9542 {
9543 isa_bit = 0;
9544 val += h->root.plt.plist->mips_offset;
9545 other = 0;
9546 }
9547 else
9548 {
9549 isa_bit = 1;
9550 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9551 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9552 }
9553 val += isa_bit;
9554 /* For VxWorks, point at the PLT load stub rather than the lazy
9555 resolution stub; this stub will become the canonical function
9556 address. */
9557 if (htab->is_vxworks)
9558 val += 8;
9559
9560 h->root.root.u.def.section = htab->splt;
9561 h->root.root.u.def.value = val;
9562 h->root.other = other;
9563 }
9564
9565 return TRUE;
9566 }
9567
9568 /* Set the sizes of the dynamic sections. */
9569
9570 bfd_boolean
9571 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9572 struct bfd_link_info *info)
9573 {
9574 bfd *dynobj;
9575 asection *s, *sreldyn;
9576 bfd_boolean reltext;
9577 struct mips_elf_link_hash_table *htab;
9578
9579 htab = mips_elf_hash_table (info);
9580 BFD_ASSERT (htab != NULL);
9581 dynobj = elf_hash_table (info)->dynobj;
9582 BFD_ASSERT (dynobj != NULL);
9583
9584 if (elf_hash_table (info)->dynamic_sections_created)
9585 {
9586 /* Set the contents of the .interp section to the interpreter. */
9587 if (bfd_link_executable (info) && !info->nointerp)
9588 {
9589 s = bfd_get_linker_section (dynobj, ".interp");
9590 BFD_ASSERT (s != NULL);
9591 s->size
9592 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9593 s->contents
9594 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9595 }
9596
9597 /* Figure out the size of the PLT header if we know that we
9598 are using it. For the sake of cache alignment always use
9599 a standard header whenever any standard entries are present
9600 even if microMIPS entries are present as well. This also
9601 lets the microMIPS header rely on the value of $v0 only set
9602 by microMIPS entries, for a small size reduction.
9603
9604 Set symbol table entry values for symbols that use the
9605 address of their PLT entry now that we can calculate it.
9606
9607 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9608 haven't already in _bfd_elf_create_dynamic_sections. */
9609 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9610 {
9611 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9612 && !htab->plt_mips_offset);
9613 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9614 bfd_vma isa_bit = micromips_p;
9615 struct elf_link_hash_entry *h;
9616 bfd_vma size;
9617
9618 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9619 BFD_ASSERT (htab->sgotplt->size == 0);
9620 BFD_ASSERT (htab->splt->size == 0);
9621
9622 if (htab->is_vxworks && bfd_link_pic (info))
9623 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9624 else if (htab->is_vxworks)
9625 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9626 else if (ABI_64_P (output_bfd))
9627 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9628 else if (ABI_N32_P (output_bfd))
9629 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9630 else if (!micromips_p)
9631 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9632 else if (htab->insn32)
9633 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9634 else
9635 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9636
9637 htab->plt_header_is_comp = micromips_p;
9638 htab->plt_header_size = size;
9639 htab->splt->size = (size
9640 + htab->plt_mips_offset
9641 + htab->plt_comp_offset);
9642 htab->sgotplt->size = (htab->plt_got_index
9643 * MIPS_ELF_GOT_SIZE (dynobj));
9644
9645 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9646
9647 if (htab->root.hplt == NULL)
9648 {
9649 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9650 "_PROCEDURE_LINKAGE_TABLE_");
9651 htab->root.hplt = h;
9652 if (h == NULL)
9653 return FALSE;
9654 }
9655
9656 h = htab->root.hplt;
9657 h->root.u.def.value = isa_bit;
9658 h->other = other;
9659 h->type = STT_FUNC;
9660 }
9661 }
9662
9663 /* Allocate space for global sym dynamic relocs. */
9664 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9665
9666 mips_elf_estimate_stub_size (output_bfd, info);
9667
9668 if (!mips_elf_lay_out_got (output_bfd, info))
9669 return FALSE;
9670
9671 mips_elf_lay_out_lazy_stubs (info);
9672
9673 /* The check_relocs and adjust_dynamic_symbol entry points have
9674 determined the sizes of the various dynamic sections. Allocate
9675 memory for them. */
9676 reltext = FALSE;
9677 for (s = dynobj->sections; s != NULL; s = s->next)
9678 {
9679 const char *name;
9680
9681 /* It's OK to base decisions on the section name, because none
9682 of the dynobj section names depend upon the input files. */
9683 name = bfd_get_section_name (dynobj, s);
9684
9685 if ((s->flags & SEC_LINKER_CREATED) == 0)
9686 continue;
9687
9688 if (CONST_STRNEQ (name, ".rel"))
9689 {
9690 if (s->size != 0)
9691 {
9692 const char *outname;
9693 asection *target;
9694
9695 /* If this relocation section applies to a read only
9696 section, then we probably need a DT_TEXTREL entry.
9697 If the relocation section is .rel(a).dyn, we always
9698 assert a DT_TEXTREL entry rather than testing whether
9699 there exists a relocation to a read only section or
9700 not. */
9701 outname = bfd_get_section_name (output_bfd,
9702 s->output_section);
9703 target = bfd_get_section_by_name (output_bfd, outname + 4);
9704 if ((target != NULL
9705 && (target->flags & SEC_READONLY) != 0
9706 && (target->flags & SEC_ALLOC) != 0)
9707 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9708 reltext = TRUE;
9709
9710 /* We use the reloc_count field as a counter if we need
9711 to copy relocs into the output file. */
9712 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9713 s->reloc_count = 0;
9714
9715 /* If combreloc is enabled, elf_link_sort_relocs() will
9716 sort relocations, but in a different way than we do,
9717 and before we're done creating relocations. Also, it
9718 will move them around between input sections'
9719 relocation's contents, so our sorting would be
9720 broken, so don't let it run. */
9721 info->combreloc = 0;
9722 }
9723 }
9724 else if (bfd_link_executable (info)
9725 && ! mips_elf_hash_table (info)->use_rld_obj_head
9726 && CONST_STRNEQ (name, ".rld_map"))
9727 {
9728 /* We add a room for __rld_map. It will be filled in by the
9729 rtld to contain a pointer to the _r_debug structure. */
9730 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9731 }
9732 else if (SGI_COMPAT (output_bfd)
9733 && CONST_STRNEQ (name, ".compact_rel"))
9734 s->size += mips_elf_hash_table (info)->compact_rel_size;
9735 else if (s == htab->splt)
9736 {
9737 /* If the last PLT entry has a branch delay slot, allocate
9738 room for an extra nop to fill the delay slot. This is
9739 for CPUs without load interlocking. */
9740 if (! LOAD_INTERLOCKS_P (output_bfd)
9741 && ! htab->is_vxworks && s->size > 0)
9742 s->size += 4;
9743 }
9744 else if (! CONST_STRNEQ (name, ".init")
9745 && s != htab->sgot
9746 && s != htab->sgotplt
9747 && s != htab->sstubs
9748 && s != htab->sdynbss)
9749 {
9750 /* It's not one of our sections, so don't allocate space. */
9751 continue;
9752 }
9753
9754 if (s->size == 0)
9755 {
9756 s->flags |= SEC_EXCLUDE;
9757 continue;
9758 }
9759
9760 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9761 continue;
9762
9763 /* Allocate memory for the section contents. */
9764 s->contents = bfd_zalloc (dynobj, s->size);
9765 if (s->contents == NULL)
9766 {
9767 bfd_set_error (bfd_error_no_memory);
9768 return FALSE;
9769 }
9770 }
9771
9772 if (elf_hash_table (info)->dynamic_sections_created)
9773 {
9774 /* Add some entries to the .dynamic section. We fill in the
9775 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9776 must add the entries now so that we get the correct size for
9777 the .dynamic section. */
9778
9779 /* SGI object has the equivalence of DT_DEBUG in the
9780 DT_MIPS_RLD_MAP entry. This must come first because glibc
9781 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9782 may only look at the first one they see. */
9783 if (!bfd_link_pic (info)
9784 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9785 return FALSE;
9786
9787 if (bfd_link_executable (info)
9788 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9789 return FALSE;
9790
9791 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9792 used by the debugger. */
9793 if (bfd_link_executable (info)
9794 && !SGI_COMPAT (output_bfd)
9795 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9796 return FALSE;
9797
9798 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9799 info->flags |= DF_TEXTREL;
9800
9801 if ((info->flags & DF_TEXTREL) != 0)
9802 {
9803 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9804 return FALSE;
9805
9806 /* Clear the DF_TEXTREL flag. It will be set again if we
9807 write out an actual text relocation; we may not, because
9808 at this point we do not know whether e.g. any .eh_frame
9809 absolute relocations have been converted to PC-relative. */
9810 info->flags &= ~DF_TEXTREL;
9811 }
9812
9813 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9814 return FALSE;
9815
9816 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9817 if (htab->is_vxworks)
9818 {
9819 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9820 use any of the DT_MIPS_* tags. */
9821 if (sreldyn && sreldyn->size > 0)
9822 {
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9824 return FALSE;
9825
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9827 return FALSE;
9828
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9830 return FALSE;
9831 }
9832 }
9833 else
9834 {
9835 if (sreldyn && sreldyn->size > 0)
9836 {
9837 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9838 return FALSE;
9839
9840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9841 return FALSE;
9842
9843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9844 return FALSE;
9845 }
9846
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9848 return FALSE;
9849
9850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9851 return FALSE;
9852
9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9854 return FALSE;
9855
9856 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9857 return FALSE;
9858
9859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9860 return FALSE;
9861
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9863 return FALSE;
9864
9865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9866 return FALSE;
9867
9868 if (IRIX_COMPAT (dynobj) == ict_irix5
9869 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9870 return FALSE;
9871
9872 if (IRIX_COMPAT (dynobj) == ict_irix6
9873 && (bfd_get_section_by_name
9874 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9875 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9876 return FALSE;
9877 }
9878 if (htab->splt->size > 0)
9879 {
9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9881 return FALSE;
9882
9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9884 return FALSE;
9885
9886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9887 return FALSE;
9888
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9890 return FALSE;
9891 }
9892 if (htab->is_vxworks
9893 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9894 return FALSE;
9895 }
9896
9897 return TRUE;
9898 }
9899 \f
9900 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9901 Adjust its R_ADDEND field so that it is correct for the output file.
9902 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9903 and sections respectively; both use symbol indexes. */
9904
9905 static void
9906 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9907 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9908 asection **local_sections, Elf_Internal_Rela *rel)
9909 {
9910 unsigned int r_type, r_symndx;
9911 Elf_Internal_Sym *sym;
9912 asection *sec;
9913
9914 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9915 {
9916 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9917 if (gprel16_reloc_p (r_type)
9918 || r_type == R_MIPS_GPREL32
9919 || literal_reloc_p (r_type))
9920 {
9921 rel->r_addend += _bfd_get_gp_value (input_bfd);
9922 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9923 }
9924
9925 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9926 sym = local_syms + r_symndx;
9927
9928 /* Adjust REL's addend to account for section merging. */
9929 if (!bfd_link_relocatable (info))
9930 {
9931 sec = local_sections[r_symndx];
9932 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9933 }
9934
9935 /* This would normally be done by the rela_normal code in elflink.c. */
9936 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9937 rel->r_addend += local_sections[r_symndx]->output_offset;
9938 }
9939 }
9940
9941 /* Handle relocations against symbols from removed linkonce sections,
9942 or sections discarded by a linker script. We use this wrapper around
9943 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9944 on 64-bit ELF targets. In this case for any relocation handled, which
9945 always be the first in a triplet, the remaining two have to be processed
9946 together with the first, even if they are R_MIPS_NONE. It is the symbol
9947 index referred by the first reloc that applies to all the three and the
9948 remaining two never refer to an object symbol. And it is the final
9949 relocation (the last non-null one) that determines the output field of
9950 the whole relocation so retrieve the corresponding howto structure for
9951 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9952
9953 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9954 and therefore requires to be pasted in a loop. It also defines a block
9955 and does not protect any of its arguments, hence the extra brackets. */
9956
9957 static void
9958 mips_reloc_against_discarded_section (bfd *output_bfd,
9959 struct bfd_link_info *info,
9960 bfd *input_bfd, asection *input_section,
9961 Elf_Internal_Rela **rel,
9962 const Elf_Internal_Rela **relend,
9963 bfd_boolean rel_reloc,
9964 reloc_howto_type *howto,
9965 bfd_byte *contents)
9966 {
9967 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9968 int count = bed->s->int_rels_per_ext_rel;
9969 unsigned int r_type;
9970 int i;
9971
9972 for (i = count - 1; i > 0; i--)
9973 {
9974 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9975 if (r_type != R_MIPS_NONE)
9976 {
9977 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9978 break;
9979 }
9980 }
9981 do
9982 {
9983 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9984 (*rel), count, (*relend),
9985 howto, i, contents);
9986 }
9987 while (0);
9988 }
9989
9990 /* Relocate a MIPS ELF section. */
9991
9992 bfd_boolean
9993 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9994 bfd *input_bfd, asection *input_section,
9995 bfd_byte *contents, Elf_Internal_Rela *relocs,
9996 Elf_Internal_Sym *local_syms,
9997 asection **local_sections)
9998 {
9999 Elf_Internal_Rela *rel;
10000 const Elf_Internal_Rela *relend;
10001 bfd_vma addend = 0;
10002 bfd_boolean use_saved_addend_p = FALSE;
10003 const struct elf_backend_data *bed;
10004
10005 bed = get_elf_backend_data (output_bfd);
10006 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10007 for (rel = relocs; rel < relend; ++rel)
10008 {
10009 const char *name;
10010 bfd_vma value = 0;
10011 reloc_howto_type *howto;
10012 bfd_boolean cross_mode_jump_p = FALSE;
10013 /* TRUE if the relocation is a RELA relocation, rather than a
10014 REL relocation. */
10015 bfd_boolean rela_relocation_p = TRUE;
10016 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10017 const char *msg;
10018 unsigned long r_symndx;
10019 asection *sec;
10020 Elf_Internal_Shdr *symtab_hdr;
10021 struct elf_link_hash_entry *h;
10022 bfd_boolean rel_reloc;
10023
10024 rel_reloc = (NEWABI_P (input_bfd)
10025 && mips_elf_rel_relocation_p (input_bfd, input_section,
10026 relocs, rel));
10027 /* Find the relocation howto for this relocation. */
10028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10029
10030 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10031 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10032 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10033 {
10034 sec = local_sections[r_symndx];
10035 h = NULL;
10036 }
10037 else
10038 {
10039 unsigned long extsymoff;
10040
10041 extsymoff = 0;
10042 if (!elf_bad_symtab (input_bfd))
10043 extsymoff = symtab_hdr->sh_info;
10044 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10045 while (h->root.type == bfd_link_hash_indirect
10046 || h->root.type == bfd_link_hash_warning)
10047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10048
10049 sec = NULL;
10050 if (h->root.type == bfd_link_hash_defined
10051 || h->root.type == bfd_link_hash_defweak)
10052 sec = h->root.u.def.section;
10053 }
10054
10055 if (sec != NULL && discarded_section (sec))
10056 {
10057 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10058 input_section, &rel, &relend,
10059 rel_reloc, howto, contents);
10060 continue;
10061 }
10062
10063 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10064 {
10065 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10066 64-bit code, but make sure all their addresses are in the
10067 lowermost or uppermost 32-bit section of the 64-bit address
10068 space. Thus, when they use an R_MIPS_64 they mean what is
10069 usually meant by R_MIPS_32, with the exception that the
10070 stored value is sign-extended to 64 bits. */
10071 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10072
10073 /* On big-endian systems, we need to lie about the position
10074 of the reloc. */
10075 if (bfd_big_endian (input_bfd))
10076 rel->r_offset += 4;
10077 }
10078
10079 if (!use_saved_addend_p)
10080 {
10081 /* If these relocations were originally of the REL variety,
10082 we must pull the addend out of the field that will be
10083 relocated. Otherwise, we simply use the contents of the
10084 RELA relocation. */
10085 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10086 relocs, rel))
10087 {
10088 rela_relocation_p = FALSE;
10089 addend = mips_elf_read_rel_addend (input_bfd, rel,
10090 howto, contents);
10091 if (hi16_reloc_p (r_type)
10092 || (got16_reloc_p (r_type)
10093 && mips_elf_local_relocation_p (input_bfd, rel,
10094 local_sections)))
10095 {
10096 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10097 contents, &addend))
10098 {
10099 if (h)
10100 name = h->root.root.string;
10101 else
10102 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10103 local_syms + r_symndx,
10104 sec);
10105 (*_bfd_error_handler)
10106 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10107 input_bfd, input_section, name, howto->name,
10108 rel->r_offset);
10109 }
10110 }
10111 else
10112 addend <<= howto->rightshift;
10113 }
10114 else
10115 addend = rel->r_addend;
10116 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10117 local_syms, local_sections, rel);
10118 }
10119
10120 if (bfd_link_relocatable (info))
10121 {
10122 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10123 && bfd_big_endian (input_bfd))
10124 rel->r_offset -= 4;
10125
10126 if (!rela_relocation_p && rel->r_addend)
10127 {
10128 addend += rel->r_addend;
10129 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10130 addend = mips_elf_high (addend);
10131 else if (r_type == R_MIPS_HIGHER)
10132 addend = mips_elf_higher (addend);
10133 else if (r_type == R_MIPS_HIGHEST)
10134 addend = mips_elf_highest (addend);
10135 else
10136 addend >>= howto->rightshift;
10137
10138 /* We use the source mask, rather than the destination
10139 mask because the place to which we are writing will be
10140 source of the addend in the final link. */
10141 addend &= howto->src_mask;
10142
10143 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10144 /* See the comment above about using R_MIPS_64 in the 32-bit
10145 ABI. Here, we need to update the addend. It would be
10146 possible to get away with just using the R_MIPS_32 reloc
10147 but for endianness. */
10148 {
10149 bfd_vma sign_bits;
10150 bfd_vma low_bits;
10151 bfd_vma high_bits;
10152
10153 if (addend & ((bfd_vma) 1 << 31))
10154 #ifdef BFD64
10155 sign_bits = ((bfd_vma) 1 << 32) - 1;
10156 #else
10157 sign_bits = -1;
10158 #endif
10159 else
10160 sign_bits = 0;
10161
10162 /* If we don't know that we have a 64-bit type,
10163 do two separate stores. */
10164 if (bfd_big_endian (input_bfd))
10165 {
10166 /* Store the sign-bits (which are most significant)
10167 first. */
10168 low_bits = sign_bits;
10169 high_bits = addend;
10170 }
10171 else
10172 {
10173 low_bits = addend;
10174 high_bits = sign_bits;
10175 }
10176 bfd_put_32 (input_bfd, low_bits,
10177 contents + rel->r_offset);
10178 bfd_put_32 (input_bfd, high_bits,
10179 contents + rel->r_offset + 4);
10180 continue;
10181 }
10182
10183 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10184 input_bfd, input_section,
10185 contents, FALSE))
10186 return FALSE;
10187 }
10188
10189 /* Go on to the next relocation. */
10190 continue;
10191 }
10192
10193 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10194 relocations for the same offset. In that case we are
10195 supposed to treat the output of each relocation as the addend
10196 for the next. */
10197 if (rel + 1 < relend
10198 && rel->r_offset == rel[1].r_offset
10199 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10200 use_saved_addend_p = TRUE;
10201 else
10202 use_saved_addend_p = FALSE;
10203
10204 /* Figure out what value we are supposed to relocate. */
10205 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10206 input_section, info, rel,
10207 addend, howto, local_syms,
10208 local_sections, &value,
10209 &name, &cross_mode_jump_p,
10210 use_saved_addend_p))
10211 {
10212 case bfd_reloc_continue:
10213 /* There's nothing to do. */
10214 continue;
10215
10216 case bfd_reloc_undefined:
10217 /* mips_elf_calculate_relocation already called the
10218 undefined_symbol callback. There's no real point in
10219 trying to perform the relocation at this point, so we
10220 just skip ahead to the next relocation. */
10221 continue;
10222
10223 case bfd_reloc_notsupported:
10224 msg = _("internal error: unsupported relocation error");
10225 info->callbacks->warning
10226 (info, msg, name, input_bfd, input_section, rel->r_offset);
10227 return FALSE;
10228
10229 case bfd_reloc_overflow:
10230 if (use_saved_addend_p)
10231 /* Ignore overflow until we reach the last relocation for
10232 a given location. */
10233 ;
10234 else
10235 {
10236 struct mips_elf_link_hash_table *htab;
10237
10238 htab = mips_elf_hash_table (info);
10239 BFD_ASSERT (htab != NULL);
10240 BFD_ASSERT (name != NULL);
10241 if (!htab->small_data_overflow_reported
10242 && (gprel16_reloc_p (howto->type)
10243 || literal_reloc_p (howto->type)))
10244 {
10245 msg = _("small-data section exceeds 64KB;"
10246 " lower small-data size limit (see option -G)");
10247
10248 htab->small_data_overflow_reported = TRUE;
10249 (*info->callbacks->einfo) ("%P: %s\n", msg);
10250 }
10251 if (! ((*info->callbacks->reloc_overflow)
10252 (info, NULL, name, howto->name, (bfd_vma) 0,
10253 input_bfd, input_section, rel->r_offset)))
10254 return FALSE;
10255 }
10256 break;
10257
10258 case bfd_reloc_ok:
10259 break;
10260
10261 case bfd_reloc_outofrange:
10262 if (jal_reloc_p (howto->type))
10263 {
10264 msg = _("JALX to a non-word-aligned address");
10265 info->callbacks->warning
10266 (info, msg, name, input_bfd, input_section, rel->r_offset);
10267 return FALSE;
10268 }
10269 if (aligned_pcrel_reloc_p (howto->type))
10270 {
10271 msg = _("PC-relative load from unaligned address");
10272 info->callbacks->warning
10273 (info, msg, name, input_bfd, input_section, rel->r_offset);
10274 return FALSE;
10275 }
10276 /* Fall through. */
10277
10278 default:
10279 abort ();
10280 break;
10281 }
10282
10283 /* If we've got another relocation for the address, keep going
10284 until we reach the last one. */
10285 if (use_saved_addend_p)
10286 {
10287 addend = value;
10288 continue;
10289 }
10290
10291 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10292 /* See the comment above about using R_MIPS_64 in the 32-bit
10293 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10294 that calculated the right value. Now, however, we
10295 sign-extend the 32-bit result to 64-bits, and store it as a
10296 64-bit value. We are especially generous here in that we
10297 go to extreme lengths to support this usage on systems with
10298 only a 32-bit VMA. */
10299 {
10300 bfd_vma sign_bits;
10301 bfd_vma low_bits;
10302 bfd_vma high_bits;
10303
10304 if (value & ((bfd_vma) 1 << 31))
10305 #ifdef BFD64
10306 sign_bits = ((bfd_vma) 1 << 32) - 1;
10307 #else
10308 sign_bits = -1;
10309 #endif
10310 else
10311 sign_bits = 0;
10312
10313 /* If we don't know that we have a 64-bit type,
10314 do two separate stores. */
10315 if (bfd_big_endian (input_bfd))
10316 {
10317 /* Undo what we did above. */
10318 rel->r_offset -= 4;
10319 /* Store the sign-bits (which are most significant)
10320 first. */
10321 low_bits = sign_bits;
10322 high_bits = value;
10323 }
10324 else
10325 {
10326 low_bits = value;
10327 high_bits = sign_bits;
10328 }
10329 bfd_put_32 (input_bfd, low_bits,
10330 contents + rel->r_offset);
10331 bfd_put_32 (input_bfd, high_bits,
10332 contents + rel->r_offset + 4);
10333 continue;
10334 }
10335
10336 /* Actually perform the relocation. */
10337 if (! mips_elf_perform_relocation (info, howto, rel, value,
10338 input_bfd, input_section,
10339 contents, cross_mode_jump_p))
10340 return FALSE;
10341 }
10342
10343 return TRUE;
10344 }
10345 \f
10346 /* A function that iterates over each entry in la25_stubs and fills
10347 in the code for each one. DATA points to a mips_htab_traverse_info. */
10348
10349 static int
10350 mips_elf_create_la25_stub (void **slot, void *data)
10351 {
10352 struct mips_htab_traverse_info *hti;
10353 struct mips_elf_link_hash_table *htab;
10354 struct mips_elf_la25_stub *stub;
10355 asection *s;
10356 bfd_byte *loc;
10357 bfd_vma offset, target, target_high, target_low;
10358
10359 stub = (struct mips_elf_la25_stub *) *slot;
10360 hti = (struct mips_htab_traverse_info *) data;
10361 htab = mips_elf_hash_table (hti->info);
10362 BFD_ASSERT (htab != NULL);
10363
10364 /* Create the section contents, if we haven't already. */
10365 s = stub->stub_section;
10366 loc = s->contents;
10367 if (loc == NULL)
10368 {
10369 loc = bfd_malloc (s->size);
10370 if (loc == NULL)
10371 {
10372 hti->error = TRUE;
10373 return FALSE;
10374 }
10375 s->contents = loc;
10376 }
10377
10378 /* Work out where in the section this stub should go. */
10379 offset = stub->offset;
10380
10381 /* Work out the target address. */
10382 target = mips_elf_get_la25_target (stub, &s);
10383 target += s->output_section->vma + s->output_offset;
10384
10385 target_high = ((target + 0x8000) >> 16) & 0xffff;
10386 target_low = (target & 0xffff);
10387
10388 if (stub->stub_section != htab->strampoline)
10389 {
10390 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10391 of the section and write the two instructions at the end. */
10392 memset (loc, 0, offset);
10393 loc += offset;
10394 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10395 {
10396 bfd_put_micromips_32 (hti->output_bfd,
10397 LA25_LUI_MICROMIPS (target_high),
10398 loc);
10399 bfd_put_micromips_32 (hti->output_bfd,
10400 LA25_ADDIU_MICROMIPS (target_low),
10401 loc + 4);
10402 }
10403 else
10404 {
10405 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10406 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10407 }
10408 }
10409 else
10410 {
10411 /* This is trampoline. */
10412 loc += offset;
10413 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10414 {
10415 bfd_put_micromips_32 (hti->output_bfd,
10416 LA25_LUI_MICROMIPS (target_high), loc);
10417 bfd_put_micromips_32 (hti->output_bfd,
10418 LA25_J_MICROMIPS (target), loc + 4);
10419 bfd_put_micromips_32 (hti->output_bfd,
10420 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10421 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10422 }
10423 else
10424 {
10425 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10426 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10427 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10428 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10429 }
10430 }
10431 return TRUE;
10432 }
10433
10434 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10435 adjust it appropriately now. */
10436
10437 static void
10438 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10439 const char *name, Elf_Internal_Sym *sym)
10440 {
10441 /* The linker script takes care of providing names and values for
10442 these, but we must place them into the right sections. */
10443 static const char* const text_section_symbols[] = {
10444 "_ftext",
10445 "_etext",
10446 "__dso_displacement",
10447 "__elf_header",
10448 "__program_header_table",
10449 NULL
10450 };
10451
10452 static const char* const data_section_symbols[] = {
10453 "_fdata",
10454 "_edata",
10455 "_end",
10456 "_fbss",
10457 NULL
10458 };
10459
10460 const char* const *p;
