* elfxx-mips.c (mips_elf_calculate_relocation): Remove magic constant.
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips_elf_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712 \f
713 /* The format of the first PLT entry in a VxWorks executable. */
714 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721 };
722
723 /* The format of subsequent PLT entries. */
724 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
733 };
734
735 /* The format of the first PLT entry in a VxWorks shared object. */
736 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
743 };
744
745 /* The format of subsequent PLT entries. */
746 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
749 };
750 \f
751 /* Look up an entry in a MIPS ELF linker hash table. */
752
753 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
757
758 /* Traverse a MIPS ELF linker hash table. */
759
760 #define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
764 (info)))
765
766 /* Get the MIPS ELF linker hash table from a link_info structure. */
767
768 #define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
770
771 /* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
773
774 #define TP_OFFSET 0x7000
775 #define DTP_OFFSET 0x8000
776
777 static bfd_vma
778 dtprel_base (struct bfd_link_info *info)
779 {
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
784 }
785
786 static bfd_vma
787 tprel_base (struct bfd_link_info *info)
788 {
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
793 }
794
795 /* Create an entry in a MIPS ELF linker hash table. */
796
797 static struct bfd_hash_entry *
798 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
800 {
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
803
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
809 return (struct bfd_hash_entry *) ret;
810
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
815 if (ret != NULL)
816 {
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
823 ret->readonly_reloc = FALSE;
824 ret->no_fn_stub = FALSE;
825 ret->fn_stub = NULL;
826 ret->need_fn_stub = FALSE;
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
829 ret->forced_local = FALSE;
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
832 ret->tls_type = GOT_NORMAL;
833 }
834
835 return (struct bfd_hash_entry *) ret;
836 }
837
838 bfd_boolean
839 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
840 {
841 if (!sec->used_by_bfd)
842 {
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
845
846 sdata = bfd_zalloc (abfd, amt);
847 if (sdata == NULL)
848 return FALSE;
849 sec->used_by_bfd = sdata;
850 }
851
852 return _bfd_elf_new_section_hook (abfd, sec);
853 }
854 \f
855 /* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
857
858 bfd_boolean
859 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
861 {
862 HDRR *symhdr;
863 const struct ecoff_debug_swap *swap;
864 char *ext_hdr;
865
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
868
869 ext_hdr = bfd_malloc (swap->external_hdr_size);
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
871 goto error_return;
872
873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
874 swap->external_hdr_size))
875 goto error_return;
876
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
879
880 /* The symbolic header contains absolute file offsets and sizes to
881 read. */
882 #define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
884 debug->ptr = NULL; \
885 else \
886 { \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
888 debug->ptr = bfd_malloc (amt); \
889 if (debug->ptr == NULL) \
890 goto error_return; \
891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
893 goto error_return; \
894 }
895
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
902 union aux_ext *);
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
908 #undef READ
909
910 debug->fdr = NULL;
911
912 return TRUE;
913
914 error_return:
915 if (ext_hdr != NULL)
916 free (ext_hdr);
917 if (debug->line != NULL)
918 free (debug->line);
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
930 free (debug->ss);
931 if (debug->ssext != NULL)
932 free (debug->ssext);
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
939 return FALSE;
940 }
941 \f
942 /* Swap RPDR (runtime procedure table entry) for output. */
943
944 static void
945 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
946 {
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
953
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
956
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
958 }
959
960 /* Create a runtime procedure table from the .mdebug section. */
961
962 static bfd_boolean
963 mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
966 {
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
969 RPDR *rpdr, *rp;
970 struct rpdr_ext *erp;
971 void *rtproc;
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
974 char *ss, **sv;
975 char *str;
976 bfd_size_type size;
977 bfd_size_type count;
978 unsigned long sindex;
979 unsigned long i;
980 PDR pdr;
981 SYMR sym;
982 const char *no_name_func = _("static procedure (no name)");
983
984 epdr = NULL;
985 rpdr = NULL;
986 esym = NULL;
987 ss = NULL;
988 sv = NULL;
989
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
991
992 sindex = strlen (no_name_func) + 1;
993 count = hdr->ipdMax;
994 if (count > 0)
995 {
996 size = swap->external_pdr_size;
997
998 epdr = bfd_malloc (size * count);
999 if (epdr == NULL)
1000 goto error_return;
1001
1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1003 goto error_return;
1004
1005 size = sizeof (RPDR);
1006 rp = rpdr = bfd_malloc (size * count);
1007 if (rpdr == NULL)
1008 goto error_return;
1009
1010 size = sizeof (char *);
1011 sv = bfd_malloc (size * count);
1012 if (sv == NULL)
1013 goto error_return;
1014
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
1017 esym = bfd_malloc (size * count);
1018 if (esym == NULL)
1019 goto error_return;
1020
1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1022 goto error_return;
1023
1024 count = hdr->issMax;
1025 ss = bfd_malloc (count);
1026 if (ss == NULL)
1027 goto error_return;
1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1029 goto error_return;
1030
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1033 {
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1044 rp->irpss = sindex;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1047 }
1048 }
1049
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
1052 rtproc = bfd_alloc (abfd, size);
1053 if (rtproc == NULL)
1054 {
1055 mips_elf_hash_table (info)->procedure_count = 0;
1056 goto error_return;
1057 }
1058
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1060
1061 erp = rtproc;
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1063 erp++;
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1068 {
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1072 }
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1074
1075 /* Set the size and contents of .rtproc section. */
1076 s->size = size;
1077 s->contents = rtproc;
1078
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
1081 s->map_head.link_order = NULL;
1082
1083 if (epdr != NULL)
1084 free (epdr);
1085 if (rpdr != NULL)
1086 free (rpdr);
1087 if (esym != NULL)
1088 free (esym);
1089 if (ss != NULL)
1090 free (ss);
1091 if (sv != NULL)
1092 free (sv);
1093
1094 return TRUE;
1095
1096 error_return:
1097 if (epdr != NULL)
1098 free (epdr);
1099 if (rpdr != NULL)
1100 free (rpdr);
1101 if (esym != NULL)
1102 free (esym);
1103 if (ss != NULL)
1104 free (ss);
1105 if (sv != NULL)
1106 free (sv);
1107 return FALSE;
1108 }
1109
1110 /* Check the mips16 stubs for a particular symbol, and see if we can
1111 discard them. */
1112
1113 static bfd_boolean
1114 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
1116 {
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1119
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1122 {
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
1126 h->fn_stub->size = 0;
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
1138 h->call_stub->size = 0;
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1146 {
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
1150 h->call_fp_stub->size = 0;
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1154 }
1155
1156 return TRUE;
1157 }
1158 \f
1159 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1161 are 32 bits.
1162
1163 The format of these instructions is:
1164
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1168 | Immediate 15:0 |
1169 +-----------------------------------------------+
1170
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1173
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1184 instruction.
1185
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1192
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1194 defined as
1195
1196 big-endian:
1197 +--------+----------------------+
1198 | | |
1199 | | targ26-16 |
1200 |31 26|25 0|
1201 +--------+----------------------+
1202
1203 little-endian:
1204 +----------+------+-------------+
1205 | | | |
1206 | sub1 | | sub2 |
1207 |0 9|10 15|16 31|
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1211
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1217
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1220
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1226
1227 EXTEND is the five bit value 11110. Major is the instruction
1228 opcode.
1229
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1233
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1237
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1242 for R_MIPS16_GPREL.
1243 */
1244 void
1245 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1247 {
1248 bfd_vma extend, insn, val;
1249
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1252 return;
1253
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1258 {
1259 if (jal_shuffle)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1262 else
1263 val = extend << 16 | insn;
1264 }
1265 else
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1269 }
1270
1271 void
1272 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1274 {
1275 bfd_vma extend, insn, val;
1276
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1279 return;
1280
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1283 {
1284 if (jal_shuffle)
1285 {
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1289 }
1290 else
1291 {
1292 insn = val & 0xffff;
1293 extend = val >> 16;
1294 }
1295 }
1296 else
1297 {
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1300 }
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1303 }
1304
1305 bfd_reloc_status_type
1306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
1309 {
1310 bfd_vma relocation;
1311 bfd_signed_vma val;
1312 bfd_reloc_status_type status;
1313
1314 if (bfd_is_com_section (symbol->section))
1315 relocation = 0;
1316 else
1317 relocation = symbol->value;
1318
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1321
1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1323 return bfd_reloc_outofrange;
1324
1325 /* Set val to the offset into the section or symbol. */
1326 val = reloc_entry->addend;
1327
1328 _bfd_mips_elf_sign_extend (val, 16);
1329
1330 /* Adjust val for the final section location and GP value. If we
1331 are producing relocatable output, we don't want to do this for
1332 an external symbol. */
1333 if (! relocatable
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1336
1337 if (reloc_entry->howto->partial_inplace)
1338 {
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1340 (bfd_byte *) data
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1343 return status;
1344 }
1345 else
1346 reloc_entry->addend = val;
1347
1348 if (relocatable)
1349 reloc_entry->address += input_section->output_offset;
1350
1351 return bfd_reloc_ok;
1352 }
1353
1354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1357 INPUT_SECTION. */
1358
1359 struct mips_hi16
1360 {
1361 struct mips_hi16 *next;
1362 bfd_byte *data;
1363 asection *input_section;
1364 arelent rel;
1365 };
1366
1367 /* FIXME: This should not be a static variable. */
1368
1369 static struct mips_hi16 *mips_hi16_list;
1370
1371 /* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1374
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1379
1380 bfd_reloc_status_type
1381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1385 {
1386 struct mips_hi16 *n;
1387
1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1389 return bfd_reloc_outofrange;
1390
1391 n = bfd_malloc (sizeof *n);
1392 if (n == NULL)
1393 return bfd_reloc_outofrange;
1394
1395 n->next = mips_hi16_list;
1396 n->data = data;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1399 mips_hi16_list = n;
1400
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1403
1404 return bfd_reloc_ok;
1405 }
1406
1407 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1410
1411 bfd_reloc_status_type
1412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1415 {
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1422 error_message);
1423
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426 }
1427
1428 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1431
1432 bfd_reloc_status_type
1433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1436 {
1437 bfd_vma vallo;
1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1439
1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1441 return bfd_reloc_outofrange;
1442
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1447 location);
1448
1449 while (mips_hi16_list != NULL)
1450 {
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1453
1454 hi = mips_hi16_list;
1455
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1463
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1467
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1470 error_message);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 mips_hi16_list = hi->next;
1475 free (hi);
1476 }
1477
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1480 error_message);
1481 }
1482
1483 /* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1486
1487 bfd_reloc_status_type
1488 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1492 {
1493 bfd_signed_vma val;
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1496
1497 relocatable = (output_bfd != NULL);
1498
1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1500 return bfd_reloc_outofrange;
1501
1502 /* Build up the field adjustment in VAL. */
1503 val = 0;
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1505 {
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1511 }
1512
1513 if (!relocatable)
1514 {
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1519 {
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1523 }
1524 }
1525
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1532 else
1533 {
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1535
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1538
1539 /* Add VAL to the relocation field. */
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1541 location);
1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1543 location);
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546
1547 if (status != bfd_reloc_ok)
1548 return status;
1549 }
1550
1551 if (relocatable)
1552 reloc_entry->address += input_section->output_offset;
1553
1554 return bfd_reloc_ok;
1555 }
1556 \f
1557 /* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1559
1560 static void
1561 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1562 Elf32_gptab *in)
1563 {
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1566 }
1567
1568 static void
1569 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
1571 {
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1574 }
1575
1576 static void
1577 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
1579 {
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1586 }
1587
1588 static void
1589 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
1591 {
1592 unsigned long l;
1593
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1601 }
1602 \f
1603 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1606
1607 void
1608 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1609 Elf32_RegInfo *in)
1610 {
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1617 }
1618
1619 void
1620 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
1622 {
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1629 }
1630
1631 /* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1636
1637 void
1638 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
1640 {
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1648 }
1649
1650 void
1651 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
1653 {
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1661 }
1662
1663 /* Swap in an options header. */
1664
1665 void
1666 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
1668 {
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1673 }
1674
1675 /* Swap out an options header. */
1676
1677 void
1678 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
1680 {
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1685 }
1686 \f
1687 /* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1689
1690 static int
1691 sort_dynamic_relocs (const void *arg1, const void *arg2)
1692 {
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
1695
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1698
1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1700 }
1701
1702 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1703
1704 static int
1705 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
1707 {
1708 #ifdef BFD64
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1711
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1716
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
1719 #else
1720 abort ();
1721 #endif
1722 }
1723
1724
1725 /* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1738
1739 static bfd_boolean
1740 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1741 {
1742 struct extsym_info *einfo = data;
1743 bfd_boolean strip;
1744 asection *sec, *output_section;
1745
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1748
1749 if (h->root.indx == -2)
1750 strip = FALSE;
1751 else if ((h->root.def_dynamic
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
1756 strip = TRUE;
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
1761 FALSE, FALSE) == NULL))
1762 strip = TRUE;
1763 else
1764 strip = FALSE;
1765
1766 if (strip)
1767 return TRUE;
1768
1769 if (h->esym.ifd == -2)
1770 {
1771 h->esym.jmptbl = 0;
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1778
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1781 {
1782 const char *name;
1783
1784 /* Use undefined class. Also, set class and type for some
1785 special symbols. */
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1789 {
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1793 }
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1800 }
1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1802 {
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1806 }
1807 else
1808 h->esym.asym.sc = scUndefined;
1809 }
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1813 else
1814 {
1815 const char *name;
1816
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1819
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1824 else
1825 {
1826 name = bfd_section_name (output_section->owner, output_section);
1827
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1845 else
1846 h->esym.asym.sc = scAbs;
1847 }
1848 }
1849
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1852 }
1853
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1858 {
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1863
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1870 else
1871 h->esym.asym.value = 0;
1872 }
1873 else if (h->root.needs_plt)
1874 {
1875 struct mips_elf_link_hash_entry *hd = h;
1876 bfd_boolean no_fn_stub = h->no_fn_stub;
1877
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1879 {
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1882 }
1883
1884 if (!no_fn_stub)
1885 {
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1889 if (sec == NULL)
1890 h->esym.asym.value = 0;
1891 else
1892 {
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1898 else
1899 h->esym.asym.value = 0;
1900 }
1901 }
1902 }
1903
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1906 &h->esym))
1907 {
1908 einfo->failed = TRUE;
1909 return FALSE;
1910 }
1911
1912 return TRUE;
1913 }
1914
1915 /* A comparison routine used to sort .gptab entries. */
1916
1917 static int
1918 gptab_compare (const void *p1, const void *p2)
1919 {
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
1922
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1924 }
1925 \f
1926 /* Functions to manage the got entry hash table. */
1927
1928 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1929 hash number. */
1930
1931 static INLINE hashval_t
1932 mips_elf_hash_bfd_vma (bfd_vma addr)
1933 {
1934 #ifdef BFD64
1935 return addr + (addr >> 32);
1936 #else
1937 return addr;
1938 #endif
1939 }
1940
1941 /* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1943 union members. */
1944
1945 static hashval_t
1946 mips_elf_got_entry_hash (const void *entry_)
1947 {
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1949
1950 return entry->symndx
1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1953 : entry->abfd->id
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
1956 }
1957
1958 static int
1959 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1960 {
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1963
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1966 return 0;
1967
1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1972 }
1973
1974 /* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1977 accordingly. */
1978
1979 static hashval_t
1980 mips_elf_multi_got_entry_hash (const void *entry_)
1981 {
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1983
1984 return entry->symndx
1985 + (! entry->abfd
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1990 : (entry->abfd->id
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
1992 : entry->d.h->root.root.root.hash);
1993 }
1994
1995 static int
1996 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1997 {
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2000
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2003 return 1;
2004
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2007 return 0;
2008
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
2014 }
2015 \f
2016 /* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
2019
2020 static asection *
2021 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2022 {
2023 const char *dname;
2024 asection *sreloc;
2025 bfd *dynobj;
2026
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2031 {
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2033 (SEC_ALLOC
2034 | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
2039 if (sreloc == NULL
2040 || ! bfd_set_section_alignment (dynobj, sreloc,
2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2042 return NULL;
2043 }
2044 return sreloc;
2045 }
2046
2047 /* Returns the GOT section for ABFD. */
2048
2049 static asection *
2050 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2051 {
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2053 if (sgot == NULL
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2055 return NULL;
2056 return sgot;
2057 }
2058
2059 /* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2061 section. */
2062
2063 static struct mips_got_info *
2064 mips_elf_got_info (bfd *abfd, asection **sgotp)
2065 {
2066 asection *sgot;
2067 struct mips_got_info *g;
2068
2069 sgot = mips_elf_got_section (abfd, TRUE);
2070 BFD_ASSERT (sgot != NULL);
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
2073 BFD_ASSERT (g != NULL);
2074
2075 if (sgotp)
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2077
2078 return g;
2079 }
2080
2081 /* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2083 is NULL). */
2084
2085 static int
2086 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2088 {
2089 int indx = 0;
2090 int ret = 0;
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2093
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2096 indx = h->dynindx;
2097
2098 if ((info->shared || indx != 0)
2099 && (h == NULL
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2102 need_relocs = TRUE;
2103
2104 if (!need_relocs)
2105 return FALSE;
2106
2107 if (tls_type & GOT_TLS_GD)
2108 {
2109 ret++;
2110 if (indx != 0)
2111 ret++;
2112 }
2113
2114 if (tls_type & GOT_TLS_IE)
2115 ret++;
2116
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2118 ret++;
2119
2120 return ret;
2121 }
2122
2123 /* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2125
2126 static int
2127 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2128 {
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2131
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2134
2135 return 1;
2136 }
2137
2138 /* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2140
2141 static int
2142 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2143 {
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2147
2148 if (hm->tls_type & GOT_TLS_GD)
2149 arg->needed += 2;
2150 if (hm->tls_type & GOT_TLS_IE)
2151 arg->needed += 1;
2152
2153 return 1;
2154 }
2155
2156 /* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2158
2159 static int
2160 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2161 {
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2165
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2167
2168 return 1;
2169 }
2170
2171 /* Output a simple dynamic relocation into SRELOC. */
2172
2173 static void
2174 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2175 asection *sreloc,
2176 unsigned long indx,
2177 int r_type,
2178 bfd_vma offset)
2179 {
2180 Elf_Internal_Rela rel[3];
2181
2182 memset (rel, 0, sizeof (rel));
2183
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2186
2187 if (ABI_64_P (output_bfd))
2188 {
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2191 (sreloc->contents
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2193 }
2194 else
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2197 (sreloc->contents
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2200 }
2201
2202 /* Initialize a set of TLS GOT entries for one symbol. */
2203
2204 static void
2205 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2209 bfd_vma value)
2210 {
2211 int indx;
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2214 bfd *dynobj;
2215 bfd_boolean need_relocs = FALSE;
2216
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2219
2220 indx = 0;
2221 if (h != NULL)
2222 {
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2224
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2228 }
2229
2230 if (*tls_type_p & GOT_TLS_DONE)
2231 return;
2232
2233 if ((info->shared || indx != 0)
2234 && (h == NULL
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2237 need_relocs = TRUE;
2238
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2244
2245 /* Emit necessary relocations. */
2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2247
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2250 {
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2253
2254 if (need_relocs)
2255 {
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2260
2261 if (indx)
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2266 else
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270 else
2271 {
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2276 }
2277
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2279 }
2280
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2283 {
2284 offset = got_offset;
2285
2286 if (need_relocs)
2287 {
2288 if (indx == 0)
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2294
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2299 }
2300 else
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2303 }
2304
2305 if (*tls_type_p & GOT_TLS_LDM)
2306 {
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2312
2313 if (!info->shared)
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2316 else
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2321 }
2322
2323 *tls_type_p |= GOT_TLS_DONE;
2324 }
2325
2326 /* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2330
2331 static bfd_vma
2332 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2335 {
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2338
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2340
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2346 else
2347 return got_index;
2348 }
2349
2350 if (r_type == R_MIPS_TLS_GD)
2351 {
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2353 return got_index;
2354 }
2355
2356 if (r_type == R_MIPS_TLS_LDM)
2357 {
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2359 return got_index;
2360 }
2361
2362 return got_index;
2363 }
2364
2365 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2368
2369 static bfd_vma
2370 mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372 {
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2375
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2378
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2381
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + plt_index * 4);
2386
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2391
2392 return got_address - got_value;
2393 }
2394
2395 /* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
2400
2401 static bfd_vma
2402 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
2405 struct mips_elf_link_hash_entry *h, int r_type)
2406 {
2407 asection *sgot;
2408 struct mips_got_info *g;
2409 struct mips_got_entry *entry;
2410
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2412
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
2415 r_symndx, h, r_type);
2416 if (!entry)
2417 return MINUS_ONE;
2418
2419 if (TLS_RELOC_P (r_type))
2420 {
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2426 else
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2429 }
2430 else
2431 return entry->gotidx;
2432 }
2433
2434 /* Returns the GOT index for the global symbol indicated by H. */
2435
2436 static bfd_vma
2437 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
2439 {
2440 bfd_vma index;
2441 asection *sgot;
2442 struct mips_got_info *g, *gg;
2443 long global_got_dynindx = 0;
2444
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2447 {
2448 struct mips_got_entry e, *p;
2449
2450 BFD_ASSERT (h->dynindx >= 0);
2451
2452 g = mips_elf_got_for_ibfd (g, ibfd);
2453 if (g->next != gg || TLS_RELOC_P (r_type))
2454 {
2455 e.abfd = ibfd;
2456 e.symndx = -1;
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
2458 e.tls_type = 0;
2459
2460 p = htab_find (g->got_entries, &e);
2461
2462 BFD_ASSERT (p->gotidx > 0);
2463
2464 if (TLS_RELOC_P (r_type))
2465 {
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2473
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2476 }
2477 else
2478 return p->gotidx;
2479 }
2480 }
2481
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2500 }
2501 else
2502 {
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2506 offset. */
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2510 }
2511 BFD_ASSERT (index < sgot->size);
2512
2513 return index;
2514 }
2515
2516 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
2522
2523 static bfd_vma
2524 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2526 {
2527 asection *sgot;
2528 struct mips_got_info *g;
2529 bfd_vma page, index;
2530 struct mips_got_entry *entry;
2531
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2533
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
2537 NULL, R_MIPS_GOT_PAGE);
2538
2539 if (!entry)
2540 return MINUS_ONE;
2541
2542 index = entry->gotidx;
2543
2544 if (offsetp)
2545 *offsetp = value - entry->d.address;
2546
2547 return index;
2548 }
2549
2550 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
2554
2555 static bfd_vma
2556 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
2559 {
2560 asection *sgot;
2561 struct mips_got_info *g;
2562 struct mips_got_entry *entry;
2563
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2568 if (! external)
2569 value = mips_elf_high (value) << 16;
2570
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2572
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
2576 if (entry)
2577 return entry->gotidx;
2578 else
2579 return MINUS_ONE;
2580 }
2581
2582 /* Returns the offset for the entry at the INDEXth position
2583 in the GOT. */
2584
2585 static bfd_vma
2586 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
2588 {
2589 asection *sgot;
2590 bfd_vma gp;
2591 struct mips_got_info *g;
2592
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2596
2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
2598 }
2599
2600 /* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2603 instead. */
2604
2605 static struct mips_got_entry *
2606 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
2610 struct mips_elf_link_hash_entry *h,
2611 int r_type)
2612 {
2613 struct mips_got_entry entry, **loc;
2614 struct mips_got_info *g;
2615 struct mips_elf_link_hash_table *htab;
2616
2617 htab = mips_elf_hash_table (info);
2618
2619 entry.abfd = NULL;
2620 entry.symndx = -1;
2621 entry.d.address = value;
2622 entry.tls_type = 0;
2623
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2625 if (g == NULL)
2626 {
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2629 }
2630
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
2635 BFD_ASSERT (h == NULL || h->root.forced_local);
2636 if (TLS_RELOC_P (r_type))
2637 {
2638 struct mips_got_entry *p;
2639
2640 entry.abfd = ibfd;
2641 if (r_type == R_MIPS_TLS_LDM)
2642 {
2643 entry.tls_type = GOT_TLS_LDM;
2644 entry.symndx = 0;
2645 entry.d.addend = 0;
2646 }
2647 else if (h == NULL)
2648 {
2649 entry.symndx = r_symndx;
2650 entry.d.addend = 0;
2651 }
2652 else
2653 entry.d.h = h;
2654
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2657
2658 BFD_ASSERT (p);
2659 return p;
2660 }
2661
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2663 INSERT);
2664 if (*loc)
2665 return *loc;
2666
2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2668 entry.tls_type = 0;
2669
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2671
2672 if (! *loc)
2673 return NULL;
2674
2675 memcpy (*loc, &entry, sizeof entry);
2676
2677 if (g->assigned_gotno >= g->local_gotno)
2678 {
2679 (*loc)->gotidx = -1;
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
2684 return NULL;
2685 }
2686
2687 MIPS_ELF_PUT_WORD (abfd, value,
2688 (sgot->contents + entry.gotidx));
2689
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2696 {
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2699 bfd_byte *loc;
2700 bfd_vma got_address;
2701 int dynindx;
2702
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2708 + entry.gotidx);
2709
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2715 }
2716
2717 return *loc;
2718 }
2719
2720 /* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2726
2727 static bfd_boolean
2728 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2729 {
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2732 bfd *dynobj;
2733
2734 dynobj = elf_hash_table (info)->dynobj;
2735
2736 g = mips_elf_got_info (dynobj, NULL);
2737
2738 hsd.low = NULL;
2739 hsd.max_unref_got_dynindx =
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2753 &hsd);
2754
2755 /* There should have been enough room in the symbol table to
2756 accommodate both the GOT and non-GOT symbols. */
2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
2760
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
2763 g->global_gotsym = hsd.low;
2764
2765 return TRUE;
2766 }
2767
2768 /* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2770 index. */
2771
2772 static bfd_boolean
2773 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2774 {
2775 struct mips_elf_hash_sort_data *hsd = data;
2776
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2779
2780 /* Symbols without dynamic symbol table entries aren't interesting
2781 at all. */
2782 if (h->root.dynindx == -1)
2783 return TRUE;
2784
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2788 -1. */
2789 if (h->root.got.offset == 2)
2790 {
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2792
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2796 }
2797 else if (h->root.got.offset != 1)
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2799 else
2800 {
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 }
2806
2807 return TRUE;
2808 }
2809
2810 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2812 posterity. */
2813
2814 static bfd_boolean
2815 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
2819 {
2820 struct mips_got_entry entry, **loc;
2821
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2823 table. */
2824 if (h->dynindx == -1)
2825 {
2826 switch (ELF_ST_VISIBILITY (h->other))
2827 {
2828 case STV_INTERNAL:
2829 case STV_HIDDEN:
2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2831 break;
2832 }
2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2834 return FALSE;
2835 }
2836
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2839
2840 entry.abfd = abfd;
2841 entry.symndx = -1;
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2843 entry.tls_type = 0;
2844
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2846 INSERT);
2847
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
2850 if (*loc)
2851 {
2852 (*loc)->tls_type |= tls_flag;
2853 return TRUE;
2854 }
2855
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2857
2858 if (! *loc)
2859 return FALSE;
2860
2861 entry.gotidx = -1;
2862 entry.tls_type = tls_flag;
2863
2864 memcpy (*loc, &entry, sizeof entry);
2865
2866 if (h->got.offset != MINUS_ONE)
2867 return TRUE;
2868
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
2872 if (tls_flag == 0)
2873 h->got.offset = 1;
2874
2875 return TRUE;
2876 }
2877
2878 /* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2880
2881 static bfd_boolean
2882 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
2885 {
2886 struct mips_got_entry entry, **loc;
2887
2888 entry.abfd = abfd;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
2891 entry.tls_type = tls_flag;
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2894
2895 if (*loc)
2896 {
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2898 {
2899 g->tls_gotno += 2;
2900 (*loc)->tls_type |= tls_flag;
2901 }
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2903 {
2904 g->tls_gotno += 1;
2905 (*loc)->tls_type |= tls_flag;
2906 }
2907 return TRUE;
2908 }
2909
2910 if (tls_flag != 0)
2911 {
2912 entry.gotidx = -1;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2915 g->tls_gotno += 1;
2916 else if (tls_flag == GOT_TLS_GD)
2917 g->tls_gotno += 2;
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2919 {
2920 g->tls_ldm_offset = MINUS_TWO;
2921 g->tls_gotno += 2;
2922 }
2923 }
2924 else
2925 {
2926 entry.gotidx = g->local_gotno++;
2927 entry.tls_type = 0;
2928 }
2929
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2931
2932 if (! *loc)
2933 return FALSE;
2934
2935 memcpy (*loc, &entry, sizeof entry);
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2941
2942 static hashval_t
2943 mips_elf_bfd2got_entry_hash (const void *entry_)
2944 {
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2947
2948 return entry->bfd->id;
2949 }
2950
2951 /* Check whether two hash entries have the same bfd. */
2952
2953 static int
2954 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2955 {
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2960
2961 return e1->bfd == e2->bfd;
2962 }
2963
2964 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2965 be the master GOT data. */
2966
2967 static struct mips_got_info *
2968 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2969 {
2970 struct mips_elf_bfd2got_hash e, *p;
2971
2972 if (! g->bfd2got)
2973 return g;
2974
2975 e.bfd = ibfd;
2976 p = htab_find (g->bfd2got, &e);
2977 return p ? p->g : NULL;
2978 }
2979
2980 /* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2982 bfd requires. */
2983
2984 static int
2985 mips_elf_make_got_per_bfd (void **entryp, void *p)
2986 {
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2992 void **bfdgotp;
2993
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2995 none exists. */
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2999
3000 if (bfdgot != NULL)
3001 g = bfdgot->g;
3002 else
3003 {
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3006
3007 if (bfdgot == NULL)
3008 {
3009 arg->obfd = 0;
3010 return 0;
3011 }
3012
3013 *bfdgotp = bfdgot;
3014
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3018 if (g == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3026 g->local_gotno = 0;
3027 g->assigned_gotno = -1;
3028 g->tls_gotno = 0;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3032 mips_elf_multi_got_entry_eq, NULL);
3033 if (g->got_entries == NULL)
3034 {
3035 arg->obfd = 0;
3036 return 0;
3037 }
3038
3039 g->bfd2got = NULL;
3040 g->next = NULL;
3041 }
3042
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3046 return 1;
3047
3048 *entryp = entry;
3049
3050 if (entry->tls_type)
3051 {
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3053 g->tls_gotno += 2;
3054 if (entry->tls_type & GOT_TLS_IE)
3055 g->tls_gotno += 1;
3056 }
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3058 ++g->local_gotno;
3059 else
3060 ++g->global_gotno;
3061
3062 return 1;
3063 }
3064
3065 /* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3071
3072 static int
3073 mips_elf_merge_gots (void **bfd2got_, void *p)
3074 {
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
3080 unsigned int tcount = bfd2got->g->tls_gotno;
3081 unsigned int maxcnt = arg->max_count;
3082 bfd_boolean too_many_for_tls = FALSE;
3083
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3088 if (tcount > 0)
3089 {
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3093 too_many_for_tls = TRUE;
3094 }
3095
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
3100 {
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3103 }
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3109 {
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
3113 int old_tcount = arg->primary->tls_gotno;
3114
3115 bfd2got->g = arg->primary;
3116
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3119 arg);
3120 if (arg->obfd == NULL)
3121 return 0;
3122
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3126 table anyway. */
3127
3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3131
3132 arg->primary_count = arg->primary->local_gotno
3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
3134 }
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3138 {
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
3142 int old_tcount = arg->current->tls_gotno;
3143
3144 bfd2got->g = arg->current;
3145
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3148 arg);
3149 if (arg->obfd == NULL)
3150 return 0;
3151
3152 htab_delete (g->got_entries);
3153
3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3157
3158 arg->current_count = arg->current->local_gotno
3159 + arg->current->global_gotno + arg->current->tls_gotno;
3160 }
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3164 else
3165 {
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
3168
3169 arg->current_count = lcount + gcount + 2 * tcount;
3170 }
3171
3172 return 1;
3173 }
3174
3175 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
3177
3178 static int
3179 mips_elf_initialize_tls_index (void **entryp, void *p)
3180 {
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
3183 bfd_vma next_index;
3184
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3187 return 1;
3188
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3190
3191 if (entry->symndx == -1 && g->next == NULL)
3192 {
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3196 return 1;
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3199 }
3200 else
3201 {
3202 if (entry->tls_type & GOT_TLS_LDM)
3203 {
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3208 {
3209 entry->gotidx = g->tls_ldm_offset;
3210 return 1;
3211 }
3212 g->tls_ldm_offset = next_index;
3213 }
3214 entry->gotidx = next_index;
3215 }
3216
3217 /* Account for the entries we've just allocated. */
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3222
3223 return 1;
3224 }
3225
3226 /* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3229
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3237 marked as not eligible for lazy resolution through a function
3238 stub. */
3239 static int
3240 mips_elf_set_global_got_offset (void **entryp, void *p)
3241 {
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3246
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3251
3252 if (entry->abfd != NULL && entry->symndx == -1
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
3255 {
3256 if (g)
3257 {
3258 BFD_ASSERT (g->global_gotsym == NULL);
3259
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
3265 ++arg->needed_relocs;
3266 }
3267 else
3268 entry->d.h->root.got.offset = arg->value;
3269 }
3270
3271 return 1;
3272 }
3273
3274 /* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3276 static int
3277 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3278 {
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3280
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3285
3286 return 1;
3287 }
3288
3289 /* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3295 static int
3296 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3297 {
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3300
3301 if (entry->abfd != NULL && entry->symndx == -1)
3302 {
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3304
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3308
3309 if (entry->d.h == h)
3310 return 1;
3311
3312 entry->d.h = h;
3313
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3317 {
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3320 if (! *entryp)
3321 *entryp = entry;
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3324 process. */
3325 *(htab_t *)p = NULL;
3326 return 0;
3327 }
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3330 }
3331
3332 return 1;
3333 }
3334
3335 /* Turn indirect got entries in a got_entries table into their final
3336 locations. */
3337 static void
3338 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3339 {
3340 htab_t got_entries;
3341
3342 do
3343 {
3344 got_entries = g->got_entries;
3345
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3348 &got_entries);
3349 }
3350 while (got_entries == NULL);
3351 }
3352
3353 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3354 the primary GOT. */
3355 static bfd_vma
3356 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3357 {
3358 if (g->bfd2got == NULL)
3359 return 0;
3360
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3362 if (! g)
3363 return 0;
3364
3365 BFD_ASSERT (g->next);
3366
3367 g = g->next;
3368
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
3371 }
3372
3373 /* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3375
3376 static bfd_boolean
3377 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
3380 {
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3385
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3387 mips_elf_bfd2got_entry_eq, NULL);
3388 if (g->bfd2got == NULL)
3389 return FALSE;
3390
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3394
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3399 return FALSE;
3400
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3407 / MIPS_ELF_GOT_SIZE (abfd))
3408 - MIPS_RESERVED_GOTNO (info) - pages);
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3411 information. */
3412 got_per_bfd_arg.global_count = g->global_gotno;
3413
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 /* If we do not find any suitable primary GOT, create an empty one. */
3422 if (got_per_bfd_arg.primary == NULL)
3423 {
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3427 return FALSE;
3428
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
3432 g->next->tls_gotno = 0;
3433 g->next->assigned_gotno = 0;
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
3438 NULL);
3439 if (g->next->got_entries == NULL)
3440 return FALSE;
3441 g->next->bfd2got = NULL;
3442 }
3443 else
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3446
3447 /* GG is now the master GOT, and G is the primary GOT. */
3448 gg = g;
3449 g = g->next;
3450
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3455 list. */
3456 {
3457 struct mips_elf_bfd2got_hash *bfdgot;
3458 void **bfdgotp;
3459
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3462
3463 if (bfdgot == NULL)
3464 return FALSE;
3465
3466 bfdgot->bfd = abfd;
3467 bfdgot->g = g;
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3469
3470 BFD_ASSERT (*bfdgotp == NULL);
3471 *bfdgotp = bfdgot;
3472 }
3473
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3477 referenced.
