bfd/
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311 #define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313 #define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we're generating code for VxWorks. */
444 bfd_boolean is_vxworks;
445
446 /* True if we already reported the small-data section overflow. */
447 bfd_boolean small_data_overflow_reported;
448
449 /* Shortcuts to some dynamic sections, or NULL if they are not
450 being used. */
451 asection *srelbss;
452 asection *sdynbss;
453 asection *srelplt;
454 asection *srelplt2;
455 asection *sgotplt;
456 asection *splt;
457 asection *sstubs;
458 asection *sgot;
459
460 /* The master GOT information. */
461 struct mips_got_info *got_info;
462
463 /* The size of the PLT header in bytes. */
464 bfd_vma plt_header_size;
465
466 /* The size of a PLT entry in bytes. */
467 bfd_vma plt_entry_size;
468
469 /* The number of functions that need a lazy-binding stub. */
470 bfd_vma lazy_stub_count;
471
472 /* The size of a function stub entry in bytes. */
473 bfd_vma function_stub_size;
474
475 /* The number of reserved entries at the beginning of the GOT. */
476 unsigned int reserved_gotno;
477
478 /* The section used for mips_elf_la25_stub trampolines.
479 See the comment above that structure for details. */
480 asection *strampoline;
481
482 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
483 pairs. */
484 htab_t la25_stubs;
485
486 /* A function FN (NAME, IS, OS) that creates a new input section
487 called NAME and links it to output section OS. If IS is nonnull,
488 the new section should go immediately before it, otherwise it
489 should go at the (current) beginning of OS.
490
491 The function returns the new section on success, otherwise it
492 returns null. */
493 asection *(*add_stub_section) (const char *, asection *, asection *);
494 };
495
496 /* Get the MIPS ELF linker hash table from a link_info structure. */
497
498 #define mips_elf_hash_table(p) \
499 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
500 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
501
502 /* A structure used to communicate with htab_traverse callbacks. */
503 struct mips_htab_traverse_info
504 {
505 /* The usual link-wide information. */
506 struct bfd_link_info *info;
507 bfd *output_bfd;
508
509 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
510 bfd_boolean error;
511 };
512
513 /* MIPS ELF private object data. */
514
515 struct mips_elf_obj_tdata
516 {
517 /* Generic ELF private object data. */
518 struct elf_obj_tdata root;
519
520 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
521 bfd *abi_fp_bfd;
522 };
523
524 /* Get MIPS ELF private object data from BFD's tdata. */
525
526 #define mips_elf_tdata(bfd) \
527 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
528
529 #define TLS_RELOC_P(r_type) \
530 (r_type == R_MIPS_TLS_DTPMOD32 \
531 || r_type == R_MIPS_TLS_DTPMOD64 \
532 || r_type == R_MIPS_TLS_DTPREL32 \
533 || r_type == R_MIPS_TLS_DTPREL64 \
534 || r_type == R_MIPS_TLS_GD \
535 || r_type == R_MIPS_TLS_LDM \
536 || r_type == R_MIPS_TLS_DTPREL_HI16 \
537 || r_type == R_MIPS_TLS_DTPREL_LO16 \
538 || r_type == R_MIPS_TLS_GOTTPREL \
539 || r_type == R_MIPS_TLS_TPREL32 \
540 || r_type == R_MIPS_TLS_TPREL64 \
541 || r_type == R_MIPS_TLS_TPREL_HI16 \
542 || r_type == R_MIPS_TLS_TPREL_LO16 \
543 || r_type == R_MIPS16_TLS_GD \
544 || r_type == R_MIPS16_TLS_LDM \
545 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
546 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
547 || r_type == R_MIPS16_TLS_GOTTPREL \
548 || r_type == R_MIPS16_TLS_TPREL_HI16 \
549 || r_type == R_MIPS16_TLS_TPREL_LO16 \
550 || r_type == R_MICROMIPS_TLS_GD \
551 || r_type == R_MICROMIPS_TLS_LDM \
552 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
553 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
554 || r_type == R_MICROMIPS_TLS_GOTTPREL \
555 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
556 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
557
558 /* Structure used to pass information to mips_elf_output_extsym. */
559
560 struct extsym_info
561 {
562 bfd *abfd;
563 struct bfd_link_info *info;
564 struct ecoff_debug_info *debug;
565 const struct ecoff_debug_swap *swap;
566 bfd_boolean failed;
567 };
568
569 /* The names of the runtime procedure table symbols used on IRIX5. */
570
571 static const char * const mips_elf_dynsym_rtproc_names[] =
572 {
573 "_procedure_table",
574 "_procedure_string_table",
575 "_procedure_table_size",
576 NULL
577 };
578
579 /* These structures are used to generate the .compact_rel section on
580 IRIX5. */
581
582 typedef struct
583 {
584 unsigned long id1; /* Always one? */
585 unsigned long num; /* Number of compact relocation entries. */
586 unsigned long id2; /* Always two? */
587 unsigned long offset; /* The file offset of the first relocation. */
588 unsigned long reserved0; /* Zero? */
589 unsigned long reserved1; /* Zero? */
590 } Elf32_compact_rel;
591
592 typedef struct
593 {
594 bfd_byte id1[4];
595 bfd_byte num[4];
596 bfd_byte id2[4];
597 bfd_byte offset[4];
598 bfd_byte reserved0[4];
599 bfd_byte reserved1[4];
600 } Elf32_External_compact_rel;
601
602 typedef struct
603 {
604 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
605 unsigned int rtype : 4; /* Relocation types. See below. */
606 unsigned int dist2to : 8;
607 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
608 unsigned long konst; /* KONST field. See below. */
609 unsigned long vaddr; /* VADDR to be relocated. */
610 } Elf32_crinfo;
611
612 typedef struct
613 {
614 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
615 unsigned int rtype : 4; /* Relocation types. See below. */
616 unsigned int dist2to : 8;
617 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
618 unsigned long konst; /* KONST field. See below. */
619 } Elf32_crinfo2;
620
621 typedef struct
622 {
623 bfd_byte info[4];
624 bfd_byte konst[4];
625 bfd_byte vaddr[4];
626 } Elf32_External_crinfo;
627
628 typedef struct
629 {
630 bfd_byte info[4];
631 bfd_byte konst[4];
632 } Elf32_External_crinfo2;
633
634 /* These are the constants used to swap the bitfields in a crinfo. */
635
636 #define CRINFO_CTYPE (0x1)
637 #define CRINFO_CTYPE_SH (31)
638 #define CRINFO_RTYPE (0xf)
639 #define CRINFO_RTYPE_SH (27)
640 #define CRINFO_DIST2TO (0xff)
641 #define CRINFO_DIST2TO_SH (19)
642 #define CRINFO_RELVADDR (0x7ffff)
643 #define CRINFO_RELVADDR_SH (0)
644
645 /* A compact relocation info has long (3 words) or short (2 words)
646 formats. A short format doesn't have VADDR field and relvaddr
647 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
648 #define CRF_MIPS_LONG 1
649 #define CRF_MIPS_SHORT 0
650
651 /* There are 4 types of compact relocation at least. The value KONST
652 has different meaning for each type:
653
654 (type) (konst)
655 CT_MIPS_REL32 Address in data
656 CT_MIPS_WORD Address in word (XXX)
657 CT_MIPS_GPHI_LO GP - vaddr
658 CT_MIPS_JMPAD Address to jump
659 */
660
661 #define CRT_MIPS_REL32 0xa
662 #define CRT_MIPS_WORD 0xb
663 #define CRT_MIPS_GPHI_LO 0xc
664 #define CRT_MIPS_JMPAD 0xd
665
666 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
667 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
668 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
669 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
670 \f
671 /* The structure of the runtime procedure descriptor created by the
672 loader for use by the static exception system. */
673
674 typedef struct runtime_pdr {
675 bfd_vma adr; /* Memory address of start of procedure. */
676 long regmask; /* Save register mask. */
677 long regoffset; /* Save register offset. */
678 long fregmask; /* Save floating point register mask. */
679 long fregoffset; /* Save floating point register offset. */
680 long frameoffset; /* Frame size. */
681 short framereg; /* Frame pointer register. */
682 short pcreg; /* Offset or reg of return pc. */
683 long irpss; /* Index into the runtime string table. */
684 long reserved;
685 struct exception_info *exception_info;/* Pointer to exception array. */
686 } RPDR, *pRPDR;
687 #define cbRPDR sizeof (RPDR)
688 #define rpdNil ((pRPDR) 0)
689 \f
690 static struct mips_got_entry *mips_elf_create_local_got_entry
691 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
692 struct mips_elf_link_hash_entry *, int);
693 static bfd_boolean mips_elf_sort_hash_table_f
694 (struct mips_elf_link_hash_entry *, void *);
695 static bfd_vma mips_elf_high
696 (bfd_vma);
697 static bfd_boolean mips_elf_create_dynamic_relocation
698 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
699 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
700 bfd_vma *, asection *);
701 static hashval_t mips_elf_got_entry_hash
702 (const void *);
703 static bfd_vma mips_elf_adjust_gp
704 (bfd *, struct mips_got_info *, bfd *);
705 static struct mips_got_info *mips_elf_got_for_ibfd
706 (struct mips_got_info *, bfd *);
707
708 /* This will be used when we sort the dynamic relocation records. */
709 static bfd *reldyn_sorting_bfd;
710
711 /* True if ABFD is for CPUs with load interlocking that include
712 non-MIPS1 CPUs and R3900. */
713 #define LOAD_INTERLOCKS_P(abfd) \
714 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
715 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
716
717 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
718 This should be safe for all architectures. We enable this predicate
719 for RM9000 for now. */
720 #define JAL_TO_BAL_P(abfd) \
721 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
722
723 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
724 This should be safe for all architectures. We enable this predicate for
725 all CPUs. */
726 #define JALR_TO_BAL_P(abfd) 1
727
728 /* True if ABFD is for CPUs that are faster if JR is converted to B.
729 This should be safe for all architectures. We enable this predicate for
730 all CPUs. */
731 #define JR_TO_B_P(abfd) 1
732
733 /* True if ABFD is a PIC object. */
734 #define PIC_OBJECT_P(abfd) \
735 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
736
737 /* Nonzero if ABFD is using the N32 ABI. */
738 #define ABI_N32_P(abfd) \
739 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
740
741 /* Nonzero if ABFD is using the N64 ABI. */
742 #define ABI_64_P(abfd) \
743 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
744
745 /* Nonzero if ABFD is using NewABI conventions. */
746 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
747
748 /* The IRIX compatibility level we are striving for. */
749 #define IRIX_COMPAT(abfd) \
750 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
751
752 /* Whether we are trying to be compatible with IRIX at all. */
753 #define SGI_COMPAT(abfd) \
754 (IRIX_COMPAT (abfd) != ict_none)
755
756 /* The name of the options section. */
757 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
758 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
759
760 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
761 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
762 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
763 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
764
765 /* Whether the section is readonly. */
766 #define MIPS_ELF_READONLY_SECTION(sec) \
767 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
768 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
769
770 /* The name of the stub section. */
771 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
772
773 /* The size of an external REL relocation. */
774 #define MIPS_ELF_REL_SIZE(abfd) \
775 (get_elf_backend_data (abfd)->s->sizeof_rel)
776
777 /* The size of an external RELA relocation. */
778 #define MIPS_ELF_RELA_SIZE(abfd) \
779 (get_elf_backend_data (abfd)->s->sizeof_rela)
780
781 /* The size of an external dynamic table entry. */
782 #define MIPS_ELF_DYN_SIZE(abfd) \
783 (get_elf_backend_data (abfd)->s->sizeof_dyn)
784
785 /* The size of a GOT entry. */
786 #define MIPS_ELF_GOT_SIZE(abfd) \
787 (get_elf_backend_data (abfd)->s->arch_size / 8)
788
789 /* The size of the .rld_map section. */
790 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
791 (get_elf_backend_data (abfd)->s->arch_size / 8)
792
793 /* The size of a symbol-table entry. */
794 #define MIPS_ELF_SYM_SIZE(abfd) \
795 (get_elf_backend_data (abfd)->s->sizeof_sym)
796
797 /* The default alignment for sections, as a power of two. */
798 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
799 (get_elf_backend_data (abfd)->s->log_file_align)
800
801 /* Get word-sized data. */
802 #define MIPS_ELF_GET_WORD(abfd, ptr) \
803 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
804
805 /* Put out word-sized data. */
806 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
807 (ABI_64_P (abfd) \
808 ? bfd_put_64 (abfd, val, ptr) \
809 : bfd_put_32 (abfd, val, ptr))
810
811 /* The opcode for word-sized loads (LW or LD). */
812 #define MIPS_ELF_LOAD_WORD(abfd) \
813 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
814
815 /* Add a dynamic symbol table-entry. */
816 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
817 _bfd_elf_add_dynamic_entry (info, tag, val)
818
819 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
820 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
821
822 /* The name of the dynamic relocation section. */
823 #define MIPS_ELF_REL_DYN_NAME(INFO) \
824 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
825
826 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
827 from smaller values. Start with zero, widen, *then* decrement. */
828 #define MINUS_ONE (((bfd_vma)0) - 1)
829 #define MINUS_TWO (((bfd_vma)0) - 2)
830
831 /* The value to write into got[1] for SVR4 targets, to identify it is
832 a GNU object. The dynamic linker can then use got[1] to store the
833 module pointer. */
834 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
835 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
836
837 /* The offset of $gp from the beginning of the .got section. */
838 #define ELF_MIPS_GP_OFFSET(INFO) \
839 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
840
841 /* The maximum size of the GOT for it to be addressable using 16-bit
842 offsets from $gp. */
843 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
844
845 /* Instructions which appear in a stub. */
846 #define STUB_LW(abfd) \
847 ((ABI_64_P (abfd) \
848 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
849 : 0x8f998010)) /* lw t9,0x8010(gp) */
850 #define STUB_MOVE(abfd) \
851 ((ABI_64_P (abfd) \
852 ? 0x03e0782d /* daddu t7,ra */ \
853 : 0x03e07821)) /* addu t7,ra */
854 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
855 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
856 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
857 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
858 #define STUB_LI16S(abfd, VAL) \
859 ((ABI_64_P (abfd) \
860 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
861 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
862
863 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
864 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
865
866 /* The name of the dynamic interpreter. This is put in the .interp
867 section. */
868
869 #define ELF_DYNAMIC_INTERPRETER(abfd) \
870 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
871 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
872 : "/usr/lib/libc.so.1")
873
874 #ifdef BFD64
875 #define MNAME(bfd,pre,pos) \
876 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
877 #define ELF_R_SYM(bfd, i) \
878 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
879 #define ELF_R_TYPE(bfd, i) \
880 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
881 #define ELF_R_INFO(bfd, s, t) \
882 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
883 #else
884 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
885 #define ELF_R_SYM(bfd, i) \
886 (ELF32_R_SYM (i))
887 #define ELF_R_TYPE(bfd, i) \
888 (ELF32_R_TYPE (i))
889 #define ELF_R_INFO(bfd, s, t) \
890 (ELF32_R_INFO (s, t))
891 #endif
892 \f
893 /* The mips16 compiler uses a couple of special sections to handle
894 floating point arguments.
895
896 Section names that look like .mips16.fn.FNNAME contain stubs that
897 copy floating point arguments from the fp regs to the gp regs and
898 then jump to FNNAME. If any 32 bit function calls FNNAME, the
899 call should be redirected to the stub instead. If no 32 bit
900 function calls FNNAME, the stub should be discarded. We need to
901 consider any reference to the function, not just a call, because
902 if the address of the function is taken we will need the stub,
903 since the address might be passed to a 32 bit function.
904
905 Section names that look like .mips16.call.FNNAME contain stubs
906 that copy floating point arguments from the gp regs to the fp
907 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
908 then any 16 bit function that calls FNNAME should be redirected
909 to the stub instead. If FNNAME is not a 32 bit function, the
910 stub should be discarded.
911
912 .mips16.call.fp.FNNAME sections are similar, but contain stubs
913 which call FNNAME and then copy the return value from the fp regs
914 to the gp regs. These stubs store the return value in $18 while
915 calling FNNAME; any function which might call one of these stubs
916 must arrange to save $18 around the call. (This case is not
917 needed for 32 bit functions that call 16 bit functions, because
918 16 bit functions always return floating point values in both
919 $f0/$f1 and $2/$3.)
920
921 Note that in all cases FNNAME might be defined statically.
922 Therefore, FNNAME is not used literally. Instead, the relocation
923 information will indicate which symbol the section is for.
924
925 We record any stubs that we find in the symbol table. */
926
927 #define FN_STUB ".mips16.fn."
928 #define CALL_STUB ".mips16.call."
929 #define CALL_FP_STUB ".mips16.call.fp."
930
931 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
932 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
933 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
934 \f
935 /* The format of the first PLT entry in an O32 executable. */
936 static const bfd_vma mips_o32_exec_plt0_entry[] =
937 {
938 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
939 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
940 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
941 0x031cc023, /* subu $24, $24, $28 */
942 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
943 0x0018c082, /* srl $24, $24, 2 */
944 0x0320f809, /* jalr $25 */
945 0x2718fffe /* subu $24, $24, 2 */
946 };
947
948 /* The format of the first PLT entry in an N32 executable. Different
949 because gp ($28) is not available; we use t2 ($14) instead. */
950 static const bfd_vma mips_n32_exec_plt0_entry[] =
951 {
952 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
953 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
954 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
955 0x030ec023, /* subu $24, $24, $14 */
956 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
957 0x0018c082, /* srl $24, $24, 2 */
958 0x0320f809, /* jalr $25 */
959 0x2718fffe /* subu $24, $24, 2 */
960 };
961
962 /* The format of the first PLT entry in an N64 executable. Different
963 from N32 because of the increased size of GOT entries. */
964 static const bfd_vma mips_n64_exec_plt0_entry[] =
965 {
966 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
967 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
968 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
969 0x030ec023, /* subu $24, $24, $14 */
970 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
971 0x0018c0c2, /* srl $24, $24, 3 */
972 0x0320f809, /* jalr $25 */
973 0x2718fffe /* subu $24, $24, 2 */
974 };
975
976 /* The format of subsequent PLT entries. */
977 static const bfd_vma mips_exec_plt_entry[] =
978 {
979 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
980 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
981 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
982 0x03200008 /* jr $25 */
983 };
984
985 /* The format of the first PLT entry in a VxWorks executable. */
986 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
987 {
988 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
989 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
990 0x8f390008, /* lw t9, 8(t9) */
991 0x00000000, /* nop */
992 0x03200008, /* jr t9 */
993 0x00000000 /* nop */
994 };
995
996 /* The format of subsequent PLT entries. */
997 static const bfd_vma mips_vxworks_exec_plt_entry[] =
998 {
999 0x10000000, /* b .PLT_resolver */
1000 0x24180000, /* li t8, <pltindex> */
1001 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1002 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1003 0x8f390000, /* lw t9, 0(t9) */
1004 0x00000000, /* nop */
1005 0x03200008, /* jr t9 */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of the first PLT entry in a VxWorks shared object. */
1010 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1011 {
1012 0x8f990008, /* lw t9, 8(gp) */
1013 0x00000000, /* nop */
1014 0x03200008, /* jr t9 */
1015 0x00000000, /* nop */
1016 0x00000000, /* nop */
1017 0x00000000 /* nop */
1018 };
1019
1020 /* The format of subsequent PLT entries. */
1021 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1022 {
1023 0x10000000, /* b .PLT_resolver */
1024 0x24180000 /* li t8, <pltindex> */
1025 };
1026 \f
1027 /* microMIPS 32-bit opcode helper installer. */
1028
1029 static void
1030 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1031 {
1032 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1033 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1034 }
1035
1036 /* microMIPS 32-bit opcode helper retriever. */
1037
1038 static bfd_vma
1039 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1040 {
1041 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1042 }
1043 \f
1044 /* Look up an entry in a MIPS ELF linker hash table. */
1045
1046 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1047 ((struct mips_elf_link_hash_entry *) \
1048 elf_link_hash_lookup (&(table)->root, (string), (create), \
1049 (copy), (follow)))
1050
1051 /* Traverse a MIPS ELF linker hash table. */
1052
1053 #define mips_elf_link_hash_traverse(table, func, info) \
1054 (elf_link_hash_traverse \
1055 (&(table)->root, \
1056 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1057 (info)))
1058
1059 /* Find the base offsets for thread-local storage in this object,
1060 for GD/LD and IE/LE respectively. */
1061
1062 #define TP_OFFSET 0x7000
1063 #define DTP_OFFSET 0x8000
1064
1065 static bfd_vma
1066 dtprel_base (struct bfd_link_info *info)
1067 {
1068 /* If tls_sec is NULL, we should have signalled an error already. */
1069 if (elf_hash_table (info)->tls_sec == NULL)
1070 return 0;
1071 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1072 }
1073
1074 static bfd_vma
1075 tprel_base (struct bfd_link_info *info)
1076 {
1077 /* If tls_sec is NULL, we should have signalled an error already. */
1078 if (elf_hash_table (info)->tls_sec == NULL)
1079 return 0;
1080 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1081 }
1082
1083 /* Create an entry in a MIPS ELF linker hash table. */
1084
1085 static struct bfd_hash_entry *
1086 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1087 struct bfd_hash_table *table, const char *string)
1088 {
1089 struct mips_elf_link_hash_entry *ret =
1090 (struct mips_elf_link_hash_entry *) entry;
1091
1092 /* Allocate the structure if it has not already been allocated by a
1093 subclass. */
1094 if (ret == NULL)
1095 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1096 if (ret == NULL)
1097 return (struct bfd_hash_entry *) ret;
1098
1099 /* Call the allocation method of the superclass. */
1100 ret = ((struct mips_elf_link_hash_entry *)
1101 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1102 table, string));
1103 if (ret != NULL)
1104 {
1105 /* Set local fields. */
1106 memset (&ret->esym, 0, sizeof (EXTR));
1107 /* We use -2 as a marker to indicate that the information has
1108 not been set. -1 means there is no associated ifd. */
1109 ret->esym.ifd = -2;
1110 ret->la25_stub = 0;
1111 ret->possibly_dynamic_relocs = 0;
1112 ret->fn_stub = NULL;
1113 ret->call_stub = NULL;
1114 ret->call_fp_stub = NULL;
1115 ret->tls_type = GOT_NORMAL;
1116 ret->global_got_area = GGA_NONE;
1117 ret->got_only_for_calls = TRUE;
1118 ret->readonly_reloc = FALSE;
1119 ret->has_static_relocs = FALSE;
1120 ret->no_fn_stub = FALSE;
1121 ret->need_fn_stub = FALSE;
1122 ret->has_nonpic_branches = FALSE;
1123 ret->needs_lazy_stub = FALSE;
1124 }
1125
1126 return (struct bfd_hash_entry *) ret;
1127 }
1128
1129 /* Allocate MIPS ELF private object data. */
1130
1131 bfd_boolean
1132 _bfd_mips_elf_mkobject (bfd *abfd)
1133 {
1134 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1135 MIPS_ELF_DATA);
1136 }
1137
1138 bfd_boolean
1139 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1140 {
1141 if (!sec->used_by_bfd)
1142 {
1143 struct _mips_elf_section_data *sdata;
1144 bfd_size_type amt = sizeof (*sdata);
1145
1146 sdata = bfd_zalloc (abfd, amt);
1147 if (sdata == NULL)
1148 return FALSE;
1149 sec->used_by_bfd = sdata;
1150 }
1151
1152 return _bfd_elf_new_section_hook (abfd, sec);
1153 }
1154 \f
1155 /* Read ECOFF debugging information from a .mdebug section into a
1156 ecoff_debug_info structure. */
1157
1158 bfd_boolean
1159 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1160 struct ecoff_debug_info *debug)
1161 {
1162 HDRR *symhdr;
1163 const struct ecoff_debug_swap *swap;
1164 char *ext_hdr;
1165
1166 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1167 memset (debug, 0, sizeof (*debug));
1168
1169 ext_hdr = bfd_malloc (swap->external_hdr_size);
1170 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1171 goto error_return;
1172
1173 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1174 swap->external_hdr_size))
1175 goto error_return;
1176
1177 symhdr = &debug->symbolic_header;
1178 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1179
1180 /* The symbolic header contains absolute file offsets and sizes to
1181 read. */
1182 #define READ(ptr, offset, count, size, type) \
1183 if (symhdr->count == 0) \
1184 debug->ptr = NULL; \
1185 else \
1186 { \
1187 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1188 debug->ptr = bfd_malloc (amt); \
1189 if (debug->ptr == NULL) \
1190 goto error_return; \
1191 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1192 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1193 goto error_return; \
1194 }
1195
1196 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1197 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1198 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1199 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1200 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1201 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1202 union aux_ext *);
1203 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1204 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1205 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1206 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1207 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1208 #undef READ
1209
1210 debug->fdr = NULL;
1211
1212 return TRUE;
1213
1214 error_return:
1215 if (ext_hdr != NULL)
1216 free (ext_hdr);
1217 if (debug->line != NULL)
1218 free (debug->line);
1219 if (debug->external_dnr != NULL)
1220 free (debug->external_dnr);
1221 if (debug->external_pdr != NULL)
1222 free (debug->external_pdr);
1223 if (debug->external_sym != NULL)
1224 free (debug->external_sym);
1225 if (debug->external_opt != NULL)
1226 free (debug->external_opt);
1227 if (debug->external_aux != NULL)
1228 free (debug->external_aux);
1229 if (debug->ss != NULL)
1230 free (debug->ss);
1231 if (debug->ssext != NULL)
1232 free (debug->ssext);
1233 if (debug->external_fdr != NULL)
1234 free (debug->external_fdr);
1235 if (debug->external_rfd != NULL)
1236 free (debug->external_rfd);
1237 if (debug->external_ext != NULL)
1238 free (debug->external_ext);
1239 return FALSE;
1240 }
1241 \f
1242 /* Swap RPDR (runtime procedure table entry) for output. */
1243
1244 static void
1245 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1246 {
1247 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1248 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1249 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1250 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1251 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1252 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1253
1254 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1255 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1256
1257 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1258 }
1259
1260 /* Create a runtime procedure table from the .mdebug section. */
1261
1262 static bfd_boolean
1263 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1264 struct bfd_link_info *info, asection *s,
1265 struct ecoff_debug_info *debug)
1266 {
1267 const struct ecoff_debug_swap *swap;
1268 HDRR *hdr = &debug->symbolic_header;
1269 RPDR *rpdr, *rp;
1270 struct rpdr_ext *erp;
1271 void *rtproc;
1272 struct pdr_ext *epdr;
1273 struct sym_ext *esym;
1274 char *ss, **sv;
1275 char *str;
1276 bfd_size_type size;
1277 bfd_size_type count;
1278 unsigned long sindex;
1279 unsigned long i;
1280 PDR pdr;
1281 SYMR sym;
1282 const char *no_name_func = _("static procedure (no name)");
1283
1284 epdr = NULL;
1285 rpdr = NULL;
1286 esym = NULL;
1287 ss = NULL;
1288 sv = NULL;
1289
1290 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1291
1292 sindex = strlen (no_name_func) + 1;
1293 count = hdr->ipdMax;
1294 if (count > 0)
1295 {
1296 size = swap->external_pdr_size;
1297
1298 epdr = bfd_malloc (size * count);
1299 if (epdr == NULL)
1300 goto error_return;
1301
1302 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1303 goto error_return;
1304
1305 size = sizeof (RPDR);
1306 rp = rpdr = bfd_malloc (size * count);
1307 if (rpdr == NULL)
1308 goto error_return;
1309
1310 size = sizeof (char *);
1311 sv = bfd_malloc (size * count);
1312 if (sv == NULL)
1313 goto error_return;
1314
1315 count = hdr->isymMax;
1316 size = swap->external_sym_size;
1317 esym = bfd_malloc (size * count);
1318 if (esym == NULL)
1319 goto error_return;
1320
1321 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1322 goto error_return;
1323
1324 count = hdr->issMax;
1325 ss = bfd_malloc (count);
1326 if (ss == NULL)
1327 goto error_return;
1328 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1329 goto error_return;
1330
1331 count = hdr->ipdMax;
1332 for (i = 0; i < (unsigned long) count; i++, rp++)
1333 {
1334 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1335 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1336 rp->adr = sym.value;
1337 rp->regmask = pdr.regmask;
1338 rp->regoffset = pdr.regoffset;
1339 rp->fregmask = pdr.fregmask;
1340 rp->fregoffset = pdr.fregoffset;
1341 rp->frameoffset = pdr.frameoffset;
1342 rp->framereg = pdr.framereg;
1343 rp->pcreg = pdr.pcreg;
1344 rp->irpss = sindex;
1345 sv[i] = ss + sym.iss;
1346 sindex += strlen (sv[i]) + 1;
1347 }
1348 }
1349
1350 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1351 size = BFD_ALIGN (size, 16);
1352 rtproc = bfd_alloc (abfd, size);
1353 if (rtproc == NULL)
1354 {
1355 mips_elf_hash_table (info)->procedure_count = 0;
1356 goto error_return;
1357 }
1358
1359 mips_elf_hash_table (info)->procedure_count = count + 2;
1360
1361 erp = rtproc;
1362 memset (erp, 0, sizeof (struct rpdr_ext));
1363 erp++;
1364 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1365 strcpy (str, no_name_func);
1366 str += strlen (no_name_func) + 1;
1367 for (i = 0; i < count; i++)
1368 {
1369 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1370 strcpy (str, sv[i]);
1371 str += strlen (sv[i]) + 1;
1372 }
1373 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1374
1375 /* Set the size and contents of .rtproc section. */
1376 s->size = size;
1377 s->contents = rtproc;
1378
1379 /* Skip this section later on (I don't think this currently
1380 matters, but someday it might). */
1381 s->map_head.link_order = NULL;
1382
1383 if (epdr != NULL)
1384 free (epdr);
1385 if (rpdr != NULL)
1386 free (rpdr);
1387 if (esym != NULL)
1388 free (esym);
1389 if (ss != NULL)
1390 free (ss);
1391 if (sv != NULL)
1392 free (sv);
1393
1394 return TRUE;
1395
1396 error_return:
1397 if (epdr != NULL)
1398 free (epdr);
1399 if (rpdr != NULL)
1400 free (rpdr);
1401 if (esym != NULL)
1402 free (esym);
1403 if (ss != NULL)
1404 free (ss);
1405 if (sv != NULL)
1406 free (sv);
1407 return FALSE;
1408 }
1409 \f
1410 /* We're going to create a stub for H. Create a symbol for the stub's
1411 value and size, to help make the disassembly easier to read. */
1412
1413 static bfd_boolean
1414 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1415 struct mips_elf_link_hash_entry *h,
1416 const char *prefix, asection *s, bfd_vma value,
1417 bfd_vma size)
1418 {
1419 struct bfd_link_hash_entry *bh;
1420 struct elf_link_hash_entry *elfh;
1421 const char *name;
1422
1423 if (ELF_ST_IS_MICROMIPS (h->root.other))
1424 value |= 1;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it a local function. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1437 elfh->size = size;
1438 elfh->forced_local = 1;
1439 return TRUE;
1440 }
1441
1442 /* We're about to redefine H. Create a symbol to represent H's
1443 current value and size, to help make the disassembly easier
1444 to read. */
1445
1446 static bfd_boolean
1447 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1448 struct mips_elf_link_hash_entry *h,
1449 const char *prefix)
1450 {
1451 struct bfd_link_hash_entry *bh;
1452 struct elf_link_hash_entry *elfh;
1453 const char *name;
1454 asection *s;
1455 bfd_vma value;
1456
1457 /* Read the symbol's value. */
1458 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1459 || h->root.root.type == bfd_link_hash_defweak);
1460 s = h->root.root.u.def.section;
1461 value = h->root.root.u.def.value;
1462
1463 /* Create a new symbol. */
1464 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1465 bh = NULL;
1466 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1467 BSF_LOCAL, s, value, NULL,
1468 TRUE, FALSE, &bh))
1469 return FALSE;
1470
1471 /* Make it local and copy the other attributes from H. */
1472 elfh = (struct elf_link_hash_entry *) bh;
1473 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1474 elfh->other = h->root.other;
1475 elfh->size = h->root.size;
1476 elfh->forced_local = 1;
1477 return TRUE;
1478 }
1479
1480 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1481 function rather than to a hard-float stub. */
1482
1483 static bfd_boolean
1484 section_allows_mips16_refs_p (asection *section)
1485 {
1486 const char *name;
1487
1488 name = bfd_get_section_name (section->owner, section);
1489 return (FN_STUB_P (name)
1490 || CALL_STUB_P (name)
1491 || CALL_FP_STUB_P (name)
1492 || strcmp (name, ".pdr") == 0);
1493 }
1494
1495 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1496 stub section of some kind. Return the R_SYMNDX of the target
1497 function, or 0 if we can't decide which function that is. */
1498
1499 static unsigned long
1500 mips16_stub_symndx (const struct elf_backend_data *bed,
1501 asection *sec ATTRIBUTE_UNUSED,
1502 const Elf_Internal_Rela *relocs,
1503 const Elf_Internal_Rela *relend)
1504 {
1505 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1506 const Elf_Internal_Rela *rel;
1507
1508 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1509 one in a compound relocation. */
1510 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1511 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1512 return ELF_R_SYM (sec->owner, rel->r_info);
1513
1514 /* Otherwise trust the first relocation, whatever its kind. This is
1515 the traditional behavior. */
1516 if (relocs < relend)
1517 return ELF_R_SYM (sec->owner, relocs->r_info);
1518
1519 return 0;
1520 }
1521
1522 /* Check the mips16 stubs for a particular symbol, and see if we can
1523 discard them. */
1524
1525 static void
1526 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1527 struct mips_elf_link_hash_entry *h)
1528 {
1529 /* Dynamic symbols must use the standard call interface, in case other
1530 objects try to call them. */
1531 if (h->fn_stub != NULL
1532 && h->root.dynindx != -1)
1533 {
1534 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1535 h->need_fn_stub = TRUE;
1536 }
1537
1538 if (h->fn_stub != NULL
1539 && ! h->need_fn_stub)
1540 {
1541 /* We don't need the fn_stub; the only references to this symbol
1542 are 16 bit calls. Clobber the size to 0 to prevent it from
1543 being included in the link. */
1544 h->fn_stub->size = 0;
1545 h->fn_stub->flags &= ~SEC_RELOC;
1546 h->fn_stub->reloc_count = 0;
1547 h->fn_stub->flags |= SEC_EXCLUDE;
1548 }
1549
1550 if (h->call_stub != NULL
1551 && ELF_ST_IS_MIPS16 (h->root.other))
1552 {
1553 /* We don't need the call_stub; this is a 16 bit function, so
1554 calls from other 16 bit functions are OK. Clobber the size
1555 to 0 to prevent it from being included in the link. */
1556 h->call_stub->size = 0;
1557 h->call_stub->flags &= ~SEC_RELOC;
1558 h->call_stub->reloc_count = 0;
1559 h->call_stub->flags |= SEC_EXCLUDE;
1560 }
1561
1562 if (h->call_fp_stub != NULL
1563 && ELF_ST_IS_MIPS16 (h->root.other))
1564 {
1565 /* We don't need the call_stub; this is a 16 bit function, so
1566 calls from other 16 bit functions are OK. Clobber the size
1567 to 0 to prevent it from being included in the link. */
1568 h->call_fp_stub->size = 0;
1569 h->call_fp_stub->flags &= ~SEC_RELOC;
1570 h->call_fp_stub->reloc_count = 0;
1571 h->call_fp_stub->flags |= SEC_EXCLUDE;
1572 }
1573 }
1574
1575 /* Hashtable callbacks for mips_elf_la25_stubs. */
1576
1577 static hashval_t
1578 mips_elf_la25_stub_hash (const void *entry_)
1579 {
1580 const struct mips_elf_la25_stub *entry;
1581
1582 entry = (struct mips_elf_la25_stub *) entry_;
1583 return entry->h->root.root.u.def.section->id
1584 + entry->h->root.root.u.def.value;
1585 }
1586
1587 static int
1588 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1589 {
1590 const struct mips_elf_la25_stub *entry1, *entry2;
1591
1592 entry1 = (struct mips_elf_la25_stub *) entry1_;
1593 entry2 = (struct mips_elf_la25_stub *) entry2_;
1594 return ((entry1->h->root.root.u.def.section
1595 == entry2->h->root.root.u.def.section)
1596 && (entry1->h->root.root.u.def.value
1597 == entry2->h->root.root.u.def.value));
1598 }
1599
1600 /* Called by the linker to set up the la25 stub-creation code. FN is
1601 the linker's implementation of add_stub_function. Return true on
1602 success. */
1603
1604 bfd_boolean
1605 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1606 asection *(*fn) (const char *, asection *,
1607 asection *))
1608 {
1609 struct mips_elf_link_hash_table *htab;
1610
1611 htab = mips_elf_hash_table (info);
1612 if (htab == NULL)
1613 return FALSE;
1614
1615 htab->add_stub_section = fn;
1616 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1617 mips_elf_la25_stub_eq, NULL);
1618 if (htab->la25_stubs == NULL)
1619 return FALSE;
1620
1621 return TRUE;
1622 }
1623
1624 /* Return true if H is a locally-defined PIC function, in the sense
1625 that it or its fn_stub might need $25 to be valid on entry.
1626 Note that MIPS16 functions set up $gp using PC-relative instructions,
1627 so they themselves never need $25 to be valid. Only non-MIPS16
1628 entry points are of interest here. */
1629
1630 static bfd_boolean
1631 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1632 {
1633 return ((h->root.root.type == bfd_link_hash_defined
1634 || h->root.root.type == bfd_link_hash_defweak)
1635 && h->root.def_regular
1636 && !bfd_is_abs_section (h->root.root.u.def.section)
1637 && (!ELF_ST_IS_MIPS16 (h->root.other)
1638 || (h->fn_stub && h->need_fn_stub))
1639 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1640 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1641 }
1642
1643 /* Set *SEC to the input section that contains the target of STUB.
1644 Return the offset of the target from the start of that section. */
1645
1646 static bfd_vma
1647 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1648 asection **sec)
1649 {
1650 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1651 {
1652 BFD_ASSERT (stub->h->need_fn_stub);
1653 *sec = stub->h->fn_stub;
1654 return 0;
1655 }
1656 else
1657 {
1658 *sec = stub->h->root.root.u.def.section;
1659 return stub->h->root.root.u.def.value;
1660 }
1661 }
1662
1663 /* STUB describes an la25 stub that we have decided to implement
1664 by inserting an LUI/ADDIU pair before the target function.
1665 Create the section and redirect the function symbol to it. */
1666
1667 static bfd_boolean
1668 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1669 struct bfd_link_info *info)
1670 {
1671 struct mips_elf_link_hash_table *htab;
1672 char *name;
1673 asection *s, *input_section;
1674 unsigned int align;
1675
1676 htab = mips_elf_hash_table (info);
1677 if (htab == NULL)
1678 return FALSE;
1679
1680 /* Create a unique name for the new section. */
1681 name = bfd_malloc (11 + sizeof (".text.stub."));
1682 if (name == NULL)
1683 return FALSE;
1684 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1685
1686 /* Create the section. */
1687 mips_elf_get_la25_target (stub, &input_section);
1688 s = htab->add_stub_section (name, input_section,
1689 input_section->output_section);
1690 if (s == NULL)
1691 return FALSE;
1692
1693 /* Make sure that any padding goes before the stub. */
1694 align = input_section->alignment_power;
1695 if (!bfd_set_section_alignment (s->owner, s, align))
1696 return FALSE;
1697 if (align > 3)
1698 s->size = (1 << align) - 8;
1699
1700 /* Create a symbol for the stub. */
1701 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1702 stub->stub_section = s;
1703 stub->offset = s->size;
1704
1705 /* Allocate room for it. */
1706 s->size += 8;
1707 return TRUE;
1708 }
1709
1710 /* STUB describes an la25 stub that we have decided to implement
1711 with a separate trampoline. Allocate room for it and redirect
1712 the function symbol to it. */
1713
1714 static bfd_boolean
1715 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1716 struct bfd_link_info *info)
1717 {
1718 struct mips_elf_link_hash_table *htab;
1719 asection *s;
1720
1721 htab = mips_elf_hash_table (info);
1722 if (htab == NULL)
1723 return FALSE;
1724
1725 /* Create a trampoline section, if we haven't already. */
1726 s = htab->strampoline;
1727 if (s == NULL)
1728 {
1729 asection *input_section = stub->h->root.root.u.def.section;
1730 s = htab->add_stub_section (".text", NULL,
1731 input_section->output_section);
1732 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1733 return FALSE;
1734 htab->strampoline = s;
1735 }
1736
1737 /* Create a symbol for the stub. */
1738 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1739 stub->stub_section = s;
1740 stub->offset = s->size;
1741
1742 /* Allocate room for it. */
1743 s->size += 16;
1744 return TRUE;
1745 }
1746
1747 /* H describes a symbol that needs an la25 stub. Make sure that an
1748 appropriate stub exists and point H at it. */
1749
1750 static bfd_boolean
1751 mips_elf_add_la25_stub (struct bfd_link_info *info,
1752 struct mips_elf_link_hash_entry *h)
1753 {
1754 struct mips_elf_link_hash_table *htab;
1755 struct mips_elf_la25_stub search, *stub;
1756 bfd_boolean use_trampoline_p;
1757 asection *s;
1758 bfd_vma value;
1759 void **slot;
1760
1761 /* Describe the stub we want. */
1762 search.stub_section = NULL;
1763 search.offset = 0;
1764 search.h = h;
1765
1766 /* See if we've already created an equivalent stub. */
1767 htab = mips_elf_hash_table (info);
1768 if (htab == NULL)
1769 return FALSE;
1770
1771 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1772 if (slot == NULL)
1773 return FALSE;
1774
1775 stub = (struct mips_elf_la25_stub *) *slot;
1776 if (stub != NULL)
1777 {
1778 /* We can reuse the existing stub. */
1779 h->la25_stub = stub;
1780 return TRUE;
1781 }
1782
1783 /* Create a permanent copy of ENTRY and add it to the hash table. */
1784 stub = bfd_malloc (sizeof (search));
1785 if (stub == NULL)
1786 return FALSE;
1787 *stub = search;
1788 *slot = stub;
1789
1790 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1791 of the section and if we would need no more than 2 nops. */
1792 value = mips_elf_get_la25_target (stub, &s);
1793 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1794
1795 h->la25_stub = stub;
1796 return (use_trampoline_p
1797 ? mips_elf_add_la25_trampoline (stub, info)
1798 : mips_elf_add_la25_intro (stub, info));
1799 }
1800
1801 /* A mips_elf_link_hash_traverse callback that is called before sizing
1802 sections. DATA points to a mips_htab_traverse_info structure. */
1803
1804 static bfd_boolean
1805 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1806 {
1807 struct mips_htab_traverse_info *hti;
1808
1809 hti = (struct mips_htab_traverse_info *) data;
1810 if (!hti->info->relocatable)
1811 mips_elf_check_mips16_stubs (hti->info, h);
1812
1813 if (mips_elf_local_pic_function_p (h))
1814 {
1815 /* PR 12845: If H is in a section that has been garbage
1816 collected it will have its output section set to *ABS*. */
1817 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1818 return TRUE;
1819
1820 /* H is a function that might need $25 to be valid on entry.
1821 If we're creating a non-PIC relocatable object, mark H as
1822 being PIC. If we're creating a non-relocatable object with
1823 non-PIC branches and jumps to H, make sure that H has an la25
1824 stub. */
1825 if (hti->info->relocatable)
1826 {
1827 if (!PIC_OBJECT_P (hti->output_bfd))
1828 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1829 }
1830 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1831 {
1832 hti->error = TRUE;
1833 return FALSE;
1834 }
1835 }
1836 return TRUE;
1837 }
1838 \f
1839 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1840 Most mips16 instructions are 16 bits, but these instructions
1841 are 32 bits.
1842
1843 The format of these instructions is:
1844
1845 +--------------+--------------------------------+
1846 | JALX | X| Imm 20:16 | Imm 25:21 |
1847 +--------------+--------------------------------+
1848 | Immediate 15:0 |
1849 +-----------------------------------------------+
1850
1851 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1852 Note that the immediate value in the first word is swapped.
1853
1854 When producing a relocatable object file, R_MIPS16_26 is
1855 handled mostly like R_MIPS_26. In particular, the addend is
1856 stored as a straight 26-bit value in a 32-bit instruction.
1857 (gas makes life simpler for itself by never adjusting a
1858 R_MIPS16_26 reloc to be against a section, so the addend is
1859 always zero). However, the 32 bit instruction is stored as 2
1860 16-bit values, rather than a single 32-bit value. In a
1861 big-endian file, the result is the same; in a little-endian
1862 file, the two 16-bit halves of the 32 bit value are swapped.
1863 This is so that a disassembler can recognize the jal
1864 instruction.
1865
1866 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1867 instruction stored as two 16-bit values. The addend A is the
1868 contents of the targ26 field. The calculation is the same as
1869 R_MIPS_26. When storing the calculated value, reorder the
1870 immediate value as shown above, and don't forget to store the
1871 value as two 16-bit values.
1872
1873 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1874 defined as
1875
1876 big-endian:
1877 +--------+----------------------+
1878 | | |
1879 | | targ26-16 |
1880 |31 26|25 0|
1881 +--------+----------------------+
1882
1883 little-endian:
1884 +----------+------+-------------+
1885 | | | |
1886 | sub1 | | sub2 |
1887 |0 9|10 15|16 31|
1888 +----------+--------------------+
1889 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1890 ((sub1 << 16) | sub2)).
1891
1892 When producing a relocatable object file, the calculation is
1893 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1894 When producing a fully linked file, the calculation is
1895 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1896 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1897
1898 The table below lists the other MIPS16 instruction relocations.
1899 Each one is calculated in the same way as the non-MIPS16 relocation
1900 given on the right, but using the extended MIPS16 layout of 16-bit
1901 immediate fields:
1902
1903 R_MIPS16_GPREL R_MIPS_GPREL16
1904 R_MIPS16_GOT16 R_MIPS_GOT16
1905 R_MIPS16_CALL16 R_MIPS_CALL16
1906 R_MIPS16_HI16 R_MIPS_HI16
1907 R_MIPS16_LO16 R_MIPS_LO16
1908
1909 A typical instruction will have a format like this:
1910
1911 +--------------+--------------------------------+
1912 | EXTEND | Imm 10:5 | Imm 15:11 |
1913 +--------------+--------------------------------+
1914 | Major | rx | ry | Imm 4:0 |
1915 +--------------+--------------------------------+
1916
1917 EXTEND is the five bit value 11110. Major is the instruction
1918 opcode.
1919
1920 All we need to do here is shuffle the bits appropriately.
1921 As above, the two 16-bit halves must be swapped on a
1922 little-endian system. */
1923
1924 static inline bfd_boolean
1925 mips16_reloc_p (int r_type)
1926 {
1927 switch (r_type)
1928 {
1929 case R_MIPS16_26:
1930 case R_MIPS16_GPREL:
1931 case R_MIPS16_GOT16:
1932 case R_MIPS16_CALL16:
1933 case R_MIPS16_HI16:
1934 case R_MIPS16_LO16:
1935 case R_MIPS16_TLS_GD:
1936 case R_MIPS16_TLS_LDM:
1937 case R_MIPS16_TLS_DTPREL_HI16:
1938 case R_MIPS16_TLS_DTPREL_LO16:
1939 case R_MIPS16_TLS_GOTTPREL:
1940 case R_MIPS16_TLS_TPREL_HI16:
1941 case R_MIPS16_TLS_TPREL_LO16:
1942 return TRUE;
1943
1944 default:
1945 return FALSE;
1946 }
1947 }
1948
1949 /* Check if a microMIPS reloc. */
1950
1951 static inline bfd_boolean
1952 micromips_reloc_p (unsigned int r_type)
1953 {
1954 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1955 }
1956
1957 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1958 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1959 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1960
1961 static inline bfd_boolean
1962 micromips_reloc_shuffle_p (unsigned int r_type)
1963 {
1964 return (micromips_reloc_p (r_type)
1965 && r_type != R_MICROMIPS_PC7_S1
1966 && r_type != R_MICROMIPS_PC10_S1);
1967 }
1968
1969 static inline bfd_boolean
1970 got16_reloc_p (int r_type)
1971 {
1972 return (r_type == R_MIPS_GOT16
1973 || r_type == R_MIPS16_GOT16
1974 || r_type == R_MICROMIPS_GOT16);
1975 }
1976
1977 static inline bfd_boolean
1978 call16_reloc_p (int r_type)
1979 {
1980 return (r_type == R_MIPS_CALL16
1981 || r_type == R_MIPS16_CALL16
1982 || r_type == R_MICROMIPS_CALL16);
1983 }
1984
1985 static inline bfd_boolean
1986 got_disp_reloc_p (unsigned int r_type)
1987 {
1988 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1989 }
1990
1991 static inline bfd_boolean
1992 got_page_reloc_p (unsigned int r_type)
1993 {
1994 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1995 }
1996
1997 static inline bfd_boolean
1998 got_ofst_reloc_p (unsigned int r_type)
1999 {
2000 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2001 }
2002
2003 static inline bfd_boolean
2004 got_hi16_reloc_p (unsigned int r_type)
2005 {
2006 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2007 }
2008
2009 static inline bfd_boolean
2010 got_lo16_reloc_p (unsigned int r_type)
2011 {
2012 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2013 }
2014
2015 static inline bfd_boolean
2016 call_hi16_reloc_p (unsigned int r_type)
2017 {
2018 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2019 }
2020
2021 static inline bfd_boolean
2022 call_lo16_reloc_p (unsigned int r_type)
2023 {
2024 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2025 }
2026
2027 static inline bfd_boolean
2028 hi16_reloc_p (int r_type)
2029 {
2030 return (r_type == R_MIPS_HI16
2031 || r_type == R_MIPS16_HI16
2032 || r_type == R_MICROMIPS_HI16);
2033 }
2034
2035 static inline bfd_boolean
2036 lo16_reloc_p (int r_type)
2037 {
2038 return (r_type == R_MIPS_LO16
2039 || r_type == R_MIPS16_LO16
2040 || r_type == R_MICROMIPS_LO16);
2041 }
2042
2043 static inline bfd_boolean
2044 mips16_call_reloc_p (int r_type)
2045 {
2046 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2047 }
2048
2049 static inline bfd_boolean
2050 jal_reloc_p (int r_type)
2051 {
2052 return (r_type == R_MIPS_26
2053 || r_type == R_MIPS16_26
2054 || r_type == R_MICROMIPS_26_S1);
2055 }
2056
2057 static inline bfd_boolean
2058 micromips_branch_reloc_p (int r_type)
2059 {
2060 return (r_type == R_MICROMIPS_26_S1
2061 || r_type == R_MICROMIPS_PC16_S1
2062 || r_type == R_MICROMIPS_PC10_S1
2063 || r_type == R_MICROMIPS_PC7_S1);
2064 }
2065
2066 static inline bfd_boolean
2067 tls_gd_reloc_p (unsigned int r_type)
2068 {
2069 return (r_type == R_MIPS_TLS_GD
2070 || r_type == R_MIPS16_TLS_GD
2071 || r_type == R_MICROMIPS_TLS_GD);
2072 }
2073
2074 static inline bfd_boolean
2075 tls_ldm_reloc_p (unsigned int r_type)
2076 {
2077 return (r_type == R_MIPS_TLS_LDM
2078 || r_type == R_MIPS16_TLS_LDM
2079 || r_type == R_MICROMIPS_TLS_LDM);
2080 }
2081
2082 static inline bfd_boolean
2083 tls_gottprel_reloc_p (unsigned int r_type)
2084 {
2085 return (r_type == R_MIPS_TLS_GOTTPREL
2086 || r_type == R_MIPS16_TLS_GOTTPREL
2087 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2088 }
2089
2090 void
2091 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2092 bfd_boolean jal_shuffle, bfd_byte *data)
2093 {
2094 bfd_vma first, second, val;
2095
2096 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2097 return;
2098
2099 /* Pick up the first and second halfwords of the instruction. */
2100 first = bfd_get_16 (abfd, data);
2101 second = bfd_get_16 (abfd, data + 2);
2102 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2103 val = first << 16 | second;
2104 else if (r_type != R_MIPS16_26)
2105 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2106 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2107 else
2108 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2109 | ((first & 0x1f) << 21) | second);
2110 bfd_put_32 (abfd, val, data);
2111 }
2112
2113 void
2114 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2115 bfd_boolean jal_shuffle, bfd_byte *data)
2116 {
2117 bfd_vma first, second, val;
2118
2119 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2120 return;
2121
2122 val = bfd_get_32 (abfd, data);
2123 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2124 {
2125 second = val & 0xffff;
2126 first = val >> 16;
2127 }
2128 else if (r_type != R_MIPS16_26)
2129 {
2130 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2131 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2132 }
2133 else
2134 {
2135 second = val & 0xffff;
2136 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2137 | ((val >> 21) & 0x1f);
2138 }
2139 bfd_put_16 (abfd, second, data + 2);
2140 bfd_put_16 (abfd, first, data);
2141 }
2142
2143 bfd_reloc_status_type
2144 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2145 arelent *reloc_entry, asection *input_section,
2146 bfd_boolean relocatable, void *data, bfd_vma gp)
2147 {
2148 bfd_vma relocation;
2149 bfd_signed_vma val;
2150 bfd_reloc_status_type status;
2151
2152 if (bfd_is_com_section (symbol->section))
2153 relocation = 0;
2154 else
2155 relocation = symbol->value;
2156
2157 relocation += symbol->section->output_section->vma;
2158 relocation += symbol->section->output_offset;
2159
2160 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2161 return bfd_reloc_outofrange;
2162
2163 /* Set val to the offset into the section or symbol. */
2164 val = reloc_entry->addend;
2165
2166 _bfd_mips_elf_sign_extend (val, 16);
2167
2168 /* Adjust val for the final section location and GP value. If we
2169 are producing relocatable output, we don't want to do this for
2170 an external symbol. */
2171 if (! relocatable
2172 || (symbol->flags & BSF_SECTION_SYM) != 0)
2173 val += relocation - gp;
2174
2175 if (reloc_entry->howto->partial_inplace)
2176 {
2177 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2178 (bfd_byte *) data
2179 + reloc_entry->address);
2180 if (status != bfd_reloc_ok)
2181 return status;
2182 }
2183 else
2184 reloc_entry->addend = val;
2185
2186 if (relocatable)
2187 reloc_entry->address += input_section->output_offset;
2188
2189 return bfd_reloc_ok;
2190 }
2191
2192 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2193 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2194 that contains the relocation field and DATA points to the start of
2195 INPUT_SECTION. */
2196
2197 struct mips_hi16
2198 {
2199 struct mips_hi16 *next;
2200 bfd_byte *data;
2201 asection *input_section;
2202 arelent rel;
2203 };
2204
2205 /* FIXME: This should not be a static variable. */
2206
2207 static struct mips_hi16 *mips_hi16_list;
2208
2209 /* A howto special_function for REL *HI16 relocations. We can only
2210 calculate the correct value once we've seen the partnering
2211 *LO16 relocation, so just save the information for later.
