* elfxx-mips.c (mips_elf_next_relocation): Don't signal an error if no
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
2421
2422 static bfd_vma
2423 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2424 asection *input_section, bfd_vma value,
2425 unsigned long r_symndx,
2426 struct mips_elf_link_hash_entry *h, int r_type)
2427 {
2428 asection *sgot;
2429 struct mips_got_info *g;
2430 struct mips_got_entry *entry;
2431
2432 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2433
2434 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2435 input_section, value,
2436 r_symndx, h, r_type);
2437 if (!entry)
2438 return MINUS_ONE;
2439
2440 if (TLS_RELOC_P (r_type))
2441 {
2442 if (entry->symndx == -1 && g->next == NULL)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2446 r_type, info, h, value);
2447 else
2448 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2449 r_type, info, h, value);
2450 }
2451 else
2452 return entry->gotidx;
2453 }
2454
2455 /* Returns the GOT index for the global symbol indicated by H. */
2456
2457 static bfd_vma
2458 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2459 int r_type, struct bfd_link_info *info)
2460 {
2461 bfd_vma index;
2462 asection *sgot;
2463 struct mips_got_info *g, *gg;
2464 long global_got_dynindx = 0;
2465
2466 gg = g = mips_elf_got_info (abfd, &sgot);
2467 if (g->bfd2got && ibfd)
2468 {
2469 struct mips_got_entry e, *p;
2470
2471 BFD_ASSERT (h->dynindx >= 0);
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (g->next != gg || TLS_RELOC_P (r_type))
2475 {
2476 e.abfd = ibfd;
2477 e.symndx = -1;
2478 e.d.h = (struct mips_elf_link_hash_entry *)h;
2479 e.tls_type = 0;
2480
2481 p = htab_find (g->got_entries, &e);
2482
2483 BFD_ASSERT (p->gotidx > 0);
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2494
2495 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2496 info, e.d.h, value);
2497 }
2498 else
2499 return p->gotidx;
2500 }
2501 }
2502
2503 if (gg->global_gotsym != NULL)
2504 global_got_dynindx = gg->global_gotsym->dynindx;
2505
2506 if (TLS_RELOC_P (r_type))
2507 {
2508 struct mips_elf_link_hash_entry *hm
2509 = (struct mips_elf_link_hash_entry *) h;
2510 bfd_vma value = MINUS_ONE;
2511
2512 if ((h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak)
2514 && h->root.u.def.section->output_section)
2515 value = (h->root.u.def.value
2516 + h->root.u.def.section->output_offset
2517 + h->root.u.def.section->output_section->vma);
2518
2519 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2520 r_type, info, hm, value);
2521 }
2522 else
2523 {
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2527 offset. */
2528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2529 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2530 * MIPS_ELF_GOT_SIZE (abfd));
2531 }
2532 BFD_ASSERT (index < sgot->size);
2533
2534 return index;
2535 }
2536
2537 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
2543
2544 static bfd_vma
2545 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2546 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2547 {
2548 asection *sgot;
2549 struct mips_got_info *g;
2550 bfd_vma page, index;
2551 struct mips_got_entry *entry;
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 input_section, page, 0,
2558 NULL, R_MIPS_GOT_PAGE);
2559
2560 if (!entry)
2561 return MINUS_ONE;
2562
2563 index = entry->gotidx;
2564
2565 if (offsetp)
2566 *offsetp = value - entry->d.address;
2567
2568 return index;
2569 }
2570
2571 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2575
2576 static bfd_vma
2577 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2578 asection *input_section, bfd_vma value,
2579 bfd_boolean external)
2580 {
2581 asection *sgot;
2582 struct mips_got_info *g;
2583 struct mips_got_entry *entry;
2584
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2589 if (! external)
2590 value = mips_elf_high (value) << 16;
2591
2592 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593
2594 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2595 input_section, value, 0,
2596 NULL, R_MIPS_GOT16);
2597 if (entry)
2598 return entry->gotidx;
2599 else
2600 return MINUS_ONE;
2601 }
2602
2603 /* Returns the offset for the entry at the INDEXth position
2604 in the GOT. */
2605
2606 static bfd_vma
2607 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2608 bfd *input_bfd, bfd_vma index)
2609 {
2610 asection *sgot;
2611 bfd_vma gp;
2612 struct mips_got_info *g;
2613
2614 g = mips_elf_got_info (dynobj, &sgot);
2615 gp = _bfd_get_gp_value (output_bfd)
2616 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2617
2618 return sgot->output_section->vma + sgot->output_offset + index - gp;
2619 }
2620
2621 /* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 instead. */
2625
2626 static struct mips_got_entry *
2627 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2628 bfd *ibfd, struct mips_got_info *gg,
2629 asection *sgot, asection *input_section,
2630 bfd_vma value, unsigned long r_symndx,
2631 struct mips_elf_link_hash_entry *h,
2632 int r_type)
2633 {
2634 struct mips_got_entry entry, **loc;
2635 struct mips_got_info *g;
2636 struct mips_elf_link_hash_table *htab;
2637
2638 htab = mips_elf_hash_table (info);
2639
2640 entry.abfd = NULL;
2641 entry.symndx = -1;
2642 entry.d.address = value;
2643 entry.tls_type = 0;
2644
2645 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 if (g == NULL)
2647 {
2648 g = mips_elf_got_for_ibfd (gg, abfd);
2649 BFD_ASSERT (g != NULL);
2650 }
2651
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
2656 BFD_ASSERT (h == NULL || h->root.forced_local);
2657 if (TLS_RELOC_P (r_type))
2658 {
2659 struct mips_got_entry *p;
2660
2661 entry.abfd = ibfd;
2662 if (r_type == R_MIPS_TLS_LDM)
2663 {
2664 entry.tls_type = GOT_TLS_LDM;
2665 entry.symndx = 0;
2666 entry.d.addend = 0;
2667 }
2668 else if (h == NULL)
2669 {
2670 entry.symndx = r_symndx;
2671 entry.d.addend = 0;
2672 }
2673 else
2674 entry.d.h = h;
2675
2676 p = (struct mips_got_entry *)
2677 htab_find (g->got_entries, &entry);
2678
2679 BFD_ASSERT (p);
2680 return p;
2681 }
2682
2683 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2684 INSERT);
2685 if (*loc)
2686 return *loc;
2687
2688 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2689 entry.tls_type = 0;
2690
2691 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2692
2693 if (! *loc)
2694 return NULL;
2695
2696 memcpy (*loc, &entry, sizeof entry);
2697
2698 if (g->assigned_gotno >= g->local_gotno)
2699 {
2700 (*loc)->gotidx = -1;
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value);
2705 return NULL;
2706 }
2707
2708 MIPS_ELF_PUT_WORD (abfd, value,
2709 (sgot->contents + entry.gotidx));
2710
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab->is_vxworks)
2717 {
2718 Elf_Internal_Rela outrel;
2719 asection *s, *output_section;
2720 bfd_byte *loc;
2721 bfd_vma got_address;
2722 int dynindx;
2723
2724 s = mips_elf_rel_dyn_section (info, FALSE);
2725 output_section = input_section->output_section;
2726 dynindx = elf_section_data (output_section)->dynindx;
2727 got_address = (sgot->output_section->vma
2728 + sgot->output_offset
2729 + entry.gotidx);
2730
2731 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2732 outrel.r_offset = got_address;
2733 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2734 outrel.r_addend = value - output_section->vma;
2735 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2736 }
2737
2738 return *loc;
2739 }
2740
2741 /* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2747
2748 static bfd_boolean
2749 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2750 {
2751 struct mips_elf_hash_sort_data hsd;
2752 struct mips_got_info *g;
2753 bfd *dynobj;
2754
2755 dynobj = elf_hash_table (info)->dynobj;
2756
2757 g = mips_elf_got_info (dynobj, NULL);
2758
2759 hsd.low = NULL;
2760 hsd.max_unref_got_dynindx =
2761 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g->next ? g->assigned_gotno : 0);
2770 hsd.max_non_got_dynindx = max_local;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2772 elf_hash_table (info)),
2773 mips_elf_sort_hash_table_f,
2774 &hsd);
2775
2776 /* There should have been enough room in the symbol table to
2777 accommodate both the GOT and non-GOT symbols. */
2778 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2779 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2780 <= elf_hash_table (info)->dynsymcount);
2781
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
2784 g->global_gotsym = hsd.low;
2785
2786 return TRUE;
2787 }
2788
2789 /* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2791 index. */
2792
2793 static bfd_boolean
2794 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2795 {
2796 struct mips_elf_hash_sort_data *hsd = data;
2797
2798 if (h->root.root.type == bfd_link_hash_warning)
2799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2800
2801 /* Symbols without dynamic symbol table entries aren't interesting
2802 at all. */
2803 if (h->root.dynindx == -1)
2804 return TRUE;
2805
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2809 -1. */
2810 if (h->root.got.offset == 2)
2811 {
2812 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2813
2814 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2815 hsd->low = (struct elf_link_hash_entry *) h;
2816 h->root.dynindx = hsd->max_unref_got_dynindx++;
2817 }
2818 else if (h->root.got.offset != 1)
2819 h->root.dynindx = hsd->max_non_got_dynindx++;
2820 else
2821 {
2822 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2823
2824 h->root.dynindx = --hsd->min_got_dynindx;
2825 hsd->low = (struct elf_link_hash_entry *) h;
2826 }
2827
2828 return TRUE;
2829 }
2830
2831 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2833 posterity. */
2834
2835 static bfd_boolean
2836 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2837 bfd *abfd, struct bfd_link_info *info,
2838 struct mips_got_info *g,
2839 unsigned char tls_flag)
2840 {
2841 struct mips_got_entry entry, **loc;
2842
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2844 table. */
2845 if (h->dynindx == -1)
2846 {
2847 switch (ELF_ST_VISIBILITY (h->other))
2848 {
2849 case STV_INTERNAL:
2850 case STV_HIDDEN:
2851 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2852 break;
2853 }
2854 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2855 return FALSE;
2856 }
2857
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g != NULL);
2860
2861 entry.abfd = abfd;
2862 entry.symndx = -1;
2863 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2864 entry.tls_type = 0;
2865
2866 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2867 INSERT);
2868
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
2871 if (*loc)
2872 {
2873 (*loc)->tls_type |= tls_flag;
2874 return TRUE;
2875 }
2876
2877 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2878
2879 if (! *loc)
2880 return FALSE;
2881
2882 entry.gotidx = -1;
2883 entry.tls_type = tls_flag;
2884
2885 memcpy (*loc, &entry, sizeof entry);
2886
2887 if (h->got.offset != MINUS_ONE)
2888 return TRUE;
2889
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
2893 if (tls_flag == 0)
2894 h->got.offset = 1;
2895
2896 return TRUE;
2897 }
2898
2899 /* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2901
2902 static bfd_boolean
2903 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2904 struct mips_got_info *g,
2905 unsigned char tls_flag)
2906 {
2907 struct mips_got_entry entry, **loc;
2908
2909 entry.abfd = abfd;
2910 entry.symndx = symndx;
2911 entry.d.addend = addend;
2912 entry.tls_type = tls_flag;
2913 loc = (struct mips_got_entry **)
2914 htab_find_slot (g->got_entries, &entry, INSERT);
2915
2916 if (*loc)
2917 {
2918 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2919 {
2920 g->tls_gotno += 2;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2924 {
2925 g->tls_gotno += 1;
2926 (*loc)->tls_type |= tls_flag;
2927 }
2928 return TRUE;
2929 }
2930
2931 if (tls_flag != 0)
2932 {
2933 entry.gotidx = -1;
2934 entry.tls_type = tls_flag;
2935 if (tls_flag == GOT_TLS_IE)
2936 g->tls_gotno += 1;
2937 else if (tls_flag == GOT_TLS_GD)
2938 g->tls_gotno += 2;
2939 else if (g->tls_ldm_offset == MINUS_ONE)
2940 {
2941 g->tls_ldm_offset = MINUS_TWO;
2942 g->tls_gotno += 2;
2943 }
2944 }
2945 else
2946 {
2947 entry.gotidx = g->local_gotno++;
2948 entry.tls_type = 0;
2949 }
2950
2951 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952
2953 if (! *loc)
2954 return FALSE;
2955
2956 memcpy (*loc, &entry, sizeof entry);
2957
2958 return TRUE;
2959 }
2960 \f
2961 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2962
2963 static hashval_t
2964 mips_elf_bfd2got_entry_hash (const void *entry_)
2965 {
2966 const struct mips_elf_bfd2got_hash *entry
2967 = (struct mips_elf_bfd2got_hash *)entry_;
2968
2969 return entry->bfd->id;
2970 }
2971
2972 /* Check whether two hash entries have the same bfd. */
2973
2974 static int
2975 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2976 {
2977 const struct mips_elf_bfd2got_hash *e1
2978 = (const struct mips_elf_bfd2got_hash *)entry1;
2979 const struct mips_elf_bfd2got_hash *e2
2980 = (const struct mips_elf_bfd2got_hash *)entry2;
2981
2982 return e1->bfd == e2->bfd;
2983 }
2984
2985 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2986 be the master GOT data. */
2987
2988 static struct mips_got_info *
2989 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2990 {
2991 struct mips_elf_bfd2got_hash e, *p;
2992
2993 if (! g->bfd2got)
2994 return g;
2995
2996 e.bfd = ibfd;
2997 p = htab_find (g->bfd2got, &e);
2998 return p ? p->g : NULL;
2999 }
3000
3001 /* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3003 bfd requires. */
3004
3005 static int
3006 mips_elf_make_got_per_bfd (void **entryp, void *p)
3007 {
3008 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3009 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3010 htab_t bfd2got = arg->bfd2got;
3011 struct mips_got_info *g;
3012 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3013 void **bfdgotp;
3014
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3016 none exists. */
3017 bfdgot_entry.bfd = entry->abfd;
3018 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3019 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3020
3021 if (bfdgot != NULL)
3022 g = bfdgot->g;
3023 else
3024 {
3025 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3026 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3027
3028 if (bfdgot == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 *bfdgotp = bfdgot;
3035
3036 bfdgot->bfd = entry->abfd;
3037 bfdgot->g = g = (struct mips_got_info *)
3038 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3039 if (g == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->global_gotsym = NULL;
3046 g->global_gotno = 0;
3047 g->local_gotno = 0;
3048 g->assigned_gotno = -1;
3049 g->tls_gotno = 0;
3050 g->tls_assigned_gotno = 0;
3051 g->tls_ldm_offset = MINUS_ONE;
3052 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3053 mips_elf_multi_got_entry_eq, NULL);
3054 if (g->got_entries == NULL)
3055 {
3056 arg->obfd = 0;
3057 return 0;
3058 }
3059
3060 g->bfd2got = NULL;
3061 g->next = NULL;
3062 }
3063
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3066 if (*entryp != NULL)
3067 return 1;
3068
3069 *entryp = entry;
3070
3071 if (entry->tls_type)
3072 {
3073 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3074 g->tls_gotno += 2;
3075 if (entry->tls_type & GOT_TLS_IE)
3076 g->tls_gotno += 1;
3077 }
3078 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3079 ++g->local_gotno;
3080 else
3081 ++g->global_gotno;
3082
3083 return 1;
3084 }
3085
3086 /* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3092
3093 static int
3094 mips_elf_merge_gots (void **bfd2got_, void *p)
3095 {
3096 struct mips_elf_bfd2got_hash *bfd2got
3097 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3098 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3099 unsigned int lcount = bfd2got->g->local_gotno;
3100 unsigned int gcount = bfd2got->g->global_gotno;
3101 unsigned int tcount = bfd2got->g->tls_gotno;
3102 unsigned int maxcnt = arg->max_count;
3103 bfd_boolean too_many_for_tls = FALSE;
3104
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3109 if (tcount > 0)
3110 {
3111 unsigned int primary_total = lcount + tcount + arg->global_count;
3112 if (primary_total > maxcnt)
3113 too_many_for_tls = TRUE;
3114 }
3115
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
3118 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3119 && ! too_many_for_tls)
3120 {
3121 arg->primary = bfd2got->g;
3122 arg->primary_count = lcount + gcount;
3123 }
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
3127 else if (arg->primary && ! too_many_for_tls
3128 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3129 {
3130 struct mips_got_info *g = bfd2got->g;
3131 int old_lcount = arg->primary->local_gotno;
3132 int old_gcount = arg->primary->global_gotno;
3133 int old_tcount = arg->primary->tls_gotno;
3134
3135 bfd2got->g = arg->primary;
3136
3137 htab_traverse (g->got_entries,
3138 mips_elf_make_got_per_bfd,
3139 arg);
3140 if (arg->obfd == NULL)
3141 return 0;
3142
3143 htab_delete (g->got_entries);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3146 table anyway. */
3147
3148 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3149 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3150 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3151
3152 arg->primary_count = arg->primary->local_gotno
3153 + arg->primary->global_gotno + arg->primary->tls_gotno;
3154 }
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg->current
3157 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3158 {
3159 struct mips_got_info *g = bfd2got->g;
3160 int old_lcount = arg->current->local_gotno;
3161 int old_gcount = arg->current->global_gotno;
3162 int old_tcount = arg->current->tls_gotno;
3163
3164 bfd2got->g = arg->current;
3165
3166 htab_traverse (g->got_entries,
3167 mips_elf_make_got_per_bfd,
3168 arg);
3169 if (arg->obfd == NULL)
3170 return 0;
3171
3172 htab_delete (g->got_entries);
3173
3174 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3175 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3176 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3177
3178 arg->current_count = arg->current->local_gotno
3179 + arg->current->global_gotno + arg->current->tls_gotno;
3180 }
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3184 else
3185 {
3186 bfd2got->g->next = arg->current;
3187 arg->current = bfd2got->g;
3188
3189 arg->current_count = lcount + gcount + 2 * tcount;
3190 }
3191
3192 return 1;
3193 }
3194
3195 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
3197
3198 static int
3199 mips_elf_initialize_tls_index (void **entryp, void *p)
3200 {
3201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3202 struct mips_got_info *g = p;
3203 bfd_vma next_index;
3204
3205 /* We're only interested in TLS symbols. */
3206 if (entry->tls_type == 0)
3207 return 1;
3208
3209 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3210
3211 if (entry->symndx == -1 && g->next == NULL)
3212 {
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3216 return 1;
3217 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3218 entry->d.h->tls_got_offset = next_index;
3219 }
3220 else
3221 {
3222 if (entry->tls_type & GOT_TLS_LDM)
3223 {
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3228 {
3229 entry->gotidx = g->tls_ldm_offset;
3230 return 1;
3231 }
3232 g->tls_ldm_offset = next_index;
3233 }
3234 entry->gotidx = next_index;
3235 }
3236
3237 /* Account for the entries we've just allocated. */
3238 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3239 g->tls_assigned_gotno += 2;
3240 if (entry->tls_type & GOT_TLS_IE)
3241 g->tls_assigned_gotno += 1;
3242
3243 return 1;
3244 }
3245
3246 /* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3249
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3257 marked as not eligible for lazy resolution through a function
3258 stub. */
3259 static int
3260 mips_elf_set_global_got_offset (void **entryp, void *p)
3261 {
3262 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3263 struct mips_elf_set_global_got_offset_arg *arg
3264 = (struct mips_elf_set_global_got_offset_arg *)p;
3265 struct mips_got_info *g = arg->g;
3266
3267 if (g && entry->tls_type != GOT_NORMAL)
3268 arg->needed_relocs +=
3269 mips_tls_got_relocs (arg->info, entry->tls_type,
3270 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271
3272 if (entry->abfd != NULL && entry->symndx == -1
3273 && entry->d.h->root.dynindx != -1
3274 && entry->d.h->tls_type == GOT_NORMAL)
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292 }
3293
3294 /* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296 static int
3297 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3298 {
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307 }
3308
3309 /* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315 static int
3316 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3317 {
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
3331
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
3351
3352 return 1;
3353 }
3354
3355 /* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357 static void
3358 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3359 {
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371 }
3372
3373 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375 static bfd_vma
3376 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3377 {
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
3388
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
3391 }
3392
3393 /* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396 static bfd_boolean
3397 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
3400 {
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3407 mips_elf_bfd2got_entry_eq, NULL);
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3427 / MIPS_ELF_GOT_SIZE (abfd))
3428 - MIPS_RESERVED_GOTNO (info) - pages);
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
3441 /* If we do not find any suitable primary GOT, create an empty one. */
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
3452 g->next->tls_gotno = 0;
3453 g->next->assigned_gotno = 0;
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
3458 NULL);
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
3479
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
3505
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
3555 gg->tls_gotno = 0;
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
3563 assign += MIPS_RESERVED_GOTNO (info);
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3579
3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3581 g = gn;
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3587 }
3588 while (g);
3589
3590 got->size = (gg->next->local_gotno
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3593
3594 return TRUE;
3595 }
3596
3597 \f
3598 /* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601 static const Elf_Internal_Rela *
3602 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
3605 {
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
3608 while (relocation < relend)
3609 {
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
3618 return NULL;
3619 }
3620
3621 /* Return whether a relocation is against a local symbol. */
3622
3623 static bfd_boolean
3624 mips_elf_local_relocation_p (bfd *input_bfd,
3625 const Elf_Internal_Rela *relocation,
3626 asection **local_sections,
3627 bfd_boolean check_forced)
3628 {
3629 unsigned long r_symndx;
3630 Elf_Internal_Shdr *symtab_hdr;
3631 struct mips_elf_link_hash_entry *h;
3632 size_t extsymoff;
3633
3634 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3636 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3637
3638 if (r_symndx < extsymoff)
3639 return TRUE;
3640 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3641 return TRUE;
3642
3643 if (check_forced)
3644 {
3645 /* Look up the hash table to check whether the symbol
3646 was forced local. */
3647 h = (struct mips_elf_link_hash_entry *)
3648 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3649 /* Find the real hash-table entry for this symbol. */
3650 while (h->root.root.type == bfd_link_hash_indirect
3651 || h->root.root.type == bfd_link_hash_warning)
3652 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3653 if (h->root.forced_local)
3654 return TRUE;
3655 }
3656
3657 return FALSE;
3658 }
3659 \f
3660 /* Sign-extend VALUE, which has the indicated number of BITS. */
3661
3662 bfd_vma
3663 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3664 {
3665 if (value & ((bfd_vma) 1 << (bits - 1)))
3666 /* VALUE is negative. */
3667 value |= ((bfd_vma) - 1) << bits;
3668
3669 return value;
3670 }
3671
3672 /* Return non-zero if the indicated VALUE has overflowed the maximum
3673 range expressible by a signed number with the indicated number of
3674 BITS. */
3675
3676 static bfd_boolean
3677 mips_elf_overflow_p (bfd_vma value, int bits)
3678 {
3679 bfd_signed_vma svalue = (bfd_signed_vma) value;
3680
3681 if (svalue > (1 << (bits - 1)) - 1)
3682 /* The value is too big. */
3683 return TRUE;
3684 else if (svalue < -(1 << (bits - 1)))
3685 /* The value is too small. */
3686 return TRUE;
3687
3688 /* All is well. */
3689 return FALSE;
3690 }
3691
3692 /* Calculate the %high function. */
3693
3694 static bfd_vma
3695 mips_elf_high (bfd_vma value)
3696 {
3697 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3698 }
3699
3700 /* Calculate the %higher function. */
3701
3702 static bfd_vma
3703 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3704 {
3705 #ifdef BFD64
3706 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3707 #else
3708 abort ();
3709 return MINUS_ONE;
3710 #endif
3711 }
3712
3713 /* Calculate the %highest function. */
3714
3715 static bfd_vma
3716 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3717 {
3718 #ifdef BFD64
3719 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3720 #else
3721 abort ();
3722 return MINUS_ONE;
3723 #endif
3724 }
3725 \f
3726 /* Create the .compact_rel section. */
3727
3728 static bfd_boolean
3729 mips_elf_create_compact_rel_section
3730 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3731 {
3732 flagword flags;
3733 register asection *s;
3734
3735 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3736 {
3737 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3738 | SEC_READONLY);
3739
3740 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3741 if (s == NULL
3742 || ! bfd_set_section_alignment (abfd, s,
3743 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3744 return FALSE;
3745
3746 s->size = sizeof (Elf32_External_compact_rel);
3747 }
3748
3749 return TRUE;
3750 }
3751
3752 /* Create the .got section to hold the global offset table. */
3753
3754 static bfd_boolean
3755 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3756 bfd_boolean maybe_exclude)
3757 {
3758 flagword flags;
3759 register asection *s;
3760 struct elf_link_hash_entry *h;
3761 struct bfd_link_hash_entry *bh;
3762 struct mips_got_info *g;
3763 bfd_size_type amt;
3764 struct mips_elf_link_hash_table *htab;
3765
3766 htab = mips_elf_hash_table (info);
3767
3768 /* This function may be called more than once. */
3769 s = mips_elf_got_section (abfd, TRUE);
3770 if (s)
3771 {
3772 if (! maybe_exclude)
3773 s->flags &= ~SEC_EXCLUDE;
3774 return TRUE;
3775 }
3776
3777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3778 | SEC_LINKER_CREATED);
3779
3780 if (maybe_exclude)
3781 flags |= SEC_EXCLUDE;
3782
3783 /* We have to use an alignment of 2**4 here because this is hardcoded
3784 in the function stub generation and in the linker script. */
3785 s = bfd_make_section_with_flags (abfd, ".got", flags);
3786 if (s == NULL
3787 || ! bfd_set_section_alignment (abfd, s, 4))
3788 return FALSE;
3789
3790 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3791 linker script because we don't want to define the symbol if we
3792 are not creating a global offset table. */
3793 bh = NULL;
3794 if (! (_bfd_generic_link_add_one_symbol
3795 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3796 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3797 return FALSE;
3798
3799 h = (struct elf_link_hash_entry *) bh;
3800 h->non_elf = 0;
3801 h->def_regular = 1;
3802 h->type = STT_OBJECT;
3803 elf_hash_table (info)->hgot = h;
3804
3805 if (info->shared
3806 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3807 return FALSE;
3808
3809 amt = sizeof (struct mips_got_info);
3810 g = bfd_alloc (abfd, amt);
3811 if (g == NULL)
3812 return FALSE;
3813 g->global_gotsym = NULL;
3814 g->global_gotno = 0;
3815 g->tls_gotno = 0;
3816 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3817 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3818 g->bfd2got = NULL;
3819 g->next = NULL;
3820 g->tls_ldm_offset = MINUS_ONE;
3821 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3822 mips_elf_got_entry_eq, NULL);
3823 if (g->got_entries == NULL)
3824 return FALSE;
3825 mips_elf_section_data (s)->u.got_info = g;
3826 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3827 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3828
3829 /* VxWorks also needs a .got.plt section. */
3830 if (htab->is_vxworks)
3831 {
3832 s = bfd_make_section_with_flags (abfd, ".got.plt",
3833 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3835 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3836 return FALSE;
3837
3838 htab->sgotplt = s;
3839 }
3840 return TRUE;
3841 }
3842 \f
3843 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3844 __GOTT_INDEX__ symbols. These symbols are only special for
3845 shared objects; they are not used in executables. */
3846
3847 static bfd_boolean
3848 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3849 {
3850 return (mips_elf_hash_table (info)->is_vxworks
3851 && info->shared
3852 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3853 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3854 }
3855 \f
3856 /* Calculate the value produced by the RELOCATION (which comes from
3857 the INPUT_BFD). The ADDEND is the addend to use for this
3858 RELOCATION; RELOCATION->R_ADDEND is ignored.
3859
3860 The result of the relocation calculation is stored in VALUEP.
3861 REQUIRE_JALXP indicates whether or not the opcode used with this
3862 relocation must be JALX.
3863
3864 This function returns bfd_reloc_continue if the caller need take no
3865 further action regarding this relocation, bfd_reloc_notsupported if
3866 something goes dramatically wrong, bfd_reloc_overflow if an
3867 overflow occurs, and bfd_reloc_ok to indicate success. */
3868
3869 static bfd_reloc_status_type
3870 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3871 asection *input_section,
3872 struct bfd_link_info *info,
3873 const Elf_Internal_Rela *relocation,
3874 bfd_vma addend, reloc_howto_type *howto,
3875 Elf_Internal_Sym *local_syms,
3876 asection **local_sections, bfd_vma *valuep,
3877 const char **namep, bfd_boolean *require_jalxp,
3878 bfd_boolean save_addend)
3879 {
3880 /* The eventual value we will return. */
3881 bfd_vma value;
3882 /* The address of the symbol against which the relocation is
3883 occurring. */
3884 bfd_vma symbol = 0;
3885 /* The final GP value to be used for the relocatable, executable, or
3886 shared object file being produced. */
3887 bfd_vma gp = MINUS_ONE;
3888 /* The place (section offset or address) of the storage unit being
3889 relocated. */
3890 bfd_vma p;
3891 /* The value of GP used to create the relocatable object. */
3892 bfd_vma gp0 = MINUS_ONE;
3893 /* The offset into the global offset table at which the address of
3894 the relocation entry symbol, adjusted by the addend, resides
3895 during execution. */
3896 bfd_vma g = MINUS_ONE;
3897 /* The section in which the symbol referenced by the relocation is
3898 located. */
3899 asection *sec = NULL;
3900 struct mips_elf_link_hash_entry *h = NULL;
3901 /* TRUE if the symbol referred to by this relocation is a local
3902 symbol. */
3903 bfd_boolean local_p, was_local_p;
3904 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3905 bfd_boolean gp_disp_p = FALSE;
3906 /* TRUE if the symbol referred to by this relocation is
3907 "__gnu_local_gp". */
3908 bfd_boolean gnu_local_gp_p = FALSE;
3909 Elf_Internal_Shdr *symtab_hdr;
3910 size_t extsymoff;
3911 unsigned long r_symndx;
3912 int r_type;
3913 /* TRUE if overflow occurred during the calculation of the
3914 relocation value. */
3915 bfd_boolean overflowed_p;
3916 /* TRUE if this relocation refers to a MIPS16 function. */
3917 bfd_boolean target_is_16_bit_code_p = FALSE;
3918 struct mips_elf_link_hash_table *htab;
3919 bfd *dynobj;
3920
3921 dynobj = elf_hash_table (info)->dynobj;
3922 htab = mips_elf_hash_table (info);
3923
3924 /* Parse the relocation. */
3925 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3926 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3927 p = (input_section->output_section->vma
3928 + input_section->output_offset
3929 + relocation->r_offset);
3930
3931 /* Assume that there will be no overflow. */
3932 overflowed_p = FALSE;
3933
3934 /* Figure out whether or not the symbol is local, and get the offset
3935 used in the array of hash table entries. */
3936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3937 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3938 local_sections, FALSE);
3939 was_local_p = local_p;
3940 if (! elf_bad_symtab (input_bfd))
3941 extsymoff = symtab_hdr->sh_info;
3942 else
3943 {
3944 /* The symbol table does not follow the rule that local symbols
3945 must come before globals. */
3946 extsymoff = 0;
3947 }
3948
3949 /* Figure out the value of the symbol. */
3950 if (local_p)
3951 {
3952 Elf_Internal_Sym *sym;
3953
3954 sym = local_syms + r_symndx;
3955 sec = local_sections[r_symndx];
3956
3957 symbol = sec->output_section->vma + sec->output_offset;
3958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3959 || (sec->flags & SEC_MERGE))
3960 symbol += sym->st_value;
3961 if ((sec->flags & SEC_MERGE)
3962 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3963 {
3964 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3965 addend -= symbol;
3966 addend += sec->output_section->vma + sec->output_offset;
3967 }
3968
3969 /* MIPS16 text labels should be treated as odd. */
3970 if (sym->st_other == STO_MIPS16)
3971 ++symbol;
3972
3973 /* Record the name of this symbol, for our caller. */
3974 *namep = bfd_elf_string_from_elf_section (input_bfd,
3975 symtab_hdr->sh_link,
3976 sym->st_name);
3977 if (*namep == '\0')
3978 *namep = bfd_section_name (input_bfd, sec);
3979
3980 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3981 }
3982 else
3983 {
3984 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3985
3986 /* For global symbols we look up the symbol in the hash-table. */
3987 h = ((struct mips_elf_link_hash_entry *)
3988 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3989 /* Find the real hash-table entry for this symbol. */
3990 while (h->root.root.type == bfd_link_hash_indirect
3991 || h->root.root.type == bfd_link_hash_warning)
3992 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3993
3994 /* Record the name of this symbol, for our caller. */
3995 *namep = h->root.root.root.string;
3996
3997 /* See if this is the special _gp_disp symbol. Note that such a
3998 symbol must always be a global symbol. */
3999 if (strcmp (*namep, "_gp_disp") == 0
4000 && ! NEWABI_P (input_bfd))
4001 {
4002 /* Relocations against _gp_disp are permitted only with
4003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4005 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4006 return bfd_reloc_notsupported;
4007
4008 gp_disp_p = TRUE;
4009 }
4010 /* See if this is the special _gp symbol. Note that such a
4011 symbol must always be a global symbol. */
4012 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4013 gnu_local_gp_p = TRUE;
4014
4015
4016 /* If this symbol is defined, calculate its address. Note that
4017 _gp_disp is a magic symbol, always implicitly defined by the
4018 linker, so it's inappropriate to check to see whether or not
4019 its defined. */
4020 else if ((h->root.root.type == bfd_link_hash_defined
4021 || h->root.root.type == bfd_link_hash_defweak)
4022 && h->root.root.u.def.section)
4023 {
4024 sec = h->root.root.u.def.section;
4025 if (sec->output_section)
4026 symbol = (h->root.root.u.def.value
4027 + sec->output_section->vma
4028 + sec->output_offset);
4029 else
4030 symbol = h->root.root.u.def.value;
4031 }
4032 else if (h->root.root.type == bfd_link_hash_undefweak)
4033 /* We allow relocations against undefined weak symbols, giving
4034 it the value zero, so that you can undefined weak functions
4035 and check to see if they exist by looking at their
4036 addresses. */
4037 symbol = 0;
4038 else if (info->unresolved_syms_in_objects == RM_IGNORE
4039 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4040 symbol = 0;
4041 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4042 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4043 {
4044 /* If this is a dynamic link, we should have created a
4045 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4046 in in _bfd_mips_elf_create_dynamic_sections.