3478
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
3485
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3490 preserved. */
3491 if (1)
3492 {
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3496 }
3497 else
3498 {
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3507 }
3508
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3518 return FALSE;
3519
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
3535 gg->tls_gotno = 0;
3536 assign = 0;
3537 gg->next = gg;
3538
3539 do
3540 {
3541 struct mips_got_info *gn;
3542
3543 assign += MIPS_RESERVED_GOTNO (info);
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3547
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3551 gn = g->next;
3552 g->next = gg->next;
3553 gg->next = g;
3554
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3559
3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3561 g = gn;
3562
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3564 stubs. */
3565 if (g)
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3567 }
3568 while (g);
3569
3570 got->size = (gg->next->local_gotno
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3573
3574 return TRUE;
3575 }
3576
3577 \f
3578 /* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3580
3581 static const Elf_Internal_Rela *
3582 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
3585 {
3586 while (relocation < relend)
3587 {
3588 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3589 return relocation;
3590
3591 ++relocation;
3592 }
3593
3594 /* We didn't find it. */
3595 bfd_set_error (bfd_error_bad_value);
3596 return NULL;
3597 }
3598
3599 /* Return whether a relocation is against a local symbol. */
3600
3601 static bfd_boolean
3602 mips_elf_local_relocation_p (bfd *input_bfd,
3603 const Elf_Internal_Rela *relocation,
3604 asection **local_sections,
3605 bfd_boolean check_forced)
3606 {
3607 unsigned long r_symndx;
3608 Elf_Internal_Shdr *symtab_hdr;
3609 struct mips_elf_link_hash_entry *h;
3610 size_t extsymoff;
3611
3612 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3613 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3614 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3615
3616 if (r_symndx < extsymoff)
3617 return TRUE;
3618 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3619 return TRUE;
3620
3621 if (check_forced)
3622 {
3623 /* Look up the hash table to check whether the symbol
3624 was forced local. */
3625 h = (struct mips_elf_link_hash_entry *)
3626 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3627 /* Find the real hash-table entry for this symbol. */
3628 while (h->root.root.type == bfd_link_hash_indirect
3629 || h->root.root.type == bfd_link_hash_warning)
3630 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3631 if (h->root.forced_local)
3632 return TRUE;
3633 }
3634
3635 return FALSE;
3636 }
3637 \f
3638 /* Sign-extend VALUE, which has the indicated number of BITS. */
3639
3640 bfd_vma
3641 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3642 {
3643 if (value & ((bfd_vma) 1 << (bits - 1)))
3644 /* VALUE is negative. */
3645 value |= ((bfd_vma) - 1) << bits;
3646
3647 return value;
3648 }
3649
3650 /* Return non-zero if the indicated VALUE has overflowed the maximum
3651 range expressible by a signed number with the indicated number of
3652 BITS. */
3653
3654 static bfd_boolean
3655 mips_elf_overflow_p (bfd_vma value, int bits)
3656 {
3657 bfd_signed_vma svalue = (bfd_signed_vma) value;
3658
3659 if (svalue > (1 << (bits - 1)) - 1)
3660 /* The value is too big. */
3661 return TRUE;
3662 else if (svalue < -(1 << (bits - 1)))
3663 /* The value is too small. */
3664 return TRUE;
3665
3666 /* All is well. */
3667 return FALSE;
3668 }
3669
3670 /* Calculate the %high function. */
3671
3672 static bfd_vma
3673 mips_elf_high (bfd_vma value)
3674 {
3675 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3676 }
3677
3678 /* Calculate the %higher function. */
3679
3680 static bfd_vma
3681 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3682 {
3683 #ifdef BFD64
3684 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3685 #else
3686 abort ();
3687 return MINUS_ONE;
3688 #endif
3689 }
3690
3691 /* Calculate the %highest function. */
3692
3693 static bfd_vma
3694 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3695 {
3696 #ifdef BFD64
3697 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3698 #else
3699 abort ();
3700 return MINUS_ONE;
3701 #endif
3702 }
3703 \f
3704 /* Create the .compact_rel section. */
3705
3706 static bfd_boolean
3707 mips_elf_create_compact_rel_section
3708 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3709 {
3710 flagword flags;
3711 register asection *s;
3712
3713 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3714 {
3715 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3716 | SEC_READONLY);
3717
3718 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3719 if (s == NULL
3720 || ! bfd_set_section_alignment (abfd, s,
3721 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3722 return FALSE;
3723
3724 s->size = sizeof (Elf32_External_compact_rel);
3725 }
3726
3727 return TRUE;
3728 }
3729
3730 /* Create the .got section to hold the global offset table. */
3731
3732 static bfd_boolean
3733 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3734 bfd_boolean maybe_exclude)
3735 {
3736 flagword flags;
3737 register asection *s;
3738 struct elf_link_hash_entry *h;
3739 struct bfd_link_hash_entry *bh;
3740 struct mips_got_info *g;
3741 bfd_size_type amt;
3742 struct mips_elf_link_hash_table *htab;
3743
3744 htab = mips_elf_hash_table (info);
3745
3746 /* This function may be called more than once. */
3747 s = mips_elf_got_section (abfd, TRUE);
3748 if (s)
3749 {
3750 if (! maybe_exclude)
3751 s->flags &= ~SEC_EXCLUDE;
3752 return TRUE;
3753 }
3754
3755 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3756 | SEC_LINKER_CREATED);
3757
3758 if (maybe_exclude)
3759 flags |= SEC_EXCLUDE;
3760
3761 /* We have to use an alignment of 2**4 here because this is hardcoded
3762 in the function stub generation and in the linker script. */
3763 s = bfd_make_section_with_flags (abfd, ".got", flags);
3764 if (s == NULL
3765 || ! bfd_set_section_alignment (abfd, s, 4))
3766 return FALSE;
3767
3768 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3769 linker script because we don't want to define the symbol if we
3770 are not creating a global offset table. */
3771 bh = NULL;
3772 if (! (_bfd_generic_link_add_one_symbol
3773 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3774 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3775 return FALSE;
3776
3777 h = (struct elf_link_hash_entry *) bh;
3778 h->non_elf = 0;
3779 h->def_regular = 1;
3780 h->type = STT_OBJECT;
3781 elf_hash_table (info)->hgot = h;
3782
3783 if (info->shared
3784 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3785 return FALSE;
3786
3787 amt = sizeof (struct mips_got_info);
3788 g = bfd_alloc (abfd, amt);
3789 if (g == NULL)
3790 return FALSE;
3791 g->global_gotsym = NULL;
3792 g->global_gotno = 0;
3793 g->tls_gotno = 0;
3794 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3795 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3796 g->bfd2got = NULL;
3797 g->next = NULL;
3798 g->tls_ldm_offset = MINUS_ONE;
3799 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3800 mips_elf_got_entry_eq, NULL);
3801 if (g->got_entries == NULL)
3802 return FALSE;
3803 mips_elf_section_data (s)->u.got_info = g;
3804 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3805 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3806
3807 /* VxWorks also needs a .got.plt section. */
3808 if (htab->is_vxworks)
3809 {
3810 s = bfd_make_section_with_flags (abfd, ".got.plt",
3811 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3812 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3813 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3814 return FALSE;
3815
3816 htab->sgotplt = s;
3817 }
3818 return TRUE;
3819 }
3820 \f
3821 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3822 __GOTT_INDEX__ symbols. These symbols are only special for
3823 shared objects; they are not used in executables. */
3824
3825 static bfd_boolean
3826 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3827 {
3828 return (mips_elf_hash_table (info)->is_vxworks
3829 && info->shared
3830 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3831 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3832 }
3833 \f
3834 /* Calculate the value produced by the RELOCATION (which comes from
3835 the INPUT_BFD). The ADDEND is the addend to use for this
3836 RELOCATION; RELOCATION->R_ADDEND is ignored.
3837
3838 The result of the relocation calculation is stored in VALUEP.
3839 REQUIRE_JALXP indicates whether or not the opcode used with this
3840 relocation must be JALX.
3841
3842 This function returns bfd_reloc_continue if the caller need take no
3843 further action regarding this relocation, bfd_reloc_notsupported if
3844 something goes dramatically wrong, bfd_reloc_overflow if an
3845 overflow occurs, and bfd_reloc_ok to indicate success. */
3846
3847 static bfd_reloc_status_type
3848 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3849 asection *input_section,
3850 struct bfd_link_info *info,
3851 const Elf_Internal_Rela *relocation,
3852 bfd_vma addend, reloc_howto_type *howto,
3853 Elf_Internal_Sym *local_syms,
3854 asection **local_sections, bfd_vma *valuep,
3855 const char **namep, bfd_boolean *require_jalxp,
3856 bfd_boolean save_addend)
3857 {
3858 /* The eventual value we will return. */
3859 bfd_vma value;
3860 /* The address of the symbol against which the relocation is
3861 occurring. */
3862 bfd_vma symbol = 0;
3863 /* The final GP value to be used for the relocatable, executable, or
3864 shared object file being produced. */
3865 bfd_vma gp = MINUS_ONE;
3866 /* The place (section offset or address) of the storage unit being
3867 relocated. */
3868 bfd_vma p;
3869 /* The value of GP used to create the relocatable object. */
3870 bfd_vma gp0 = MINUS_ONE;
3871 /* The offset into the global offset table at which the address of
3872 the relocation entry symbol, adjusted by the addend, resides
3873 during execution. */
3874 bfd_vma g = MINUS_ONE;
3875 /* The section in which the symbol referenced by the relocation is
3876 located. */
3877 asection *sec = NULL;
3878 struct mips_elf_link_hash_entry *h = NULL;
3879 /* TRUE if the symbol referred to by this relocation is a local
3880 symbol. */
3881 bfd_boolean local_p, was_local_p;
3882 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3883 bfd_boolean gp_disp_p = FALSE;
3884 /* TRUE if the symbol referred to by this relocation is
3885 "__gnu_local_gp". */
3886 bfd_boolean gnu_local_gp_p = FALSE;
3887 Elf_Internal_Shdr *symtab_hdr;
3888 size_t extsymoff;
3889 unsigned long r_symndx;
3890 int r_type;
3891 /* TRUE if overflow occurred during the calculation of the
3892 relocation value. */
3893 bfd_boolean overflowed_p;
3894 /* TRUE if this relocation refers to a MIPS16 function. */
3895 bfd_boolean target_is_16_bit_code_p = FALSE;
3896 struct mips_elf_link_hash_table *htab;
3897 bfd *dynobj;
3898
3899 dynobj = elf_hash_table (info)->dynobj;
3900 htab = mips_elf_hash_table (info);
3901
3902 /* Parse the relocation. */
3903 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3904 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3905 p = (input_section->output_section->vma
3906 + input_section->output_offset
3907 + relocation->r_offset);
3908
3909 /* Assume that there will be no overflow. */
3910 overflowed_p = FALSE;
3911
3912 /* Figure out whether or not the symbol is local, and get the offset
3913 used in the array of hash table entries. */
3914 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3915 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3916 local_sections, FALSE);
3917 was_local_p = local_p;
3918 if (! elf_bad_symtab (input_bfd))
3919 extsymoff = symtab_hdr->sh_info;
3920 else
3921 {
3922 /* The symbol table does not follow the rule that local symbols
3923 must come before globals. */
3924 extsymoff = 0;
3925 }
3926
3927 /* Figure out the value of the symbol. */
3928 if (local_p)
3929 {
3930 Elf_Internal_Sym *sym;
3931
3932 sym = local_syms + r_symndx;
3933 sec = local_sections[r_symndx];
3934
3935 symbol = sec->output_section->vma + sec->output_offset;
3936 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3937 || (sec->flags & SEC_MERGE))
3938 symbol += sym->st_value;
3939 if ((sec->flags & SEC_MERGE)
3940 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3941 {
3942 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3943 addend -= symbol;
3944 addend += sec->output_section->vma + sec->output_offset;
3945 }
3946
3947 /* MIPS16 text labels should be treated as odd. */
3948 if (sym->st_other == STO_MIPS16)
3949 ++symbol;
3950
3951 /* Record the name of this symbol, for our caller. */
3952 *namep = bfd_elf_string_from_elf_section (input_bfd,
3953 symtab_hdr->sh_link,
3954 sym->st_name);
3955 if (*namep == '\0')
3956 *namep = bfd_section_name (input_bfd, sec);
3957
3958 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3959 }
3960 else
3961 {
3962 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3963
3964 /* For global symbols we look up the symbol in the hash-table. */
3965 h = ((struct mips_elf_link_hash_entry *)
3966 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3967 /* Find the real hash-table entry for this symbol. */
3968 while (h->root.root.type == bfd_link_hash_indirect
3969 || h->root.root.type == bfd_link_hash_warning)
3970 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3971
3972 /* Record the name of this symbol, for our caller. */
3973 *namep = h->root.root.root.string;
3974
3975 /* See if this is the special _gp_disp symbol. Note that such a
3976 symbol must always be a global symbol. */
3977 if (strcmp (*namep, "_gp_disp") == 0
3978 && ! NEWABI_P (input_bfd))
3979 {
3980 /* Relocations against _gp_disp are permitted only with
3981 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3982 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3983 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3984 return bfd_reloc_notsupported;
3985
3986 gp_disp_p = TRUE;
3987 }
3988 /* See if this is the special _gp symbol. Note that such a
3989 symbol must always be a global symbol. */
3990 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3991 gnu_local_gp_p = TRUE;
3992
3993
3994 /* If this symbol is defined, calculate its address. Note that
3995 _gp_disp is a magic symbol, always implicitly defined by the
3996 linker, so it's inappropriate to check to see whether or not
3997 its defined. */
3998 else if ((h->root.root.type == bfd_link_hash_defined
3999 || h->root.root.type == bfd_link_hash_defweak)
4000 && h->root.root.u.def.section)
4001 {
4002 sec = h->root.root.u.def.section;
4003 if (sec->output_section)
4004 symbol = (h->root.root.u.def.value
4005 + sec->output_section->vma
4006 + sec->output_offset);
4007 else
4008 symbol = h->root.root.u.def.value;
4009 }
4010 else if (h->root.root.type == bfd_link_hash_undefweak)
4011 /* We allow relocations against undefined weak symbols, giving
4012 it the value zero, so that you can undefined weak functions
4013 and check to see if they exist by looking at their
4014 addresses. */
4015 symbol = 0;
4016 else if (info->unresolved_syms_in_objects == RM_IGNORE
4017 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4018 symbol = 0;
4019 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4020 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4021 {
4022 /* If this is a dynamic link, we should have created a
4023 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4024 in in _bfd_mips_elf_create_dynamic_sections.
4025 Otherwise, we should define the symbol with a value of 0.
4026 FIXME: It should probably get into the symbol table
4027 somehow as well. */
4028 BFD_ASSERT (! info->shared);
4029 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4030 symbol = 0;
4031 }
4032 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4033 {
4034 /* This is an optional symbol - an Irix specific extension to the
4035 ELF spec. Ignore it for now.
4036 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4037 than simply ignoring them, but we do not handle this for now.
4038 For information see the "64-bit ELF Object File Specification"
4039 which is available from here:
4040 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4041 symbol = 0;
4042 }
4043 else
4044 {
4045 if (! ((*info->callbacks->undefined_symbol)
4046 (info, h->root.root.root.string, input_bfd,
4047 input_section, relocation->r_offset,
4048 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4049 || ELF_ST_VISIBILITY (h->root.other))))
4050 return bfd_reloc_undefined;
4051 symbol = 0;
4052 }
4053
4054 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4055 }
4056
4057 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4058 need to redirect the call to the stub, unless we're already *in*
4059 a stub. */
4060 if (r_type != R_MIPS16_26 && !info->relocatable
4061 && ((h != NULL && h->fn_stub != NULL)
4062 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4063 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4064 && !mips_elf_stub_section_p (input_bfd, input_section))
4065 {
4066 /* This is a 32- or 64-bit call to a 16-bit function. We should
4067 have already noticed that we were going to need the
4068 stub. */
4069 if (local_p)
4070 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4071 else
4072 {
4073 BFD_ASSERT (h->need_fn_stub);
4074 sec = h->fn_stub;
4075 }
4076
4077 symbol = sec->output_section->vma + sec->output_offset;
4078 /* The target is 16-bit, but the stub isn't. */
4079 target_is_16_bit_code_p = FALSE;
4080 }
4081 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4082 need to redirect the call to the stub. */
4083 else if (r_type == R_MIPS16_26 && !info->relocatable
4084 && h != NULL
4085 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4086 && !target_is_16_bit_code_p)
4087 {
4088 /* If both call_stub and call_fp_stub are defined, we can figure
4089 out which one to use by seeing which one appears in the input
4090 file. */
4091 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4092 {
4093 asection *o;
4094
4095 sec = NULL;
4096 for (o = input_bfd->sections; o != NULL; o = o->next)
4097 {
4098 if (strncmp (bfd_get_section_name (input_bfd, o),
4099 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4100 {
4101 sec = h->call_fp_stub;
4102 break;
4103 }
4104 }
4105 if (sec == NULL)
4106 sec = h->call_stub;
4107 }
4108 else if (h->call_stub != NULL)
4109 sec = h->call_stub;
4110 else
4111 sec = h->call_fp_stub;
4112
4113 BFD_ASSERT (sec->size > 0);
4114 symbol = sec->output_section->vma + sec->output_offset;
4115 }
4116
4117 /* Calls from 16-bit code to 32-bit code and vice versa require the
4118 special jalx instruction. */
4119 *require_jalxp = (!info->relocatable
4120 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4121 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4122
4123 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4124 local_sections, TRUE);
4125
4126 /* If we haven't already determined the GOT offset, or the GP value,
4127 and we're going to need it, get it now. */
4128 switch (r_type)
4129 {
4130 case R_MIPS_GOT_PAGE:
4131 case R_MIPS_GOT_OFST:
4132 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4133 bind locally. */
4134 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4135 if (local_p || r_type == R_MIPS_GOT_OFST)
4136 break;
4137 /* Fall through. */
4138
4139 case R_MIPS_CALL16:
4140 case R_MIPS_GOT16:
4141 case R_MIPS_GOT_DISP:
4142 case R_MIPS_GOT_HI16:
4143 case R_MIPS_CALL_HI16:
4144 case R_MIPS_GOT_LO16:
4145 case R_MIPS_CALL_LO16:
4146 case R_MIPS_TLS_GD:
4147 case R_MIPS_TLS_GOTTPREL:
4148 case R_MIPS_TLS_LDM:
4149 /* Find the index into the GOT where this value is located. */
4150 if (r_type == R_MIPS_TLS_LDM)
4151 {
4152 g = mips_elf_local_got_index (abfd, input_bfd, info,
4153 sec, 0, 0, NULL, r_type);
4154 if (g == MINUS_ONE)
4155 return bfd_reloc_outofrange;
4156 }
4157 else if (!local_p)
4158 {
4159 /* On VxWorks, CALL relocations should refer to the .got.plt
4160 entry, which is initialized to point at the PLT stub. */
4161 if (htab->is_vxworks
4162 && (r_type == R_MIPS_CALL_HI16
4163 || r_type == R_MIPS_CALL_LO16
4164 || r_type == R_MIPS_CALL16))
4165 {
4166 BFD_ASSERT (addend == 0);
4167 BFD_ASSERT (h->root.needs_plt);
4168 g = mips_elf_gotplt_index (info, &h->root);
4169 }
4170 else
4171 {
4172 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4173 GOT_PAGE relocation that decays to GOT_DISP because the
4174 symbol turns out to be global. The addend is then added
4175 as GOT_OFST. */
4176 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4177 g = mips_elf_global_got_index (dynobj, input_bfd,
4178 &h->root, r_type, info);
4179 if (h->tls_type == GOT_NORMAL
4180 && (! elf_hash_table(info)->dynamic_sections_created
4181 || (info->shared
4182 && (info->symbolic || h->root.forced_local)
4183 && h->root.def_regular)))
4184 {
4185 /* This is a static link or a -Bsymbolic link. The
4186 symbol is defined locally, or was forced to be local.
4187 We must initialize this entry in the GOT. */
4188 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4189 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4190 }
4191 }
4192 }
4193 else if (!htab->is_vxworks
4194 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4195 /* The calculation below does not involve "g". */
4196 break;
4197 else
4198 {
4199 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4200 symbol + addend, r_symndx, h, r_type);
4201 if (g == MINUS_ONE)
4202 return bfd_reloc_outofrange;
4203 }
4204
4205 /* Convert GOT indices to actual offsets. */
4206 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4207 break;
4208
4209 case R_MIPS_HI16:
4210 case R_MIPS_LO16:
4211 case R_MIPS_GPREL16:
4212 case R_MIPS_GPREL32:
4213 case R_MIPS_LITERAL:
4214 case R_MIPS16_HI16:
4215 case R_MIPS16_LO16:
4216 case R_MIPS16_GPREL:
4217 gp0 = _bfd_get_gp_value (input_bfd);
4218 gp = _bfd_get_gp_value (abfd);
4219 if (dynobj)
4220 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4221 input_bfd);
4222 break;
4223
4224 default:
4225 break;
4226 }
4227
4228 if (gnu_local_gp_p)
4229 symbol = gp;
4230
4231 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4232 symbols are resolved by the loader. Add them to .rela.dyn. */
4233 if (h != NULL && is_gott_symbol (info, &h->root))
4234 {
4235 Elf_Internal_Rela outrel;
4236 bfd_byte *loc;
4237 asection *s;
4238
4239 s = mips_elf_rel_dyn_section (info, FALSE);
4240 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4241
4242 outrel.r_offset = (input_section->output_section->vma
4243 + input_section->output_offset
4244 + relocation->r_offset);
4245 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4246 outrel.r_addend = addend;
4247 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4248 *valuep = 0;
4249 return bfd_reloc_ok;
4250 }
4251
4252 /* Figure out what kind of relocation is being performed. */
4253 switch (r_type)
4254 {
4255 case R_MIPS_NONE:
4256 return bfd_reloc_continue;
4257
4258 case R_MIPS_16:
4259 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4260 overflowed_p = mips_elf_overflow_p (value, 16);
4261 break;
4262
4263 case R_MIPS_32:
4264 case R_MIPS_REL32:
4265 case R_MIPS_64:
4266 if ((info->shared
4267 || (!htab->is_vxworks
4268 && htab->root.dynamic_sections_created
4269 && h != NULL
4270 && h->root.def_dynamic
4271 && !h->root.def_regular))
4272 && r_symndx != 0
4273 && (input_section->flags & SEC_ALLOC) != 0)
4274 {
4275 /* If we're creating a shared library, or this relocation is
4276 against a symbol in a shared library, then we can't know
4277 where the symbol will end up. So, we create a relocation
4278 record in the output, and leave the job up to the dynamic
4279 linker.
4280
4281 In VxWorks executables, references to external symbols
4282 are handled using copy relocs or PLT stubs, so there's
4283 no need to add a dynamic relocation here. */
4284 value = addend;
4285 if (!mips_elf_create_dynamic_relocation (abfd,
4286 info,
4287 relocation,
4288 h,
4289 sec,
4290 symbol,
4291 &value,
4292 input_section))
4293 return bfd_reloc_undefined;
4294 }
4295 else
4296 {
4297 if (r_type != R_MIPS_REL32)
4298 value = symbol + addend;
4299 else
4300 value = addend;
4301 }
4302 value &= howto->dst_mask;
4303 break;
4304
4305 case R_MIPS_PC32:
4306 value = symbol + addend - p;
4307 value &= howto->dst_mask;
4308 break;
4309
4310 case R_MIPS16_26:
4311 /* The calculation for R_MIPS16_26 is just the same as for an
4312 R_MIPS_26. It's only the storage of the relocated field into
4313 the output file that's different. That's handled in
4314 mips_elf_perform_relocation. So, we just fall through to the
4315 R_MIPS_26 case here. */
4316 case R_MIPS_26:
4317 if (local_p)
4318 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4319 else
4320 {
4321 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4322 if (h->root.root.type != bfd_link_hash_undefweak)
4323 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4324 }
4325 value &= howto->dst_mask;
4326 break;
4327
4328 case R_MIPS_TLS_DTPREL_HI16:
4329 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4330 & howto->dst_mask);
4331 break;
4332
4333 case R_MIPS_TLS_DTPREL_LO16:
4334 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4335 break;
4336
4337 case R_MIPS_TLS_TPREL_HI16:
4338 value = (mips_elf_high (addend + symbol - tprel_base (info))
4339 & howto->dst_mask);
4340 break;
4341
4342 case R_MIPS_TLS_TPREL_LO16:
4343 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4344 break;
4345
4346 case R_MIPS_HI16:
4347 case R_MIPS16_HI16:
4348 if (!gp_disp_p)
4349 {
4350 value = mips_elf_high (addend + symbol);
4351 value &= howto->dst_mask;
4352 }
4353 else
4354 {
4355 /* For MIPS16 ABI code we generate this sequence
4356 0: li $v0,%hi(_gp_disp)
4357 4: addiupc $v1,%lo(_gp_disp)
4358 8: sll $v0,16
4359 12: addu $v0,$v1
4360 14: move $gp,$v0
4361 So the offsets of hi and lo relocs are the same, but the
4362 $pc is four higher than $t9 would be, so reduce
4363 both reloc addends by 4. */
4364 if (r_type == R_MIPS16_HI16)
4365 value = mips_elf_high (addend + gp - p - 4);
4366 else
4367 value = mips_elf_high (addend + gp - p);
4368 overflowed_p = mips_elf_overflow_p (value, 16);
4369 }
4370 break;
4371
4372 case R_MIPS_LO16:
4373 case R_MIPS16_LO16:
4374 if (!gp_disp_p)
4375 value = (symbol + addend) & howto->dst_mask;
4376 else
4377 {
4378 /* See the comment for R_MIPS16_HI16 above for the reason
4379 for this conditional. */
4380 if (r_type == R_MIPS16_LO16)
4381 value = addend + gp - p;
4382 else
4383 value = addend + gp - p + 4;
4384 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4385 for overflow. But, on, say, IRIX5, relocations against
4386 _gp_disp are normally generated from the .cpload
4387 pseudo-op. It generates code that normally looks like
4388 this:
4389
4390 lui $gp,%hi(_gp_disp)
4391 addiu $gp,$gp,%lo(_gp_disp)
4392 addu $gp,$gp,$t9
4393
4394 Here $t9 holds the address of the function being called,
4395 as required by the MIPS ELF ABI. The R_MIPS_LO16
4396 relocation can easily overflow in this situation, but the
4397 R_MIPS_HI16 relocation will handle the overflow.
4398 Therefore, we consider this a bug in the MIPS ABI, and do
4399 not check for overflow here. */
4400 }
4401 break;
4402
4403 case R_MIPS_LITERAL:
4404 /* Because we don't merge literal sections, we can handle this
4405 just like R_MIPS_GPREL16. In the long run, we should merge
4406 shared literals, and then we will need to additional work
4407 here. */
4408
4409 /* Fall through. */
4410
4411 case R_MIPS16_GPREL:
4412 /* The R_MIPS16_GPREL performs the same calculation as
4413 R_MIPS_GPREL16, but stores the relocated bits in a different
4414 order. We don't need to do anything special here; the
4415 differences are handled in mips_elf_perform_relocation. */
4416 case R_MIPS_GPREL16:
4417 /* Only sign-extend the addend if it was extracted from the
4418 instruction. If the addend was separate, leave it alone,
4419 otherwise we may lose significant bits. */
4420 if (howto->partial_inplace)
4421 addend = _bfd_mips_elf_sign_extend (addend, 16);
4422 value = symbol + addend - gp;
4423 /* If the symbol was local, any earlier relocatable links will
4424 have adjusted its addend with the gp offset, so compensate
4425 for that now. Don't do it for symbols forced local in this
4426 link, though, since they won't have had the gp offset applied
4427 to them before. */
4428 if (was_local_p)
4429 value += gp0;
4430 overflowed_p = mips_elf_overflow_p (value, 16);
4431 break;
4432
4433 case R_MIPS_GOT16:
4434 case R_MIPS_CALL16:
4435 /* VxWorks does not have separate local and global semantics for
4436 R_MIPS_GOT16; every relocation evaluates to "G". */
4437 if (!htab->is_vxworks && local_p)
4438 {
4439 bfd_boolean forced;
4440
4441 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4442 local_sections, FALSE);
4443 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4444 symbol + addend, forced);
4445 if (value == MINUS_ONE)
4446 return bfd_reloc_outofrange;
4447 value
4448 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4449 overflowed_p = mips_elf_overflow_p (value, 16);
4450 break;
4451 }
4452
4453 /* Fall through. */
4454
4455 case R_MIPS_TLS_GD:
4456 case R_MIPS_TLS_GOTTPREL:
4457 case R_MIPS_TLS_LDM:
4458 case R_MIPS_GOT_DISP:
4459 got_disp:
4460 value = g;
4461 overflowed_p = mips_elf_overflow_p (value, 16);
4462 break;
4463
4464 case R_MIPS_GPREL32:
4465 value = (addend + symbol + gp0 - gp);
4466 if (!save_addend)
4467 value &= howto->dst_mask;
4468 break;
4469
4470 case R_MIPS_PC16:
4471 case R_MIPS_GNU_REL16_S2:
4472 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4473 overflowed_p = mips_elf_overflow_p (value, 18);
4474 value >>= howto->rightshift;
4475 value &= howto->dst_mask;
4476 break;
4477
4478 case R_MIPS_GOT_HI16:
4479 case R_MIPS_CALL_HI16:
4480 /* We're allowed to handle these two relocations identically.