10461 int i;
10462
10463 for (i = 0; i < 2; ++i)
10464 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10465 *p;
10466 ++p)
10467 if (strcmp (*p, name) == 0)
10468 {
10469 /* All of these symbols are given type STT_SECTION by the
10470 IRIX6 linker. */
10471 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10472 sym->st_other = STO_PROTECTED;
10473
10474 /* The IRIX linker puts these symbols in special sections. */
10475 if (i == 0)
10476 sym->st_shndx = SHN_MIPS_TEXT;
10477 else
10478 sym->st_shndx = SHN_MIPS_DATA;
10479
10480 break;
10481 }
10482 }
10483
10484 /* Finish up dynamic symbol handling. We set the contents of various
10485 dynamic sections here. */
10486
10487 bfd_boolean
10488 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10489 struct bfd_link_info *info,
10490 struct elf_link_hash_entry *h,
10491 Elf_Internal_Sym *sym)
10492 {
10493 bfd *dynobj;
10494 asection *sgot;
10495 struct mips_got_info *g, *gg;
10496 const char *name;
10497 int idx;
10498 struct mips_elf_link_hash_table *htab;
10499 struct mips_elf_link_hash_entry *hmips;
10500
10501 htab = mips_elf_hash_table (info);
10502 BFD_ASSERT (htab != NULL);
10503 dynobj = elf_hash_table (info)->dynobj;
10504 hmips = (struct mips_elf_link_hash_entry *) h;
10505
10506 BFD_ASSERT (!htab->is_vxworks);
10507
10508 if (h->plt.plist != NULL
10509 && (h->plt.plist->mips_offset != MINUS_ONE
10510 || h->plt.plist->comp_offset != MINUS_ONE))
10511 {
10512 /* We've decided to create a PLT entry for this symbol. */
10513 bfd_byte *loc;
10514 bfd_vma header_address, got_address;
10515 bfd_vma got_address_high, got_address_low, load;
10516 bfd_vma got_index;
10517 bfd_vma isa_bit;
10518
10519 got_index = h->plt.plist->gotplt_index;
10520
10521 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10522 BFD_ASSERT (h->dynindx != -1);
10523 BFD_ASSERT (htab->splt != NULL);
10524 BFD_ASSERT (got_index != MINUS_ONE);
10525 BFD_ASSERT (!h->def_regular);
10526
10527 /* Calculate the address of the PLT header. */
10528 isa_bit = htab->plt_header_is_comp;
10529 header_address = (htab->splt->output_section->vma
10530 + htab->splt->output_offset + isa_bit);
10531
10532 /* Calculate the address of the .got.plt entry. */
10533 got_address = (htab->sgotplt->output_section->vma
10534 + htab->sgotplt->output_offset
10535 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10536
10537 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10538 got_address_low = got_address & 0xffff;
10539
10540 /* Initially point the .got.plt entry at the PLT header. */
10541 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10542 if (ABI_64_P (output_bfd))
10543 bfd_put_64 (output_bfd, header_address, loc);
10544 else
10545 bfd_put_32 (output_bfd, header_address, loc);
10546
10547 /* Now handle the PLT itself. First the standard entry (the order
10548 does not matter, we just have to pick one). */
10549 if (h->plt.plist->mips_offset != MINUS_ONE)
10550 {
10551 const bfd_vma *plt_entry;
10552 bfd_vma plt_offset;
10553
10554 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10555
10556 BFD_ASSERT (plt_offset <= htab->splt->size);
10557
10558 /* Find out where the .plt entry should go. */
10559 loc = htab->splt->contents + plt_offset;
10560
10561 /* Pick the load opcode. */
10562 load = MIPS_ELF_LOAD_WORD (output_bfd);
10563
10564 /* Fill in the PLT entry itself. */
10565
10566 if (MIPSR6_P (output_bfd))
10567 plt_entry = mipsr6_exec_plt_entry;
10568 else
10569 plt_entry = mips_exec_plt_entry;
10570 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10571 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10572 loc + 4);
10573
10574 if (! LOAD_INTERLOCKS_P (output_bfd))
10575 {
10576 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10577 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10578 }
10579 else
10580 {
10581 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10582 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10583 loc + 12);
10584 }
10585 }
10586
10587 /* Now the compressed entry. They come after any standard ones. */
10588 if (h->plt.plist->comp_offset != MINUS_ONE)
10589 {
10590 bfd_vma plt_offset;
10591
10592 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10593 + h->plt.plist->comp_offset);
10594
10595 BFD_ASSERT (plt_offset <= htab->splt->size);
10596
10597 /* Find out where the .plt entry should go. */
10598 loc = htab->splt->contents + plt_offset;
10599
10600 /* Fill in the PLT entry itself. */
10601 if (!MICROMIPS_P (output_bfd))
10602 {
10603 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10604
10605 bfd_put_16 (output_bfd, plt_entry[0], loc);
10606 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10607 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10608 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10609 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10610 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10611 bfd_put_32 (output_bfd, got_address, loc + 12);
10612 }
10613 else if (htab->insn32)
10614 {
10615 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10616
10617 bfd_put_16 (output_bfd, plt_entry[0], loc);
10618 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10619 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10620 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10621 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10622 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10623 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10624 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10625 }
10626 else
10627 {
10628 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10629 bfd_signed_vma gotpc_offset;
10630 bfd_vma loc_address;
10631
10632 BFD_ASSERT (got_address % 4 == 0);
10633
10634 loc_address = (htab->splt->output_section->vma
10635 + htab->splt->output_offset + plt_offset);
10636 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10637
10638 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10639 if (gotpc_offset + 0x1000000 >= 0x2000000)
10640 {
10641 (*_bfd_error_handler)
10642 (_("%B: `%A' offset of %ld from `%A' "
10643 "beyond the range of ADDIUPC"),
10644 output_bfd,
10645 htab->sgotplt->output_section,
10646 htab->splt->output_section,
10647 (long) gotpc_offset);
10648 bfd_set_error (bfd_error_no_error);
10649 return FALSE;
10650 }
10651 bfd_put_16 (output_bfd,
10652 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10653 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10654 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10655 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10656 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10657 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10658 }
10659 }
10660
10661 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10662 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10663 got_index - 2, h->dynindx,
10664 R_MIPS_JUMP_SLOT, got_address);
10665
10666 /* We distinguish between PLT entries and lazy-binding stubs by
10667 giving the former an st_other value of STO_MIPS_PLT. Set the
10668 flag and leave the value if there are any relocations in the
10669 binary where pointer equality matters. */
10670 sym->st_shndx = SHN_UNDEF;
10671 if (h->pointer_equality_needed)
10672 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10673 else
10674 {
10675 sym->st_value = 0;
10676 sym->st_other = 0;
10677 }
10678 }
10679
10680 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10681 {
10682 /* We've decided to create a lazy-binding stub. */
10683 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10684 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10685 bfd_vma stub_size = htab->function_stub_size;
10686 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10687 bfd_vma isa_bit = micromips_p;
10688 bfd_vma stub_big_size;
10689
10690 if (!micromips_p)
10691 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10692 else if (htab->insn32)
10693 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10694 else
10695 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10696
10697 /* This symbol has a stub. Set it up. */
10698
10699 BFD_ASSERT (h->dynindx != -1);
10700
10701 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10702
10703 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10704 sign extension at runtime in the stub, resulting in a negative
10705 index value. */
10706 if (h->dynindx & ~0x7fffffff)
10707 return FALSE;
10708
10709 /* Fill the stub. */
10710 if (micromips_p)
10711 {
10712 idx = 0;
10713 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10714 stub + idx);
10715 idx += 4;
10716 if (htab->insn32)
10717 {
10718 bfd_put_micromips_32 (output_bfd,
10719 STUB_MOVE32_MICROMIPS, stub + idx);
10720 idx += 4;
10721 }
10722 else
10723 {
10724 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10725 idx += 2;
10726 }
10727 if (stub_size == stub_big_size)
10728 {
10729 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10730
10731 bfd_put_micromips_32 (output_bfd,
10732 STUB_LUI_MICROMIPS (dynindx_hi),
10733 stub + idx);
10734 idx += 4;
10735 }
10736 if (htab->insn32)
10737 {
10738 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10739 stub + idx);
10740 idx += 4;
10741 }
10742 else
10743 {
10744 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10745 idx += 2;
10746 }
10747
10748 /* If a large stub is not required and sign extension is not a
10749 problem, then use legacy code in the stub. */
10750 if (stub_size == stub_big_size)
10751 bfd_put_micromips_32 (output_bfd,
10752 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10753 stub + idx);
10754 else if (h->dynindx & ~0x7fff)
10755 bfd_put_micromips_32 (output_bfd,
10756 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10757 stub + idx);
10758 else
10759 bfd_put_micromips_32 (output_bfd,
10760 STUB_LI16S_MICROMIPS (output_bfd,
10761 h->dynindx),
10762 stub + idx);
10763 }
10764 else
10765 {
10766 idx = 0;
10767 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10768 idx += 4;
10769 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10770 idx += 4;
10771 if (stub_size == stub_big_size)
10772 {
10773 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10774 stub + idx);
10775 idx += 4;
10776 }
10777 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10778 idx += 4;
10779
10780 /* If a large stub is not required and sign extension is not a
10781 problem, then use legacy code in the stub. */
10782 if (stub_size == stub_big_size)
10783 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10784 stub + idx);
10785 else if (h->dynindx & ~0x7fff)
10786 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10787 stub + idx);
10788 else
10789 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10790 stub + idx);
10791 }
10792
10793 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10794 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10795 stub, stub_size);
10796
10797 /* Mark the symbol as undefined. stub_offset != -1 occurs
10798 only for the referenced symbol. */
10799 sym->st_shndx = SHN_UNDEF;
10800
10801 /* The run-time linker uses the st_value field of the symbol
10802 to reset the global offset table entry for this external
10803 to its stub address when unlinking a shared object. */
10804 sym->st_value = (htab->sstubs->output_section->vma
10805 + htab->sstubs->output_offset
10806 + h->plt.plist->stub_offset
10807 + isa_bit);
10808 sym->st_other = other;
10809 }
10810
10811 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10812 refer to the stub, since only the stub uses the standard calling
10813 conventions. */
10814 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10815 {
10816 BFD_ASSERT (hmips->need_fn_stub);
10817 sym->st_value = (hmips->fn_stub->output_section->vma
10818 + hmips->fn_stub->output_offset);
10819 sym->st_size = hmips->fn_stub->size;
10820 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10821 }
10822
10823 BFD_ASSERT (h->dynindx != -1
10824 || h->forced_local);
10825
10826 sgot = htab->sgot;
10827 g = htab->got_info;
10828 BFD_ASSERT (g != NULL);
10829
10830 /* Run through the global symbol table, creating GOT entries for all
10831 the symbols that need them. */
10832 if (hmips->global_got_area != GGA_NONE)
10833 {
10834 bfd_vma offset;
10835 bfd_vma value;
10836
10837 value = sym->st_value;
10838 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10839 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10840 }
10841
10842 if (hmips->global_got_area != GGA_NONE && g->next)
10843 {
10844 struct mips_got_entry e, *p;
10845 bfd_vma entry;
10846 bfd_vma offset;
10847
10848 gg = g;
10849
10850 e.abfd = output_bfd;
10851 e.symndx = -1;
10852 e.d.h = hmips;
10853 e.tls_type = GOT_TLS_NONE;
10854
10855 for (g = g->next; g->next != gg; g = g->next)
10856 {
10857 if (g->got_entries
10858 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10859 &e)))
10860 {
10861 offset = p->gotidx;
10862 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10863 if (bfd_link_pic (info)
10864 || (elf_hash_table (info)->dynamic_sections_created
10865 && p->d.h != NULL
10866 && p->d.h->root.def_dynamic
10867 && !p->d.h->root.def_regular))
10868 {
10869 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10870 the various compatibility problems, it's easier to mock
10871 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10872 mips_elf_create_dynamic_relocation to calculate the
10873 appropriate addend. */
10874 Elf_Internal_Rela rel[3];
10875
10876 memset (rel, 0, sizeof (rel));
10877 if (ABI_64_P (output_bfd))
10878 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10879 else
10880 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10881 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10882
10883 entry = 0;
10884 if (! (mips_elf_create_dynamic_relocation
10885 (output_bfd, info, rel,
10886 e.d.h, NULL, sym->st_value, &entry, sgot)))
10887 return FALSE;
10888 }
10889 else
10890 entry = sym->st_value;
10891 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10892 }
10893 }
10894 }
10895
10896 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10897 name = h->root.root.string;
10898 if (h == elf_hash_table (info)->hdynamic
10899 || h == elf_hash_table (info)->hgot)
10900 sym->st_shndx = SHN_ABS;
10901 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10902 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10903 {
10904 sym->st_shndx = SHN_ABS;
10905 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10906 sym->st_value = 1;
10907 }
10908 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10909 {
10910 sym->st_shndx = SHN_ABS;
10911 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10912 sym->st_value = elf_gp (output_bfd);
10913 }
10914 else if (SGI_COMPAT (output_bfd))
10915 {
10916 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10917 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10918 {
10919 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10920 sym->st_other = STO_PROTECTED;
10921 sym->st_value = 0;
10922 sym->st_shndx = SHN_MIPS_DATA;
10923 }
10924 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10925 {
10926 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10927 sym->st_other = STO_PROTECTED;
10928 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10929 sym->st_shndx = SHN_ABS;
10930 }
10931 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10932 {
10933 if (h->type == STT_FUNC)
10934 sym->st_shndx = SHN_MIPS_TEXT;
10935 else if (h->type == STT_OBJECT)
10936 sym->st_shndx = SHN_MIPS_DATA;
10937 }
10938 }
10939
10940 /* Emit a copy reloc, if needed. */
10941 if (h->needs_copy)
10942 {
10943 asection *s;
10944 bfd_vma symval;
10945
10946 BFD_ASSERT (h->dynindx != -1);
10947 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10948
10949 s = mips_elf_rel_dyn_section (info, FALSE);
10950 symval = (h->root.u.def.section->output_section->vma
10951 + h->root.u.def.section->output_offset
10952 + h->root.u.def.value);
10953 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10954 h->dynindx, R_MIPS_COPY, symval);
10955 }
10956
10957 /* Handle the IRIX6-specific symbols. */
10958 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10959 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10960
10961 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10962 to treat compressed symbols like any other. */
10963 if (ELF_ST_IS_MIPS16 (sym->st_other))
10964 {
10965 BFD_ASSERT (sym->st_value & 1);
10966 sym->st_other -= STO_MIPS16;
10967 }
10968 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10969 {
10970 BFD_ASSERT (sym->st_value & 1);
10971 sym->st_other -= STO_MICROMIPS;
10972 }
10973
10974 return TRUE;
10975 }
10976
10977 /* Likewise, for VxWorks. */
10978
10979 bfd_boolean
10980 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10981 struct bfd_link_info *info,
10982 struct elf_link_hash_entry *h,
10983 Elf_Internal_Sym *sym)
10984 {
10985 bfd *dynobj;
10986 asection *sgot;
10987 struct mips_got_info *g;
10988 struct mips_elf_link_hash_table *htab;
10989 struct mips_elf_link_hash_entry *hmips;
10990
10991 htab = mips_elf_hash_table (info);
10992 BFD_ASSERT (htab != NULL);
10993 dynobj = elf_hash_table (info)->dynobj;
10994 hmips = (struct mips_elf_link_hash_entry *) h;
10995
10996 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10997 {
10998 bfd_byte *loc;
10999 bfd_vma plt_address, got_address, got_offset, branch_offset;
11000 Elf_Internal_Rela rel;
11001 static const bfd_vma *plt_entry;
11002 bfd_vma gotplt_index;
11003 bfd_vma plt_offset;
11004
11005 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11006 gotplt_index = h->plt.plist->gotplt_index;
11007
11008 BFD_ASSERT (h->dynindx != -1);
11009 BFD_ASSERT (htab->splt != NULL);
11010 BFD_ASSERT (gotplt_index != MINUS_ONE);
11011 BFD_ASSERT (plt_offset <= htab->splt->size);
11012
11013 /* Calculate the address of the .plt entry. */
11014 plt_address = (htab->splt->output_section->vma
11015 + htab->splt->output_offset
11016 + plt_offset);
11017
11018 /* Calculate the address of the .got.plt entry. */
11019 got_address = (htab->sgotplt->output_section->vma
11020 + htab->sgotplt->output_offset
11021 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11022
11023 /* Calculate the offset of the .got.plt entry from
11024 _GLOBAL_OFFSET_TABLE_. */
11025 got_offset = mips_elf_gotplt_index (info, h);
11026
11027 /* Calculate the offset for the branch at the start of the PLT
11028 entry. The branch jumps to the beginning of .plt. */
11029 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11030
11031 /* Fill in the initial value of the .got.plt entry. */
11032 bfd_put_32 (output_bfd, plt_address,
11033 (htab->sgotplt->contents
11034 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11035
11036 /* Find out where the .plt entry should go. */
11037 loc = htab->splt->contents + plt_offset;
11038
11039 if (bfd_link_pic (info))
11040 {
11041 plt_entry = mips_vxworks_shared_plt_entry;
11042 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11043 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11044 }
11045 else
11046 {
11047 bfd_vma got_address_high, got_address_low;
11048
11049 plt_entry = mips_vxworks_exec_plt_entry;
11050 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11051 got_address_low = got_address & 0xffff;
11052
11053 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11054 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11055 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11056 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11057 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11058 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11059 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11060 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11061
11062 loc = (htab->srelplt2->contents
11063 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11064
11065 /* Emit a relocation for the .got.plt entry. */
11066 rel.r_offset = got_address;
11067 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11068 rel.r_addend = plt_offset;
11069 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11070
11071 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11072 loc += sizeof (Elf32_External_Rela);
11073 rel.r_offset = plt_address + 8;
11074 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11075 rel.r_addend = got_offset;
11076 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11077
11078 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11079 loc += sizeof (Elf32_External_Rela);
11080 rel.r_offset += 4;
11081 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11082 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11083 }
11084
11085 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11086 loc = (htab->srelplt->contents
11087 + gotplt_index * sizeof (Elf32_External_Rela));
11088 rel.r_offset = got_address;
11089 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11090 rel.r_addend = 0;
11091 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11092
11093 if (!h->def_regular)
11094 sym->st_shndx = SHN_UNDEF;
11095 }
11096
11097 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11098
11099 sgot = htab->sgot;
11100 g = htab->got_info;
11101 BFD_ASSERT (g != NULL);
11102
11103 /* See if this symbol has an entry in the GOT. */
11104 if (hmips->global_got_area != GGA_NONE)
11105 {
11106 bfd_vma offset;
11107 Elf_Internal_Rela outrel;
11108 bfd_byte *loc;
11109 asection *s;
11110
11111 /* Install the symbol value in the GOT. */
11112 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11113 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11114
11115 /* Add a dynamic relocation for it. */
11116 s = mips_elf_rel_dyn_section (info, FALSE);
11117 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11118 outrel.r_offset = (sgot->output_section->vma
11119 + sgot->output_offset
11120 + offset);
11121 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11122 outrel.r_addend = 0;
11123 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11124 }
11125
11126 /* Emit a copy reloc, if needed. */
11127 if (h->needs_copy)
11128 {
11129 Elf_Internal_Rela rel;
11130
11131 BFD_ASSERT (h->dynindx != -1);
11132
11133 rel.r_offset = (h->root.u.def.section->output_section->vma
11134 + h->root.u.def.section->output_offset
11135 + h->root.u.def.value);
11136 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11137 rel.r_addend = 0;
11138 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11139 htab->srelbss->contents
11140 + (htab->srelbss->reloc_count
11141 * sizeof (Elf32_External_Rela)));
11142 ++htab->srelbss->reloc_count;
11143 }
11144
11145 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11146 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11147 sym->st_value &= ~1;
11148
11149 return TRUE;
11150 }
11151
11152 /* Write out a plt0 entry to the beginning of .plt. */
11153
11154 static bfd_boolean
11155 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11156 {
11157 bfd_byte *loc;
11158 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11159 static const bfd_vma *plt_entry;
11160 struct mips_elf_link_hash_table *htab;
11161
11162 htab = mips_elf_hash_table (info);
11163 BFD_ASSERT (htab != NULL);
11164
11165 if (ABI_64_P (output_bfd))
11166 plt_entry = mips_n64_exec_plt0_entry;
11167 else if (ABI_N32_P (output_bfd))
11168 plt_entry = mips_n32_exec_plt0_entry;
11169 else if (!htab->plt_header_is_comp)
11170 plt_entry = mips_o32_exec_plt0_entry;
11171 else if (htab->insn32)
11172 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11173 else
11174 plt_entry = micromips_o32_exec_plt0_entry;
11175
11176 /* Calculate the value of .got.plt. */
11177 gotplt_value = (htab->sgotplt->output_section->vma
11178 + htab->sgotplt->output_offset);
11179 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11180 gotplt_value_low = gotplt_value & 0xffff;
11181
11182 /* The PLT sequence is not safe for N64 if .got.plt's address can
11183 not be loaded in two instructions. */
11184 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11185 || ~(gotplt_value | 0x7fffffff) == 0);
11186
11187 /* Install the PLT header. */
11188 loc = htab->splt->contents;
11189 if (plt_entry == micromips_o32_exec_plt0_entry)
11190 {
11191 bfd_vma gotpc_offset;
11192 bfd_vma loc_address;
11193 size_t i;
11194
11195 BFD_ASSERT (gotplt_value % 4 == 0);
11196
11197 loc_address = (htab->splt->output_section->vma
11198 + htab->splt->output_offset);
11199 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11200
11201 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11202 if (gotpc_offset + 0x1000000 >= 0x2000000)
11203 {
11204 (*_bfd_error_handler)
11205 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11206 output_bfd,
11207 htab->sgotplt->output_section,
11208 htab->splt->output_section,
11209 (long) gotpc_offset);
11210 bfd_set_error (bfd_error_no_error);
11211 return FALSE;
11212 }
11213 bfd_put_16 (output_bfd,
11214 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11215 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11216 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11217 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11218 }
11219 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11220 {
11221 size_t i;
11222
11223 bfd_put_16 (output_bfd, plt_entry[0], loc);
11224 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11225 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11226 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11227 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11228 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11229 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11230 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11231 }
11232 else
11233 {
11234 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11235 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11236 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11237 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11238 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11239 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11240 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11241 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11242 }
11243
11244 return TRUE;
11245 }
11246
11247 /* Install the PLT header for a VxWorks executable and finalize the
11248 contents of .rela.plt.unloaded. */
11249
11250 static void
11251 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11252 {
11253 Elf_Internal_Rela rela;
11254 bfd_byte *loc;
11255 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11256 static const bfd_vma *plt_entry;
11257 struct mips_elf_link_hash_table *htab;
11258
11259 htab = mips_elf_hash_table (info);
11260 BFD_ASSERT (htab != NULL);
11261
11262 plt_entry = mips_vxworks_exec_plt0_entry;
11263
11264 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11265 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11266 + htab->root.hgot->root.u.def.section->output_offset
11267 + htab->root.hgot->root.u.def.value);
11268
11269 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11270 got_value_low = got_value & 0xffff;
11271
11272 /* Calculate the address of the PLT header. */
11273 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11274
11275 /* Install the PLT header. */
11276 loc = htab->splt->contents;
11277 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11278 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11279 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11280 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11281 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11282 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11283
11284 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11285 loc = htab->srelplt2->contents;
11286 rela.r_offset = plt_address;
11287 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11288 rela.r_addend = 0;
11289 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11290 loc += sizeof (Elf32_External_Rela);
11291
11292 /* Output the relocation for the following addiu of
11293 %lo(_GLOBAL_OFFSET_TABLE_). */
11294 rela.r_offset += 4;
11295 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11296 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11297 loc += sizeof (Elf32_External_Rela);
11298
11299 /* Fix up the remaining relocations. They may have the wrong
11300 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11301 in which symbols were output. */
11302 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11303 {
11304 Elf_Internal_Rela rel;
11305
11306 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11307 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11308 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11309 loc += sizeof (Elf32_External_Rela);
11310
11311 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11312 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11313 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11314 loc += sizeof (Elf32_External_Rela);
