* elfxx-mips.c (mips_elf_got_entry_hash): Don't dereference
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) (sec)->used_by_bfd)
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
167 GOTs). */
168 long max_unref_got_dynindx;
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx;
172 };
173
174 /* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
176
177 struct mips_elf_link_hash_entry
178 {
179 struct elf_link_hash_entry root;
180
181 /* External symbol information. */
182 EXTR esym;
183
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 this symbol. */
186 unsigned int possibly_dynamic_relocs;
187
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
190 bfd_boolean readonly_reloc;
191
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index;
195
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 p. 4-20. */
200 bfd_boolean no_fn_stub;
201
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
204 asection *fn_stub;
205
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
208 bfd_boolean need_fn_stub;
209
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
212 asection *call_stub;
213
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection *call_fp_stub;
217
218 /* Are we forced local? .*/
219 bfd_boolean forced_local;
220 };
221
222 /* MIPS ELF linker hash table. */
223
224 struct mips_elf_link_hash_table
225 {
226 struct elf_link_hash_table root;
227 #if 0
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231 #endif
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
237 entry is set to the address of __rld_obj_head as in IRIX5. */
238 bfd_boolean use_rld_obj_head;
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 bfd_vma rld_value;
241 /* This is set if we see any mips16 stub sections. */
242 bfd_boolean mips16_stubs_seen;
243 };
244
245 /* Structure used to pass information to mips_elf_output_extsym. */
246
247 struct extsym_info
248 {
249 bfd *abfd;
250 struct bfd_link_info *info;
251 struct ecoff_debug_info *debug;
252 const struct ecoff_debug_swap *swap;
253 bfd_boolean failed;
254 };
255
256 /* The names of the runtime procedure table symbols used on IRIX5. */
257
258 static const char * const mips_elf_dynsym_rtproc_names[] =
259 {
260 "_procedure_table",
261 "_procedure_string_table",
262 "_procedure_table_size",
263 NULL
264 };
265
266 /* These structures are used to generate the .compact_rel section on
267 IRIX5. */
268
269 typedef struct
270 {
271 unsigned long id1; /* Always one? */
272 unsigned long num; /* Number of compact relocation entries. */
273 unsigned long id2; /* Always two? */
274 unsigned long offset; /* The file offset of the first relocation. */
275 unsigned long reserved0; /* Zero? */
276 unsigned long reserved1; /* Zero? */
277 } Elf32_compact_rel;
278
279 typedef struct
280 {
281 bfd_byte id1[4];
282 bfd_byte num[4];
283 bfd_byte id2[4];
284 bfd_byte offset[4];
285 bfd_byte reserved0[4];
286 bfd_byte reserved1[4];
287 } Elf32_External_compact_rel;
288
289 typedef struct
290 {
291 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype : 4; /* Relocation types. See below. */
293 unsigned int dist2to : 8;
294 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst; /* KONST field. See below. */
296 unsigned long vaddr; /* VADDR to be relocated. */
297 } Elf32_crinfo;
298
299 typedef struct
300 {
301 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype : 4; /* Relocation types. See below. */
303 unsigned int dist2to : 8;
304 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst; /* KONST field. See below. */
306 } Elf32_crinfo2;
307
308 typedef struct
309 {
310 bfd_byte info[4];
311 bfd_byte konst[4];
312 bfd_byte vaddr[4];
313 } Elf32_External_crinfo;
314
315 typedef struct
316 {
317 bfd_byte info[4];
318 bfd_byte konst[4];
319 } Elf32_External_crinfo2;
320
321 /* These are the constants used to swap the bitfields in a crinfo. */
322
323 #define CRINFO_CTYPE (0x1)
324 #define CRINFO_CTYPE_SH (31)
325 #define CRINFO_RTYPE (0xf)
326 #define CRINFO_RTYPE_SH (27)
327 #define CRINFO_DIST2TO (0xff)
328 #define CRINFO_DIST2TO_SH (19)
329 #define CRINFO_RELVADDR (0x7ffff)
330 #define CRINFO_RELVADDR_SH (0)
331
332 /* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335 #define CRF_MIPS_LONG 1
336 #define CRF_MIPS_SHORT 0
337
338 /* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
340
341 (type) (konst)
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
346 */
347
348 #define CRT_MIPS_REL32 0xa
349 #define CRT_MIPS_WORD 0xb
350 #define CRT_MIPS_GPHI_LO 0xc
351 #define CRT_MIPS_JMPAD 0xd
352
353 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357 \f
358 /* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
360
361 typedef struct runtime_pdr {
362 bfd_vma adr; /* memory address of start of procedure */
363 long regmask; /* save register mask */
364 long regoffset; /* save register offset */
365 long fregmask; /* save floating point register mask */
366 long fregoffset; /* save floating point register offset */
367 long frameoffset; /* frame size */
368 short framereg; /* frame pointer register */
369 short pcreg; /* offset or reg of return pc */
370 long irpss; /* index into the runtime string table */
371 long reserved;
372 struct exception_info *exception_info;/* pointer to exception array */
373 } RPDR, *pRPDR;
374 #define cbRPDR sizeof (RPDR)
375 #define rpdNil ((pRPDR) 0)
376 \f
377 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
379 static void ecoff_swap_rpdr_out
380 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
381 static bfd_boolean mips_elf_create_procedure_table
382 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
383 struct ecoff_debug_info *));
384 static bfd_boolean mips_elf_check_mips16_stubs
385 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
386 static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
388 static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
390 static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
392 static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394 #if 0
395 static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397 #endif
398 static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
400 static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
402 static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
404 static bfd_boolean mips_elf_output_extsym
405 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
406 static int gptab_compare PARAMS ((const void *, const void *));
407 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
408 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
409 static struct mips_got_info *mips_elf_got_info
410 PARAMS ((bfd *, asection **));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
438 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
439 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
441 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
442 static bfd_boolean mips_elf_create_compact_rel_section
443 PARAMS ((bfd *, struct bfd_link_info *));
444 static bfd_boolean mips_elf_create_got_section
445 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
446 static asection *mips_elf_create_msym_section
447 PARAMS ((bfd *));
448 static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
450 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
451 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
452 bfd_boolean *, bfd_boolean));
453 static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
455 static bfd_boolean mips_elf_perform_relocation
456 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
457 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
458 bfd_boolean));
459 static bfd_boolean mips_elf_stub_section_p
460 PARAMS ((bfd *, asection *));
461 static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd *, unsigned int));
463 static bfd_boolean mips_elf_create_dynamic_relocation
464 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
465 struct mips_elf_link_hash_entry *, asection *,
466 bfd_vma, bfd_vma *, asection *));
467 static void mips_set_isa_flags PARAMS ((bfd *));
468 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
469 static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
471 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
472 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
473 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
474 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
475 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
476
477 static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type));
480 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
481 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
482 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
483 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
484 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
485 static int mips_elf_merge_gots PARAMS ((void **, void *));
486 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
487 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
488 static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info *));
490 static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd *, struct mips_got_info *, bfd *));
492 static struct mips_got_info *mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info *, bfd *));
494
495 /* This will be used when we sort the dynamic relocation records. */
496 static bfd *reldyn_sorting_bfd;
497
498 /* Nonzero if ABFD is using the N32 ABI. */
499
500 #define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502
503 /* Nonzero if ABFD is using the N64 ABI. */
504 #define ABI_64_P(abfd) \
505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
506
507 /* Nonzero if ABFD is using NewABI conventions. */
508 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509
510 /* The IRIX compatibility level we are striving for. */
511 #define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513
514 /* Whether we are trying to be compatible with IRIX at all. */
515 #define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
517
518 /* The name of the options section. */
519 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
521
522 /* The name of the stub section. */
523 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
525
526 /* The size of an external REL relocation. */
527 #define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
529
530 /* The size of an external dynamic table entry. */
531 #define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533
534 /* The size of a GOT entry. */
535 #define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
537
538 /* The size of a symbol-table entry. */
539 #define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
541
542 /* The default alignment for sections, as a power of two. */
543 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
545
546 /* Get word-sized data. */
547 #define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549
550 /* Put out word-sized data. */
551 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 (ABI_64_P (abfd) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
555
556 /* Add a dynamic symbol table-entry. */
557 #ifdef BFD64
558 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562 #else
563 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
565 ? (abort (), FALSE) \
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
567 #endif
568
569 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
572 /* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
589 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591 #define MINUS_ONE (((bfd_vma)0) - 1)
592
593 /* The number of local .got entries we reserve. */
594 #define MIPS_RESERVED_GOTNO (2)
595
596 /* The offset of $gp from the beginning of the .got section. */
597 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599 /* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
603 /* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
605 #define STUB_LW(abfd) \
606 ((ABI_64_P (abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
609 #define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611 #define STUB_JALR 0x0320f809 /* jal t9 */
612 #define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614 #define MIPS_FUNCTION_STUB_SIZE (16)
615
616 /* The name of the dynamic interpreter. This is put in the .interp
617 section. */
618
619 #define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
623
624 #ifdef BFD64
625 #define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
627 #define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629 #define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631 #define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633 #else
634 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
635 #define ELF_R_SYM(bfd, i) \
636 (ELF32_R_SYM (i))
637 #define ELF_R_TYPE(bfd, i) \
638 (ELF32_R_TYPE (i))
639 #define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
641 #endif
642 \f
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
645
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
654
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
661
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
669 $f0/$f1 and $2/$3.)
670
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
674
675 We record any stubs that we find in the symbol table. */
676
677 #define FN_STUB ".mips16.fn."
678 #define CALL_STUB ".mips16.call."
679 #define CALL_FP_STUB ".mips16.call.fp."
680 \f
681 /* Look up an entry in a MIPS ELF linker hash table. */
682
683 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
686 (copy), (follow)))
687
688 /* Traverse a MIPS ELF linker hash table. */
689
690 #define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
692 (&(table)->root, \
693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
694 (info)))
695
696 /* Get the MIPS ELF linker hash table from a link_info structure. */
697
698 #define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
700
701 /* Create an entry in a MIPS ELF linker hash table. */
702
703 static struct bfd_hash_entry *
704 mips_elf_link_hash_newfunc (entry, table, string)
705 struct bfd_hash_entry *entry;
706 struct bfd_hash_table *table;
707 const char *string;
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == (struct mips_elf_link_hash_entry *) NULL)
715 ret = ((struct mips_elf_link_hash_entry *)
716 bfd_hash_allocate (table,
717 sizeof (struct mips_elf_link_hash_entry)));
718 if (ret == (struct mips_elf_link_hash_entry *) NULL)
719 return (struct bfd_hash_entry *) ret;
720
721 /* Call the allocation method of the superclass. */
722 ret = ((struct mips_elf_link_hash_entry *)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 table, string));
725 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 {
727 /* Set local fields. */
728 memset (&ret->esym, 0, sizeof (EXTR));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
731 ret->esym.ifd = -2;
732 ret->possibly_dynamic_relocs = 0;
733 ret->readonly_reloc = FALSE;
734 ret->min_dyn_reloc_index = 0;
735 ret->no_fn_stub = FALSE;
736 ret->fn_stub = NULL;
737 ret->need_fn_stub = FALSE;
738 ret->call_stub = NULL;
739 ret->call_fp_stub = NULL;
740 ret->forced_local = FALSE;
741 }
742
743 return (struct bfd_hash_entry *) ret;
744 }
745
746 bfd_boolean
747 _bfd_mips_elf_new_section_hook (abfd, sec)
748 bfd *abfd;
749 asection *sec;
750 {
751 struct _mips_elf_section_data *sdata;
752 bfd_size_type amt = sizeof (*sdata);
753
754 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
755 if (sdata == NULL)
756 return FALSE;
757 sec->used_by_bfd = (PTR) sdata;
758
759 return _bfd_elf_new_section_hook (abfd, sec);
760 }
761 \f
762 /* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
764
765 bfd_boolean
766 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
767 bfd *abfd;
768 asection *section;
769 struct ecoff_debug_info *debug;
770 {
771 HDRR *symhdr;
772 const struct ecoff_debug_swap *swap;
773 char *ext_hdr = NULL;
774
775 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
776 memset (debug, 0, sizeof (*debug));
777
778 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
779 if (ext_hdr == NULL && swap->external_hdr_size != 0)
780 goto error_return;
781
782 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
783 swap->external_hdr_size))
784 goto error_return;
785
786 symhdr = &debug->symbolic_header;
787 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788
789 /* The symbolic header contains absolute file offsets and sizes to
790 read. */
791 #define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
793 debug->ptr = NULL; \
794 else \
795 { \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
799 goto error_return; \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
802 goto error_return; \
803 }
804
805 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
807 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
808 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
809 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
810 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 union aux_ext *);
812 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
813 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
814 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
815 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
816 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
817 #undef READ
818
819 debug->fdr = NULL;
820 debug->adjust = NULL;
821
822 return TRUE;
823
824 error_return:
825 if (ext_hdr != NULL)
826 free (ext_hdr);
827 if (debug->line != NULL)
828 free (debug->line);
829 if (debug->external_dnr != NULL)
830 free (debug->external_dnr);
831 if (debug->external_pdr != NULL)
832 free (debug->external_pdr);
833 if (debug->external_sym != NULL)
834 free (debug->external_sym);
835 if (debug->external_opt != NULL)
836 free (debug->external_opt);
837 if (debug->external_aux != NULL)
838 free (debug->external_aux);
839 if (debug->ss != NULL)
840 free (debug->ss);
841 if (debug->ssext != NULL)
842 free (debug->ssext);
843 if (debug->external_fdr != NULL)
844 free (debug->external_fdr);
845 if (debug->external_rfd != NULL)
846 free (debug->external_rfd);
847 if (debug->external_ext != NULL)
848 free (debug->external_ext);
849 return FALSE;
850 }
851 \f
852 /* Swap RPDR (runtime procedure table entry) for output. */
853
854 static void
855 ecoff_swap_rpdr_out (abfd, in, ex)
856 bfd *abfd;
857 const RPDR *in;
858 struct rpdr_ext *ex;
859 {
860 H_PUT_S32 (abfd, in->adr, ex->p_adr);
861 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
862 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
863 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
864 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
865 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866
867 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
868 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869
870 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871 #if 0 /* FIXME */
872 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
873 #endif
874 }
875
876 /* Create a runtime procedure table from the .mdebug section. */
877
878 static bfd_boolean
879 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
880 PTR handle;
881 bfd *abfd;
882 struct bfd_link_info *info;
883 asection *s;
884 struct ecoff_debug_info *debug;
885 {
886 const struct ecoff_debug_swap *swap;
887 HDRR *hdr = &debug->symbolic_header;
888 RPDR *rpdr, *rp;
889 struct rpdr_ext *erp;
890 PTR rtproc;
891 struct pdr_ext *epdr;
892 struct sym_ext *esym;
893 char *ss, **sv;
894 char *str;
895 bfd_size_type size;
896 bfd_size_type count;
897 unsigned long sindex;
898 unsigned long i;
899 PDR pdr;
900 SYMR sym;
901 const char *no_name_func = _("static procedure (no name)");
902
903 epdr = NULL;
904 rpdr = NULL;
905 esym = NULL;
906 ss = NULL;
907 sv = NULL;
908
909 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910
911 sindex = strlen (no_name_func) + 1;
912 count = hdr->ipdMax;
913 if (count > 0)
914 {
915 size = swap->external_pdr_size;
916
917 epdr = (struct pdr_ext *) bfd_malloc (size * count);
918 if (epdr == NULL)
919 goto error_return;
920
921 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
922 goto error_return;
923
924 size = sizeof (RPDR);
925 rp = rpdr = (RPDR *) bfd_malloc (size * count);
926 if (rpdr == NULL)
927 goto error_return;
928
929 size = sizeof (char *);
930 sv = (char **) bfd_malloc (size * count);
931 if (sv == NULL)
932 goto error_return;
933
934 count = hdr->isymMax;
935 size = swap->external_sym_size;
936 esym = (struct sym_ext *) bfd_malloc (size * count);
937 if (esym == NULL)
938 goto error_return;
939
940 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
941 goto error_return;
942
943 count = hdr->issMax;
944 ss = (char *) bfd_malloc (count);
945 if (ss == NULL)
946 goto error_return;
947 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
948 goto error_return;
949
950 count = hdr->ipdMax;
951 for (i = 0; i < (unsigned long) count; i++, rp++)
952 {
953 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
954 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->adr = sym.value;
956 rp->regmask = pdr.regmask;
957 rp->regoffset = pdr.regoffset;
958 rp->fregmask = pdr.fregmask;
959 rp->fregoffset = pdr.fregoffset;
960 rp->frameoffset = pdr.frameoffset;
961 rp->framereg = pdr.framereg;
962 rp->pcreg = pdr.pcreg;
963 rp->irpss = sindex;
964 sv[i] = ss + sym.iss;
965 sindex += strlen (sv[i]) + 1;
966 }
967 }
968
969 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
970 size = BFD_ALIGN (size, 16);
971 rtproc = (PTR) bfd_alloc (abfd, size);
972 if (rtproc == NULL)
973 {
974 mips_elf_hash_table (info)->procedure_count = 0;
975 goto error_return;
976 }
977
978 mips_elf_hash_table (info)->procedure_count = count + 2;
979
980 erp = (struct rpdr_ext *) rtproc;
981 memset (erp, 0, sizeof (struct rpdr_ext));
982 erp++;
983 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
984 strcpy (str, no_name_func);
985 str += strlen (no_name_func) + 1;
986 for (i = 0; i < count; i++)
987 {
988 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 strcpy (str, sv[i]);
990 str += strlen (sv[i]) + 1;
991 }
992 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993
994 /* Set the size and contents of .rtproc section. */
995 s->_raw_size = size;
996 s->contents = (bfd_byte *) rtproc;
997
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s->link_order_head = (struct bfd_link_order *) NULL;
1001
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012
1013 return TRUE;
1014
1015 error_return:
1016 if (epdr != NULL)
1017 free (epdr);
1018 if (rpdr != NULL)
1019 free (rpdr);
1020 if (esym != NULL)
1021 free (esym);
1022 if (ss != NULL)
1023 free (ss);
1024 if (sv != NULL)
1025 free (sv);
1026 return FALSE;
1027 }
1028
1029 /* Check the mips16 stubs for a particular symbol, and see if we can
1030 discard them. */
1031
1032 static bfd_boolean
1033 mips_elf_check_mips16_stubs (h, data)
1034 struct mips_elf_link_hash_entry *h;
1035 PTR data ATTRIBUTE_UNUSED;
1036 {
1037 if (h->root.root.type == bfd_link_hash_warning)
1038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039
1040 if (h->fn_stub != NULL
1041 && ! h->need_fn_stub)
1042 {
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h->fn_stub->_raw_size = 0;
1047 h->fn_stub->_cooked_size = 0;
1048 h->fn_stub->flags &= ~SEC_RELOC;
1049 h->fn_stub->reloc_count = 0;
1050 h->fn_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_stub->_raw_size = 0;
1060 h->call_stub->_cooked_size = 0;
1061 h->call_stub->flags &= ~SEC_RELOC;
1062 h->call_stub->reloc_count = 0;
1063 h->call_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 if (h->call_fp_stub != NULL
1067 && h->root.other == STO_MIPS16)
1068 {
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h->call_fp_stub->_raw_size = 0;
1073 h->call_fp_stub->_cooked_size = 0;
1074 h->call_fp_stub->flags &= ~SEC_RELOC;
1075 h->call_fp_stub->reloc_count = 0;
1076 h->call_fp_stub->flags |= SEC_EXCLUDE;
1077 }
1078
1079 return TRUE;
1080 }
1081 \f
1082 bfd_reloc_status_type
1083 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1084 relocateable, data, gp)
1085 bfd *abfd;
1086 asymbol *symbol;
1087 arelent *reloc_entry;
1088 asection *input_section;
1089 bfd_boolean relocateable;
1090 PTR data;
1091 bfd_vma gp;
1092 {
1093 bfd_vma relocation;
1094 unsigned long insn;
1095 unsigned long val;
1096
1097 if (bfd_is_com_section (symbol->section))
1098 relocation = 0;
1099 else
1100 relocation = symbol->value;
1101
1102 relocation += symbol->section->output_section->vma;
1103 relocation += symbol->section->output_offset;
1104
1105 if (reloc_entry->address > input_section->_cooked_size)
1106 return bfd_reloc_outofrange;
1107
1108 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1109
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry->howto->src_mask == 0)
1112 {
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val = reloc_entry->addend;
1115 }
1116 else
1117 {
1118 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1119 if (val & 0x8000)
1120 val -= 0x10000;
1121 }
1122
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1126 if (! relocateable
1127 || (symbol->flags & BSF_SECTION_SYM) != 0)
1128 val += relocation - gp;
1129
1130 insn = (insn & ~0xffff) | (val & 0xffff);
1131 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1132
1133 if (relocateable)
1134 reloc_entry->address += input_section->output_offset;
1135
1136 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1592 }
1593
1594 static int
1595 mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598 {
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606 }
1607
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613 static hashval_t
1614 mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616 {
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626 }
1627
1628 static int
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632 {
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1641 }
1642 \f
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1644
1645 static asection *
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649 {
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 4))
1667 return NULL;
1668 }
1669 return sreloc;
1670 }
1671
1672 /* Returns the GOT section for ABFD. */
1673
1674 static asection *
1675 mips_elf_got_section (abfd, maybe_excluded)
1676 bfd *abfd;
1677 bfd_boolean maybe_excluded;
1678 {
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
1684 }
1685
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694 {
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
1707 return g;
1708 }
1709
1710 /* Returns the GOT offset at which the indicated address can be found.