4481 The dynamic linker is allowed to handle the CALL relocations
4482 differently by creating a lazy evaluation stub. */
4483 value = g;
4484 value = mips_elf_high (value);
4485 value &= howto->dst_mask;
4486 break;
4487
4488 case R_MIPS_GOT_LO16:
4489 case R_MIPS_CALL_LO16:
4490 value = g & howto->dst_mask;
4491 break;
4492
4493 case R_MIPS_GOT_PAGE:
4494 /* GOT_PAGE relocations that reference non-local symbols decay
4495 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4496 0. */
4497 if (! local_p)
4498 goto got_disp;
4499 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4500 symbol + addend, NULL);
4501 if (value == MINUS_ONE)
4502 return bfd_reloc_outofrange;
4503 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4504 overflowed_p = mips_elf_overflow_p (value, 16);
4505 break;
4506
4507 case R_MIPS_GOT_OFST:
4508 if (local_p)
4509 mips_elf_got_page (abfd, input_bfd, info, sec,
4510 symbol + addend, &value);
4511 else
4512 value = addend;
4513 overflowed_p = mips_elf_overflow_p (value, 16);
4514 break;
4515
4516 case R_MIPS_SUB:
4517 value = symbol - addend;
4518 value &= howto->dst_mask;
4519 break;
4520
4521 case R_MIPS_HIGHER:
4522 value = mips_elf_higher (addend + symbol);
4523 value &= howto->dst_mask;
4524 break;
4525
4526 case R_MIPS_HIGHEST:
4527 value = mips_elf_highest (addend + symbol);
4528 value &= howto->dst_mask;
4529 break;
4530
4531 case R_MIPS_SCN_DISP:
4532 value = symbol + addend - sec->output_offset;
4533 value &= howto->dst_mask;
4534 break;
4535
4536 case R_MIPS_JALR:
4537 /* This relocation is only a hint. In some cases, we optimize
4538 it into a bal instruction. But we don't try to optimize
4539 branches to the PLT; that will wind up wasting time. */
4540 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4541 return bfd_reloc_continue;
4542 value = symbol + addend;
4543 break;
4544
4545 case R_MIPS_PJUMP:
4546 case R_MIPS_GNU_VTINHERIT:
4547 case R_MIPS_GNU_VTENTRY:
4548 /* We don't do anything with these at present. */
4549 return bfd_reloc_continue;
4550
4551 default:
4552 /* An unrecognized relocation type. */
4553 return bfd_reloc_notsupported;
4554 }
4555
4556 /* Store the VALUE for our caller. */
4557 *valuep = value;
4558 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4559 }
4560
4561 /* Obtain the field relocated by RELOCATION. */
4562
4563 static bfd_vma
4564 mips_elf_obtain_contents (reloc_howto_type *howto,
4565 const Elf_Internal_Rela *relocation,
4566 bfd *input_bfd, bfd_byte *contents)
4567 {
4568 bfd_vma x;
4569 bfd_byte *location = contents + relocation->r_offset;
4570
4571 /* Obtain the bytes. */
4572 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4573
4574 return x;
4575 }
4576
4577 /* It has been determined that the result of the RELOCATION is the
4578 VALUE. Use HOWTO to place VALUE into the output file at the
4579 appropriate position. The SECTION is the section to which the
4580 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4581 for the relocation must be either JAL or JALX, and it is
4582 unconditionally converted to JALX.
4583
4584 Returns FALSE if anything goes wrong. */
4585
4586 static bfd_boolean
4587 mips_elf_perform_relocation (struct bfd_link_info *info,
4588 reloc_howto_type *howto,
4589 const Elf_Internal_Rela *relocation,
4590 bfd_vma value, bfd *input_bfd,
4591 asection *input_section, bfd_byte *contents,
4592 bfd_boolean require_jalx)
4593 {
4594 bfd_vma x;
4595 bfd_byte *location;
4596 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4597
4598 /* Figure out where the relocation is occurring. */
4599 location = contents + relocation->r_offset;
4600
4601 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4602
4603 /* Obtain the current value. */
4604 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4605
4606 /* Clear the field we are setting. */
4607 x &= ~howto->dst_mask;
4608
4609 /* Set the field. */
4610 x |= (value & howto->dst_mask);
4611
4612 /* If required, turn JAL into JALX. */
4613 if (require_jalx)
4614 {
4615 bfd_boolean ok;
4616 bfd_vma opcode = x >> 26;
4617 bfd_vma jalx_opcode;
4618
4619 /* Check to see if the opcode is already JAL or JALX. */
4620 if (r_type == R_MIPS16_26)
4621 {
4622 ok = ((opcode == 0x6) || (opcode == 0x7));
4623 jalx_opcode = 0x7;
4624 }
4625 else
4626 {
4627 ok = ((opcode == 0x3) || (opcode == 0x1d));
4628 jalx_opcode = 0x1d;
4629 }
4630
4631 /* If the opcode is not JAL or JALX, there's a problem. */
4632 if (!ok)
4633 {
4634 (*_bfd_error_handler)
4635 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4636 input_bfd,
4637 input_section,
4638 (unsigned long) relocation->r_offset);
4639 bfd_set_error (bfd_error_bad_value);
4640 return FALSE;
4641 }
4642
4643 /* Make this the JALX opcode. */
4644 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4645 }
4646
4647 /* On the RM9000, bal is faster than jal, because bal uses branch
4648 prediction hardware. If we are linking for the RM9000, and we
4649 see jal, and bal fits, use it instead. Note that this
4650 transformation should be safe for all architectures. */
4651 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4652 && !info->relocatable
4653 && !require_jalx
4654 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4655 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4656 {
4657 bfd_vma addr;
4658 bfd_vma dest;
4659 bfd_signed_vma off;
4660
4661 addr = (input_section->output_section->vma
4662 + input_section->output_offset
4663 + relocation->r_offset
4664 + 4);
4665 if (r_type == R_MIPS_26)
4666 dest = (value << 2) | ((addr >> 28) << 28);
4667 else
4668 dest = value;
4669 off = dest - addr;
4670 if (off <= 0x1ffff && off >= -0x20000)
4671 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4672 }
4673
4674 /* Put the value into the output. */
4675 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4676
4677 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4678 location);
4679
4680 return TRUE;
4681 }
4682
4683 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4684
4685 static bfd_boolean
4686 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4687 {
4688 const char *name = bfd_get_section_name (abfd, section);
4689
4690 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4691 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4692 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4693 }
4694 \f
4695 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4696
4697 static void
4698 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4699 unsigned int n)
4700 {
4701 asection *s;
4702 struct mips_elf_link_hash_table *htab;
4703
4704 htab = mips_elf_hash_table (info);
4705 s = mips_elf_rel_dyn_section (info, FALSE);
4706 BFD_ASSERT (s != NULL);
4707
4708 if (htab->is_vxworks)
4709 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4710 else
4711 {
4712 if (s->size == 0)
4713 {
4714 /* Make room for a null element. */
4715 s->size += MIPS_ELF_REL_SIZE (abfd);
4716 ++s->reloc_count;
4717 }
4718 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4719 }
4720 }
4721
4722 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4723 is the original relocation, which is now being transformed into a
4724 dynamic relocation. The ADDENDP is adjusted if necessary; the
4725 caller should store the result in place of the original addend. */
4726
4727 static bfd_boolean
4728 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4729 struct bfd_link_info *info,
4730 const Elf_Internal_Rela *rel,
4731 struct mips_elf_link_hash_entry *h,
4732 asection *sec, bfd_vma symbol,
4733 bfd_vma *addendp, asection *input_section)
4734 {
4735 Elf_Internal_Rela outrel[3];
4736 asection *sreloc;
4737 bfd *dynobj;
4738 int r_type;
4739 long indx;
4740 bfd_boolean defined_p;
4741 struct mips_elf_link_hash_table *htab;
4742
4743 htab = mips_elf_hash_table (info);
4744 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4745 dynobj = elf_hash_table (info)->dynobj;
4746 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4747 BFD_ASSERT (sreloc != NULL);
4748 BFD_ASSERT (sreloc->contents != NULL);
4749 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4750 < sreloc->size);
4751
4752 outrel[0].r_offset =
4753 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4754 outrel[1].r_offset =
4755 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4756 outrel[2].r_offset =
4757 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4758
4759 if (outrel[0].r_offset == MINUS_ONE)
4760 /* The relocation field has been deleted. */
4761 return TRUE;
4762
4763 if (outrel[0].r_offset == MINUS_TWO)
4764 {
4765 /* The relocation field has been converted into a relative value of
4766 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4767 the field to be fully relocated, so add in the symbol's value. */
4768 *addendp += symbol;
4769 return TRUE;
4770 }
4771
4772 /* We must now calculate the dynamic symbol table index to use
4773 in the relocation. */
4774 if (h != NULL
4775 && (!h->root.def_regular
4776 || (info->shared && !info->symbolic && !h->root.forced_local)))
4777 {
4778 indx = h->root.dynindx;
4779 if (SGI_COMPAT (output_bfd))
4780 defined_p = h->root.def_regular;
4781 else
4782 /* ??? glibc's ld.so just adds the final GOT entry to the
4783 relocation field. It therefore treats relocs against
4784 defined symbols in the same way as relocs against
4785 undefined symbols. */
4786 defined_p = FALSE;
4787 }
4788 else
4789 {
4790 if (sec != NULL && bfd_is_abs_section (sec))
4791 indx = 0;
4792 else if (sec == NULL || sec->owner == NULL)
4793 {
4794 bfd_set_error (bfd_error_bad_value);
4795 return FALSE;
4796 }
4797 else
4798 {
4799 indx = elf_section_data (sec->output_section)->dynindx;
4800 if (indx == 0)
4801 abort ();
4802 }
4803
4804 /* Instead of generating a relocation using the section
4805 symbol, we may as well make it a fully relative
4806 relocation. We want to avoid generating relocations to
4807 local symbols because we used to generate them
4808 incorrectly, without adding the original symbol value,
4809 which is mandated by the ABI for section symbols. In
4810 order to give dynamic loaders and applications time to
4811 phase out the incorrect use, we refrain from emitting
4812 section-relative relocations. It's not like they're
4813 useful, after all. This should be a bit more efficient
4814 as well. */
4815 /* ??? Although this behavior is compatible with glibc's ld.so,
4816 the ABI says that relocations against STN_UNDEF should have
4817 a symbol value of 0. Irix rld honors this, so relocations
4818 against STN_UNDEF have no effect. */
4819 if (!SGI_COMPAT (output_bfd))
4820 indx = 0;
4821 defined_p = TRUE;
4822 }
4823
4824 /* If the relocation was previously an absolute relocation and
4825 this symbol will not be referred to by the relocation, we must
4826 adjust it by the value we give it in the dynamic symbol table.
4827 Otherwise leave the job up to the dynamic linker. */
4828 if (defined_p && r_type != R_MIPS_REL32)
4829 *addendp += symbol;
4830
4831 if (htab->is_vxworks)
4832 /* VxWorks uses non-relative relocations for this. */
4833 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4834 else
4835 /* The relocation is always an REL32 relocation because we don't
4836 know where the shared library will wind up at load-time. */
4837 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4838 R_MIPS_REL32);
4839
4840 /* For strict adherence to the ABI specification, we should
4841 generate a R_MIPS_64 relocation record by itself before the
4842 _REL32/_64 record as well, such that the addend is read in as
4843 a 64-bit value (REL32 is a 32-bit relocation, after all).
4844 However, since none of the existing ELF64 MIPS dynamic
4845 loaders seems to care, we don't waste space with these
4846 artificial relocations. If this turns out to not be true,
4847 mips_elf_allocate_dynamic_relocation() should be tweaked so
4848 as to make room for a pair of dynamic relocations per
4849 invocation if ABI_64_P, and here we should generate an
4850 additional relocation record with R_MIPS_64 by itself for a
4851 NULL symbol before this relocation record. */
4852 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4853 ABI_64_P (output_bfd)
4854 ? R_MIPS_64
4855 : R_MIPS_NONE);
4856 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4857
4858 /* Adjust the output offset of the relocation to reference the
4859 correct location in the output file. */
4860 outrel[0].r_offset += (input_section->output_section->vma
4861 + input_section->output_offset);
4862 outrel[1].r_offset += (input_section->output_section->vma
4863 + input_section->output_offset);
4864 outrel[2].r_offset += (input_section->output_section->vma
4865 + input_section->output_offset);
4866
4867 /* Put the relocation back out. We have to use the special
4868 relocation outputter in the 64-bit case since the 64-bit
4869 relocation format is non-standard. */
4870 if (ABI_64_P (output_bfd))
4871 {
4872 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4873 (output_bfd, &outrel[0],
4874 (sreloc->contents
4875 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4876 }
4877 else if (htab->is_vxworks)
4878 {
4879 /* VxWorks uses RELA rather than REL dynamic relocations. */
4880 outrel[0].r_addend = *addendp;
4881 bfd_elf32_swap_reloca_out
4882 (output_bfd, &outrel[0],
4883 (sreloc->contents
4884 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4885 }
4886 else
4887 bfd_elf32_swap_reloc_out
4888 (output_bfd, &outrel[0],
4889 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4890
4891 /* We've now added another relocation. */
4892 ++sreloc->reloc_count;
4893
4894 /* Make sure the output section is writable. The dynamic linker
4895 will be writing to it. */
4896 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4897 |= SHF_WRITE;
4898
4899 /* On IRIX5, make an entry of compact relocation info. */
4900 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4901 {
4902 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4903 bfd_byte *cr;
4904
4905 if (scpt)
4906 {
4907 Elf32_crinfo cptrel;
4908
4909 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4910 cptrel.vaddr = (rel->r_offset
4911 + input_section->output_section->vma
4912 + input_section->output_offset);
4913 if (r_type == R_MIPS_REL32)
4914 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4915 else
4916 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4917 mips_elf_set_cr_dist2to (cptrel, 0);
4918 cptrel.konst = *addendp;
4919
4920 cr = (scpt->contents
4921 + sizeof (Elf32_External_compact_rel));
4922 mips_elf_set_cr_relvaddr (cptrel, 0);
4923 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4924 ((Elf32_External_crinfo *) cr
4925 + scpt->reloc_count));
4926 ++scpt->reloc_count;
4927 }
4928 }
4929
4930 /* If we've written this relocation for a readonly section,
4931 we need to set DF_TEXTREL again, so that we do not delete the
4932 DT_TEXTREL tag. */
4933 if (MIPS_ELF_READONLY_SECTION (input_section))
4934 info->flags |= DF_TEXTREL;
4935
4936 return TRUE;
4937 }
4938 \f
4939 /* Return the MACH for a MIPS e_flags value. */
4940
4941 unsigned long
4942 _bfd_elf_mips_mach (flagword flags)
4943 {
4944 switch (flags & EF_MIPS_MACH)
4945 {
4946 case E_MIPS_MACH_3900:
4947 return bfd_mach_mips3900;
4948
4949 case E_MIPS_MACH_4010:
4950 return bfd_mach_mips4010;
4951
4952 case E_MIPS_MACH_4100:
4953 return bfd_mach_mips4100;
4954
4955 case E_MIPS_MACH_4111:
4956 return bfd_mach_mips4111;
4957
4958 case E_MIPS_MACH_4120:
4959 return bfd_mach_mips4120;
4960
4961 case E_MIPS_MACH_4650:
4962 return bfd_mach_mips4650;
4963
4964 case E_MIPS_MACH_5400:
4965 return bfd_mach_mips5400;
4966
4967 case E_MIPS_MACH_5500:
4968 return bfd_mach_mips5500;
4969
4970 case E_MIPS_MACH_9000:
4971 return bfd_mach_mips9000;
4972
4973 case E_MIPS_MACH_SB1:
4974 return bfd_mach_mips_sb1;
4975
4976 default:
4977 switch (flags & EF_MIPS_ARCH)
4978 {
4979 default:
4980 case E_MIPS_ARCH_1:
4981 return bfd_mach_mips3000;
4982
4983 case E_MIPS_ARCH_2:
4984 return bfd_mach_mips6000;
4985
4986 case E_MIPS_ARCH_3:
4987 return bfd_mach_mips4000;
4988
4989 case E_MIPS_ARCH_4:
4990 return bfd_mach_mips8000;
4991
4992 case E_MIPS_ARCH_5:
4993 return bfd_mach_mips5;
4994
4995 case E_MIPS_ARCH_32:
4996 return bfd_mach_mipsisa32;
4997
4998 case E_MIPS_ARCH_64:
4999 return bfd_mach_mipsisa64;
5000
5001 case E_MIPS_ARCH_32R2:
5002 return bfd_mach_mipsisa32r2;
5003
5004 case E_MIPS_ARCH_64R2:
5005 return bfd_mach_mipsisa64r2;
5006 }
5007 }
5008
5009 return 0;
5010 }
5011
5012 /* Return printable name for ABI. */
5013
5014 static INLINE char *
5015 elf_mips_abi_name (bfd *abfd)
5016 {
5017 flagword flags;
5018
5019 flags = elf_elfheader (abfd)->e_flags;
5020 switch (flags & EF_MIPS_ABI)
5021 {
5022 case 0:
5023 if (ABI_N32_P (abfd))
5024 return "N32";
5025 else if (ABI_64_P (abfd))
5026 return "64";
5027 else
5028 return "none";
5029 case E_MIPS_ABI_O32:
5030 return "O32";
5031 case E_MIPS_ABI_O64:
5032 return "O64";
5033 case E_MIPS_ABI_EABI32:
5034 return "EABI32";
5035 case E_MIPS_ABI_EABI64:
5036 return "EABI64";
5037 default:
5038 return "unknown abi";
5039 }
5040 }
5041 \f
5042 /* MIPS ELF uses two common sections. One is the usual one, and the
5043 other is for small objects. All the small objects are kept
5044 together, and then referenced via the gp pointer, which yields
5045 faster assembler code. This is what we use for the small common
5046 section. This approach is copied from ecoff.c. */
5047 static asection mips_elf_scom_section;
5048 static asymbol mips_elf_scom_symbol;
5049 static asymbol *mips_elf_scom_symbol_ptr;
5050
5051 /* MIPS ELF also uses an acommon section, which represents an
5052 allocated common symbol which may be overridden by a
5053 definition in a shared library. */
5054 static asection mips_elf_acom_section;
5055 static asymbol mips_elf_acom_symbol;
5056 static asymbol *mips_elf_acom_symbol_ptr;
5057
5058 /* Handle the special MIPS section numbers that a symbol may use.
5059 This is used for both the 32-bit and the 64-bit ABI. */
5060
5061 void
5062 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5063 {
5064 elf_symbol_type *elfsym;
5065
5066 elfsym = (elf_symbol_type *) asym;
5067 switch (elfsym->internal_elf_sym.st_shndx)
5068 {
5069 case SHN_MIPS_ACOMMON:
5070 /* This section is used in a dynamically linked executable file.
5071 It is an allocated common section. The dynamic linker can
5072 either resolve these symbols to something in a shared
5073 library, or it can just leave them here. For our purposes,
5074 we can consider these symbols to be in a new section. */
5075 if (mips_elf_acom_section.name == NULL)
5076 {
5077 /* Initialize the acommon section. */
5078 mips_elf_acom_section.name = ".acommon";
5079 mips_elf_acom_section.flags = SEC_ALLOC;
5080 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5081 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5082 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5083 mips_elf_acom_symbol.name = ".acommon";
5084 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5085 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5086 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5087 }
5088 asym->section = &mips_elf_acom_section;
5089 break;
5090
5091 case SHN_COMMON:
5092 /* Common symbols less than the GP size are automatically
5093 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5094 if (asym->value > elf_gp_size (abfd)
5095 || IRIX_COMPAT (abfd) == ict_irix6)
5096 break;
5097 /* Fall through. */
5098 case SHN_MIPS_SCOMMON:
5099 if (mips_elf_scom_section.name == NULL)
5100 {
5101 /* Initialize the small common section. */
5102 mips_elf_scom_section.name = ".scommon";
5103 mips_elf_scom_section.flags = SEC_IS_COMMON;
5104 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5105 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5106 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5107 mips_elf_scom_symbol.name = ".scommon";
5108 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5109 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5110 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5111 }
5112 asym->section = &mips_elf_scom_section;
5113 asym->value = elfsym->internal_elf_sym.st_size;
5114 break;
5115
5116 case SHN_MIPS_SUNDEFINED:
5117 asym->section = bfd_und_section_ptr;
5118 break;
5119
5120 case SHN_MIPS_TEXT:
5121 {
5122 asection *section = bfd_get_section_by_name (abfd, ".text");
5123
5124 BFD_ASSERT (SGI_COMPAT (abfd));
5125 if (section != NULL)
5126 {
5127 asym->section = section;
5128 /* MIPS_TEXT is a bit special, the address is not an offset
5129 to the base of the .text section. So substract the section
5130 base address to make it an offset. */
5131 asym->value -= section->vma;
5132 }
5133 }
5134 break;
5135
5136 case SHN_MIPS_DATA:
5137 {
5138 asection *section = bfd_get_section_by_name (abfd, ".data");
5139
5140 BFD_ASSERT (SGI_COMPAT (abfd));
5141 if (section != NULL)
5142 {
5143 asym->section = section;
5144 /* MIPS_DATA is a bit special, the address is not an offset
5145 to the base of the .data section. So substract the section
5146 base address to make it an offset. */
5147 asym->value -= section->vma;
5148 }
5149 }
5150 break;
5151 }
5152 }
5153 \f
5154 /* Implement elf_backend_eh_frame_address_size. This differs from
5155 the default in the way it handles EABI64.
5156
5157 EABI64 was originally specified as an LP64 ABI, and that is what
5158 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5159 historically accepted the combination of -mabi=eabi and -mlong32,
5160 and this ILP32 variation has become semi-official over time.
5161 Both forms use elf32 and have pointer-sized FDE addresses.
5162
5163 If an EABI object was generated by GCC 4.0 or above, it will have
5164 an empty .gcc_compiled_longXX section, where XX is the size of longs
5165 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5166 have no special marking to distinguish them from LP64 objects.
5167
5168 We don't want users of the official LP64 ABI to be punished for the
5169 existence of the ILP32 variant, but at the same time, we don't want
5170 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5171 We therefore take the following approach:
5172
5173 - If ABFD contains a .gcc_compiled_longXX section, use it to
5174 determine the pointer size.
5175
5176 - Otherwise check the type of the first relocation. Assume that
5177 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5178
5179 - Otherwise punt.
5180
5181 The second check is enough to detect LP64 objects generated by pre-4.0
5182 compilers because, in the kind of output generated by those compilers,
5183 the first relocation will be associated with either a CIE personality
5184 routine or an FDE start address. Furthermore, the compilers never
5185 used a special (non-pointer) encoding for this ABI.
5186
5187 Checking the relocation type should also be safe because there is no
5188 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5189 did so. */
5190
5191 unsigned int
5192 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5193 {
5194 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5195 return 8;
5196 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5197 {
5198 bfd_boolean long32_p, long64_p;
5199
5200 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5201 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5202 if (long32_p && long64_p)
5203 return 0;
5204 if (long32_p)
5205 return 4;
5206 if (long64_p)
5207 return 8;
5208
5209 if (sec->reloc_count > 0
5210 && elf_section_data (sec)->relocs != NULL
5211 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5212 == R_MIPS_64))
5213 return 8;
5214
5215 return 0;
5216 }
5217 return 4;
5218 }
5219 \f
5220 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5221 relocations against two unnamed section symbols to resolve to the
5222 same address. For example, if we have code like:
5223
5224 lw $4,%got_disp(.data)($gp)
5225 lw $25,%got_disp(.text)($gp)
5226 jalr $25
5227
5228 then the linker will resolve both relocations to .data and the program
5229 will jump there rather than to .text.
5230
5231 We can work around this problem by giving names to local section symbols.
5232 This is also what the MIPSpro tools do. */
5233
5234 bfd_boolean
5235 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5236 {
5237 return SGI_COMPAT (abfd);
5238 }
5239 \f
5240 /* Work over a section just before writing it out. This routine is
5241 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5242 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5243 a better way. */
5244
5245 bfd_boolean
5246 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5247 {
5248 if (hdr->sh_type == SHT_MIPS_REGINFO
5249 && hdr->sh_size > 0)
5250 {
5251 bfd_byte buf[4];
5252
5253 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5254 BFD_ASSERT (hdr->contents == NULL);
5255
5256 if (bfd_seek (abfd,
5257 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5258 SEEK_SET) != 0)
5259 return FALSE;
5260 H_PUT_32 (abfd, elf_gp (abfd), buf);
5261 if (bfd_bwrite (buf, 4, abfd) != 4)
5262 return FALSE;
5263 }
5264
5265 if (hdr->sh_type == SHT_MIPS_OPTIONS
5266 && hdr->bfd_section != NULL
5267 && mips_elf_section_data (hdr->bfd_section) != NULL
5268 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5269 {
5270 bfd_byte *contents, *l, *lend;
5271
5272 /* We stored the section contents in the tdata field in the
5273 set_section_contents routine. We save the section contents
5274 so that we don't have to read them again.
5275 At this point we know that elf_gp is set, so we can look
5276 through the section contents to see if there is an
5277 ODK_REGINFO structure. */
5278
5279 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5280 l = contents;
5281 lend = contents + hdr->sh_size;
5282 while (l + sizeof (Elf_External_Options) <= lend)
5283 {
5284 Elf_Internal_Options intopt;
5285
5286 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5287 &intopt);
5288 if (intopt.size < sizeof (Elf_External_Options))
5289 {
5290 (*_bfd_error_handler)
5291 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5292 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5293 break;
5294 }
5295 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5296 {
5297 bfd_byte buf[8];
5298
5299 if (bfd_seek (abfd,
5300 (hdr->sh_offset
5301 + (l - contents)
5302 + sizeof (Elf_External_Options)
5303 + (sizeof (Elf64_External_RegInfo) - 8)),
5304 SEEK_SET) != 0)
5305 return FALSE;
5306 H_PUT_64 (abfd, elf_gp (abfd), buf);
5307 if (bfd_bwrite (buf, 8, abfd) != 8)
5308 return FALSE;
5309 }
5310 else if (intopt.kind == ODK_REGINFO)
5311 {
5312 bfd_byte buf[4];
5313
5314 if (bfd_seek (abfd,
5315 (hdr->sh_offset
5316 + (l - contents)
5317 + sizeof (Elf_External_Options)
5318 + (sizeof (Elf32_External_RegInfo) - 4)),
5319 SEEK_SET) != 0)
5320 return FALSE;
5321 H_PUT_32 (abfd, elf_gp (abfd), buf);
5322 if (bfd_bwrite (buf, 4, abfd) != 4)
5323 return FALSE;
5324 }
5325 l += intopt.size;
5326 }
5327 }
5328
5329 if (hdr->bfd_section != NULL)
5330 {
5331 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5332
5333 if (strcmp (name, ".sdata") == 0
5334 || strcmp (name, ".lit8") == 0
5335 || strcmp (name, ".lit4") == 0)
5336 {
5337 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5338 hdr->sh_type = SHT_PROGBITS;
5339 }
5340 else if (strcmp (name, ".sbss") == 0)
5341 {
5342 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5343 hdr->sh_type = SHT_NOBITS;
5344 }
5345 else if (strcmp (name, ".srdata") == 0)
5346 {
5347 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5348 hdr->sh_type = SHT_PROGBITS;
5349 }
5350 else if (strcmp (name, ".compact_rel") == 0)
5351 {
5352 hdr->sh_flags = 0;
5353 hdr->sh_type = SHT_PROGBITS;
5354 }
5355 else if (strcmp (name, ".rtproc") == 0)
5356 {
5357 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5358 {
5359 unsigned int adjust;
5360
5361 adjust = hdr->sh_size % hdr->sh_addralign;
5362 if (adjust != 0)
5363 hdr->sh_size += hdr->sh_addralign - adjust;
5364 }
5365 }
5366 }
5367
5368 return TRUE;
5369 }
5370
5371 /* Handle a MIPS specific section when reading an object file. This
5372 is called when elfcode.h finds a section with an unknown type.
5373 This routine supports both the 32-bit and 64-bit ELF ABI.
5374
5375 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5376 how to. */
5377
5378 bfd_boolean
5379 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5380 Elf_Internal_Shdr *hdr,
5381 const char *name,
5382 int shindex)
5383 {
5384 flagword flags = 0;
5385
5386 /* There ought to be a place to keep ELF backend specific flags, but
5387 at the moment there isn't one. We just keep track of the
5388 sections by their name, instead. Fortunately, the ABI gives
5389 suggested names for all the MIPS specific sections, so we will
5390 probably get away with this. */
5391 switch (hdr->sh_type)
5392 {
5393 case SHT_MIPS_LIBLIST:
5394 if (strcmp (name, ".liblist") != 0)
5395 return FALSE;
5396 break;
5397 case SHT_MIPS_MSYM:
5398 if (strcmp (name, ".msym") != 0)
5399 return FALSE;
5400 break;
5401 case SHT_MIPS_CONFLICT:
5402 if (strcmp (name, ".conflict") != 0)
5403 return FALSE;
5404 break;
5405 case SHT_MIPS_GPTAB:
5406 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5407 return FALSE;
5408 break;
5409 case SHT_MIPS_UCODE:
5410 if (strcmp (name, ".ucode") != 0)
5411 return FALSE;
5412 break;
5413 case SHT_MIPS_DEBUG:
5414 if (strcmp (name, ".mdebug") != 0)
5415 return FALSE;
5416 flags = SEC_DEBUGGING;
5417 break;
5418 case SHT_MIPS_REGINFO:
5419 if (strcmp (name, ".reginfo") != 0
5420 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5421 return FALSE;
5422 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5423 break;
5424 case SHT_MIPS_IFACE:
5425 if (strcmp (name, ".MIPS.interfaces") != 0)
5426 return FALSE;
5427 break;
5428 case SHT_MIPS_CONTENT:
5429 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_OPTIONS:
5433 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_DWARF:
5437 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_SYMBOL_LIB:
5441 if (strcmp (name, ".MIPS.symlib") != 0)
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_EVENTS:
5445 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5446 && strncmp (name, ".MIPS.post_rel",
5447 sizeof ".MIPS.post_rel" - 1) != 0)
5448 return FALSE;
5449 break;
5450 default:
5451 break;
5452 }
5453
5454 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5455 return FALSE;
5456
5457 if (flags)
5458 {
5459 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5460 (bfd_get_section_flags (abfd,
5461 hdr->bfd_section)
5462 | flags)))
5463 return FALSE;
5464 }
5465
5466 /* FIXME: We should record sh_info for a .gptab section. */
5467
5468 /* For a .reginfo section, set the gp value in the tdata information
5469 from the contents of this section. We need the gp value while
5470 processing relocs, so we just get it now. The .reginfo section
5471 is not used in the 64-bit MIPS ELF ABI. */
5472 if (hdr->sh_type == SHT_MIPS_REGINFO)
5473 {
5474 Elf32_External_RegInfo ext;
5475 Elf32_RegInfo s;
5476
5477 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5478 &ext, 0, sizeof ext))
5479 return FALSE;
5480 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5481 elf_gp (abfd) = s.ri_gp_value;
5482 }
5483
5484 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5485 set the gp value based on what we find. We may see both
5486 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5487 they should agree. */
5488 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5489 {
5490 bfd_byte *contents, *l, *lend;
5491
5492 contents = bfd_malloc (hdr->sh_size);
5493 if (contents == NULL)
5494 return FALSE;
5495 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5496 0, hdr->sh_size))
5497 {
5498 free (contents);
5499 return FALSE;
5500 }
5501 l = contents;
5502 lend = contents + hdr->sh_size;
5503 while (l + sizeof (Elf_External_Options) <= lend)
5504 {
5505 Elf_Internal_Options intopt;
5506
5507 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5508 &intopt);
5509 if (intopt.size < sizeof (Elf_External_Options))
5510 {
5511 (*_bfd_error_handler)
5512 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5513 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5514 break;
5515 }
5516 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5517 {
5518 Elf64_Internal_RegInfo intreg;
5519
5520 bfd_mips_elf64_swap_reginfo_in
5521 (abfd,
5522 ((Elf64_External_RegInfo *)
5523 (l + sizeof (Elf_External_Options))),
5524 &intreg);
5525 elf_gp (abfd) = intreg.ri_gp_value;
5526 }
5527 else if (intopt.kind == ODK_REGINFO)
5528 {
5529 Elf32_RegInfo intreg;
5530
5531 bfd_mips_elf32_swap_reginfo_in
5532 (abfd,
5533 ((Elf32_External_RegInfo *)
5534 (l + sizeof (Elf_External_Options))),
5535 &intreg);
5536 elf_gp (abfd) = intreg.ri_gp_value;
5537 }
5538 l += intopt.size;
5539 }
5540 free (contents);
5541 }
5542
5543 return TRUE;
5544 }
5545
5546 /* Set the correct type for a MIPS ELF section. We do this by the
5547 section name, which is a hack, but ought to work. This routine is
5548 used by both the 32-bit and the 64-bit ABI. */
5549
5550 bfd_boolean
5551 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5552 {
5553 register const char *name;
5554 unsigned int sh_type;
5555
5556 name = bfd_get_section_name (abfd, sec);
5557 sh_type = hdr->sh_type;
5558
5559 if (strcmp (name, ".liblist") == 0)
5560 {
5561 hdr->sh_type = SHT_MIPS_LIBLIST;
5562 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5563 /* The sh_link field is set in final_write_processing. */
5564 }
5565 else if (strcmp (name, ".conflict") == 0)
5566 hdr->sh_type = SHT_MIPS_CONFLICT;
5567 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5568 {
5569 hdr->sh_type = SHT_MIPS_GPTAB;
5570 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5571 /* The sh_info field is set in final_write_processing. */
5572 }
5573 else if (strcmp (name, ".ucode") == 0)
5574 hdr->sh_type = SHT_MIPS_UCODE;
5575 else if (strcmp (name, ".mdebug") == 0)
5576 {
5577 hdr->sh_type = SHT_MIPS_DEBUG;
5578 /* In a shared object on IRIX 5.3, the .mdebug section has an
5579 entsize of 0. FIXME: Does this matter? */
5580 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5581 hdr->sh_entsize = 0;
5582 else
5583 hdr->sh_entsize = 1;
5584 }
5585 else if (strcmp (name, ".reginfo") == 0)
5586 {
5587 hdr->sh_type = SHT_MIPS_REGINFO;
5588 /* In a shared object on IRIX 5.3, the .reginfo section has an
5589 entsize of 0x18. FIXME: Does this matter? */
5590 if (SGI_COMPAT (abfd))
5591 {
5592 if ((abfd->flags & DYNAMIC) != 0)
5593 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5594 else
5595 hdr->sh_entsize = 1;
5596 }
5597 else
5598 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5599 }
5600 else if (SGI_COMPAT (abfd)
5601 && (strcmp (name, ".hash") == 0
5602 || strcmp (name, ".dynamic") == 0
5603 || strcmp (name, ".dynstr") == 0))
5604 {
5605 if (SGI_COMPAT (abfd))
5606 hdr->sh_entsize = 0;
5607 #if 0
5608 /* This isn't how the IRIX6 linker behaves. */
5609 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5610 #endif
5611 }
5612 else if (strcmp (name, ".got") == 0
5613 || strcmp (name, ".srdata") == 0
5614 || strcmp (name, ".sdata") == 0
5615 || strcmp (name, ".sbss") == 0
5616 || strcmp (name, ".lit4") == 0
5617 || strcmp (name, ".lit8") == 0)
5618 hdr->sh_flags |= SHF_MIPS_GPREL;
5619 else if (strcmp (name, ".MIPS.interfaces") == 0)
5620 {
5621 hdr->sh_type = SHT_MIPS_IFACE;
5622 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5623 }
5624 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5625 {
5626 hdr->sh_type = SHT_MIPS_CONTENT;
5627 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5628 /* The sh_info field is set in final_write_processing. */
5629 }
5630 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5631 {
5632 hdr->sh_type = SHT_MIPS_OPTIONS;
5633 hdr->sh_entsize = 1;
5634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5635 }
5636 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5637 hdr->sh_type = SHT_MIPS_DWARF;
5638 else if (strcmp (name, ".MIPS.symlib") == 0)
5639 {
5640 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5641 /* The sh_link and sh_info fields are set in
5642 final_write_processing. */
5643 }
5644 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5645 || strncmp (name, ".MIPS.post_rel",
5646 sizeof ".MIPS.post_rel" - 1) == 0)
5647 {
5648 hdr->sh_type = SHT_MIPS_EVENTS;
5649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5650 /* The sh_link field is set in final_write_processing. */
5651 }
5652 else if (strcmp (name, ".msym") == 0)
5653 {
5654 hdr->sh_type = SHT_MIPS_MSYM;
5655 hdr->sh_flags |= SHF_ALLOC;
5656 hdr->sh_entsize = 8;
5657 }
5658
5659 /* In the unlikely event a special section is empty it has to lose its
5660 special meaning. This may happen e.g. when using `strip' with the
5661 "--only-keep-debug" option. */
5662 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5663 hdr->sh_type = sh_type;
5664
5665 /* The generic elf_fake_sections will set up REL_HDR using the default
5666 kind of relocations. We used to set up a second header for the
5667 non-default kind of relocations here, but only NewABI would use
5668 these, and the IRIX ld doesn't like resulting empty RELA sections.