11315
11316 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11317 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11318 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11319 loc += sizeof (Elf32_External_Rela);
11320 }
11321 }
11322
11323 /* Install the PLT header for a VxWorks shared library. */
11324
11325 static void
11326 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11327 {
11328 unsigned int i;
11329 struct mips_elf_link_hash_table *htab;
11330
11331 htab = mips_elf_hash_table (info);
11332 BFD_ASSERT (htab != NULL);
11333
11334 /* We just need to copy the entry byte-by-byte. */
11335 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11336 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11337 htab->splt->contents + i * 4);
11338 }
11339
11340 /* Finish up the dynamic sections. */
11341
11342 bfd_boolean
11343 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11344 struct bfd_link_info *info)
11345 {
11346 bfd *dynobj;
11347 asection *sdyn;
11348 asection *sgot;
11349 struct mips_got_info *gg, *g;
11350 struct mips_elf_link_hash_table *htab;
11351
11352 htab = mips_elf_hash_table (info);
11353 BFD_ASSERT (htab != NULL);
11354
11355 dynobj = elf_hash_table (info)->dynobj;
11356
11357 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11358
11359 sgot = htab->sgot;
11360 gg = htab->got_info;
11361
11362 if (elf_hash_table (info)->dynamic_sections_created)
11363 {
11364 bfd_byte *b;
11365 int dyn_to_skip = 0, dyn_skipped = 0;
11366
11367 BFD_ASSERT (sdyn != NULL);
11368 BFD_ASSERT (gg != NULL);
11369
11370 g = mips_elf_bfd_got (output_bfd, FALSE);
11371 BFD_ASSERT (g != NULL);
11372
11373 for (b = sdyn->contents;
11374 b < sdyn->contents + sdyn->size;
11375 b += MIPS_ELF_DYN_SIZE (dynobj))
11376 {
11377 Elf_Internal_Dyn dyn;
11378 const char *name;
11379 size_t elemsize;
11380 asection *s;
11381 bfd_boolean swap_out_p;
11382
11383 /* Read in the current dynamic entry. */
11384 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11385
11386 /* Assume that we're going to modify it and write it out. */
11387 swap_out_p = TRUE;
11388
11389 switch (dyn.d_tag)
11390 {
11391 case DT_RELENT:
11392 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11393 break;
11394
11395 case DT_RELAENT:
11396 BFD_ASSERT (htab->is_vxworks);
11397 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11398 break;
11399
11400 case DT_STRSZ:
11401 /* Rewrite DT_STRSZ. */
11402 dyn.d_un.d_val =
11403 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11404 break;
11405
11406 case DT_PLTGOT:
11407 s = htab->sgot;
11408 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11409 break;
11410
11411 case DT_MIPS_PLTGOT:
11412 s = htab->sgotplt;
11413 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11414 break;
11415
11416 case DT_MIPS_RLD_VERSION:
11417 dyn.d_un.d_val = 1; /* XXX */
11418 break;
11419
11420 case DT_MIPS_FLAGS:
11421 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11422 break;
11423
11424 case DT_MIPS_TIME_STAMP:
11425 {
11426 time_t t;
11427 time (&t);
11428 dyn.d_un.d_val = t;
11429 }
11430 break;
11431
11432 case DT_MIPS_ICHECKSUM:
11433 /* XXX FIXME: */
11434 swap_out_p = FALSE;
11435 break;
11436
11437 case DT_MIPS_IVERSION:
11438 /* XXX FIXME: */
11439 swap_out_p = FALSE;
11440 break;
11441
11442 case DT_MIPS_BASE_ADDRESS:
11443 s = output_bfd->sections;
11444 BFD_ASSERT (s != NULL);
11445 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11446 break;
11447
11448 case DT_MIPS_LOCAL_GOTNO:
11449 dyn.d_un.d_val = g->local_gotno;
11450 break;
11451
11452 case DT_MIPS_UNREFEXTNO:
11453 /* The index into the dynamic symbol table which is the
11454 entry of the first external symbol that is not
11455 referenced within the same object. */
11456 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11457 break;
11458
11459 case DT_MIPS_GOTSYM:
11460 if (htab->global_gotsym)
11461 {
11462 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11463 break;
11464 }
11465 /* In case if we don't have global got symbols we default
11466 to setting DT_MIPS_GOTSYM to the same value as
11467 DT_MIPS_SYMTABNO, so we just fall through. */
11468
11469 case DT_MIPS_SYMTABNO:
11470 name = ".dynsym";
11471 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11472 s = bfd_get_linker_section (dynobj, name);
11473
11474 if (s != NULL)
11475 dyn.d_un.d_val = s->size / elemsize;
11476 else
11477 dyn.d_un.d_val = 0;
11478 break;
11479
11480 case DT_MIPS_HIPAGENO:
11481 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11482 break;
11483
11484 case DT_MIPS_RLD_MAP:
11485 {
11486 struct elf_link_hash_entry *h;
11487 h = mips_elf_hash_table (info)->rld_symbol;
11488 if (!h)
11489 {
11490 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11491 swap_out_p = FALSE;
11492 break;
11493 }
11494 s = h->root.u.def.section;
11495
11496 /* The MIPS_RLD_MAP tag stores the absolute address of the
11497 debug pointer. */
11498 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11499 + h->root.u.def.value);
11500 }
11501 break;
11502
11503 case DT_MIPS_RLD_MAP_REL:
11504 {
11505 struct elf_link_hash_entry *h;
11506 bfd_vma dt_addr, rld_addr;
11507 h = mips_elf_hash_table (info)->rld_symbol;
11508 if (!h)
11509 {
11510 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11511 swap_out_p = FALSE;
11512 break;
11513 }
11514 s = h->root.u.def.section;
11515
11516 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11517 pointer, relative to the address of the tag. */
11518 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11519 + (b - sdyn->contents));
11520 rld_addr = (s->output_section->vma + s->output_offset
11521 + h->root.u.def.value);
11522 dyn.d_un.d_ptr = rld_addr - dt_addr;
11523 }
11524 break;
11525
11526 case DT_MIPS_OPTIONS:
11527 s = (bfd_get_section_by_name
11528 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11529 dyn.d_un.d_ptr = s->vma;
11530 break;
11531
11532 case DT_RELASZ:
11533 BFD_ASSERT (htab->is_vxworks);
11534 /* The count does not include the JUMP_SLOT relocations. */
11535 if (htab->srelplt)
11536 dyn.d_un.d_val -= htab->srelplt->size;
11537 break;
11538
11539 case DT_PLTREL:
11540 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11541 if (htab->is_vxworks)
11542 dyn.d_un.d_val = DT_RELA;
11543 else
11544 dyn.d_un.d_val = DT_REL;
11545 break;
11546
11547 case DT_PLTRELSZ:
11548 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11549 dyn.d_un.d_val = htab->srelplt->size;
11550 break;
11551
11552 case DT_JMPREL:
11553 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11554 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11555 + htab->srelplt->output_offset);
11556 break;
11557
11558 case DT_TEXTREL:
11559 /* If we didn't need any text relocations after all, delete
11560 the dynamic tag. */
11561 if (!(info->flags & DF_TEXTREL))
11562 {
11563 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11564 swap_out_p = FALSE;
11565 }
11566 break;
11567
11568 case DT_FLAGS:
11569 /* If we didn't need any text relocations after all, clear
11570 DF_TEXTREL from DT_FLAGS. */
11571 if (!(info->flags & DF_TEXTREL))
11572 dyn.d_un.d_val &= ~DF_TEXTREL;
11573 else
11574 swap_out_p = FALSE;
11575 break;
11576
11577 default:
11578 swap_out_p = FALSE;
11579 if (htab->is_vxworks
11580 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11581 swap_out_p = TRUE;
11582 break;
11583 }
11584
11585 if (swap_out_p || dyn_skipped)
11586 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11587 (dynobj, &dyn, b - dyn_skipped);
11588
11589 if (dyn_to_skip)
11590 {
11591 dyn_skipped += dyn_to_skip;
11592 dyn_to_skip = 0;
11593 }
11594 }
11595
11596 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11597 if (dyn_skipped > 0)
11598 memset (b - dyn_skipped, 0, dyn_skipped);
11599 }
11600
11601 if (sgot != NULL && sgot->size > 0
11602 && !bfd_is_abs_section (sgot->output_section))
11603 {
11604 if (htab->is_vxworks)
11605 {
11606 /* The first entry of the global offset table points to the
11607 ".dynamic" section. The second is initialized by the
11608 loader and contains the shared library identifier.
11609 The third is also initialized by the loader and points
11610 to the lazy resolution stub. */
11611 MIPS_ELF_PUT_WORD (output_bfd,
11612 sdyn->output_offset + sdyn->output_section->vma,
11613 sgot->contents);
11614 MIPS_ELF_PUT_WORD (output_bfd, 0,
11615 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11616 MIPS_ELF_PUT_WORD (output_bfd, 0,
11617 sgot->contents
11618 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11619 }
11620 else
11621 {
11622 /* The first entry of the global offset table will be filled at
11623 runtime. The second entry will be used by some runtime loaders.
11624 This isn't the case of IRIX rld. */
11625 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11626 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11627 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11628 }
11629
11630 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11631 = MIPS_ELF_GOT_SIZE (output_bfd);
11632 }
11633
11634 /* Generate dynamic relocations for the non-primary gots. */
11635 if (gg != NULL && gg->next)
11636 {
11637 Elf_Internal_Rela rel[3];
11638 bfd_vma addend = 0;
11639
11640 memset (rel, 0, sizeof (rel));
11641 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11642
11643 for (g = gg->next; g->next != gg; g = g->next)
11644 {
11645 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11646 + g->next->tls_gotno;
11647
11648 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11649 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11650 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11651 sgot->contents
11652 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11653
11654 if (! bfd_link_pic (info))
11655 continue;
11656
11657 for (; got_index < g->local_gotno; got_index++)
11658 {
11659 if (got_index >= g->assigned_low_gotno
11660 && got_index <= g->assigned_high_gotno)
11661 continue;
11662
11663 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11664 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11665 if (!(mips_elf_create_dynamic_relocation
11666 (output_bfd, info, rel, NULL,
11667 bfd_abs_section_ptr,
11668 0, &addend, sgot)))
11669 return FALSE;
11670 BFD_ASSERT (addend == 0);
11671 }
11672 }
11673 }
11674
11675 /* The generation of dynamic relocations for the non-primary gots
11676 adds more dynamic relocations. We cannot count them until
11677 here. */
11678
11679 if (elf_hash_table (info)->dynamic_sections_created)
11680 {
11681 bfd_byte *b;
11682 bfd_boolean swap_out_p;
11683
11684 BFD_ASSERT (sdyn != NULL);
11685
11686 for (b = sdyn->contents;
11687 b < sdyn->contents + sdyn->size;
11688 b += MIPS_ELF_DYN_SIZE (dynobj))
11689 {
11690 Elf_Internal_Dyn dyn;
11691 asection *s;
11692
11693 /* Read in the current dynamic entry. */
11694 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11695
11696 /* Assume that we're going to modify it and write it out. */
11697 swap_out_p = TRUE;
11698
11699 switch (dyn.d_tag)
11700 {
11701 case DT_RELSZ:
11702 /* Reduce DT_RELSZ to account for any relocations we
11703 decided not to make. This is for the n64 irix rld,
11704 which doesn't seem to apply any relocations if there
11705 are trailing null entries. */
11706 s = mips_elf_rel_dyn_section (info, FALSE);
11707 dyn.d_un.d_val = (s->reloc_count
11708 * (ABI_64_P (output_bfd)
11709 ? sizeof (Elf64_Mips_External_Rel)
11710 : sizeof (Elf32_External_Rel)));
11711 /* Adjust the section size too. Tools like the prelinker
11712 can reasonably expect the values to the same. */
11713 elf_section_data (s->output_section)->this_hdr.sh_size
11714 = dyn.d_un.d_val;
11715 break;
11716
11717 default:
11718 swap_out_p = FALSE;
11719 break;
11720 }
11721
11722 if (swap_out_p)
11723 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11724 (dynobj, &dyn, b);
11725 }
11726 }
11727
11728 {
11729 asection *s;
11730 Elf32_compact_rel cpt;
11731
11732 if (SGI_COMPAT (output_bfd))
11733 {
11734 /* Write .compact_rel section out. */
11735 s = bfd_get_linker_section (dynobj, ".compact_rel");
11736 if (s != NULL)
11737 {
11738 cpt.id1 = 1;
11739 cpt.num = s->reloc_count;
11740 cpt.id2 = 2;
11741 cpt.offset = (s->output_section->filepos
11742 + sizeof (Elf32_External_compact_rel));
11743 cpt.reserved0 = 0;
11744 cpt.reserved1 = 0;
11745 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11746 ((Elf32_External_compact_rel *)
11747 s->contents));
11748
11749 /* Clean up a dummy stub function entry in .text. */
11750 if (htab->sstubs != NULL)
11751 {
11752 file_ptr dummy_offset;
11753
11754 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11755 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11756 memset (htab->sstubs->contents + dummy_offset, 0,
11757 htab->function_stub_size);
11758 }
11759 }
11760 }
11761
11762 /* The psABI says that the dynamic relocations must be sorted in
11763 increasing order of r_symndx. The VxWorks EABI doesn't require
11764 this, and because the code below handles REL rather than RELA
11765 relocations, using it for VxWorks would be outright harmful. */
11766 if (!htab->is_vxworks)
11767 {
11768 s = mips_elf_rel_dyn_section (info, FALSE);
11769 if (s != NULL
11770 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11771 {
11772 reldyn_sorting_bfd = output_bfd;
11773
11774 if (ABI_64_P (output_bfd))
11775 qsort ((Elf64_External_Rel *) s->contents + 1,
11776 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11777 sort_dynamic_relocs_64);
11778 else
11779 qsort ((Elf32_External_Rel *) s->contents + 1,
11780 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11781 sort_dynamic_relocs);
11782 }
11783 }
11784 }
11785
11786 if (htab->splt && htab->splt->size > 0)
11787 {
11788 if (htab->is_vxworks)
11789 {
11790 if (bfd_link_pic (info))
11791 mips_vxworks_finish_shared_plt (output_bfd, info);
11792 else
11793 mips_vxworks_finish_exec_plt (output_bfd, info);
11794 }
11795 else
11796 {
11797 BFD_ASSERT (!bfd_link_pic (info));
11798 if (!mips_finish_exec_plt (output_bfd, info))
11799 return FALSE;
11800 }
11801 }
11802 return TRUE;
11803 }
11804
11805
11806 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11807
11808 static void
11809 mips_set_isa_flags (bfd *abfd)
11810 {
11811 flagword val;
11812
11813 switch (bfd_get_mach (abfd))
11814 {
11815 default:
11816 case bfd_mach_mips3000:
11817 val = E_MIPS_ARCH_1;
11818 break;
11819
11820 case bfd_mach_mips3900:
11821 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11822 break;
11823
11824 case bfd_mach_mips6000:
11825 val = E_MIPS_ARCH_2;
11826 break;
11827
11828 case bfd_mach_mips4000:
11829 case bfd_mach_mips4300:
11830 case bfd_mach_mips4400:
11831 case bfd_mach_mips4600:
11832 val = E_MIPS_ARCH_3;
11833 break;
11834
11835 case bfd_mach_mips4010:
11836 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11837 break;
11838
11839 case bfd_mach_mips4100:
11840 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11841 break;
11842
11843 case bfd_mach_mips4111:
11844 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11845 break;
11846
11847 case bfd_mach_mips4120:
11848 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11849 break;
11850
11851 case bfd_mach_mips4650:
11852 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11853 break;
11854
11855 case bfd_mach_mips5400:
11856 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11857 break;
11858
11859 case bfd_mach_mips5500:
11860 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11861 break;
11862
11863 case bfd_mach_mips5900:
11864 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11865 break;
11866
11867 case bfd_mach_mips9000:
11868 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11869 break;
11870
11871 case bfd_mach_mips5000:
11872 case bfd_mach_mips7000:
11873 case bfd_mach_mips8000:
11874 case bfd_mach_mips10000:
11875 case bfd_mach_mips12000:
11876 case bfd_mach_mips14000:
11877 case bfd_mach_mips16000:
11878 val = E_MIPS_ARCH_4;
11879 break;
11880
11881 case bfd_mach_mips5:
11882 val = E_MIPS_ARCH_5;
11883 break;
11884
11885 case bfd_mach_mips_loongson_2e:
11886 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11887 break;
11888
11889 case bfd_mach_mips_loongson_2f:
11890 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11891 break;
11892
11893 case bfd_mach_mips_sb1:
11894 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11895 break;
11896
11897 case bfd_mach_mips_loongson_3a:
11898 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11899 break;
11900
11901 case bfd_mach_mips_octeon:
11902 case bfd_mach_mips_octeonp:
11903 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11904 break;
11905
11906 case bfd_mach_mips_octeon3:
11907 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11908 break;
11909
11910 case bfd_mach_mips_xlr:
11911 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11912 break;
11913
11914 case bfd_mach_mips_octeon2:
11915 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11916 break;
11917
11918 case bfd_mach_mipsisa32:
11919 val = E_MIPS_ARCH_32;
11920 break;
11921
11922 case bfd_mach_mipsisa64:
11923 val = E_MIPS_ARCH_64;
11924 break;
11925
11926 case bfd_mach_mipsisa32r2:
11927 case bfd_mach_mipsisa32r3:
11928 case bfd_mach_mipsisa32r5:
11929 val = E_MIPS_ARCH_32R2;
11930 break;
11931
11932 case bfd_mach_mipsisa64r2:
11933 case bfd_mach_mipsisa64r3:
11934 case bfd_mach_mipsisa64r5:
11935 val = E_MIPS_ARCH_64R2;
11936 break;
11937
11938 case bfd_mach_mipsisa32r6:
11939 val = E_MIPS_ARCH_32R6;
11940 break;
11941
11942 case bfd_mach_mipsisa64r6:
11943 val = E_MIPS_ARCH_64R6;
11944 break;
11945 }
11946 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11947 elf_elfheader (abfd)->e_flags |= val;
11948
11949 }
11950
11951
11952 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11953 Don't do so for code sections. We want to keep ordering of HI16/LO16
11954 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11955 relocs to be sorted. */
11956
11957 bfd_boolean
11958 _bfd_mips_elf_sort_relocs_p (asection *sec)
11959 {
11960 return (sec->flags & SEC_CODE) == 0;
11961 }
11962
11963
11964 /* The final processing done just before writing out a MIPS ELF object
11965 file. This gets the MIPS architecture right based on the machine
11966 number. This is used by both the 32-bit and the 64-bit ABI. */
11967
11968 void
11969 _bfd_mips_elf_final_write_processing (bfd *abfd,
11970 bfd_boolean linker ATTRIBUTE_UNUSED)
11971 {
11972 unsigned int i;
11973 Elf_Internal_Shdr **hdrpp;
11974 const char *name;
11975 asection *sec;
11976
11977 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11978 is nonzero. This is for compatibility with old objects, which used
11979 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11980 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11981 mips_set_isa_flags (abfd);
11982
11983 /* Set the sh_info field for .gptab sections and other appropriate
11984 info for each special section. */
11985 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11986 i < elf_numsections (abfd);
11987 i++, hdrpp++)
11988 {
11989 switch ((*hdrpp)->sh_type)
11990 {
11991 case SHT_MIPS_MSYM:
11992 case SHT_MIPS_LIBLIST:
11993 sec = bfd_get_section_by_name (abfd, ".dynstr");
11994 if (sec != NULL)
11995 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11996 break;
11997
11998 case SHT_MIPS_GPTAB:
11999 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12000 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12001 BFD_ASSERT (name != NULL
12002 && CONST_STRNEQ (name, ".gptab."));
12003 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12004 BFD_ASSERT (sec != NULL);
12005 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12006 break;
12007
12008 case SHT_MIPS_CONTENT:
12009 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12010 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12011 BFD_ASSERT (name != NULL
12012 && CONST_STRNEQ (name, ".MIPS.content"));
12013 sec = bfd_get_section_by_name (abfd,
12014 name + sizeof ".MIPS.content" - 1);
12015 BFD_ASSERT (sec != NULL);
12016 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12017 break;
12018
12019 case SHT_MIPS_SYMBOL_LIB:
12020 sec = bfd_get_section_by_name (abfd, ".dynsym");
12021 if (sec != NULL)
12022 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12023 sec = bfd_get_section_by_name (abfd, ".liblist");
12024 if (sec != NULL)
12025 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12026 break;
12027
12028 case SHT_MIPS_EVENTS:
12029 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12030 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12031 BFD_ASSERT (name != NULL);
12032 if (CONST_STRNEQ (name, ".MIPS.events"))
12033 sec = bfd_get_section_by_name (abfd,
12034 name + sizeof ".MIPS.events" - 1);
12035 else
12036 {
12037 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12038 sec = bfd_get_section_by_name (abfd,
12039 (name
12040 + sizeof ".MIPS.post_rel" - 1));
12041 }
12042 BFD_ASSERT (sec != NULL);
12043 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12044 break;
12045
12046 }
12047 }
12048 }
12049 \f
12050 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12051 segments. */
12052
12053 int
12054 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12055 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12056 {
12057 asection *s;
12058 int ret = 0;
12059
12060 /* See if we need a PT_MIPS_REGINFO segment. */
12061 s = bfd_get_section_by_name (abfd, ".reginfo");
12062 if (s && (s->flags & SEC_LOAD))
12063 ++ret;
12064
12065 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12066 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12067 ++ret;
12068
12069 /* See if we need a PT_MIPS_OPTIONS segment. */
12070 if (IRIX_COMPAT (abfd) == ict_irix6
12071 && bfd_get_section_by_name (abfd,
12072 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12073 ++ret;
12074
12075 /* See if we need a PT_MIPS_RTPROC segment. */
12076 if (IRIX_COMPAT (abfd) == ict_irix5
12077 && bfd_get_section_by_name (abfd, ".dynamic")
12078 && bfd_get_section_by_name (abfd, ".mdebug"))
12079 ++ret;
12080
12081 /* Allocate a PT_NULL header in dynamic objects. See
12082 _bfd_mips_elf_modify_segment_map for details. */
12083 if (!SGI_COMPAT (abfd)
12084 && bfd_get_section_by_name (abfd, ".dynamic"))
12085 ++ret;
12086
12087 return ret;
12088 }
12089
12090 /* Modify the segment map for an IRIX5 executable. */
12091
12092 bfd_boolean
12093 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12094 struct bfd_link_info *info)
12095 {
12096 asection *s;
12097 struct elf_segment_map *m, **pm;
12098 bfd_size_type amt;
12099
12100 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12101 segment. */
12102 s = bfd_get_section_by_name (abfd, ".reginfo");
12103 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12104 {
12105 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12106 if (m->p_type == PT_MIPS_REGINFO)
12107 break;
12108 if (m == NULL)
12109 {
12110 amt = sizeof *m;
12111 m = bfd_zalloc (abfd, amt);
12112 if (m == NULL)
12113 return FALSE;
12114
12115 m->p_type = PT_MIPS_REGINFO;
12116 m->count = 1;
12117 m->sections[0] = s;
12118
12119 /* We want to put it after the PHDR and INTERP segments. */
12120 pm = &elf_seg_map (abfd);
12121 while (*pm != NULL
12122 && ((*pm)->p_type == PT_PHDR
12123 || (*pm)->p_type == PT_INTERP))
12124 pm = &(*pm)->next;
12125
12126 m->next = *pm;
12127 *pm = m;
12128 }
12129 }
12130
12131 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12132 segment. */
12133 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12134 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12135 {
12136 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12137 if (m->p_type == PT_MIPS_ABIFLAGS)
12138 break;
12139 if (m == NULL)
12140 {
12141 amt = sizeof *m;
12142 m = bfd_zalloc (abfd, amt);
12143 if (m == NULL)
12144 return FALSE;
12145
12146 m->p_type = PT_MIPS_ABIFLAGS;
12147 m->count = 1;
12148 m->sections[0] = s;
12149
12150 /* We want to put it after the PHDR and INTERP segments. */
12151 pm = &elf_seg_map (abfd);
12152 while (*pm != NULL
12153 && ((*pm)->p_type == PT_PHDR
12154 || (*pm)->p_type == PT_INTERP))
12155 pm = &(*pm)->next;
12156
12157 m->next = *pm;
12158 *pm = m;
12159 }
12160 }
12161
12162 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12163 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12164 PT_MIPS_OPTIONS segment immediately following the program header
12165 table. */
12166 if (NEWABI_P (abfd)
12167 /* On non-IRIX6 new abi, we'll have already created a segment
12168 for this section, so don't create another. I'm not sure this
12169 is not also the case for IRIX 6, but I can't test it right
12170 now. */
12171 && IRIX_COMPAT (abfd) == ict_irix6)
12172 {
12173 for (s = abfd->sections; s; s = s->next)
12174 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12175 break;
12176
12177 if (s)
12178 {
12179 struct elf_segment_map *options_segment;
12180
12181 pm = &elf_seg_map (abfd);
12182 while (*pm != NULL
12183 && ((*pm)->p_type == PT_PHDR
12184 || (*pm)->p_type == PT_INTERP))
12185 pm = &(*pm)->next;
12186
12187 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12188 {
12189 amt = sizeof (struct elf_segment_map);
12190 options_segment = bfd_zalloc (abfd, amt);
12191 options_segment->next = *pm;
12192 options_segment->p_type = PT_MIPS_OPTIONS;
12193 options_segment->p_flags = PF_R;
12194 options_segment->p_flags_valid = TRUE;
12195 options_segment->count = 1;
12196 options_segment->sections[0] = s;
12197 *pm = options_segment;
12198 }
12199 }
12200 }
12201 else
12202 {
12203 if (IRIX_COMPAT (abfd) == ict_irix5)
12204 {
12205 /* If there are .dynamic and .mdebug sections, we make a room
12206 for the RTPROC header. FIXME: Rewrite without section names. */
12207 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12208 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12209 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12210 {
12211 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12212 if (m->p_type == PT_MIPS_RTPROC)
12213 break;
12214 if (m == NULL)
12215 {
12216 amt = sizeof *m;
12217 m = bfd_zalloc (abfd, amt);
12218 if (m == NULL)
12219 return FALSE;
12220
12221 m->p_type = PT_MIPS_RTPROC;
12222
12223 s = bfd_get_section_by_name (abfd, ".rtproc");
12224 if (s == NULL)
12225 {
12226 m->count = 0;
12227 m->p_flags = 0;
12228 m->p_flags_valid = 1;
12229 }
12230 else
12231 {
12232 m->count = 1;
12233 m->sections[0] = s;
12234 }
12235
12236 /* We want to put it after the DYNAMIC segment. */
12237 pm = &elf_seg_map (abfd);
12238 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12239 pm = &(*pm)->next;
12240 if (*pm != NULL)
12241 pm = &(*pm)->next;
12242
12243 m->next = *pm;
12244 *pm = m;
12245 }
12246 }
12247 }
12248 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12249 .dynstr, .dynsym, and .hash sections, and everything in
12250 between. */
12251 for (pm = &elf_seg_map (abfd); *pm != NULL;
12252 pm = &(*pm)->next)
12253 if ((*pm)->p_type == PT_DYNAMIC)
12254 break;
12255 m = *pm;
12256 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12257 glibc's dynamic linker has traditionally derived the number of
12258 tags from the p_filesz field, and sometimes allocates stack
12259 arrays of that size. An overly-big PT_DYNAMIC segment can
12260 be actively harmful in such cases. Making PT_DYNAMIC contain
12261 other sections can also make life hard for the prelinker,
12262 which might move one of the other sections to a different
12263 PT_LOAD segment. */
12264 if (SGI_COMPAT (abfd)
12265 && m != NULL
12266 && m->count == 1
12267 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12268 {
12269 static const char *sec_names[] =
12270 {
12271 ".dynamic", ".dynstr", ".dynsym", ".hash"
12272 };
12273 bfd_vma low, high;
12274 unsigned int i, c;
12275 struct elf_segment_map *n;
12276
12277 low = ~(bfd_vma) 0;
12278 high = 0;
12279 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12280 {
12281 s = bfd_get_section_by_name (abfd, sec_names[i]);
12282 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12283 {
12284 bfd_size_type sz;
12285
12286 if (low > s->vma)
12287 low = s->vma;
12288 sz = s->size;
12289 if (high < s->vma + sz)
12290 high = s->vma + sz;
12291 }
12292 }
12293
12294 c = 0;
12295 for (s = abfd->sections; s != NULL; s = s->next)
12296 if ((s->flags & SEC_LOAD) != 0
12297 && s->vma >= low
12298 && s->vma + s->size <= high)
12299 ++c;
12300
12301 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12302 n = bfd_zalloc (abfd, amt);
12303 if (n == NULL)
12304 return FALSE;
12305 *n = *m;
12306 n->count = c;
12307
12308 i = 0;
12309 for (s = abfd->sections; s != NULL; s = s->next)
12310 {
12311 if ((s->flags & SEC_LOAD) != 0
12312 && s->vma >= low
12313 && s->vma + s->size <= high)
12314 {
12315 n->sections[i] = s;
12316 ++i;
12317 }
12318 }
12319
12320 *pm = n;
12321 }
12322 }
12323
12324 /* Allocate a spare program header in dynamic objects so that tools
12325 like the prelinker can add an extra PT_LOAD entry.