1711 If there is not yet a GOT entry for this value, create one. Returns
1712 -1 if no satisfactory GOT offset can be found. */
1713
1714 static bfd_vma
1715 mips_elf_local_got_index (abfd, ibfd, info, value)
1716 bfd *abfd, *ibfd;
1717 struct bfd_link_info *info;
1718 bfd_vma value;
1719 {
1720 asection *sgot;
1721 struct mips_got_info *g;
1722 struct mips_got_entry *entry;
1723
1724 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1725
1726 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1727 if (entry)
1728 return entry->gotidx;
1729 else
1730 return MINUS_ONE;
1731 }
1732
1733 /* Returns the GOT index for the global symbol indicated by H. */
1734
1735 static bfd_vma
1736 mips_elf_global_got_index (abfd, ibfd, h)
1737 bfd *abfd, *ibfd;
1738 struct elf_link_hash_entry *h;
1739 {
1740 bfd_vma index;
1741 asection *sgot;
1742 struct mips_got_info *g, *gg;
1743 long global_got_dynindx = 0;
1744
1745 gg = g = mips_elf_got_info (abfd, &sgot);
1746 if (g->bfd2got && ibfd)
1747 {
1748 struct mips_got_entry e, *p;
1749
1750 BFD_ASSERT (h->dynindx >= 0);
1751
1752 g = mips_elf_got_for_ibfd (g, ibfd);
1753 if (g->next != gg)
1754 {
1755 e.abfd = ibfd;
1756 e.symndx = -1;
1757 e.d.h = (struct mips_elf_link_hash_entry *)h;
1758
1759 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1760
1761 BFD_ASSERT (p->gotidx > 0);
1762 return p->gotidx;
1763 }
1764 }
1765
1766 if (gg->global_gotsym != NULL)
1767 global_got_dynindx = gg->global_gotsym->dynindx;
1768
1769 /* Once we determine the global GOT entry with the lowest dynamic
1770 symbol table index, we must put all dynamic symbols with greater
1771 indices into the GOT. That makes it easy to calculate the GOT
1772 offset. */
1773 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1774 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1775 * MIPS_ELF_GOT_SIZE (abfd));
1776 BFD_ASSERT (index < sgot->_raw_size);
1777
1778 return index;
1779 }
1780
1781 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1782 are supposed to be placed at small offsets in the GOT, i.e.,
1783 within 32KB of GP. Return the index into the GOT for this page,
1784 and store the offset from this entry to the desired address in
1785 OFFSETP, if it is non-NULL. */
1786
1787 static bfd_vma
1788 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1789 bfd *abfd, *ibfd;
1790 struct bfd_link_info *info;
1791 bfd_vma value;
1792 bfd_vma *offsetp;
1793 {
1794 asection *sgot;
1795 struct mips_got_info *g;
1796 bfd_vma index;
1797 struct mips_got_entry *entry;
1798
1799 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1800
1801 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1802 (value + 0x8000)
1803 & (~(bfd_vma)0xffff));
1804
1805 if (!entry)
1806 return MINUS_ONE;
1807
1808 index = entry->gotidx;
1809
1810 if (offsetp)
1811 *offsetp = value - entry->d.address;
1812
1813 return index;
1814 }
1815
1816 /* Find a GOT entry whose higher-order 16 bits are the same as those
1817 for value. Return the index into the GOT for this entry. */
1818
1819 static bfd_vma
1820 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1821 bfd *abfd, *ibfd;
1822 struct bfd_link_info *info;
1823 bfd_vma value;
1824 bfd_boolean external;
1825 {
1826 asection *sgot;
1827 struct mips_got_info *g;
1828 struct mips_got_entry *entry;
1829
1830 if (! external)
1831 {
1832 /* Although the ABI says that it is "the high-order 16 bits" that we
1833 want, it is really the %high value. The complete value is
1834 calculated with a `addiu' of a LO16 relocation, just as with a
1835 HI16/LO16 pair. */
1836 value = mips_elf_high (value) << 16;
1837 }
1838
1839 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1840
1841 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1842 if (entry)
1843 return entry->gotidx;
1844 else
1845 return MINUS_ONE;
1846 }
1847
1848 /* Returns the offset for the entry at the INDEXth position
1849 in the GOT. */
1850
1851 static bfd_vma
1852 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1853 bfd *dynobj;
1854 bfd *output_bfd;
1855 bfd *input_bfd;
1856 bfd_vma index;
1857 {
1858 asection *sgot;
1859 bfd_vma gp;
1860 struct mips_got_info *g;
1861
1862 g = mips_elf_got_info (dynobj, &sgot);
1863 gp = _bfd_get_gp_value (output_bfd)
1864 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1865
1866 return sgot->output_section->vma + sgot->output_offset + index - gp;
1867 }
1868
1869 /* Create a local GOT entry for VALUE. Return the index of the entry,
1870 or -1 if it could not be created. */
1871
1872 static struct mips_got_entry *
1873 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1874 bfd *abfd, *ibfd;
1875 struct mips_got_info *gg;
1876 asection *sgot;
1877 bfd_vma value;
1878 {
1879 struct mips_got_entry entry, **loc;
1880 struct mips_got_info *g;
1881
1882 entry.abfd = NULL;
1883 entry.symndx = -1;
1884 entry.d.address = value;
1885
1886 g = mips_elf_got_for_ibfd (gg, ibfd);
1887 if (g == NULL)
1888 {
1889 g = mips_elf_got_for_ibfd (gg, abfd);
1890 BFD_ASSERT (g != NULL);
1891 }
1892
1893 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1894 INSERT);
1895 if (*loc)
1896 return *loc;
1897
1898 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1899
1900 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1901
1902 if (! *loc)
1903 return NULL;
1904
1905 memcpy (*loc, &entry, sizeof entry);
1906
1907 if (g->assigned_gotno >= g->local_gotno)
1908 {
1909 (*loc)->gotidx = -1;
1910 /* We didn't allocate enough space in the GOT. */
1911 (*_bfd_error_handler)
1912 (_("not enough GOT space for local GOT entries"));
1913 bfd_set_error (bfd_error_bad_value);
1914 return NULL;
1915 }
1916
1917 MIPS_ELF_PUT_WORD (abfd, value,
1918 (sgot->contents + entry.gotidx));
1919
1920 return *loc;
1921 }
1922
1923 /* Sort the dynamic symbol table so that symbols that need GOT entries
1924 appear towards the end. This reduces the amount of GOT space
1925 required. MAX_LOCAL is used to set the number of local symbols
1926 known to be in the dynamic symbol table. During
1927 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1928 section symbols are added and the count is higher. */
1929
1930 static bfd_boolean
1931 mips_elf_sort_hash_table (info, max_local)
1932 struct bfd_link_info *info;
1933 unsigned long max_local;
1934 {
1935 struct mips_elf_hash_sort_data hsd;
1936 struct mips_got_info *g;
1937 bfd *dynobj;
1938
1939 dynobj = elf_hash_table (info)->dynobj;
1940
1941 g = mips_elf_got_info (dynobj, NULL);
1942
1943 hsd.low = NULL;
1944 hsd.max_unref_got_dynindx =
1945 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1946 /* In the multi-got case, assigned_gotno of the master got_info
1947 indicate the number of entries that aren't referenced in the
1948 primary GOT, but that must have entries because there are
1949 dynamic relocations that reference it. Since they aren't
1950 referenced, we move them to the end of the GOT, so that they
1951 don't prevent other entries that are referenced from getting
1952 too large offsets. */
1953 - (g->next ? g->assigned_gotno : 0);
1954 hsd.max_non_got_dynindx = max_local;
1955 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1956 elf_hash_table (info)),
1957 mips_elf_sort_hash_table_f,
1958 &hsd);
1959
1960 /* There should have been enough room in the symbol table to
1961 accommodate both the GOT and non-GOT symbols. */
1962 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1963 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1964 <= elf_hash_table (info)->dynsymcount);
1965
1966 /* Now we know which dynamic symbol has the lowest dynamic symbol
1967 table index in the GOT. */
1968 g->global_gotsym = hsd.low;
1969
1970 return TRUE;
1971 }
1972
1973 /* If H needs a GOT entry, assign it the highest available dynamic
1974 index. Otherwise, assign it the lowest available dynamic
1975 index. */
1976
1977 static bfd_boolean
1978 mips_elf_sort_hash_table_f (h, data)
1979 struct mips_elf_link_hash_entry *h;
1980 PTR data;
1981 {
1982 struct mips_elf_hash_sort_data *hsd
1983 = (struct mips_elf_hash_sort_data *) data;
1984
1985 if (h->root.root.type == bfd_link_hash_warning)
1986 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1987
1988 /* Symbols without dynamic symbol table entries aren't interesting
1989 at all. */
1990 if (h->root.dynindx == -1)
1991 return TRUE;
1992
1993 /* Global symbols that need GOT entries that are not explicitly
1994 referenced are marked with got offset 2. Those that are
1995 referenced get a 1, and those that don't need GOT entries get
1996 -1. */
1997 if (h->root.got.offset == 2)
1998 {
1999 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2000 hsd->low = (struct elf_link_hash_entry *) h;
2001 h->root.dynindx = hsd->max_unref_got_dynindx++;
2002 }
2003 else if (h->root.got.offset != 1)
2004 h->root.dynindx = hsd->max_non_got_dynindx++;
2005 else
2006 {
2007 h->root.dynindx = --hsd->min_got_dynindx;
2008 hsd->low = (struct elf_link_hash_entry *) h;
2009 }
2010
2011 return TRUE;
2012 }
2013
2014 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2015 symbol table index lower than any we've seen to date, record it for
2016 posterity. */
2017
2018 static bfd_boolean
2019 mips_elf_record_global_got_symbol (h, abfd, info, g)
2020 struct elf_link_hash_entry *h;
2021 bfd *abfd;
2022 struct bfd_link_info *info;
2023 struct mips_got_info *g;
2024 {
2025 struct mips_got_entry entry, **loc;
2026
2027 /* A global symbol in the GOT must also be in the dynamic symbol
2028 table. */
2029 if (h->dynindx == -1)
2030 {
2031 switch (ELF_ST_VISIBILITY (h->other))
2032 {
2033 case STV_INTERNAL:
2034 case STV_HIDDEN:
2035 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2036 break;
2037 }
2038 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2039 return FALSE;
2040 }
2041
2042 entry.abfd = abfd;
2043 entry.symndx = -1;
2044 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2045
2046 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2047 INSERT);
2048
2049 /* If we've already marked this entry as needing GOT space, we don't
2050 need to do it again. */
2051 if (*loc)
2052 return TRUE;
2053
2054 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2055
2056 if (! *loc)
2057 return FALSE;
2058
2059 entry.gotidx = -1;
2060 memcpy (*loc, &entry, sizeof entry);
2061
2062 if (h->got.offset != MINUS_ONE)
2063 return TRUE;
2064
2065 /* By setting this to a value other than -1, we are indicating that
2066 there needs to be a GOT entry for H. Avoid using zero, as the
2067 generic ELF copy_indirect_symbol tests for <= 0. */
2068 h->got.offset = 1;
2069
2070 return TRUE;
2071 }
2072
2073 /* Reserve space in G for a GOT entry containing the value of symbol
2074 SYMNDX in input bfd ABDF, plus ADDEND. */
2075
2076 static bfd_boolean
2077 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2078 bfd *abfd;
2079 long symndx;
2080 bfd_vma addend;
2081 struct mips_got_info *g;
2082 {
2083 struct mips_got_entry entry, **loc;
2084
2085 entry.abfd = abfd;
2086 entry.symndx = symndx;
2087 entry.d.addend = addend;
2088 loc = (struct mips_got_entry **)
2089 htab_find_slot (g->got_entries, &entry, INSERT);
2090
2091 if (*loc)
2092 return TRUE;
2093
2094 entry.gotidx = g->local_gotno++;
2095
2096 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2097
2098 if (! *loc)
2099 return FALSE;
2100
2101 memcpy (*loc, &entry, sizeof entry);
2102
2103 return TRUE;
2104 }
2105 \f
2106 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2107
2108 static hashval_t
2109 mips_elf_bfd2got_entry_hash (entry_)
2110 const PTR entry_;
2111 {
2112 const struct mips_elf_bfd2got_hash *entry
2113 = (struct mips_elf_bfd2got_hash *)entry_;
2114
2115 return entry->bfd->id;
2116 }
2117
2118 /* Check whether two hash entries have the same bfd. */
2119
2120 static int
2121 mips_elf_bfd2got_entry_eq (entry1, entry2)
2122 const PTR entry1;
2123 const PTR entry2;
2124 {
2125 const struct mips_elf_bfd2got_hash *e1
2126 = (const struct mips_elf_bfd2got_hash *)entry1;
2127 const struct mips_elf_bfd2got_hash *e2
2128 = (const struct mips_elf_bfd2got_hash *)entry2;
2129
2130 return e1->bfd == e2->bfd;
2131 }
2132
2133 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2134 be the master GOT data. */
2135
2136 static struct mips_got_info *
2137 mips_elf_got_for_ibfd (g, ibfd)
2138 struct mips_got_info *g;
2139 bfd *ibfd;
2140 {
2141 struct mips_elf_bfd2got_hash e, *p;
2142
2143 if (! g->bfd2got)
2144 return g;
2145
2146 e.bfd = ibfd;
2147 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2148 return p ? p->g : NULL;
2149 }
2150
2151 /* Create one separate got for each bfd that has entries in the global
2152 got, such that we can tell how many local and global entries each
2153 bfd requires. */
2154
2155 static int
2156 mips_elf_make_got_per_bfd (entryp, p)
2157 void **entryp;
2158 void *p;
2159 {
2160 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2161 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2162 htab_t bfd2got = arg->bfd2got;
2163 struct mips_got_info *g;
2164 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2165 void **bfdgotp;
2166
2167 /* Find the got_info for this GOT entry's input bfd. Create one if
2168 none exists. */
2169 bfdgot_entry.bfd = entry->abfd;
2170 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2171 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2172
2173 if (bfdgot != NULL)
2174 g = bfdgot->g;
2175 else
2176 {
2177 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2178 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2179
2180 if (bfdgot == NULL)
2181 {
2182 arg->obfd = 0;
2183 return 0;
2184 }
2185
2186 *bfdgotp = bfdgot;
2187
2188 bfdgot->bfd = entry->abfd;
2189 bfdgot->g = g = (struct mips_got_info *)
2190 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2191 if (g == NULL)
2192 {
2193 arg->obfd = 0;
2194 return 0;
2195 }
2196
2197 g->global_gotsym = NULL;
2198 g->global_gotno = 0;
2199 g->local_gotno = 0;
2200 g->assigned_gotno = -1;
2201 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2202 mips_elf_multi_got_entry_eq,
2203 (htab_del) NULL);
2204 if (g->got_entries == NULL)
2205 {
2206 arg->obfd = 0;
2207 return 0;
2208 }
2209
2210 g->bfd2got = NULL;
2211 g->next = NULL;
2212 }
2213
2214 /* Insert the GOT entry in the bfd's got entry hash table. */
2215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2216 if (*entryp != NULL)
2217 return 1;
2218
2219 *entryp = entry;
2220
2221 if (entry->symndx >= 0 || entry->d.h->forced_local)
2222 ++g->local_gotno;
2223 else
2224 ++g->global_gotno;
2225
2226 return 1;
2227 }
2228
2229 /* Attempt to merge gots of different input bfds. Try to use as much
2230 as possible of the primary got, since it doesn't require explicit
2231 dynamic relocations, but don't use bfds that would reference global
2232 symbols out of the addressable range. Failing the primary got,
2233 attempt to merge with the current got, or finish the current got
2234 and then make make the new got current. */
2235
2236 static int
2237 mips_elf_merge_gots (bfd2got_, p)
2238 void **bfd2got_;
2239 void *p;
2240 {
2241 struct mips_elf_bfd2got_hash *bfd2got
2242 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2244 unsigned int lcount = bfd2got->g->local_gotno;
2245 unsigned int gcount = bfd2got->g->global_gotno;
2246 unsigned int maxcnt = arg->max_count;
2247
2248 /* If we don't have a primary GOT and this is not too big, use it as
2249 a starting point for the primary GOT. */
2250 if (! arg->primary && lcount + gcount <= maxcnt)
2251 {
2252 arg->primary = bfd2got->g;
2253 arg->primary_count = lcount + gcount;
2254 }
2255 /* If it looks like we can merge this bfd's entries with those of
2256 the primary, merge them. The heuristics is conservative, but we
2257 don't have to squeeze it too hard. */
2258 else if (arg->primary
2259 && (arg->primary_count + lcount + gcount) <= maxcnt)
2260 {
2261 struct mips_got_info *g = bfd2got->g;
2262 int old_lcount = arg->primary->local_gotno;
2263 int old_gcount = arg->primary->global_gotno;
2264
2265 bfd2got->g = arg->primary;
2266
2267 htab_traverse (g->got_entries,
2268 mips_elf_make_got_per_bfd,
2269 arg);
2270 if (arg->obfd == NULL)
2271 return 0;
2272
2273 htab_delete (g->got_entries);
2274 /* We don't have to worry about releasing memory of the actual
2275 got entries, since they're all in the master got_entries hash
2276 table anyway. */
2277
2278 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2279 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2280
2281 arg->primary_count = arg->primary->local_gotno
2282 + arg->primary->global_gotno;
2283 }
2284 /* If we can merge with the last-created got, do it. */
2285 else if (arg->current
2286 && arg->current_count + lcount + gcount <= maxcnt)
2287 {
2288 struct mips_got_info *g = bfd2got->g;
2289 int old_lcount = arg->current->local_gotno;
2290 int old_gcount = arg->current->global_gotno;
2291
2292 bfd2got->g = arg->current;
2293
2294 htab_traverse (g->got_entries,
2295 mips_elf_make_got_per_bfd,
2296 arg);
2297 if (arg->obfd == NULL)
2298 return 0;
2299
2300 htab_delete (g->got_entries);
2301
2302 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2303 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2304
2305 arg->current_count = arg->current->local_gotno
2306 + arg->current->global_gotno;
2307 }
2308 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2309 fits; if it turns out that it doesn't, we'll get relocation
2310 overflows anyway. */
2311 else
2312 {
2313 bfd2got->g->next = arg->current;
2314 arg->current = bfd2got->g;
2315
2316 arg->current_count = lcount + gcount;
2317 }
2318
2319 return 1;
2320 }
2321
2322 /* If passed a NULL mips_got_info in the argument, set the marker used
2323 to tell whether a global symbol needs a got entry (in the primary
2324 got) to the given VALUE.
2325
2326 If passed a pointer G to a mips_got_info in the argument (it must
2327 not be the primary GOT), compute the offset from the beginning of
2328 the (primary) GOT section to the entry in G corresponding to the
2329 global symbol. G's assigned_gotno must contain the index of the
2330 first available global GOT entry in G. VALUE must contain the size
2331 of a GOT entry in bytes. For each global GOT entry that requires a
2332 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2333 marked as not elligible for lazy resolution through a function
2334 stub. */
2335 static int
2336 mips_elf_set_global_got_offset (entryp, p)
2337 void **entryp;
2338 void *p;
2339 {
2340 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2341 struct mips_elf_set_global_got_offset_arg *arg
2342 = (struct mips_elf_set_global_got_offset_arg *)p;
2343 struct mips_got_info *g = arg->g;
2344
2345 if (entry->abfd != NULL && entry->symndx == -1
2346 && entry->d.h->root.dynindx != -1)
2347 {
2348 if (g)
2349 {
2350 BFD_ASSERT (g->global_gotsym == NULL);
2351
2352 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2353 /* We can't do lazy update of GOT entries for
2354 non-primary GOTs since the PLT entries don't use the
2355 right offsets, so punt at it for now. */
2356 entry->d.h->no_fn_stub = TRUE;
2357 if (arg->info->shared
2358 || (elf_hash_table (arg->info)->dynamic_sections_created
2359 && ((entry->d.h->root.elf_link_hash_flags
2360 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2361 && ((entry->d.h->root.elf_link_hash_flags
2362 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2363 ++arg->needed_relocs;
2364 }
2365 else
2366 entry->d.h->root.got.offset = arg->value;
2367 }
2368
2369 return 1;
2370 }
2371
2372 /* Follow indirect and warning hash entries so that each got entry
2373 points to the final symbol definition. P must point to a pointer
2374 to the hash table we're traversing. Since this traversal may
2375 modify the hash table, we set this pointer to NULL to indicate
2376 we've made a potentially-destructive change to the hash table, so
2377 the traversal must be restarted. */
2378 static int
2379 mips_elf_resolve_final_got_entry (entryp, p)
2380 void **entryp;
2381 void *p;
2382 {
2383 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2384 htab_t got_entries = *(htab_t *)p;
2385
2386 if (entry->abfd != NULL && entry->symndx == -1)
2387 {
2388 struct mips_elf_link_hash_entry *h = entry->d.h;
2389
2390 while (h->root.root.type == bfd_link_hash_indirect
2391 || h->root.root.type == bfd_link_hash_warning)
2392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2393
2394 if (entry->d.h == h)
2395 return 1;
2396
2397 entry->d.h = h;
2398
2399 /* If we can't find this entry with the new bfd hash, re-insert
2400 it, and get the traversal restarted. */
2401 if (! htab_find (got_entries, entry))
2402 {
2403 htab_clear_slot (got_entries, entryp);
2404 entryp = htab_find_slot (got_entries, entry, INSERT);
2405 if (! *entryp)
2406 *entryp = entry;
2407 /* Abort the traversal, since the whole table may have
2408 moved, and leave it up to the parent to restart the
2409 process. */
2410 *(htab_t *)p = NULL;
2411 return 0;
2412 }
2413 /* We might want to decrement the global_gotno count, but it's
2414 either too early or too late for that at this point. */
2415 }
2416
2417 return 1;
2418 }
2419
2420 /* Turn indirect got entries in a got_entries table into their final
2421 locations. */
2422 static void
2423 mips_elf_resolve_final_got_entries (g)
2424 struct mips_got_info *g;
2425 {
2426 htab_t got_entries;
2427
2428 do
2429 {
2430 got_entries = g->got_entries;
2431
2432 htab_traverse (got_entries,
2433 mips_elf_resolve_final_got_entry,
2434 &got_entries);
2435 }
2436 while (got_entries == NULL);
2437 }
2438
2439 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2440 the primary GOT. */
2441 static bfd_vma
2442 mips_elf_adjust_gp (abfd, g, ibfd)
2443 bfd *abfd;
2444 struct mips_got_info *g;
2445 bfd *ibfd;
2446 {
2447 if (g->bfd2got == NULL)
2448 return 0;
2449
2450 g = mips_elf_got_for_ibfd (g, ibfd);
2451 if (! g)
2452 return 0;
2453
2454 BFD_ASSERT (g->next);
2455
2456 g = g->next;
2457
2458 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2459 }
2460
2461 /* Turn a single GOT that is too big for 16-bit addressing into
2462 a sequence of GOTs, each one 16-bit addressable. */
2463
2464 static bfd_boolean
2465 mips_elf_multi_got (abfd, info, g, got, pages)
2466 bfd *abfd;
2467 struct bfd_link_info *info;
2468 struct mips_got_info *g;
2469 asection *got;
2470 bfd_size_type pages;
2471 {
2472 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2473 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2474 struct mips_got_info *gg;
2475 unsigned int assign;
2476
2477 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2478 mips_elf_bfd2got_entry_eq,
2479 (htab_del) NULL);
2480 if (g->bfd2got == NULL)
2481 return FALSE;
2482
2483 got_per_bfd_arg.bfd2got = g->bfd2got;
2484 got_per_bfd_arg.obfd = abfd;
2485 got_per_bfd_arg.info = info;
2486
2487 /* Count how many GOT entries each input bfd requires, creating a
2488 map from bfd to got info while at that. */
2489 mips_elf_resolve_final_got_entries (g);
2490 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2491 if (got_per_bfd_arg.obfd == NULL)
2492 return FALSE;
2493
2494 got_per_bfd_arg.current = NULL;
2495 got_per_bfd_arg.primary = NULL;
2496 /* Taking out PAGES entries is a worst-case estimate. We could
2497 compute the maximum number of pages that each separate input bfd
2498 uses, but it's probably not worth it. */
2499 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2500 / MIPS_ELF_GOT_SIZE (abfd))
2501 - MIPS_RESERVED_GOTNO - pages);
2502
2503 /* Try to merge the GOTs of input bfds together, as long as they
2504 don't seem to exceed the maximum GOT size, choosing one of them
2505 to be the primary GOT. */
2506 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2507 if (got_per_bfd_arg.obfd == NULL)
2508 return FALSE;
2509
2510 /* If we find any suitable primary GOT, create an empty one. */
2511 if (got_per_bfd_arg.primary == NULL)
2512 {
2513 g->next = (struct mips_got_info *)
2514 bfd_alloc (abfd, sizeof (struct mips_got_info));
2515 if (g->next == NULL)
2516 return FALSE;
2517
2518 g->next->global_gotsym = NULL;
2519 g->next->global_gotno = 0;
2520 g->next->local_gotno = 0;
2521 g->next->assigned_gotno = 0;
2522 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2523 mips_elf_multi_got_entry_eq,
2524 (htab_del) NULL);
2525 if (g->next->got_entries == NULL)
2526 return FALSE;
2527 g->next->bfd2got = NULL;
2528 }
2529 else
2530 g->next = got_per_bfd_arg.primary;
2531 g->next->next = got_per_bfd_arg.current;
2532
2533 /* GG is now the master GOT, and G is the primary GOT. */
2534 gg = g;
2535 g = g->next;
2536
2537 /* Map the output bfd to the primary got. That's what we're going
2538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2539 didn't mark in check_relocs, and we want a quick way to find it.
2540 We can't just use gg->next because we're going to reverse the
2541 list. */
2542 {
2543 struct mips_elf_bfd2got_hash *bfdgot;
2544 void **bfdgotp;
2545
2546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2548
2549 if (bfdgot == NULL)
2550 return FALSE;
2551
2552 bfdgot->bfd = abfd;
2553 bfdgot->g = g;
2554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2555
2556 BFD_ASSERT (*bfdgotp == NULL);
2557 *bfdgotp = bfdgot;
2558 }
2559
2560 /* The IRIX dynamic linker requires every symbol that is referenced
2561 in a dynamic relocation to be present in the primary GOT, so
2562 arrange for them to appear after those that are actually
2563 referenced.
2564
2565 GNU/Linux could very well do without it, but it would slow down
2566 the dynamic linker, since it would have to resolve every dynamic
2567 symbol referenced in other GOTs more than once, without help from
2568 the cache. Also, knowing that every external symbol has a GOT
2569 helps speed up the resolution of local symbols too, so GNU/Linux
2570 follows IRIX's practice.
2571
2572 The number 2 is used by mips_elf_sort_hash_table_f to count
2573 global GOT symbols that are unreferenced in the primary GOT, with
2574 an initial dynamic index computed from gg->assigned_gotno, where
2575 the number of unreferenced global entries in the primary GOT is
2576 preserved. */
2577 if (1)
2578 {
2579 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2580 g->global_gotno = gg->global_gotno;
2581 set_got_offset_arg.value = 2;
2582 }
2583 else
2584 {
2585 /* This could be used for dynamic linkers that don't optimize
2586 symbol resolution while applying relocations so as to use
2587 primary GOT entries or assuming the symbol is locally-defined.
2588 With this code, we assign lower dynamic indices to global
2589 symbols that are not referenced in the primary GOT, so that
2590 their entries can be omitted. */
2591 gg->assigned_gotno = 0;
2592 set_got_offset_arg.value = -1;
2593 }
2594
2595 /* Reorder dynamic symbols as described above (which behavior
2596 depends on the setting of VALUE). */
2597 set_got_offset_arg.g = NULL;
2598 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2599 &set_got_offset_arg);
2600 set_got_offset_arg.value = 1;
2601 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2602 &set_got_offset_arg);
2603 if (! mips_elf_sort_hash_table (info, 1))
2604 return FALSE;
2605
2606 /* Now go through the GOTs assigning them offset ranges.
2607 [assigned_gotno, local_gotno[ will be set to the range of local
2608 entries in each GOT. We can then compute the end of a GOT by
2609 adding local_gotno to global_gotno. We reverse the list and make
2610 it circular since then we'll be able to quickly compute the
2611 beginning of a GOT, by computing the end of its predecessor. To
2612 avoid special cases for the primary GOT, while still preserving
2613 assertions that are valid for both single- and multi-got links,
2614 we arrange for the main got struct to have the right number of
2615 global entries, but set its local_gotno such that the initial
2616 offset of the primary GOT is zero. Remember that the primary GOT
2617 will become the last item in the circular linked list, so it
2618 points back to the master GOT. */
2619 gg->local_gotno = -g->global_gotno;
2620 gg->global_gotno = g->global_gotno;
2621 assign = 0;
2622 gg->next = gg;
2623
2624 do
2625 {
2626 struct mips_got_info *gn;
2627
2628 assign += MIPS_RESERVED_GOTNO;
2629 g->assigned_gotno = assign;
2630 g->local_gotno += assign + pages;
2631 assign = g->local_gotno + g->global_gotno;
2632
2633 /* Take g out of the direct list, and push it onto the reversed
2634 list that gg points to. */
2635 gn = g->next;
2636 g->next = gg->next;
2637 gg->next = g;
2638 g = gn;
2639 }
2640 while (g);
2641
2642 got->_raw_size = (gg->next->local_gotno
2643 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2644
2645 return TRUE;
2646 }
2647
2648 \f
2649 /* Returns the first relocation of type r_type found, beginning with
2650 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2651
2652 static const Elf_Internal_Rela *
2653 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2654 bfd *abfd ATTRIBUTE_UNUSED;
2655 unsigned int r_type;
2656 const Elf_Internal_Rela *relocation;
2657 const Elf_Internal_Rela *relend;
2658 {
2659 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2660 immediately following. However, for the IRIX6 ABI, the next
2661 relocation may be a composed relocation consisting of several
2662 relocations for the same address. In that case, the R_MIPS_LO16
2663 relocation may occur as one of these. We permit a similar
2664 extension in general, as that is useful for GCC. */
2665 while (relocation < relend)
2666 {
2667 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2668 return relocation;
2669
2670 ++relocation;
2671 }
2672
2673 /* We didn't find it. */
2674 bfd_set_error (bfd_error_bad_value);
2675 return NULL;
2676 }
2677
2678 /* Return whether a relocation is against a local symbol. */
2679
2680 static bfd_boolean
2681 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2682 check_forced)
2683 bfd *input_bfd;
2684 const Elf_Internal_Rela *relocation;
2685 asection **local_sections;
2686 bfd_boolean check_forced;
2687 {
2688 unsigned long r_symndx;
2689 Elf_Internal_Shdr *symtab_hdr;
2690 struct mips_elf_link_hash_entry *h;
2691 size_t extsymoff;
2692
2693 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2694 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2695 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2696
2697 if (r_symndx < extsymoff)
2698 return TRUE;
2699 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2700 return TRUE;
2701
2702 if (check_forced)
2703 {
2704 /* Look up the hash table to check whether the symbol
2705 was forced local. */
2706 h = (struct mips_elf_link_hash_entry *)
2707 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2708 /* Find the real hash-table entry for this symbol. */
2709 while (h->root.root.type == bfd_link_hash_indirect
2710 || h->root.root.type == bfd_link_hash_warning)
2711 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2712 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2713 return TRUE;
2714 }
2715
2716 return FALSE;
2717 }
2718 \f
2719 /* Sign-extend VALUE, which has the indicated number of BITS. */
2720
2721 static bfd_vma
2722 mips_elf_sign_extend (value, bits)
2723 bfd_vma value;
2724 int bits;
2725 {
2726 if (value & ((bfd_vma) 1 << (bits - 1)))
2727 /* VALUE is negative. */
2728 value |= ((bfd_vma) - 1) << bits;
2729
2730 return value;
2731 }
2732
2733 /* Return non-zero if the indicated VALUE has overflowed the maximum
2734 range expressable by a signed number with the indicated number of
2735 BITS. */
2736
2737 static bfd_boolean
2738 mips_elf_overflow_p (value, bits)
2739 bfd_vma value;
2740 int bits;
2741 {
2742 bfd_signed_vma svalue = (bfd_signed_vma) value;
2743
2744 if (svalue > (1 << (bits - 1)) - 1)
2745 /* The value is too big. */
2746 return TRUE;
2747 else if (svalue < -(1 << (bits - 1)))
2748 /* The value is too small. */
2749 return TRUE;
2750
2751 /* All is well. */
2752 return FALSE;
2753 }
2754
2755 /* Calculate the %high function. */
2756
2757 static bfd_vma
2758 mips_elf_high (value)
2759 bfd_vma value;
2760 {
2761 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2762 }
2763
2764 /* Calculate the %higher function. */
2765
2766 static bfd_vma
2767 mips_elf_higher (value)
2768 bfd_vma value ATTRIBUTE_UNUSED;
2769 {
2770 #ifdef BFD64
2771 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2772 #else
2773 abort ();
2774 return (bfd_vma) -1;
2775 #endif
2776 }
2777
2778 /* Calculate the %highest function. */
2779
2780 static bfd_vma
2781 mips_elf_highest (value)
2782 bfd_vma value ATTRIBUTE_UNUSED;
2783 {
2784 #ifdef BFD64
2785 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2786 #else
2787 abort ();
2788 return (bfd_vma) -1;
2789 #endif
2790 }
2791 \f
2792 /* Create the .compact_rel section. */
2793
2794 static bfd_boolean
2795 mips_elf_create_compact_rel_section (abfd, info)
2796 bfd *abfd;
2797 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2798 {
2799 flagword flags;
2800 register asection *s;
2801
2802 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2803 {
2804 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2805 | SEC_READONLY);
2806
2807 s = bfd_make_section (abfd, ".compact_rel");
2808 if (s == NULL
2809 || ! bfd_set_section_flags (abfd, s, flags)
2810 || ! bfd_set_section_alignment (abfd, s,
2811 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2812 return FALSE;
2813
2814 s->_raw_size = sizeof (Elf32_External_compact_rel);
2815 }
2816
2817 return TRUE;
2818 }
2819
2820 /* Create the .got section to hold the global offset table. */
2821
2822 static bfd_boolean
2823 mips_elf_create_got_section (abfd, info, maybe_exclude)
2824 bfd *abfd;
2825 struct bfd_link_info *info;
2826 bfd_boolean maybe_exclude;
2827 {
2828 flagword flags;
2829 register asection *s;
2830 struct elf_link_hash_entry *h;
2831 struct bfd_link_hash_entry *bh;
2832 struct mips_got_info *g;
2833 bfd_size_type amt;
2834
2835 /* This function may be called more than once. */
2836 s = mips_elf_got_section (abfd, TRUE);
2837 if (s)
2838 {
2839 if (! maybe_exclude)
2840 s->flags &= ~SEC_EXCLUDE;
2841 return TRUE;
2842 }
2843
2844 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2845 | SEC_LINKER_CREATED);
2846
2847 if (maybe_exclude)
2848 flags |= SEC_EXCLUDE;
2849
2850 s = bfd_make_section (abfd, ".got");
2851 if (s == NULL
2852 || ! bfd_set_section_flags (abfd, s, flags)
2853 || ! bfd_set_section_alignment (abfd, s, 4))
2854 return FALSE;
2855
2856 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2857 linker script because we don't want to define the symbol if we
2858 are not creating a global offset table. */
2859 bh = NULL;
2860 if (! (_bfd_generic_link_add_one_symbol
2861 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2862 (bfd_vma) 0, (const char *) NULL, FALSE,
2863 get_elf_backend_data (abfd)->collect, &bh)))
2864 return FALSE;
2865
2866 h = (struct elf_link_hash_entry *) bh;
2867 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2868 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2869 h->type = STT_OBJECT;
2870
2871 if (info->shared
2872 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2873 return FALSE;
2874
2875 amt = sizeof (struct mips_got_info);
2876 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2877 if (g == NULL)
2878 return FALSE;
2879 g->global_gotsym = NULL;
2880 g->local_gotno = MIPS_RESERVED_GOTNO;
2881 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2882 g->bfd2got = NULL;
2883 g->next = NULL;
2884 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2885 mips_elf_got_entry_eq,
2886 (htab_del) NULL);
2887 if (g->got_entries == NULL)
2888 return FALSE;
2889 mips_elf_section_data (s)->u.got_info = g;
2890 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2891 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2892
2893 return TRUE;
2894 }
2895
2896 /* Returns the .msym section for ABFD, creating it if it does not
2897 already exist. Returns NULL to indicate error. */
2898
2899 static asection *
2900 mips_elf_create_msym_section (abfd)
2901 bfd *abfd;
2902 {
2903 asection *s;
2904
2905 s = bfd_get_section_by_name (abfd, ".msym");
2906 if (!s)
2907 {
2908 s = bfd_make_section (abfd, ".msym");
2909 if (!s
2910 || !bfd_set_section_flags (abfd, s,
2911 SEC_ALLOC
2912 | SEC_LOAD
2913 | SEC_HAS_CONTENTS
2914 | SEC_LINKER_CREATED
2915 | SEC_READONLY)
2916 || !bfd_set_section_alignment (abfd, s,
2917 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2918 return NULL;
2919 }
2920
2921 return s;
2922 }
2923 \f
2924 /* Calculate the value produced by the RELOCATION (which comes from
2925 the INPUT_BFD). The ADDEND is the addend to use for this
2926 RELOCATION; RELOCATION->R_ADDEND is ignored.
2927
2928 The result of the relocation calculation is stored in VALUEP.
2929 REQUIRE_JALXP indicates whether or not the opcode used with this
2930 relocation must be JALX.