5669 Thus we create those header only on demand now. */
5670
5671 return TRUE;
5672 }
5673
5674 /* Given a BFD section, try to locate the corresponding ELF section
5675 index. This is used by both the 32-bit and the 64-bit ABI.
5676 Actually, it's not clear to me that the 64-bit ABI supports these,
5677 but for non-PIC objects we will certainly want support for at least
5678 the .scommon section. */
5679
5680 bfd_boolean
5681 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5682 asection *sec, int *retval)
5683 {
5684 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5685 {
5686 *retval = SHN_MIPS_SCOMMON;
5687 return TRUE;
5688 }
5689 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5690 {
5691 *retval = SHN_MIPS_ACOMMON;
5692 return TRUE;
5693 }
5694 return FALSE;
5695 }
5696 \f
5697 /* Hook called by the linker routine which adds symbols from an object
5698 file. We must handle the special MIPS section numbers here. */
5699
5700 bfd_boolean
5701 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5702 Elf_Internal_Sym *sym, const char **namep,
5703 flagword *flagsp ATTRIBUTE_UNUSED,
5704 asection **secp, bfd_vma *valp)
5705 {
5706 if (SGI_COMPAT (abfd)
5707 && (abfd->flags & DYNAMIC) != 0
5708 && strcmp (*namep, "_rld_new_interface") == 0)
5709 {
5710 /* Skip IRIX5 rld entry name. */
5711 *namep = NULL;
5712 return TRUE;
5713 }
5714
5715 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5716 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5717 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5718 a magic symbol resolved by the linker, we ignore this bogus definition
5719 of _gp_disp. New ABI objects do not suffer from this problem so this
5720 is not done for them. */
5721 if (!NEWABI_P(abfd)
5722 && (sym->st_shndx == SHN_ABS)
5723 && (strcmp (*namep, "_gp_disp") == 0))
5724 {
5725 *namep = NULL;
5726 return TRUE;
5727 }
5728
5729 switch (sym->st_shndx)
5730 {
5731 case SHN_COMMON:
5732 /* Common symbols less than the GP size are automatically
5733 treated as SHN_MIPS_SCOMMON symbols. */
5734 if (sym->st_size > elf_gp_size (abfd)
5735 || IRIX_COMPAT (abfd) == ict_irix6)
5736 break;
5737 /* Fall through. */
5738 case SHN_MIPS_SCOMMON:
5739 *secp = bfd_make_section_old_way (abfd, ".scommon");
5740 (*secp)->flags |= SEC_IS_COMMON;
5741 *valp = sym->st_size;
5742 break;
5743
5744 case SHN_MIPS_TEXT:
5745 /* This section is used in a shared object. */
5746 if (elf_tdata (abfd)->elf_text_section == NULL)
5747 {
5748 asymbol *elf_text_symbol;
5749 asection *elf_text_section;
5750 bfd_size_type amt = sizeof (asection);
5751
5752 elf_text_section = bfd_zalloc (abfd, amt);
5753 if (elf_text_section == NULL)
5754 return FALSE;
5755
5756 amt = sizeof (asymbol);
5757 elf_text_symbol = bfd_zalloc (abfd, amt);
5758 if (elf_text_symbol == NULL)
5759 return FALSE;
5760
5761 /* Initialize the section. */
5762
5763 elf_tdata (abfd)->elf_text_section = elf_text_section;
5764 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5765
5766 elf_text_section->symbol = elf_text_symbol;
5767 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5768
5769 elf_text_section->name = ".text";
5770 elf_text_section->flags = SEC_NO_FLAGS;
5771 elf_text_section->output_section = NULL;
5772 elf_text_section->owner = abfd;
5773 elf_text_symbol->name = ".text";
5774 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5775 elf_text_symbol->section = elf_text_section;
5776 }
5777 /* This code used to do *secp = bfd_und_section_ptr if
5778 info->shared. I don't know why, and that doesn't make sense,
5779 so I took it out. */
5780 *secp = elf_tdata (abfd)->elf_text_section;
5781 break;
5782
5783 case SHN_MIPS_ACOMMON:
5784 /* Fall through. XXX Can we treat this as allocated data? */
5785 case SHN_MIPS_DATA:
5786 /* This section is used in a shared object. */
5787 if (elf_tdata (abfd)->elf_data_section == NULL)
5788 {
5789 asymbol *elf_data_symbol;
5790 asection *elf_data_section;
5791 bfd_size_type amt = sizeof (asection);
5792
5793 elf_data_section = bfd_zalloc (abfd, amt);
5794 if (elf_data_section == NULL)
5795 return FALSE;
5796
5797 amt = sizeof (asymbol);
5798 elf_data_symbol = bfd_zalloc (abfd, amt);
5799 if (elf_data_symbol == NULL)
5800 return FALSE;
5801
5802 /* Initialize the section. */
5803
5804 elf_tdata (abfd)->elf_data_section = elf_data_section;
5805 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5806
5807 elf_data_section->symbol = elf_data_symbol;
5808 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5809
5810 elf_data_section->name = ".data";
5811 elf_data_section->flags = SEC_NO_FLAGS;
5812 elf_data_section->output_section = NULL;
5813 elf_data_section->owner = abfd;
5814 elf_data_symbol->name = ".data";
5815 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5816 elf_data_symbol->section = elf_data_section;
5817 }
5818 /* This code used to do *secp = bfd_und_section_ptr if
5819 info->shared. I don't know why, and that doesn't make sense,
5820 so I took it out. */
5821 *secp = elf_tdata (abfd)->elf_data_section;
5822 break;
5823
5824 case SHN_MIPS_SUNDEFINED:
5825 *secp = bfd_und_section_ptr;
5826 break;
5827 }
5828
5829 if (SGI_COMPAT (abfd)
5830 && ! info->shared
5831 && info->hash->creator == abfd->xvec
5832 && strcmp (*namep, "__rld_obj_head") == 0)
5833 {
5834 struct elf_link_hash_entry *h;
5835 struct bfd_link_hash_entry *bh;
5836
5837 /* Mark __rld_obj_head as dynamic. */
5838 bh = NULL;
5839 if (! (_bfd_generic_link_add_one_symbol
5840 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5841 get_elf_backend_data (abfd)->collect, &bh)))
5842 return FALSE;
5843
5844 h = (struct elf_link_hash_entry *) bh;
5845 h->non_elf = 0;
5846 h->def_regular = 1;
5847 h->type = STT_OBJECT;
5848
5849 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5850 return FALSE;
5851
5852 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5853 }
5854
5855 /* If this is a mips16 text symbol, add 1 to the value to make it
5856 odd. This will cause something like .word SYM to come up with
5857 the right value when it is loaded into the PC. */
5858 if (sym->st_other == STO_MIPS16)
5859 ++*valp;
5860
5861 return TRUE;
5862 }
5863
5864 /* This hook function is called before the linker writes out a global
5865 symbol. We mark symbols as small common if appropriate. This is
5866 also where we undo the increment of the value for a mips16 symbol. */
5867
5868 bfd_boolean
5869 _bfd_mips_elf_link_output_symbol_hook
5870 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5871 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5872 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5873 {
5874 /* If we see a common symbol, which implies a relocatable link, then
5875 if a symbol was small common in an input file, mark it as small
5876 common in the output file. */
5877 if (sym->st_shndx == SHN_COMMON
5878 && strcmp (input_sec->name, ".scommon") == 0)
5879 sym->st_shndx = SHN_MIPS_SCOMMON;
5880
5881 if (sym->st_other == STO_MIPS16)
5882 sym->st_value &= ~1;
5883
5884 return TRUE;
5885 }
5886 \f
5887 /* Functions for the dynamic linker. */
5888
5889 /* Create dynamic sections when linking against a dynamic object. */
5890
5891 bfd_boolean
5892 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5893 {
5894 struct elf_link_hash_entry *h;
5895 struct bfd_link_hash_entry *bh;
5896 flagword flags;
5897 register asection *s;
5898 const char * const *namep;
5899 struct mips_elf_link_hash_table *htab;
5900
5901 htab = mips_elf_hash_table (info);
5902 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5903 | SEC_LINKER_CREATED | SEC_READONLY);
5904
5905 /* The psABI requires a read-only .dynamic section, but the VxWorks
5906 EABI doesn't. */
5907 if (!htab->is_vxworks)
5908 {
5909 s = bfd_get_section_by_name (abfd, ".dynamic");
5910 if (s != NULL)
5911 {
5912 if (! bfd_set_section_flags (abfd, s, flags))
5913 return FALSE;
5914 }
5915 }
5916
5917 /* We need to create .got section. */
5918 if (! mips_elf_create_got_section (abfd, info, FALSE))
5919 return FALSE;
5920
5921 if (! mips_elf_rel_dyn_section (info, TRUE))
5922 return FALSE;
5923
5924 /* Create .stub section. */
5925 if (bfd_get_section_by_name (abfd,
5926 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5927 {
5928 s = bfd_make_section_with_flags (abfd,
5929 MIPS_ELF_STUB_SECTION_NAME (abfd),
5930 flags | SEC_CODE);
5931 if (s == NULL
5932 || ! bfd_set_section_alignment (abfd, s,
5933 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5934 return FALSE;
5935 }
5936
5937 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5938 && !info->shared
5939 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5940 {
5941 s = bfd_make_section_with_flags (abfd, ".rld_map",
5942 flags &~ (flagword) SEC_READONLY);
5943 if (s == NULL
5944 || ! bfd_set_section_alignment (abfd, s,
5945 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5946 return FALSE;
5947 }
5948
5949 /* On IRIX5, we adjust add some additional symbols and change the
5950 alignments of several sections. There is no ABI documentation
5951 indicating that this is necessary on IRIX6, nor any evidence that
5952 the linker takes such action. */
5953 if (IRIX_COMPAT (abfd) == ict_irix5)
5954 {
5955 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5956 {
5957 bh = NULL;
5958 if (! (_bfd_generic_link_add_one_symbol
5959 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5960 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5961 return FALSE;
5962
5963 h = (struct elf_link_hash_entry *) bh;
5964 h->non_elf = 0;
5965 h->def_regular = 1;
5966 h->type = STT_SECTION;
5967
5968 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5969 return FALSE;
5970 }
5971
5972 /* We need to create a .compact_rel section. */
5973 if (SGI_COMPAT (abfd))
5974 {
5975 if (!mips_elf_create_compact_rel_section (abfd, info))
5976 return FALSE;
5977 }
5978
5979 /* Change alignments of some sections. */
5980 s = bfd_get_section_by_name (abfd, ".hash");
5981 if (s != NULL)
5982 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5983 s = bfd_get_section_by_name (abfd, ".dynsym");
5984 if (s != NULL)
5985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5986 s = bfd_get_section_by_name (abfd, ".dynstr");
5987 if (s != NULL)
5988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5989 s = bfd_get_section_by_name (abfd, ".reginfo");
5990 if (s != NULL)
5991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5992 s = bfd_get_section_by_name (abfd, ".dynamic");
5993 if (s != NULL)
5994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5995 }
5996
5997 if (!info->shared)
5998 {
5999 const char *name;
6000
6001 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6002 bh = NULL;
6003 if (!(_bfd_generic_link_add_one_symbol
6004 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6005 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6006 return FALSE;
6007
6008 h = (struct elf_link_hash_entry *) bh;
6009 h->non_elf = 0;
6010 h->def_regular = 1;
6011 h->type = STT_SECTION;
6012
6013 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6014 return FALSE;
6015
6016 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6017 {
6018 /* __rld_map is a four byte word located in the .data section
6019 and is filled in by the rtld to contain a pointer to
6020 the _r_debug structure. Its symbol value will be set in
6021 _bfd_mips_elf_finish_dynamic_symbol. */
6022 s = bfd_get_section_by_name (abfd, ".rld_map");
6023 BFD_ASSERT (s != NULL);
6024
6025 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6026 bh = NULL;
6027 if (!(_bfd_generic_link_add_one_symbol
6028 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6029 get_elf_backend_data (abfd)->collect, &bh)))
6030 return FALSE;
6031
6032 h = (struct elf_link_hash_entry *) bh;
6033 h->non_elf = 0;
6034 h->def_regular = 1;
6035 h->type = STT_OBJECT;
6036
6037 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6038 return FALSE;
6039 }
6040 }
6041
6042 if (htab->is_vxworks)
6043 {
6044 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6045 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6046 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6047 return FALSE;
6048
6049 /* Cache the sections created above. */
6050 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6051 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6052 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6053 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6054 if (!htab->sdynbss
6055 || (!htab->srelbss && !info->shared)
6056 || !htab->srelplt
6057 || !htab->splt)
6058 abort ();
6059
6060 /* Do the usual VxWorks handling. */
6061 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6062 return FALSE;
6063
6064 /* Work out the PLT sizes. */
6065 if (info->shared)
6066 {
6067 htab->plt_header_size
6068 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6069 htab->plt_entry_size
6070 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6071 }
6072 else
6073 {
6074 htab->plt_header_size
6075 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6076 htab->plt_entry_size
6077 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6078 }
6079 }
6080
6081 return TRUE;
6082 }
6083 \f
6084 /* Look through the relocs for a section during the first phase, and
6085 allocate space in the global offset table. */
6086
6087 bfd_boolean
6088 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6089 asection *sec, const Elf_Internal_Rela *relocs)
6090 {
6091 const char *name;
6092 bfd *dynobj;
6093 Elf_Internal_Shdr *symtab_hdr;
6094 struct elf_link_hash_entry **sym_hashes;
6095 struct mips_got_info *g;
6096 size_t extsymoff;
6097 const Elf_Internal_Rela *rel;
6098 const Elf_Internal_Rela *rel_end;
6099 asection *sgot;
6100 asection *sreloc;
6101 const struct elf_backend_data *bed;
6102 struct mips_elf_link_hash_table *htab;
6103
6104 if (info->relocatable)
6105 return TRUE;
6106
6107 htab = mips_elf_hash_table (info);
6108 dynobj = elf_hash_table (info)->dynobj;
6109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6110 sym_hashes = elf_sym_hashes (abfd);
6111 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6112
6113 /* Check for the mips16 stub sections. */
6114
6115 name = bfd_get_section_name (abfd, sec);
6116 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6117 {
6118 unsigned long r_symndx;
6119
6120 /* Look at the relocation information to figure out which symbol
6121 this is for. */
6122
6123 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6124
6125 if (r_symndx < extsymoff
6126 || sym_hashes[r_symndx - extsymoff] == NULL)
6127 {
6128 asection *o;
6129
6130 /* This stub is for a local symbol. This stub will only be
6131 needed if there is some relocation in this BFD, other
6132 than a 16 bit function call, which refers to this symbol. */
6133 for (o = abfd->sections; o != NULL; o = o->next)
6134 {
6135 Elf_Internal_Rela *sec_relocs;
6136 const Elf_Internal_Rela *r, *rend;
6137
6138 /* We can ignore stub sections when looking for relocs. */
6139 if ((o->flags & SEC_RELOC) == 0
6140 || o->reloc_count == 0
6141 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6142 sizeof FN_STUB - 1) == 0
6143 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6144 sizeof CALL_STUB - 1) == 0
6145 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6146 sizeof CALL_FP_STUB - 1) == 0)
6147 continue;
6148
6149 sec_relocs
6150 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6151 info->keep_memory);
6152 if (sec_relocs == NULL)
6153 return FALSE;
6154
6155 rend = sec_relocs + o->reloc_count;
6156 for (r = sec_relocs; r < rend; r++)
6157 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6158 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6159 break;
6160
6161 if (elf_section_data (o)->relocs != sec_relocs)
6162 free (sec_relocs);
6163
6164 if (r < rend)
6165 break;
6166 }
6167
6168 if (o == NULL)
6169 {
6170 /* There is no non-call reloc for this stub, so we do
6171 not need it. Since this function is called before
6172 the linker maps input sections to output sections, we
6173 can easily discard it by setting the SEC_EXCLUDE
6174 flag. */
6175 sec->flags |= SEC_EXCLUDE;
6176 return TRUE;
6177 }
6178
6179 /* Record this stub in an array of local symbol stubs for
6180 this BFD. */
6181 if (elf_tdata (abfd)->local_stubs == NULL)
6182 {
6183 unsigned long symcount;
6184 asection **n;
6185 bfd_size_type amt;
6186
6187 if (elf_bad_symtab (abfd))
6188 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6189 else
6190 symcount = symtab_hdr->sh_info;
6191 amt = symcount * sizeof (asection *);
6192 n = bfd_zalloc (abfd, amt);
6193 if (n == NULL)
6194 return FALSE;
6195 elf_tdata (abfd)->local_stubs = n;
6196 }
6197
6198 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6199
6200 /* We don't need to set mips16_stubs_seen in this case.
6201 That flag is used to see whether we need to look through
6202 the global symbol table for stubs. We don't need to set
6203 it here, because we just have a local stub. */
6204 }
6205 else
6206 {
6207 struct mips_elf_link_hash_entry *h;
6208
6209 h = ((struct mips_elf_link_hash_entry *)
6210 sym_hashes[r_symndx - extsymoff]);
6211
6212 while (h->root.root.type == bfd_link_hash_indirect
6213 || h->root.root.type == bfd_link_hash_warning)
6214 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6215
6216 /* H is the symbol this stub is for. */
6217
6218 h->fn_stub = sec;
6219 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6220 }
6221 }
6222 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6223 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6224 {
6225 unsigned long r_symndx;
6226 struct mips_elf_link_hash_entry *h;
6227 asection **loc;
6228
6229 /* Look at the relocation information to figure out which symbol
6230 this is for. */
6231
6232 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6233
6234 if (r_symndx < extsymoff
6235 || sym_hashes[r_symndx - extsymoff] == NULL)
6236 {
6237 /* This stub was actually built for a static symbol defined
6238 in the same file. We assume that all static symbols in
6239 mips16 code are themselves mips16, so we can simply
6240 discard this stub. Since this function is called before
6241 the linker maps input sections to output sections, we can
6242 easily discard it by setting the SEC_EXCLUDE flag. */
6243 sec->flags |= SEC_EXCLUDE;
6244 return TRUE;
6245 }
6246
6247 h = ((struct mips_elf_link_hash_entry *)
6248 sym_hashes[r_symndx - extsymoff]);
6249
6250 /* H is the symbol this stub is for. */
6251
6252 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6253 loc = &h->call_fp_stub;
6254 else
6255 loc = &h->call_stub;
6256
6257 /* If we already have an appropriate stub for this function, we
6258 don't need another one, so we can discard this one. Since
6259 this function is called before the linker maps input sections
6260 to output sections, we can easily discard it by setting the
6261 SEC_EXCLUDE flag. We can also discard this section if we
6262 happen to already know that this is a mips16 function; it is
6263 not necessary to check this here, as it is checked later, but
6264 it is slightly faster to check now. */
6265 if (*loc != NULL || h->root.other == STO_MIPS16)
6266 {
6267 sec->flags |= SEC_EXCLUDE;
6268 return TRUE;
6269 }
6270
6271 *loc = sec;
6272 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6273 }
6274
6275 if (dynobj == NULL)
6276 {
6277 sgot = NULL;
6278 g = NULL;
6279 }
6280 else
6281 {
6282 sgot = mips_elf_got_section (dynobj, FALSE);
6283 if (sgot == NULL)
6284 g = NULL;
6285 else
6286 {
6287 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6288 g = mips_elf_section_data (sgot)->u.got_info;
6289 BFD_ASSERT (g != NULL);
6290 }
6291 }
6292
6293 sreloc = NULL;
6294 bed = get_elf_backend_data (abfd);
6295 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6296 for (rel = relocs; rel < rel_end; ++rel)
6297 {
6298 unsigned long r_symndx;
6299 unsigned int r_type;
6300 struct elf_link_hash_entry *h;
6301
6302 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6303 r_type = ELF_R_TYPE (abfd, rel->r_info);
6304
6305 if (r_symndx < extsymoff)
6306 h = NULL;
6307 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6308 {
6309 (*_bfd_error_handler)
6310 (_("%B: Malformed reloc detected for section %s"),
6311 abfd, name);
6312 bfd_set_error (bfd_error_bad_value);
6313 return FALSE;
6314 }
6315 else
6316 {
6317 h = sym_hashes[r_symndx - extsymoff];
6318
6319 /* This may be an indirect symbol created because of a version. */
6320 if (h != NULL)
6321 {
6322 while (h->root.type == bfd_link_hash_indirect)
6323 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6324 }
6325 }
6326
6327 /* Some relocs require a global offset table. */
6328 if (dynobj == NULL || sgot == NULL)
6329 {
6330 switch (r_type)
6331 {
6332 case R_MIPS_GOT16:
6333 case R_MIPS_CALL16:
6334 case R_MIPS_CALL_HI16:
6335 case R_MIPS_CALL_LO16:
6336 case R_MIPS_GOT_HI16:
6337 case R_MIPS_GOT_LO16:
6338 case R_MIPS_GOT_PAGE:
6339 case R_MIPS_GOT_OFST:
6340 case R_MIPS_GOT_DISP:
6341 case R_MIPS_TLS_GOTTPREL:
6342 case R_MIPS_TLS_GD:
6343 case R_MIPS_TLS_LDM:
6344 if (dynobj == NULL)
6345 elf_hash_table (info)->dynobj = dynobj = abfd;
6346 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6347 return FALSE;
6348 g = mips_elf_got_info (dynobj, &sgot);
6349 if (htab->is_vxworks && !info->shared)
6350 {
6351 (*_bfd_error_handler)
6352 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6353 abfd, (unsigned long) rel->r_offset);
6354 bfd_set_error (bfd_error_bad_value);
6355 return FALSE;
6356 }
6357 break;
6358
6359 case R_MIPS_32:
6360 case R_MIPS_REL32:
6361 case R_MIPS_64:
6362 /* In VxWorks executables, references to external symbols
6363 are handled using copy relocs or PLT stubs, so there's
6364 no need to add a dynamic relocation here. */
6365 if (dynobj == NULL
6366 && (info->shared || (h != NULL && !htab->is_vxworks))
6367 && (sec->flags & SEC_ALLOC) != 0)
6368 elf_hash_table (info)->dynobj = dynobj = abfd;
6369 break;
6370
6371 default:
6372 break;
6373 }
6374 }
6375
6376 if (h)
6377 {
6378 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6379
6380 /* Relocations against the special VxWorks __GOTT_BASE__ and
6381 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6382 room for them in .rela.dyn. */
6383 if (is_gott_symbol (info, h))
6384 {
6385 if (sreloc == NULL)
6386 {
6387 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6388 if (sreloc == NULL)
6389 return FALSE;
6390 }
6391 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6392 }
6393 }
6394 else if (r_type == R_MIPS_CALL_LO16
6395 || r_type == R_MIPS_GOT_LO16
6396 || r_type == R_MIPS_GOT_DISP
6397 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6398 {
6399 /* We may need a local GOT entry for this relocation. We
6400 don't count R_MIPS_GOT_PAGE because we can estimate the
6401 maximum number of pages needed by looking at the size of
6402 the segment. Similar comments apply to R_MIPS_GOT16 and
6403 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6404 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6405 R_MIPS_CALL_HI16 because these are always followed by an
6406 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6407 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6408 rel->r_addend, g, 0))
6409 return FALSE;
6410 }
6411
6412 switch (r_type)
6413 {
6414 case R_MIPS_CALL16:
6415 if (h == NULL)
6416 {
6417 (*_bfd_error_handler)
6418 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6419 abfd, (unsigned long) rel->r_offset);
6420 bfd_set_error (bfd_error_bad_value);
6421 return FALSE;
6422 }
6423 /* Fall through. */
6424
6425 case R_MIPS_CALL_HI16:
6426 case R_MIPS_CALL_LO16:
6427 if (h != NULL)
6428 {
6429 /* VxWorks call relocations point the function's .got.plt
6430 entry, which will be allocated by adjust_dynamic_symbol.
6431 Otherwise, this symbol requires a global GOT entry. */
6432 if (!htab->is_vxworks
6433 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6434 return FALSE;
6435
6436 /* We need a stub, not a plt entry for the undefined
6437 function. But we record it as if it needs plt. See
6438 _bfd_elf_adjust_dynamic_symbol. */
6439 h->needs_plt = 1;
6440 h->type = STT_FUNC;
6441 }
6442 break;
6443
6444 case R_MIPS_GOT_PAGE:
6445 /* If this is a global, overridable symbol, GOT_PAGE will
6446 decay to GOT_DISP, so we'll need a GOT entry for it. */
6447 if (h == NULL)
6448 break;
6449 else
6450 {
6451 struct mips_elf_link_hash_entry *hmips =
6452 (struct mips_elf_link_hash_entry *) h;
6453
6454 while (hmips->root.root.type == bfd_link_hash_indirect
6455 || hmips->root.root.type == bfd_link_hash_warning)
6456 hmips = (struct mips_elf_link_hash_entry *)
6457 hmips->root.root.u.i.link;
6458
6459 if (hmips->root.def_regular
6460 && ! (info->shared && ! info->symbolic
6461 && ! hmips->root.forced_local))
6462 break;
6463 }
6464 /* Fall through. */
6465
6466 case R_MIPS_GOT16:
6467 case R_MIPS_GOT_HI16:
6468 case R_MIPS_GOT_LO16:
6469 case R_MIPS_GOT_DISP:
6470 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6471 return FALSE;
6472 break;
6473
6474 case R_MIPS_TLS_GOTTPREL:
6475 if (info->shared)
6476 info->flags |= DF_STATIC_TLS;
6477 /* Fall through */
6478
6479 case R_MIPS_TLS_LDM:
6480 if (r_type == R_MIPS_TLS_LDM)
6481 {
6482 r_symndx = 0;
6483 h = NULL;
6484 }
6485 /* Fall through */
6486
6487 case R_MIPS_TLS_GD:
6488 /* This symbol requires a global offset table entry, or two
6489 for TLS GD relocations. */
6490 {
6491 unsigned char flag = (r_type == R_MIPS_TLS_GD
6492 ? GOT_TLS_GD
6493 : r_type == R_MIPS_TLS_LDM
6494 ? GOT_TLS_LDM
6495 : GOT_TLS_IE);
6496 if (h != NULL)
6497 {
6498 struct mips_elf_link_hash_entry *hmips =
6499 (struct mips_elf_link_hash_entry *) h;
6500 hmips->tls_type |= flag;
6501
6502 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6503 return FALSE;
6504 }
6505 else
6506 {
6507 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6508
6509 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6510 rel->r_addend, g, flag))
6511 return FALSE;
6512 }
6513 }
6514 break;
6515
6516 case R_MIPS_32:
6517 case R_MIPS_REL32:
6518 case R_MIPS_64:
6519 /* In VxWorks executables, references to external symbols
6520 are handled using copy relocs or PLT stubs, so there's
6521 no need to add a .rela.dyn entry for this relocation. */
6522 if ((info->shared || (h != NULL && !htab->is_vxworks))
6523 && (sec->flags & SEC_ALLOC) != 0)
6524 {
6525 if (sreloc == NULL)
6526 {
6527 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6528 if (sreloc == NULL)
6529 return FALSE;
6530 }
6531 if (info->shared)
6532 {
6533 /* When creating a shared object, we must copy these
6534 reloc types into the output file as R_MIPS_REL32
6535 relocs. Make room for this reloc in .rel(a).dyn. */
6536 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6537 if (MIPS_ELF_READONLY_SECTION (sec))
6538 /* We tell the dynamic linker that there are
6539 relocations against the text segment. */
6540 info->flags |= DF_TEXTREL;
6541 }
6542 else
6543 {
6544 struct mips_elf_link_hash_entry *hmips;
6545
6546 /* We only need to copy this reloc if the symbol is
6547 defined in a dynamic object. */
6548 hmips = (struct mips_elf_link_hash_entry *) h;
6549 ++hmips->possibly_dynamic_relocs;
6550 if (MIPS_ELF_READONLY_SECTION (sec))
6551 /* We need it to tell the dynamic linker if there
6552 are relocations against the text segment. */
6553 hmips->readonly_reloc = TRUE;
6554 }
6555
6556 /* Even though we don't directly need a GOT entry for
6557 this symbol, a symbol must have a dynamic symbol
6558 table index greater that DT_MIPS_GOTSYM if there are
6559 dynamic relocations against it. This does not apply
6560 to VxWorks, which does not have the usual coupling
6561 between global GOT entries and .dynsym entries. */
6562 if (h != NULL && !htab->is_vxworks)
6563 {
6564 if (dynobj == NULL)
6565 elf_hash_table (info)->dynobj = dynobj = abfd;
6566 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6567 return FALSE;
6568 g = mips_elf_got_info (dynobj, &sgot);
6569 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6570 return FALSE;
6571 }
6572 }
6573
6574 if (SGI_COMPAT (abfd))
6575 mips_elf_hash_table (info)->compact_rel_size +=
6576 sizeof (Elf32_External_crinfo);
6577 break;
6578
6579 case R_MIPS_PC16:
6580 if (h)
6581 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6582 break;
6583
6584 case R_MIPS_26:
6585 if (h)
6586 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6587 /* Fall through. */
6588
6589 case R_MIPS_GPREL16:
6590 case R_MIPS_LITERAL:
6591 case R_MIPS_GPREL32:
6592 if (SGI_COMPAT (abfd))
6593 mips_elf_hash_table (info)->compact_rel_size +=
6594 sizeof (Elf32_External_crinfo);
6595 break;
6596
6597 /* This relocation describes the C++ object vtable hierarchy.
6598 Reconstruct it for later use during GC. */
6599 case R_MIPS_GNU_VTINHERIT:
6600 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6601 return FALSE;
6602 break;
6603
6604 /* This relocation describes which C++ vtable entries are actually
6605 used. Record for later use during GC. */
6606 case R_MIPS_GNU_VTENTRY:
6607 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6608 return FALSE;
6609 break;
6610
6611 default:
6612 break;
6613 }
6614
6615 /* We must not create a stub for a symbol that has relocations
6616 related to taking the function's address. This doesn't apply to
6617 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6618 a normal .got entry. */
6619 if (!htab->is_vxworks && h != NULL)
6620 switch (r_type)
6621 {
6622 default:
6623 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6624 break;
6625 case R_MIPS_CALL16:
6626 case R_MIPS_CALL_HI16:
6627 case R_MIPS_CALL_LO16:
6628 case R_MIPS_JALR:
6629 break;
6630 }
6631
6632 /* If this reloc is not a 16 bit call, and it has a global
6633 symbol, then we will need the fn_stub if there is one.