4047 Otherwise, we should define the symbol with a value of 0.
4048 FIXME: It should probably get into the symbol table
4049 somehow as well. */
4050 BFD_ASSERT (! info->shared);
4051 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4052 symbol = 0;
4053 }
4054 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4055 {
4056 /* This is an optional symbol - an Irix specific extension to the
4057 ELF spec. Ignore it for now.
4058 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4059 than simply ignoring them, but we do not handle this for now.
4060 For information see the "64-bit ELF Object File Specification"
4061 which is available from here:
4062 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4063 symbol = 0;
4064 }
4065 else
4066 {
4067 if (! ((*info->callbacks->undefined_symbol)
4068 (info, h->root.root.root.string, input_bfd,
4069 input_section, relocation->r_offset,
4070 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4071 || ELF_ST_VISIBILITY (h->root.other))))
4072 return bfd_reloc_undefined;
4073 symbol = 0;
4074 }
4075
4076 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4077 }
4078
4079 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4080 need to redirect the call to the stub, unless we're already *in*
4081 a stub. */
4082 if (r_type != R_MIPS16_26 && !info->relocatable
4083 && ((h != NULL && h->fn_stub != NULL)
4084 || (local_p
4085 && elf_tdata (input_bfd)->local_stubs != NULL
4086 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4087 && !mips16_stub_section_p (input_bfd, input_section))
4088 {
4089 /* This is a 32- or 64-bit call to a 16-bit function. We should
4090 have already noticed that we were going to need the
4091 stub. */
4092 if (local_p)
4093 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4094 else
4095 {
4096 BFD_ASSERT (h->need_fn_stub);
4097 sec = h->fn_stub;
4098 }
4099
4100 symbol = sec->output_section->vma + sec->output_offset;
4101 /* The target is 16-bit, but the stub isn't. */
4102 target_is_16_bit_code_p = FALSE;
4103 }
4104 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4105 need to redirect the call to the stub. */
4106 else if (r_type == R_MIPS16_26 && !info->relocatable
4107 && h != NULL
4108 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4109 || (local_p
4110 && elf_tdata (input_bfd)->local_call_stubs != NULL
4111 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4112 && !target_is_16_bit_code_p)
4113 {
4114 if (local_p)
4115 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4116 else
4117 {
4118 /* If both call_stub and call_fp_stub are defined, we can figure
4119 out which one to use by checking which one appears in the input
4120 file. */
4121 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4122 {
4123 asection *o;
4124
4125 sec = NULL;
4126 for (o = input_bfd->sections; o != NULL; o = o->next)
4127 {
4128 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4129 {
4130 sec = h->call_fp_stub;
4131 break;
4132 }
4133 }
4134 if (sec == NULL)
4135 sec = h->call_stub;
4136 }
4137 else if (h->call_stub != NULL)
4138 sec = h->call_stub;
4139 else
4140 sec = h->call_fp_stub;
4141 }
4142
4143 BFD_ASSERT (sec->size > 0);
4144 symbol = sec->output_section->vma + sec->output_offset;
4145 }
4146
4147 /* Calls from 16-bit code to 32-bit code and vice versa require the
4148 special jalx instruction. */
4149 *require_jalxp = (!info->relocatable
4150 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4151 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4152
4153 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4154 local_sections, TRUE);
4155
4156 /* If we haven't already determined the GOT offset, or the GP value,
4157 and we're going to need it, get it now. */
4158 switch (r_type)
4159 {
4160 case R_MIPS_GOT_PAGE:
4161 case R_MIPS_GOT_OFST:
4162 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4163 bind locally. */
4164 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4165 if (local_p || r_type == R_MIPS_GOT_OFST)
4166 break;
4167 /* Fall through. */
4168
4169 case R_MIPS_CALL16:
4170 case R_MIPS_GOT16:
4171 case R_MIPS_GOT_DISP:
4172 case R_MIPS_GOT_HI16:
4173 case R_MIPS_CALL_HI16:
4174 case R_MIPS_GOT_LO16:
4175 case R_MIPS_CALL_LO16:
4176 case R_MIPS_TLS_GD:
4177 case R_MIPS_TLS_GOTTPREL:
4178 case R_MIPS_TLS_LDM:
4179 /* Find the index into the GOT where this value is located. */
4180 if (r_type == R_MIPS_TLS_LDM)
4181 {
4182 g = mips_elf_local_got_index (abfd, input_bfd, info,
4183 sec, 0, 0, NULL, r_type);
4184 if (g == MINUS_ONE)
4185 return bfd_reloc_outofrange;
4186 }
4187 else if (!local_p)
4188 {
4189 /* On VxWorks, CALL relocations should refer to the .got.plt
4190 entry, which is initialized to point at the PLT stub. */
4191 if (htab->is_vxworks
4192 && (r_type == R_MIPS_CALL_HI16
4193 || r_type == R_MIPS_CALL_LO16
4194 || r_type == R_MIPS_CALL16))
4195 {
4196 BFD_ASSERT (addend == 0);
4197 BFD_ASSERT (h->root.needs_plt);
4198 g = mips_elf_gotplt_index (info, &h->root);
4199 }
4200 else
4201 {
4202 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4203 GOT_PAGE relocation that decays to GOT_DISP because the
4204 symbol turns out to be global. The addend is then added
4205 as GOT_OFST. */
4206 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4207 g = mips_elf_global_got_index (dynobj, input_bfd,
4208 &h->root, r_type, info);
4209 if (h->tls_type == GOT_NORMAL
4210 && (! elf_hash_table(info)->dynamic_sections_created
4211 || (info->shared
4212 && (info->symbolic || h->root.forced_local)
4213 && h->root.def_regular)))
4214 {
4215 /* This is a static link or a -Bsymbolic link. The
4216 symbol is defined locally, or was forced to be local.
4217 We must initialize this entry in the GOT. */
4218 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4219 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4220 }
4221 }
4222 }
4223 else if (!htab->is_vxworks
4224 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4225 /* The calculation below does not involve "g". */
4226 break;
4227 else
4228 {
4229 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4230 symbol + addend, r_symndx, h, r_type);
4231 if (g == MINUS_ONE)
4232 return bfd_reloc_outofrange;
4233 }
4234
4235 /* Convert GOT indices to actual offsets. */
4236 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4237 break;
4238
4239 case R_MIPS_HI16:
4240 case R_MIPS_LO16:
4241 case R_MIPS_GPREL16:
4242 case R_MIPS_GPREL32:
4243 case R_MIPS_LITERAL:
4244 case R_MIPS16_HI16:
4245 case R_MIPS16_LO16:
4246 case R_MIPS16_GPREL:
4247 gp0 = _bfd_get_gp_value (input_bfd);
4248 gp = _bfd_get_gp_value (abfd);
4249 if (dynobj)
4250 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4251 input_bfd);
4252 break;
4253
4254 default:
4255 break;
4256 }
4257
4258 if (gnu_local_gp_p)
4259 symbol = gp;
4260
4261 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4262 symbols are resolved by the loader. Add them to .rela.dyn. */
4263 if (h != NULL && is_gott_symbol (info, &h->root))
4264 {
4265 Elf_Internal_Rela outrel;
4266 bfd_byte *loc;
4267 asection *s;
4268
4269 s = mips_elf_rel_dyn_section (info, FALSE);
4270 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4271
4272 outrel.r_offset = (input_section->output_section->vma
4273 + input_section->output_offset
4274 + relocation->r_offset);
4275 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4276 outrel.r_addend = addend;
4277 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4278 *valuep = 0;
4279 return bfd_reloc_ok;
4280 }
4281
4282 /* Figure out what kind of relocation is being performed. */
4283 switch (r_type)
4284 {
4285 case R_MIPS_NONE:
4286 return bfd_reloc_continue;
4287
4288 case R_MIPS_16:
4289 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4290 overflowed_p = mips_elf_overflow_p (value, 16);
4291 break;
4292
4293 case R_MIPS_32:
4294 case R_MIPS_REL32:
4295 case R_MIPS_64:
4296 if ((info->shared
4297 || (!htab->is_vxworks
4298 && htab->root.dynamic_sections_created
4299 && h != NULL
4300 && h->root.def_dynamic
4301 && !h->root.def_regular))
4302 && r_symndx != 0
4303 && (input_section->flags & SEC_ALLOC) != 0)
4304 {
4305 /* If we're creating a shared library, or this relocation is
4306 against a symbol in a shared library, then we can't know
4307 where the symbol will end up. So, we create a relocation
4308 record in the output, and leave the job up to the dynamic
4309 linker.
4310
4311 In VxWorks executables, references to external symbols
4312 are handled using copy relocs or PLT stubs, so there's
4313 no need to add a dynamic relocation here. */
4314 value = addend;
4315 if (!mips_elf_create_dynamic_relocation (abfd,
4316 info,
4317 relocation,
4318 h,
4319 sec,
4320 symbol,
4321 &value,
4322 input_section))
4323 return bfd_reloc_undefined;
4324 }
4325 else
4326 {
4327 if (r_type != R_MIPS_REL32)
4328 value = symbol + addend;
4329 else
4330 value = addend;
4331 }
4332 value &= howto->dst_mask;
4333 break;
4334
4335 case R_MIPS_PC32:
4336 value = symbol + addend - p;
4337 value &= howto->dst_mask;
4338 break;
4339
4340 case R_MIPS16_26:
4341 /* The calculation for R_MIPS16_26 is just the same as for an
4342 R_MIPS_26. It's only the storage of the relocated field into
4343 the output file that's different. That's handled in
4344 mips_elf_perform_relocation. So, we just fall through to the
4345 R_MIPS_26 case here. */
4346 case R_MIPS_26:
4347 if (local_p)
4348 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4349 else
4350 {
4351 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4352 if (h->root.root.type != bfd_link_hash_undefweak)
4353 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4354 }
4355 value &= howto->dst_mask;
4356 break;
4357
4358 case R_MIPS_TLS_DTPREL_HI16:
4359 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4360 & howto->dst_mask);
4361 break;
4362
4363 case R_MIPS_TLS_DTPREL_LO16:
4364 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4365 break;
4366
4367 case R_MIPS_TLS_TPREL_HI16:
4368 value = (mips_elf_high (addend + symbol - tprel_base (info))
4369 & howto->dst_mask);
4370 break;
4371
4372 case R_MIPS_TLS_TPREL_LO16:
4373 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4374 break;
4375
4376 case R_MIPS_HI16:
4377 case R_MIPS16_HI16:
4378 if (!gp_disp_p)
4379 {
4380 value = mips_elf_high (addend + symbol);
4381 value &= howto->dst_mask;
4382 }
4383 else
4384 {
4385 /* For MIPS16 ABI code we generate this sequence
4386 0: li $v0,%hi(_gp_disp)
4387 4: addiupc $v1,%lo(_gp_disp)
4388 8: sll $v0,16
4389 12: addu $v0,$v1
4390 14: move $gp,$v0
4391 So the offsets of hi and lo relocs are the same, but the
4392 $pc is four higher than $t9 would be, so reduce
4393 both reloc addends by 4. */
4394 if (r_type == R_MIPS16_HI16)
4395 value = mips_elf_high (addend + gp - p - 4);
4396 else
4397 value = mips_elf_high (addend + gp - p);
4398 overflowed_p = mips_elf_overflow_p (value, 16);
4399 }
4400 break;
4401
4402 case R_MIPS_LO16:
4403 case R_MIPS16_LO16:
4404 if (!gp_disp_p)
4405 value = (symbol + addend) & howto->dst_mask;
4406 else
4407 {
4408 /* See the comment for R_MIPS16_HI16 above for the reason
4409 for this conditional. */
4410 if (r_type == R_MIPS16_LO16)
4411 value = addend + gp - p;
4412 else
4413 value = addend + gp - p + 4;
4414 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4415 for overflow. But, on, say, IRIX5, relocations against
4416 _gp_disp are normally generated from the .cpload
4417 pseudo-op. It generates code that normally looks like
4418 this:
4419
4420 lui $gp,%hi(_gp_disp)
4421 addiu $gp,$gp,%lo(_gp_disp)
4422 addu $gp,$gp,$t9
4423
4424 Here $t9 holds the address of the function being called,
4425 as required by the MIPS ELF ABI. The R_MIPS_LO16
4426 relocation can easily overflow in this situation, but the
4427 R_MIPS_HI16 relocation will handle the overflow.
4428 Therefore, we consider this a bug in the MIPS ABI, and do
4429 not check for overflow here. */
4430 }
4431 break;
4432
4433 case R_MIPS_LITERAL:
4434 /* Because we don't merge literal sections, we can handle this
4435 just like R_MIPS_GPREL16. In the long run, we should merge
4436 shared literals, and then we will need to additional work
4437 here. */
4438
4439 /* Fall through. */
4440
4441 case R_MIPS16_GPREL:
4442 /* The R_MIPS16_GPREL performs the same calculation as
4443 R_MIPS_GPREL16, but stores the relocated bits in a different
4444 order. We don't need to do anything special here; the
4445 differences are handled in mips_elf_perform_relocation. */
4446 case R_MIPS_GPREL16:
4447 /* Only sign-extend the addend if it was extracted from the
4448 instruction. If the addend was separate, leave it alone,
4449 otherwise we may lose significant bits. */
4450 if (howto->partial_inplace)
4451 addend = _bfd_mips_elf_sign_extend (addend, 16);
4452 value = symbol + addend - gp;
4453 /* If the symbol was local, any earlier relocatable links will
4454 have adjusted its addend with the gp offset, so compensate
4455 for that now. Don't do it for symbols forced local in this
4456 link, though, since they won't have had the gp offset applied
4457 to them before. */
4458 if (was_local_p)
4459 value += gp0;
4460 overflowed_p = mips_elf_overflow_p (value, 16);
4461 break;
4462
4463 case R_MIPS_GOT16:
4464 case R_MIPS_CALL16:
4465 /* VxWorks does not have separate local and global semantics for
4466 R_MIPS_GOT16; every relocation evaluates to "G". */
4467 if (!htab->is_vxworks && local_p)
4468 {
4469 bfd_boolean forced;
4470
4471 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4472 local_sections, FALSE);
4473 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4474 symbol + addend, forced);
4475 if (value == MINUS_ONE)
4476 return bfd_reloc_outofrange;
4477 value
4478 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4479 overflowed_p = mips_elf_overflow_p (value, 16);
4480 break;
4481 }
4482
4483 /* Fall through. */
4484
4485 case R_MIPS_TLS_GD:
4486 case R_MIPS_TLS_GOTTPREL:
4487 case R_MIPS_TLS_LDM:
4488 case R_MIPS_GOT_DISP:
4489 got_disp:
4490 value = g;
4491 overflowed_p = mips_elf_overflow_p (value, 16);
4492 break;
4493
4494 case R_MIPS_GPREL32:
4495 value = (addend + symbol + gp0 - gp);
4496 if (!save_addend)
4497 value &= howto->dst_mask;
4498 break;
4499
4500 case R_MIPS_PC16:
4501 case R_MIPS_GNU_REL16_S2:
4502 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4503 overflowed_p = mips_elf_overflow_p (value, 18);
4504 value >>= howto->rightshift;
4505 value &= howto->dst_mask;
4506 break;
4507
4508 case R_MIPS_GOT_HI16:
4509 case R_MIPS_CALL_HI16:
4510 /* We're allowed to handle these two relocations identically.
4511 The dynamic linker is allowed to handle the CALL relocations
4512 differently by creating a lazy evaluation stub. */
4513 value = g;
4514 value = mips_elf_high (value);
4515 value &= howto->dst_mask;
4516 break;
4517
4518 case R_MIPS_GOT_LO16:
4519 case R_MIPS_CALL_LO16:
4520 value = g & howto->dst_mask;
4521 break;
4522
4523 case R_MIPS_GOT_PAGE:
4524 /* GOT_PAGE relocations that reference non-local symbols decay
4525 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4526 0. */
4527 if (! local_p)
4528 goto got_disp;
4529 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4530 symbol + addend, NULL);
4531 if (value == MINUS_ONE)
4532 return bfd_reloc_outofrange;
4533 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4534 overflowed_p = mips_elf_overflow_p (value, 16);
4535 break;
4536
4537 case R_MIPS_GOT_OFST:
4538 if (local_p)
4539 mips_elf_got_page (abfd, input_bfd, info, sec,
4540 symbol + addend, &value);
4541 else
4542 value = addend;
4543 overflowed_p = mips_elf_overflow_p (value, 16);
4544 break;
4545
4546 case R_MIPS_SUB:
4547 value = symbol - addend;
4548 value &= howto->dst_mask;
4549 break;
4550
4551 case R_MIPS_HIGHER:
4552 value = mips_elf_higher (addend + symbol);
4553 value &= howto->dst_mask;
4554 break;
4555
4556 case R_MIPS_HIGHEST:
4557 value = mips_elf_highest (addend + symbol);
4558 value &= howto->dst_mask;
4559 break;
4560
4561 case R_MIPS_SCN_DISP:
4562 value = symbol + addend - sec->output_offset;
4563 value &= howto->dst_mask;
4564 break;
4565
4566 case R_MIPS_JALR:
4567 /* This relocation is only a hint. In some cases, we optimize
4568 it into a bal instruction. But we don't try to optimize
4569 branches to the PLT; that will wind up wasting time. */
4570 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4571 return bfd_reloc_continue;
4572 value = symbol + addend;
4573 break;
4574
4575 case R_MIPS_PJUMP:
4576 case R_MIPS_GNU_VTINHERIT:
4577 case R_MIPS_GNU_VTENTRY:
4578 /* We don't do anything with these at present. */
4579 return bfd_reloc_continue;
4580
4581 default:
4582 /* An unrecognized relocation type. */
4583 return bfd_reloc_notsupported;
4584 }
4585
4586 /* Store the VALUE for our caller. */
4587 *valuep = value;
4588 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4589 }
4590
4591 /* Obtain the field relocated by RELOCATION. */
4592
4593 static bfd_vma
4594 mips_elf_obtain_contents (reloc_howto_type *howto,
4595 const Elf_Internal_Rela *relocation,
4596 bfd *input_bfd, bfd_byte *contents)
4597 {
4598 bfd_vma x;
4599 bfd_byte *location = contents + relocation->r_offset;
4600
4601 /* Obtain the bytes. */
4602 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4603
4604 return x;
4605 }
4606
4607 /* It has been determined that the result of the RELOCATION is the
4608 VALUE. Use HOWTO to place VALUE into the output file at the
4609 appropriate position. The SECTION is the section to which the
4610 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4611 for the relocation must be either JAL or JALX, and it is
4612 unconditionally converted to JALX.
4613
4614 Returns FALSE if anything goes wrong. */
4615
4616 static bfd_boolean
4617 mips_elf_perform_relocation (struct bfd_link_info *info,
4618 reloc_howto_type *howto,
4619 const Elf_Internal_Rela *relocation,
4620 bfd_vma value, bfd *input_bfd,
4621 asection *input_section, bfd_byte *contents,
4622 bfd_boolean require_jalx)
4623 {
4624 bfd_vma x;
4625 bfd_byte *location;
4626 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4627
4628 /* Figure out where the relocation is occurring. */
4629 location = contents + relocation->r_offset;
4630
4631 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4632
4633 /* Obtain the current value. */
4634 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4635
4636 /* Clear the field we are setting. */
4637 x &= ~howto->dst_mask;
4638
4639 /* Set the field. */
4640 x |= (value & howto->dst_mask);
4641
4642 /* If required, turn JAL into JALX. */
4643 if (require_jalx)
4644 {
4645 bfd_boolean ok;
4646 bfd_vma opcode = x >> 26;
4647 bfd_vma jalx_opcode;
4648
4649 /* Check to see if the opcode is already JAL or JALX. */
4650 if (r_type == R_MIPS16_26)
4651 {
4652 ok = ((opcode == 0x6) || (opcode == 0x7));
4653 jalx_opcode = 0x7;
4654 }
4655 else
4656 {
4657 ok = ((opcode == 0x3) || (opcode == 0x1d));
4658 jalx_opcode = 0x1d;
4659 }
4660
4661 /* If the opcode is not JAL or JALX, there's a problem. */
4662 if (!ok)
4663 {
4664 (*_bfd_error_handler)
4665 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4666 input_bfd,
4667 input_section,
4668 (unsigned long) relocation->r_offset);
4669 bfd_set_error (bfd_error_bad_value);
4670 return FALSE;
4671 }
4672
4673 /* Make this the JALX opcode. */
4674 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4675 }
4676
4677 /* On the RM9000, bal is faster than jal, because bal uses branch
4678 prediction hardware. If we are linking for the RM9000, and we
4679 see jal, and bal fits, use it instead. Note that this
4680 transformation should be safe for all architectures. */
4681 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4682 && !info->relocatable
4683 && !require_jalx
4684 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4685 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4686 {
4687 bfd_vma addr;
4688 bfd_vma dest;
4689 bfd_signed_vma off;
4690
4691 addr = (input_section->output_section->vma
4692 + input_section->output_offset
4693 + relocation->r_offset
4694 + 4);
4695 if (r_type == R_MIPS_26)
4696 dest = (value << 2) | ((addr >> 28) << 28);
4697 else
4698 dest = value;
4699 off = dest - addr;
4700 if (off <= 0x1ffff && off >= -0x20000)
4701 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4702 }
4703
4704 /* Put the value into the output. */
4705 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4706
4707 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4708 location);
4709
4710 return TRUE;
4711 }
4712
4713 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4714
4715 static bfd_boolean
4716 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4717 {
4718 const char *name = bfd_get_section_name (abfd, section);
4719
4720 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4721 }
4722 \f
4723 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4724
4725 static void
4726 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4727 unsigned int n)
4728 {
4729 asection *s;
4730 struct mips_elf_link_hash_table *htab;
4731
4732 htab = mips_elf_hash_table (info);
4733 s = mips_elf_rel_dyn_section (info, FALSE);
4734 BFD_ASSERT (s != NULL);
4735
4736 if (htab->is_vxworks)
4737 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4738 else
4739 {
4740 if (s->size == 0)
4741 {
4742 /* Make room for a null element. */
4743 s->size += MIPS_ELF_REL_SIZE (abfd);
4744 ++s->reloc_count;
4745 }
4746 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4747 }
4748 }
4749
4750 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4751 is the original relocation, which is now being transformed into a
4752 dynamic relocation. The ADDENDP is adjusted if necessary; the
4753 caller should store the result in place of the original addend. */
4754
4755 static bfd_boolean
4756 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4757 struct bfd_link_info *info,
4758 const Elf_Internal_Rela *rel,
4759 struct mips_elf_link_hash_entry *h,
4760 asection *sec, bfd_vma symbol,
4761 bfd_vma *addendp, asection *input_section)
4762 {
4763 Elf_Internal_Rela outrel[3];
4764 asection *sreloc;
4765 bfd *dynobj;
4766 int r_type;
4767 long indx;
4768 bfd_boolean defined_p;
4769 struct mips_elf_link_hash_table *htab;
4770
4771 htab = mips_elf_hash_table (info);
4772 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4773 dynobj = elf_hash_table (info)->dynobj;
4774 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4775 BFD_ASSERT (sreloc != NULL);
4776 BFD_ASSERT (sreloc->contents != NULL);
4777 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4778 < sreloc->size);
4779
4780 outrel[0].r_offset =
4781 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4782 outrel[1].r_offset =
4783 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4784 outrel[2].r_offset =
4785 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4786
4787 if (outrel[0].r_offset == MINUS_ONE)
4788 /* The relocation field has been deleted. */
4789 return TRUE;
4790
4791 if (outrel[0].r_offset == MINUS_TWO)
4792 {
4793 /* The relocation field has been converted into a relative value of
4794 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4795 the field to be fully relocated, so add in the symbol's value. */
4796 *addendp += symbol;
4797 return TRUE;
4798 }
4799
4800 /* We must now calculate the dynamic symbol table index to use
4801 in the relocation. */
4802 if (h != NULL
4803 && (!h->root.def_regular
4804 || (info->shared && !info->symbolic && !h->root.forced_local)))
4805 {
4806 indx = h->root.dynindx;
4807 if (SGI_COMPAT (output_bfd))
4808 defined_p = h->root.def_regular;
4809 else
4810 /* ??? glibc's ld.so just adds the final GOT entry to the
4811 relocation field. It therefore treats relocs against
4812 defined symbols in the same way as relocs against
4813 undefined symbols. */
4814 defined_p = FALSE;
4815 }
4816 else
4817 {
4818 if (sec != NULL && bfd_is_abs_section (sec))
4819 indx = 0;
4820 else if (sec == NULL || sec->owner == NULL)
4821 {
4822 bfd_set_error (bfd_error_bad_value);
4823 return FALSE;
4824 }
4825 else
4826 {
4827 indx = elf_section_data (sec->output_section)->dynindx;
4828 if (indx == 0)
4829 {
4830 asection *osec = htab->root.text_index_section;
4831 indx = elf_section_data (osec)->dynindx;
4832 }
4833 if (indx == 0)
4834 abort ();
4835 }
4836
4837 /* Instead of generating a relocation using the section
4838 symbol, we may as well make it a fully relative
4839 relocation. We want to avoid generating relocations to
4840 local symbols because we used to generate them
4841 incorrectly, without adding the original symbol value,
4842 which is mandated by the ABI for section symbols. In
4843 order to give dynamic loaders and applications time to
4844 phase out the incorrect use, we refrain from emitting
4845 section-relative relocations. It's not like they're
4846 useful, after all. This should be a bit more efficient
4847 as well. */
4848 /* ??? Although this behavior is compatible with glibc's ld.so,
4849 the ABI says that relocations against STN_UNDEF should have
4850 a symbol value of 0. Irix rld honors this, so relocations
4851 against STN_UNDEF have no effect. */
4852 if (!SGI_COMPAT (output_bfd))
4853 indx = 0;
4854 defined_p = TRUE;
4855 }
4856
4857 /* If the relocation was previously an absolute relocation and
4858 this symbol will not be referred to by the relocation, we must
4859 adjust it by the value we give it in the dynamic symbol table.
4860 Otherwise leave the job up to the dynamic linker. */
4861 if (defined_p && r_type != R_MIPS_REL32)
4862 *addendp += symbol;
4863
4864 if (htab->is_vxworks)
4865 /* VxWorks uses non-relative relocations for this. */
4866 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4867 else
4868 /* The relocation is always an REL32 relocation because we don't
4869 know where the shared library will wind up at load-time. */
4870 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4871 R_MIPS_REL32);
4872
4873 /* For strict adherence to the ABI specification, we should
4874 generate a R_MIPS_64 relocation record by itself before the
4875 _REL32/_64 record as well, such that the addend is read in as
4876 a 64-bit value (REL32 is a 32-bit relocation, after all).
4877 However, since none of the existing ELF64 MIPS dynamic
4878 loaders seems to care, we don't waste space with these
4879 artificial relocations. If this turns out to not be true,
4880 mips_elf_allocate_dynamic_relocation() should be tweaked so
4881 as to make room for a pair of dynamic relocations per
4882 invocation if ABI_64_P, and here we should generate an
4883 additional relocation record with R_MIPS_64 by itself for a
4884 NULL symbol before this relocation record. */
4885 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4886 ABI_64_P (output_bfd)
4887 ? R_MIPS_64
4888 : R_MIPS_NONE);
4889 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4890
4891 /* Adjust the output offset of the relocation to reference the
4892 correct location in the output file. */
4893 outrel[0].r_offset += (input_section->output_section->vma
4894 + input_section->output_offset);
4895 outrel[1].r_offset += (input_section->output_section->vma
4896 + input_section->output_offset);
4897 outrel[2].r_offset += (input_section->output_section->vma
4898 + input_section->output_offset);
4899
4900 /* Put the relocation back out. We have to use the special
4901 relocation outputter in the 64-bit case since the 64-bit
4902 relocation format is non-standard. */
4903 if (ABI_64_P (output_bfd))
4904 {
4905 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4906 (output_bfd, &outrel[0],
4907 (sreloc->contents
4908 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4909 }
4910 else if (htab->is_vxworks)
4911 {
4912 /* VxWorks uses RELA rather than REL dynamic relocations. */
4913 outrel[0].r_addend = *addendp;
4914 bfd_elf32_swap_reloca_out
4915 (output_bfd, &outrel[0],
4916 (sreloc->contents
4917 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4918 }
4919 else
4920 bfd_elf32_swap_reloc_out
4921 (output_bfd, &outrel[0],
4922 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4923
4924 /* We've now added another relocation. */
4925 ++sreloc->reloc_count;
4926
4927 /* Make sure the output section is writable. The dynamic linker
4928 will be writing to it. */
4929 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4930 |= SHF_WRITE;
4931
4932 /* On IRIX5, make an entry of compact relocation info. */
4933 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4934 {
4935 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4936 bfd_byte *cr;
4937
4938 if (scpt)
4939 {
4940 Elf32_crinfo cptrel;
4941
4942 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4943 cptrel.vaddr = (rel->r_offset
4944 + input_section->output_section->vma
4945 + input_section->output_offset);
4946 if (r_type == R_MIPS_REL32)
4947 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4948 else
4949 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4950 mips_elf_set_cr_dist2to (cptrel, 0);
4951 cptrel.konst = *addendp;
4952
4953 cr = (scpt->contents
4954 + sizeof (Elf32_External_compact_rel));
4955 mips_elf_set_cr_relvaddr (cptrel, 0);
4956 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4957 ((Elf32_External_crinfo *) cr
4958 + scpt->reloc_count));
4959 ++scpt->reloc_count;
4960 }
4961 }
4962
4963 /* If we've written this relocation for a readonly section,
4964 we need to set DF_TEXTREL again, so that we do not delete the
4965 DT_TEXTREL tag. */
4966 if (MIPS_ELF_READONLY_SECTION (input_section))
4967 info->flags |= DF_TEXTREL;
4968
4969 return TRUE;
4970 }
4971 \f
4972 /* Return the MACH for a MIPS e_flags value. */
4973
4974 unsigned long
4975 _bfd_elf_mips_mach (flagword flags)
4976 {
4977 switch (flags & EF_MIPS_MACH)
4978 {
4979 case E_MIPS_MACH_3900:
4980 return bfd_mach_mips3900;
4981
4982 case E_MIPS_MACH_4010:
4983 return bfd_mach_mips4010;
4984
4985 case E_MIPS_MACH_4100:
4986 return bfd_mach_mips4100;
4987
4988 case E_MIPS_MACH_4111:
4989 return bfd_mach_mips4111;
4990
4991 case E_MIPS_MACH_4120:
4992 return bfd_mach_mips4120;
4993
4994 case E_MIPS_MACH_4650:
4995 return bfd_mach_mips4650;
4996
4997 case E_MIPS_MACH_5400:
4998 return bfd_mach_mips5400;
4999
5000 case E_MIPS_MACH_5500:
5001 return bfd_mach_mips5500;
5002
5003 case E_MIPS_MACH_9000:
5004 return bfd_mach_mips9000;
5005
5006 case E_MIPS_MACH_SB1:
5007 return bfd_mach_mips_sb1;
5008
5009 default:
5010 switch (flags & EF_MIPS_ARCH)
5011 {
5012 default:
5013 case E_MIPS_ARCH_1:
5014 return bfd_mach_mips3000;
5015
5016 case E_MIPS_ARCH_2:
5017 return bfd_mach_mips6000;
5018
5019 case E_MIPS_ARCH_3:
5020 return bfd_mach_mips4000;
5021
5022 case E_MIPS_ARCH_4:
5023 return bfd_mach_mips8000;
5024
5025 case E_MIPS_ARCH_5:
5026 return bfd_mach_mips5;
5027
5028 case E_MIPS_ARCH_32:
5029 return bfd_mach_mipsisa32;
5030
5031 case E_MIPS_ARCH_64:
5032 return bfd_mach_mipsisa64;
5033
5034 case E_MIPS_ARCH_32R2:
5035 return bfd_mach_mipsisa32r2;
5036
5037 case E_MIPS_ARCH_64R2:
5038 return bfd_mach_mipsisa64r2;
5039 }
5040 }
5041
5042 return 0;
5043 }
5044
5045 /* Return printable name for ABI. */
5046
5047 static INLINE char *
5048 elf_mips_abi_name (bfd *abfd)
5049 {
5050 flagword flags;
5051
5052 flags = elf_elfheader (abfd)->e_flags;
5053 switch (flags & EF_MIPS_ABI)
5054 {
5055 case 0:
5056 if (ABI_N32_P (abfd))
5057 return "N32";
5058 else if (ABI_64_P (abfd))
5059 return "64";
5060 else
5061 return "none";
5062 case E_MIPS_ABI_O32:
5063 return "O32";
5064 case E_MIPS_ABI_O64:
5065 return "O64";
5066 case E_MIPS_ABI_EABI32:
5067 return "EABI32";
5068 case E_MIPS_ABI_EABI64:
5069 return "EABI64";
5070 default:
5071 return "unknown abi";
5072 }
5073 }
5074 \f
5075 /* MIPS ELF uses two common sections. One is the usual one, and the
5076 other is for small objects. All the small objects are kept
5077 together, and then referenced via the gp pointer, which yields
5078 faster assembler code. This is what we use for the small common
5079 section. This approach is copied from ecoff.c. */
5080 static asection mips_elf_scom_section;
5081 static asymbol mips_elf_scom_symbol;
5082 static asymbol *mips_elf_scom_symbol_ptr;
5083
5084 /* MIPS ELF also uses an acommon section, which represents an
5085 allocated common symbol which may be overridden by a
5086 definition in a shared library. */
5087 static asection mips_elf_acom_section;
5088 static asymbol mips_elf_acom_symbol;
5089 static asymbol *mips_elf_acom_symbol_ptr;
5090
5091 /* Handle the special MIPS section numbers that a symbol may use.