2931
2932 This function returns bfd_reloc_continue if the caller need take no
2933 further action regarding this relocation, bfd_reloc_notsupported if
2934 something goes dramatically wrong, bfd_reloc_overflow if an
2935 overflow occurs, and bfd_reloc_ok to indicate success. */
2936
2937 static bfd_reloc_status_type
2938 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2939 relocation, addend, howto, local_syms,
2940 local_sections, valuep, namep,
2941 require_jalxp, save_addend)
2942 bfd *abfd;
2943 bfd *input_bfd;
2944 asection *input_section;
2945 struct bfd_link_info *info;
2946 const Elf_Internal_Rela *relocation;
2947 bfd_vma addend;
2948 reloc_howto_type *howto;
2949 Elf_Internal_Sym *local_syms;
2950 asection **local_sections;
2951 bfd_vma *valuep;
2952 const char **namep;
2953 bfd_boolean *require_jalxp;
2954 bfd_boolean save_addend;
2955 {
2956 /* The eventual value we will return. */
2957 bfd_vma value;
2958 /* The address of the symbol against which the relocation is
2959 occurring. */
2960 bfd_vma symbol = 0;
2961 /* The final GP value to be used for the relocatable, executable, or
2962 shared object file being produced. */
2963 bfd_vma gp = MINUS_ONE;
2964 /* The place (section offset or address) of the storage unit being
2965 relocated. */
2966 bfd_vma p;
2967 /* The value of GP used to create the relocatable object. */
2968 bfd_vma gp0 = MINUS_ONE;
2969 /* The offset into the global offset table at which the address of
2970 the relocation entry symbol, adjusted by the addend, resides
2971 during execution. */
2972 bfd_vma g = MINUS_ONE;
2973 /* The section in which the symbol referenced by the relocation is
2974 located. */
2975 asection *sec = NULL;
2976 struct mips_elf_link_hash_entry *h = NULL;
2977 /* TRUE if the symbol referred to by this relocation is a local
2978 symbol. */
2979 bfd_boolean local_p, was_local_p;
2980 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2981 bfd_boolean gp_disp_p = FALSE;
2982 Elf_Internal_Shdr *symtab_hdr;
2983 size_t extsymoff;
2984 unsigned long r_symndx;
2985 int r_type;
2986 /* TRUE if overflow occurred during the calculation of the
2987 relocation value. */
2988 bfd_boolean overflowed_p;
2989 /* TRUE if this relocation refers to a MIPS16 function. */
2990 bfd_boolean target_is_16_bit_code_p = FALSE;
2991
2992 /* Parse the relocation. */
2993 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2994 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2995 p = (input_section->output_section->vma
2996 + input_section->output_offset
2997 + relocation->r_offset);
2998
2999 /* Assume that there will be no overflow. */
3000 overflowed_p = FALSE;
3001
3002 /* Figure out whether or not the symbol is local, and get the offset
3003 used in the array of hash table entries. */
3004 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3005 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3006 local_sections, FALSE);
3007 was_local_p = local_p;
3008 if (! elf_bad_symtab (input_bfd))
3009 extsymoff = symtab_hdr->sh_info;
3010 else
3011 {
3012 /* The symbol table does not follow the rule that local symbols
3013 must come before globals. */
3014 extsymoff = 0;
3015 }
3016
3017 /* Figure out the value of the symbol. */
3018 if (local_p)
3019 {
3020 Elf_Internal_Sym *sym;
3021
3022 sym = local_syms + r_symndx;
3023 sec = local_sections[r_symndx];
3024
3025 symbol = sec->output_section->vma + sec->output_offset;
3026 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3027 || (sec->flags & SEC_MERGE))
3028 symbol += sym->st_value;
3029 if ((sec->flags & SEC_MERGE)
3030 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3031 {
3032 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3033 addend -= symbol;
3034 addend += sec->output_section->vma + sec->output_offset;
3035 }
3036
3037 /* MIPS16 text labels should be treated as odd. */
3038 if (sym->st_other == STO_MIPS16)
3039 ++symbol;
3040
3041 /* Record the name of this symbol, for our caller. */
3042 *namep = bfd_elf_string_from_elf_section (input_bfd,
3043 symtab_hdr->sh_link,
3044 sym->st_name);
3045 if (*namep == '\0')
3046 *namep = bfd_section_name (input_bfd, sec);
3047
3048 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3049 }
3050 else
3051 {
3052 /* For global symbols we look up the symbol in the hash-table. */
3053 h = ((struct mips_elf_link_hash_entry *)
3054 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3055 /* Find the real hash-table entry for this symbol. */
3056 while (h->root.root.type == bfd_link_hash_indirect
3057 || h->root.root.type == bfd_link_hash_warning)
3058 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3059
3060 /* Record the name of this symbol, for our caller. */
3061 *namep = h->root.root.root.string;
3062
3063 /* See if this is the special _gp_disp symbol. Note that such a
3064 symbol must always be a global symbol. */
3065 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3066 && ! NEWABI_P (input_bfd))
3067 {
3068 /* Relocations against _gp_disp are permitted only with
3069 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3070 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3071 return bfd_reloc_notsupported;
3072
3073 gp_disp_p = TRUE;
3074 }
3075 /* If this symbol is defined, calculate its address. Note that
3076 _gp_disp is a magic symbol, always implicitly defined by the
3077 linker, so it's inappropriate to check to see whether or not
3078 its defined. */
3079 else if ((h->root.root.type == bfd_link_hash_defined
3080 || h->root.root.type == bfd_link_hash_defweak)
3081 && h->root.root.u.def.section)
3082 {
3083 sec = h->root.root.u.def.section;
3084 if (sec->output_section)
3085 symbol = (h->root.root.u.def.value
3086 + sec->output_section->vma
3087 + sec->output_offset);
3088 else
3089 symbol = h->root.root.u.def.value;
3090 }
3091 else if (h->root.root.type == bfd_link_hash_undefweak)
3092 /* We allow relocations against undefined weak symbols, giving
3093 it the value zero, so that you can undefined weak functions
3094 and check to see if they exist by looking at their
3095 addresses. */
3096 symbol = 0;
3097 else if (info->shared
3098 && (!info->symbolic || info->allow_shlib_undefined)
3099 && !info->no_undefined
3100 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3101 symbol = 0;
3102 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3103 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3104 {
3105 /* If this is a dynamic link, we should have created a
3106 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3107 in in _bfd_mips_elf_create_dynamic_sections.
3108 Otherwise, we should define the symbol with a value of 0.
3109 FIXME: It should probably get into the symbol table
3110 somehow as well. */
3111 BFD_ASSERT (! info->shared);
3112 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3113 symbol = 0;
3114 }
3115 else
3116 {
3117 if (! ((*info->callbacks->undefined_symbol)
3118 (info, h->root.root.root.string, input_bfd,
3119 input_section, relocation->r_offset,
3120 (!info->shared || info->no_undefined
3121 || ELF_ST_VISIBILITY (h->root.other)))))
3122 return bfd_reloc_undefined;
3123 symbol = 0;
3124 }
3125
3126 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3127 }
3128
3129 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3130 need to redirect the call to the stub, unless we're already *in*
3131 a stub. */
3132 if (r_type != R_MIPS16_26 && !info->relocateable
3133 && ((h != NULL && h->fn_stub != NULL)
3134 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3135 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3136 && !mips_elf_stub_section_p (input_bfd, input_section))
3137 {
3138 /* This is a 32- or 64-bit call to a 16-bit function. We should
3139 have already noticed that we were going to need the
3140 stub. */
3141 if (local_p)
3142 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3143 else
3144 {
3145 BFD_ASSERT (h->need_fn_stub);
3146 sec = h->fn_stub;
3147 }
3148
3149 symbol = sec->output_section->vma + sec->output_offset;
3150 }
3151 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3152 need to redirect the call to the stub. */
3153 else if (r_type == R_MIPS16_26 && !info->relocateable
3154 && h != NULL
3155 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3156 && !target_is_16_bit_code_p)
3157 {
3158 /* If both call_stub and call_fp_stub are defined, we can figure
3159 out which one to use by seeing which one appears in the input
3160 file. */
3161 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3162 {
3163 asection *o;
3164
3165 sec = NULL;
3166 for (o = input_bfd->sections; o != NULL; o = o->next)
3167 {
3168 if (strncmp (bfd_get_section_name (input_bfd, o),
3169 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3170 {
3171 sec = h->call_fp_stub;
3172 break;
3173 }
3174 }
3175 if (sec == NULL)
3176 sec = h->call_stub;
3177 }
3178 else if (h->call_stub != NULL)
3179 sec = h->call_stub;
3180 else
3181 sec = h->call_fp_stub;
3182
3183 BFD_ASSERT (sec->_raw_size > 0);
3184 symbol = sec->output_section->vma + sec->output_offset;
3185 }
3186
3187 /* Calls from 16-bit code to 32-bit code and vice versa require the
3188 special jalx instruction. */
3189 *require_jalxp = (!info->relocateable
3190 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3191 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3192
3193 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3194 local_sections, TRUE);
3195
3196 /* If we haven't already determined the GOT offset, or the GP value,
3197 and we're going to need it, get it now. */
3198 switch (r_type)
3199 {
3200 case R_MIPS_CALL16:
3201 case R_MIPS_GOT16:
3202 case R_MIPS_GOT_DISP:
3203 case R_MIPS_GOT_HI16:
3204 case R_MIPS_CALL_HI16:
3205 case R_MIPS_GOT_LO16:
3206 case R_MIPS_CALL_LO16:
3207 /* Find the index into the GOT where this value is located. */
3208 if (!local_p)
3209 {
3210 BFD_ASSERT (addend == 0);
3211 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3212 input_bfd,
3213 (struct elf_link_hash_entry *) h);
3214 if (! elf_hash_table(info)->dynamic_sections_created
3215 || (info->shared
3216 && (info->symbolic || h->root.dynindx == -1)
3217 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3218 {
3219 /* This is a static link or a -Bsymbolic link. The
3220 symbol is defined locally, or was forced to be local.
3221 We must initialize this entry in the GOT. */
3222 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3223 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3224 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
3225 }
3226 }
3227 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3228 /* There's no need to create a local GOT entry here; the
3229 calculation for a local GOT16 entry does not involve G. */
3230 break;
3231 else
3232 {
3233 g = mips_elf_local_got_index (abfd, input_bfd,
3234 info, symbol + addend);
3235 if (g == MINUS_ONE)
3236 return bfd_reloc_outofrange;
3237 }
3238
3239 /* Convert GOT indices to actual offsets. */
3240 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3241 abfd, input_bfd, g);
3242 break;
3243
3244 case R_MIPS_HI16:
3245 case R_MIPS_LO16:
3246 case R_MIPS16_GPREL:
3247 case R_MIPS_GPREL16:
3248 case R_MIPS_GPREL32:
3249 case R_MIPS_LITERAL:
3250 gp0 = _bfd_get_gp_value (input_bfd);
3251 gp = _bfd_get_gp_value (abfd);
3252 if (elf_hash_table (info)->dynobj)
3253 gp += mips_elf_adjust_gp (abfd,
3254 mips_elf_got_info
3255 (elf_hash_table (info)->dynobj, NULL),
3256 input_bfd);
3257 break;
3258
3259 default:
3260 break;
3261 }
3262
3263 /* Figure out what kind of relocation is being performed. */
3264 switch (r_type)
3265 {
3266 case R_MIPS_NONE:
3267 return bfd_reloc_continue;
3268
3269 case R_MIPS_16:
3270 value = symbol + mips_elf_sign_extend (addend, 16);
3271 overflowed_p = mips_elf_overflow_p (value, 16);
3272 break;
3273
3274 case R_MIPS_32:
3275 case R_MIPS_REL32:
3276 case R_MIPS_64:
3277 if ((info->shared
3278 || (elf_hash_table (info)->dynamic_sections_created
3279 && h != NULL
3280 && ((h->root.elf_link_hash_flags
3281 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3282 && ((h->root.elf_link_hash_flags
3283 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3284 && r_symndx != 0
3285 && (input_section->flags & SEC_ALLOC) != 0)
3286 {
3287 /* If we're creating a shared library, or this relocation is
3288 against a symbol in a shared library, then we can't know
3289 where the symbol will end up. So, we create a relocation
3290 record in the output, and leave the job up to the dynamic
3291 linker. */
3292 value = addend;
3293 if (!mips_elf_create_dynamic_relocation (abfd,
3294 info,
3295 relocation,
3296 h,
3297 sec,
3298 symbol,
3299 &value,
3300 input_section))
3301 return bfd_reloc_undefined;
3302 }
3303 else
3304 {
3305 if (r_type != R_MIPS_REL32)
3306 value = symbol + addend;
3307 else
3308 value = addend;
3309 }
3310 value &= howto->dst_mask;
3311 break;
3312
3313 case R_MIPS_PC32:
3314 case R_MIPS_PC64:
3315 case R_MIPS_GNU_REL_LO16:
3316 value = symbol + addend - p;
3317 value &= howto->dst_mask;
3318 break;
3319
3320 case R_MIPS_GNU_REL16_S2:
3321 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3322 overflowed_p = mips_elf_overflow_p (value, 18);
3323 value = (value >> 2) & howto->dst_mask;
3324 break;
3325
3326 case R_MIPS_GNU_REL_HI16:
3327 /* Instead of subtracting 'p' here, we should be subtracting the
3328 equivalent value for the LO part of the reloc, since the value
3329 here is relative to that address. Because that's not easy to do,
3330 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3331 the comment there for more information. */
3332 value = mips_elf_high (addend + symbol - p);
3333 value &= howto->dst_mask;
3334 break;
3335
3336 case R_MIPS16_26:
3337 /* The calculation for R_MIPS16_26 is just the same as for an
3338 R_MIPS_26. It's only the storage of the relocated field into
3339 the output file that's different. That's handled in
3340 mips_elf_perform_relocation. So, we just fall through to the
3341 R_MIPS_26 case here. */
3342 case R_MIPS_26:
3343 if (local_p)
3344 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3345 else
3346 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3347 value &= howto->dst_mask;
3348 break;
3349
3350 case R_MIPS_HI16:
3351 if (!gp_disp_p)
3352 {
3353 value = mips_elf_high (addend + symbol);
3354 value &= howto->dst_mask;
3355 }
3356 else
3357 {
3358 value = mips_elf_high (addend + gp - p);
3359 overflowed_p = mips_elf_overflow_p (value, 16);
3360 }
3361 break;
3362
3363 case R_MIPS_LO16:
3364 if (!gp_disp_p)
3365 value = (symbol + addend) & howto->dst_mask;
3366 else
3367 {
3368 value = addend + gp - p + 4;
3369 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3370 for overflow. But, on, say, IRIX5, relocations against
3371 _gp_disp are normally generated from the .cpload
3372 pseudo-op. It generates code that normally looks like
3373 this:
3374
3375 lui $gp,%hi(_gp_disp)
3376 addiu $gp,$gp,%lo(_gp_disp)
3377 addu $gp,$gp,$t9
3378
3379 Here $t9 holds the address of the function being called,
3380 as required by the MIPS ELF ABI. The R_MIPS_LO16
3381 relocation can easily overflow in this situation, but the
3382 R_MIPS_HI16 relocation will handle the overflow.
3383 Therefore, we consider this a bug in the MIPS ABI, and do
3384 not check for overflow here. */
3385 }
3386 break;
3387
3388 case R_MIPS_LITERAL:
3389 /* Because we don't merge literal sections, we can handle this
3390 just like R_MIPS_GPREL16. In the long run, we should merge
3391 shared literals, and then we will need to additional work
3392 here. */
3393
3394 /* Fall through. */
3395
3396 case R_MIPS16_GPREL:
3397 /* The R_MIPS16_GPREL performs the same calculation as
3398 R_MIPS_GPREL16, but stores the relocated bits in a different
3399 order. We don't need to do anything special here; the
3400 differences are handled in mips_elf_perform_relocation. */
3401 case R_MIPS_GPREL16:
3402 /* Only sign-extend the addend if it was extracted from the
3403 instruction. If the addend was separate, leave it alone,
3404 otherwise we may lose significant bits. */
3405 if (howto->partial_inplace)
3406 addend = mips_elf_sign_extend (addend, 16);
3407 value = symbol + addend - gp;
3408 /* If the symbol was local, any earlier relocatable links will
3409 have adjusted its addend with the gp offset, so compensate
3410 for that now. Don't do it for symbols forced local in this
3411 link, though, since they won't have had the gp offset applied
3412 to them before. */
3413 if (was_local_p)
3414 value += gp0;
3415 overflowed_p = mips_elf_overflow_p (value, 16);
3416 break;
3417
3418 case R_MIPS_GOT16:
3419 case R_MIPS_CALL16:
3420 if (local_p)
3421 {
3422 bfd_boolean forced;
3423
3424 /* The special case is when the symbol is forced to be local. We
3425 need the full address in the GOT since no R_MIPS_LO16 relocation
3426 follows. */
3427 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3428 local_sections, FALSE);
3429 value = mips_elf_got16_entry (abfd, input_bfd, info,
3430 symbol + addend, forced);
3431 if (value == MINUS_ONE)
3432 return bfd_reloc_outofrange;
3433 value
3434 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3435 abfd, input_bfd, value);
3436 overflowed_p = mips_elf_overflow_p (value, 16);
3437 break;
3438 }
3439
3440 /* Fall through. */
3441
3442 case R_MIPS_GOT_DISP:
3443 value = g;
3444 overflowed_p = mips_elf_overflow_p (value, 16);
3445 break;
3446
3447 case R_MIPS_GPREL32:
3448 value = (addend + symbol + gp0 - gp);
3449 if (!save_addend)
3450 value &= howto->dst_mask;
3451 break;
3452
3453 case R_MIPS_PC16:
3454 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GOT_HI16:
3459 case R_MIPS_CALL_HI16:
3460 /* We're allowed to handle these two relocations identically.
3461 The dynamic linker is allowed to handle the CALL relocations
3462 differently by creating a lazy evaluation stub. */
3463 value = g;
3464 value = mips_elf_high (value);
3465 value &= howto->dst_mask;
3466 break;
3467
3468 case R_MIPS_GOT_LO16:
3469 case R_MIPS_CALL_LO16:
3470 value = g & howto->dst_mask;
3471 break;
3472
3473 case R_MIPS_GOT_PAGE:
3474 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3475 if (value == MINUS_ONE)
3476 return bfd_reloc_outofrange;
3477 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3478 abfd, input_bfd, value);
3479 overflowed_p = mips_elf_overflow_p (value, 16);
3480 break;
3481
3482 case R_MIPS_GOT_OFST:
3483 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3484 overflowed_p = mips_elf_overflow_p (value, 16);
3485 break;
3486
3487 case R_MIPS_SUB:
3488 value = symbol - addend;
3489 value &= howto->dst_mask;
3490 break;
3491
3492 case R_MIPS_HIGHER:
3493 value = mips_elf_higher (addend + symbol);
3494 value &= howto->dst_mask;
3495 break;
3496
3497 case R_MIPS_HIGHEST:
3498 value = mips_elf_highest (addend + symbol);
3499 value &= howto->dst_mask;
3500 break;
3501
3502 case R_MIPS_SCN_DISP:
3503 value = symbol + addend - sec->output_offset;
3504 value &= howto->dst_mask;
3505 break;
3506
3507 case R_MIPS_PJUMP:
3508 case R_MIPS_JALR:
3509 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3510 hint; we could improve performance by honoring that hint. */
3511 return bfd_reloc_continue;
3512
3513 case R_MIPS_GNU_VTINHERIT:
3514 case R_MIPS_GNU_VTENTRY:
3515 /* We don't do anything with these at present. */
3516 return bfd_reloc_continue;
3517
3518 default:
3519 /* An unrecognized relocation type. */
3520 return bfd_reloc_notsupported;
3521 }
3522
3523 /* Store the VALUE for our caller. */
3524 *valuep = value;
3525 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3526 }
3527
3528 /* Obtain the field relocated by RELOCATION. */
3529
3530 static bfd_vma
3531 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3532 reloc_howto_type *howto;
3533 const Elf_Internal_Rela *relocation;
3534 bfd *input_bfd;
3535 bfd_byte *contents;
3536 {
3537 bfd_vma x;
3538 bfd_byte *location = contents + relocation->r_offset;
3539
3540 /* Obtain the bytes. */
3541 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3542
3543 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3544 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3545 && bfd_little_endian (input_bfd))
3546 /* The two 16-bit words will be reversed on a little-endian system.
3547 See mips_elf_perform_relocation for more details. */
3548 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3549
3550 return x;
3551 }
3552
3553 /* It has been determined that the result of the RELOCATION is the
3554 VALUE. Use HOWTO to place VALUE into the output file at the
3555 appropriate position. The SECTION is the section to which the
3556 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3557 for the relocation must be either JAL or JALX, and it is
3558 unconditionally converted to JALX.
3559
3560 Returns FALSE if anything goes wrong. */
3561
3562 static bfd_boolean
3563 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3564 input_section, contents, require_jalx)
3565 struct bfd_link_info *info;
3566 reloc_howto_type *howto;
3567 const Elf_Internal_Rela *relocation;
3568 bfd_vma value;
3569 bfd *input_bfd;
3570 asection *input_section;
3571 bfd_byte *contents;
3572 bfd_boolean require_jalx;
3573 {
3574 bfd_vma x;
3575 bfd_byte *location;
3576 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3577
3578 /* Figure out where the relocation is occurring. */
3579 location = contents + relocation->r_offset;
3580
3581 /* Obtain the current value. */
3582 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3583
3584 /* Clear the field we are setting. */
3585 x &= ~howto->dst_mask;
3586
3587 /* If this is the R_MIPS16_26 relocation, we must store the
3588 value in a funny way. */
3589 if (r_type == R_MIPS16_26)
3590 {
3591 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3592 Most mips16 instructions are 16 bits, but these instructions
3593 are 32 bits.
3594
3595 The format of these instructions is:
3596
3597 +--------------+--------------------------------+
3598 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3599 +--------------+--------------------------------+
3600 ! Immediate 15:0 !
3601 +-----------------------------------------------+
3602
3603 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3604 Note that the immediate value in the first word is swapped.
3605
3606 When producing a relocateable object file, R_MIPS16_26 is
3607 handled mostly like R_MIPS_26. In particular, the addend is
3608 stored as a straight 26-bit value in a 32-bit instruction.
3609 (gas makes life simpler for itself by never adjusting a
3610 R_MIPS16_26 reloc to be against a section, so the addend is
3611 always zero). However, the 32 bit instruction is stored as 2
3612 16-bit values, rather than a single 32-bit value. In a
3613 big-endian file, the result is the same; in a little-endian
3614 file, the two 16-bit halves of the 32 bit value are swapped.
3615 This is so that a disassembler can recognize the jal
3616 instruction.
3617
3618 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3619 instruction stored as two 16-bit values. The addend A is the
3620 contents of the targ26 field. The calculation is the same as
3621 R_MIPS_26. When storing the calculated value, reorder the
3622 immediate value as shown above, and don't forget to store the
3623 value as two 16-bit values.
3624
3625 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3626 defined as
3627
3628 big-endian:
3629 +--------+----------------------+
3630 | | |
3631 | | targ26-16 |
3632 |31 26|25 0|
3633 +--------+----------------------+
3634
3635 little-endian:
3636 +----------+------+-------------+
3637 | | | |
3638 | sub1 | | sub2 |
3639 |0 9|10 15|16 31|
3640 +----------+--------------------+
3641 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3642 ((sub1 << 16) | sub2)).
3643
3644 When producing a relocateable object file, the calculation is
3645 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3646 When producing a fully linked file, the calculation is
3647 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3648 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3649
3650 if (!info->relocateable)
3651 /* Shuffle the bits according to the formula above. */
3652 value = (((value & 0x1f0000) << 5)
3653 | ((value & 0x3e00000) >> 5)
3654 | (value & 0xffff));
3655 }
3656 else if (r_type == R_MIPS16_GPREL)
3657 {
3658 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3659 mode. A typical instruction will have a format like this:
3660
3661 +--------------+--------------------------------+
3662 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3663 +--------------+--------------------------------+
3664 ! Major ! rx ! ry ! Imm 4:0 !
3665 +--------------+--------------------------------+
3666
3667 EXTEND is the five bit value 11110. Major is the instruction
3668 opcode.
3669
3670 This is handled exactly like R_MIPS_GPREL16, except that the
3671 addend is retrieved and stored as shown in this diagram; that
3672 is, the Imm fields above replace the V-rel16 field.
3673
3674 All we need to do here is shuffle the bits appropriately. As
3675 above, the two 16-bit halves must be swapped on a
3676 little-endian system. */
3677 value = (((value & 0x7e0) << 16)
3678 | ((value & 0xf800) << 5)
3679 | (value & 0x1f));
3680 }
3681
3682 /* Set the field. */
3683 x |= (value & howto->dst_mask);
3684
3685 /* If required, turn JAL into JALX. */
3686 if (require_jalx)
3687 {
3688 bfd_boolean ok;
3689 bfd_vma opcode = x >> 26;
3690 bfd_vma jalx_opcode;
3691
3692 /* Check to see if the opcode is already JAL or JALX. */
3693 if (r_type == R_MIPS16_26)
3694 {
3695 ok = ((opcode == 0x6) || (opcode == 0x7));
3696 jalx_opcode = 0x7;
3697 }
3698 else
3699 {
3700 ok = ((opcode == 0x3) || (opcode == 0x1d));
3701 jalx_opcode = 0x1d;
3702 }
3703
3704 /* If the opcode is not JAL or JALX, there's a problem. */
3705 if (!ok)
3706 {
3707 (*_bfd_error_handler)
3708 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3709 bfd_archive_filename (input_bfd),
3710 input_section->name,
3711 (unsigned long) relocation->r_offset);
3712 bfd_set_error (bfd_error_bad_value);
3713 return FALSE;
3714 }
3715
3716 /* Make this the JALX opcode. */
3717 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3718 }
3719
3720 /* Swap the high- and low-order 16 bits on little-endian systems
3721 when doing a MIPS16 relocation. */
3722 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3723 && bfd_little_endian (input_bfd))
3724 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3725
3726 /* Put the value into the output. */
3727 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3728 return TRUE;
3729 }
3730
3731 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3732
3733 static bfd_boolean
3734 mips_elf_stub_section_p (abfd, section)
3735 bfd *abfd ATTRIBUTE_UNUSED;
3736 asection *section;
3737 {
3738 const char *name = bfd_get_section_name (abfd, section);
3739
3740 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3741 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3742 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3743 }
3744 \f
3745 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3746
3747 static void
3748 mips_elf_allocate_dynamic_relocations (abfd, n)
3749 bfd *abfd;
3750 unsigned int n;
3751 {
3752 asection *s;
3753
3754 s = mips_elf_rel_dyn_section (abfd, FALSE);
3755 BFD_ASSERT (s != NULL);
3756
3757 if (s->_raw_size == 0)
3758 {
3759 /* Make room for a null element. */
3760 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3761 ++s->reloc_count;
3762 }
3763 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3764 }
3765
3766 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3767 is the original relocation, which is now being transformed into a
3768 dynamic relocation. The ADDENDP is adjusted if necessary; the
3769 caller should store the result in place of the original addend. */
3770
3771 static bfd_boolean
3772 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3773 symbol, addendp, input_section)
3774 bfd *output_bfd;
3775 struct bfd_link_info *info;
3776 const Elf_Internal_Rela *rel;
3777 struct mips_elf_link_hash_entry *h;
3778 asection *sec;
3779 bfd_vma symbol;
3780 bfd_vma *addendp;
3781 asection *input_section;
3782 {
3783 Elf_Internal_Rela outrel[3];
3784 bfd_boolean skip;
3785 asection *sreloc;
3786 bfd *dynobj;
3787 int r_type;
3788
3789 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3790 dynobj = elf_hash_table (info)->dynobj;
3791 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3792 BFD_ASSERT (sreloc != NULL);
3793 BFD_ASSERT (sreloc->contents != NULL);
3794 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3795 < sreloc->_raw_size);
3796
3797 skip = FALSE;
3798 outrel[0].r_offset =
3799 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3800 outrel[1].r_offset =
3801 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3802 outrel[2].r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3804
3805 #if 0
3806 /* We begin by assuming that the offset for the dynamic relocation
3807 is the same as for the original relocation. We'll adjust this
3808 later to reflect the correct output offsets. */
3809 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3810 {
3811 outrel[1].r_offset = rel[1].r_offset;
3812 outrel[2].r_offset = rel[2].r_offset;
3813 }
3814 else
3815 {
3816 /* Except that in a stab section things are more complex.
3817 Because we compress stab information, the offset given in the
3818 relocation may not be the one we want; we must let the stabs
3819 machinery tell us the offset. */
3820 outrel[1].r_offset = outrel[0].r_offset;
3821 outrel[2].r_offset = outrel[0].r_offset;
3822 /* If we didn't need the relocation at all, this value will be
3823 -1. */
3824 if (outrel[0].r_offset == (bfd_vma) -1)
3825 skip = TRUE;
3826 }
3827 #endif
3828
3829 if (outrel[0].r_offset == (bfd_vma) -1
3830 || outrel[0].r_offset == (bfd_vma) -2)
3831 skip = TRUE;
3832
3833 /* If we've decided to skip this relocation, just output an empty
3834 record. Note that R_MIPS_NONE == 0, so that this call to memset
3835 is a way of setting R_TYPE to R_MIPS_NONE. */
3836 if (skip)
3837 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3838 else
3839 {
3840 long indx;
3841 bfd_vma section_offset;
3842
3843 /* We must now calculate the dynamic symbol table index to use
3844 in the relocation. */
3845 if (h != NULL
3846 && (! info->symbolic || (h->root.elf_link_hash_flags
3847 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3848 {
3849 indx = h->root.dynindx;
3850 /* h->root.dynindx may be -1 if this symbol was marked to
3851 become local. */
3852 if (indx == -1)
3853 indx = 0;
3854 }
3855 else
3856 {
3857 if (sec != NULL && bfd_is_abs_section (sec))
3858 indx = 0;
3859 else if (sec == NULL || sec->owner == NULL)
3860 {
3861 bfd_set_error (bfd_error_bad_value);
3862 return FALSE;
3863 }
3864 else
3865 {
3866 indx = elf_section_data (sec->output_section)->dynindx;
3867 if (indx == 0)
3868 abort ();
3869 }
3870
3871 /* Figure out how far the target of the relocation is from
3872 the beginning of its section. */
3873 section_offset = symbol - sec->output_section->vma;
3874 /* The relocation we're building is section-relative.
3875 Therefore, the original addend must be adjusted by the
3876 section offset. */
3877 *addendp += section_offset;
3878 /* Now, the relocation is just against the section. */
3879 symbol = sec->output_section->vma;
3880 }
3881
3882 /* If the relocation was previously an absolute relocation and
3883 this symbol will not be referred to by the relocation, we must
3884 adjust it by the value we give it in the dynamic symbol table.