6634 References from a stub section do not count. */
6635 if (h != NULL
6636 && r_type != R_MIPS16_26
6637 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6638 sizeof FN_STUB - 1) != 0
6639 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6640 sizeof CALL_STUB - 1) != 0
6641 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6642 sizeof CALL_FP_STUB - 1) != 0)
6643 {
6644 struct mips_elf_link_hash_entry *mh;
6645
6646 mh = (struct mips_elf_link_hash_entry *) h;
6647 mh->need_fn_stub = TRUE;
6648 }
6649 }
6650
6651 return TRUE;
6652 }
6653 \f
6654 bfd_boolean
6655 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6656 struct bfd_link_info *link_info,
6657 bfd_boolean *again)
6658 {
6659 Elf_Internal_Rela *internal_relocs;
6660 Elf_Internal_Rela *irel, *irelend;
6661 Elf_Internal_Shdr *symtab_hdr;
6662 bfd_byte *contents = NULL;
6663 size_t extsymoff;
6664 bfd_boolean changed_contents = FALSE;
6665 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6666 Elf_Internal_Sym *isymbuf = NULL;
6667
6668 /* We are not currently changing any sizes, so only one pass. */
6669 *again = FALSE;
6670
6671 if (link_info->relocatable)
6672 return TRUE;
6673
6674 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6675 link_info->keep_memory);
6676 if (internal_relocs == NULL)
6677 return TRUE;
6678
6679 irelend = internal_relocs + sec->reloc_count
6680 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6681 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6682 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6683
6684 for (irel = internal_relocs; irel < irelend; irel++)
6685 {
6686 bfd_vma symval;
6687 bfd_signed_vma sym_offset;
6688 unsigned int r_type;
6689 unsigned long r_symndx;
6690 asection *sym_sec;
6691 unsigned long instruction;
6692
6693 /* Turn jalr into bgezal, and jr into beq, if they're marked
6694 with a JALR relocation, that indicate where they jump to.
6695 This saves some pipeline bubbles. */
6696 r_type = ELF_R_TYPE (abfd, irel->r_info);
6697 if (r_type != R_MIPS_JALR)
6698 continue;
6699
6700 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6701 /* Compute the address of the jump target. */
6702 if (r_symndx >= extsymoff)
6703 {
6704 struct mips_elf_link_hash_entry *h
6705 = ((struct mips_elf_link_hash_entry *)
6706 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6707
6708 while (h->root.root.type == bfd_link_hash_indirect
6709 || h->root.root.type == bfd_link_hash_warning)
6710 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6711
6712 /* If a symbol is undefined, or if it may be overridden,
6713 skip it. */
6714 if (! ((h->root.root.type == bfd_link_hash_defined
6715 || h->root.root.type == bfd_link_hash_defweak)
6716 && h->root.root.u.def.section)
6717 || (link_info->shared && ! link_info->symbolic
6718 && !h->root.forced_local))
6719 continue;
6720
6721 sym_sec = h->root.root.u.def.section;
6722 if (sym_sec->output_section)
6723 symval = (h->root.root.u.def.value
6724 + sym_sec->output_section->vma
6725 + sym_sec->output_offset);
6726 else
6727 symval = h->root.root.u.def.value;
6728 }
6729 else
6730 {
6731 Elf_Internal_Sym *isym;
6732
6733 /* Read this BFD's symbols if we haven't done so already. */
6734 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6735 {
6736 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6737 if (isymbuf == NULL)
6738 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6739 symtab_hdr->sh_info, 0,
6740 NULL, NULL, NULL);
6741 if (isymbuf == NULL)
6742 goto relax_return;
6743 }
6744
6745 isym = isymbuf + r_symndx;
6746 if (isym->st_shndx == SHN_UNDEF)
6747 continue;
6748 else if (isym->st_shndx == SHN_ABS)
6749 sym_sec = bfd_abs_section_ptr;
6750 else if (isym->st_shndx == SHN_COMMON)
6751 sym_sec = bfd_com_section_ptr;
6752 else
6753 sym_sec
6754 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6755 symval = isym->st_value
6756 + sym_sec->output_section->vma
6757 + sym_sec->output_offset;
6758 }
6759
6760 /* Compute branch offset, from delay slot of the jump to the
6761 branch target. */
6762 sym_offset = (symval + irel->r_addend)
6763 - (sec_start + irel->r_offset + 4);
6764
6765 /* Branch offset must be properly aligned. */
6766 if ((sym_offset & 3) != 0)
6767 continue;
6768
6769 sym_offset >>= 2;
6770
6771 /* Check that it's in range. */
6772 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6773 continue;
6774
6775 /* Get the section contents if we haven't done so already. */
6776 if (contents == NULL)
6777 {
6778 /* Get cached copy if it exists. */
6779 if (elf_section_data (sec)->this_hdr.contents != NULL)
6780 contents = elf_section_data (sec)->this_hdr.contents;
6781 else
6782 {
6783 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6784 goto relax_return;
6785 }
6786 }
6787
6788 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6789
6790 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6791 if ((instruction & 0xfc1fffff) == 0x0000f809)
6792 instruction = 0x04110000;
6793 /* If it was jr <reg>, turn it into b <target>. */
6794 else if ((instruction & 0xfc1fffff) == 0x00000008)
6795 instruction = 0x10000000;
6796 else
6797 continue;
6798
6799 instruction |= (sym_offset & 0xffff);
6800 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6801 changed_contents = TRUE;
6802 }
6803
6804 if (contents != NULL
6805 && elf_section_data (sec)->this_hdr.contents != contents)
6806 {
6807 if (!changed_contents && !link_info->keep_memory)
6808 free (contents);
6809 else
6810 {
6811 /* Cache the section contents for elf_link_input_bfd. */
6812 elf_section_data (sec)->this_hdr.contents = contents;
6813 }
6814 }
6815 return TRUE;
6816
6817 relax_return:
6818 if (contents != NULL
6819 && elf_section_data (sec)->this_hdr.contents != contents)
6820 free (contents);
6821 return FALSE;
6822 }
6823 \f
6824 /* Adjust a symbol defined by a dynamic object and referenced by a
6825 regular object. The current definition is in some section of the
6826 dynamic object, but we're not including those sections. We have to
6827 change the definition to something the rest of the link can
6828 understand. */
6829
6830 bfd_boolean
6831 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6832 struct elf_link_hash_entry *h)
6833 {
6834 bfd *dynobj;
6835 struct mips_elf_link_hash_entry *hmips;
6836 asection *s;
6837 struct mips_elf_link_hash_table *htab;
6838
6839 htab = mips_elf_hash_table (info);
6840 dynobj = elf_hash_table (info)->dynobj;
6841
6842 /* Make sure we know what is going on here. */
6843 BFD_ASSERT (dynobj != NULL
6844 && (h->needs_plt
6845 || h->u.weakdef != NULL
6846 || (h->def_dynamic
6847 && h->ref_regular
6848 && !h->def_regular)));
6849
6850 /* If this symbol is defined in a dynamic object, we need to copy
6851 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6852 file. */
6853 hmips = (struct mips_elf_link_hash_entry *) h;
6854 if (! info->relocatable
6855 && hmips->possibly_dynamic_relocs != 0
6856 && (h->root.type == bfd_link_hash_defweak
6857 || !h->def_regular))
6858 {
6859 mips_elf_allocate_dynamic_relocations
6860 (dynobj, info, hmips->possibly_dynamic_relocs);
6861 if (hmips->readonly_reloc)
6862 /* We tell the dynamic linker that there are relocations
6863 against the text segment. */
6864 info->flags |= DF_TEXTREL;
6865 }
6866
6867 /* For a function, create a stub, if allowed. */
6868 if (! hmips->no_fn_stub
6869 && h->needs_plt)
6870 {
6871 if (! elf_hash_table (info)->dynamic_sections_created)
6872 return TRUE;
6873
6874 /* If this symbol is not defined in a regular file, then set
6875 the symbol to the stub location. This is required to make
6876 function pointers compare as equal between the normal
6877 executable and the shared library. */
6878 if (!h->def_regular)
6879 {
6880 /* We need .stub section. */
6881 s = bfd_get_section_by_name (dynobj,
6882 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6883 BFD_ASSERT (s != NULL);
6884
6885 h->root.u.def.section = s;
6886 h->root.u.def.value = s->size;
6887
6888 /* XXX Write this stub address somewhere. */
6889 h->plt.offset = s->size;
6890
6891 /* Make room for this stub code. */
6892 s->size += htab->function_stub_size;
6893
6894 /* The last half word of the stub will be filled with the index
6895 of this symbol in .dynsym section. */
6896 return TRUE;
6897 }
6898 }
6899 else if ((h->type == STT_FUNC)
6900 && !h->needs_plt)
6901 {
6902 /* This will set the entry for this symbol in the GOT to 0, and
6903 the dynamic linker will take care of this. */
6904 h->root.u.def.value = 0;
6905 return TRUE;
6906 }
6907
6908 /* If this is a weak symbol, and there is a real definition, the
6909 processor independent code will have arranged for us to see the
6910 real definition first, and we can just use the same value. */
6911 if (h->u.weakdef != NULL)
6912 {
6913 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6914 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6915 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6916 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6917 return TRUE;
6918 }
6919
6920 /* This is a reference to a symbol defined by a dynamic object which
6921 is not a function. */
6922
6923 return TRUE;
6924 }
6925
6926 /* Likewise, for VxWorks. */
6927
6928 bfd_boolean
6929 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6930 struct elf_link_hash_entry *h)
6931 {
6932 bfd *dynobj;
6933 struct mips_elf_link_hash_entry *hmips;
6934 struct mips_elf_link_hash_table *htab;
6935 unsigned int power_of_two;
6936
6937 htab = mips_elf_hash_table (info);
6938 dynobj = elf_hash_table (info)->dynobj;
6939 hmips = (struct mips_elf_link_hash_entry *) h;
6940
6941 /* Make sure we know what is going on here. */
6942 BFD_ASSERT (dynobj != NULL
6943 && (h->needs_plt
6944 || h->needs_copy
6945 || h->u.weakdef != NULL
6946 || (h->def_dynamic
6947 && h->ref_regular
6948 && !h->def_regular)));
6949
6950 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6951 either (a) we want to branch to the symbol or (b) we're linking an
6952 executable that needs a canonical function address. In the latter
6953 case, the canonical address will be the address of the executable's
6954 load stub. */
6955 if ((hmips->is_branch_target
6956 || (!info->shared
6957 && h->type == STT_FUNC
6958 && hmips->is_relocation_target))
6959 && h->def_dynamic
6960 && h->ref_regular
6961 && !h->def_regular
6962 && !h->forced_local)
6963 h->needs_plt = 1;
6964
6965 /* Locally-binding symbols do not need a PLT stub; we can refer to
6966 the functions directly. */
6967 else if (h->needs_plt
6968 && (SYMBOL_CALLS_LOCAL (info, h)
6969 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6970 && h->root.type == bfd_link_hash_undefweak)))
6971 {
6972 h->needs_plt = 0;
6973 return TRUE;
6974 }
6975
6976 if (h->needs_plt)
6977 {
6978 /* If this is the first symbol to need a PLT entry, allocate room
6979 for the header, and for the header's .rela.plt.unloaded entries. */
6980 if (htab->splt->size == 0)
6981 {
6982 htab->splt->size += htab->plt_header_size;
6983 if (!info->shared)
6984 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6985 }
6986
6987 /* Assign the next .plt entry to this symbol. */
6988 h->plt.offset = htab->splt->size;
6989 htab->splt->size += htab->plt_entry_size;
6990
6991 /* If the output file has no definition of the symbol, set the
6992 symbol's value to the address of the stub. For executables,
6993 point at the PLT load stub rather than the lazy resolution stub;
6994 this stub will become the canonical function address. */
6995 if (!h->def_regular)
6996 {
6997 h->root.u.def.section = htab->splt;
6998 h->root.u.def.value = h->plt.offset;
6999 if (!info->shared)
7000 h->root.u.def.value += 8;
7001 }
7002
7003 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7004 htab->sgotplt->size += 4;
7005 htab->srelplt->size += sizeof (Elf32_External_Rela);
7006
7007 /* Make room for the .rela.plt.unloaded relocations. */
7008 if (!info->shared)
7009 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7010
7011 return TRUE;
7012 }
7013
7014 /* If a function symbol is defined by a dynamic object, and we do not
7015 need a PLT stub for it, the symbol's value should be zero. */
7016 if (h->type == STT_FUNC
7017 && h->def_dynamic
7018 && h->ref_regular
7019 && !h->def_regular)
7020 {
7021 h->root.u.def.value = 0;
7022 return TRUE;
7023 }
7024
7025 /* If this is a weak symbol, and there is a real definition, the
7026 processor independent code will have arranged for us to see the
7027 real definition first, and we can just use the same value. */
7028 if (h->u.weakdef != NULL)
7029 {
7030 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7031 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7032 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7033 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7034 return TRUE;
7035 }
7036
7037 /* This is a reference to a symbol defined by a dynamic object which
7038 is not a function. */
7039 if (info->shared)
7040 return TRUE;
7041
7042 /* We must allocate the symbol in our .dynbss section, which will
7043 become part of the .bss section of the executable. There will be
7044 an entry for this symbol in the .dynsym section. The dynamic
7045 object will contain position independent code, so all references
7046 from the dynamic object to this symbol will go through the global
7047 offset table. The dynamic linker will use the .dynsym entry to
7048 determine the address it must put in the global offset table, so
7049 both the dynamic object and the regular object will refer to the
7050 same memory location for the variable. */
7051
7052 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7053 {
7054 htab->srelbss->size += sizeof (Elf32_External_Rela);
7055 h->needs_copy = 1;
7056 }
7057
7058 /* We need to figure out the alignment required for this symbol. */
7059 power_of_two = bfd_log2 (h->size);
7060 if (power_of_two > 4)
7061 power_of_two = 4;
7062
7063 /* Apply the required alignment. */
7064 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7065 (bfd_size_type) 1 << power_of_two);
7066 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7067 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7068 return FALSE;
7069
7070 /* Define the symbol as being at this point in the section. */
7071 h->root.u.def.section = htab->sdynbss;
7072 h->root.u.def.value = htab->sdynbss->size;
7073
7074 /* Increment the section size to make room for the symbol. */
7075 htab->sdynbss->size += h->size;
7076
7077 return TRUE;
7078 }
7079 \f
7080 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7081 The number might be exact or a worst-case estimate, depending on how
7082 much information is available to elf_backend_omit_section_dynsym at
7083 the current linking stage. */
7084
7085 static bfd_size_type
7086 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7087 {
7088 bfd_size_type count;
7089
7090 count = 0;
7091 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7092 {
7093 asection *p;
7094 const struct elf_backend_data *bed;
7095
7096 bed = get_elf_backend_data (output_bfd);
7097 for (p = output_bfd->sections; p ; p = p->next)
7098 if ((p->flags & SEC_EXCLUDE) == 0
7099 && (p->flags & SEC_ALLOC) != 0
7100 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7101 ++count;
7102 }
7103 return count;
7104 }
7105
7106 /* This function is called after all the input files have been read,
7107 and the input sections have been assigned to output sections. We
7108 check for any mips16 stub sections that we can discard. */
7109
7110 bfd_boolean
7111 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7112 struct bfd_link_info *info)
7113 {
7114 asection *ri;
7115
7116 bfd *dynobj;
7117 asection *s;
7118 struct mips_got_info *g;
7119 int i;
7120 bfd_size_type loadable_size = 0;
7121 bfd_size_type local_gotno;
7122 bfd_size_type dynsymcount;
7123 bfd *sub;
7124 struct mips_elf_count_tls_arg count_tls_arg;
7125 struct mips_elf_link_hash_table *htab;
7126
7127 htab = mips_elf_hash_table (info);
7128
7129 /* The .reginfo section has a fixed size. */
7130 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7131 if (ri != NULL)
7132 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7133
7134 if (! (info->relocatable
7135 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7136 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7137 mips_elf_check_mips16_stubs, NULL);
7138
7139 dynobj = elf_hash_table (info)->dynobj;
7140 if (dynobj == NULL)
7141 /* Relocatable links don't have it. */
7142 return TRUE;
7143
7144 g = mips_elf_got_info (dynobj, &s);
7145 if (s == NULL)
7146 return TRUE;
7147
7148 /* Calculate the total loadable size of the output. That
7149 will give us the maximum number of GOT_PAGE entries
7150 required. */
7151 for (sub = info->input_bfds; sub; sub = sub->link_next)
7152 {
7153 asection *subsection;
7154
7155 for (subsection = sub->sections;
7156 subsection;
7157 subsection = subsection->next)
7158 {
7159 if ((subsection->flags & SEC_ALLOC) == 0)
7160 continue;
7161 loadable_size += ((subsection->size + 0xf)
7162 &~ (bfd_size_type) 0xf);
7163 }
7164 }
7165
7166 /* There has to be a global GOT entry for every symbol with
7167 a dynamic symbol table index of DT_MIPS_GOTSYM or
7168 higher. Therefore, it make sense to put those symbols
7169 that need GOT entries at the end of the symbol table. We
7170 do that here. */
7171 if (! mips_elf_sort_hash_table (info, 1))
7172 return FALSE;
7173
7174 if (g->global_gotsym != NULL)
7175 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7176 else
7177 /* If there are no global symbols, or none requiring
7178 relocations, then GLOBAL_GOTSYM will be NULL. */
7179 i = 0;
7180
7181 /* Get a worst-case estimate of the number of dynamic symbols needed.
7182 At this point, dynsymcount does not account for section symbols
7183 and count_section_dynsyms may overestimate the number that will
7184 be needed. */
7185 dynsymcount = (elf_hash_table (info)->dynsymcount
7186 + count_section_dynsyms (output_bfd, info));
7187
7188 /* Determine the size of one stub entry. */
7189 htab->function_stub_size = (dynsymcount > 0x10000
7190 ? MIPS_FUNCTION_STUB_BIG_SIZE
7191 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7192
7193 /* In the worst case, we'll get one stub per dynamic symbol, plus
7194 one to account for the dummy entry at the end required by IRIX
7195 rld. */
7196 loadable_size += htab->function_stub_size * (i + 1);
7197
7198 if (htab->is_vxworks)
7199 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7200 relocations against local symbols evaluate to "G", and the EABI does
7201 not include R_MIPS_GOT_PAGE. */
7202 local_gotno = 0;
7203 else
7204 /* Assume there are two loadable segments consisting of contiguous
7205 sections. Is 5 enough? */
7206 local_gotno = (loadable_size >> 16) + 5;
7207
7208 g->local_gotno += local_gotno;
7209 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7210
7211 g->global_gotno = i;
7212 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7213
7214 /* We need to calculate tls_gotno for global symbols at this point
7215 instead of building it up earlier, to avoid doublecounting
7216 entries for one global symbol from multiple input files. */
7217 count_tls_arg.info = info;
7218 count_tls_arg.needed = 0;
7219 elf_link_hash_traverse (elf_hash_table (info),
7220 mips_elf_count_global_tls_entries,
7221 &count_tls_arg);
7222 g->tls_gotno += count_tls_arg.needed;
7223 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7224
7225 mips_elf_resolve_final_got_entries (g);
7226
7227 /* VxWorks does not support multiple GOTs. It initializes $gp to
7228 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7229 dynamic loader. */
7230 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7231 {
7232 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7233 return FALSE;
7234 }
7235 else
7236 {
7237 /* Set up TLS entries for the first GOT. */
7238 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7239 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7240 }
7241
7242 return TRUE;
7243 }
7244
7245 /* Set the sizes of the dynamic sections. */
7246
7247 bfd_boolean
7248 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7249 struct bfd_link_info *info)
7250 {
7251 bfd *dynobj;
7252 asection *s, *sreldyn;
7253 bfd_boolean reltext;
7254 struct mips_elf_link_hash_table *htab;
7255
7256 htab = mips_elf_hash_table (info);
7257 dynobj = elf_hash_table (info)->dynobj;
7258 BFD_ASSERT (dynobj != NULL);
7259
7260 if (elf_hash_table (info)->dynamic_sections_created)
7261 {
7262 /* Set the contents of the .interp section to the interpreter. */
7263 if (info->executable)
7264 {
7265 s = bfd_get_section_by_name (dynobj, ".interp");
7266 BFD_ASSERT (s != NULL);
7267 s->size
7268 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7269 s->contents
7270 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7271 }
7272 }
7273
7274 /* The check_relocs and adjust_dynamic_symbol entry points have
7275 determined the sizes of the various dynamic sections. Allocate
7276 memory for them. */
7277 reltext = FALSE;
7278 sreldyn = NULL;
7279 for (s = dynobj->sections; s != NULL; s = s->next)
7280 {
7281 const char *name;
7282
7283 /* It's OK to base decisions on the section name, because none
7284 of the dynobj section names depend upon the input files. */
7285 name = bfd_get_section_name (dynobj, s);
7286
7287 if ((s->flags & SEC_LINKER_CREATED) == 0)
7288 continue;
7289
7290 if (strncmp (name, ".rel", 4) == 0)
7291 {
7292 if (s->size != 0)
7293 {
7294 const char *outname;
7295 asection *target;
7296
7297 /* If this relocation section applies to a read only
7298 section, then we probably need a DT_TEXTREL entry.
7299 If the relocation section is .rel(a).dyn, we always
7300 assert a DT_TEXTREL entry rather than testing whether
7301 there exists a relocation to a read only section or
7302 not. */
7303 outname = bfd_get_section_name (output_bfd,
7304 s->output_section);
7305 target = bfd_get_section_by_name (output_bfd, outname + 4);
7306 if ((target != NULL
7307 && (target->flags & SEC_READONLY) != 0
7308 && (target->flags & SEC_ALLOC) != 0)
7309 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7310 reltext = TRUE;
7311
7312 /* We use the reloc_count field as a counter if we need
7313 to copy relocs into the output file. */
7314 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7315 s->reloc_count = 0;
7316
7317 /* If combreloc is enabled, elf_link_sort_relocs() will
7318 sort relocations, but in a different way than we do,
7319 and before we're done creating relocations. Also, it
7320 will move them around between input sections'
7321 relocation's contents, so our sorting would be
7322 broken, so don't let it run. */
7323 info->combreloc = 0;
7324 }
7325 }
7326 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7327 {
7328 /* Executables do not need a GOT. */
7329 if (info->shared)
7330 {
7331 /* Allocate relocations for all but the reserved entries. */
7332 struct mips_got_info *g;
7333 unsigned int count;
7334
7335 g = mips_elf_got_info (dynobj, NULL);
7336 count = (g->global_gotno
7337 + g->local_gotno
7338 - MIPS_RESERVED_GOTNO (info));
7339 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7340 }
7341 }
7342 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7343 {
7344 /* _bfd_mips_elf_always_size_sections() has already done
7345 most of the work, but some symbols may have been mapped
7346 to versions that we must now resolve in the got_entries
7347 hash tables. */
7348 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7349 struct mips_got_info *g = gg;
7350 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7351 unsigned int needed_relocs = 0;
7352
7353 if (gg->next)
7354 {
7355 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7356 set_got_offset_arg.info = info;
7357
7358 /* NOTE 2005-02-03: How can this call, or the next, ever
7359 find any indirect entries to resolve? They were all
7360 resolved in mips_elf_multi_got. */
7361 mips_elf_resolve_final_got_entries (gg);
7362 for (g = gg->next; g && g->next != gg; g = g->next)
7363 {
7364 unsigned int save_assign;
7365
7366 mips_elf_resolve_final_got_entries (g);
7367
7368 /* Assign offsets to global GOT entries. */
7369 save_assign = g->assigned_gotno;
7370 g->assigned_gotno = g->local_gotno;
7371 set_got_offset_arg.g = g;
7372 set_got_offset_arg.needed_relocs = 0;
7373 htab_traverse (g->got_entries,
7374 mips_elf_set_global_got_offset,
7375 &set_got_offset_arg);
7376 needed_relocs += set_got_offset_arg.needed_relocs;
7377 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7378 <= g->global_gotno);
7379
7380 g->assigned_gotno = save_assign;
7381 if (info->shared)
7382 {
7383 needed_relocs += g->local_gotno - g->assigned_gotno;
7384 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7385 + g->next->global_gotno
7386 + g->next->tls_gotno
7387 + MIPS_RESERVED_GOTNO (info));
7388 }
7389 }
7390 }
7391 else
7392 {
7393 struct mips_elf_count_tls_arg arg;
7394 arg.info = info;
7395 arg.needed = 0;
7396
7397 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7398 &arg);
7399 elf_link_hash_traverse (elf_hash_table (info),
7400 mips_elf_count_global_tls_relocs,
7401 &arg);
7402
7403 needed_relocs += arg.needed;
7404 }
7405
7406 if (needed_relocs)
7407 mips_elf_allocate_dynamic_relocations (dynobj, info,
7408 needed_relocs);
7409 }
7410 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7411 {
7412 /* IRIX rld assumes that the function stub isn't at the end
7413 of .text section. So put a dummy. XXX */
7414 s->size += htab->function_stub_size;
7415 }
7416 else if (! info->shared
7417 && ! mips_elf_hash_table (info)->use_rld_obj_head
7418 && strncmp (name, ".rld_map", 8) == 0)
7419 {
7420 /* We add a room for __rld_map. It will be filled in by the
7421 rtld to contain a pointer to the _r_debug structure. */
7422 s->size += 4;
7423 }
7424 else if (SGI_COMPAT (output_bfd)
7425 && strncmp (name, ".compact_rel", 12) == 0)
7426 s->size += mips_elf_hash_table (info)->compact_rel_size;
7427 else if (strncmp (name, ".init", 5) != 0
7428 && s != htab->sgotplt
7429 && s != htab->splt)
7430 {
7431 /* It's not one of our sections, so don't allocate space. */
7432 continue;
7433 }
7434
7435 if (s->size == 0)
7436 {
7437 s->flags |= SEC_EXCLUDE;
7438 continue;
7439 }
7440
7441 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7442 continue;
7443
7444 /* Allocate memory for this section last, since we may increase its
7445 size above. */
7446 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7447 {
7448 sreldyn = s;
7449 continue;
7450 }
7451
7452 /* Allocate memory for the section contents. */
7453 s->contents = bfd_zalloc (dynobj, s->size);
7454 if (s->contents == NULL)
7455 {
7456 bfd_set_error (bfd_error_no_memory);
7457 return FALSE;
7458 }
7459 }
7460
7461 /* Allocate memory for the .rel(a).dyn section. */
7462 if (sreldyn != NULL)
7463 {
7464 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7465 if (sreldyn->contents == NULL)
7466 {
7467 bfd_set_error (bfd_error_no_memory);
7468 return FALSE;
7469 }
7470 }
7471
7472 if (elf_hash_table (info)->dynamic_sections_created)
7473 {
7474 /* Add some entries to the .dynamic section. We fill in the
7475 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7476 must add the entries now so that we get the correct size for
7477 the .dynamic section. The DT_DEBUG entry is filled in by the
7478 dynamic linker and used by the debugger. */
7479 if (! info->shared)
7480 {
7481 /* SGI object has the equivalence of DT_DEBUG in the
7482 DT_MIPS_RLD_MAP entry. */
7483 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7484 return FALSE;
7485 if (!SGI_COMPAT (output_bfd))
7486 {
7487 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7488 return FALSE;
7489 }
7490 }
7491 else
7492 {
7493 /* Shared libraries on traditional mips have DT_DEBUG. */
7494 if (!SGI_COMPAT (output_bfd))
7495 {
7496 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7497 return FALSE;
7498 }
7499 }
7500
7501 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7502 info->flags |= DF_TEXTREL;
7503
7504 if ((info->flags & DF_TEXTREL) != 0)
7505 {
7506 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7507 return FALSE;
7508
7509 /* Clear the DF_TEXTREL flag. It will be set again if we
7510 write out an actual text relocation; we may not, because
7511 at this point we do not know whether e.g. any .eh_frame
7512 absolute relocations have been converted to PC-relative. */
7513 info->flags &= ~DF_TEXTREL;
7514 }
7515
7516 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7517 return FALSE;
7518
7519 if (htab->is_vxworks)
7520 {
7521 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7522 use any of the DT_MIPS_* tags. */
7523 if (mips_elf_rel_dyn_section (info, FALSE))
7524 {
7525 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7526 return FALSE;
7527
7528 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7529 return FALSE;
7530
7531 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7532 return FALSE;
7533 }
7534 if (htab->splt->size > 0)
7535 {
7536 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7537 return FALSE;
7538
7539 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7540 return FALSE;
7541
7542 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7543 return FALSE;
7544 }
7545 }
7546 else
7547 {
7548 if (mips_elf_rel_dyn_section (info, FALSE))
7549 {
7550 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7551 return FALSE;
7552
7553 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7554 return FALSE;
7555
7556 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7557 return FALSE;
7558 }
7559
7560 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7561 return FALSE;
7562
7563 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7564 return FALSE;
7565
7566 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7567 return FALSE;
7568
7569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7570 return FALSE;
7571
7572 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7573 return FALSE;
7574
7575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7576 return FALSE;
7577
7578 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7579 return FALSE;
7580
7581 if (IRIX_COMPAT (dynobj) == ict_irix5
7582 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7583 return FALSE;
7584
7585 if (IRIX_COMPAT (dynobj) == ict_irix6
7586 && (bfd_get_section_by_name
7587 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7588 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7589 return FALSE;
7590 }
7591 }
7592
7593 return TRUE;
7594 }
7595 \f
7596 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7597 Adjust its R_ADDEND field so that it is correct for the output file.
7598 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7599 and sections respectively; both use symbol indexes. */
7600
7601 static void
7602 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7603 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7604 asection **local_sections, Elf_Internal_Rela *rel)
7605 {
7606 unsigned int r_type, r_symndx;
7607 Elf_Internal_Sym *sym;
7608 asection *sec;
7609
7610 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7611 {
7612 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7613 if (r_type == R_MIPS16_GPREL
7614 || r_type == R_MIPS_GPREL16
7615 || r_type == R_MIPS_GPREL32
7616 || r_type == R_MIPS_LITERAL)
7617 {
7618 rel->r_addend += _bfd_get_gp_value (input_bfd);
7619 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7620 }
7621
7622 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7623 sym = local_syms + r_symndx;
7624
7625 /* Adjust REL's addend to account for section merging. */
7626 if (!info->relocatable)
7627 {
7628 sec = local_sections[r_symndx];
7629 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7630 }
7631
7632 /* This would normally be done by the rela_normal code in elflink.c. */
7633 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7634 rel->r_addend += local_sections[r_symndx]->output_offset;
7635 }
7636 }
7637
7638 /* Relocate a MIPS ELF section. */
7639
7640 bfd_boolean
7641 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7642 bfd *input_bfd, asection *input_section,
7643 bfd_byte *contents, Elf_Internal_Rela *relocs,
7644 Elf_Internal_Sym *local_syms,
7645 asection **local_sections)
7646 {
7647 Elf_Internal_Rela *rel;
7648 const Elf_Internal_Rela *relend;
7649 bfd_vma addend = 0;
7650 bfd_boolean use_saved_addend_p = FALSE;
7651 const struct elf_backend_data *bed;
7652
7653 bed = get_elf_backend_data (output_bfd);
7654 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7655 for (rel = relocs; rel < relend; ++rel)
7656 {
7657 const char *name;
7658 bfd_vma value = 0;
7659 reloc_howto_type *howto;
7660 bfd_boolean require_jalx;
7661 /* TRUE if the relocation is a RELA relocation, rather than a
7662 REL relocation. */
7663 bfd_boolean rela_relocation_p = TRUE;
7664 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7665 const char *msg;
7666
7667 /* Find the relocation howto for this relocation. */
7668 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7669 {
7670 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7671 64-bit code, but make sure all their addresses are in the
7672 lowermost or uppermost 32-bit section of the 64-bit address
7673 space. Thus, when they use an R_MIPS_64 they mean what is
7674 usually meant by R_MIPS_32, with the exception that the
7675 stored value is sign-extended to 64 bits. */
7676 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7677
7678 /* On big-endian systems, we need to lie about the position
7679 of the reloc. */
7680 if (bfd_big_endian (input_bfd))
7681 rel->r_offset += 4;
7682 }
7683 else
7684 /* NewABI defaults to RELA relocations. */
7685 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7686 NEWABI_P (input_bfd)
7687 && (MIPS_RELOC_RELA_P
7688 (input_bfd, input_section,
7689 rel - relocs)));
7690
7691 if (!use_saved_addend_p)
7692 {
7693 Elf_Internal_Shdr *rel_hdr;
7694
7695 /* If these relocations were originally of the REL variety,
7696 we must pull the addend out of the field that will be
7697 relocated. Otherwise, we simply use the contents of the
7698 RELA relocation. To determine which flavor or relocation
7699 this is, we depend on the fact that the INPUT_SECTION's
7700 REL_HDR is read before its REL_HDR2. */
7701 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7702 if ((size_t) (rel - relocs)
7703 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7704 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7705 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7706 {
7707 bfd_byte *location = contents + rel->r_offset;
7708
7709 /* Note that this is a REL relocation. */
7710 rela_relocation_p = FALSE;
7711
7712 /* Get the addend, which is stored in the input file. */
7713 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7714 location);
7715 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7716 contents);
7717 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7718 location);
7719
7720 addend &= howto->src_mask;
7721
7722 /* For some kinds of relocations, the ADDEND is a
7723 combination of the addend stored in two different
7724 relocations. */
7725 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7726 || (r_type == R_MIPS_GOT16
7727 && mips_elf_local_relocation_p (input_bfd, rel,
7728 local_sections, FALSE)))
7729 {
7730 bfd_vma l;
7731 const Elf_Internal_Rela *lo16_relocation;
7732 reloc_howto_type *lo16_howto;
7733 bfd_byte *lo16_location;
7734 int lo16_type;
7735
7736 if (r_type == R_MIPS16_HI16)
7737 lo16_type = R_MIPS16_LO16;
7738 else
7739 lo16_type = R_MIPS_LO16;
7740
7741 /* The combined value is the sum of the HI16 addend,
7742 left-shifted by sixteen bits, and the LO16
7743 addend, sign extended. (Usually, the code does
7744 a `lui' of the HI16 value, and then an `addiu' of
7745 the LO16 value.)