12326
12327 If the prelinker needs to make room for a new PT_LOAD entry, its
12328 standard procedure is to move the first (read-only) sections into
12329 the new (writable) segment. However, the MIPS ABI requires
12330 .dynamic to be in a read-only segment, and the section will often
12331 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12332
12333 Although the prelinker could in principle move .dynamic to a
12334 writable segment, it seems better to allocate a spare program
12335 header instead, and avoid the need to move any sections.
12336 There is a long tradition of allocating spare dynamic tags,
12337 so allocating a spare program header seems like a natural
12338 extension.
12339
12340 If INFO is NULL, we may be copying an already prelinked binary
12341 with objcopy or strip, so do not add this header. */
12342 if (info != NULL
12343 && !SGI_COMPAT (abfd)
12344 && bfd_get_section_by_name (abfd, ".dynamic"))
12345 {
12346 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12347 if ((*pm)->p_type == PT_NULL)
12348 break;
12349 if (*pm == NULL)
12350 {
12351 m = bfd_zalloc (abfd, sizeof (*m));
12352 if (m == NULL)
12353 return FALSE;
12354
12355 m->p_type = PT_NULL;
12356 *pm = m;
12357 }
12358 }
12359
12360 return TRUE;
12361 }
12362 \f
12363 /* Return the section that should be marked against GC for a given
12364 relocation. */
12365
12366 asection *
12367 _bfd_mips_elf_gc_mark_hook (asection *sec,
12368 struct bfd_link_info *info,
12369 Elf_Internal_Rela *rel,
12370 struct elf_link_hash_entry *h,
12371 Elf_Internal_Sym *sym)
12372 {
12373 /* ??? Do mips16 stub sections need to be handled special? */
12374
12375 if (h != NULL)
12376 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12377 {
12378 case R_MIPS_GNU_VTINHERIT:
12379 case R_MIPS_GNU_VTENTRY:
12380 return NULL;
12381 }
12382
12383 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12384 }
12385
12386 /* Update the got entry reference counts for the section being removed. */
12387
12388 bfd_boolean
12389 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12390 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12391 asection *sec ATTRIBUTE_UNUSED,
12392 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12393 {
12394 #if 0
12395 Elf_Internal_Shdr *symtab_hdr;
12396 struct elf_link_hash_entry **sym_hashes;
12397 bfd_signed_vma *local_got_refcounts;
12398 const Elf_Internal_Rela *rel, *relend;
12399 unsigned long r_symndx;
12400 struct elf_link_hash_entry *h;
12401
12402 if (bfd_link_relocatable (info))
12403 return TRUE;
12404
12405 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12406 sym_hashes = elf_sym_hashes (abfd);
12407 local_got_refcounts = elf_local_got_refcounts (abfd);
12408
12409 relend = relocs + sec->reloc_count;
12410 for (rel = relocs; rel < relend; rel++)
12411 switch (ELF_R_TYPE (abfd, rel->r_info))
12412 {
12413 case R_MIPS16_GOT16:
12414 case R_MIPS16_CALL16:
12415 case R_MIPS_GOT16:
12416 case R_MIPS_CALL16:
12417 case R_MIPS_CALL_HI16:
12418 case R_MIPS_CALL_LO16:
12419 case R_MIPS_GOT_HI16:
12420 case R_MIPS_GOT_LO16:
12421 case R_MIPS_GOT_DISP:
12422 case R_MIPS_GOT_PAGE:
12423 case R_MIPS_GOT_OFST:
12424 case R_MICROMIPS_GOT16:
12425 case R_MICROMIPS_CALL16:
12426 case R_MICROMIPS_CALL_HI16:
12427 case R_MICROMIPS_CALL_LO16:
12428 case R_MICROMIPS_GOT_HI16:
12429 case R_MICROMIPS_GOT_LO16:
12430 case R_MICROMIPS_GOT_DISP:
12431 case R_MICROMIPS_GOT_PAGE:
12432 case R_MICROMIPS_GOT_OFST:
12433 /* ??? It would seem that the existing MIPS code does no sort
12434 of reference counting or whatnot on its GOT and PLT entries,
12435 so it is not possible to garbage collect them at this time. */
12436 break;
12437
12438 default:
12439 break;
12440 }
12441 #endif
12442
12443 return TRUE;
12444 }
12445
12446 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12447
12448 bfd_boolean
12449 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12450 elf_gc_mark_hook_fn gc_mark_hook)
12451 {
12452 bfd *sub;
12453
12454 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12455
12456 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12457 {
12458 asection *o;
12459
12460 if (! is_mips_elf (sub))
12461 continue;
12462
12463 for (o = sub->sections; o != NULL; o = o->next)
12464 if (!o->gc_mark
12465 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12466 (bfd_get_section_name (sub, o)))
12467 {
12468 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12469 return FALSE;
12470 }
12471 }
12472
12473 return TRUE;
12474 }
12475 \f
12476 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12477 hiding the old indirect symbol. Process additional relocation
12478 information. Also called for weakdefs, in which case we just let
12479 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12480
12481 void
12482 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12483 struct elf_link_hash_entry *dir,
12484 struct elf_link_hash_entry *ind)
12485 {
12486 struct mips_elf_link_hash_entry *dirmips, *indmips;
12487
12488 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12489
12490 dirmips = (struct mips_elf_link_hash_entry *) dir;
12491 indmips = (struct mips_elf_link_hash_entry *) ind;
12492 /* Any absolute non-dynamic relocations against an indirect or weak
12493 definition will be against the target symbol. */
12494 if (indmips->has_static_relocs)
12495 dirmips->has_static_relocs = TRUE;
12496
12497 if (ind->root.type != bfd_link_hash_indirect)
12498 return;
12499
12500 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12501 if (indmips->readonly_reloc)
12502 dirmips->readonly_reloc = TRUE;
12503 if (indmips->no_fn_stub)
12504 dirmips->no_fn_stub = TRUE;
12505 if (indmips->fn_stub)
12506 {
12507 dirmips->fn_stub = indmips->fn_stub;
12508 indmips->fn_stub = NULL;
12509 }
12510 if (indmips->need_fn_stub)
12511 {
12512 dirmips->need_fn_stub = TRUE;
12513 indmips->need_fn_stub = FALSE;
12514 }
12515 if (indmips->call_stub)
12516 {
12517 dirmips->call_stub = indmips->call_stub;
12518 indmips->call_stub = NULL;
12519 }
12520 if (indmips->call_fp_stub)
12521 {
12522 dirmips->call_fp_stub = indmips->call_fp_stub;
12523 indmips->call_fp_stub = NULL;
12524 }
12525 if (indmips->global_got_area < dirmips->global_got_area)
12526 dirmips->global_got_area = indmips->global_got_area;
12527 if (indmips->global_got_area < GGA_NONE)
12528 indmips->global_got_area = GGA_NONE;
12529 if (indmips->has_nonpic_branches)
12530 dirmips->has_nonpic_branches = TRUE;
12531 }
12532 \f
12533 #define PDR_SIZE 32
12534
12535 bfd_boolean
12536 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12537 struct bfd_link_info *info)
12538 {
12539 asection *o;
12540 bfd_boolean ret = FALSE;
12541 unsigned char *tdata;
12542 size_t i, skip;
12543
12544 o = bfd_get_section_by_name (abfd, ".pdr");
12545 if (! o)
12546 return FALSE;
12547 if (o->size == 0)
12548 return FALSE;
12549 if (o->size % PDR_SIZE != 0)
12550 return FALSE;
12551 if (o->output_section != NULL
12552 && bfd_is_abs_section (o->output_section))
12553 return FALSE;
12554
12555 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12556 if (! tdata)
12557 return FALSE;
12558
12559 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12560 info->keep_memory);
12561 if (!cookie->rels)
12562 {
12563 free (tdata);
12564 return FALSE;
12565 }
12566
12567 cookie->rel = cookie->rels;
12568 cookie->relend = cookie->rels + o->reloc_count;
12569
12570 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12571 {
12572 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12573 {
12574 tdata[i] = 1;
12575 skip ++;
12576 }
12577 }
12578
12579 if (skip != 0)
12580 {
12581 mips_elf_section_data (o)->u.tdata = tdata;
12582 if (o->rawsize == 0)
12583 o->rawsize = o->size;
12584 o->size -= skip * PDR_SIZE;
12585 ret = TRUE;
12586 }
12587 else
12588 free (tdata);
12589
12590 if (! info->keep_memory)
12591 free (cookie->rels);
12592
12593 return ret;
12594 }
12595
12596 bfd_boolean
12597 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12598 {
12599 if (strcmp (sec->name, ".pdr") == 0)
12600 return TRUE;
12601 return FALSE;
12602 }
12603
12604 bfd_boolean
12605 _bfd_mips_elf_write_section (bfd *output_bfd,
12606 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12607 asection *sec, bfd_byte *contents)
12608 {
12609 bfd_byte *to, *from, *end;
12610 int i;
12611
12612 if (strcmp (sec->name, ".pdr") != 0)
12613 return FALSE;
12614
12615 if (mips_elf_section_data (sec)->u.tdata == NULL)
12616 return FALSE;
12617
12618 to = contents;
12619 end = contents + sec->size;
12620 for (from = contents, i = 0;
12621 from < end;
12622 from += PDR_SIZE, i++)
12623 {
12624 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12625 continue;
12626 if (to != from)
12627 memcpy (to, from, PDR_SIZE);
12628 to += PDR_SIZE;
12629 }
12630 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12631 sec->output_offset, sec->size);
12632 return TRUE;
12633 }
12634 \f
12635 /* microMIPS code retains local labels for linker relaxation. Omit them
12636 from output by default for clarity. */
12637
12638 bfd_boolean
12639 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12640 {
12641 return _bfd_elf_is_local_label_name (abfd, sym->name);
12642 }
12643
12644 /* MIPS ELF uses a special find_nearest_line routine in order the
12645 handle the ECOFF debugging information. */
12646
12647 struct mips_elf_find_line
12648 {
12649 struct ecoff_debug_info d;
12650 struct ecoff_find_line i;
12651 };
12652
12653 bfd_boolean
12654 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12655 asection *section, bfd_vma offset,
12656 const char **filename_ptr,
12657 const char **functionname_ptr,
12658 unsigned int *line_ptr,
12659 unsigned int *discriminator_ptr)
12660 {
12661 asection *msec;
12662
12663 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12664 filename_ptr, functionname_ptr,
12665 line_ptr, discriminator_ptr,
12666 dwarf_debug_sections,
12667 ABI_64_P (abfd) ? 8 : 0,
12668 &elf_tdata (abfd)->dwarf2_find_line_info))
12669 return TRUE;
12670
12671 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12672 filename_ptr, functionname_ptr,
12673 line_ptr))
12674 return TRUE;
12675
12676 msec = bfd_get_section_by_name (abfd, ".mdebug");
12677 if (msec != NULL)
12678 {
12679 flagword origflags;
12680 struct mips_elf_find_line *fi;
12681 const struct ecoff_debug_swap * const swap =
12682 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12683
12684 /* If we are called during a link, mips_elf_final_link may have
12685 cleared the SEC_HAS_CONTENTS field. We force it back on here
12686 if appropriate (which it normally will be). */
12687 origflags = msec->flags;
12688 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12689 msec->flags |= SEC_HAS_CONTENTS;
12690
12691 fi = mips_elf_tdata (abfd)->find_line_info;
12692 if (fi == NULL)
12693 {
12694 bfd_size_type external_fdr_size;
12695 char *fraw_src;
12696 char *fraw_end;
12697 struct fdr *fdr_ptr;
12698 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12699
12700 fi = bfd_zalloc (abfd, amt);
12701 if (fi == NULL)
12702 {
12703 msec->flags = origflags;
12704 return FALSE;
12705 }
12706
12707 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12708 {
12709 msec->flags = origflags;
12710 return FALSE;
12711 }
12712
12713 /* Swap in the FDR information. */
12714 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12715 fi->d.fdr = bfd_alloc (abfd, amt);
12716 if (fi->d.fdr == NULL)
12717 {
12718 msec->flags = origflags;
12719 return FALSE;
12720 }
12721 external_fdr_size = swap->external_fdr_size;
12722 fdr_ptr = fi->d.fdr;
12723 fraw_src = (char *) fi->d.external_fdr;
12724 fraw_end = (fraw_src
12725 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12726 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12727 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12728
12729 mips_elf_tdata (abfd)->find_line_info = fi;
12730
12731 /* Note that we don't bother to ever free this information.