3885 Otherwise leave the job up to the dynamic linker. */
3886 if (!indx && r_type != R_MIPS_REL32)
3887 *addendp += symbol;
3888
3889 /* The relocation is always an REL32 relocation because we don't
3890 know where the shared library will wind up at load-time. */
3891 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3892 R_MIPS_REL32);
3893 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3894 ABI_64_P (output_bfd)
3895 ? R_MIPS_64
3896 : R_MIPS_NONE);
3897 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3898 R_MIPS_NONE);
3899
3900 /* Adjust the output offset of the relocation to reference the
3901 correct location in the output file. */
3902 outrel[0].r_offset += (input_section->output_section->vma
3903 + input_section->output_offset);
3904 outrel[1].r_offset += (input_section->output_section->vma
3905 + input_section->output_offset);
3906 outrel[2].r_offset += (input_section->output_section->vma
3907 + input_section->output_offset);
3908 }
3909
3910 /* Put the relocation back out. We have to use the special
3911 relocation outputter in the 64-bit case since the 64-bit
3912 relocation format is non-standard. */
3913 if (ABI_64_P (output_bfd))
3914 {
3915 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3916 (output_bfd, &outrel[0],
3917 (sreloc->contents
3918 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3919 }
3920 else
3921 bfd_elf32_swap_reloc_out
3922 (output_bfd, &outrel[0],
3923 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3924
3925 /* Record the index of the first relocation referencing H. This
3926 information is later emitted in the .msym section. */
3927 if (h != NULL
3928 && (h->min_dyn_reloc_index == 0
3929 || sreloc->reloc_count < h->min_dyn_reloc_index))
3930 h->min_dyn_reloc_index = sreloc->reloc_count;
3931
3932 /* We've now added another relocation. */
3933 ++sreloc->reloc_count;
3934
3935 /* Make sure the output section is writable. The dynamic linker
3936 will be writing to it. */
3937 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3938 |= SHF_WRITE;
3939
3940 /* On IRIX5, make an entry of compact relocation info. */
3941 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3942 {
3943 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3944 bfd_byte *cr;
3945
3946 if (scpt)
3947 {
3948 Elf32_crinfo cptrel;
3949
3950 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3951 cptrel.vaddr = (rel->r_offset
3952 + input_section->output_section->vma
3953 + input_section->output_offset);
3954 if (r_type == R_MIPS_REL32)
3955 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3956 else
3957 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3958 mips_elf_set_cr_dist2to (cptrel, 0);
3959 cptrel.konst = *addendp;
3960
3961 cr = (scpt->contents
3962 + sizeof (Elf32_External_compact_rel));
3963 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3964 ((Elf32_External_crinfo *) cr
3965 + scpt->reloc_count));
3966 ++scpt->reloc_count;
3967 }
3968 }
3969
3970 return TRUE;
3971 }
3972 \f
3973 /* Return the MACH for a MIPS e_flags value. */
3974
3975 unsigned long
3976 _bfd_elf_mips_mach (flags)
3977 flagword flags;
3978 {
3979 switch (flags & EF_MIPS_MACH)
3980 {
3981 case E_MIPS_MACH_3900:
3982 return bfd_mach_mips3900;
3983
3984 case E_MIPS_MACH_4010:
3985 return bfd_mach_mips4010;
3986
3987 case E_MIPS_MACH_4100:
3988 return bfd_mach_mips4100;
3989
3990 case E_MIPS_MACH_4111:
3991 return bfd_mach_mips4111;
3992
3993 case E_MIPS_MACH_4120:
3994 return bfd_mach_mips4120;
3995
3996 case E_MIPS_MACH_4650:
3997 return bfd_mach_mips4650;
3998
3999 case E_MIPS_MACH_5400:
4000 return bfd_mach_mips5400;
4001
4002 case E_MIPS_MACH_5500:
4003 return bfd_mach_mips5500;
4004
4005 case E_MIPS_MACH_SB1:
4006 return bfd_mach_mips_sb1;
4007
4008 default:
4009 switch (flags & EF_MIPS_ARCH)
4010 {
4011 default:
4012 case E_MIPS_ARCH_1:
4013 return bfd_mach_mips3000;
4014 break;
4015
4016 case E_MIPS_ARCH_2:
4017 return bfd_mach_mips6000;
4018 break;
4019
4020 case E_MIPS_ARCH_3:
4021 return bfd_mach_mips4000;
4022 break;
4023
4024 case E_MIPS_ARCH_4:
4025 return bfd_mach_mips8000;
4026 break;
4027
4028 case E_MIPS_ARCH_5:
4029 return bfd_mach_mips5;
4030 break;
4031
4032 case E_MIPS_ARCH_32:
4033 return bfd_mach_mipsisa32;
4034 break;
4035
4036 case E_MIPS_ARCH_64:
4037 return bfd_mach_mipsisa64;
4038 break;
4039
4040 case E_MIPS_ARCH_32R2:
4041 return bfd_mach_mipsisa32r2;
4042 break;
4043 }
4044 }
4045
4046 return 0;
4047 }
4048
4049 /* Return printable name for ABI. */
4050
4051 static INLINE char *
4052 elf_mips_abi_name (abfd)
4053 bfd *abfd;
4054 {
4055 flagword flags;
4056
4057 flags = elf_elfheader (abfd)->e_flags;
4058 switch (flags & EF_MIPS_ABI)
4059 {
4060 case 0:
4061 if (ABI_N32_P (abfd))
4062 return "N32";
4063 else if (ABI_64_P (abfd))
4064 return "64";
4065 else
4066 return "none";
4067 case E_MIPS_ABI_O32:
4068 return "O32";
4069 case E_MIPS_ABI_O64:
4070 return "O64";
4071 case E_MIPS_ABI_EABI32:
4072 return "EABI32";
4073 case E_MIPS_ABI_EABI64:
4074 return "EABI64";
4075 default:
4076 return "unknown abi";
4077 }
4078 }
4079 \f
4080 /* MIPS ELF uses two common sections. One is the usual one, and the
4081 other is for small objects. All the small objects are kept
4082 together, and then referenced via the gp pointer, which yields
4083 faster assembler code. This is what we use for the small common
4084 section. This approach is copied from ecoff.c. */
4085 static asection mips_elf_scom_section;
4086 static asymbol mips_elf_scom_symbol;
4087 static asymbol *mips_elf_scom_symbol_ptr;
4088
4089 /* MIPS ELF also uses an acommon section, which represents an
4090 allocated common symbol which may be overridden by a
4091 definition in a shared library. */
4092 static asection mips_elf_acom_section;
4093 static asymbol mips_elf_acom_symbol;
4094 static asymbol *mips_elf_acom_symbol_ptr;
4095
4096 /* Handle the special MIPS section numbers that a symbol may use.
4097 This is used for both the 32-bit and the 64-bit ABI. */
4098
4099 void
4100 _bfd_mips_elf_symbol_processing (abfd, asym)
4101 bfd *abfd;
4102 asymbol *asym;
4103 {
4104 elf_symbol_type *elfsym;
4105
4106 elfsym = (elf_symbol_type *) asym;
4107 switch (elfsym->internal_elf_sym.st_shndx)
4108 {
4109 case SHN_MIPS_ACOMMON:
4110 /* This section is used in a dynamically linked executable file.
4111 It is an allocated common section. The dynamic linker can
4112 either resolve these symbols to something in a shared
4113 library, or it can just leave them here. For our purposes,
4114 we can consider these symbols to be in a new section. */
4115 if (mips_elf_acom_section.name == NULL)
4116 {
4117 /* Initialize the acommon section. */
4118 mips_elf_acom_section.name = ".acommon";
4119 mips_elf_acom_section.flags = SEC_ALLOC;
4120 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4121 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4122 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4123 mips_elf_acom_symbol.name = ".acommon";
4124 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4125 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4126 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4127 }
4128 asym->section = &mips_elf_acom_section;
4129 break;
4130
4131 case SHN_COMMON:
4132 /* Common symbols less than the GP size are automatically
4133 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4134 if (asym->value > elf_gp_size (abfd)
4135 || IRIX_COMPAT (abfd) == ict_irix6)
4136 break;
4137 /* Fall through. */
4138 case SHN_MIPS_SCOMMON:
4139 if (mips_elf_scom_section.name == NULL)
4140 {
4141 /* Initialize the small common section. */
4142 mips_elf_scom_section.name = ".scommon";
4143 mips_elf_scom_section.flags = SEC_IS_COMMON;
4144 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4145 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4146 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4147 mips_elf_scom_symbol.name = ".scommon";
4148 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4149 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4150 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4151 }
4152 asym->section = &mips_elf_scom_section;
4153 asym->value = elfsym->internal_elf_sym.st_size;
4154 break;
4155
4156 case SHN_MIPS_SUNDEFINED:
4157 asym->section = bfd_und_section_ptr;
4158 break;
4159
4160 #if 0 /* for SGI_COMPAT */
4161 case SHN_MIPS_TEXT:
4162 asym->section = mips_elf_text_section_ptr;
4163 break;
4164
4165 case SHN_MIPS_DATA:
4166 asym->section = mips_elf_data_section_ptr;
4167 break;
4168 #endif
4169 }
4170 }
4171 \f
4172 /* Work over a section just before writing it out. This routine is
4173 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4174 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4175 a better way. */
4176
4177 bfd_boolean
4178 _bfd_mips_elf_section_processing (abfd, hdr)
4179 bfd *abfd;
4180 Elf_Internal_Shdr *hdr;
4181 {
4182 if (hdr->sh_type == SHT_MIPS_REGINFO
4183 && hdr->sh_size > 0)
4184 {
4185 bfd_byte buf[4];
4186
4187 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4188 BFD_ASSERT (hdr->contents == NULL);
4189
4190 if (bfd_seek (abfd,
4191 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4192 SEEK_SET) != 0)
4193 return FALSE;
4194 H_PUT_32 (abfd, elf_gp (abfd), buf);
4195 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4196 return FALSE;
4197 }
4198
4199 if (hdr->sh_type == SHT_MIPS_OPTIONS
4200 && hdr->bfd_section != NULL
4201 && mips_elf_section_data (hdr->bfd_section) != NULL
4202 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4203 {
4204 bfd_byte *contents, *l, *lend;
4205
4206 /* We stored the section contents in the tdata field in the
4207 set_section_contents routine. We save the section contents
4208 so that we don't have to read them again.
4209 At this point we know that elf_gp is set, so we can look
4210 through the section contents to see if there is an
4211 ODK_REGINFO structure. */
4212
4213 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4214 l = contents;
4215 lend = contents + hdr->sh_size;
4216 while (l + sizeof (Elf_External_Options) <= lend)
4217 {
4218 Elf_Internal_Options intopt;
4219
4220 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4221 &intopt);
4222 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4223 {
4224 bfd_byte buf[8];
4225
4226 if (bfd_seek (abfd,
4227 (hdr->sh_offset
4228 + (l - contents)
4229 + sizeof (Elf_External_Options)
4230 + (sizeof (Elf64_External_RegInfo) - 8)),
4231 SEEK_SET) != 0)
4232 return FALSE;
4233 H_PUT_64 (abfd, elf_gp (abfd), buf);
4234 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4235 return FALSE;
4236 }
4237 else if (intopt.kind == ODK_REGINFO)
4238 {
4239 bfd_byte buf[4];
4240
4241 if (bfd_seek (abfd,
4242 (hdr->sh_offset
4243 + (l - contents)
4244 + sizeof (Elf_External_Options)
4245 + (sizeof (Elf32_External_RegInfo) - 4)),
4246 SEEK_SET) != 0)
4247 return FALSE;
4248 H_PUT_32 (abfd, elf_gp (abfd), buf);
4249 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4250 return FALSE;
4251 }
4252 l += intopt.size;
4253 }
4254 }
4255
4256 if (hdr->bfd_section != NULL)
4257 {
4258 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4259
4260 if (strcmp (name, ".sdata") == 0
4261 || strcmp (name, ".lit8") == 0
4262 || strcmp (name, ".lit4") == 0)
4263 {
4264 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4265 hdr->sh_type = SHT_PROGBITS;
4266 }
4267 else if (strcmp (name, ".sbss") == 0)
4268 {
4269 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4270 hdr->sh_type = SHT_NOBITS;
4271 }
4272 else if (strcmp (name, ".srdata") == 0)
4273 {
4274 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4275 hdr->sh_type = SHT_PROGBITS;
4276 }
4277 else if (strcmp (name, ".compact_rel") == 0)
4278 {
4279 hdr->sh_flags = 0;
4280 hdr->sh_type = SHT_PROGBITS;
4281 }
4282 else if (strcmp (name, ".rtproc") == 0)
4283 {
4284 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4285 {
4286 unsigned int adjust;
4287
4288 adjust = hdr->sh_size % hdr->sh_addralign;
4289 if (adjust != 0)
4290 hdr->sh_size += hdr->sh_addralign - adjust;
4291 }
4292 }
4293 }
4294
4295 return TRUE;
4296 }
4297
4298 /* Handle a MIPS specific section when reading an object file. This
4299 is called when elfcode.h finds a section with an unknown type.
4300 This routine supports both the 32-bit and 64-bit ELF ABI.
4301
4302 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4303 how to. */
4304
4305 bfd_boolean
4306 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4307 bfd *abfd;
4308 Elf_Internal_Shdr *hdr;
4309 const char *name;
4310 {
4311 flagword flags = 0;
4312
4313 /* There ought to be a place to keep ELF backend specific flags, but
4314 at the moment there isn't one. We just keep track of the
4315 sections by their name, instead. Fortunately, the ABI gives
4316 suggested names for all the MIPS specific sections, so we will
4317 probably get away with this. */
4318 switch (hdr->sh_type)
4319 {
4320 case SHT_MIPS_LIBLIST:
4321 if (strcmp (name, ".liblist") != 0)
4322 return FALSE;
4323 break;
4324 case SHT_MIPS_MSYM:
4325 if (strcmp (name, ".msym") != 0)
4326 return FALSE;
4327 break;
4328 case SHT_MIPS_CONFLICT:
4329 if (strcmp (name, ".conflict") != 0)
4330 return FALSE;
4331 break;
4332 case SHT_MIPS_GPTAB:
4333 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4334 return FALSE;
4335 break;
4336 case SHT_MIPS_UCODE:
4337 if (strcmp (name, ".ucode") != 0)
4338 return FALSE;
4339 break;
4340 case SHT_MIPS_DEBUG:
4341 if (strcmp (name, ".mdebug") != 0)
4342 return FALSE;
4343 flags = SEC_DEBUGGING;
4344 break;
4345 case SHT_MIPS_REGINFO:
4346 if (strcmp (name, ".reginfo") != 0
4347 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4348 return FALSE;
4349 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4350 break;
4351 case SHT_MIPS_IFACE:
4352 if (strcmp (name, ".MIPS.interfaces") != 0)
4353 return FALSE;
4354 break;
4355 case SHT_MIPS_CONTENT:
4356 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4357 return FALSE;
4358 break;
4359 case SHT_MIPS_OPTIONS:
4360 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4361 return FALSE;
4362 break;
4363 case SHT_MIPS_DWARF:
4364 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4365 return FALSE;
4366 break;
4367 case SHT_MIPS_SYMBOL_LIB:
4368 if (strcmp (name, ".MIPS.symlib") != 0)
4369 return FALSE;
4370 break;
4371 case SHT_MIPS_EVENTS:
4372 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4373 && strncmp (name, ".MIPS.post_rel",
4374 sizeof ".MIPS.post_rel" - 1) != 0)
4375 return FALSE;
4376 break;
4377 default:
4378 return FALSE;
4379 }
4380
4381 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4382 return FALSE;
4383
4384 if (flags)
4385 {
4386 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4387 (bfd_get_section_flags (abfd,
4388 hdr->bfd_section)
4389 | flags)))
4390 return FALSE;
4391 }
4392
4393 /* FIXME: We should record sh_info for a .gptab section. */
4394
4395 /* For a .reginfo section, set the gp value in the tdata information
4396 from the contents of this section. We need the gp value while
4397 processing relocs, so we just get it now. The .reginfo section
4398 is not used in the 64-bit MIPS ELF ABI. */
4399 if (hdr->sh_type == SHT_MIPS_REGINFO)
4400 {
4401 Elf32_External_RegInfo ext;
4402 Elf32_RegInfo s;
4403
4404 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4405 (file_ptr) 0,
4406 (bfd_size_type) sizeof ext))
4407 return FALSE;
4408 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4409 elf_gp (abfd) = s.ri_gp_value;
4410 }
4411
4412 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4413 set the gp value based on what we find. We may see both
4414 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4415 they should agree. */
4416 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4417 {
4418 bfd_byte *contents, *l, *lend;
4419
4420 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4421 if (contents == NULL)
4422 return FALSE;
4423 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4424 (file_ptr) 0, hdr->sh_size))
4425 {
4426 free (contents);
4427 return FALSE;
4428 }
4429 l = contents;
4430 lend = contents + hdr->sh_size;
4431 while (l + sizeof (Elf_External_Options) <= lend)
4432 {
4433 Elf_Internal_Options intopt;
4434
4435 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4436 &intopt);
4437 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4438 {
4439 Elf64_Internal_RegInfo intreg;
4440
4441 bfd_mips_elf64_swap_reginfo_in
4442 (abfd,
4443 ((Elf64_External_RegInfo *)
4444 (l + sizeof (Elf_External_Options))),
4445 &intreg);
4446 elf_gp (abfd) = intreg.ri_gp_value;
4447 }
4448 else if (intopt.kind == ODK_REGINFO)
4449 {
4450 Elf32_RegInfo intreg;
4451
4452 bfd_mips_elf32_swap_reginfo_in
4453 (abfd,
4454 ((Elf32_External_RegInfo *)
4455 (l + sizeof (Elf_External_Options))),
4456 &intreg);
4457 elf_gp (abfd) = intreg.ri_gp_value;
4458 }
4459 l += intopt.size;
4460 }
4461 free (contents);
4462 }
4463
4464 return TRUE;
4465 }
4466
4467 /* Set the correct type for a MIPS ELF section. We do this by the
4468 section name, which is a hack, but ought to work. This routine is
4469 used by both the 32-bit and the 64-bit ABI. */
4470
4471 bfd_boolean
4472 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4473 bfd *abfd;
4474 Elf_Internal_Shdr *hdr;
4475 asection *sec;
4476 {
4477 register const char *name;
4478
4479 name = bfd_get_section_name (abfd, sec);
4480
4481 if (strcmp (name, ".liblist") == 0)
4482 {
4483 hdr->sh_type = SHT_MIPS_LIBLIST;
4484 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4485 /* The sh_link field is set in final_write_processing. */
4486 }
4487 else if (strcmp (name, ".conflict") == 0)
4488 hdr->sh_type = SHT_MIPS_CONFLICT;
4489 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4490 {
4491 hdr->sh_type = SHT_MIPS_GPTAB;
4492 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4493 /* The sh_info field is set in final_write_processing. */
4494 }
4495 else if (strcmp (name, ".ucode") == 0)
4496 hdr->sh_type = SHT_MIPS_UCODE;
4497 else if (strcmp (name, ".mdebug") == 0)
4498 {
4499 hdr->sh_type = SHT_MIPS_DEBUG;
4500 /* In a shared object on IRIX 5.3, the .mdebug section has an
4501 entsize of 0. FIXME: Does this matter? */
4502 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4503 hdr->sh_entsize = 0;
4504 else
4505 hdr->sh_entsize = 1;
4506 }
4507 else if (strcmp (name, ".reginfo") == 0)
4508 {
4509 hdr->sh_type = SHT_MIPS_REGINFO;
4510 /* In a shared object on IRIX 5.3, the .reginfo section has an
4511 entsize of 0x18. FIXME: Does this matter? */
4512 if (SGI_COMPAT (abfd))
4513 {
4514 if ((abfd->flags & DYNAMIC) != 0)
4515 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4516 else
4517 hdr->sh_entsize = 1;
4518 }
4519 else
4520 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4521 }
4522 else if (SGI_COMPAT (abfd)
4523 && (strcmp (name, ".hash") == 0
4524 || strcmp (name, ".dynamic") == 0
4525 || strcmp (name, ".dynstr") == 0))
4526 {
4527 if (SGI_COMPAT (abfd))
4528 hdr->sh_entsize = 0;
4529 #if 0
4530 /* This isn't how the IRIX6 linker behaves. */
4531 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4532 #endif
4533 }
4534 else if (strcmp (name, ".got") == 0
4535 || strcmp (name, ".srdata") == 0
4536 || strcmp (name, ".sdata") == 0
4537 || strcmp (name, ".sbss") == 0
4538 || strcmp (name, ".lit4") == 0
4539 || strcmp (name, ".lit8") == 0)
4540 hdr->sh_flags |= SHF_MIPS_GPREL;
4541 else if (strcmp (name, ".MIPS.interfaces") == 0)
4542 {
4543 hdr->sh_type = SHT_MIPS_IFACE;
4544 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4545 }
4546 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4547 {
4548 hdr->sh_type = SHT_MIPS_CONTENT;
4549 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4550 /* The sh_info field is set in final_write_processing. */
4551 }
4552 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4553 {
4554 hdr->sh_type = SHT_MIPS_OPTIONS;
4555 hdr->sh_entsize = 1;
4556 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4557 }
4558 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4559 hdr->sh_type = SHT_MIPS_DWARF;
4560 else if (strcmp (name, ".MIPS.symlib") == 0)
4561 {
4562 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4563 /* The sh_link and sh_info fields are set in
4564 final_write_processing. */
4565 }
4566 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4567 || strncmp (name, ".MIPS.post_rel",
4568 sizeof ".MIPS.post_rel" - 1) == 0)
4569 {
4570 hdr->sh_type = SHT_MIPS_EVENTS;
4571 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4572 /* The sh_link field is set in final_write_processing. */
4573 }
4574 else if (strcmp (name, ".msym") == 0)
4575 {
4576 hdr->sh_type = SHT_MIPS_MSYM;
4577 hdr->sh_flags |= SHF_ALLOC;
4578 hdr->sh_entsize = 8;
4579 }
4580
4581 /* The generic elf_fake_sections will set up REL_HDR using the
4582 default kind of relocations. But, we may actually need both
4583 kinds of relocations, so we set up the second header here.
4584
4585 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4586 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4587 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4588 of the resulting empty .rela.<section> sections starts with
4589 sh_offset == object size, and ld doesn't allow that. While the check
4590 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4591 avoided by not emitting those useless sections in the first place. */
4592 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4593 && (sec->flags & SEC_RELOC) != 0)
4594 {
4595 struct bfd_elf_section_data *esd;
4596 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4597
4598 esd = elf_section_data (sec);
4599 BFD_ASSERT (esd->rel_hdr2 == NULL);
4600 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4601 if (!esd->rel_hdr2)
4602 return FALSE;
4603 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
4604 !elf_section_data (sec)->use_rela_p);
4605 }
4606
4607 return TRUE;
4608 }
4609
4610 /* Given a BFD section, try to locate the corresponding ELF section
4611 index. This is used by both the 32-bit and the 64-bit ABI.
4612 Actually, it's not clear to me that the 64-bit ABI supports these,
4613 but for non-PIC objects we will certainly want support for at least
4614 the .scommon section. */
4615
4616 bfd_boolean
4617 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4618 bfd *abfd ATTRIBUTE_UNUSED;
4619 asection *sec;
4620 int *retval;
4621 {
4622 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4623 {
4624 *retval = SHN_MIPS_SCOMMON;
4625 return TRUE;
4626 }
4627 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4628 {
4629 *retval = SHN_MIPS_ACOMMON;
4630 return TRUE;
4631 }
4632 return FALSE;
4633 }
4634 \f
4635 /* Hook called by the linker routine which adds symbols from an object
4636 file. We must handle the special MIPS section numbers here. */
4637
4638 bfd_boolean
4639 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4640 bfd *abfd;
4641 struct bfd_link_info *info;
4642 const Elf_Internal_Sym *sym;
4643 const char **namep;
4644 flagword *flagsp ATTRIBUTE_UNUSED;
4645 asection **secp;
4646 bfd_vma *valp;
4647 {
4648 if (SGI_COMPAT (abfd)
4649 && (abfd->flags & DYNAMIC) != 0
4650 && strcmp (*namep, "_rld_new_interface") == 0)
4651 {
4652 /* Skip IRIX5 rld entry name. */
4653 *namep = NULL;
4654 return TRUE;
4655 }
4656
4657 switch (sym->st_shndx)
4658 {
4659 case SHN_COMMON:
4660 /* Common symbols less than the GP size are automatically
4661 treated as SHN_MIPS_SCOMMON symbols. */
4662 if (sym->st_size > elf_gp_size (abfd)
4663 || IRIX_COMPAT (abfd) == ict_irix6)
4664 break;
4665 /* Fall through. */
4666 case SHN_MIPS_SCOMMON:
4667 *secp = bfd_make_section_old_way (abfd, ".scommon");
4668 (*secp)->flags |= SEC_IS_COMMON;
4669 *valp = sym->st_size;
4670 break;
4671
4672 case SHN_MIPS_TEXT:
4673 /* This section is used in a shared object. */
4674 if (elf_tdata (abfd)->elf_text_section == NULL)
4675 {
4676 asymbol *elf_text_symbol;
4677 asection *elf_text_section;
4678 bfd_size_type amt = sizeof (asection);
4679
4680 elf_text_section = bfd_zalloc (abfd, amt);
4681 if (elf_text_section == NULL)
4682 return FALSE;
4683
4684 amt = sizeof (asymbol);
4685 elf_text_symbol = bfd_zalloc (abfd, amt);
4686 if (elf_text_symbol == NULL)
4687 return FALSE;
4688
4689 /* Initialize the section. */
4690
4691 elf_tdata (abfd)->elf_text_section = elf_text_section;
4692 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4693
4694 elf_text_section->symbol = elf_text_symbol;
4695 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4696
4697 elf_text_section->name = ".text";
4698 elf_text_section->flags = SEC_NO_FLAGS;
4699 elf_text_section->output_section = NULL;
4700 elf_text_section->owner = abfd;
4701 elf_text_symbol->name = ".text";
4702 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4703 elf_text_symbol->section = elf_text_section;
4704 }
4705 /* This code used to do *secp = bfd_und_section_ptr if
4706 info->shared. I don't know why, and that doesn't make sense,
4707 so I took it out. */
4708 *secp = elf_tdata (abfd)->elf_text_section;
4709 break;
4710
4711 case SHN_MIPS_ACOMMON:
4712 /* Fall through. XXX Can we treat this as allocated data? */
4713 case SHN_MIPS_DATA:
4714 /* This section is used in a shared object. */
4715 if (elf_tdata (abfd)->elf_data_section == NULL)
4716 {
4717 asymbol *elf_data_symbol;
4718 asection *elf_data_section;
4719 bfd_size_type amt = sizeof (asection);
4720
4721 elf_data_section = bfd_zalloc (abfd, amt);
4722 if (elf_data_section == NULL)
4723 return FALSE;
4724
4725 amt = sizeof (asymbol);
4726 elf_data_symbol = bfd_zalloc (abfd, amt);
4727 if (elf_data_symbol == NULL)
4728 return FALSE;
4729
4730 /* Initialize the section. */
4731
4732 elf_tdata (abfd)->elf_data_section = elf_data_section;
4733 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4734
4735 elf_data_section->symbol = elf_data_symbol;
4736 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4737
4738 elf_data_section->name = ".data";
4739 elf_data_section->flags = SEC_NO_FLAGS;
4740 elf_data_section->output_section = NULL;
4741 elf_data_section->owner = abfd;
4742 elf_data_symbol->name = ".data";
4743 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4744 elf_data_symbol->section = elf_data_section;
4745 }
4746 /* This code used to do *secp = bfd_und_section_ptr if
4747 info->shared. I don't know why, and that doesn't make sense,
4748 so I took it out. */
4749 *secp = elf_tdata (abfd)->elf_data_section;
4750 break;
4751
4752 case SHN_MIPS_SUNDEFINED:
4753 *secp = bfd_und_section_ptr;
4754 break;
4755 }
4756
4757 if (SGI_COMPAT (abfd)
4758 && ! info->shared
4759 && info->hash->creator == abfd->xvec
4760 && strcmp (*namep, "__rld_obj_head") == 0)
4761 {
4762 struct elf_link_hash_entry *h;
4763 struct bfd_link_hash_entry *bh;
4764
4765 /* Mark __rld_obj_head as dynamic. */
4766 bh = NULL;
4767 if (! (_bfd_generic_link_add_one_symbol
4768 (info, abfd, *namep, BSF_GLOBAL, *secp,
4769 (bfd_vma) *valp, (const char *) NULL, FALSE,
4770 get_elf_backend_data (abfd)->collect, &bh)))
4771 return FALSE;
4772
4773 h = (struct elf_link_hash_entry *) bh;
4774 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4775 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4776 h->type = STT_OBJECT;
4777
4778 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4779 return FALSE;
4780
4781 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4782 }
4783
4784 /* If this is a mips16 text symbol, add 1 to the value to make it
4785 odd. This will cause something like .word SYM to come up with
4786 the right value when it is loaded into the PC. */
4787 if (sym->st_other == STO_MIPS16)
4788 ++*valp;
4789
4790 return TRUE;
4791 }
4792
4793 /* This hook function is called before the linker writes out a global
4794 symbol. We mark symbols as small common if appropriate. This is
4795 also where we undo the increment of the value for a mips16 symbol. */
4796
4797 bfd_boolean
4798 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4799 bfd *abfd ATTRIBUTE_UNUSED;
4800 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4801 const char *name ATTRIBUTE_UNUSED;
4802 Elf_Internal_Sym *sym;
4803 asection *input_sec;
4804 {
4805 /* If we see a common symbol, which implies a relocatable link, then
4806 if a symbol was small common in an input file, mark it as small
4807 common in the output file. */
4808 if (sym->st_shndx == SHN_COMMON
4809 && strcmp (input_sec->name, ".scommon") == 0)
4810 sym->st_shndx = SHN_MIPS_SCOMMON;
4811
4812 if (sym->st_other == STO_MIPS16
4813 && (sym->st_value & 1) != 0)
4814 --sym->st_value;
4815
4816 return TRUE;
4817 }
4818 \f
4819 /* Functions for the dynamic linker. */
4820
4821 /* Create dynamic sections when linking against a dynamic object. */
4822
4823 bfd_boolean
4824 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4825 bfd *abfd;
4826 struct bfd_link_info *info;
4827 {
4828 struct elf_link_hash_entry *h;
4829 struct bfd_link_hash_entry *bh;
4830 flagword flags;
4831 register asection *s;
4832 const char * const *namep;
4833
4834 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4835 | SEC_LINKER_CREATED | SEC_READONLY);
4836
4837 /* Mips ABI requests the .dynamic section to be read only. */
4838 s = bfd_get_section_by_name (abfd, ".dynamic");
4839 if (s != NULL)
4840 {
4841 if (! bfd_set_section_flags (abfd, s, flags))
4842 return FALSE;
4843 }
4844
4845 /* We need to create .got section. */
4846 if (! mips_elf_create_got_section (abfd, info, FALSE))
4847 return FALSE;
4848
4849 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4850 return FALSE;
4851
4852 /* Create the .msym section on IRIX6. It is used by the dynamic
4853 linker to speed up dynamic relocations, and to avoid computing
4854 the ELF hash for symbols. */
4855 if (IRIX_COMPAT (abfd) == ict_irix6
4856 && !mips_elf_create_msym_section (abfd))
4857 return FALSE;
4858
4859 /* Create .stub section. */
4860 if (bfd_get_section_by_name (abfd,
4861 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4862 {
4863 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4864 if (s == NULL
4865 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4866 || ! bfd_set_section_alignment (abfd, s,
4867 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4868 return FALSE;
4869 }
4870
4871 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4872 && !info->shared
4873 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4874 {
4875 s = bfd_make_section (abfd, ".rld_map");
4876 if (s == NULL
4877 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4878 || ! bfd_set_section_alignment (abfd, s,
4879 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4880 return FALSE;
4881 }
4882
4883 /* On IRIX5, we adjust add some additional symbols and change the
4884 alignments of several sections. There is no ABI documentation
4885 indicating that this is necessary on IRIX6, nor any evidence that
4886 the linker takes such action. */
4887 if (IRIX_COMPAT (abfd) == ict_irix5)
4888 {
4889 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4890 {
4891 bh = NULL;
4892 if (! (_bfd_generic_link_add_one_symbol
4893 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4894 (bfd_vma) 0, (const char *) NULL, FALSE,
4895 get_elf_backend_data (abfd)->collect, &bh)))
4896 return FALSE;
4897
4898 h = (struct elf_link_hash_entry *) bh;
4899 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4900 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4901 h->type = STT_SECTION;
4902
4903 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4904 return FALSE;
4905 }
4906
4907 /* We need to create a .compact_rel section. */
4908 if (SGI_COMPAT (abfd))
4909 {
4910 if (!mips_elf_create_compact_rel_section (abfd, info))
4911 return FALSE;
4912 }
4913
4914 /* Change alignments of some sections. */
4915 s = bfd_get_section_by_name (abfd, ".hash");
4916 if (s != NULL)
4917 bfd_set_section_alignment (abfd, s, 4);
4918 s = bfd_get_section_by_name (abfd, ".dynsym");
4919 if (s != NULL)
4920 bfd_set_section_alignment (abfd, s, 4);
4921 s = bfd_get_section_by_name (abfd, ".dynstr");
4922 if (s != NULL)
4923 bfd_set_section_alignment (abfd, s, 4);
4924 s = bfd_get_section_by_name (abfd, ".reginfo");
4925 if (s != NULL)
4926 bfd_set_section_alignment (abfd, s, 4);
4927 s = bfd_get_section_by_name (abfd, ".dynamic");
4928 if (s != NULL)
4929 bfd_set_section_alignment (abfd, s, 4);
4930 }
4931
4932 if (!info->shared)
4933 {
4934 const char *name;
4935
4936 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4937 bh = NULL;
4938 if (!(_bfd_generic_link_add_one_symbol
4939 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4940 (bfd_vma) 0, (const char *) NULL, FALSE,
4941 get_elf_backend_data (abfd)->collect, &bh)))
4942 return FALSE;
4943
4944 h = (struct elf_link_hash_entry *) bh;
4945 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4946 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4947 h->type = STT_SECTION;
4948
4949 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4950 return FALSE;
4951
4952 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4953 {
4954 /* __rld_map is a four byte word located in the .data section
4955 and is filled in by the rtld to contain a pointer to
4956 the _r_debug structure. Its symbol value will be set in
4957 _bfd_mips_elf_finish_dynamic_symbol. */
4958 s = bfd_get_section_by_name (abfd, ".rld_map");
4959 BFD_ASSERT (s != NULL);
4960
4961 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4962 bh = NULL;
4963 if (!(_bfd_generic_link_add_one_symbol
4964 (info, abfd, name, BSF_GLOBAL, s,
4965 (bfd_vma) 0, (const char *) NULL, FALSE,
4966 get_elf_backend_data (abfd)->collect, &bh)))
4967 return FALSE;
4968
4969 h = (struct elf_link_hash_entry *) bh;
4970 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4971 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4972 h->type = STT_OBJECT;
4973
4974 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4975 return FALSE;
4976 }
4977 }
4978
4979 return TRUE;
4980 }
4981 \f
4982 /* Look through the relocs for a section during the first phase, and
4983 allocate space in the global offset table. */
4984
4985 bfd_boolean
4986 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4987 bfd *abfd;
4988 struct bfd_link_info *info;
4989 asection *sec;
4990 const Elf_Internal_Rela *relocs;
4991 {
4992 const char *name;
4993 bfd *dynobj;
4994 Elf_Internal_Shdr *symtab_hdr;
4995 struct elf_link_hash_entry **sym_hashes;
4996 struct mips_got_info *g;
4997 size_t extsymoff;
4998 const Elf_Internal_Rela *rel;
4999 const Elf_Internal_Rela *rel_end;
5000 asection *sgot;
5001 asection *sreloc;
5002 struct elf_backend_data *bed;
5003
5004 if (info->relocateable)
5005 return TRUE;
5006
5007 dynobj = elf_hash_table (info)->dynobj;
5008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5009 sym_hashes = elf_sym_hashes (abfd);
5010 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5011
5012 /* Check for the mips16 stub sections. */
5013
5014 name = bfd_get_section_name (abfd, sec);
5015 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5016 {
5017 unsigned long r_symndx;
5018
5019 /* Look at the relocation information to figure out which symbol
5020 this is for. */
5021
5022 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5023
5024 if (r_symndx < extsymoff
5025 || sym_hashes[r_symndx - extsymoff] == NULL)
5026 {
5027 asection *o;
5028
5029 /* This stub is for a local symbol. This stub will only be
5030 needed if there is some relocation in this BFD, other
5031 than a 16 bit function call, which refers to this symbol. */
5032 for (o = abfd->sections; o != NULL; o = o->next)
5033 {
5034 Elf_Internal_Rela *sec_relocs;
5035 const Elf_Internal_Rela *r, *rend;
5036
5037 /* We can ignore stub sections when looking for relocs. */
5038 if ((o->flags & SEC_RELOC) == 0
5039 || o->reloc_count == 0
5040 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5041 sizeof FN_STUB - 1) == 0
5042 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5043 sizeof CALL_STUB - 1) == 0
5044 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5045 sizeof CALL_FP_STUB - 1) == 0)
5046 continue;
5047
5048 sec_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
5049 (abfd, o, (PTR) NULL,
5050 (Elf_Internal_Rela *) NULL,
5051 info->keep_memory));
5052 if (sec_relocs == NULL)
5053 return FALSE;
5054
5055 rend = sec_relocs + o->reloc_count;
5056 for (r = sec_relocs; r < rend; r++)
5057 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5058 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5059 break;
5060
5061 if (elf_section_data (o)->relocs != sec_relocs)
5062 free (sec_relocs);
5063
5064 if (r < rend)
5065 break;
5066 }
5067
5068 if (o == NULL)
5069 {
5070 /* There is no non-call reloc for this stub, so we do
5071 not need it. Since this function is called before
5072 the linker maps input sections to output sections, we
5073 can easily discard it by setting the SEC_EXCLUDE
5074 flag. */
5075 sec->flags |= SEC_EXCLUDE;
5076 return TRUE;
5077 }
5078
5079 /* Record this stub in an array of local symbol stubs for
5080 this BFD. */
5081 if (elf_tdata (abfd)->local_stubs == NULL)
5082 {
5083 unsigned long symcount;
5084 asection **n;
5085 bfd_size_type amt;
5086
5087 if (elf_bad_symtab (abfd))
5088 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5089 else
5090 symcount = symtab_hdr->sh_info;
5091 amt = symcount * sizeof (asection *);
5092 n = (asection **) bfd_zalloc (abfd, amt);
5093 if (n == NULL)
5094 return FALSE;
5095 elf_tdata (abfd)->local_stubs = n;
5096 }
5097
5098 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5099
5100 /* We don't need to set mips16_stubs_seen in this case.