7746
7747 Scan ahead to find a matching LO16 relocation.
7748
7749 According to the MIPS ELF ABI, the R_MIPS_LO16
7750 relocation must be immediately following.
7751 However, for the IRIX6 ABI, the next relocation
7752 may be a composed relocation consisting of
7753 several relocations for the same address. In
7754 that case, the R_MIPS_LO16 relocation may occur
7755 as one of these. We permit a similar extension
7756 in general, as that is useful for GCC. */
7757 lo16_relocation = mips_elf_next_relocation (input_bfd,
7758 lo16_type,
7759 rel, relend);
7760 if (lo16_relocation == NULL)
7761 return FALSE;
7762
7763 lo16_location = contents + lo16_relocation->r_offset;
7764
7765 /* Obtain the addend kept there. */
7766 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7767 lo16_type, FALSE);
7768 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7769 lo16_location);
7770 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7771 input_bfd, contents);
7772 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7773 lo16_location);
7774 l &= lo16_howto->src_mask;
7775 l <<= lo16_howto->rightshift;
7776 l = _bfd_mips_elf_sign_extend (l, 16);
7777
7778 addend <<= 16;
7779
7780 /* Compute the combined addend. */
7781 addend += l;
7782 }
7783 else
7784 addend <<= howto->rightshift;
7785 }
7786 else
7787 addend = rel->r_addend;
7788 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7789 local_syms, local_sections, rel);
7790 }
7791
7792 if (info->relocatable)
7793 {
7794 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7795 && bfd_big_endian (input_bfd))
7796 rel->r_offset -= 4;
7797
7798 if (!rela_relocation_p && rel->r_addend)
7799 {
7800 addend += rel->r_addend;
7801 if (r_type == R_MIPS_HI16
7802 || r_type == R_MIPS_GOT16)
7803 addend = mips_elf_high (addend);
7804 else if (r_type == R_MIPS_HIGHER)
7805 addend = mips_elf_higher (addend);
7806 else if (r_type == R_MIPS_HIGHEST)
7807 addend = mips_elf_highest (addend);
7808 else
7809 addend >>= howto->rightshift;
7810
7811 /* We use the source mask, rather than the destination
7812 mask because the place to which we are writing will be
7813 source of the addend in the final link. */
7814 addend &= howto->src_mask;
7815
7816 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7817 /* See the comment above about using R_MIPS_64 in the 32-bit
7818 ABI. Here, we need to update the addend. It would be
7819 possible to get away with just using the R_MIPS_32 reloc
7820 but for endianness. */
7821 {
7822 bfd_vma sign_bits;
7823 bfd_vma low_bits;
7824 bfd_vma high_bits;
7825
7826 if (addend & ((bfd_vma) 1 << 31))
7827 #ifdef BFD64
7828 sign_bits = ((bfd_vma) 1 << 32) - 1;
7829 #else
7830 sign_bits = -1;
7831 #endif
7832 else
7833 sign_bits = 0;
7834
7835 /* If we don't know that we have a 64-bit type,
7836 do two separate stores. */
7837 if (bfd_big_endian (input_bfd))
7838 {
7839 /* Store the sign-bits (which are most significant)
7840 first. */
7841 low_bits = sign_bits;
7842 high_bits = addend;
7843 }
7844 else
7845 {
7846 low_bits = addend;
7847 high_bits = sign_bits;
7848 }
7849 bfd_put_32 (input_bfd, low_bits,
7850 contents + rel->r_offset);
7851 bfd_put_32 (input_bfd, high_bits,
7852 contents + rel->r_offset + 4);
7853 continue;
7854 }
7855
7856 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7857 input_bfd, input_section,
7858 contents, FALSE))
7859 return FALSE;
7860 }
7861
7862 /* Go on to the next relocation. */
7863 continue;
7864 }
7865
7866 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7867 relocations for the same offset. In that case we are
7868 supposed to treat the output of each relocation as the addend
7869 for the next. */
7870 if (rel + 1 < relend
7871 && rel->r_offset == rel[1].r_offset
7872 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7873 use_saved_addend_p = TRUE;
7874 else
7875 use_saved_addend_p = FALSE;
7876
7877 /* Figure out what value we are supposed to relocate. */
7878 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7879 input_section, info, rel,
7880 addend, howto, local_syms,
7881 local_sections, &value,
7882 &name, &require_jalx,
7883 use_saved_addend_p))
7884 {
7885 case bfd_reloc_continue:
7886 /* There's nothing to do. */
7887 continue;
7888
7889 case bfd_reloc_undefined:
7890 /* mips_elf_calculate_relocation already called the
7891 undefined_symbol callback. There's no real point in
7892 trying to perform the relocation at this point, so we
7893 just skip ahead to the next relocation. */
7894 continue;
7895
7896 case bfd_reloc_notsupported:
7897 msg = _("internal error: unsupported relocation error");
7898 info->callbacks->warning
7899 (info, msg, name, input_bfd, input_section, rel->r_offset);
7900 return FALSE;
7901
7902 case bfd_reloc_overflow:
7903 if (use_saved_addend_p)
7904 /* Ignore overflow until we reach the last relocation for
7905 a given location. */
7906 ;
7907 else
7908 {
7909 BFD_ASSERT (name != NULL);
7910 if (! ((*info->callbacks->reloc_overflow)
7911 (info, NULL, name, howto->name, (bfd_vma) 0,
7912 input_bfd, input_section, rel->r_offset)))
7913 return FALSE;
7914 }
7915 break;
7916
7917 case bfd_reloc_ok:
7918 break;
7919
7920 default:
7921 abort ();
7922 break;
7923 }
7924
7925 /* If we've got another relocation for the address, keep going
7926 until we reach the last one. */
7927 if (use_saved_addend_p)
7928 {
7929 addend = value;
7930 continue;
7931 }
7932
7933 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7934 /* See the comment above about using R_MIPS_64 in the 32-bit
7935 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7936 that calculated the right value. Now, however, we
7937 sign-extend the 32-bit result to 64-bits, and store it as a
7938 64-bit value. We are especially generous here in that we
7939 go to extreme lengths to support this usage on systems with
7940 only a 32-bit VMA. */
7941 {
7942 bfd_vma sign_bits;
7943 bfd_vma low_bits;
7944 bfd_vma high_bits;
7945
7946 if (value & ((bfd_vma) 1 << 31))
7947 #ifdef BFD64
7948 sign_bits = ((bfd_vma) 1 << 32) - 1;
7949 #else
7950 sign_bits = -1;
7951 #endif
7952 else
7953 sign_bits = 0;
7954
7955 /* If we don't know that we have a 64-bit type,
7956 do two separate stores. */
7957 if (bfd_big_endian (input_bfd))
7958 {
7959 /* Undo what we did above. */
7960 rel->r_offset -= 4;
7961 /* Store the sign-bits (which are most significant)
7962 first. */
7963 low_bits = sign_bits;
7964 high_bits = value;
7965 }
7966 else
7967 {
7968 low_bits = value;
7969 high_bits = sign_bits;
7970 }
7971 bfd_put_32 (input_bfd, low_bits,
7972 contents + rel->r_offset);
7973 bfd_put_32 (input_bfd, high_bits,
7974 contents + rel->r_offset + 4);
7975 continue;
7976 }
7977
7978 /* Actually perform the relocation. */
7979 if (! mips_elf_perform_relocation (info, howto, rel, value,
7980 input_bfd, input_section,
7981 contents, require_jalx))
7982 return FALSE;
7983 }
7984
7985 return TRUE;
7986 }
7987 \f
7988 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7989 adjust it appropriately now. */
7990
7991 static void
7992 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7993 const char *name, Elf_Internal_Sym *sym)
7994 {
7995 /* The linker script takes care of providing names and values for
7996 these, but we must place them into the right sections. */
7997 static const char* const text_section_symbols[] = {
7998 "_ftext",
7999 "_etext",
8000 "__dso_displacement",
8001 "__elf_header",
8002 "__program_header_table",
8003 NULL
8004 };
8005
8006 static const char* const data_section_symbols[] = {
8007 "_fdata",
8008 "_edata",
8009 "_end",
8010 "_fbss",
8011 NULL
8012 };
8013
8014 const char* const *p;
8015 int i;
8016
8017 for (i = 0; i < 2; ++i)
8018 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8019 *p;
8020 ++p)
8021 if (strcmp (*p, name) == 0)
8022 {
8023 /* All of these symbols are given type STT_SECTION by the
8024 IRIX6 linker. */
8025 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8026 sym->st_other = STO_PROTECTED;
8027
8028 /* The IRIX linker puts these symbols in special sections. */
8029 if (i == 0)
8030 sym->st_shndx = SHN_MIPS_TEXT;
8031 else
8032 sym->st_shndx = SHN_MIPS_DATA;
8033
8034 break;
8035 }
8036 }
8037
8038 /* Finish up dynamic symbol handling. We set the contents of various
8039 dynamic sections here. */
8040
8041 bfd_boolean
8042 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8043 struct bfd_link_info *info,
8044 struct elf_link_hash_entry *h,
8045 Elf_Internal_Sym *sym)
8046 {
8047 bfd *dynobj;
8048 asection *sgot;
8049 struct mips_got_info *g, *gg;
8050 const char *name;
8051 int idx;
8052 struct mips_elf_link_hash_table *htab;
8053
8054 htab = mips_elf_hash_table (info);
8055 dynobj = elf_hash_table (info)->dynobj;
8056
8057 if (h->plt.offset != MINUS_ONE)
8058 {
8059 asection *s;
8060 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8061
8062 /* This symbol has a stub. Set it up. */
8063
8064 BFD_ASSERT (h->dynindx != -1);
8065
8066 s = bfd_get_section_by_name (dynobj,
8067 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8068 BFD_ASSERT (s != NULL);
8069
8070 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8071 || (h->dynindx <= 0xffff));
8072
8073 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8074 sign extension at runtime in the stub, resulting in a negative
8075 index value. */
8076 if (h->dynindx & ~0x7fffffff)
8077 return FALSE;
8078
8079 /* Fill the stub. */
8080 idx = 0;
8081 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8082 idx += 4;
8083 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8084 idx += 4;
8085 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8086 {
8087 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8088 stub + idx);
8089 idx += 4;
8090 }
8091 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8092 idx += 4;
8093
8094 /* If a large stub is not required and sign extension is not a
8095 problem, then use legacy code in the stub. */
8096 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8097 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8098 else if (h->dynindx & ~0x7fff)
8099 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8100 else
8101 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8102 stub + idx);
8103
8104 BFD_ASSERT (h->plt.offset <= s->size);
8105 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8106
8107 /* Mark the symbol as undefined. plt.offset != -1 occurs
8108 only for the referenced symbol. */
8109 sym->st_shndx = SHN_UNDEF;
8110
8111 /* The run-time linker uses the st_value field of the symbol
8112 to reset the global offset table entry for this external
8113 to its stub address when unlinking a shared object. */
8114 sym->st_value = (s->output_section->vma + s->output_offset
8115 + h->plt.offset);
8116 }
8117
8118 BFD_ASSERT (h->dynindx != -1
8119 || h->forced_local);
8120
8121 sgot = mips_elf_got_section (dynobj, FALSE);
8122 BFD_ASSERT (sgot != NULL);
8123 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8124 g = mips_elf_section_data (sgot)->u.got_info;
8125 BFD_ASSERT (g != NULL);
8126
8127 /* Run through the global symbol table, creating GOT entries for all
8128 the symbols that need them. */
8129 if (g->global_gotsym != NULL
8130 && h->dynindx >= g->global_gotsym->dynindx)
8131 {
8132 bfd_vma offset;
8133 bfd_vma value;
8134
8135 value = sym->st_value;
8136 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8137 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8138 }
8139
8140 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8141 {
8142 struct mips_got_entry e, *p;
8143 bfd_vma entry;
8144 bfd_vma offset;
8145
8146 gg = g;
8147
8148 e.abfd = output_bfd;
8149 e.symndx = -1;
8150 e.d.h = (struct mips_elf_link_hash_entry *)h;
8151 e.tls_type = 0;
8152
8153 for (g = g->next; g->next != gg; g = g->next)
8154 {
8155 if (g->got_entries
8156 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8157 &e)))
8158 {
8159 offset = p->gotidx;
8160 if (info->shared
8161 || (elf_hash_table (info)->dynamic_sections_created
8162 && p->d.h != NULL
8163 && p->d.h->root.def_dynamic
8164 && !p->d.h->root.def_regular))
8165 {
8166 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8167 the various compatibility problems, it's easier to mock
8168 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8169 mips_elf_create_dynamic_relocation to calculate the
8170 appropriate addend. */
8171 Elf_Internal_Rela rel[3];
8172
8173 memset (rel, 0, sizeof (rel));
8174 if (ABI_64_P (output_bfd))
8175 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8176 else
8177 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8178 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8179
8180 entry = 0;
8181 if (! (mips_elf_create_dynamic_relocation
8182 (output_bfd, info, rel,
8183 e.d.h, NULL, sym->st_value, &entry, sgot)))
8184 return FALSE;
8185 }
8186 else
8187 entry = sym->st_value;
8188 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8189 }
8190 }
8191 }
8192
8193 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8194 name = h->root.root.string;
8195 if (strcmp (name, "_DYNAMIC") == 0
8196 || h == elf_hash_table (info)->hgot)
8197 sym->st_shndx = SHN_ABS;
8198 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8199 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8200 {
8201 sym->st_shndx = SHN_ABS;
8202 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8203 sym->st_value = 1;
8204 }
8205 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8206 {
8207 sym->st_shndx = SHN_ABS;
8208 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8209 sym->st_value = elf_gp (output_bfd);
8210 }
8211 else if (SGI_COMPAT (output_bfd))
8212 {
8213 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8214 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8215 {
8216 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8217 sym->st_other = STO_PROTECTED;
8218 sym->st_value = 0;
8219 sym->st_shndx = SHN_MIPS_DATA;
8220 }
8221 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8222 {
8223 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8224 sym->st_other = STO_PROTECTED;
8225 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8226 sym->st_shndx = SHN_ABS;
8227 }
8228 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8229 {
8230 if (h->type == STT_FUNC)
8231 sym->st_shndx = SHN_MIPS_TEXT;
8232 else if (h->type == STT_OBJECT)
8233 sym->st_shndx = SHN_MIPS_DATA;
8234 }
8235 }
8236
8237 /* Handle the IRIX6-specific symbols. */
8238 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8239 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8240
8241 if (! info->shared)
8242 {
8243 if (! mips_elf_hash_table (info)->use_rld_obj_head
8244 && (strcmp (name, "__rld_map") == 0
8245 || strcmp (name, "__RLD_MAP") == 0))
8246 {
8247 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8248 BFD_ASSERT (s != NULL);
8249 sym->st_value = s->output_section->vma + s->output_offset;
8250 bfd_put_32 (output_bfd, 0, s->contents);
8251 if (mips_elf_hash_table (info)->rld_value == 0)
8252 mips_elf_hash_table (info)->rld_value = sym->st_value;
8253 }
8254 else if (mips_elf_hash_table (info)->use_rld_obj_head
8255 && strcmp (name, "__rld_obj_head") == 0)
8256 {
8257 /* IRIX6 does not use a .rld_map section. */
8258 if (IRIX_COMPAT (output_bfd) == ict_irix5
8259 || IRIX_COMPAT (output_bfd) == ict_none)
8260 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8261 != NULL);
8262 mips_elf_hash_table (info)->rld_value = sym->st_value;
8263 }
8264 }
8265
8266 /* If this is a mips16 symbol, force the value to be even. */
8267 if (sym->st_other == STO_MIPS16)
8268 sym->st_value &= ~1;
8269
8270 return TRUE;
8271 }
8272
8273 /* Likewise, for VxWorks. */
8274
8275 bfd_boolean
8276 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8277 struct bfd_link_info *info,
8278 struct elf_link_hash_entry *h,
8279 Elf_Internal_Sym *sym)
8280 {
8281 bfd *dynobj;
8282 asection *sgot;
8283 struct mips_got_info *g;
8284 struct mips_elf_link_hash_table *htab;
8285
8286 htab = mips_elf_hash_table (info);
8287 dynobj = elf_hash_table (info)->dynobj;
8288
8289 if (h->plt.offset != (bfd_vma) -1)
8290 {
8291 bfd_byte *loc;
8292 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8293 Elf_Internal_Rela rel;
8294 static const bfd_vma *plt_entry;
8295
8296 BFD_ASSERT (h->dynindx != -1);
8297 BFD_ASSERT (htab->splt != NULL);
8298 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8299
8300 /* Calculate the address of the .plt entry. */
8301 plt_address = (htab->splt->output_section->vma
8302 + htab->splt->output_offset
8303 + h->plt.offset);
8304
8305 /* Calculate the index of the entry. */
8306 plt_index = ((h->plt.offset - htab->plt_header_size)
8307 / htab->plt_entry_size);
8308
8309 /* Calculate the address of the .got.plt entry. */
8310 got_address = (htab->sgotplt->output_section->vma
8311 + htab->sgotplt->output_offset
8312 + plt_index * 4);
8313
8314 /* Calculate the offset of the .got.plt entry from
8315 _GLOBAL_OFFSET_TABLE_. */
8316 got_offset = mips_elf_gotplt_index (info, h);
8317
8318 /* Calculate the offset for the branch at the start of the PLT
8319 entry. The branch jumps to the beginning of .plt. */
8320 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8321
8322 /* Fill in the initial value of the .got.plt entry. */
8323 bfd_put_32 (output_bfd, plt_address,
8324 htab->sgotplt->contents + plt_index * 4);
8325
8326 /* Find out where the .plt entry should go. */
8327 loc = htab->splt->contents + h->plt.offset;
8328
8329 if (info->shared)
8330 {
8331 plt_entry = mips_vxworks_shared_plt_entry;
8332 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8333 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8334 }
8335 else
8336 {
8337 bfd_vma got_address_high, got_address_low;
8338
8339 plt_entry = mips_vxworks_exec_plt_entry;
8340 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8341 got_address_low = got_address & 0xffff;
8342
8343 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8344 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8345 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8346 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8347 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8348 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8349 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8350 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8351
8352 loc = (htab->srelplt2->contents
8353 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8354
8355 /* Emit a relocation for the .got.plt entry. */
8356 rel.r_offset = got_address;
8357 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8358 rel.r_addend = h->plt.offset;
8359 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8360
8361 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8362 loc += sizeof (Elf32_External_Rela);
8363 rel.r_offset = plt_address + 8;
8364 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8365 rel.r_addend = got_offset;
8366 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8367
8368 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8369 loc += sizeof (Elf32_External_Rela);
8370 rel.r_offset += 4;
8371 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8372 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8373 }
8374
8375 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8376 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8377 rel.r_offset = got_address;
8378 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8379 rel.r_addend = 0;
8380 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8381
8382 if (!h->def_regular)
8383 sym->st_shndx = SHN_UNDEF;
8384 }
8385
8386 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8387
8388 sgot = mips_elf_got_section (dynobj, FALSE);
8389 BFD_ASSERT (sgot != NULL);
8390 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8391 g = mips_elf_section_data (sgot)->u.got_info;
8392 BFD_ASSERT (g != NULL);
8393
8394 /* See if this symbol has an entry in the GOT. */
8395 if (g->global_gotsym != NULL
8396 && h->dynindx >= g->global_gotsym->dynindx)
8397 {
8398 bfd_vma offset;
8399 Elf_Internal_Rela outrel;
8400 bfd_byte *loc;
8401 asection *s;
8402
8403 /* Install the symbol value in the GOT. */
8404 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8405 R_MIPS_GOT16, info);
8406 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8407
8408 /* Add a dynamic relocation for it. */
8409 s = mips_elf_rel_dyn_section (info, FALSE);
8410 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8411 outrel.r_offset = (sgot->output_section->vma
8412 + sgot->output_offset
8413 + offset);
8414 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8415 outrel.r_addend = 0;
8416 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8417 }
8418
8419 /* Emit a copy reloc, if needed. */
8420 if (h->needs_copy)
8421 {
8422 Elf_Internal_Rela rel;
8423
8424 BFD_ASSERT (h->dynindx != -1);
8425
8426 rel.r_offset = (h->root.u.def.section->output_section->vma
8427 + h->root.u.def.section->output_offset
8428 + h->root.u.def.value);
8429 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8430 rel.r_addend = 0;
8431 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8432 htab->srelbss->contents
8433 + (htab->srelbss->reloc_count
8434 * sizeof (Elf32_External_Rela)));
8435 ++htab->srelbss->reloc_count;
8436 }
8437
8438 /* If this is a mips16 symbol, force the value to be even. */
8439 if (sym->st_other == STO_MIPS16)
8440 sym->st_value &= ~1;
8441
8442 return TRUE;
8443 }
8444
8445 /* Install the PLT header for a VxWorks executable and finalize the
8446 contents of .rela.plt.unloaded. */
8447
8448 static void
8449 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8450 {
8451 Elf_Internal_Rela rela;
8452 bfd_byte *loc;
8453 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8454 static const bfd_vma *plt_entry;
8455 struct mips_elf_link_hash_table *htab;
8456
8457 htab = mips_elf_hash_table (info);
8458 plt_entry = mips_vxworks_exec_plt0_entry;
8459
8460 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8461 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8462 + htab->root.hgot->root.u.def.section->output_offset
8463 + htab->root.hgot->root.u.def.value);
8464
8465 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8466 got_value_low = got_value & 0xffff;
8467
8468 /* Calculate the address of the PLT header. */
8469 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8470
8471 /* Install the PLT header. */
8472 loc = htab->splt->contents;
8473 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8474 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8475 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8476 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8477 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8478 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8479
8480 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8481 loc = htab->srelplt2->contents;
8482 rela.r_offset = plt_address;
8483 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8484 rela.r_addend = 0;
8485 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8486 loc += sizeof (Elf32_External_Rela);
8487
8488 /* Output the relocation for the following addiu of
8489 %lo(_GLOBAL_OFFSET_TABLE_). */
8490 rela.r_offset += 4;
8491 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8492 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8493 loc += sizeof (Elf32_External_Rela);
8494
8495 /* Fix up the remaining relocations. They may have the wrong
8496 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8497 in which symbols were output. */
8498 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8499 {
8500 Elf_Internal_Rela rel;
8501
8502 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8503 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8504 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8505 loc += sizeof (Elf32_External_Rela);
8506
8507 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8508 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8509 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8510 loc += sizeof (Elf32_External_Rela);
8511
8512 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8513 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8514 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8515 loc += sizeof (Elf32_External_Rela);
8516 }
8517 }
8518
8519 /* Install the PLT header for a VxWorks shared library. */
8520
8521 static void
8522 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8523 {
8524 unsigned int i;
8525 struct mips_elf_link_hash_table *htab;
8526
8527 htab = mips_elf_hash_table (info);
8528
8529 /* We just need to copy the entry byte-by-byte. */
8530 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8531 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8532 htab->splt->contents + i * 4);
8533 }
8534
8535 /* Finish up the dynamic sections. */
8536
8537 bfd_boolean
8538 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8539 struct bfd_link_info *info)
8540 {
8541 bfd *dynobj;
8542 asection *sdyn;
8543 asection *sgot;
8544 struct mips_got_info *gg, *g;
8545 struct mips_elf_link_hash_table *htab;
8546
8547 htab = mips_elf_hash_table (info);
8548 dynobj = elf_hash_table (info)->dynobj;
8549
8550 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8551
8552 sgot = mips_elf_got_section (dynobj, FALSE);
8553 if (sgot == NULL)
8554 gg = g = NULL;
8555 else
8556 {
8557 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8558 gg = mips_elf_section_data (sgot)->u.got_info;
8559 BFD_ASSERT (gg != NULL);
8560 g = mips_elf_got_for_ibfd (gg, output_bfd);
8561 BFD_ASSERT (g != NULL);
8562 }
8563
8564 if (elf_hash_table (info)->dynamic_sections_created)
8565 {
8566 bfd_byte *b;
8567 int dyn_to_skip = 0, dyn_skipped = 0;
8568
8569 BFD_ASSERT (sdyn != NULL);
8570 BFD_ASSERT (g != NULL);
8571
8572 for (b = sdyn->contents;
8573 b < sdyn->contents + sdyn->size;
8574 b += MIPS_ELF_DYN_SIZE (dynobj))
8575 {
8576 Elf_Internal_Dyn dyn;
8577 const char *name;
8578 size_t elemsize;
8579 asection *s;
8580 bfd_boolean swap_out_p;
8581
8582 /* Read in the current dynamic entry. */
8583 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8584
8585 /* Assume that we're going to modify it and write it out. */
8586 swap_out_p = TRUE;
8587
8588 switch (dyn.d_tag)
8589 {
8590 case DT_RELENT:
8591 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8592 break;
8593
8594 case DT_RELAENT:
8595 BFD_ASSERT (htab->is_vxworks);
8596 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8597 break;
8598
8599 case DT_STRSZ:
8600 /* Rewrite DT_STRSZ. */
8601 dyn.d_un.d_val =
8602 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8603 break;
8604
8605 case DT_PLTGOT:
8606 name = ".got";
8607 if (htab->is_vxworks)
8608 {
8609 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8610 of the ".got" section in DYNOBJ. */
8611 s = bfd_get_section_by_name (dynobj, name);
8612 BFD_ASSERT (s != NULL);
8613 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8614 }
8615 else
8616 {
8617 s = bfd_get_section_by_name (output_bfd, name);
8618 BFD_ASSERT (s != NULL);
8619 dyn.d_un.d_ptr = s->vma;
8620 }
8621 break;
8622
8623 case DT_MIPS_RLD_VERSION:
8624 dyn.d_un.d_val = 1; /* XXX */
8625 break;
8626
8627 case DT_MIPS_FLAGS:
8628 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8629 break;
8630
8631 case DT_MIPS_TIME_STAMP:
8632 {
8633 time_t t;
8634 time (&t);
8635 dyn.d_un.d_val = t;
8636 }
8637 break;
8638
8639 case DT_MIPS_ICHECKSUM:
8640 /* XXX FIXME: */
8641 swap_out_p = FALSE;
8642 break;
8643
8644 case DT_MIPS_IVERSION:
8645 /* XXX FIXME: */
8646 swap_out_p = FALSE;
8647 break;
8648
8649 case DT_MIPS_BASE_ADDRESS:
8650 s = output_bfd->sections;
8651 BFD_ASSERT (s != NULL);
8652 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8653 break;
8654
8655 case DT_MIPS_LOCAL_GOTNO:
8656 dyn.d_un.d_val = g->local_gotno;
8657 break;
8658
8659 case DT_MIPS_UNREFEXTNO:
8660 /* The index into the dynamic symbol table which is the
8661 entry of the first external symbol that is not
8662 referenced within the same object. */
8663 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8664 break;
8665
8666 case DT_MIPS_GOTSYM:
8667 if (gg->global_gotsym)
8668 {
8669 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8670 break;
8671 }
8672 /* In case if we don't have global got symbols we default
8673 to setting DT_MIPS_GOTSYM to the same value as
8674 DT_MIPS_SYMTABNO, so we just fall through. */
8675
8676 case DT_MIPS_SYMTABNO:
8677 name = ".dynsym";
8678 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8679 s = bfd_get_section_by_name (output_bfd, name);
8680 BFD_ASSERT (s != NULL);
8681
8682 dyn.d_un.d_val = s->size / elemsize;
8683 break;
8684
8685 case DT_MIPS_HIPAGENO:
8686 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8687 break;
8688
8689 case DT_MIPS_RLD_MAP:
8690 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8691 break;
8692
8693 case DT_MIPS_OPTIONS:
8694 s = (bfd_get_section_by_name
8695 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8696 dyn.d_un.d_ptr = s->vma;
8697 break;
8698
8699 case DT_RELASZ:
8700 BFD_ASSERT (htab->is_vxworks);
8701 /* The count does not include the JUMP_SLOT relocations. */
8702 if (htab->srelplt)
8703 dyn.d_un.d_val -= htab->srelplt->size;
8704 break;
8705
8706 case DT_PLTREL:
8707 BFD_ASSERT (htab->is_vxworks);
8708 dyn.d_un.d_val = DT_RELA;
8709 break;
8710
8711 case DT_PLTRELSZ:
8712 BFD_ASSERT (htab->is_vxworks);
8713 dyn.d_un.d_val = htab->srelplt->size;
8714 break;
8715
8716 case DT_JMPREL:
8717 BFD_ASSERT (htab->is_vxworks);
8718 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8719 + htab->srelplt->output_offset);
8720 break;
8721
8722 case DT_TEXTREL:
8723 /* If we didn't need any text relocations after all, delete
8724 the dynamic tag. */
8725 if (!(info->flags & DF_TEXTREL))
8726 {
8727 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8728 swap_out_p = FALSE;
8729 }
8730 break;
8731
8732 case DT_FLAGS:
8733 /* If we didn't need any text relocations after all, clear
8734 DF_TEXTREL from DT_FLAGS. */
8735 if (!(info->flags & DF_TEXTREL))
8736 dyn.d_un.d_val &= ~DF_TEXTREL;
8737 else
8738 swap_out_p = FALSE;
8739 break;
8740
8741 default:
8742 swap_out_p = FALSE;
8743 break;
8744 }
8745
8746 if (swap_out_p || dyn_skipped)
8747 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8748 (dynobj, &dyn, b - dyn_skipped);
8749
8750 if (dyn_to_skip)
8751 {
8752 dyn_skipped += dyn_to_skip;
8753 dyn_to_skip = 0;
8754 }
8755 }
8756
8757 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8758 if (dyn_skipped > 0)
8759 memset (b - dyn_skipped, 0, dyn_skipped);
8760 }
8761
8762 if (sgot != NULL && sgot->size > 0)
8763 {
8764 if (htab->is_vxworks)
8765 {
8766 /* The first entry of the global offset table points to the
8767 ".dynamic" section. The second is initialized by the
8768 loader and contains the shared library identifier.
8769 The third is also initialized by the loader and points
8770 to the lazy resolution stub. */
8771 MIPS_ELF_PUT_WORD (output_bfd,
8772 sdyn->output_offset + sdyn->output_section->vma,
8773 sgot->contents);
8774 MIPS_ELF_PUT_WORD (output_bfd, 0,
8775 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8776 MIPS_ELF_PUT_WORD (output_bfd, 0,
8777 sgot->contents
8778 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8779 }
8780 else
8781 {
8782 /* The first entry of the global offset table will be filled at
8783 runtime. The second entry will be used by some runtime loaders.