2212
2213 The ABI requires that the *LO16 immediately follow the *HI16.
2214 However, as a GNU extension, we permit an arbitrary number of
2215 *HI16s to be associated with a single *LO16. This significantly
2216 simplies the relocation handling in gcc. */
2217
2218 bfd_reloc_status_type
2219 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2220 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2221 asection *input_section, bfd *output_bfd,
2222 char **error_message ATTRIBUTE_UNUSED)
2223 {
2224 struct mips_hi16 *n;
2225
2226 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2227 return bfd_reloc_outofrange;
2228
2229 n = bfd_malloc (sizeof *n);
2230 if (n == NULL)
2231 return bfd_reloc_outofrange;
2232
2233 n->next = mips_hi16_list;
2234 n->data = data;
2235 n->input_section = input_section;
2236 n->rel = *reloc_entry;
2237 mips_hi16_list = n;
2238
2239 if (output_bfd != NULL)
2240 reloc_entry->address += input_section->output_offset;
2241
2242 return bfd_reloc_ok;
2243 }
2244
2245 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2246 like any other 16-bit relocation when applied to global symbols, but is
2247 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2248
2249 bfd_reloc_status_type
2250 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2251 void *data, asection *input_section,
2252 bfd *output_bfd, char **error_message)
2253 {
2254 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2255 || bfd_is_und_section (bfd_get_section (symbol))
2256 || bfd_is_com_section (bfd_get_section (symbol)))
2257 /* The relocation is against a global symbol. */
2258 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2259 input_section, output_bfd,
2260 error_message);
2261
2262 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2263 input_section, output_bfd, error_message);
2264 }
2265
2266 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2267 is a straightforward 16 bit inplace relocation, but we must deal with
2268 any partnering high-part relocations as well. */
2269
2270 bfd_reloc_status_type
2271 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274 {
2275 bfd_vma vallo;
2276 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2277
2278 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2279 return bfd_reloc_outofrange;
2280
2281 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2282 location);
2283 vallo = bfd_get_32 (abfd, location);
2284 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2285 location);
2286
2287 while (mips_hi16_list != NULL)
2288 {
2289 bfd_reloc_status_type ret;
2290 struct mips_hi16 *hi;
2291
2292 hi = mips_hi16_list;
2293
2294 /* R_MIPS*_GOT16 relocations are something of a special case. We
2295 want to install the addend in the same way as for a R_MIPS*_HI16
2296 relocation (with a rightshift of 16). However, since GOT16
2297 relocations can also be used with global symbols, their howto
2298 has a rightshift of 0. */
2299 if (hi->rel.howto->type == R_MIPS_GOT16)
2300 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2301 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2302 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2303 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2304 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2305
2306 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2307 carry or borrow will induce a change of +1 or -1 in the high part. */
2308 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2309
2310 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2311 hi->input_section, output_bfd,
2312 error_message);
2313 if (ret != bfd_reloc_ok)
2314 return ret;
2315
2316 mips_hi16_list = hi->next;
2317 free (hi);
2318 }
2319
2320 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2321 input_section, output_bfd,
2322 error_message);
2323 }
2324
2325 /* A generic howto special_function. This calculates and installs the
2326 relocation itself, thus avoiding the oft-discussed problems in
2327 bfd_perform_relocation and bfd_install_relocation. */
2328
2329 bfd_reloc_status_type
2330 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2331 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2332 asection *input_section, bfd *output_bfd,
2333 char **error_message ATTRIBUTE_UNUSED)
2334 {
2335 bfd_signed_vma val;
2336 bfd_reloc_status_type status;
2337 bfd_boolean relocatable;
2338
2339 relocatable = (output_bfd != NULL);
2340
2341 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2342 return bfd_reloc_outofrange;
2343
2344 /* Build up the field adjustment in VAL. */
2345 val = 0;
2346 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2347 {
2348 /* Either we're calculating the final field value or we have a
2349 relocation against a section symbol. Add in the section's
2350 offset or address. */
2351 val += symbol->section->output_section->vma;
2352 val += symbol->section->output_offset;
2353 }
2354
2355 if (!relocatable)
2356 {
2357 /* We're calculating the final field value. Add in the symbol's value
2358 and, if pc-relative, subtract the address of the field itself. */
2359 val += symbol->value;
2360 if (reloc_entry->howto->pc_relative)
2361 {
2362 val -= input_section->output_section->vma;
2363 val -= input_section->output_offset;
2364 val -= reloc_entry->address;
2365 }
2366 }
2367
2368 /* VAL is now the final adjustment. If we're keeping this relocation
2369 in the output file, and if the relocation uses a separate addend,
2370 we just need to add VAL to that addend. Otherwise we need to add
2371 VAL to the relocation field itself. */
2372 if (relocatable && !reloc_entry->howto->partial_inplace)
2373 reloc_entry->addend += val;
2374 else
2375 {
2376 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2377
2378 /* Add in the separate addend, if any. */
2379 val += reloc_entry->addend;
2380
2381 /* Add VAL to the relocation field. */
2382 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2383 location);
2384 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2385 location);
2386 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2387 location);
2388
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392
2393 if (relocatable)
2394 reloc_entry->address += input_section->output_offset;
2395
2396 return bfd_reloc_ok;
2397 }
2398 \f
2399 /* Swap an entry in a .gptab section. Note that these routines rely
2400 on the equivalence of the two elements of the union. */
2401
2402 static void
2403 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2404 Elf32_gptab *in)
2405 {
2406 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2407 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2408 }
2409
2410 static void
2411 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2412 Elf32_External_gptab *ex)
2413 {
2414 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2415 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2416 }
2417
2418 static void
2419 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2420 Elf32_External_compact_rel *ex)
2421 {
2422 H_PUT_32 (abfd, in->id1, ex->id1);
2423 H_PUT_32 (abfd, in->num, ex->num);
2424 H_PUT_32 (abfd, in->id2, ex->id2);
2425 H_PUT_32 (abfd, in->offset, ex->offset);
2426 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2427 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2428 }
2429
2430 static void
2431 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2432 Elf32_External_crinfo *ex)
2433 {
2434 unsigned long l;
2435
2436 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2437 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2438 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2439 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2440 H_PUT_32 (abfd, l, ex->info);
2441 H_PUT_32 (abfd, in->konst, ex->konst);
2442 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2443 }
2444 \f
2445 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2446 routines swap this structure in and out. They are used outside of
2447 BFD, so they are globally visible. */
2448
2449 void
2450 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2451 Elf32_RegInfo *in)
2452 {
2453 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2454 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2455 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2456 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2457 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2458 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2459 }
2460
2461 void
2462 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2463 Elf32_External_RegInfo *ex)
2464 {
2465 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2466 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2467 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2468 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2469 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2470 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2471 }
2472
2473 /* In the 64 bit ABI, the .MIPS.options section holds register
2474 information in an Elf64_Reginfo structure. These routines swap
2475 them in and out. They are globally visible because they are used
2476 outside of BFD. These routines are here so that gas can call them
2477 without worrying about whether the 64 bit ABI has been included. */
2478
2479 void
2480 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2481 Elf64_Internal_RegInfo *in)
2482 {
2483 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2484 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2485 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2486 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2487 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2488 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2489 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2490 }
2491
2492 void
2493 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2494 Elf64_External_RegInfo *ex)
2495 {
2496 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2497 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2498 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2499 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2500 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2501 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2502 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2503 }
2504
2505 /* Swap in an options header. */
2506
2507 void
2508 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2509 Elf_Internal_Options *in)
2510 {
2511 in->kind = H_GET_8 (abfd, ex->kind);
2512 in->size = H_GET_8 (abfd, ex->size);
2513 in->section = H_GET_16 (abfd, ex->section);
2514 in->info = H_GET_32 (abfd, ex->info);
2515 }
2516
2517 /* Swap out an options header. */
2518
2519 void
2520 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2521 Elf_External_Options *ex)
2522 {
2523 H_PUT_8 (abfd, in->kind, ex->kind);
2524 H_PUT_8 (abfd, in->size, ex->size);
2525 H_PUT_16 (abfd, in->section, ex->section);
2526 H_PUT_32 (abfd, in->info, ex->info);
2527 }
2528 \f
2529 /* This function is called via qsort() to sort the dynamic relocation
2530 entries by increasing r_symndx value. */
2531
2532 static int
2533 sort_dynamic_relocs (const void *arg1, const void *arg2)
2534 {
2535 Elf_Internal_Rela int_reloc1;
2536 Elf_Internal_Rela int_reloc2;
2537 int diff;
2538
2539 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2540 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2541
2542 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2543 if (diff != 0)
2544 return diff;
2545
2546 if (int_reloc1.r_offset < int_reloc2.r_offset)
2547 return -1;
2548 if (int_reloc1.r_offset > int_reloc2.r_offset)
2549 return 1;
2550 return 0;
2551 }
2552
2553 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2554
2555 static int
2556 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2557 const void *arg2 ATTRIBUTE_UNUSED)
2558 {
2559 #ifdef BFD64
2560 Elf_Internal_Rela int_reloc1[3];
2561 Elf_Internal_Rela int_reloc2[3];
2562
2563 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2564 (reldyn_sorting_bfd, arg1, int_reloc1);
2565 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2566 (reldyn_sorting_bfd, arg2, int_reloc2);
2567
2568 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2569 return -1;
2570 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2571 return 1;
2572
2573 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2574 return -1;
2575 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2576 return 1;
2577 return 0;
2578 #else
2579 abort ();
2580 #endif
2581 }
2582
2583
2584 /* This routine is used to write out ECOFF debugging external symbol
2585 information. It is called via mips_elf_link_hash_traverse. The
2586 ECOFF external symbol information must match the ELF external
2587 symbol information. Unfortunately, at this point we don't know
2588 whether a symbol is required by reloc information, so the two
2589 tables may wind up being different. We must sort out the external
2590 symbol information before we can set the final size of the .mdebug
2591 section, and we must set the size of the .mdebug section before we
2592 can relocate any sections, and we can't know which symbols are
2593 required by relocation until we relocate the sections.
2594 Fortunately, it is relatively unlikely that any symbol will be
2595 stripped but required by a reloc. In particular, it can not happen
2596 when generating a final executable. */
2597
2598 static bfd_boolean
2599 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2600 {
2601 struct extsym_info *einfo = data;
2602 bfd_boolean strip;
2603 asection *sec, *output_section;
2604
2605 if (h->root.indx == -2)
2606 strip = FALSE;
2607 else if ((h->root.def_dynamic
2608 || h->root.ref_dynamic
2609 || h->root.type == bfd_link_hash_new)
2610 && !h->root.def_regular
2611 && !h->root.ref_regular)
2612 strip = TRUE;
2613 else if (einfo->info->strip == strip_all
2614 || (einfo->info->strip == strip_some
2615 && bfd_hash_lookup (einfo->info->keep_hash,
2616 h->root.root.root.string,
2617 FALSE, FALSE) == NULL))
2618 strip = TRUE;
2619 else
2620 strip = FALSE;
2621
2622 if (strip)
2623 return TRUE;
2624
2625 if (h->esym.ifd == -2)
2626 {
2627 h->esym.jmptbl = 0;
2628 h->esym.cobol_main = 0;
2629 h->esym.weakext = 0;
2630 h->esym.reserved = 0;
2631 h->esym.ifd = ifdNil;
2632 h->esym.asym.value = 0;
2633 h->esym.asym.st = stGlobal;
2634
2635 if (h->root.root.type == bfd_link_hash_undefined
2636 || h->root.root.type == bfd_link_hash_undefweak)
2637 {
2638 const char *name;
2639
2640 /* Use undefined class. Also, set class and type for some
2641 special symbols. */
2642 name = h->root.root.root.string;
2643 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2644 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2645 {
2646 h->esym.asym.sc = scData;
2647 h->esym.asym.st = stLabel;
2648 h->esym.asym.value = 0;
2649 }
2650 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2651 {
2652 h->esym.asym.sc = scAbs;
2653 h->esym.asym.st = stLabel;
2654 h->esym.asym.value =
2655 mips_elf_hash_table (einfo->info)->procedure_count;
2656 }
2657 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2658 {
2659 h->esym.asym.sc = scAbs;
2660 h->esym.asym.st = stLabel;
2661 h->esym.asym.value = elf_gp (einfo->abfd);
2662 }
2663 else
2664 h->esym.asym.sc = scUndefined;
2665 }
2666 else if (h->root.root.type != bfd_link_hash_defined
2667 && h->root.root.type != bfd_link_hash_defweak)
2668 h->esym.asym.sc = scAbs;
2669 else
2670 {
2671 const char *name;
2672
2673 sec = h->root.root.u.def.section;
2674 output_section = sec->output_section;
2675
2676 /* When making a shared library and symbol h is the one from
2677 the another shared library, OUTPUT_SECTION may be null. */
2678 if (output_section == NULL)
2679 h->esym.asym.sc = scUndefined;
2680 else
2681 {
2682 name = bfd_section_name (output_section->owner, output_section);
2683
2684 if (strcmp (name, ".text") == 0)
2685 h->esym.asym.sc = scText;
2686 else if (strcmp (name, ".data") == 0)
2687 h->esym.asym.sc = scData;
2688 else if (strcmp (name, ".sdata") == 0)
2689 h->esym.asym.sc = scSData;
2690 else if (strcmp (name, ".rodata") == 0
2691 || strcmp (name, ".rdata") == 0)
2692 h->esym.asym.sc = scRData;
2693 else if (strcmp (name, ".bss") == 0)
2694 h->esym.asym.sc = scBss;
2695 else if (strcmp (name, ".sbss") == 0)
2696 h->esym.asym.sc = scSBss;
2697 else if (strcmp (name, ".init") == 0)
2698 h->esym.asym.sc = scInit;
2699 else if (strcmp (name, ".fini") == 0)
2700 h->esym.asym.sc = scFini;
2701 else
2702 h->esym.asym.sc = scAbs;
2703 }
2704 }
2705
2706 h->esym.asym.reserved = 0;
2707 h->esym.asym.index = indexNil;
2708 }
2709
2710 if (h->root.root.type == bfd_link_hash_common)
2711 h->esym.asym.value = h->root.root.u.c.size;
2712 else if (h->root.root.type == bfd_link_hash_defined
2713 || h->root.root.type == bfd_link_hash_defweak)
2714 {
2715 if (h->esym.asym.sc == scCommon)
2716 h->esym.asym.sc = scBss;
2717 else if (h->esym.asym.sc == scSCommon)
2718 h->esym.asym.sc = scSBss;
2719
2720 sec = h->root.root.u.def.section;
2721 output_section = sec->output_section;
2722 if (output_section != NULL)
2723 h->esym.asym.value = (h->root.root.u.def.value
2724 + sec->output_offset
2725 + output_section->vma);
2726 else
2727 h->esym.asym.value = 0;
2728 }
2729 else
2730 {
2731 struct mips_elf_link_hash_entry *hd = h;
2732
2733 while (hd->root.root.type == bfd_link_hash_indirect)
2734 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2735
2736 if (hd->needs_lazy_stub)
2737 {
2738 /* Set type and value for a symbol with a function stub. */
2739 h->esym.asym.st = stProc;
2740 sec = hd->root.root.u.def.section;
2741 if (sec == NULL)
2742 h->esym.asym.value = 0;
2743 else
2744 {
2745 output_section = sec->output_section;
2746 if (output_section != NULL)
2747 h->esym.asym.value = (hd->root.plt.offset
2748 + sec->output_offset
2749 + output_section->vma);
2750 else
2751 h->esym.asym.value = 0;
2752 }
2753 }
2754 }
2755
2756 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2757 h->root.root.root.string,
2758 &h->esym))
2759 {
2760 einfo->failed = TRUE;
2761 return FALSE;
2762 }
2763
2764 return TRUE;
2765 }
2766
2767 /* A comparison routine used to sort .gptab entries. */
2768
2769 static int
2770 gptab_compare (const void *p1, const void *p2)
2771 {
2772 const Elf32_gptab *a1 = p1;
2773 const Elf32_gptab *a2 = p2;
2774
2775 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2776 }
2777 \f
2778 /* Functions to manage the got entry hash table. */
2779
2780 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2781 hash number. */
2782
2783 static INLINE hashval_t
2784 mips_elf_hash_bfd_vma (bfd_vma addr)
2785 {
2786 #ifdef BFD64
2787 return addr + (addr >> 32);
2788 #else
2789 return addr;
2790 #endif
2791 }
2792
2793 /* got_entries only match if they're identical, except for gotidx, so
2794 use all fields to compute the hash, and compare the appropriate
2795 union members. */
2796
2797 static hashval_t
2798 mips_elf_got_entry_hash (const void *entry_)
2799 {
2800 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2801
2802 return entry->symndx
2803 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2804 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2805 : entry->abfd->id
2806 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2807 : entry->d.h->root.root.root.hash));
2808 }
2809
2810 static int
2811 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2812 {
2813 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2814 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2815
2816 /* An LDM entry can only match another LDM entry. */
2817 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2818 return 0;
2819
2820 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2821 && (! e1->abfd ? e1->d.address == e2->d.address
2822 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2823 : e1->d.h == e2->d.h);
2824 }
2825
2826 /* multi_got_entries are still a match in the case of global objects,
2827 even if the input bfd in which they're referenced differs, so the
2828 hash computation and compare functions are adjusted
2829 accordingly. */
2830
2831 static hashval_t
2832 mips_elf_multi_got_entry_hash (const void *entry_)
2833 {
2834 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2835
2836 return entry->symndx
2837 + (! entry->abfd
2838 ? mips_elf_hash_bfd_vma (entry->d.address)
2839 : entry->symndx >= 0
2840 ? ((entry->tls_type & GOT_TLS_LDM)
2841 ? (GOT_TLS_LDM << 17)
2842 : (entry->abfd->id
2843 + mips_elf_hash_bfd_vma (entry->d.addend)))
2844 : entry->d.h->root.root.root.hash);
2845 }
2846
2847 static int
2848 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2849 {
2850 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2851 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2852
2853 /* Any two LDM entries match. */
2854 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2855 return 1;
2856
2857 /* Nothing else matches an LDM entry. */
2858 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2859 return 0;
2860
2861 return e1->symndx == e2->symndx
2862 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2863 : e1->abfd == NULL || e2->abfd == NULL
2864 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2865 : e1->d.h == e2->d.h);
2866 }
2867
2868 static hashval_t
2869 mips_got_page_entry_hash (const void *entry_)
2870 {
2871 const struct mips_got_page_entry *entry;
2872
2873 entry = (const struct mips_got_page_entry *) entry_;
2874 return entry->abfd->id + entry->symndx;
2875 }
2876
2877 static int
2878 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2879 {
2880 const struct mips_got_page_entry *entry1, *entry2;
2881
2882 entry1 = (const struct mips_got_page_entry *) entry1_;
2883 entry2 = (const struct mips_got_page_entry *) entry2_;
2884 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2885 }
2886 \f
2887 /* Return the dynamic relocation section. If it doesn't exist, try to
2888 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2889 if creation fails. */
2890
2891 static asection *
2892 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2893 {
2894 const char *dname;
2895 asection *sreloc;
2896 bfd *dynobj;
2897
2898 dname = MIPS_ELF_REL_DYN_NAME (info);
2899 dynobj = elf_hash_table (info)->dynobj;
2900 sreloc = bfd_get_linker_section (dynobj, dname);
2901 if (sreloc == NULL && create_p)
2902 {
2903 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2904 (SEC_ALLOC
2905 | SEC_LOAD
2906 | SEC_HAS_CONTENTS
2907 | SEC_IN_MEMORY
2908 | SEC_LINKER_CREATED
2909 | SEC_READONLY));
2910 if (sreloc == NULL
2911 || ! bfd_set_section_alignment (dynobj, sreloc,
2912 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2913 return NULL;
2914 }
2915 return sreloc;
2916 }
2917
2918 /* Count the number of relocations needed for a TLS GOT entry, with
2919 access types from TLS_TYPE, and symbol H (or a local symbol if H
2920 is NULL). */
2921
2922 static int
2923 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2924 struct elf_link_hash_entry *h)
2925 {
2926 int indx = 0;
2927 int ret = 0;
2928 bfd_boolean need_relocs = FALSE;
2929 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2930
2931 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2932 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2933 indx = h->dynindx;
2934
2935 if ((info->shared || indx != 0)
2936 && (h == NULL
2937 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2938 || h->root.type != bfd_link_hash_undefweak))
2939 need_relocs = TRUE;
2940
2941 if (!need_relocs)
2942 return FALSE;
2943
2944 if (tls_type & GOT_TLS_GD)
2945 {
2946 ret++;
2947 if (indx != 0)
2948 ret++;
2949 }
2950
2951 if (tls_type & GOT_TLS_IE)
2952 ret++;
2953
2954 if ((tls_type & GOT_TLS_LDM) && info->shared)
2955 ret++;
2956
2957 return ret;
2958 }
2959
2960 /* Count the number of TLS relocations required for the GOT entry in
2961 ARG1, if it describes a local symbol. */
2962
2963 static int
2964 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2965 {
2966 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2967 struct mips_elf_count_tls_arg *arg = arg2;
2968
2969 if (entry->abfd != NULL && entry->symndx != -1)
2970 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2971
2972 return 1;
2973 }
2974
2975 /* Count the number of TLS GOT entries required for the global (or
2976 forced-local) symbol in ARG1. */
2977
2978 static int
2979 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2980 {
2981 struct mips_elf_link_hash_entry *hm
2982 = (struct mips_elf_link_hash_entry *) arg1;
2983 struct mips_elf_count_tls_arg *arg = arg2;
2984
2985 if (hm->root.root.type == bfd_link_hash_indirect
2986 || hm->root.root.type == bfd_link_hash_warning)
2987 return 1;
2988
2989 if (hm->tls_type & GOT_TLS_GD)
2990 arg->needed += 2;
2991 if (hm->tls_type & GOT_TLS_IE)
2992 arg->needed += 1;
2993
2994 return 1;
2995 }
2996
2997 /* Count the number of TLS relocations required for the global (or
2998 forced-local) symbol in ARG1. */
2999
3000 static int
3001 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
3002 {
3003 struct mips_elf_link_hash_entry *hm
3004 = (struct mips_elf_link_hash_entry *) arg1;
3005 struct mips_elf_count_tls_arg *arg = arg2;
3006
3007 if (hm->root.root.type == bfd_link_hash_indirect
3008 || hm->root.root.type == bfd_link_hash_warning)
3009 return 1;
3010
3011 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
3012
3013 return 1;
3014 }
3015
3016 /* Output a simple dynamic relocation into SRELOC. */
3017
3018 static void
3019 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3020 asection *sreloc,
3021 unsigned long reloc_index,
3022 unsigned long indx,
3023 int r_type,
3024 bfd_vma offset)
3025 {
3026 Elf_Internal_Rela rel[3];
3027
3028 memset (rel, 0, sizeof (rel));
3029
3030 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3031 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3032
3033 if (ABI_64_P (output_bfd))
3034 {
3035 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3036 (output_bfd, &rel[0],
3037 (sreloc->contents
3038 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3039 }
3040 else
3041 bfd_elf32_swap_reloc_out
3042 (output_bfd, &rel[0],
3043 (sreloc->contents
3044 + reloc_index * sizeof (Elf32_External_Rel)));
3045 }
3046
3047 /* Initialize a set of TLS GOT entries for one symbol. */
3048
3049 static void
3050 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3051 unsigned char *tls_type_p,
3052 struct bfd_link_info *info,
3053 struct mips_elf_link_hash_entry *h,
3054 bfd_vma value)
3055 {
3056 struct mips_elf_link_hash_table *htab;
3057 int indx;
3058 asection *sreloc, *sgot;
3059 bfd_vma offset, offset2;
3060 bfd_boolean need_relocs = FALSE;
3061
3062 htab = mips_elf_hash_table (info);
3063 if (htab == NULL)
3064 return;
3065
3066 sgot = htab->sgot;
3067
3068 indx = 0;
3069 if (h != NULL)
3070 {
3071 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3072
3073 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3074 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3075 indx = h->root.dynindx;
3076 }
3077
3078 if (*tls_type_p & GOT_TLS_DONE)
3079 return;
3080
3081 if ((info->shared || indx != 0)
3082 && (h == NULL
3083 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3084 || h->root.type != bfd_link_hash_undefweak))
3085 need_relocs = TRUE;
3086
3087 /* MINUS_ONE means the symbol is not defined in this object. It may not
3088 be defined at all; assume that the value doesn't matter in that
3089 case. Otherwise complain if we would use the value. */
3090 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3091 || h->root.root.type == bfd_link_hash_undefweak);
3092
3093 /* Emit necessary relocations. */
3094 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3095
3096 /* General Dynamic. */
3097 if (*tls_type_p & GOT_TLS_GD)
3098 {
3099 offset = got_offset;
3100 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3101
3102 if (need_relocs)
3103 {
3104 mips_elf_output_dynamic_relocation
3105 (abfd, sreloc, sreloc->reloc_count++, indx,
3106 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3107 sgot->output_offset + sgot->output_section->vma + offset);
3108
3109 if (indx)
3110 mips_elf_output_dynamic_relocation
3111 (abfd, sreloc, sreloc->reloc_count++, indx,
3112 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3113 sgot->output_offset + sgot->output_section->vma + offset2);
3114 else
3115 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3116 sgot->contents + offset2);
3117 }
3118 else
3119 {
3120 MIPS_ELF_PUT_WORD (abfd, 1,
3121 sgot->contents + offset);
3122 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3123 sgot->contents + offset2);
3124 }
3125
3126 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3127 }
3128
3129 /* Initial Exec model. */
3130 if (*tls_type_p & GOT_TLS_IE)
3131 {
3132 offset = got_offset;
3133
3134 if (need_relocs)
3135 {
3136 if (indx == 0)
3137 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3138 sgot->contents + offset);
3139 else
3140 MIPS_ELF_PUT_WORD (abfd, 0,
3141 sgot->contents + offset);
3142
3143 mips_elf_output_dynamic_relocation
3144 (abfd, sreloc, sreloc->reloc_count++, indx,
3145 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3146 sgot->output_offset + sgot->output_section->vma + offset);
3147 }
3148 else
3149 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3150 sgot->contents + offset);
3151 }
3152
3153 if (*tls_type_p & GOT_TLS_LDM)
3154 {
3155 /* The initial offset is zero, and the LD offsets will include the
3156 bias by DTP_OFFSET. */
3157 MIPS_ELF_PUT_WORD (abfd, 0,
3158 sgot->contents + got_offset
3159 + MIPS_ELF_GOT_SIZE (abfd));
3160
3161 if (!info->shared)
3162 MIPS_ELF_PUT_WORD (abfd, 1,
3163 sgot->contents + got_offset);
3164 else
3165 mips_elf_output_dynamic_relocation
3166 (abfd, sreloc, sreloc->reloc_count++, indx,
3167 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3168 sgot->output_offset + sgot->output_section->vma + got_offset);
3169 }
3170
3171 *tls_type_p |= GOT_TLS_DONE;
3172 }
3173
3174 /* Return the GOT index to use for a relocation of type R_TYPE against
3175 a symbol accessed using TLS_TYPE models. The GOT entries for this
3176 symbol in this GOT start at GOT_INDEX. This function initializes the
3177 GOT entries and corresponding relocations. */
3178
3179 static bfd_vma
3180 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3181 int r_type, struct bfd_link_info *info,
3182 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3183 {
3184 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3185 || tls_gd_reloc_p (r_type)
3186 || tls_ldm_reloc_p (r_type));
3187
3188 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3189
3190 if (tls_gottprel_reloc_p (r_type))
3191 {
3192 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3193 if (*tls_type & GOT_TLS_GD)
3194 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3195 else
3196 return got_index;
3197 }
3198
3199 if (tls_gd_reloc_p (r_type))
3200 {
3201 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3202 return got_index;
3203 }
3204
3205 if (tls_ldm_reloc_p (r_type))
3206 {
3207 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3208 return got_index;
3209 }
3210
3211 return got_index;
3212 }
3213
3214 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3215 for global symbol H. .got.plt comes before the GOT, so the offset
3216 will be negative. */
3217
3218 static bfd_vma
3219 mips_elf_gotplt_index (struct bfd_link_info *info,
3220 struct elf_link_hash_entry *h)
3221 {
3222 bfd_vma plt_index, got_address, got_value;
3223 struct mips_elf_link_hash_table *htab;
3224
3225 htab = mips_elf_hash_table (info);
3226 BFD_ASSERT (htab != NULL);
3227
3228 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3229
3230 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3231 section starts with reserved entries. */
3232 BFD_ASSERT (htab->is_vxworks);
3233
3234 /* Calculate the index of the symbol's PLT entry. */
3235 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3236
3237 /* Calculate the address of the associated .got.plt entry. */
3238 got_address = (htab->sgotplt->output_section->vma
3239 + htab->sgotplt->output_offset
3240 + plt_index * 4);
3241
3242 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3243 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3244 + htab->root.hgot->root.u.def.section->output_offset
3245 + htab->root.hgot->root.u.def.value);
3246
3247 return got_address - got_value;
3248 }
3249
3250 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3251 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3252 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3253 offset can be found. */
3254
3255 static bfd_vma
3256 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3257 bfd_vma value, unsigned long r_symndx,
3258 struct mips_elf_link_hash_entry *h, int r_type)
3259 {
3260 struct mips_elf_link_hash_table *htab;
3261 struct mips_got_entry *entry;
3262
3263 htab = mips_elf_hash_table (info);
3264 BFD_ASSERT (htab != NULL);
3265
3266 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3267 r_symndx, h, r_type);
3268 if (!entry)
3269 return MINUS_ONE;
3270
3271 if (TLS_RELOC_P (r_type))
3272 {
3273 if (entry->symndx == -1 && htab->got_info->next == NULL)
3274 /* A type (3) entry in the single-GOT case. We use the symbol's
3275 hash table entry to track the index. */
3276 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3277 r_type, info, h, value);
3278 else
3279 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3280 r_type, info, h, value);
3281 }
3282 else
3283 return entry->gotidx;
3284 }
3285
3286 /* Returns the GOT index for the global symbol indicated by H. */
3287
3288 static bfd_vma
3289 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3290 int r_type, struct bfd_link_info *info)
3291 {
3292 struct mips_elf_link_hash_table *htab;
3293 bfd_vma got_index;
3294 struct mips_got_info *g, *gg;
3295 long global_got_dynindx = 0;
3296
3297 htab = mips_elf_hash_table (info);
3298 BFD_ASSERT (htab != NULL);
3299
3300 gg = g = htab->got_info;
3301 if (g->bfd2got && ibfd)
3302 {
3303 struct mips_got_entry e, *p;
3304
3305 BFD_ASSERT (h->dynindx >= 0);
3306
3307 g = mips_elf_got_for_ibfd (g, ibfd);
3308 if (g->next != gg || TLS_RELOC_P (r_type))
3309 {
3310 e.abfd = ibfd;
3311 e.symndx = -1;
3312 e.d.h = (struct mips_elf_link_hash_entry *)h;
3313 e.tls_type = 0;
3314
3315 p = htab_find (g->got_entries, &e);
3316
3317 BFD_ASSERT (p->gotidx > 0);
3318
3319 if (TLS_RELOC_P (r_type))
3320 {
3321 bfd_vma value = MINUS_ONE;
3322 if ((h->root.type == bfd_link_hash_defined
3323 || h->root.type == bfd_link_hash_defweak)
3324 && h->root.u.def.section->output_section)
3325 value = (h->root.u.def.value
3326 + h->root.u.def.section->output_offset
3327 + h->root.u.def.section->output_section->vma);
3328
3329 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3330 info, e.d.h, value);
3331 }
3332 else
3333 return p->gotidx;
3334 }
3335 }
3336
3337 if (gg->global_gotsym != NULL)
3338 global_got_dynindx = gg->global_gotsym->dynindx;
3339
3340 if (TLS_RELOC_P (r_type))
3341 {
3342 struct mips_elf_link_hash_entry *hm
3343 = (struct mips_elf_link_hash_entry *) h;
3344 bfd_vma value = MINUS_ONE;
3345
3346 if ((h->root.type == bfd_link_hash_defined
3347 || h->root.type == bfd_link_hash_defweak)
3348 && h->root.u.def.section->output_section)
3349 value = (h->root.u.def.value
3350 + h->root.u.def.section->output_offset
3351 + h->root.u.def.section->output_section->vma);
3352
3353 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3354 r_type, info, hm, value);
3355 }
3356 else
3357 {
3358 /* Once we determine the global GOT entry with the lowest dynamic
3359 symbol table index, we must put all dynamic symbols with greater
3360 indices into the GOT. That makes it easy to calculate the GOT
3361 offset. */
3362 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3363 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3364 * MIPS_ELF_GOT_SIZE (abfd));
3365 }
3366 BFD_ASSERT (got_index < htab->sgot->size);
3367
3368 return got_index;
3369 }
3370
3371 /* Find a GOT page entry that points to within 32KB of VALUE. These
3372 entries are supposed to be placed at small offsets in the GOT, i.e.,
3373 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3374 entry could be created. If OFFSETP is nonnull, use it to return the
3375 offset of the GOT entry from VALUE. */
3376
3377 static bfd_vma
3378 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3379 bfd_vma value, bfd_vma *offsetp)
3380 {
3381 bfd_vma page, got_index;
3382 struct mips_got_entry *entry;
3383
3384 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3385 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3386 NULL, R_MIPS_GOT_PAGE);
3387
3388 if (!entry)
3389 return MINUS_ONE;
3390
3391 got_index = entry->gotidx;
3392
3393 if (offsetp)
3394 *offsetp = value - entry->d.address;
3395
3396 return got_index;
3397 }
3398
3399 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3400 EXTERNAL is true if the relocation was originally against a global
3401 symbol that binds locally. */
3402
3403 static bfd_vma
3404 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3405 bfd_vma value, bfd_boolean external)
3406 {
3407 struct mips_got_entry *entry;
3408
3409 /* GOT16 relocations against local symbols are followed by a LO16
3410 relocation; those against global symbols are not. Thus if the
3411 symbol was originally local, the GOT16 relocation should load the
3412 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3413 if (! external)
3414 value = mips_elf_high (value) << 16;
3415
3416 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3417 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3418 same in all cases. */
3419 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3420 NULL, R_MIPS_GOT16);
3421 if (entry)
3422 return entry->gotidx;
3423 else
3424 return MINUS_ONE;
3425 }
3426
3427 /* Returns the offset for the entry at the INDEXth position
3428 in the GOT. */
3429
3430 static bfd_vma
3431 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3432 bfd *input_bfd, bfd_vma got_index)
3433 {
3434 struct mips_elf_link_hash_table *htab;
3435 asection *sgot;
3436 bfd_vma gp;
3437
3438 htab = mips_elf_hash_table (info);
3439 BFD_ASSERT (htab != NULL);
3440
3441 sgot = htab->sgot;
3442 gp = _bfd_get_gp_value (output_bfd)
3443 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3444
3445 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3446 }
3447
3448 /* Create and return a local GOT entry for VALUE, which was calculated
3449 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3450 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3451 instead. */
3452
3453 static struct mips_got_entry *
3454 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3455 bfd *ibfd, bfd_vma value,
3456 unsigned long r_symndx,
3457 struct mips_elf_link_hash_entry *h,
3458 int r_type)
3459 {
3460 struct mips_got_entry entry, **loc;
3461 struct mips_got_info *g;
3462 struct mips_elf_link_hash_table *htab;
3463
3464 htab = mips_elf_hash_table (info);
3465 BFD_ASSERT (htab != NULL);
3466
3467 entry.abfd = NULL;
3468 entry.symndx = -1;
3469 entry.d.address = value;
3470 entry.tls_type = 0;
3471
3472 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3473 if (g == NULL)
3474 {
3475 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3476 BFD_ASSERT (g != NULL);
3477 }
3478
3479 /* This function shouldn't be called for symbols that live in the global
3480 area of the GOT. */
3481 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3482 if (TLS_RELOC_P (r_type))
3483 {
3484 struct mips_got_entry *p;
3485
3486 entry.abfd = ibfd;
3487 if (tls_ldm_reloc_p (r_type))
3488 {
3489 entry.tls_type = GOT_TLS_LDM;
3490 entry.symndx = 0;
3491 entry.d.addend = 0;
3492 }
3493 else if (h == NULL)
3494 {
3495 entry.symndx = r_symndx;
3496 entry.d.addend = 0;
3497 }
3498 else
3499 entry.d.h = h;
3500
3501 p = (struct mips_got_entry *)
3502 htab_find (g->got_entries, &entry);
3503
3504 BFD_ASSERT (p);
3505 return p;
3506 }
3507
3508 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3509 INSERT);
3510 if (*loc)
3511 return *loc;
3512
3513 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3514 entry.tls_type = 0;
3515
3516 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3517
3518 if (! *loc)
3519 return NULL;
3520
3521 memcpy (*loc, &entry, sizeof entry);
3522
3523 if (g->assigned_gotno > g->local_gotno)
3524 {
3525 (*loc)->gotidx = -1;
3526 /* We didn't allocate enough space in the GOT. */
3527 (*_bfd_error_handler)
3528 (_("not enough GOT space for local GOT entries"));
3529 bfd_set_error (bfd_error_bad_value);
3530 return NULL;
3531 }
3532
3533 MIPS_ELF_PUT_WORD (abfd, value,
3534 (htab->sgot->contents + entry.gotidx));
3535
3536 /* These GOT entries need a dynamic relocation on VxWorks. */
3537 if (htab->is_vxworks)
3538 {
3539 Elf_Internal_Rela outrel;
3540 asection *s;
3541 bfd_byte *rloc;
3542 bfd_vma got_address;
3543
3544 s = mips_elf_rel_dyn_section (info, FALSE);
3545 got_address = (htab->sgot->output_section->vma
3546 + htab->sgot->output_offset
3547 + entry.gotidx);
3548
3549 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3550 outrel.r_offset = got_address;
3551 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3552 outrel.r_addend = value;
3553 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3554 }
3555
3556 return *loc;
3557 }
3558
3559 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3560 The number might be exact or a worst-case estimate, depending on how
3561 much information is available to elf_backend_omit_section_dynsym at
3562 the current linking stage. */
3563
3564 static bfd_size_type
3565 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3566 {
3567 bfd_size_type count;
3568
3569 count = 0;
3570 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3571 {
3572 asection *p;
3573 const struct elf_backend_data *bed;
3574
3575 bed = get_elf_backend_data (output_bfd);
3576 for (p = output_bfd->sections; p ; p = p->next)
3577 if ((p->flags & SEC_EXCLUDE) == 0
3578 && (p->flags & SEC_ALLOC) != 0
3579 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3580 ++count;
3581 }
3582 return count;
3583 }
3584
3585 /* Sort the dynamic symbol table so that symbols that need GOT entries
3586 appear towards the end. */
3587
3588 static bfd_boolean
3589 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3590 {
3591 struct mips_elf_link_hash_table *htab;
3592 struct mips_elf_hash_sort_data hsd;
3593 struct mips_got_info *g;
3594
3595 if (elf_hash_table (info)->dynsymcount == 0)
3596 return TRUE;
3597
3598 htab = mips_elf_hash_table (info);
3599 BFD_ASSERT (htab != NULL);
3600
3601 g = htab->got_info;
3602 if (g == NULL)
3603 return TRUE;
3604
3605 hsd.low = NULL;
3606 hsd.max_unref_got_dynindx
3607 = hsd.min_got_dynindx
3608 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3609 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3610 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3611 elf_hash_table (info)),
3612 mips_elf_sort_hash_table_f,
3613 &hsd);
3614
3615 /* There should have been enough room in the symbol table to
3616 accommodate both the GOT and non-GOT symbols. */
3617 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3618 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3619 == elf_hash_table (info)->dynsymcount);
3620 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3621 == g->global_gotno);
3622
3623 /* Now we know which dynamic symbol has the lowest dynamic symbol
3624 table index in the GOT. */
3625 g->global_gotsym = hsd.low;
3626
3627 return TRUE;
3628 }
3629
3630 /* If H needs a GOT entry, assign it the highest available dynamic
3631 index. Otherwise, assign it the lowest available dynamic
3632 index. */
3633
3634 static bfd_boolean
3635 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3636 {
3637 struct mips_elf_hash_sort_data *hsd = data;
3638
3639 /* Symbols without dynamic symbol table entries aren't interesting
3640 at all. */
3641 if (h->root.dynindx == -1)
3642 return TRUE;
3643
3644 switch (h->global_got_area)
3645 {
3646 case GGA_NONE:
3647 h->root.dynindx = hsd->max_non_got_dynindx++;
3648 break;
3649
3650 case GGA_NORMAL:
3651 h->root.dynindx = --hsd->min_got_dynindx;
3652 hsd->low = (struct elf_link_hash_entry *) h;
3653 break;
3654
3655 case GGA_RELOC_ONLY:
3656 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3657 hsd->low = (struct elf_link_hash_entry *) h;
3658 h->root.dynindx = hsd->max_unref_got_dynindx++;
3659 break;
3660 }
3661
3662 return TRUE;
3663 }
3664
3665 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3666 symbol table index lower than any we've seen to date, record it for
3667 posterity. FOR_CALL is true if the caller is only interested in
3668 using the GOT entry for calls. */
3669
3670 static bfd_boolean
3671 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3672 bfd *abfd, struct bfd_link_info *info,
3673 bfd_boolean for_call,
3674 unsigned char tls_flag)
3675 {
3676 struct mips_elf_link_hash_table *htab;
3677 struct mips_elf_link_hash_entry *hmips;
3678 struct mips_got_entry entry, **loc;
3679 struct mips_got_info *g;
3680
3681 htab = mips_elf_hash_table (info);
3682 BFD_ASSERT (htab != NULL);
3683
3684 hmips = (struct mips_elf_link_hash_entry *) h;
3685 if (!for_call)
3686 hmips->got_only_for_calls = FALSE;
3687
3688 /* A global symbol in the GOT must also be in the dynamic symbol
3689 table. */
3690 if (h->dynindx == -1)
3691 {
3692 switch (ELF_ST_VISIBILITY (h->other))
3693 {
3694 case STV_INTERNAL:
3695 case STV_HIDDEN:
3696 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3697 break;
3698 }
3699 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3700 return FALSE;
3701 }
3702
3703 /* Make sure we have a GOT to put this entry into. */
3704 g = htab->got_info;
3705 BFD_ASSERT (g != NULL);
3706
3707 entry.abfd = abfd;
3708 entry.symndx = -1;
3709 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3710 entry.tls_type = 0;
3711
3712 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3713 INSERT);
3714
3715 /* If we've already marked this entry as needing GOT space, we don't
3716 need to do it again. */
3717 if (*loc)
3718 {
3719 (*loc)->tls_type |= tls_flag;
3720 return TRUE;
3721 }
3722
3723 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3724
3725 if (! *loc)
3726 return FALSE;
3727
3728 entry.gotidx = -1;
3729 entry.tls_type = tls_flag;
3730
3731 memcpy (*loc, &entry, sizeof entry);
3732
3733 if (tls_flag == 0)
3734 hmips->global_got_area = GGA_NORMAL;
3735
3736 return TRUE;
3737 }
3738
3739 /* Reserve space in G for a GOT entry containing the value of symbol
3740 SYMNDX in input bfd ABDF, plus ADDEND. */
3741
3742 static bfd_boolean
3743 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3744 struct bfd_link_info *info,
3745 unsigned char tls_flag)
3746 {
3747 struct mips_elf_link_hash_table *htab;
3748 struct mips_got_info *g;
3749 struct mips_got_entry entry, **loc;
3750
3751 htab = mips_elf_hash_table (info);
3752 BFD_ASSERT (htab != NULL);
3753
3754 g = htab->got_info;
3755 BFD_ASSERT (g != NULL);
3756
3757 entry.abfd = abfd;
3758 entry.symndx = symndx;
3759 entry.d.addend = addend;
3760 entry.tls_type = tls_flag;
3761 loc = (struct mips_got_entry **)
3762 htab_find_slot (g->got_entries, &entry, INSERT);
3763
3764 if (*loc)
3765 {
3766 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3767 {
3768 g->tls_gotno += 2;
3769 (*loc)->tls_type |= tls_flag;
3770 }
3771 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3772 {
3773 g->tls_gotno += 1;
3774 (*loc)->tls_type |= tls_flag;
3775 }
3776 return TRUE;
3777 }
3778
3779 if (tls_flag != 0)
3780 {
3781 entry.gotidx = -1;
3782 entry.tls_type = tls_flag;
3783 if (tls_flag == GOT_TLS_IE)
3784 g->tls_gotno += 1;
3785 else if (tls_flag == GOT_TLS_GD)
3786 g->tls_gotno += 2;
3787 else if (g->tls_ldm_offset == MINUS_ONE)
3788 {
3789 g->tls_ldm_offset = MINUS_TWO;
3790 g->tls_gotno += 2;
3791 }
3792 }
3793 else
3794 {
3795 entry.gotidx = g->local_gotno++;
3796 entry.tls_type = 0;
3797 }
3798
3799 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3800
3801 if (! *loc)
3802 return FALSE;
3803
3804 memcpy (*loc, &entry, sizeof entry);
3805
3806 return TRUE;
3807 }
3808
3809 /* Return the maximum number of GOT page entries required for RANGE. */
3810
3811 static bfd_vma
3812 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3813 {
3814 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3815 }
3816
3817 /* Record that ABFD has a page relocation against symbol SYMNDX and
3818 that ADDEND is the addend for that relocation.
3819
3820 This function creates an upper bound on the number of GOT slots
3821 required; no attempt is made to combine references to non-overridable
3822 global symbols across multiple input files. */
3823
3824 static bfd_boolean
3825 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3826 long symndx, bfd_signed_vma addend)
3827 {
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_got_info *g;
3830 struct mips_got_page_entry lookup, *entry;
3831 struct mips_got_page_range **range_ptr, *range;
3832 bfd_vma old_pages, new_pages;
3833 void **loc;
3834
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3837
3838 g = htab->got_info;
3839 BFD_ASSERT (g != NULL);
3840
3841 /* Find the mips_got_page_entry hash table entry for this symbol. */
3842 lookup.abfd = abfd;
3843 lookup.symndx = symndx;
3844 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3845 if (loc == NULL)
3846 return FALSE;
3847
3848 /* Create a mips_got_page_entry if this is the first time we've
3849 seen the symbol. */
3850 entry = (struct mips_got_page_entry *) *loc;
3851 if (!entry)
3852 {
3853 entry = bfd_alloc (abfd, sizeof (*entry));
3854 if (!entry)
3855 return FALSE;
3856
3857 entry->abfd = abfd;
3858 entry->symndx = symndx;
3859 entry->ranges = NULL;
3860 entry->num_pages = 0;
3861 *loc = entry;
3862 }
3863
3864 /* Skip over ranges whose maximum extent cannot share a page entry
3865 with ADDEND. */
3866 range_ptr = &entry->ranges;
3867 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3868 range_ptr = &(*range_ptr)->next;
3869
3870 /* If we scanned to the end of the list, or found a range whose
3871 minimum extent cannot share a page entry with ADDEND, create
3872 a new singleton range. */
3873 range = *range_ptr;
3874 if (!range || addend < range->min_addend - 0xffff)
3875 {
3876 range = bfd_alloc (abfd, sizeof (*range));
3877 if (!range)
3878 return FALSE;
3879
3880 range->next = *range_ptr;
3881 range->min_addend = addend;
3882 range->max_addend = addend;
3883
3884 *range_ptr = range;
3885 entry->num_pages++;
3886 g->page_gotno++;
3887 return TRUE;
3888 }
3889
3890 /* Remember how many pages the old range contributed. */
3891 old_pages = mips_elf_pages_for_range (range);
3892
3893 /* Update the ranges. */
3894 if (addend < range->min_addend)
3895 range->min_addend = addend;
3896 else if (addend > range->max_addend)
3897 {
3898 if (range->next && addend >= range->next->min_addend - 0xffff)
3899 {
3900 old_pages += mips_elf_pages_for_range (range->next);
3901 range->max_addend = range->next->max_addend;
3902 range->next = range->next->next;
3903 }
3904 else
3905 range->max_addend = addend;
3906 }
3907
3908 /* Record any change in the total estimate. */
3909 new_pages = mips_elf_pages_for_range (range);
3910 if (old_pages != new_pages)
3911 {
3912 entry->num_pages += new_pages - old_pages;
3913 g->page_gotno += new_pages - old_pages;
3914 }
3915
3916 return TRUE;
3917 }
3918
3919 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3920
3921 static void
3922 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3923 unsigned int n)
3924 {
3925 asection *s;
3926 struct mips_elf_link_hash_table *htab;
3927
3928 htab = mips_elf_hash_table (info);
3929 BFD_ASSERT (htab != NULL);
3930
3931 s = mips_elf_rel_dyn_section (info, FALSE);
3932 BFD_ASSERT (s != NULL);
3933
3934 if (htab->is_vxworks)
3935 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3936 else
3937 {
3938 if (s->size == 0)
3939 {
3940 /* Make room for a null element. */
3941 s->size += MIPS_ELF_REL_SIZE (abfd);
3942 ++s->reloc_count;
3943 }
3944 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3945 }
3946 }
3947 \f
3948 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3949 if the GOT entry is for an indirect or warning symbol. */
3950
3951 static int
3952 mips_elf_check_recreate_got (void **entryp, void *data)
3953 {
3954 struct mips_got_entry *entry;
3955 bfd_boolean *must_recreate;
3956
3957 entry = (struct mips_got_entry *) *entryp;
3958 must_recreate = (bfd_boolean *) data;
3959 if (entry->abfd != NULL && entry->symndx == -1)
3960 {
3961 struct mips_elf_link_hash_entry *h;
3962
3963 h = entry->d.h;
3964 if (h->root.root.type == bfd_link_hash_indirect
3965 || h->root.root.type == bfd_link_hash_warning)
3966 {
3967 *must_recreate = TRUE;
3968 return 0;
3969 }
3970 }
3971 return 1;
3972 }
3973
3974 /* A htab_traverse callback for GOT entries. Add all entries to
3975 hash table *DATA, converting entries for indirect and warning
3976 symbols into entries for the target symbol. Set *DATA to null
3977 on error. */
3978
3979 static int
3980 mips_elf_recreate_got (void **entryp, void *data)
3981 {
3982 htab_t *new_got;
3983 struct mips_got_entry *entry;
3984 void **slot;
3985
3986 new_got = (htab_t *) data;
3987 entry = (struct mips_got_entry *) *entryp;
3988 if (entry->abfd != NULL && entry->symndx == -1)
3989 {
3990 struct mips_elf_link_hash_entry *h;
3991
3992 h = entry->d.h;
3993 while (h->root.root.type == bfd_link_hash_indirect
3994 || h->root.root.type == bfd_link_hash_warning)
3995 {
3996 BFD_ASSERT (h->global_got_area == GGA_NONE);
3997 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3998 }
3999 entry->d.h = h;
4000 }
4001 slot = htab_find_slot (*new_got, entry, INSERT);
4002 if (slot == NULL)
4003 {
4004 *new_got = NULL;
4005 return 0;
4006 }
4007 if (*slot == NULL)
4008 *slot = entry;
4009 return 1;
4010 }
4011
4012 /* If any entries in G->got_entries are for indirect or warning symbols,
4013 replace them with entries for the target symbol. */
4014
4015 static bfd_boolean
4016 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4017 {
4018 bfd_boolean must_recreate;
4019 htab_t new_got;
4020
4021 must_recreate = FALSE;
4022 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4023 if (must_recreate)
4024 {
4025 new_got = htab_create (htab_size (g->got_entries),
4026 mips_elf_got_entry_hash,
4027 mips_elf_got_entry_eq, NULL);
4028 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4029 if (new_got == NULL)
4030 return FALSE;
4031
4032 htab_delete (g->got_entries);
4033 g->got_entries = new_got;
4034 }
4035 return TRUE;
4036 }
4037
4038 /* A mips_elf_link_hash_traverse callback for which DATA points
4039 to the link_info structure. Count the number of type (3) entries
4040 in the master GOT. */
4041
4042 static int
4043 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4044 {
4045 struct bfd_link_info *info;
4046 struct mips_elf_link_hash_table *htab;
4047 struct mips_got_info *g;
4048
4049 info = (struct bfd_link_info *) data;
4050 htab = mips_elf_hash_table (info);
4051 g = htab->got_info;
4052 if (h->global_got_area != GGA_NONE)
4053 {
4054 /* Make a final decision about whether the symbol belongs in the
4055 local or global GOT. Symbols that bind locally can (and in the
4056 case of forced-local symbols, must) live in the local GOT.