12732 find_nearest_line is either called all the time, as in
12733 objdump -l, so the information should be saved, or it is
12734 rarely called, as in ld error messages, so the memory
12735 wasted is unimportant. Still, it would probably be a
12736 good idea for free_cached_info to throw it away. */
12737 }
12738
12739 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12740 &fi->i, filename_ptr, functionname_ptr,
12741 line_ptr))
12742 {
12743 msec->flags = origflags;
12744 return TRUE;
12745 }
12746
12747 msec->flags = origflags;
12748 }
12749
12750 /* Fall back on the generic ELF find_nearest_line routine. */
12751
12752 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12753 filename_ptr, functionname_ptr,
12754 line_ptr, discriminator_ptr);
12755 }
12756
12757 bfd_boolean
12758 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12759 const char **filename_ptr,
12760 const char **functionname_ptr,
12761 unsigned int *line_ptr)
12762 {
12763 bfd_boolean found;
12764 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12765 functionname_ptr, line_ptr,
12766 & elf_tdata (abfd)->dwarf2_find_line_info);
12767 return found;
12768 }
12769
12770 \f
12771 /* When are writing out the .options or .MIPS.options section,
12772 remember the bytes we are writing out, so that we can install the
12773 GP value in the section_processing routine. */
12774
12775 bfd_boolean
12776 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12777 const void *location,
12778 file_ptr offset, bfd_size_type count)
12779 {
12780 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12781 {
12782 bfd_byte *c;
12783
12784 if (elf_section_data (section) == NULL)
12785 {
12786 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12787 section->used_by_bfd = bfd_zalloc (abfd, amt);
12788 if (elf_section_data (section) == NULL)
12789 return FALSE;
12790 }
12791 c = mips_elf_section_data (section)->u.tdata;
12792 if (c == NULL)
12793 {
12794 c = bfd_zalloc (abfd, section->size);
12795 if (c == NULL)
12796 return FALSE;
12797 mips_elf_section_data (section)->u.tdata = c;
12798 }
12799
12800 memcpy (c + offset, location, count);
12801 }
12802
12803 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12804 count);
12805 }
12806
12807 /* This is almost identical to bfd_generic_get_... except that some
12808 MIPS relocations need to be handled specially. Sigh. */
12809
12810 bfd_byte *
12811 _bfd_elf_mips_get_relocated_section_contents
12812 (bfd *abfd,
12813 struct bfd_link_info *link_info,
12814 struct bfd_link_order *link_order,
12815 bfd_byte *data,
12816 bfd_boolean relocatable,
12817 asymbol **symbols)
12818 {
12819 /* Get enough memory to hold the stuff */
12820 bfd *input_bfd = link_order->u.indirect.section->owner;
12821 asection *input_section = link_order->u.indirect.section;
12822 bfd_size_type sz;
12823
12824 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12825 arelent **reloc_vector = NULL;
12826 long reloc_count;
12827
12828 if (reloc_size < 0)
12829 goto error_return;
12830
12831 reloc_vector = bfd_malloc (reloc_size);
12832 if (reloc_vector == NULL && reloc_size != 0)
12833 goto error_return;
12834
12835 /* read in the section */
12836 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12837 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12838 goto error_return;
12839
12840 reloc_count = bfd_canonicalize_reloc (input_bfd,
12841 input_section,
12842 reloc_vector,
12843 symbols);
12844 if (reloc_count < 0)
12845 goto error_return;
12846
12847 if (reloc_count > 0)
12848 {
12849 arelent **parent;
12850 /* for mips */
12851 int gp_found;
12852 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12853
12854 {
12855 struct bfd_hash_entry *h;
12856 struct bfd_link_hash_entry *lh;
12857 /* Skip all this stuff if we aren't mixing formats. */
12858 if (abfd && input_bfd
12859 && abfd->xvec == input_bfd->xvec)
12860 lh = 0;
12861 else
12862 {
12863 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12864 lh = (struct bfd_link_hash_entry *) h;
12865 }
12866 lookup:
12867 if (lh)
12868 {
12869 switch (lh->type)
12870 {
12871 case bfd_link_hash_undefined:
12872 case bfd_link_hash_undefweak:
12873 case bfd_link_hash_common:
12874 gp_found = 0;
12875 break;
12876 case bfd_link_hash_defined:
12877 case bfd_link_hash_defweak:
12878 gp_found = 1;
12879 gp = lh->u.def.value;
12880 break;
12881 case bfd_link_hash_indirect:
12882 case bfd_link_hash_warning:
12883 lh = lh->u.i.link;
12884 /* @@FIXME ignoring warning for now */
12885 goto lookup;
12886 case bfd_link_hash_new:
12887 default:
12888 abort ();
12889 }
12890 }
12891 else
12892 gp_found = 0;
12893 }
12894 /* end mips */
12895 for (parent = reloc_vector; *parent != NULL; parent++)
12896 {
12897 char *error_message = NULL;
12898 bfd_reloc_status_type r;
12899
12900 /* Specific to MIPS: Deal with relocation types that require
12901 knowing the gp of the output bfd. */
12902 asymbol *sym = *(*parent)->sym_ptr_ptr;
12903
12904 /* If we've managed to find the gp and have a special
12905 function for the relocation then go ahead, else default
12906 to the generic handling. */
12907 if (gp_found
12908 && (*parent)->howto->special_function
12909 == _bfd_mips_elf32_gprel16_reloc)
12910 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12911 input_section, relocatable,
12912 data, gp);
12913 else
12914 r = bfd_perform_relocation (input_bfd, *parent, data,
12915 input_section,
12916 relocatable ? abfd : NULL,
12917 &error_message);
12918
12919 if (relocatable)
12920 {
12921 asection *os = input_section->output_section;
12922
12923 /* A partial link, so keep the relocs */
12924 os->orelocation[os->reloc_count] = *parent;
12925 os->reloc_count++;
12926 }
12927
12928 if (r != bfd_reloc_ok)
12929 {
12930 switch (r)
12931 {
12932 case bfd_reloc_undefined:
12933 if (!((*link_info->callbacks->undefined_symbol)
12934 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12935 input_bfd, input_section, (*parent)->address, TRUE)))
12936 goto error_return;
12937 break;
12938 case bfd_reloc_dangerous:
12939 BFD_ASSERT (error_message != NULL);
12940 if (!((*link_info->callbacks->reloc_dangerous)
12941 (link_info, error_message, input_bfd, input_section,
12942 (*parent)->address)))
12943 goto error_return;
12944 break;
12945 case bfd_reloc_overflow:
12946 if (!((*link_info->callbacks->reloc_overflow)
12947 (link_info, NULL,
12948 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12949 (*parent)->howto->name, (*parent)->addend,
12950 input_bfd, input_section, (*parent)->address)))
12951 goto error_return;
12952 break;
12953 case bfd_reloc_outofrange:
12954 default:
12955 abort ();
12956 break;
12957 }
12958
12959 }
12960 }
12961 }
12962 if (reloc_vector != NULL)
12963 free (reloc_vector);
12964 return data;
12965
12966 error_return:
12967 if (reloc_vector != NULL)
12968 free (reloc_vector);
12969 return NULL;
12970 }
12971 \f
12972 static bfd_boolean
12973 mips_elf_relax_delete_bytes (bfd *abfd,
12974 asection *sec, bfd_vma addr, int count)
12975 {
12976 Elf_Internal_Shdr *symtab_hdr;
12977 unsigned int sec_shndx;
12978 bfd_byte *contents;
12979 Elf_Internal_Rela *irel, *irelend;
12980 Elf_Internal_Sym *isym;
12981 Elf_Internal_Sym *isymend;
12982 struct elf_link_hash_entry **sym_hashes;
12983 struct elf_link_hash_entry **end_hashes;
12984 struct elf_link_hash_entry **start_hashes;
12985 unsigned int symcount;
12986
12987 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12988 contents = elf_section_data (sec)->this_hdr.contents;
12989
12990 irel = elf_section_data (sec)->relocs;
12991 irelend = irel + sec->reloc_count;
12992
12993 /* Actually delete the bytes. */
12994 memmove (contents + addr, contents + addr + count,
12995 (size_t) (sec->size - addr - count));
12996 sec->size -= count;
12997
12998 /* Adjust all the relocs. */
12999 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13000 {
13001 /* Get the new reloc address. */
13002 if (irel->r_offset > addr)
13003 irel->r_offset -= count;
13004 }
13005
13006 BFD_ASSERT (addr % 2 == 0);
13007 BFD_ASSERT (count % 2 == 0);
13008
13009 /* Adjust the local symbols defined in this section. */
13010 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13011 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13012 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13013 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13014 isym->st_value -= count;
13015
13016 /* Now adjust the global symbols defined in this section. */
13017 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13018 - symtab_hdr->sh_info);
13019 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13020 end_hashes = sym_hashes + symcount;
13021
13022 for (; sym_hashes < end_hashes; sym_hashes++)
13023 {
13024 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13025
13026 if ((sym_hash->root.type == bfd_link_hash_defined
13027 || sym_hash->root.type == bfd_link_hash_defweak)
13028 && sym_hash->root.u.def.section == sec)
13029 {
13030 bfd_vma value = sym_hash->root.u.def.value;
13031
13032 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13033 value &= MINUS_TWO;
13034 if (value > addr)
13035 sym_hash->root.u.def.value -= count;
13036 }
13037 }
13038
13039 return TRUE;
13040 }
13041
13042
13043 /* Opcodes needed for microMIPS relaxation as found in
13044 opcodes/micromips-opc.c. */
13045
13046 struct opcode_descriptor {
13047 unsigned long match;
13048 unsigned long mask;
13049 };
13050
13051 /* The $ra register aka $31. */
13052
13053 #define RA 31
13054
13055 /* 32-bit instruction format register fields. */
13056
13057 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13058 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13059
13060 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13061
13062 #define OP16_VALID_REG(r) \
13063 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13064
13065
13066 /* 32-bit and 16-bit branches. */
13067
13068 static const struct opcode_descriptor b_insns_32[] = {
13069 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13070 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13071 { 0, 0 } /* End marker for find_match(). */
13072 };
13073
13074 static const struct opcode_descriptor bc_insn_32 =
13075 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13076
13077 static const struct opcode_descriptor bz_insn_32 =
13078 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13079
13080 static const struct opcode_descriptor bzal_insn_32 =
13081 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13082
13083 static const struct opcode_descriptor beq_insn_32 =
13084 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13085
13086 static const struct opcode_descriptor b_insn_16 =
13087 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13088
13089 static const struct opcode_descriptor bz_insn_16 =
13090 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13091
13092
13093 /* 32-bit and 16-bit branch EQ and NE zero. */
13094
13095 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13096 eq and second the ne. This convention is used when replacing a
13097 32-bit BEQ/BNE with the 16-bit version. */
13098
13099 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13100
13101 static const struct opcode_descriptor bz_rs_insns_32[] = {
13102 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13103 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13104 { 0, 0 } /* End marker for find_match(). */
13105 };
13106
13107 static const struct opcode_descriptor bz_rt_insns_32[] = {
13108 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13109 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13110 { 0, 0 } /* End marker for find_match(). */
13111 };
13112
13113 static const struct opcode_descriptor bzc_insns_32[] = {
13114 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13115 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13116 { 0, 0 } /* End marker for find_match(). */
13117 };
13118
13119 static const struct opcode_descriptor bz_insns_16[] = {
13120 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13121 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13122 { 0, 0 } /* End marker for find_match(). */
13123 };
13124
13125 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13126
13127 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13128 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13129
13130
13131 /* 32-bit instructions with a delay slot. */
13132
13133 static const struct opcode_descriptor jal_insn_32_bd16 =
13134 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13135
13136 static const struct opcode_descriptor jal_insn_32_bd32 =
13137 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13138
13139 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13140 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13141
13142 static const struct opcode_descriptor j_insn_32 =
13143 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13144
13145 static const struct opcode_descriptor jalr_insn_32 =
13146 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13147
13148 /* This table can be compacted, because no opcode replacement is made. */
13149
13150 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13151 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13152
13153 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13154 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13155
13156 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13157 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13158 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13159 { 0, 0 } /* End marker for find_match(). */
13160 };
13161
13162 /* This table can be compacted, because no opcode replacement is made. */
13163
13164 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13165 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13166
13167 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13168 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13169 { 0, 0 } /* End marker for find_match(). */
13170 };
13171
13172
13173 /* 16-bit instructions with a delay slot. */
13174
13175 static const struct opcode_descriptor jalr_insn_16_bd16 =
13176 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13177
13178 static const struct opcode_descriptor jalr_insn_16_bd32 =
13179 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13180
13181 static const struct opcode_descriptor jr_insn_16 =
13182 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13183
13184 #define JR16_REG(opcode) ((opcode) & 0x1f)
13185
13186 /* This table can be compacted, because no opcode replacement is made. */
13187
13188 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13189 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13190
13191 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13192 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13193 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13194 { 0, 0 } /* End marker for find_match(). */
13195 };
13196
13197
13198 /* LUI instruction. */
13199
13200 static const struct opcode_descriptor lui_insn =
13201 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13202
13203
13204 /* ADDIU instruction. */
13205
13206 static const struct opcode_descriptor addiu_insn =
13207 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13208
13209 static const struct opcode_descriptor addiupc_insn =
13210 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13211
13212 #define ADDIUPC_REG_FIELD(r) \
13213 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13214
13215
13216 /* Relaxable instructions in a JAL delay slot: MOVE. */
13217
13218 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13219 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13220 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13221 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13222
13223 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13224 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13225
13226 static const struct opcode_descriptor move_insns_32[] = {
13227 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13228 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13229 { 0, 0 } /* End marker for find_match(). */
13230 };
13231
13232 static const struct opcode_descriptor move_insn_16 =
13233 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13234
13235
13236 /* NOP instructions. */
13237
13238 static const struct opcode_descriptor nop_insn_32 =
13239 { /* "nop", "", */ 0x00000000, 0xffffffff };
13240
13241 static const struct opcode_descriptor nop_insn_16 =
13242 { /* "nop", "", */ 0x0c00, 0xffff };
13243
13244
13245 /* Instruction match support. */
13246
13247 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13248
13249 static int
13250 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13251 {
13252 unsigned long indx;
13253
13254 for (indx = 0; insn[indx].mask != 0; indx++)
13255 if (MATCH (opcode, insn[indx]))
13256 return indx;
13257
13258 return -1;
13259 }
13260
13261
13262 /* Branch and delay slot decoding support. */
13263
13264 /* If PTR points to what *might* be a 16-bit branch or jump, then
13265 return the minimum length of its delay slot, otherwise return 0.
13266 Non-zero results are not definitive as we might be checking against
13267 the second half of another instruction. */
13268
13269 static int
13270 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13271 {
13272 unsigned long opcode;
13273 int bdsize;
13274
13275 opcode = bfd_get_16 (abfd, ptr);
13276 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13277 /* 16-bit branch/jump with a 32-bit delay slot. */
13278 bdsize = 4;
13279 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13280 || find_match (opcode, ds_insns_16_bd16) >= 0)
13281 /* 16-bit branch/jump with a 16-bit delay slot. */
13282 bdsize = 2;
13283 else
13284 /* No delay slot. */
13285 bdsize = 0;
13286
13287 return bdsize;
13288 }
13289
13290 /* If PTR points to what *might* be a 32-bit branch or jump, then
13291 return the minimum length of its delay slot, otherwise return 0.
13292 Non-zero results are not definitive as we might be checking against
13293 the second half of another instruction. */
13294
13295 static int
13296 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13297 {
13298 unsigned long opcode;
13299 int bdsize;
13300
13301 opcode = bfd_get_micromips_32 (abfd, ptr);
13302 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13303 /* 32-bit branch/jump with a 32-bit delay slot. */
13304 bdsize = 4;
13305 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13306 /* 32-bit branch/jump with a 16-bit delay slot. */
13307 bdsize = 2;
13308 else
13309 /* No delay slot. */
13310 bdsize = 0;
13311
13312 return bdsize;
13313 }
13314
13315 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13316 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13317
13318 static bfd_boolean
13319 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13320 {
13321 unsigned long opcode;
13322
13323 opcode = bfd_get_16 (abfd, ptr);
13324 if (MATCH (opcode, b_insn_16)
13325 /* B16 */
13326 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13327 /* JR16 */
13328 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13329 /* BEQZ16, BNEZ16 */
13330 || (MATCH (opcode, jalr_insn_16_bd32)
13331 /* JALR16 */
13332 && reg != JR16_REG (opcode) && reg != RA))
13333 return TRUE;
13334
13335 return FALSE;
13336 }
13337
13338 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13339 then return TRUE, otherwise FALSE. */
13340
13341 static bfd_boolean
13342 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13343 {
13344 unsigned long opcode;
13345
13346 opcode = bfd_get_micromips_32 (abfd, ptr);
13347 if (MATCH (opcode, j_insn_32)
13348 /* J */
13349 || MATCH (opcode, bc_insn_32)
13350 /* BC1F, BC1T, BC2F, BC2T */
13351 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13352 /* JAL, JALX */
13353 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13354 /* BGEZ, BGTZ, BLEZ, BLTZ */
13355 || (MATCH (opcode, bzal_insn_32)
13356 /* BGEZAL, BLTZAL */
13357 && reg != OP32_SREG (opcode) && reg != RA)
13358 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13359 /* JALR, JALR.HB, BEQ, BNE */
13360 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13361 return TRUE;
13362
13363 return FALSE;
13364 }
13365
13366 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13367 IRELEND) at OFFSET indicate that there must be a compact branch there,
13368 then return TRUE, otherwise FALSE. */
13369
13370 static bfd_boolean
13371 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13372 const Elf_Internal_Rela *internal_relocs,
13373 const Elf_Internal_Rela *irelend)
13374 {
13375 const Elf_Internal_Rela *irel;
13376 unsigned long opcode;
13377
13378 opcode = bfd_get_micromips_32 (abfd, ptr);
13379 if (find_match (opcode, bzc_insns_32) < 0)
13380 return FALSE;
13381
13382 for (irel = internal_relocs; irel < irelend; irel++)
13383 if (irel->r_offset == offset
13384 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13385 return TRUE;
13386
13387 return FALSE;
13388 }
13389
13390 /* Bitsize checking. */
13391 #define IS_BITSIZE(val, N) \
13392 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13393 - (1ULL << ((N) - 1))) == (val))
13394
13395 \f
13396 bfd_boolean
13397 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13398 struct bfd_link_info *link_info,
13399 bfd_boolean *again)
13400 {
13401 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13402 Elf_Internal_Shdr *symtab_hdr;
13403 Elf_Internal_Rela *internal_relocs;
13404 Elf_Internal_Rela *irel, *irelend;
13405 bfd_byte *contents = NULL;
13406 Elf_Internal_Sym *isymbuf = NULL;
13407
13408 /* Assume nothing changes. */
13409 *again = FALSE;
13410
13411 /* We don't have to do anything for a relocatable link, if
13412 this section does not have relocs, or if this is not a
13413 code section. */
13414
13415 if (bfd_link_relocatable (link_info)
13416 || (sec->flags & SEC_RELOC) == 0
13417 || sec->reloc_count == 0
13418 || (sec->flags & SEC_CODE) == 0)
13419 return TRUE;
13420
13421 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13422
13423 /* Get a copy of the native relocations. */
13424 internal_relocs = (_bfd_elf_link_read_relocs
13425 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13426 link_info->keep_memory));
13427 if (internal_relocs == NULL)
13428 goto error_return;
13429
13430 /* Walk through them looking for relaxing opportunities. */
13431 irelend = internal_relocs + sec->reloc_count;
13432 for (irel = internal_relocs; irel < irelend; irel++)
13433 {
13434 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13435 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13436 bfd_boolean target_is_micromips_code_p;
13437 unsigned long opcode;
13438 bfd_vma symval;
13439 bfd_vma pcrval;
13440 bfd_byte *ptr;
13441 int fndopc;
13442
13443 /* The number of bytes to delete for relaxation and from where
13444 to delete these bytes starting at irel->r_offset. */
13445 int delcnt = 0;
13446 int deloff = 0;
13447
13448 /* If this isn't something that can be relaxed, then ignore
13449 this reloc. */
13450 if (r_type != R_MICROMIPS_HI16
13451 && r_type != R_MICROMIPS_PC16_S1
13452 && r_type != R_MICROMIPS_26_S1)
13453 continue;
13454
13455 /* Get the section contents if we haven't done so already. */
13456 if (contents == NULL)
13457 {
13458 /* Get cached copy if it exists. */
13459 if (elf_section_data (sec)->this_hdr.contents != NULL)
13460 contents = elf_section_data (sec)->this_hdr.contents;
13461 /* Go get them off disk. */
13462 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13463 goto error_return;
13464 }
13465 ptr = contents + irel->r_offset;
13466
13467 /* Read this BFD's local symbols if we haven't done so already. */
13468 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13469 {
13470 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13471 if (isymbuf == NULL)
13472 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13473 symtab_hdr->sh_info, 0,
13474 NULL, NULL, NULL);
13475 if (isymbuf == NULL)
13476 goto error_return;
13477 }
13478
13479 /* Get the value of the symbol referred to by the reloc. */
13480 if (r_symndx < symtab_hdr->sh_info)
13481 {
13482 /* A local symbol. */
13483 Elf_Internal_Sym *isym;
13484 asection *sym_sec;
13485
13486 isym = isymbuf + r_symndx;
13487 if (isym->st_shndx == SHN_UNDEF)
13488 sym_sec = bfd_und_section_ptr;
13489 else if (isym->st_shndx == SHN_ABS)
13490 sym_sec = bfd_abs_section_ptr;
13491 else if (isym->st_shndx == SHN_COMMON)
13492 sym_sec = bfd_com_section_ptr;
13493 else
13494 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13495 symval = (isym->st_value
13496 + sym_sec->output_section->vma
13497 + sym_sec->output_offset);
13498 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13499 }
13500 else
13501 {
13502 unsigned long indx;
13503 struct elf_link_hash_entry *h;
13504
13505 /* An external symbol. */
13506 indx = r_symndx - symtab_hdr->sh_info;
13507 h = elf_sym_hashes (abfd)[indx];
13508 BFD_ASSERT (h != NULL);
13509
13510 if (h->root.type != bfd_link_hash_defined
13511 && h->root.type != bfd_link_hash_defweak)
13512 /* This appears to be a reference to an undefined
13513 symbol. Just ignore it -- it will be caught by the
13514 regular reloc processing. */
13515 continue;
13516
13517 symval = (h->root.u.def.value
13518 + h->root.u.def.section->output_section->vma
13519 + h->root.u.def.section->output_offset);
13520 target_is_micromips_code_p = (!h->needs_plt
13521 && ELF_ST_IS_MICROMIPS (h->other));
13522 }
13523
13524
13525 /* For simplicity of coding, we are going to modify the
13526 section contents, the section relocs, and the BFD symbol
13527 table. We must tell the rest of the code not to free up this
13528 information. It would be possible to instead create a table
13529 of changes which have to be made, as is done in coff-mips.c;
13530 that would be more work, but would require less memory when
13531 the linker is run. */
13532
13533 /* Only 32-bit instructions relaxed. */
13534 if (irel->r_offset + 4 > sec->size)
13535 continue;
13536
13537 opcode = bfd_get_micromips_32 (abfd, ptr);
13538
13539 /* This is the pc-relative distance from the instruction the
13540 relocation is applied to, to the symbol referred. */
13541 pcrval = (symval
13542 - (sec->output_section->vma + sec->output_offset)
13543 - irel->r_offset);
13544
13545 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13546 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13547 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13548
13549 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13550
13551 where pcrval has first to be adjusted to apply against the LO16
13552 location (we make the adjustment later on, when we have figured
13553 out the offset). */
13554 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13555 {
13556 bfd_boolean bzc = FALSE;
13557 unsigned long nextopc;
13558 unsigned long reg;
13559 bfd_vma offset;
13560
13561 /* Give up if the previous reloc was a HI16 against this symbol
13562 too. */
13563 if (irel > internal_relocs
13564 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13565 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13566 continue;
13567
13568 /* Or if the next reloc is not a LO16 against this symbol. */
13569 if (irel + 1 >= irelend
13570 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13571 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13572 continue;
13573
13574 /* Or if the second next reloc is a LO16 against this symbol too. */
13575 if (irel + 2 >= irelend
13576 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13577 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13578 continue;
13579
13580 /* See if the LUI instruction *might* be in a branch delay slot.
13581 We check whether what looks like a 16-bit branch or jump is
13582 actually an immediate argument to a compact branch, and let
13583 it through if so. */
13584 if (irel->r_offset >= 2
13585 && check_br16_dslot (abfd, ptr - 2)
13586 && !(irel->r_offset >= 4
13587 && (bzc = check_relocated_bzc (abfd,
13588 ptr - 4, irel->r_offset - 4,
13589 internal_relocs, irelend))))
13590 continue;
13591 if (irel->r_offset >= 4
13592 && !bzc
13593 && check_br32_dslot (abfd, ptr - 4))
13594 continue;
13595
13596 reg = OP32_SREG (opcode);
13597
13598 /* We only relax adjacent instructions or ones separated with
13599 a branch or jump that has a delay slot. The branch or jump
13600 must not fiddle with the register used to hold the address.
13601 Subtract 4 for the LUI itself. */
13602 offset = irel[1].r_offset - irel[0].r_offset;
13603 switch (offset - 4)
13604 {
13605 case 0:
13606 break;
13607 case 2:
13608 if (check_br16 (abfd, ptr + 4, reg))
13609 break;
13610 continue;
13611 case 4:
13612 if (check_br32 (abfd, ptr + 4, reg))
13613 break;
13614 continue;
13615 default:
13616 continue;
13617 }
13618
13619 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13620
13621 /* Give up unless the same register is used with both
13622 relocations. */
13623 if (OP32_SREG (nextopc) != reg)
13624 continue;
13625
13626 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13627 and rounding up to take masking of the two LSBs into account. */
13628 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13629
13630 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13631 if (IS_BITSIZE (symval, 16))
13632 {
13633 /* Fix the relocation's type. */
13634 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13635
13636 /* Instructions using R_MICROMIPS_LO16 have the base or
13637 source register in bits 20:16. This register becomes $0
13638 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13639 nextopc &= ~0x001f0000;
13640 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13641 contents + irel[1].r_offset);
13642 }
13643
13644 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13645 We add 4 to take LUI deletion into account while checking
13646 the PC-relative distance. */
13647 else if (symval % 4 == 0
13648 && IS_BITSIZE (pcrval + 4, 25)
13649 && MATCH (nextopc, addiu_insn)
13650 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13651 && OP16_VALID_REG (OP32_TREG (nextopc)))
13652 {
13653 /* Fix the relocation's type. */
13654 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13655
13656 /* Replace ADDIU with the ADDIUPC version. */
13657 nextopc = (addiupc_insn.match
13658 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13659
13660 bfd_put_micromips_32 (abfd, nextopc,
13661 contents + irel[1].r_offset);
13662 }
13663
13664 /* Can't do anything, give up, sigh... */
13665 else
13666 continue;
13667
13668 /* Fix the relocation's type. */
13669 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13670
13671 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13672 delcnt = 4;
13673 deloff = 0;
13674 }
13675
13676 /* Compact branch relaxation -- due to the multitude of macros
13677 employed by the compiler/assembler, compact branches are not
13678 always generated. Obviously, this can/will be fixed elsewhere,
13679 but there is no drawback in double checking it here. */
13680 else if (r_type == R_MICROMIPS_PC16_S1
13681 && irel->r_offset + 5 < sec->size
13682 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13683 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13684 && ((!insn32
13685 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13686 nop_insn_16) ? 2 : 0))
13687 || (irel->r_offset + 7 < sec->size
13688 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13689 ptr + 4),
13690 nop_insn_32) ? 4 : 0))))
13691 {
13692 unsigned long reg;
13693
13694 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13695
13696 /* Replace BEQZ/BNEZ with the compact version. */
13697 opcode = (bzc_insns_32[fndopc].match
13698 | BZC32_REG_FIELD (reg)
13699 | (opcode & 0xffff)); /* Addend value. */
13700
13701 bfd_put_micromips_32 (abfd, opcode, ptr);
13702
13703 /* Delete the delay slot NOP: two or four bytes from
13704 irel->offset + 4; delcnt has already been set above. */
13705 deloff = 4;
13706 }
13707
13708 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13709 to check the distance from the next instruction, so subtract 2. */
13710 else if (!insn32
13711 && r_type == R_MICROMIPS_PC16_S1
13712 && IS_BITSIZE (pcrval - 2, 11)
13713 && find_match (opcode, b_insns_32) >= 0)
13714 {
13715 /* Fix the relocation's type. */
13716 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13717
13718 /* Replace the 32-bit opcode with a 16-bit opcode. */
13719 bfd_put_16 (abfd,
13720 (b_insn_16.match
13721 | (opcode & 0x3ff)), /* Addend value. */
13722 ptr);
13723
13724 /* Delete 2 bytes from irel->r_offset + 2. */
13725 delcnt = 2;
13726 deloff = 2;
13727 }
13728
13729 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13730 to check the distance from the next instruction, so subtract 2. */
13731 else if (!insn32
13732 && r_type == R_MICROMIPS_PC16_S1
13733 && IS_BITSIZE (pcrval - 2, 8)
13734 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13735 && OP16_VALID_REG (OP32_SREG (opcode)))
13736 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13737 && OP16_VALID_REG (OP32_TREG (opcode)))))
13738 {
13739 unsigned long reg;
13740
13741 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13742
13743 /* Fix the relocation's type. */
13744 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13745
13746 /* Replace the 32-bit opcode with a 16-bit opcode. */
13747 bfd_put_16 (abfd,
13748 (bz_insns_16[fndopc].match
13749 | BZ16_REG_FIELD (reg)
13750 | (opcode & 0x7f)), /* Addend value. */
13751 ptr);
13752
13753 /* Delete 2 bytes from irel->r_offset + 2. */
13754 delcnt = 2;
13755 deloff = 2;
13756 }
13757
13758 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13759 else if (!insn32
13760 && r_type == R_MICROMIPS_26_S1
13761 && target_is_micromips_code_p
13762 && irel->r_offset + 7 < sec->size
13763 && MATCH (opcode, jal_insn_32_bd32))
13764 {
13765 unsigned long n32opc;
13766 bfd_boolean relaxed = FALSE;
13767
13768 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13769
13770 if (MATCH (n32opc, nop_insn_32))
13771 {
13772 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13773 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13774
13775 relaxed = TRUE;
13776 }
13777 else if (find_match (n32opc, move_insns_32) >= 0)
13778 {
13779 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13780 bfd_put_16 (abfd,
13781 (move_insn_16.match
13782 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13783 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13784 ptr + 4);
13785
13786 relaxed = TRUE;
13787 }
13788 /* Other 32-bit instructions relaxable to 16-bit
13789 instructions will be handled here later. */
13790
13791 if (relaxed)
13792 {
13793 /* JAL with 32-bit delay slot that is changed to a JALS
13794 with 16-bit delay slot. */
13795 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13796
13797 /* Delete 2 bytes from irel->r_offset + 6. */
13798 delcnt = 2;
13799 deloff = 6;
13800 }
13801 }
13802
13803 if (delcnt != 0)
13804 {
13805 /* Note that we've changed the relocs, section contents, etc. */
13806 elf_section_data (sec)->relocs = internal_relocs;
13807 elf_section_data (sec)->this_hdr.contents = contents;
13808 symtab_hdr->contents = (unsigned char *) isymbuf;
13809
13810 /* Delete bytes depending on the delcnt and deloff. */
13811 if (!mips_elf_relax_delete_bytes (abfd, sec,
13812 irel->r_offset + deloff, delcnt))
13813 goto error_return;
13814
13815 /* That will change things, so we should relax again.