5101 That flag is used to see whether we need to look through
5102 the global symbol table for stubs. We don't need to set
5103 it here, because we just have a local stub. */
5104 }
5105 else
5106 {
5107 struct mips_elf_link_hash_entry *h;
5108
5109 h = ((struct mips_elf_link_hash_entry *)
5110 sym_hashes[r_symndx - extsymoff]);
5111
5112 /* H is the symbol this stub is for. */
5113
5114 h->fn_stub = sec;
5115 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5116 }
5117 }
5118 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5119 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5120 {
5121 unsigned long r_symndx;
5122 struct mips_elf_link_hash_entry *h;
5123 asection **loc;
5124
5125 /* Look at the relocation information to figure out which symbol
5126 this is for. */
5127
5128 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5129
5130 if (r_symndx < extsymoff
5131 || sym_hashes[r_symndx - extsymoff] == NULL)
5132 {
5133 /* This stub was actually built for a static symbol defined
5134 in the same file. We assume that all static symbols in
5135 mips16 code are themselves mips16, so we can simply
5136 discard this stub. Since this function is called before
5137 the linker maps input sections to output sections, we can
5138 easily discard it by setting the SEC_EXCLUDE flag. */
5139 sec->flags |= SEC_EXCLUDE;
5140 return TRUE;
5141 }
5142
5143 h = ((struct mips_elf_link_hash_entry *)
5144 sym_hashes[r_symndx - extsymoff]);
5145
5146 /* H is the symbol this stub is for. */
5147
5148 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5149 loc = &h->call_fp_stub;
5150 else
5151 loc = &h->call_stub;
5152
5153 /* If we already have an appropriate stub for this function, we
5154 don't need another one, so we can discard this one. Since
5155 this function is called before the linker maps input sections
5156 to output sections, we can easily discard it by setting the
5157 SEC_EXCLUDE flag. We can also discard this section if we
5158 happen to already know that this is a mips16 function; it is
5159 not necessary to check this here, as it is checked later, but
5160 it is slightly faster to check now. */
5161 if (*loc != NULL || h->root.other == STO_MIPS16)
5162 {
5163 sec->flags |= SEC_EXCLUDE;
5164 return TRUE;
5165 }
5166
5167 *loc = sec;
5168 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5169 }
5170
5171 if (dynobj == NULL)
5172 {
5173 sgot = NULL;
5174 g = NULL;
5175 }
5176 else
5177 {
5178 sgot = mips_elf_got_section (dynobj, FALSE);
5179 if (sgot == NULL)
5180 g = NULL;
5181 else
5182 {
5183 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5184 g = mips_elf_section_data (sgot)->u.got_info;
5185 BFD_ASSERT (g != NULL);
5186 }
5187 }
5188
5189 sreloc = NULL;
5190 bed = get_elf_backend_data (abfd);
5191 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5192 for (rel = relocs; rel < rel_end; ++rel)
5193 {
5194 unsigned long r_symndx;
5195 unsigned int r_type;
5196 struct elf_link_hash_entry *h;
5197
5198 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5199 r_type = ELF_R_TYPE (abfd, rel->r_info);
5200
5201 if (r_symndx < extsymoff)
5202 h = NULL;
5203 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5204 {
5205 (*_bfd_error_handler)
5206 (_("%s: Malformed reloc detected for section %s"),
5207 bfd_archive_filename (abfd), name);
5208 bfd_set_error (bfd_error_bad_value);
5209 return FALSE;
5210 }
5211 else
5212 {
5213 h = sym_hashes[r_symndx - extsymoff];
5214
5215 /* This may be an indirect symbol created because of a version. */
5216 if (h != NULL)
5217 {
5218 while (h->root.type == bfd_link_hash_indirect)
5219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5220 }
5221 }
5222
5223 /* Some relocs require a global offset table. */
5224 if (dynobj == NULL || sgot == NULL)
5225 {
5226 switch (r_type)
5227 {
5228 case R_MIPS_GOT16:
5229 case R_MIPS_CALL16:
5230 case R_MIPS_CALL_HI16:
5231 case R_MIPS_CALL_LO16:
5232 case R_MIPS_GOT_HI16:
5233 case R_MIPS_GOT_LO16:
5234 case R_MIPS_GOT_PAGE:
5235 case R_MIPS_GOT_OFST:
5236 case R_MIPS_GOT_DISP:
5237 if (dynobj == NULL)
5238 elf_hash_table (info)->dynobj = dynobj = abfd;
5239 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5240 return FALSE;
5241 g = mips_elf_got_info (dynobj, &sgot);
5242 break;
5243
5244 case R_MIPS_32:
5245 case R_MIPS_REL32:
5246 case R_MIPS_64:
5247 if (dynobj == NULL
5248 && (info->shared || h != NULL)
5249 && (sec->flags & SEC_ALLOC) != 0)
5250 elf_hash_table (info)->dynobj = dynobj = abfd;
5251 break;
5252
5253 default:
5254 break;
5255 }
5256 }
5257
5258 if (!h && (r_type == R_MIPS_CALL_LO16
5259 || r_type == R_MIPS_GOT_LO16
5260 || r_type == R_MIPS_GOT_DISP))
5261 {
5262 /* We may need a local GOT entry for this relocation. We
5263 don't count R_MIPS_GOT_PAGE because we can estimate the
5264 maximum number of pages needed by looking at the size of
5265 the segment. Similar comments apply to R_MIPS_GOT16 and
5266 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5267 R_MIPS_CALL_HI16 because these are always followed by an
5268 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5269 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5270 rel->r_addend, g))
5271 return FALSE;
5272 }
5273
5274 switch (r_type)
5275 {
5276 case R_MIPS_CALL16:
5277 if (h == NULL)
5278 {
5279 (*_bfd_error_handler)
5280 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5281 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5282 bfd_set_error (bfd_error_bad_value);
5283 return FALSE;
5284 }
5285 /* Fall through. */
5286
5287 case R_MIPS_CALL_HI16:
5288 case R_MIPS_CALL_LO16:
5289 if (h != NULL)
5290 {
5291 /* This symbol requires a global offset table entry. */
5292 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5293 return FALSE;
5294
5295 /* We need a stub, not a plt entry for the undefined
5296 function. But we record it as if it needs plt. See
5297 elf_adjust_dynamic_symbol in elflink.h. */
5298 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5299 h->type = STT_FUNC;
5300 }
5301 break;
5302
5303 case R_MIPS_GOT16:
5304 case R_MIPS_GOT_HI16:
5305 case R_MIPS_GOT_LO16:
5306 case R_MIPS_GOT_DISP:
5307 /* This symbol requires a global offset table entry. */
5308 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5309 return FALSE;
5310 break;
5311
5312 case R_MIPS_32:
5313 case R_MIPS_REL32:
5314 case R_MIPS_64:
5315 if ((info->shared || h != NULL)
5316 && (sec->flags & SEC_ALLOC) != 0)
5317 {
5318 if (sreloc == NULL)
5319 {
5320 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5321 if (sreloc == NULL)
5322 return FALSE;
5323 }
5324 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5325 if (info->shared)
5326 {
5327 /* When creating a shared object, we must copy these
5328 reloc types into the output file as R_MIPS_REL32
5329 relocs. We make room for this reloc in the
5330 .rel.dyn reloc section. */
5331 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5332 if ((sec->flags & MIPS_READONLY_SECTION)
5333 == MIPS_READONLY_SECTION)
5334 /* We tell the dynamic linker that there are
5335 relocations against the text segment. */
5336 info->flags |= DF_TEXTREL;
5337 }
5338 else
5339 {
5340 struct mips_elf_link_hash_entry *hmips;
5341
5342 /* We only need to copy this reloc if the symbol is
5343 defined in a dynamic object. */
5344 hmips = (struct mips_elf_link_hash_entry *) h;
5345 ++hmips->possibly_dynamic_relocs;
5346 if ((sec->flags & MIPS_READONLY_SECTION)
5347 == MIPS_READONLY_SECTION)
5348 /* We need it to tell the dynamic linker if there
5349 are relocations against the text segment. */
5350 hmips->readonly_reloc = TRUE;
5351 }
5352
5353 /* Even though we don't directly need a GOT entry for
5354 this symbol, a symbol must have a dynamic symbol
5355 table index greater that DT_MIPS_GOTSYM if there are
5356 dynamic relocations against it. */
5357 if (h != NULL)
5358 {
5359 if (dynobj == NULL)
5360 elf_hash_table (info)->dynobj = dynobj = abfd;
5361 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5362 return FALSE;
5363 g = mips_elf_got_info (dynobj, &sgot);
5364 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5365 return FALSE;
5366 }
5367 }
5368
5369 if (SGI_COMPAT (abfd))
5370 mips_elf_hash_table (info)->compact_rel_size +=
5371 sizeof (Elf32_External_crinfo);
5372 break;
5373
5374 case R_MIPS_26:
5375 case R_MIPS_GPREL16:
5376 case R_MIPS_LITERAL:
5377 case R_MIPS_GPREL32:
5378 if (SGI_COMPAT (abfd))
5379 mips_elf_hash_table (info)->compact_rel_size +=
5380 sizeof (Elf32_External_crinfo);
5381 break;
5382
5383 /* This relocation describes the C++ object vtable hierarchy.
5384 Reconstruct it for later use during GC. */
5385 case R_MIPS_GNU_VTINHERIT:
5386 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5387 return FALSE;
5388 break;
5389
5390 /* This relocation describes which C++ vtable entries are actually
5391 used. Record for later use during GC. */
5392 case R_MIPS_GNU_VTENTRY:
5393 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5394 return FALSE;
5395 break;
5396
5397 default:
5398 break;
5399 }
5400
5401 /* We must not create a stub for a symbol that has relocations
5402 related to taking the function's address. */
5403 switch (r_type)
5404 {
5405 default:
5406 if (h != NULL)
5407 {
5408 struct mips_elf_link_hash_entry *mh;
5409
5410 mh = (struct mips_elf_link_hash_entry *) h;
5411 mh->no_fn_stub = TRUE;
5412 }
5413 break;
5414 case R_MIPS_CALL16:
5415 case R_MIPS_CALL_HI16:
5416 case R_MIPS_CALL_LO16:
5417 break;
5418 }
5419
5420 /* If this reloc is not a 16 bit call, and it has a global
5421 symbol, then we will need the fn_stub if there is one.
5422 References from a stub section do not count. */
5423 if (h != NULL
5424 && r_type != R_MIPS16_26
5425 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5426 sizeof FN_STUB - 1) != 0
5427 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5428 sizeof CALL_STUB - 1) != 0
5429 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5430 sizeof CALL_FP_STUB - 1) != 0)
5431 {
5432 struct mips_elf_link_hash_entry *mh;
5433
5434 mh = (struct mips_elf_link_hash_entry *) h;
5435 mh->need_fn_stub = TRUE;
5436 }
5437 }
5438
5439 return TRUE;
5440 }
5441 \f
5442 /* Adjust a symbol defined by a dynamic object and referenced by a
5443 regular object. The current definition is in some section of the
5444 dynamic object, but we're not including those sections. We have to
5445 change the definition to something the rest of the link can
5446 understand. */
5447
5448 bfd_boolean
5449 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5450 struct bfd_link_info *info;
5451 struct elf_link_hash_entry *h;
5452 {
5453 bfd *dynobj;
5454 struct mips_elf_link_hash_entry *hmips;
5455 asection *s;
5456
5457 dynobj = elf_hash_table (info)->dynobj;
5458
5459 /* Make sure we know what is going on here. */
5460 BFD_ASSERT (dynobj != NULL
5461 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5462 || h->weakdef != NULL
5463 || ((h->elf_link_hash_flags
5464 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5465 && (h->elf_link_hash_flags
5466 & ELF_LINK_HASH_REF_REGULAR) != 0
5467 && (h->elf_link_hash_flags
5468 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5469
5470 /* If this symbol is defined in a dynamic object, we need to copy
5471 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5472 file. */
5473 hmips = (struct mips_elf_link_hash_entry *) h;
5474 if (! info->relocateable
5475 && hmips->possibly_dynamic_relocs != 0
5476 && (h->root.type == bfd_link_hash_defweak
5477 || (h->elf_link_hash_flags
5478 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5479 {
5480 mips_elf_allocate_dynamic_relocations (dynobj,
5481 hmips->possibly_dynamic_relocs);
5482 if (hmips->readonly_reloc)
5483 /* We tell the dynamic linker that there are relocations
5484 against the text segment. */
5485 info->flags |= DF_TEXTREL;
5486 }
5487
5488 /* For a function, create a stub, if allowed. */
5489 if (! hmips->no_fn_stub
5490 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5491 {
5492 if (! elf_hash_table (info)->dynamic_sections_created)
5493 return TRUE;
5494
5495 /* If this symbol is not defined in a regular file, then set
5496 the symbol to the stub location. This is required to make
5497 function pointers compare as equal between the normal
5498 executable and the shared library. */
5499 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5500 {
5501 /* We need .stub section. */
5502 s = bfd_get_section_by_name (dynobj,
5503 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5504 BFD_ASSERT (s != NULL);
5505
5506 h->root.u.def.section = s;
5507 h->root.u.def.value = s->_raw_size;
5508
5509 /* XXX Write this stub address somewhere. */
5510 h->plt.offset = s->_raw_size;
5511
5512 /* Make room for this stub code. */
5513 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5514
5515 /* The last half word of the stub will be filled with the index
5516 of this symbol in .dynsym section. */
5517 return TRUE;
5518 }
5519 }
5520 else if ((h->type == STT_FUNC)
5521 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5522 {
5523 /* This will set the entry for this symbol in the GOT to 0, and
5524 the dynamic linker will take care of this. */
5525 h->root.u.def.value = 0;
5526 return TRUE;
5527 }
5528
5529 /* If this is a weak symbol, and there is a real definition, the
5530 processor independent code will have arranged for us to see the
5531 real definition first, and we can just use the same value. */
5532 if (h->weakdef != NULL)
5533 {
5534 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5535 || h->weakdef->root.type == bfd_link_hash_defweak);
5536 h->root.u.def.section = h->weakdef->root.u.def.section;
5537 h->root.u.def.value = h->weakdef->root.u.def.value;
5538 return TRUE;
5539 }
5540
5541 /* This is a reference to a symbol defined by a dynamic object which
5542 is not a function. */
5543
5544 return TRUE;
5545 }
5546 \f
5547 /* This function is called after all the input files have been read,
5548 and the input sections have been assigned to output sections. We
5549 check for any mips16 stub sections that we can discard. */
5550
5551 bfd_boolean
5552 _bfd_mips_elf_always_size_sections (output_bfd, info)
5553 bfd *output_bfd;
5554 struct bfd_link_info *info;
5555 {
5556 asection *ri;
5557
5558 bfd *dynobj;
5559 asection *s;
5560 struct mips_got_info *g;
5561 int i;
5562 bfd_size_type loadable_size = 0;
5563 bfd_size_type local_gotno;
5564 bfd *sub;
5565
5566 /* The .reginfo section has a fixed size. */
5567 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5568 if (ri != NULL)
5569 bfd_set_section_size (output_bfd, ri,
5570 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5571
5572 if (! (info->relocateable
5573 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5574 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5575 mips_elf_check_mips16_stubs,
5576 (PTR) NULL);
5577
5578 dynobj = elf_hash_table (info)->dynobj;
5579 if (dynobj == NULL)
5580 /* Relocatable links don't have it. */
5581 return TRUE;
5582
5583 g = mips_elf_got_info (dynobj, &s);
5584 if (s == NULL)
5585 return TRUE;
5586
5587 /* Calculate the total loadable size of the output. That
5588 will give us the maximum number of GOT_PAGE entries
5589 required. */
5590 for (sub = info->input_bfds; sub; sub = sub->link_next)
5591 {
5592 asection *subsection;
5593
5594 for (subsection = sub->sections;
5595 subsection;
5596 subsection = subsection->next)
5597 {
5598 if ((subsection->flags & SEC_ALLOC) == 0)
5599 continue;
5600 loadable_size += ((subsection->_raw_size + 0xf)
5601 &~ (bfd_size_type) 0xf);
5602 }
5603 }
5604
5605 /* There has to be a global GOT entry for every symbol with
5606 a dynamic symbol table index of DT_MIPS_GOTSYM or
5607 higher. Therefore, it make sense to put those symbols
5608 that need GOT entries at the end of the symbol table. We
5609 do that here. */
5610 if (! mips_elf_sort_hash_table (info, 1))
5611 return FALSE;
5612
5613 if (g->global_gotsym != NULL)
5614 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5615 else
5616 /* If there are no global symbols, or none requiring
5617 relocations, then GLOBAL_GOTSYM will be NULL. */
5618 i = 0;
5619
5620 /* In the worst case, we'll get one stub per dynamic symbol, plus
5621 one to account for the dummy entry at the end required by IRIX
5622 rld. */
5623 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5624
5625 /* Assume there are two loadable segments consisting of
5626 contiguous sections. Is 5 enough? */
5627 local_gotno = (loadable_size >> 16) + 5;
5628
5629 g->local_gotno += local_gotno;
5630 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5631
5632 g->global_gotno = i;
5633 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5634
5635 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5636 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5637 return FALSE;
5638
5639 return TRUE;
5640 }
5641
5642 /* Set the sizes of the dynamic sections. */
5643
5644 bfd_boolean
5645 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5646 bfd *output_bfd;
5647 struct bfd_link_info *info;
5648 {
5649 bfd *dynobj;
5650 asection *s;
5651 bfd_boolean reltext;
5652
5653 dynobj = elf_hash_table (info)->dynobj;
5654 BFD_ASSERT (dynobj != NULL);
5655
5656 if (elf_hash_table (info)->dynamic_sections_created)
5657 {
5658 /* Set the contents of the .interp section to the interpreter. */
5659 if (! info->shared)
5660 {
5661 s = bfd_get_section_by_name (dynobj, ".interp");
5662 BFD_ASSERT (s != NULL);
5663 s->_raw_size
5664 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5665 s->contents
5666 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5667 }
5668 }
5669
5670 /* The check_relocs and adjust_dynamic_symbol entry points have
5671 determined the sizes of the various dynamic sections. Allocate
5672 memory for them. */
5673 reltext = FALSE;
5674 for (s = dynobj->sections; s != NULL; s = s->next)
5675 {
5676 const char *name;
5677 bfd_boolean strip;
5678
5679 /* It's OK to base decisions on the section name, because none
5680 of the dynobj section names depend upon the input files. */
5681 name = bfd_get_section_name (dynobj, s);
5682
5683 if ((s->flags & SEC_LINKER_CREATED) == 0)
5684 continue;
5685
5686 strip = FALSE;
5687
5688 if (strncmp (name, ".rel", 4) == 0)
5689 {
5690 if (s->_raw_size == 0)
5691 {
5692 /* We only strip the section if the output section name
5693 has the same name. Otherwise, there might be several
5694 input sections for this output section. FIXME: This
5695 code is probably not needed these days anyhow, since
5696 the linker now does not create empty output sections. */
5697 if (s->output_section != NULL
5698 && strcmp (name,
5699 bfd_get_section_name (s->output_section->owner,
5700 s->output_section)) == 0)
5701 strip = TRUE;
5702 }
5703 else
5704 {
5705 const char *outname;
5706 asection *target;
5707
5708 /* If this relocation section applies to a read only
5709 section, then we probably need a DT_TEXTREL entry.