5092 This is used for both the 32-bit and the 64-bit ABI. */
5093
5094 void
5095 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5096 {
5097 elf_symbol_type *elfsym;
5098
5099 elfsym = (elf_symbol_type *) asym;
5100 switch (elfsym->internal_elf_sym.st_shndx)
5101 {
5102 case SHN_MIPS_ACOMMON:
5103 /* This section is used in a dynamically linked executable file.
5104 It is an allocated common section. The dynamic linker can
5105 either resolve these symbols to something in a shared
5106 library, or it can just leave them here. For our purposes,
5107 we can consider these symbols to be in a new section. */
5108 if (mips_elf_acom_section.name == NULL)
5109 {
5110 /* Initialize the acommon section. */
5111 mips_elf_acom_section.name = ".acommon";
5112 mips_elf_acom_section.flags = SEC_ALLOC;
5113 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5114 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5115 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5116 mips_elf_acom_symbol.name = ".acommon";
5117 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5118 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5119 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5120 }
5121 asym->section = &mips_elf_acom_section;
5122 break;
5123
5124 case SHN_COMMON:
5125 /* Common symbols less than the GP size are automatically
5126 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5127 if (asym->value > elf_gp_size (abfd)
5128 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5129 || IRIX_COMPAT (abfd) == ict_irix6)
5130 break;
5131 /* Fall through. */
5132 case SHN_MIPS_SCOMMON:
5133 if (mips_elf_scom_section.name == NULL)
5134 {
5135 /* Initialize the small common section. */
5136 mips_elf_scom_section.name = ".scommon";
5137 mips_elf_scom_section.flags = SEC_IS_COMMON;
5138 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5139 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5140 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5141 mips_elf_scom_symbol.name = ".scommon";
5142 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5143 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5144 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5145 }
5146 asym->section = &mips_elf_scom_section;
5147 asym->value = elfsym->internal_elf_sym.st_size;
5148 break;
5149
5150 case SHN_MIPS_SUNDEFINED:
5151 asym->section = bfd_und_section_ptr;
5152 break;
5153
5154 case SHN_MIPS_TEXT:
5155 {
5156 asection *section = bfd_get_section_by_name (abfd, ".text");
5157
5158 BFD_ASSERT (SGI_COMPAT (abfd));
5159 if (section != NULL)
5160 {
5161 asym->section = section;
5162 /* MIPS_TEXT is a bit special, the address is not an offset
5163 to the base of the .text section. So substract the section
5164 base address to make it an offset. */
5165 asym->value -= section->vma;
5166 }
5167 }
5168 break;
5169
5170 case SHN_MIPS_DATA:
5171 {
5172 asection *section = bfd_get_section_by_name (abfd, ".data");
5173
5174 BFD_ASSERT (SGI_COMPAT (abfd));
5175 if (section != NULL)
5176 {
5177 asym->section = section;
5178 /* MIPS_DATA is a bit special, the address is not an offset
5179 to the base of the .data section. So substract the section
5180 base address to make it an offset. */
5181 asym->value -= section->vma;
5182 }
5183 }
5184 break;
5185 }
5186 }
5187 \f
5188 /* Implement elf_backend_eh_frame_address_size. This differs from
5189 the default in the way it handles EABI64.
5190
5191 EABI64 was originally specified as an LP64 ABI, and that is what
5192 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5193 historically accepted the combination of -mabi=eabi and -mlong32,
5194 and this ILP32 variation has become semi-official over time.
5195 Both forms use elf32 and have pointer-sized FDE addresses.
5196
5197 If an EABI object was generated by GCC 4.0 or above, it will have
5198 an empty .gcc_compiled_longXX section, where XX is the size of longs
5199 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5200 have no special marking to distinguish them from LP64 objects.
5201
5202 We don't want users of the official LP64 ABI to be punished for the
5203 existence of the ILP32 variant, but at the same time, we don't want
5204 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5205 We therefore take the following approach:
5206
5207 - If ABFD contains a .gcc_compiled_longXX section, use it to
5208 determine the pointer size.
5209
5210 - Otherwise check the type of the first relocation. Assume that
5211 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5212
5213 - Otherwise punt.
5214
5215 The second check is enough to detect LP64 objects generated by pre-4.0
5216 compilers because, in the kind of output generated by those compilers,
5217 the first relocation will be associated with either a CIE personality
5218 routine or an FDE start address. Furthermore, the compilers never
5219 used a special (non-pointer) encoding for this ABI.
5220
5221 Checking the relocation type should also be safe because there is no
5222 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5223 did so. */
5224
5225 unsigned int
5226 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5227 {
5228 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5229 return 8;
5230 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5231 {
5232 bfd_boolean long32_p, long64_p;
5233
5234 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5235 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5236 if (long32_p && long64_p)
5237 return 0;
5238 if (long32_p)
5239 return 4;
5240 if (long64_p)
5241 return 8;
5242
5243 if (sec->reloc_count > 0
5244 && elf_section_data (sec)->relocs != NULL
5245 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5246 == R_MIPS_64))
5247 return 8;
5248
5249 return 0;
5250 }
5251 return 4;
5252 }
5253 \f
5254 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5255 relocations against two unnamed section symbols to resolve to the
5256 same address. For example, if we have code like:
5257
5258 lw $4,%got_disp(.data)($gp)
5259 lw $25,%got_disp(.text)($gp)
5260 jalr $25
5261
5262 then the linker will resolve both relocations to .data and the program
5263 will jump there rather than to .text.
5264
5265 We can work around this problem by giving names to local section symbols.
5266 This is also what the MIPSpro tools do. */
5267
5268 bfd_boolean
5269 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5270 {
5271 return SGI_COMPAT (abfd);
5272 }
5273 \f
5274 /* Work over a section just before writing it out. This routine is
5275 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5276 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5277 a better way. */
5278
5279 bfd_boolean
5280 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5281 {
5282 if (hdr->sh_type == SHT_MIPS_REGINFO
5283 && hdr->sh_size > 0)
5284 {
5285 bfd_byte buf[4];
5286
5287 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5288 BFD_ASSERT (hdr->contents == NULL);
5289
5290 if (bfd_seek (abfd,
5291 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5292 SEEK_SET) != 0)
5293 return FALSE;
5294 H_PUT_32 (abfd, elf_gp (abfd), buf);
5295 if (bfd_bwrite (buf, 4, abfd) != 4)
5296 return FALSE;
5297 }
5298
5299 if (hdr->sh_type == SHT_MIPS_OPTIONS
5300 && hdr->bfd_section != NULL
5301 && mips_elf_section_data (hdr->bfd_section) != NULL
5302 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5303 {
5304 bfd_byte *contents, *l, *lend;
5305
5306 /* We stored the section contents in the tdata field in the
5307 set_section_contents routine. We save the section contents
5308 so that we don't have to read them again.
5309 At this point we know that elf_gp is set, so we can look
5310 through the section contents to see if there is an
5311 ODK_REGINFO structure. */
5312
5313 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5314 l = contents;
5315 lend = contents + hdr->sh_size;
5316 while (l + sizeof (Elf_External_Options) <= lend)
5317 {
5318 Elf_Internal_Options intopt;
5319
5320 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5321 &intopt);
5322 if (intopt.size < sizeof (Elf_External_Options))
5323 {
5324 (*_bfd_error_handler)
5325 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5326 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5327 break;
5328 }
5329 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5330 {
5331 bfd_byte buf[8];
5332
5333 if (bfd_seek (abfd,
5334 (hdr->sh_offset
5335 + (l - contents)
5336 + sizeof (Elf_External_Options)
5337 + (sizeof (Elf64_External_RegInfo) - 8)),
5338 SEEK_SET) != 0)
5339 return FALSE;
5340 H_PUT_64 (abfd, elf_gp (abfd), buf);
5341 if (bfd_bwrite (buf, 8, abfd) != 8)
5342 return FALSE;
5343 }
5344 else if (intopt.kind == ODK_REGINFO)
5345 {
5346 bfd_byte buf[4];
5347
5348 if (bfd_seek (abfd,
5349 (hdr->sh_offset
5350 + (l - contents)
5351 + sizeof (Elf_External_Options)
5352 + (sizeof (Elf32_External_RegInfo) - 4)),
5353 SEEK_SET) != 0)
5354 return FALSE;
5355 H_PUT_32 (abfd, elf_gp (abfd), buf);
5356 if (bfd_bwrite (buf, 4, abfd) != 4)
5357 return FALSE;
5358 }
5359 l += intopt.size;
5360 }
5361 }
5362
5363 if (hdr->bfd_section != NULL)
5364 {
5365 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5366
5367 if (strcmp (name, ".sdata") == 0
5368 || strcmp (name, ".lit8") == 0
5369 || strcmp (name, ".lit4") == 0)
5370 {
5371 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5372 hdr->sh_type = SHT_PROGBITS;
5373 }
5374 else if (strcmp (name, ".sbss") == 0)
5375 {
5376 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5377 hdr->sh_type = SHT_NOBITS;
5378 }
5379 else if (strcmp (name, ".srdata") == 0)
5380 {
5381 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5382 hdr->sh_type = SHT_PROGBITS;
5383 }
5384 else if (strcmp (name, ".compact_rel") == 0)
5385 {
5386 hdr->sh_flags = 0;
5387 hdr->sh_type = SHT_PROGBITS;
5388 }
5389 else if (strcmp (name, ".rtproc") == 0)
5390 {
5391 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5392 {
5393 unsigned int adjust;
5394
5395 adjust = hdr->sh_size % hdr->sh_addralign;
5396 if (adjust != 0)
5397 hdr->sh_size += hdr->sh_addralign - adjust;
5398 }
5399 }
5400 }
5401
5402 return TRUE;
5403 }
5404
5405 /* Handle a MIPS specific section when reading an object file. This
5406 is called when elfcode.h finds a section with an unknown type.
5407 This routine supports both the 32-bit and 64-bit ELF ABI.
5408
5409 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5410 how to. */
5411
5412 bfd_boolean
5413 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5414 Elf_Internal_Shdr *hdr,
5415 const char *name,
5416 int shindex)
5417 {
5418 flagword flags = 0;
5419
5420 /* There ought to be a place to keep ELF backend specific flags, but
5421 at the moment there isn't one. We just keep track of the
5422 sections by their name, instead. Fortunately, the ABI gives
5423 suggested names for all the MIPS specific sections, so we will
5424 probably get away with this. */
5425 switch (hdr->sh_type)
5426 {
5427 case SHT_MIPS_LIBLIST:
5428 if (strcmp (name, ".liblist") != 0)
5429 return FALSE;
5430 break;
5431 case SHT_MIPS_MSYM:
5432 if (strcmp (name, ".msym") != 0)
5433 return FALSE;
5434 break;
5435 case SHT_MIPS_CONFLICT:
5436 if (strcmp (name, ".conflict") != 0)
5437 return FALSE;
5438 break;
5439 case SHT_MIPS_GPTAB:
5440 if (! CONST_STRNEQ (name, ".gptab."))
5441 return FALSE;
5442 break;
5443 case SHT_MIPS_UCODE:
5444 if (strcmp (name, ".ucode") != 0)
5445 return FALSE;
5446 break;
5447 case SHT_MIPS_DEBUG:
5448 if (strcmp (name, ".mdebug") != 0)
5449 return FALSE;
5450 flags = SEC_DEBUGGING;
5451 break;
5452 case SHT_MIPS_REGINFO:
5453 if (strcmp (name, ".reginfo") != 0
5454 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5455 return FALSE;
5456 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5457 break;
5458 case SHT_MIPS_IFACE:
5459 if (strcmp (name, ".MIPS.interfaces") != 0)
5460 return FALSE;
5461 break;
5462 case SHT_MIPS_CONTENT:
5463 if (! CONST_STRNEQ (name, ".MIPS.content"))
5464 return FALSE;
5465 break;
5466 case SHT_MIPS_OPTIONS:
5467 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5468 return FALSE;
5469 break;
5470 case SHT_MIPS_DWARF:
5471 if (! CONST_STRNEQ (name, ".debug_"))
5472 return FALSE;
5473 break;
5474 case SHT_MIPS_SYMBOL_LIB:
5475 if (strcmp (name, ".MIPS.symlib") != 0)
5476 return FALSE;
5477 break;
5478 case SHT_MIPS_EVENTS:
5479 if (! CONST_STRNEQ (name, ".MIPS.events")
5480 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5481 return FALSE;
5482 break;
5483 default:
5484 break;
5485 }
5486
5487 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5488 return FALSE;
5489
5490 if (flags)
5491 {
5492 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5493 (bfd_get_section_flags (abfd,
5494 hdr->bfd_section)
5495 | flags)))
5496 return FALSE;
5497 }
5498
5499 /* FIXME: We should record sh_info for a .gptab section. */
5500
5501 /* For a .reginfo section, set the gp value in the tdata information
5502 from the contents of this section. We need the gp value while
5503 processing relocs, so we just get it now. The .reginfo section
5504 is not used in the 64-bit MIPS ELF ABI. */
5505 if (hdr->sh_type == SHT_MIPS_REGINFO)
5506 {
5507 Elf32_External_RegInfo ext;
5508 Elf32_RegInfo s;
5509
5510 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5511 &ext, 0, sizeof ext))
5512 return FALSE;
5513 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5514 elf_gp (abfd) = s.ri_gp_value;
5515 }
5516
5517 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5518 set the gp value based on what we find. We may see both
5519 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5520 they should agree. */
5521 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5522 {
5523 bfd_byte *contents, *l, *lend;
5524
5525 contents = bfd_malloc (hdr->sh_size);
5526 if (contents == NULL)
5527 return FALSE;
5528 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5529 0, hdr->sh_size))
5530 {
5531 free (contents);
5532 return FALSE;
5533 }
5534 l = contents;
5535 lend = contents + hdr->sh_size;
5536 while (l + sizeof (Elf_External_Options) <= lend)
5537 {
5538 Elf_Internal_Options intopt;
5539
5540 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5541 &intopt);
5542 if (intopt.size < sizeof (Elf_External_Options))
5543 {
5544 (*_bfd_error_handler)
5545 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5546 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5547 break;
5548 }
5549 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5550 {
5551 Elf64_Internal_RegInfo intreg;
5552
5553 bfd_mips_elf64_swap_reginfo_in
5554 (abfd,
5555 ((Elf64_External_RegInfo *)
5556 (l + sizeof (Elf_External_Options))),
5557 &intreg);
5558 elf_gp (abfd) = intreg.ri_gp_value;
5559 }
5560 else if (intopt.kind == ODK_REGINFO)
5561 {
5562 Elf32_RegInfo intreg;
5563
5564 bfd_mips_elf32_swap_reginfo_in
5565 (abfd,
5566 ((Elf32_External_RegInfo *)
5567 (l + sizeof (Elf_External_Options))),
5568 &intreg);
5569 elf_gp (abfd) = intreg.ri_gp_value;
5570 }
5571 l += intopt.size;
5572 }
5573 free (contents);
5574 }
5575
5576 return TRUE;
5577 }
5578
5579 /* Set the correct type for a MIPS ELF section. We do this by the
5580 section name, which is a hack, but ought to work. This routine is
5581 used by both the 32-bit and the 64-bit ABI. */
5582
5583 bfd_boolean
5584 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5585 {
5586 register const char *name;
5587 unsigned int sh_type;
5588
5589 name = bfd_get_section_name (abfd, sec);
5590 sh_type = hdr->sh_type;
5591
5592 if (strcmp (name, ".liblist") == 0)
5593 {
5594 hdr->sh_type = SHT_MIPS_LIBLIST;
5595 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5596 /* The sh_link field is set in final_write_processing. */
5597 }
5598 else if (strcmp (name, ".conflict") == 0)
5599 hdr->sh_type = SHT_MIPS_CONFLICT;
5600 else if (CONST_STRNEQ (name, ".gptab."))
5601 {
5602 hdr->sh_type = SHT_MIPS_GPTAB;
5603 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5604 /* The sh_info field is set in final_write_processing. */
5605 }
5606 else if (strcmp (name, ".ucode") == 0)
5607 hdr->sh_type = SHT_MIPS_UCODE;
5608 else if (strcmp (name, ".mdebug") == 0)
5609 {
5610 hdr->sh_type = SHT_MIPS_DEBUG;
5611 /* In a shared object on IRIX 5.3, the .mdebug section has an
5612 entsize of 0. FIXME: Does this matter? */
5613 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5614 hdr->sh_entsize = 0;
5615 else
5616 hdr->sh_entsize = 1;
5617 }
5618 else if (strcmp (name, ".reginfo") == 0)
5619 {
5620 hdr->sh_type = SHT_MIPS_REGINFO;
5621 /* In a shared object on IRIX 5.3, the .reginfo section has an
5622 entsize of 0x18. FIXME: Does this matter? */
5623 if (SGI_COMPAT (abfd))
5624 {
5625 if ((abfd->flags & DYNAMIC) != 0)
5626 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5627 else
5628 hdr->sh_entsize = 1;
5629 }
5630 else
5631 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5632 }
5633 else if (SGI_COMPAT (abfd)
5634 && (strcmp (name, ".hash") == 0
5635 || strcmp (name, ".dynamic") == 0
5636 || strcmp (name, ".dynstr") == 0))
5637 {
5638 if (SGI_COMPAT (abfd))
5639 hdr->sh_entsize = 0;
5640 #if 0
5641 /* This isn't how the IRIX6 linker behaves. */
5642 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5643 #endif
5644 }
5645 else if (strcmp (name, ".got") == 0
5646 || strcmp (name, ".srdata") == 0
5647 || strcmp (name, ".sdata") == 0
5648 || strcmp (name, ".sbss") == 0
5649 || strcmp (name, ".lit4") == 0
5650 || strcmp (name, ".lit8") == 0)
5651 hdr->sh_flags |= SHF_MIPS_GPREL;
5652 else if (strcmp (name, ".MIPS.interfaces") == 0)
5653 {
5654 hdr->sh_type = SHT_MIPS_IFACE;
5655 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5656 }
5657 else if (CONST_STRNEQ (name, ".MIPS.content"))
5658 {
5659 hdr->sh_type = SHT_MIPS_CONTENT;
5660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5661 /* The sh_info field is set in final_write_processing. */
5662 }
5663 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5664 {
5665 hdr->sh_type = SHT_MIPS_OPTIONS;
5666 hdr->sh_entsize = 1;
5667 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5668 }
5669 else if (CONST_STRNEQ (name, ".debug_"))
5670 hdr->sh_type = SHT_MIPS_DWARF;
5671 else if (strcmp (name, ".MIPS.symlib") == 0)
5672 {
5673 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5674 /* The sh_link and sh_info fields are set in
5675 final_write_processing. */
5676 }
5677 else if (CONST_STRNEQ (name, ".MIPS.events")
5678 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5679 {
5680 hdr->sh_type = SHT_MIPS_EVENTS;
5681 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5682 /* The sh_link field is set in final_write_processing. */
5683 }
5684 else if (strcmp (name, ".msym") == 0)
5685 {
5686 hdr->sh_type = SHT_MIPS_MSYM;
5687 hdr->sh_flags |= SHF_ALLOC;
5688 hdr->sh_entsize = 8;
5689 }
5690
5691 /* In the unlikely event a special section is empty it has to lose its
5692 special meaning. This may happen e.g. when using `strip' with the
5693 "--only-keep-debug" option. */
5694 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5695 hdr->sh_type = sh_type;
5696
5697 /* The generic elf_fake_sections will set up REL_HDR using the default
5698 kind of relocations. We used to set up a second header for the
5699 non-default kind of relocations here, but only NewABI would use
5700 these, and the IRIX ld doesn't like resulting empty RELA sections.
5701 Thus we create those header only on demand now. */
5702
5703 return TRUE;
5704 }
5705
5706 /* Given a BFD section, try to locate the corresponding ELF section
5707 index. This is used by both the 32-bit and the 64-bit ABI.
5708 Actually, it's not clear to me that the 64-bit ABI supports these,
5709 but for non-PIC objects we will certainly want support for at least
5710 the .scommon section. */
5711
5712 bfd_boolean
5713 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5714 asection *sec, int *retval)
5715 {
5716 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5717 {
5718 *retval = SHN_MIPS_SCOMMON;
5719 return TRUE;
5720 }
5721 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5722 {
5723 *retval = SHN_MIPS_ACOMMON;
5724 return TRUE;
5725 }
5726 return FALSE;
5727 }
5728 \f
5729 /* Hook called by the linker routine which adds symbols from an object
5730 file. We must handle the special MIPS section numbers here. */
5731
5732 bfd_boolean
5733 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5734 Elf_Internal_Sym *sym, const char **namep,
5735 flagword *flagsp ATTRIBUTE_UNUSED,
5736 asection **secp, bfd_vma *valp)
5737 {
5738 if (SGI_COMPAT (abfd)
5739 && (abfd->flags & DYNAMIC) != 0
5740 && strcmp (*namep, "_rld_new_interface") == 0)
5741 {
5742 /* Skip IRIX5 rld entry name. */
5743 *namep = NULL;
5744 return TRUE;
5745 }
5746
5747 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5748 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5749 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5750 a magic symbol resolved by the linker, we ignore this bogus definition
5751 of _gp_disp. New ABI objects do not suffer from this problem so this
5752 is not done for them. */
5753 if (!NEWABI_P(abfd)
5754 && (sym->st_shndx == SHN_ABS)
5755 && (strcmp (*namep, "_gp_disp") == 0))
5756 {
5757 *namep = NULL;
5758 return TRUE;
5759 }
5760
5761 switch (sym->st_shndx)
5762 {
5763 case SHN_COMMON:
5764 /* Common symbols less than the GP size are automatically
5765 treated as SHN_MIPS_SCOMMON symbols. */
5766 if (sym->st_size > elf_gp_size (abfd)
5767 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5768 || IRIX_COMPAT (abfd) == ict_irix6)
5769 break;
5770 /* Fall through. */
5771 case SHN_MIPS_SCOMMON:
5772 *secp = bfd_make_section_old_way (abfd, ".scommon");
5773 (*secp)->flags |= SEC_IS_COMMON;
5774 *valp = sym->st_size;
5775 break;
5776
5777 case SHN_MIPS_TEXT:
5778 /* This section is used in a shared object. */
5779 if (elf_tdata (abfd)->elf_text_section == NULL)
5780 {
5781 asymbol *elf_text_symbol;
5782 asection *elf_text_section;
5783 bfd_size_type amt = sizeof (asection);
5784
5785 elf_text_section = bfd_zalloc (abfd, amt);
5786 if (elf_text_section == NULL)
5787 return FALSE;
5788
5789 amt = sizeof (asymbol);
5790 elf_text_symbol = bfd_zalloc (abfd, amt);
5791 if (elf_text_symbol == NULL)
5792 return FALSE;
5793
5794 /* Initialize the section. */
5795
5796 elf_tdata (abfd)->elf_text_section = elf_text_section;
5797 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5798
5799 elf_text_section->symbol = elf_text_symbol;
5800 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5801
5802 elf_text_section->name = ".text";
5803 elf_text_section->flags = SEC_NO_FLAGS;
5804 elf_text_section->output_section = NULL;
5805 elf_text_section->owner = abfd;
5806 elf_text_symbol->name = ".text";
5807 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5808 elf_text_symbol->section = elf_text_section;
5809 }
5810 /* This code used to do *secp = bfd_und_section_ptr if
5811 info->shared. I don't know why, and that doesn't make sense,
5812 so I took it out. */
5813 *secp = elf_tdata (abfd)->elf_text_section;
5814 break;
5815
5816 case SHN_MIPS_ACOMMON:
5817 /* Fall through. XXX Can we treat this as allocated data? */
5818 case SHN_MIPS_DATA:
5819 /* This section is used in a shared object. */
5820 if (elf_tdata (abfd)->elf_data_section == NULL)
5821 {
5822 asymbol *elf_data_symbol;
5823 asection *elf_data_section;
5824 bfd_size_type amt = sizeof (asection);
5825
5826 elf_data_section = bfd_zalloc (abfd, amt);
5827 if (elf_data_section == NULL)
5828 return FALSE;
5829
5830 amt = sizeof (asymbol);
5831 elf_data_symbol = bfd_zalloc (abfd, amt);
5832 if (elf_data_symbol == NULL)
5833 return FALSE;
5834
5835 /* Initialize the section. */
5836
5837 elf_tdata (abfd)->elf_data_section = elf_data_section;
5838 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5839
5840 elf_data_section->symbol = elf_data_symbol;
5841 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5842
5843 elf_data_section->name = ".data";
5844 elf_data_section->flags = SEC_NO_FLAGS;
5845 elf_data_section->output_section = NULL;
5846 elf_data_section->owner = abfd;
5847 elf_data_symbol->name = ".data";
5848 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5849 elf_data_symbol->section = elf_data_section;
5850 }
5851 /* This code used to do *secp = bfd_und_section_ptr if
5852 info->shared. I don't know why, and that doesn't make sense,
5853 so I took it out. */
5854 *secp = elf_tdata (abfd)->elf_data_section;
5855 break;
5856
5857 case SHN_MIPS_SUNDEFINED:
5858 *secp = bfd_und_section_ptr;
5859 break;
5860 }
5861
5862 if (SGI_COMPAT (abfd)
5863 && ! info->shared
5864 && info->hash->creator == abfd->xvec
5865 && strcmp (*namep, "__rld_obj_head") == 0)
5866 {
5867 struct elf_link_hash_entry *h;
5868 struct bfd_link_hash_entry *bh;
5869
5870 /* Mark __rld_obj_head as dynamic. */
5871 bh = NULL;
5872 if (! (_bfd_generic_link_add_one_symbol
5873 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5874 get_elf_backend_data (abfd)->collect, &bh)))
5875 return FALSE;
5876
5877 h = (struct elf_link_hash_entry *) bh;
5878 h->non_elf = 0;
5879 h->def_regular = 1;
5880 h->type = STT_OBJECT;
5881
5882 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5883 return FALSE;
5884
5885 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5886 }
5887
5888 /* If this is a mips16 text symbol, add 1 to the value to make it
5889 odd. This will cause something like .word SYM to come up with
5890 the right value when it is loaded into the PC. */
5891 if (sym->st_other == STO_MIPS16)
5892 ++*valp;
5893
5894 return TRUE;
5895 }
5896
5897 /* This hook function is called before the linker writes out a global
5898 symbol. We mark symbols as small common if appropriate. This is
5899 also where we undo the increment of the value for a mips16 symbol. */
5900
5901 bfd_boolean
5902 _bfd_mips_elf_link_output_symbol_hook
5903 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5904 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5905 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5906 {
5907 /* If we see a common symbol, which implies a relocatable link, then
5908 if a symbol was small common in an input file, mark it as small
5909 common in the output file. */
5910 if (sym->st_shndx == SHN_COMMON
5911 && strcmp (input_sec->name, ".scommon") == 0)
5912 sym->st_shndx = SHN_MIPS_SCOMMON;
5913
5914 if (sym->st_other == STO_MIPS16)
5915 sym->st_value &= ~1;
5916
5917 return TRUE;
5918 }
5919 \f
5920 /* Functions for the dynamic linker. */
5921
5922 /* Create dynamic sections when linking against a dynamic object. */
5923
5924 bfd_boolean
5925 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5926 {
5927 struct elf_link_hash_entry *h;
5928 struct bfd_link_hash_entry *bh;
5929 flagword flags;
5930 register asection *s;
5931 const char * const *namep;
5932 struct mips_elf_link_hash_table *htab;
5933
5934 htab = mips_elf_hash_table (info);
5935 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5936 | SEC_LINKER_CREATED | SEC_READONLY);
5937
5938 /* The psABI requires a read-only .dynamic section, but the VxWorks
5939 EABI doesn't. */
5940 if (!htab->is_vxworks)
5941 {
5942 s = bfd_get_section_by_name (abfd, ".dynamic");
5943 if (s != NULL)
5944 {
5945 if (! bfd_set_section_flags (abfd, s, flags))
5946 return FALSE;
5947 }
5948 }
5949
5950 /* We need to create .got section. */
5951 if (! mips_elf_create_got_section (abfd, info, FALSE))
5952 return FALSE;
5953
5954 if (! mips_elf_rel_dyn_section (info, TRUE))
5955 return FALSE;
5956
5957 /* Create .stub section. */
5958 if (bfd_get_section_by_name (abfd,
5959 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5960 {
5961 s = bfd_make_section_with_flags (abfd,
5962 MIPS_ELF_STUB_SECTION_NAME (abfd),
5963 flags | SEC_CODE);
5964 if (s == NULL
5965 || ! bfd_set_section_alignment (abfd, s,
5966 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5967 return FALSE;
5968 }
5969
5970 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5971 && !info->shared
5972 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5973 {
5974 s = bfd_make_section_with_flags (abfd, ".rld_map",
5975 flags &~ (flagword) SEC_READONLY);
5976 if (s == NULL
5977 || ! bfd_set_section_alignment (abfd, s,
5978 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5979 return FALSE;
5980 }
5981
5982 /* On IRIX5, we adjust add some additional symbols and change the
5983 alignments of several sections. There is no ABI documentation
5984 indicating that this is necessary on IRIX6, nor any evidence that
5985 the linker takes such action. */
5986 if (IRIX_COMPAT (abfd) == ict_irix5)
5987 {
5988 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5989 {
5990 bh = NULL;
5991 if (! (_bfd_generic_link_add_one_symbol
5992 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5993 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5994 return FALSE;
5995
5996 h = (struct elf_link_hash_entry *) bh;
5997 h->non_elf = 0;
5998 h->def_regular = 1;
5999 h->type = STT_SECTION;
6000
6001 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6002 return FALSE;
6003 }
6004
6005 /* We need to create a .compact_rel section. */
6006 if (SGI_COMPAT (abfd))
6007 {
6008 if (!mips_elf_create_compact_rel_section (abfd, info))
6009 return FALSE;
6010 }
6011
6012 /* Change alignments of some sections. */
6013 s = bfd_get_section_by_name (abfd, ".hash");
6014 if (s != NULL)
6015 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6016 s = bfd_get_section_by_name (abfd, ".dynsym");
6017 if (s != NULL)
6018 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6019 s = bfd_get_section_by_name (abfd, ".dynstr");
6020 if (s != NULL)
6021 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6022 s = bfd_get_section_by_name (abfd, ".reginfo");
6023 if (s != NULL)
6024 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6025 s = bfd_get_section_by_name (abfd, ".dynamic");
6026 if (s != NULL)
6027 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6028 }
6029
6030 if (!info->shared)
6031 {
6032 const char *name;
6033
6034 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6035 bh = NULL;
6036 if (!(_bfd_generic_link_add_one_symbol
6037 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6038 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6039 return FALSE;
6040
6041 h = (struct elf_link_hash_entry *) bh;
6042 h->non_elf = 0;
6043 h->def_regular = 1;
6044 h->type = STT_SECTION;
6045
6046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6047 return FALSE;
6048
6049 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6050 {
6051 /* __rld_map is a four byte word located in the .data section
6052 and is filled in by the rtld to contain a pointer to
6053 the _r_debug structure. Its symbol value will be set in
6054 _bfd_mips_elf_finish_dynamic_symbol. */
6055 s = bfd_get_section_by_name (abfd, ".rld_map");
6056 BFD_ASSERT (s != NULL);
6057
6058 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6059 bh = NULL;
6060 if (!(_bfd_generic_link_add_one_symbol
6061 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6062 get_elf_backend_data (abfd)->collect, &bh)))
6063 return FALSE;
6064
6065 h = (struct elf_link_hash_entry *) bh;
6066 h->non_elf = 0;
6067 h->def_regular = 1;
6068 h->type = STT_OBJECT;
6069
6070 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6071 return FALSE;
6072 }
6073 }
6074
6075 if (htab->is_vxworks)
6076 {
6077 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6078 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6079 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6080 return FALSE;
6081
6082 /* Cache the sections created above. */
6083 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6084 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6085 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6086 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6087 if (!htab->sdynbss
6088 || (!htab->srelbss && !info->shared)
6089 || !htab->srelplt
6090 || !htab->splt)
6091 abort ();
6092
6093 /* Do the usual VxWorks handling. */
6094 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6095 return FALSE;
6096
6097 /* Work out the PLT sizes. */
6098 if (info->shared)
6099 {
6100 htab->plt_header_size
6101 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6102 htab->plt_entry_size
6103 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6104 }
6105 else
6106 {
6107 htab->plt_header_size
6108 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6109 htab->plt_entry_size
6110 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6111 }
6112 }
6113
6114 return TRUE;
6115 }
6116 \f
6117 /* Look through the relocs for a section during the first phase, and
6118 allocate space in the global offset table. */
6119
6120 bfd_boolean
6121 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6122 asection *sec, const Elf_Internal_Rela *relocs)
6123 {
6124 const char *name;
6125 bfd *dynobj;
6126 Elf_Internal_Shdr *symtab_hdr;
6127 struct elf_link_hash_entry **sym_hashes;
6128 struct mips_got_info *g;
6129 size_t extsymoff;
6130 const Elf_Internal_Rela *rel;
6131 const Elf_Internal_Rela *rel_end;
6132 asection *sgot;
6133 asection *sreloc;
6134 const struct elf_backend_data *bed;
6135 struct mips_elf_link_hash_table *htab;
6136
6137 if (info->relocatable)
6138 return TRUE;
6139
6140 htab = mips_elf_hash_table (info);
6141 dynobj = elf_hash_table (info)->dynobj;
6142 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6143 sym_hashes = elf_sym_hashes (abfd);
6144 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6145
6146 /* Check for the mips16 stub sections. */
6147
6148 name = bfd_get_section_name (abfd, sec);
6149 if (FN_STUB_P (name))
6150 {
6151 unsigned long r_symndx;
6152
6153 /* Look at the relocation information to figure out which symbol
6154 this is for. */
6155
6156 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6157
6158 if (r_symndx < extsymoff
6159 || sym_hashes[r_symndx - extsymoff] == NULL)
6160 {
6161 asection *o;
6162
6163 /* This stub is for a local symbol. This stub will only be
6164 needed if there is some relocation in this BFD, other
6165 than a 16 bit function call, which refers to this symbol. */
6166 for (o = abfd->sections; o != NULL; o = o->next)
6167 {
6168 Elf_Internal_Rela *sec_relocs;
6169 const Elf_Internal_Rela *r, *rend;
6170
6171 /* We can ignore stub sections when looking for relocs. */
6172 if ((o->flags & SEC_RELOC) == 0
6173 || o->reloc_count == 0
6174 || mips16_stub_section_p (abfd, o))
6175 continue;
6176
6177 sec_relocs
6178 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6179 info->keep_memory);
6180 if (sec_relocs == NULL)
6181 return FALSE;
6182
6183 rend = sec_relocs + o->reloc_count;
6184 for (r = sec_relocs; r < rend; r++)
6185 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6186 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6187 break;
6188
6189 if (elf_section_data (o)->relocs != sec_relocs)
6190 free (sec_relocs);
6191
6192 if (r < rend)
6193 break;
6194 }
6195
6196 if (o == NULL)
6197 {
6198 /* There is no non-call reloc for this stub, so we do
6199 not need it. Since this function is called before
6200 the linker maps input sections to output sections, we
6201 can easily discard it by setting the SEC_EXCLUDE
6202 flag. */
6203 sec->flags |= SEC_EXCLUDE;
6204 return TRUE;
6205 }
6206
6207 /* Record this stub in an array of local symbol stubs for
6208 this BFD. */
6209 if (elf_tdata (abfd)->local_stubs == NULL)
6210 {
6211 unsigned long symcount;
6212 asection **n;
6213 bfd_size_type amt;
6214
6215 if (elf_bad_symtab (abfd))
6216 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6217 else
6218 symcount = symtab_hdr->sh_info;
6219 amt = symcount * sizeof (asection *);
6220 n = bfd_zalloc (abfd, amt);
6221 if (n == NULL)
6222 return FALSE;
6223 elf_tdata (abfd)->local_stubs = n;
6224 }
6225
6226 sec->flags |= SEC_KEEP;
6227 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6228
6229 /* We don't need to set mips16_stubs_seen in this case.