13816 Note that this is not required, and it may be slow. */
13817 *again = TRUE;
13818 }
13819 }
13820
13821 if (isymbuf != NULL
13822 && symtab_hdr->contents != (unsigned char *) isymbuf)
13823 {
13824 if (! link_info->keep_memory)
13825 free (isymbuf);
13826 else
13827 {
13828 /* Cache the symbols for elf_link_input_bfd. */
13829 symtab_hdr->contents = (unsigned char *) isymbuf;
13830 }
13831 }
13832
13833 if (contents != NULL
13834 && elf_section_data (sec)->this_hdr.contents != contents)
13835 {
13836 if (! link_info->keep_memory)
13837 free (contents);
13838 else
13839 {
13840 /* Cache the section contents for elf_link_input_bfd. */
13841 elf_section_data (sec)->this_hdr.contents = contents;
13842 }
13843 }
13844
13845 if (internal_relocs != NULL
13846 && elf_section_data (sec)->relocs != internal_relocs)
13847 free (internal_relocs);
13848
13849 return TRUE;
13850
13851 error_return:
13852 if (isymbuf != NULL
13853 && symtab_hdr->contents != (unsigned char *) isymbuf)
13854 free (isymbuf);
13855 if (contents != NULL
13856 && elf_section_data (sec)->this_hdr.contents != contents)
13857 free (contents);
13858 if (internal_relocs != NULL
13859 && elf_section_data (sec)->relocs != internal_relocs)
13860 free (internal_relocs);
13861
13862 return FALSE;
13863 }
13864 \f
13865 /* Create a MIPS ELF linker hash table. */
13866
13867 struct bfd_link_hash_table *
13868 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13869 {
13870 struct mips_elf_link_hash_table *ret;
13871 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13872
13873 ret = bfd_zmalloc (amt);
13874 if (ret == NULL)
13875 return NULL;
13876
13877 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13878 mips_elf_link_hash_newfunc,
13879 sizeof (struct mips_elf_link_hash_entry),
13880 MIPS_ELF_DATA))
13881 {
13882 free (ret);
13883 return NULL;
13884 }
13885 ret->root.init_plt_refcount.plist = NULL;
13886 ret->root.init_plt_offset.plist = NULL;
13887
13888 return &ret->root.root;
13889 }
13890
13891 /* Likewise, but indicate that the target is VxWorks. */
13892
13893 struct bfd_link_hash_table *
13894 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13895 {
13896 struct bfd_link_hash_table *ret;
13897
13898 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13899 if (ret)
13900 {
13901 struct mips_elf_link_hash_table *htab;
13902
13903 htab = (struct mips_elf_link_hash_table *) ret;
13904 htab->use_plts_and_copy_relocs = TRUE;
13905 htab->is_vxworks = TRUE;
13906 }
13907 return ret;
13908 }
13909
13910 /* A function that the linker calls if we are allowed to use PLTs
13911 and copy relocs. */
13912
13913 void
13914 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13915 {
13916 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13917 }
13918
13919 /* A function that the linker calls to select between all or only
13920 32-bit microMIPS instructions. */
13921
13922 void
13923 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13924 {
13925 mips_elf_hash_table (info)->insn32 = on;
13926 }
13927 \f
13928 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13929
13930 struct mips_mach_extension
13931 {
13932 unsigned long extension, base;
13933 };
13934
13935
13936 /* An array describing how BFD machines relate to one another. The entries
13937 are ordered topologically with MIPS I extensions listed last. */
13938
13939 static const struct mips_mach_extension mips_mach_extensions[] =
13940 {
13941 /* MIPS64r2 extensions. */
13942 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13943 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13944 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13945 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13946 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13947
13948 /* MIPS64 extensions. */
13949 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13950 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13951 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13952
13953 /* MIPS V extensions. */
13954 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13955
13956 /* R10000 extensions. */
13957 { bfd_mach_mips12000, bfd_mach_mips10000 },
13958 { bfd_mach_mips14000, bfd_mach_mips10000 },
13959 { bfd_mach_mips16000, bfd_mach_mips10000 },
13960
13961 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13962 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13963 better to allow vr5400 and vr5500 code to be merged anyway, since
13964 many libraries will just use the core ISA. Perhaps we could add
13965 some sort of ASE flag if this ever proves a problem. */
13966 { bfd_mach_mips5500, bfd_mach_mips5400 },
13967 { bfd_mach_mips5400, bfd_mach_mips5000 },
13968
13969 /* MIPS IV extensions. */
13970 { bfd_mach_mips5, bfd_mach_mips8000 },
13971 { bfd_mach_mips10000, bfd_mach_mips8000 },
13972 { bfd_mach_mips5000, bfd_mach_mips8000 },
13973 { bfd_mach_mips7000, bfd_mach_mips8000 },
13974 { bfd_mach_mips9000, bfd_mach_mips8000 },
13975
13976 /* VR4100 extensions. */
13977 { bfd_mach_mips4120, bfd_mach_mips4100 },
13978 { bfd_mach_mips4111, bfd_mach_mips4100 },
13979
13980 /* MIPS III extensions. */
13981 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13982 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13983 { bfd_mach_mips8000, bfd_mach_mips4000 },
13984 { bfd_mach_mips4650, bfd_mach_mips4000 },
13985 { bfd_mach_mips4600, bfd_mach_mips4000 },
13986 { bfd_mach_mips4400, bfd_mach_mips4000 },
13987 { bfd_mach_mips4300, bfd_mach_mips4000 },
13988 { bfd_mach_mips4100, bfd_mach_mips4000 },
13989 { bfd_mach_mips4010, bfd_mach_mips4000 },
13990 { bfd_mach_mips5900, bfd_mach_mips4000 },
13991
13992 /* MIPS32 extensions. */
13993 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13994
13995 /* MIPS II extensions. */
13996 { bfd_mach_mips4000, bfd_mach_mips6000 },
13997 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13998
13999 /* MIPS I extensions. */
14000 { bfd_mach_mips6000, bfd_mach_mips3000 },
14001 { bfd_mach_mips3900, bfd_mach_mips3000 }
14002 };
14003
14004 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14005
14006 static bfd_boolean
14007 mips_mach_extends_p (unsigned long base, unsigned long extension)
14008 {
14009 size_t i;
14010
14011 if (extension == base)
14012 return TRUE;
14013
14014 if (base == bfd_mach_mipsisa32
14015 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14016 return TRUE;
14017
14018 if (base == bfd_mach_mipsisa32r2
14019 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14020 return TRUE;
14021
14022 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14023 if (extension == mips_mach_extensions[i].extension)
14024 {
14025 extension = mips_mach_extensions[i].base;
14026 if (extension == base)
14027 return TRUE;
14028 }
14029
14030 return FALSE;
14031 }
14032
14033 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14034
14035 static unsigned long
14036 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14037 {
14038 switch (isa_ext)
14039 {
14040 case AFL_EXT_3900: return bfd_mach_mips3900;
14041 case AFL_EXT_4010: return bfd_mach_mips4010;
14042 case AFL_EXT_4100: return bfd_mach_mips4100;
14043 case AFL_EXT_4111: return bfd_mach_mips4111;
14044 case AFL_EXT_4120: return bfd_mach_mips4120;
14045 case AFL_EXT_4650: return bfd_mach_mips4650;
14046 case AFL_EXT_5400: return bfd_mach_mips5400;
14047 case AFL_EXT_5500: return bfd_mach_mips5500;
14048 case AFL_EXT_5900: return bfd_mach_mips5900;
14049 case AFL_EXT_10000: return bfd_mach_mips10000;
14050 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14051 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14052 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14053 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14054 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14055 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14056 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14057 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14058 default: return bfd_mach_mips3000;
14059 }
14060 }
14061
14062 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14063
14064 unsigned int
14065 bfd_mips_isa_ext (bfd *abfd)
14066 {
14067 switch (bfd_get_mach (abfd))
14068 {
14069 case bfd_mach_mips3900: return AFL_EXT_3900;
14070 case bfd_mach_mips4010: return AFL_EXT_4010;
14071 case bfd_mach_mips4100: return AFL_EXT_4100;
14072 case bfd_mach_mips4111: return AFL_EXT_4111;
14073 case bfd_mach_mips4120: return AFL_EXT_4120;
14074 case bfd_mach_mips4650: return AFL_EXT_4650;
14075 case bfd_mach_mips5400: return AFL_EXT_5400;
14076 case bfd_mach_mips5500: return AFL_EXT_5500;
14077 case bfd_mach_mips5900: return AFL_EXT_5900;
14078 case bfd_mach_mips10000: return AFL_EXT_10000;
14079 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14080 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14081 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14082 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14083 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14084 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14085 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14086 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14087 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14088 default: return 0;
14089 }
14090 }
14091
14092 /* Encode ISA level and revision as a single value. */
14093 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14094
14095 /* Decode a single value into level and revision. */
14096 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14097 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14098
14099 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14100
14101 static void
14102 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14103 {
14104 int new_isa = 0;
14105 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14106 {
14107 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14108 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14109 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14110 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14111 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14112 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14113 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14114 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14115 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14116 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14117 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14118 default:
14119 (*_bfd_error_handler)
14120 (_("%B: Unknown architecture %s"),
14121 abfd, bfd_printable_name (abfd));
14122 }
14123
14124 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14125 {
14126 abiflags->isa_level = ISA_LEVEL (new_isa);
14127 abiflags->isa_rev = ISA_REV (new_isa);
14128 }
14129
14130 /* Update the isa_ext if ABFD describes a further extension. */
14131 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14132 bfd_get_mach (abfd)))
14133 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14134 }
14135
14136 /* Return true if the given ELF header flags describe a 32-bit binary. */
14137
14138 static bfd_boolean
14139 mips_32bit_flags_p (flagword flags)
14140 {
14141 return ((flags & EF_MIPS_32BITMODE) != 0
14142 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14143 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14144 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14145 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14146 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14147 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14148 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14149 }
14150
14151 /* Infer the content of the ABI flags based on the elf header. */
14152
14153 static void
14154 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14155 {
14156 obj_attribute *in_attr;
14157
14158 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14159 update_mips_abiflags_isa (abfd, abiflags);
14160
14161 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14162 abiflags->gpr_size = AFL_REG_32;
14163 else
14164 abiflags->gpr_size = AFL_REG_64;
14165
14166 abiflags->cpr1_size = AFL_REG_NONE;
14167
14168 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14169 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14170
14171 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14172 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14173 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14174 && abiflags->gpr_size == AFL_REG_32))
14175 abiflags->cpr1_size = AFL_REG_32;
14176 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14177 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14178 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14179 abiflags->cpr1_size = AFL_REG_64;
14180
14181 abiflags->cpr2_size = AFL_REG_NONE;
14182
14183 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14184 abiflags->ases |= AFL_ASE_MDMX;
14185 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14186 abiflags->ases |= AFL_ASE_MIPS16;
14187 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14188 abiflags->ases |= AFL_ASE_MICROMIPS;
14189
14190 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14191 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14192 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14193 && abiflags->isa_level >= 32
14194 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14195 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14196 }
14197
14198 /* We need to use a special link routine to handle the .reginfo and
14199 the .mdebug sections. We need to merge all instances of these
14200 sections together, not write them all out sequentially. */
14201
14202 bfd_boolean
14203 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14204 {
14205 asection *o;
14206 struct bfd_link_order *p;
14207 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14208 asection *rtproc_sec, *abiflags_sec;
14209 Elf32_RegInfo reginfo;
14210 struct ecoff_debug_info debug;
14211 struct mips_htab_traverse_info hti;
14212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14213 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14214 HDRR *symhdr = &debug.symbolic_header;
14215 void *mdebug_handle = NULL;
14216 asection *s;
14217 EXTR esym;
14218 unsigned int i;
14219 bfd_size_type amt;
14220 struct mips_elf_link_hash_table *htab;
14221
14222 static const char * const secname[] =
14223 {
14224 ".text", ".init", ".fini", ".data",
14225 ".rodata", ".sdata", ".sbss", ".bss"
14226 };
14227 static const int sc[] =
14228 {
14229 scText, scInit, scFini, scData,
14230 scRData, scSData, scSBss, scBss
14231 };
14232
14233 /* Sort the dynamic symbols so that those with GOT entries come after
14234 those without. */
14235 htab = mips_elf_hash_table (info);
14236 BFD_ASSERT (htab != NULL);
14237
14238 if (!mips_elf_sort_hash_table (abfd, info))
14239 return FALSE;
14240
14241 /* Create any scheduled LA25 stubs. */
14242 hti.info = info;
14243 hti.output_bfd = abfd;
14244 hti.error = FALSE;
14245 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14246 if (hti.error)
14247 return FALSE;
14248
14249 /* Get a value for the GP register. */
14250 if (elf_gp (abfd) == 0)
14251 {
14252 struct bfd_link_hash_entry *h;
14253
14254 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14255 if (h != NULL && h->type == bfd_link_hash_defined)
14256 elf_gp (abfd) = (h->u.def.value
14257 + h->u.def.section->output_section->vma
14258 + h->u.def.section->output_offset);
14259 else if (htab->is_vxworks
14260 && (h = bfd_link_hash_lookup (info->hash,
14261 "_GLOBAL_OFFSET_TABLE_",
14262 FALSE, FALSE, TRUE))
14263 && h->type == bfd_link_hash_defined)
14264 elf_gp (abfd) = (h->u.def.section->output_section->vma
14265 + h->u.def.section->output_offset
14266 + h->u.def.value);
14267 else if (bfd_link_relocatable (info))
14268 {
14269 bfd_vma lo = MINUS_ONE;
14270
14271 /* Find the GP-relative section with the lowest offset. */
14272 for (o = abfd->sections; o != NULL; o = o->next)
14273 if (o->vma < lo
14274 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14275 lo = o->vma;
14276
14277 /* And calculate GP relative to that. */
14278 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14279 }
14280 else
14281 {
14282 /* If the relocate_section function needs to do a reloc
14283 involving the GP value, it should make a reloc_dangerous
14284 callback to warn that GP is not defined. */
14285 }
14286 }
14287
14288 /* Go through the sections and collect the .reginfo and .mdebug
14289 information. */
14290 abiflags_sec = NULL;
14291 reginfo_sec = NULL;
14292 mdebug_sec = NULL;
14293 gptab_data_sec = NULL;
14294 gptab_bss_sec = NULL;
14295 for (o = abfd->sections; o != NULL; o = o->next)
14296 {
14297 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14298 {
14299 /* We have found the .MIPS.abiflags section in the output file.
14300 Look through all the link_orders comprising it and remove them.
14301 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14302 for (p = o->map_head.link_order; p != NULL; p = p->next)
14303 {
14304 asection *input_section;
14305
14306 if (p->type != bfd_indirect_link_order)
14307 {
14308 if (p->type == bfd_data_link_order)
14309 continue;
14310 abort ();
14311 }
14312
14313 input_section = p->u.indirect.section;
14314
14315 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14316 elf_link_input_bfd ignores this section. */
14317 input_section->flags &= ~SEC_HAS_CONTENTS;
14318 }
14319
14320 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14321 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14322
14323 /* Skip this section later on (I don't think this currently
14324 matters, but someday it might). */
14325 o->map_head.link_order = NULL;
14326
14327 abiflags_sec = o;
14328 }
14329
14330 if (strcmp (o->name, ".reginfo") == 0)
14331 {
14332 memset (&reginfo, 0, sizeof reginfo);
14333
14334 /* We have found the .reginfo section in the output file.
14335 Look through all the link_orders comprising it and merge
14336 the information together. */
14337 for (p = o->map_head.link_order; p != NULL; p = p->next)
14338 {
14339 asection *input_section;
14340 bfd *input_bfd;
14341 Elf32_External_RegInfo ext;
14342 Elf32_RegInfo sub;
14343
14344 if (p->type != bfd_indirect_link_order)
14345 {
14346 if (p->type == bfd_data_link_order)
14347 continue;
14348 abort ();
14349 }
14350
14351 input_section = p->u.indirect.section;
14352 input_bfd = input_section->owner;
14353
14354 if (! bfd_get_section_contents (input_bfd, input_section,
14355 &ext, 0, sizeof ext))
14356 return FALSE;
14357
14358 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14359
14360 reginfo.ri_gprmask |= sub.ri_gprmask;
14361 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14362 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14363 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14364 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14365
14366 /* ri_gp_value is set by the function
14367 mips_elf32_section_processing when the section is
14368 finally written out. */
14369
14370 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14371 elf_link_input_bfd ignores this section. */
14372 input_section->flags &= ~SEC_HAS_CONTENTS;
14373 }
14374
14375 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14376 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14377
14378 /* Skip this section later on (I don't think this currently
14379 matters, but someday it might). */
14380 o->map_head.link_order = NULL;
14381
14382 reginfo_sec = o;
14383 }
14384
14385 if (strcmp (o->name, ".mdebug") == 0)
14386 {
14387 struct extsym_info einfo;
14388 bfd_vma last;
14389
14390 /* We have found the .mdebug section in the output file.
14391 Look through all the link_orders comprising it and merge
14392 the information together. */
14393 symhdr->magic = swap->sym_magic;
14394 /* FIXME: What should the version stamp be? */
14395 symhdr->vstamp = 0;
14396 symhdr->ilineMax = 0;
14397 symhdr->cbLine = 0;
14398 symhdr->idnMax = 0;
14399 symhdr->ipdMax = 0;
14400 symhdr->isymMax = 0;
14401 symhdr->ioptMax = 0;
14402 symhdr->iauxMax = 0;
14403 symhdr->issMax = 0;
14404 symhdr->issExtMax = 0;
14405 symhdr->ifdMax = 0;
14406 symhdr->crfd = 0;
14407 symhdr->iextMax = 0;
14408
14409 /* We accumulate the debugging information itself in the
14410 debug_info structure. */
14411 debug.line = NULL;
14412 debug.external_dnr = NULL;
14413 debug.external_pdr = NULL;
14414 debug.external_sym = NULL;
14415 debug.external_opt = NULL;
14416 debug.external_aux = NULL;
14417 debug.ss = NULL;
14418 debug.ssext = debug.ssext_end = NULL;
14419 debug.external_fdr = NULL;
14420 debug.external_rfd = NULL;
14421 debug.external_ext = debug.external_ext_end = NULL;
14422
14423 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14424 if (mdebug_handle == NULL)
14425 return FALSE;
14426
14427 esym.jmptbl = 0;
14428 esym.cobol_main = 0;
14429 esym.weakext = 0;
14430 esym.reserved = 0;
14431 esym.ifd = ifdNil;
14432 esym.asym.iss = issNil;
14433 esym.asym.st = stLocal;
14434 esym.asym.reserved = 0;
14435 esym.asym.index = indexNil;
14436 last = 0;
14437 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14438 {
14439 esym.asym.sc = sc[i];
14440 s = bfd_get_section_by_name (abfd, secname[i]);
14441 if (s != NULL)
14442 {
14443 esym.asym.value = s->vma;
14444 last = s->vma + s->size;
14445 }
14446 else
14447 esym.asym.value = last;
14448 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14449 secname[i], &esym))
14450 return FALSE;
14451 }
14452
14453 for (p = o->map_head.link_order; p != NULL; p = p->next)
14454 {
14455 asection *input_section;
14456 bfd *input_bfd;
14457 const struct ecoff_debug_swap *input_swap;
14458 struct ecoff_debug_info input_debug;
14459 char *eraw_src;
14460 char *eraw_end;
14461
14462 if (p->type != bfd_indirect_link_order)
14463 {
14464 if (p->type == bfd_data_link_order)
14465 continue;
14466 abort ();
14467 }
14468
14469 input_section = p->u.indirect.section;
14470 input_bfd = input_section->owner;
14471
14472 if (!is_mips_elf (input_bfd))
14473 {
14474 /* I don't know what a non MIPS ELF bfd would be
14475 doing with a .mdebug section, but I don't really
14476 want to deal with it. */
14477 continue;
14478 }
14479
14480 input_swap = (get_elf_backend_data (input_bfd)
14481 ->elf_backend_ecoff_debug_swap);
14482
14483 BFD_ASSERT (p->size == input_section->size);
14484
14485 /* The ECOFF linking code expects that we have already
14486 read in the debugging information and set up an
14487 ecoff_debug_info structure, so we do that now. */
14488 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14489 &input_debug))
14490 return FALSE;
14491
14492 if (! (bfd_ecoff_debug_accumulate
14493 (mdebug_handle, abfd, &debug, swap, input_bfd,
14494 &input_debug, input_swap, info)))
14495 return FALSE;
14496
14497 /* Loop through the external symbols. For each one with
14498 interesting information, try to find the symbol in
14499 the linker global hash table and save the information
14500 for the output external symbols. */
14501 eraw_src = input_debug.external_ext;
14502 eraw_end = (eraw_src
14503 + (input_debug.symbolic_header.iextMax
14504 * input_swap->external_ext_size));
14505 for (;
14506 eraw_src < eraw_end;
14507 eraw_src += input_swap->external_ext_size)
14508 {
14509 EXTR ext;
14510 const char *name;
14511 struct mips_elf_link_hash_entry *h;
14512
14513 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14514 if (ext.asym.sc == scNil
14515 || ext.asym.sc == scUndefined
14516 || ext.asym.sc == scSUndefined)
14517 continue;
14518
14519 name = input_debug.ssext + ext.asym.iss;
14520 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14521 name, FALSE, FALSE, TRUE);
14522 if (h == NULL || h->esym.ifd != -2)
14523 continue;
14524
14525 if (ext.ifd != -1)
14526 {
14527 BFD_ASSERT (ext.ifd
14528 < input_debug.symbolic_header.ifdMax);
14529 ext.ifd = input_debug.ifdmap[ext.ifd];
14530 }
14531
14532 h->esym = ext;
14533 }
14534
14535 /* Free up the information we just read. */
14536 free (input_debug.line);
14537 free (input_debug.external_dnr);
14538 free (input_debug.external_pdr);
14539 free (input_debug.external_sym);
14540 free (input_debug.external_opt);
14541 free (input_debug.external_aux);
14542 free (input_debug.ss);
14543 free (input_debug.ssext);
14544 free (input_debug.external_fdr);
14545 free (input_debug.external_rfd);
14546 free (input_debug.external_ext);
14547
14548 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14549 elf_link_input_bfd ignores this section. */
14550 input_section->flags &= ~SEC_HAS_CONTENTS;
14551 }
14552
14553 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14554 {
14555 /* Create .rtproc section. */
14556 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14557 if (rtproc_sec == NULL)
14558 {
14559 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14560 | SEC_LINKER_CREATED | SEC_READONLY);
14561
14562 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14563 ".rtproc",
14564 flags);
14565 if (rtproc_sec == NULL
14566 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14567 return FALSE;
14568 }
14569
14570 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14571 info, rtproc_sec,
14572 &debug))
14573 return FALSE;
14574 }
14575
14576 /* Build the external symbol information. */
14577 einfo.abfd = abfd;
14578 einfo.info = info;
14579 einfo.debug = &debug;
14580 einfo.swap = swap;
14581 einfo.failed = FALSE;
14582 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14583 mips_elf_output_extsym, &einfo);
14584 if (einfo.failed)
14585 return FALSE;
14586
14587 /* Set the size of the .mdebug section. */
14588 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14589
14590 /* Skip this section later on (I don't think this currently
14591 matters, but someday it might). */
14592 o->map_head.link_order = NULL;
14593
14594 mdebug_sec = o;
14595 }
14596
14597 if (CONST_STRNEQ (o->name, ".gptab."))