5710 If the relocation section is .rel.dyn, we always
5711 assert a DT_TEXTREL entry rather than testing whether
5712 there exists a relocation to a read only section or
5713 not. */
5714 outname = bfd_get_section_name (output_bfd,
5715 s->output_section);
5716 target = bfd_get_section_by_name (output_bfd, outname + 4);
5717 if ((target != NULL
5718 && (target->flags & SEC_READONLY) != 0
5719 && (target->flags & SEC_ALLOC) != 0)
5720 || strcmp (outname, ".rel.dyn") == 0)
5721 reltext = TRUE;
5722
5723 /* We use the reloc_count field as a counter if we need
5724 to copy relocs into the output file. */
5725 if (strcmp (name, ".rel.dyn") != 0)
5726 s->reloc_count = 0;
5727
5728 /* If combreloc is enabled, elf_link_sort_relocs() will
5729 sort relocations, but in a different way than we do,
5730 and before we're done creating relocations. Also, it
5731 will move them around between input sections'
5732 relocation's contents, so our sorting would be
5733 broken, so don't let it run. */
5734 info->combreloc = 0;
5735 }
5736 }
5737 else if (strncmp (name, ".got", 4) == 0)
5738 {
5739 /* _bfd_mips_elf_always_size_sections() has already done
5740 most of the work, but some symbols may have been mapped
5741 to versions that we must now resolve in the got_entries
5742 hash tables. */
5743 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5744 struct mips_got_info *g = gg;
5745 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5746 unsigned int needed_relocs = 0;
5747
5748 if (gg->next)
5749 {
5750 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5751 set_got_offset_arg.info = info;
5752
5753 mips_elf_resolve_final_got_entries (gg);
5754 for (g = gg->next; g && g->next != gg; g = g->next)
5755 {
5756 unsigned int save_assign;
5757
5758 mips_elf_resolve_final_got_entries (g);
5759
5760 /* Assign offsets to global GOT entries. */
5761 save_assign = g->assigned_gotno;
5762 g->assigned_gotno = g->local_gotno;
5763 set_got_offset_arg.g = g;
5764 set_got_offset_arg.needed_relocs = 0;
5765 htab_traverse (g->got_entries,
5766 mips_elf_set_global_got_offset,
5767 &set_got_offset_arg);
5768 needed_relocs += set_got_offset_arg.needed_relocs;
5769 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5770 <= g->global_gotno);
5771
5772 g->assigned_gotno = save_assign;
5773 if (info->shared)
5774 {
5775 needed_relocs += g->local_gotno - g->assigned_gotno;
5776 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5777 + g->next->global_gotno
5778 + MIPS_RESERVED_GOTNO);
5779 }
5780 }
5781
5782 if (needed_relocs)
5783 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5784 }
5785 }
5786 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5787 {
5788 /* IRIX rld assumes that the function stub isn't at the end
5789 of .text section. So put a dummy. XXX */
5790 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5791 }
5792 else if (! info->shared
5793 && ! mips_elf_hash_table (info)->use_rld_obj_head
5794 && strncmp (name, ".rld_map", 8) == 0)
5795 {
5796 /* We add a room for __rld_map. It will be filled in by the
5797 rtld to contain a pointer to the _r_debug structure. */
5798 s->_raw_size += 4;
5799 }
5800 else if (SGI_COMPAT (output_bfd)
5801 && strncmp (name, ".compact_rel", 12) == 0)
5802 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5803 else if (strcmp (name, ".msym") == 0)
5804 s->_raw_size = (sizeof (Elf32_External_Msym)
5805 * (elf_hash_table (info)->dynsymcount
5806 + bfd_count_sections (output_bfd)));
5807 else if (strncmp (name, ".init", 5) != 0)
5808 {
5809 /* It's not one of our sections, so don't allocate space. */
5810 continue;
5811 }
5812
5813 if (strip)
5814 {
5815 _bfd_strip_section_from_output (info, s);
5816 continue;
5817 }
5818
5819 /* Allocate memory for the section contents. */
5820 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
5821 if (s->contents == NULL && s->_raw_size != 0)
5822 {
5823 bfd_set_error (bfd_error_no_memory);
5824 return FALSE;
5825 }
5826 }
5827
5828 if (elf_hash_table (info)->dynamic_sections_created)
5829 {
5830 /* Add some entries to the .dynamic section. We fill in the
5831 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
5832 must add the entries now so that we get the correct size for
5833 the .dynamic section. The DT_DEBUG entry is filled in by the
5834 dynamic linker and used by the debugger. */
5835 if (! info->shared)
5836 {
5837 /* SGI object has the equivalence of DT_DEBUG in the
5838 DT_MIPS_RLD_MAP entry. */
5839 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
5840 return FALSE;
5841 if (!SGI_COMPAT (output_bfd))
5842 {
5843 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
5844 return FALSE;
5845 }
5846 }
5847 else
5848 {
5849 /* Shared libraries on traditional mips have DT_DEBUG. */
5850 if (!SGI_COMPAT (output_bfd))
5851 {
5852 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
5853 return FALSE;
5854 }
5855 }
5856
5857 if (reltext && SGI_COMPAT (output_bfd))
5858 info->flags |= DF_TEXTREL;
5859
5860 if ((info->flags & DF_TEXTREL) != 0)
5861 {
5862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
5863 return FALSE;
5864 }
5865
5866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
5867 return FALSE;
5868
5869 if (mips_elf_rel_dyn_section (dynobj, FALSE))
5870 {
5871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
5872 return FALSE;
5873
5874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
5875 return FALSE;
5876
5877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
5878 return FALSE;
5879 }
5880
5881 if (SGI_COMPAT (output_bfd))
5882 {
5883 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
5884 return FALSE;
5885 }
5886
5887 if (SGI_COMPAT (output_bfd))
5888 {
5889 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
5890 return FALSE;
5891 }
5892
5893 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
5894 {
5895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
5896 return FALSE;
5897
5898 s = bfd_get_section_by_name (dynobj, ".liblist");
5899 BFD_ASSERT (s != NULL);
5900
5901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
5902 return FALSE;
5903 }
5904
5905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
5906 return FALSE;
5907
5908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
5909 return FALSE;
5910
5911 #if 0
5912 /* Time stamps in executable files are a bad idea. */
5913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
5914 return FALSE;
5915 #endif
5916
5917 #if 0 /* FIXME */
5918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
5919 return FALSE;
5920 #endif
5921
5922 #if 0 /* FIXME */
5923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
5924 return FALSE;
5925 #endif
5926
5927 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
5928 return FALSE;
5929
5930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
5931 return FALSE;
5932
5933 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
5934 return FALSE;
5935
5936 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
5937 return FALSE;
5938
5939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
5940 return FALSE;
5941
5942 if (IRIX_COMPAT (dynobj) == ict_irix5
5943 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
5944 return FALSE;
5945
5946 if (IRIX_COMPAT (dynobj) == ict_irix6
5947 && (bfd_get_section_by_name
5948 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
5949 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
5950 return FALSE;
5951
5952 if (bfd_get_section_by_name (dynobj, ".msym")
5953 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
5954 return FALSE;
5955 }
5956
5957 return TRUE;
5958 }
5959 \f
5960 /* Relocate a MIPS ELF section. */
5961
5962 bfd_boolean
5963 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
5964 contents, relocs, local_syms, local_sections)
5965 bfd *output_bfd;
5966 struct bfd_link_info *info;
5967 bfd *input_bfd;
5968 asection *input_section;
5969 bfd_byte *contents;
5970 Elf_Internal_Rela *relocs;
5971 Elf_Internal_Sym *local_syms;
5972 asection **local_sections;
5973 {
5974 Elf_Internal_Rela *rel;
5975 const Elf_Internal_Rela *relend;
5976 bfd_vma addend = 0;
5977 bfd_boolean use_saved_addend_p = FALSE;
5978 struct elf_backend_data *bed;
5979
5980 bed = get_elf_backend_data (output_bfd);
5981 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
5982 for (rel = relocs; rel < relend; ++rel)
5983 {
5984 const char *name;
5985 bfd_vma value;
5986 reloc_howto_type *howto;
5987 bfd_boolean require_jalx;
5988 /* TRUE if the relocation is a RELA relocation, rather than a
5989 REL relocation. */
5990 bfd_boolean rela_relocation_p = TRUE;
5991 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5992 const char * msg = (const char *) NULL;
5993
5994 /* Find the relocation howto for this relocation. */
5995 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
5996 {
5997 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5998 64-bit code, but make sure all their addresses are in the
5999 lowermost or uppermost 32-bit section of the 64-bit address
6000 space. Thus, when they use an R_MIPS_64 they mean what is
6001 usually meant by R_MIPS_32, with the exception that the
6002 stored value is sign-extended to 64 bits. */
6003 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6004
6005 /* On big-endian systems, we need to lie about the position
6006 of the reloc. */
6007 if (bfd_big_endian (input_bfd))
6008 rel->r_offset += 4;
6009 }
6010 else
6011 /* NewABI defaults to RELA relocations. */
6012 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6013 NEWABI_P (input_bfd)
6014 && (MIPS_RELOC_RELA_P
6015 (input_bfd, input_section,
6016 rel - relocs)));
6017
6018 if (!use_saved_addend_p)
6019 {
6020 Elf_Internal_Shdr *rel_hdr;
6021
6022 /* If these relocations were originally of the REL variety,
6023 we must pull the addend out of the field that will be
6024 relocated. Otherwise, we simply use the contents of the
6025 RELA relocation. To determine which flavor or relocation
6026 this is, we depend on the fact that the INPUT_SECTION's
6027 REL_HDR is read before its REL_HDR2. */
6028 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6029 if ((size_t) (rel - relocs)
6030 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6031 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6032 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6033 {
6034 /* Note that this is a REL relocation. */
6035 rela_relocation_p = FALSE;
6036
6037 /* Get the addend, which is stored in the input file. */
6038 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6039 contents);
6040 addend &= howto->src_mask;
6041 addend <<= howto->rightshift;
6042
6043 /* For some kinds of relocations, the ADDEND is a
6044 combination of the addend stored in two different
6045 relocations. */
6046 if (r_type == R_MIPS_HI16
6047 || r_type == R_MIPS_GNU_REL_HI16
6048 || (r_type == R_MIPS_GOT16
6049 && mips_elf_local_relocation_p (input_bfd, rel,
6050 local_sections, FALSE)))
6051 {
6052 bfd_vma l;
6053 const Elf_Internal_Rela *lo16_relocation;
6054 reloc_howto_type *lo16_howto;
6055 unsigned int lo;
6056
6057 /* The combined value is the sum of the HI16 addend,
6058 left-shifted by sixteen bits, and the LO16
6059 addend, sign extended. (Usually, the code does
6060 a `lui' of the HI16 value, and then an `addiu' of
6061 the LO16 value.)
6062
6063 Scan ahead to find a matching LO16 relocation. */
6064 if (r_type == R_MIPS_GNU_REL_HI16)
6065 lo = R_MIPS_GNU_REL_LO16;
6066 else
6067 lo = R_MIPS_LO16;
6068 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6069 rel, relend);
6070 if (lo16_relocation == NULL)
6071 return FALSE;
6072
6073 /* Obtain the addend kept there. */
6074 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6075 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6076 input_bfd, contents);
6077 l &= lo16_howto->src_mask;
6078 l <<= lo16_howto->rightshift;
6079 l = mips_elf_sign_extend (l, 16);
6080
6081 addend <<= 16;
6082
6083 /* Compute the combined addend. */
6084 addend += l;
6085
6086 /* If PC-relative, subtract the difference between the
6087 address of the LO part of the reloc and the address of
6088 the HI part. The relocation is relative to the LO
6089 part, but mips_elf_calculate_relocation() doesn't
6090 know its address or the difference from the HI part, so
6091 we subtract that difference here. See also the
6092 comment in mips_elf_calculate_relocation(). */
6093 if (r_type == R_MIPS_GNU_REL_HI16)
6094 addend -= (lo16_relocation->r_offset - rel->r_offset);
6095 }
6096 else if (r_type == R_MIPS16_GPREL)
6097 {
6098 /* The addend is scrambled in the object file. See
6099 mips_elf_perform_relocation for details on the
6100 format. */
6101 addend = (((addend & 0x1f0000) >> 5)
6102 | ((addend & 0x7e00000) >> 16)
6103 | (addend & 0x1f));
6104 }
6105 }
6106 else
6107 addend = rel->r_addend;
6108 }
6109
6110 if (info->relocateable)
6111 {
6112 Elf_Internal_Sym *sym;
6113 unsigned long r_symndx;
6114
6115 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6116 && bfd_big_endian (input_bfd))
6117 rel->r_offset -= 4;
6118
6119 /* Since we're just relocating, all we need to do is copy
6120 the relocations back out to the object file, unless
6121 they're against a section symbol, in which case we need
6122 to adjust by the section offset, or unless they're GP
6123 relative in which case we need to adjust by the amount
6124 that we're adjusting GP in this relocateable object. */
6125
6126 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6127 FALSE))
6128 /* There's nothing to do for non-local relocations. */
6129 continue;
6130
6131 if (r_type == R_MIPS16_GPREL
6132 || r_type == R_MIPS_GPREL16
6133 || r_type == R_MIPS_GPREL32
6134 || r_type == R_MIPS_LITERAL)
6135 addend -= (_bfd_get_gp_value (output_bfd)
6136 - _bfd_get_gp_value (input_bfd));
6137
6138 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6139 sym = local_syms + r_symndx;
6140 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6141 /* Adjust the addend appropriately. */
6142 addend += local_sections[r_symndx]->output_offset;
6143
6144 if (howto->partial_inplace)
6145 {
6146 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6147 then we only want to write out the high-order 16 bits.
6148 The subsequent R_MIPS_LO16 will handle the low-order bits.
6149 */
6150 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6151 || r_type == R_MIPS_GNU_REL_HI16)
6152 addend = mips_elf_high (addend);
6153 else if (r_type == R_MIPS_HIGHER)
6154 addend = mips_elf_higher (addend);
6155 else if (r_type == R_MIPS_HIGHEST)
6156 addend = mips_elf_highest (addend);
6157 }
6158
6159 if (rela_relocation_p)
6160 /* If this is a RELA relocation, just update the addend.
6161 We have to cast away constness for REL. */
6162 rel->r_addend = addend;
6163 else
6164 {
6165 /* Otherwise, we have to write the value back out. Note
6166 that we use the source mask, rather than the
6167 destination mask because the place to which we are
6168 writing will be source of the addend in the final
6169 link. */
6170 addend >>= howto->rightshift;
6171 addend &= howto->src_mask;
6172
6173 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6174 /* See the comment above about using R_MIPS_64 in the 32-bit
6175 ABI. Here, we need to update the addend. It would be
6176 possible to get away with just using the R_MIPS_32 reloc
6177 but for endianness. */
6178 {
6179 bfd_vma sign_bits;
6180 bfd_vma low_bits;
6181 bfd_vma high_bits;
6182
6183 if (addend & ((bfd_vma) 1 << 31))
6184 #ifdef BFD64
6185 sign_bits = ((bfd_vma) 1 << 32) - 1;
6186 #else
6187 sign_bits = -1;
6188 #endif
6189 else
6190 sign_bits = 0;
6191
6192 /* If we don't know that we have a 64-bit type,
6193 do two separate stores. */
6194 if (bfd_big_endian (input_bfd))
6195 {
6196 /* Store the sign-bits (which are most significant)
6197 first. */
6198 low_bits = sign_bits;
6199 high_bits = addend;
6200 }
6201 else
6202 {
6203 low_bits = addend;
6204 high_bits = sign_bits;
6205 }
6206 bfd_put_32 (input_bfd, low_bits,
6207 contents + rel->r_offset);
6208 bfd_put_32 (input_bfd, high_bits,
6209 contents + rel->r_offset + 4);
6210 continue;
6211 }
6212
6213 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6214 input_bfd, input_section,
6215 contents, FALSE))
6216 return FALSE;
6217 }
6218
6219 /* Go on to the next relocation. */
6220 continue;
6221 }
6222
6223 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6224 relocations for the same offset. In that case we are
6225 supposed to treat the output of each relocation as the addend
6226 for the next. */
6227 if (rel + 1 < relend
6228 && rel->r_offset == rel[1].r_offset
6229 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6230 use_saved_addend_p = TRUE;
6231 else
6232 use_saved_addend_p = FALSE;
6233
6234 addend >>= howto->rightshift;
6235
6236 /* Figure out what value we are supposed to relocate. */
6237 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6238 input_section, info, rel,
6239 addend, howto, local_syms,
6240 local_sections, &value,
6241 &name, &require_jalx,
6242 use_saved_addend_p))
6243 {
6244 case bfd_reloc_continue:
6245 /* There's nothing to do. */
6246 continue;
6247
6248 case bfd_reloc_undefined:
6249 /* mips_elf_calculate_relocation already called the
6250 undefined_symbol callback. There's no real point in
6251 trying to perform the relocation at this point, so we
6252 just skip ahead to the next relocation. */
6253 continue;
6254
6255 case bfd_reloc_notsupported:
6256 msg = _("internal error: unsupported relocation error");
6257 info->callbacks->warning
6258 (info, msg, name, input_bfd, input_section, rel->r_offset);
6259 return FALSE;
6260
6261 case bfd_reloc_overflow:
6262 if (use_saved_addend_p)
6263 /* Ignore overflow until we reach the last relocation for
6264 a given location. */
6265 ;
6266 else
6267 {
6268 BFD_ASSERT (name != NULL);
6269 if (! ((*info->callbacks->reloc_overflow)
6270 (info, name, howto->name, (bfd_vma) 0,
6271 input_bfd, input_section, rel->r_offset)))
6272 return FALSE;
6273 }
6274 break;
6275
6276 case bfd_reloc_ok:
6277 break;
6278
6279 default:
6280 abort ();
6281 break;
6282 }
6283
6284 /* If we've got another relocation for the address, keep going
6285 until we reach the last one. */
6286 if (use_saved_addend_p)
6287 {
6288 addend = value;
6289 continue;
6290 }
6291
6292 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6293 /* See the comment above about using R_MIPS_64 in the 32-bit
6294 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6295 that calculated the right value. Now, however, we
6296 sign-extend the 32-bit result to 64-bits, and store it as a
6297 64-bit value. We are especially generous here in that we
6298 go to extreme lengths to support this usage on systems with
6299 only a 32-bit VMA. */
6300 {
6301 bfd_vma sign_bits;
6302 bfd_vma low_bits;
6303 bfd_vma high_bits;
6304
6305 if (value & ((bfd_vma) 1 << 31))
6306 #ifdef BFD64
6307 sign_bits = ((bfd_vma) 1 << 32) - 1;
6308 #else
6309 sign_bits = -1;
6310 #endif
6311 else
6312 sign_bits = 0;
6313
6314 /* If we don't know that we have a 64-bit type,
6315 do two separate stores. */
6316 if (bfd_big_endian (input_bfd))
6317 {
6318 /* Undo what we did above. */
6319 rel->r_offset -= 4;
6320 /* Store the sign-bits (which are most significant)
6321 first. */
6322 low_bits = sign_bits;
6323 high_bits = value;
6324 }
6325 else
6326 {
6327 low_bits = value;
6328 high_bits = sign_bits;
6329 }
6330 bfd_put_32 (input_bfd, low_bits,
6331 contents + rel->r_offset);
6332 bfd_put_32 (input_bfd, high_bits,
6333 contents + rel->r_offset + 4);
6334 continue;
6335 }
6336
6337 /* Actually perform the relocation. */
6338 if (! mips_elf_perform_relocation (info, howto, rel, value,
6339 input_bfd, input_section,
6340 contents, require_jalx))
6341 return FALSE;
6342 }
6343
6344 return TRUE;
6345 }
6346 \f
6347 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6348 adjust it appropriately now. */
6349
6350 static void
6351 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6352 bfd *abfd ATTRIBUTE_UNUSED;
6353 const char *name;
6354 Elf_Internal_Sym *sym;
6355 {
6356 /* The linker script takes care of providing names and values for
6357 these, but we must place them into the right sections. */
6358 static const char* const text_section_symbols[] = {
6359 "_ftext",
6360 "_etext",
6361 "__dso_displacement",
6362 "__elf_header",
6363 "__program_header_table",
6364 NULL
6365 };
6366
6367 static const char* const data_section_symbols[] = {
6368 "_fdata",
6369 "_edata",
6370 "_end",
6371 "_fbss",
6372 NULL
6373 };
6374
6375 const char* const *p;
6376 int i;
6377
6378 for (i = 0; i < 2; ++i)
6379 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6380 *p;
6381 ++p)
6382 if (strcmp (*p, name) == 0)
6383 {
6384 /* All of these symbols are given type STT_SECTION by the
6385 IRIX6 linker. */
6386 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6387
6388 /* The IRIX linker puts these symbols in special sections. */
6389 if (i == 0)
6390 sym->st_shndx = SHN_MIPS_TEXT;
6391 else
6392 sym->st_shndx = SHN_MIPS_DATA;
6393
6394 break;
6395 }
6396 }
6397
6398 /* Finish up dynamic symbol handling. We set the contents of various
6399 dynamic sections here. */
6400
6401 bfd_boolean
6402 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6403 bfd *output_bfd;
6404 struct bfd_link_info *info;
6405 struct elf_link_hash_entry *h;
6406 Elf_Internal_Sym *sym;
6407 {
6408 bfd *dynobj;
6409 bfd_vma gval;
6410 asection *sgot;
6411 asection *smsym;
6412 struct mips_got_info *g, *gg;
6413 const char *name;
6414 struct mips_elf_link_hash_entry *mh;
6415
6416 dynobj = elf_hash_table (info)->dynobj;
6417 gval = sym->st_value;
6418 mh = (struct mips_elf_link_hash_entry *) h;
6419
6420 if (h->plt.offset != (bfd_vma) -1)
6421 {
6422 asection *s;
6423 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6424
6425 /* This symbol has a stub. Set it up. */
6426
6427 BFD_ASSERT (h->dynindx != -1);
6428
6429 s = bfd_get_section_by_name (dynobj,
6430 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6431 BFD_ASSERT (s != NULL);
6432
6433 /* FIXME: Can h->dynindex be more than 64K? */
6434 if (h->dynindx & 0xffff0000)
6435 return FALSE;
6436
6437 /* Fill the stub. */
6438 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6439 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6440 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6441 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6442
6443 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6444 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6445
6446 /* Mark the symbol as undefined. plt.offset != -1 occurs
6447 only for the referenced symbol. */
6448 sym->st_shndx = SHN_UNDEF;
6449
6450 /* The run-time linker uses the st_value field of the symbol
6451 to reset the global offset table entry for this external
6452 to its stub address when unlinking a shared object. */
6453 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6454 sym->st_value = gval;
6455 }
6456
6457 BFD_ASSERT (h->dynindx != -1
6458 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6459
6460 sgot = mips_elf_got_section (dynobj, FALSE);
6461 BFD_ASSERT (sgot != NULL);
6462 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6463 g = mips_elf_section_data (sgot)->u.got_info;
6464 BFD_ASSERT (g != NULL);
6465
6466 /* Run through the global symbol table, creating GOT entries for all
6467 the symbols that need them. */
6468 if (g->global_gotsym != NULL
6469 && h->dynindx >= g->global_gotsym->dynindx)
6470 {
6471 bfd_vma offset;
6472 bfd_vma value;
6473
6474 if (sym->st_value)
6475 value = sym->st_value;
6476 else
6477 {
6478 /* For an entity defined in a shared object, this will be
6479 NULL. (For functions in shared objects for
6480 which we have created stubs, ST_VALUE will be non-NULL.
6481 That's because such the functions are now no longer defined
6482 in a shared object.) */
6483
6484 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6485 || h->root.type == bfd_link_hash_undefweak)
6486 value = 0;
6487 else
6488 value = h->root.u.def.value;
6489 }
6490 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6491 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6492 }
6493
6494 if (g->next && h->dynindx != -1)
6495 {
6496 struct mips_got_entry e, *p;
6497 bfd_vma offset;
6498 bfd_vma value;
6499 Elf_Internal_Rela rel[3];
6500 bfd_vma addend = 0;
6501
6502 gg = g;
6503
6504 e.abfd = output_bfd;
6505 e.symndx = -1;
6506 e.d.h = (struct mips_elf_link_hash_entry *)h;
6507
6508 if (info->shared
6509 || h->root.type == bfd_link_hash_undefined
6510 || h->root.type == bfd_link_hash_undefweak)
6511 value = 0;
6512 else if (sym->st_value)
6513 value = sym->st_value;
6514 else
6515 value = h->root.u.def.value;
6516
6517 memset (rel, 0, sizeof (rel));
6518 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6519
6520 for (g = g->next; g->next != gg; g = g->next)
6521 {
6522 if (g->got_entries
6523 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6524 &e)))
6525 {
6526 offset = p->gotidx;
6527 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6528
6529 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6530
6531 if ((info->shared
6532 || (elf_hash_table (info)->dynamic_sections_created
6533 && p->d.h != NULL
6534 && ((p->d.h->root.elf_link_hash_flags
6535 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6536 && ((p->d.h->root.elf_link_hash_flags
6537 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6538 && ! (mips_elf_create_dynamic_relocation
6539 (output_bfd, info, rel,
6540 e.d.h, NULL, value, &addend, sgot)))
6541 return FALSE;
6542 BFD_ASSERT (addend == 0);
6543 }
6544 }
6545 }
6546
6547 /* Create a .msym entry, if appropriate. */
6548 smsym = bfd_get_section_by_name (dynobj, ".msym");
6549 if (smsym)
6550 {
6551 Elf32_Internal_Msym msym;
6552
6553 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6554 /* It is undocumented what the `1' indicates, but IRIX6 uses
6555 this value. */
6556 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6557 bfd_mips_elf_swap_msym_out
6558 (dynobj, &msym,
6559 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6560 }
6561
6562 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6563 name = h->root.root.string;
6564 if (strcmp (name, "_DYNAMIC") == 0
6565 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6566 sym->st_shndx = SHN_ABS;
6567 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6568 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6569 {
6570 sym->st_shndx = SHN_ABS;
6571 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6572 sym->st_value = 1;
6573 }
6574 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6575 {
6576 sym->st_shndx = SHN_ABS;
6577 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6578 sym->st_value = elf_gp (output_bfd);
6579 }
6580 else if (SGI_COMPAT (output_bfd))
6581 {
6582 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6583 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6584 {
6585 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6586 sym->st_other = STO_PROTECTED;
6587 sym->st_value = 0;
6588 sym->st_shndx = SHN_MIPS_DATA;
6589 }
6590 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6591 {
6592 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6593 sym->st_other = STO_PROTECTED;
6594 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6595 sym->st_shndx = SHN_ABS;
6596 }
6597 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6598 {
6599 if (h->type == STT_FUNC)
6600 sym->st_shndx = SHN_MIPS_TEXT;
6601 else if (h->type == STT_OBJECT)
6602 sym->st_shndx = SHN_MIPS_DATA;
6603 }
6604 }
6605
6606 /* Handle the IRIX6-specific symbols. */
6607 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6608 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6609
6610 if (! info->shared)
6611 {
6612 if (! mips_elf_hash_table (info)->use_rld_obj_head
6613 && (strcmp (name, "__rld_map") == 0
6614 || strcmp (name, "__RLD_MAP") == 0))
6615 {
6616 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6617 BFD_ASSERT (s != NULL);
6618 sym->st_value = s->output_section->vma + s->output_offset;
6619 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6620 if (mips_elf_hash_table (info)->rld_value == 0)
6621 mips_elf_hash_table (info)->rld_value = sym->st_value;
6622 }
6623 else if (mips_elf_hash_table (info)->use_rld_obj_head
6624 && strcmp (name, "__rld_obj_head") == 0)
6625 {
6626 /* IRIX6 does not use a .rld_map section. */
6627 if (IRIX_COMPAT (output_bfd) == ict_irix5
6628 || IRIX_COMPAT (output_bfd) == ict_none)
6629 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6630 != NULL);
6631 mips_elf_hash_table (info)->rld_value = sym->st_value;
6632 }
6633 }
6634
6635 /* If this is a mips16 symbol, force the value to be even. */
6636 if (sym->st_other == STO_MIPS16
6637 && (sym->st_value & 1) != 0)
6638 --sym->st_value;
6639
6640 return TRUE;
6641 }
6642
6643 /* Finish up the dynamic sections. */
6644
6645 bfd_boolean
6646 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6647 bfd *output_bfd;
6648 struct bfd_link_info *info;
6649 {
6650 bfd *dynobj;
6651 asection *sdyn;
6652 asection *sgot;
6653 struct mips_got_info *gg, *g;
6654
6655 dynobj = elf_hash_table (info)->dynobj;
6656
6657 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6658
6659 sgot = mips_elf_got_section (dynobj, FALSE);
6660 if (sgot == NULL)
6661 gg = g = NULL;
6662 else
6663 {
6664 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6665 gg = mips_elf_section_data (sgot)->u.got_info;
6666 BFD_ASSERT (gg != NULL);
6667 g = mips_elf_got_for_ibfd (gg, output_bfd);
6668 BFD_ASSERT (g != NULL);
6669 }
6670
6671 if (elf_hash_table (info)->dynamic_sections_created)
6672 {
6673 bfd_byte *b;
6674
6675 BFD_ASSERT (sdyn != NULL);
6676 BFD_ASSERT (g != NULL);
6677
6678 for (b = sdyn->contents;
6679 b < sdyn->contents + sdyn->_raw_size;
6680 b += MIPS_ELF_DYN_SIZE (dynobj))
6681 {
6682 Elf_Internal_Dyn dyn;
6683 const char *name;
6684 size_t elemsize;
6685 asection *s;
6686 bfd_boolean swap_out_p;
6687
6688 /* Read in the current dynamic entry. */
6689 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6690
6691 /* Assume that we're going to modify it and write it out. */
6692 swap_out_p = TRUE;
6693
6694 switch (dyn.d_tag)
6695 {
6696 case DT_RELENT:
6697 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6698 BFD_ASSERT (s != NULL);
6699 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6700 break;
6701
6702 case DT_STRSZ:
6703 /* Rewrite DT_STRSZ. */
6704 dyn.d_un.d_val =
6705 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6706 break;
6707
6708 case DT_PLTGOT:
6709 name = ".got";
6710 goto get_vma;
6711 case DT_MIPS_CONFLICT:
6712 name = ".conflict";
6713 goto get_vma;
6714 case DT_MIPS_LIBLIST:
6715 name = ".liblist";
6716 get_vma:
6717 s = bfd_get_section_by_name (output_bfd, name);
6718 BFD_ASSERT (s != NULL);
6719 dyn.d_un.d_ptr = s->vma;
6720 break;
6721
6722 case DT_MIPS_RLD_VERSION:
6723 dyn.d_un.d_val = 1; /* XXX */
6724 break;
6725
6726 case DT_MIPS_FLAGS:
6727 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6728 break;
6729
6730 case DT_MIPS_CONFLICTNO:
6731 name = ".conflict";
6732 elemsize = sizeof (Elf32_Conflict);
6733 goto set_elemno;
6734
6735 case DT_MIPS_LIBLISTNO:
6736 name = ".liblist";
6737 elemsize = sizeof (Elf32_Lib);
6738 set_elemno:
6739 s = bfd_get_section_by_name (output_bfd, name);
6740 if (s != NULL)
6741 {
6742 if (s->_cooked_size != 0)
6743 dyn.d_un.d_val = s->_cooked_size / elemsize;
6744 else
6745 dyn.d_un.d_val = s->_raw_size / elemsize;
6746 }
6747 else
6748 dyn.d_un.d_val = 0;
6749 break;
6750
6751 case DT_MIPS_TIME_STAMP:
6752 time ((time_t *) &dyn.d_un.d_val);
6753 break;
6754
6755 case DT_MIPS_ICHECKSUM:
6756 /* XXX FIXME: */
6757 swap_out_p = FALSE;
6758 break;
6759
6760 case DT_MIPS_IVERSION:
6761 /* XXX FIXME: */
6762 swap_out_p = FALSE;
6763 break;
6764
6765 case DT_MIPS_BASE_ADDRESS:
6766 s = output_bfd->sections;
6767 BFD_ASSERT (s != NULL);
6768 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6769 break;
6770
6771 case DT_MIPS_LOCAL_GOTNO:
6772 dyn.d_un.d_val = g->local_gotno;
6773 break;
6774
6775 case DT_MIPS_UNREFEXTNO:
6776 /* The index into the dynamic symbol table which is the
6777 entry of the first external symbol that is not
6778 referenced within the same object. */
6779 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6780 break;
6781
6782 case DT_MIPS_GOTSYM:
6783 if (gg->global_gotsym)
6784 {
6785 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6786 break;
6787 }
6788 /* In case if we don't have global got symbols we default
6789 to setting DT_MIPS_GOTSYM to the same value as
6790 DT_MIPS_SYMTABNO, so we just fall through. */
6791
6792 case DT_MIPS_SYMTABNO:
6793 name = ".dynsym";
6794 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6795 s = bfd_get_section_by_name (output_bfd, name);
6796 BFD_ASSERT (s != NULL);
6797
6798 if (s->_cooked_size != 0)
6799 dyn.d_un.d_val = s->_cooked_size / elemsize;
6800 else
6801 dyn.d_un.d_val = s->_raw_size / elemsize;
6802 break;
6803
6804 case DT_MIPS_HIPAGENO:
6805 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6806 break;
6807
6808 case DT_MIPS_RLD_MAP:
6809 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6810 break;
6811
6812 case DT_MIPS_OPTIONS:
6813 s = (bfd_get_section_by_name
6814 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6815 dyn.d_un.d_ptr = s->vma;
6816 break;
6817
6818 case DT_MIPS_MSYM:
6819 s = (bfd_get_section_by_name (output_bfd, ".msym"));
6820 dyn.d_un.d_ptr = s->vma;
6821 break;
6822
6823 default:
6824 swap_out_p = FALSE;
6825 break;
6826 }
6827
6828 if (swap_out_p)
6829 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6830 (dynobj, &dyn, b);
6831 }
6832 }
6833
6834 /* The first entry of the global offset table will be filled at
6835 runtime. The second entry will be used by some runtime loaders.