6230 That flag is used to see whether we need to look through
6231 the global symbol table for stubs. We don't need to set
6232 it here, because we just have a local stub. */
6233 }
6234 else
6235 {
6236 struct mips_elf_link_hash_entry *h;
6237
6238 h = ((struct mips_elf_link_hash_entry *)
6239 sym_hashes[r_symndx - extsymoff]);
6240
6241 while (h->root.root.type == bfd_link_hash_indirect
6242 || h->root.root.type == bfd_link_hash_warning)
6243 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6244
6245 /* H is the symbol this stub is for. */
6246
6247 /* If we already have an appropriate stub for this function, we
6248 don't need another one, so we can discard this one. Since
6249 this function is called before the linker maps input sections
6250 to output sections, we can easily discard it by setting the
6251 SEC_EXCLUDE flag. */
6252 if (h->fn_stub != NULL)
6253 {
6254 sec->flags |= SEC_EXCLUDE;
6255 return TRUE;
6256 }
6257
6258 sec->flags |= SEC_KEEP;
6259 h->fn_stub = sec;
6260 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6261 }
6262 }
6263 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6264 {
6265 unsigned long r_symndx;
6266 struct mips_elf_link_hash_entry *h;
6267 asection **loc;
6268
6269 /* Look at the relocation information to figure out which symbol
6270 this is for. */
6271
6272 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6273
6274 if (r_symndx < extsymoff
6275 || sym_hashes[r_symndx - extsymoff] == NULL)
6276 {
6277 asection *o;
6278
6279 /* This stub is for a local symbol. This stub will only be
6280 needed if there is some relocation (R_MIPS16_26) in this BFD
6281 that refers to this symbol. */
6282 for (o = abfd->sections; o != NULL; o = o->next)
6283 {
6284 Elf_Internal_Rela *sec_relocs;
6285 const Elf_Internal_Rela *r, *rend;
6286
6287 /* We can ignore stub sections when looking for relocs. */
6288 if ((o->flags & SEC_RELOC) == 0
6289 || o->reloc_count == 0
6290 || mips16_stub_section_p (abfd, o))
6291 continue;
6292
6293 sec_relocs
6294 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6295 info->keep_memory);
6296 if (sec_relocs == NULL)
6297 return FALSE;
6298
6299 rend = sec_relocs + o->reloc_count;
6300 for (r = sec_relocs; r < rend; r++)
6301 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6302 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6303 break;
6304
6305 if (elf_section_data (o)->relocs != sec_relocs)
6306 free (sec_relocs);
6307
6308 if (r < rend)
6309 break;
6310 }
6311
6312 if (o == NULL)
6313 {
6314 /* There is no non-call reloc for this stub, so we do
6315 not need it. Since this function is called before
6316 the linker maps input sections to output sections, we
6317 can easily discard it by setting the SEC_EXCLUDE
6318 flag. */
6319 sec->flags |= SEC_EXCLUDE;
6320 return TRUE;
6321 }
6322
6323 /* Record this stub in an array of local symbol call_stubs for
6324 this BFD. */
6325 if (elf_tdata (abfd)->local_call_stubs == NULL)
6326 {
6327 unsigned long symcount;
6328 asection **n;
6329 bfd_size_type amt;
6330
6331 if (elf_bad_symtab (abfd))
6332 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6333 else
6334 symcount = symtab_hdr->sh_info;
6335 amt = symcount * sizeof (asection *);
6336 n = bfd_zalloc (abfd, amt);
6337 if (n == NULL)
6338 return FALSE;
6339 elf_tdata (abfd)->local_call_stubs = n;
6340 }
6341
6342 sec->flags |= SEC_KEEP;
6343 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6344
6345 /* We don't need to set mips16_stubs_seen in this case.
6346 That flag is used to see whether we need to look through
6347 the global symbol table for stubs. We don't need to set
6348 it here, because we just have a local stub. */
6349 }
6350 else
6351 {
6352 h = ((struct mips_elf_link_hash_entry *)
6353 sym_hashes[r_symndx - extsymoff]);
6354
6355 /* H is the symbol this stub is for. */
6356
6357 if (CALL_FP_STUB_P (name))
6358 loc = &h->call_fp_stub;
6359 else
6360 loc = &h->call_stub;
6361
6362 /* If we already have an appropriate stub for this function, we
6363 don't need another one, so we can discard this one. Since
6364 this function is called before the linker maps input sections
6365 to output sections, we can easily discard it by setting the
6366 SEC_EXCLUDE flag. */
6367 if (*loc != NULL)
6368 {
6369 sec->flags |= SEC_EXCLUDE;
6370 return TRUE;
6371 }
6372
6373 sec->flags |= SEC_KEEP;
6374 *loc = sec;
6375 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6376 }
6377 }
6378
6379 if (dynobj == NULL)
6380 {
6381 sgot = NULL;
6382 g = NULL;
6383 }
6384 else
6385 {
6386 sgot = mips_elf_got_section (dynobj, FALSE);
6387 if (sgot == NULL)
6388 g = NULL;
6389 else
6390 {
6391 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6392 g = mips_elf_section_data (sgot)->u.got_info;
6393 BFD_ASSERT (g != NULL);
6394 }
6395 }
6396
6397 sreloc = NULL;
6398 bed = get_elf_backend_data (abfd);
6399 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6400 for (rel = relocs; rel < rel_end; ++rel)
6401 {
6402 unsigned long r_symndx;
6403 unsigned int r_type;
6404 struct elf_link_hash_entry *h;
6405
6406 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6407 r_type = ELF_R_TYPE (abfd, rel->r_info);
6408
6409 if (r_symndx < extsymoff)
6410 h = NULL;
6411 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6412 {
6413 (*_bfd_error_handler)
6414 (_("%B: Malformed reloc detected for section %s"),
6415 abfd, name);
6416 bfd_set_error (bfd_error_bad_value);
6417 return FALSE;
6418 }
6419 else
6420 {
6421 h = sym_hashes[r_symndx - extsymoff];
6422
6423 /* This may be an indirect symbol created because of a version. */
6424 if (h != NULL)
6425 {
6426 while (h->root.type == bfd_link_hash_indirect)
6427 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6428 }
6429 }
6430
6431 /* Some relocs require a global offset table. */
6432 if (dynobj == NULL || sgot == NULL)
6433 {
6434 switch (r_type)
6435 {
6436 case R_MIPS_GOT16:
6437 case R_MIPS_CALL16:
6438 case R_MIPS_CALL_HI16:
6439 case R_MIPS_CALL_LO16:
6440 case R_MIPS_GOT_HI16:
6441 case R_MIPS_GOT_LO16:
6442 case R_MIPS_GOT_PAGE:
6443 case R_MIPS_GOT_OFST:
6444 case R_MIPS_GOT_DISP:
6445 case R_MIPS_TLS_GOTTPREL:
6446 case R_MIPS_TLS_GD:
6447 case R_MIPS_TLS_LDM:
6448 if (dynobj == NULL)
6449 elf_hash_table (info)->dynobj = dynobj = abfd;
6450 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6451 return FALSE;
6452 g = mips_elf_got_info (dynobj, &sgot);
6453 if (htab->is_vxworks && !info->shared)
6454 {
6455 (*_bfd_error_handler)
6456 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6457 abfd, (unsigned long) rel->r_offset);
6458 bfd_set_error (bfd_error_bad_value);
6459 return FALSE;
6460 }
6461 break;
6462
6463 case R_MIPS_32:
6464 case R_MIPS_REL32:
6465 case R_MIPS_64:
6466 /* In VxWorks executables, references to external symbols
6467 are handled using copy relocs or PLT stubs, so there's
6468 no need to add a dynamic relocation here. */
6469 if (dynobj == NULL
6470 && (info->shared || (h != NULL && !htab->is_vxworks))
6471 && (sec->flags & SEC_ALLOC) != 0)
6472 elf_hash_table (info)->dynobj = dynobj = abfd;
6473 break;
6474
6475 default:
6476 break;
6477 }
6478 }
6479
6480 if (h)
6481 {
6482 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6483
6484 /* Relocations against the special VxWorks __GOTT_BASE__ and
6485 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6486 room for them in .rela.dyn. */
6487 if (is_gott_symbol (info, h))
6488 {
6489 if (sreloc == NULL)
6490 {
6491 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6492 if (sreloc == NULL)
6493 return FALSE;
6494 }
6495 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6496 }
6497 }
6498 else if (r_type == R_MIPS_CALL_LO16
6499 || r_type == R_MIPS_GOT_LO16
6500 || r_type == R_MIPS_GOT_DISP
6501 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6502 {
6503 /* We may need a local GOT entry for this relocation. We
6504 don't count R_MIPS_GOT_PAGE because we can estimate the
6505 maximum number of pages needed by looking at the size of
6506 the segment. Similar comments apply to R_MIPS_GOT16 and
6507 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6508 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6509 R_MIPS_CALL_HI16 because these are always followed by an
6510 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6511 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6512 rel->r_addend, g, 0))
6513 return FALSE;
6514 }
6515
6516 switch (r_type)
6517 {
6518 case R_MIPS_CALL16:
6519 if (h == NULL)
6520 {
6521 (*_bfd_error_handler)
6522 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6523 abfd, (unsigned long) rel->r_offset);
6524 bfd_set_error (bfd_error_bad_value);
6525 return FALSE;
6526 }
6527 /* Fall through. */
6528
6529 case R_MIPS_CALL_HI16:
6530 case R_MIPS_CALL_LO16:
6531 if (h != NULL)
6532 {
6533 /* VxWorks call relocations point the function's .got.plt
6534 entry, which will be allocated by adjust_dynamic_symbol.
6535 Otherwise, this symbol requires a global GOT entry. */
6536 if (!htab->is_vxworks
6537 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6538 return FALSE;
6539
6540 /* We need a stub, not a plt entry for the undefined
6541 function. But we record it as if it needs plt. See
6542 _bfd_elf_adjust_dynamic_symbol. */
6543 h->needs_plt = 1;
6544 h->type = STT_FUNC;
6545 }
6546 break;
6547
6548 case R_MIPS_GOT_PAGE:
6549 /* If this is a global, overridable symbol, GOT_PAGE will
6550 decay to GOT_DISP, so we'll need a GOT entry for it. */
6551 if (h == NULL)
6552 break;
6553 else
6554 {
6555 struct mips_elf_link_hash_entry *hmips =
6556 (struct mips_elf_link_hash_entry *) h;
6557
6558 while (hmips->root.root.type == bfd_link_hash_indirect
6559 || hmips->root.root.type == bfd_link_hash_warning)
6560 hmips = (struct mips_elf_link_hash_entry *)
6561 hmips->root.root.u.i.link;
6562
6563 if (hmips->root.def_regular
6564 && ! (info->shared && ! info->symbolic
6565 && ! hmips->root.forced_local))
6566 break;
6567 }
6568 /* Fall through. */
6569
6570 case R_MIPS_GOT16:
6571 case R_MIPS_GOT_HI16:
6572 case R_MIPS_GOT_LO16:
6573 case R_MIPS_GOT_DISP:
6574 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6575 return FALSE;
6576 break;
6577
6578 case R_MIPS_TLS_GOTTPREL:
6579 if (info->shared)
6580 info->flags |= DF_STATIC_TLS;
6581 /* Fall through */
6582
6583 case R_MIPS_TLS_LDM:
6584 if (r_type == R_MIPS_TLS_LDM)
6585 {
6586 r_symndx = 0;
6587 h = NULL;
6588 }
6589 /* Fall through */
6590
6591 case R_MIPS_TLS_GD:
6592 /* This symbol requires a global offset table entry, or two
6593 for TLS GD relocations. */
6594 {
6595 unsigned char flag = (r_type == R_MIPS_TLS_GD
6596 ? GOT_TLS_GD
6597 : r_type == R_MIPS_TLS_LDM
6598 ? GOT_TLS_LDM
6599 : GOT_TLS_IE);
6600 if (h != NULL)
6601 {
6602 struct mips_elf_link_hash_entry *hmips =
6603 (struct mips_elf_link_hash_entry *) h;
6604 hmips->tls_type |= flag;
6605
6606 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6607 return FALSE;
6608 }
6609 else
6610 {
6611 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6612
6613 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6614 rel->r_addend, g, flag))
6615 return FALSE;
6616 }
6617 }
6618 break;
6619
6620 case R_MIPS_32:
6621 case R_MIPS_REL32:
6622 case R_MIPS_64:
6623 /* In VxWorks executables, references to external symbols
6624 are handled using copy relocs or PLT stubs, so there's
6625 no need to add a .rela.dyn entry for this relocation. */
6626 if ((info->shared || (h != NULL && !htab->is_vxworks))
6627 && (sec->flags & SEC_ALLOC) != 0)
6628 {
6629 if (sreloc == NULL)
6630 {
6631 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6632 if (sreloc == NULL)
6633 return FALSE;
6634 }
6635 if (info->shared)
6636 {
6637 /* When creating a shared object, we must copy these
6638 reloc types into the output file as R_MIPS_REL32
6639 relocs. Make room for this reloc in .rel(a).dyn. */
6640 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6641 if (MIPS_ELF_READONLY_SECTION (sec))
6642 /* We tell the dynamic linker that there are
6643 relocations against the text segment. */
6644 info->flags |= DF_TEXTREL;
6645 }
6646 else
6647 {
6648 struct mips_elf_link_hash_entry *hmips;
6649
6650 /* We only need to copy this reloc if the symbol is
6651 defined in a dynamic object. */
6652 hmips = (struct mips_elf_link_hash_entry *) h;
6653 ++hmips->possibly_dynamic_relocs;
6654 if (MIPS_ELF_READONLY_SECTION (sec))
6655 /* We need it to tell the dynamic linker if there
6656 are relocations against the text segment. */
6657 hmips->readonly_reloc = TRUE;
6658 }
6659
6660 /* Even though we don't directly need a GOT entry for
6661 this symbol, a symbol must have a dynamic symbol
6662 table index greater that DT_MIPS_GOTSYM if there are
6663 dynamic relocations against it. This does not apply
6664 to VxWorks, which does not have the usual coupling
6665 between global GOT entries and .dynsym entries. */
6666 if (h != NULL && !htab->is_vxworks)
6667 {
6668 if (dynobj == NULL)
6669 elf_hash_table (info)->dynobj = dynobj = abfd;
6670 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6671 return FALSE;
6672 g = mips_elf_got_info (dynobj, &sgot);
6673 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6674 return FALSE;
6675 }
6676 }
6677
6678 if (SGI_COMPAT (abfd))
6679 mips_elf_hash_table (info)->compact_rel_size +=
6680 sizeof (Elf32_External_crinfo);
6681 break;
6682
6683 case R_MIPS_PC16:
6684 if (h)
6685 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6686 break;
6687
6688 case R_MIPS_26:
6689 if (h)
6690 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6691 /* Fall through. */
6692
6693 case R_MIPS_GPREL16:
6694 case R_MIPS_LITERAL:
6695 case R_MIPS_GPREL32:
6696 if (SGI_COMPAT (abfd))
6697 mips_elf_hash_table (info)->compact_rel_size +=
6698 sizeof (Elf32_External_crinfo);
6699 break;
6700
6701 /* This relocation describes the C++ object vtable hierarchy.
6702 Reconstruct it for later use during GC. */
6703 case R_MIPS_GNU_VTINHERIT:
6704 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6705 return FALSE;
6706 break;
6707
6708 /* This relocation describes which C++ vtable entries are actually
6709 used. Record for later use during GC. */
6710 case R_MIPS_GNU_VTENTRY:
6711 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6712 return FALSE;
6713 break;
6714
6715 default:
6716 break;
6717 }
6718
6719 /* We must not create a stub for a symbol that has relocations
6720 related to taking the function's address. This doesn't apply to
6721 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6722 a normal .got entry. */
6723 if (!htab->is_vxworks && h != NULL)
6724 switch (r_type)
6725 {
6726 default:
6727 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6728 break;
6729 case R_MIPS_CALL16:
6730 case R_MIPS_CALL_HI16:
6731 case R_MIPS_CALL_LO16:
6732 case R_MIPS_JALR:
6733 break;
6734 }
6735
6736 /* If this reloc is not a 16 bit call, and it has a global
6737 symbol, then we will need the fn_stub if there is one.
6738 References from a stub section do not count. */
6739 if (h != NULL
6740 && r_type != R_MIPS16_26
6741 && !mips16_stub_section_p (abfd, sec))
6742 {
6743 struct mips_elf_link_hash_entry *mh;
6744
6745 mh = (struct mips_elf_link_hash_entry *) h;
6746 mh->need_fn_stub = TRUE;
6747 }
6748 }
6749
6750 return TRUE;
6751 }
6752 \f
6753 bfd_boolean
6754 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6755 struct bfd_link_info *link_info,
6756 bfd_boolean *again)
6757 {
6758 Elf_Internal_Rela *internal_relocs;
6759 Elf_Internal_Rela *irel, *irelend;
6760 Elf_Internal_Shdr *symtab_hdr;
6761 bfd_byte *contents = NULL;
6762 size_t extsymoff;
6763 bfd_boolean changed_contents = FALSE;
6764 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6765 Elf_Internal_Sym *isymbuf = NULL;
6766
6767 /* We are not currently changing any sizes, so only one pass. */
6768 *again = FALSE;
6769
6770 if (link_info->relocatable)
6771 return TRUE;
6772
6773 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6774 link_info->keep_memory);
6775 if (internal_relocs == NULL)
6776 return TRUE;
6777
6778 irelend = internal_relocs + sec->reloc_count
6779 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6780 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6781 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6782
6783 for (irel = internal_relocs; irel < irelend; irel++)
6784 {
6785 bfd_vma symval;
6786 bfd_signed_vma sym_offset;
6787 unsigned int r_type;
6788 unsigned long r_symndx;
6789 asection *sym_sec;
6790 unsigned long instruction;
6791
6792 /* Turn jalr into bgezal, and jr into beq, if they're marked
6793 with a JALR relocation, that indicate where they jump to.