4057 Those that are aren't in the dynamic symbol table must also
4058 live in the local GOT.
4059
4060 Note that the former condition does not always imply the
4061 latter: symbols do not bind locally if they are completely
4062 undefined. We'll report undefined symbols later if appropriate. */
4063 if (h->root.dynindx == -1
4064 || (h->got_only_for_calls
4065 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4066 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4067 {
4068 /* The symbol belongs in the local GOT. We no longer need this
4069 entry if it was only used for relocations; those relocations
4070 will be against the null or section symbol instead of H. */
4071 if (h->global_got_area != GGA_RELOC_ONLY)
4072 g->local_gotno++;
4073 h->global_got_area = GGA_NONE;
4074 }
4075 else if (htab->is_vxworks
4076 && h->got_only_for_calls
4077 && h->root.plt.offset != MINUS_ONE)
4078 /* On VxWorks, calls can refer directly to the .got.plt entry;
4079 they don't need entries in the regular GOT. .got.plt entries
4080 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4081 h->global_got_area = GGA_NONE;
4082 else
4083 {
4084 g->global_gotno++;
4085 if (h->global_got_area == GGA_RELOC_ONLY)
4086 g->reloc_only_gotno++;
4087 }
4088 }
4089 return 1;
4090 }
4091 \f
4092 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4093
4094 static hashval_t
4095 mips_elf_bfd2got_entry_hash (const void *entry_)
4096 {
4097 const struct mips_elf_bfd2got_hash *entry
4098 = (struct mips_elf_bfd2got_hash *)entry_;
4099
4100 return entry->bfd->id;
4101 }
4102
4103 /* Check whether two hash entries have the same bfd. */
4104
4105 static int
4106 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4107 {
4108 const struct mips_elf_bfd2got_hash *e1
4109 = (const struct mips_elf_bfd2got_hash *)entry1;
4110 const struct mips_elf_bfd2got_hash *e2
4111 = (const struct mips_elf_bfd2got_hash *)entry2;
4112
4113 return e1->bfd == e2->bfd;
4114 }
4115
4116 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4117 be the master GOT data. */
4118
4119 static struct mips_got_info *
4120 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4121 {
4122 struct mips_elf_bfd2got_hash e, *p;
4123
4124 if (! g->bfd2got)
4125 return g;
4126
4127 e.bfd = ibfd;
4128 p = htab_find (g->bfd2got, &e);
4129 return p ? p->g : NULL;
4130 }
4131
4132 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4133 Return NULL if an error occured. */
4134
4135 static struct mips_got_info *
4136 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4137 bfd *input_bfd)
4138 {
4139 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4140 struct mips_got_info *g;
4141 void **bfdgotp;
4142
4143 bfdgot_entry.bfd = input_bfd;
4144 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4145 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4146
4147 if (bfdgot == NULL)
4148 {
4149 bfdgot = ((struct mips_elf_bfd2got_hash *)
4150 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4151 if (bfdgot == NULL)
4152 return NULL;
4153
4154 *bfdgotp = bfdgot;
4155
4156 g = ((struct mips_got_info *)
4157 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4158 if (g == NULL)
4159 return NULL;
4160
4161 bfdgot->bfd = input_bfd;
4162 bfdgot->g = g;
4163
4164 g->global_gotsym = NULL;
4165 g->global_gotno = 0;
4166 g->reloc_only_gotno = 0;
4167 g->local_gotno = 0;
4168 g->page_gotno = 0;
4169 g->assigned_gotno = -1;
4170 g->tls_gotno = 0;
4171 g->tls_assigned_gotno = 0;
4172 g->tls_ldm_offset = MINUS_ONE;
4173 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4174 mips_elf_multi_got_entry_eq, NULL);
4175 if (g->got_entries == NULL)
4176 return NULL;
4177
4178 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4179 mips_got_page_entry_eq, NULL);
4180 if (g->got_page_entries == NULL)
4181 return NULL;
4182
4183 g->bfd2got = NULL;
4184 g->next = NULL;
4185 }
4186
4187 return bfdgot->g;
4188 }
4189
4190 /* A htab_traverse callback for the entries in the master got.
4191 Create one separate got for each bfd that has entries in the global
4192 got, such that we can tell how many local and global entries each
4193 bfd requires. */
4194
4195 static int
4196 mips_elf_make_got_per_bfd (void **entryp, void *p)
4197 {
4198 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4199 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4200 struct mips_got_info *g;
4201
4202 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4203 if (g == NULL)
4204 {
4205 arg->obfd = NULL;
4206 return 0;
4207 }
4208
4209 /* Insert the GOT entry in the bfd's got entry hash table. */
4210 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4211 if (*entryp != NULL)
4212 return 1;
4213
4214 *entryp = entry;
4215
4216 if (entry->tls_type)
4217 {
4218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4219 g->tls_gotno += 2;
4220 if (entry->tls_type & GOT_TLS_IE)
4221 g->tls_gotno += 1;
4222 }
4223 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4224 ++g->local_gotno;
4225 else
4226 ++g->global_gotno;
4227
4228 return 1;
4229 }
4230
4231 /* A htab_traverse callback for the page entries in the master got.
4232 Associate each page entry with the bfd's got. */
4233
4234 static int
4235 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4236 {
4237 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4238 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4239 struct mips_got_info *g;
4240
4241 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4242 if (g == NULL)
4243 {
4244 arg->obfd = NULL;
4245 return 0;
4246 }
4247
4248 /* Insert the GOT entry in the bfd's got entry hash table. */
4249 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4250 if (*entryp != NULL)
4251 return 1;
4252
4253 *entryp = entry;
4254 g->page_gotno += entry->num_pages;
4255 return 1;
4256 }
4257
4258 /* Consider merging the got described by BFD2GOT with TO, using the
4259 information given by ARG. Return -1 if this would lead to overflow,
4260 1 if they were merged successfully, and 0 if a merge failed due to
4261 lack of memory. (These values are chosen so that nonnegative return
4262 values can be returned by a htab_traverse callback.) */
4263
4264 static int
4265 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4266 struct mips_got_info *to,
4267 struct mips_elf_got_per_bfd_arg *arg)
4268 {
4269 struct mips_got_info *from = bfd2got->g;
4270 unsigned int estimate;
4271
4272 /* Work out how many page entries we would need for the combined GOT. */
4273 estimate = arg->max_pages;
4274 if (estimate >= from->page_gotno + to->page_gotno)
4275 estimate = from->page_gotno + to->page_gotno;
4276
4277 /* And conservatively estimate how many local and TLS entries
4278 would be needed. */
4279 estimate += from->local_gotno + to->local_gotno;
4280 estimate += from->tls_gotno + to->tls_gotno;
4281
4282 /* If we're merging with the primary got, any TLS relocations will
4283 come after the full set of global entries. Otherwise estimate those
4284 conservatively as well. */
4285 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4286 estimate += arg->global_count;
4287 else
4288 estimate += from->global_gotno + to->global_gotno;
4289
4290 /* Bail out if the combined GOT might be too big. */
4291 if (estimate > arg->max_count)
4292 return -1;
4293
4294 /* Commit to the merge. Record that TO is now the bfd for this got. */
4295 bfd2got->g = to;
4296
4297 /* Transfer the bfd's got information from FROM to TO. */
4298 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4299 if (arg->obfd == NULL)
4300 return 0;
4301
4302 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4303 if (arg->obfd == NULL)
4304 return 0;
4305
4306 /* We don't have to worry about releasing memory of the actual
4307 got entries, since they're all in the master got_entries hash
4308 table anyway. */
4309 htab_delete (from->got_entries);
4310 htab_delete (from->got_page_entries);
4311 return 1;
4312 }
4313
4314 /* Attempt to merge gots of different input bfds. Try to use as much
4315 as possible of the primary got, since it doesn't require explicit
4316 dynamic relocations, but don't use bfds that would reference global
4317 symbols out of the addressable range. Failing the primary got,
4318 attempt to merge with the current got, or finish the current got
4319 and then make make the new got current. */
4320
4321 static int
4322 mips_elf_merge_gots (void **bfd2got_, void *p)
4323 {
4324 struct mips_elf_bfd2got_hash *bfd2got
4325 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4326 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4327 struct mips_got_info *g;
4328 unsigned int estimate;
4329 int result;
4330
4331 g = bfd2got->g;
4332
4333 /* Work out the number of page, local and TLS entries. */
4334 estimate = arg->max_pages;
4335 if (estimate > g->page_gotno)
4336 estimate = g->page_gotno;
4337 estimate += g->local_gotno + g->tls_gotno;
4338
4339 /* We place TLS GOT entries after both locals and globals. The globals
4340 for the primary GOT may overflow the normal GOT size limit, so be
4341 sure not to merge a GOT which requires TLS with the primary GOT in that
4342 case. This doesn't affect non-primary GOTs. */
4343 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4344
4345 if (estimate <= arg->max_count)
4346 {
4347 /* If we don't have a primary GOT, use it as
4348 a starting point for the primary GOT. */
4349 if (!arg->primary)
4350 {
4351 arg->primary = bfd2got->g;
4352 return 1;
4353 }
4354
4355 /* Try merging with the primary GOT. */
4356 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4357 if (result >= 0)
4358 return result;
4359 }
4360
4361 /* If we can merge with the last-created got, do it. */
4362 if (arg->current)
4363 {
4364 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4365 if (result >= 0)
4366 return result;
4367 }
4368
4369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4370 fits; if it turns out that it doesn't, we'll get relocation
4371 overflows anyway. */
4372 g->next = arg->current;
4373 arg->current = g;
4374
4375 return 1;
4376 }
4377
4378 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4379 is null iff there is just a single GOT. */
4380
4381 static int
4382 mips_elf_initialize_tls_index (void **entryp, void *p)
4383 {
4384 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4385 struct mips_got_info *g = p;
4386 bfd_vma next_index;
4387 unsigned char tls_type;
4388
4389 /* We're only interested in TLS symbols. */
4390 if (entry->tls_type == 0)
4391 return 1;
4392
4393 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4394
4395 if (entry->symndx == -1 && g->next == NULL)
4396 {
4397 /* A type (3) got entry in the single-GOT case. We use the symbol's
4398 hash table entry to track its index. */
4399 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4400 return 1;
4401 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4402 entry->d.h->tls_got_offset = next_index;
4403 tls_type = entry->d.h->tls_type;
4404 }
4405 else
4406 {
4407 if (entry->tls_type & GOT_TLS_LDM)
4408 {
4409 /* There are separate mips_got_entry objects for each input bfd
4410 that requires an LDM entry. Make sure that all LDM entries in
4411 a GOT resolve to the same index. */
4412 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4413 {
4414 entry->gotidx = g->tls_ldm_offset;
4415 return 1;
4416 }
4417 g->tls_ldm_offset = next_index;
4418 }
4419 entry->gotidx = next_index;
4420 tls_type = entry->tls_type;
4421 }
4422
4423 /* Account for the entries we've just allocated. */
4424 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4425 g->tls_assigned_gotno += 2;
4426 if (tls_type & GOT_TLS_IE)
4427 g->tls_assigned_gotno += 1;
4428
4429 return 1;
4430 }
4431
4432 /* If passed a NULL mips_got_info in the argument, set the marker used
4433 to tell whether a global symbol needs a got entry (in the primary
4434 got) to the given VALUE.
4435
4436 If passed a pointer G to a mips_got_info in the argument (it must
4437 not be the primary GOT), compute the offset from the beginning of
4438 the (primary) GOT section to the entry in G corresponding to the
4439 global symbol. G's assigned_gotno must contain the index of the
4440 first available global GOT entry in G. VALUE must contain the size
4441 of a GOT entry in bytes. For each global GOT entry that requires a
4442 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4443 marked as not eligible for lazy resolution through a function
4444 stub. */
4445 static int
4446 mips_elf_set_global_got_offset (void **entryp, void *p)
4447 {
4448 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4449 struct mips_elf_set_global_got_offset_arg *arg
4450 = (struct mips_elf_set_global_got_offset_arg *)p;
4451 struct mips_got_info *g = arg->g;
4452
4453 if (g && entry->tls_type != GOT_NORMAL)
4454 arg->needed_relocs +=
4455 mips_tls_got_relocs (arg->info, entry->tls_type,
4456 entry->symndx == -1 ? &entry->d.h->root : NULL);
4457
4458 if (entry->abfd != NULL
4459 && entry->symndx == -1
4460 && entry->d.h->global_got_area != GGA_NONE)
4461 {
4462 if (g)
4463 {
4464 BFD_ASSERT (g->global_gotsym == NULL);
4465
4466 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4467 if (arg->info->shared
4468 || (elf_hash_table (arg->info)->dynamic_sections_created
4469 && entry->d.h->root.def_dynamic
4470 && !entry->d.h->root.def_regular))
4471 ++arg->needed_relocs;
4472 }
4473 else
4474 entry->d.h->global_got_area = arg->value;
4475 }
4476
4477 return 1;
4478 }
4479
4480 /* A htab_traverse callback for GOT entries for which DATA is the
4481 bfd_link_info. Forbid any global symbols from having traditional
4482 lazy-binding stubs. */
4483
4484 static int
4485 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4486 {
4487 struct bfd_link_info *info;
4488 struct mips_elf_link_hash_table *htab;
4489 struct mips_got_entry *entry;
4490
4491 entry = (struct mips_got_entry *) *entryp;
4492 info = (struct bfd_link_info *) data;
4493 htab = mips_elf_hash_table (info);
4494 BFD_ASSERT (htab != NULL);
4495
4496 if (entry->abfd != NULL
4497 && entry->symndx == -1
4498 && entry->d.h->needs_lazy_stub)
4499 {
4500 entry->d.h->needs_lazy_stub = FALSE;
4501 htab->lazy_stub_count--;
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4508 the primary GOT. */
4509 static bfd_vma
4510 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4511 {
4512 if (g->bfd2got == NULL)
4513 return 0;
4514
4515 g = mips_elf_got_for_ibfd (g, ibfd);
4516 if (! g)
4517 return 0;
4518
4519 BFD_ASSERT (g->next);
4520
4521 g = g->next;
4522
4523 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4524 * MIPS_ELF_GOT_SIZE (abfd);
4525 }
4526
4527 /* Turn a single GOT that is too big for 16-bit addressing into
4528 a sequence of GOTs, each one 16-bit addressable. */
4529
4530 static bfd_boolean
4531 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4532 asection *got, bfd_size_type pages)
4533 {
4534 struct mips_elf_link_hash_table *htab;
4535 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4536 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4537 struct mips_got_info *g, *gg;
4538 unsigned int assign, needed_relocs;
4539 bfd *dynobj;
4540
4541 dynobj = elf_hash_table (info)->dynobj;
4542 htab = mips_elf_hash_table (info);
4543 BFD_ASSERT (htab != NULL);
4544
4545 g = htab->got_info;
4546 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4547 mips_elf_bfd2got_entry_eq, NULL);
4548 if (g->bfd2got == NULL)
4549 return FALSE;
4550
4551 got_per_bfd_arg.bfd2got = g->bfd2got;
4552 got_per_bfd_arg.obfd = abfd;
4553 got_per_bfd_arg.info = info;
4554
4555 /* Count how many GOT entries each input bfd requires, creating a
4556 map from bfd to got info while at that. */
4557 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4558 if (got_per_bfd_arg.obfd == NULL)
4559 return FALSE;
4560
4561 /* Also count how many page entries each input bfd requires. */
4562 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4563 &got_per_bfd_arg);
4564 if (got_per_bfd_arg.obfd == NULL)
4565 return FALSE;
4566
4567 got_per_bfd_arg.current = NULL;
4568 got_per_bfd_arg.primary = NULL;
4569 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4570 / MIPS_ELF_GOT_SIZE (abfd))
4571 - htab->reserved_gotno);
4572 got_per_bfd_arg.max_pages = pages;
4573 /* The number of globals that will be included in the primary GOT.
4574 See the calls to mips_elf_set_global_got_offset below for more
4575 information. */
4576 got_per_bfd_arg.global_count = g->global_gotno;
4577
4578 /* Try to merge the GOTs of input bfds together, as long as they
4579 don't seem to exceed the maximum GOT size, choosing one of them
4580 to be the primary GOT. */
4581 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4582 if (got_per_bfd_arg.obfd == NULL)
4583 return FALSE;
4584
4585 /* If we do not find any suitable primary GOT, create an empty one. */
4586 if (got_per_bfd_arg.primary == NULL)
4587 {
4588 g->next = (struct mips_got_info *)
4589 bfd_alloc (abfd, sizeof (struct mips_got_info));
4590 if (g->next == NULL)
4591 return FALSE;
4592
4593 g->next->global_gotsym = NULL;
4594 g->next->global_gotno = 0;
4595 g->next->reloc_only_gotno = 0;
4596 g->next->local_gotno = 0;
4597 g->next->page_gotno = 0;
4598 g->next->tls_gotno = 0;
4599 g->next->assigned_gotno = 0;
4600 g->next->tls_assigned_gotno = 0;
4601 g->next->tls_ldm_offset = MINUS_ONE;
4602 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4603 mips_elf_multi_got_entry_eq,
4604 NULL);
4605 if (g->next->got_entries == NULL)
4606 return FALSE;
4607 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4608 mips_got_page_entry_eq,
4609 NULL);
4610 if (g->next->got_page_entries == NULL)
4611 return FALSE;
4612 g->next->bfd2got = NULL;
4613 }
4614 else
4615 g->next = got_per_bfd_arg.primary;
4616 g->next->next = got_per_bfd_arg.current;
4617
4618 /* GG is now the master GOT, and G is the primary GOT. */
4619 gg = g;
4620 g = g->next;
4621
4622 /* Map the output bfd to the primary got. That's what we're going
4623 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4624 didn't mark in check_relocs, and we want a quick way to find it.
4625 We can't just use gg->next because we're going to reverse the
4626 list. */
4627 {
4628 struct mips_elf_bfd2got_hash *bfdgot;
4629 void **bfdgotp;
4630
4631 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4632 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4633
4634 if (bfdgot == NULL)
4635 return FALSE;
4636
4637 bfdgot->bfd = abfd;
4638 bfdgot->g = g;
4639 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4640
4641 BFD_ASSERT (*bfdgotp == NULL);
4642 *bfdgotp = bfdgot;
4643 }
4644
4645 /* Every symbol that is referenced in a dynamic relocation must be
4646 present in the primary GOT, so arrange for them to appear after
4647 those that are actually referenced. */
4648 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4649 g->global_gotno = gg->global_gotno;
4650
4651 set_got_offset_arg.g = NULL;
4652 set_got_offset_arg.value = GGA_RELOC_ONLY;
4653 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4654 &set_got_offset_arg);
4655 set_got_offset_arg.value = GGA_NORMAL;
4656 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4657 &set_got_offset_arg);
4658
4659 /* Now go through the GOTs assigning them offset ranges.
4660 [assigned_gotno, local_gotno[ will be set to the range of local
4661 entries in each GOT. We can then compute the end of a GOT by
4662 adding local_gotno to global_gotno. We reverse the list and make
4663 it circular since then we'll be able to quickly compute the
4664 beginning of a GOT, by computing the end of its predecessor. To
4665 avoid special cases for the primary GOT, while still preserving
4666 assertions that are valid for both single- and multi-got links,
4667 we arrange for the main got struct to have the right number of
4668 global entries, but set its local_gotno such that the initial
4669 offset of the primary GOT is zero. Remember that the primary GOT
4670 will become the last item in the circular linked list, so it
4671 points back to the master GOT. */
4672 gg->local_gotno = -g->global_gotno;
4673 gg->global_gotno = g->global_gotno;
4674 gg->tls_gotno = 0;
4675 assign = 0;
4676 gg->next = gg;
4677
4678 do
4679 {
4680 struct mips_got_info *gn;
4681
4682 assign += htab->reserved_gotno;
4683 g->assigned_gotno = assign;
4684 g->local_gotno += assign;
4685 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4686 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4687
4688 /* Take g out of the direct list, and push it onto the reversed
4689 list that gg points to. g->next is guaranteed to be nonnull after
4690 this operation, as required by mips_elf_initialize_tls_index. */
4691 gn = g->next;
4692 g->next = gg->next;
4693 gg->next = g;
4694
4695 /* Set up any TLS entries. We always place the TLS entries after
4696 all non-TLS entries. */
4697 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4698 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4699 BFD_ASSERT (g->tls_assigned_gotno == assign);
4700
4701 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4702 g = gn;
4703
4704 /* Forbid global symbols in every non-primary GOT from having
4705 lazy-binding stubs. */
4706 if (g)
4707 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4708 }
4709 while (g);
4710
4711 got->size = (gg->next->local_gotno
4712 + gg->next->global_gotno
4713 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4714
4715 needed_relocs = 0;
4716 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4717 set_got_offset_arg.info = info;
4718 for (g = gg->next; g && g->next != gg; g = g->next)
4719 {
4720 unsigned int save_assign;
4721
4722 /* Assign offsets to global GOT entries. */
4723 save_assign = g->assigned_gotno;
4724 g->assigned_gotno = g->local_gotno;
4725 set_got_offset_arg.g = g;
4726 set_got_offset_arg.needed_relocs = 0;
4727 htab_traverse (g->got_entries,
4728 mips_elf_set_global_got_offset,
4729 &set_got_offset_arg);
4730 needed_relocs += set_got_offset_arg.needed_relocs;
4731 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4732
4733 g->assigned_gotno = save_assign;
4734 if (info->shared)
4735 {
4736 needed_relocs += g->local_gotno - g->assigned_gotno;
4737 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4738 + g->next->global_gotno
4739 + g->next->tls_gotno
4740 + htab->reserved_gotno);
4741 }
4742 }
4743
4744 if (needed_relocs)
4745 mips_elf_allocate_dynamic_relocations (dynobj, info,
4746 needed_relocs);
4747
4748 return TRUE;
4749 }
4750
4751 \f
4752 /* Returns the first relocation of type r_type found, beginning with
4753 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4754
4755 static const Elf_Internal_Rela *
4756 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4757 const Elf_Internal_Rela *relocation,
4758 const Elf_Internal_Rela *relend)
4759 {
4760 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4761
4762 while (relocation < relend)
4763 {
4764 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4765 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4766 return relocation;
4767
4768 ++relocation;
4769 }
4770
4771 /* We didn't find it. */
4772 return NULL;
4773 }
4774
4775 /* Return whether an input relocation is against a local symbol. */
4776
4777 static bfd_boolean
4778 mips_elf_local_relocation_p (bfd *input_bfd,
4779 const Elf_Internal_Rela *relocation,
4780 asection **local_sections)
4781 {
4782 unsigned long r_symndx;
4783 Elf_Internal_Shdr *symtab_hdr;
4784 size_t extsymoff;
4785
4786 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4787 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4788 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4789
4790 if (r_symndx < extsymoff)
4791 return TRUE;
4792 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4793 return TRUE;
4794
4795 return FALSE;
4796 }
4797 \f
4798 /* Sign-extend VALUE, which has the indicated number of BITS. */
4799
4800 bfd_vma
4801 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4802 {
4803 if (value & ((bfd_vma) 1 << (bits - 1)))
4804 /* VALUE is negative. */
4805 value |= ((bfd_vma) - 1) << bits;
4806
4807 return value;
4808 }
4809
4810 /* Return non-zero if the indicated VALUE has overflowed the maximum
4811 range expressible by a signed number with the indicated number of
4812 BITS. */
4813
4814 static bfd_boolean
4815 mips_elf_overflow_p (bfd_vma value, int bits)
4816 {
4817 bfd_signed_vma svalue = (bfd_signed_vma) value;
4818
4819 if (svalue > (1 << (bits - 1)) - 1)
4820 /* The value is too big. */
4821 return TRUE;
4822 else if (svalue < -(1 << (bits - 1)))
4823 /* The value is too small. */
4824 return TRUE;
4825
4826 /* All is well. */
4827 return FALSE;
4828 }
4829
4830 /* Calculate the %high function. */
4831
4832 static bfd_vma
4833 mips_elf_high (bfd_vma value)
4834 {
4835 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4836 }
4837
4838 /* Calculate the %higher function. */
4839
4840 static bfd_vma
4841 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4842 {
4843 #ifdef BFD64
4844 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4845 #else
4846 abort ();
4847 return MINUS_ONE;
4848 #endif
4849 }
4850
4851 /* Calculate the %highest function. */
4852
4853 static bfd_vma
4854 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4855 {
4856 #ifdef BFD64
4857 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4858 #else
4859 abort ();
4860 return MINUS_ONE;
4861 #endif
4862 }
4863 \f
4864 /* Create the .compact_rel section. */
4865
4866 static bfd_boolean
4867 mips_elf_create_compact_rel_section
4868 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4869 {
4870 flagword flags;
4871 register asection *s;
4872
4873 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4874 {
4875 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4876 | SEC_READONLY);
4877
4878 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4879 if (s == NULL
4880 || ! bfd_set_section_alignment (abfd, s,
4881 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4882 return FALSE;
4883
4884 s->size = sizeof (Elf32_External_compact_rel);
4885 }
4886
4887 return TRUE;
4888 }
4889
4890 /* Create the .got section to hold the global offset table. */
4891
4892 static bfd_boolean
4893 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4894 {
4895 flagword flags;
4896 register asection *s;
4897 struct elf_link_hash_entry *h;
4898 struct bfd_link_hash_entry *bh;
4899 struct mips_got_info *g;
4900 bfd_size_type amt;
4901 struct mips_elf_link_hash_table *htab;
4902
4903 htab = mips_elf_hash_table (info);
4904 BFD_ASSERT (htab != NULL);
4905
4906 /* This function may be called more than once. */
4907 if (htab->sgot)
4908 return TRUE;
4909
4910 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4911 | SEC_LINKER_CREATED);
4912
4913 /* We have to use an alignment of 2**4 here because this is hardcoded
4914 in the function stub generation and in the linker script. */
4915 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4916 if (s == NULL
4917 || ! bfd_set_section_alignment (abfd, s, 4))
4918 return FALSE;
4919 htab->sgot = s;
4920
4921 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4922 linker script because we don't want to define the symbol if we
4923 are not creating a global offset table. */
4924 bh = NULL;
4925 if (! (_bfd_generic_link_add_one_symbol
4926 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4927 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4928 return FALSE;
4929
4930 h = (struct elf_link_hash_entry *) bh;
4931 h->non_elf = 0;
4932 h->def_regular = 1;
4933 h->type = STT_OBJECT;
4934 elf_hash_table (info)->hgot = h;
4935
4936 if (info->shared
4937 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4938 return FALSE;
4939
4940 amt = sizeof (struct mips_got_info);
4941 g = bfd_alloc (abfd, amt);
4942 if (g == NULL)
4943 return FALSE;
4944 g->global_gotsym = NULL;
4945 g->global_gotno = 0;
4946 g->reloc_only_gotno = 0;
4947 g->tls_gotno = 0;
4948 g->local_gotno = 0;
4949 g->page_gotno = 0;
4950 g->assigned_gotno = 0;
4951 g->bfd2got = NULL;
4952 g->next = NULL;
4953 g->tls_ldm_offset = MINUS_ONE;
4954 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4955 mips_elf_got_entry_eq, NULL);
4956 if (g->got_entries == NULL)
4957 return FALSE;
4958 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4959 mips_got_page_entry_eq, NULL);
4960 if (g->got_page_entries == NULL)
4961 return FALSE;
4962 htab->got_info = g;
4963 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4964 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4965
4966 /* We also need a .got.plt section when generating PLTs. */
4967 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4968 SEC_ALLOC | SEC_LOAD
4969 | SEC_HAS_CONTENTS
4970 | SEC_IN_MEMORY
4971 | SEC_LINKER_CREATED);
4972 if (s == NULL)
4973 return FALSE;
4974 htab->sgotplt = s;
4975
4976 return TRUE;
4977 }
4978 \f
4979 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4980 __GOTT_INDEX__ symbols. These symbols are only special for
4981 shared objects; they are not used in executables. */
4982
4983 static bfd_boolean
4984 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4985 {
4986 return (mips_elf_hash_table (info)->is_vxworks
4987 && info->shared
4988 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4989 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4990 }
4991
4992 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4993 require an la25 stub. See also mips_elf_local_pic_function_p,
4994 which determines whether the destination function ever requires a
4995 stub. */
4996
4997 static bfd_boolean
4998 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4999 bfd_boolean target_is_16_bit_code_p)
5000 {
5001 /* We specifically ignore branches and jumps from EF_PIC objects,
5002 where the onus is on the compiler or programmer to perform any
5003 necessary initialization of $25. Sometimes such initialization
5004 is unnecessary; for example, -mno-shared functions do not use
5005 the incoming value of $25, and may therefore be called directly. */
5006 if (PIC_OBJECT_P (input_bfd))
5007 return FALSE;
5008
5009 switch (r_type)
5010 {
5011 case R_MIPS_26:
5012 case R_MIPS_PC16:
5013 case R_MICROMIPS_26_S1:
5014 case R_MICROMIPS_PC7_S1:
5015 case R_MICROMIPS_PC10_S1:
5016 case R_MICROMIPS_PC16_S1:
5017 case R_MICROMIPS_PC23_S2:
5018 return TRUE;
5019
5020 case R_MIPS16_26:
5021 return !target_is_16_bit_code_p;
5022
5023 default:
5024 return FALSE;
5025 }
5026 }
5027 \f
5028 /* Calculate the value produced by the RELOCATION (which comes from
5029 the INPUT_BFD). The ADDEND is the addend to use for this
5030 RELOCATION; RELOCATION->R_ADDEND is ignored.
5031
5032 The result of the relocation calculation is stored in VALUEP.
5033 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5034 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5035
5036 This function returns bfd_reloc_continue if the caller need take no
5037 further action regarding this relocation, bfd_reloc_notsupported if
5038 something goes dramatically wrong, bfd_reloc_overflow if an
5039 overflow occurs, and bfd_reloc_ok to indicate success. */
5040
5041 static bfd_reloc_status_type
5042 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5043 asection *input_section,
5044 struct bfd_link_info *info,
5045 const Elf_Internal_Rela *relocation,
5046 bfd_vma addend, reloc_howto_type *howto,
5047 Elf_Internal_Sym *local_syms,
5048 asection **local_sections, bfd_vma *valuep,
5049 const char **namep,
5050 bfd_boolean *cross_mode_jump_p,
5051 bfd_boolean save_addend)
5052 {
5053 /* The eventual value we will return. */
5054 bfd_vma value;
5055 /* The address of the symbol against which the relocation is
5056 occurring. */
5057 bfd_vma symbol = 0;
5058 /* The final GP value to be used for the relocatable, executable, or
5059 shared object file being produced. */
5060 bfd_vma gp;
5061 /* The place (section offset or address) of the storage unit being
5062 relocated. */
5063 bfd_vma p;
5064 /* The value of GP used to create the relocatable object. */
5065 bfd_vma gp0;
5066 /* The offset into the global offset table at which the address of
5067 the relocation entry symbol, adjusted by the addend, resides
5068 during execution. */
5069 bfd_vma g = MINUS_ONE;
5070 /* The section in which the symbol referenced by the relocation is
5071 located. */
5072 asection *sec = NULL;
5073 struct mips_elf_link_hash_entry *h = NULL;
5074 /* TRUE if the symbol referred to by this relocation is a local
5075 symbol. */
5076 bfd_boolean local_p, was_local_p;
5077 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5078 bfd_boolean gp_disp_p = FALSE;
5079 /* TRUE if the symbol referred to by this relocation is
5080 "__gnu_local_gp". */
5081 bfd_boolean gnu_local_gp_p = FALSE;
5082 Elf_Internal_Shdr *symtab_hdr;
5083 size_t extsymoff;
5084 unsigned long r_symndx;
5085 int r_type;
5086 /* TRUE if overflow occurred during the calculation of the
5087 relocation value. */
5088 bfd_boolean overflowed_p;
5089 /* TRUE if this relocation refers to a MIPS16 function. */
5090 bfd_boolean target_is_16_bit_code_p = FALSE;
5091 bfd_boolean target_is_micromips_code_p = FALSE;
5092 struct mips_elf_link_hash_table *htab;
5093 bfd *dynobj;
5094
5095 dynobj = elf_hash_table (info)->dynobj;
5096 htab = mips_elf_hash_table (info);
5097 BFD_ASSERT (htab != NULL);
5098
5099 /* Parse the relocation. */
5100 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5101 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5102 p = (input_section->output_section->vma
5103 + input_section->output_offset
5104 + relocation->r_offset);
5105
5106 /* Assume that there will be no overflow. */
5107 overflowed_p = FALSE;
5108
5109 /* Figure out whether or not the symbol is local, and get the offset
5110 used in the array of hash table entries. */
5111 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5112 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5113 local_sections);
5114 was_local_p = local_p;
5115 if (! elf_bad_symtab (input_bfd))
5116 extsymoff = symtab_hdr->sh_info;
5117 else
5118 {
5119 /* The symbol table does not follow the rule that local symbols
5120 must come before globals. */
5121 extsymoff = 0;
5122 }
5123
5124 /* Figure out the value of the symbol. */
5125 if (local_p)
5126 {
5127 Elf_Internal_Sym *sym;
5128
5129 sym = local_syms + r_symndx;
5130 sec = local_sections[r_symndx];
5131
5132 symbol = sec->output_section->vma + sec->output_offset;
5133 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5134 || (sec->flags & SEC_MERGE))
5135 symbol += sym->st_value;
5136 if ((sec->flags & SEC_MERGE)
5137 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5138 {
5139 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5140 addend -= symbol;
5141 addend += sec->output_section->vma + sec->output_offset;
5142 }
5143
5144 /* MIPS16/microMIPS text labels should be treated as odd. */
5145 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5146 ++symbol;
5147
5148 /* Record the name of this symbol, for our caller. */
5149 *namep = bfd_elf_string_from_elf_section (input_bfd,
5150 symtab_hdr->sh_link,
5151 sym->st_name);
5152 if (*namep == '\0')
5153 *namep = bfd_section_name (input_bfd, sec);
5154
5155 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5156 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5157 }
5158 else
5159 {
5160 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5161
5162 /* For global symbols we look up the symbol in the hash-table. */
5163 h = ((struct mips_elf_link_hash_entry *)
5164 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5165 /* Find the real hash-table entry for this symbol. */
5166 while (h->root.root.type == bfd_link_hash_indirect
5167 || h->root.root.type == bfd_link_hash_warning)
5168 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5169
5170 /* Record the name of this symbol, for our caller. */
5171 *namep = h->root.root.root.string;
5172
5173 /* See if this is the special _gp_disp symbol. Note that such a
5174 symbol must always be a global symbol. */
5175 if (strcmp (*namep, "_gp_disp") == 0
5176 && ! NEWABI_P (input_bfd))
5177 {
5178 /* Relocations against _gp_disp are permitted only with
5179 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5180 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5181 return bfd_reloc_notsupported;
5182
5183 gp_disp_p = TRUE;
5184 }
5185 /* See if this is the special _gp symbol. Note that such a
5186 symbol must always be a global symbol. */
5187 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5188 gnu_local_gp_p = TRUE;
5189
5190
5191 /* If this symbol is defined, calculate its address. Note that
5192 _gp_disp is a magic symbol, always implicitly defined by the
5193 linker, so it's inappropriate to check to see whether or not
5194 its defined. */
5195 else if ((h->root.root.type == bfd_link_hash_defined
5196 || h->root.root.type == bfd_link_hash_defweak)
5197 && h->root.root.u.def.section)
5198 {
5199 sec = h->root.root.u.def.section;
5200 if (sec->output_section)
5201 symbol = (h->root.root.u.def.value
5202 + sec->output_section->vma
5203 + sec->output_offset);
5204 else
5205 symbol = h->root.root.u.def.value;
5206 }
5207 else if (h->root.root.type == bfd_link_hash_undefweak)
5208 /* We allow relocations against undefined weak symbols, giving
5209 it the value zero, so that you can undefined weak functions
5210 and check to see if they exist by looking at their
5211 addresses. */
5212 symbol = 0;
5213 else if (info->unresolved_syms_in_objects == RM_IGNORE
5214 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5215 symbol = 0;
5216 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5217 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5218 {
5219 /* If this is a dynamic link, we should have created a
5220 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5221 in in _bfd_mips_elf_create_dynamic_sections.
5222 Otherwise, we should define the symbol with a value of 0.
5223 FIXME: It should probably get into the symbol table
5224 somehow as well. */
5225 BFD_ASSERT (! info->shared);
5226 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5227 symbol = 0;
5228 }
5229 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5230 {
5231 /* This is an optional symbol - an Irix specific extension to the
5232 ELF spec. Ignore it for now.
5233 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5234 than simply ignoring them, but we do not handle this for now.
5235 For information see the "64-bit ELF Object File Specification"
5236 which is available from here:
5237 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5238 symbol = 0;
5239 }
5240 else if ((*info->callbacks->undefined_symbol)
5241 (info, h->root.root.root.string, input_bfd,
5242 input_section, relocation->r_offset,
5243 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5244 || ELF_ST_VISIBILITY (h->root.other)))
5245 {
5246 return bfd_reloc_undefined;
5247 }
5248 else
5249 {
5250 return bfd_reloc_notsupported;
5251 }
5252
5253 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5254 /* If the output section is the PLT section,
5255 then the target is not microMIPS. */
5256 target_is_micromips_code_p = (htab->splt != sec
5257 && ELF_ST_IS_MICROMIPS (h->root.other));
5258 }
5259
5260 /* If this is a reference to a 16-bit function with a stub, we need
5261 to redirect the relocation to the stub unless:
5262
5263 (a) the relocation is for a MIPS16 JAL;
5264
5265 (b) the relocation is for a MIPS16 PIC call, and there are no
5266 non-MIPS16 uses of the GOT slot; or
5267
5268 (c) the section allows direct references to MIPS16 functions. */
5269 if (r_type != R_MIPS16_26
5270 && !info->relocatable
5271 && ((h != NULL
5272 && h->fn_stub != NULL
5273 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5274 || (local_p
5275 && elf_tdata (input_bfd)->local_stubs != NULL
5276 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5277 && !section_allows_mips16_refs_p (input_section))
5278 {
5279 /* This is a 32- or 64-bit call to a 16-bit function. We should
5280 have already noticed that we were going to need the
5281 stub. */
5282 if (local_p)
5283 {
5284 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5285 value = 0;
5286 }
5287 else
5288 {
5289 BFD_ASSERT (h->need_fn_stub);
5290 if (h->la25_stub)
5291 {
5292 /* If a LA25 header for the stub itself exists, point to the
5293 prepended LUI/ADDIU sequence. */
5294 sec = h->la25_stub->stub_section;
5295 value = h->la25_stub->offset;
5296 }
5297 else
5298 {
5299 sec = h->fn_stub;
5300 value = 0;
5301 }
5302 }
5303
5304 symbol = sec->output_section->vma + sec->output_offset + value;
5305 /* The target is 16-bit, but the stub isn't. */
5306 target_is_16_bit_code_p = FALSE;
5307 }
5308 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5309 need to redirect the call to the stub. Note that we specifically
5310 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5311 use an indirect stub instead. */
5312 else if (r_type == R_MIPS16_26 && !info->relocatable
5313 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5314 || (local_p
5315 && elf_tdata (input_bfd)->local_call_stubs != NULL
5316 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5317 && !target_is_16_bit_code_p)
5318 {
5319 if (local_p)
5320 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5321 else
5322 {
5323 /* If both call_stub and call_fp_stub are defined, we can figure
5324 out which one to use by checking which one appears in the input
5325 file. */
5326 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5327 {
5328 asection *o;
5329
5330 sec = NULL;
5331 for (o = input_bfd->sections; o != NULL; o = o->next)
5332 {
5333 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5334 {
5335 sec = h->call_fp_stub;
5336 break;
5337 }
5338 }
5339 if (sec == NULL)
5340 sec = h->call_stub;
5341 }
5342 else if (h->call_stub != NULL)
5343 sec = h->call_stub;
5344 else
5345 sec = h->call_fp_stub;
5346 }
5347
5348 BFD_ASSERT (sec->size > 0);
5349 symbol = sec->output_section->vma + sec->output_offset;
5350 }
5351 /* If this is a direct call to a PIC function, redirect to the
5352 non-PIC stub. */
5353 else if (h != NULL && h->la25_stub
5354 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5355 target_is_16_bit_code_p))
5356 symbol = (h->la25_stub->stub_section->output_section->vma
5357 + h->la25_stub->stub_section->output_offset
5358 + h->la25_stub->offset);
5359
5360 /* Make sure MIPS16 and microMIPS are not used together. */
5361 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5362 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5363 {
5364 (*_bfd_error_handler)
5365 (_("MIPS16 and microMIPS functions cannot call each other"));
5366 return bfd_reloc_notsupported;
5367 }
5368
5369 /* Calls from 16-bit code to 32-bit code and vice versa require the
5370 mode change. However, we can ignore calls to undefined weak symbols,
5371 which should never be executed at runtime. This exception is important
5372 because the assembly writer may have "known" that any definition of the
5373 symbol would be 16-bit code, and that direct jumps were therefore
5374 acceptable. */
5375 *cross_mode_jump_p = (!info->relocatable
5376 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5377 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5378 || (r_type == R_MICROMIPS_26_S1
5379 && !target_is_micromips_code_p)
5380 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5381 && (target_is_16_bit_code_p
5382 || target_is_micromips_code_p))));
5383
5384 local_p = (h == NULL
5385 || (h->got_only_for_calls
5386 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5387 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5388
5389 gp0 = _bfd_get_gp_value (input_bfd);
5390 gp = _bfd_get_gp_value (abfd);
5391 if (htab->got_info)
5392 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5393
5394 if (gnu_local_gp_p)
5395 symbol = gp;
5396
5397 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5398 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5399 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5400 if (got_page_reloc_p (r_type) && !local_p)
5401 {
5402 r_type = (micromips_reloc_p (r_type)
5403 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5404 addend = 0;
5405 }
5406
5407 /* If we haven't already determined the GOT offset, and we're going
5408 to need it, get it now. */
5409 switch (r_type)
5410 {
5411 case R_MIPS16_CALL16:
5412 case R_MIPS16_GOT16:
5413 case R_MIPS_CALL16:
5414 case R_MIPS_GOT16:
5415 case R_MIPS_GOT_DISP:
5416 case R_MIPS_GOT_HI16:
5417 case R_MIPS_CALL_HI16:
5418 case R_MIPS_GOT_LO16:
5419 case R_MIPS_CALL_LO16:
5420 case R_MICROMIPS_CALL16:
5421 case R_MICROMIPS_GOT16:
5422 case R_MICROMIPS_GOT_DISP:
5423 case R_MICROMIPS_GOT_HI16:
5424 case R_MICROMIPS_CALL_HI16:
5425 case R_MICROMIPS_GOT_LO16:
5426 case R_MICROMIPS_CALL_LO16:
5427 case R_MIPS_TLS_GD:
5428 case R_MIPS_TLS_GOTTPREL:
5429 case R_MIPS_TLS_LDM:
5430 case R_MIPS16_TLS_GD:
5431 case R_MIPS16_TLS_GOTTPREL:
5432 case R_MIPS16_TLS_LDM:
5433 case R_MICROMIPS_TLS_GD:
5434 case R_MICROMIPS_TLS_GOTTPREL:
5435 case R_MICROMIPS_TLS_LDM:
5436 /* Find the index into the GOT where this value is located. */
5437 if (tls_ldm_reloc_p (r_type))
5438 {
5439 g = mips_elf_local_got_index (abfd, input_bfd, info,
5440 0, 0, NULL, r_type);
5441 if (g == MINUS_ONE)
5442 return bfd_reloc_outofrange;
5443 }
5444 else if (!local_p)
5445 {
5446 /* On VxWorks, CALL relocations should refer to the .got.plt
5447 entry, which is initialized to point at the PLT stub. */
5448 if (htab->is_vxworks
5449 && (call_hi16_reloc_p (r_type)
5450 || call_lo16_reloc_p (r_type)
5451 || call16_reloc_p (r_type)))
5452 {
5453 BFD_ASSERT (addend == 0);
5454 BFD_ASSERT (h->root.needs_plt);
5455 g = mips_elf_gotplt_index (info, &h->root);
5456 }
5457 else
5458 {
5459 BFD_ASSERT (addend == 0);
5460 g = mips_elf_global_got_index (dynobj, input_bfd,
5461 &h->root, r_type, info);
5462 if (h->tls_type == GOT_NORMAL
5463 && !elf_hash_table (info)->dynamic_sections_created)
5464 /* This is a static link. We must initialize the GOT entry. */
5465 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5466 }
5467 }
5468 else if (!htab->is_vxworks
5469 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5470 /* The calculation below does not involve "g". */
5471 break;
5472 else
5473 {
5474 g = mips_elf_local_got_index (abfd, input_bfd, info,
5475 symbol + addend, r_symndx, h, r_type);
5476 if (g == MINUS_ONE)
5477 return bfd_reloc_outofrange;
5478 }
5479
5480 /* Convert GOT indices to actual offsets. */
5481 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5482 break;
5483 }
5484
5485 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5486 symbols are resolved by the loader. Add them to .rela.dyn. */
5487 if (h != NULL && is_gott_symbol (info, &h->root))
5488 {
5489 Elf_Internal_Rela outrel;
5490 bfd_byte *loc;
5491 asection *s;
5492
5493 s = mips_elf_rel_dyn_section (info, FALSE);
5494 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5495
5496 outrel.r_offset = (input_section->output_section->vma
5497 + input_section->output_offset
5498 + relocation->r_offset);
5499 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5500 outrel.r_addend = addend;
5501 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5502
5503 /* If we've written this relocation for a readonly section,
5504 we need to set DF_TEXTREL again, so that we do not delete the
5505 DT_TEXTREL tag. */
5506 if (MIPS_ELF_READONLY_SECTION (input_section))
5507 info->flags |= DF_TEXTREL;
5508
5509 *valuep = 0;
5510 return bfd_reloc_ok;
5511 }
5512
5513 /* Figure out what kind of relocation is being performed. */
5514 switch (r_type)
5515 {
5516 case R_MIPS_NONE:
5517 return bfd_reloc_continue;
5518
5519 case R_MIPS_16:
5520 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5521 overflowed_p = mips_elf_overflow_p (value, 16);
5522 break;
5523
5524 case R_MIPS_32:
5525 case R_MIPS_REL32:
5526 case R_MIPS_64:
5527 if ((info->shared
5528 || (htab->root.dynamic_sections_created
5529 && h != NULL
5530 && h->root.def_dynamic
5531 && !h->root.def_regular
5532 && !h->has_static_relocs))
5533 && r_symndx != STN_UNDEF
5534 && (h == NULL
5535 || h->root.root.type != bfd_link_hash_undefweak
5536 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5537 && (input_section->flags & SEC_ALLOC) != 0)
5538 {
5539 /* If we're creating a shared library, then we can't know
5540 where the symbol will end up. So, we create a relocation
5541 record in the output, and leave the job up to the dynamic
5542 linker. We must do the same for executable references to
5543 shared library symbols, unless we've decided to use copy
5544 relocs or PLTs instead. */
5545 value = addend;
5546 if (!mips_elf_create_dynamic_relocation (abfd,
5547 info,
5548 relocation,
5549 h,
5550 sec,
5551 symbol,
5552 &value,
5553 input_section))
5554 return bfd_reloc_undefined;
5555 }
5556 else
5557 {
5558 if (r_type != R_MIPS_REL32)
5559 value = symbol + addend;
5560 else
5561 value = addend;
5562 }
5563 value &= howto->dst_mask;
5564 break;
5565
5566 case R_MIPS_PC32:
5567 value = symbol + addend - p;
5568 value &= howto->dst_mask;
5569 break;
5570
5571 case R_MIPS16_26:
5572 /* The calculation for R_MIPS16_26 is just the same as for an
5573 R_MIPS_26. It's only the storage of the relocated field into
5574 the output file that's different. That's handled in
5575 mips_elf_perform_relocation. So, we just fall through to the
5576 R_MIPS_26 case here. */
5577 case R_MIPS_26:
5578 case R_MICROMIPS_26_S1:
5579 {
5580 unsigned int shift;
5581
5582 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5583 the correct ISA mode selector and bit 1 must be 0. */
5584 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5585 return bfd_reloc_outofrange;
5586
5587 /* Shift is 2, unusually, for microMIPS JALX. */
5588 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5589
5590 if (was_local_p)
5591 value = addend | ((p + 4) & (0xfc000000 << shift));
5592 else
5593 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5594 value = (value + symbol) >> shift;
5595 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5596 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5597 value &= howto->dst_mask;
5598 }
5599 break;
5600
5601 case R_MIPS_TLS_DTPREL_HI16:
5602 case R_MIPS16_TLS_DTPREL_HI16:
5603 case R_MICROMIPS_TLS_DTPREL_HI16:
5604 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5605 & howto->dst_mask);
5606 break;
5607
5608 case R_MIPS_TLS_DTPREL_LO16:
5609 case R_MIPS_TLS_DTPREL32:
5610 case R_MIPS_TLS_DTPREL64:
5611 case R_MIPS16_TLS_DTPREL_LO16:
5612 case R_MICROMIPS_TLS_DTPREL_LO16:
5613 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5614 break;
5615
5616 case R_MIPS_TLS_TPREL_HI16:
5617 case R_MIPS16_TLS_TPREL_HI16:
5618 case R_MICROMIPS_TLS_TPREL_HI16:
5619 value = (mips_elf_high (addend + symbol - tprel_base (info))
5620 & howto->dst_mask);
5621 break;
5622
5623 case R_MIPS_TLS_TPREL_LO16:
5624 case R_MIPS_TLS_TPREL32:
5625 case R_MIPS_TLS_TPREL64:
5626 case R_MIPS16_TLS_TPREL_LO16:
5627 case R_MICROMIPS_TLS_TPREL_LO16:
5628 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5629 break;
5630
5631 case R_MIPS_HI16:
5632 case R_MIPS16_HI16:
5633 case R_MICROMIPS_HI16:
5634 if (!gp_disp_p)
5635 {
5636 value = mips_elf_high (addend + symbol);
5637 value &= howto->dst_mask;
5638 }
5639 else
5640 {
5641 /* For MIPS16 ABI code we generate this sequence
5642 0: li $v0,%hi(_gp_disp)
5643 4: addiupc $v1,%lo(_gp_disp)
5644 8: sll $v0,16
5645 12: addu $v0,$v1
5646 14: move $gp,$v0
5647 So the offsets of hi and lo relocs are the same, but the
5648 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5649 ADDIUPC clears the low two bits of the instruction address,
5650 so the base is ($t9 + 4) & ~3. */
5651 if (r_type == R_MIPS16_HI16)
5652 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5653 /* The microMIPS .cpload sequence uses the same assembly
5654 instructions as the traditional psABI version, but the
5655 incoming $t9 has the low bit set. */
5656 else if (r_type == R_MICROMIPS_HI16)
5657 value = mips_elf_high (addend + gp - p - 1);
5658 else
5659 value = mips_elf_high (addend + gp - p);
5660 overflowed_p = mips_elf_overflow_p (value, 16);
5661 }
5662 break;
5663
5664 case R_MIPS_LO16:
5665 case R_MIPS16_LO16:
5666 case R_MICROMIPS_LO16:
5667 case R_MICROMIPS_HI0_LO16:
5668 if (!gp_disp_p)
5669 value = (symbol + addend) & howto->dst_mask;
5670 else
5671 {
5672 /* See the comment for R_MIPS16_HI16 above for the reason
5673 for this conditional. */
5674 if (r_type == R_MIPS16_LO16)
5675 value = addend + gp - (p & ~(bfd_vma) 0x3);
5676 else if (r_type == R_MICROMIPS_LO16
5677 || r_type == R_MICROMIPS_HI0_LO16)
5678 value = addend + gp - p + 3;
5679 else
5680 value = addend + gp - p + 4;
5681 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5682 for overflow. But, on, say, IRIX5, relocations against
5683 _gp_disp are normally generated from the .cpload
5684 pseudo-op. It generates code that normally looks like
5685 this:
5686
5687 lui $gp,%hi(_gp_disp)
5688 addiu $gp,$gp,%lo(_gp_disp)
5689 addu $gp,$gp,$t9
5690
5691 Here $t9 holds the address of the function being called,
5692 as required by the MIPS ELF ABI. The R_MIPS_LO16
5693 relocation can easily overflow in this situation, but the
5694 R_MIPS_HI16 relocation will handle the overflow.
5695 Therefore, we consider this a bug in the MIPS ABI, and do
5696 not check for overflow here. */
5697 }
5698 break;
5699
5700 case R_MIPS_LITERAL:
5701 case R_MICROMIPS_LITERAL:
5702 /* Because we don't merge literal sections, we can handle this
5703 just like R_MIPS_GPREL16. In the long run, we should merge
5704 shared literals, and then we will need to additional work
5705 here. */
5706
5707 /* Fall through. */
5708
5709 case R_MIPS16_GPREL:
5710 /* The R_MIPS16_GPREL performs the same calculation as
5711 R_MIPS_GPREL16, but stores the relocated bits in a different
5712 order. We don't need to do anything special here; the
5713 differences are handled in mips_elf_perform_relocation. */
5714 case R_MIPS_GPREL16:
5715 case R_MICROMIPS_GPREL7_S2:
5716 case R_MICROMIPS_GPREL16:
5717 /* Only sign-extend the addend if it was extracted from the
5718 instruction. If the addend was separate, leave it alone,
5719 otherwise we may lose significant bits. */
5720 if (howto->partial_inplace)
5721 addend = _bfd_mips_elf_sign_extend (addend, 16);
5722 value = symbol + addend - gp;
5723 /* If the symbol was local, any earlier relocatable links will
5724 have adjusted its addend with the gp offset, so compensate
5725 for that now. Don't do it for symbols forced local in this
5726 link, though, since they won't have had the gp offset applied
5727 to them before. */
5728 if (was_local_p)
5729 value += gp0;
5730 overflowed_p = mips_elf_overflow_p (value, 16);
5731 break;
5732
5733 case R_MIPS16_GOT16:
5734 case R_MIPS16_CALL16:
5735 case R_MIPS_GOT16:
5736 case R_MIPS_CALL16:
5737 case R_MICROMIPS_GOT16:
5738 case R_MICROMIPS_CALL16:
5739 /* VxWorks does not have separate local and global semantics for
5740 R_MIPS*_GOT16; every relocation evaluates to "G". */
5741 if (!htab->is_vxworks && local_p)
5742 {
5743 value = mips_elf_got16_entry (abfd, input_bfd, info,
5744 symbol + addend, !was_local_p);
5745 if (value == MINUS_ONE)
5746 return bfd_reloc_outofrange;
5747 value
5748 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5749 overflowed_p = mips_elf_overflow_p (value, 16);
5750 break;
5751 }
5752
5753 /* Fall through. */
5754
5755 case R_MIPS_TLS_GD:
5756 case R_MIPS_TLS_GOTTPREL:
5757 case R_MIPS_TLS_LDM:
5758 case R_MIPS_GOT_DISP:
5759 case R_MIPS16_TLS_GD:
5760 case R_MIPS16_TLS_GOTTPREL:
5761 case R_MIPS16_TLS_LDM:
5762 case R_MICROMIPS_TLS_GD:
5763 case R_MICROMIPS_TLS_GOTTPREL:
5764 case R_MICROMIPS_TLS_LDM:
5765 case R_MICROMIPS_GOT_DISP:
5766 value = g;
5767 overflowed_p = mips_elf_overflow_p (value, 16);
5768 break;
5769
5770 case R_MIPS_GPREL32:
5771 value = (addend + symbol + gp0 - gp);
5772 if (!save_addend)
5773 value &= howto->dst_mask;
5774 break;
5775
5776 case R_MIPS_PC16:
5777 case R_MIPS_GNU_REL16_S2:
5778 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5779 overflowed_p = mips_elf_overflow_p (value, 18);
5780 value >>= howto->rightshift;
5781 value &= howto->dst_mask;
5782 break;
5783
5784 case R_MICROMIPS_PC7_S1:
5785 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5786 overflowed_p = mips_elf_overflow_p (value, 8);
5787 value >>= howto->rightshift;
5788 value &= howto->dst_mask;
5789 break;
5790
5791 case R_MICROMIPS_PC10_S1:
5792 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5793 overflowed_p = mips_elf_overflow_p (value, 11);
5794 value >>= howto->rightshift;
5795 value &= howto->dst_mask;
5796 break;
5797
5798 case R_MICROMIPS_PC16_S1:
5799 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5800 overflowed_p = mips_elf_overflow_p (value, 17);
5801 value >>= howto->rightshift;
5802 value &= howto->dst_mask;
5803 break;
5804
5805 case R_MICROMIPS_PC23_S2:
5806 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5807 overflowed_p = mips_elf_overflow_p (value, 25);
5808 value >>= howto->rightshift;
5809 value &= howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_GOT_HI16:
5813 case R_MIPS_CALL_HI16:
5814 case R_MICROMIPS_GOT_HI16:
5815 case R_MICROMIPS_CALL_HI16:
5816 /* We're allowed to handle these two relocations identically.