6836 This isn't the case of IRIX rld. */
6837 if (sgot != NULL && sgot->_raw_size > 0)
6838 {
6839 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
6840 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
6841 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6842 }
6843
6844 if (sgot != NULL)
6845 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6846 = MIPS_ELF_GOT_SIZE (output_bfd);
6847
6848 /* Generate dynamic relocations for the non-primary gots. */
6849 if (gg != NULL && gg->next)
6850 {
6851 Elf_Internal_Rela rel[3];
6852 bfd_vma addend = 0;
6853
6854 memset (rel, 0, sizeof (rel));
6855 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6856
6857 for (g = gg->next; g->next != gg; g = g->next)
6858 {
6859 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6860
6861 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
6862 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6863 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
6864 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6865
6866 if (! info->shared)
6867 continue;
6868
6869 while (index < g->assigned_gotno)
6870 {
6871 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6872 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6873 if (!(mips_elf_create_dynamic_relocation
6874 (output_bfd, info, rel, NULL,
6875 bfd_abs_section_ptr,
6876 0, &addend, sgot)))
6877 return FALSE;
6878 BFD_ASSERT (addend == 0);
6879 }
6880 }
6881 }
6882
6883 {
6884 asection *smsym;
6885 asection *s;
6886 Elf32_compact_rel cpt;
6887
6888 /* ??? The section symbols for the output sections were set up in
6889 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
6890 symbols. Should we do so? */
6891
6892 smsym = bfd_get_section_by_name (dynobj, ".msym");
6893 if (smsym != NULL)
6894 {
6895 Elf32_Internal_Msym msym;
6896
6897 msym.ms_hash_value = 0;
6898 msym.ms_info = ELF32_MS_INFO (0, 1);
6899
6900 for (s = output_bfd->sections; s != NULL; s = s->next)
6901 {
6902 long dynindx = elf_section_data (s)->dynindx;
6903
6904 bfd_mips_elf_swap_msym_out
6905 (output_bfd, &msym,
6906 (((Elf32_External_Msym *) smsym->contents)
6907 + dynindx));
6908 }
6909 }
6910
6911 if (SGI_COMPAT (output_bfd))
6912 {
6913 /* Write .compact_rel section out. */
6914 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6915 if (s != NULL)
6916 {
6917 cpt.id1 = 1;
6918 cpt.num = s->reloc_count;
6919 cpt.id2 = 2;
6920 cpt.offset = (s->output_section->filepos
6921 + sizeof (Elf32_External_compact_rel));
6922 cpt.reserved0 = 0;
6923 cpt.reserved1 = 0;
6924 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6925 ((Elf32_External_compact_rel *)
6926 s->contents));
6927
6928 /* Clean up a dummy stub function entry in .text. */
6929 s = bfd_get_section_by_name (dynobj,
6930 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6931 if (s != NULL)
6932 {
6933 file_ptr dummy_offset;
6934
6935 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
6936 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
6937 memset (s->contents + dummy_offset, 0,
6938 MIPS_FUNCTION_STUB_SIZE);
6939 }
6940 }
6941 }
6942
6943 /* We need to sort the entries of the dynamic relocation section. */
6944
6945 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6946
6947 if (s != NULL
6948 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
6949 {
6950 reldyn_sorting_bfd = output_bfd;
6951
6952 if (ABI_64_P (output_bfd))
6953 qsort ((Elf64_External_Rel *) s->contents + 1,
6954 (size_t) s->reloc_count - 1,
6955 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
6956 else
6957 qsort ((Elf32_External_Rel *) s->contents + 1,
6958 (size_t) s->reloc_count - 1,
6959 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
6960 }
6961 }
6962
6963 return TRUE;
6964 }
6965
6966
6967 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
6968
6969 static void
6970 mips_set_isa_flags (abfd)
6971 bfd *abfd;
6972 {
6973 flagword val;
6974
6975 switch (bfd_get_mach (abfd))
6976 {
6977 default:
6978 case bfd_mach_mips3000:
6979 val = E_MIPS_ARCH_1;
6980 break;
6981
6982 case bfd_mach_mips3900:
6983 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
6984 break;
6985
6986 case bfd_mach_mips6000:
6987 val = E_MIPS_ARCH_2;
6988 break;
6989
6990 case bfd_mach_mips4000:
6991 case bfd_mach_mips4300:
6992 case bfd_mach_mips4400:
6993 case bfd_mach_mips4600:
6994 val = E_MIPS_ARCH_3;
6995 break;
6996
6997 case bfd_mach_mips4010:
6998 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
6999 break;
7000
7001 case bfd_mach_mips4100:
7002 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7003 break;
7004
7005 case bfd_mach_mips4111:
7006 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7007 break;
7008
7009 case bfd_mach_mips4120:
7010 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7011 break;
7012
7013 case bfd_mach_mips4650:
7014 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7015 break;
7016
7017 case bfd_mach_mips5400:
7018 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7019 break;
7020
7021 case bfd_mach_mips5500:
7022 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7023 break;
7024
7025 case bfd_mach_mips5000:
7026 case bfd_mach_mips8000:
7027 case bfd_mach_mips10000:
7028 case bfd_mach_mips12000:
7029 val = E_MIPS_ARCH_4;
7030 break;
7031
7032 case bfd_mach_mips5:
7033 val = E_MIPS_ARCH_5;
7034 break;
7035
7036 case bfd_mach_mips_sb1:
7037 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7038 break;
7039
7040 case bfd_mach_mipsisa32:
7041 val = E_MIPS_ARCH_32;
7042 break;
7043
7044 case bfd_mach_mipsisa64:
7045 val = E_MIPS_ARCH_64;
7046 break;
7047
7048 case bfd_mach_mipsisa32r2:
7049 val = E_MIPS_ARCH_32R2;
7050 break;
7051 }
7052 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7053 elf_elfheader (abfd)->e_flags |= val;
7054
7055 }
7056
7057
7058 /* The final processing done just before writing out a MIPS ELF object
7059 file. This gets the MIPS architecture right based on the machine
7060 number. This is used by both the 32-bit and the 64-bit ABI. */
7061
7062 void
7063 _bfd_mips_elf_final_write_processing (abfd, linker)
7064 bfd *abfd;
7065 bfd_boolean linker ATTRIBUTE_UNUSED;
7066 {
7067 unsigned int i;
7068 Elf_Internal_Shdr **hdrpp;
7069 const char *name;
7070 asection *sec;
7071
7072 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7073 is nonzero. This is for compatibility with old objects, which used
7074 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7075 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7076 mips_set_isa_flags (abfd);
7077
7078 /* Set the sh_info field for .gptab sections and other appropriate
7079 info for each special section. */
7080 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7081 i < elf_numsections (abfd);
7082 i++, hdrpp++)
7083 {
7084 switch ((*hdrpp)->sh_type)
7085 {
7086 case SHT_MIPS_MSYM:
7087 case SHT_MIPS_LIBLIST:
7088 sec = bfd_get_section_by_name (abfd, ".dynstr");
7089 if (sec != NULL)
7090 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7091 break;
7092
7093 case SHT_MIPS_GPTAB:
7094 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7095 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7096 BFD_ASSERT (name != NULL
7097 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7098 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7099 BFD_ASSERT (sec != NULL);
7100 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7101 break;
7102
7103 case SHT_MIPS_CONTENT:
7104 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7105 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7106 BFD_ASSERT (name != NULL
7107 && strncmp (name, ".MIPS.content",
7108 sizeof ".MIPS.content" - 1) == 0);
7109 sec = bfd_get_section_by_name (abfd,
7110 name + sizeof ".MIPS.content" - 1);
7111 BFD_ASSERT (sec != NULL);
7112 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7113 break;
7114
7115 case SHT_MIPS_SYMBOL_LIB:
7116 sec = bfd_get_section_by_name (abfd, ".dynsym");
7117 if (sec != NULL)
7118 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7119 sec = bfd_get_section_by_name (abfd, ".liblist");
7120 if (sec != NULL)
7121 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7122 break;
7123
7124 case SHT_MIPS_EVENTS:
7125 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7126 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7127 BFD_ASSERT (name != NULL);
7128 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7129 sec = bfd_get_section_by_name (abfd,
7130 name + sizeof ".MIPS.events" - 1);
7131 else
7132 {
7133 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7134 sizeof ".MIPS.post_rel" - 1) == 0);
7135 sec = bfd_get_section_by_name (abfd,
7136 (name
7137 + sizeof ".MIPS.post_rel" - 1));
7138 }
7139 BFD_ASSERT (sec != NULL);
7140 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7141 break;
7142
7143 }
7144 }
7145 }
7146 \f
7147 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7148 segments. */
7149
7150 int
7151 _bfd_mips_elf_additional_program_headers (abfd)
7152 bfd *abfd;
7153 {
7154 asection *s;
7155 int ret = 0;
7156
7157 /* See if we need a PT_MIPS_REGINFO segment. */
7158 s = bfd_get_section_by_name (abfd, ".reginfo");
7159 if (s && (s->flags & SEC_LOAD))
7160 ++ret;
7161
7162 /* See if we need a PT_MIPS_OPTIONS segment. */
7163 if (IRIX_COMPAT (abfd) == ict_irix6
7164 && bfd_get_section_by_name (abfd,
7165 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7166 ++ret;
7167
7168 /* See if we need a PT_MIPS_RTPROC segment. */
7169 if (IRIX_COMPAT (abfd) == ict_irix5
7170 && bfd_get_section_by_name (abfd, ".dynamic")
7171 && bfd_get_section_by_name (abfd, ".mdebug"))
7172 ++ret;
7173
7174 return ret;
7175 }
7176
7177 /* Modify the segment map for an IRIX5 executable. */
7178
7179 bfd_boolean
7180 _bfd_mips_elf_modify_segment_map (abfd)
7181 bfd *abfd;
7182 {
7183 asection *s;
7184 struct elf_segment_map *m, **pm;
7185 bfd_size_type amt;
7186
7187 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7188 segment. */
7189 s = bfd_get_section_by_name (abfd, ".reginfo");
7190 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7191 {
7192 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7193 if (m->p_type == PT_MIPS_REGINFO)
7194 break;
7195 if (m == NULL)
7196 {
7197 amt = sizeof *m;
7198 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7199 if (m == NULL)
7200 return FALSE;
7201
7202 m->p_type = PT_MIPS_REGINFO;
7203 m->count = 1;
7204 m->sections[0] = s;
7205
7206 /* We want to put it after the PHDR and INTERP segments. */
7207 pm = &elf_tdata (abfd)->segment_map;
7208 while (*pm != NULL
7209 && ((*pm)->p_type == PT_PHDR
7210 || (*pm)->p_type == PT_INTERP))
7211 pm = &(*pm)->next;
7212
7213 m->next = *pm;
7214 *pm = m;
7215 }
7216 }
7217
7218 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7219 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7220 PT_OPTIONS segment immediately following the program header
7221 table. */
7222 if (NEWABI_P (abfd)
7223 /* On non-IRIX6 new abi, we'll have already created a segment
7224 for this section, so don't create another. I'm not sure this
7225 is not also the case for IRIX 6, but I can't test it right
7226 now. */
7227 && IRIX_COMPAT (abfd) == ict_irix6)
7228 {
7229 for (s = abfd->sections; s; s = s->next)
7230 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7231 break;
7232
7233 if (s)
7234 {
7235 struct elf_segment_map *options_segment;
7236
7237 /* Usually, there's a program header table. But, sometimes
7238 there's not (like when running the `ld' testsuite). So,
7239 if there's no program header table, we just put the
7240 options segment at the end. */
7241 for (pm = &elf_tdata (abfd)->segment_map;
7242 *pm != NULL;
7243 pm = &(*pm)->next)
7244 if ((*pm)->p_type == PT_PHDR)
7245 break;
7246
7247 amt = sizeof (struct elf_segment_map);
7248 options_segment = bfd_zalloc (abfd, amt);
7249 options_segment->next = *pm;
7250 options_segment->p_type = PT_MIPS_OPTIONS;
7251 options_segment->p_flags = PF_R;
7252 options_segment->p_flags_valid = TRUE;
7253 options_segment->count = 1;
7254 options_segment->sections[0] = s;
7255 *pm = options_segment;
7256 }
7257 }
7258 else
7259 {
7260 if (IRIX_COMPAT (abfd) == ict_irix5)
7261 {
7262 /* If there are .dynamic and .mdebug sections, we make a room
7263 for the RTPROC header. FIXME: Rewrite without section names. */
7264 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7265 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7266 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7267 {
7268 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7269 if (m->p_type == PT_MIPS_RTPROC)
7270 break;
7271 if (m == NULL)
7272 {
7273 amt = sizeof *m;
7274 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7275 if (m == NULL)
7276 return FALSE;
7277
7278 m->p_type = PT_MIPS_RTPROC;
7279
7280 s = bfd_get_section_by_name (abfd, ".rtproc");
7281 if (s == NULL)
7282 {
7283 m->count = 0;
7284 m->p_flags = 0;
7285 m->p_flags_valid = 1;
7286 }
7287 else
7288 {
7289 m->count = 1;
7290 m->sections[0] = s;
7291 }
7292
7293 /* We want to put it after the DYNAMIC segment. */
7294 pm = &elf_tdata (abfd)->segment_map;
7295 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7296 pm = &(*pm)->next;
7297 if (*pm != NULL)
7298 pm = &(*pm)->next;
7299
7300 m->next = *pm;
7301 *pm = m;
7302 }
7303 }
7304 }
7305 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7306 .dynstr, .dynsym, and .hash sections, and everything in
7307 between. */
7308 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7309 pm = &(*pm)->next)
7310 if ((*pm)->p_type == PT_DYNAMIC)
7311 break;
7312 m = *pm;
7313 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7314 {
7315 /* For a normal mips executable the permissions for the PT_DYNAMIC
7316 segment are read, write and execute. We do that here since
7317 the code in elf.c sets only the read permission. This matters
7318 sometimes for the dynamic linker. */
7319 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7320 {
7321 m->p_flags = PF_R | PF_W | PF_X;
7322 m->p_flags_valid = 1;
7323 }
7324 }
7325 if (m != NULL
7326 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7327 {
7328 static const char *sec_names[] =
7329 {
7330 ".dynamic", ".dynstr", ".dynsym", ".hash"
7331 };
7332 bfd_vma low, high;
7333 unsigned int i, c;
7334 struct elf_segment_map *n;
7335
7336 low = 0xffffffff;
7337 high = 0;
7338 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7339 {
7340 s = bfd_get_section_by_name (abfd, sec_names[i]);
7341 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7342 {
7343 bfd_size_type sz;
7344
7345 if (low > s->vma)
7346 low = s->vma;
7347 sz = s->_cooked_size;
7348 if (sz == 0)
7349 sz = s->_raw_size;
7350 if (high < s->vma + sz)
7351 high = s->vma + sz;
7352 }
7353 }
7354
7355 c = 0;
7356 for (s = abfd->sections; s != NULL; s = s->next)
7357 if ((s->flags & SEC_LOAD) != 0
7358 && s->vma >= low
7359 && ((s->vma
7360 + (s->_cooked_size !=
7361 0 ? s->_cooked_size : s->_raw_size)) <= high))
7362 ++c;
7363
7364 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7365 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7366 if (n == NULL)
7367 return FALSE;
7368 *n = *m;
7369 n->count = c;
7370
7371 i = 0;
7372 for (s = abfd->sections; s != NULL; s = s->next)
7373 {
7374 if ((s->flags & SEC_LOAD) != 0
7375 && s->vma >= low
7376 && ((s->vma
7377 + (s->_cooked_size != 0 ?
7378 s->_cooked_size : s->_raw_size)) <= high))
7379 {
7380 n->sections[i] = s;
7381 ++i;
7382 }
7383 }
7384
7385 *pm = n;
7386 }
7387 }
7388
7389 return TRUE;
7390 }
7391 \f
7392 /* Return the section that should be marked against GC for a given
7393 relocation. */
7394
7395 asection *
7396 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7397 asection *sec;
7398 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7399 Elf_Internal_Rela *rel;
7400 struct elf_link_hash_entry *h;
7401 Elf_Internal_Sym *sym;
7402 {
7403 /* ??? Do mips16 stub sections need to be handled special? */
7404
7405 if (h != NULL)
7406 {
7407 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7408 {
7409 case R_MIPS_GNU_VTINHERIT:
7410 case R_MIPS_GNU_VTENTRY:
7411 break;
7412
7413 default:
7414 switch (h->root.type)
7415 {
7416 case bfd_link_hash_defined:
7417 case bfd_link_hash_defweak:
7418 return h->root.u.def.section;
7419
7420 case bfd_link_hash_common:
7421 return h->root.u.c.p->section;
7422
7423 default:
7424 break;
7425 }
7426 }
7427 }
7428 else
7429 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7430
7431 return NULL;
7432 }
7433
7434 /* Update the got entry reference counts for the section being removed. */
7435
7436 bfd_boolean
7437 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7438 bfd *abfd ATTRIBUTE_UNUSED;
7439 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7440 asection *sec ATTRIBUTE_UNUSED;
7441 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7442 {
7443 #if 0
7444 Elf_Internal_Shdr *symtab_hdr;
7445 struct elf_link_hash_entry **sym_hashes;
7446 bfd_signed_vma *local_got_refcounts;
7447 const Elf_Internal_Rela *rel, *relend;
7448 unsigned long r_symndx;
7449 struct elf_link_hash_entry *h;
7450
7451 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7452 sym_hashes = elf_sym_hashes (abfd);
7453 local_got_refcounts = elf_local_got_refcounts (abfd);
7454
7455 relend = relocs + sec->reloc_count;
7456 for (rel = relocs; rel < relend; rel++)
7457 switch (ELF_R_TYPE (abfd, rel->r_info))
7458 {
7459 case R_MIPS_GOT16:
7460 case R_MIPS_CALL16:
7461 case R_MIPS_CALL_HI16:
7462 case R_MIPS_CALL_LO16:
7463 case R_MIPS_GOT_HI16:
7464 case R_MIPS_GOT_LO16:
7465 case R_MIPS_GOT_DISP:
7466 case R_MIPS_GOT_PAGE:
7467 case R_MIPS_GOT_OFST:
7468 /* ??? It would seem that the existing MIPS code does no sort
7469 of reference counting or whatnot on its GOT and PLT entries,
7470 so it is not possible to garbage collect them at this time. */
7471 break;
7472
7473 default:
7474 break;
7475 }
7476 #endif
7477
7478 return TRUE;
7479 }
7480 \f
7481 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7482 hiding the old indirect symbol. Process additional relocation
7483 information. Also called for weakdefs, in which case we just let
7484 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7485
7486 void
7487 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7488 struct elf_backend_data *bed;
7489 struct elf_link_hash_entry *dir, *ind;
7490 {
7491 struct mips_elf_link_hash_entry *dirmips, *indmips;
7492
7493 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7494
7495 if (ind->root.type != bfd_link_hash_indirect)
7496 return;
7497
7498 dirmips = (struct mips_elf_link_hash_entry *) dir;
7499 indmips = (struct mips_elf_link_hash_entry *) ind;
7500 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7501 if (indmips->readonly_reloc)
7502 dirmips->readonly_reloc = TRUE;
7503 if (dirmips->min_dyn_reloc_index == 0
7504 || (indmips->min_dyn_reloc_index != 0
7505 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7506 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7507 if (indmips->no_fn_stub)
7508 dirmips->no_fn_stub = TRUE;
7509 }
7510
7511 void
7512 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7513 struct bfd_link_info *info;
7514 struct elf_link_hash_entry *entry;
7515 bfd_boolean force_local;
7516 {
7517 bfd *dynobj;
7518 asection *got;
7519 struct mips_got_info *g;
7520 struct mips_elf_link_hash_entry *h;
7521
7522 h = (struct mips_elf_link_hash_entry *) entry;
7523 if (h->forced_local)
7524 return;
7525 h->forced_local = TRUE;
7526
7527 dynobj = elf_hash_table (info)->dynobj;
7528 got = mips_elf_got_section (dynobj, FALSE);
7529 g = mips_elf_section_data (got)->u.got_info;
7530
7531 if (g->next)
7532 {
7533 struct mips_got_entry e;
7534 struct mips_got_info *gg = g;
7535
7536 /* Since we're turning what used to be a global symbol into a
7537 local one, bump up the number of local entries of each GOT
7538 that had an entry for it. This will automatically decrease
7539 the number of global entries, since global_gotno is actually
7540 the upper limit of global entries. */
7541 e.abfd = dynobj;
7542 e.symndx = -1;
7543 e.d.h = h;
7544
7545 for (g = g->next; g != gg; g = g->next)
7546 if (htab_find (g->got_entries, &e))
7547 {
7548 BFD_ASSERT (g->global_gotno > 0);
7549 g->local_gotno++;
7550 g->global_gotno--;
7551 }
7552
7553 /* If this was a global symbol forced into the primary GOT, we
7554 no longer need an entry for it. We can't release the entry
7555 at this point, but we must at least stop counting it as one
7556 of the symbols that required a forced got entry. */
7557 if (h->root.got.offset == 2)
7558 {
7559 BFD_ASSERT (gg->assigned_gotno > 0);
7560 gg->assigned_gotno--;
7561 }
7562 }
7563 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7564 /* If we haven't got through GOT allocation yet, just bump up the
7565 number of local entries, as this symbol won't be counted as
7566 global. */
7567 g->local_gotno++;
7568 else if (h->root.got.offset == 1)
7569 {
7570 /* If we're past non-multi-GOT allocation and this symbol had
7571 been marked for a global got entry, give it a local entry
7572 instead. */
7573 BFD_ASSERT (g->global_gotno > 0);
7574 g->local_gotno++;
7575 g->global_gotno--;
7576 }
7577
7578 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7579 }
7580 \f
7581 #define PDR_SIZE 32
7582
7583 bfd_boolean
7584 _bfd_mips_elf_discard_info (abfd, cookie, info)
7585 bfd *abfd;
7586 struct elf_reloc_cookie *cookie;
7587 struct bfd_link_info *info;
7588 {
7589 asection *o;
7590 bfd_boolean ret = FALSE;
7591 unsigned char *tdata;
7592 size_t i, skip;
7593
7594 o = bfd_get_section_by_name (abfd, ".pdr");
7595 if (! o)
7596 return FALSE;
7597 if (o->_raw_size == 0)
7598 return FALSE;
7599 if (o->_raw_size % PDR_SIZE != 0)
7600 return FALSE;
7601 if (o->output_section != NULL
7602 && bfd_is_abs_section (o->output_section))
7603 return FALSE;
7604
7605 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7606 if (! tdata)
7607 return FALSE;
7608
7609 cookie->rels = (MNAME(abfd,_bfd_elf,link_read_relocs)
7610 (abfd, o, (PTR) NULL,
7611 (Elf_Internal_Rela *) NULL,
7612 info->keep_memory));
7613 if (!cookie->rels)
7614 {
7615 free (tdata);
7616 return FALSE;
7617 }
7618
7619 cookie->rel = cookie->rels;
7620 cookie->relend = cookie->rels + o->reloc_count;
7621
7622 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7623 {
7624 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7625 {
7626 tdata[i] = 1;
7627 skip ++;
7628 }
7629 }
7630
7631 if (skip != 0)
7632 {
7633 mips_elf_section_data (o)->u.tdata = tdata;
7634 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7635 ret = TRUE;
7636 }
7637 else
7638 free (tdata);
7639
7640 if (! info->keep_memory)
7641 free (cookie->rels);
7642
7643 return ret;
7644 }
7645
7646 bfd_boolean
7647 _bfd_mips_elf_ignore_discarded_relocs (sec)
7648 asection *sec;
7649 {
7650 if (strcmp (sec->name, ".pdr") == 0)
7651 return TRUE;
7652 return FALSE;
7653 }
7654
7655 bfd_boolean
7656 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7657 bfd *output_bfd;
7658 asection *sec;
7659 bfd_byte *contents;
7660 {
7661 bfd_byte *to, *from, *end;
7662 int i;
7663
7664 if (strcmp (sec->name, ".pdr") != 0)
7665 return FALSE;
7666
7667 if (mips_elf_section_data (sec)->u.tdata == NULL)
7668 return FALSE;
7669
7670 to = contents;
7671 end = contents + sec->_raw_size;
7672 for (from = contents, i = 0;
7673 from < end;
7674 from += PDR_SIZE, i++)
7675 {
7676 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7677 continue;
7678 if (to != from)
7679 memcpy (to, from, PDR_SIZE);
7680 to += PDR_SIZE;
7681 }
7682 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7683 (file_ptr) sec->output_offset,
7684 sec->_cooked_size);
7685 return TRUE;
7686 }
7687 \f
7688 /* MIPS ELF uses a special find_nearest_line routine in order the
7689 handle the ECOFF debugging information. */
7690
7691 struct mips_elf_find_line
7692 {
7693 struct ecoff_debug_info d;
7694 struct ecoff_find_line i;
7695 };
7696
7697 bfd_boolean
7698 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7699 functionname_ptr, line_ptr)
7700 bfd *abfd;
7701 asection *section;
7702 asymbol **symbols;
7703 bfd_vma offset;
7704 const char **filename_ptr;
7705 const char **functionname_ptr;
7706 unsigned int *line_ptr;
7707 {
7708 asection *msec;
7709
7710 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7711 filename_ptr, functionname_ptr,
7712 line_ptr))
7713 return TRUE;
7714
7715 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7716 filename_ptr, functionname_ptr,
7717 line_ptr,
7718 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7719 &elf_tdata (abfd)->dwarf2_find_line_info))
7720 return TRUE;
7721
7722 msec = bfd_get_section_by_name (abfd, ".mdebug");
7723 if (msec != NULL)
7724 {
7725 flagword origflags;
7726 struct mips_elf_find_line *fi;
7727 const struct ecoff_debug_swap * const swap =
7728 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7729
7730 /* If we are called during a link, mips_elf_final_link may have
7731 cleared the SEC_HAS_CONTENTS field. We force it back on here
7732 if appropriate (which it normally will be). */
7733 origflags = msec->flags;
7734 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7735 msec->flags |= SEC_HAS_CONTENTS;
7736
7737 fi = elf_tdata (abfd)->find_line_info;
7738 if (fi == NULL)
7739 {
7740 bfd_size_type external_fdr_size;
7741 char *fraw_src;
7742 char *fraw_end;
7743 struct fdr *fdr_ptr;
7744 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7745
7746 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7747 if (fi == NULL)
7748 {
7749 msec->flags = origflags;
7750 return FALSE;
7751 }
7752
7753 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7754 {
7755 msec->flags = origflags;
7756 return FALSE;
7757 }
7758
7759 /* Swap in the FDR information. */
7760 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7761 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
7762 if (fi->d.fdr == NULL)
7763 {
7764 msec->flags = origflags;
7765 return FALSE;
7766 }
7767 external_fdr_size = swap->external_fdr_size;
7768 fdr_ptr = fi->d.fdr;
7769 fraw_src = (char *) fi->d.external_fdr;
7770 fraw_end = (fraw_src
7771 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7772 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7773 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
7774
7775 elf_tdata (abfd)->find_line_info = fi;
7776
7777 /* Note that we don't bother to ever free this information.