6794 This saves some pipeline bubbles. */
6795 r_type = ELF_R_TYPE (abfd, irel->r_info);
6796 if (r_type != R_MIPS_JALR)
6797 continue;
6798
6799 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6800 /* Compute the address of the jump target. */
6801 if (r_symndx >= extsymoff)
6802 {
6803 struct mips_elf_link_hash_entry *h
6804 = ((struct mips_elf_link_hash_entry *)
6805 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6806
6807 while (h->root.root.type == bfd_link_hash_indirect
6808 || h->root.root.type == bfd_link_hash_warning)
6809 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6810
6811 /* If a symbol is undefined, or if it may be overridden,
6812 skip it. */
6813 if (! ((h->root.root.type == bfd_link_hash_defined
6814 || h->root.root.type == bfd_link_hash_defweak)
6815 && h->root.root.u.def.section)
6816 || (link_info->shared && ! link_info->symbolic
6817 && !h->root.forced_local))
6818 continue;
6819
6820 sym_sec = h->root.root.u.def.section;
6821 if (sym_sec->output_section)
6822 symval = (h->root.root.u.def.value
6823 + sym_sec->output_section->vma
6824 + sym_sec->output_offset);
6825 else
6826 symval = h->root.root.u.def.value;
6827 }
6828 else
6829 {
6830 Elf_Internal_Sym *isym;
6831
6832 /* Read this BFD's symbols if we haven't done so already. */
6833 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6834 {
6835 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6836 if (isymbuf == NULL)
6837 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6838 symtab_hdr->sh_info, 0,
6839 NULL, NULL, NULL);
6840 if (isymbuf == NULL)
6841 goto relax_return;
6842 }
6843
6844 isym = isymbuf + r_symndx;
6845 if (isym->st_shndx == SHN_UNDEF)
6846 continue;
6847 else if (isym->st_shndx == SHN_ABS)
6848 sym_sec = bfd_abs_section_ptr;
6849 else if (isym->st_shndx == SHN_COMMON)
6850 sym_sec = bfd_com_section_ptr;
6851 else
6852 sym_sec
6853 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6854 symval = isym->st_value
6855 + sym_sec->output_section->vma
6856 + sym_sec->output_offset;
6857 }
6858
6859 /* Compute branch offset, from delay slot of the jump to the
6860 branch target. */
6861 sym_offset = (symval + irel->r_addend)
6862 - (sec_start + irel->r_offset + 4);
6863
6864 /* Branch offset must be properly aligned. */
6865 if ((sym_offset & 3) != 0)
6866 continue;
6867
6868 sym_offset >>= 2;
6869
6870 /* Check that it's in range. */
6871 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6872 continue;
6873
6874 /* Get the section contents if we haven't done so already. */
6875 if (contents == NULL)
6876 {
6877 /* Get cached copy if it exists. */
6878 if (elf_section_data (sec)->this_hdr.contents != NULL)
6879 contents = elf_section_data (sec)->this_hdr.contents;
6880 else
6881 {
6882 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6883 goto relax_return;
6884 }
6885 }
6886
6887 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6888
6889 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6890 if ((instruction & 0xfc1fffff) == 0x0000f809)
6891 instruction = 0x04110000;
6892 /* If it was jr <reg>, turn it into b <target>. */
6893 else if ((instruction & 0xfc1fffff) == 0x00000008)
6894 instruction = 0x10000000;
6895 else
6896 continue;
6897
6898 instruction |= (sym_offset & 0xffff);
6899 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6900 changed_contents = TRUE;
6901 }
6902
6903 if (contents != NULL
6904 && elf_section_data (sec)->this_hdr.contents != contents)
6905 {
6906 if (!changed_contents && !link_info->keep_memory)
6907 free (contents);
6908 else
6909 {
6910 /* Cache the section contents for elf_link_input_bfd. */
6911 elf_section_data (sec)->this_hdr.contents = contents;
6912 }
6913 }
6914 return TRUE;
6915
6916 relax_return:
6917 if (contents != NULL
6918 && elf_section_data (sec)->this_hdr.contents != contents)
6919 free (contents);
6920 return FALSE;
6921 }
6922 \f
6923 /* Adjust a symbol defined by a dynamic object and referenced by a
6924 regular object. The current definition is in some section of the
6925 dynamic object, but we're not including those sections. We have to
6926 change the definition to something the rest of the link can
6927 understand. */
6928
6929 bfd_boolean
6930 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6931 struct elf_link_hash_entry *h)
6932 {
6933 bfd *dynobj;
6934 struct mips_elf_link_hash_entry *hmips;
6935 asection *s;
6936 struct mips_elf_link_hash_table *htab;
6937
6938 htab = mips_elf_hash_table (info);
6939 dynobj = elf_hash_table (info)->dynobj;
6940
6941 /* Make sure we know what is going on here. */
6942 BFD_ASSERT (dynobj != NULL
6943 && (h->needs_plt
6944 || h->u.weakdef != NULL
6945 || (h->def_dynamic
6946 && h->ref_regular
6947 && !h->def_regular)));
6948
6949 /* If this symbol is defined in a dynamic object, we need to copy
6950 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6951 file. */
6952 hmips = (struct mips_elf_link_hash_entry *) h;
6953 if (! info->relocatable
6954 && hmips->possibly_dynamic_relocs != 0
6955 && (h->root.type == bfd_link_hash_defweak
6956 || !h->def_regular))
6957 {
6958 mips_elf_allocate_dynamic_relocations
6959 (dynobj, info, hmips->possibly_dynamic_relocs);
6960 if (hmips->readonly_reloc)
6961 /* We tell the dynamic linker that there are relocations
6962 against the text segment. */
6963 info->flags |= DF_TEXTREL;
6964 }
6965
6966 /* For a function, create a stub, if allowed. */
6967 if (! hmips->no_fn_stub
6968 && h->needs_plt)
6969 {
6970 if (! elf_hash_table (info)->dynamic_sections_created)
6971 return TRUE;
6972
6973 /* If this symbol is not defined in a regular file, then set
6974 the symbol to the stub location. This is required to make
6975 function pointers compare as equal between the normal
6976 executable and the shared library. */
6977 if (!h->def_regular)
6978 {
6979 /* We need .stub section. */
6980 s = bfd_get_section_by_name (dynobj,
6981 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6982 BFD_ASSERT (s != NULL);
6983
6984 h->root.u.def.section = s;
6985 h->root.u.def.value = s->size;
6986
6987 /* XXX Write this stub address somewhere. */
6988 h->plt.offset = s->size;
6989
6990 /* Make room for this stub code. */
6991 s->size += htab->function_stub_size;
6992
6993 /* The last half word of the stub will be filled with the index
6994 of this symbol in .dynsym section. */
6995 return TRUE;
6996 }
6997 }
6998 else if ((h->type == STT_FUNC)
6999 && !h->needs_plt)
7000 {
7001 /* This will set the entry for this symbol in the GOT to 0, and
7002 the dynamic linker will take care of this. */
7003 h->root.u.def.value = 0;
7004 return TRUE;
7005 }
7006
7007 /* If this is a weak symbol, and there is a real definition, the
7008 processor independent code will have arranged for us to see the
7009 real definition first, and we can just use the same value. */
7010 if (h->u.weakdef != NULL)
7011 {
7012 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7013 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7014 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7015 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7016 return TRUE;
7017 }
7018
7019 /* This is a reference to a symbol defined by a dynamic object which
7020 is not a function. */
7021
7022 return TRUE;
7023 }
7024
7025 /* Likewise, for VxWorks. */
7026
7027 bfd_boolean
7028 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7029 struct elf_link_hash_entry *h)
7030 {
7031 bfd *dynobj;
7032 struct mips_elf_link_hash_entry *hmips;
7033 struct mips_elf_link_hash_table *htab;
7034 unsigned int power_of_two;
7035
7036 htab = mips_elf_hash_table (info);
7037 dynobj = elf_hash_table (info)->dynobj;
7038 hmips = (struct mips_elf_link_hash_entry *) h;
7039
7040 /* Make sure we know what is going on here. */
7041 BFD_ASSERT (dynobj != NULL
7042 && (h->needs_plt
7043 || h->needs_copy
7044 || h->u.weakdef != NULL
7045 || (h->def_dynamic
7046 && h->ref_regular
7047 && !h->def_regular)));
7048
7049 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7050 either (a) we want to branch to the symbol or (b) we're linking an
7051 executable that needs a canonical function address. In the latter
7052 case, the canonical address will be the address of the executable's
7053 load stub. */
7054 if ((hmips->is_branch_target
7055 || (!info->shared
7056 && h->type == STT_FUNC
7057 && hmips->is_relocation_target))
7058 && h->def_dynamic
7059 && h->ref_regular
7060 && !h->def_regular
7061 && !h->forced_local)
7062 h->needs_plt = 1;
7063
7064 /* Locally-binding symbols do not need a PLT stub; we can refer to
7065 the functions directly. */
7066 else if (h->needs_plt
7067 && (SYMBOL_CALLS_LOCAL (info, h)
7068 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7069 && h->root.type == bfd_link_hash_undefweak)))
7070 {
7071 h->needs_plt = 0;
7072 return TRUE;
7073 }
7074
7075 if (h->needs_plt)
7076 {
7077 /* If this is the first symbol to need a PLT entry, allocate room
7078 for the header, and for the header's .rela.plt.unloaded entries. */
7079 if (htab->splt->size == 0)
7080 {
7081 htab->splt->size += htab->plt_header_size;
7082 if (!info->shared)
7083 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7084 }
7085
7086 /* Assign the next .plt entry to this symbol. */
7087 h->plt.offset = htab->splt->size;
7088 htab->splt->size += htab->plt_entry_size;
7089
7090 /* If the output file has no definition of the symbol, set the
7091 symbol's value to the address of the stub. For executables,
7092 point at the PLT load stub rather than the lazy resolution stub;
7093 this stub will become the canonical function address. */
7094 if (!h->def_regular)
7095 {
7096 h->root.u.def.section = htab->splt;
7097 h->root.u.def.value = h->plt.offset;
7098 if (!info->shared)
7099 h->root.u.def.value += 8;
7100 }
7101
7102 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7103 htab->sgotplt->size += 4;
7104 htab->srelplt->size += sizeof (Elf32_External_Rela);
7105
7106 /* Make room for the .rela.plt.unloaded relocations. */
7107 if (!info->shared)
7108 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7109
7110 return TRUE;
7111 }
7112
7113 /* If a function symbol is defined by a dynamic object, and we do not
7114 need a PLT stub for it, the symbol's value should be zero. */
7115 if (h->type == STT_FUNC
7116 && h->def_dynamic
7117 && h->ref_regular
7118 && !h->def_regular)
7119 {
7120 h->root.u.def.value = 0;
7121 return TRUE;
7122 }
7123
7124 /* If this is a weak symbol, and there is a real definition, the
7125 processor independent code will have arranged for us to see the
7126 real definition first, and we can just use the same value. */
7127 if (h->u.weakdef != NULL)
7128 {
7129 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7130 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7131 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7132 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7133 return TRUE;
7134 }
7135
7136 /* This is a reference to a symbol defined by a dynamic object which
7137 is not a function. */
7138 if (info->shared)
7139 return TRUE;
7140
7141 /* We must allocate the symbol in our .dynbss section, which will
7142 become part of the .bss section of the executable. There will be
7143 an entry for this symbol in the .dynsym section. The dynamic
7144 object will contain position independent code, so all references
7145 from the dynamic object to this symbol will go through the global
7146 offset table. The dynamic linker will use the .dynsym entry to
7147 determine the address it must put in the global offset table, so
7148 both the dynamic object and the regular object will refer to the
7149 same memory location for the variable. */
7150
7151 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7152 {
7153 htab->srelbss->size += sizeof (Elf32_External_Rela);
7154 h->needs_copy = 1;
7155 }
7156
7157 /* We need to figure out the alignment required for this symbol. */
7158 power_of_two = bfd_log2 (h->size);
7159 if (power_of_two > 4)
7160 power_of_two = 4;
7161
7162 /* Apply the required alignment. */
7163 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7164 (bfd_size_type) 1 << power_of_two);
7165 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7166 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7167 return FALSE;
7168
7169 /* Define the symbol as being at this point in the section. */
7170 h->root.u.def.section = htab->sdynbss;
7171 h->root.u.def.value = htab->sdynbss->size;
7172
7173 /* Increment the section size to make room for the symbol. */
7174 htab->sdynbss->size += h->size;
7175
7176 return TRUE;
7177 }
7178 \f
7179 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7180 The number might be exact or a worst-case estimate, depending on how
7181 much information is available to elf_backend_omit_section_dynsym at
7182 the current linking stage. */
7183
7184 static bfd_size_type
7185 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7186 {
7187 bfd_size_type count;
7188
7189 count = 0;
7190 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7191 {
7192 asection *p;
7193 const struct elf_backend_data *bed;
7194
7195 bed = get_elf_backend_data (output_bfd);
7196 for (p = output_bfd->sections; p ; p = p->next)
7197 if ((p->flags & SEC_EXCLUDE) == 0
7198 && (p->flags & SEC_ALLOC) != 0
7199 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7200 ++count;
7201 }
7202 return count;
7203 }
7204
7205 /* This function is called after all the input files have been read,
7206 and the input sections have been assigned to output sections. We
7207 check for any mips16 stub sections that we can discard. */
7208
7209 bfd_boolean
7210 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7211 struct bfd_link_info *info)
7212 {
7213 asection *ri;
7214
7215 bfd *dynobj;
7216 asection *s;
7217 struct mips_got_info *g;
7218 int i;
7219 bfd_size_type loadable_size = 0;
7220 bfd_size_type local_gotno;
7221 bfd_size_type dynsymcount;
7222 bfd *sub;
7223 struct mips_elf_count_tls_arg count_tls_arg;
7224 struct mips_elf_link_hash_table *htab;
7225
7226 htab = mips_elf_hash_table (info);
7227
7228 /* The .reginfo section has a fixed size. */
7229 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7230 if (ri != NULL)
7231 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7232
7233 if (! (info->relocatable
7234 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7235 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7236 mips_elf_check_mips16_stubs, NULL);
7237
7238 dynobj = elf_hash_table (info)->dynobj;
7239 if (dynobj == NULL)
7240 /* Relocatable links don't have it. */
7241 return TRUE;
7242
7243 g = mips_elf_got_info (dynobj, &s);
7244 if (s == NULL)
7245 return TRUE;
7246
7247 /* Calculate the total loadable size of the output. That
7248 will give us the maximum number of GOT_PAGE entries
7249 required. */
7250 for (sub = info->input_bfds; sub; sub = sub->link_next)
7251 {
7252 asection *subsection;
7253
7254 for (subsection = sub->sections;
7255 subsection;
7256 subsection = subsection->next)
7257 {
7258 if ((subsection->flags & SEC_ALLOC) == 0)
7259 continue;
7260 loadable_size += ((subsection->size + 0xf)
7261 &~ (bfd_size_type) 0xf);
7262 }
7263 }
7264
7265 /* There has to be a global GOT entry for every symbol with
7266 a dynamic symbol table index of DT_MIPS_GOTSYM or
7267 higher. Therefore, it make sense to put those symbols
7268 that need GOT entries at the end of the symbol table. We
7269 do that here. */
7270 if (! mips_elf_sort_hash_table (info, 1))
7271 return FALSE;
7272
7273 if (g->global_gotsym != NULL)
7274 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7275 else
7276 /* If there are no global symbols, or none requiring
7277 relocations, then GLOBAL_GOTSYM will be NULL. */
7278 i = 0;
7279
7280 /* Get a worst-case estimate of the number of dynamic symbols needed.
7281 At this point, dynsymcount does not account for section symbols
7282 and count_section_dynsyms may overestimate the number that will
7283 be needed. */
7284 dynsymcount = (elf_hash_table (info)->dynsymcount
7285 + count_section_dynsyms (output_bfd, info));
7286
7287 /* Determine the size of one stub entry. */
7288 htab->function_stub_size = (dynsymcount > 0x10000
7289 ? MIPS_FUNCTION_STUB_BIG_SIZE
7290 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7291
7292 /* In the worst case, we'll get one stub per dynamic symbol, plus
7293 one to account for the dummy entry at the end required by IRIX
7294 rld. */
7295 loadable_size += htab->function_stub_size * (i + 1);
7296
7297 if (htab->is_vxworks)
7298 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7299 relocations against local symbols evaluate to "G", and the EABI does
7300 not include R_MIPS_GOT_PAGE. */
7301 local_gotno = 0;
7302 else
7303 /* Assume there are two loadable segments consisting of contiguous
7304 sections. Is 5 enough? */
7305 local_gotno = (loadable_size >> 16) + 5;
7306
7307 g->local_gotno += local_gotno;
7308 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7309
7310 g->global_gotno = i;
7311 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7312
7313 /* We need to calculate tls_gotno for global symbols at this point
7314 instead of building it up earlier, to avoid doublecounting
7315 entries for one global symbol from multiple input files. */
7316 count_tls_arg.info = info;
7317 count_tls_arg.needed = 0;
7318 elf_link_hash_traverse (elf_hash_table (info),
7319 mips_elf_count_global_tls_entries,
7320 &count_tls_arg);
7321 g->tls_gotno += count_tls_arg.needed;
7322 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7323
7324 mips_elf_resolve_final_got_entries (g);
7325
7326 /* VxWorks does not support multiple GOTs. It initializes $gp to
7327 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7328 dynamic loader. */
7329 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7330 {
7331 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7332 return FALSE;
7333 }
7334 else
7335 {
7336 /* Set up TLS entries for the first GOT. */
7337 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7338 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7339 }
7340
7341 return TRUE;
7342 }
7343
7344 /* Set the sizes of the dynamic sections. */
7345
7346 bfd_boolean
7347 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7348 struct bfd_link_info *info)
7349 {
7350 bfd *dynobj;
7351 asection *s, *sreldyn;
7352 bfd_boolean reltext;
7353 struct mips_elf_link_hash_table *htab;
7354
7355 htab = mips_elf_hash_table (info);
7356 dynobj = elf_hash_table (info)->dynobj;
7357 BFD_ASSERT (dynobj != NULL);
7358
7359 if (elf_hash_table (info)->dynamic_sections_created)
7360 {
7361 /* Set the contents of the .interp section to the interpreter. */
7362 if (info->executable)
7363 {
7364 s = bfd_get_section_by_name (dynobj, ".interp");
7365 BFD_ASSERT (s != NULL);
7366 s->size
7367 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7368 s->contents
7369 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7370 }
7371 }
7372
7373 /* The check_relocs and adjust_dynamic_symbol entry points have
7374 determined the sizes of the various dynamic sections. Allocate
7375 memory for them. */
7376 reltext = FALSE;
7377 sreldyn = NULL;
7378 for (s = dynobj->sections; s != NULL; s = s->next)
7379 {
7380 const char *name;
7381
7382 /* It's OK to base decisions on the section name, because none
7383 of the dynobj section names depend upon the input files. */
7384 name = bfd_get_section_name (dynobj, s);
7385
7386 if ((s->flags & SEC_LINKER_CREATED) == 0)
7387 continue;
7388
7389 if (CONST_STRNEQ (name, ".rel"))
7390 {
7391 if (s->size != 0)
7392 {
7393 const char *outname;
7394 asection *target;
7395
7396 /* If this relocation section applies to a read only
7397 section, then we probably need a DT_TEXTREL entry.
7398 If the relocation section is .rel(a).dyn, we always
7399 assert a DT_TEXTREL entry rather than testing whether
7400 there exists a relocation to a read only section or
7401 not. */
7402 outname = bfd_get_section_name (output_bfd,
7403 s->output_section);
7404 target = bfd_get_section_by_name (output_bfd, outname + 4);
7405 if ((target != NULL
7406 && (target->flags & SEC_READONLY) != 0
7407 && (target->flags & SEC_ALLOC) != 0)
7408 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7409 reltext = TRUE;
7410
7411 /* We use the reloc_count field as a counter if we need
7412 to copy relocs into the output file. */
7413 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7414 s->reloc_count = 0;
7415
7416 /* If combreloc is enabled, elf_link_sort_relocs() will
7417 sort relocations, but in a different way than we do,
7418 and before we're done creating relocations. Also, it
7419 will move them around between input sections'
7420 relocation's contents, so our sorting would be
7421 broken, so don't let it run. */
7422 info->combreloc = 0;
7423 }
7424 }
7425 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7426 {
7427 /* Executables do not need a GOT. */
7428 if (info->shared)
7429 {
7430 /* Allocate relocations for all but the reserved entries. */
7431 struct mips_got_info *g;
7432 unsigned int count;
7433
7434 g = mips_elf_got_info (dynobj, NULL);
7435 count = (g->global_gotno
7436 + g->local_gotno
7437 - MIPS_RESERVED_GOTNO (info));
7438 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7439 }
7440 }
7441 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7442 {
7443 /* _bfd_mips_elf_always_size_sections() has already done
7444 most of the work, but some symbols may have been mapped
7445 to versions that we must now resolve in the got_entries
7446 hash tables. */
7447 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7448 struct mips_got_info *g = gg;
7449 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7450 unsigned int needed_relocs = 0;
7451
7452 if (gg->next)
7453 {
7454 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7455 set_got_offset_arg.info = info;
7456
7457 /* NOTE 2005-02-03: How can this call, or the next, ever
7458 find any indirect entries to resolve? They were all
7459 resolved in mips_elf_multi_got. */
7460 mips_elf_resolve_final_got_entries (gg);
7461 for (g = gg->next; g && g->next != gg; g = g->next)
7462 {
7463 unsigned int save_assign;
7464
7465 mips_elf_resolve_final_got_entries (g);
7466
7467 /* Assign offsets to global GOT entries. */
7468 save_assign = g->assigned_gotno;
7469 g->assigned_gotno = g->local_gotno;
7470 set_got_offset_arg.g = g;
7471 set_got_offset_arg.needed_relocs = 0;
7472 htab_traverse (g->got_entries,
7473 mips_elf_set_global_got_offset,
7474 &set_got_offset_arg);
7475 needed_relocs += set_got_offset_arg.needed_relocs;
7476 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7477 <= g->global_gotno);
7478
7479 g->assigned_gotno = save_assign;
7480 if (info->shared)
7481 {
7482 needed_relocs += g->local_gotno - g->assigned_gotno;
7483 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7484 + g->next->global_gotno
7485 + g->next->tls_gotno
7486 + MIPS_RESERVED_GOTNO (info));
7487 }
7488 }
7489 }
7490 else
7491 {
7492 struct mips_elf_count_tls_arg arg;
7493 arg.info = info;
7494 arg.needed = 0;
7495
7496 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7497 &arg);
7498 elf_link_hash_traverse (elf_hash_table (info),
7499 mips_elf_count_global_tls_relocs,
7500 &arg);
7501
7502 needed_relocs += arg.needed;
7503 }
7504
7505 if (needed_relocs)
7506 mips_elf_allocate_dynamic_relocations (dynobj, info,
7507 needed_relocs);
7508 }
7509 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7510 {
7511 /* IRIX rld assumes that the function stub isn't at the end
7512 of .text section. So put a dummy. XXX */
7513 s->size += htab->function_stub_size;
7514 }
7515 else if (! info->shared
7516 && ! mips_elf_hash_table (info)->use_rld_obj_head
7517 && CONST_STRNEQ (name, ".rld_map"))
7518 {
7519 /* We add a room for __rld_map. It will be filled in by the
7520 rtld to contain a pointer to the _r_debug structure. */
7521 s->size += 4;
7522 }
7523 else if (SGI_COMPAT (output_bfd)
7524 && CONST_STRNEQ (name, ".compact_rel"))
7525 s->size += mips_elf_hash_table (info)->compact_rel_size;
7526 else if (! CONST_STRNEQ (name, ".init")
7527 && s != htab->sgotplt
7528 && s != htab->splt)
7529 {
7530 /* It's not one of our sections, so don't allocate space. */
7531 continue;
7532 }
7533
7534 if (s->size == 0)
7535 {
7536 s->flags |= SEC_EXCLUDE;
7537 continue;
7538 }
7539
7540 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7541 continue;
7542
7543 /* Allocate memory for this section last, since we may increase its
7544 size above. */
7545 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7546 {
7547 sreldyn = s;
7548 continue;
7549 }
7550
7551 /* Allocate memory for the section contents. */
7552 s->contents = bfd_zalloc (dynobj, s->size);
7553 if (s->contents == NULL)
7554 {
7555 bfd_set_error (bfd_error_no_memory);
7556 return FALSE;
7557 }
7558 }
7559
7560 /* Allocate memory for the .rel(a).dyn section. */
7561 if (sreldyn != NULL)
7562 {
7563 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7564 if (sreldyn->contents == NULL)
7565 {
7566 bfd_set_error (bfd_error_no_memory);
7567 return FALSE;
7568 }
7569 }
7570
7571 if (elf_hash_table (info)->dynamic_sections_created)
7572 {
7573 /* Add some entries to the .dynamic section. We fill in the
7574 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7575 must add the entries now so that we get the correct size for
7576 the .dynamic section. The DT_DEBUG entry is filled in by the
7577 dynamic linker and used by the debugger. */
7578 if (info->executable)
7579 {
7580 /* SGI object has the equivalence of DT_DEBUG in the
7581 DT_MIPS_RLD_MAP entry. */
7582 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7583 return FALSE;
7584 if (!SGI_COMPAT (output_bfd))
7585 {
7586 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7587 return FALSE;
7588 }
7589 }
7590
7591 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7592 info->flags |= DF_TEXTREL;
7593
7594 if ((info->flags & DF_TEXTREL) != 0)
7595 {
7596 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7597 return FALSE;
7598
7599 /* Clear the DF_TEXTREL flag. It will be set again if we
7600 write out an actual text relocation; we may not, because
7601 at this point we do not know whether e.g. any .eh_frame
7602 absolute relocations have been converted to PC-relative. */
7603 info->flags &= ~DF_TEXTREL;
7604 }
7605
7606 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7607 return FALSE;
7608
7609 if (htab->is_vxworks)
7610 {
7611 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7612 use any of the DT_MIPS_* tags. */
7613 if (mips_elf_rel_dyn_section (info, FALSE))
7614 {
7615 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7616 return FALSE;
7617
7618 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7619 return FALSE;
7620
7621 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7622 return FALSE;
7623 }
7624 if (htab->splt->size > 0)
7625 {
7626 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7627 return FALSE;
7628
7629 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7630 return FALSE;
7631
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7633 return FALSE;
7634 }
7635 }
7636 else
7637 {
7638 if (mips_elf_rel_dyn_section (info, FALSE))
7639 {
7640 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7641 return FALSE;
7642
7643 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7644 return FALSE;
7645
7646 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7647 return FALSE;
7648 }
7649
7650 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7651 return FALSE;
7652
7653 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7654 return FALSE;
7655
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7657 return FALSE;
7658
7659 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7660 return FALSE;
7661
7662 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7663 return FALSE;
7664
7665 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7666 return FALSE;
7667
7668 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7669 return FALSE;
7670
7671 if (IRIX_COMPAT (dynobj) == ict_irix5
7672 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7673 return FALSE;
7674
7675 if (IRIX_COMPAT (dynobj) == ict_irix6
7676 && (bfd_get_section_by_name
7677 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7678 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7679 return FALSE;
7680 }
7681 }
7682
7683 return TRUE;
7684 }
7685 \f
7686 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7687 Adjust its R_ADDEND field so that it is correct for the output file.
7688 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7689 and sections respectively; both use symbol indexes. */
7690
7691 static void
7692 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7693 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7694 asection **local_sections, Elf_Internal_Rela *rel)
7695 {
7696 unsigned int r_type, r_symndx;
7697 Elf_Internal_Sym *sym;
7698 asection *sec;
7699
7700 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7701 {
7702 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7703 if (r_type == R_MIPS16_GPREL
7704 || r_type == R_MIPS_GPREL16
7705 || r_type == R_MIPS_GPREL32
7706 || r_type == R_MIPS_LITERAL)
7707 {
7708 rel->r_addend += _bfd_get_gp_value (input_bfd);
7709 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7710 }
7711
7712 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7713 sym = local_syms + r_symndx;
7714
7715 /* Adjust REL's addend to account for section merging. */
7716 if (!info->relocatable)
7717 {
7718 sec = local_sections[r_symndx];
7719 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7720 }
7721
7722 /* This would normally be done by the rela_normal code in elflink.c. */
7723 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7724 rel->r_addend += local_sections[r_symndx]->output_offset;
7725 }
7726 }
7727
7728 /* Relocate a MIPS ELF section. */
7729
7730 bfd_boolean
7731 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7732 bfd *input_bfd, asection *input_section,
7733 bfd_byte *contents, Elf_Internal_Rela *relocs,
7734 Elf_Internal_Sym *local_syms,
7735 asection **local_sections)
7736 {
7737 Elf_Internal_Rela *rel;
7738 const Elf_Internal_Rela *relend;
7739 bfd_vma addend = 0;
7740 bfd_boolean use_saved_addend_p = FALSE;
7741 const struct elf_backend_data *bed;
7742
7743 bed = get_elf_backend_data (output_bfd);
7744 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7745 for (rel = relocs; rel < relend; ++rel)
7746 {
7747 const char *name;
7748 bfd_vma value = 0;
7749 reloc_howto_type *howto;
7750 bfd_boolean require_jalx;
7751 /* TRUE if the relocation is a RELA relocation, rather than a
7752 REL relocation. */
7753 bfd_boolean rela_relocation_p = TRUE;
7754 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7755 const char *msg;
7756 unsigned long r_symndx;
7757 asection *sec;
7758 Elf_Internal_Shdr *symtab_hdr;
7759 struct elf_link_hash_entry *h;
7760
7761 /* Find the relocation howto for this relocation. */
7762 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7763 NEWABI_P (input_bfd)
7764 && (MIPS_RELOC_RELA_P
7765 (input_bfd, input_section,
7766 rel - relocs)));
7767
7768 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7769 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7770 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7771 {
7772 sec = local_sections[r_symndx];
7773 h = NULL;
7774 }
7775 else
7776 {
7777 unsigned long extsymoff;
7778
7779 extsymoff = 0;
7780 if (!elf_bad_symtab (input_bfd))
7781 extsymoff = symtab_hdr->sh_info;
7782 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7783 while (h->root.type == bfd_link_hash_indirect
7784 || h->root.type == bfd_link_hash_warning)
7785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7786
7787 sec = NULL;
7788 if (h->root.type == bfd_link_hash_defined
7789 || h->root.type == bfd_link_hash_defweak)
7790 sec = h->root.u.def.section;
7791 }
7792
7793 if (sec != NULL && elf_discarded_section (sec))
7794 {
7795 /* For relocs against symbols from removed linkonce sections,
7796 or sections discarded by a linker script, we just want the
7797 section contents zeroed. Avoid any special processing. */
7798 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7799 rel->r_info = 0;
7800 rel->r_addend = 0;
7801 continue;
7802 }
7803
7804 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7805 {
7806 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7807 64-bit code, but make sure all their addresses are in the
7808 lowermost or uppermost 32-bit section of the 64-bit address
7809 space. Thus, when they use an R_MIPS_64 they mean what is
7810 usually meant by R_MIPS_32, with the exception that the
7811 stored value is sign-extended to 64 bits. */
7812 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7813
7814 /* On big-endian systems, we need to lie about the position
7815 of the reloc. */
7816 if (bfd_big_endian (input_bfd))
7817 rel->r_offset += 4;
7818 }
7819
7820 if (!use_saved_addend_p)
7821 {
7822 Elf_Internal_Shdr *rel_hdr;
7823
7824 /* If these relocations were originally of the REL variety,
7825 we must pull the addend out of the field that will be
7826 relocated. Otherwise, we simply use the contents of the
7827 RELA relocation. To determine which flavor or relocation
7828 this is, we depend on the fact that the INPUT_SECTION's
7829 REL_HDR is read before its REL_HDR2. */
7830 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7831 if ((size_t) (rel - relocs)
7832 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7833 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7834 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7835 {
7836 bfd_byte *location = contents + rel->r_offset;
7837
7838 /* Note that this is a REL relocation. */
7839 rela_relocation_p = FALSE;
7840
7841 /* Get the addend, which is stored in the input file. */
7842 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7843 location);
7844 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7845 contents);
7846 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7847 location);
7848
7849 addend &= howto->src_mask;
7850
7851 /* For some kinds of relocations, the ADDEND is a
7852 combination of the addend stored in two different
7853 relocations. */
7854 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7855 || (r_type == R_MIPS_GOT16
7856 && mips_elf_local_relocation_p (input_bfd, rel,
7857 local_sections, FALSE)))
7858 {
7859 const Elf_Internal_Rela *lo16_relocation;
7860 reloc_howto_type *lo16_howto;
7861 int lo16_type;
7862
7863 if (r_type == R_MIPS16_HI16)
7864 lo16_type = R_MIPS16_LO16;
7865 else
7866 lo16_type = R_MIPS_LO16;
7867
7868 /* The combined value is the sum of the HI16 addend,
7869 left-shifted by sixteen bits, and the LO16
7870 addend, sign extended. (Usually, the code does
7871 a `lui' of the HI16 value, and then an `addiu' of
7872 the LO16 value.)
7873
7874 Scan ahead to find a matching LO16 relocation.
7875
7876 According to the MIPS ELF ABI, the R_MIPS_LO16
7877 relocation must be immediately following.
7878 However, for the IRIX6 ABI, the next relocation
7879 may be a composed relocation consisting of
7880 several relocations for the same address. In
7881 that case, the R_MIPS_LO16 relocation may occur
7882 as one of these. We permit a similar extension
7883 in general, as that is useful for GCC.