5817 The dynamic linker is allowed to handle the CALL relocations
5818 differently by creating a lazy evaluation stub. */
5819 value = g;
5820 value = mips_elf_high (value);
5821 value &= howto->dst_mask;
5822 break;
5823
5824 case R_MIPS_GOT_LO16:
5825 case R_MIPS_CALL_LO16:
5826 case R_MICROMIPS_GOT_LO16:
5827 case R_MICROMIPS_CALL_LO16:
5828 value = g & howto->dst_mask;
5829 break;
5830
5831 case R_MIPS_GOT_PAGE:
5832 case R_MICROMIPS_GOT_PAGE:
5833 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5834 if (value == MINUS_ONE)
5835 return bfd_reloc_outofrange;
5836 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5837 overflowed_p = mips_elf_overflow_p (value, 16);
5838 break;
5839
5840 case R_MIPS_GOT_OFST:
5841 case R_MICROMIPS_GOT_OFST:
5842 if (local_p)
5843 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5844 else
5845 value = addend;
5846 overflowed_p = mips_elf_overflow_p (value, 16);
5847 break;
5848
5849 case R_MIPS_SUB:
5850 case R_MICROMIPS_SUB:
5851 value = symbol - addend;
5852 value &= howto->dst_mask;
5853 break;
5854
5855 case R_MIPS_HIGHER:
5856 case R_MICROMIPS_HIGHER:
5857 value = mips_elf_higher (addend + symbol);
5858 value &= howto->dst_mask;
5859 break;
5860
5861 case R_MIPS_HIGHEST:
5862 case R_MICROMIPS_HIGHEST:
5863 value = mips_elf_highest (addend + symbol);
5864 value &= howto->dst_mask;
5865 break;
5866
5867 case R_MIPS_SCN_DISP:
5868 case R_MICROMIPS_SCN_DISP:
5869 value = symbol + addend - sec->output_offset;
5870 value &= howto->dst_mask;
5871 break;
5872
5873 case R_MIPS_JALR:
5874 case R_MICROMIPS_JALR:
5875 /* This relocation is only a hint. In some cases, we optimize
5876 it into a bal instruction. But we don't try to optimize
5877 when the symbol does not resolve locally. */
5878 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5879 return bfd_reloc_continue;
5880 value = symbol + addend;
5881 break;
5882
5883 case R_MIPS_PJUMP:
5884 case R_MIPS_GNU_VTINHERIT:
5885 case R_MIPS_GNU_VTENTRY:
5886 /* We don't do anything with these at present. */
5887 return bfd_reloc_continue;
5888
5889 default:
5890 /* An unrecognized relocation type. */
5891 return bfd_reloc_notsupported;
5892 }
5893
5894 /* Store the VALUE for our caller. */
5895 *valuep = value;
5896 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5897 }
5898
5899 /* Obtain the field relocated by RELOCATION. */
5900
5901 static bfd_vma
5902 mips_elf_obtain_contents (reloc_howto_type *howto,
5903 const Elf_Internal_Rela *relocation,
5904 bfd *input_bfd, bfd_byte *contents)
5905 {
5906 bfd_vma x;
5907 bfd_byte *location = contents + relocation->r_offset;
5908
5909 /* Obtain the bytes. */
5910 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5911
5912 return x;
5913 }
5914
5915 /* It has been determined that the result of the RELOCATION is the
5916 VALUE. Use HOWTO to place VALUE into the output file at the
5917 appropriate position. The SECTION is the section to which the
5918 relocation applies.
5919 CROSS_MODE_JUMP_P is true if the relocation field
5920 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5921
5922 Returns FALSE if anything goes wrong. */
5923
5924 static bfd_boolean
5925 mips_elf_perform_relocation (struct bfd_link_info *info,
5926 reloc_howto_type *howto,
5927 const Elf_Internal_Rela *relocation,
5928 bfd_vma value, bfd *input_bfd,
5929 asection *input_section, bfd_byte *contents,
5930 bfd_boolean cross_mode_jump_p)
5931 {
5932 bfd_vma x;
5933 bfd_byte *location;
5934 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5935
5936 /* Figure out where the relocation is occurring. */
5937 location = contents + relocation->r_offset;
5938
5939 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5940
5941 /* Obtain the current value. */
5942 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5943
5944 /* Clear the field we are setting. */
5945 x &= ~howto->dst_mask;
5946
5947 /* Set the field. */
5948 x |= (value & howto->dst_mask);
5949
5950 /* If required, turn JAL into JALX. */
5951 if (cross_mode_jump_p && jal_reloc_p (r_type))
5952 {
5953 bfd_boolean ok;
5954 bfd_vma opcode = x >> 26;
5955 bfd_vma jalx_opcode;
5956
5957 /* Check to see if the opcode is already JAL or JALX. */
5958 if (r_type == R_MIPS16_26)
5959 {
5960 ok = ((opcode == 0x6) || (opcode == 0x7));
5961 jalx_opcode = 0x7;
5962 }
5963 else if (r_type == R_MICROMIPS_26_S1)
5964 {
5965 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5966 jalx_opcode = 0x3c;
5967 }
5968 else
5969 {
5970 ok = ((opcode == 0x3) || (opcode == 0x1d));
5971 jalx_opcode = 0x1d;
5972 }
5973
5974 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5975 convert J or JALS to JALX. */
5976 if (!ok)
5977 {
5978 (*_bfd_error_handler)
5979 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5980 input_bfd,
5981 input_section,
5982 (unsigned long) relocation->r_offset);
5983 bfd_set_error (bfd_error_bad_value);
5984 return FALSE;
5985 }
5986
5987 /* Make this the JALX opcode. */
5988 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5989 }
5990
5991 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5992 range. */
5993 if (!info->relocatable
5994 && !cross_mode_jump_p
5995 && ((JAL_TO_BAL_P (input_bfd)
5996 && r_type == R_MIPS_26
5997 && (x >> 26) == 0x3) /* jal addr */
5998 || (JALR_TO_BAL_P (input_bfd)
5999 && r_type == R_MIPS_JALR
6000 && x == 0x0320f809) /* jalr t9 */
6001 || (JR_TO_B_P (input_bfd)
6002 && r_type == R_MIPS_JALR
6003 && x == 0x03200008))) /* jr t9 */
6004 {
6005 bfd_vma addr;
6006 bfd_vma dest;
6007 bfd_signed_vma off;
6008
6009 addr = (input_section->output_section->vma
6010 + input_section->output_offset
6011 + relocation->r_offset
6012 + 4);
6013 if (r_type == R_MIPS_26)
6014 dest = (value << 2) | ((addr >> 28) << 28);
6015 else
6016 dest = value;
6017 off = dest - addr;
6018 if (off <= 0x1ffff && off >= -0x20000)
6019 {
6020 if (x == 0x03200008) /* jr t9 */
6021 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6022 else
6023 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6024 }
6025 }
6026
6027 /* Put the value into the output. */
6028 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6029
6030 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6031 location);
6032
6033 return TRUE;
6034 }
6035 \f
6036 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6037 is the original relocation, which is now being transformed into a
6038 dynamic relocation. The ADDENDP is adjusted if necessary; the
6039 caller should store the result in place of the original addend. */
6040
6041 static bfd_boolean
6042 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6043 struct bfd_link_info *info,
6044 const Elf_Internal_Rela *rel,
6045 struct mips_elf_link_hash_entry *h,
6046 asection *sec, bfd_vma symbol,
6047 bfd_vma *addendp, asection *input_section)
6048 {
6049 Elf_Internal_Rela outrel[3];
6050 asection *sreloc;
6051 bfd *dynobj;
6052 int r_type;
6053 long indx;
6054 bfd_boolean defined_p;
6055 struct mips_elf_link_hash_table *htab;
6056
6057 htab = mips_elf_hash_table (info);
6058 BFD_ASSERT (htab != NULL);
6059
6060 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6061 dynobj = elf_hash_table (info)->dynobj;
6062 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6063 BFD_ASSERT (sreloc != NULL);
6064 BFD_ASSERT (sreloc->contents != NULL);
6065 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6066 < sreloc->size);
6067
6068 outrel[0].r_offset =
6069 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6070 if (ABI_64_P (output_bfd))
6071 {
6072 outrel[1].r_offset =
6073 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6074 outrel[2].r_offset =
6075 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6076 }
6077
6078 if (outrel[0].r_offset == MINUS_ONE)
6079 /* The relocation field has been deleted. */
6080 return TRUE;
6081
6082 if (outrel[0].r_offset == MINUS_TWO)
6083 {
6084 /* The relocation field has been converted into a relative value of
6085 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6086 the field to be fully relocated, so add in the symbol's value. */
6087 *addendp += symbol;
6088 return TRUE;
6089 }
6090
6091 /* We must now calculate the dynamic symbol table index to use
6092 in the relocation. */
6093 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6094 {
6095 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6096 indx = h->root.dynindx;
6097 if (SGI_COMPAT (output_bfd))
6098 defined_p = h->root.def_regular;
6099 else
6100 /* ??? glibc's ld.so just adds the final GOT entry to the
6101 relocation field. It therefore treats relocs against
6102 defined symbols in the same way as relocs against
6103 undefined symbols. */
6104 defined_p = FALSE;
6105 }
6106 else
6107 {
6108 if (sec != NULL && bfd_is_abs_section (sec))
6109 indx = 0;
6110 else if (sec == NULL || sec->owner == NULL)
6111 {
6112 bfd_set_error (bfd_error_bad_value);
6113 return FALSE;
6114 }
6115 else
6116 {
6117 indx = elf_section_data (sec->output_section)->dynindx;
6118 if (indx == 0)
6119 {
6120 asection *osec = htab->root.text_index_section;
6121 indx = elf_section_data (osec)->dynindx;
6122 }
6123 if (indx == 0)
6124 abort ();
6125 }
6126
6127 /* Instead of generating a relocation using the section
6128 symbol, we may as well make it a fully relative
6129 relocation. We want to avoid generating relocations to
6130 local symbols because we used to generate them
6131 incorrectly, without adding the original symbol value,
6132 which is mandated by the ABI for section symbols. In
6133 order to give dynamic loaders and applications time to
6134 phase out the incorrect use, we refrain from emitting
6135 section-relative relocations. It's not like they're
6136 useful, after all. This should be a bit more efficient
6137 as well. */
6138 /* ??? Although this behavior is compatible with glibc's ld.so,
6139 the ABI says that relocations against STN_UNDEF should have
6140 a symbol value of 0. Irix rld honors this, so relocations
6141 against STN_UNDEF have no effect. */
6142 if (!SGI_COMPAT (output_bfd))
6143 indx = 0;
6144 defined_p = TRUE;
6145 }
6146
6147 /* If the relocation was previously an absolute relocation and
6148 this symbol will not be referred to by the relocation, we must
6149 adjust it by the value we give it in the dynamic symbol table.
6150 Otherwise leave the job up to the dynamic linker. */
6151 if (defined_p && r_type != R_MIPS_REL32)
6152 *addendp += symbol;
6153
6154 if (htab->is_vxworks)
6155 /* VxWorks uses non-relative relocations for this. */
6156 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6157 else
6158 /* The relocation is always an REL32 relocation because we don't
6159 know where the shared library will wind up at load-time. */
6160 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6161 R_MIPS_REL32);
6162
6163 /* For strict adherence to the ABI specification, we should
6164 generate a R_MIPS_64 relocation record by itself before the
6165 _REL32/_64 record as well, such that the addend is read in as
6166 a 64-bit value (REL32 is a 32-bit relocation, after all).
6167 However, since none of the existing ELF64 MIPS dynamic
6168 loaders seems to care, we don't waste space with these
6169 artificial relocations. If this turns out to not be true,
6170 mips_elf_allocate_dynamic_relocation() should be tweaked so
6171 as to make room for a pair of dynamic relocations per
6172 invocation if ABI_64_P, and here we should generate an
6173 additional relocation record with R_MIPS_64 by itself for a
6174 NULL symbol before this relocation record. */
6175 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6176 ABI_64_P (output_bfd)
6177 ? R_MIPS_64
6178 : R_MIPS_NONE);
6179 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6180
6181 /* Adjust the output offset of the relocation to reference the
6182 correct location in the output file. */
6183 outrel[0].r_offset += (input_section->output_section->vma
6184 + input_section->output_offset);
6185 outrel[1].r_offset += (input_section->output_section->vma
6186 + input_section->output_offset);
6187 outrel[2].r_offset += (input_section->output_section->vma
6188 + input_section->output_offset);
6189
6190 /* Put the relocation back out. We have to use the special
6191 relocation outputter in the 64-bit case since the 64-bit
6192 relocation format is non-standard. */
6193 if (ABI_64_P (output_bfd))
6194 {
6195 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6196 (output_bfd, &outrel[0],
6197 (sreloc->contents
6198 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6199 }
6200 else if (htab->is_vxworks)
6201 {
6202 /* VxWorks uses RELA rather than REL dynamic relocations. */
6203 outrel[0].r_addend = *addendp;
6204 bfd_elf32_swap_reloca_out
6205 (output_bfd, &outrel[0],
6206 (sreloc->contents
6207 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6208 }
6209 else
6210 bfd_elf32_swap_reloc_out
6211 (output_bfd, &outrel[0],
6212 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6213
6214 /* We've now added another relocation. */
6215 ++sreloc->reloc_count;
6216
6217 /* Make sure the output section is writable. The dynamic linker
6218 will be writing to it. */
6219 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6220 |= SHF_WRITE;
6221
6222 /* On IRIX5, make an entry of compact relocation info. */
6223 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6224 {
6225 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6226 bfd_byte *cr;
6227
6228 if (scpt)
6229 {
6230 Elf32_crinfo cptrel;
6231
6232 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6233 cptrel.vaddr = (rel->r_offset
6234 + input_section->output_section->vma
6235 + input_section->output_offset);
6236 if (r_type == R_MIPS_REL32)
6237 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6238 else
6239 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6240 mips_elf_set_cr_dist2to (cptrel, 0);
6241 cptrel.konst = *addendp;
6242
6243 cr = (scpt->contents
6244 + sizeof (Elf32_External_compact_rel));
6245 mips_elf_set_cr_relvaddr (cptrel, 0);
6246 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6247 ((Elf32_External_crinfo *) cr
6248 + scpt->reloc_count));
6249 ++scpt->reloc_count;
6250 }
6251 }
6252
6253 /* If we've written this relocation for a readonly section,
6254 we need to set DF_TEXTREL again, so that we do not delete the
6255 DT_TEXTREL tag. */
6256 if (MIPS_ELF_READONLY_SECTION (input_section))
6257 info->flags |= DF_TEXTREL;
6258
6259 return TRUE;
6260 }
6261 \f
6262 /* Return the MACH for a MIPS e_flags value. */
6263
6264 unsigned long
6265 _bfd_elf_mips_mach (flagword flags)
6266 {
6267 switch (flags & EF_MIPS_MACH)
6268 {
6269 case E_MIPS_MACH_3900:
6270 return bfd_mach_mips3900;
6271
6272 case E_MIPS_MACH_4010:
6273 return bfd_mach_mips4010;
6274
6275 case E_MIPS_MACH_4100:
6276 return bfd_mach_mips4100;
6277
6278 case E_MIPS_MACH_4111:
6279 return bfd_mach_mips4111;
6280
6281 case E_MIPS_MACH_4120:
6282 return bfd_mach_mips4120;
6283
6284 case E_MIPS_MACH_4650:
6285 return bfd_mach_mips4650;
6286
6287 case E_MIPS_MACH_5400:
6288 return bfd_mach_mips5400;
6289
6290 case E_MIPS_MACH_5500:
6291 return bfd_mach_mips5500;
6292
6293 case E_MIPS_MACH_5900:
6294 return bfd_mach_mips5900;
6295
6296 case E_MIPS_MACH_9000:
6297 return bfd_mach_mips9000;
6298
6299 case E_MIPS_MACH_SB1:
6300 return bfd_mach_mips_sb1;
6301
6302 case E_MIPS_MACH_LS2E:
6303 return bfd_mach_mips_loongson_2e;
6304
6305 case E_MIPS_MACH_LS2F:
6306 return bfd_mach_mips_loongson_2f;
6307
6308 case E_MIPS_MACH_LS3A:
6309 return bfd_mach_mips_loongson_3a;
6310
6311 case E_MIPS_MACH_OCTEON2:
6312 return bfd_mach_mips_octeon2;
6313
6314 case E_MIPS_MACH_OCTEON:
6315 return bfd_mach_mips_octeon;
6316
6317 case E_MIPS_MACH_XLR:
6318 return bfd_mach_mips_xlr;
6319
6320 default:
6321 switch (flags & EF_MIPS_ARCH)
6322 {
6323 default:
6324 case E_MIPS_ARCH_1:
6325 return bfd_mach_mips3000;
6326
6327 case E_MIPS_ARCH_2:
6328 return bfd_mach_mips6000;
6329
6330 case E_MIPS_ARCH_3:
6331 return bfd_mach_mips4000;
6332
6333 case E_MIPS_ARCH_4:
6334 return bfd_mach_mips8000;
6335
6336 case E_MIPS_ARCH_5:
6337 return bfd_mach_mips5;
6338
6339 case E_MIPS_ARCH_32:
6340 return bfd_mach_mipsisa32;
6341
6342 case E_MIPS_ARCH_64:
6343 return bfd_mach_mipsisa64;
6344
6345 case E_MIPS_ARCH_32R2:
6346 return bfd_mach_mipsisa32r2;
6347
6348 case E_MIPS_ARCH_64R2:
6349 return bfd_mach_mipsisa64r2;
6350 }
6351 }
6352
6353 return 0;
6354 }
6355
6356 /* Return printable name for ABI. */
6357
6358 static INLINE char *
6359 elf_mips_abi_name (bfd *abfd)
6360 {
6361 flagword flags;
6362
6363 flags = elf_elfheader (abfd)->e_flags;
6364 switch (flags & EF_MIPS_ABI)
6365 {
6366 case 0:
6367 if (ABI_N32_P (abfd))
6368 return "N32";
6369 else if (ABI_64_P (abfd))
6370 return "64";
6371 else
6372 return "none";
6373 case E_MIPS_ABI_O32:
6374 return "O32";
6375 case E_MIPS_ABI_O64:
6376 return "O64";
6377 case E_MIPS_ABI_EABI32:
6378 return "EABI32";
6379 case E_MIPS_ABI_EABI64:
6380 return "EABI64";
6381 default:
6382 return "unknown abi";
6383 }
6384 }
6385 \f
6386 /* MIPS ELF uses two common sections. One is the usual one, and the
6387 other is for small objects. All the small objects are kept
6388 together, and then referenced via the gp pointer, which yields
6389 faster assembler code. This is what we use for the small common
6390 section. This approach is copied from ecoff.c. */
6391 static asection mips_elf_scom_section;
6392 static asymbol mips_elf_scom_symbol;
6393 static asymbol *mips_elf_scom_symbol_ptr;
6394
6395 /* MIPS ELF also uses an acommon section, which represents an
6396 allocated common symbol which may be overridden by a
6397 definition in a shared library. */
6398 static asection mips_elf_acom_section;
6399 static asymbol mips_elf_acom_symbol;
6400 static asymbol *mips_elf_acom_symbol_ptr;
6401
6402 /* This is used for both the 32-bit and the 64-bit ABI. */
6403
6404 void
6405 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6406 {
6407 elf_symbol_type *elfsym;
6408
6409 /* Handle the special MIPS section numbers that a symbol may use. */
6410 elfsym = (elf_symbol_type *) asym;
6411 switch (elfsym->internal_elf_sym.st_shndx)
6412 {
6413 case SHN_MIPS_ACOMMON:
6414 /* This section is used in a dynamically linked executable file.
6415 It is an allocated common section. The dynamic linker can
6416 either resolve these symbols to something in a shared
6417 library, or it can just leave them here. For our purposes,
6418 we can consider these symbols to be in a new section. */
6419 if (mips_elf_acom_section.name == NULL)
6420 {
6421 /* Initialize the acommon section. */
6422 mips_elf_acom_section.name = ".acommon";
6423 mips_elf_acom_section.flags = SEC_ALLOC;
6424 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6425 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6426 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6427 mips_elf_acom_symbol.name = ".acommon";
6428 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6429 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6430 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6431 }
6432 asym->section = &mips_elf_acom_section;
6433 break;
6434
6435 case SHN_COMMON:
6436 /* Common symbols less than the GP size are automatically
6437 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6438 if (asym->value > elf_gp_size (abfd)
6439 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6440 || IRIX_COMPAT (abfd) == ict_irix6)
6441 break;
6442 /* Fall through. */
6443 case SHN_MIPS_SCOMMON:
6444 if (mips_elf_scom_section.name == NULL)
6445 {
6446 /* Initialize the small common section. */
6447 mips_elf_scom_section.name = ".scommon";
6448 mips_elf_scom_section.flags = SEC_IS_COMMON;
6449 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6450 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6451 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6452 mips_elf_scom_symbol.name = ".scommon";
6453 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6454 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6455 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6456 }
6457 asym->section = &mips_elf_scom_section;
6458 asym->value = elfsym->internal_elf_sym.st_size;
6459 break;
6460
6461 case SHN_MIPS_SUNDEFINED:
6462 asym->section = bfd_und_section_ptr;
6463 break;
6464
6465 case SHN_MIPS_TEXT:
6466 {
6467 asection *section = bfd_get_section_by_name (abfd, ".text");
6468
6469 if (section != NULL)
6470 {
6471 asym->section = section;
6472 /* MIPS_TEXT is a bit special, the address is not an offset
6473 to the base of the .text section. So substract the section
6474 base address to make it an offset. */
6475 asym->value -= section->vma;
6476 }
6477 }
6478 break;
6479
6480 case SHN_MIPS_DATA:
6481 {
6482 asection *section = bfd_get_section_by_name (abfd, ".data");
6483
6484 if (section != NULL)
6485 {
6486 asym->section = section;
6487 /* MIPS_DATA is a bit special, the address is not an offset
6488 to the base of the .data section. So substract the section
6489 base address to make it an offset. */
6490 asym->value -= section->vma;
6491 }
6492 }
6493 break;
6494 }
6495
6496 /* If this is an odd-valued function symbol, assume it's a MIPS16
6497 or microMIPS one. */
6498 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6499 && (asym->value & 1) != 0)
6500 {
6501 asym->value--;
6502 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6503 elfsym->internal_elf_sym.st_other
6504 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6505 else
6506 elfsym->internal_elf_sym.st_other
6507 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6508 }
6509 }
6510 \f
6511 /* Implement elf_backend_eh_frame_address_size. This differs from
6512 the default in the way it handles EABI64.
6513
6514 EABI64 was originally specified as an LP64 ABI, and that is what
6515 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6516 historically accepted the combination of -mabi=eabi and -mlong32,
6517 and this ILP32 variation has become semi-official over time.
6518 Both forms use elf32 and have pointer-sized FDE addresses.
6519
6520 If an EABI object was generated by GCC 4.0 or above, it will have
6521 an empty .gcc_compiled_longXX section, where XX is the size of longs
6522 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6523 have no special marking to distinguish them from LP64 objects.
6524
6525 We don't want users of the official LP64 ABI to be punished for the
6526 existence of the ILP32 variant, but at the same time, we don't want
6527 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6528 We therefore take the following approach:
6529
6530 - If ABFD contains a .gcc_compiled_longXX section, use it to
6531 determine the pointer size.
6532
6533 - Otherwise check the type of the first relocation. Assume that
6534 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6535
6536 - Otherwise punt.
6537
6538 The second check is enough to detect LP64 objects generated by pre-4.0
6539 compilers because, in the kind of output generated by those compilers,
6540 the first relocation will be associated with either a CIE personality
6541 routine or an FDE start address. Furthermore, the compilers never
6542 used a special (non-pointer) encoding for this ABI.
6543
6544 Checking the relocation type should also be safe because there is no
6545 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6546 did so. */
6547
6548 unsigned int
6549 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6550 {
6551 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6552 return 8;
6553 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6554 {
6555 bfd_boolean long32_p, long64_p;
6556
6557 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6558 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6559 if (long32_p && long64_p)
6560 return 0;
6561 if (long32_p)
6562 return 4;
6563 if (long64_p)
6564 return 8;
6565
6566 if (sec->reloc_count > 0
6567 && elf_section_data (sec)->relocs != NULL
6568 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6569 == R_MIPS_64))
6570 return 8;
6571
6572 return 0;
6573 }
6574 return 4;
6575 }
6576 \f
6577 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6578 relocations against two unnamed section symbols to resolve to the
6579 same address. For example, if we have code like:
6580
6581 lw $4,%got_disp(.data)($gp)
6582 lw $25,%got_disp(.text)($gp)
6583 jalr $25
6584
6585 then the linker will resolve both relocations to .data and the program
6586 will jump there rather than to .text.
6587
6588 We can work around this problem by giving names to local section symbols.
6589 This is also what the MIPSpro tools do. */
6590
6591 bfd_boolean
6592 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6593 {
6594 return SGI_COMPAT (abfd);
6595 }
6596 \f
6597 /* Work over a section just before writing it out. This routine is
6598 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6599 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6600 a better way. */
6601
6602 bfd_boolean
6603 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6604 {
6605 if (hdr->sh_type == SHT_MIPS_REGINFO
6606 && hdr->sh_size > 0)
6607 {
6608 bfd_byte buf[4];
6609
6610 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6611 BFD_ASSERT (hdr->contents == NULL);
6612
6613 if (bfd_seek (abfd,
6614 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6615 SEEK_SET) != 0)
6616 return FALSE;
6617 H_PUT_32 (abfd, elf_gp (abfd), buf);
6618 if (bfd_bwrite (buf, 4, abfd) != 4)
6619 return FALSE;
6620 }
6621
6622 if (hdr->sh_type == SHT_MIPS_OPTIONS
6623 && hdr->bfd_section != NULL
6624 && mips_elf_section_data (hdr->bfd_section) != NULL
6625 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6626 {
6627 bfd_byte *contents, *l, *lend;
6628
6629 /* We stored the section contents in the tdata field in the
6630 set_section_contents routine. We save the section contents
6631 so that we don't have to read them again.
6632 At this point we know that elf_gp is set, so we can look
6633 through the section contents to see if there is an
6634 ODK_REGINFO structure. */
6635
6636 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6637 l = contents;
6638 lend = contents + hdr->sh_size;
6639 while (l + sizeof (Elf_External_Options) <= lend)
6640 {
6641 Elf_Internal_Options intopt;
6642
6643 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6644 &intopt);
6645 if (intopt.size < sizeof (Elf_External_Options))
6646 {
6647 (*_bfd_error_handler)
6648 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6649 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6650 break;
6651 }
6652 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6653 {
6654 bfd_byte buf[8];
6655
6656 if (bfd_seek (abfd,
6657 (hdr->sh_offset
6658 + (l - contents)
6659 + sizeof (Elf_External_Options)
6660 + (sizeof (Elf64_External_RegInfo) - 8)),
6661 SEEK_SET) != 0)
6662 return FALSE;
6663 H_PUT_64 (abfd, elf_gp (abfd), buf);
6664 if (bfd_bwrite (buf, 8, abfd) != 8)
6665 return FALSE;
6666 }
6667 else if (intopt.kind == ODK_REGINFO)
6668 {
6669 bfd_byte buf[4];
6670
6671 if (bfd_seek (abfd,
6672 (hdr->sh_offset
6673 + (l - contents)
6674 + sizeof (Elf_External_Options)
6675 + (sizeof (Elf32_External_RegInfo) - 4)),
6676 SEEK_SET) != 0)
6677 return FALSE;
6678 H_PUT_32 (abfd, elf_gp (abfd), buf);
6679 if (bfd_bwrite (buf, 4, abfd) != 4)
6680 return FALSE;
6681 }
6682 l += intopt.size;
6683 }
6684 }
6685
6686 if (hdr->bfd_section != NULL)
6687 {
6688 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6689
6690 /* .sbss is not handled specially here because the GNU/Linux
6691 prelinker can convert .sbss from NOBITS to PROGBITS and
6692 changing it back to NOBITS breaks the binary. The entry in
6693 _bfd_mips_elf_special_sections will ensure the correct flags
6694 are set on .sbss if BFD creates it without reading it from an
6695 input file, and without special handling here the flags set
6696 on it in an input file will be followed. */
6697 if (strcmp (name, ".sdata") == 0
6698 || strcmp (name, ".lit8") == 0
6699 || strcmp (name, ".lit4") == 0)
6700 {
6701 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6702 hdr->sh_type = SHT_PROGBITS;
6703 }
6704 else if (strcmp (name, ".srdata") == 0)
6705 {
6706 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6707 hdr->sh_type = SHT_PROGBITS;
6708 }
6709 else if (strcmp (name, ".compact_rel") == 0)
6710 {
6711 hdr->sh_flags = 0;
6712 hdr->sh_type = SHT_PROGBITS;
6713 }
6714 else if (strcmp (name, ".rtproc") == 0)
6715 {
6716 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6717 {
6718 unsigned int adjust;
6719
6720 adjust = hdr->sh_size % hdr->sh_addralign;
6721 if (adjust != 0)
6722 hdr->sh_size += hdr->sh_addralign - adjust;
6723 }
6724 }
6725 }
6726
6727 return TRUE;
6728 }
6729
6730 /* Handle a MIPS specific section when reading an object file. This
6731 is called when elfcode.h finds a section with an unknown type.
6732 This routine supports both the 32-bit and 64-bit ELF ABI.
6733
6734 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6735 how to. */
6736
6737 bfd_boolean
6738 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6739 Elf_Internal_Shdr *hdr,
6740 const char *name,
6741 int shindex)
6742 {
6743 flagword flags = 0;
6744
6745 /* There ought to be a place to keep ELF backend specific flags, but
6746 at the moment there isn't one. We just keep track of the
6747 sections by their name, instead. Fortunately, the ABI gives
6748 suggested names for all the MIPS specific sections, so we will
6749 probably get away with this. */
6750 switch (hdr->sh_type)
6751 {
6752 case SHT_MIPS_LIBLIST:
6753 if (strcmp (name, ".liblist") != 0)
6754 return FALSE;
6755 break;
6756 case SHT_MIPS_MSYM:
6757 if (strcmp (name, ".msym") != 0)
6758 return FALSE;
6759 break;
6760 case SHT_MIPS_CONFLICT:
6761 if (strcmp (name, ".conflict") != 0)
6762 return FALSE;
6763 break;
6764 case SHT_MIPS_GPTAB:
6765 if (! CONST_STRNEQ (name, ".gptab."))
6766 return FALSE;
6767 break;
6768 case SHT_MIPS_UCODE:
6769 if (strcmp (name, ".ucode") != 0)
6770 return FALSE;
6771 break;
6772 case SHT_MIPS_DEBUG:
6773 if (strcmp (name, ".mdebug") != 0)
6774 return FALSE;
6775 flags = SEC_DEBUGGING;
6776 break;
6777 case SHT_MIPS_REGINFO:
6778 if (strcmp (name, ".reginfo") != 0
6779 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6780 return FALSE;
6781 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6782 break;
6783 case SHT_MIPS_IFACE:
6784 if (strcmp (name, ".MIPS.interfaces") != 0)
6785 return FALSE;
6786 break;
6787 case SHT_MIPS_CONTENT:
6788 if (! CONST_STRNEQ (name, ".MIPS.content"))
6789 return FALSE;
6790 break;
6791 case SHT_MIPS_OPTIONS:
6792 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6793 return FALSE;
6794 break;
6795 case SHT_MIPS_DWARF:
6796 if (! CONST_STRNEQ (name, ".debug_")
6797 && ! CONST_STRNEQ (name, ".zdebug_"))
6798 return FALSE;
6799 break;
6800 case SHT_MIPS_SYMBOL_LIB:
6801 if (strcmp (name, ".MIPS.symlib") != 0)
6802 return FALSE;
6803 break;
6804 case SHT_MIPS_EVENTS:
6805 if (! CONST_STRNEQ (name, ".MIPS.events")
6806 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6807 return FALSE;
6808 break;
6809 default:
6810 break;
6811 }
6812
6813 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6814 return FALSE;
6815
6816 if (flags)
6817 {
6818 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6819 (bfd_get_section_flags (abfd,
6820 hdr->bfd_section)
6821 | flags)))
6822 return FALSE;
6823 }
6824
6825 /* FIXME: We should record sh_info for a .gptab section. */
6826
6827 /* For a .reginfo section, set the gp value in the tdata information
6828 from the contents of this section. We need the gp value while
6829 processing relocs, so we just get it now. The .reginfo section
6830 is not used in the 64-bit MIPS ELF ABI. */
6831 if (hdr->sh_type == SHT_MIPS_REGINFO)
6832 {
6833 Elf32_External_RegInfo ext;
6834 Elf32_RegInfo s;
6835
6836 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6837 &ext, 0, sizeof ext))
6838 return FALSE;
6839 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6840 elf_gp (abfd) = s.ri_gp_value;
6841 }
6842
6843 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6844 set the gp value based on what we find. We may see both
6845 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6846 they should agree. */
6847 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6848 {
6849 bfd_byte *contents, *l, *lend;
6850
6851 contents = bfd_malloc (hdr->sh_size);
6852 if (contents == NULL)
6853 return FALSE;
6854 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6855 0, hdr->sh_size))
6856 {
6857 free (contents);
6858 return FALSE;
6859 }
6860 l = contents;
6861 lend = contents + hdr->sh_size;
6862 while (l + sizeof (Elf_External_Options) <= lend)
6863 {
6864 Elf_Internal_Options intopt;
6865
6866 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6867 &intopt);
6868 if (intopt.size < sizeof (Elf_External_Options))
6869 {
6870 (*_bfd_error_handler)
6871 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6872 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6873 break;
6874 }
6875 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6876 {
6877 Elf64_Internal_RegInfo intreg;
6878
6879 bfd_mips_elf64_swap_reginfo_in
6880 (abfd,
6881 ((Elf64_External_RegInfo *)
6882 (l + sizeof (Elf_External_Options))),
6883 &intreg);
6884 elf_gp (abfd) = intreg.ri_gp_value;
6885 }
6886 else if (intopt.kind == ODK_REGINFO)
6887 {
6888 Elf32_RegInfo intreg;
6889
6890 bfd_mips_elf32_swap_reginfo_in
6891 (abfd,
6892 ((Elf32_External_RegInfo *)
6893 (l + sizeof (Elf_External_Options))),
6894 &intreg);
6895 elf_gp (abfd) = intreg.ri_gp_value;
6896 }
6897 l += intopt.size;
6898 }
6899 free (contents);
6900 }
6901
6902 return TRUE;
6903 }
6904
6905 /* Set the correct type for a MIPS ELF section. We do this by the
6906 section name, which is a hack, but ought to work. This routine is
6907 used by both the 32-bit and the 64-bit ABI. */
6908
6909 bfd_boolean
6910 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6911 {
6912 const char *name = bfd_get_section_name (abfd, sec);
6913
6914 if (strcmp (name, ".liblist") == 0)
6915 {
6916 hdr->sh_type = SHT_MIPS_LIBLIST;
6917 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6918 /* The sh_link field is set in final_write_processing. */
6919 }
6920 else if (strcmp (name, ".conflict") == 0)
6921 hdr->sh_type = SHT_MIPS_CONFLICT;
6922 else if (CONST_STRNEQ (name, ".gptab."))
6923 {
6924 hdr->sh_type = SHT_MIPS_GPTAB;
6925 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6926 /* The sh_info field is set in final_write_processing. */
6927 }
6928 else if (strcmp (name, ".ucode") == 0)
6929 hdr->sh_type = SHT_MIPS_UCODE;
6930 else if (strcmp (name, ".mdebug") == 0)
6931 {
6932 hdr->sh_type = SHT_MIPS_DEBUG;
6933 /* In a shared object on IRIX 5.3, the .mdebug section has an
6934 entsize of 0. FIXME: Does this matter? */
6935 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6936 hdr->sh_entsize = 0;
6937 else
6938 hdr->sh_entsize = 1;
6939 }
6940 else if (strcmp (name, ".reginfo") == 0)
6941 {
6942 hdr->sh_type = SHT_MIPS_REGINFO;
6943 /* In a shared object on IRIX 5.3, the .reginfo section has an
6944 entsize of 0x18. FIXME: Does this matter? */
6945 if (SGI_COMPAT (abfd))
6946 {
6947 if ((abfd->flags & DYNAMIC) != 0)
6948 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6949 else
6950 hdr->sh_entsize = 1;
6951 }
6952 else
6953 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6954 }
6955 else if (SGI_COMPAT (abfd)
6956 && (strcmp (name, ".hash") == 0
6957 || strcmp (name, ".dynamic") == 0
6958 || strcmp (name, ".dynstr") == 0))
6959 {
6960 if (SGI_COMPAT (abfd))
6961 hdr->sh_entsize = 0;
6962 #if 0
6963 /* This isn't how the IRIX6 linker behaves. */
6964 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6965 #endif
6966 }
6967 else if (strcmp (name, ".got") == 0
6968 || strcmp (name, ".srdata") == 0
6969 || strcmp (name, ".sdata") == 0
6970 || strcmp (name, ".sbss") == 0
6971 || strcmp (name, ".lit4") == 0
6972 || strcmp (name, ".lit8") == 0)
6973 hdr->sh_flags |= SHF_MIPS_GPREL;
6974 else if (strcmp (name, ".MIPS.interfaces") == 0)
6975 {
6976 hdr->sh_type = SHT_MIPS_IFACE;
6977 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6978 }
6979 else if (CONST_STRNEQ (name, ".MIPS.content"))
6980 {
6981 hdr->sh_type = SHT_MIPS_CONTENT;
6982 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6983 /* The sh_info field is set in final_write_processing. */
6984 }
6985 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6986 {
6987 hdr->sh_type = SHT_MIPS_OPTIONS;
6988 hdr->sh_entsize = 1;
6989 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6990 }
6991 else if (CONST_STRNEQ (name, ".debug_")
6992 || CONST_STRNEQ (name, ".zdebug_"))
6993 {
6994 hdr->sh_type = SHT_MIPS_DWARF;
6995
6996 /* Irix facilities such as libexc expect a single .debug_frame
6997 per executable, the system ones have NOSTRIP set and the linker
6998 doesn't merge sections with different flags so ... */
6999 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7000 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7001 }
7002 else if (strcmp (name, ".MIPS.symlib") == 0)
7003 {
7004 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7005 /* The sh_link and sh_info fields are set in
7006 final_write_processing. */
7007 }
7008 else if (CONST_STRNEQ (name, ".MIPS.events")
7009 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7010 {
7011 hdr->sh_type = SHT_MIPS_EVENTS;
7012 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7013 /* The sh_link field is set in final_write_processing. */
7014 }
7015 else if (strcmp (name, ".msym") == 0)
7016 {
7017 hdr->sh_type = SHT_MIPS_MSYM;
7018 hdr->sh_flags |= SHF_ALLOC;
7019 hdr->sh_entsize = 8;
7020 }
7021
7022 /* The generic elf_fake_sections will set up REL_HDR using the default
7023 kind of relocations. We used to set up a second header for the
7024 non-default kind of relocations here, but only NewABI would use
7025 these, and the IRIX ld doesn't like resulting empty RELA sections.
7026 Thus we create those header only on demand now. */
7027
7028 return TRUE;
7029 }
7030
7031 /* Given a BFD section, try to locate the corresponding ELF section
7032 index. This is used by both the 32-bit and the 64-bit ABI.
7033 Actually, it's not clear to me that the 64-bit ABI supports these,
7034 but for non-PIC objects we will certainly want support for at least
7035 the .scommon section. */
7036
7037 bfd_boolean
7038 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7039 asection *sec, int *retval)
7040 {
7041 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7042 {
7043 *retval = SHN_MIPS_SCOMMON;
7044 return TRUE;
7045 }
7046 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7047 {
7048 *retval = SHN_MIPS_ACOMMON;
7049 return TRUE;
7050 }
7051 return FALSE;
7052 }
7053 \f
7054 /* Hook called by the linker routine which adds symbols from an object
7055 file. We must handle the special MIPS section numbers here. */
7056
7057 bfd_boolean
7058 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7059 Elf_Internal_Sym *sym, const char **namep,
7060 flagword *flagsp ATTRIBUTE_UNUSED,
7061 asection **secp, bfd_vma *valp)
7062 {
7063 if (SGI_COMPAT (abfd)
7064 && (abfd->flags & DYNAMIC) != 0
7065 && strcmp (*namep, "_rld_new_interface") == 0)
7066 {
7067 /* Skip IRIX5 rld entry name. */
7068 *namep = NULL;
7069 return TRUE;
7070 }
7071
7072 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7073 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7074 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7075 a magic symbol resolved by the linker, we ignore this bogus definition
7076 of _gp_disp. New ABI objects do not suffer from this problem so this
7077 is not done for them. */
7078 if (!NEWABI_P(abfd)
7079 && (sym->st_shndx == SHN_ABS)
7080 && (strcmp (*namep, "_gp_disp") == 0))
7081 {
7082 *namep = NULL;
7083 return TRUE;
7084 }
7085
7086 switch (sym->st_shndx)
7087 {
7088 case SHN_COMMON:
7089 /* Common symbols less than the GP size are automatically
7090 treated as SHN_MIPS_SCOMMON symbols. */
7091 if (sym->st_size > elf_gp_size (abfd)
7092 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7093 || IRIX_COMPAT (abfd) == ict_irix6)
7094 break;
7095 /* Fall through. */
7096 case SHN_MIPS_SCOMMON:
7097 *secp = bfd_make_section_old_way (abfd, ".scommon");
7098 (*secp)->flags |= SEC_IS_COMMON;
7099 *valp = sym->st_size;
7100 break;
7101
7102 case SHN_MIPS_TEXT:
7103 /* This section is used in a shared object. */
7104 if (elf_tdata (abfd)->elf_text_section == NULL)
7105 {
7106 asymbol *elf_text_symbol;
7107 asection *elf_text_section;
7108 bfd_size_type amt = sizeof (asection);
7109
7110 elf_text_section = bfd_zalloc (abfd, amt);
7111 if (elf_text_section == NULL)
7112 return FALSE;
7113
7114 amt = sizeof (asymbol);
7115 elf_text_symbol = bfd_zalloc (abfd, amt);
7116 if (elf_text_symbol == NULL)
7117 return FALSE;
7118
7119 /* Initialize the section. */
7120
7121 elf_tdata (abfd)->elf_text_section = elf_text_section;
7122 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7123
7124 elf_text_section->symbol = elf_text_symbol;
7125 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7126
7127 elf_text_section->name = ".text";
7128 elf_text_section->flags = SEC_NO_FLAGS;
7129 elf_text_section->output_section = NULL;
7130 elf_text_section->owner = abfd;
7131 elf_text_symbol->name = ".text";
7132 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7133 elf_text_symbol->section = elf_text_section;
7134 }
7135 /* This code used to do *secp = bfd_und_section_ptr if
7136 info->shared. I don't know why, and that doesn't make sense,
7137 so I took it out. */
7138 *secp = elf_tdata (abfd)->elf_text_section;
7139 break;
7140
7141 case SHN_MIPS_ACOMMON:
7142 /* Fall through. XXX Can we treat this as allocated data? */
7143 case SHN_MIPS_DATA:
7144 /* This section is used in a shared object. */
7145 if (elf_tdata (abfd)->elf_data_section == NULL)
7146 {
7147 asymbol *elf_data_symbol;
7148 asection *elf_data_section;
7149 bfd_size_type amt = sizeof (asection);
7150
7151 elf_data_section = bfd_zalloc (abfd, amt);
7152 if (elf_data_section == NULL)
7153 return FALSE;
7154
7155 amt = sizeof (asymbol);
7156 elf_data_symbol = bfd_zalloc (abfd, amt);
7157 if (elf_data_symbol == NULL)
7158 return FALSE;
7159
7160 /* Initialize the section. */
7161
7162 elf_tdata (abfd)->elf_data_section = elf_data_section;
7163 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7164
7165 elf_data_section->symbol = elf_data_symbol;
7166 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7167
7168 elf_data_section->name = ".data";
7169 elf_data_section->flags = SEC_NO_FLAGS;
7170 elf_data_section->output_section = NULL;
7171 elf_data_section->owner = abfd;
7172 elf_data_symbol->name = ".data";
7173 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7174 elf_data_symbol->section = elf_data_section;
7175 }
7176 /* This code used to do *secp = bfd_und_section_ptr if
7177 info->shared. I don't know why, and that doesn't make sense,
7178 so I took it out. */
7179 *secp = elf_tdata (abfd)->elf_data_section;
7180 break;
7181
7182 case SHN_MIPS_SUNDEFINED:
7183 *secp = bfd_und_section_ptr;
7184 break;
7185 }
7186
7187 if (SGI_COMPAT (abfd)
7188 && ! info->shared
7189 && info->output_bfd->xvec == abfd->xvec
7190 && strcmp (*namep, "__rld_obj_head") == 0)
7191 {
7192 struct elf_link_hash_entry *h;
7193 struct bfd_link_hash_entry *bh;
7194
7195 /* Mark __rld_obj_head as dynamic. */
7196 bh = NULL;
7197 if (! (_bfd_generic_link_add_one_symbol
7198 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7199 get_elf_backend_data (abfd)->collect, &bh)))
7200 return FALSE;
7201
7202 h = (struct elf_link_hash_entry *) bh;
7203 h->non_elf = 0;
7204 h->def_regular = 1;
7205 h->type = STT_OBJECT;
7206
7207 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7208 return FALSE;
7209
7210 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7211 mips_elf_hash_table (info)->rld_symbol = h;
7212 }
7213
7214 /* If this is a mips16 text symbol, add 1 to the value to make it
7215 odd. This will cause something like .word SYM to come up with
7216 the right value when it is loaded into the PC. */
7217 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7218 ++*valp;
7219
7220 return TRUE;
7221 }
7222
7223 /* This hook function is called before the linker writes out a global
7224 symbol. We mark symbols as small common if appropriate. This is
7225 also where we undo the increment of the value for a mips16 symbol. */
7226
7227 int
7228 _bfd_mips_elf_link_output_symbol_hook
7229 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7230 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7231 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7232 {
7233 /* If we see a common symbol, which implies a relocatable link, then
7234 if a symbol was small common in an input file, mark it as small
7235 common in the output file. */
7236 if (sym->st_shndx == SHN_COMMON
7237 && strcmp (input_sec->name, ".scommon") == 0)
7238 sym->st_shndx = SHN_MIPS_SCOMMON;
7239
7240 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7241 sym->st_value &= ~1;
7242
7243 return 1;
7244 }
7245 \f
7246 /* Functions for the dynamic linker. */
7247
7248 /* Create dynamic sections when linking against a dynamic object. */
7249
7250 bfd_boolean
7251 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7252 {
7253 struct elf_link_hash_entry *h;
7254 struct bfd_link_hash_entry *bh;
7255 flagword flags;
7256 register asection *s;
7257 const char * const *namep;
7258 struct mips_elf_link_hash_table *htab;
7259
7260 htab = mips_elf_hash_table (info);
7261 BFD_ASSERT (htab != NULL);
7262
7263 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7264 | SEC_LINKER_CREATED | SEC_READONLY);
7265
7266 /* The psABI requires a read-only .dynamic section, but the VxWorks
7267 EABI doesn't. */
7268 if (!htab->is_vxworks)
7269 {
7270 s = bfd_get_linker_section (abfd, ".dynamic");
7271 if (s != NULL)
7272 {
7273 if (! bfd_set_section_flags (abfd, s, flags))
7274 return FALSE;
7275 }
7276 }
7277
7278 /* We need to create .got section. */
7279 if (!mips_elf_create_got_section (abfd, info))
7280 return FALSE;
7281
7282 if (! mips_elf_rel_dyn_section (info, TRUE))
7283 return FALSE;
7284
7285 /* Create .stub section. */
7286 s = bfd_make_section_anyway_with_flags (abfd,
7287 MIPS_ELF_STUB_SECTION_NAME (abfd),
7288 flags | SEC_CODE);
7289 if (s == NULL
7290 || ! bfd_set_section_alignment (abfd, s,
7291 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7292 return FALSE;
7293 htab->sstubs = s;
7294
7295 if (!mips_elf_hash_table (info)->use_rld_obj_head
7296 && !info->shared
7297 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7298 {
7299 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7300 flags &~ (flagword) SEC_READONLY);
7301 if (s == NULL
7302 || ! bfd_set_section_alignment (abfd, s,
7303 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7304 return FALSE;
7305 }
7306
7307 /* On IRIX5, we adjust add some additional symbols and change the
7308 alignments of several sections. There is no ABI documentation
7309 indicating that this is necessary on IRIX6, nor any evidence that
7310 the linker takes such action. */
7311 if (IRIX_COMPAT (abfd) == ict_irix5)
7312 {
7313 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7314 {
7315 bh = NULL;
7316 if (! (_bfd_generic_link_add_one_symbol
7317 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7318 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7319 return FALSE;
7320
7321 h = (struct elf_link_hash_entry *) bh;
7322 h->non_elf = 0;
7323 h->def_regular = 1;
7324 h->type = STT_SECTION;
7325
7326 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7327 return FALSE;
7328 }
7329
7330 /* We need to create a .compact_rel section. */
7331 if (SGI_COMPAT (abfd))
7332 {
7333 if (!mips_elf_create_compact_rel_section (abfd, info))
7334 return FALSE;
7335 }
7336
7337 /* Change alignments of some sections. */
7338 s = bfd_get_linker_section (abfd, ".hash");
7339 if (s != NULL)
7340 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7341 s = bfd_get_linker_section (abfd, ".dynsym");
7342 if (s != NULL)
7343 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7344 s = bfd_get_linker_section (abfd, ".dynstr");
7345 if (s != NULL)
7346 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7347 /* ??? */
7348 s = bfd_get_section_by_name (abfd, ".reginfo");
7349 if (s != NULL)
7350 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7351 s = bfd_get_linker_section (abfd, ".dynamic");
7352 if (s != NULL)
7353 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7354 }
7355
7356 if (!info->shared)
7357 {
7358 const char *name;
7359
7360 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7361 bh = NULL;
7362 if (!(_bfd_generic_link_add_one_symbol
7363 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7364 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7365 return FALSE;
7366
7367 h = (struct elf_link_hash_entry *) bh;
7368 h->non_elf = 0;
7369 h->def_regular = 1;
7370 h->type = STT_SECTION;
7371
7372 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7373 return FALSE;
7374
7375 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7376 {
7377 /* __rld_map is a four byte word located in the .data section
7378 and is filled in by the rtld to contain a pointer to
7379 the _r_debug structure. Its symbol value will be set in
7380 _bfd_mips_elf_finish_dynamic_symbol. */
7381 s = bfd_get_linker_section (abfd, ".rld_map");
7382 BFD_ASSERT (s != NULL);
7383
7384 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7385 bh = NULL;
7386 if (!(_bfd_generic_link_add_one_symbol
7387 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7388 get_elf_backend_data (abfd)->collect, &bh)))
7389 return FALSE;
7390
7391 h = (struct elf_link_hash_entry *) bh;
7392 h->non_elf = 0;
7393 h->def_regular = 1;
7394 h->type = STT_OBJECT;
7395
7396 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7397 return FALSE;
7398 mips_elf_hash_table (info)->rld_symbol = h;
7399 }
7400 }
7401
7402 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7403 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7404 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7405 return FALSE;
7406
7407 /* Cache the sections created above. */
7408 htab->splt = bfd_get_linker_section (abfd, ".plt");
7409 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7410 if (htab->is_vxworks)
7411 {
7412 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7413 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7414 }
7415 else
7416 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7417 if (!htab->sdynbss
7418 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7419 || !htab->srelplt
7420 || !htab->splt)
7421 abort ();
7422
7423 if (htab->is_vxworks)
7424 {
7425 /* Do the usual VxWorks handling. */
7426 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7427 return FALSE;
7428
7429 /* Work out the PLT sizes. */
7430 if (info->shared)
7431 {
7432 htab->plt_header_size
7433 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7434 htab->plt_entry_size
7435 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7436 }
7437 else
7438 {
7439 htab->plt_header_size
7440 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7441 htab->plt_entry_size
7442 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7443 }
7444 }
7445 else if (!info->shared)
7446 {
7447 /* All variants of the plt0 entry are the same size. */
7448 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7449 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7450 }
7451
7452 return TRUE;
7453 }
7454 \f
7455 /* Return true if relocation REL against section SEC is a REL rather than
7456 RELA relocation. RELOCS is the first relocation in the section and
7457 ABFD is the bfd that contains SEC. */
7458
7459 static bfd_boolean
7460 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7461 const Elf_Internal_Rela *relocs,
7462 const Elf_Internal_Rela *rel)
7463 {
7464 Elf_Internal_Shdr *rel_hdr;
7465 const struct elf_backend_data *bed;
7466
7467 /* To determine which flavor of relocation this is, we depend on the
7468 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7469 rel_hdr = elf_section_data (sec)->rel.hdr;
7470 if (rel_hdr == NULL)
7471 return FALSE;
7472 bed = get_elf_backend_data (abfd);
7473 return ((size_t) (rel - relocs)
7474 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7475 }
7476
7477 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7478 HOWTO is the relocation's howto and CONTENTS points to the contents
7479 of the section that REL is against. */
7480
7481 static bfd_vma
7482 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7483 reloc_howto_type *howto, bfd_byte *contents)
7484 {
7485 bfd_byte *location;
7486 unsigned int r_type;
7487 bfd_vma addend;
7488
7489 r_type = ELF_R_TYPE (abfd, rel->r_info);
7490 location = contents + rel->r_offset;
7491
7492 /* Get the addend, which is stored in the input file. */
7493 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7494 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7495 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7496
7497 return addend & howto->src_mask;
7498 }
7499
7500 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7501 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7502 and update *ADDEND with the final addend. Return true on success
7503 or false if the LO16 could not be found. RELEND is the exclusive
7504 upper bound on the relocations for REL's section. */
7505
7506 static bfd_boolean
7507 mips_elf_add_lo16_rel_addend (bfd *abfd,
7508 const Elf_Internal_Rela *rel,
7509 const Elf_Internal_Rela *relend,
7510 bfd_byte *contents, bfd_vma *addend)
7511 {
7512 unsigned int r_type, lo16_type;
7513 const Elf_Internal_Rela *lo16_relocation;
7514 reloc_howto_type *lo16_howto;
7515 bfd_vma l;
7516
7517 r_type = ELF_R_TYPE (abfd, rel->r_info);
7518 if (mips16_reloc_p (r_type))
7519 lo16_type = R_MIPS16_LO16;
7520 else if (micromips_reloc_p (r_type))
7521 lo16_type = R_MICROMIPS_LO16;
7522 else
7523 lo16_type = R_MIPS_LO16;
7524
7525 /* The combined value is the sum of the HI16 addend, left-shifted by
7526 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7527 code does a `lui' of the HI16 value, and then an `addiu' of the
7528 LO16 value.)
7529
7530 Scan ahead to find a matching LO16 relocation.
7531
7532 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7533 be immediately following. However, for the IRIX6 ABI, the next
7534 relocation may be a composed relocation consisting of several
7535 relocations for the same address. In that case, the R_MIPS_LO16
7536 relocation may occur as one of these. We permit a similar
7537 extension in general, as that is useful for GCC.