14598 {
14599 const char *subname;
14600 unsigned int c;
14601 Elf32_gptab *tab;
14602 Elf32_External_gptab *ext_tab;
14603 unsigned int j;
14604
14605 /* The .gptab.sdata and .gptab.sbss sections hold
14606 information describing how the small data area would
14607 change depending upon the -G switch. These sections
14608 not used in executables files. */
14609 if (! bfd_link_relocatable (info))
14610 {
14611 for (p = o->map_head.link_order; p != NULL; p = p->next)
14612 {
14613 asection *input_section;
14614
14615 if (p->type != bfd_indirect_link_order)
14616 {
14617 if (p->type == bfd_data_link_order)
14618 continue;
14619 abort ();
14620 }
14621
14622 input_section = p->u.indirect.section;
14623
14624 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14625 elf_link_input_bfd ignores this section. */
14626 input_section->flags &= ~SEC_HAS_CONTENTS;
14627 }
14628
14629 /* Skip this section later on (I don't think this
14630 currently matters, but someday it might). */
14631 o->map_head.link_order = NULL;
14632
14633 /* Really remove the section. */
14634 bfd_section_list_remove (abfd, o);
14635 --abfd->section_count;
14636
14637 continue;
14638 }
14639
14640 /* There is one gptab for initialized data, and one for
14641 uninitialized data. */
14642 if (strcmp (o->name, ".gptab.sdata") == 0)
14643 gptab_data_sec = o;
14644 else if (strcmp (o->name, ".gptab.sbss") == 0)
14645 gptab_bss_sec = o;
14646 else
14647 {
14648 (*_bfd_error_handler)
14649 (_("%s: illegal section name `%s'"),
14650 bfd_get_filename (abfd), o->name);
14651 bfd_set_error (bfd_error_nonrepresentable_section);
14652 return FALSE;
14653 }
14654
14655 /* The linker script always combines .gptab.data and
14656 .gptab.sdata into .gptab.sdata, and likewise for
14657 .gptab.bss and .gptab.sbss. It is possible that there is
14658 no .sdata or .sbss section in the output file, in which
14659 case we must change the name of the output section. */
14660 subname = o->name + sizeof ".gptab" - 1;
14661 if (bfd_get_section_by_name (abfd, subname) == NULL)
14662 {
14663 if (o == gptab_data_sec)
14664 o->name = ".gptab.data";
14665 else
14666 o->name = ".gptab.bss";
14667 subname = o->name + sizeof ".gptab" - 1;
14668 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14669 }
14670
14671 /* Set up the first entry. */
14672 c = 1;
14673 amt = c * sizeof (Elf32_gptab);
14674 tab = bfd_malloc (amt);
14675 if (tab == NULL)
14676 return FALSE;
14677 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14678 tab[0].gt_header.gt_unused = 0;
14679
14680 /* Combine the input sections. */
14681 for (p = o->map_head.link_order; p != NULL; p = p->next)
14682 {
14683 asection *input_section;
14684 bfd *input_bfd;
14685 bfd_size_type size;
14686 unsigned long last;
14687 bfd_size_type gpentry;
14688
14689 if (p->type != bfd_indirect_link_order)
14690 {
14691 if (p->type == bfd_data_link_order)
14692 continue;
14693 abort ();
14694 }
14695
14696 input_section = p->u.indirect.section;
14697 input_bfd = input_section->owner;
14698
14699 /* Combine the gptab entries for this input section one
14700 by one. We know that the input gptab entries are
14701 sorted by ascending -G value. */
14702 size = input_section->size;
14703 last = 0;
14704 for (gpentry = sizeof (Elf32_External_gptab);
14705 gpentry < size;
14706 gpentry += sizeof (Elf32_External_gptab))
14707 {
14708 Elf32_External_gptab ext_gptab;
14709 Elf32_gptab int_gptab;
14710 unsigned long val;
14711 unsigned long add;
14712 bfd_boolean exact;
14713 unsigned int look;
14714
14715 if (! (bfd_get_section_contents
14716 (input_bfd, input_section, &ext_gptab, gpentry,
14717 sizeof (Elf32_External_gptab))))
14718 {
14719 free (tab);
14720 return FALSE;
14721 }
14722
14723 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14724 &int_gptab);
14725 val = int_gptab.gt_entry.gt_g_value;
14726 add = int_gptab.gt_entry.gt_bytes - last;
14727
14728 exact = FALSE;
14729 for (look = 1; look < c; look++)
14730 {
14731 if (tab[look].gt_entry.gt_g_value >= val)
14732 tab[look].gt_entry.gt_bytes += add;
14733
14734 if (tab[look].gt_entry.gt_g_value == val)
14735 exact = TRUE;
14736 }
14737
14738 if (! exact)
14739 {
14740 Elf32_gptab *new_tab;
14741 unsigned int max;
14742
14743 /* We need a new table entry. */
14744 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14745 new_tab = bfd_realloc (tab, amt);
14746 if (new_tab == NULL)
14747 {
14748 free (tab);
14749 return FALSE;
14750 }
14751 tab = new_tab;
14752 tab[c].gt_entry.gt_g_value = val;
14753 tab[c].gt_entry.gt_bytes = add;
14754
14755 /* Merge in the size for the next smallest -G
14756 value, since that will be implied by this new
14757 value. */
14758 max = 0;
14759 for (look = 1; look < c; look++)
14760 {
14761 if (tab[look].gt_entry.gt_g_value < val
14762 && (max == 0
14763 || (tab[look].gt_entry.gt_g_value
14764 > tab[max].gt_entry.gt_g_value)))
14765 max = look;
14766 }
14767 if (max != 0)
14768 tab[c].gt_entry.gt_bytes +=
14769 tab[max].gt_entry.gt_bytes;
14770
14771 ++c;
14772 }
14773
14774 last = int_gptab.gt_entry.gt_bytes;
14775 }
14776
14777 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14778 elf_link_input_bfd ignores this section. */
14779 input_section->flags &= ~SEC_HAS_CONTENTS;
14780 }
14781
14782 /* The table must be sorted by -G value. */
14783 if (c > 2)
14784 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14785
14786 /* Swap out the table. */
14787 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14788 ext_tab = bfd_alloc (abfd, amt);
14789 if (ext_tab == NULL)
14790 {
14791 free (tab);
14792 return FALSE;
14793 }
14794
14795 for (j = 0; j < c; j++)
14796 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14797 free (tab);
14798
14799 o->size = c * sizeof (Elf32_External_gptab);
14800 o->contents = (bfd_byte *) ext_tab;
14801
14802 /* Skip this section later on (I don't think this currently
14803 matters, but someday it might). */
14804 o->map_head.link_order = NULL;
14805 }
14806 }
14807
14808 /* Invoke the regular ELF backend linker to do all the work. */
14809 if (!bfd_elf_final_link (abfd, info))
14810 return FALSE;
14811
14812 /* Now write out the computed sections. */
14813
14814 if (abiflags_sec != NULL)
14815 {
14816 Elf_External_ABIFlags_v0 ext;
14817 Elf_Internal_ABIFlags_v0 *abiflags;
14818
14819 abiflags = &mips_elf_tdata (abfd)->abiflags;
14820
14821 /* Set up the abiflags if no valid input sections were found. */
14822 if (!mips_elf_tdata (abfd)->abiflags_valid)
14823 {
14824 infer_mips_abiflags (abfd, abiflags);
14825 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14826 }
14827 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14828 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14829 return FALSE;
14830 }
14831
14832 if (reginfo_sec != NULL)
14833 {
14834 Elf32_External_RegInfo ext;
14835
14836 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14837 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14838 return FALSE;
14839 }
14840
14841 if (mdebug_sec != NULL)
14842 {
14843 BFD_ASSERT (abfd->output_has_begun);
14844 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14845 swap, info,
14846 mdebug_sec->filepos))
14847 return FALSE;
14848
14849 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14850 }
14851
14852 if (gptab_data_sec != NULL)
14853 {
14854 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14855 gptab_data_sec->contents,
14856 0, gptab_data_sec->size))
14857 return FALSE;
14858 }
14859
14860 if (gptab_bss_sec != NULL)
14861 {
14862 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14863 gptab_bss_sec->contents,
14864 0, gptab_bss_sec->size))
14865 return FALSE;
14866 }
14867
14868 if (SGI_COMPAT (abfd))
14869 {
14870 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14871 if (rtproc_sec != NULL)
14872 {
14873 if (! bfd_set_section_contents (abfd, rtproc_sec,
14874 rtproc_sec->contents,
14875 0, rtproc_sec->size))
14876 return FALSE;
14877 }
14878 }
14879
14880 return TRUE;
14881 }
14882 \f
14883 /* Merge object file header flags from IBFD into OBFD. Raise an error
14884 if there are conflicting settings. */
14885
14886 static bfd_boolean
14887 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14888 {
14889 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14890 flagword old_flags;
14891 flagword new_flags;
14892 bfd_boolean ok;
14893
14894 new_flags = elf_elfheader (ibfd)->e_flags;
14895 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14896 old_flags = elf_elfheader (obfd)->e_flags;
14897
14898 /* Check flag compatibility. */
14899
14900 new_flags &= ~EF_MIPS_NOREORDER;
14901 old_flags &= ~EF_MIPS_NOREORDER;
14902
14903 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14904 doesn't seem to matter. */
14905 new_flags &= ~EF_MIPS_XGOT;
14906 old_flags &= ~EF_MIPS_XGOT;
14907
14908 /* MIPSpro generates ucode info in n64 objects. Again, we should
14909 just be able to ignore this. */
14910 new_flags &= ~EF_MIPS_UCODE;
14911 old_flags &= ~EF_MIPS_UCODE;
14912
14913 /* DSOs should only be linked with CPIC code. */
14914 if ((ibfd->flags & DYNAMIC) != 0)
14915 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14916
14917 if (new_flags == old_flags)
14918 return TRUE;
14919
14920 ok = TRUE;
14921
14922 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14923 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14924 {
14925 (*_bfd_error_handler)
14926 (_("%B: warning: linking abicalls files with non-abicalls files"),
14927 ibfd);
14928 ok = TRUE;
14929 }
14930
14931 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14932 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14933 if (! (new_flags & EF_MIPS_PIC))
14934 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14935
14936 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14937 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14938
14939 /* Compare the ISAs. */
14940 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14941 {
14942 (*_bfd_error_handler)
14943 (_("%B: linking 32-bit code with 64-bit code"),
14944 ibfd);
14945 ok = FALSE;
14946 }
14947 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14948 {
14949 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14950 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14951 {
14952 /* Copy the architecture info from IBFD to OBFD. Also copy
14953 the 32-bit flag (if set) so that we continue to recognise
14954 OBFD as a 32-bit binary. */
14955 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14956 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14957 elf_elfheader (obfd)->e_flags
14958 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14959
14960 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14961 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14962
14963 /* Copy across the ABI flags if OBFD doesn't use them
14964 and if that was what caused us to treat IBFD as 32-bit. */
14965 if ((old_flags & EF_MIPS_ABI) == 0
14966 && mips_32bit_flags_p (new_flags)
14967 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14968 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14969 }
14970 else
14971 {
14972 /* The ISAs aren't compatible. */
14973 (*_bfd_error_handler)
14974 (_("%B: linking %s module with previous %s modules"),
14975 ibfd,
14976 bfd_printable_name (ibfd),
14977 bfd_printable_name (obfd));
14978 ok = FALSE;
14979 }
14980 }
14981
14982 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14983 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14984
14985 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14986 does set EI_CLASS differently from any 32-bit ABI. */
14987 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14988 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14989 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14990 {
14991 /* Only error if both are set (to different values). */
14992 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14993 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14994 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14995 {
14996 (*_bfd_error_handler)
14997 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14998 ibfd,
14999 elf_mips_abi_name (ibfd),
15000 elf_mips_abi_name (obfd));
15001 ok = FALSE;
15002 }
15003 new_flags &= ~EF_MIPS_ABI;
15004 old_flags &= ~EF_MIPS_ABI;
15005 }
15006
15007 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15008 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15009 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15010 {
15011 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15012 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15013 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15014 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15015 int micro_mis = old_m16 && new_micro;
15016 int m16_mis = old_micro && new_m16;
15017
15018 if (m16_mis || micro_mis)
15019 {
15020 (*_bfd_error_handler)
15021 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15022 ibfd,
15023 m16_mis ? "MIPS16" : "microMIPS",
15024 m16_mis ? "microMIPS" : "MIPS16");
15025 ok = FALSE;
15026 }
15027
15028 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15029
15030 new_flags &= ~ EF_MIPS_ARCH_ASE;
15031 old_flags &= ~ EF_MIPS_ARCH_ASE;
15032 }
15033
15034 /* Compare NaN encodings. */
15035 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15036 {
15037 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15038 ibfd,
15039 (new_flags & EF_MIPS_NAN2008
15040 ? "-mnan=2008" : "-mnan=legacy"),
15041 (old_flags & EF_MIPS_NAN2008
15042 ? "-mnan=2008" : "-mnan=legacy"));
15043 ok = FALSE;
15044 new_flags &= ~EF_MIPS_NAN2008;
15045 old_flags &= ~EF_MIPS_NAN2008;
15046 }
15047
15048 /* Compare FP64 state. */
15049 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15050 {
15051 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15052 ibfd,
15053 (new_flags & EF_MIPS_FP64
15054 ? "-mfp64" : "-mfp32"),
15055 (old_flags & EF_MIPS_FP64
15056 ? "-mfp64" : "-mfp32"));
15057 ok = FALSE;
15058 new_flags &= ~EF_MIPS_FP64;
15059 old_flags &= ~EF_MIPS_FP64;
15060 }
15061
15062 /* Warn about any other mismatches */
15063 if (new_flags != old_flags)
15064 {
15065 (*_bfd_error_handler)
15066 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15067 "(0x%lx)"),
15068 ibfd, (unsigned long) new_flags,
15069 (unsigned long) old_flags);
15070 ok = FALSE;
15071 }
15072
15073 return ok;
15074 }
15075
15076 /* Merge object attributes from IBFD into OBFD. Raise an error if
15077 there are conflicting attributes. */
15078 static bfd_boolean
15079 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15080 {
15081 obj_attribute *in_attr;
15082 obj_attribute *out_attr;
15083 bfd *abi_fp_bfd;
15084 bfd *abi_msa_bfd;
15085
15086 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15087 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15088 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15089 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15090
15091 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15092 if (!abi_msa_bfd
15093 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15094 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15095
15096 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15097 {
15098 /* This is the first object. Copy the attributes. */
15099 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15100
15101 /* Use the Tag_null value to indicate the attributes have been
15102 initialized. */
15103 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15104
15105 return TRUE;
15106 }
15107
15108 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15109 non-conflicting ones. */
15110 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15111 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15112 {
15113 int out_fp, in_fp;
15114
15115 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15116 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15117 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15118 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15119 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15120 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15121 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15122 || in_fp == Val_GNU_MIPS_ABI_FP_64
15123 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15124 {
15125 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15126 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15127 }
15128 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15129 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15130 || out_fp == Val_GNU_MIPS_ABI_FP_64
15131 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15132 /* Keep the current setting. */;
15133 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15134 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15135 {
15136 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15137 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15138 }
15139 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15140 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15141 /* Keep the current setting. */;
15142 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15143 {
15144 const char *out_string, *in_string;
15145
15146 out_string = _bfd_mips_fp_abi_string (out_fp);
15147 in_string = _bfd_mips_fp_abi_string (in_fp);
15148 /* First warn about cases involving unrecognised ABIs. */
15149 if (!out_string && !in_string)
15150 _bfd_error_handler
15151 (_("Warning: %B uses unknown floating point ABI %d "
15152 "(set by %B), %B uses unknown floating point ABI %d"),
15153 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15154 else if (!out_string)
15155 _bfd_error_handler
15156 (_("Warning: %B uses unknown floating point ABI %d "
15157 "(set by %B), %B uses %s"),
15158 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15159 else if (!in_string)
15160 _bfd_error_handler
15161 (_("Warning: %B uses %s (set by %B), "
15162 "%B uses unknown floating point ABI %d"),
15163 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15164 else
15165 {
15166 /* If one of the bfds is soft-float, the other must be
15167 hard-float. The exact choice of hard-float ABI isn't
15168 really relevant to the error message. */
15169 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15170 out_string = "-mhard-float";
15171 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15172 in_string = "-mhard-float";
15173 _bfd_error_handler
15174 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15175 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15176 }
15177 }
15178 }
15179
15180 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15181 non-conflicting ones. */
15182 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15183 {
15184 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15185 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15186 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15187 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15188 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15189 {
15190 case Val_GNU_MIPS_ABI_MSA_128:
15191 _bfd_error_handler
15192 (_("Warning: %B uses %s (set by %B), "
15193 "%B uses unknown MSA ABI %d"),
15194 obfd, abi_msa_bfd, ibfd,
15195 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15196 break;
15197
15198 default:
15199 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15200 {
15201 case Val_GNU_MIPS_ABI_MSA_128:
15202 _bfd_error_handler
15203 (_("Warning: %B uses unknown MSA ABI %d "
15204 "(set by %B), %B uses %s"),
15205 obfd, abi_msa_bfd, ibfd,
15206 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15207 break;
15208
15209 default:
15210 _bfd_error_handler
15211 (_("Warning: %B uses unknown MSA ABI %d "
15212 "(set by %B), %B uses unknown MSA ABI %d"),
15213 obfd, abi_msa_bfd, ibfd,
15214 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15215 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15216 break;
15217 }
15218 }
15219 }
15220
15221 /* Merge Tag_compatibility attributes and any common GNU ones. */
15222 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15223 }
15224
15225 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15226 there are conflicting settings. */
15227
15228 static bfd_boolean
15229 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15230 {
15231 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15232 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15233 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15234
15235 /* Update the output abiflags fp_abi using the computed fp_abi. */
15236 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15237
15238 #define max(a, b) ((a) > (b) ? (a) : (b))
15239 /* Merge abiflags. */
15240 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15241 in_tdata->abiflags.isa_level);
15242 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15243 in_tdata->abiflags.isa_rev);
15244 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15245 in_tdata->abiflags.gpr_size);
15246 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15247 in_tdata->abiflags.cpr1_size);
15248 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15249 in_tdata->abiflags.cpr2_size);
15250 #undef max
15251 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15252 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15253
15254 return TRUE;
15255 }
15256
15257 /* Merge backend specific data from an object file to the output
15258 object file when linking. */
15259
15260 bfd_boolean
15261 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15262 {
15263 struct mips_elf_obj_tdata *out_tdata;
15264 struct mips_elf_obj_tdata *in_tdata;
15265 bfd_boolean null_input_bfd = TRUE;
15266 asection *sec;
15267 bfd_boolean ok;
15268
15269 /* Check if we have the same endianness. */
15270 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15271 {
15272 (*_bfd_error_handler)
15273 (_("%B: endianness incompatible with that of the selected emulation"),
15274 ibfd);
15275 return FALSE;
15276 }
15277
15278 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15279 return TRUE;
15280
15281 in_tdata = mips_elf_tdata (ibfd);
15282 out_tdata = mips_elf_tdata (obfd);
15283
15284 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15285 {
15286 (*_bfd_error_handler)
15287 (_("%B: ABI is incompatible with that of the selected emulation"),
15288 ibfd);
15289 return FALSE;
15290 }
15291
15292 /* Check to see if the input BFD actually contains any sections. If not,
15293 then it has no attributes, and its flags may not have been initialized
15294 either, but it cannot actually cause any incompatibility. */
15295 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15296 {
15297 /* Ignore synthetic sections and empty .text, .data and .bss sections
15298 which are automatically generated by gas. Also ignore fake
15299 (s)common sections, since merely defining a common symbol does
15300 not affect compatibility. */
15301 if ((sec->flags & SEC_IS_COMMON) == 0
15302 && strcmp (sec->name, ".reginfo")
15303 && strcmp (sec->name, ".mdebug")
15304 && (sec->size != 0
15305 || (strcmp (sec->name, ".text")
15306 && strcmp (sec->name, ".data")
15307 && strcmp (sec->name, ".bss"))))
15308 {
15309 null_input_bfd = FALSE;
15310 break;
15311 }
15312 }
15313 if (null_input_bfd)
15314 return TRUE;
15315
15316 /* Populate abiflags using existing information. */
15317 if (in_tdata->abiflags_valid)
15318 {
15319 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15320 Elf_Internal_ABIFlags_v0 in_abiflags;
15321 Elf_Internal_ABIFlags_v0 abiflags;
15322
15323 /* Set up the FP ABI attribute from the abiflags if it is not already
15324 set. */
15325 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15326 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15327
15328 infer_mips_abiflags (ibfd, &abiflags);
15329 in_abiflags = in_tdata->abiflags;
15330
15331 /* It is not possible to infer the correct ISA revision
15332 for R3 or R5 so drop down to R2 for the checks. */
15333 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15334 in_abiflags.isa_rev = 2;
15335
15336 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15337 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15338 (*_bfd_error_handler)
15339 (_("%B: warning: Inconsistent ISA between e_flags and "
15340 ".MIPS.abiflags"), ibfd);
15341 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15342 && in_abiflags.fp_abi != abiflags.fp_abi)
15343 (*_bfd_error_handler)
15344 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15345 ".MIPS.abiflags"), ibfd);
15346 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15347 (*_bfd_error_handler)
15348 (_("%B: warning: Inconsistent ASEs between e_flags and "
15349 ".MIPS.abiflags"), ibfd);
15350 /* The isa_ext is allowed to be an extension of what can be inferred
15351 from e_flags. */
15352 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15353 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15354 (*_bfd_error_handler)
15355 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15356 ".MIPS.abiflags"), ibfd);
15357 if (in_abiflags.flags2 != 0)
15358 (*_bfd_error_handler)
15359 (_("%B: warning: Unexpected flag in the flags2 field of "
15360 ".MIPS.abiflags (0x%lx)"), ibfd,
15361 (unsigned long) in_abiflags.flags2);
15362 }
15363 else
15364 {
15365 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15366 in_tdata->abiflags_valid = TRUE;