7884
7885 In some cases GCC dead code elimination removes
7886 the LO16 but keeps the corresponding HI16. This
7887 is strictly speaking a violation of the ABI but
7888 not immediately harmful. */
7889 lo16_relocation = mips_elf_next_relocation (input_bfd,
7890 lo16_type,
7891 rel, relend);
7892 if (lo16_relocation == NULL)
7893 {
7894 const char *name;
7895
7896 if (h)
7897 name = h->root.root.string;
7898 else
7899 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7900 local_syms + r_symndx,
7901 sec);
7902 (*_bfd_error_handler)
7903 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7904 input_bfd, input_section, name, howto->name,
7905 rel->r_offset);
7906 }
7907 else
7908 {
7909 bfd_byte *lo16_location;
7910 bfd_vma l;
7911
7912 lo16_location = contents + lo16_relocation->r_offset;
7913
7914 /* Obtain the addend kept there. */
7915 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7916 lo16_type, FALSE);
7917 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7918 FALSE, lo16_location);
7919 l = mips_elf_obtain_contents (lo16_howto,
7920 lo16_relocation,
7921 input_bfd, contents);
7922 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7923 FALSE, lo16_location);
7924 l &= lo16_howto->src_mask;
7925 l <<= lo16_howto->rightshift;
7926 l = _bfd_mips_elf_sign_extend (l, 16);
7927
7928 addend <<= 16;
7929
7930 /* Compute the combined addend. */
7931 addend += l;
7932 }
7933 }
7934 else
7935 addend <<= howto->rightshift;
7936 }
7937 else
7938 addend = rel->r_addend;
7939 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7940 local_syms, local_sections, rel);
7941 }
7942
7943 if (info->relocatable)
7944 {
7945 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7946 && bfd_big_endian (input_bfd))
7947 rel->r_offset -= 4;
7948
7949 if (!rela_relocation_p && rel->r_addend)
7950 {
7951 addend += rel->r_addend;
7952 if (r_type == R_MIPS_HI16
7953 || r_type == R_MIPS_GOT16)
7954 addend = mips_elf_high (addend);
7955 else if (r_type == R_MIPS_HIGHER)
7956 addend = mips_elf_higher (addend);
7957 else if (r_type == R_MIPS_HIGHEST)
7958 addend = mips_elf_highest (addend);
7959 else
7960 addend >>= howto->rightshift;
7961
7962 /* We use the source mask, rather than the destination
7963 mask because the place to which we are writing will be
7964 source of the addend in the final link. */
7965 addend &= howto->src_mask;
7966
7967 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7968 /* See the comment above about using R_MIPS_64 in the 32-bit
7969 ABI. Here, we need to update the addend. It would be
7970 possible to get away with just using the R_MIPS_32 reloc
7971 but for endianness. */
7972 {
7973 bfd_vma sign_bits;
7974 bfd_vma low_bits;
7975 bfd_vma high_bits;
7976
7977 if (addend & ((bfd_vma) 1 << 31))
7978 #ifdef BFD64
7979 sign_bits = ((bfd_vma) 1 << 32) - 1;
7980 #else
7981 sign_bits = -1;
7982 #endif
7983 else
7984 sign_bits = 0;
7985
7986 /* If we don't know that we have a 64-bit type,
7987 do two separate stores. */
7988 if (bfd_big_endian (input_bfd))
7989 {
7990 /* Store the sign-bits (which are most significant)
7991 first. */
7992 low_bits = sign_bits;
7993 high_bits = addend;
7994 }
7995 else
7996 {
7997 low_bits = addend;
7998 high_bits = sign_bits;
7999 }
8000 bfd_put_32 (input_bfd, low_bits,
8001 contents + rel->r_offset);
8002 bfd_put_32 (input_bfd, high_bits,
8003 contents + rel->r_offset + 4);
8004 continue;
8005 }
8006
8007 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8008 input_bfd, input_section,
8009 contents, FALSE))
8010 return FALSE;
8011 }
8012
8013 /* Go on to the next relocation. */
8014 continue;
8015 }
8016
8017 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8018 relocations for the same offset. In that case we are
8019 supposed to treat the output of each relocation as the addend
8020 for the next. */
8021 if (rel + 1 < relend
8022 && rel->r_offset == rel[1].r_offset
8023 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8024 use_saved_addend_p = TRUE;
8025 else
8026 use_saved_addend_p = FALSE;
8027
8028 /* Figure out what value we are supposed to relocate. */
8029 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8030 input_section, info, rel,
8031 addend, howto, local_syms,
8032 local_sections, &value,
8033 &name, &require_jalx,
8034 use_saved_addend_p))
8035 {
8036 case bfd_reloc_continue:
8037 /* There's nothing to do. */
8038 continue;
8039
8040 case bfd_reloc_undefined:
8041 /* mips_elf_calculate_relocation already called the
8042 undefined_symbol callback. There's no real point in
8043 trying to perform the relocation at this point, so we
8044 just skip ahead to the next relocation. */
8045 continue;
8046
8047 case bfd_reloc_notsupported:
8048 msg = _("internal error: unsupported relocation error");
8049 info->callbacks->warning
8050 (info, msg, name, input_bfd, input_section, rel->r_offset);
8051 return FALSE;
8052
8053 case bfd_reloc_overflow:
8054 if (use_saved_addend_p)
8055 /* Ignore overflow until we reach the last relocation for
8056 a given location. */
8057 ;
8058 else
8059 {
8060 BFD_ASSERT (name != NULL);
8061 if (! ((*info->callbacks->reloc_overflow)
8062 (info, NULL, name, howto->name, (bfd_vma) 0,
8063 input_bfd, input_section, rel->r_offset)))
8064 return FALSE;
8065 }
8066 break;
8067
8068 case bfd_reloc_ok:
8069 break;
8070
8071 default:
8072 abort ();
8073 break;
8074 }
8075
8076 /* If we've got another relocation for the address, keep going
8077 until we reach the last one. */
8078 if (use_saved_addend_p)
8079 {
8080 addend = value;
8081 continue;
8082 }
8083
8084 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8085 /* See the comment above about using R_MIPS_64 in the 32-bit
8086 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8087 that calculated the right value. Now, however, we
8088 sign-extend the 32-bit result to 64-bits, and store it as a
8089 64-bit value. We are especially generous here in that we
8090 go to extreme lengths to support this usage on systems with
8091 only a 32-bit VMA. */
8092 {
8093 bfd_vma sign_bits;
8094 bfd_vma low_bits;
8095 bfd_vma high_bits;
8096
8097 if (value & ((bfd_vma) 1 << 31))
8098 #ifdef BFD64
8099 sign_bits = ((bfd_vma) 1 << 32) - 1;
8100 #else
8101 sign_bits = -1;
8102 #endif
8103 else
8104 sign_bits = 0;
8105
8106 /* If we don't know that we have a 64-bit type,
8107 do two separate stores. */
8108 if (bfd_big_endian (input_bfd))
8109 {
8110 /* Undo what we did above. */
8111 rel->r_offset -= 4;
8112 /* Store the sign-bits (which are most significant)
8113 first. */
8114 low_bits = sign_bits;
8115 high_bits = value;
8116 }
8117 else
8118 {
8119 low_bits = value;
8120 high_bits = sign_bits;
8121 }
8122 bfd_put_32 (input_bfd, low_bits,
8123 contents + rel->r_offset);
8124 bfd_put_32 (input_bfd, high_bits,
8125 contents + rel->r_offset + 4);
8126 continue;
8127 }
8128
8129 /* Actually perform the relocation. */
8130 if (! mips_elf_perform_relocation (info, howto, rel, value,
8131 input_bfd, input_section,
8132 contents, require_jalx))
8133 return FALSE;
8134 }
8135
8136 return TRUE;
8137 }
8138 \f
8139 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8140 adjust it appropriately now. */
8141
8142 static void
8143 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8144 const char *name, Elf_Internal_Sym *sym)
8145 {
8146 /* The linker script takes care of providing names and values for
8147 these, but we must place them into the right sections. */
8148 static const char* const text_section_symbols[] = {
8149 "_ftext",
8150 "_etext",
8151 "__dso_displacement",
8152 "__elf_header",
8153 "__program_header_table",
8154 NULL
8155 };
8156
8157 static const char* const data_section_symbols[] = {
8158 "_fdata",
8159 "_edata",
8160 "_end",
8161 "_fbss",
8162 NULL
8163 };
8164
8165 const char* const *p;
8166 int i;
8167
8168 for (i = 0; i < 2; ++i)
8169 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8170 *p;
8171 ++p)
8172 if (strcmp (*p, name) == 0)
8173 {
8174 /* All of these symbols are given type STT_SECTION by the
8175 IRIX6 linker. */
8176 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8177 sym->st_other = STO_PROTECTED;
8178
8179 /* The IRIX linker puts these symbols in special sections. */
8180 if (i == 0)
8181 sym->st_shndx = SHN_MIPS_TEXT;
8182 else
8183 sym->st_shndx = SHN_MIPS_DATA;
8184
8185 break;
8186 }
8187 }
8188
8189 /* Finish up dynamic symbol handling. We set the contents of various
8190 dynamic sections here. */
8191
8192 bfd_boolean
8193 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8194 struct bfd_link_info *info,
8195 struct elf_link_hash_entry *h,
8196 Elf_Internal_Sym *sym)
8197 {
8198 bfd *dynobj;
8199 asection *sgot;
8200 struct mips_got_info *g, *gg;
8201 const char *name;
8202 int idx;
8203 struct mips_elf_link_hash_table *htab;
8204
8205 htab = mips_elf_hash_table (info);
8206 dynobj = elf_hash_table (info)->dynobj;
8207
8208 if (h->plt.offset != MINUS_ONE)
8209 {
8210 asection *s;
8211 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8212
8213 /* This symbol has a stub. Set it up. */
8214
8215 BFD_ASSERT (h->dynindx != -1);
8216
8217 s = bfd_get_section_by_name (dynobj,
8218 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8219 BFD_ASSERT (s != NULL);
8220
8221 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8222 || (h->dynindx <= 0xffff));
8223
8224 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8225 sign extension at runtime in the stub, resulting in a negative
8226 index value. */
8227 if (h->dynindx & ~0x7fffffff)
8228 return FALSE;
8229
8230 /* Fill the stub. */
8231 idx = 0;
8232 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8233 idx += 4;
8234 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8235 idx += 4;
8236 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8237 {
8238 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8239 stub + idx);
8240 idx += 4;
8241 }
8242 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8243 idx += 4;
8244
8245 /* If a large stub is not required and sign extension is not a
8246 problem, then use legacy code in the stub. */
8247 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8248 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8249 else if (h->dynindx & ~0x7fff)
8250 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8251 else
8252 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8253 stub + idx);
8254
8255 BFD_ASSERT (h->plt.offset <= s->size);
8256 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8257
8258 /* Mark the symbol as undefined. plt.offset != -1 occurs
8259 only for the referenced symbol. */
8260 sym->st_shndx = SHN_UNDEF;
8261
8262 /* The run-time linker uses the st_value field of the symbol
8263 to reset the global offset table entry for this external
8264 to its stub address when unlinking a shared object. */
8265 sym->st_value = (s->output_section->vma + s->output_offset
8266 + h->plt.offset);
8267 }
8268
8269 BFD_ASSERT (h->dynindx != -1
8270 || h->forced_local);
8271
8272 sgot = mips_elf_got_section (dynobj, FALSE);
8273 BFD_ASSERT (sgot != NULL);
8274 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8275 g = mips_elf_section_data (sgot)->u.got_info;
8276 BFD_ASSERT (g != NULL);
8277
8278 /* Run through the global symbol table, creating GOT entries for all
8279 the symbols that need them. */
8280 if (g->global_gotsym != NULL
8281 && h->dynindx >= g->global_gotsym->dynindx)
8282 {
8283 bfd_vma offset;
8284 bfd_vma value;
8285
8286 value = sym->st_value;
8287 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8288 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8289 }
8290
8291 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8292 {
8293 struct mips_got_entry e, *p;
8294 bfd_vma entry;
8295 bfd_vma offset;
8296
8297 gg = g;
8298
8299 e.abfd = output_bfd;
8300 e.symndx = -1;
8301 e.d.h = (struct mips_elf_link_hash_entry *)h;
8302 e.tls_type = 0;
8303
8304 for (g = g->next; g->next != gg; g = g->next)
8305 {
8306 if (g->got_entries
8307 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8308 &e)))
8309 {
8310 offset = p->gotidx;
8311 if (info->shared
8312 || (elf_hash_table (info)->dynamic_sections_created
8313 && p->d.h != NULL
8314 && p->d.h->root.def_dynamic
8315 && !p->d.h->root.def_regular))
8316 {
8317 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8318 the various compatibility problems, it's easier to mock
8319 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8320 mips_elf_create_dynamic_relocation to calculate the
8321 appropriate addend. */
8322 Elf_Internal_Rela rel[3];
8323
8324 memset (rel, 0, sizeof (rel));
8325 if (ABI_64_P (output_bfd))
8326 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8327 else
8328 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8329 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8330
8331 entry = 0;
8332 if (! (mips_elf_create_dynamic_relocation
8333 (output_bfd, info, rel,
8334 e.d.h, NULL, sym->st_value, &entry, sgot)))
8335 return FALSE;
8336 }
8337 else
8338 entry = sym->st_value;
8339 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8340 }
8341 }
8342 }
8343
8344 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8345 name = h->root.root.string;
8346 if (strcmp (name, "_DYNAMIC") == 0
8347 || h == elf_hash_table (info)->hgot)
8348 sym->st_shndx = SHN_ABS;
8349 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8350 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8351 {
8352 sym->st_shndx = SHN_ABS;
8353 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8354 sym->st_value = 1;
8355 }
8356 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8357 {
8358 sym->st_shndx = SHN_ABS;
8359 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8360 sym->st_value = elf_gp (output_bfd);
8361 }
8362 else if (SGI_COMPAT (output_bfd))
8363 {
8364 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8365 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8366 {
8367 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8368 sym->st_other = STO_PROTECTED;
8369 sym->st_value = 0;
8370 sym->st_shndx = SHN_MIPS_DATA;
8371 }
8372 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8373 {
8374 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8375 sym->st_other = STO_PROTECTED;
8376 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8377 sym->st_shndx = SHN_ABS;
8378 }
8379 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8380 {
8381 if (h->type == STT_FUNC)
8382 sym->st_shndx = SHN_MIPS_TEXT;
8383 else if (h->type == STT_OBJECT)
8384 sym->st_shndx = SHN_MIPS_DATA;
8385 }
8386 }
8387
8388 /* Handle the IRIX6-specific symbols. */
8389 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8390 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8391
8392 if (! info->shared)
8393 {
8394 if (! mips_elf_hash_table (info)->use_rld_obj_head
8395 && (strcmp (name, "__rld_map") == 0
8396 || strcmp (name, "__RLD_MAP") == 0))
8397 {
8398 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8399 BFD_ASSERT (s != NULL);
8400 sym->st_value = s->output_section->vma + s->output_offset;
8401 bfd_put_32 (output_bfd, 0, s->contents);
8402 if (mips_elf_hash_table (info)->rld_value == 0)
8403 mips_elf_hash_table (info)->rld_value = sym->st_value;
8404 }
8405 else if (mips_elf_hash_table (info)->use_rld_obj_head
8406 && strcmp (name, "__rld_obj_head") == 0)
8407 {
8408 /* IRIX6 does not use a .rld_map section. */
8409 if (IRIX_COMPAT (output_bfd) == ict_irix5
8410 || IRIX_COMPAT (output_bfd) == ict_none)
8411 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8412 != NULL);
8413 mips_elf_hash_table (info)->rld_value = sym->st_value;
8414 }
8415 }
8416
8417 /* If this is a mips16 symbol, force the value to be even. */
8418 if (sym->st_other == STO_MIPS16)
8419 sym->st_value &= ~1;
8420
8421 return TRUE;
8422 }
8423
8424 /* Likewise, for VxWorks. */
8425
8426 bfd_boolean
8427 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8428 struct bfd_link_info *info,
8429 struct elf_link_hash_entry *h,
8430 Elf_Internal_Sym *sym)
8431 {
8432 bfd *dynobj;
8433 asection *sgot;
8434 struct mips_got_info *g;
8435 struct mips_elf_link_hash_table *htab;
8436
8437 htab = mips_elf_hash_table (info);
8438 dynobj = elf_hash_table (info)->dynobj;
8439
8440 if (h->plt.offset != (bfd_vma) -1)
8441 {
8442 bfd_byte *loc;
8443 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8444 Elf_Internal_Rela rel;
8445 static const bfd_vma *plt_entry;
8446
8447 BFD_ASSERT (h->dynindx != -1);
8448 BFD_ASSERT (htab->splt != NULL);
8449 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8450
8451 /* Calculate the address of the .plt entry. */
8452 plt_address = (htab->splt->output_section->vma
8453 + htab->splt->output_offset
8454 + h->plt.offset);
8455
8456 /* Calculate the index of the entry. */
8457 plt_index = ((h->plt.offset - htab->plt_header_size)
8458 / htab->plt_entry_size);
8459
8460 /* Calculate the address of the .got.plt entry. */
8461 got_address = (htab->sgotplt->output_section->vma
8462 + htab->sgotplt->output_offset
8463 + plt_index * 4);
8464
8465 /* Calculate the offset of the .got.plt entry from
8466 _GLOBAL_OFFSET_TABLE_. */
8467 got_offset = mips_elf_gotplt_index (info, h);
8468
8469 /* Calculate the offset for the branch at the start of the PLT
8470 entry. The branch jumps to the beginning of .plt. */
8471 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8472
8473 /* Fill in the initial value of the .got.plt entry. */
8474 bfd_put_32 (output_bfd, plt_address,
8475 htab->sgotplt->contents + plt_index * 4);
8476
8477 /* Find out where the .plt entry should go. */
8478 loc = htab->splt->contents + h->plt.offset;
8479
8480 if (info->shared)
8481 {
8482 plt_entry = mips_vxworks_shared_plt_entry;
8483 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8484 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8485 }
8486 else
8487 {
8488 bfd_vma got_address_high, got_address_low;
8489
8490 plt_entry = mips_vxworks_exec_plt_entry;
8491 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8492 got_address_low = got_address & 0xffff;
8493
8494 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8495 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8496 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8497 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8498 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8499 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8500 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8501 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8502
8503 loc = (htab->srelplt2->contents
8504 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8505
8506 /* Emit a relocation for the .got.plt entry. */
8507 rel.r_offset = got_address;
8508 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8509 rel.r_addend = h->plt.offset;
8510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8511
8512 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8513 loc += sizeof (Elf32_External_Rela);
8514 rel.r_offset = plt_address + 8;
8515 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8516 rel.r_addend = got_offset;
8517 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8518
8519 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8520 loc += sizeof (Elf32_External_Rela);
8521 rel.r_offset += 4;
8522 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8523 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8524 }
8525
8526 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8527 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8528 rel.r_offset = got_address;
8529 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8530 rel.r_addend = 0;
8531 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8532
8533 if (!h->def_regular)
8534 sym->st_shndx = SHN_UNDEF;
8535 }
8536
8537 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8538
8539 sgot = mips_elf_got_section (dynobj, FALSE);
8540 BFD_ASSERT (sgot != NULL);
8541 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8542 g = mips_elf_section_data (sgot)->u.got_info;
8543 BFD_ASSERT (g != NULL);
8544
8545 /* See if this symbol has an entry in the GOT. */
8546 if (g->global_gotsym != NULL
8547 && h->dynindx >= g->global_gotsym->dynindx)
8548 {
8549 bfd_vma offset;
8550 Elf_Internal_Rela outrel;
8551 bfd_byte *loc;
8552 asection *s;
8553
8554 /* Install the symbol value in the GOT. */
8555 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8556 R_MIPS_GOT16, info);
8557 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8558
8559 /* Add a dynamic relocation for it. */
8560 s = mips_elf_rel_dyn_section (info, FALSE);
8561 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8562 outrel.r_offset = (sgot->output_section->vma
8563 + sgot->output_offset
8564 + offset);
8565 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8566 outrel.r_addend = 0;
8567 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8568 }
8569
8570 /* Emit a copy reloc, if needed. */
8571 if (h->needs_copy)
8572 {
8573 Elf_Internal_Rela rel;
8574
8575 BFD_ASSERT (h->dynindx != -1);
8576
8577 rel.r_offset = (h->root.u.def.section->output_section->vma
8578 + h->root.u.def.section->output_offset
8579 + h->root.u.def.value);
8580 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8581 rel.r_addend = 0;
8582 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8583 htab->srelbss->contents
8584 + (htab->srelbss->reloc_count
8585 * sizeof (Elf32_External_Rela)));
8586 ++htab->srelbss->reloc_count;
8587 }
8588
8589 /* If this is a mips16 symbol, force the value to be even. */
8590 if (sym->st_other == STO_MIPS16)
8591 sym->st_value &= ~1;
8592
8593 return TRUE;
8594 }
8595
8596 /* Install the PLT header for a VxWorks executable and finalize the
8597 contents of .rela.plt.unloaded. */
8598
8599 static void
8600 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8601 {
8602 Elf_Internal_Rela rela;
8603 bfd_byte *loc;
8604 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8605 static const bfd_vma *plt_entry;
8606 struct mips_elf_link_hash_table *htab;
8607
8608 htab = mips_elf_hash_table (info);
8609 plt_entry = mips_vxworks_exec_plt0_entry;
8610
8611 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8612 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8613 + htab->root.hgot->root.u.def.section->output_offset
8614 + htab->root.hgot->root.u.def.value);
8615
8616 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8617 got_value_low = got_value & 0xffff;
8618
8619 /* Calculate the address of the PLT header. */
8620 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8621
8622 /* Install the PLT header. */
8623 loc = htab->splt->contents;
8624 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8625 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8626 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8627 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8628 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8629 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8630
8631 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8632 loc = htab->srelplt2->contents;
8633 rela.r_offset = plt_address;
8634 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8635 rela.r_addend = 0;
8636 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8637 loc += sizeof (Elf32_External_Rela);
8638
8639 /* Output the relocation for the following addiu of
8640 %lo(_GLOBAL_OFFSET_TABLE_). */
8641 rela.r_offset += 4;
8642 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8643 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8644 loc += sizeof (Elf32_External_Rela);
8645
8646 /* Fix up the remaining relocations. They may have the wrong
8647 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8648 in which symbols were output. */
8649 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8650 {
8651 Elf_Internal_Rela rel;
8652
8653 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8654 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8655 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8656 loc += sizeof (Elf32_External_Rela);
8657
8658 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8659 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8660 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8661 loc += sizeof (Elf32_External_Rela);
8662
8663 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8664 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8665 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8666 loc += sizeof (Elf32_External_Rela);
8667 }
8668 }
8669
8670 /* Install the PLT header for a VxWorks shared library. */
8671
8672 static void
8673 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8674 {
8675 unsigned int i;
8676 struct mips_elf_link_hash_table *htab;
8677
8678 htab = mips_elf_hash_table (info);
8679
8680 /* We just need to copy the entry byte-by-byte. */
8681 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8682 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8683 htab->splt->contents + i * 4);
8684 }
8685
8686 /* Finish up the dynamic sections. */
8687
8688 bfd_boolean
8689 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8690 struct bfd_link_info *info)
8691 {
8692 bfd *dynobj;
8693 asection *sdyn;
8694 asection *sgot;
8695 struct mips_got_info *gg, *g;
8696 struct mips_elf_link_hash_table *htab;
8697
8698 htab = mips_elf_hash_table (info);
8699 dynobj = elf_hash_table (info)->dynobj;
8700
8701 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8702
8703 sgot = mips_elf_got_section (dynobj, FALSE);
8704 if (sgot == NULL)
8705 gg = g = NULL;
8706 else
8707 {
8708 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8709 gg = mips_elf_section_data (sgot)->u.got_info;
8710 BFD_ASSERT (gg != NULL);
8711 g = mips_elf_got_for_ibfd (gg, output_bfd);
8712 BFD_ASSERT (g != NULL);
8713 }
8714
8715 if (elf_hash_table (info)->dynamic_sections_created)
8716 {
8717 bfd_byte *b;
8718 int dyn_to_skip = 0, dyn_skipped = 0;
8719
8720 BFD_ASSERT (sdyn != NULL);
8721 BFD_ASSERT (g != NULL);
8722
8723 for (b = sdyn->contents;
8724 b < sdyn->contents + sdyn->size;
8725 b += MIPS_ELF_DYN_SIZE (dynobj))
8726 {
8727 Elf_Internal_Dyn dyn;
8728 const char *name;
8729 size_t elemsize;
8730 asection *s;
8731 bfd_boolean swap_out_p;
8732
8733 /* Read in the current dynamic entry. */
8734 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8735
8736 /* Assume that we're going to modify it and write it out. */
8737 swap_out_p = TRUE;
8738
8739 switch (dyn.d_tag)
8740 {
8741 case DT_RELENT:
8742 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8743 break;
8744
8745 case DT_RELAENT:
8746 BFD_ASSERT (htab->is_vxworks);
8747 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8748 break;
8749
8750 case DT_STRSZ:
8751 /* Rewrite DT_STRSZ. */
8752 dyn.d_un.d_val =
8753 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8754 break;
8755
8756 case DT_PLTGOT:
8757 name = ".got";
8758 if (htab->is_vxworks)
8759 {
8760 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8761 of the ".got" section in DYNOBJ. */
8762 s = bfd_get_section_by_name (dynobj, name);
8763 BFD_ASSERT (s != NULL);
8764 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8765 }
8766 else
8767 {
8768 s = bfd_get_section_by_name (output_bfd, name);
8769 BFD_ASSERT (s != NULL);
8770 dyn.d_un.d_ptr = s->vma;
8771 }
8772 break;
8773
8774 case DT_MIPS_RLD_VERSION:
8775 dyn.d_un.d_val = 1; /* XXX */
8776 break;
8777
8778 case DT_MIPS_FLAGS:
8779 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8780 break;
8781
8782 case DT_MIPS_TIME_STAMP:
8783 {
8784 time_t t;
8785 time (&t);
8786 dyn.d_un.d_val = t;
8787 }
8788 break;
8789
8790 case DT_MIPS_ICHECKSUM:
8791 /* XXX FIXME: */
8792 swap_out_p = FALSE;
8793 break;
8794
8795 case DT_MIPS_IVERSION:
8796 /* XXX FIXME: */
8797 swap_out_p = FALSE;
8798 break;
8799
8800 case DT_MIPS_BASE_ADDRESS:
8801 s = output_bfd->sections;
8802 BFD_ASSERT (s != NULL);
8803 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8804 break;
8805
8806 case DT_MIPS_LOCAL_GOTNO:
8807 dyn.d_un.d_val = g->local_gotno;
8808 break;
8809
8810 case DT_MIPS_UNREFEXTNO:
8811 /* The index into the dynamic symbol table which is the
8812 entry of the first external symbol that is not
8813 referenced within the same object. */
8814 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8815 break;
8816
8817 case DT_MIPS_GOTSYM:
8818 if (gg->global_gotsym)
8819 {
8820 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8821 break;
8822 }
8823 /* In case if we don't have global got symbols we default
8824 to setting DT_MIPS_GOTSYM to the same value as
8825 DT_MIPS_SYMTABNO, so we just fall through. */
8826
8827 case DT_MIPS_SYMTABNO:
8828 name = ".dynsym";
8829 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8830 s = bfd_get_section_by_name (output_bfd, name);
8831 BFD_ASSERT (s != NULL);
8832
8833 dyn.d_un.d_val = s->size / elemsize;
8834 break;
8835
8836 case DT_MIPS_HIPAGENO:
8837 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8838 break;
8839
8840 case DT_MIPS_RLD_MAP:
8841 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8842 break;
8843
8844 case DT_MIPS_OPTIONS:
8845 s = (bfd_get_section_by_name
8846 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8847 dyn.d_un.d_ptr = s->vma;
8848 break;
8849
8850 case DT_RELASZ:
8851 BFD_ASSERT (htab->is_vxworks);
8852 /* The count does not include the JUMP_SLOT relocations. */
8853 if (htab->srelplt)
8854 dyn.d_un.d_val -= htab->srelplt->size;
8855 break;
8856
8857 case DT_PLTREL:
8858 BFD_ASSERT (htab->is_vxworks);
8859 dyn.d_un.d_val = DT_RELA;
8860 break;
8861
8862 case DT_PLTRELSZ:
8863 BFD_ASSERT (htab->is_vxworks);
8864 dyn.d_un.d_val = htab->srelplt->size;
8865 break;
8866
8867 case DT_JMPREL:
8868 BFD_ASSERT (htab->is_vxworks);
8869 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8870 + htab->srelplt->output_offset);
8871 break;
8872
8873 case DT_TEXTREL:
8874 /* If we didn't need any text relocations after all, delete
8875 the dynamic tag. */
8876 if (!(info->flags & DF_TEXTREL))
8877 {
8878 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8879 swap_out_p = FALSE;
8880 }
8881 break;
8882
8883 case DT_FLAGS:
8884 /* If we didn't need any text relocations after all, clear
8885 DF_TEXTREL from DT_FLAGS. */
8886 if (!(info->flags & DF_TEXTREL))
8887 dyn.d_un.d_val &= ~DF_TEXTREL;
8888 else
8889 swap_out_p = FALSE;
8890 break;
8891
8892 default:
8893 swap_out_p = FALSE;
8894 break;
8895 }
8896
8897 if (swap_out_p || dyn_skipped)
8898 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8899 (dynobj, &dyn, b - dyn_skipped);
8900
8901 if (dyn_to_skip)
8902 {
8903 dyn_skipped += dyn_to_skip;
8904 dyn_to_skip = 0;
8905 }
8906 }
8907
8908 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8909 if (dyn_skipped > 0)
8910 memset (b - dyn_skipped, 0, dyn_skipped);
8911 }
8912
8913 if (sgot != NULL && sgot->size > 0)
8914 {
8915 if (htab->is_vxworks)
8916 {
8917 /* The first entry of the global offset table points to the
8918 ".dynamic" section. The second is initialized by the
8919 loader and contains the shared library identifier.
8920 The third is also initialized by the loader and points
8921 to the lazy resolution stub. */
8922 MIPS_ELF_PUT_WORD (output_bfd,
8923 sdyn->output_offset + sdyn->output_section->vma,
8924 sgot->contents);
8925 MIPS_ELF_PUT_WORD (output_bfd, 0,
8926 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8927 MIPS_ELF_PUT_WORD (output_bfd, 0,
8928 sgot->contents
8929 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8930 }
8931 else
8932 {
8933 /* The first entry of the global offset table will be filled at
8934 runtime. The second entry will be used by some runtime loaders.