7538
7539 In some cases GCC dead code elimination removes the LO16 but keeps
7540 the corresponding HI16. This is strictly speaking a violation of
7541 the ABI but not immediately harmful. */
7542 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7543 if (lo16_relocation == NULL)
7544 return FALSE;
7545
7546 /* Obtain the addend kept there. */
7547 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7548 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7549
7550 l <<= lo16_howto->rightshift;
7551 l = _bfd_mips_elf_sign_extend (l, 16);
7552
7553 *addend <<= 16;
7554 *addend += l;
7555 return TRUE;
7556 }
7557
7558 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7559 store the contents in *CONTENTS on success. Assume that *CONTENTS
7560 already holds the contents if it is nonull on entry. */
7561
7562 static bfd_boolean
7563 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7564 {
7565 if (*contents)
7566 return TRUE;
7567
7568 /* Get cached copy if it exists. */
7569 if (elf_section_data (sec)->this_hdr.contents != NULL)
7570 {
7571 *contents = elf_section_data (sec)->this_hdr.contents;
7572 return TRUE;
7573 }
7574
7575 return bfd_malloc_and_get_section (abfd, sec, contents);
7576 }
7577
7578 /* Look through the relocs for a section during the first phase, and
7579 allocate space in the global offset table. */
7580
7581 bfd_boolean
7582 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7583 asection *sec, const Elf_Internal_Rela *relocs)
7584 {
7585 const char *name;
7586 bfd *dynobj;
7587 Elf_Internal_Shdr *symtab_hdr;
7588 struct elf_link_hash_entry **sym_hashes;
7589 size_t extsymoff;
7590 const Elf_Internal_Rela *rel;
7591 const Elf_Internal_Rela *rel_end;
7592 asection *sreloc;
7593 const struct elf_backend_data *bed;
7594 struct mips_elf_link_hash_table *htab;
7595 bfd_byte *contents;
7596 bfd_vma addend;
7597 reloc_howto_type *howto;
7598
7599 if (info->relocatable)
7600 return TRUE;
7601
7602 htab = mips_elf_hash_table (info);
7603 BFD_ASSERT (htab != NULL);
7604
7605 dynobj = elf_hash_table (info)->dynobj;
7606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7607 sym_hashes = elf_sym_hashes (abfd);
7608 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7609
7610 bed = get_elf_backend_data (abfd);
7611 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7612
7613 /* Check for the mips16 stub sections. */
7614
7615 name = bfd_get_section_name (abfd, sec);
7616 if (FN_STUB_P (name))
7617 {
7618 unsigned long r_symndx;
7619
7620 /* Look at the relocation information to figure out which symbol
7621 this is for. */
7622
7623 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7624 if (r_symndx == 0)
7625 {
7626 (*_bfd_error_handler)
7627 (_("%B: Warning: cannot determine the target function for"
7628 " stub section `%s'"),
7629 abfd, name);
7630 bfd_set_error (bfd_error_bad_value);
7631 return FALSE;
7632 }
7633
7634 if (r_symndx < extsymoff
7635 || sym_hashes[r_symndx - extsymoff] == NULL)
7636 {
7637 asection *o;
7638
7639 /* This stub is for a local symbol. This stub will only be
7640 needed if there is some relocation in this BFD, other
7641 than a 16 bit function call, which refers to this symbol. */
7642 for (o = abfd->sections; o != NULL; o = o->next)
7643 {
7644 Elf_Internal_Rela *sec_relocs;
7645 const Elf_Internal_Rela *r, *rend;
7646
7647 /* We can ignore stub sections when looking for relocs. */
7648 if ((o->flags & SEC_RELOC) == 0
7649 || o->reloc_count == 0
7650 || section_allows_mips16_refs_p (o))
7651 continue;
7652
7653 sec_relocs
7654 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7655 info->keep_memory);
7656 if (sec_relocs == NULL)
7657 return FALSE;
7658
7659 rend = sec_relocs + o->reloc_count;
7660 for (r = sec_relocs; r < rend; r++)
7661 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7662 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7663 break;
7664
7665 if (elf_section_data (o)->relocs != sec_relocs)
7666 free (sec_relocs);
7667
7668 if (r < rend)
7669 break;
7670 }
7671
7672 if (o == NULL)
7673 {
7674 /* There is no non-call reloc for this stub, so we do
7675 not need it. Since this function is called before
7676 the linker maps input sections to output sections, we
7677 can easily discard it by setting the SEC_EXCLUDE
7678 flag. */
7679 sec->flags |= SEC_EXCLUDE;
7680 return TRUE;
7681 }
7682
7683 /* Record this stub in an array of local symbol stubs for
7684 this BFD. */
7685 if (elf_tdata (abfd)->local_stubs == NULL)
7686 {
7687 unsigned long symcount;
7688 asection **n;
7689 bfd_size_type amt;
7690
7691 if (elf_bad_symtab (abfd))
7692 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7693 else
7694 symcount = symtab_hdr->sh_info;
7695 amt = symcount * sizeof (asection *);
7696 n = bfd_zalloc (abfd, amt);
7697 if (n == NULL)
7698 return FALSE;
7699 elf_tdata (abfd)->local_stubs = n;
7700 }
7701
7702 sec->flags |= SEC_KEEP;
7703 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7704
7705 /* We don't need to set mips16_stubs_seen in this case.
7706 That flag is used to see whether we need to look through
7707 the global symbol table for stubs. We don't need to set
7708 it here, because we just have a local stub. */
7709 }
7710 else
7711 {
7712 struct mips_elf_link_hash_entry *h;
7713
7714 h = ((struct mips_elf_link_hash_entry *)
7715 sym_hashes[r_symndx - extsymoff]);
7716
7717 while (h->root.root.type == bfd_link_hash_indirect
7718 || h->root.root.type == bfd_link_hash_warning)
7719 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7720
7721 /* H is the symbol this stub is for. */
7722
7723 /* If we already have an appropriate stub for this function, we
7724 don't need another one, so we can discard this one. Since
7725 this function is called before the linker maps input sections
7726 to output sections, we can easily discard it by setting the
7727 SEC_EXCLUDE flag. */
7728 if (h->fn_stub != NULL)
7729 {
7730 sec->flags |= SEC_EXCLUDE;
7731 return TRUE;
7732 }
7733
7734 sec->flags |= SEC_KEEP;
7735 h->fn_stub = sec;
7736 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7737 }
7738 }
7739 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7740 {
7741 unsigned long r_symndx;
7742 struct mips_elf_link_hash_entry *h;
7743 asection **loc;
7744
7745 /* Look at the relocation information to figure out which symbol
7746 this is for. */
7747
7748 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7749 if (r_symndx == 0)
7750 {
7751 (*_bfd_error_handler)
7752 (_("%B: Warning: cannot determine the target function for"
7753 " stub section `%s'"),
7754 abfd, name);
7755 bfd_set_error (bfd_error_bad_value);
7756 return FALSE;
7757 }
7758
7759 if (r_symndx < extsymoff
7760 || sym_hashes[r_symndx - extsymoff] == NULL)
7761 {
7762 asection *o;
7763
7764 /* This stub is for a local symbol. This stub will only be
7765 needed if there is some relocation (R_MIPS16_26) in this BFD
7766 that refers to this symbol. */
7767 for (o = abfd->sections; o != NULL; o = o->next)
7768 {
7769 Elf_Internal_Rela *sec_relocs;
7770 const Elf_Internal_Rela *r, *rend;
7771
7772 /* We can ignore stub sections when looking for relocs. */
7773 if ((o->flags & SEC_RELOC) == 0
7774 || o->reloc_count == 0
7775 || section_allows_mips16_refs_p (o))
7776 continue;
7777
7778 sec_relocs
7779 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7780 info->keep_memory);
7781 if (sec_relocs == NULL)
7782 return FALSE;
7783
7784 rend = sec_relocs + o->reloc_count;
7785 for (r = sec_relocs; r < rend; r++)
7786 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7787 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7788 break;
7789
7790 if (elf_section_data (o)->relocs != sec_relocs)
7791 free (sec_relocs);
7792
7793 if (r < rend)
7794 break;
7795 }
7796
7797 if (o == NULL)
7798 {
7799 /* There is no non-call reloc for this stub, so we do
7800 not need it. Since this function is called before
7801 the linker maps input sections to output sections, we
7802 can easily discard it by setting the SEC_EXCLUDE
7803 flag. */
7804 sec->flags |= SEC_EXCLUDE;
7805 return TRUE;
7806 }
7807
7808 /* Record this stub in an array of local symbol call_stubs for
7809 this BFD. */
7810 if (elf_tdata (abfd)->local_call_stubs == NULL)
7811 {
7812 unsigned long symcount;
7813 asection **n;
7814 bfd_size_type amt;
7815
7816 if (elf_bad_symtab (abfd))
7817 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7818 else
7819 symcount = symtab_hdr->sh_info;
7820 amt = symcount * sizeof (asection *);
7821 n = bfd_zalloc (abfd, amt);
7822 if (n == NULL)
7823 return FALSE;
7824 elf_tdata (abfd)->local_call_stubs = n;
7825 }
7826
7827 sec->flags |= SEC_KEEP;
7828 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7829
7830 /* We don't need to set mips16_stubs_seen in this case.
7831 That flag is used to see whether we need to look through
7832 the global symbol table for stubs. We don't need to set
7833 it here, because we just have a local stub. */
7834 }
7835 else
7836 {
7837 h = ((struct mips_elf_link_hash_entry *)
7838 sym_hashes[r_symndx - extsymoff]);
7839
7840 /* H is the symbol this stub is for. */
7841
7842 if (CALL_FP_STUB_P (name))
7843 loc = &h->call_fp_stub;
7844 else
7845 loc = &h->call_stub;
7846
7847 /* If we already have an appropriate stub for this function, we
7848 don't need another one, so we can discard this one. Since
7849 this function is called before the linker maps input sections
7850 to output sections, we can easily discard it by setting the
7851 SEC_EXCLUDE flag. */
7852 if (*loc != NULL)
7853 {
7854 sec->flags |= SEC_EXCLUDE;
7855 return TRUE;
7856 }
7857
7858 sec->flags |= SEC_KEEP;
7859 *loc = sec;
7860 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7861 }
7862 }
7863
7864 sreloc = NULL;
7865 contents = NULL;
7866 for (rel = relocs; rel < rel_end; ++rel)
7867 {
7868 unsigned long r_symndx;
7869 unsigned int r_type;
7870 struct elf_link_hash_entry *h;
7871 bfd_boolean can_make_dynamic_p;
7872
7873 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7874 r_type = ELF_R_TYPE (abfd, rel->r_info);
7875
7876 if (r_symndx < extsymoff)
7877 h = NULL;
7878 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7879 {
7880 (*_bfd_error_handler)
7881 (_("%B: Malformed reloc detected for section %s"),
7882 abfd, name);
7883 bfd_set_error (bfd_error_bad_value);
7884 return FALSE;
7885 }
7886 else
7887 {
7888 h = sym_hashes[r_symndx - extsymoff];
7889 while (h != NULL
7890 && (h->root.type == bfd_link_hash_indirect
7891 || h->root.type == bfd_link_hash_warning))
7892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7893 }
7894
7895 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7896 relocation into a dynamic one. */
7897 can_make_dynamic_p = FALSE;
7898 switch (r_type)
7899 {
7900 case R_MIPS_GOT16:
7901 case R_MIPS_CALL16:
7902 case R_MIPS_CALL_HI16:
7903 case R_MIPS_CALL_LO16:
7904 case R_MIPS_GOT_HI16:
7905 case R_MIPS_GOT_LO16:
7906 case R_MIPS_GOT_PAGE:
7907 case R_MIPS_GOT_OFST:
7908 case R_MIPS_GOT_DISP:
7909 case R_MIPS_TLS_GOTTPREL:
7910 case R_MIPS_TLS_GD:
7911 case R_MIPS_TLS_LDM:
7912 case R_MIPS16_GOT16:
7913 case R_MIPS16_CALL16:
7914 case R_MIPS16_TLS_GOTTPREL:
7915 case R_MIPS16_TLS_GD:
7916 case R_MIPS16_TLS_LDM:
7917 case R_MICROMIPS_GOT16:
7918 case R_MICROMIPS_CALL16:
7919 case R_MICROMIPS_CALL_HI16:
7920 case R_MICROMIPS_CALL_LO16:
7921 case R_MICROMIPS_GOT_HI16:
7922 case R_MICROMIPS_GOT_LO16:
7923 case R_MICROMIPS_GOT_PAGE:
7924 case R_MICROMIPS_GOT_OFST:
7925 case R_MICROMIPS_GOT_DISP:
7926 case R_MICROMIPS_TLS_GOTTPREL:
7927 case R_MICROMIPS_TLS_GD:
7928 case R_MICROMIPS_TLS_LDM:
7929 if (dynobj == NULL)
7930 elf_hash_table (info)->dynobj = dynobj = abfd;
7931 if (!mips_elf_create_got_section (dynobj, info))
7932 return FALSE;
7933 if (htab->is_vxworks && !info->shared)
7934 {
7935 (*_bfd_error_handler)
7936 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7937 abfd, (unsigned long) rel->r_offset);
7938 bfd_set_error (bfd_error_bad_value);
7939 return FALSE;
7940 }
7941 break;
7942
7943 /* This is just a hint; it can safely be ignored. Don't set
7944 has_static_relocs for the corresponding symbol. */
7945 case R_MIPS_JALR:
7946 case R_MICROMIPS_JALR:
7947 break;
7948
7949 case R_MIPS_32:
7950 case R_MIPS_REL32:
7951 case R_MIPS_64:
7952 /* In VxWorks executables, references to external symbols
7953 must be handled using copy relocs or PLT entries; it is not
7954 possible to convert this relocation into a dynamic one.
7955
7956 For executables that use PLTs and copy-relocs, we have a
7957 choice between converting the relocation into a dynamic
7958 one or using copy relocations or PLT entries. It is
7959 usually better to do the former, unless the relocation is
7960 against a read-only section. */
7961 if ((info->shared
7962 || (h != NULL
7963 && !htab->is_vxworks
7964 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7965 && !(!info->nocopyreloc
7966 && !PIC_OBJECT_P (abfd)
7967 && MIPS_ELF_READONLY_SECTION (sec))))
7968 && (sec->flags & SEC_ALLOC) != 0)
7969 {
7970 can_make_dynamic_p = TRUE;
7971 if (dynobj == NULL)
7972 elf_hash_table (info)->dynobj = dynobj = abfd;
7973 break;
7974 }
7975 /* For sections that are not SEC_ALLOC a copy reloc would be
7976 output if possible (implying questionable semantics for
7977 read-only data objects) or otherwise the final link would
7978 fail as ld.so will not process them and could not therefore
7979 handle any outstanding dynamic relocations.
7980
7981 For such sections that are also SEC_DEBUGGING, we can avoid
7982 these problems by simply ignoring any relocs as these
7983 sections have a predefined use and we know it is safe to do
7984 so.
7985
7986 This is needed in cases such as a global symbol definition
7987 in a shared library causing a common symbol from an object
7988 file to be converted to an undefined reference. If that
7989 happens, then all the relocations against this symbol from
7990 SEC_DEBUGGING sections in the object file will resolve to
7991 nil. */
7992 if ((sec->flags & SEC_DEBUGGING) != 0)
7993 break;
7994 /* Fall through. */
7995
7996 default:
7997 /* Most static relocations require pointer equality, except
7998 for branches. */
7999 if (h)
8000 h->pointer_equality_needed = TRUE;
8001 /* Fall through. */
8002
8003 case R_MIPS_26:
8004 case R_MIPS_PC16:
8005 case R_MIPS16_26:
8006 case R_MICROMIPS_26_S1:
8007 case R_MICROMIPS_PC7_S1:
8008 case R_MICROMIPS_PC10_S1:
8009 case R_MICROMIPS_PC16_S1:
8010 case R_MICROMIPS_PC23_S2:
8011 if (h)
8012 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
8013 break;
8014 }
8015
8016 if (h)
8017 {
8018 /* Relocations against the special VxWorks __GOTT_BASE__ and
8019 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8020 room for them in .rela.dyn. */
8021 if (is_gott_symbol (info, h))
8022 {
8023 if (sreloc == NULL)
8024 {
8025 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8026 if (sreloc == NULL)
8027 return FALSE;
8028 }
8029 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8030 if (MIPS_ELF_READONLY_SECTION (sec))
8031 /* We tell the dynamic linker that there are
8032 relocations against the text segment. */
8033 info->flags |= DF_TEXTREL;
8034 }
8035 }
8036 else if (call_lo16_reloc_p (r_type)
8037 || got_lo16_reloc_p (r_type)
8038 || got_disp_reloc_p (r_type)
8039 || (got16_reloc_p (r_type) && htab->is_vxworks))
8040 {
8041 /* We may need a local GOT entry for this relocation. We
8042 don't count R_MIPS_GOT_PAGE because we can estimate the
8043 maximum number of pages needed by looking at the size of
8044 the segment. Similar comments apply to R_MIPS*_GOT16 and
8045 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8046 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8047 R_MIPS_CALL_HI16 because these are always followed by an
8048 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8049 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8050 rel->r_addend, info, 0))
8051 return FALSE;
8052 }
8053
8054 if (h != NULL
8055 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8056 ELF_ST_IS_MIPS16 (h->other)))
8057 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8058
8059 switch (r_type)
8060 {
8061 case R_MIPS_CALL16:
8062 case R_MIPS16_CALL16:
8063 case R_MICROMIPS_CALL16:
8064 if (h == NULL)
8065 {
8066 (*_bfd_error_handler)
8067 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8068 abfd, (unsigned long) rel->r_offset);
8069 bfd_set_error (bfd_error_bad_value);
8070 return FALSE;
8071 }
8072 /* Fall through. */
8073
8074 case R_MIPS_CALL_HI16:
8075 case R_MIPS_CALL_LO16:
8076 case R_MICROMIPS_CALL_HI16:
8077 case R_MICROMIPS_CALL_LO16:
8078 if (h != NULL)
8079 {
8080 /* Make sure there is room in the regular GOT to hold the
8081 function's address. We may eliminate it in favour of
8082 a .got.plt entry later; see mips_elf_count_got_symbols. */
8083 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8084 return FALSE;
8085
8086 /* We need a stub, not a plt entry for the undefined
8087 function. But we record it as if it needs plt. See
8088 _bfd_elf_adjust_dynamic_symbol. */
8089 h->needs_plt = 1;
8090 h->type = STT_FUNC;
8091 }
8092 break;
8093
8094 case R_MIPS_GOT_PAGE:
8095 case R_MICROMIPS_GOT_PAGE:
8096 /* If this is a global, overridable symbol, GOT_PAGE will
8097 decay to GOT_DISP, so we'll need a GOT entry for it. */
8098 if (h)
8099 {
8100 struct mips_elf_link_hash_entry *hmips =
8101 (struct mips_elf_link_hash_entry *) h;
8102
8103 /* This symbol is definitely not overridable. */
8104 if (hmips->root.def_regular
8105 && ! (info->shared && ! info->symbolic
8106 && ! hmips->root.forced_local))
8107 h = NULL;
8108 }
8109 /* Fall through. */
8110
8111 case R_MIPS16_GOT16:
8112 case R_MIPS_GOT16:
8113 case R_MIPS_GOT_HI16:
8114 case R_MIPS_GOT_LO16:
8115 case R_MICROMIPS_GOT16:
8116 case R_MICROMIPS_GOT_HI16:
8117 case R_MICROMIPS_GOT_LO16:
8118 if (!h || got_page_reloc_p (r_type))
8119 {
8120 /* This relocation needs (or may need, if h != NULL) a
8121 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8122 know for sure until we know whether the symbol is
8123 preemptible. */
8124 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8125 {
8126 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8127 return FALSE;
8128 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8129 addend = mips_elf_read_rel_addend (abfd, rel,
8130 howto, contents);
8131 if (got16_reloc_p (r_type))
8132 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8133 contents, &addend);
8134 else
8135 addend <<= howto->rightshift;
8136 }
8137 else
8138 addend = rel->r_addend;
8139 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8140 addend))
8141 return FALSE;
8142 }
8143 /* Fall through. */
8144
8145 case R_MIPS_GOT_DISP:
8146 case R_MICROMIPS_GOT_DISP:
8147 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8148 FALSE, 0))
8149 return FALSE;
8150 break;
8151
8152 case R_MIPS_TLS_GOTTPREL:
8153 case R_MIPS16_TLS_GOTTPREL:
8154 case R_MICROMIPS_TLS_GOTTPREL:
8155 if (info->shared)
8156 info->flags |= DF_STATIC_TLS;
8157 /* Fall through */
8158
8159 case R_MIPS_TLS_LDM:
8160 case R_MIPS16_TLS_LDM:
8161 case R_MICROMIPS_TLS_LDM:
8162 if (tls_ldm_reloc_p (r_type))
8163 {
8164 r_symndx = STN_UNDEF;
8165 h = NULL;
8166 }
8167 /* Fall through */
8168
8169 case R_MIPS_TLS_GD:
8170 case R_MIPS16_TLS_GD:
8171 case R_MICROMIPS_TLS_GD:
8172 /* This symbol requires a global offset table entry, or two
8173 for TLS GD relocations. */
8174 {
8175 unsigned char flag;
8176
8177 flag = (tls_gd_reloc_p (r_type)
8178 ? GOT_TLS_GD
8179 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8180 if (h != NULL)
8181 {
8182 struct mips_elf_link_hash_entry *hmips =
8183 (struct mips_elf_link_hash_entry *) h;
8184 hmips->tls_type |= flag;
8185
8186 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8187 FALSE, flag))
8188 return FALSE;
8189 }
8190 else
8191 {
8192 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8193
8194 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8195 rel->r_addend,
8196 info, flag))
8197 return FALSE;
8198 }
8199 }
8200 break;
8201
8202 case R_MIPS_32:
8203 case R_MIPS_REL32:
8204 case R_MIPS_64:
8205 /* In VxWorks executables, references to external symbols
8206 are handled using copy relocs or PLT stubs, so there's
8207 no need to add a .rela.dyn entry for this relocation. */
8208 if (can_make_dynamic_p)
8209 {
8210 if (sreloc == NULL)
8211 {
8212 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8213 if (sreloc == NULL)
8214 return FALSE;
8215 }
8216 if (info->shared && h == NULL)
8217 {
8218 /* When creating a shared object, we must copy these
8219 reloc types into the output file as R_MIPS_REL32
8220 relocs. Make room for this reloc in .rel(a).dyn. */
8221 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8222 if (MIPS_ELF_READONLY_SECTION (sec))
8223 /* We tell the dynamic linker that there are
8224 relocations against the text segment. */
8225 info->flags |= DF_TEXTREL;
8226 }
8227 else
8228 {
8229 struct mips_elf_link_hash_entry *hmips;
8230
8231 /* For a shared object, we must copy this relocation
8232 unless the symbol turns out to be undefined and
8233 weak with non-default visibility, in which case
8234 it will be left as zero.
8235
8236 We could elide R_MIPS_REL32 for locally binding symbols
8237 in shared libraries, but do not yet do so.
8238
8239 For an executable, we only need to copy this
8240 reloc if the symbol is defined in a dynamic
8241 object. */
8242 hmips = (struct mips_elf_link_hash_entry *) h;
8243 ++hmips->possibly_dynamic_relocs;
8244 if (MIPS_ELF_READONLY_SECTION (sec))
8245 /* We need it to tell the dynamic linker if there
8246 are relocations against the text segment. */
8247 hmips->readonly_reloc = TRUE;
8248 }
8249 }
8250
8251 if (SGI_COMPAT (abfd))
8252 mips_elf_hash_table (info)->compact_rel_size +=
8253 sizeof (Elf32_External_crinfo);
8254 break;
8255
8256 case R_MIPS_26:
8257 case R_MIPS_GPREL16:
8258 case R_MIPS_LITERAL:
8259 case R_MIPS_GPREL32:
8260 case R_MICROMIPS_26_S1:
8261 case R_MICROMIPS_GPREL16:
8262 case R_MICROMIPS_LITERAL:
8263 case R_MICROMIPS_GPREL7_S2:
8264 if (SGI_COMPAT (abfd))
8265 mips_elf_hash_table (info)->compact_rel_size +=
8266 sizeof (Elf32_External_crinfo);
8267 break;
8268
8269 /* This relocation describes the C++ object vtable hierarchy.
8270 Reconstruct it for later use during GC. */
8271 case R_MIPS_GNU_VTINHERIT:
8272 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8273 return FALSE;
8274 break;
8275
8276 /* This relocation describes which C++ vtable entries are actually
8277 used. Record for later use during GC. */
8278 case R_MIPS_GNU_VTENTRY:
8279 BFD_ASSERT (h != NULL);
8280 if (h != NULL
8281 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8282 return FALSE;
8283 break;
8284
8285 default:
8286 break;
8287 }
8288
8289 /* We must not create a stub for a symbol that has relocations
8290 related to taking the function's address. This doesn't apply to
8291 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8292 a normal .got entry. */
8293 if (!htab->is_vxworks && h != NULL)
8294 switch (r_type)
8295 {
8296 default:
8297 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8298 break;
8299 case R_MIPS16_CALL16:
8300 case R_MIPS_CALL16:
8301 case R_MIPS_CALL_HI16:
8302 case R_MIPS_CALL_LO16:
8303 case R_MIPS_JALR:
8304 case R_MICROMIPS_CALL16:
8305 case R_MICROMIPS_CALL_HI16:
8306 case R_MICROMIPS_CALL_LO16:
8307 case R_MICROMIPS_JALR:
8308 break;
8309 }
8310
8311 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8312 if there is one. We only need to handle global symbols here;
8313 we decide whether to keep or delete stubs for local symbols
8314 when processing the stub's relocations. */
8315 if (h != NULL
8316 && !mips16_call_reloc_p (r_type)
8317 && !section_allows_mips16_refs_p (sec))
8318 {
8319 struct mips_elf_link_hash_entry *mh;
8320
8321 mh = (struct mips_elf_link_hash_entry *) h;
8322 mh->need_fn_stub = TRUE;
8323 }
8324
8325 /* Refuse some position-dependent relocations when creating a
8326 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8327 not PIC, but we can create dynamic relocations and the result
8328 will be fine. Also do not refuse R_MIPS_LO16, which can be
8329 combined with R_MIPS_GOT16. */
8330 if (info->shared)
8331 {
8332 switch (r_type)
8333 {
8334 case R_MIPS16_HI16:
8335 case R_MIPS_HI16:
8336 case R_MIPS_HIGHER:
8337 case R_MIPS_HIGHEST:
8338 case R_MICROMIPS_HI16:
8339 case R_MICROMIPS_HIGHER:
8340 case R_MICROMIPS_HIGHEST:
8341 /* Don't refuse a high part relocation if it's against
8342 no symbol (e.g. part of a compound relocation). */
8343 if (r_symndx == STN_UNDEF)
8344 break;
8345
8346 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8347 and has a special meaning. */
8348 if (!NEWABI_P (abfd) && h != NULL
8349 && strcmp (h->root.root.string, "_gp_disp") == 0)
8350 break;
8351
8352 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8353 if (is_gott_symbol (info, h))
8354 break;
8355
8356 /* FALLTHROUGH */
8357
8358 case R_MIPS16_26:
8359 case R_MIPS_26:
8360 case R_MICROMIPS_26_S1:
8361 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8362 (*_bfd_error_handler)
8363 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8364 abfd, howto->name,
8365 (h) ? h->root.root.string : "a local symbol");
8366 bfd_set_error (bfd_error_bad_value);
8367 return FALSE;
8368 default:
8369 break;
8370 }
8371 }
8372 }
8373
8374 return TRUE;
8375 }
8376 \f
8377 bfd_boolean
8378 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8379 struct bfd_link_info *link_info,
8380 bfd_boolean *again)
8381 {
8382 Elf_Internal_Rela *internal_relocs;
8383 Elf_Internal_Rela *irel, *irelend;
8384 Elf_Internal_Shdr *symtab_hdr;
8385 bfd_byte *contents = NULL;
8386 size_t extsymoff;
8387 bfd_boolean changed_contents = FALSE;
8388 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8389 Elf_Internal_Sym *isymbuf = NULL;
8390
8391 /* We are not currently changing any sizes, so only one pass. */
8392 *again = FALSE;
8393
8394 if (link_info->relocatable)
8395 return TRUE;
8396
8397 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8398 link_info->keep_memory);
8399 if (internal_relocs == NULL)
8400 return TRUE;
8401
8402 irelend = internal_relocs + sec->reloc_count
8403 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8404 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8405 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8406
8407 for (irel = internal_relocs; irel < irelend; irel++)
8408 {
8409 bfd_vma symval;
8410 bfd_signed_vma sym_offset;
8411 unsigned int r_type;
8412 unsigned long r_symndx;
8413 asection *sym_sec;
8414 unsigned long instruction;
8415
8416 /* Turn jalr into bgezal, and jr into beq, if they're marked
8417 with a JALR relocation, that indicate where they jump to.
8418 This saves some pipeline bubbles. */
8419 r_type = ELF_R_TYPE (abfd, irel->r_info);
8420 if (r_type != R_MIPS_JALR)
8421 continue;
8422
8423 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8424 /* Compute the address of the jump target. */
8425 if (r_symndx >= extsymoff)
8426 {
8427 struct mips_elf_link_hash_entry *h
8428 = ((struct mips_elf_link_hash_entry *)
8429 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8430
8431 while (h->root.root.type == bfd_link_hash_indirect
8432 || h->root.root.type == bfd_link_hash_warning)
8433 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8434
8435 /* If a symbol is undefined, or if it may be overridden,
8436 skip it. */
8437 if (! ((h->root.root.type == bfd_link_hash_defined
8438 || h->root.root.type == bfd_link_hash_defweak)
8439 && h->root.root.u.def.section)
8440 || (link_info->shared && ! link_info->symbolic
8441 && !h->root.forced_local))
8442 continue;
8443
8444 sym_sec = h->root.root.u.def.section;
8445 if (sym_sec->output_section)
8446 symval = (h->root.root.u.def.value
8447 + sym_sec->output_section->vma
8448 + sym_sec->output_offset);
8449 else
8450 symval = h->root.root.u.def.value;
8451 }
8452 else
8453 {
8454 Elf_Internal_Sym *isym;
8455
8456 /* Read this BFD's symbols if we haven't done so already. */
8457 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8458 {
8459 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8460 if (isymbuf == NULL)
8461 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8462 symtab_hdr->sh_info, 0,
8463 NULL, NULL, NULL);
8464 if (isymbuf == NULL)
8465 goto relax_return;
8466 }
8467
8468 isym = isymbuf + r_symndx;
8469 if (isym->st_shndx == SHN_UNDEF)
8470 continue;
8471 else if (isym->st_shndx == SHN_ABS)
8472 sym_sec = bfd_abs_section_ptr;
8473 else if (isym->st_shndx == SHN_COMMON)
8474 sym_sec = bfd_com_section_ptr;
8475 else
8476 sym_sec
8477 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8478 symval = isym->st_value
8479 + sym_sec->output_section->vma
8480 + sym_sec->output_offset;
8481 }
8482
8483 /* Compute branch offset, from delay slot of the jump to the
8484 branch target. */
8485 sym_offset = (symval + irel->r_addend)
8486 - (sec_start + irel->r_offset + 4);
8487
8488 /* Branch offset must be properly aligned. */
8489 if ((sym_offset & 3) != 0)
8490 continue;
8491
8492 sym_offset >>= 2;
8493
8494 /* Check that it's in range. */
8495 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8496 continue;
8497
8498 /* Get the section contents if we haven't done so already. */
8499 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8500 goto relax_return;
8501
8502 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8503
8504 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8505 if ((instruction & 0xfc1fffff) == 0x0000f809)
8506 instruction = 0x04110000;
8507 /* If it was jr <reg>, turn it into b <target>. */
8508 else if ((instruction & 0xfc1fffff) == 0x00000008)
8509 instruction = 0x10000000;
8510 else
8511 continue;
8512
8513 instruction |= (sym_offset & 0xffff);
8514 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8515 changed_contents = TRUE;
8516 }
8517
8518 if (contents != NULL
8519 && elf_section_data (sec)->this_hdr.contents != contents)
8520 {
8521 if (!changed_contents && !link_info->keep_memory)
8522 free (contents);
8523 else
8524 {
8525 /* Cache the section contents for elf_link_input_bfd. */
8526 elf_section_data (sec)->this_hdr.contents = contents;
8527 }
8528 }
8529 return TRUE;
8530
8531 relax_return:
8532 if (contents != NULL
8533 && elf_section_data (sec)->this_hdr.contents != contents)
8534 free (contents);
8535 return FALSE;
8536 }
8537 \f
8538 /* Allocate space for global sym dynamic relocs. */
8539
8540 static bfd_boolean
8541 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8542 {
8543 struct bfd_link_info *info = inf;
8544 bfd *dynobj;
8545 struct mips_elf_link_hash_entry *hmips;
8546 struct mips_elf_link_hash_table *htab;
8547
8548 htab = mips_elf_hash_table (info);
8549 BFD_ASSERT (htab != NULL);
8550
8551 dynobj = elf_hash_table (info)->dynobj;
8552 hmips = (struct mips_elf_link_hash_entry *) h;
8553
8554 /* VxWorks executables are handled elsewhere; we only need to
8555 allocate relocations in shared objects. */
8556 if (htab->is_vxworks && !info->shared)
8557 return TRUE;
8558
8559 /* Ignore indirect symbols. All relocations against such symbols
8560 will be redirected to the target symbol. */
8561 if (h->root.type == bfd_link_hash_indirect)
8562 return TRUE;
8563
8564 /* If this symbol is defined in a dynamic object, or we are creating
8565 a shared library, we will need to copy any R_MIPS_32 or
8566 R_MIPS_REL32 relocs against it into the output file. */
8567 if (! info->relocatable
8568 && hmips->possibly_dynamic_relocs != 0
8569 && (h->root.type == bfd_link_hash_defweak
8570 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8571 || info->shared))
8572 {
8573 bfd_boolean do_copy = TRUE;
8574
8575 if (h->root.type == bfd_link_hash_undefweak)
8576 {
8577 /* Do not copy relocations for undefined weak symbols with
8578 non-default visibility. */
8579 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8580 do_copy = FALSE;
8581
8582 /* Make sure undefined weak symbols are output as a dynamic
8583 symbol in PIEs. */
8584 else if (h->dynindx == -1 && !h->forced_local)
8585 {
8586 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8587 return FALSE;
8588 }
8589 }
8590
8591 if (do_copy)
8592 {
8593 /* Even though we don't directly need a GOT entry for this symbol,
8594 the SVR4 psABI requires it to have a dynamic symbol table
8595 index greater that DT_MIPS_GOTSYM if there are dynamic
8596 relocations against it.
8597
8598 VxWorks does not enforce the same mapping between the GOT
8599 and the symbol table, so the same requirement does not
8600 apply there. */
8601 if (!htab->is_vxworks)
8602 {
8603 if (hmips->global_got_area > GGA_RELOC_ONLY)
8604 hmips->global_got_area = GGA_RELOC_ONLY;
8605 hmips->got_only_for_calls = FALSE;
8606 }
8607
8608 mips_elf_allocate_dynamic_relocations
8609 (dynobj, info, hmips->possibly_dynamic_relocs);
8610 if (hmips->readonly_reloc)
8611 /* We tell the dynamic linker that there are relocations
8612 against the text segment. */
8613 info->flags |= DF_TEXTREL;
8614 }
8615 }
8616
8617 return TRUE;
8618 }
8619
8620 /* Adjust a symbol defined by a dynamic object and referenced by a
8621 regular object. The current definition is in some section of the
8622 dynamic object, but we're not including those sections. We have to
8623 change the definition to something the rest of the link can
8624 understand. */
8625
8626 bfd_boolean
8627 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8628 struct elf_link_hash_entry *h)
8629 {
8630 bfd *dynobj;
8631 struct mips_elf_link_hash_entry *hmips;
8632 struct mips_elf_link_hash_table *htab;
8633
8634 htab = mips_elf_hash_table (info);
8635 BFD_ASSERT (htab != NULL);
8636
8637 dynobj = elf_hash_table (info)->dynobj;
8638 hmips = (struct mips_elf_link_hash_entry *) h;
8639
8640 /* Make sure we know what is going on here. */
8641 BFD_ASSERT (dynobj != NULL
8642 && (h->needs_plt
8643 || h->u.weakdef != NULL
8644 || (h->def_dynamic
8645 && h->ref_regular
8646 && !h->def_regular)));
8647
8648 hmips = (struct mips_elf_link_hash_entry *) h;
8649
8650 /* If there are call relocations against an externally-defined symbol,
8651 see whether we can create a MIPS lazy-binding stub for it. We can
8652 only do this if all references to the function are through call
8653 relocations, and in that case, the traditional lazy-binding stubs
8654 are much more efficient than PLT entries.
8655
8656 Traditional stubs are only available on SVR4 psABI-based systems;
8657 VxWorks always uses PLTs instead. */
8658 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8659 {
8660 if (! elf_hash_table (info)->dynamic_sections_created)
8661 return TRUE;
8662
8663 /* If this symbol is not defined in a regular file, then set
8664 the symbol to the stub location. This is required to make
8665 function pointers compare as equal between the normal
8666 executable and the shared library. */
8667 if (!h->def_regular)
8668 {
8669 hmips->needs_lazy_stub = TRUE;
8670 htab->lazy_stub_count++;
8671 return TRUE;
8672 }
8673 }
8674 /* As above, VxWorks requires PLT entries for externally-defined
8675 functions that are only accessed through call relocations.
8676
8677 Both VxWorks and non-VxWorks targets also need PLT entries if there
8678 are static-only relocations against an externally-defined function.
8679 This can technically occur for shared libraries if there are
8680 branches to the symbol, although it is unlikely that this will be
8681 used in practice due to the short ranges involved. It can occur
8682 for any relative or absolute relocation in executables; in that
8683 case, the PLT entry becomes the function's canonical address. */
8684 else if (((h->needs_plt && !hmips->no_fn_stub)
8685 || (h->type == STT_FUNC && hmips->has_static_relocs))
8686 && htab->use_plts_and_copy_relocs
8687 && !SYMBOL_CALLS_LOCAL (info, h)
8688 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8689 && h->root.type == bfd_link_hash_undefweak))
8690 {
8691 /* If this is the first symbol to need a PLT entry, allocate room
8692 for the header. */
8693 if (htab->splt->size == 0)
8694 {
8695 BFD_ASSERT (htab->sgotplt->size == 0);
8696
8697 /* If we're using the PLT additions to the psABI, each PLT
8698 entry is 16 bytes and the PLT0 entry is 32 bytes.
8699 Encourage better cache usage by aligning. We do this
8700 lazily to avoid pessimizing traditional objects. */
8701 if (!htab->is_vxworks
8702 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8703 return FALSE;
8704
8705 /* Make sure that .got.plt is word-aligned. We do this lazily
8706 for the same reason as above. */
8707 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8708 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8709 return FALSE;
8710
8711 htab->splt->size += htab->plt_header_size;
8712
8713 /* On non-VxWorks targets, the first two entries in .got.plt
8714 are reserved. */
8715 if (!htab->is_vxworks)
8716 htab->sgotplt->size
8717 += get_elf_backend_data (dynobj)->got_header_size;
8718
8719 /* On VxWorks, also allocate room for the header's
8720 .rela.plt.unloaded entries. */
8721 if (htab->is_vxworks && !info->shared)
8722 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8723 }
8724
8725 /* Assign the next .plt entry to this symbol. */
8726 h->plt.offset = htab->splt->size;
8727 htab->splt->size += htab->plt_entry_size;
8728
8729 /* If the output file has no definition of the symbol, set the
8730 symbol's value to the address of the stub. */
8731 if (!info->shared && !h->def_regular)
8732 {
8733 h->root.u.def.section = htab->splt;
8734 h->root.u.def.value = h->plt.offset;
8735 /* For VxWorks, point at the PLT load stub rather than the
8736 lazy resolution stub; this stub will become the canonical
8737 function address. */
8738 if (htab->is_vxworks)
8739 h->root.u.def.value += 8;
8740 }
8741
8742 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8743 relocation. */
8744 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8745 htab->srelplt->size += (htab->is_vxworks
8746 ? MIPS_ELF_RELA_SIZE (dynobj)
8747 : MIPS_ELF_REL_SIZE (dynobj));
8748
8749 /* Make room for the .rela.plt.unloaded relocations. */
8750 if (htab->is_vxworks && !info->shared)
8751 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8752
8753 /* All relocations against this symbol that could have been made
8754 dynamic will now refer to the PLT entry instead. */
8755 hmips->possibly_dynamic_relocs = 0;
8756
8757 return TRUE;
8758 }
8759
8760 /* If this is a weak symbol, and there is a real definition, the
8761 processor independent code will have arranged for us to see the
8762 real definition first, and we can just use the same value. */
8763 if (h->u.weakdef != NULL)
8764 {
8765 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8766 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8767 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8768 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8769 return TRUE;
8770 }
8771
8772 /* Otherwise, there is nothing further to do for symbols defined
8773 in regular objects. */
8774 if (h->def_regular)
8775 return TRUE;
8776
8777 /* There's also nothing more to do if we'll convert all relocations
8778 against this symbol into dynamic relocations. */
8779 if (!hmips->has_static_relocs)
8780 return TRUE;
8781
8782 /* We're now relying on copy relocations. Complain if we have
8783 some that we can't convert. */
8784 if (!htab->use_plts_and_copy_relocs || info->shared)
8785 {
8786 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8787 "dynamic symbol %s"),
8788 h->root.root.string);
8789 bfd_set_error (bfd_error_bad_value);
8790 return FALSE;
8791 }
8792
8793 /* We must allocate the symbol in our .dynbss section, which will
8794 become part of the .bss section of the executable. There will be
8795 an entry for this symbol in the .dynsym section. The dynamic
8796 object will contain position independent code, so all references
8797 from the dynamic object to this symbol will go through the global
8798 offset table. The dynamic linker will use the .dynsym entry to
8799 determine the address it must put in the global offset table, so
8800 both the dynamic object and the regular object will refer to the
8801 same memory location for the variable. */
8802
8803 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8804 {
8805 if (htab->is_vxworks)
8806 htab->srelbss->size += sizeof (Elf32_External_Rela);
8807 else
8808 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8809 h->needs_copy = 1;
8810 }
8811
8812 /* All relocations against this symbol that could have been made
8813 dynamic will now refer to the local copy instead. */
8814 hmips->possibly_dynamic_relocs = 0;
8815
8816 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8817 }
8818 \f
8819 /* This function is called after all the input files have been read,
8820 and the input sections have been assigned to output sections. We
8821 check for any mips16 stub sections that we can discard. */
8822
8823 bfd_boolean
8824 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8825 struct bfd_link_info *info)
8826 {
8827 asection *ri;
8828 struct mips_elf_link_hash_table *htab;
8829 struct mips_htab_traverse_info hti;
8830
8831 htab = mips_elf_hash_table (info);
8832 BFD_ASSERT (htab != NULL);
8833
8834 /* The .reginfo section has a fixed size. */
8835 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8836 if (ri != NULL)
8837 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8838
8839 hti.info = info;
8840 hti.output_bfd = output_bfd;
8841 hti.error = FALSE;
8842 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8843 mips_elf_check_symbols, &hti);
8844 if (hti.error)
8845 return FALSE;
8846
8847 return TRUE;
8848 }
8849
8850 /* If the link uses a GOT, lay it out and work out its size. */
8851
8852 static bfd_boolean
8853 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8854 {
8855 bfd *dynobj;
8856 asection *s;
8857 struct mips_got_info *g;
8858 bfd_size_type loadable_size = 0;
8859 bfd_size_type page_gotno;
8860 bfd *sub;
8861 struct mips_elf_count_tls_arg count_tls_arg;
8862 struct mips_elf_link_hash_table *htab;
8863
8864 htab = mips_elf_hash_table (info);
8865 BFD_ASSERT (htab != NULL);
8866
8867 s = htab->sgot;
8868 if (s == NULL)
8869 return TRUE;
8870
8871 dynobj = elf_hash_table (info)->dynobj;
8872 g = htab->got_info;
8873
8874 /* Allocate room for the reserved entries. VxWorks always reserves
8875 3 entries; other objects only reserve 2 entries. */
8876 BFD_ASSERT (g->assigned_gotno == 0);
8877 if (htab->is_vxworks)
8878 htab->reserved_gotno = 3;
8879 else
8880 htab->reserved_gotno = 2;
8881 g->local_gotno += htab->reserved_gotno;
8882 g->assigned_gotno = htab->reserved_gotno;
8883
8884 /* Replace entries for indirect and warning symbols with entries for
8885 the target symbol. */
8886 if (!mips_elf_resolve_final_got_entries (g))
8887 return FALSE;
8888
8889 /* Count the number of GOT symbols. */
8890 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8891
8892 /* Calculate the total loadable size of the output. That
8893 will give us the maximum number of GOT_PAGE entries
8894 required. */
8895 for (sub = info->input_bfds; sub; sub = sub->link_next)
8896 {
8897 asection *subsection;
8898
8899 for (subsection = sub->sections;
8900 subsection;
8901 subsection = subsection->next)
8902 {
8903 if ((subsection->flags & SEC_ALLOC) == 0)
8904 continue;
8905 loadable_size += ((subsection->size + 0xf)
8906 &~ (bfd_size_type) 0xf);
8907 }
8908 }
8909
8910 if (htab->is_vxworks)
8911 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8912 relocations against local symbols evaluate to "G", and the EABI does
8913 not include R_MIPS_GOT_PAGE. */
8914 page_gotno = 0;
8915 else
8916 /* Assume there are two loadable segments consisting of contiguous
8917 sections. Is 5 enough? */
8918 page_gotno = (loadable_size >> 16) + 5;
8919
8920 /* Choose the smaller of the two estimates; both are intended to be
8921 conservative. */
8922 if (page_gotno > g->page_gotno)
8923 page_gotno = g->page_gotno;
8924
8925 g->local_gotno += page_gotno;
8926 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8927 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8928
8929 /* We need to calculate tls_gotno for global symbols at this point
8930 instead of building it up earlier, to avoid doublecounting
8931 entries for one global symbol from multiple input files. */
8932 count_tls_arg.info = info;
8933 count_tls_arg.needed = 0;
8934 elf_link_hash_traverse (elf_hash_table (info),
8935 mips_elf_count_global_tls_entries,
8936 &count_tls_arg);
8937 g->tls_gotno += count_tls_arg.needed;
8938 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8939
8940 /* VxWorks does not support multiple GOTs. It initializes $gp to
8941 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8942 dynamic loader. */
8943 if (htab->is_vxworks)
8944 {
8945 /* VxWorks executables do not need a GOT. */
8946 if (info->shared)
8947 {
8948 /* Each VxWorks GOT entry needs an explicit relocation. */
8949 unsigned int count;
8950
8951 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8952 if (count)
8953 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8954 }
8955 }
8956 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8957 {
8958 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8959 return FALSE;
8960 }
8961 else
8962 {
8963 struct mips_elf_count_tls_arg arg;
8964
8965 /* Set up TLS entries. */
8966 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8967 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8968 BFD_ASSERT (g->tls_assigned_gotno
8969 == g->global_gotno + g->local_gotno + g->tls_gotno);
8970
8971 /* Allocate room for the TLS relocations. */
8972 arg.info = info;
8973 arg.needed = 0;
8974 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8975 elf_link_hash_traverse (elf_hash_table (info),
8976 mips_elf_count_global_tls_relocs,
8977 &arg);
8978 if (arg.needed)
8979 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8980 }
8981
8982 return TRUE;
8983 }
8984
8985 /* Estimate the size of the .MIPS.stubs section. */
8986
8987 static void
8988 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8989 {
8990 struct mips_elf_link_hash_table *htab;
8991 bfd_size_type dynsymcount;
8992
8993 htab = mips_elf_hash_table (info);
8994 BFD_ASSERT (htab != NULL);
8995
8996 if (htab->lazy_stub_count == 0)
8997 return;
8998
8999 /* IRIX rld assumes that a function stub isn't at the end of the .text
9000 section, so add a dummy entry to the end. */
9001 htab->lazy_stub_count++;
9002
9003 /* Get a worst-case estimate of the number of dynamic symbols needed.