15367 }
15368
15369 if (!out_tdata->abiflags_valid)
15370 {
15371 /* Copy input abiflags if output abiflags are not already valid. */
15372 out_tdata->abiflags = in_tdata->abiflags;
15373 out_tdata->abiflags_valid = TRUE;
15374 }
15375
15376 if (! elf_flags_init (obfd))
15377 {
15378 elf_flags_init (obfd) = TRUE;
15379 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15380 elf_elfheader (obfd)->e_ident[EI_CLASS]
15381 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15382
15383 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15384 && (bfd_get_arch_info (obfd)->the_default
15385 || mips_mach_extends_p (bfd_get_mach (obfd),
15386 bfd_get_mach (ibfd))))
15387 {
15388 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15389 bfd_get_mach (ibfd)))
15390 return FALSE;
15391
15392 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15393 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15394 }
15395
15396 ok = TRUE;
15397 }
15398 else
15399 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15400
15401 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15402
15403 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15404
15405 if (!ok)
15406 {
15407 bfd_set_error (bfd_error_bad_value);
15408 return FALSE;
15409 }
15410
15411 return TRUE;
15412 }
15413
15414 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15415
15416 bfd_boolean
15417 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15418 {
15419 BFD_ASSERT (!elf_flags_init (abfd)
15420 || elf_elfheader (abfd)->e_flags == flags);
15421
15422 elf_elfheader (abfd)->e_flags = flags;
15423 elf_flags_init (abfd) = TRUE;
15424 return TRUE;
15425 }
15426
15427 char *
15428 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15429 {
15430 switch (dtag)
15431 {
15432 default: return "";
15433 case DT_MIPS_RLD_VERSION:
15434 return "MIPS_RLD_VERSION";
15435 case DT_MIPS_TIME_STAMP:
15436 return "MIPS_TIME_STAMP";
15437 case DT_MIPS_ICHECKSUM:
15438 return "MIPS_ICHECKSUM";
15439 case DT_MIPS_IVERSION:
15440 return "MIPS_IVERSION";
15441 case DT_MIPS_FLAGS:
15442 return "MIPS_FLAGS";
15443 case DT_MIPS_BASE_ADDRESS:
15444 return "MIPS_BASE_ADDRESS";
15445 case DT_MIPS_MSYM:
15446 return "MIPS_MSYM";
15447 case DT_MIPS_CONFLICT:
15448 return "MIPS_CONFLICT";
15449 case DT_MIPS_LIBLIST:
15450 return "MIPS_LIBLIST";
15451 case DT_MIPS_LOCAL_GOTNO:
15452 return "MIPS_LOCAL_GOTNO";
15453 case DT_MIPS_CONFLICTNO:
15454 return "MIPS_CONFLICTNO";
15455 case DT_MIPS_LIBLISTNO:
15456 return "MIPS_LIBLISTNO";
15457 case DT_MIPS_SYMTABNO:
15458 return "MIPS_SYMTABNO";
15459 case DT_MIPS_UNREFEXTNO:
15460 return "MIPS_UNREFEXTNO";
15461 case DT_MIPS_GOTSYM:
15462 return "MIPS_GOTSYM";
15463 case DT_MIPS_HIPAGENO:
15464 return "MIPS_HIPAGENO";
15465 case DT_MIPS_RLD_MAP:
15466 return "MIPS_RLD_MAP";
15467 case DT_MIPS_RLD_MAP_REL:
15468 return "MIPS_RLD_MAP_REL";
15469 case DT_MIPS_DELTA_CLASS:
15470 return "MIPS_DELTA_CLASS";
15471 case DT_MIPS_DELTA_CLASS_NO:
15472 return "MIPS_DELTA_CLASS_NO";
15473 case DT_MIPS_DELTA_INSTANCE:
15474 return "MIPS_DELTA_INSTANCE";
15475 case DT_MIPS_DELTA_INSTANCE_NO:
15476 return "MIPS_DELTA_INSTANCE_NO";
15477 case DT_MIPS_DELTA_RELOC:
15478 return "MIPS_DELTA_RELOC";
15479 case DT_MIPS_DELTA_RELOC_NO:
15480 return "MIPS_DELTA_RELOC_NO";
15481 case DT_MIPS_DELTA_SYM:
15482 return "MIPS_DELTA_SYM";
15483 case DT_MIPS_DELTA_SYM_NO:
15484 return "MIPS_DELTA_SYM_NO";
15485 case DT_MIPS_DELTA_CLASSSYM:
15486 return "MIPS_DELTA_CLASSSYM";
15487 case DT_MIPS_DELTA_CLASSSYM_NO:
15488 return "MIPS_DELTA_CLASSSYM_NO";
15489 case DT_MIPS_CXX_FLAGS:
15490 return "MIPS_CXX_FLAGS";
15491 case DT_MIPS_PIXIE_INIT:
15492 return "MIPS_PIXIE_INIT";
15493 case DT_MIPS_SYMBOL_LIB:
15494 return "MIPS_SYMBOL_LIB";
15495 case DT_MIPS_LOCALPAGE_GOTIDX:
15496 return "MIPS_LOCALPAGE_GOTIDX";
15497 case DT_MIPS_LOCAL_GOTIDX:
15498 return "MIPS_LOCAL_GOTIDX";
15499 case DT_MIPS_HIDDEN_GOTIDX:
15500 return "MIPS_HIDDEN_GOTIDX";
15501 case DT_MIPS_PROTECTED_GOTIDX:
15502 return "MIPS_PROTECTED_GOT_IDX";
15503 case DT_MIPS_OPTIONS:
15504 return "MIPS_OPTIONS";
15505 case DT_MIPS_INTERFACE:
15506 return "MIPS_INTERFACE";
15507 case DT_MIPS_DYNSTR_ALIGN:
15508 return "DT_MIPS_DYNSTR_ALIGN";
15509 case DT_MIPS_INTERFACE_SIZE:
15510 return "DT_MIPS_INTERFACE_SIZE";
15511 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15512 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15513 case DT_MIPS_PERF_SUFFIX:
15514 return "DT_MIPS_PERF_SUFFIX";
15515 case DT_MIPS_COMPACT_SIZE:
15516 return "DT_MIPS_COMPACT_SIZE";
15517 case DT_MIPS_GP_VALUE:
15518 return "DT_MIPS_GP_VALUE";
15519 case DT_MIPS_AUX_DYNAMIC:
15520 return "DT_MIPS_AUX_DYNAMIC";
15521 case DT_MIPS_PLTGOT:
15522 return "DT_MIPS_PLTGOT";
15523 case DT_MIPS_RWPLT:
15524 return "DT_MIPS_RWPLT";
15525 }
15526 }
15527
15528 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15529 not known. */
15530
15531 const char *
15532 _bfd_mips_fp_abi_string (int fp)
15533 {
15534 switch (fp)
15535 {
15536 /* These strings aren't translated because they're simply
15537 option lists. */
15538 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15539 return "-mdouble-float";
15540
15541 case Val_GNU_MIPS_ABI_FP_SINGLE:
15542 return "-msingle-float";
15543
15544 case Val_GNU_MIPS_ABI_FP_SOFT:
15545 return "-msoft-float";
15546
15547 case Val_GNU_MIPS_ABI_FP_OLD_64:
15548 return _("-mips32r2 -mfp64 (12 callee-saved)");
15549
15550 case Val_GNU_MIPS_ABI_FP_XX:
15551 return "-mfpxx";
15552
15553 case Val_GNU_MIPS_ABI_FP_64:
15554 return "-mgp32 -mfp64";
15555
15556 case Val_GNU_MIPS_ABI_FP_64A:
15557 return "-mgp32 -mfp64 -mno-odd-spreg";
15558
15559 default:
15560 return 0;
15561 }
15562 }
15563
15564 static void
15565 print_mips_ases (FILE *file, unsigned int mask)
15566 {
15567 if (mask & AFL_ASE_DSP)
15568 fputs ("\n\tDSP ASE", file);
15569 if (mask & AFL_ASE_DSPR2)
15570 fputs ("\n\tDSP R2 ASE", file);
15571 if (mask & AFL_ASE_DSPR3)
15572 fputs ("\n\tDSP R3 ASE", file);
15573 if (mask & AFL_ASE_EVA)
15574 fputs ("\n\tEnhanced VA Scheme", file);
15575 if (mask & AFL_ASE_MCU)
15576 fputs ("\n\tMCU (MicroController) ASE", file);
15577 if (mask & AFL_ASE_MDMX)
15578 fputs ("\n\tMDMX ASE", file);
15579 if (mask & AFL_ASE_MIPS3D)
15580 fputs ("\n\tMIPS-3D ASE", file);
15581 if (mask & AFL_ASE_MT)
15582 fputs ("\n\tMT ASE", file);
15583 if (mask & AFL_ASE_SMARTMIPS)
15584 fputs ("\n\tSmartMIPS ASE", file);
15585 if (mask & AFL_ASE_VIRT)
15586 fputs ("\n\tVZ ASE", file);
15587 if (mask & AFL_ASE_MSA)
15588 fputs ("\n\tMSA ASE", file);
15589 if (mask & AFL_ASE_MIPS16)
15590 fputs ("\n\tMIPS16 ASE", file);
15591 if (mask & AFL_ASE_MICROMIPS)
15592 fputs ("\n\tMICROMIPS ASE", file);
15593 if (mask & AFL_ASE_XPA)
15594 fputs ("\n\tXPA ASE", file);
15595 if (mask == 0)
15596 fprintf (file, "\n\t%s", _("None"));
15597 else if ((mask & ~AFL_ASE_MASK) != 0)
15598 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15599 }
15600
15601 static void
15602 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15603 {
15604 switch (isa_ext)
15605 {
15606 case 0:
15607 fputs (_("None"), file);
15608 break;
15609 case AFL_EXT_XLR:
15610 fputs ("RMI XLR", file);
15611 break;
15612 case AFL_EXT_OCTEON3:
15613 fputs ("Cavium Networks Octeon3", file);
15614 break;
15615 case AFL_EXT_OCTEON2:
15616 fputs ("Cavium Networks Octeon2", file);
15617 break;
15618 case AFL_EXT_OCTEONP:
15619 fputs ("Cavium Networks OcteonP", file);
15620 break;
15621 case AFL_EXT_LOONGSON_3A:
15622 fputs ("Loongson 3A", file);
15623 break;
15624 case AFL_EXT_OCTEON:
15625 fputs ("Cavium Networks Octeon", file);
15626 break;
15627 case AFL_EXT_5900:
15628 fputs ("Toshiba R5900", file);
15629 break;
15630 case AFL_EXT_4650:
15631 fputs ("MIPS R4650", file);
15632 break;
15633 case AFL_EXT_4010:
15634 fputs ("LSI R4010", file);
15635 break;
15636 case AFL_EXT_4100:
15637 fputs ("NEC VR4100", file);
15638 break;
15639 case AFL_EXT_3900:
15640 fputs ("Toshiba R3900", file);
15641 break;
15642 case AFL_EXT_10000:
15643 fputs ("MIPS R10000", file);
15644 break;
15645 case AFL_EXT_SB1:
15646 fputs ("Broadcom SB-1", file);
15647 break;
15648 case AFL_EXT_4111:
15649 fputs ("NEC VR4111/VR4181", file);
15650 break;
15651 case AFL_EXT_4120:
15652 fputs ("NEC VR4120", file);
15653 break;
15654 case AFL_EXT_5400:
15655 fputs ("NEC VR5400", file);
15656 break;
15657 case AFL_EXT_5500:
15658 fputs ("NEC VR5500", file);
15659 break;
15660 case AFL_EXT_LOONGSON_2E:
15661 fputs ("ST Microelectronics Loongson 2E", file);
15662 break;
15663 case AFL_EXT_LOONGSON_2F:
15664 fputs ("ST Microelectronics Loongson 2F", file);
15665 break;
15666 default:
15667 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15668 break;
15669 }
15670 }
15671
15672 static void
15673 print_mips_fp_abi_value (FILE *file, int val)
15674 {
15675 switch (val)
15676 {
15677 case Val_GNU_MIPS_ABI_FP_ANY:
15678 fprintf (file, _("Hard or soft float\n"));
15679 break;
15680 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15681 fprintf (file, _("Hard float (double precision)\n"));
15682 break;
15683 case Val_GNU_MIPS_ABI_FP_SINGLE:
15684 fprintf (file, _("Hard float (single precision)\n"));
15685 break;
15686 case Val_GNU_MIPS_ABI_FP_SOFT:
15687 fprintf (file, _("Soft float\n"));
15688 break;
15689 case Val_GNU_MIPS_ABI_FP_OLD_64:
15690 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15691 break;
15692 case Val_GNU_MIPS_ABI_FP_XX:
15693 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15694 break;
15695 case Val_GNU_MIPS_ABI_FP_64:
15696 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15697 break;
15698 case Val_GNU_MIPS_ABI_FP_64A:
15699 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15700 break;
15701 default:
15702 fprintf (file, "??? (%d)\n", val);
15703 break;
15704 }
15705 }
15706
15707 static int
15708 get_mips_reg_size (int reg_size)
15709 {
15710 return (reg_size == AFL_REG_NONE) ? 0
15711 : (reg_size == AFL_REG_32) ? 32
15712 : (reg_size == AFL_REG_64) ? 64
15713 : (reg_size == AFL_REG_128) ? 128
15714 : -1;
15715 }
15716
15717 bfd_boolean
15718 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15719 {
15720 FILE *file = ptr;
15721
15722 BFD_ASSERT (abfd != NULL && ptr != NULL);
15723
15724 /* Print normal ELF private data. */
15725 _bfd_elf_print_private_bfd_data (abfd, ptr);
15726
15727 /* xgettext:c-format */
15728 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15729
15730 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15731 fprintf (file, _(" [abi=O32]"));
15732 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15733 fprintf (file, _(" [abi=O64]"));
15734 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15735 fprintf (file, _(" [abi=EABI32]"));
15736 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15737 fprintf (file, _(" [abi=EABI64]"));
15738 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15739 fprintf (file, _(" [abi unknown]"));
15740 else if (ABI_N32_P (abfd))
15741 fprintf (file, _(" [abi=N32]"));
15742 else if (ABI_64_P (abfd))
15743 fprintf (file, _(" [abi=64]"));
15744 else
15745 fprintf (file, _(" [no abi set]"));
15746
15747 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15748 fprintf (file, " [mips1]");
15749 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15750 fprintf (file, " [mips2]");
15751 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15752 fprintf (file, " [mips3]");
15753 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15754 fprintf (file, " [mips4]");
15755 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15756 fprintf (file, " [mips5]");
15757 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15758 fprintf (file, " [mips32]");
15759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15760 fprintf (file, " [mips64]");
15761 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15762 fprintf (file, " [mips32r2]");
15763 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15764 fprintf (file, " [mips64r2]");
15765 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15766 fprintf (file, " [mips32r6]");
15767 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15768 fprintf (file, " [mips64r6]");
15769 else
15770 fprintf (file, _(" [unknown ISA]"));
15771
15772 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15773 fprintf (file, " [mdmx]");
15774
15775 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15776 fprintf (file, " [mips16]");
15777
15778 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15779 fprintf (file, " [micromips]");
15780
15781 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15782 fprintf (file, " [nan2008]");
15783
15784 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15785 fprintf (file, " [old fp64]");
15786
15787 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15788 fprintf (file, " [32bitmode]");
15789 else
15790 fprintf (file, _(" [not 32bitmode]"));
15791
15792 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15793 fprintf (file, " [noreorder]");
15794
15795 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15796 fprintf (file, " [PIC]");
15797
15798 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15799 fprintf (file, " [CPIC]");
15800
15801 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15802 fprintf (file, " [XGOT]");
15803
15804 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15805 fprintf (file, " [UCODE]");
15806
15807 fputc ('\n', file);
15808
15809 if (mips_elf_tdata (abfd)->abiflags_valid)
15810 {
15811 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15812 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15813 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15814 if (abiflags->isa_rev > 1)
15815 fprintf (file, "r%d", abiflags->isa_rev);
15816 fprintf (file, "\nGPR size: %d",
15817 get_mips_reg_size (abiflags->gpr_size));
15818 fprintf (file, "\nCPR1 size: %d",
15819 get_mips_reg_size (abiflags->cpr1_size));
15820 fprintf (file, "\nCPR2 size: %d",
15821 get_mips_reg_size (abiflags->cpr2_size));
15822 fputs ("\nFP ABI: ", file);
15823 print_mips_fp_abi_value (file, abiflags->fp_abi);
15824 fputs ("ISA Extension: ", file);
15825 print_mips_isa_ext (file, abiflags->isa_ext);
15826 fputs ("\nASEs:", file);
15827 print_mips_ases (file, abiflags->ases);
15828 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15829 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15830 fputc ('\n', file);
15831 }
15832
15833 return TRUE;
15834 }
15835
15836 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15837 {
15838 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15839 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15840 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15841 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15842 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15843 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15844 { NULL, 0, 0, 0, 0 }
15845 };
15846
15847 /* Merge non visibility st_other attributes. Ensure that the
15848 STO_OPTIONAL flag is copied into h->other, even if this is not a
15849 definiton of the symbol. */
15850 void
15851 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15852 const Elf_Internal_Sym *isym,
15853 bfd_boolean definition,
15854 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15855 {
15856 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15857 {
15858 unsigned char other;
15859
15860 other = (definition ? isym->st_other : h->other);
15861 other &= ~ELF_ST_VISIBILITY (-1);
15862 h->other = other | ELF_ST_VISIBILITY (h->other);
15863 }
15864
15865 if (!definition
15866 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15867 h->other |= STO_OPTIONAL;
15868 }
15869
15870 /* Decide whether an undefined symbol is special and can be ignored.
15871 This is the case for OPTIONAL symbols on IRIX. */
15872 bfd_boolean
15873 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15874 {
15875 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15876 }
15877
15878 bfd_boolean
15879 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15880 {
15881 return (sym->st_shndx == SHN_COMMON
15882 || sym->st_shndx == SHN_MIPS_ACOMMON
15883 || sym->st_shndx == SHN_MIPS_SCOMMON);
15884 }
15885
15886 /* Return address for Ith PLT stub in section PLT, for relocation REL
15887 or (bfd_vma) -1 if it should not be included. */
15888
15889 bfd_vma
15890 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15891 const arelent *rel ATTRIBUTE_UNUSED)
15892 {
15893 return (plt->vma
15894 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15895 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15896 }
15897
15898 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15899 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15900 and .got.plt and also the slots may be of a different size each we walk
15901 the PLT manually fetching instructions and matching them against known
15902 patterns. To make things easier standard MIPS slots, if any, always come
15903 first. As we don't create proper ELF symbols we use the UDATA.I member
15904 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15905 with the ST_OTHER member of the ELF symbol. */
15906
15907 long
15908 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15909 long symcount ATTRIBUTE_UNUSED,
15910 asymbol **syms ATTRIBUTE_UNUSED,
15911 long dynsymcount, asymbol **dynsyms,
15912 asymbol **ret)
15913 {
15914 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15915 static const char microsuffix[] = "@micromipsplt";
15916 static const char m16suffix[] = "@mips16plt";
15917 static const char mipssuffix[] = "@plt";
15918
15919 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15920 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15921 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15922 Elf_Internal_Shdr *hdr;
15923 bfd_byte *plt_data;
15924 bfd_vma plt_offset;
15925 unsigned int other;
15926 bfd_vma entry_size;
15927 bfd_vma plt0_size;
15928 asection *relplt;
15929 bfd_vma opcode;
15930 asection *plt;
15931 asymbol *send;
15932 size_t size;
15933 char *names;
15934 long counti;
15935 arelent *p;
15936 asymbol *s;
15937 char *nend;
15938 long count;
15939 long pi;
15940 long i;
15941 long n;
15942
15943 *ret = NULL;
15944
15945 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15946 return 0;
15947
15948 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15949 if (relplt == NULL)
15950 return 0;
15951
15952 hdr = &elf_section_data (relplt)->this_hdr;
15953 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15954 return 0;
15955
15956 plt = bfd_get_section_by_name (abfd, ".plt");
15957 if (plt == NULL)
15958 return 0;
15959
15960 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15961 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15962 return -1;
15963 p = relplt->relocation;
15964
15965 /* Calculating the exact amount of space required for symbols would
15966 require two passes over the PLT, so just pessimise assuming two
15967 PLT slots per relocation. */
15968 count = relplt->size / hdr->sh_entsize;
15969 counti = count * bed->s->int_rels_per_ext_rel;
15970 size = 2 * count * sizeof (asymbol);
15971 size += count * (sizeof (mipssuffix) +
15972 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15973 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15974 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15975
15976 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15977 size += sizeof (asymbol) + sizeof (pltname);
15978
15979 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15980 return -1;
15981
15982 if (plt->size < 16)
15983 return -1;
15984
15985 s = *ret = bfd_malloc (size);
15986 if (s == NULL)
15987 return -1;
15988 send = s + 2 * count + 1;
15989
15990 names = (char *) send;
15991 nend = (char *) s + size;
15992 n = 0;
15993
15994 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15995 if (opcode == 0x3302fffe)
15996 {
15997 if (!micromips_p)
15998 return -1;
15999 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16000 other = STO_MICROMIPS;
16001 }
16002 else if (opcode == 0x0398c1d0)
16003 {
16004 if (!micromips_p)
16005 return -1;
16006 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16007 other = STO_MICROMIPS;
16008 }
16009 else
16010 {
16011 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16012 other = 0;
16013 }
16014
16015 s->the_bfd = abfd;
16016 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16017 s->section = plt;
16018 s->value = 0;
16019 s->name = names;
16020 s->udata.i = other;
16021 memcpy (names, pltname, sizeof (pltname));
16022 names += sizeof (pltname);
16023 ++s, ++n;
16024
16025 pi = 0;
16026 for (plt_offset = plt0_size;
16027 plt_offset + 8 <= plt->size && s < send;
16028 plt_offset += entry_size)
16029 {
16030 bfd_vma gotplt_addr;
16031 const char *suffix;
16032 bfd_vma gotplt_hi;
16033 bfd_vma gotplt_lo;
16034 size_t suffixlen;
16035
16036 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16037
16038 /* Check if the second word matches the expected MIPS16 instruction. */
16039 if (opcode == 0x651aeb00)
16040 {
16041 if (micromips_p)
16042 return -1;
16043 /* Truncated table??? */
16044 if (plt_offset + 16 > plt->size)
16045 break;
16046 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16047 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16048 suffixlen = sizeof (m16suffix);
16049 suffix = m16suffix;
16050 other = STO_MIPS16;
16051 }
16052 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16053 else if (opcode == 0xff220000)
16054 {
16055 if (!micromips_p)
16056 return -1;
16057 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16058 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16059 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16060 gotplt_lo <<= 2;
16061 gotplt_addr = gotplt_hi + gotplt_lo;
16062 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16063 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16064 suffixlen = sizeof (microsuffix);
16065 suffix = microsuffix;
16066 other = STO_MICROMIPS;
16067 }
16068 /* Likewise the expected microMIPS instruction (insn32 mode). */
16069 else if ((opcode & 0xffff0000) == 0xff2f0000)
16070 {
16071 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16072 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16073 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16074 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16075 gotplt_addr = gotplt_hi + gotplt_lo;
16076 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16077 suffixlen = sizeof (microsuffix);
16078 suffix = microsuffix;
16079 other = STO_MICROMIPS;
16080 }
16081 /* Otherwise assume standard MIPS code. */
16082 else
16083 {
16084 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16085 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16086 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16087 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16088 gotplt_addr = gotplt_hi + gotplt_lo;
16089 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16090 suffixlen = sizeof (mipssuffix);
16091 suffix = mipssuffix;
16092 other = 0;
16093 }
16094 /* Truncated table??? */
16095 if (plt_offset + entry_size > plt->size)
16096 break;
16097
16098 for (i = 0;
16099 i < count && p[pi].address != gotplt_addr;
16100 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16101
16102 if (i < count)
16103 {
16104 size_t namelen;
16105 size_t len;
16106
16107 *s = **p[pi].sym_ptr_ptr;
16108 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16109 we are defining a symbol, ensure one of them is set. */
16110 if ((s->flags & BSF_LOCAL) == 0)
16111 s->flags |= BSF_GLOBAL;
16112 s->flags |= BSF_SYNTHETIC;
16113 s->section = plt;
16114 s->value = plt_offset;
16115 s->name = names;
16116 s->udata.i = other;
16117
16118 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16119 namelen = len + suffixlen;
16120 if (names + namelen > nend)
16121 break;
16122
16123 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16124 names += len;
16125 memcpy (names, suffix, suffixlen);
16126 names += suffixlen;
16127
16128 ++s, ++n;
16129 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16130 }
16131 }
16132
16133 free (plt_data);
16134
16135 return n;
16136 }
16137
16138 void
16139 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16140 {
16141 struct mips_elf_link_hash_table *htab;
16142 Elf_Internal_Ehdr *i_ehdrp;
16143
16144 i_ehdrp = elf_elfheader (abfd);
16145 if (link_info)
16146 {
16147 htab = mips_elf_hash_table (link_info);
16148 BFD_ASSERT (htab != NULL);
16149
16150 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16151 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16152 }
16153
16154 _bfd_elf_post_process_headers (abfd, link_info);
16155
16156 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16157 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16158 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16159
16160 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16161 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16162 }
16163
16164 int
16165 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16166 {
16167 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16168 }
16169
16170 /* Return the opcode for can't unwind. */
16171
16172 int
16173 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16174 {
16175 return COMPACT_EH_CANT_UNWIND_OPCODE;
16176 }