8935 This isn't the case of IRIX rld. */
8936 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8937 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8938 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8939 }
8940
8941 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8942 = MIPS_ELF_GOT_SIZE (output_bfd);
8943 }
8944
8945 /* Generate dynamic relocations for the non-primary gots. */
8946 if (gg != NULL && gg->next)
8947 {
8948 Elf_Internal_Rela rel[3];
8949 bfd_vma addend = 0;
8950
8951 memset (rel, 0, sizeof (rel));
8952 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8953
8954 for (g = gg->next; g->next != gg; g = g->next)
8955 {
8956 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8957 + g->next->tls_gotno;
8958
8959 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8960 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8961 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8962 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8963
8964 if (! info->shared)
8965 continue;
8966
8967 while (index < g->assigned_gotno)
8968 {
8969 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8970 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8971 if (!(mips_elf_create_dynamic_relocation
8972 (output_bfd, info, rel, NULL,
8973 bfd_abs_section_ptr,
8974 0, &addend, sgot)))
8975 return FALSE;
8976 BFD_ASSERT (addend == 0);
8977 }
8978 }
8979 }
8980
8981 /* The generation of dynamic relocations for the non-primary gots
8982 adds more dynamic relocations. We cannot count them until
8983 here. */
8984
8985 if (elf_hash_table (info)->dynamic_sections_created)
8986 {
8987 bfd_byte *b;
8988 bfd_boolean swap_out_p;
8989
8990 BFD_ASSERT (sdyn != NULL);
8991
8992 for (b = sdyn->contents;
8993 b < sdyn->contents + sdyn->size;
8994 b += MIPS_ELF_DYN_SIZE (dynobj))
8995 {
8996 Elf_Internal_Dyn dyn;
8997 asection *s;
8998
8999 /* Read in the current dynamic entry. */
9000 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9001
9002 /* Assume that we're going to modify it and write it out. */
9003 swap_out_p = TRUE;
9004
9005 switch (dyn.d_tag)
9006 {
9007 case DT_RELSZ:
9008 /* Reduce DT_RELSZ to account for any relocations we
9009 decided not to make. This is for the n64 irix rld,
9010 which doesn't seem to apply any relocations if there
9011 are trailing null entries. */
9012 s = mips_elf_rel_dyn_section (info, FALSE);
9013 dyn.d_un.d_val = (s->reloc_count
9014 * (ABI_64_P (output_bfd)
9015 ? sizeof (Elf64_Mips_External_Rel)
9016 : sizeof (Elf32_External_Rel)));
9017 /* Adjust the section size too. Tools like the prelinker
9018 can reasonably expect the values to the same. */
9019 elf_section_data (s->output_section)->this_hdr.sh_size
9020 = dyn.d_un.d_val;
9021 break;
9022
9023 default:
9024 swap_out_p = FALSE;
9025 break;
9026 }
9027
9028 if (swap_out_p)
9029 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9030 (dynobj, &dyn, b);
9031 }
9032 }
9033
9034 {
9035 asection *s;
9036 Elf32_compact_rel cpt;
9037
9038 if (SGI_COMPAT (output_bfd))
9039 {
9040 /* Write .compact_rel section out. */
9041 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9042 if (s != NULL)
9043 {
9044 cpt.id1 = 1;
9045 cpt.num = s->reloc_count;
9046 cpt.id2 = 2;
9047 cpt.offset = (s->output_section->filepos
9048 + sizeof (Elf32_External_compact_rel));
9049 cpt.reserved0 = 0;
9050 cpt.reserved1 = 0;
9051 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9052 ((Elf32_External_compact_rel *)
9053 s->contents));
9054
9055 /* Clean up a dummy stub function entry in .text. */
9056 s = bfd_get_section_by_name (dynobj,
9057 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9058 if (s != NULL)
9059 {
9060 file_ptr dummy_offset;
9061
9062 BFD_ASSERT (s->size >= htab->function_stub_size);
9063 dummy_offset = s->size - htab->function_stub_size;
9064 memset (s->contents + dummy_offset, 0,
9065 htab->function_stub_size);
9066 }
9067 }
9068 }
9069
9070 /* The psABI says that the dynamic relocations must be sorted in
9071 increasing order of r_symndx. The VxWorks EABI doesn't require
9072 this, and because the code below handles REL rather than RELA
9073 relocations, using it for VxWorks would be outright harmful. */
9074 if (!htab->is_vxworks)
9075 {
9076 s = mips_elf_rel_dyn_section (info, FALSE);
9077 if (s != NULL
9078 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9079 {
9080 reldyn_sorting_bfd = output_bfd;
9081
9082 if (ABI_64_P (output_bfd))
9083 qsort ((Elf64_External_Rel *) s->contents + 1,
9084 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9085 sort_dynamic_relocs_64);
9086 else
9087 qsort ((Elf32_External_Rel *) s->contents + 1,
9088 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9089 sort_dynamic_relocs);
9090 }
9091 }
9092 }
9093
9094 if (htab->is_vxworks && htab->splt->size > 0)
9095 {
9096 if (info->shared)
9097 mips_vxworks_finish_shared_plt (output_bfd, info);
9098 else
9099 mips_vxworks_finish_exec_plt (output_bfd, info);
9100 }
9101 return TRUE;
9102 }
9103
9104
9105 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9106
9107 static void
9108 mips_set_isa_flags (bfd *abfd)
9109 {
9110 flagword val;
9111
9112 switch (bfd_get_mach (abfd))
9113 {
9114 default:
9115 case bfd_mach_mips3000:
9116 val = E_MIPS_ARCH_1;
9117 break;
9118
9119 case bfd_mach_mips3900:
9120 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9121 break;
9122
9123 case bfd_mach_mips6000:
9124 val = E_MIPS_ARCH_2;
9125 break;
9126
9127 case bfd_mach_mips4000:
9128 case bfd_mach_mips4300:
9129 case bfd_mach_mips4400:
9130 case bfd_mach_mips4600:
9131 val = E_MIPS_ARCH_3;
9132 break;
9133
9134 case bfd_mach_mips4010:
9135 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9136 break;
9137
9138 case bfd_mach_mips4100:
9139 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9140 break;
9141
9142 case bfd_mach_mips4111:
9143 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9144 break;
9145
9146 case bfd_mach_mips4120:
9147 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9148 break;
9149
9150 case bfd_mach_mips4650:
9151 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9152 break;
9153
9154 case bfd_mach_mips5400:
9155 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9156 break;
9157
9158 case bfd_mach_mips5500:
9159 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9160 break;
9161
9162 case bfd_mach_mips9000:
9163 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9164 break;
9165
9166 case bfd_mach_mips5000:
9167 case bfd_mach_mips7000:
9168 case bfd_mach_mips8000:
9169 case bfd_mach_mips10000:
9170 case bfd_mach_mips12000:
9171 val = E_MIPS_ARCH_4;
9172 break;
9173
9174 case bfd_mach_mips5:
9175 val = E_MIPS_ARCH_5;
9176 break;
9177
9178 case bfd_mach_mips_sb1:
9179 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9180 break;
9181
9182 case bfd_mach_mipsisa32:
9183 val = E_MIPS_ARCH_32;
9184 break;
9185
9186 case bfd_mach_mipsisa64:
9187 val = E_MIPS_ARCH_64;
9188 break;
9189
9190 case bfd_mach_mipsisa32r2:
9191 val = E_MIPS_ARCH_32R2;
9192 break;
9193
9194 case bfd_mach_mipsisa64r2:
9195 val = E_MIPS_ARCH_64R2;
9196 break;
9197 }
9198 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9199 elf_elfheader (abfd)->e_flags |= val;
9200
9201 }
9202
9203
9204 /* The final processing done just before writing out a MIPS ELF object
9205 file. This gets the MIPS architecture right based on the machine
9206 number. This is used by both the 32-bit and the 64-bit ABI. */
9207
9208 void
9209 _bfd_mips_elf_final_write_processing (bfd *abfd,
9210 bfd_boolean linker ATTRIBUTE_UNUSED)
9211 {
9212 unsigned int i;
9213 Elf_Internal_Shdr **hdrpp;
9214 const char *name;
9215 asection *sec;
9216
9217 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9218 is nonzero. This is for compatibility with old objects, which used
9219 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9220 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9221 mips_set_isa_flags (abfd);
9222
9223 /* Set the sh_info field for .gptab sections and other appropriate
9224 info for each special section. */
9225 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9226 i < elf_numsections (abfd);
9227 i++, hdrpp++)
9228 {
9229 switch ((*hdrpp)->sh_type)
9230 {
9231 case SHT_MIPS_MSYM:
9232 case SHT_MIPS_LIBLIST:
9233 sec = bfd_get_section_by_name (abfd, ".dynstr");
9234 if (sec != NULL)
9235 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9236 break;
9237
9238 case SHT_MIPS_GPTAB:
9239 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9240 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9241 BFD_ASSERT (name != NULL
9242 && CONST_STRNEQ (name, ".gptab."));
9243 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9244 BFD_ASSERT (sec != NULL);
9245 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9246 break;
9247
9248 case SHT_MIPS_CONTENT:
9249 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9250 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9251 BFD_ASSERT (name != NULL
9252 && CONST_STRNEQ (name, ".MIPS.content"));
9253 sec = bfd_get_section_by_name (abfd,
9254 name + sizeof ".MIPS.content" - 1);
9255 BFD_ASSERT (sec != NULL);
9256 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9257 break;
9258
9259 case SHT_MIPS_SYMBOL_LIB:
9260 sec = bfd_get_section_by_name (abfd, ".dynsym");
9261 if (sec != NULL)
9262 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9263 sec = bfd_get_section_by_name (abfd, ".liblist");
9264 if (sec != NULL)
9265 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9266 break;
9267
9268 case SHT_MIPS_EVENTS:
9269 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9270 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9271 BFD_ASSERT (name != NULL);
9272 if (CONST_STRNEQ (name, ".MIPS.events"))
9273 sec = bfd_get_section_by_name (abfd,
9274 name + sizeof ".MIPS.events" - 1);
9275 else
9276 {
9277 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9278 sec = bfd_get_section_by_name (abfd,
9279 (name
9280 + sizeof ".MIPS.post_rel" - 1));
9281 }
9282 BFD_ASSERT (sec != NULL);
9283 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9284 break;
9285
9286 }
9287 }
9288 }
9289 \f
9290 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9291 segments. */
9292
9293 int
9294 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9295 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9296 {
9297 asection *s;
9298 int ret = 0;
9299
9300 /* See if we need a PT_MIPS_REGINFO segment. */
9301 s = bfd_get_section_by_name (abfd, ".reginfo");
9302 if (s && (s->flags & SEC_LOAD))
9303 ++ret;
9304
9305 /* See if we need a PT_MIPS_OPTIONS segment. */
9306 if (IRIX_COMPAT (abfd) == ict_irix6
9307 && bfd_get_section_by_name (abfd,
9308 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9309 ++ret;
9310
9311 /* See if we need a PT_MIPS_RTPROC segment. */
9312 if (IRIX_COMPAT (abfd) == ict_irix5
9313 && bfd_get_section_by_name (abfd, ".dynamic")
9314 && bfd_get_section_by_name (abfd, ".mdebug"))
9315 ++ret;
9316
9317 /* Allocate a PT_NULL header in dynamic objects. See
9318 _bfd_mips_elf_modify_segment_map for details. */
9319 if (!SGI_COMPAT (abfd)
9320 && bfd_get_section_by_name (abfd, ".dynamic"))
9321 ++ret;
9322
9323 return ret;
9324 }
9325
9326 /* Modify the segment map for an IRIX5 executable. */
9327
9328 bfd_boolean
9329 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9330 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9331 {
9332 asection *s;
9333 struct elf_segment_map *m, **pm;
9334 bfd_size_type amt;
9335
9336 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9337 segment. */
9338 s = bfd_get_section_by_name (abfd, ".reginfo");
9339 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9340 {
9341 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9342 if (m->p_type == PT_MIPS_REGINFO)
9343 break;
9344 if (m == NULL)
9345 {
9346 amt = sizeof *m;
9347 m = bfd_zalloc (abfd, amt);
9348 if (m == NULL)
9349 return FALSE;
9350
9351 m->p_type = PT_MIPS_REGINFO;
9352 m->count = 1;
9353 m->sections[0] = s;
9354
9355 /* We want to put it after the PHDR and INTERP segments. */
9356 pm = &elf_tdata (abfd)->segment_map;
9357 while (*pm != NULL
9358 && ((*pm)->p_type == PT_PHDR
9359 || (*pm)->p_type == PT_INTERP))
9360 pm = &(*pm)->next;
9361
9362 m->next = *pm;
9363 *pm = m;
9364 }
9365 }
9366
9367 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9368 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9369 PT_MIPS_OPTIONS segment immediately following the program header
9370 table. */
9371 if (NEWABI_P (abfd)
9372 /* On non-IRIX6 new abi, we'll have already created a segment
9373 for this section, so don't create another. I'm not sure this
9374 is not also the case for IRIX 6, but I can't test it right
9375 now. */
9376 && IRIX_COMPAT (abfd) == ict_irix6)
9377 {
9378 for (s = abfd->sections; s; s = s->next)
9379 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9380 break;
9381
9382 if (s)
9383 {
9384 struct elf_segment_map *options_segment;
9385
9386 pm = &elf_tdata (abfd)->segment_map;
9387 while (*pm != NULL
9388 && ((*pm)->p_type == PT_PHDR
9389 || (*pm)->p_type == PT_INTERP))
9390 pm = &(*pm)->next;
9391
9392 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9393 {
9394 amt = sizeof (struct elf_segment_map);
9395 options_segment = bfd_zalloc (abfd, amt);
9396 options_segment->next = *pm;
9397 options_segment->p_type = PT_MIPS_OPTIONS;
9398 options_segment->p_flags = PF_R;
9399 options_segment->p_flags_valid = TRUE;
9400 options_segment->count = 1;
9401 options_segment->sections[0] = s;
9402 *pm = options_segment;
9403 }
9404 }
9405 }
9406 else
9407 {
9408 if (IRIX_COMPAT (abfd) == ict_irix5)
9409 {
9410 /* If there are .dynamic and .mdebug sections, we make a room
9411 for the RTPROC header. FIXME: Rewrite without section names. */
9412 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9413 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9414 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9415 {
9416 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9417 if (m->p_type == PT_MIPS_RTPROC)
9418 break;
9419 if (m == NULL)
9420 {
9421 amt = sizeof *m;
9422 m = bfd_zalloc (abfd, amt);
9423 if (m == NULL)
9424 return FALSE;
9425
9426 m->p_type = PT_MIPS_RTPROC;
9427
9428 s = bfd_get_section_by_name (abfd, ".rtproc");
9429 if (s == NULL)
9430 {
9431 m->count = 0;
9432 m->p_flags = 0;
9433 m->p_flags_valid = 1;
9434 }
9435 else
9436 {
9437 m->count = 1;
9438 m->sections[0] = s;
9439 }
9440
9441 /* We want to put it after the DYNAMIC segment. */
9442 pm = &elf_tdata (abfd)->segment_map;
9443 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9444 pm = &(*pm)->next;
9445 if (*pm != NULL)
9446 pm = &(*pm)->next;
9447
9448 m->next = *pm;
9449 *pm = m;
9450 }
9451 }
9452 }
9453 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9454 .dynstr, .dynsym, and .hash sections, and everything in
9455 between. */
9456 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9457 pm = &(*pm)->next)
9458 if ((*pm)->p_type == PT_DYNAMIC)
9459 break;
9460 m = *pm;
9461 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9462 {
9463 /* For a normal mips executable the permissions for the PT_DYNAMIC
9464 segment are read, write and execute. We do that here since
9465 the code in elf.c sets only the read permission. This matters
9466 sometimes for the dynamic linker. */
9467 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9468 {
9469 m->p_flags = PF_R | PF_W | PF_X;
9470 m->p_flags_valid = 1;
9471 }
9472 }
9473 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9474 glibc's dynamic linker has traditionally derived the number of
9475 tags from the p_filesz field, and sometimes allocates stack
9476 arrays of that size. An overly-big PT_DYNAMIC segment can
9477 be actively harmful in such cases. Making PT_DYNAMIC contain
9478 other sections can also make life hard for the prelinker,
9479 which might move one of the other sections to a different
9480 PT_LOAD segment. */
9481 if (SGI_COMPAT (abfd)
9482 && m != NULL
9483 && m->count == 1
9484 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9485 {
9486 static const char *sec_names[] =
9487 {
9488 ".dynamic", ".dynstr", ".dynsym", ".hash"
9489 };
9490 bfd_vma low, high;
9491 unsigned int i, c;
9492 struct elf_segment_map *n;
9493
9494 low = ~(bfd_vma) 0;
9495 high = 0;
9496 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9497 {
9498 s = bfd_get_section_by_name (abfd, sec_names[i]);
9499 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9500 {
9501 bfd_size_type sz;
9502
9503 if (low > s->vma)
9504 low = s->vma;
9505 sz = s->size;
9506 if (high < s->vma + sz)
9507 high = s->vma + sz;
9508 }
9509 }
9510
9511 c = 0;
9512 for (s = abfd->sections; s != NULL; s = s->next)
9513 if ((s->flags & SEC_LOAD) != 0
9514 && s->vma >= low
9515 && s->vma + s->size <= high)
9516 ++c;
9517
9518 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9519 n = bfd_zalloc (abfd, amt);
9520 if (n == NULL)
9521 return FALSE;
9522 *n = *m;
9523 n->count = c;
9524
9525 i = 0;
9526 for (s = abfd->sections; s != NULL; s = s->next)
9527 {
9528 if ((s->flags & SEC_LOAD) != 0
9529 && s->vma >= low
9530 && s->vma + s->size <= high)
9531 {
9532 n->sections[i] = s;
9533 ++i;
9534 }
9535 }
9536
9537 *pm = n;
9538 }
9539 }
9540
9541 /* Allocate a spare program header in dynamic objects so that tools
9542 like the prelinker can add an extra PT_LOAD entry.
9543
9544 If the prelinker needs to make room for a new PT_LOAD entry, its
9545 standard procedure is to move the first (read-only) sections into
9546 the new (writable) segment. However, the MIPS ABI requires
9547 .dynamic to be in a read-only segment, and the section will often
9548 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9549
9550 Although the prelinker could in principle move .dynamic to a
9551 writable segment, it seems better to allocate a spare program
9552 header instead, and avoid the need to move any sections.
9553 There is a long tradition of allocating spare dynamic tags,
9554 so allocating a spare program header seems like a natural
9555 extension. */
9556 if (!SGI_COMPAT (abfd)
9557 && bfd_get_section_by_name (abfd, ".dynamic"))
9558 {
9559 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9560 if ((*pm)->p_type == PT_NULL)
9561 break;
9562 if (*pm == NULL)
9563 {
9564 m = bfd_zalloc (abfd, sizeof (*m));
9565 if (m == NULL)
9566 return FALSE;
9567
9568 m->p_type = PT_NULL;
9569 *pm = m;
9570 }
9571 }
9572
9573 return TRUE;
9574 }
9575 \f
9576 /* Return the section that should be marked against GC for a given
9577 relocation. */
9578
9579 asection *
9580 _bfd_mips_elf_gc_mark_hook (asection *sec,
9581 struct bfd_link_info *info,
9582 Elf_Internal_Rela *rel,
9583 struct elf_link_hash_entry *h,
9584 Elf_Internal_Sym *sym)
9585 {
9586 /* ??? Do mips16 stub sections need to be handled special? */
9587
9588 if (h != NULL)
9589 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9590 {
9591 case R_MIPS_GNU_VTINHERIT:
9592 case R_MIPS_GNU_VTENTRY:
9593 return NULL;
9594 }
9595
9596 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9597 }
9598
9599 /* Update the got entry reference counts for the section being removed. */
9600
9601 bfd_boolean
9602 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9603 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9604 asection *sec ATTRIBUTE_UNUSED,
9605 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9606 {
9607 #if 0
9608 Elf_Internal_Shdr *symtab_hdr;
9609 struct elf_link_hash_entry **sym_hashes;
9610 bfd_signed_vma *local_got_refcounts;
9611 const Elf_Internal_Rela *rel, *relend;
9612 unsigned long r_symndx;
9613 struct elf_link_hash_entry *h;
9614
9615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9616 sym_hashes = elf_sym_hashes (abfd);
9617 local_got_refcounts = elf_local_got_refcounts (abfd);
9618
9619 relend = relocs + sec->reloc_count;
9620 for (rel = relocs; rel < relend; rel++)
9621 switch (ELF_R_TYPE (abfd, rel->r_info))
9622 {
9623 case R_MIPS_GOT16:
9624 case R_MIPS_CALL16:
9625 case R_MIPS_CALL_HI16:
9626 case R_MIPS_CALL_LO16:
9627 case R_MIPS_GOT_HI16:
9628 case R_MIPS_GOT_LO16:
9629 case R_MIPS_GOT_DISP:
9630 case R_MIPS_GOT_PAGE:
9631 case R_MIPS_GOT_OFST:
9632 /* ??? It would seem that the existing MIPS code does no sort
9633 of reference counting or whatnot on its GOT and PLT entries,
9634 so it is not possible to garbage collect them at this time. */
9635 break;
9636
9637 default:
9638 break;
9639 }
9640 #endif
9641
9642 return TRUE;
9643 }
9644 \f
9645 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9646 hiding the old indirect symbol. Process additional relocation
9647 information. Also called for weakdefs, in which case we just let
9648 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9649
9650 void
9651 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9652 struct elf_link_hash_entry *dir,
9653 struct elf_link_hash_entry *ind)
9654 {
9655 struct mips_elf_link_hash_entry *dirmips, *indmips;
9656
9657 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9658
9659 if (ind->root.type != bfd_link_hash_indirect)
9660 return;
9661
9662 dirmips = (struct mips_elf_link_hash_entry *) dir;
9663 indmips = (struct mips_elf_link_hash_entry *) ind;
9664 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9665 if (indmips->readonly_reloc)
9666 dirmips->readonly_reloc = TRUE;
9667 if (indmips->no_fn_stub)
9668 dirmips->no_fn_stub = TRUE;
9669
9670 if (dirmips->tls_type == 0)
9671 dirmips->tls_type = indmips->tls_type;
9672 }
9673
9674 void
9675 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9676 struct elf_link_hash_entry *entry,
9677 bfd_boolean force_local)
9678 {
9679 bfd *dynobj;
9680 asection *got;
9681 struct mips_got_info *g;
9682 struct mips_elf_link_hash_entry *h;
9683
9684 h = (struct mips_elf_link_hash_entry *) entry;
9685 if (h->forced_local)
9686 return;
9687 h->forced_local = force_local;
9688
9689 dynobj = elf_hash_table (info)->dynobj;
9690 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9691 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9692 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9693 {
9694 if (g->next)
9695 {
9696 struct mips_got_entry e;
9697 struct mips_got_info *gg = g;
9698
9699 /* Since we're turning what used to be a global symbol into a
9700 local one, bump up the number of local entries of each GOT
9701 that had an entry for it. This will automatically decrease
9702 the number of global entries, since global_gotno is actually
9703 the upper limit of global entries. */
9704 e.abfd = dynobj;
9705 e.symndx = -1;
9706 e.d.h = h;
9707 e.tls_type = 0;
9708
9709 for (g = g->next; g != gg; g = g->next)
9710 if (htab_find (g->got_entries, &e))
9711 {
9712 BFD_ASSERT (g->global_gotno > 0);
9713 g->local_gotno++;
9714 g->global_gotno--;
9715 }
9716
9717 /* If this was a global symbol forced into the primary GOT, we
9718 no longer need an entry for it. We can't release the entry
9719 at this point, but we must at least stop counting it as one
9720 of the symbols that required a forced got entry. */
9721 if (h->root.got.offset == 2)
9722 {
9723 BFD_ASSERT (gg->assigned_gotno > 0);
9724 gg->assigned_gotno--;
9725 }
9726 }
9727 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9728 /* If we haven't got through GOT allocation yet, just bump up the
9729 number of local entries, as this symbol won't be counted as
9730 global. */
9731 g->local_gotno++;
9732 else if (h->root.got.offset == 1)
9733 {
9734 /* If we're past non-multi-GOT allocation and this symbol had
9735 been marked for a global got entry, give it a local entry
9736 instead. */
9737 BFD_ASSERT (g->global_gotno > 0);
9738 g->local_gotno++;
9739 g->global_gotno--;
9740 }
9741 }
9742
9743 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9744 }
9745 \f
9746 #define PDR_SIZE 32
9747
9748 bfd_boolean
9749 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9750 struct bfd_link_info *info)
9751 {
9752 asection *o;
9753 bfd_boolean ret = FALSE;
9754 unsigned char *tdata;
9755 size_t i, skip;
9756
9757 o = bfd_get_section_by_name (abfd, ".pdr");
9758 if (! o)
9759 return FALSE;
9760 if (o->size == 0)
9761 return FALSE;
9762 if (o->size % PDR_SIZE != 0)
9763 return FALSE;
9764 if (o->output_section != NULL
9765 && bfd_is_abs_section (o->output_section))
9766 return FALSE;
9767
9768 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9769 if (! tdata)
9770 return FALSE;
9771
9772 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9773 info->keep_memory);
9774 if (!cookie->rels)
9775 {
9776 free (tdata);
9777 return FALSE;
9778 }
9779
9780 cookie->rel = cookie->rels;
9781 cookie->relend = cookie->rels + o->reloc_count;
9782
9783 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9784 {
9785 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9786 {
9787 tdata[i] = 1;
9788 skip ++;
9789 }
9790 }
9791
9792 if (skip != 0)
9793 {
9794 mips_elf_section_data (o)->u.tdata = tdata;
9795 o->size -= skip * PDR_SIZE;
9796 ret = TRUE;
9797 }
9798 else
9799 free (tdata);
9800
9801 if (! info->keep_memory)
9802 free (cookie->rels);
9803
9804 return ret;
9805 }
9806
9807 bfd_boolean
9808 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9809 {
9810 if (strcmp (sec->name, ".pdr") == 0)
9811 return TRUE;
9812 return FALSE;
9813 }
9814
9815 bfd_boolean
9816 _bfd_mips_elf_write_section (bfd *output_bfd,
9817 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9818 asection *sec, bfd_byte *contents)
9819 {
9820 bfd_byte *to, *from, *end;
9821 int i;
9822
9823 if (strcmp (sec->name, ".pdr") != 0)
9824 return FALSE;
9825
9826 if (mips_elf_section_data (sec)->u.tdata == NULL)
9827 return FALSE;
9828
9829 to = contents;
9830 end = contents + sec->size;
9831 for (from = contents, i = 0;
9832 from < end;
9833 from += PDR_SIZE, i++)
9834 {
9835 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9836 continue;
9837 if (to != from)
9838 memcpy (to, from, PDR_SIZE);
9839 to += PDR_SIZE;
9840 }
9841 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9842 sec->output_offset, sec->size);
9843 return TRUE;
9844 }
9845 \f
9846 /* MIPS ELF uses a special find_nearest_line routine in order the
9847 handle the ECOFF debugging information. */
9848
9849 struct mips_elf_find_line
9850 {
9851 struct ecoff_debug_info d;
9852 struct ecoff_find_line i;
9853 };
9854
9855 bfd_boolean
9856 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9857 asymbol **symbols, bfd_vma offset,
9858 const char **filename_ptr,
9859 const char **functionname_ptr,
9860 unsigned int *line_ptr)
9861 {
9862 asection *msec;
9863
9864 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9865 filename_ptr, functionname_ptr,
9866 line_ptr))
9867 return TRUE;
9868
9869 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9870 filename_ptr, functionname_ptr,
9871 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9872 &elf_tdata (abfd)->dwarf2_find_line_info))
9873 return TRUE;
9874
9875 msec = bfd_get_section_by_name (abfd, ".mdebug");
9876 if (msec != NULL)
9877 {
9878 flagword origflags;
9879 struct mips_elf_find_line *fi;
9880 const struct ecoff_debug_swap * const swap =
9881 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9882
9883 /* If we are called during a link, mips_elf_final_link may have
9884 cleared the SEC_HAS_CONTENTS field. We force it back on here
9885 if appropriate (which it normally will be). */
9886 origflags = msec->flags;
9887 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9888 msec->flags |= SEC_HAS_CONTENTS;
9889
9890 fi = elf_tdata (abfd)->find_line_info;
9891 if (fi == NULL)
9892 {
9893 bfd_size_type external_fdr_size;
9894 char *fraw_src;
9895 char *fraw_end;
9896 struct fdr *fdr_ptr;
9897 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9898
9899 fi = bfd_zalloc (abfd, amt);
9900 if (fi == NULL)
9901 {
9902 msec->flags = origflags;
9903 return FALSE;
9904 }
9905
9906 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9907 {
9908 msec->flags = origflags;
9909 return FALSE;
9910 }
9911
9912 /* Swap in the FDR information. */
9913 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9914 fi->d.fdr = bfd_alloc (abfd, amt);
9915 if (fi->d.fdr == NULL)
9916 {
9917 msec->flags = origflags;
9918 return FALSE;
9919 }
9920 external_fdr_size = swap->external_fdr_size;
9921 fdr_ptr = fi->d.fdr;
9922 fraw_src = (char *) fi->d.external_fdr;
9923 fraw_end = (fraw_src
9924 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9925 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9926 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9927
9928 elf_tdata (abfd)->find_line_info = fi;
9929
9930 /* Note that we don't bother to ever free this information.
9931 find_nearest_line is either called all the time, as in
9932 objdump -l, so the information should be saved, or it is
9933 rarely called, as in ld error messages, so the memory
9934 wasted is unimportant. Still, it would probably be a
9935 good idea for free_cached_info to throw it away. */
9936 }
9937
9938 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9939 &fi->i, filename_ptr, functionname_ptr,
9940 line_ptr))
9941 {
9942 msec->flags = origflags;
9943 return TRUE;
9944 }
9945
9946 msec->flags = origflags;
9947 }
9948
9949 /* Fall back on the generic ELF find_nearest_line routine. */
9950
9951 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9952 filename_ptr, functionname_ptr,
9953 line_ptr);
9954 }
9955
9956 bfd_boolean
9957 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9958 const char **filename_ptr,
9959 const char **functionname_ptr,
9960 unsigned int *line_ptr)
9961 {
9962 bfd_boolean found;
9963 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9964 functionname_ptr, line_ptr,
9965 & elf_tdata (abfd)->dwarf2_find_line_info);
9966 return found;
9967 }
9968
9969 \f
9970 /* When are writing out the .options or .MIPS.options section,
9971 remember the bytes we are writing out, so that we can install the
9972 GP value in the section_processing routine. */
9973
9974 bfd_boolean
9975 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9976 const void *location,
9977 file_ptr offset, bfd_size_type count)
9978 {
9979 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9980 {
9981 bfd_byte *c;
9982
9983 if (elf_section_data (section) == NULL)
9984 {
9985 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9986 section->used_by_bfd = bfd_zalloc (abfd, amt);
9987 if (elf_section_data (section) == NULL)
9988 return FALSE;
9989 }
9990 c = mips_elf_section_data (section)->u.tdata;
9991 if (c == NULL)
9992 {
9993 c = bfd_zalloc (abfd, section->size);
9994 if (c == NULL)
9995 return FALSE;
9996 mips_elf_section_data (section)->u.tdata = c;
9997 }
9998
9999 memcpy (c + offset, location, count);
10000 }
10001
10002 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10003 count);
10004 }
10005
10006 /* This is almost identical to bfd_generic_get_... except that some
10007 MIPS relocations need to be handled specially. Sigh. */
10008
10009 bfd_byte *
10010 _bfd_elf_mips_get_relocated_section_contents
10011 (bfd *abfd,
10012 struct bfd_link_info *link_info,
10013 struct bfd_link_order *link_order,
10014 bfd_byte *data,
10015 bfd_boolean relocatable,
10016 asymbol **symbols)
10017 {
10018 /* Get enough memory to hold the stuff */
10019 bfd *input_bfd = link_order->u.indirect.section->owner;
10020 asection *input_section = link_order->u.indirect.section;
10021 bfd_size_type sz;
10022
10023 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10024 arelent **reloc_vector = NULL;
10025 long reloc_count;
10026
10027 if (reloc_size < 0)
10028 goto error_return;
10029
10030 reloc_vector = bfd_malloc (reloc_size);
10031 if (reloc_vector == NULL && reloc_size != 0)
10032 goto error_return;
10033
10034 /* read in the section */
10035 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10036 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10037 goto error_return;
10038
10039 reloc_count = bfd_canonicalize_reloc (input_bfd,
10040 input_section,
10041 reloc_vector,
10042 symbols);
10043 if (reloc_count < 0)
10044 goto error_return;
10045
10046 if (reloc_count > 0)
10047 {
10048 arelent **parent;
10049 /* for mips */
10050 int gp_found;
10051 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10052
10053 {
10054 struct bfd_hash_entry *h;
10055 struct bfd_link_hash_entry *lh;
10056 /* Skip all this stuff if we aren't mixing formats. */
10057 if (abfd && input_bfd
10058 && abfd->xvec == input_bfd->xvec)
10059 lh = 0;
10060 else
10061 {
10062 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10063 lh = (struct bfd_link_hash_entry *) h;
10064 }
10065 lookup:
10066 if (lh)
10067 {
10068 switch (lh->type)
10069 {
10070 case bfd_link_hash_undefined:
10071 case bfd_link_hash_undefweak:
10072 case bfd_link_hash_common:
10073 gp_found = 0;
10074 break;
10075 case bfd_link_hash_defined:
10076 case bfd_link_hash_defweak:
10077 gp_found = 1;
10078 gp = lh->u.def.value;
10079 break;
10080 case bfd_link_hash_indirect:
10081 case bfd_link_hash_warning:
10082 lh = lh->u.i.link;
10083 /* @@FIXME ignoring warning for now */
10084 goto lookup;
10085 case bfd_link_hash_new:
10086 default:
10087 abort ();
10088 }
10089 }
10090 else
10091 gp_found = 0;
10092 }
10093 /* end mips */
10094 for (parent = reloc_vector; *parent != NULL; parent++)
10095 {
10096 char *error_message = NULL;
10097 bfd_reloc_status_type r;
10098
10099 /* Specific to MIPS: Deal with relocation types that require
10100 knowing the gp of the output bfd. */
10101 asymbol *sym = *(*parent)->sym_ptr_ptr;
10102
10103 /* If we've managed to find the gp and have a special
10104 function for the relocation then go ahead, else default
10105 to the generic handling. */
10106 if (gp_found
10107 && (*parent)->howto->special_function
10108 == _bfd_mips_elf32_gprel16_reloc)
10109 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10110 input_section, relocatable,
10111 data, gp);
10112 else
10113 r = bfd_perform_relocation (input_bfd, *parent, data,
10114 input_section,
10115 relocatable ? abfd : NULL,
10116 &error_message);
10117
10118 if (relocatable)
10119 {
10120 asection *os = input_section->output_section;
10121
10122 /* A partial link, so keep the relocs */
10123 os->orelocation[os->reloc_count] = *parent;
10124 os->reloc_count++;
10125 }
10126
10127 if (r != bfd_reloc_ok)
10128 {
10129 switch (r)
10130 {
10131 case bfd_reloc_undefined:
10132 if (!((*link_info->callbacks->undefined_symbol)
10133 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10134 input_bfd, input_section, (*parent)->address, TRUE)))
10135 goto error_return;
10136 break;
10137 case bfd_reloc_dangerous:
10138 BFD_ASSERT (error_message != NULL);
10139 if (!((*link_info->callbacks->reloc_dangerous)
10140 (link_info, error_message, input_bfd, input_section,
10141 (*parent)->address)))
10142 goto error_return;
10143 break;
10144 case bfd_reloc_overflow:
10145 if (!((*link_info->callbacks->reloc_overflow)
10146 (link_info, NULL,
10147 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10148 (*parent)->howto->name, (*parent)->addend,
10149 input_bfd, input_section, (*parent)->address)))
10150 goto error_return;
10151 break;
10152 case bfd_reloc_outofrange:
10153 default:
10154 abort ();
10155 break;
10156 }
10157
10158 }
10159 }
10160 }
10161 if (reloc_vector != NULL)
10162 free (reloc_vector);
10163 return data;
10164
10165 error_return:
10166 if (reloc_vector != NULL)
10167 free (reloc_vector);
10168 return NULL;
10169 }
10170 \f
10171 /* Create a MIPS ELF linker hash table. */
10172
10173 struct bfd_link_hash_table *
10174 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10175 {
10176 struct mips_elf_link_hash_table *ret;
10177 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10178
10179 ret = bfd_malloc (amt);
10180 if (ret == NULL)
10181 return NULL;
10182
10183 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10184 mips_elf_link_hash_newfunc,
10185 sizeof (struct mips_elf_link_hash_entry)))
10186 {
10187 free (ret);
10188 return NULL;
10189 }
10190
10191 #if 0
10192 /* We no longer use this. */
10193 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10194 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10195 #endif
10196 ret->procedure_count = 0;
10197 ret->compact_rel_size = 0;
10198 ret->use_rld_obj_head = FALSE;
10199 ret->rld_value = 0;
10200 ret->mips16_stubs_seen = FALSE;
10201 ret->is_vxworks = FALSE;
10202 ret->srelbss = NULL;
10203 ret->sdynbss = NULL;
10204 ret->srelplt = NULL;
10205 ret->srelplt2 = NULL;
10206 ret->sgotplt = NULL;
10207 ret->splt = NULL;
10208 ret->plt_header_size = 0;
10209 ret->plt_entry_size = 0;
10210 ret->function_stub_size = 0;
10211
10212 return &ret->root.root;
10213 }
10214
10215 /* Likewise, but indicate that the target is VxWorks. */
10216
10217 struct bfd_link_hash_table *
10218 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10219 {
10220 struct bfd_link_hash_table *ret;
10221
10222 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10223 if (ret)
10224 {
10225 struct mips_elf_link_hash_table *htab;
10226
10227 htab = (struct mips_elf_link_hash_table *) ret;
10228 htab->is_vxworks = 1;
10229 }
10230 return ret;
10231 }
10232 \f
10233 /* We need to use a special link routine to handle the .reginfo and
10234 the .mdebug sections. We need to merge all instances of these
10235 sections together, not write them all out sequentially. */
10236
10237 bfd_boolean
10238 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10239 {
10240 asection *o;
10241 struct bfd_link_order *p;
10242 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10243 asection *rtproc_sec;
10244 Elf32_RegInfo reginfo;
10245 struct ecoff_debug_info debug;
10246 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10247 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10248 HDRR *symhdr = &debug.symbolic_header;
10249 void *mdebug_handle = NULL;
10250 asection *s;
10251 EXTR esym;
10252 unsigned int i;
10253 bfd_size_type amt;
10254 struct mips_elf_link_hash_table *htab;
10255
10256 static const char * const secname[] =
10257 {
10258 ".text", ".init", ".fini", ".data",
10259 ".rodata", ".sdata", ".sbss", ".bss"
10260 };
10261 static const int sc[] =
10262 {
10263 scText, scInit, scFini, scData,
10264 scRData, scSData, scSBss, scBss
10265 };
10266
10267 /* We'd carefully arranged the dynamic symbol indices, and then the
10268 generic size_dynamic_sections renumbered them out from under us.