9004 At this point, dynsymcount does not account for section symbols
9005 and count_section_dynsyms may overestimate the number that will
9006 be needed. */
9007 dynsymcount = (elf_hash_table (info)->dynsymcount
9008 + count_section_dynsyms (output_bfd, info));
9009
9010 /* Determine the size of one stub entry. */
9011 htab->function_stub_size = (dynsymcount > 0x10000
9012 ? MIPS_FUNCTION_STUB_BIG_SIZE
9013 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9014
9015 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9016 }
9017
9018 /* A mips_elf_link_hash_traverse callback for which DATA points to the
9019 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
9020 allocate an entry in the stubs section. */
9021
9022 static bfd_boolean
9023 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
9024 {
9025 struct mips_elf_link_hash_table *htab;
9026
9027 htab = (struct mips_elf_link_hash_table *) data;
9028 if (h->needs_lazy_stub)
9029 {
9030 h->root.root.u.def.section = htab->sstubs;
9031 h->root.root.u.def.value = htab->sstubs->size;
9032 h->root.plt.offset = htab->sstubs->size;
9033 htab->sstubs->size += htab->function_stub_size;
9034 }
9035 return TRUE;
9036 }
9037
9038 /* Allocate offsets in the stubs section to each symbol that needs one.
9039 Set the final size of the .MIPS.stub section. */
9040
9041 static void
9042 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9043 {
9044 struct mips_elf_link_hash_table *htab;
9045
9046 htab = mips_elf_hash_table (info);
9047 BFD_ASSERT (htab != NULL);
9048
9049 if (htab->lazy_stub_count == 0)
9050 return;
9051
9052 htab->sstubs->size = 0;
9053 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9054 htab->sstubs->size += htab->function_stub_size;
9055 BFD_ASSERT (htab->sstubs->size
9056 == htab->lazy_stub_count * htab->function_stub_size);
9057 }
9058
9059 /* Set the sizes of the dynamic sections. */
9060
9061 bfd_boolean
9062 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9063 struct bfd_link_info *info)
9064 {
9065 bfd *dynobj;
9066 asection *s, *sreldyn;
9067 bfd_boolean reltext;
9068 struct mips_elf_link_hash_table *htab;
9069
9070 htab = mips_elf_hash_table (info);
9071 BFD_ASSERT (htab != NULL);
9072 dynobj = elf_hash_table (info)->dynobj;
9073 BFD_ASSERT (dynobj != NULL);
9074
9075 if (elf_hash_table (info)->dynamic_sections_created)
9076 {
9077 /* Set the contents of the .interp section to the interpreter. */
9078 if (info->executable)
9079 {
9080 s = bfd_get_linker_section (dynobj, ".interp");
9081 BFD_ASSERT (s != NULL);
9082 s->size
9083 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9084 s->contents
9085 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9086 }
9087
9088 /* Create a symbol for the PLT, if we know that we are using it. */
9089 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9090 {
9091 struct elf_link_hash_entry *h;
9092
9093 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9094
9095 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9096 "_PROCEDURE_LINKAGE_TABLE_");
9097 htab->root.hplt = h;
9098 if (h == NULL)
9099 return FALSE;
9100 h->type = STT_FUNC;
9101 }
9102 }
9103
9104 /* Allocate space for global sym dynamic relocs. */
9105 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9106
9107 mips_elf_estimate_stub_size (output_bfd, info);
9108
9109 if (!mips_elf_lay_out_got (output_bfd, info))
9110 return FALSE;
9111
9112 mips_elf_lay_out_lazy_stubs (info);
9113
9114 /* The check_relocs and adjust_dynamic_symbol entry points have
9115 determined the sizes of the various dynamic sections. Allocate
9116 memory for them. */
9117 reltext = FALSE;
9118 for (s = dynobj->sections; s != NULL; s = s->next)
9119 {
9120 const char *name;
9121
9122 /* It's OK to base decisions on the section name, because none
9123 of the dynobj section names depend upon the input files. */
9124 name = bfd_get_section_name (dynobj, s);
9125
9126 if ((s->flags & SEC_LINKER_CREATED) == 0)
9127 continue;
9128
9129 if (CONST_STRNEQ (name, ".rel"))
9130 {
9131 if (s->size != 0)
9132 {
9133 const char *outname;
9134 asection *target;
9135
9136 /* If this relocation section applies to a read only
9137 section, then we probably need a DT_TEXTREL entry.
9138 If the relocation section is .rel(a).dyn, we always
9139 assert a DT_TEXTREL entry rather than testing whether
9140 there exists a relocation to a read only section or
9141 not. */
9142 outname = bfd_get_section_name (output_bfd,
9143 s->output_section);
9144 target = bfd_get_section_by_name (output_bfd, outname + 4);
9145 if ((target != NULL
9146 && (target->flags & SEC_READONLY) != 0
9147 && (target->flags & SEC_ALLOC) != 0)
9148 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9149 reltext = TRUE;
9150
9151 /* We use the reloc_count field as a counter if we need
9152 to copy relocs into the output file. */
9153 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9154 s->reloc_count = 0;
9155
9156 /* If combreloc is enabled, elf_link_sort_relocs() will
9157 sort relocations, but in a different way than we do,
9158 and before we're done creating relocations. Also, it
9159 will move them around between input sections'
9160 relocation's contents, so our sorting would be
9161 broken, so don't let it run. */
9162 info->combreloc = 0;
9163 }
9164 }
9165 else if (! info->shared
9166 && ! mips_elf_hash_table (info)->use_rld_obj_head
9167 && CONST_STRNEQ (name, ".rld_map"))
9168 {
9169 /* We add a room for __rld_map. It will be filled in by the
9170 rtld to contain a pointer to the _r_debug structure. */
9171 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9172 }
9173 else if (SGI_COMPAT (output_bfd)
9174 && CONST_STRNEQ (name, ".compact_rel"))
9175 s->size += mips_elf_hash_table (info)->compact_rel_size;
9176 else if (s == htab->splt)
9177 {
9178 /* If the last PLT entry has a branch delay slot, allocate
9179 room for an extra nop to fill the delay slot. This is
9180 for CPUs without load interlocking. */
9181 if (! LOAD_INTERLOCKS_P (output_bfd)
9182 && ! htab->is_vxworks && s->size > 0)
9183 s->size += 4;
9184 }
9185 else if (! CONST_STRNEQ (name, ".init")
9186 && s != htab->sgot
9187 && s != htab->sgotplt
9188 && s != htab->sstubs
9189 && s != htab->sdynbss)
9190 {
9191 /* It's not one of our sections, so don't allocate space. */
9192 continue;
9193 }
9194
9195 if (s->size == 0)
9196 {
9197 s->flags |= SEC_EXCLUDE;
9198 continue;
9199 }
9200
9201 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9202 continue;
9203
9204 /* Allocate memory for the section contents. */
9205 s->contents = bfd_zalloc (dynobj, s->size);
9206 if (s->contents == NULL)
9207 {
9208 bfd_set_error (bfd_error_no_memory);
9209 return FALSE;
9210 }
9211 }
9212
9213 if (elf_hash_table (info)->dynamic_sections_created)
9214 {
9215 /* Add some entries to the .dynamic section. We fill in the
9216 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9217 must add the entries now so that we get the correct size for
9218 the .dynamic section. */
9219
9220 /* SGI object has the equivalence of DT_DEBUG in the
9221 DT_MIPS_RLD_MAP entry. This must come first because glibc
9222 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9223 may only look at the first one they see. */
9224 if (!info->shared
9225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9226 return FALSE;
9227
9228 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9229 used by the debugger. */
9230 if (info->executable
9231 && !SGI_COMPAT (output_bfd)
9232 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9233 return FALSE;
9234
9235 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9236 info->flags |= DF_TEXTREL;
9237
9238 if ((info->flags & DF_TEXTREL) != 0)
9239 {
9240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9241 return FALSE;
9242
9243 /* Clear the DF_TEXTREL flag. It will be set again if we
9244 write out an actual text relocation; we may not, because
9245 at this point we do not know whether e.g. any .eh_frame
9246 absolute relocations have been converted to PC-relative. */
9247 info->flags &= ~DF_TEXTREL;
9248 }
9249
9250 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9251 return FALSE;
9252
9253 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9254 if (htab->is_vxworks)
9255 {
9256 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9257 use any of the DT_MIPS_* tags. */
9258 if (sreldyn && sreldyn->size > 0)
9259 {
9260 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9261 return FALSE;
9262
9263 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9264 return FALSE;
9265
9266 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9267 return FALSE;
9268 }
9269 }
9270 else
9271 {
9272 if (sreldyn && sreldyn->size > 0)
9273 {
9274 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9275 return FALSE;
9276
9277 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9278 return FALSE;
9279
9280 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9281 return FALSE;
9282 }
9283
9284 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9285 return FALSE;
9286
9287 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9288 return FALSE;
9289
9290 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9291 return FALSE;
9292
9293 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9294 return FALSE;
9295
9296 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9297 return FALSE;
9298
9299 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9300 return FALSE;
9301
9302 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9303 return FALSE;
9304
9305 if (IRIX_COMPAT (dynobj) == ict_irix5
9306 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9307 return FALSE;
9308
9309 if (IRIX_COMPAT (dynobj) == ict_irix6
9310 && (bfd_get_section_by_name
9311 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9312 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9313 return FALSE;
9314 }
9315 if (htab->splt->size > 0)
9316 {
9317 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9318 return FALSE;
9319
9320 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9321 return FALSE;
9322
9323 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9324 return FALSE;
9325
9326 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9327 return FALSE;
9328 }
9329 if (htab->is_vxworks
9330 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9331 return FALSE;
9332 }
9333
9334 return TRUE;
9335 }
9336 \f
9337 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9338 Adjust its R_ADDEND field so that it is correct for the output file.
9339 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9340 and sections respectively; both use symbol indexes. */
9341
9342 static void
9343 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9344 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9345 asection **local_sections, Elf_Internal_Rela *rel)
9346 {
9347 unsigned int r_type, r_symndx;
9348 Elf_Internal_Sym *sym;
9349 asection *sec;
9350
9351 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9352 {
9353 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9354 if (gprel16_reloc_p (r_type)
9355 || r_type == R_MIPS_GPREL32
9356 || literal_reloc_p (r_type))
9357 {
9358 rel->r_addend += _bfd_get_gp_value (input_bfd);
9359 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9360 }
9361
9362 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9363 sym = local_syms + r_symndx;
9364
9365 /* Adjust REL's addend to account for section merging. */
9366 if (!info->relocatable)
9367 {
9368 sec = local_sections[r_symndx];
9369 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9370 }
9371
9372 /* This would normally be done by the rela_normal code in elflink.c. */
9373 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9374 rel->r_addend += local_sections[r_symndx]->output_offset;
9375 }
9376 }
9377
9378 /* Handle relocations against symbols from removed linkonce sections,
9379 or sections discarded by a linker script. We use this wrapper around
9380 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9381 on 64-bit ELF targets. In this case for any relocation handled, which
9382 always be the first in a triplet, the remaining two have to be processed
9383 together with the first, even if they are R_MIPS_NONE. It is the symbol
9384 index referred by the first reloc that applies to all the three and the
9385 remaining two never refer to an object symbol. And it is the final
9386 relocation (the last non-null one) that determines the output field of
9387 the whole relocation so retrieve the corresponding howto structure for
9388 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9389
9390 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9391 and therefore requires to be pasted in a loop. It also defines a block
9392 and does not protect any of its arguments, hence the extra brackets. */
9393
9394 static void
9395 mips_reloc_against_discarded_section (bfd *output_bfd,
9396 struct bfd_link_info *info,
9397 bfd *input_bfd, asection *input_section,
9398 Elf_Internal_Rela **rel,
9399 const Elf_Internal_Rela **relend,
9400 bfd_boolean rel_reloc,
9401 reloc_howto_type *howto,
9402 bfd_byte *contents)
9403 {
9404 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9405 int count = bed->s->int_rels_per_ext_rel;
9406 unsigned int r_type;
9407 int i;
9408
9409 for (i = count - 1; i > 0; i--)
9410 {
9411 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9412 if (r_type != R_MIPS_NONE)
9413 {
9414 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9415 break;
9416 }
9417 }
9418 do
9419 {
9420 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9421 (*rel), count, (*relend),
9422 howto, i, contents);
9423 }
9424 while (0);
9425 }
9426
9427 /* Relocate a MIPS ELF section. */
9428
9429 bfd_boolean
9430 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9431 bfd *input_bfd, asection *input_section,
9432 bfd_byte *contents, Elf_Internal_Rela *relocs,
9433 Elf_Internal_Sym *local_syms,
9434 asection **local_sections)
9435 {
9436 Elf_Internal_Rela *rel;
9437 const Elf_Internal_Rela *relend;
9438 bfd_vma addend = 0;
9439 bfd_boolean use_saved_addend_p = FALSE;
9440 const struct elf_backend_data *bed;
9441
9442 bed = get_elf_backend_data (output_bfd);
9443 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9444 for (rel = relocs; rel < relend; ++rel)
9445 {
9446 const char *name;
9447 bfd_vma value = 0;
9448 reloc_howto_type *howto;
9449 bfd_boolean cross_mode_jump_p;
9450 /* TRUE if the relocation is a RELA relocation, rather than a
9451 REL relocation. */
9452 bfd_boolean rela_relocation_p = TRUE;
9453 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9454 const char *msg;
9455 unsigned long r_symndx;
9456 asection *sec;
9457 Elf_Internal_Shdr *symtab_hdr;
9458 struct elf_link_hash_entry *h;
9459 bfd_boolean rel_reloc;
9460
9461 rel_reloc = (NEWABI_P (input_bfd)
9462 && mips_elf_rel_relocation_p (input_bfd, input_section,
9463 relocs, rel));
9464 /* Find the relocation howto for this relocation. */
9465 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9466
9467 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9468 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9469 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9470 {
9471 sec = local_sections[r_symndx];
9472 h = NULL;
9473 }
9474 else
9475 {
9476 unsigned long extsymoff;
9477
9478 extsymoff = 0;
9479 if (!elf_bad_symtab (input_bfd))
9480 extsymoff = symtab_hdr->sh_info;
9481 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9482 while (h->root.type == bfd_link_hash_indirect
9483 || h->root.type == bfd_link_hash_warning)
9484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9485
9486 sec = NULL;
9487 if (h->root.type == bfd_link_hash_defined
9488 || h->root.type == bfd_link_hash_defweak)
9489 sec = h->root.u.def.section;
9490 }
9491
9492 if (sec != NULL && discarded_section (sec))
9493 {
9494 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9495 input_section, &rel, &relend,
9496 rel_reloc, howto, contents);
9497 continue;
9498 }
9499
9500 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9501 {
9502 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9503 64-bit code, but make sure all their addresses are in the
9504 lowermost or uppermost 32-bit section of the 64-bit address
9505 space. Thus, when they use an R_MIPS_64 they mean what is
9506 usually meant by R_MIPS_32, with the exception that the
9507 stored value is sign-extended to 64 bits. */
9508 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9509
9510 /* On big-endian systems, we need to lie about the position
9511 of the reloc. */
9512 if (bfd_big_endian (input_bfd))
9513 rel->r_offset += 4;
9514 }
9515
9516 if (!use_saved_addend_p)
9517 {
9518 /* If these relocations were originally of the REL variety,
9519 we must pull the addend out of the field that will be
9520 relocated. Otherwise, we simply use the contents of the
9521 RELA relocation. */
9522 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9523 relocs, rel))
9524 {
9525 rela_relocation_p = FALSE;
9526 addend = mips_elf_read_rel_addend (input_bfd, rel,
9527 howto, contents);
9528 if (hi16_reloc_p (r_type)
9529 || (got16_reloc_p (r_type)
9530 && mips_elf_local_relocation_p (input_bfd, rel,
9531 local_sections)))
9532 {
9533 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9534 contents, &addend))
9535 {
9536 if (h)
9537 name = h->root.root.string;
9538 else
9539 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9540 local_syms + r_symndx,
9541 sec);
9542 (*_bfd_error_handler)
9543 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9544 input_bfd, input_section, name, howto->name,
9545 rel->r_offset);
9546 }
9547 }
9548 else
9549 addend <<= howto->rightshift;
9550 }
9551 else
9552 addend = rel->r_addend;
9553 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9554 local_syms, local_sections, rel);
9555 }
9556
9557 if (info->relocatable)
9558 {
9559 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9560 && bfd_big_endian (input_bfd))
9561 rel->r_offset -= 4;
9562
9563 if (!rela_relocation_p && rel->r_addend)
9564 {
9565 addend += rel->r_addend;
9566 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9567 addend = mips_elf_high (addend);
9568 else if (r_type == R_MIPS_HIGHER)
9569 addend = mips_elf_higher (addend);
9570 else if (r_type == R_MIPS_HIGHEST)
9571 addend = mips_elf_highest (addend);
9572 else
9573 addend >>= howto->rightshift;
9574
9575 /* We use the source mask, rather than the destination
9576 mask because the place to which we are writing will be
9577 source of the addend in the final link. */
9578 addend &= howto->src_mask;
9579
9580 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9581 /* See the comment above about using R_MIPS_64 in the 32-bit
9582 ABI. Here, we need to update the addend. It would be
9583 possible to get away with just using the R_MIPS_32 reloc
9584 but for endianness. */
9585 {
9586 bfd_vma sign_bits;
9587 bfd_vma low_bits;
9588 bfd_vma high_bits;
9589
9590 if (addend & ((bfd_vma) 1 << 31))
9591 #ifdef BFD64
9592 sign_bits = ((bfd_vma) 1 << 32) - 1;
9593 #else
9594 sign_bits = -1;
9595 #endif
9596 else
9597 sign_bits = 0;
9598
9599 /* If we don't know that we have a 64-bit type,
9600 do two separate stores. */
9601 if (bfd_big_endian (input_bfd))
9602 {
9603 /* Store the sign-bits (which are most significant)
9604 first. */
9605 low_bits = sign_bits;
9606 high_bits = addend;
9607 }
9608 else
9609 {
9610 low_bits = addend;
9611 high_bits = sign_bits;
9612 }
9613 bfd_put_32 (input_bfd, low_bits,
9614 contents + rel->r_offset);
9615 bfd_put_32 (input_bfd, high_bits,
9616 contents + rel->r_offset + 4);
9617 continue;
9618 }
9619
9620 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9621 input_bfd, input_section,
9622 contents, FALSE))
9623 return FALSE;
9624 }
9625
9626 /* Go on to the next relocation. */
9627 continue;
9628 }
9629
9630 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9631 relocations for the same offset. In that case we are
9632 supposed to treat the output of each relocation as the addend
9633 for the next. */
9634 if (rel + 1 < relend
9635 && rel->r_offset == rel[1].r_offset
9636 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9637 use_saved_addend_p = TRUE;
9638 else
9639 use_saved_addend_p = FALSE;
9640
9641 /* Figure out what value we are supposed to relocate. */
9642 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9643 input_section, info, rel,
9644 addend, howto, local_syms,
9645 local_sections, &value,
9646 &name, &cross_mode_jump_p,
9647 use_saved_addend_p))
9648 {
9649 case bfd_reloc_continue:
9650 /* There's nothing to do. */
9651 continue;
9652
9653 case bfd_reloc_undefined:
9654 /* mips_elf_calculate_relocation already called the
9655 undefined_symbol callback. There's no real point in
9656 trying to perform the relocation at this point, so we
9657 just skip ahead to the next relocation. */
9658 continue;
9659
9660 case bfd_reloc_notsupported:
9661 msg = _("internal error: unsupported relocation error");
9662 info->callbacks->warning
9663 (info, msg, name, input_bfd, input_section, rel->r_offset);
9664 return FALSE;
9665
9666 case bfd_reloc_overflow:
9667 if (use_saved_addend_p)
9668 /* Ignore overflow until we reach the last relocation for
9669 a given location. */
9670 ;
9671 else
9672 {
9673 struct mips_elf_link_hash_table *htab;
9674
9675 htab = mips_elf_hash_table (info);
9676 BFD_ASSERT (htab != NULL);
9677 BFD_ASSERT (name != NULL);
9678 if (!htab->small_data_overflow_reported
9679 && (gprel16_reloc_p (howto->type)
9680 || literal_reloc_p (howto->type)))
9681 {
9682 msg = _("small-data section exceeds 64KB;"
9683 " lower small-data size limit (see option -G)");
9684
9685 htab->small_data_overflow_reported = TRUE;
9686 (*info->callbacks->einfo) ("%P: %s\n", msg);
9687 }
9688 if (! ((*info->callbacks->reloc_overflow)
9689 (info, NULL, name, howto->name, (bfd_vma) 0,
9690 input_bfd, input_section, rel->r_offset)))
9691 return FALSE;
9692 }
9693 break;
9694
9695 case bfd_reloc_ok:
9696 break;
9697
9698 case bfd_reloc_outofrange:
9699 if (jal_reloc_p (howto->type))
9700 {
9701 msg = _("JALX to a non-word-aligned address");
9702 info->callbacks->warning
9703 (info, msg, name, input_bfd, input_section, rel->r_offset);
9704 return FALSE;
9705 }
9706 /* Fall through. */
9707
9708 default:
9709 abort ();
9710 break;
9711 }
9712
9713 /* If we've got another relocation for the address, keep going
9714 until we reach the last one. */
9715 if (use_saved_addend_p)
9716 {
9717 addend = value;
9718 continue;
9719 }
9720
9721 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9722 /* See the comment above about using R_MIPS_64 in the 32-bit
9723 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9724 that calculated the right value. Now, however, we
9725 sign-extend the 32-bit result to 64-bits, and store it as a
9726 64-bit value. We are especially generous here in that we
9727 go to extreme lengths to support this usage on systems with
9728 only a 32-bit VMA. */
9729 {
9730 bfd_vma sign_bits;
9731 bfd_vma low_bits;
9732 bfd_vma high_bits;
9733
9734 if (value & ((bfd_vma) 1 << 31))
9735 #ifdef BFD64
9736 sign_bits = ((bfd_vma) 1 << 32) - 1;
9737 #else
9738 sign_bits = -1;
9739 #endif
9740 else
9741 sign_bits = 0;
9742
9743 /* If we don't know that we have a 64-bit type,
9744 do two separate stores. */
9745 if (bfd_big_endian (input_bfd))
9746 {
9747 /* Undo what we did above. */
9748 rel->r_offset -= 4;
9749 /* Store the sign-bits (which are most significant)
9750 first. */
9751 low_bits = sign_bits;
9752 high_bits = value;
9753 }
9754 else
9755 {
9756 low_bits = value;
9757 high_bits = sign_bits;
9758 }
9759 bfd_put_32 (input_bfd, low_bits,
9760 contents + rel->r_offset);
9761 bfd_put_32 (input_bfd, high_bits,
9762 contents + rel->r_offset + 4);
9763 continue;
9764 }
9765
9766 /* Actually perform the relocation. */
9767 if (! mips_elf_perform_relocation (info, howto, rel, value,
9768 input_bfd, input_section,
9769 contents, cross_mode_jump_p))
9770 return FALSE;
9771 }
9772
9773 return TRUE;
9774 }
9775 \f
9776 /* A function that iterates over each entry in la25_stubs and fills
9777 in the code for each one. DATA points to a mips_htab_traverse_info. */
9778
9779 static int
9780 mips_elf_create_la25_stub (void **slot, void *data)
9781 {
9782 struct mips_htab_traverse_info *hti;
9783 struct mips_elf_link_hash_table *htab;
9784 struct mips_elf_la25_stub *stub;
9785 asection *s;
9786 bfd_byte *loc;
9787 bfd_vma offset, target, target_high, target_low;
9788
9789 stub = (struct mips_elf_la25_stub *) *slot;
9790 hti = (struct mips_htab_traverse_info *) data;
9791 htab = mips_elf_hash_table (hti->info);
9792 BFD_ASSERT (htab != NULL);
9793
9794 /* Create the section contents, if we haven't already. */
9795 s = stub->stub_section;
9796 loc = s->contents;
9797 if (loc == NULL)
9798 {
9799 loc = bfd_malloc (s->size);
9800 if (loc == NULL)
9801 {
9802 hti->error = TRUE;
9803 return FALSE;
9804 }
9805 s->contents = loc;
9806 }
9807
9808 /* Work out where in the section this stub should go. */
9809 offset = stub->offset;
9810
9811 /* Work out the target address. */
9812 target = mips_elf_get_la25_target (stub, &s);
9813 target += s->output_section->vma + s->output_offset;
9814
9815 target_high = ((target + 0x8000) >> 16) & 0xffff;
9816 target_low = (target & 0xffff);
9817
9818 if (stub->stub_section != htab->strampoline)
9819 {
9820 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9821 of the section and write the two instructions at the end. */
9822 memset (loc, 0, offset);
9823 loc += offset;
9824 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9825 {
9826 bfd_put_micromips_32 (hti->output_bfd,
9827 LA25_LUI_MICROMIPS (target_high),
9828 loc);
9829 bfd_put_micromips_32 (hti->output_bfd,
9830 LA25_ADDIU_MICROMIPS (target_low),
9831 loc + 4);
9832 }
9833 else
9834 {
9835 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9836 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9837 }
9838 }
9839 else
9840 {
9841 /* This is trampoline. */
9842 loc += offset;
9843 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9844 {
9845 bfd_put_micromips_32 (hti->output_bfd,
9846 LA25_LUI_MICROMIPS (target_high), loc);
9847 bfd_put_micromips_32 (hti->output_bfd,
9848 LA25_J_MICROMIPS (target), loc + 4);
9849 bfd_put_micromips_32 (hti->output_bfd,
9850 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9851 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9852 }
9853 else
9854 {
9855 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9856 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9857 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9858 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9859 }
9860 }
9861 return TRUE;
9862 }
9863
9864 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9865 adjust it appropriately now. */
9866
9867 static void
9868 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9869 const char *name, Elf_Internal_Sym *sym)
9870 {
9871 /* The linker script takes care of providing names and values for
9872 these, but we must place them into the right sections. */
9873 static const char* const text_section_symbols[] = {
9874 "_ftext",
9875 "_etext",
9876 "__dso_displacement",
9877 "__elf_header",
9878 "__program_header_table",
9879 NULL
9880 };
9881
9882 static const char* const data_section_symbols[] = {
9883 "_fdata",
9884 "_edata",
9885 "_end",
9886 "_fbss",
9887 NULL
9888 };
9889
9890 const char* const *p;
9891 int i;
9892
9893 for (i = 0; i < 2; ++i)
9894 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9895 *p;
9896 ++p)
9897 if (strcmp (*p, name) == 0)
9898 {
9899 /* All of these symbols are given type STT_SECTION by the
9900 IRIX6 linker. */
9901 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9902 sym->st_other = STO_PROTECTED;
9903
9904 /* The IRIX linker puts these symbols in special sections. */
9905 if (i == 0)
9906 sym->st_shndx = SHN_MIPS_TEXT;
9907 else
9908 sym->st_shndx = SHN_MIPS_DATA;
9909
9910 break;
9911 }
9912 }
9913
9914 /* Finish up dynamic symbol handling. We set the contents of various
9915 dynamic sections here. */
9916
9917 bfd_boolean
9918 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9919 struct bfd_link_info *info,
9920 struct elf_link_hash_entry *h,
9921 Elf_Internal_Sym *sym)
9922 {
9923 bfd *dynobj;
9924 asection *sgot;
9925 struct mips_got_info *g, *gg;
9926 const char *name;
9927 int idx;
9928 struct mips_elf_link_hash_table *htab;
9929 struct mips_elf_link_hash_entry *hmips;
9930
9931 htab = mips_elf_hash_table (info);
9932 BFD_ASSERT (htab != NULL);
9933 dynobj = elf_hash_table (info)->dynobj;
9934 hmips = (struct mips_elf_link_hash_entry *) h;
9935
9936 BFD_ASSERT (!htab->is_vxworks);
9937
9938 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9939 {
9940 /* We've decided to create a PLT entry for this symbol. */
9941 bfd_byte *loc;
9942 bfd_vma header_address, plt_index, got_address;
9943 bfd_vma got_address_high, got_address_low, load;
9944 const bfd_vma *plt_entry;
9945
9946 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9947 BFD_ASSERT (h->dynindx != -1);
9948 BFD_ASSERT (htab->splt != NULL);
9949 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9950 BFD_ASSERT (!h->def_regular);
9951
9952 /* Calculate the address of the PLT header. */
9953 header_address = (htab->splt->output_section->vma
9954 + htab->splt->output_offset);
9955
9956 /* Calculate the index of the entry. */
9957 plt_index = ((h->plt.offset - htab->plt_header_size)
9958 / htab->plt_entry_size);
9959
9960 /* Calculate the address of the .got.plt entry. */
9961 got_address = (htab->sgotplt->output_section->vma
9962 + htab->sgotplt->output_offset
9963 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9964 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9965 got_address_low = got_address & 0xffff;
9966
9967 /* Initially point the .got.plt entry at the PLT header. */
9968 loc = (htab->sgotplt->contents
9969 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9970 if (ABI_64_P (output_bfd))
9971 bfd_put_64 (output_bfd, header_address, loc);
9972 else
9973 bfd_put_32 (output_bfd, header_address, loc);
9974
9975 /* Find out where the .plt entry should go. */
9976 loc = htab->splt->contents + h->plt.offset;
9977
9978 /* Pick the load opcode. */
9979 load = MIPS_ELF_LOAD_WORD (output_bfd);
9980
9981 /* Fill in the PLT entry itself. */
9982 plt_entry = mips_exec_plt_entry;
9983 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9984 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9985
9986 if (! LOAD_INTERLOCKS_P (output_bfd))
9987 {
9988 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9989 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9990 }
9991 else
9992 {
9993 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9994 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9995 }
9996
9997 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9998 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9999 plt_index, h->dynindx,
10000 R_MIPS_JUMP_SLOT, got_address);
10001
10002 /* We distinguish between PLT entries and lazy-binding stubs by
10003 giving the former an st_other value of STO_MIPS_PLT. Set the
10004 flag and leave the value if there are any relocations in the
10005 binary where pointer equality matters. */
10006 sym->st_shndx = SHN_UNDEF;
10007 if (h->pointer_equality_needed)
10008 sym->st_other = STO_MIPS_PLT;
10009 else
10010 sym->st_value = 0;
10011 }
10012 else if (h->plt.offset != MINUS_ONE)
10013 {
10014 /* We've decided to create a lazy-binding stub. */
10015 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10016
10017 /* This symbol has a stub. Set it up. */
10018
10019 BFD_ASSERT (h->dynindx != -1);
10020
10021 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10022 || (h->dynindx <= 0xffff));
10023
10024 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10025 sign extension at runtime in the stub, resulting in a negative
10026 index value. */
10027 if (h->dynindx & ~0x7fffffff)
10028 return FALSE;
10029
10030 /* Fill the stub. */
10031 idx = 0;
10032 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10033 idx += 4;
10034 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10035 idx += 4;
10036 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10037 {
10038 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10039 stub + idx);
10040 idx += 4;
10041 }
10042 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10043 idx += 4;
10044
10045 /* If a large stub is not required and sign extension is not a
10046 problem, then use legacy code in the stub. */
10047 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10048 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10049 else if (h->dynindx & ~0x7fff)
10050 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10051 else
10052 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10053 stub + idx);
10054
10055 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10056 memcpy (htab->sstubs->contents + h->plt.offset,
10057 stub, htab->function_stub_size);
10058
10059 /* Mark the symbol as undefined. plt.offset != -1 occurs
10060 only for the referenced symbol. */
10061 sym->st_shndx = SHN_UNDEF;
10062
10063 /* The run-time linker uses the st_value field of the symbol
10064 to reset the global offset table entry for this external
10065 to its stub address when unlinking a shared object. */
10066 sym->st_value = (htab->sstubs->output_section->vma
10067 + htab->sstubs->output_offset
10068 + h->plt.offset);
10069 }
10070
10071 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10072 refer to the stub, since only the stub uses the standard calling
10073 conventions. */
10074 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10075 {
10076 BFD_ASSERT (hmips->need_fn_stub);
10077 sym->st_value = (hmips->fn_stub->output_section->vma
10078 + hmips->fn_stub->output_offset);
10079 sym->st_size = hmips->fn_stub->size;
10080 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10081 }
10082
10083 BFD_ASSERT (h->dynindx != -1
10084 || h->forced_local);
10085
10086 sgot = htab->sgot;
10087 g = htab->got_info;
10088 BFD_ASSERT (g != NULL);
10089
10090 /* Run through the global symbol table, creating GOT entries for all
10091 the symbols that need them. */
10092 if (hmips->global_got_area != GGA_NONE)
10093 {
10094 bfd_vma offset;
10095 bfd_vma value;
10096
10097 value = sym->st_value;
10098 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10099 R_MIPS_GOT16, info);
10100 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10101 }
10102
10103 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10104 {
10105 struct mips_got_entry e, *p;
10106 bfd_vma entry;
10107 bfd_vma offset;
10108
10109 gg = g;
10110
10111 e.abfd = output_bfd;
10112 e.symndx = -1;
10113 e.d.h = hmips;
10114 e.tls_type = 0;
10115
10116 for (g = g->next; g->next != gg; g = g->next)
10117 {
10118 if (g->got_entries
10119 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10120 &e)))
10121 {
10122 offset = p->gotidx;
10123 if (info->shared
10124 || (elf_hash_table (info)->dynamic_sections_created
10125 && p->d.h != NULL
10126 && p->d.h->root.def_dynamic
10127 && !p->d.h->root.def_regular))
10128 {
10129 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10130 the various compatibility problems, it's easier to mock
10131 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10132 mips_elf_create_dynamic_relocation to calculate the
10133 appropriate addend. */
10134 Elf_Internal_Rela rel[3];
10135
10136 memset (rel, 0, sizeof (rel));
10137 if (ABI_64_P (output_bfd))
10138 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10139 else
10140 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10141 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10142
10143 entry = 0;
10144 if (! (mips_elf_create_dynamic_relocation
10145 (output_bfd, info, rel,
10146 e.d.h, NULL, sym->st_value, &entry, sgot)))
10147 return FALSE;
10148 }
10149 else
10150 entry = sym->st_value;
10151 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10152 }
10153 }
10154 }
10155
10156 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10157 name = h->root.root.string;
10158 if (h == elf_hash_table (info)->hdynamic
10159 || h == elf_hash_table (info)->hgot)
10160 sym->st_shndx = SHN_ABS;
10161 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10162 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10163 {
10164 sym->st_shndx = SHN_ABS;
10165 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10166 sym->st_value = 1;
10167 }
10168 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10169 {
10170 sym->st_shndx = SHN_ABS;
10171 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10172 sym->st_value = elf_gp (output_bfd);
10173 }
10174 else if (SGI_COMPAT (output_bfd))
10175 {
10176 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10177 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10178 {
10179 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10180 sym->st_other = STO_PROTECTED;
10181 sym->st_value = 0;
10182 sym->st_shndx = SHN_MIPS_DATA;
10183 }
10184 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10185 {
10186 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10187 sym->st_other = STO_PROTECTED;
10188 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10189 sym->st_shndx = SHN_ABS;
10190 }
10191 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10192 {
10193 if (h->type == STT_FUNC)
10194 sym->st_shndx = SHN_MIPS_TEXT;
10195 else if (h->type == STT_OBJECT)
10196 sym->st_shndx = SHN_MIPS_DATA;
10197 }
10198 }
10199
10200 /* Emit a copy reloc, if needed. */
10201 if (h->needs_copy)
10202 {
10203 asection *s;
10204 bfd_vma symval;
10205
10206 BFD_ASSERT (h->dynindx != -1);
10207 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10208
10209 s = mips_elf_rel_dyn_section (info, FALSE);
10210 symval = (h->root.u.def.section->output_section->vma
10211 + h->root.u.def.section->output_offset
10212 + h->root.u.def.value);
10213 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10214 h->dynindx, R_MIPS_COPY, symval);
10215 }
10216
10217 /* Handle the IRIX6-specific symbols. */
10218 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10219 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10220
10221 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10222 treat MIPS16 symbols like any other. */
10223 if (ELF_ST_IS_MIPS16 (sym->st_other))
10224 {
10225 BFD_ASSERT (sym->st_value & 1);
10226 sym->st_other -= STO_MIPS16;
10227 }
10228
10229 return TRUE;
10230 }
10231
10232 /* Likewise, for VxWorks. */
10233
10234 bfd_boolean
10235 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10236 struct bfd_link_info *info,
10237 struct elf_link_hash_entry *h,
10238 Elf_Internal_Sym *sym)
10239 {
10240 bfd *dynobj;
10241 asection *sgot;
10242 struct mips_got_info *g;
10243 struct mips_elf_link_hash_table *htab;
10244 struct mips_elf_link_hash_entry *hmips;
10245
10246 htab = mips_elf_hash_table (info);
10247 BFD_ASSERT (htab != NULL);
10248 dynobj = elf_hash_table (info)->dynobj;
10249 hmips = (struct mips_elf_link_hash_entry *) h;
10250
10251 if (h->plt.offset != (bfd_vma) -1)
10252 {
10253 bfd_byte *loc;
10254 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10255 Elf_Internal_Rela rel;
10256 static const bfd_vma *plt_entry;
10257
10258 BFD_ASSERT (h->dynindx != -1);
10259 BFD_ASSERT (htab->splt != NULL);
10260 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10261
10262 /* Calculate the address of the .plt entry. */
10263 plt_address = (htab->splt->output_section->vma
10264 + htab->splt->output_offset
10265 + h->plt.offset);
10266
10267 /* Calculate the index of the entry. */
10268 plt_index = ((h->plt.offset - htab->plt_header_size)
10269 / htab->plt_entry_size);
10270
10271 /* Calculate the address of the .got.plt entry. */
10272 got_address = (htab->sgotplt->output_section->vma
10273 + htab->sgotplt->output_offset
10274 + plt_index * 4);
10275
10276 /* Calculate the offset of the .got.plt entry from
10277 _GLOBAL_OFFSET_TABLE_. */
10278 got_offset = mips_elf_gotplt_index (info, h);
10279
10280 /* Calculate the offset for the branch at the start of the PLT
10281 entry. The branch jumps to the beginning of .plt. */
10282 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10283
10284 /* Fill in the initial value of the .got.plt entry. */
10285 bfd_put_32 (output_bfd, plt_address,
10286 htab->sgotplt->contents + plt_index * 4);
10287
10288 /* Find out where the .plt entry should go. */
10289 loc = htab->splt->contents + h->plt.offset;
10290
10291 if (info->shared)
10292 {
10293 plt_entry = mips_vxworks_shared_plt_entry;
10294 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10295 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10296 }
10297 else
10298 {
10299 bfd_vma got_address_high, got_address_low;
10300
10301 plt_entry = mips_vxworks_exec_plt_entry;
10302 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10303 got_address_low = got_address & 0xffff;
10304
10305 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10306 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10307 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10308 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10309 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10310 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10311 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10312 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10313
10314 loc = (htab->srelplt2->contents
10315 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10316
10317 /* Emit a relocation for the .got.plt entry. */
10318 rel.r_offset = got_address;
10319 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10320 rel.r_addend = h->plt.offset;
10321 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10322
10323 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10324 loc += sizeof (Elf32_External_Rela);
10325 rel.r_offset = plt_address + 8;
10326 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10327 rel.r_addend = got_offset;
10328 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10329
10330 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10331 loc += sizeof (Elf32_External_Rela);
10332 rel.r_offset += 4;
10333 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10334 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10335 }
10336
10337 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10338 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10339 rel.r_offset = got_address;
10340 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10341 rel.r_addend = 0;
10342 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10343
10344 if (!h->def_regular)
10345 sym->st_shndx = SHN_UNDEF;
10346 }
10347
10348 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10349
10350 sgot = htab->sgot;
10351 g = htab->got_info;
10352 BFD_ASSERT (g != NULL);
10353
10354 /* See if this symbol has an entry in the GOT. */
10355 if (hmips->global_got_area != GGA_NONE)
10356 {
10357 bfd_vma offset;
10358 Elf_Internal_Rela outrel;
10359 bfd_byte *loc;
10360 asection *s;
10361
10362 /* Install the symbol value in the GOT. */
10363 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10364 R_MIPS_GOT16, info);
10365 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10366
10367 /* Add a dynamic relocation for it. */
10368 s = mips_elf_rel_dyn_section (info, FALSE);
10369 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10370 outrel.r_offset = (sgot->output_section->vma
10371 + sgot->output_offset
10372 + offset);
10373 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10374 outrel.r_addend = 0;
10375 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10376 }
10377
10378 /* Emit a copy reloc, if needed. */
10379 if (h->needs_copy)
10380 {
10381 Elf_Internal_Rela rel;
10382
10383 BFD_ASSERT (h->dynindx != -1);
10384
10385 rel.r_offset = (h->root.u.def.section->output_section->vma
10386 + h->root.u.def.section->output_offset
10387 + h->root.u.def.value);
10388 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10389 rel.r_addend = 0;
10390 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10391 htab->srelbss->contents
10392 + (htab->srelbss->reloc_count
10393 * sizeof (Elf32_External_Rela)));
10394 ++htab->srelbss->reloc_count;
10395 }
10396
10397 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10398 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10399 sym->st_value &= ~1;
10400
10401 return TRUE;
10402 }
10403
10404 /* Write out a plt0 entry to the beginning of .plt. */
10405
10406 static void
10407 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10408 {
10409 bfd_byte *loc;
10410 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10411 static const bfd_vma *plt_entry;
10412 struct mips_elf_link_hash_table *htab;
10413
10414 htab = mips_elf_hash_table (info);
10415 BFD_ASSERT (htab != NULL);
10416
10417 if (ABI_64_P (output_bfd))
10418 plt_entry = mips_n64_exec_plt0_entry;
10419 else if (ABI_N32_P (output_bfd))
10420 plt_entry = mips_n32_exec_plt0_entry;
10421 else
10422 plt_entry = mips_o32_exec_plt0_entry;
10423
10424 /* Calculate the value of .got.plt. */
10425 gotplt_value = (htab->sgotplt->output_section->vma
10426 + htab->sgotplt->output_offset);
10427 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10428 gotplt_value_low = gotplt_value & 0xffff;
10429
10430 /* The PLT sequence is not safe for N64 if .got.plt's address can
10431 not be loaded in two instructions. */
10432 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10433 || ~(gotplt_value | 0x7fffffff) == 0);
10434
10435 /* Install the PLT header. */
10436 loc = htab->splt->contents;
10437 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10438 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10439 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10440 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10441 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10442 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10443 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10444 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10445 }
10446
10447 /* Install the PLT header for a VxWorks executable and finalize the
10448 contents of .rela.plt.unloaded. */
10449
10450 static void
10451 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10452 {
10453 Elf_Internal_Rela rela;
10454 bfd_byte *loc;
10455 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10456 static const bfd_vma *plt_entry;
10457 struct mips_elf_link_hash_table *htab;
10458
10459 htab = mips_elf_hash_table (info);
10460 BFD_ASSERT (htab != NULL);
10461
10462 plt_entry = mips_vxworks_exec_plt0_entry;
10463
10464 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10465 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10466 + htab->root.hgot->root.u.def.section->output_offset
10467 + htab->root.hgot->root.u.def.value);
10468
10469 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10470 got_value_low = got_value & 0xffff;
10471
10472 /* Calculate the address of the PLT header. */
10473 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10474
10475 /* Install the PLT header. */
10476 loc = htab->splt->contents;
10477 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10478 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10479 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10480 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10481 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10482 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10483
10484 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10485 loc = htab->srelplt2->contents;
10486 rela.r_offset = plt_address;
10487 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10488 rela.r_addend = 0;
10489 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10490 loc += sizeof (Elf32_External_Rela);
10491
10492 /* Output the relocation for the following addiu of
10493 %lo(_GLOBAL_OFFSET_TABLE_). */
10494 rela.r_offset += 4;
10495 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10496 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10497 loc += sizeof (Elf32_External_Rela);
10498
10499 /* Fix up the remaining relocations. They may have the wrong
10500 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10501 in which symbols were output. */
10502 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10503 {
10504 Elf_Internal_Rela rel;
10505
10506 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10507 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10508 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10509 loc += sizeof (Elf32_External_Rela);
10510
10511 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10512 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10513 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10514 loc += sizeof (Elf32_External_Rela);
10515
10516 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10517 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10518 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10519 loc += sizeof (Elf32_External_Rela);
10520 }
10521 }
10522
10523 /* Install the PLT header for a VxWorks shared library. */
10524
10525 static void
10526 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10527 {
10528 unsigned int i;
10529 struct mips_elf_link_hash_table *htab;
10530
10531 htab = mips_elf_hash_table (info);
10532 BFD_ASSERT (htab != NULL);
10533
10534 /* We just need to copy the entry byte-by-byte. */
10535 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10536 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10537 htab->splt->contents + i * 4);
10538 }
10539
10540 /* Finish up the dynamic sections. */
10541
10542 bfd_boolean
10543 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10544 struct bfd_link_info *info)
10545 {
10546 bfd *dynobj;
10547 asection *sdyn;
10548 asection *sgot;
10549 struct mips_got_info *gg, *g;
10550 struct mips_elf_link_hash_table *htab;
10551
10552 htab = mips_elf_hash_table (info);
10553 BFD_ASSERT (htab != NULL);
10554
10555 dynobj = elf_hash_table (info)->dynobj;
10556
10557 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10558
10559 sgot = htab->sgot;
10560 gg = htab->got_info;
10561
10562 if (elf_hash_table (info)->dynamic_sections_created)
10563 {
10564 bfd_byte *b;
10565 int dyn_to_skip = 0, dyn_skipped = 0;
10566
10567 BFD_ASSERT (sdyn != NULL);
10568 BFD_ASSERT (gg != NULL);
10569
10570 g = mips_elf_got_for_ibfd (gg, output_bfd);
10571 BFD_ASSERT (g != NULL);
10572
10573 for (b = sdyn->contents;
10574 b < sdyn->contents + sdyn->size;
10575 b += MIPS_ELF_DYN_SIZE (dynobj))
10576 {
10577 Elf_Internal_Dyn dyn;
10578 const char *name;
10579 size_t elemsize;
10580 asection *s;
10581 bfd_boolean swap_out_p;
10582
10583 /* Read in the current dynamic entry. */
10584 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10585
10586 /* Assume that we're going to modify it and write it out. */
10587 swap_out_p = TRUE;
10588
10589 switch (dyn.d_tag)
10590 {
10591 case DT_RELENT:
10592 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10593 break;
10594
10595 case DT_RELAENT:
10596 BFD_ASSERT (htab->is_vxworks);
10597 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10598 break;
10599
10600 case DT_STRSZ:
10601 /* Rewrite DT_STRSZ. */
10602 dyn.d_un.d_val =
10603 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10604 break;
10605
10606 case DT_PLTGOT:
10607 s = htab->sgot;
10608 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10609 break;
10610
10611 case DT_MIPS_PLTGOT:
10612 s = htab->sgotplt;
10613 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10614 break;
10615
10616 case DT_MIPS_RLD_VERSION:
10617 dyn.d_un.d_val = 1; /* XXX */
10618 break;
10619
10620 case DT_MIPS_FLAGS:
10621 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10622 break;
10623
10624 case DT_MIPS_TIME_STAMP:
10625 {
10626 time_t t;
10627 time (&t);
10628 dyn.d_un.d_val = t;
10629 }
10630 break;
10631
10632 case DT_MIPS_ICHECKSUM:
10633 /* XXX FIXME: */
10634 swap_out_p = FALSE;
10635 break;
10636
10637 case DT_MIPS_IVERSION:
10638 /* XXX FIXME: */
10639 swap_out_p = FALSE;
10640 break;
10641
10642 case DT_MIPS_BASE_ADDRESS:
10643 s = output_bfd->sections;
10644 BFD_ASSERT (s != NULL);
10645 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10646 break;
10647
10648 case DT_MIPS_LOCAL_GOTNO:
10649 dyn.d_un.d_val = g->local_gotno;
10650 break;
10651
10652 case DT_MIPS_UNREFEXTNO:
10653 /* The index into the dynamic symbol table which is the
10654 entry of the first external symbol that is not
10655 referenced within the same object. */
10656 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10657 break;
10658
10659 case DT_MIPS_GOTSYM:
10660 if (gg->global_gotsym)
10661 {
10662 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10663 break;
10664 }
10665 /* In case if we don't have global got symbols we default
10666 to setting DT_MIPS_GOTSYM to the same value as
10667 DT_MIPS_SYMTABNO, so we just fall through. */
10668
10669 case DT_MIPS_SYMTABNO:
10670 name = ".dynsym";
10671 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10672 s = bfd_get_section_by_name (output_bfd, name);
10673 BFD_ASSERT (s != NULL);
10674
10675 dyn.d_un.d_val = s->size / elemsize;
10676 break;
10677
10678 case DT_MIPS_HIPAGENO:
10679 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10680 break;
10681
10682 case DT_MIPS_RLD_MAP:
10683 {
10684 struct elf_link_hash_entry *h;
10685 h = mips_elf_hash_table (info)->rld_symbol;
10686 if (!h)
10687 {
10688 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10689 swap_out_p = FALSE;
10690 break;
10691 }
10692 s = h->root.u.def.section;
10693 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10694 + h->root.u.def.value);
10695 }
10696 break;
10697
10698 case DT_MIPS_OPTIONS:
10699 s = (bfd_get_section_by_name
10700 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10701 dyn.d_un.d_ptr = s->vma;
10702 break;
10703
10704 case DT_RELASZ:
10705 BFD_ASSERT (htab->is_vxworks);
10706 /* The count does not include the JUMP_SLOT relocations. */
10707 if (htab->srelplt)
10708 dyn.d_un.d_val -= htab->srelplt->size;
10709 break;
10710
10711 case DT_PLTREL:
10712 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10713 if (htab->is_vxworks)
10714 dyn.d_un.d_val = DT_RELA;
10715 else
10716 dyn.d_un.d_val = DT_REL;
10717 break;
10718
10719 case DT_PLTRELSZ:
10720 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10721 dyn.d_un.d_val = htab->srelplt->size;
10722 break;
10723
10724 case DT_JMPREL:
10725 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10726 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10727 + htab->srelplt->output_offset);
10728 break;
10729
10730 case DT_TEXTREL:
10731 /* If we didn't need any text relocations after all, delete
10732 the dynamic tag. */
10733 if (!(info->flags & DF_TEXTREL))
10734 {
10735 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10736 swap_out_p = FALSE;
10737 }
10738 break;
10739
10740 case DT_FLAGS:
10741 /* If we didn't need any text relocations after all, clear
10742 DF_TEXTREL from DT_FLAGS. */
10743 if (!(info->flags & DF_TEXTREL))
10744 dyn.d_un.d_val &= ~DF_TEXTREL;
10745 else
10746 swap_out_p = FALSE;
10747 break;
10748
10749 default:
10750 swap_out_p = FALSE;
10751 if (htab->is_vxworks
10752 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10753 swap_out_p = TRUE;
10754 break;
10755 }
10756
10757 if (swap_out_p || dyn_skipped)
10758 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10759 (dynobj, &dyn, b - dyn_skipped);
10760
10761 if (dyn_to_skip)
10762 {
10763 dyn_skipped += dyn_to_skip;
10764 dyn_to_skip = 0;
10765 }
10766 }
10767
10768 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10769 if (dyn_skipped > 0)
10770 memset (b - dyn_skipped, 0, dyn_skipped);
10771 }
10772
10773 if (sgot != NULL && sgot->size > 0
10774 && !bfd_is_abs_section (sgot->output_section))
10775 {
10776 if (htab->is_vxworks)
10777 {
10778 /* The first entry of the global offset table points to the
10779 ".dynamic" section. The second is initialized by the
10780 loader and contains the shared library identifier.
10781 The third is also initialized by the loader and points
10782 to the lazy resolution stub. */
10783 MIPS_ELF_PUT_WORD (output_bfd,
10784 sdyn->output_offset + sdyn->output_section->vma,
10785 sgot->contents);
10786 MIPS_ELF_PUT_WORD (output_bfd, 0,
10787 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10788 MIPS_ELF_PUT_WORD (output_bfd, 0,
10789 sgot->contents
10790 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10791 }
10792 else
10793 {
10794 /* The first entry of the global offset table will be filled at
10795 runtime. The second entry will be used by some runtime loaders.