8784 This isn't the case of IRIX rld. */
8785 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8786 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8787 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8788 }
8789 }
8790
8791 if (sgot != NULL)
8792 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8793 = MIPS_ELF_GOT_SIZE (output_bfd);
8794
8795 /* Generate dynamic relocations for the non-primary gots. */
8796 if (gg != NULL && gg->next)
8797 {
8798 Elf_Internal_Rela rel[3];
8799 bfd_vma addend = 0;
8800
8801 memset (rel, 0, sizeof (rel));
8802 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8803
8804 for (g = gg->next; g->next != gg; g = g->next)
8805 {
8806 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8807 + g->next->tls_gotno;
8808
8809 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8810 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8811 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8812 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8813
8814 if (! info->shared)
8815 continue;
8816
8817 while (index < g->assigned_gotno)
8818 {
8819 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8820 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8821 if (!(mips_elf_create_dynamic_relocation
8822 (output_bfd, info, rel, NULL,
8823 bfd_abs_section_ptr,
8824 0, &addend, sgot)))
8825 return FALSE;
8826 BFD_ASSERT (addend == 0);
8827 }
8828 }
8829 }
8830
8831 /* The generation of dynamic relocations for the non-primary gots
8832 adds more dynamic relocations. We cannot count them until
8833 here. */
8834
8835 if (elf_hash_table (info)->dynamic_sections_created)
8836 {
8837 bfd_byte *b;
8838 bfd_boolean swap_out_p;
8839
8840 BFD_ASSERT (sdyn != NULL);
8841
8842 for (b = sdyn->contents;
8843 b < sdyn->contents + sdyn->size;
8844 b += MIPS_ELF_DYN_SIZE (dynobj))
8845 {
8846 Elf_Internal_Dyn dyn;
8847 asection *s;
8848
8849 /* Read in the current dynamic entry. */
8850 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8851
8852 /* Assume that we're going to modify it and write it out. */
8853 swap_out_p = TRUE;
8854
8855 switch (dyn.d_tag)
8856 {
8857 case DT_RELSZ:
8858 /* Reduce DT_RELSZ to account for any relocations we
8859 decided not to make. This is for the n64 irix rld,
8860 which doesn't seem to apply any relocations if there
8861 are trailing null entries. */
8862 s = mips_elf_rel_dyn_section (info, FALSE);
8863 dyn.d_un.d_val = (s->reloc_count
8864 * (ABI_64_P (output_bfd)
8865 ? sizeof (Elf64_Mips_External_Rel)
8866 : sizeof (Elf32_External_Rel)));
8867 break;
8868
8869 default:
8870 swap_out_p = FALSE;
8871 break;
8872 }
8873
8874 if (swap_out_p)
8875 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8876 (dynobj, &dyn, b);
8877 }
8878 }
8879
8880 {
8881 asection *s;
8882 Elf32_compact_rel cpt;
8883
8884 if (SGI_COMPAT (output_bfd))
8885 {
8886 /* Write .compact_rel section out. */
8887 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8888 if (s != NULL)
8889 {
8890 cpt.id1 = 1;
8891 cpt.num = s->reloc_count;
8892 cpt.id2 = 2;
8893 cpt.offset = (s->output_section->filepos
8894 + sizeof (Elf32_External_compact_rel));
8895 cpt.reserved0 = 0;
8896 cpt.reserved1 = 0;
8897 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8898 ((Elf32_External_compact_rel *)
8899 s->contents));
8900
8901 /* Clean up a dummy stub function entry in .text. */
8902 s = bfd_get_section_by_name (dynobj,
8903 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8904 if (s != NULL)
8905 {
8906 file_ptr dummy_offset;
8907
8908 BFD_ASSERT (s->size >= htab->function_stub_size);
8909 dummy_offset = s->size - htab->function_stub_size;
8910 memset (s->contents + dummy_offset, 0,
8911 htab->function_stub_size);
8912 }
8913 }
8914 }
8915
8916 /* The psABI says that the dynamic relocations must be sorted in
8917 increasing order of r_symndx. The VxWorks EABI doesn't require
8918 this, and because the code below handles REL rather than RELA
8919 relocations, using it for VxWorks would be outright harmful. */
8920 if (!htab->is_vxworks)
8921 {
8922 s = mips_elf_rel_dyn_section (info, FALSE);
8923 if (s != NULL
8924 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8925 {
8926 reldyn_sorting_bfd = output_bfd;
8927
8928 if (ABI_64_P (output_bfd))
8929 qsort ((Elf64_External_Rel *) s->contents + 1,
8930 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8931 sort_dynamic_relocs_64);
8932 else
8933 qsort ((Elf32_External_Rel *) s->contents + 1,
8934 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8935 sort_dynamic_relocs);
8936 }
8937 }
8938 }
8939
8940 if (htab->is_vxworks && htab->splt->size > 0)
8941 {
8942 if (info->shared)
8943 mips_vxworks_finish_shared_plt (output_bfd, info);
8944 else
8945 mips_vxworks_finish_exec_plt (output_bfd, info);
8946 }
8947 return TRUE;
8948 }
8949
8950
8951 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8952
8953 static void
8954 mips_set_isa_flags (bfd *abfd)
8955 {
8956 flagword val;
8957
8958 switch (bfd_get_mach (abfd))
8959 {
8960 default:
8961 case bfd_mach_mips3000:
8962 val = E_MIPS_ARCH_1;
8963 break;
8964
8965 case bfd_mach_mips3900:
8966 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8967 break;
8968
8969 case bfd_mach_mips6000:
8970 val = E_MIPS_ARCH_2;
8971 break;
8972
8973 case bfd_mach_mips4000:
8974 case bfd_mach_mips4300:
8975 case bfd_mach_mips4400:
8976 case bfd_mach_mips4600:
8977 val = E_MIPS_ARCH_3;
8978 break;
8979
8980 case bfd_mach_mips4010:
8981 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8982 break;
8983
8984 case bfd_mach_mips4100:
8985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8986 break;
8987
8988 case bfd_mach_mips4111:
8989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8990 break;
8991
8992 case bfd_mach_mips4120:
8993 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8994 break;
8995
8996 case bfd_mach_mips4650:
8997 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8998 break;
8999
9000 case bfd_mach_mips5400:
9001 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9002 break;
9003
9004 case bfd_mach_mips5500:
9005 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9006 break;
9007
9008 case bfd_mach_mips9000:
9009 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9010 break;
9011
9012 case bfd_mach_mips5000:
9013 case bfd_mach_mips7000:
9014 case bfd_mach_mips8000:
9015 case bfd_mach_mips10000:
9016 case bfd_mach_mips12000:
9017 val = E_MIPS_ARCH_4;
9018 break;
9019
9020 case bfd_mach_mips5:
9021 val = E_MIPS_ARCH_5;
9022 break;
9023
9024 case bfd_mach_mips_sb1:
9025 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9026 break;
9027
9028 case bfd_mach_mipsisa32:
9029 val = E_MIPS_ARCH_32;
9030 break;
9031
9032 case bfd_mach_mipsisa64:
9033 val = E_MIPS_ARCH_64;
9034 break;
9035
9036 case bfd_mach_mipsisa32r2:
9037 val = E_MIPS_ARCH_32R2;
9038 break;
9039
9040 case bfd_mach_mipsisa64r2:
9041 val = E_MIPS_ARCH_64R2;
9042 break;
9043 }
9044 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9045 elf_elfheader (abfd)->e_flags |= val;
9046
9047 }
9048
9049
9050 /* The final processing done just before writing out a MIPS ELF object
9051 file. This gets the MIPS architecture right based on the machine
9052 number. This is used by both the 32-bit and the 64-bit ABI. */
9053
9054 void
9055 _bfd_mips_elf_final_write_processing (bfd *abfd,
9056 bfd_boolean linker ATTRIBUTE_UNUSED)
9057 {
9058 unsigned int i;
9059 Elf_Internal_Shdr **hdrpp;
9060 const char *name;
9061 asection *sec;
9062
9063 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9064 is nonzero. This is for compatibility with old objects, which used
9065 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9066 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9067 mips_set_isa_flags (abfd);
9068
9069 /* Set the sh_info field for .gptab sections and other appropriate
9070 info for each special section. */
9071 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9072 i < elf_numsections (abfd);
9073 i++, hdrpp++)
9074 {
9075 switch ((*hdrpp)->sh_type)
9076 {
9077 case SHT_MIPS_MSYM:
9078 case SHT_MIPS_LIBLIST:
9079 sec = bfd_get_section_by_name (abfd, ".dynstr");
9080 if (sec != NULL)
9081 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9082 break;
9083
9084 case SHT_MIPS_GPTAB:
9085 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9086 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9087 BFD_ASSERT (name != NULL
9088 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9089 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9090 BFD_ASSERT (sec != NULL);
9091 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9092 break;
9093
9094 case SHT_MIPS_CONTENT:
9095 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9096 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9097 BFD_ASSERT (name != NULL
9098 && strncmp (name, ".MIPS.content",
9099 sizeof ".MIPS.content" - 1) == 0);
9100 sec = bfd_get_section_by_name (abfd,
9101 name + sizeof ".MIPS.content" - 1);
9102 BFD_ASSERT (sec != NULL);
9103 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9104 break;
9105
9106 case SHT_MIPS_SYMBOL_LIB:
9107 sec = bfd_get_section_by_name (abfd, ".dynsym");
9108 if (sec != NULL)
9109 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9110 sec = bfd_get_section_by_name (abfd, ".liblist");
9111 if (sec != NULL)
9112 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9113 break;
9114
9115 case SHT_MIPS_EVENTS:
9116 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9117 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9118 BFD_ASSERT (name != NULL);
9119 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9120 sec = bfd_get_section_by_name (abfd,
9121 name + sizeof ".MIPS.events" - 1);
9122 else
9123 {
9124 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9125 sizeof ".MIPS.post_rel" - 1) == 0);
9126 sec = bfd_get_section_by_name (abfd,
9127 (name
9128 + sizeof ".MIPS.post_rel" - 1));
9129 }
9130 BFD_ASSERT (sec != NULL);
9131 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9132 break;
9133
9134 }
9135 }
9136 }
9137 \f
9138 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9139 segments. */
9140
9141 int
9142 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9143 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9144 {
9145 asection *s;
9146 int ret = 0;
9147
9148 /* See if we need a PT_MIPS_REGINFO segment. */
9149 s = bfd_get_section_by_name (abfd, ".reginfo");
9150 if (s && (s->flags & SEC_LOAD))
9151 ++ret;
9152
9153 /* See if we need a PT_MIPS_OPTIONS segment. */
9154 if (IRIX_COMPAT (abfd) == ict_irix6
9155 && bfd_get_section_by_name (abfd,
9156 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9157 ++ret;
9158
9159 /* See if we need a PT_MIPS_RTPROC segment. */
9160 if (IRIX_COMPAT (abfd) == ict_irix5
9161 && bfd_get_section_by_name (abfd, ".dynamic")
9162 && bfd_get_section_by_name (abfd, ".mdebug"))
9163 ++ret;
9164
9165 return ret;
9166 }
9167
9168 /* Modify the segment map for an IRIX5 executable. */
9169
9170 bfd_boolean
9171 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9172 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9173 {
9174 asection *s;
9175 struct elf_segment_map *m, **pm;
9176 bfd_size_type amt;
9177
9178 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9179 segment. */
9180 s = bfd_get_section_by_name (abfd, ".reginfo");
9181 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9182 {
9183 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9184 if (m->p_type == PT_MIPS_REGINFO)
9185 break;
9186 if (m == NULL)
9187 {
9188 amt = sizeof *m;
9189 m = bfd_zalloc (abfd, amt);
9190 if (m == NULL)
9191 return FALSE;
9192
9193 m->p_type = PT_MIPS_REGINFO;
9194 m->count = 1;
9195 m->sections[0] = s;
9196
9197 /* We want to put it after the PHDR and INTERP segments. */
9198 pm = &elf_tdata (abfd)->segment_map;
9199 while (*pm != NULL
9200 && ((*pm)->p_type == PT_PHDR
9201 || (*pm)->p_type == PT_INTERP))
9202 pm = &(*pm)->next;
9203
9204 m->next = *pm;
9205 *pm = m;
9206 }
9207 }
9208
9209 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9210 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9211 PT_MIPS_OPTIONS segment immediately following the program header
9212 table. */
9213 if (NEWABI_P (abfd)
9214 /* On non-IRIX6 new abi, we'll have already created a segment
9215 for this section, so don't create another. I'm not sure this
9216 is not also the case for IRIX 6, but I can't test it right
9217 now. */
9218 && IRIX_COMPAT (abfd) == ict_irix6)
9219 {
9220 for (s = abfd->sections; s; s = s->next)
9221 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9222 break;
9223
9224 if (s)
9225 {
9226 struct elf_segment_map *options_segment;
9227
9228 pm = &elf_tdata (abfd)->segment_map;
9229 while (*pm != NULL
9230 && ((*pm)->p_type == PT_PHDR
9231 || (*pm)->p_type == PT_INTERP))
9232 pm = &(*pm)->next;
9233
9234 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9235 {
9236 amt = sizeof (struct elf_segment_map);
9237 options_segment = bfd_zalloc (abfd, amt);
9238 options_segment->next = *pm;
9239 options_segment->p_type = PT_MIPS_OPTIONS;
9240 options_segment->p_flags = PF_R;
9241 options_segment->p_flags_valid = TRUE;
9242 options_segment->count = 1;
9243 options_segment->sections[0] = s;
9244 *pm = options_segment;
9245 }
9246 }
9247 }
9248 else
9249 {
9250 if (IRIX_COMPAT (abfd) == ict_irix5)
9251 {
9252 /* If there are .dynamic and .mdebug sections, we make a room
9253 for the RTPROC header. FIXME: Rewrite without section names. */
9254 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9255 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9256 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9257 {
9258 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9259 if (m->p_type == PT_MIPS_RTPROC)
9260 break;
9261 if (m == NULL)
9262 {
9263 amt = sizeof *m;
9264 m = bfd_zalloc (abfd, amt);
9265 if (m == NULL)
9266 return FALSE;
9267
9268 m->p_type = PT_MIPS_RTPROC;
9269
9270 s = bfd_get_section_by_name (abfd, ".rtproc");
9271 if (s == NULL)
9272 {
9273 m->count = 0;
9274 m->p_flags = 0;
9275 m->p_flags_valid = 1;
9276 }
9277 else
9278 {
9279 m->count = 1;
9280 m->sections[0] = s;
9281 }
9282
9283 /* We want to put it after the DYNAMIC segment. */
9284 pm = &elf_tdata (abfd)->segment_map;
9285 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9286 pm = &(*pm)->next;
9287 if (*pm != NULL)
9288 pm = &(*pm)->next;
9289
9290 m->next = *pm;
9291 *pm = m;
9292 }
9293 }
9294 }
9295 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9296 .dynstr, .dynsym, and .hash sections, and everything in
9297 between. */
9298 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9299 pm = &(*pm)->next)
9300 if ((*pm)->p_type == PT_DYNAMIC)
9301 break;
9302 m = *pm;
9303 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9304 {
9305 /* For a normal mips executable the permissions for the PT_DYNAMIC
9306 segment are read, write and execute. We do that here since
9307 the code in elf.c sets only the read permission. This matters
9308 sometimes for the dynamic linker. */
9309 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9310 {
9311 m->p_flags = PF_R | PF_W | PF_X;
9312 m->p_flags_valid = 1;
9313 }
9314 }
9315 if (m != NULL
9316 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9317 {
9318 static const char *sec_names[] =
9319 {
9320 ".dynamic", ".dynstr", ".dynsym", ".hash"
9321 };
9322 bfd_vma low, high;
9323 unsigned int i, c;
9324 struct elf_segment_map *n;
9325
9326 low = ~(bfd_vma) 0;
9327 high = 0;
9328 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9329 {
9330 s = bfd_get_section_by_name (abfd, sec_names[i]);
9331 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9332 {
9333 bfd_size_type sz;
9334
9335 if (low > s->vma)
9336 low = s->vma;
9337 sz = s->size;
9338 if (high < s->vma + sz)
9339 high = s->vma + sz;
9340 }
9341 }
9342
9343 c = 0;
9344 for (s = abfd->sections; s != NULL; s = s->next)
9345 if ((s->flags & SEC_LOAD) != 0
9346 && s->vma >= low
9347 && s->vma + s->size <= high)
9348 ++c;
9349
9350 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9351 n = bfd_zalloc (abfd, amt);
9352 if (n == NULL)
9353 return FALSE;
9354 *n = *m;
9355 n->count = c;
9356
9357 i = 0;
9358 for (s = abfd->sections; s != NULL; s = s->next)
9359 {
9360 if ((s->flags & SEC_LOAD) != 0
9361 && s->vma >= low
9362 && s->vma + s->size <= high)
9363 {
9364 n->sections[i] = s;
9365 ++i;
9366 }
9367 }
9368
9369 *pm = n;
9370 }
9371 }
9372
9373 return TRUE;
9374 }
9375 \f
9376 /* Return the section that should be marked against GC for a given
9377 relocation. */
9378
9379 asection *
9380 _bfd_mips_elf_gc_mark_hook (asection *sec,
9381 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9382 Elf_Internal_Rela *rel,
9383 struct elf_link_hash_entry *h,
9384 Elf_Internal_Sym *sym)
9385 {
9386 /* ??? Do mips16 stub sections need to be handled special? */
9387
9388 if (h != NULL)
9389 {
9390 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9391 {
9392 case R_MIPS_GNU_VTINHERIT:
9393 case R_MIPS_GNU_VTENTRY:
9394 break;
9395
9396 default:
9397 switch (h->root.type)
9398 {
9399 case bfd_link_hash_defined:
9400 case bfd_link_hash_defweak:
9401 return h->root.u.def.section;
9402
9403 case bfd_link_hash_common:
9404 return h->root.u.c.p->section;
9405
9406 default:
9407 break;
9408 }
9409 }
9410 }
9411 else
9412 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9413
9414 return NULL;
9415 }
9416
9417 /* Update the got entry reference counts for the section being removed. */
9418
9419 bfd_boolean
9420 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9421 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9422 asection *sec ATTRIBUTE_UNUSED,
9423 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9424 {
9425 #if 0
9426 Elf_Internal_Shdr *symtab_hdr;
9427 struct elf_link_hash_entry **sym_hashes;
9428 bfd_signed_vma *local_got_refcounts;
9429 const Elf_Internal_Rela *rel, *relend;
9430 unsigned long r_symndx;
9431 struct elf_link_hash_entry *h;
9432
9433 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9434 sym_hashes = elf_sym_hashes (abfd);
9435 local_got_refcounts = elf_local_got_refcounts (abfd);
9436
9437 relend = relocs + sec->reloc_count;
9438 for (rel = relocs; rel < relend; rel++)
9439 switch (ELF_R_TYPE (abfd, rel->r_info))
9440 {
9441 case R_MIPS_GOT16:
9442 case R_MIPS_CALL16:
9443 case R_MIPS_CALL_HI16:
9444 case R_MIPS_CALL_LO16:
9445 case R_MIPS_GOT_HI16:
9446 case R_MIPS_GOT_LO16:
9447 case R_MIPS_GOT_DISP:
9448 case R_MIPS_GOT_PAGE:
9449 case R_MIPS_GOT_OFST:
9450 /* ??? It would seem that the existing MIPS code does no sort
9451 of reference counting or whatnot on its GOT and PLT entries,
9452 so it is not possible to garbage collect them at this time. */
9453 break;
9454
9455 default:
9456 break;
9457 }
9458 #endif
9459
9460 return TRUE;
9461 }
9462 \f
9463 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9464 hiding the old indirect symbol. Process additional relocation
9465 information. Also called for weakdefs, in which case we just let
9466 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9467
9468 void
9469 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9470 struct elf_link_hash_entry *dir,
9471 struct elf_link_hash_entry *ind)
9472 {
9473 struct mips_elf_link_hash_entry *dirmips, *indmips;
9474
9475 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9476
9477 if (ind->root.type != bfd_link_hash_indirect)
9478 return;
9479
9480 dirmips = (struct mips_elf_link_hash_entry *) dir;
9481 indmips = (struct mips_elf_link_hash_entry *) ind;
9482 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9483 if (indmips->readonly_reloc)
9484 dirmips->readonly_reloc = TRUE;
9485 if (indmips->no_fn_stub)
9486 dirmips->no_fn_stub = TRUE;
9487
9488 if (dirmips->tls_type == 0)
9489 dirmips->tls_type = indmips->tls_type;
9490 }
9491
9492 void
9493 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9494 struct elf_link_hash_entry *entry,
9495 bfd_boolean force_local)
9496 {
9497 bfd *dynobj;
9498 asection *got;
9499 struct mips_got_info *g;
9500 struct mips_elf_link_hash_entry *h;
9501
9502 h = (struct mips_elf_link_hash_entry *) entry;
9503 if (h->forced_local)
9504 return;
9505 h->forced_local = force_local;
9506
9507 dynobj = elf_hash_table (info)->dynobj;
9508 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9509 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9510 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9511 {
9512 if (g->next)
9513 {
9514 struct mips_got_entry e;
9515 struct mips_got_info *gg = g;
9516
9517 /* Since we're turning what used to be a global symbol into a
9518 local one, bump up the number of local entries of each GOT
9519 that had an entry for it. This will automatically decrease
9520 the number of global entries, since global_gotno is actually
9521 the upper limit of global entries. */
9522 e.abfd = dynobj;
9523 e.symndx = -1;
9524 e.d.h = h;
9525 e.tls_type = 0;
9526
9527 for (g = g->next; g != gg; g = g->next)
9528 if (htab_find (g->got_entries, &e))
9529 {
9530 BFD_ASSERT (g->global_gotno > 0);
9531 g->local_gotno++;
9532 g->global_gotno--;
9533 }
9534
9535 /* If this was a global symbol forced into the primary GOT, we
9536 no longer need an entry for it. We can't release the entry
9537 at this point, but we must at least stop counting it as one
9538 of the symbols that required a forced got entry. */
9539 if (h->root.got.offset == 2)
9540 {
9541 BFD_ASSERT (gg->assigned_gotno > 0);
9542 gg->assigned_gotno--;
9543 }
9544 }
9545 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9546 /* If we haven't got through GOT allocation yet, just bump up the
9547 number of local entries, as this symbol won't be counted as
9548 global. */
9549 g->local_gotno++;
9550 else if (h->root.got.offset == 1)
9551 {
9552 /* If we're past non-multi-GOT allocation and this symbol had
9553 been marked for a global got entry, give it a local entry
9554 instead. */
9555 BFD_ASSERT (g->global_gotno > 0);
9556 g->local_gotno++;
9557 g->global_gotno--;
9558 }
9559 }
9560
9561 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9562 }
9563 \f
9564 #define PDR_SIZE 32
9565
9566 bfd_boolean
9567 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9568 struct bfd_link_info *info)
9569 {
9570 asection *o;
9571 bfd_boolean ret = FALSE;
9572 unsigned char *tdata;
9573 size_t i, skip;
9574
9575 o = bfd_get_section_by_name (abfd, ".pdr");
9576 if (! o)
9577 return FALSE;
9578 if (o->size == 0)
9579 return FALSE;
9580 if (o->size % PDR_SIZE != 0)
9581 return FALSE;
9582 if (o->output_section != NULL
9583 && bfd_is_abs_section (o->output_section))
9584 return FALSE;
9585
9586 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9587 if (! tdata)
9588 return FALSE;
9589
9590 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9591 info->keep_memory);
9592 if (!cookie->rels)
9593 {
9594 free (tdata);
9595 return FALSE;
9596 }
9597
9598 cookie->rel = cookie->rels;
9599 cookie->relend = cookie->rels + o->reloc_count;
9600
9601 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9602 {
9603 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9604 {
9605 tdata[i] = 1;
9606 skip ++;
9607 }
9608 }
9609
9610 if (skip != 0)
9611 {
9612 mips_elf_section_data (o)->u.tdata = tdata;
9613 o->size -= skip * PDR_SIZE;
9614 ret = TRUE;
9615 }
9616 else
9617 free (tdata);
9618
9619 if (! info->keep_memory)
9620 free (cookie->rels);
9621
9622 return ret;
9623 }
9624
9625 bfd_boolean
9626 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9627 {
9628 if (strcmp (sec->name, ".pdr") == 0)
9629 return TRUE;
9630 return FALSE;
9631 }
9632
9633 bfd_boolean
9634 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9635 bfd_byte *contents)
9636 {
9637 bfd_byte *to, *from, *end;
9638 int i;
9639
9640 if (strcmp (sec->name, ".pdr") != 0)
9641 return FALSE;
9642
9643 if (mips_elf_section_data (sec)->u.tdata == NULL)
9644 return FALSE;
9645
9646 to = contents;
9647 end = contents + sec->size;
9648 for (from = contents, i = 0;
9649 from < end;
9650 from += PDR_SIZE, i++)
9651 {
9652 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9653 continue;
9654 if (to != from)
9655 memcpy (to, from, PDR_SIZE);
9656 to += PDR_SIZE;
9657 }
9658 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9659 sec->output_offset, sec->size);
9660 return TRUE;
9661 }
9662 \f
9663 /* MIPS ELF uses a special find_nearest_line routine in order the
9664 handle the ECOFF debugging information. */
9665
9666 struct mips_elf_find_line
9667 {
9668 struct ecoff_debug_info d;
9669 struct ecoff_find_line i;
9670 };
9671
9672 bfd_boolean
9673 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9674 asymbol **symbols, bfd_vma offset,
9675 const char **filename_ptr,
9676 const char **functionname_ptr,
9677 unsigned int *line_ptr)
9678 {
9679 asection *msec;
9680
9681 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9682 filename_ptr, functionname_ptr,
9683 line_ptr))
9684 return TRUE;
9685
9686 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9687 filename_ptr, functionname_ptr,
9688 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9689 &elf_tdata (abfd)->dwarf2_find_line_info))
9690 return TRUE;
9691
9692 msec = bfd_get_section_by_name (abfd, ".mdebug");
9693 if (msec != NULL)
9694 {
9695 flagword origflags;
9696 struct mips_elf_find_line *fi;
9697 const struct ecoff_debug_swap * const swap =
9698 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9699
9700 /* If we are called during a link, mips_elf_final_link may have
9701 cleared the SEC_HAS_CONTENTS field. We force it back on here
9702 if appropriate (which it normally will be). */
9703 origflags = msec->flags;
9704 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9705 msec->flags |= SEC_HAS_CONTENTS;
9706
9707 fi = elf_tdata (abfd)->find_line_info;
9708 if (fi == NULL)
9709 {
9710 bfd_size_type external_fdr_size;
9711 char *fraw_src;
9712 char *fraw_end;
9713 struct fdr *fdr_ptr;
9714 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9715
9716 fi = bfd_zalloc (abfd, amt);
9717 if (fi == NULL)
9718 {
9719 msec->flags = origflags;
9720 return FALSE;
9721 }
9722
9723 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9724 {
9725 msec->flags = origflags;
9726 return FALSE;
9727 }
9728
9729 /* Swap in the FDR information. */
9730 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9731 fi->d.fdr = bfd_alloc (abfd, amt);
9732 if (fi->d.fdr == NULL)
9733 {
9734 msec->flags = origflags;
9735 return FALSE;
9736 }
9737 external_fdr_size = swap->external_fdr_size;
9738 fdr_ptr = fi->d.fdr;
9739 fraw_src = (char *) fi->d.external_fdr;
9740 fraw_end = (fraw_src
9741 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9742 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9743 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9744
9745 elf_tdata (abfd)->find_line_info = fi;
9746
9747 /* Note that we don't bother to ever free this information.
9748 find_nearest_line is either called all the time, as in
9749 objdump -l, so the information should be saved, or it is
9750 rarely called, as in ld error messages, so the memory
9751 wasted is unimportant. Still, it would probably be a
9752 good idea for free_cached_info to throw it away. */
9753 }
9754
9755 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9756 &fi->i, filename_ptr, functionname_ptr,
9757 line_ptr))
9758 {
9759 msec->flags = origflags;
9760 return TRUE;
9761 }
9762
9763 msec->flags = origflags;
9764 }
9765
9766 /* Fall back on the generic ELF find_nearest_line routine. */
9767
9768 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9769 filename_ptr, functionname_ptr,
9770 line_ptr);
9771 }
9772
9773 bfd_boolean
9774 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9775 const char **filename_ptr,
9776 const char **functionname_ptr,
9777 unsigned int *line_ptr)
9778 {
9779 bfd_boolean found;
9780 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9781 functionname_ptr, line_ptr,
9782 & elf_tdata (abfd)->dwarf2_find_line_info);
9783 return found;
9784 }
9785
9786 \f
9787 /* When are writing out the .options or .MIPS.options section,
9788 remember the bytes we are writing out, so that we can install the
9789 GP value in the section_processing routine. */
9790
9791 bfd_boolean
9792 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9793 const void *location,
9794 file_ptr offset, bfd_size_type count)
9795 {
9796 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9797 {
9798 bfd_byte *c;
9799
9800 if (elf_section_data (section) == NULL)
9801 {
9802 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9803 section->used_by_bfd = bfd_zalloc (abfd, amt);
9804 if (elf_section_data (section) == NULL)
9805 return FALSE;
9806 }
9807 c = mips_elf_section_data (section)->u.tdata;
9808 if (c == NULL)
9809 {
9810 c = bfd_zalloc (abfd, section->size);
9811 if (c == NULL)
9812 return FALSE;
9813 mips_elf_section_data (section)->u.tdata = c;
9814 }
9815
9816 memcpy (c + offset, location, count);
9817 }
9818
9819 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9820 count);
9821 }
9822
9823 /* This is almost identical to bfd_generic_get_... except that some
9824 MIPS relocations need to be handled specially. Sigh. */
9825
9826 bfd_byte *
9827 _bfd_elf_mips_get_relocated_section_contents
9828 (bfd *abfd,
9829 struct bfd_link_info *link_info,
9830 struct bfd_link_order *link_order,
9831 bfd_byte *data,
9832 bfd_boolean relocatable,
9833 asymbol **symbols)
9834 {
9835 /* Get enough memory to hold the stuff */
9836 bfd *input_bfd = link_order->u.indirect.section->owner;
9837 asection *input_section = link_order->u.indirect.section;
9838 bfd_size_type sz;
9839
9840 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9841 arelent **reloc_vector = NULL;
9842 long reloc_count;
9843
9844 if (reloc_size < 0)
9845 goto error_return;
9846
9847 reloc_vector = bfd_malloc (reloc_size);
9848 if (reloc_vector == NULL && reloc_size != 0)
9849 goto error_return;
9850
9851 /* read in the section */
9852 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9853 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9854 goto error_return;
9855
9856 reloc_count = bfd_canonicalize_reloc (input_bfd,
9857 input_section,
9858 reloc_vector,
9859 symbols);
9860 if (reloc_count < 0)
9861 goto error_return;
9862
9863 if (reloc_count > 0)
9864 {
9865 arelent **parent;
9866 /* for mips */
9867 int gp_found;
9868 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9869
9870 {
9871 struct bfd_hash_entry *h;
9872 struct bfd_link_hash_entry *lh;
9873 /* Skip all this stuff if we aren't mixing formats. */
9874 if (abfd && input_bfd
9875 && abfd->xvec == input_bfd->xvec)
9876 lh = 0;
9877 else
9878 {
9879 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9880 lh = (struct bfd_link_hash_entry *) h;
9881 }
9882 lookup:
9883 if (lh)
9884 {
9885 switch (lh->type)
9886 {
9887 case bfd_link_hash_undefined:
9888 case bfd_link_hash_undefweak:
9889 case bfd_link_hash_common:
9890 gp_found = 0;
9891 break;
9892 case bfd_link_hash_defined:
9893 case bfd_link_hash_defweak:
9894 gp_found = 1;
9895 gp = lh->u.def.value;
9896 break;
9897 case bfd_link_hash_indirect:
9898 case bfd_link_hash_warning:
9899 lh = lh->u.i.link;
9900 /* @@FIXME ignoring warning for now */
9901 goto lookup;
9902 case bfd_link_hash_new:
9903 default:
9904 abort ();
9905 }
9906 }
9907 else
9908 gp_found = 0;
9909 }
9910 /* end mips */
9911 for (parent = reloc_vector; *parent != NULL; parent++)
9912 {
9913 char *error_message = NULL;
9914 bfd_reloc_status_type r;
9915
9916 /* Specific to MIPS: Deal with relocation types that require
9917 knowing the gp of the output bfd. */
9918 asymbol *sym = *(*parent)->sym_ptr_ptr;
9919
9920 /* If we've managed to find the gp and have a special
9921 function for the relocation then go ahead, else default
9922 to the generic handling. */
9923 if (gp_found
9924 && (*parent)->howto->special_function
9925 == _bfd_mips_elf32_gprel16_reloc)
9926 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9927 input_section, relocatable,
9928 data, gp);
9929 else
9930 r = bfd_perform_relocation (input_bfd, *parent, data,
9931 input_section,
9932 relocatable ? abfd : NULL,
9933 &error_message);
9934
9935 if (relocatable)
9936 {
9937 asection *os = input_section->output_section;
9938
9939 /* A partial link, so keep the relocs */
9940 os->orelocation[os->reloc_count] = *parent;
9941 os->reloc_count++;
9942 }
9943
9944 if (r != bfd_reloc_ok)
9945 {
9946 switch (r)
9947 {
9948 case bfd_reloc_undefined:
9949 if (!((*link_info->callbacks->undefined_symbol)
9950 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9951 input_bfd, input_section, (*parent)->address, TRUE)))
9952 goto error_return;
9953 break;
9954 case bfd_reloc_dangerous:
9955 BFD_ASSERT (error_message != NULL);
9956 if (!((*link_info->callbacks->reloc_dangerous)
9957 (link_info, error_message, input_bfd, input_section,
9958 (*parent)->address)))
9959 goto error_return;
9960 break;
9961 case bfd_reloc_overflow:
9962 if (!((*link_info->callbacks->reloc_overflow)
9963 (link_info, NULL,
9964 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9965 (*parent)->howto->name, (*parent)->addend,
9966 input_bfd, input_section, (*parent)->address)))
9967 goto error_return;
9968 break;
9969 case bfd_reloc_outofrange:
9970 default:
9971 abort ();
9972 break;
9973 }
9974
9975 }
9976 }
9977 }
9978 if (reloc_vector != NULL)
9979 free (reloc_vector);
9980 return data;
9981
9982 error_return:
9983 if (reloc_vector != NULL)
9984 free (reloc_vector);
9985 return NULL;
9986 }
9987 \f
9988 /* Create a MIPS ELF linker hash table. */
9989
9990 struct bfd_link_hash_table *
9991 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9992 {
9993 struct mips_elf_link_hash_table *ret;
9994 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9995
9996 ret = bfd_malloc (amt);
9997 if (ret == NULL)
9998 return NULL;
9999
10000 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10001 mips_elf_link_hash_newfunc,
10002 sizeof (struct mips_elf_link_hash_entry)))
10003 {
10004 free (ret);
10005 return NULL;
10006 }
10007
10008 #if 0
10009 /* We no longer use this. */
10010 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10011 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10012 #endif
10013 ret->procedure_count = 0;
10014 ret->compact_rel_size = 0;
10015 ret->use_rld_obj_head = FALSE;
10016 ret->rld_value = 0;
10017 ret->mips16_stubs_seen = FALSE;
10018 ret->is_vxworks = FALSE;
10019 ret->srelbss = NULL;
10020 ret->sdynbss = NULL;
10021 ret->srelplt = NULL;
10022 ret->srelplt2 = NULL;
10023 ret->sgotplt = NULL;
10024 ret->splt = NULL;
10025 ret->plt_header_size = 0;
10026 ret->plt_entry_size = 0;
10027 ret->function_stub_size = 0;
10028
10029 return &ret->root.root;
10030 }
10031
10032 /* Likewise, but indicate that the target is VxWorks. */
10033
10034 struct bfd_link_hash_table *
10035 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10036 {
10037 struct bfd_link_hash_table *ret;
10038
10039 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10040 if (ret)
10041 {
10042 struct mips_elf_link_hash_table *htab;
10043
10044 htab = (struct mips_elf_link_hash_table *) ret;
10045 htab->is_vxworks = 1;
10046 }
10047 return ret;
10048 }
10049 \f
10050 /* We need to use a special link routine to handle the .reginfo and
10051 the .mdebug sections. We need to merge all instances of these
10052 sections together, not write them all out sequentially. */
10053
10054 bfd_boolean
10055 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10056 {
10057 asection *o;
10058 struct bfd_link_order *p;
10059 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10060 asection *rtproc_sec;
10061 Elf32_RegInfo reginfo;
10062 struct ecoff_debug_info debug;
10063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10064 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10065 HDRR *symhdr = &debug.symbolic_header;
10066 void *mdebug_handle = NULL;
10067 asection *s;
10068 EXTR esym;
10069 unsigned int i;
10070 bfd_size_type amt;
10071 struct mips_elf_link_hash_table *htab;
10072
10073 static const char * const secname[] =
10074 {
10075 ".text", ".init", ".fini", ".data",
10076 ".rodata", ".sdata", ".sbss", ".bss"
10077 };
10078 static const int sc[] =
10079 {
10080 scText, scInit, scFini, scData,
10081 scRData, scSData, scSBss, scBss
10082 };
10083
10084 /* We'd carefully arranged the dynamic symbol indices, and then the
10085 generic size_dynamic_sections renumbered them out from under us.