10269 Rather than trying somehow to prevent the renumbering, just do
10270 the sort again. */
10271 htab = mips_elf_hash_table (info);
10272 if (elf_hash_table (info)->dynamic_sections_created)
10273 {
10274 bfd *dynobj;
10275 asection *got;
10276 struct mips_got_info *g;
10277 bfd_size_type dynsecsymcount;
10278
10279 /* When we resort, we must tell mips_elf_sort_hash_table what
10280 the lowest index it may use is. That's the number of section
10281 symbols we're going to add. The generic ELF linker only
10282 adds these symbols when building a shared object. Note that
10283 we count the sections after (possibly) removing the .options
10284 section above. */
10285
10286 dynsecsymcount = count_section_dynsyms (abfd, info);
10287 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10288 return FALSE;
10289
10290 /* Make sure we didn't grow the global .got region. */
10291 dynobj = elf_hash_table (info)->dynobj;
10292 got = mips_elf_got_section (dynobj, FALSE);
10293 g = mips_elf_section_data (got)->u.got_info;
10294
10295 if (g->global_gotsym != NULL)
10296 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10297 - g->global_gotsym->dynindx)
10298 <= g->global_gotno);
10299 }
10300
10301 /* Get a value for the GP register. */
10302 if (elf_gp (abfd) == 0)
10303 {
10304 struct bfd_link_hash_entry *h;
10305
10306 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10307 if (h != NULL && h->type == bfd_link_hash_defined)
10308 elf_gp (abfd) = (h->u.def.value
10309 + h->u.def.section->output_section->vma
10310 + h->u.def.section->output_offset);
10311 else if (htab->is_vxworks
10312 && (h = bfd_link_hash_lookup (info->hash,
10313 "_GLOBAL_OFFSET_TABLE_",
10314 FALSE, FALSE, TRUE))
10315 && h->type == bfd_link_hash_defined)
10316 elf_gp (abfd) = (h->u.def.section->output_section->vma
10317 + h->u.def.section->output_offset
10318 + h->u.def.value);
10319 else if (info->relocatable)
10320 {
10321 bfd_vma lo = MINUS_ONE;
10322
10323 /* Find the GP-relative section with the lowest offset. */
10324 for (o = abfd->sections; o != NULL; o = o->next)
10325 if (o->vma < lo
10326 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10327 lo = o->vma;
10328
10329 /* And calculate GP relative to that. */
10330 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10331 }
10332 else
10333 {
10334 /* If the relocate_section function needs to do a reloc
10335 involving the GP value, it should make a reloc_dangerous
10336 callback to warn that GP is not defined. */
10337 }
10338 }
10339
10340 /* Go through the sections and collect the .reginfo and .mdebug
10341 information. */
10342 reginfo_sec = NULL;
10343 mdebug_sec = NULL;
10344 gptab_data_sec = NULL;
10345 gptab_bss_sec = NULL;
10346 for (o = abfd->sections; o != NULL; o = o->next)
10347 {
10348 if (strcmp (o->name, ".reginfo") == 0)
10349 {
10350 memset (&reginfo, 0, sizeof reginfo);
10351
10352 /* We have found the .reginfo section in the output file.
10353 Look through all the link_orders comprising it and merge
10354 the information together. */
10355 for (p = o->map_head.link_order; p != NULL; p = p->next)
10356 {
10357 asection *input_section;
10358 bfd *input_bfd;
10359 Elf32_External_RegInfo ext;
10360 Elf32_RegInfo sub;
10361
10362 if (p->type != bfd_indirect_link_order)
10363 {
10364 if (p->type == bfd_data_link_order)
10365 continue;
10366 abort ();
10367 }
10368
10369 input_section = p->u.indirect.section;
10370 input_bfd = input_section->owner;
10371
10372 if (! bfd_get_section_contents (input_bfd, input_section,
10373 &ext, 0, sizeof ext))
10374 return FALSE;
10375
10376 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10377
10378 reginfo.ri_gprmask |= sub.ri_gprmask;
10379 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10380 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10381 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10382 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10383
10384 /* ri_gp_value is set by the function
10385 mips_elf32_section_processing when the section is
10386 finally written out. */
10387
10388 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10389 elf_link_input_bfd ignores this section. */
10390 input_section->flags &= ~SEC_HAS_CONTENTS;
10391 }
10392
10393 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10394 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10395
10396 /* Skip this section later on (I don't think this currently
10397 matters, but someday it might). */
10398 o->map_head.link_order = NULL;
10399
10400 reginfo_sec = o;
10401 }
10402
10403 if (strcmp (o->name, ".mdebug") == 0)
10404 {
10405 struct extsym_info einfo;
10406 bfd_vma last;
10407
10408 /* We have found the .mdebug section in the output file.
10409 Look through all the link_orders comprising it and merge
10410 the information together. */
10411 symhdr->magic = swap->sym_magic;
10412 /* FIXME: What should the version stamp be? */
10413 symhdr->vstamp = 0;
10414 symhdr->ilineMax = 0;
10415 symhdr->cbLine = 0;
10416 symhdr->idnMax = 0;
10417 symhdr->ipdMax = 0;
10418 symhdr->isymMax = 0;
10419 symhdr->ioptMax = 0;
10420 symhdr->iauxMax = 0;
10421 symhdr->issMax = 0;
10422 symhdr->issExtMax = 0;
10423 symhdr->ifdMax = 0;
10424 symhdr->crfd = 0;
10425 symhdr->iextMax = 0;
10426
10427 /* We accumulate the debugging information itself in the
10428 debug_info structure. */
10429 debug.line = NULL;
10430 debug.external_dnr = NULL;
10431 debug.external_pdr = NULL;
10432 debug.external_sym = NULL;
10433 debug.external_opt = NULL;
10434 debug.external_aux = NULL;
10435 debug.ss = NULL;
10436 debug.ssext = debug.ssext_end = NULL;
10437 debug.external_fdr = NULL;
10438 debug.external_rfd = NULL;
10439 debug.external_ext = debug.external_ext_end = NULL;
10440
10441 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10442 if (mdebug_handle == NULL)
10443 return FALSE;
10444
10445 esym.jmptbl = 0;
10446 esym.cobol_main = 0;
10447 esym.weakext = 0;
10448 esym.reserved = 0;
10449 esym.ifd = ifdNil;
10450 esym.asym.iss = issNil;
10451 esym.asym.st = stLocal;
10452 esym.asym.reserved = 0;
10453 esym.asym.index = indexNil;
10454 last = 0;
10455 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10456 {
10457 esym.asym.sc = sc[i];
10458 s = bfd_get_section_by_name (abfd, secname[i]);
10459 if (s != NULL)
10460 {
10461 esym.asym.value = s->vma;
10462 last = s->vma + s->size;
10463 }
10464 else
10465 esym.asym.value = last;
10466 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10467 secname[i], &esym))
10468 return FALSE;
10469 }
10470
10471 for (p = o->map_head.link_order; p != NULL; p = p->next)
10472 {
10473 asection *input_section;
10474 bfd *input_bfd;
10475 const struct ecoff_debug_swap *input_swap;
10476 struct ecoff_debug_info input_debug;
10477 char *eraw_src;
10478 char *eraw_end;
10479
10480 if (p->type != bfd_indirect_link_order)
10481 {
10482 if (p->type == bfd_data_link_order)
10483 continue;
10484 abort ();
10485 }
10486
10487 input_section = p->u.indirect.section;
10488 input_bfd = input_section->owner;
10489
10490 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10491 || (get_elf_backend_data (input_bfd)
10492 ->elf_backend_ecoff_debug_swap) == NULL)
10493 {
10494 /* I don't know what a non MIPS ELF bfd would be
10495 doing with a .mdebug section, but I don't really
10496 want to deal with it. */
10497 continue;
10498 }
10499
10500 input_swap = (get_elf_backend_data (input_bfd)
10501 ->elf_backend_ecoff_debug_swap);
10502
10503 BFD_ASSERT (p->size == input_section->size);
10504
10505 /* The ECOFF linking code expects that we have already
10506 read in the debugging information and set up an
10507 ecoff_debug_info structure, so we do that now. */
10508 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10509 &input_debug))
10510 return FALSE;
10511
10512 if (! (bfd_ecoff_debug_accumulate
10513 (mdebug_handle, abfd, &debug, swap, input_bfd,
10514 &input_debug, input_swap, info)))
10515 return FALSE;
10516
10517 /* Loop through the external symbols. For each one with
10518 interesting information, try to find the symbol in
10519 the linker global hash table and save the information
10520 for the output external symbols. */
10521 eraw_src = input_debug.external_ext;
10522 eraw_end = (eraw_src
10523 + (input_debug.symbolic_header.iextMax
10524 * input_swap->external_ext_size));
10525 for (;
10526 eraw_src < eraw_end;
10527 eraw_src += input_swap->external_ext_size)
10528 {
10529 EXTR ext;
10530 const char *name;
10531 struct mips_elf_link_hash_entry *h;
10532
10533 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10534 if (ext.asym.sc == scNil
10535 || ext.asym.sc == scUndefined
10536 || ext.asym.sc == scSUndefined)
10537 continue;
10538
10539 name = input_debug.ssext + ext.asym.iss;
10540 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10541 name, FALSE, FALSE, TRUE);
10542 if (h == NULL || h->esym.ifd != -2)
10543 continue;
10544
10545 if (ext.ifd != -1)
10546 {
10547 BFD_ASSERT (ext.ifd
10548 < input_debug.symbolic_header.ifdMax);
10549 ext.ifd = input_debug.ifdmap[ext.ifd];
10550 }
10551
10552 h->esym = ext;
10553 }
10554
10555 /* Free up the information we just read. */
10556 free (input_debug.line);
10557 free (input_debug.external_dnr);
10558 free (input_debug.external_pdr);
10559 free (input_debug.external_sym);
10560 free (input_debug.external_opt);
10561 free (input_debug.external_aux);
10562 free (input_debug.ss);
10563 free (input_debug.ssext);
10564 free (input_debug.external_fdr);
10565 free (input_debug.external_rfd);
10566 free (input_debug.external_ext);
10567
10568 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10569 elf_link_input_bfd ignores this section. */
10570 input_section->flags &= ~SEC_HAS_CONTENTS;
10571 }
10572
10573 if (SGI_COMPAT (abfd) && info->shared)
10574 {
10575 /* Create .rtproc section. */
10576 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10577 if (rtproc_sec == NULL)
10578 {
10579 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10580 | SEC_LINKER_CREATED | SEC_READONLY);
10581
10582 rtproc_sec = bfd_make_section_with_flags (abfd,
10583 ".rtproc",
10584 flags);
10585 if (rtproc_sec == NULL
10586 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10587 return FALSE;
10588 }
10589
10590 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10591 info, rtproc_sec,
10592 &debug))
10593 return FALSE;
10594 }
10595
10596 /* Build the external symbol information. */
10597 einfo.abfd = abfd;
10598 einfo.info = info;
10599 einfo.debug = &debug;
10600 einfo.swap = swap;
10601 einfo.failed = FALSE;
10602 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10603 mips_elf_output_extsym, &einfo);
10604 if (einfo.failed)
10605 return FALSE;
10606
10607 /* Set the size of the .mdebug section. */
10608 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10609
10610 /* Skip this section later on (I don't think this currently
10611 matters, but someday it might). */
10612 o->map_head.link_order = NULL;
10613
10614 mdebug_sec = o;
10615 }
10616
10617 if (CONST_STRNEQ (o->name, ".gptab."))
10618 {
10619 const char *subname;
10620 unsigned int c;
10621 Elf32_gptab *tab;
10622 Elf32_External_gptab *ext_tab;
10623 unsigned int j;
10624
10625 /* The .gptab.sdata and .gptab.sbss sections hold
10626 information describing how the small data area would
10627 change depending upon the -G switch. These sections
10628 not used in executables files. */
10629 if (! info->relocatable)
10630 {
10631 for (p = o->map_head.link_order; p != NULL; p = p->next)
10632 {
10633 asection *input_section;
10634
10635 if (p->type != bfd_indirect_link_order)
10636 {
10637 if (p->type == bfd_data_link_order)
10638 continue;
10639 abort ();
10640 }
10641
10642 input_section = p->u.indirect.section;
10643
10644 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10645 elf_link_input_bfd ignores this section. */
10646 input_section->flags &= ~SEC_HAS_CONTENTS;
10647 }
10648
10649 /* Skip this section later on (I don't think this
10650 currently matters, but someday it might). */
10651 o->map_head.link_order = NULL;
10652
10653 /* Really remove the section. */
10654 bfd_section_list_remove (abfd, o);
10655 --abfd->section_count;
10656
10657 continue;
10658 }
10659
10660 /* There is one gptab for initialized data, and one for
10661 uninitialized data. */
10662 if (strcmp (o->name, ".gptab.sdata") == 0)
10663 gptab_data_sec = o;
10664 else if (strcmp (o->name, ".gptab.sbss") == 0)
10665 gptab_bss_sec = o;
10666 else
10667 {
10668 (*_bfd_error_handler)
10669 (_("%s: illegal section name `%s'"),
10670 bfd_get_filename (abfd), o->name);
10671 bfd_set_error (bfd_error_nonrepresentable_section);
10672 return FALSE;
10673 }
10674
10675 /* The linker script always combines .gptab.data and
10676 .gptab.sdata into .gptab.sdata, and likewise for
10677 .gptab.bss and .gptab.sbss. It is possible that there is
10678 no .sdata or .sbss section in the output file, in which
10679 case we must change the name of the output section. */
10680 subname = o->name + sizeof ".gptab" - 1;
10681 if (bfd_get_section_by_name (abfd, subname) == NULL)
10682 {
10683 if (o == gptab_data_sec)
10684 o->name = ".gptab.data";
10685 else
10686 o->name = ".gptab.bss";
10687 subname = o->name + sizeof ".gptab" - 1;
10688 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10689 }
10690
10691 /* Set up the first entry. */
10692 c = 1;
10693 amt = c * sizeof (Elf32_gptab);
10694 tab = bfd_malloc (amt);
10695 if (tab == NULL)
10696 return FALSE;
10697 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10698 tab[0].gt_header.gt_unused = 0;
10699
10700 /* Combine the input sections. */
10701 for (p = o->map_head.link_order; p != NULL; p = p->next)
10702 {
10703 asection *input_section;
10704 bfd *input_bfd;
10705 bfd_size_type size;
10706 unsigned long last;
10707 bfd_size_type gpentry;
10708
10709 if (p->type != bfd_indirect_link_order)
10710 {
10711 if (p->type == bfd_data_link_order)
10712 continue;
10713 abort ();
10714 }
10715
10716 input_section = p->u.indirect.section;
10717 input_bfd = input_section->owner;
10718
10719 /* Combine the gptab entries for this input section one
10720 by one. We know that the input gptab entries are
10721 sorted by ascending -G value. */
10722 size = input_section->size;
10723 last = 0;
10724 for (gpentry = sizeof (Elf32_External_gptab);
10725 gpentry < size;
10726 gpentry += sizeof (Elf32_External_gptab))
10727 {
10728 Elf32_External_gptab ext_gptab;
10729 Elf32_gptab int_gptab;
10730 unsigned long val;
10731 unsigned long add;
10732 bfd_boolean exact;
10733 unsigned int look;
10734
10735 if (! (bfd_get_section_contents
10736 (input_bfd, input_section, &ext_gptab, gpentry,
10737 sizeof (Elf32_External_gptab))))
10738 {
10739 free (tab);
10740 return FALSE;
10741 }
10742
10743 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10744 &int_gptab);
10745 val = int_gptab.gt_entry.gt_g_value;
10746 add = int_gptab.gt_entry.gt_bytes - last;
10747
10748 exact = FALSE;
10749 for (look = 1; look < c; look++)
10750 {
10751 if (tab[look].gt_entry.gt_g_value >= val)
10752 tab[look].gt_entry.gt_bytes += add;
10753
10754 if (tab[look].gt_entry.gt_g_value == val)
10755 exact = TRUE;
10756 }
10757
10758 if (! exact)
10759 {
10760 Elf32_gptab *new_tab;
10761 unsigned int max;
10762
10763 /* We need a new table entry. */
10764 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10765 new_tab = bfd_realloc (tab, amt);
10766 if (new_tab == NULL)
10767 {
10768 free (tab);
10769 return FALSE;
10770 }
10771 tab = new_tab;
10772 tab[c].gt_entry.gt_g_value = val;
10773 tab[c].gt_entry.gt_bytes = add;
10774
10775 /* Merge in the size for the next smallest -G
10776 value, since that will be implied by this new
10777 value. */
10778 max = 0;
10779 for (look = 1; look < c; look++)
10780 {
10781 if (tab[look].gt_entry.gt_g_value < val
10782 && (max == 0
10783 || (tab[look].gt_entry.gt_g_value
10784 > tab[max].gt_entry.gt_g_value)))
10785 max = look;
10786 }
10787 if (max != 0)
10788 tab[c].gt_entry.gt_bytes +=
10789 tab[max].gt_entry.gt_bytes;
10790
10791 ++c;
10792 }
10793
10794 last = int_gptab.gt_entry.gt_bytes;
10795 }
10796
10797 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10798 elf_link_input_bfd ignores this section. */
10799 input_section->flags &= ~SEC_HAS_CONTENTS;
10800 }
10801
10802 /* The table must be sorted by -G value. */
10803 if (c > 2)
10804 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10805
10806 /* Swap out the table. */
10807 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10808 ext_tab = bfd_alloc (abfd, amt);
10809 if (ext_tab == NULL)
10810 {
10811 free (tab);
10812 return FALSE;
10813 }
10814
10815 for (j = 0; j < c; j++)
10816 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10817 free (tab);
10818
10819 o->size = c * sizeof (Elf32_External_gptab);
10820 o->contents = (bfd_byte *) ext_tab;
10821
10822 /* Skip this section later on (I don't think this currently
10823 matters, but someday it might). */
10824 o->map_head.link_order = NULL;
10825 }
10826 }
10827
10828 /* Invoke the regular ELF backend linker to do all the work. */
10829 if (!bfd_elf_final_link (abfd, info))
10830 return FALSE;
10831
10832 /* Now write out the computed sections. */
10833
10834 if (reginfo_sec != NULL)
10835 {
10836 Elf32_External_RegInfo ext;
10837
10838 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10839 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10840 return FALSE;
10841 }
10842
10843 if (mdebug_sec != NULL)
10844 {
10845 BFD_ASSERT (abfd->output_has_begun);
10846 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10847 swap, info,
10848 mdebug_sec->filepos))
10849 return FALSE;
10850
10851 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10852 }
10853
10854 if (gptab_data_sec != NULL)
10855 {
10856 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10857 gptab_data_sec->contents,
10858 0, gptab_data_sec->size))
10859 return FALSE;
10860 }
10861
10862 if (gptab_bss_sec != NULL)
10863 {
10864 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10865 gptab_bss_sec->contents,
10866 0, gptab_bss_sec->size))
10867 return FALSE;
10868 }
10869
10870 if (SGI_COMPAT (abfd))
10871 {
10872 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10873 if (rtproc_sec != NULL)
10874 {
10875 if (! bfd_set_section_contents (abfd, rtproc_sec,
10876 rtproc_sec->contents,
10877 0, rtproc_sec->size))
10878 return FALSE;
10879 }
10880 }
10881
10882 return TRUE;
10883 }
10884 \f
10885 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10886
10887 struct mips_mach_extension {
10888 unsigned long extension, base;
10889 };
10890
10891
10892 /* An array describing how BFD machines relate to one another. The entries
10893 are ordered topologically with MIPS I extensions listed last. */
10894
10895 static const struct mips_mach_extension mips_mach_extensions[] = {
10896 /* MIPS64 extensions. */
10897 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10898 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10899
10900 /* MIPS V extensions. */
10901 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10902
10903 /* R10000 extensions. */
10904 { bfd_mach_mips12000, bfd_mach_mips10000 },
10905
10906 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10907 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10908 better to allow vr5400 and vr5500 code to be merged anyway, since
10909 many libraries will just use the core ISA. Perhaps we could add
10910 some sort of ASE flag if this ever proves a problem. */
10911 { bfd_mach_mips5500, bfd_mach_mips5400 },
10912 { bfd_mach_mips5400, bfd_mach_mips5000 },
10913
10914 /* MIPS IV extensions. */
10915 { bfd_mach_mips5, bfd_mach_mips8000 },
10916 { bfd_mach_mips10000, bfd_mach_mips8000 },
10917 { bfd_mach_mips5000, bfd_mach_mips8000 },
10918 { bfd_mach_mips7000, bfd_mach_mips8000 },
10919 { bfd_mach_mips9000, bfd_mach_mips8000 },
10920
10921 /* VR4100 extensions. */
10922 { bfd_mach_mips4120, bfd_mach_mips4100 },
10923 { bfd_mach_mips4111, bfd_mach_mips4100 },
10924
10925 /* MIPS III extensions. */
10926 { bfd_mach_mips8000, bfd_mach_mips4000 },
10927 { bfd_mach_mips4650, bfd_mach_mips4000 },
10928 { bfd_mach_mips4600, bfd_mach_mips4000 },
10929 { bfd_mach_mips4400, bfd_mach_mips4000 },
10930 { bfd_mach_mips4300, bfd_mach_mips4000 },
10931 { bfd_mach_mips4100, bfd_mach_mips4000 },
10932 { bfd_mach_mips4010, bfd_mach_mips4000 },
10933
10934 /* MIPS32 extensions. */
10935 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10936
10937 /* MIPS II extensions. */
10938 { bfd_mach_mips4000, bfd_mach_mips6000 },
10939 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10940
10941 /* MIPS I extensions. */
10942 { bfd_mach_mips6000, bfd_mach_mips3000 },
10943 { bfd_mach_mips3900, bfd_mach_mips3000 }
10944 };
10945
10946
10947 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10948
10949 static bfd_boolean
10950 mips_mach_extends_p (unsigned long base, unsigned long extension)
10951 {
10952 size_t i;
10953
10954 if (extension == base)
10955 return TRUE;
10956
10957 if (base == bfd_mach_mipsisa32
10958 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10959 return TRUE;
10960
10961 if (base == bfd_mach_mipsisa32r2
10962 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10963 return TRUE;
10964
10965 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10966 if (extension == mips_mach_extensions[i].extension)
10967 {
10968 extension = mips_mach_extensions[i].base;
10969 if (extension == base)
10970 return TRUE;
10971 }
10972
10973 return FALSE;
10974 }
10975
10976
10977 /* Return true if the given ELF header flags describe a 32-bit binary. */
10978
10979 static bfd_boolean
10980 mips_32bit_flags_p (flagword flags)
10981 {
10982 return ((flags & EF_MIPS_32BITMODE) != 0
10983 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10984 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10985 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10986 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10987 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10988 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10989 }
10990
10991
10992 /* Merge backend specific data from an object file to the output
10993 object file when linking. */
10994
10995 bfd_boolean
10996 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10997 {
10998 flagword old_flags;
10999 flagword new_flags;
11000 bfd_boolean ok;
11001 bfd_boolean null_input_bfd = TRUE;
11002 asection *sec;
11003
11004 /* Check if we have the same endianess */
11005 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11006 {
11007 (*_bfd_error_handler)
11008 (_("%B: endianness incompatible with that of the selected emulation"),
11009 ibfd);
11010 return FALSE;
11011 }
11012
11013 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11014 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11015 return TRUE;
11016
11017 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11018 {
11019 (*_bfd_error_handler)
11020 (_("%B: ABI is incompatible with that of the selected emulation"),
11021 ibfd);
11022 return FALSE;
11023 }
11024
11025 new_flags = elf_elfheader (ibfd)->e_flags;
11026 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11027 old_flags = elf_elfheader (obfd)->e_flags;
11028
11029 if (! elf_flags_init (obfd))
11030 {
11031 elf_flags_init (obfd) = TRUE;
11032 elf_elfheader (obfd)->e_flags = new_flags;
11033 elf_elfheader (obfd)->e_ident[EI_CLASS]
11034 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11035
11036 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11037 && (bfd_get_arch_info (obfd)->the_default
11038 || mips_mach_extends_p (bfd_get_mach (obfd),
11039 bfd_get_mach (ibfd))))
11040 {
11041 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11042 bfd_get_mach (ibfd)))
11043 return FALSE;
11044 }
11045
11046 return TRUE;
11047 }
11048
11049 /* Check flag compatibility. */
11050
11051 new_flags &= ~EF_MIPS_NOREORDER;
11052 old_flags &= ~EF_MIPS_NOREORDER;
11053
11054 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11055 doesn't seem to matter. */
11056 new_flags &= ~EF_MIPS_XGOT;
11057 old_flags &= ~EF_MIPS_XGOT;
11058
11059 /* MIPSpro generates ucode info in n64 objects. Again, we should
11060 just be able to ignore this. */
11061 new_flags &= ~EF_MIPS_UCODE;
11062 old_flags &= ~EF_MIPS_UCODE;
11063
11064 /* Don't care about the PIC flags from dynamic objects; they are
11065 PIC by design. */
11066 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11067 && (ibfd->flags & DYNAMIC) != 0)
11068 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11069
11070 if (new_flags == old_flags)
11071 return TRUE;
11072
11073 /* Check to see if the input BFD actually contains any sections.
11074 If not, its flags may not have been initialised either, but it cannot
11075 actually cause any incompatibility. */
11076 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11077 {
11078 /* Ignore synthetic sections and empty .text, .data and .bss sections
11079 which are automatically generated by gas. */
11080 if (strcmp (sec->name, ".reginfo")
11081 && strcmp (sec->name, ".mdebug")
11082 && (sec->size != 0
11083 || (strcmp (sec->name, ".text")
11084 && strcmp (sec->name, ".data")
11085 && strcmp (sec->name, ".bss"))))
11086 {
11087 null_input_bfd = FALSE;
11088 break;
11089 }
11090 }
11091 if (null_input_bfd)
11092 return TRUE;
11093
11094 ok = TRUE;
11095
11096 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11097 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11098 {
11099 (*_bfd_error_handler)
11100 (_("%B: warning: linking PIC files with non-PIC files"),
11101 ibfd);
11102 ok = TRUE;
11103 }
11104
11105 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11106 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11107 if (! (new_flags & EF_MIPS_PIC))
11108 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11109
11110 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11111 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11112
11113 /* Compare the ISAs. */
11114 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11115 {
11116 (*_bfd_error_handler)
11117 (_("%B: linking 32-bit code with 64-bit code"),
11118 ibfd);
11119 ok = FALSE;
11120 }
11121 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11122 {
11123 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11124 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11125 {
11126 /* Copy the architecture info from IBFD to OBFD. Also copy
11127 the 32-bit flag (if set) so that we continue to recognise
11128 OBFD as a 32-bit binary. */
11129 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11130 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11131 elf_elfheader (obfd)->e_flags
11132 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11133
11134 /* Copy across the ABI flags if OBFD doesn't use them
11135 and if that was what caused us to treat IBFD as 32-bit. */
11136 if ((old_flags & EF_MIPS_ABI) == 0
11137 && mips_32bit_flags_p (new_flags)
11138 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11139 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11140 }
11141 else
11142 {
11143 /* The ISAs aren't compatible. */
11144 (*_bfd_error_handler)
11145 (_("%B: linking %s module with previous %s modules"),
11146 ibfd,
11147 bfd_printable_name (ibfd),
11148 bfd_printable_name (obfd));
11149 ok = FALSE;
11150 }
11151 }
11152
11153 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11154 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11155
11156 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11157 does set EI_CLASS differently from any 32-bit ABI. */
11158 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11159 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11160 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11161 {
11162 /* Only error if both are set (to different values). */
11163 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11164 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11165 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11166 {
11167 (*_bfd_error_handler)
11168 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11169 ibfd,
11170 elf_mips_abi_name (ibfd),
11171 elf_mips_abi_name (obfd));
11172 ok = FALSE;
11173 }
11174 new_flags &= ~EF_MIPS_ABI;
11175 old_flags &= ~EF_MIPS_ABI;
11176 }
11177
11178 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11179 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11180 {
11181 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11182
11183 new_flags &= ~ EF_MIPS_ARCH_ASE;
11184 old_flags &= ~ EF_MIPS_ARCH_ASE;
11185 }
11186
11187 /* Warn about any other mismatches */
11188 if (new_flags != old_flags)
11189 {
11190 (*_bfd_error_handler)
11191 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11192 ibfd, (unsigned long) new_flags,
11193 (unsigned long) old_flags);
11194 ok = FALSE;
11195 }
11196
11197 if (! ok)
11198 {
11199 bfd_set_error (bfd_error_bad_value);
11200 return FALSE;
11201 }
11202
11203 return TRUE;
11204 }
11205
11206 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11207
11208 bfd_boolean
11209 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11210 {
11211 BFD_ASSERT (!elf_flags_init (abfd)
11212 || elf_elfheader (abfd)->e_flags == flags);
11213
11214 elf_elfheader (abfd)->e_flags = flags;
11215 elf_flags_init (abfd) = TRUE;
11216 return TRUE;
11217 }
11218
11219 bfd_boolean
11220 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11221 {
11222 FILE *file = ptr;
11223
11224 BFD_ASSERT (abfd != NULL && ptr != NULL);
11225
11226 /* Print normal ELF private data. */
11227 _bfd_elf_print_private_bfd_data (abfd, ptr);
11228
11229 /* xgettext:c-format */
11230 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11231
11232 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11233 fprintf (file, _(" [abi=O32]"));
11234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11235 fprintf (file, _(" [abi=O64]"));
11236 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11237 fprintf (file, _(" [abi=EABI32]"));
11238 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11239 fprintf (file, _(" [abi=EABI64]"));
11240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11241 fprintf (file, _(" [abi unknown]"));
11242 else if (ABI_N32_P (abfd))
11243 fprintf (file, _(" [abi=N32]"));
11244 else if (ABI_64_P (abfd))
11245 fprintf (file, _(" [abi=64]"));
11246 else
11247 fprintf (file, _(" [no abi set]"));
11248
11249 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11250 fprintf (file, " [mips1]");
11251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11252 fprintf (file, " [mips2]");
11253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11254 fprintf (file, " [mips3]");
11255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11256 fprintf (file, " [mips4]");
11257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11258 fprintf (file, " [mips5]");
11259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11260 fprintf (file, " [mips32]");
11261 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11262 fprintf (file, " [mips64]");
11263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11264 fprintf (file, " [mips32r2]");
11265 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11266 fprintf (file, " [mips64r2]");
11267 else
11268 fprintf (file, _(" [unknown ISA]"));
11269
11270 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11271 fprintf (file, " [mdmx]");
11272
11273 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11274 fprintf (file, " [mips16]");
11275
11276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11277 fprintf (file, " [32bitmode]");
11278 else
11279 fprintf (file, _(" [not 32bitmode]"));
11280
11281 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11282 fprintf (file, " [noreorder]");
11283
11284 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11285 fprintf (file, " [PIC]");
11286
11287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11288 fprintf (file, " [CPIC]");
11289
11290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11291 fprintf (file, " [XGOT]");
11292
11293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11294 fprintf (file, " [UCODE]");
11295
11296 fputc ('\n', file);
11297
11298 return TRUE;
11299 }
11300
11301 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11302 {
11303 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11304 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11305 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11306 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11307 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11308 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11309 { NULL, 0, 0, 0, 0 }
11310 };
11311
11312 /* Merge non visibility st_other attributes. Ensure that the
11313 STO_OPTIONAL flag is copied into h->other, even if this is not a
11314 definiton of the symbol. */
11315 void
11316 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11317 const Elf_Internal_Sym *isym,
11318 bfd_boolean definition,
11319 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11320 {
11321 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11322 {
11323 unsigned char other;
11324
11325 other = (definition ? isym->st_other : h->other);
11326 other &= ~ELF_ST_VISIBILITY (-1);
11327 h->other = other | ELF_ST_VISIBILITY (h->other);
11328 }
11329
11330 if (!definition
11331 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11332 h->other |= STO_OPTIONAL;
11333 }
11334
11335 /* Decide whether an undefined symbol is special and can be ignored.
11336 This is the case for OPTIONAL symbols on IRIX. */
11337 bfd_boolean
11338 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11339 {
11340 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11341 }
11342
11343 bfd_boolean
11344 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11345 {
11346 return (sym->st_shndx == SHN_COMMON
11347 || sym->st_shndx == SHN_MIPS_ACOMMON
11348 || sym->st_shndx == SHN_MIPS_SCOMMON);
11349 }