10796 This isn't the case of IRIX rld. */
10797 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10798 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10799 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10800 }
10801
10802 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10803 = MIPS_ELF_GOT_SIZE (output_bfd);
10804 }
10805
10806 /* Generate dynamic relocations for the non-primary gots. */
10807 if (gg != NULL && gg->next)
10808 {
10809 Elf_Internal_Rela rel[3];
10810 bfd_vma addend = 0;
10811
10812 memset (rel, 0, sizeof (rel));
10813 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10814
10815 for (g = gg->next; g->next != gg; g = g->next)
10816 {
10817 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10818 + g->next->tls_gotno;
10819
10820 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10821 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10822 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10823 sgot->contents
10824 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10825
10826 if (! info->shared)
10827 continue;
10828
10829 while (got_index < g->assigned_gotno)
10830 {
10831 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10832 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10833 if (!(mips_elf_create_dynamic_relocation
10834 (output_bfd, info, rel, NULL,
10835 bfd_abs_section_ptr,
10836 0, &addend, sgot)))
10837 return FALSE;
10838 BFD_ASSERT (addend == 0);
10839 }
10840 }
10841 }
10842
10843 /* The generation of dynamic relocations for the non-primary gots
10844 adds more dynamic relocations. We cannot count them until
10845 here. */
10846
10847 if (elf_hash_table (info)->dynamic_sections_created)
10848 {
10849 bfd_byte *b;
10850 bfd_boolean swap_out_p;
10851
10852 BFD_ASSERT (sdyn != NULL);
10853
10854 for (b = sdyn->contents;
10855 b < sdyn->contents + sdyn->size;
10856 b += MIPS_ELF_DYN_SIZE (dynobj))
10857 {
10858 Elf_Internal_Dyn dyn;
10859 asection *s;
10860
10861 /* Read in the current dynamic entry. */
10862 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10863
10864 /* Assume that we're going to modify it and write it out. */
10865 swap_out_p = TRUE;
10866
10867 switch (dyn.d_tag)
10868 {
10869 case DT_RELSZ:
10870 /* Reduce DT_RELSZ to account for any relocations we
10871 decided not to make. This is for the n64 irix rld,
10872 which doesn't seem to apply any relocations if there
10873 are trailing null entries. */
10874 s = mips_elf_rel_dyn_section (info, FALSE);
10875 dyn.d_un.d_val = (s->reloc_count
10876 * (ABI_64_P (output_bfd)
10877 ? sizeof (Elf64_Mips_External_Rel)
10878 : sizeof (Elf32_External_Rel)));
10879 /* Adjust the section size too. Tools like the prelinker
10880 can reasonably expect the values to the same. */
10881 elf_section_data (s->output_section)->this_hdr.sh_size
10882 = dyn.d_un.d_val;
10883 break;
10884
10885 default:
10886 swap_out_p = FALSE;
10887 break;
10888 }
10889
10890 if (swap_out_p)
10891 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10892 (dynobj, &dyn, b);
10893 }
10894 }
10895
10896 {
10897 asection *s;
10898 Elf32_compact_rel cpt;
10899
10900 if (SGI_COMPAT (output_bfd))
10901 {
10902 /* Write .compact_rel section out. */
10903 s = bfd_get_linker_section (dynobj, ".compact_rel");
10904 if (s != NULL)
10905 {
10906 cpt.id1 = 1;
10907 cpt.num = s->reloc_count;
10908 cpt.id2 = 2;
10909 cpt.offset = (s->output_section->filepos
10910 + sizeof (Elf32_External_compact_rel));
10911 cpt.reserved0 = 0;
10912 cpt.reserved1 = 0;
10913 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10914 ((Elf32_External_compact_rel *)
10915 s->contents));
10916
10917 /* Clean up a dummy stub function entry in .text. */
10918 if (htab->sstubs != NULL)
10919 {
10920 file_ptr dummy_offset;
10921
10922 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10923 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10924 memset (htab->sstubs->contents + dummy_offset, 0,
10925 htab->function_stub_size);
10926 }
10927 }
10928 }
10929
10930 /* The psABI says that the dynamic relocations must be sorted in
10931 increasing order of r_symndx. The VxWorks EABI doesn't require
10932 this, and because the code below handles REL rather than RELA
10933 relocations, using it for VxWorks would be outright harmful. */
10934 if (!htab->is_vxworks)
10935 {
10936 s = mips_elf_rel_dyn_section (info, FALSE);
10937 if (s != NULL
10938 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10939 {
10940 reldyn_sorting_bfd = output_bfd;
10941
10942 if (ABI_64_P (output_bfd))
10943 qsort ((Elf64_External_Rel *) s->contents + 1,
10944 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10945 sort_dynamic_relocs_64);
10946 else
10947 qsort ((Elf32_External_Rel *) s->contents + 1,
10948 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10949 sort_dynamic_relocs);
10950 }
10951 }
10952 }
10953
10954 if (htab->splt && htab->splt->size > 0)
10955 {
10956 if (htab->is_vxworks)
10957 {
10958 if (info->shared)
10959 mips_vxworks_finish_shared_plt (output_bfd, info);
10960 else
10961 mips_vxworks_finish_exec_plt (output_bfd, info);
10962 }
10963 else
10964 {
10965 BFD_ASSERT (!info->shared);
10966 mips_finish_exec_plt (output_bfd, info);
10967 }
10968 }
10969 return TRUE;
10970 }
10971
10972
10973 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10974
10975 static void
10976 mips_set_isa_flags (bfd *abfd)
10977 {
10978 flagword val;
10979
10980 switch (bfd_get_mach (abfd))
10981 {
10982 default:
10983 case bfd_mach_mips3000:
10984 val = E_MIPS_ARCH_1;
10985 break;
10986
10987 case bfd_mach_mips3900:
10988 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10989 break;
10990
10991 case bfd_mach_mips6000:
10992 val = E_MIPS_ARCH_2;
10993 break;
10994
10995 case bfd_mach_mips4000:
10996 case bfd_mach_mips4300:
10997 case bfd_mach_mips4400:
10998 case bfd_mach_mips4600:
10999 val = E_MIPS_ARCH_3;
11000 break;
11001
11002 case bfd_mach_mips4010:
11003 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11004 break;
11005
11006 case bfd_mach_mips4100:
11007 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11008 break;
11009
11010 case bfd_mach_mips4111:
11011 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11012 break;
11013
11014 case bfd_mach_mips4120:
11015 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11016 break;
11017
11018 case bfd_mach_mips4650:
11019 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11020 break;
11021
11022 case bfd_mach_mips5400:
11023 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11024 break;
11025
11026 case bfd_mach_mips5500:
11027 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11028 break;
11029
11030 case bfd_mach_mips5900:
11031 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11032 break;
11033
11034 case bfd_mach_mips9000:
11035 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11036 break;
11037
11038 case bfd_mach_mips5000:
11039 case bfd_mach_mips7000:
11040 case bfd_mach_mips8000:
11041 case bfd_mach_mips10000:
11042 case bfd_mach_mips12000:
11043 case bfd_mach_mips14000:
11044 case bfd_mach_mips16000:
11045 val = E_MIPS_ARCH_4;
11046 break;
11047
11048 case bfd_mach_mips5:
11049 val = E_MIPS_ARCH_5;
11050 break;
11051
11052 case bfd_mach_mips_loongson_2e:
11053 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11054 break;
11055
11056 case bfd_mach_mips_loongson_2f:
11057 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11058 break;
11059
11060 case bfd_mach_mips_sb1:
11061 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11062 break;
11063
11064 case bfd_mach_mips_loongson_3a:
11065 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11066 break;
11067
11068 case bfd_mach_mips_octeon:
11069 case bfd_mach_mips_octeonp:
11070 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11071 break;
11072
11073 case bfd_mach_mips_xlr:
11074 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11075 break;
11076
11077 case bfd_mach_mips_octeon2:
11078 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11079 break;
11080
11081 case bfd_mach_mipsisa32:
11082 val = E_MIPS_ARCH_32;
11083 break;
11084
11085 case bfd_mach_mipsisa64:
11086 val = E_MIPS_ARCH_64;
11087 break;
11088
11089 case bfd_mach_mipsisa32r2:
11090 val = E_MIPS_ARCH_32R2;
11091 break;
11092
11093 case bfd_mach_mipsisa64r2:
11094 val = E_MIPS_ARCH_64R2;
11095 break;
11096 }
11097 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11098 elf_elfheader (abfd)->e_flags |= val;
11099
11100 }
11101
11102
11103 /* The final processing done just before writing out a MIPS ELF object
11104 file. This gets the MIPS architecture right based on the machine
11105 number. This is used by both the 32-bit and the 64-bit ABI. */
11106
11107 void
11108 _bfd_mips_elf_final_write_processing (bfd *abfd,
11109 bfd_boolean linker ATTRIBUTE_UNUSED)
11110 {
11111 unsigned int i;
11112 Elf_Internal_Shdr **hdrpp;
11113 const char *name;
11114 asection *sec;
11115
11116 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11117 is nonzero. This is for compatibility with old objects, which used
11118 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11119 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11120 mips_set_isa_flags (abfd);
11121
11122 /* Set the sh_info field for .gptab sections and other appropriate
11123 info for each special section. */
11124 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11125 i < elf_numsections (abfd);
11126 i++, hdrpp++)
11127 {
11128 switch ((*hdrpp)->sh_type)
11129 {
11130 case SHT_MIPS_MSYM:
11131 case SHT_MIPS_LIBLIST:
11132 sec = bfd_get_section_by_name (abfd, ".dynstr");
11133 if (sec != NULL)
11134 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11135 break;
11136
11137 case SHT_MIPS_GPTAB:
11138 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11139 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11140 BFD_ASSERT (name != NULL
11141 && CONST_STRNEQ (name, ".gptab."));
11142 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11143 BFD_ASSERT (sec != NULL);
11144 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11145 break;
11146
11147 case SHT_MIPS_CONTENT:
11148 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11149 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11150 BFD_ASSERT (name != NULL
11151 && CONST_STRNEQ (name, ".MIPS.content"));
11152 sec = bfd_get_section_by_name (abfd,
11153 name + sizeof ".MIPS.content" - 1);
11154 BFD_ASSERT (sec != NULL);
11155 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11156 break;
11157
11158 case SHT_MIPS_SYMBOL_LIB:
11159 sec = bfd_get_section_by_name (abfd, ".dynsym");
11160 if (sec != NULL)
11161 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11162 sec = bfd_get_section_by_name (abfd, ".liblist");
11163 if (sec != NULL)
11164 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11165 break;
11166
11167 case SHT_MIPS_EVENTS:
11168 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11169 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11170 BFD_ASSERT (name != NULL);
11171 if (CONST_STRNEQ (name, ".MIPS.events"))
11172 sec = bfd_get_section_by_name (abfd,
11173 name + sizeof ".MIPS.events" - 1);
11174 else
11175 {
11176 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11177 sec = bfd_get_section_by_name (abfd,
11178 (name
11179 + sizeof ".MIPS.post_rel" - 1));
11180 }
11181 BFD_ASSERT (sec != NULL);
11182 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11183 break;
11184
11185 }
11186 }
11187 }
11188 \f
11189 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11190 segments. */
11191
11192 int
11193 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11194 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11195 {
11196 asection *s;
11197 int ret = 0;
11198
11199 /* See if we need a PT_MIPS_REGINFO segment. */
11200 s = bfd_get_section_by_name (abfd, ".reginfo");
11201 if (s && (s->flags & SEC_LOAD))
11202 ++ret;
11203
11204 /* See if we need a PT_MIPS_OPTIONS segment. */
11205 if (IRIX_COMPAT (abfd) == ict_irix6
11206 && bfd_get_section_by_name (abfd,
11207 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11208 ++ret;
11209
11210 /* See if we need a PT_MIPS_RTPROC segment. */
11211 if (IRIX_COMPAT (abfd) == ict_irix5
11212 && bfd_get_section_by_name (abfd, ".dynamic")
11213 && bfd_get_section_by_name (abfd, ".mdebug"))
11214 ++ret;
11215
11216 /* Allocate a PT_NULL header in dynamic objects. See
11217 _bfd_mips_elf_modify_segment_map for details. */
11218 if (!SGI_COMPAT (abfd)
11219 && bfd_get_section_by_name (abfd, ".dynamic"))
11220 ++ret;
11221
11222 return ret;
11223 }
11224
11225 /* Modify the segment map for an IRIX5 executable. */
11226
11227 bfd_boolean
11228 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11229 struct bfd_link_info *info)
11230 {
11231 asection *s;
11232 struct elf_segment_map *m, **pm;
11233 bfd_size_type amt;
11234
11235 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11236 segment. */
11237 s = bfd_get_section_by_name (abfd, ".reginfo");
11238 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11239 {
11240 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11241 if (m->p_type == PT_MIPS_REGINFO)
11242 break;
11243 if (m == NULL)
11244 {
11245 amt = sizeof *m;
11246 m = bfd_zalloc (abfd, amt);
11247 if (m == NULL)
11248 return FALSE;
11249
11250 m->p_type = PT_MIPS_REGINFO;
11251 m->count = 1;
11252 m->sections[0] = s;
11253
11254 /* We want to put it after the PHDR and INTERP segments. */
11255 pm = &elf_tdata (abfd)->segment_map;
11256 while (*pm != NULL
11257 && ((*pm)->p_type == PT_PHDR
11258 || (*pm)->p_type == PT_INTERP))
11259 pm = &(*pm)->next;
11260
11261 m->next = *pm;
11262 *pm = m;
11263 }
11264 }
11265
11266 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11267 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11268 PT_MIPS_OPTIONS segment immediately following the program header
11269 table. */
11270 if (NEWABI_P (abfd)
11271 /* On non-IRIX6 new abi, we'll have already created a segment
11272 for this section, so don't create another. I'm not sure this
11273 is not also the case for IRIX 6, but I can't test it right
11274 now. */
11275 && IRIX_COMPAT (abfd) == ict_irix6)
11276 {
11277 for (s = abfd->sections; s; s = s->next)
11278 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11279 break;
11280
11281 if (s)
11282 {
11283 struct elf_segment_map *options_segment;
11284
11285 pm = &elf_tdata (abfd)->segment_map;
11286 while (*pm != NULL
11287 && ((*pm)->p_type == PT_PHDR
11288 || (*pm)->p_type == PT_INTERP))
11289 pm = &(*pm)->next;
11290
11291 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11292 {
11293 amt = sizeof (struct elf_segment_map);
11294 options_segment = bfd_zalloc (abfd, amt);
11295 options_segment->next = *pm;
11296 options_segment->p_type = PT_MIPS_OPTIONS;
11297 options_segment->p_flags = PF_R;
11298 options_segment->p_flags_valid = TRUE;
11299 options_segment->count = 1;
11300 options_segment->sections[0] = s;
11301 *pm = options_segment;
11302 }
11303 }
11304 }
11305 else
11306 {
11307 if (IRIX_COMPAT (abfd) == ict_irix5)
11308 {
11309 /* If there are .dynamic and .mdebug sections, we make a room
11310 for the RTPROC header. FIXME: Rewrite without section names. */
11311 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11312 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11313 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11314 {
11315 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11316 if (m->p_type == PT_MIPS_RTPROC)
11317 break;
11318 if (m == NULL)
11319 {
11320 amt = sizeof *m;
11321 m = bfd_zalloc (abfd, amt);
11322 if (m == NULL)
11323 return FALSE;
11324
11325 m->p_type = PT_MIPS_RTPROC;
11326
11327 s = bfd_get_section_by_name (abfd, ".rtproc");
11328 if (s == NULL)
11329 {
11330 m->count = 0;
11331 m->p_flags = 0;
11332 m->p_flags_valid = 1;
11333 }
11334 else
11335 {
11336 m->count = 1;
11337 m->sections[0] = s;
11338 }
11339
11340 /* We want to put it after the DYNAMIC segment. */
11341 pm = &elf_tdata (abfd)->segment_map;
11342 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11343 pm = &(*pm)->next;
11344 if (*pm != NULL)
11345 pm = &(*pm)->next;
11346
11347 m->next = *pm;
11348 *pm = m;
11349 }
11350 }
11351 }
11352 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11353 .dynstr, .dynsym, and .hash sections, and everything in
11354 between. */
11355 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11356 pm = &(*pm)->next)
11357 if ((*pm)->p_type == PT_DYNAMIC)
11358 break;
11359 m = *pm;
11360 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11361 {
11362 /* For a normal mips executable the permissions for the PT_DYNAMIC
11363 segment are read, write and execute. We do that here since
11364 the code in elf.c sets only the read permission. This matters
11365 sometimes for the dynamic linker. */
11366 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11367 {
11368 m->p_flags = PF_R | PF_W | PF_X;
11369 m->p_flags_valid = 1;
11370 }
11371 }
11372 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11373 glibc's dynamic linker has traditionally derived the number of
11374 tags from the p_filesz field, and sometimes allocates stack
11375 arrays of that size. An overly-big PT_DYNAMIC segment can
11376 be actively harmful in such cases. Making PT_DYNAMIC contain
11377 other sections can also make life hard for the prelinker,
11378 which might move one of the other sections to a different
11379 PT_LOAD segment. */
11380 if (SGI_COMPAT (abfd)
11381 && m != NULL
11382 && m->count == 1
11383 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11384 {
11385 static const char *sec_names[] =
11386 {
11387 ".dynamic", ".dynstr", ".dynsym", ".hash"
11388 };
11389 bfd_vma low, high;
11390 unsigned int i, c;
11391 struct elf_segment_map *n;
11392
11393 low = ~(bfd_vma) 0;
11394 high = 0;
11395 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11396 {
11397 s = bfd_get_section_by_name (abfd, sec_names[i]);
11398 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11399 {
11400 bfd_size_type sz;
11401
11402 if (low > s->vma)
11403 low = s->vma;
11404 sz = s->size;
11405 if (high < s->vma + sz)
11406 high = s->vma + sz;
11407 }
11408 }
11409
11410 c = 0;
11411 for (s = abfd->sections; s != NULL; s = s->next)
11412 if ((s->flags & SEC_LOAD) != 0
11413 && s->vma >= low
11414 && s->vma + s->size <= high)
11415 ++c;
11416
11417 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11418 n = bfd_zalloc (abfd, amt);
11419 if (n == NULL)
11420 return FALSE;
11421 *n = *m;
11422 n->count = c;
11423
11424 i = 0;
11425 for (s = abfd->sections; s != NULL; s = s->next)
11426 {
11427 if ((s->flags & SEC_LOAD) != 0
11428 && s->vma >= low
11429 && s->vma + s->size <= high)
11430 {
11431 n->sections[i] = s;
11432 ++i;
11433 }
11434 }
11435
11436 *pm = n;
11437 }
11438 }
11439
11440 /* Allocate a spare program header in dynamic objects so that tools
11441 like the prelinker can add an extra PT_LOAD entry.
11442
11443 If the prelinker needs to make room for a new PT_LOAD entry, its
11444 standard procedure is to move the first (read-only) sections into
11445 the new (writable) segment. However, the MIPS ABI requires
11446 .dynamic to be in a read-only segment, and the section will often
11447 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11448
11449 Although the prelinker could in principle move .dynamic to a
11450 writable segment, it seems better to allocate a spare program
11451 header instead, and avoid the need to move any sections.
11452 There is a long tradition of allocating spare dynamic tags,
11453 so allocating a spare program header seems like a natural
11454 extension.
11455
11456 If INFO is NULL, we may be copying an already prelinked binary
11457 with objcopy or strip, so do not add this header. */
11458 if (info != NULL
11459 && !SGI_COMPAT (abfd)
11460 && bfd_get_section_by_name (abfd, ".dynamic"))
11461 {
11462 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11463 if ((*pm)->p_type == PT_NULL)
11464 break;
11465 if (*pm == NULL)
11466 {
11467 m = bfd_zalloc (abfd, sizeof (*m));
11468 if (m == NULL)
11469 return FALSE;
11470
11471 m->p_type = PT_NULL;
11472 *pm = m;
11473 }
11474 }
11475
11476 return TRUE;
11477 }
11478 \f
11479 /* Return the section that should be marked against GC for a given
11480 relocation. */
11481
11482 asection *
11483 _bfd_mips_elf_gc_mark_hook (asection *sec,
11484 struct bfd_link_info *info,
11485 Elf_Internal_Rela *rel,
11486 struct elf_link_hash_entry *h,
11487 Elf_Internal_Sym *sym)
11488 {
11489 /* ??? Do mips16 stub sections need to be handled special? */
11490
11491 if (h != NULL)
11492 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11493 {
11494 case R_MIPS_GNU_VTINHERIT:
11495 case R_MIPS_GNU_VTENTRY:
11496 return NULL;
11497 }
11498
11499 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11500 }
11501
11502 /* Update the got entry reference counts for the section being removed. */
11503
11504 bfd_boolean
11505 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11506 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11507 asection *sec ATTRIBUTE_UNUSED,
11508 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11509 {
11510 #if 0
11511 Elf_Internal_Shdr *symtab_hdr;
11512 struct elf_link_hash_entry **sym_hashes;
11513 bfd_signed_vma *local_got_refcounts;
11514 const Elf_Internal_Rela *rel, *relend;
11515 unsigned long r_symndx;
11516 struct elf_link_hash_entry *h;
11517
11518 if (info->relocatable)
11519 return TRUE;
11520
11521 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11522 sym_hashes = elf_sym_hashes (abfd);
11523 local_got_refcounts = elf_local_got_refcounts (abfd);
11524
11525 relend = relocs + sec->reloc_count;
11526 for (rel = relocs; rel < relend; rel++)
11527 switch (ELF_R_TYPE (abfd, rel->r_info))
11528 {
11529 case R_MIPS16_GOT16:
11530 case R_MIPS16_CALL16:
11531 case R_MIPS_GOT16:
11532 case R_MIPS_CALL16:
11533 case R_MIPS_CALL_HI16:
11534 case R_MIPS_CALL_LO16:
11535 case R_MIPS_GOT_HI16:
11536 case R_MIPS_GOT_LO16:
11537 case R_MIPS_GOT_DISP:
11538 case R_MIPS_GOT_PAGE:
11539 case R_MIPS_GOT_OFST:
11540 case R_MICROMIPS_GOT16:
11541 case R_MICROMIPS_CALL16:
11542 case R_MICROMIPS_CALL_HI16:
11543 case R_MICROMIPS_CALL_LO16:
11544 case R_MICROMIPS_GOT_HI16:
11545 case R_MICROMIPS_GOT_LO16:
11546 case R_MICROMIPS_GOT_DISP:
11547 case R_MICROMIPS_GOT_PAGE:
11548 case R_MICROMIPS_GOT_OFST:
11549 /* ??? It would seem that the existing MIPS code does no sort
11550 of reference counting or whatnot on its GOT and PLT entries,
11551 so it is not possible to garbage collect them at this time. */
11552 break;
11553
11554 default:
11555 break;
11556 }
11557 #endif
11558
11559 return TRUE;
11560 }
11561 \f
11562 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11563 hiding the old indirect symbol. Process additional relocation
11564 information. Also called for weakdefs, in which case we just let
11565 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11566
11567 void
11568 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11569 struct elf_link_hash_entry *dir,
11570 struct elf_link_hash_entry *ind)
11571 {
11572 struct mips_elf_link_hash_entry *dirmips, *indmips;
11573
11574 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11575
11576 dirmips = (struct mips_elf_link_hash_entry *) dir;
11577 indmips = (struct mips_elf_link_hash_entry *) ind;
11578 /* Any absolute non-dynamic relocations against an indirect or weak
11579 definition will be against the target symbol. */
11580 if (indmips->has_static_relocs)
11581 dirmips->has_static_relocs = TRUE;
11582
11583 if (ind->root.type != bfd_link_hash_indirect)
11584 return;
11585
11586 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11587 if (indmips->readonly_reloc)
11588 dirmips->readonly_reloc = TRUE;
11589 if (indmips->no_fn_stub)
11590 dirmips->no_fn_stub = TRUE;
11591 if (indmips->fn_stub)
11592 {
11593 dirmips->fn_stub = indmips->fn_stub;
11594 indmips->fn_stub = NULL;
11595 }
11596 if (indmips->need_fn_stub)
11597 {
11598 dirmips->need_fn_stub = TRUE;
11599 indmips->need_fn_stub = FALSE;
11600 }
11601 if (indmips->call_stub)
11602 {
11603 dirmips->call_stub = indmips->call_stub;
11604 indmips->call_stub = NULL;
11605 }
11606 if (indmips->call_fp_stub)
11607 {
11608 dirmips->call_fp_stub = indmips->call_fp_stub;
11609 indmips->call_fp_stub = NULL;
11610 }
11611 if (indmips->global_got_area < dirmips->global_got_area)
11612 dirmips->global_got_area = indmips->global_got_area;
11613 if (indmips->global_got_area < GGA_NONE)
11614 indmips->global_got_area = GGA_NONE;
11615 if (indmips->has_nonpic_branches)
11616 dirmips->has_nonpic_branches = TRUE;
11617
11618 if (dirmips->tls_type == 0)
11619 dirmips->tls_type = indmips->tls_type;
11620 }
11621 \f
11622 #define PDR_SIZE 32
11623
11624 bfd_boolean
11625 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11626 struct bfd_link_info *info)
11627 {
11628 asection *o;
11629 bfd_boolean ret = FALSE;
11630 unsigned char *tdata;
11631 size_t i, skip;
11632
11633 o = bfd_get_section_by_name (abfd, ".pdr");
11634 if (! o)
11635 return FALSE;
11636 if (o->size == 0)
11637 return FALSE;
11638 if (o->size % PDR_SIZE != 0)
11639 return FALSE;
11640 if (o->output_section != NULL
11641 && bfd_is_abs_section (o->output_section))
11642 return FALSE;
11643
11644 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11645 if (! tdata)
11646 return FALSE;
11647
11648 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11649 info->keep_memory);
11650 if (!cookie->rels)
11651 {
11652 free (tdata);
11653 return FALSE;
11654 }
11655
11656 cookie->rel = cookie->rels;
11657 cookie->relend = cookie->rels + o->reloc_count;
11658
11659 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11660 {
11661 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11662 {
11663 tdata[i] = 1;
11664 skip ++;
11665 }
11666 }
11667
11668 if (skip != 0)
11669 {
11670 mips_elf_section_data (o)->u.tdata = tdata;
11671 o->size -= skip * PDR_SIZE;
11672 ret = TRUE;
11673 }
11674 else
11675 free (tdata);
11676
11677 if (! info->keep_memory)
11678 free (cookie->rels);
11679
11680 return ret;
11681 }
11682
11683 bfd_boolean
11684 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11685 {
11686 if (strcmp (sec->name, ".pdr") == 0)
11687 return TRUE;
11688 return FALSE;
11689 }
11690
11691 bfd_boolean
11692 _bfd_mips_elf_write_section (bfd *output_bfd,
11693 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11694 asection *sec, bfd_byte *contents)
11695 {
11696 bfd_byte *to, *from, *end;
11697 int i;
11698
11699 if (strcmp (sec->name, ".pdr") != 0)
11700 return FALSE;
11701
11702 if (mips_elf_section_data (sec)->u.tdata == NULL)
11703 return FALSE;
11704
11705 to = contents;
11706 end = contents + sec->size;
11707 for (from = contents, i = 0;
11708 from < end;
11709 from += PDR_SIZE, i++)
11710 {
11711 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11712 continue;
11713 if (to != from)
11714 memcpy (to, from, PDR_SIZE);
11715 to += PDR_SIZE;
11716 }
11717 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11718 sec->output_offset, sec->size);
11719 return TRUE;
11720 }
11721 \f
11722 /* microMIPS code retains local labels for linker relaxation. Omit them
11723 from output by default for clarity. */
11724
11725 bfd_boolean
11726 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11727 {
11728 return _bfd_elf_is_local_label_name (abfd, sym->name);
11729 }
11730
11731 /* MIPS ELF uses a special find_nearest_line routine in order the
11732 handle the ECOFF debugging information. */
11733
11734 struct mips_elf_find_line
11735 {
11736 struct ecoff_debug_info d;
11737 struct ecoff_find_line i;
11738 };
11739
11740 bfd_boolean
11741 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11742 asymbol **symbols, bfd_vma offset,
11743 const char **filename_ptr,
11744 const char **functionname_ptr,
11745 unsigned int *line_ptr)
11746 {
11747 asection *msec;
11748
11749 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11750 filename_ptr, functionname_ptr,
11751 line_ptr))
11752 return TRUE;
11753
11754 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11755 section, symbols, offset,
11756 filename_ptr, functionname_ptr,
11757 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11758 &elf_tdata (abfd)->dwarf2_find_line_info))
11759 return TRUE;
11760
11761 msec = bfd_get_section_by_name (abfd, ".mdebug");
11762 if (msec != NULL)
11763 {
11764 flagword origflags;
11765 struct mips_elf_find_line *fi;
11766 const struct ecoff_debug_swap * const swap =
11767 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11768
11769 /* If we are called during a link, mips_elf_final_link may have
11770 cleared the SEC_HAS_CONTENTS field. We force it back on here
11771 if appropriate (which it normally will be). */
11772 origflags = msec->flags;
11773 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11774 msec->flags |= SEC_HAS_CONTENTS;
11775
11776 fi = elf_tdata (abfd)->find_line_info;
11777 if (fi == NULL)
11778 {
11779 bfd_size_type external_fdr_size;
11780 char *fraw_src;
11781 char *fraw_end;
11782 struct fdr *fdr_ptr;
11783 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11784
11785 fi = bfd_zalloc (abfd, amt);
11786 if (fi == NULL)
11787 {
11788 msec->flags = origflags;
11789 return FALSE;
11790 }
11791
11792 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11793 {
11794 msec->flags = origflags;
11795 return FALSE;
11796 }
11797
11798 /* Swap in the FDR information. */
11799 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11800 fi->d.fdr = bfd_alloc (abfd, amt);
11801 if (fi->d.fdr == NULL)
11802 {
11803 msec->flags = origflags;
11804 return FALSE;
11805 }
11806 external_fdr_size = swap->external_fdr_size;
11807 fdr_ptr = fi->d.fdr;
11808 fraw_src = (char *) fi->d.external_fdr;
11809 fraw_end = (fraw_src
11810 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11811 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11812 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11813
11814 elf_tdata (abfd)->find_line_info = fi;
11815
11816 /* Note that we don't bother to ever free this information.
11817 find_nearest_line is either called all the time, as in
11818 objdump -l, so the information should be saved, or it is
11819 rarely called, as in ld error messages, so the memory
11820 wasted is unimportant. Still, it would probably be a
11821 good idea for free_cached_info to throw it away. */
11822 }
11823
11824 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11825 &fi->i, filename_ptr, functionname_ptr,
11826 line_ptr))
11827 {
11828 msec->flags = origflags;
11829 return TRUE;
11830 }
11831
11832 msec->flags = origflags;
11833 }
11834
11835 /* Fall back on the generic ELF find_nearest_line routine. */
11836
11837 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11838 filename_ptr, functionname_ptr,
11839 line_ptr);
11840 }
11841
11842 bfd_boolean
11843 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11844 const char **filename_ptr,
11845 const char **functionname_ptr,
11846 unsigned int *line_ptr)
11847 {
11848 bfd_boolean found;
11849 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11850 functionname_ptr, line_ptr,
11851 & elf_tdata (abfd)->dwarf2_find_line_info);
11852 return found;
11853 }
11854
11855 \f
11856 /* When are writing out the .options or .MIPS.options section,
11857 remember the bytes we are writing out, so that we can install the
11858 GP value in the section_processing routine. */
11859
11860 bfd_boolean
11861 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11862 const void *location,
11863 file_ptr offset, bfd_size_type count)
11864 {
11865 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11866 {
11867 bfd_byte *c;
11868
11869 if (elf_section_data (section) == NULL)
11870 {
11871 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11872 section->used_by_bfd = bfd_zalloc (abfd, amt);
11873 if (elf_section_data (section) == NULL)
11874 return FALSE;
11875 }
11876 c = mips_elf_section_data (section)->u.tdata;
11877 if (c == NULL)
11878 {
11879 c = bfd_zalloc (abfd, section->size);
11880 if (c == NULL)
11881 return FALSE;
11882 mips_elf_section_data (section)->u.tdata = c;
11883 }
11884
11885 memcpy (c + offset, location, count);
11886 }
11887
11888 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11889 count);
11890 }
11891
11892 /* This is almost identical to bfd_generic_get_... except that some
11893 MIPS relocations need to be handled specially. Sigh. */
11894
11895 bfd_byte *
11896 _bfd_elf_mips_get_relocated_section_contents
11897 (bfd *abfd,
11898 struct bfd_link_info *link_info,
11899 struct bfd_link_order *link_order,
11900 bfd_byte *data,
11901 bfd_boolean relocatable,
11902 asymbol **symbols)
11903 {
11904 /* Get enough memory to hold the stuff */
11905 bfd *input_bfd = link_order->u.indirect.section->owner;
11906 asection *input_section = link_order->u.indirect.section;
11907 bfd_size_type sz;
11908
11909 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11910 arelent **reloc_vector = NULL;
11911 long reloc_count;
11912
11913 if (reloc_size < 0)
11914 goto error_return;
11915
11916 reloc_vector = bfd_malloc (reloc_size);
11917 if (reloc_vector == NULL && reloc_size != 0)
11918 goto error_return;
11919
11920 /* read in the section */
11921 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11922 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11923 goto error_return;
11924
11925 reloc_count = bfd_canonicalize_reloc (input_bfd,
11926 input_section,
11927 reloc_vector,
11928 symbols);
11929 if (reloc_count < 0)
11930 goto error_return;
11931
11932 if (reloc_count > 0)
11933 {
11934 arelent **parent;
11935 /* for mips */
11936 int gp_found;
11937 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11938
11939 {
11940 struct bfd_hash_entry *h;
11941 struct bfd_link_hash_entry *lh;
11942 /* Skip all this stuff if we aren't mixing formats. */
11943 if (abfd && input_bfd
11944 && abfd->xvec == input_bfd->xvec)
11945 lh = 0;
11946 else
11947 {
11948 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11949 lh = (struct bfd_link_hash_entry *) h;
11950 }
11951 lookup:
11952 if (lh)
11953 {
11954 switch (lh->type)
11955 {
11956 case bfd_link_hash_undefined:
11957 case bfd_link_hash_undefweak:
11958 case bfd_link_hash_common:
11959 gp_found = 0;
11960 break;
11961 case bfd_link_hash_defined:
11962 case bfd_link_hash_defweak:
11963 gp_found = 1;
11964 gp = lh->u.def.value;
11965 break;
11966 case bfd_link_hash_indirect:
11967 case bfd_link_hash_warning:
11968 lh = lh->u.i.link;
11969 /* @@FIXME ignoring warning for now */
11970 goto lookup;
11971 case bfd_link_hash_new:
11972 default:
11973 abort ();
11974 }
11975 }
11976 else
11977 gp_found = 0;
11978 }
11979 /* end mips */
11980 for (parent = reloc_vector; *parent != NULL; parent++)
11981 {
11982 char *error_message = NULL;
11983 bfd_reloc_status_type r;
11984
11985 /* Specific to MIPS: Deal with relocation types that require
11986 knowing the gp of the output bfd. */
11987 asymbol *sym = *(*parent)->sym_ptr_ptr;
11988
11989 /* If we've managed to find the gp and have a special
11990 function for the relocation then go ahead, else default
11991 to the generic handling. */
11992 if (gp_found
11993 && (*parent)->howto->special_function
11994 == _bfd_mips_elf32_gprel16_reloc)
11995 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11996 input_section, relocatable,
11997 data, gp);
11998 else
11999 r = bfd_perform_relocation (input_bfd, *parent, data,
12000 input_section,
12001 relocatable ? abfd : NULL,
12002 &error_message);
12003
12004 if (relocatable)
12005 {
12006 asection *os = input_section->output_section;
12007
12008 /* A partial link, so keep the relocs */
12009 os->orelocation[os->reloc_count] = *parent;
12010 os->reloc_count++;
12011 }
12012
12013 if (r != bfd_reloc_ok)
12014 {
12015 switch (r)
12016 {
12017 case bfd_reloc_undefined:
12018 if (!((*link_info->callbacks->undefined_symbol)
12019 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12020 input_bfd, input_section, (*parent)->address, TRUE)))
12021 goto error_return;
12022 break;
12023 case bfd_reloc_dangerous:
12024 BFD_ASSERT (error_message != NULL);
12025 if (!((*link_info->callbacks->reloc_dangerous)
12026 (link_info, error_message, input_bfd, input_section,
12027 (*parent)->address)))
12028 goto error_return;
12029 break;
12030 case bfd_reloc_overflow:
12031 if (!((*link_info->callbacks->reloc_overflow)
12032 (link_info, NULL,
12033 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12034 (*parent)->howto->name, (*parent)->addend,
12035 input_bfd, input_section, (*parent)->address)))
12036 goto error_return;
12037 break;
12038 case bfd_reloc_outofrange:
12039 default:
12040 abort ();
12041 break;
12042 }
12043
12044 }
12045 }
12046 }
12047 if (reloc_vector != NULL)
12048 free (reloc_vector);
12049 return data;
12050
12051 error_return:
12052 if (reloc_vector != NULL)
12053 free (reloc_vector);
12054 return NULL;
12055 }
12056 \f
12057 static bfd_boolean
12058 mips_elf_relax_delete_bytes (bfd *abfd,
12059 asection *sec, bfd_vma addr, int count)
12060 {
12061 Elf_Internal_Shdr *symtab_hdr;
12062 unsigned int sec_shndx;
12063 bfd_byte *contents;
12064 Elf_Internal_Rela *irel, *irelend;
12065 Elf_Internal_Sym *isym;
12066 Elf_Internal_Sym *isymend;
12067 struct elf_link_hash_entry **sym_hashes;
12068 struct elf_link_hash_entry **end_hashes;
12069 struct elf_link_hash_entry **start_hashes;
12070 unsigned int symcount;
12071
12072 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12073 contents = elf_section_data (sec)->this_hdr.contents;
12074
12075 irel = elf_section_data (sec)->relocs;
12076 irelend = irel + sec->reloc_count;
12077
12078 /* Actually delete the bytes. */
12079 memmove (contents + addr, contents + addr + count,
12080 (size_t) (sec->size - addr - count));
12081 sec->size -= count;
12082
12083 /* Adjust all the relocs. */
12084 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12085 {
12086 /* Get the new reloc address. */
12087 if (irel->r_offset > addr)
12088 irel->r_offset -= count;
12089 }
12090
12091 BFD_ASSERT (addr % 2 == 0);
12092 BFD_ASSERT (count % 2 == 0);
12093
12094 /* Adjust the local symbols defined in this section. */
12095 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12096 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12097 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12098 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12099 isym->st_value -= count;
12100
12101 /* Now adjust the global symbols defined in this section. */
12102 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12103 - symtab_hdr->sh_info);
12104 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12105 end_hashes = sym_hashes + symcount;
12106
12107 for (; sym_hashes < end_hashes; sym_hashes++)
12108 {
12109 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12110
12111 if ((sym_hash->root.type == bfd_link_hash_defined
12112 || sym_hash->root.type == bfd_link_hash_defweak)
12113 && sym_hash->root.u.def.section == sec)
12114 {
12115 bfd_vma value = sym_hash->root.u.def.value;
12116
12117 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12118 value &= MINUS_TWO;
12119 if (value > addr)
12120 sym_hash->root.u.def.value -= count;
12121 }
12122 }
12123
12124 return TRUE;
12125 }
12126
12127
12128 /* Opcodes needed for microMIPS relaxation as found in
12129 opcodes/micromips-opc.c. */
12130
12131 struct opcode_descriptor {
12132 unsigned long match;
12133 unsigned long mask;
12134 };
12135
12136 /* The $ra register aka $31. */
12137
12138 #define RA 31
12139
12140 /* 32-bit instruction format register fields. */
12141
12142 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12143 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12144
12145 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12146
12147 #define OP16_VALID_REG(r) \
12148 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12149
12150
12151 /* 32-bit and 16-bit branches. */
12152
12153 static const struct opcode_descriptor b_insns_32[] = {
12154 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12155 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12156 { 0, 0 } /* End marker for find_match(). */
12157 };
12158
12159 static const struct opcode_descriptor bc_insn_32 =
12160 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12161
12162 static const struct opcode_descriptor bz_insn_32 =
12163 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12164
12165 static const struct opcode_descriptor bzal_insn_32 =
12166 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12167
12168 static const struct opcode_descriptor beq_insn_32 =
12169 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12170
12171 static const struct opcode_descriptor b_insn_16 =
12172 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12173
12174 static const struct opcode_descriptor bz_insn_16 =
12175 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12176
12177
12178 /* 32-bit and 16-bit branch EQ and NE zero. */
12179
12180 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12181 eq and second the ne. This convention is used when replacing a
12182 32-bit BEQ/BNE with the 16-bit version. */
12183
12184 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12185
12186 static const struct opcode_descriptor bz_rs_insns_32[] = {
12187 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12188 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12189 { 0, 0 } /* End marker for find_match(). */
12190 };
12191
12192 static const struct opcode_descriptor bz_rt_insns_32[] = {
12193 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12194 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12195 { 0, 0 } /* End marker for find_match(). */
12196 };
12197
12198 static const struct opcode_descriptor bzc_insns_32[] = {
12199 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12200 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12201 { 0, 0 } /* End marker for find_match(). */
12202 };
12203
12204 static const struct opcode_descriptor bz_insns_16[] = {
12205 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12206 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12207 { 0, 0 } /* End marker for find_match(). */
12208 };
12209
12210 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12211
12212 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12213 #define BZ16_REG_FIELD(r) \
12214 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12215
12216
12217 /* 32-bit instructions with a delay slot. */
12218
12219 static const struct opcode_descriptor jal_insn_32_bd16 =
12220 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12221
12222 static const struct opcode_descriptor jal_insn_32_bd32 =
12223 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12224
12225 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12226 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12227
12228 static const struct opcode_descriptor j_insn_32 =
12229 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12230
12231 static const struct opcode_descriptor jalr_insn_32 =
12232 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12233
12234 /* This table can be compacted, because no opcode replacement is made. */
12235
12236 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12237 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12238
12239 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12240 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12241
12242 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12243 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12244 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12245 { 0, 0 } /* End marker for find_match(). */
12246 };
12247
12248 /* This table can be compacted, because no opcode replacement is made. */
12249
12250 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12251 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12252
12253 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12254 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12255 { 0, 0 } /* End marker for find_match(). */
12256 };
12257
12258
12259 /* 16-bit instructions with a delay slot. */
12260
12261 static const struct opcode_descriptor jalr_insn_16_bd16 =
12262 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12263
12264 static const struct opcode_descriptor jalr_insn_16_bd32 =
12265 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12266
12267 static const struct opcode_descriptor jr_insn_16 =
12268 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12269
12270 #define JR16_REG(opcode) ((opcode) & 0x1f)
12271
12272 /* This table can be compacted, because no opcode replacement is made. */
12273
12274 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12275 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12276
12277 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12278 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12279 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12280 { 0, 0 } /* End marker for find_match(). */
12281 };
12282
12283
12284 /* LUI instruction. */
12285
12286 static const struct opcode_descriptor lui_insn =
12287 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12288
12289
12290 /* ADDIU instruction. */
12291
12292 static const struct opcode_descriptor addiu_insn =
12293 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12294
12295 static const struct opcode_descriptor addiupc_insn =
12296 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12297
12298 #define ADDIUPC_REG_FIELD(r) \
12299 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12300
12301
12302 /* Relaxable instructions in a JAL delay slot: MOVE. */
12303
12304 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12305 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12306 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12307 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12308
12309 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12310 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12311
12312 static const struct opcode_descriptor move_insns_32[] = {
12313 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12314 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12315 { 0, 0 } /* End marker for find_match(). */
12316 };
12317
12318 static const struct opcode_descriptor move_insn_16 =
12319 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12320
12321
12322 /* NOP instructions. */
12323
12324 static const struct opcode_descriptor nop_insn_32 =
12325 { /* "nop", "", */ 0x00000000, 0xffffffff };
12326
12327 static const struct opcode_descriptor nop_insn_16 =
12328 { /* "nop", "", */ 0x0c00, 0xffff };
12329
12330
12331 /* Instruction match support. */
12332
12333 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12334
12335 static int
12336 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12337 {
12338 unsigned long indx;
12339
12340 for (indx = 0; insn[indx].mask != 0; indx++)
12341 if (MATCH (opcode, insn[indx]))
12342 return indx;
12343
12344 return -1;
12345 }
12346
12347
12348 /* Branch and delay slot decoding support. */
12349
12350 /* If PTR points to what *might* be a 16-bit branch or jump, then
12351 return the minimum length of its delay slot, otherwise return 0.
12352 Non-zero results are not definitive as we might be checking against
12353 the second half of another instruction. */
12354
12355 static int
12356 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12357 {
12358 unsigned long opcode;
12359 int bdsize;
12360
12361 opcode = bfd_get_16 (abfd, ptr);
12362 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12363 /* 16-bit branch/jump with a 32-bit delay slot. */
12364 bdsize = 4;
12365 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12366 || find_match (opcode, ds_insns_16_bd16) >= 0)
12367 /* 16-bit branch/jump with a 16-bit delay slot. */
12368 bdsize = 2;
12369 else
12370 /* No delay slot. */
12371 bdsize = 0;
12372
12373 return bdsize;
12374 }
12375
12376 /* If PTR points to what *might* be a 32-bit branch or jump, then
12377 return the minimum length of its delay slot, otherwise return 0.
12378 Non-zero results are not definitive as we might be checking against
12379 the second half of another instruction. */
12380
12381 static int
12382 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12383 {
12384 unsigned long opcode;
12385 int bdsize;
12386
12387 opcode = bfd_get_micromips_32 (abfd, ptr);
12388 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12389 /* 32-bit branch/jump with a 32-bit delay slot. */
12390 bdsize = 4;
12391 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12392 /* 32-bit branch/jump with a 16-bit delay slot. */
12393 bdsize = 2;
12394 else
12395 /* No delay slot. */
12396 bdsize = 0;
12397
12398 return bdsize;
12399 }
12400
12401 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12402 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12403
12404 static bfd_boolean
12405 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12406 {
12407 unsigned long opcode;
12408
12409 opcode = bfd_get_16 (abfd, ptr);
12410 if (MATCH (opcode, b_insn_16)
12411 /* B16 */
12412 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12413 /* JR16 */
12414 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12415 /* BEQZ16, BNEZ16 */
12416 || (MATCH (opcode, jalr_insn_16_bd32)
12417 /* JALR16 */
12418 && reg != JR16_REG (opcode) && reg != RA))
12419 return TRUE;
12420
12421 return FALSE;
12422 }
12423
12424 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12425 then return TRUE, otherwise FALSE. */
12426
12427 static bfd_boolean
12428 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12429 {
12430 unsigned long opcode;
12431
12432 opcode = bfd_get_micromips_32 (abfd, ptr);
12433 if (MATCH (opcode, j_insn_32)
12434 /* J */
12435 || MATCH (opcode, bc_insn_32)
12436 /* BC1F, BC1T, BC2F, BC2T */
12437 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12438 /* JAL, JALX */
12439 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12440 /* BGEZ, BGTZ, BLEZ, BLTZ */
12441 || (MATCH (opcode, bzal_insn_32)
12442 /* BGEZAL, BLTZAL */
12443 && reg != OP32_SREG (opcode) && reg != RA)
12444 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12445 /* JALR, JALR.HB, BEQ, BNE */
12446 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12447 return TRUE;
12448
12449 return FALSE;
12450 }
12451
12452 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12453 IRELEND) at OFFSET indicate that there must be a compact branch there,
12454 then return TRUE, otherwise FALSE. */
12455
12456 static bfd_boolean
12457 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12458 const Elf_Internal_Rela *internal_relocs,
12459 const Elf_Internal_Rela *irelend)
12460 {
12461 const Elf_Internal_Rela *irel;
12462 unsigned long opcode;
12463
12464 opcode = bfd_get_micromips_32 (abfd, ptr);
12465 if (find_match (opcode, bzc_insns_32) < 0)
12466 return FALSE;
12467
12468 for (irel = internal_relocs; irel < irelend; irel++)
12469 if (irel->r_offset == offset
12470 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12471 return TRUE;
12472
12473 return FALSE;
12474 }
12475
12476 /* Bitsize checking. */
12477 #define IS_BITSIZE(val, N) \
12478 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12479 - (1ULL << ((N) - 1))) == (val))
12480
12481 \f
12482 bfd_boolean
12483 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12484 struct bfd_link_info *link_info,
12485 bfd_boolean *again)
12486 {
12487 Elf_Internal_Shdr *symtab_hdr;
12488 Elf_Internal_Rela *internal_relocs;
12489 Elf_Internal_Rela *irel, *irelend;
12490 bfd_byte *contents = NULL;
12491 Elf_Internal_Sym *isymbuf = NULL;
12492
12493 /* Assume nothing changes. */
12494 *again = FALSE;
12495
12496 /* We don't have to do anything for a relocatable link, if
12497 this section does not have relocs, or if this is not a
12498 code section. */
12499
12500 if (link_info->relocatable
12501 || (sec->flags & SEC_RELOC) == 0
12502 || sec->reloc_count == 0
12503 || (sec->flags & SEC_CODE) == 0)
12504 return TRUE;
12505
12506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12507
12508 /* Get a copy of the native relocations. */
12509 internal_relocs = (_bfd_elf_link_read_relocs
12510 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12511 link_info->keep_memory));
12512 if (internal_relocs == NULL)
12513 goto error_return;
12514
12515 /* Walk through them looking for relaxing opportunities. */
12516 irelend = internal_relocs + sec->reloc_count;
12517 for (irel = internal_relocs; irel < irelend; irel++)
12518 {
12519 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12520 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12521 bfd_boolean target_is_micromips_code_p;
12522 unsigned long opcode;
12523 bfd_vma symval;
12524 bfd_vma pcrval;
12525 bfd_byte *ptr;
12526 int fndopc;
12527
12528 /* The number of bytes to delete for relaxation and from where
12529 to delete these bytes starting at irel->r_offset. */
12530 int delcnt = 0;
12531 int deloff = 0;
12532
12533 /* If this isn't something that can be relaxed, then ignore
12534 this reloc. */
12535 if (r_type != R_MICROMIPS_HI16
12536 && r_type != R_MICROMIPS_PC16_S1
12537 && r_type != R_MICROMIPS_26_S1)
12538 continue;
12539
12540 /* Get the section contents if we haven't done so already. */
12541 if (contents == NULL)
12542 {
12543 /* Get cached copy if it exists. */
12544 if (elf_section_data (sec)->this_hdr.contents != NULL)
12545 contents = elf_section_data (sec)->this_hdr.contents;
12546 /* Go get them off disk. */
12547 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12548 goto error_return;
12549 }
12550 ptr = contents + irel->r_offset;
12551
12552 /* Read this BFD's local symbols if we haven't done so already. */
12553 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12554 {
12555 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12556 if (isymbuf == NULL)
12557 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12558 symtab_hdr->sh_info, 0,
12559 NULL, NULL, NULL);
12560 if (isymbuf == NULL)
12561 goto error_return;
12562 }
12563
12564 /* Get the value of the symbol referred to by the reloc. */
12565 if (r_symndx < symtab_hdr->sh_info)
12566 {
12567 /* A local symbol. */
12568 Elf_Internal_Sym *isym;
12569 asection *sym_sec;
12570
12571 isym = isymbuf + r_symndx;
12572 if (isym->st_shndx == SHN_UNDEF)
12573 sym_sec = bfd_und_section_ptr;
12574 else if (isym->st_shndx == SHN_ABS)
12575 sym_sec = bfd_abs_section_ptr;
12576 else if (isym->st_shndx == SHN_COMMON)
12577 sym_sec = bfd_com_section_ptr;
12578 else
12579 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12580 symval = (isym->st_value
12581 + sym_sec->output_section->vma
12582 + sym_sec->output_offset);
12583 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12584 }
12585 else
12586 {
12587 unsigned long indx;
12588 struct elf_link_hash_entry *h;
12589
12590 /* An external symbol. */
12591 indx = r_symndx - symtab_hdr->sh_info;
12592 h = elf_sym_hashes (abfd)[indx];
12593 BFD_ASSERT (h != NULL);
12594
12595 if (h->root.type != bfd_link_hash_defined
12596 && h->root.type != bfd_link_hash_defweak)
12597 /* This appears to be a reference to an undefined
12598 symbol. Just ignore it -- it will be caught by the
12599 regular reloc processing. */
12600 continue;
12601
12602 symval = (h->root.u.def.value
12603 + h->root.u.def.section->output_section->vma
12604 + h->root.u.def.section->output_offset);
12605 target_is_micromips_code_p = (!h->needs_plt
12606 && ELF_ST_IS_MICROMIPS (h->other));
12607 }
12608
12609
12610 /* For simplicity of coding, we are going to modify the
12611 section contents, the section relocs, and the BFD symbol
12612 table. We must tell the rest of the code not to free up this
12613 information. It would be possible to instead create a table
12614 of changes which have to be made, as is done in coff-mips.c;
12615 that would be more work, but would require less memory when
12616 the linker is run. */
12617
12618 /* Only 32-bit instructions relaxed. */
12619 if (irel->r_offset + 4 > sec->size)
12620 continue;
12621
12622 opcode = bfd_get_micromips_32 (abfd, ptr);
12623
12624 /* This is the pc-relative distance from the instruction the
12625 relocation is applied to, to the symbol referred. */
12626 pcrval = (symval
12627 - (sec->output_section->vma + sec->output_offset)
12628 - irel->r_offset);
12629
12630 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12631 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12632 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12633
12634 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12635
12636 where pcrval has first to be adjusted to apply against the LO16
12637 location (we make the adjustment later on, when we have figured
12638 out the offset). */
12639 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12640 {
12641 bfd_boolean bzc = FALSE;
12642 unsigned long nextopc;
12643 unsigned long reg;
12644 bfd_vma offset;
12645
12646 /* Give up if the previous reloc was a HI16 against this symbol
12647 too. */
12648 if (irel > internal_relocs
12649 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12650 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12651 continue;
12652
12653 /* Or if the next reloc is not a LO16 against this symbol. */
12654 if (irel + 1 >= irelend
12655 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12656 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12657 continue;
12658
12659 /* Or if the second next reloc is a LO16 against this symbol too. */
12660 if (irel + 2 >= irelend
12661 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12662 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12663 continue;
12664
12665 /* See if the LUI instruction *might* be in a branch delay slot.