10086 Rather than trying somehow to prevent the renumbering, just do
10087 the sort again. */
10088 htab = mips_elf_hash_table (info);
10089 if (elf_hash_table (info)->dynamic_sections_created)
10090 {
10091 bfd *dynobj;
10092 asection *got;
10093 struct mips_got_info *g;
10094 bfd_size_type dynsecsymcount;
10095
10096 /* When we resort, we must tell mips_elf_sort_hash_table what
10097 the lowest index it may use is. That's the number of section
10098 symbols we're going to add. The generic ELF linker only
10099 adds these symbols when building a shared object. Note that
10100 we count the sections after (possibly) removing the .options
10101 section above. */
10102
10103 dynsecsymcount = count_section_dynsyms (abfd, info);
10104 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10105 return FALSE;
10106
10107 /* Make sure we didn't grow the global .got region. */
10108 dynobj = elf_hash_table (info)->dynobj;
10109 got = mips_elf_got_section (dynobj, FALSE);
10110 g = mips_elf_section_data (got)->u.got_info;
10111
10112 if (g->global_gotsym != NULL)
10113 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10114 - g->global_gotsym->dynindx)
10115 <= g->global_gotno);
10116 }
10117
10118 /* Get a value for the GP register. */
10119 if (elf_gp (abfd) == 0)
10120 {
10121 struct bfd_link_hash_entry *h;
10122
10123 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10124 if (h != NULL && h->type == bfd_link_hash_defined)
10125 elf_gp (abfd) = (h->u.def.value
10126 + h->u.def.section->output_section->vma
10127 + h->u.def.section->output_offset);
10128 else if (htab->is_vxworks
10129 && (h = bfd_link_hash_lookup (info->hash,
10130 "_GLOBAL_OFFSET_TABLE_",
10131 FALSE, FALSE, TRUE))
10132 && h->type == bfd_link_hash_defined)
10133 elf_gp (abfd) = (h->u.def.section->output_section->vma
10134 + h->u.def.section->output_offset
10135 + h->u.def.value);
10136 else if (info->relocatable)
10137 {
10138 bfd_vma lo = MINUS_ONE;
10139
10140 /* Find the GP-relative section with the lowest offset. */
10141 for (o = abfd->sections; o != NULL; o = o->next)
10142 if (o->vma < lo
10143 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10144 lo = o->vma;
10145
10146 /* And calculate GP relative to that. */
10147 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10148 }
10149 else
10150 {
10151 /* If the relocate_section function needs to do a reloc
10152 involving the GP value, it should make a reloc_dangerous
10153 callback to warn that GP is not defined. */
10154 }
10155 }
10156
10157 /* Go through the sections and collect the .reginfo and .mdebug
10158 information. */
10159 reginfo_sec = NULL;
10160 mdebug_sec = NULL;
10161 gptab_data_sec = NULL;
10162 gptab_bss_sec = NULL;
10163 for (o = abfd->sections; o != NULL; o = o->next)
10164 {
10165 if (strcmp (o->name, ".reginfo") == 0)
10166 {
10167 memset (&reginfo, 0, sizeof reginfo);
10168
10169 /* We have found the .reginfo section in the output file.
10170 Look through all the link_orders comprising it and merge
10171 the information together. */
10172 for (p = o->map_head.link_order; p != NULL; p = p->next)
10173 {
10174 asection *input_section;
10175 bfd *input_bfd;
10176 Elf32_External_RegInfo ext;
10177 Elf32_RegInfo sub;
10178
10179 if (p->type != bfd_indirect_link_order)
10180 {
10181 if (p->type == bfd_data_link_order)
10182 continue;
10183 abort ();
10184 }
10185
10186 input_section = p->u.indirect.section;
10187 input_bfd = input_section->owner;
10188
10189 if (! bfd_get_section_contents (input_bfd, input_section,
10190 &ext, 0, sizeof ext))
10191 return FALSE;
10192
10193 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10194
10195 reginfo.ri_gprmask |= sub.ri_gprmask;
10196 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10197 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10198 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10199 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10200
10201 /* ri_gp_value is set by the function
10202 mips_elf32_section_processing when the section is
10203 finally written out. */
10204
10205 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10206 elf_link_input_bfd ignores this section. */
10207 input_section->flags &= ~SEC_HAS_CONTENTS;
10208 }
10209
10210 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10211 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10212
10213 /* Skip this section later on (I don't think this currently
10214 matters, but someday it might). */
10215 o->map_head.link_order = NULL;
10216
10217 reginfo_sec = o;
10218 }
10219
10220 if (strcmp (o->name, ".mdebug") == 0)
10221 {
10222 struct extsym_info einfo;
10223 bfd_vma last;
10224
10225 /* We have found the .mdebug section in the output file.
10226 Look through all the link_orders comprising it and merge
10227 the information together. */
10228 symhdr->magic = swap->sym_magic;
10229 /* FIXME: What should the version stamp be? */
10230 symhdr->vstamp = 0;
10231 symhdr->ilineMax = 0;
10232 symhdr->cbLine = 0;
10233 symhdr->idnMax = 0;
10234 symhdr->ipdMax = 0;
10235 symhdr->isymMax = 0;
10236 symhdr->ioptMax = 0;
10237 symhdr->iauxMax = 0;
10238 symhdr->issMax = 0;
10239 symhdr->issExtMax = 0;
10240 symhdr->ifdMax = 0;
10241 symhdr->crfd = 0;
10242 symhdr->iextMax = 0;
10243
10244 /* We accumulate the debugging information itself in the
10245 debug_info structure. */
10246 debug.line = NULL;
10247 debug.external_dnr = NULL;
10248 debug.external_pdr = NULL;
10249 debug.external_sym = NULL;
10250 debug.external_opt = NULL;
10251 debug.external_aux = NULL;
10252 debug.ss = NULL;
10253 debug.ssext = debug.ssext_end = NULL;
10254 debug.external_fdr = NULL;
10255 debug.external_rfd = NULL;
10256 debug.external_ext = debug.external_ext_end = NULL;
10257
10258 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10259 if (mdebug_handle == NULL)
10260 return FALSE;
10261
10262 esym.jmptbl = 0;
10263 esym.cobol_main = 0;
10264 esym.weakext = 0;
10265 esym.reserved = 0;
10266 esym.ifd = ifdNil;
10267 esym.asym.iss = issNil;
10268 esym.asym.st = stLocal;
10269 esym.asym.reserved = 0;
10270 esym.asym.index = indexNil;
10271 last = 0;
10272 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10273 {
10274 esym.asym.sc = sc[i];
10275 s = bfd_get_section_by_name (abfd, secname[i]);
10276 if (s != NULL)
10277 {
10278 esym.asym.value = s->vma;
10279 last = s->vma + s->size;
10280 }
10281 else
10282 esym.asym.value = last;
10283 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10284 secname[i], &esym))
10285 return FALSE;
10286 }
10287
10288 for (p = o->map_head.link_order; p != NULL; p = p->next)
10289 {
10290 asection *input_section;
10291 bfd *input_bfd;
10292 const struct ecoff_debug_swap *input_swap;
10293 struct ecoff_debug_info input_debug;
10294 char *eraw_src;
10295 char *eraw_end;
10296
10297 if (p->type != bfd_indirect_link_order)
10298 {
10299 if (p->type == bfd_data_link_order)
10300 continue;
10301 abort ();
10302 }
10303
10304 input_section = p->u.indirect.section;
10305 input_bfd = input_section->owner;
10306
10307 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10308 || (get_elf_backend_data (input_bfd)
10309 ->elf_backend_ecoff_debug_swap) == NULL)
10310 {
10311 /* I don't know what a non MIPS ELF bfd would be
10312 doing with a .mdebug section, but I don't really
10313 want to deal with it. */
10314 continue;
10315 }
10316
10317 input_swap = (get_elf_backend_data (input_bfd)
10318 ->elf_backend_ecoff_debug_swap);
10319
10320 BFD_ASSERT (p->size == input_section->size);
10321
10322 /* The ECOFF linking code expects that we have already
10323 read in the debugging information and set up an
10324 ecoff_debug_info structure, so we do that now. */
10325 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10326 &input_debug))
10327 return FALSE;
10328
10329 if (! (bfd_ecoff_debug_accumulate
10330 (mdebug_handle, abfd, &debug, swap, input_bfd,
10331 &input_debug, input_swap, info)))
10332 return FALSE;
10333
10334 /* Loop through the external symbols. For each one with
10335 interesting information, try to find the symbol in
10336 the linker global hash table and save the information
10337 for the output external symbols. */
10338 eraw_src = input_debug.external_ext;
10339 eraw_end = (eraw_src
10340 + (input_debug.symbolic_header.iextMax
10341 * input_swap->external_ext_size));
10342 for (;
10343 eraw_src < eraw_end;
10344 eraw_src += input_swap->external_ext_size)
10345 {
10346 EXTR ext;
10347 const char *name;
10348 struct mips_elf_link_hash_entry *h;
10349
10350 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10351 if (ext.asym.sc == scNil
10352 || ext.asym.sc == scUndefined
10353 || ext.asym.sc == scSUndefined)
10354 continue;
10355
10356 name = input_debug.ssext + ext.asym.iss;
10357 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10358 name, FALSE, FALSE, TRUE);
10359 if (h == NULL || h->esym.ifd != -2)
10360 continue;
10361
10362 if (ext.ifd != -1)
10363 {
10364 BFD_ASSERT (ext.ifd
10365 < input_debug.symbolic_header.ifdMax);
10366 ext.ifd = input_debug.ifdmap[ext.ifd];
10367 }
10368
10369 h->esym = ext;
10370 }
10371
10372 /* Free up the information we just read. */
10373 free (input_debug.line);
10374 free (input_debug.external_dnr);
10375 free (input_debug.external_pdr);
10376 free (input_debug.external_sym);
10377 free (input_debug.external_opt);
10378 free (input_debug.external_aux);
10379 free (input_debug.ss);
10380 free (input_debug.ssext);
10381 free (input_debug.external_fdr);
10382 free (input_debug.external_rfd);
10383 free (input_debug.external_ext);
10384
10385 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10386 elf_link_input_bfd ignores this section. */
10387 input_section->flags &= ~SEC_HAS_CONTENTS;
10388 }
10389
10390 if (SGI_COMPAT (abfd) && info->shared)
10391 {
10392 /* Create .rtproc section. */
10393 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10394 if (rtproc_sec == NULL)
10395 {
10396 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10397 | SEC_LINKER_CREATED | SEC_READONLY);
10398
10399 rtproc_sec = bfd_make_section_with_flags (abfd,
10400 ".rtproc",
10401 flags);
10402 if (rtproc_sec == NULL
10403 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10404 return FALSE;
10405 }
10406
10407 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10408 info, rtproc_sec,
10409 &debug))
10410 return FALSE;
10411 }
10412
10413 /* Build the external symbol information. */
10414 einfo.abfd = abfd;
10415 einfo.info = info;
10416 einfo.debug = &debug;
10417 einfo.swap = swap;
10418 einfo.failed = FALSE;
10419 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10420 mips_elf_output_extsym, &einfo);
10421 if (einfo.failed)
10422 return FALSE;
10423
10424 /* Set the size of the .mdebug section. */
10425 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10426
10427 /* Skip this section later on (I don't think this currently
10428 matters, but someday it might). */
10429 o->map_head.link_order = NULL;
10430
10431 mdebug_sec = o;
10432 }
10433
10434 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10435 {
10436 const char *subname;
10437 unsigned int c;
10438 Elf32_gptab *tab;
10439 Elf32_External_gptab *ext_tab;
10440 unsigned int j;
10441
10442 /* The .gptab.sdata and .gptab.sbss sections hold
10443 information describing how the small data area would
10444 change depending upon the -G switch. These sections
10445 not used in executables files. */
10446 if (! info->relocatable)
10447 {
10448 for (p = o->map_head.link_order; p != NULL; p = p->next)
10449 {
10450 asection *input_section;
10451
10452 if (p->type != bfd_indirect_link_order)
10453 {
10454 if (p->type == bfd_data_link_order)
10455 continue;
10456 abort ();
10457 }
10458
10459 input_section = p->u.indirect.section;
10460
10461 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10462 elf_link_input_bfd ignores this section. */
10463 input_section->flags &= ~SEC_HAS_CONTENTS;
10464 }
10465
10466 /* Skip this section later on (I don't think this
10467 currently matters, but someday it might). */
10468 o->map_head.link_order = NULL;
10469
10470 /* Really remove the section. */
10471 bfd_section_list_remove (abfd, o);
10472 --abfd->section_count;
10473
10474 continue;
10475 }
10476
10477 /* There is one gptab for initialized data, and one for
10478 uninitialized data. */
10479 if (strcmp (o->name, ".gptab.sdata") == 0)
10480 gptab_data_sec = o;
10481 else if (strcmp (o->name, ".gptab.sbss") == 0)
10482 gptab_bss_sec = o;
10483 else
10484 {
10485 (*_bfd_error_handler)
10486 (_("%s: illegal section name `%s'"),
10487 bfd_get_filename (abfd), o->name);
10488 bfd_set_error (bfd_error_nonrepresentable_section);
10489 return FALSE;
10490 }
10491
10492 /* The linker script always combines .gptab.data and
10493 .gptab.sdata into .gptab.sdata, and likewise for
10494 .gptab.bss and .gptab.sbss. It is possible that there is
10495 no .sdata or .sbss section in the output file, in which
10496 case we must change the name of the output section. */
10497 subname = o->name + sizeof ".gptab" - 1;
10498 if (bfd_get_section_by_name (abfd, subname) == NULL)
10499 {
10500 if (o == gptab_data_sec)
10501 o->name = ".gptab.data";
10502 else
10503 o->name = ".gptab.bss";
10504 subname = o->name + sizeof ".gptab" - 1;
10505 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10506 }
10507
10508 /* Set up the first entry. */
10509 c = 1;
10510 amt = c * sizeof (Elf32_gptab);
10511 tab = bfd_malloc (amt);
10512 if (tab == NULL)
10513 return FALSE;
10514 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10515 tab[0].gt_header.gt_unused = 0;
10516
10517 /* Combine the input sections. */
10518 for (p = o->map_head.link_order; p != NULL; p = p->next)
10519 {
10520 asection *input_section;
10521 bfd *input_bfd;
10522 bfd_size_type size;
10523 unsigned long last;
10524 bfd_size_type gpentry;
10525
10526 if (p->type != bfd_indirect_link_order)
10527 {
10528 if (p->type == bfd_data_link_order)
10529 continue;
10530 abort ();
10531 }
10532
10533 input_section = p->u.indirect.section;
10534 input_bfd = input_section->owner;
10535
10536 /* Combine the gptab entries for this input section one
10537 by one. We know that the input gptab entries are
10538 sorted by ascending -G value. */
10539 size = input_section->size;
10540 last = 0;
10541 for (gpentry = sizeof (Elf32_External_gptab);
10542 gpentry < size;
10543 gpentry += sizeof (Elf32_External_gptab))
10544 {
10545 Elf32_External_gptab ext_gptab;
10546 Elf32_gptab int_gptab;
10547 unsigned long val;
10548 unsigned long add;
10549 bfd_boolean exact;
10550 unsigned int look;
10551
10552 if (! (bfd_get_section_contents
10553 (input_bfd, input_section, &ext_gptab, gpentry,
10554 sizeof (Elf32_External_gptab))))
10555 {
10556 free (tab);
10557 return FALSE;
10558 }
10559
10560 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10561 &int_gptab);
10562 val = int_gptab.gt_entry.gt_g_value;
10563 add = int_gptab.gt_entry.gt_bytes - last;
10564
10565 exact = FALSE;
10566 for (look = 1; look < c; look++)
10567 {
10568 if (tab[look].gt_entry.gt_g_value >= val)
10569 tab[look].gt_entry.gt_bytes += add;
10570
10571 if (tab[look].gt_entry.gt_g_value == val)
10572 exact = TRUE;
10573 }
10574
10575 if (! exact)
10576 {
10577 Elf32_gptab *new_tab;
10578 unsigned int max;
10579
10580 /* We need a new table entry. */
10581 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10582 new_tab = bfd_realloc (tab, amt);
10583 if (new_tab == NULL)
10584 {
10585 free (tab);
10586 return FALSE;
10587 }
10588 tab = new_tab;
10589 tab[c].gt_entry.gt_g_value = val;
10590 tab[c].gt_entry.gt_bytes = add;
10591
10592 /* Merge in the size for the next smallest -G
10593 value, since that will be implied by this new
10594 value. */
10595 max = 0;
10596 for (look = 1; look < c; look++)
10597 {
10598 if (tab[look].gt_entry.gt_g_value < val
10599 && (max == 0
10600 || (tab[look].gt_entry.gt_g_value
10601 > tab[max].gt_entry.gt_g_value)))
10602 max = look;
10603 }
10604 if (max != 0)
10605 tab[c].gt_entry.gt_bytes +=
10606 tab[max].gt_entry.gt_bytes;
10607
10608 ++c;
10609 }
10610
10611 last = int_gptab.gt_entry.gt_bytes;
10612 }
10613
10614 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10615 elf_link_input_bfd ignores this section. */
10616 input_section->flags &= ~SEC_HAS_CONTENTS;
10617 }
10618
10619 /* The table must be sorted by -G value. */
10620 if (c > 2)
10621 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10622
10623 /* Swap out the table. */
10624 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10625 ext_tab = bfd_alloc (abfd, amt);
10626 if (ext_tab == NULL)
10627 {
10628 free (tab);
10629 return FALSE;
10630 }
10631
10632 for (j = 0; j < c; j++)
10633 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10634 free (tab);
10635
10636 o->size = c * sizeof (Elf32_External_gptab);
10637 o->contents = (bfd_byte *) ext_tab;
10638
10639 /* Skip this section later on (I don't think this currently
10640 matters, but someday it might). */
10641 o->map_head.link_order = NULL;
10642 }
10643 }
10644
10645 /* Invoke the regular ELF backend linker to do all the work. */
10646 if (!bfd_elf_final_link (abfd, info))
10647 return FALSE;
10648
10649 /* Now write out the computed sections. */
10650
10651 if (reginfo_sec != NULL)
10652 {
10653 Elf32_External_RegInfo ext;
10654
10655 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10656 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10657 return FALSE;
10658 }
10659
10660 if (mdebug_sec != NULL)
10661 {
10662 BFD_ASSERT (abfd->output_has_begun);
10663 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10664 swap, info,
10665 mdebug_sec->filepos))
10666 return FALSE;
10667
10668 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10669 }
10670
10671 if (gptab_data_sec != NULL)
10672 {
10673 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10674 gptab_data_sec->contents,
10675 0, gptab_data_sec->size))
10676 return FALSE;
10677 }
10678
10679 if (gptab_bss_sec != NULL)
10680 {
10681 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10682 gptab_bss_sec->contents,
10683 0, gptab_bss_sec->size))
10684 return FALSE;
10685 }
10686
10687 if (SGI_COMPAT (abfd))
10688 {
10689 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10690 if (rtproc_sec != NULL)
10691 {
10692 if (! bfd_set_section_contents (abfd, rtproc_sec,
10693 rtproc_sec->contents,
10694 0, rtproc_sec->size))
10695 return FALSE;
10696 }
10697 }
10698
10699 return TRUE;
10700 }
10701 \f
10702 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10703
10704 struct mips_mach_extension {
10705 unsigned long extension, base;
10706 };
10707
10708
10709 /* An array describing how BFD machines relate to one another. The entries
10710 are ordered topologically with MIPS I extensions listed last. */
10711
10712 static const struct mips_mach_extension mips_mach_extensions[] = {
10713 /* MIPS64 extensions. */
10714 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10715 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10716
10717 /* MIPS V extensions. */
10718 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10719
10720 /* R10000 extensions. */
10721 { bfd_mach_mips12000, bfd_mach_mips10000 },
10722
10723 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10724 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10725 better to allow vr5400 and vr5500 code to be merged anyway, since
10726 many libraries will just use the core ISA. Perhaps we could add
10727 some sort of ASE flag if this ever proves a problem. */
10728 { bfd_mach_mips5500, bfd_mach_mips5400 },
10729 { bfd_mach_mips5400, bfd_mach_mips5000 },
10730
10731 /* MIPS IV extensions. */
10732 { bfd_mach_mips5, bfd_mach_mips8000 },
10733 { bfd_mach_mips10000, bfd_mach_mips8000 },
10734 { bfd_mach_mips5000, bfd_mach_mips8000 },
10735 { bfd_mach_mips7000, bfd_mach_mips8000 },
10736 { bfd_mach_mips9000, bfd_mach_mips8000 },
10737
10738 /* VR4100 extensions. */
10739 { bfd_mach_mips4120, bfd_mach_mips4100 },
10740 { bfd_mach_mips4111, bfd_mach_mips4100 },
10741
10742 /* MIPS III extensions. */
10743 { bfd_mach_mips8000, bfd_mach_mips4000 },
10744 { bfd_mach_mips4650, bfd_mach_mips4000 },
10745 { bfd_mach_mips4600, bfd_mach_mips4000 },
10746 { bfd_mach_mips4400, bfd_mach_mips4000 },
10747 { bfd_mach_mips4300, bfd_mach_mips4000 },
10748 { bfd_mach_mips4100, bfd_mach_mips4000 },
10749 { bfd_mach_mips4010, bfd_mach_mips4000 },
10750
10751 /* MIPS32 extensions. */
10752 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10753
10754 /* MIPS II extensions. */
10755 { bfd_mach_mips4000, bfd_mach_mips6000 },
10756 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10757
10758 /* MIPS I extensions. */
10759 { bfd_mach_mips6000, bfd_mach_mips3000 },
10760 { bfd_mach_mips3900, bfd_mach_mips3000 }
10761 };
10762
10763
10764 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10765
10766 static bfd_boolean
10767 mips_mach_extends_p (unsigned long base, unsigned long extension)
10768 {
10769 size_t i;
10770
10771 if (extension == base)
10772 return TRUE;
10773
10774 if (base == bfd_mach_mipsisa32
10775 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10776 return TRUE;
10777
10778 if (base == bfd_mach_mipsisa32r2
10779 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10780 return TRUE;
10781
10782 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10783 if (extension == mips_mach_extensions[i].extension)
10784 {
10785 extension = mips_mach_extensions[i].base;
10786 if (extension == base)
10787 return TRUE;
10788 }
10789
10790 return FALSE;
10791 }
10792
10793
10794 /* Return true if the given ELF header flags describe a 32-bit binary. */
10795
10796 static bfd_boolean
10797 mips_32bit_flags_p (flagword flags)
10798 {
10799 return ((flags & EF_MIPS_32BITMODE) != 0
10800 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10801 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10802 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10803 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10804 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10805 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10806 }
10807
10808
10809 /* Merge backend specific data from an object file to the output
10810 object file when linking. */
10811
10812 bfd_boolean
10813 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10814 {
10815 flagword old_flags;
10816 flagword new_flags;
10817 bfd_boolean ok;
10818 bfd_boolean null_input_bfd = TRUE;
10819 asection *sec;
10820
10821 /* Check if we have the same endianess */
10822 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10823 {
10824 (*_bfd_error_handler)
10825 (_("%B: endianness incompatible with that of the selected emulation"),
10826 ibfd);
10827 return FALSE;
10828 }
10829
10830 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10831 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10832 return TRUE;
10833
10834 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10835 {
10836 (*_bfd_error_handler)
10837 (_("%B: ABI is incompatible with that of the selected emulation"),
10838 ibfd);
10839 return FALSE;
10840 }
10841
10842 new_flags = elf_elfheader (ibfd)->e_flags;
10843 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10844 old_flags = elf_elfheader (obfd)->e_flags;
10845
10846 if (! elf_flags_init (obfd))
10847 {
10848 elf_flags_init (obfd) = TRUE;
10849 elf_elfheader (obfd)->e_flags = new_flags;
10850 elf_elfheader (obfd)->e_ident[EI_CLASS]
10851 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10852
10853 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10854 && bfd_get_arch_info (obfd)->the_default)
10855 {
10856 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10857 bfd_get_mach (ibfd)))
10858 return FALSE;
10859 }
10860
10861 return TRUE;
10862 }
10863
10864 /* Check flag compatibility. */
10865
10866 new_flags &= ~EF_MIPS_NOREORDER;
10867 old_flags &= ~EF_MIPS_NOREORDER;
10868
10869 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10870 doesn't seem to matter. */
10871 new_flags &= ~EF_MIPS_XGOT;
10872 old_flags &= ~EF_MIPS_XGOT;
10873
10874 /* MIPSpro generates ucode info in n64 objects. Again, we should
10875 just be able to ignore this. */
10876 new_flags &= ~EF_MIPS_UCODE;
10877 old_flags &= ~EF_MIPS_UCODE;
10878
10879 /* Don't care about the PIC flags from dynamic objects; they are
10880 PIC by design. */
10881 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10882 && (ibfd->flags & DYNAMIC) != 0)
10883 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10884
10885 if (new_flags == old_flags)
10886 return TRUE;
10887
10888 /* Check to see if the input BFD actually contains any sections.
10889 If not, its flags may not have been initialised either, but it cannot
10890 actually cause any incompatibility. */
10891 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10892 {
10893 /* Ignore synthetic sections and empty .text, .data and .bss sections
10894 which are automatically generated by gas. */
10895 if (strcmp (sec->name, ".reginfo")
10896 && strcmp (sec->name, ".mdebug")
10897 && (sec->size != 0
10898 || (strcmp (sec->name, ".text")
10899 && strcmp (sec->name, ".data")
10900 && strcmp (sec->name, ".bss"))))
10901 {
10902 null_input_bfd = FALSE;
10903 break;
10904 }
10905 }
10906 if (null_input_bfd)
10907 return TRUE;
10908
10909 ok = TRUE;
10910
10911 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10912 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10913 {
10914 (*_bfd_error_handler)
10915 (_("%B: warning: linking PIC files with non-PIC files"),
10916 ibfd);
10917 ok = TRUE;
10918 }
10919
10920 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10921 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10922 if (! (new_flags & EF_MIPS_PIC))
10923 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10924
10925 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10926 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10927
10928 /* Compare the ISAs. */
10929 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10930 {
10931 (*_bfd_error_handler)
10932 (_("%B: linking 32-bit code with 64-bit code"),
10933 ibfd);
10934 ok = FALSE;
10935 }
10936 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10937 {
10938 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10939 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10940 {
10941 /* Copy the architecture info from IBFD to OBFD. Also copy
10942 the 32-bit flag (if set) so that we continue to recognise
10943 OBFD as a 32-bit binary. */
10944 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10945 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10946 elf_elfheader (obfd)->e_flags
10947 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10948
10949 /* Copy across the ABI flags if OBFD doesn't use them
10950 and if that was what caused us to treat IBFD as 32-bit. */
10951 if ((old_flags & EF_MIPS_ABI) == 0
10952 && mips_32bit_flags_p (new_flags)
10953 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10954 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10955 }
10956 else
10957 {
10958 /* The ISAs aren't compatible. */
10959 (*_bfd_error_handler)
10960 (_("%B: linking %s module with previous %s modules"),
10961 ibfd,
10962 bfd_printable_name (ibfd),
10963 bfd_printable_name (obfd));
10964 ok = FALSE;
10965 }
10966 }
10967
10968 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10969 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10970
10971 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10972 does set EI_CLASS differently from any 32-bit ABI. */
10973 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10974 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10975 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10976 {
10977 /* Only error if both are set (to different values). */
10978 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10979 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10980 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10981 {
10982 (*_bfd_error_handler)
10983 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10984 ibfd,
10985 elf_mips_abi_name (ibfd),
10986 elf_mips_abi_name (obfd));
10987 ok = FALSE;
10988 }
10989 new_flags &= ~EF_MIPS_ABI;
10990 old_flags &= ~EF_MIPS_ABI;
10991 }
10992
10993 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10994 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10995 {
10996 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10997
10998 new_flags &= ~ EF_MIPS_ARCH_ASE;
10999 old_flags &= ~ EF_MIPS_ARCH_ASE;
11000 }
11001
11002 /* Warn about any other mismatches */
11003 if (new_flags != old_flags)
11004 {
11005 (*_bfd_error_handler)
11006 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11007 ibfd, (unsigned long) new_flags,
11008 (unsigned long) old_flags);
11009 ok = FALSE;
11010 }
11011
11012 if (! ok)
11013 {
11014 bfd_set_error (bfd_error_bad_value);
11015 return FALSE;
11016 }
11017
11018 return TRUE;
11019 }
11020
11021 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11022
11023 bfd_boolean
11024 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11025 {
11026 BFD_ASSERT (!elf_flags_init (abfd)
11027 || elf_elfheader (abfd)->e_flags == flags);
11028
11029 elf_elfheader (abfd)->e_flags = flags;
11030 elf_flags_init (abfd) = TRUE;
11031 return TRUE;
11032 }
11033
11034 bfd_boolean
11035 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11036 {
11037 FILE *file = ptr;
11038
11039 BFD_ASSERT (abfd != NULL && ptr != NULL);
11040
11041 /* Print normal ELF private data. */
11042 _bfd_elf_print_private_bfd_data (abfd, ptr);
11043
11044 /* xgettext:c-format */
11045 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11046
11047 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11048 fprintf (file, _(" [abi=O32]"));
11049 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11050 fprintf (file, _(" [abi=O64]"));
11051 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11052 fprintf (file, _(" [abi=EABI32]"));
11053 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11054 fprintf (file, _(" [abi=EABI64]"));
11055 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11056 fprintf (file, _(" [abi unknown]"));
11057 else if (ABI_N32_P (abfd))
11058 fprintf (file, _(" [abi=N32]"));
11059 else if (ABI_64_P (abfd))
11060 fprintf (file, _(" [abi=64]"));
11061 else
11062 fprintf (file, _(" [no abi set]"));
11063
11064 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11065 fprintf (file, _(" [mips1]"));
11066 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11067 fprintf (file, _(" [mips2]"));
11068 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11069 fprintf (file, _(" [mips3]"));
11070 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11071 fprintf (file, _(" [mips4]"));
11072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11073 fprintf (file, _(" [mips5]"));
11074 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11075 fprintf (file, _(" [mips32]"));
11076 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11077 fprintf (file, _(" [mips64]"));
11078 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11079 fprintf (file, _(" [mips32r2]"));
11080 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11081 fprintf (file, _(" [mips64r2]"));
11082 else
11083 fprintf (file, _(" [unknown ISA]"));
11084
11085 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11086 fprintf (file, _(" [mdmx]"));
11087
11088 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11089 fprintf (file, _(" [mips16]"));
11090
11091 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11092 fprintf (file, _(" [32bitmode]"));
11093 else
11094 fprintf (file, _(" [not 32bitmode]"));
11095
11096 fputc ('\n', file);
11097
11098 return TRUE;
11099 }
11100
11101 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11102 {
11103 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11104 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11105 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
11106 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11107 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11108 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
11109 { NULL, 0, 0, 0, 0 }
11110 };
11111
11112 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
11113 even if this is not a defintion of the symbol. */
11114 void
11115 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11116 const Elf_Internal_Sym *isym,
11117 bfd_boolean definition,
11118 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11119 {
11120 if (! definition
11121 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11122 h->other |= STO_OPTIONAL;
11123 }
11124
11125 /* Decide whether an undefined symbol is special and can be ignored.
11126 This is the case for OPTIONAL symbols on IRIX. */
11127 bfd_boolean
11128 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11129 {
11130 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11131 }
11132
11133 bfd_boolean
11134 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11135 {
11136 return (sym->st_shndx == SHN_COMMON
11137 || sym->st_shndx == SHN_MIPS_ACOMMON
11138 || sym->st_shndx == SHN_MIPS_SCOMMON);
11139 }