12666 We check whether what looks like a 16-bit branch or jump is
12667 actually an immediate argument to a compact branch, and let
12668 it through if so. */
12669 if (irel->r_offset >= 2
12670 && check_br16_dslot (abfd, ptr - 2)
12671 && !(irel->r_offset >= 4
12672 && (bzc = check_relocated_bzc (abfd,
12673 ptr - 4, irel->r_offset - 4,
12674 internal_relocs, irelend))))
12675 continue;
12676 if (irel->r_offset >= 4
12677 && !bzc
12678 && check_br32_dslot (abfd, ptr - 4))
12679 continue;
12680
12681 reg = OP32_SREG (opcode);
12682
12683 /* We only relax adjacent instructions or ones separated with
12684 a branch or jump that has a delay slot. The branch or jump
12685 must not fiddle with the register used to hold the address.
12686 Subtract 4 for the LUI itself. */
12687 offset = irel[1].r_offset - irel[0].r_offset;
12688 switch (offset - 4)
12689 {
12690 case 0:
12691 break;
12692 case 2:
12693 if (check_br16 (abfd, ptr + 4, reg))
12694 break;
12695 continue;
12696 case 4:
12697 if (check_br32 (abfd, ptr + 4, reg))
12698 break;
12699 continue;
12700 default:
12701 continue;
12702 }
12703
12704 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12705
12706 /* Give up unless the same register is used with both
12707 relocations. */
12708 if (OP32_SREG (nextopc) != reg)
12709 continue;
12710
12711 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12712 and rounding up to take masking of the two LSBs into account. */
12713 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12714
12715 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12716 if (IS_BITSIZE (symval, 16))
12717 {
12718 /* Fix the relocation's type. */
12719 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12720
12721 /* Instructions using R_MICROMIPS_LO16 have the base or
12722 source register in bits 20:16. This register becomes $0
12723 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12724 nextopc &= ~0x001f0000;
12725 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12726 contents + irel[1].r_offset);
12727 }
12728
12729 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12730 We add 4 to take LUI deletion into account while checking
12731 the PC-relative distance. */
12732 else if (symval % 4 == 0
12733 && IS_BITSIZE (pcrval + 4, 25)
12734 && MATCH (nextopc, addiu_insn)
12735 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12736 && OP16_VALID_REG (OP32_TREG (nextopc)))
12737 {
12738 /* Fix the relocation's type. */
12739 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12740
12741 /* Replace ADDIU with the ADDIUPC version. */
12742 nextopc = (addiupc_insn.match
12743 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12744
12745 bfd_put_micromips_32 (abfd, nextopc,
12746 contents + irel[1].r_offset);
12747 }
12748
12749 /* Can't do anything, give up, sigh... */
12750 else
12751 continue;
12752
12753 /* Fix the relocation's type. */
12754 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12755
12756 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12757 delcnt = 4;
12758 deloff = 0;
12759 }
12760
12761 /* Compact branch relaxation -- due to the multitude of macros
12762 employed by the compiler/assembler, compact branches are not
12763 always generated. Obviously, this can/will be fixed elsewhere,
12764 but there is no drawback in double checking it here. */
12765 else if (r_type == R_MICROMIPS_PC16_S1
12766 && irel->r_offset + 5 < sec->size
12767 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12768 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12769 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12770 {
12771 unsigned long reg;
12772
12773 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12774
12775 /* Replace BEQZ/BNEZ with the compact version. */
12776 opcode = (bzc_insns_32[fndopc].match
12777 | BZC32_REG_FIELD (reg)
12778 | (opcode & 0xffff)); /* Addend value. */
12779
12780 bfd_put_micromips_32 (abfd, opcode, ptr);
12781
12782 /* Delete the 16-bit delay slot NOP: two bytes from
12783 irel->offset + 4. */
12784 delcnt = 2;
12785 deloff = 4;
12786 }
12787
12788 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12789 to check the distance from the next instruction, so subtract 2. */
12790 else if (r_type == R_MICROMIPS_PC16_S1
12791 && IS_BITSIZE (pcrval - 2, 11)
12792 && find_match (opcode, b_insns_32) >= 0)
12793 {
12794 /* Fix the relocation's type. */
12795 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12796
12797 /* Replace the 32-bit opcode with a 16-bit opcode. */
12798 bfd_put_16 (abfd,
12799 (b_insn_16.match
12800 | (opcode & 0x3ff)), /* Addend value. */
12801 ptr);
12802
12803 /* Delete 2 bytes from irel->r_offset + 2. */
12804 delcnt = 2;
12805 deloff = 2;
12806 }
12807
12808 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12809 to check the distance from the next instruction, so subtract 2. */
12810 else if (r_type == R_MICROMIPS_PC16_S1
12811 && IS_BITSIZE (pcrval - 2, 8)
12812 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12813 && OP16_VALID_REG (OP32_SREG (opcode)))
12814 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12815 && OP16_VALID_REG (OP32_TREG (opcode)))))
12816 {
12817 unsigned long reg;
12818
12819 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12820
12821 /* Fix the relocation's type. */
12822 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12823
12824 /* Replace the 32-bit opcode with a 16-bit opcode. */
12825 bfd_put_16 (abfd,
12826 (bz_insns_16[fndopc].match
12827 | BZ16_REG_FIELD (reg)
12828 | (opcode & 0x7f)), /* Addend value. */
12829 ptr);
12830
12831 /* Delete 2 bytes from irel->r_offset + 2. */
12832 delcnt = 2;
12833 deloff = 2;
12834 }
12835
12836 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12837 else if (r_type == R_MICROMIPS_26_S1
12838 && target_is_micromips_code_p
12839 && irel->r_offset + 7 < sec->size
12840 && MATCH (opcode, jal_insn_32_bd32))
12841 {
12842 unsigned long n32opc;
12843 bfd_boolean relaxed = FALSE;
12844
12845 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12846
12847 if (MATCH (n32opc, nop_insn_32))
12848 {
12849 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12850 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12851
12852 relaxed = TRUE;
12853 }
12854 else if (find_match (n32opc, move_insns_32) >= 0)
12855 {
12856 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12857 bfd_put_16 (abfd,
12858 (move_insn_16.match
12859 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12860 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12861 ptr + 4);
12862
12863 relaxed = TRUE;
12864 }
12865 /* Other 32-bit instructions relaxable to 16-bit
12866 instructions will be handled here later. */
12867
12868 if (relaxed)
12869 {
12870 /* JAL with 32-bit delay slot that is changed to a JALS
12871 with 16-bit delay slot. */
12872 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12873
12874 /* Delete 2 bytes from irel->r_offset + 6. */
12875 delcnt = 2;
12876 deloff = 6;
12877 }
12878 }
12879
12880 if (delcnt != 0)
12881 {
12882 /* Note that we've changed the relocs, section contents, etc. */
12883 elf_section_data (sec)->relocs = internal_relocs;
12884 elf_section_data (sec)->this_hdr.contents = contents;
12885 symtab_hdr->contents = (unsigned char *) isymbuf;
12886
12887 /* Delete bytes depending on the delcnt and deloff. */
12888 if (!mips_elf_relax_delete_bytes (abfd, sec,
12889 irel->r_offset + deloff, delcnt))
12890 goto error_return;
12891
12892 /* That will change things, so we should relax again.
12893 Note that this is not required, and it may be slow. */
12894 *again = TRUE;
12895 }
12896 }
12897
12898 if (isymbuf != NULL
12899 && symtab_hdr->contents != (unsigned char *) isymbuf)
12900 {
12901 if (! link_info->keep_memory)
12902 free (isymbuf);
12903 else
12904 {
12905 /* Cache the symbols for elf_link_input_bfd. */
12906 symtab_hdr->contents = (unsigned char *) isymbuf;
12907 }
12908 }
12909
12910 if (contents != NULL
12911 && elf_section_data (sec)->this_hdr.contents != contents)
12912 {
12913 if (! link_info->keep_memory)
12914 free (contents);
12915 else
12916 {
12917 /* Cache the section contents for elf_link_input_bfd. */
12918 elf_section_data (sec)->this_hdr.contents = contents;
12919 }
12920 }
12921
12922 if (internal_relocs != NULL
12923 && elf_section_data (sec)->relocs != internal_relocs)
12924 free (internal_relocs);
12925
12926 return TRUE;
12927
12928 error_return:
12929 if (isymbuf != NULL
12930 && symtab_hdr->contents != (unsigned char *) isymbuf)
12931 free (isymbuf);
12932 if (contents != NULL
12933 && elf_section_data (sec)->this_hdr.contents != contents)
12934 free (contents);
12935 if (internal_relocs != NULL
12936 && elf_section_data (sec)->relocs != internal_relocs)
12937 free (internal_relocs);
12938
12939 return FALSE;
12940 }
12941 \f
12942 /* Create a MIPS ELF linker hash table. */
12943
12944 struct bfd_link_hash_table *
12945 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12946 {
12947 struct mips_elf_link_hash_table *ret;
12948 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12949
12950 ret = bfd_zmalloc (amt);
12951 if (ret == NULL)
12952 return NULL;
12953
12954 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12955 mips_elf_link_hash_newfunc,
12956 sizeof (struct mips_elf_link_hash_entry),
12957 MIPS_ELF_DATA))
12958 {
12959 free (ret);
12960 return NULL;
12961 }
12962
12963 return &ret->root.root;
12964 }
12965
12966 /* Likewise, but indicate that the target is VxWorks. */
12967
12968 struct bfd_link_hash_table *
12969 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12970 {
12971 struct bfd_link_hash_table *ret;
12972
12973 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12974 if (ret)
12975 {
12976 struct mips_elf_link_hash_table *htab;
12977
12978 htab = (struct mips_elf_link_hash_table *) ret;
12979 htab->use_plts_and_copy_relocs = TRUE;
12980 htab->is_vxworks = TRUE;
12981 }
12982 return ret;
12983 }
12984
12985 /* A function that the linker calls if we are allowed to use PLTs
12986 and copy relocs. */
12987
12988 void
12989 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12990 {
12991 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12992 }
12993 \f
12994 /* We need to use a special link routine to handle the .reginfo and
12995 the .mdebug sections. We need to merge all instances of these
12996 sections together, not write them all out sequentially. */
12997
12998 bfd_boolean
12999 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13000 {
13001 asection *o;
13002 struct bfd_link_order *p;
13003 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13004 asection *rtproc_sec;
13005 Elf32_RegInfo reginfo;
13006 struct ecoff_debug_info debug;
13007 struct mips_htab_traverse_info hti;
13008 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13009 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13010 HDRR *symhdr = &debug.symbolic_header;
13011 void *mdebug_handle = NULL;
13012 asection *s;
13013 EXTR esym;
13014 unsigned int i;
13015 bfd_size_type amt;
13016 struct mips_elf_link_hash_table *htab;
13017
13018 static const char * const secname[] =
13019 {
13020 ".text", ".init", ".fini", ".data",
13021 ".rodata", ".sdata", ".sbss", ".bss"
13022 };
13023 static const int sc[] =
13024 {
13025 scText, scInit, scFini, scData,
13026 scRData, scSData, scSBss, scBss
13027 };
13028
13029 /* Sort the dynamic symbols so that those with GOT entries come after
13030 those without. */
13031 htab = mips_elf_hash_table (info);
13032 BFD_ASSERT (htab != NULL);
13033
13034 if (!mips_elf_sort_hash_table (abfd, info))
13035 return FALSE;
13036
13037 /* Create any scheduled LA25 stubs. */
13038 hti.info = info;
13039 hti.output_bfd = abfd;
13040 hti.error = FALSE;
13041 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13042 if (hti.error)
13043 return FALSE;
13044
13045 /* Get a value for the GP register. */
13046 if (elf_gp (abfd) == 0)
13047 {
13048 struct bfd_link_hash_entry *h;
13049
13050 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13051 if (h != NULL && h->type == bfd_link_hash_defined)
13052 elf_gp (abfd) = (h->u.def.value
13053 + h->u.def.section->output_section->vma
13054 + h->u.def.section->output_offset);
13055 else if (htab->is_vxworks
13056 && (h = bfd_link_hash_lookup (info->hash,
13057 "_GLOBAL_OFFSET_TABLE_",
13058 FALSE, FALSE, TRUE))
13059 && h->type == bfd_link_hash_defined)
13060 elf_gp (abfd) = (h->u.def.section->output_section->vma
13061 + h->u.def.section->output_offset
13062 + h->u.def.value);
13063 else if (info->relocatable)
13064 {
13065 bfd_vma lo = MINUS_ONE;
13066
13067 /* Find the GP-relative section with the lowest offset. */
13068 for (o = abfd->sections; o != NULL; o = o->next)
13069 if (o->vma < lo
13070 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13071 lo = o->vma;
13072
13073 /* And calculate GP relative to that. */
13074 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13075 }
13076 else
13077 {
13078 /* If the relocate_section function needs to do a reloc
13079 involving the GP value, it should make a reloc_dangerous
13080 callback to warn that GP is not defined. */
13081 }
13082 }
13083
13084 /* Go through the sections and collect the .reginfo and .mdebug
13085 information. */
13086 reginfo_sec = NULL;
13087 mdebug_sec = NULL;
13088 gptab_data_sec = NULL;
13089 gptab_bss_sec = NULL;
13090 for (o = abfd->sections; o != NULL; o = o->next)
13091 {
13092 if (strcmp (o->name, ".reginfo") == 0)
13093 {
13094 memset (&reginfo, 0, sizeof reginfo);
13095
13096 /* We have found the .reginfo section in the output file.
13097 Look through all the link_orders comprising it and merge
13098 the information together. */
13099 for (p = o->map_head.link_order; p != NULL; p = p->next)
13100 {
13101 asection *input_section;
13102 bfd *input_bfd;
13103 Elf32_External_RegInfo ext;
13104 Elf32_RegInfo sub;
13105
13106 if (p->type != bfd_indirect_link_order)
13107 {
13108 if (p->type == bfd_data_link_order)
13109 continue;
13110 abort ();
13111 }
13112
13113 input_section = p->u.indirect.section;
13114 input_bfd = input_section->owner;
13115
13116 if (! bfd_get_section_contents (input_bfd, input_section,
13117 &ext, 0, sizeof ext))
13118 return FALSE;
13119
13120 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13121
13122 reginfo.ri_gprmask |= sub.ri_gprmask;
13123 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13124 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13125 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13126 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13127
13128 /* ri_gp_value is set by the function
13129 mips_elf32_section_processing when the section is
13130 finally written out. */
13131
13132 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13133 elf_link_input_bfd ignores this section. */
13134 input_section->flags &= ~SEC_HAS_CONTENTS;
13135 }
13136
13137 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13138 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13139
13140 /* Skip this section later on (I don't think this currently
13141 matters, but someday it might). */
13142 o->map_head.link_order = NULL;
13143
13144 reginfo_sec = o;
13145 }
13146
13147 if (strcmp (o->name, ".mdebug") == 0)
13148 {
13149 struct extsym_info einfo;
13150 bfd_vma last;
13151
13152 /* We have found the .mdebug section in the output file.
13153 Look through all the link_orders comprising it and merge
13154 the information together. */
13155 symhdr->magic = swap->sym_magic;
13156 /* FIXME: What should the version stamp be? */
13157 symhdr->vstamp = 0;
13158 symhdr->ilineMax = 0;
13159 symhdr->cbLine = 0;
13160 symhdr->idnMax = 0;
13161 symhdr->ipdMax = 0;
13162 symhdr->isymMax = 0;
13163 symhdr->ioptMax = 0;
13164 symhdr->iauxMax = 0;
13165 symhdr->issMax = 0;
13166 symhdr->issExtMax = 0;
13167 symhdr->ifdMax = 0;
13168 symhdr->crfd = 0;
13169 symhdr->iextMax = 0;
13170
13171 /* We accumulate the debugging information itself in the
13172 debug_info structure. */
13173 debug.line = NULL;
13174 debug.external_dnr = NULL;
13175 debug.external_pdr = NULL;
13176 debug.external_sym = NULL;
13177 debug.external_opt = NULL;
13178 debug.external_aux = NULL;
13179 debug.ss = NULL;
13180 debug.ssext = debug.ssext_end = NULL;
13181 debug.external_fdr = NULL;
13182 debug.external_rfd = NULL;
13183 debug.external_ext = debug.external_ext_end = NULL;
13184
13185 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13186 if (mdebug_handle == NULL)
13187 return FALSE;
13188
13189 esym.jmptbl = 0;
13190 esym.cobol_main = 0;
13191 esym.weakext = 0;
13192 esym.reserved = 0;
13193 esym.ifd = ifdNil;
13194 esym.asym.iss = issNil;
13195 esym.asym.st = stLocal;
13196 esym.asym.reserved = 0;
13197 esym.asym.index = indexNil;
13198 last = 0;
13199 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13200 {
13201 esym.asym.sc = sc[i];
13202 s = bfd_get_section_by_name (abfd, secname[i]);
13203 if (s != NULL)
13204 {
13205 esym.asym.value = s->vma;
13206 last = s->vma + s->size;
13207 }
13208 else
13209 esym.asym.value = last;
13210 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13211 secname[i], &esym))
13212 return FALSE;
13213 }
13214
13215 for (p = o->map_head.link_order; p != NULL; p = p->next)
13216 {
13217 asection *input_section;
13218 bfd *input_bfd;
13219 const struct ecoff_debug_swap *input_swap;
13220 struct ecoff_debug_info input_debug;
13221 char *eraw_src;
13222 char *eraw_end;
13223
13224 if (p->type != bfd_indirect_link_order)
13225 {
13226 if (p->type == bfd_data_link_order)
13227 continue;
13228 abort ();
13229 }
13230
13231 input_section = p->u.indirect.section;
13232 input_bfd = input_section->owner;
13233
13234 if (!is_mips_elf (input_bfd))
13235 {
13236 /* I don't know what a non MIPS ELF bfd would be
13237 doing with a .mdebug section, but I don't really
13238 want to deal with it. */
13239 continue;
13240 }
13241
13242 input_swap = (get_elf_backend_data (input_bfd)
13243 ->elf_backend_ecoff_debug_swap);
13244
13245 BFD_ASSERT (p->size == input_section->size);
13246
13247 /* The ECOFF linking code expects that we have already
13248 read in the debugging information and set up an
13249 ecoff_debug_info structure, so we do that now. */
13250 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13251 &input_debug))
13252 return FALSE;
13253
13254 if (! (bfd_ecoff_debug_accumulate
13255 (mdebug_handle, abfd, &debug, swap, input_bfd,
13256 &input_debug, input_swap, info)))
13257 return FALSE;
13258
13259 /* Loop through the external symbols. For each one with
13260 interesting information, try to find the symbol in
13261 the linker global hash table and save the information
13262 for the output external symbols. */
13263 eraw_src = input_debug.external_ext;
13264 eraw_end = (eraw_src
13265 + (input_debug.symbolic_header.iextMax
13266 * input_swap->external_ext_size));
13267 for (;
13268 eraw_src < eraw_end;
13269 eraw_src += input_swap->external_ext_size)
13270 {
13271 EXTR ext;
13272 const char *name;
13273 struct mips_elf_link_hash_entry *h;
13274
13275 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13276 if (ext.asym.sc == scNil
13277 || ext.asym.sc == scUndefined
13278 || ext.asym.sc == scSUndefined)
13279 continue;
13280
13281 name = input_debug.ssext + ext.asym.iss;
13282 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13283 name, FALSE, FALSE, TRUE);
13284 if (h == NULL || h->esym.ifd != -2)
13285 continue;
13286
13287 if (ext.ifd != -1)
13288 {
13289 BFD_ASSERT (ext.ifd
13290 < input_debug.symbolic_header.ifdMax);
13291 ext.ifd = input_debug.ifdmap[ext.ifd];
13292 }
13293
13294 h->esym = ext;
13295 }
13296
13297 /* Free up the information we just read. */
13298 free (input_debug.line);
13299 free (input_debug.external_dnr);
13300 free (input_debug.external_pdr);
13301 free (input_debug.external_sym);
13302 free (input_debug.external_opt);
13303 free (input_debug.external_aux);
13304 free (input_debug.ss);
13305 free (input_debug.ssext);
13306 free (input_debug.external_fdr);
13307 free (input_debug.external_rfd);
13308 free (input_debug.external_ext);
13309
13310 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13311 elf_link_input_bfd ignores this section. */
13312 input_section->flags &= ~SEC_HAS_CONTENTS;
13313 }
13314
13315 if (SGI_COMPAT (abfd) && info->shared)
13316 {
13317 /* Create .rtproc section. */
13318 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13319 if (rtproc_sec == NULL)
13320 {
13321 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13322 | SEC_LINKER_CREATED | SEC_READONLY);
13323
13324 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13325 ".rtproc",
13326 flags);
13327 if (rtproc_sec == NULL
13328 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13329 return FALSE;
13330 }
13331
13332 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13333 info, rtproc_sec,
13334 &debug))
13335 return FALSE;
13336 }
13337
13338 /* Build the external symbol information. */
13339 einfo.abfd = abfd;
13340 einfo.info = info;
13341 einfo.debug = &debug;
13342 einfo.swap = swap;
13343 einfo.failed = FALSE;
13344 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13345 mips_elf_output_extsym, &einfo);
13346 if (einfo.failed)
13347 return FALSE;
13348
13349 /* Set the size of the .mdebug section. */
13350 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13351
13352 /* Skip this section later on (I don't think this currently
13353 matters, but someday it might). */
13354 o->map_head.link_order = NULL;
13355
13356 mdebug_sec = o;
13357 }
13358
13359 if (CONST_STRNEQ (o->name, ".gptab."))
13360 {
13361 const char *subname;
13362 unsigned int c;
13363 Elf32_gptab *tab;
13364 Elf32_External_gptab *ext_tab;
13365 unsigned int j;
13366
13367 /* The .gptab.sdata and .gptab.sbss sections hold
13368 information describing how the small data area would
13369 change depending upon the -G switch. These sections
13370 not used in executables files. */
13371 if (! info->relocatable)
13372 {
13373 for (p = o->map_head.link_order; p != NULL; p = p->next)
13374 {
13375 asection *input_section;
13376
13377 if (p->type != bfd_indirect_link_order)
13378 {
13379 if (p->type == bfd_data_link_order)
13380 continue;
13381 abort ();
13382 }
13383
13384 input_section = p->u.indirect.section;
13385
13386 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13387 elf_link_input_bfd ignores this section. */
13388 input_section->flags &= ~SEC_HAS_CONTENTS;
13389 }
13390
13391 /* Skip this section later on (I don't think this
13392 currently matters, but someday it might). */
13393 o->map_head.link_order = NULL;
13394
13395 /* Really remove the section. */
13396 bfd_section_list_remove (abfd, o);
13397 --abfd->section_count;
13398
13399 continue;
13400 }
13401
13402 /* There is one gptab for initialized data, and one for
13403 uninitialized data. */
13404 if (strcmp (o->name, ".gptab.sdata") == 0)
13405 gptab_data_sec = o;
13406 else if (strcmp (o->name, ".gptab.sbss") == 0)
13407 gptab_bss_sec = o;
13408 else
13409 {
13410 (*_bfd_error_handler)
13411 (_("%s: illegal section name `%s'"),
13412 bfd_get_filename (abfd), o->name);
13413 bfd_set_error (bfd_error_nonrepresentable_section);
13414 return FALSE;
13415 }
13416
13417 /* The linker script always combines .gptab.data and
13418 .gptab.sdata into .gptab.sdata, and likewise for
13419 .gptab.bss and .gptab.sbss. It is possible that there is
13420 no .sdata or .sbss section in the output file, in which
13421 case we must change the name of the output section. */
13422 subname = o->name + sizeof ".gptab" - 1;
13423 if (bfd_get_section_by_name (abfd, subname) == NULL)
13424 {
13425 if (o == gptab_data_sec)
13426 o->name = ".gptab.data";
13427 else
13428 o->name = ".gptab.bss";
13429 subname = o->name + sizeof ".gptab" - 1;
13430 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13431 }
13432
13433 /* Set up the first entry. */
13434 c = 1;
13435 amt = c * sizeof (Elf32_gptab);
13436 tab = bfd_malloc (amt);
13437 if (tab == NULL)
13438 return FALSE;
13439 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13440 tab[0].gt_header.gt_unused = 0;
13441
13442 /* Combine the input sections. */
13443 for (p = o->map_head.link_order; p != NULL; p = p->next)
13444 {
13445 asection *input_section;
13446 bfd *input_bfd;
13447 bfd_size_type size;
13448 unsigned long last;
13449 bfd_size_type gpentry;
13450
13451 if (p->type != bfd_indirect_link_order)
13452 {
13453 if (p->type == bfd_data_link_order)
13454 continue;
13455 abort ();
13456 }
13457
13458 input_section = p->u.indirect.section;
13459 input_bfd = input_section->owner;
13460
13461 /* Combine the gptab entries for this input section one
13462 by one. We know that the input gptab entries are
13463 sorted by ascending -G value. */
13464 size = input_section->size;
13465 last = 0;
13466 for (gpentry = sizeof (Elf32_External_gptab);
13467 gpentry < size;
13468 gpentry += sizeof (Elf32_External_gptab))
13469 {
13470 Elf32_External_gptab ext_gptab;
13471 Elf32_gptab int_gptab;
13472 unsigned long val;
13473 unsigned long add;
13474 bfd_boolean exact;
13475 unsigned int look;
13476
13477 if (! (bfd_get_section_contents
13478 (input_bfd, input_section, &ext_gptab, gpentry,
13479 sizeof (Elf32_External_gptab))))
13480 {
13481 free (tab);
13482 return FALSE;
13483 }
13484
13485 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13486 &int_gptab);
13487 val = int_gptab.gt_entry.gt_g_value;
13488 add = int_gptab.gt_entry.gt_bytes - last;
13489
13490 exact = FALSE;
13491 for (look = 1; look < c; look++)
13492 {
13493 if (tab[look].gt_entry.gt_g_value >= val)
13494 tab[look].gt_entry.gt_bytes += add;
13495
13496 if (tab[look].gt_entry.gt_g_value == val)
13497 exact = TRUE;
13498 }
13499
13500 if (! exact)
13501 {
13502 Elf32_gptab *new_tab;
13503 unsigned int max;
13504
13505 /* We need a new table entry. */
13506 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13507 new_tab = bfd_realloc (tab, amt);
13508 if (new_tab == NULL)
13509 {
13510 free (tab);
13511 return FALSE;
13512 }
13513 tab = new_tab;
13514 tab[c].gt_entry.gt_g_value = val;
13515 tab[c].gt_entry.gt_bytes = add;
13516
13517 /* Merge in the size for the next smallest -G
13518 value, since that will be implied by this new
13519 value. */
13520 max = 0;
13521 for (look = 1; look < c; look++)
13522 {
13523 if (tab[look].gt_entry.gt_g_value < val
13524 && (max == 0
13525 || (tab[look].gt_entry.gt_g_value
13526 > tab[max].gt_entry.gt_g_value)))
13527 max = look;
13528 }
13529 if (max != 0)
13530 tab[c].gt_entry.gt_bytes +=
13531 tab[max].gt_entry.gt_bytes;
13532
13533 ++c;
13534 }
13535
13536 last = int_gptab.gt_entry.gt_bytes;
13537 }
13538
13539 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13540 elf_link_input_bfd ignores this section. */
13541 input_section->flags &= ~SEC_HAS_CONTENTS;
13542 }
13543
13544 /* The table must be sorted by -G value. */
13545 if (c > 2)
13546 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13547
13548 /* Swap out the table. */
13549 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13550 ext_tab = bfd_alloc (abfd, amt);
13551 if (ext_tab == NULL)
13552 {
13553 free (tab);
13554 return FALSE;
13555 }
13556
13557 for (j = 0; j < c; j++)
13558 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13559 free (tab);
13560
13561 o->size = c * sizeof (Elf32_External_gptab);
13562 o->contents = (bfd_byte *) ext_tab;
13563
13564 /* Skip this section later on (I don't think this currently
13565 matters, but someday it might). */
13566 o->map_head.link_order = NULL;
13567 }
13568 }
13569
13570 /* Invoke the regular ELF backend linker to do all the work. */
13571 if (!bfd_elf_final_link (abfd, info))
13572 return FALSE;
13573
13574 /* Now write out the computed sections. */
13575
13576 if (reginfo_sec != NULL)
13577 {
13578 Elf32_External_RegInfo ext;
13579
13580 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13581 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13582 return FALSE;
13583 }
13584
13585 if (mdebug_sec != NULL)
13586 {
13587 BFD_ASSERT (abfd->output_has_begun);
13588 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13589 swap, info,
13590 mdebug_sec->filepos))
13591 return FALSE;
13592
13593 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13594 }
13595
13596 if (gptab_data_sec != NULL)
13597 {
13598 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13599 gptab_data_sec->contents,
13600 0, gptab_data_sec->size))
13601 return FALSE;
13602 }
13603
13604 if (gptab_bss_sec != NULL)
13605 {
13606 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13607 gptab_bss_sec->contents,
13608 0, gptab_bss_sec->size))
13609 return FALSE;
13610 }
13611
13612 if (SGI_COMPAT (abfd))
13613 {
13614 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13615 if (rtproc_sec != NULL)
13616 {
13617 if (! bfd_set_section_contents (abfd, rtproc_sec,
13618 rtproc_sec->contents,
13619 0, rtproc_sec->size))
13620 return FALSE;
13621 }
13622 }
13623
13624 return TRUE;
13625 }
13626 \f
13627 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13628
13629 struct mips_mach_extension {
13630 unsigned long extension, base;
13631 };
13632
13633
13634 /* An array describing how BFD machines relate to one another. The entries
13635 are ordered topologically with MIPS I extensions listed last. */
13636
13637 static const struct mips_mach_extension mips_mach_extensions[] = {
13638 /* MIPS64r2 extensions. */
13639 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13640 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13641 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13642
13643 /* MIPS64 extensions. */
13644 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13645 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13646 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13647 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13648
13649 /* MIPS V extensions. */
13650 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13651
13652 /* R10000 extensions. */
13653 { bfd_mach_mips12000, bfd_mach_mips10000 },
13654 { bfd_mach_mips14000, bfd_mach_mips10000 },
13655 { bfd_mach_mips16000, bfd_mach_mips10000 },
13656
13657 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13658 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13659 better to allow vr5400 and vr5500 code to be merged anyway, since
13660 many libraries will just use the core ISA. Perhaps we could add
13661 some sort of ASE flag if this ever proves a problem. */
13662 { bfd_mach_mips5500, bfd_mach_mips5400 },
13663 { bfd_mach_mips5400, bfd_mach_mips5000 },
13664
13665 /* MIPS IV extensions. */
13666 { bfd_mach_mips5, bfd_mach_mips8000 },
13667 { bfd_mach_mips10000, bfd_mach_mips8000 },
13668 { bfd_mach_mips5000, bfd_mach_mips8000 },
13669 { bfd_mach_mips7000, bfd_mach_mips8000 },
13670 { bfd_mach_mips9000, bfd_mach_mips8000 },
13671
13672 /* VR4100 extensions. */
13673 { bfd_mach_mips4120, bfd_mach_mips4100 },
13674 { bfd_mach_mips4111, bfd_mach_mips4100 },
13675
13676 /* MIPS III extensions. */
13677 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13678 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13679 { bfd_mach_mips8000, bfd_mach_mips4000 },
13680 { bfd_mach_mips4650, bfd_mach_mips4000 },
13681 { bfd_mach_mips4600, bfd_mach_mips4000 },
13682 { bfd_mach_mips4400, bfd_mach_mips4000 },
13683 { bfd_mach_mips4300, bfd_mach_mips4000 },
13684 { bfd_mach_mips4100, bfd_mach_mips4000 },
13685 { bfd_mach_mips4010, bfd_mach_mips4000 },
13686 { bfd_mach_mips5900, bfd_mach_mips4000 },
13687
13688 /* MIPS32 extensions. */
13689 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13690
13691 /* MIPS II extensions. */
13692 { bfd_mach_mips4000, bfd_mach_mips6000 },
13693 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13694
13695 /* MIPS I extensions. */
13696 { bfd_mach_mips6000, bfd_mach_mips3000 },
13697 { bfd_mach_mips3900, bfd_mach_mips3000 }
13698 };
13699
13700
13701 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13702
13703 static bfd_boolean
13704 mips_mach_extends_p (unsigned long base, unsigned long extension)
13705 {
13706 size_t i;
13707
13708 if (extension == base)
13709 return TRUE;
13710
13711 if (base == bfd_mach_mipsisa32
13712 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13713 return TRUE;
13714
13715 if (base == bfd_mach_mipsisa32r2
13716 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13717 return TRUE;
13718
13719 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13720 if (extension == mips_mach_extensions[i].extension)
13721 {
13722 extension = mips_mach_extensions[i].base;
13723 if (extension == base)
13724 return TRUE;
13725 }
13726
13727 return FALSE;
13728 }
13729
13730
13731 /* Return true if the given ELF header flags describe a 32-bit binary. */
13732
13733 static bfd_boolean
13734 mips_32bit_flags_p (flagword flags)
13735 {
13736 return ((flags & EF_MIPS_32BITMODE) != 0
13737 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13738 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13739 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13740 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13741 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13742 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13743 }
13744
13745
13746 /* Merge object attributes from IBFD into OBFD. Raise an error if
13747 there are conflicting attributes. */
13748 static bfd_boolean
13749 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13750 {
13751 obj_attribute *in_attr;
13752 obj_attribute *out_attr;
13753 bfd *abi_fp_bfd;
13754
13755 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13756 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13757 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13758 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13759
13760 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13761 {
13762 /* This is the first object. Copy the attributes. */
13763 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13764
13765 /* Use the Tag_null value to indicate the attributes have been
13766 initialized. */
13767 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13768
13769 return TRUE;
13770 }
13771
13772 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13773 non-conflicting ones. */
13774 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13775 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13776 {
13777 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13778 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13779 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13780 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13781 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13782 {
13783 case 1:
13784 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13785 {
13786 case 2:
13787 _bfd_error_handler
13788 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13789 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13790 break;
13791
13792 case 3:
13793 _bfd_error_handler
13794 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13795 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13796 break;
13797
13798 case 4:
13799 _bfd_error_handler
13800 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13801 obfd, abi_fp_bfd, ibfd,
13802 "-mdouble-float", "-mips32r2 -mfp64");
13803 break;
13804
13805 default:
13806 _bfd_error_handler
13807 (_("Warning: %B uses %s (set by %B), "
13808 "%B uses unknown floating point ABI %d"),
13809 obfd, abi_fp_bfd, ibfd,
13810 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13811 break;
13812 }
13813 break;
13814
13815 case 2:
13816 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13817 {
13818 case 1:
13819 _bfd_error_handler
13820 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13821 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13822 break;
13823
13824 case 3:
13825 _bfd_error_handler
13826 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13827 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13828 break;
13829
13830 case 4:
13831 _bfd_error_handler
13832 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 "-msingle-float", "-mips32r2 -mfp64");
13835 break;
13836
13837 default:
13838 _bfd_error_handler
13839 (_("Warning: %B uses %s (set by %B), "
13840 "%B uses unknown floating point ABI %d"),
13841 obfd, abi_fp_bfd, ibfd,
13842 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13843 break;
13844 }
13845 break;
13846
13847 case 3:
13848 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13849 {
13850 case 1:
13851 case 2:
13852 case 4:
13853 _bfd_error_handler
13854 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13855 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13856 break;
13857
13858 default:
13859 _bfd_error_handler
13860 (_("Warning: %B uses %s (set by %B), "
13861 "%B uses unknown floating point ABI %d"),
13862 obfd, abi_fp_bfd, ibfd,
13863 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13864 break;
13865 }
13866 break;
13867
13868 case 4:
13869 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13870 {
13871 case 1:
13872 _bfd_error_handler
13873 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13874 obfd, abi_fp_bfd, ibfd,
13875 "-mips32r2 -mfp64", "-mdouble-float");
13876 break;
13877
13878 case 2:
13879 _bfd_error_handler
13880 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13881 obfd, abi_fp_bfd, ibfd,
13882 "-mips32r2 -mfp64", "-msingle-float");
13883 break;
13884
13885 case 3:
13886 _bfd_error_handler
13887 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13888 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13889 break;
13890
13891 default:
13892 _bfd_error_handler
13893 (_("Warning: %B uses %s (set by %B), "
13894 "%B uses unknown floating point ABI %d"),
13895 obfd, abi_fp_bfd, ibfd,
13896 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13897 break;
13898 }
13899 break;
13900
13901 default:
13902 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13903 {
13904 case 1:
13905 _bfd_error_handler
13906 (_("Warning: %B uses unknown floating point ABI %d "
13907 "(set by %B), %B uses %s"),
13908 obfd, abi_fp_bfd, ibfd,
13909 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13910 break;
13911
13912 case 2:
13913 _bfd_error_handler
13914 (_("Warning: %B uses unknown floating point ABI %d "
13915 "(set by %B), %B uses %s"),
13916 obfd, abi_fp_bfd, ibfd,
13917 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13918 break;
13919
13920 case 3:
13921 _bfd_error_handler
13922 (_("Warning: %B uses unknown floating point ABI %d "
13923 "(set by %B), %B uses %s"),
13924 obfd, abi_fp_bfd, ibfd,
13925 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13926 break;
13927
13928 case 4:
13929 _bfd_error_handler
13930 (_("Warning: %B uses unknown floating point ABI %d "
13931 "(set by %B), %B uses %s"),
13932 obfd, abi_fp_bfd, ibfd,
13933 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13934 break;
13935
13936 default:
13937 _bfd_error_handler
13938 (_("Warning: %B uses unknown floating point ABI %d "
13939 "(set by %B), %B uses unknown floating point ABI %d"),
13940 obfd, abi_fp_bfd, ibfd,
13941 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13942 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13943 break;
13944 }
13945 break;
13946 }
13947 }
13948
13949 /* Merge Tag_compatibility attributes and any common GNU ones. */
13950 _bfd_elf_merge_object_attributes (ibfd, obfd);
13951
13952 return TRUE;
13953 }
13954
13955 /* Merge backend specific data from an object file to the output
13956 object file when linking. */
13957
13958 bfd_boolean
13959 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13960 {
13961 flagword old_flags;
13962 flagword new_flags;
13963 bfd_boolean ok;
13964 bfd_boolean null_input_bfd = TRUE;
13965 asection *sec;
13966
13967 /* Check if we have the same endianness. */
13968 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13969 {
13970 (*_bfd_error_handler)
13971 (_("%B: endianness incompatible with that of the selected emulation"),
13972 ibfd);
13973 return FALSE;
13974 }
13975
13976 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13977 return TRUE;
13978
13979 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13980 {
13981 (*_bfd_error_handler)
13982 (_("%B: ABI is incompatible with that of the selected emulation"),
13983 ibfd);
13984 return FALSE;
13985 }
13986
13987 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13988 return FALSE;
13989
13990 new_flags = elf_elfheader (ibfd)->e_flags;
13991 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13992 old_flags = elf_elfheader (obfd)->e_flags;
13993
13994 if (! elf_flags_init (obfd))
13995 {
13996 elf_flags_init (obfd) = TRUE;
13997 elf_elfheader (obfd)->e_flags = new_flags;
13998 elf_elfheader (obfd)->e_ident[EI_CLASS]
13999 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
14000
14001 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14002 && (bfd_get_arch_info (obfd)->the_default
14003 || mips_mach_extends_p (bfd_get_mach (obfd),
14004 bfd_get_mach (ibfd))))
14005 {
14006 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14007 bfd_get_mach (ibfd)))
14008 return FALSE;
14009 }
14010
14011 return TRUE;
14012 }
14013
14014 /* Check flag compatibility. */
14015
14016 new_flags &= ~EF_MIPS_NOREORDER;
14017 old_flags &= ~EF_MIPS_NOREORDER;
14018
14019 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14020 doesn't seem to matter. */
14021 new_flags &= ~EF_MIPS_XGOT;
14022 old_flags &= ~EF_MIPS_XGOT;
14023
14024 /* MIPSpro generates ucode info in n64 objects. Again, we should
14025 just be able to ignore this. */
14026 new_flags &= ~EF_MIPS_UCODE;
14027 old_flags &= ~EF_MIPS_UCODE;
14028
14029 /* DSOs should only be linked with CPIC code. */
14030 if ((ibfd->flags & DYNAMIC) != 0)
14031 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14032
14033 if (new_flags == old_flags)
14034 return TRUE;
14035
14036 /* Check to see if the input BFD actually contains any sections.
14037 If not, its flags may not have been initialised either, but it cannot
14038 actually cause any incompatibility. */
14039 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14040 {
14041 /* Ignore synthetic sections and empty .text, .data and .bss sections
14042 which are automatically generated by gas. Also ignore fake
14043 (s)common sections, since merely defining a common symbol does
14044 not affect compatibility. */
14045 if ((sec->flags & SEC_IS_COMMON) == 0
14046 && strcmp (sec->name, ".reginfo")
14047 && strcmp (sec->name, ".mdebug")
14048 && (sec->size != 0
14049 || (strcmp (sec->name, ".text")
14050 && strcmp (sec->name, ".data")
14051 && strcmp (sec->name, ".bss"))))
14052 {
14053 null_input_bfd = FALSE;
14054 break;
14055 }
14056 }
14057 if (null_input_bfd)
14058 return TRUE;
14059
14060 ok = TRUE;
14061
14062 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14063 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14064 {
14065 (*_bfd_error_handler)
14066 (_("%B: warning: linking abicalls files with non-abicalls files"),
14067 ibfd);
14068 ok = TRUE;
14069 }
14070
14071 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14072 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14073 if (! (new_flags & EF_MIPS_PIC))
14074 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14075
14076 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14077 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14078
14079 /* Compare the ISAs. */
14080 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14081 {
14082 (*_bfd_error_handler)
14083 (_("%B: linking 32-bit code with 64-bit code"),
14084 ibfd);
14085 ok = FALSE;
14086 }
14087 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14088 {
14089 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14090 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14091 {
14092 /* Copy the architecture info from IBFD to OBFD. Also copy
14093 the 32-bit flag (if set) so that we continue to recognise
14094 OBFD as a 32-bit binary. */
14095 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14096 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14097 elf_elfheader (obfd)->e_flags
14098 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14099
14100 /* Copy across the ABI flags if OBFD doesn't use them
14101 and if that was what caused us to treat IBFD as 32-bit. */
14102 if ((old_flags & EF_MIPS_ABI) == 0
14103 && mips_32bit_flags_p (new_flags)
14104 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14105 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14106 }
14107 else
14108 {
14109 /* The ISAs aren't compatible. */
14110 (*_bfd_error_handler)
14111 (_("%B: linking %s module with previous %s modules"),
14112 ibfd,
14113 bfd_printable_name (ibfd),
14114 bfd_printable_name (obfd));
14115 ok = FALSE;
14116 }
14117 }
14118
14119 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14120 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14121
14122 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14123 does set EI_CLASS differently from any 32-bit ABI. */
14124 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14125 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14126 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14127 {
14128 /* Only error if both are set (to different values). */
14129 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14130 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14131 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14132 {
14133 (*_bfd_error_handler)
14134 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14135 ibfd,
14136 elf_mips_abi_name (ibfd),
14137 elf_mips_abi_name (obfd));
14138 ok = FALSE;
14139 }
14140 new_flags &= ~EF_MIPS_ABI;
14141 old_flags &= ~EF_MIPS_ABI;
14142 }
14143
14144 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14145 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14146 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14147 {
14148 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14149 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14150 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14151 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14152 int micro_mis = old_m16 && new_micro;
14153 int m16_mis = old_micro && new_m16;
14154
14155 if (m16_mis || micro_mis)
14156 {
14157 (*_bfd_error_handler)
14158 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14159 ibfd,
14160 m16_mis ? "MIPS16" : "microMIPS",
14161 m16_mis ? "microMIPS" : "MIPS16");
14162 ok = FALSE;
14163 }
14164
14165 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14166
14167 new_flags &= ~ EF_MIPS_ARCH_ASE;
14168 old_flags &= ~ EF_MIPS_ARCH_ASE;
14169 }
14170
14171 /* Warn about any other mismatches */
14172 if (new_flags != old_flags)
14173 {
14174 (*_bfd_error_handler)
14175 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14176 ibfd, (unsigned long) new_flags,
14177 (unsigned long) old_flags);
14178 ok = FALSE;
14179 }
14180
14181 if (! ok)
14182 {
14183 bfd_set_error (bfd_error_bad_value);
14184 return FALSE;
14185 }
14186
14187 return TRUE;
14188 }
14189
14190 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14191
14192 bfd_boolean
14193 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14194 {
14195 BFD_ASSERT (!elf_flags_init (abfd)
14196 || elf_elfheader (abfd)->e_flags == flags);
14197
14198 elf_elfheader (abfd)->e_flags = flags;
14199 elf_flags_init (abfd) = TRUE;
14200 return TRUE;
14201 }
14202
14203 char *
14204 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14205 {
14206 switch (dtag)
14207 {
14208 default: return "";
14209 case DT_MIPS_RLD_VERSION:
14210 return "MIPS_RLD_VERSION";
14211 case DT_MIPS_TIME_STAMP:
14212 return "MIPS_TIME_STAMP";
14213 case DT_MIPS_ICHECKSUM:
14214 return "MIPS_ICHECKSUM";
14215 case DT_MIPS_IVERSION:
14216 return "MIPS_IVERSION";
14217 case DT_MIPS_FLAGS:
14218 return "MIPS_FLAGS";
14219 case DT_MIPS_BASE_ADDRESS:
14220 return "MIPS_BASE_ADDRESS";
14221 case DT_MIPS_MSYM:
14222 return "MIPS_MSYM";
14223 case DT_MIPS_CONFLICT:
14224 return "MIPS_CONFLICT";
14225 case DT_MIPS_LIBLIST:
14226 return "MIPS_LIBLIST";
14227 case DT_MIPS_LOCAL_GOTNO:
14228 return "MIPS_LOCAL_GOTNO";
14229 case DT_MIPS_CONFLICTNO:
14230 return "MIPS_CONFLICTNO";
14231 case DT_MIPS_LIBLISTNO:
14232 return "MIPS_LIBLISTNO";
14233 case DT_MIPS_SYMTABNO:
14234 return "MIPS_SYMTABNO";
14235 case DT_MIPS_UNREFEXTNO:
14236 return "MIPS_UNREFEXTNO";
14237 case DT_MIPS_GOTSYM:
14238 return "MIPS_GOTSYM";
14239 case DT_MIPS_HIPAGENO:
14240 return "MIPS_HIPAGENO";
14241 case DT_MIPS_RLD_MAP:
14242 return "MIPS_RLD_MAP";
14243 case DT_MIPS_DELTA_CLASS:
14244 return "MIPS_DELTA_CLASS";
14245 case DT_MIPS_DELTA_CLASS_NO:
14246 return "MIPS_DELTA_CLASS_NO";
14247 case DT_MIPS_DELTA_INSTANCE:
14248 return "MIPS_DELTA_INSTANCE";
14249 case DT_MIPS_DELTA_INSTANCE_NO:
14250 return "MIPS_DELTA_INSTANCE_NO";
14251 case DT_MIPS_DELTA_RELOC:
14252 return "MIPS_DELTA_RELOC";
14253 case DT_MIPS_DELTA_RELOC_NO:
14254 return "MIPS_DELTA_RELOC_NO";
14255 case DT_MIPS_DELTA_SYM:
14256 return "MIPS_DELTA_SYM";
14257 case DT_MIPS_DELTA_SYM_NO:
14258 return "MIPS_DELTA_SYM_NO";
14259 case DT_MIPS_DELTA_CLASSSYM:
14260 return "MIPS_DELTA_CLASSSYM";
14261 case DT_MIPS_DELTA_CLASSSYM_NO:
14262 return "MIPS_DELTA_CLASSSYM_NO";
14263 case DT_MIPS_CXX_FLAGS:
14264 return "MIPS_CXX_FLAGS";
14265 case DT_MIPS_PIXIE_INIT:
14266 return "MIPS_PIXIE_INIT";
14267 case DT_MIPS_SYMBOL_LIB:
14268 return "MIPS_SYMBOL_LIB";
14269 case DT_MIPS_LOCALPAGE_GOTIDX:
14270 return "MIPS_LOCALPAGE_GOTIDX";
14271 case DT_MIPS_LOCAL_GOTIDX:
14272 return "MIPS_LOCAL_GOTIDX";
14273 case DT_MIPS_HIDDEN_GOTIDX:
14274 return "MIPS_HIDDEN_GOTIDX";
14275 case DT_MIPS_PROTECTED_GOTIDX:
14276 return "MIPS_PROTECTED_GOT_IDX";
14277 case DT_MIPS_OPTIONS:
14278 return "MIPS_OPTIONS";
14279 case DT_MIPS_INTERFACE:
14280 return "MIPS_INTERFACE";
14281 case DT_MIPS_DYNSTR_ALIGN:
14282 return "DT_MIPS_DYNSTR_ALIGN";
14283 case DT_MIPS_INTERFACE_SIZE:
14284 return "DT_MIPS_INTERFACE_SIZE";
14285 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14286 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14287 case DT_MIPS_PERF_SUFFIX:
14288 return "DT_MIPS_PERF_SUFFIX";
14289 case DT_MIPS_COMPACT_SIZE:
14290 return "DT_MIPS_COMPACT_SIZE";
14291 case DT_MIPS_GP_VALUE:
14292 return "DT_MIPS_GP_VALUE";
14293 case DT_MIPS_AUX_DYNAMIC:
14294 return "DT_MIPS_AUX_DYNAMIC";
14295 case DT_MIPS_PLTGOT:
14296 return "DT_MIPS_PLTGOT";
14297 case DT_MIPS_RWPLT:
14298 return "DT_MIPS_RWPLT";
14299 }
14300 }
14301
14302 bfd_boolean
14303 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14304 {
14305 FILE *file = ptr;
14306
14307 BFD_ASSERT (abfd != NULL && ptr != NULL);
14308
14309 /* Print normal ELF private data. */
14310 _bfd_elf_print_private_bfd_data (abfd, ptr);
14311
14312 /* xgettext:c-format */
14313 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14314
14315 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14316 fprintf (file, _(" [abi=O32]"));
14317 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14318 fprintf (file, _(" [abi=O64]"));
14319 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14320 fprintf (file, _(" [abi=EABI32]"));
14321 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14322 fprintf (file, _(" [abi=EABI64]"));
14323 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14324 fprintf (file, _(" [abi unknown]"));
14325 else if (ABI_N32_P (abfd))
14326 fprintf (file, _(" [abi=N32]"));
14327 else if (ABI_64_P (abfd))
14328 fprintf (file, _(" [abi=64]"));
14329 else
14330 fprintf (file, _(" [no abi set]"));
14331
14332 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14333 fprintf (file, " [mips1]");
14334 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14335 fprintf (file, " [mips2]");
14336 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14337 fprintf (file, " [mips3]");
14338 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14339 fprintf (file, " [mips4]");
14340 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14341 fprintf (file, " [mips5]");
14342 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14343 fprintf (file, " [mips32]");
14344 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14345 fprintf (file, " [mips64]");
14346 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14347 fprintf (file, " [mips32r2]");
14348 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14349 fprintf (file, " [mips64r2]");
14350 else
14351 fprintf (file, _(" [unknown ISA]"));
14352
14353 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14354 fprintf (file, " [mdmx]");
14355
14356 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14357 fprintf (file, " [mips16]");
14358
14359 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14360 fprintf (file, " [micromips]");
14361
14362 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14363 fprintf (file, " [32bitmode]");
14364 else
14365 fprintf (file, _(" [not 32bitmode]"));
14366
14367 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14368 fprintf (file, " [noreorder]");
14369
14370 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14371 fprintf (file, " [PIC]");
14372
14373 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14374 fprintf (file, " [CPIC]");
14375
14376 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14377 fprintf (file, " [XGOT]");
14378
14379 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14380 fprintf (file, " [UCODE]");
14381
14382 fputc ('\n', file);
14383
14384 return TRUE;
14385 }
14386
14387 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14388 {
14389 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14390 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14391 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14392 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14393 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14394 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14395 { NULL, 0, 0, 0, 0 }
14396 };
14397
14398 /* Merge non visibility st_other attributes. Ensure that the
14399 STO_OPTIONAL flag is copied into h->other, even if this is not a
14400 definiton of the symbol. */
14401 void
14402 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14403 const Elf_Internal_Sym *isym,
14404 bfd_boolean definition,
14405 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14406 {
14407 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14408 {
14409 unsigned char other;
14410
14411 other = (definition ? isym->st_other : h->other);
14412 other &= ~ELF_ST_VISIBILITY (-1);
14413 h->other = other | ELF_ST_VISIBILITY (h->other);
14414 }
14415
14416 if (!definition
14417 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14418 h->other |= STO_OPTIONAL;
14419 }
14420
14421 /* Decide whether an undefined symbol is special and can be ignored.
14422 This is the case for OPTIONAL symbols on IRIX. */
14423 bfd_boolean
14424 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14425 {
14426 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14427 }
14428
14429 bfd_boolean
14430 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14431 {
14432 return (sym->st_shndx == SHN_COMMON
14433 || sym->st_shndx == SHN_MIPS_ACOMMON
14434 || sym->st_shndx == SHN_MIPS_SCOMMON);
14435 }
14436
14437 /* Return address for Ith PLT stub in section PLT, for relocation REL
14438 or (bfd_vma) -1 if it should not be included. */
14439
14440 bfd_vma
14441 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14442 const arelent *rel ATTRIBUTE_UNUSED)
14443 {
14444 return (plt->vma
14445 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14446 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14447 }
14448
14449 void
14450 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14451 {
14452 struct mips_elf_link_hash_table *htab;
14453 Elf_Internal_Ehdr *i_ehdrp;
14454
14455 i_ehdrp = elf_elfheader (abfd);
14456 if (link_info)
14457 {
14458 htab = mips_elf_hash_table (link_info);
14459 BFD_ASSERT (htab != NULL);
14460
14461 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14462 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14463 }
14464 }