7778 find_nearest_line is either called all the time, as in
7779 objdump -l, so the information should be saved, or it is
7780 rarely called, as in ld error messages, so the memory
7781 wasted is unimportant. Still, it would probably be a
7782 good idea for free_cached_info to throw it away. */
7783 }
7784
7785 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7786 &fi->i, filename_ptr, functionname_ptr,
7787 line_ptr))
7788 {
7789 msec->flags = origflags;
7790 return TRUE;
7791 }
7792
7793 msec->flags = origflags;
7794 }
7795
7796 /* Fall back on the generic ELF find_nearest_line routine. */
7797
7798 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7799 filename_ptr, functionname_ptr,
7800 line_ptr);
7801 }
7802 \f
7803 /* When are writing out the .options or .MIPS.options section,
7804 remember the bytes we are writing out, so that we can install the
7805 GP value in the section_processing routine. */
7806
7807 bfd_boolean
7808 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
7809 bfd *abfd;
7810 sec_ptr section;
7811 PTR location;
7812 file_ptr offset;
7813 bfd_size_type count;
7814 {
7815 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7816 {
7817 bfd_byte *c;
7818
7819 if (elf_section_data (section) == NULL)
7820 {
7821 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7822 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7823 if (elf_section_data (section) == NULL)
7824 return FALSE;
7825 }
7826 c = mips_elf_section_data (section)->u.tdata;
7827 if (c == NULL)
7828 {
7829 bfd_size_type size;
7830
7831 if (section->_cooked_size != 0)
7832 size = section->_cooked_size;
7833 else
7834 size = section->_raw_size;
7835 c = (bfd_byte *) bfd_zalloc (abfd, size);
7836 if (c == NULL)
7837 return FALSE;
7838 mips_elf_section_data (section)->u.tdata = c;
7839 }
7840
7841 memcpy (c + offset, location, (size_t) count);
7842 }
7843
7844 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7845 count);
7846 }
7847
7848 /* This is almost identical to bfd_generic_get_... except that some
7849 MIPS relocations need to be handled specially. Sigh. */
7850
7851 bfd_byte *
7852 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
7853 data, relocateable, symbols)
7854 bfd *abfd;
7855 struct bfd_link_info *link_info;
7856 struct bfd_link_order *link_order;
7857 bfd_byte *data;
7858 bfd_boolean relocateable;
7859 asymbol **symbols;
7860 {
7861 /* Get enough memory to hold the stuff */
7862 bfd *input_bfd = link_order->u.indirect.section->owner;
7863 asection *input_section = link_order->u.indirect.section;
7864
7865 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7866 arelent **reloc_vector = NULL;
7867 long reloc_count;
7868
7869 if (reloc_size < 0)
7870 goto error_return;
7871
7872 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
7873 if (reloc_vector == NULL && reloc_size != 0)
7874 goto error_return;
7875
7876 /* read in the section */
7877 if (!bfd_get_section_contents (input_bfd,
7878 input_section,
7879 (PTR) data,
7880 (file_ptr) 0,
7881 input_section->_raw_size))
7882 goto error_return;
7883
7884 /* We're not relaxing the section, so just copy the size info */
7885 input_section->_cooked_size = input_section->_raw_size;
7886 input_section->reloc_done = TRUE;
7887
7888 reloc_count = bfd_canonicalize_reloc (input_bfd,
7889 input_section,
7890 reloc_vector,
7891 symbols);
7892 if (reloc_count < 0)
7893 goto error_return;
7894
7895 if (reloc_count > 0)
7896 {
7897 arelent **parent;
7898 /* for mips */
7899 int gp_found;
7900 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7901
7902 {
7903 struct bfd_hash_entry *h;
7904 struct bfd_link_hash_entry *lh;
7905 /* Skip all this stuff if we aren't mixing formats. */
7906 if (abfd && input_bfd
7907 && abfd->xvec == input_bfd->xvec)
7908 lh = 0;
7909 else
7910 {
7911 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7912 lh = (struct bfd_link_hash_entry *) h;
7913 }
7914 lookup:
7915 if (lh)
7916 {
7917 switch (lh->type)
7918 {
7919 case bfd_link_hash_undefined:
7920 case bfd_link_hash_undefweak:
7921 case bfd_link_hash_common:
7922 gp_found = 0;
7923 break;
7924 case bfd_link_hash_defined:
7925 case bfd_link_hash_defweak:
7926 gp_found = 1;
7927 gp = lh->u.def.value;
7928 break;
7929 case bfd_link_hash_indirect:
7930 case bfd_link_hash_warning:
7931 lh = lh->u.i.link;
7932 /* @@FIXME ignoring warning for now */
7933 goto lookup;
7934 case bfd_link_hash_new:
7935 default:
7936 abort ();
7937 }
7938 }
7939 else
7940 gp_found = 0;
7941 }
7942 /* end mips */
7943 for (parent = reloc_vector; *parent != (arelent *) NULL;
7944 parent++)
7945 {
7946 char *error_message = (char *) NULL;
7947 bfd_reloc_status_type r;
7948
7949 /* Specific to MIPS: Deal with relocation types that require
7950 knowing the gp of the output bfd. */
7951 asymbol *sym = *(*parent)->sym_ptr_ptr;
7952 if (bfd_is_abs_section (sym->section) && abfd)
7953 {
7954 /* The special_function wouldn't get called anyway. */
7955 }
7956 else if (!gp_found)
7957 {
7958 /* The gp isn't there; let the special function code
7959 fall over on its own. */
7960 }
7961 else if ((*parent)->howto->special_function
7962 == _bfd_mips_elf32_gprel16_reloc)
7963 {
7964 /* bypass special_function call */
7965 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7966 input_section, relocateable,
7967 (PTR) data, gp);
7968 goto skip_bfd_perform_relocation;
7969 }
7970 /* end mips specific stuff */
7971
7972 r = bfd_perform_relocation (input_bfd,
7973 *parent,
7974 (PTR) data,
7975 input_section,
7976 relocateable ? abfd : (bfd *) NULL,
7977 &error_message);
7978 skip_bfd_perform_relocation:
7979
7980 if (relocateable)
7981 {
7982 asection *os = input_section->output_section;
7983
7984 /* A partial link, so keep the relocs */
7985 os->orelocation[os->reloc_count] = *parent;
7986 os->reloc_count++;
7987 }
7988
7989 if (r != bfd_reloc_ok)
7990 {
7991 switch (r)
7992 {
7993 case bfd_reloc_undefined:
7994 if (!((*link_info->callbacks->undefined_symbol)
7995 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
7996 input_bfd, input_section, (*parent)->address,
7997 TRUE)))
7998 goto error_return;
7999 break;
8000 case bfd_reloc_dangerous:
8001 BFD_ASSERT (error_message != (char *) NULL);
8002 if (!((*link_info->callbacks->reloc_dangerous)
8003 (link_info, error_message, input_bfd, input_section,
8004 (*parent)->address)))
8005 goto error_return;
8006 break;
8007 case bfd_reloc_overflow:
8008 if (!((*link_info->callbacks->reloc_overflow)
8009 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8010 (*parent)->howto->name, (*parent)->addend,
8011 input_bfd, input_section, (*parent)->address)))
8012 goto error_return;
8013 break;
8014 case bfd_reloc_outofrange:
8015 default:
8016 abort ();
8017 break;
8018 }
8019
8020 }
8021 }
8022 }
8023 if (reloc_vector != NULL)
8024 free (reloc_vector);
8025 return data;
8026
8027 error_return:
8028 if (reloc_vector != NULL)
8029 free (reloc_vector);
8030 return NULL;
8031 }
8032 \f
8033 /* Create a MIPS ELF linker hash table. */
8034
8035 struct bfd_link_hash_table *
8036 _bfd_mips_elf_link_hash_table_create (abfd)
8037 bfd *abfd;
8038 {
8039 struct mips_elf_link_hash_table *ret;
8040 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8041
8042 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8043 if (ret == (struct mips_elf_link_hash_table *) NULL)
8044 return NULL;
8045
8046 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8047 mips_elf_link_hash_newfunc))
8048 {
8049 free (ret);
8050 return NULL;
8051 }
8052
8053 #if 0
8054 /* We no longer use this. */
8055 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8056 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8057 #endif
8058 ret->procedure_count = 0;
8059 ret->compact_rel_size = 0;
8060 ret->use_rld_obj_head = FALSE;
8061 ret->rld_value = 0;
8062 ret->mips16_stubs_seen = FALSE;
8063
8064 return &ret->root.root;
8065 }
8066 \f
8067 /* We need to use a special link routine to handle the .reginfo and
8068 the .mdebug sections. We need to merge all instances of these
8069 sections together, not write them all out sequentially. */
8070
8071 bfd_boolean
8072 _bfd_mips_elf_final_link (abfd, info)
8073 bfd *abfd;
8074 struct bfd_link_info *info;
8075 {
8076 asection **secpp;
8077 asection *o;
8078 struct bfd_link_order *p;
8079 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8080 asection *rtproc_sec;
8081 Elf32_RegInfo reginfo;
8082 struct ecoff_debug_info debug;
8083 const struct ecoff_debug_swap *swap
8084 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8085 HDRR *symhdr = &debug.symbolic_header;
8086 PTR mdebug_handle = NULL;
8087 asection *s;
8088 EXTR esym;
8089 unsigned int i;
8090 bfd_size_type amt;
8091
8092 static const char * const secname[] =
8093 {
8094 ".text", ".init", ".fini", ".data",
8095 ".rodata", ".sdata", ".sbss", ".bss"
8096 };
8097 static const int sc[] =
8098 {
8099 scText, scInit, scFini, scData,
8100 scRData, scSData, scSBss, scBss
8101 };
8102
8103 /* If all the things we linked together were PIC, but we're
8104 producing an executable (rather than a shared object), then the
8105 resulting file is CPIC (i.e., it calls PIC code.) */
8106 if (!info->shared
8107 && !info->relocateable
8108 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
8109 {
8110 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
8111 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
8112 }
8113
8114 /* We'd carefully arranged the dynamic symbol indices, and then the
8115 generic size_dynamic_sections renumbered them out from under us.
8116 Rather than trying somehow to prevent the renumbering, just do
8117 the sort again. */
8118 if (elf_hash_table (info)->dynamic_sections_created)
8119 {
8120 bfd *dynobj;
8121 asection *got;
8122 struct mips_got_info *g;
8123
8124 /* When we resort, we must tell mips_elf_sort_hash_table what
8125 the lowest index it may use is. That's the number of section
8126 symbols we're going to add. The generic ELF linker only
8127 adds these symbols when building a shared object. Note that
8128 we count the sections after (possibly) removing the .options
8129 section above. */
8130 if (! mips_elf_sort_hash_table (info, (info->shared
8131 ? bfd_count_sections (abfd) + 1
8132 : 1)))
8133 return FALSE;
8134
8135 /* Make sure we didn't grow the global .got region. */
8136 dynobj = elf_hash_table (info)->dynobj;
8137 got = mips_elf_got_section (dynobj, FALSE);
8138 g = mips_elf_section_data (got)->u.got_info;
8139
8140 if (g->global_gotsym != NULL)
8141 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8142 - g->global_gotsym->dynindx)
8143 <= g->global_gotno);
8144 }
8145
8146 #if 0
8147 /* We want to set the GP value for ld -r. */
8148 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8149 include it, even though we don't process it quite right. (Some
8150 entries are supposed to be merged.) Empirically, we seem to be
8151 better off including it then not. */
8152 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8153 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8154 {
8155 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8156 {
8157 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8158 if (p->type == bfd_indirect_link_order)
8159 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8160 (*secpp)->link_order_head = NULL;
8161 bfd_section_list_remove (abfd, secpp);
8162 --abfd->section_count;
8163
8164 break;
8165 }
8166 }
8167
8168 /* We include .MIPS.options, even though we don't process it quite right.
8169 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8170 to be better off including it than not. */
8171 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8172 {
8173 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8174 {
8175 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8176 if (p->type == bfd_indirect_link_order)
8177 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8178 (*secpp)->link_order_head = NULL;
8179 bfd_section_list_remove (abfd, secpp);
8180 --abfd->section_count;
8181
8182 break;
8183 }
8184 }
8185 #endif
8186
8187 /* Get a value for the GP register. */
8188 if (elf_gp (abfd) == 0)
8189 {
8190 struct bfd_link_hash_entry *h;
8191
8192 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8193 if (h != (struct bfd_link_hash_entry *) NULL
8194 && h->type == bfd_link_hash_defined)
8195 elf_gp (abfd) = (h->u.def.value
8196 + h->u.def.section->output_section->vma
8197 + h->u.def.section->output_offset);
8198 else if (info->relocateable)
8199 {
8200 bfd_vma lo = MINUS_ONE;
8201
8202 /* Find the GP-relative section with the lowest offset. */
8203 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8204 if (o->vma < lo
8205 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8206 lo = o->vma;
8207
8208 /* And calculate GP relative to that. */
8209 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8210 }
8211 else
8212 {
8213 /* If the relocate_section function needs to do a reloc
8214 involving the GP value, it should make a reloc_dangerous
8215 callback to warn that GP is not defined. */
8216 }
8217 }
8218
8219 /* Go through the sections and collect the .reginfo and .mdebug
8220 information. */
8221 reginfo_sec = NULL;
8222 mdebug_sec = NULL;
8223 gptab_data_sec = NULL;
8224 gptab_bss_sec = NULL;
8225 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8226 {
8227 if (strcmp (o->name, ".reginfo") == 0)
8228 {
8229 memset (&reginfo, 0, sizeof reginfo);
8230
8231 /* We have found the .reginfo section in the output file.
8232 Look through all the link_orders comprising it and merge
8233 the information together. */
8234 for (p = o->link_order_head;
8235 p != (struct bfd_link_order *) NULL;
8236 p = p->next)
8237 {
8238 asection *input_section;
8239 bfd *input_bfd;
8240 Elf32_External_RegInfo ext;
8241 Elf32_RegInfo sub;
8242
8243 if (p->type != bfd_indirect_link_order)
8244 {
8245 if (p->type == bfd_data_link_order)
8246 continue;
8247 abort ();
8248 }
8249
8250 input_section = p->u.indirect.section;
8251 input_bfd = input_section->owner;
8252
8253 /* The linker emulation code has probably clobbered the
8254 size to be zero bytes. */
8255 if (input_section->_raw_size == 0)
8256 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8257
8258 if (! bfd_get_section_contents (input_bfd, input_section,
8259 (PTR) &ext,
8260 (file_ptr) 0,
8261 (bfd_size_type) sizeof ext))
8262 return FALSE;
8263
8264 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8265
8266 reginfo.ri_gprmask |= sub.ri_gprmask;
8267 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8268 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8269 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8270 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8271
8272 /* ri_gp_value is set by the function
8273 mips_elf32_section_processing when the section is
8274 finally written out. */
8275
8276 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8277 elf_link_input_bfd ignores this section. */
8278 input_section->flags &= ~SEC_HAS_CONTENTS;
8279 }
8280
8281 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8282 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8283
8284 /* Skip this section later on (I don't think this currently
8285 matters, but someday it might). */
8286 o->link_order_head = (struct bfd_link_order *) NULL;
8287
8288 reginfo_sec = o;
8289 }
8290
8291 if (strcmp (o->name, ".mdebug") == 0)
8292 {
8293 struct extsym_info einfo;
8294 bfd_vma last;
8295
8296 /* We have found the .mdebug section in the output file.
8297 Look through all the link_orders comprising it and merge
8298 the information together. */
8299 symhdr->magic = swap->sym_magic;
8300 /* FIXME: What should the version stamp be? */
8301 symhdr->vstamp = 0;
8302 symhdr->ilineMax = 0;
8303 symhdr->cbLine = 0;
8304 symhdr->idnMax = 0;
8305 symhdr->ipdMax = 0;
8306 symhdr->isymMax = 0;
8307 symhdr->ioptMax = 0;
8308 symhdr->iauxMax = 0;
8309 symhdr->issMax = 0;
8310 symhdr->issExtMax = 0;
8311 symhdr->ifdMax = 0;
8312 symhdr->crfd = 0;
8313 symhdr->iextMax = 0;
8314
8315 /* We accumulate the debugging information itself in the
8316 debug_info structure. */
8317 debug.line = NULL;
8318 debug.external_dnr = NULL;
8319 debug.external_pdr = NULL;
8320 debug.external_sym = NULL;
8321 debug.external_opt = NULL;
8322 debug.external_aux = NULL;
8323 debug.ss = NULL;
8324 debug.ssext = debug.ssext_end = NULL;
8325 debug.external_fdr = NULL;
8326 debug.external_rfd = NULL;
8327 debug.external_ext = debug.external_ext_end = NULL;
8328
8329 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8330 if (mdebug_handle == (PTR) NULL)
8331 return FALSE;
8332
8333 esym.jmptbl = 0;
8334 esym.cobol_main = 0;
8335 esym.weakext = 0;
8336 esym.reserved = 0;
8337 esym.ifd = ifdNil;
8338 esym.asym.iss = issNil;
8339 esym.asym.st = stLocal;
8340 esym.asym.reserved = 0;
8341 esym.asym.index = indexNil;
8342 last = 0;
8343 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8344 {
8345 esym.asym.sc = sc[i];
8346 s = bfd_get_section_by_name (abfd, secname[i]);
8347 if (s != NULL)
8348 {
8349 esym.asym.value = s->vma;
8350 last = s->vma + s->_raw_size;
8351 }
8352 else
8353 esym.asym.value = last;
8354 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8355 secname[i], &esym))
8356 return FALSE;
8357 }
8358
8359 for (p = o->link_order_head;
8360 p != (struct bfd_link_order *) NULL;
8361 p = p->next)
8362 {
8363 asection *input_section;
8364 bfd *input_bfd;
8365 const struct ecoff_debug_swap *input_swap;
8366 struct ecoff_debug_info input_debug;
8367 char *eraw_src;
8368 char *eraw_end;
8369
8370 if (p->type != bfd_indirect_link_order)
8371 {
8372 if (p->type == bfd_data_link_order)
8373 continue;
8374 abort ();
8375 }
8376
8377 input_section = p->u.indirect.section;
8378 input_bfd = input_section->owner;
8379
8380 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8381 || (get_elf_backend_data (input_bfd)
8382 ->elf_backend_ecoff_debug_swap) == NULL)
8383 {
8384 /* I don't know what a non MIPS ELF bfd would be
8385 doing with a .mdebug section, but I don't really
8386 want to deal with it. */
8387 continue;
8388 }
8389
8390 input_swap = (get_elf_backend_data (input_bfd)
8391 ->elf_backend_ecoff_debug_swap);
8392
8393 BFD_ASSERT (p->size == input_section->_raw_size);
8394
8395 /* The ECOFF linking code expects that we have already
8396 read in the debugging information and set up an
8397 ecoff_debug_info structure, so we do that now. */
8398 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8399 &input_debug))
8400 return FALSE;
8401
8402 if (! (bfd_ecoff_debug_accumulate
8403 (mdebug_handle, abfd, &debug, swap, input_bfd,
8404 &input_debug, input_swap, info)))
8405 return FALSE;
8406
8407 /* Loop through the external symbols. For each one with
8408 interesting information, try to find the symbol in
8409 the linker global hash table and save the information
8410 for the output external symbols. */
8411 eraw_src = input_debug.external_ext;
8412 eraw_end = (eraw_src
8413 + (input_debug.symbolic_header.iextMax
8414 * input_swap->external_ext_size));
8415 for (;
8416 eraw_src < eraw_end;
8417 eraw_src += input_swap->external_ext_size)
8418 {
8419 EXTR ext;
8420 const char *name;
8421 struct mips_elf_link_hash_entry *h;
8422
8423 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8424 if (ext.asym.sc == scNil
8425 || ext.asym.sc == scUndefined
8426 || ext.asym.sc == scSUndefined)
8427 continue;
8428
8429 name = input_debug.ssext + ext.asym.iss;
8430 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8431 name, FALSE, FALSE, TRUE);
8432 if (h == NULL || h->esym.ifd != -2)
8433 continue;
8434
8435 if (ext.ifd != -1)
8436 {
8437 BFD_ASSERT (ext.ifd
8438 < input_debug.symbolic_header.ifdMax);
8439 ext.ifd = input_debug.ifdmap[ext.ifd];
8440 }
8441
8442 h->esym = ext;
8443 }
8444
8445 /* Free up the information we just read. */
8446 free (input_debug.line);
8447 free (input_debug.external_dnr);
8448 free (input_debug.external_pdr);
8449 free (input_debug.external_sym);
8450 free (input_debug.external_opt);
8451 free (input_debug.external_aux);
8452 free (input_debug.ss);
8453 free (input_debug.ssext);
8454 free (input_debug.external_fdr);
8455 free (input_debug.external_rfd);
8456 free (input_debug.external_ext);
8457
8458 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8459 elf_link_input_bfd ignores this section. */
8460 input_section->flags &= ~SEC_HAS_CONTENTS;
8461 }
8462
8463 if (SGI_COMPAT (abfd) && info->shared)
8464 {
8465 /* Create .rtproc section. */
8466 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8467 if (rtproc_sec == NULL)
8468 {
8469 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8470 | SEC_LINKER_CREATED | SEC_READONLY);
8471
8472 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8473 if (rtproc_sec == NULL
8474 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8475 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8476 return FALSE;
8477 }
8478
8479 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8480 info, rtproc_sec,
8481 &debug))
8482 return FALSE;
8483 }
8484
8485 /* Build the external symbol information. */
8486 einfo.abfd = abfd;
8487 einfo.info = info;
8488 einfo.debug = &debug;
8489 einfo.swap = swap;
8490 einfo.failed = FALSE;
8491 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8492 mips_elf_output_extsym,
8493 (PTR) &einfo);
8494 if (einfo.failed)
8495 return FALSE;
8496
8497 /* Set the size of the .mdebug section. */
8498 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8499
8500 /* Skip this section later on (I don't think this currently
8501 matters, but someday it might). */
8502 o->link_order_head = (struct bfd_link_order *) NULL;
8503
8504 mdebug_sec = o;
8505 }
8506
8507 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8508 {
8509 const char *subname;
8510 unsigned int c;
8511 Elf32_gptab *tab;
8512 Elf32_External_gptab *ext_tab;
8513 unsigned int j;
8514
8515 /* The .gptab.sdata and .gptab.sbss sections hold
8516 information describing how the small data area would
8517 change depending upon the -G switch. These sections
8518 not used in executables files. */
8519 if (! info->relocateable)
8520 {
8521 for (p = o->link_order_head;
8522 p != (struct bfd_link_order *) NULL;
8523 p = p->next)
8524 {
8525 asection *input_section;
8526
8527 if (p->type != bfd_indirect_link_order)
8528 {
8529 if (p->type == bfd_data_link_order)
8530 continue;
8531 abort ();
8532 }
8533
8534 input_section = p->u.indirect.section;
8535
8536 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8537 elf_link_input_bfd ignores this section. */
8538 input_section->flags &= ~SEC_HAS_CONTENTS;
8539 }
8540
8541 /* Skip this section later on (I don't think this
8542 currently matters, but someday it might). */
8543 o->link_order_head = (struct bfd_link_order *) NULL;
8544
8545 /* Really remove the section. */
8546 for (secpp = &abfd->sections;
8547 *secpp != o;
8548 secpp = &(*secpp)->next)
8549 ;
8550 bfd_section_list_remove (abfd, secpp);
8551 --abfd->section_count;
8552
8553 continue;
8554 }
8555
8556 /* There is one gptab for initialized data, and one for
8557 uninitialized data. */
8558 if (strcmp (o->name, ".gptab.sdata") == 0)
8559 gptab_data_sec = o;
8560 else if (strcmp (o->name, ".gptab.sbss") == 0)
8561 gptab_bss_sec = o;
8562 else
8563 {
8564 (*_bfd_error_handler)
8565 (_("%s: illegal section name `%s'"),
8566 bfd_get_filename (abfd), o->name);
8567 bfd_set_error (bfd_error_nonrepresentable_section);
8568 return FALSE;
8569 }
8570
8571 /* The linker script always combines .gptab.data and
8572 .gptab.sdata into .gptab.sdata, and likewise for
8573 .gptab.bss and .gptab.sbss. It is possible that there is
8574 no .sdata or .sbss section in the output file, in which
8575 case we must change the name of the output section. */
8576 subname = o->name + sizeof ".gptab" - 1;
8577 if (bfd_get_section_by_name (abfd, subname) == NULL)
8578 {
8579 if (o == gptab_data_sec)
8580 o->name = ".gptab.data";
8581 else
8582 o->name = ".gptab.bss";
8583 subname = o->name + sizeof ".gptab" - 1;
8584 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8585 }
8586
8587 /* Set up the first entry. */
8588 c = 1;
8589 amt = c * sizeof (Elf32_gptab);
8590 tab = (Elf32_gptab *) bfd_malloc (amt);
8591 if (tab == NULL)
8592 return FALSE;
8593 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8594 tab[0].gt_header.gt_unused = 0;
8595
8596 /* Combine the input sections. */
8597 for (p = o->link_order_head;
8598 p != (struct bfd_link_order *) NULL;
8599 p = p->next)
8600 {
8601 asection *input_section;
8602 bfd *input_bfd;
8603 bfd_size_type size;
8604 unsigned long last;
8605 bfd_size_type gpentry;
8606
8607 if (p->type != bfd_indirect_link_order)
8608 {
8609 if (p->type == bfd_data_link_order)
8610 continue;
8611 abort ();
8612 }
8613
8614 input_section = p->u.indirect.section;
8615 input_bfd = input_section->owner;
8616
8617 /* Combine the gptab entries for this input section one
8618 by one. We know that the input gptab entries are
8619 sorted by ascending -G value. */
8620 size = bfd_section_size (input_bfd, input_section);
8621 last = 0;
8622 for (gpentry = sizeof (Elf32_External_gptab);
8623 gpentry < size;
8624 gpentry += sizeof (Elf32_External_gptab))
8625 {
8626 Elf32_External_gptab ext_gptab;
8627 Elf32_gptab int_gptab;
8628 unsigned long val;
8629 unsigned long add;
8630 bfd_boolean exact;
8631 unsigned int look;
8632
8633 if (! (bfd_get_section_contents
8634 (input_bfd, input_section, (PTR) &ext_gptab,
8635 (file_ptr) gpentry,
8636 (bfd_size_type) sizeof (Elf32_External_gptab))))
8637 {
8638 free (tab);
8639 return FALSE;
8640 }
8641
8642 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8643 &int_gptab);
8644 val = int_gptab.gt_entry.gt_g_value;
8645 add = int_gptab.gt_entry.gt_bytes - last;
8646
8647 exact = FALSE;
8648 for (look = 1; look < c; look++)
8649 {
8650 if (tab[look].gt_entry.gt_g_value >= val)
8651 tab[look].gt_entry.gt_bytes += add;
8652
8653 if (tab[look].gt_entry.gt_g_value == val)
8654 exact = TRUE;
8655 }
8656
8657 if (! exact)
8658 {
8659 Elf32_gptab *new_tab;
8660 unsigned int max;
8661
8662 /* We need a new table entry. */
8663 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8664 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8665 if (new_tab == NULL)
8666 {
8667 free (tab);
8668 return FALSE;
8669 }
8670 tab = new_tab;
8671 tab[c].gt_entry.gt_g_value = val;
8672 tab[c].gt_entry.gt_bytes = add;
8673
8674 /* Merge in the size for the next smallest -G
8675 value, since that will be implied by this new
8676 value. */
8677 max = 0;
8678 for (look = 1; look < c; look++)
8679 {
8680 if (tab[look].gt_entry.gt_g_value < val
8681 && (max == 0
8682 || (tab[look].gt_entry.gt_g_value
8683 > tab[max].gt_entry.gt_g_value)))
8684 max = look;
8685 }
8686 if (max != 0)
8687 tab[c].gt_entry.gt_bytes +=
8688 tab[max].gt_entry.gt_bytes;
8689
8690 ++c;
8691 }
8692
8693 last = int_gptab.gt_entry.gt_bytes;
8694 }
8695
8696 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8697 elf_link_input_bfd ignores this section. */
8698 input_section->flags &= ~SEC_HAS_CONTENTS;
8699 }
8700
8701 /* The table must be sorted by -G value. */
8702 if (c > 2)
8703 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8704
8705 /* Swap out the table. */
8706 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8707 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8708 if (ext_tab == NULL)
8709 {
8710 free (tab);
8711 return FALSE;
8712 }
8713
8714 for (j = 0; j < c; j++)
8715 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8716 free (tab);
8717
8718 o->_raw_size = c * sizeof (Elf32_External_gptab);
8719 o->contents = (bfd_byte *) ext_tab;
8720
8721 /* Skip this section later on (I don't think this currently
8722 matters, but someday it might). */
8723 o->link_order_head = (struct bfd_link_order *) NULL;
8724 }
8725 }
8726
8727 /* Invoke the regular ELF backend linker to do all the work. */
8728 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8729 return FALSE;
8730
8731 /* Now write out the computed sections. */
8732
8733 if (reginfo_sec != (asection *) NULL)
8734 {
8735 Elf32_External_RegInfo ext;
8736
8737 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8738 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8739 (file_ptr) 0,
8740 (bfd_size_type) sizeof ext))
8741 return FALSE;
8742 }
8743
8744 if (mdebug_sec != (asection *) NULL)
8745 {
8746 BFD_ASSERT (abfd->output_has_begun);
8747 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8748 swap, info,
8749 mdebug_sec->filepos))
8750 return FALSE;
8751
8752 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8753 }
8754
8755 if (gptab_data_sec != (asection *) NULL)
8756 {
8757 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8758 gptab_data_sec->contents,
8759 (file_ptr) 0,
8760 gptab_data_sec->_raw_size))
8761 return FALSE;
8762 }
8763
8764 if (gptab_bss_sec != (asection *) NULL)
8765 {
8766 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8767 gptab_bss_sec->contents,
8768 (file_ptr) 0,
8769 gptab_bss_sec->_raw_size))
8770 return FALSE;
8771 }
8772
8773 if (SGI_COMPAT (abfd))
8774 {
8775 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8776 if (rtproc_sec != NULL)
8777 {
8778 if (! bfd_set_section_contents (abfd, rtproc_sec,
8779 rtproc_sec->contents,
8780 (file_ptr) 0,
8781 rtproc_sec->_raw_size))
8782 return FALSE;
8783 }
8784 }
8785
8786 return TRUE;
8787 }
8788 \f
8789 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8790
8791 struct mips_mach_extension {
8792 unsigned long extension, base;
8793 };
8794
8795
8796 /* An array describing how BFD machines relate to one another. The entries
8797 are ordered topologically with MIPS I extensions listed last. */
8798
8799 static const struct mips_mach_extension mips_mach_extensions[] = {
8800 /* MIPS64 extensions. */
8801 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8802
8803 /* MIPS V extensions. */
8804 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8805
8806 /* R10000 extensions. */
8807 { bfd_mach_mips12000, bfd_mach_mips10000 },
8808
8809 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8810 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8811 better to allow vr5400 and vr5500 code to be merged anyway, since
8812 many libraries will just use the core ISA. Perhaps we could add
8813 some sort of ASE flag if this ever proves a problem. */
8814 { bfd_mach_mips5500, bfd_mach_mips5400 },
8815 { bfd_mach_mips5400, bfd_mach_mips5000 },
8816
8817 /* MIPS IV extensions. */
8818 { bfd_mach_mips5, bfd_mach_mips8000 },
8819 { bfd_mach_mips10000, bfd_mach_mips8000 },
8820 { bfd_mach_mips5000, bfd_mach_mips8000 },
8821
8822 /* VR4100 extensions. */
8823 { bfd_mach_mips4120, bfd_mach_mips4100 },
8824 { bfd_mach_mips4111, bfd_mach_mips4100 },
8825
8826 /* MIPS III extensions. */
8827 { bfd_mach_mips8000, bfd_mach_mips4000 },
8828 { bfd_mach_mips4650, bfd_mach_mips4000 },
8829 { bfd_mach_mips4600, bfd_mach_mips4000 },
8830 { bfd_mach_mips4400, bfd_mach_mips4000 },
8831 { bfd_mach_mips4300, bfd_mach_mips4000 },
8832 { bfd_mach_mips4100, bfd_mach_mips4000 },
8833 { bfd_mach_mips4010, bfd_mach_mips4000 },
8834
8835 /* MIPS32 extensions. */
8836 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8837
8838 /* MIPS II extensions. */
8839 { bfd_mach_mips4000, bfd_mach_mips6000 },
8840 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8841
8842 /* MIPS I extensions. */
8843 { bfd_mach_mips6000, bfd_mach_mips3000 },
8844 { bfd_mach_mips3900, bfd_mach_mips3000 }
8845 };
8846
8847
8848 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8849
8850 static bfd_boolean
8851 mips_mach_extends_p (base, extension)
8852 unsigned long base, extension;
8853 {
8854 size_t i;
8855
8856 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8857 if (extension == mips_mach_extensions[i].extension)
8858 extension = mips_mach_extensions[i].base;
8859
8860 return extension == base;
8861 }
8862
8863
8864 /* Return true if the given ELF header flags describe a 32-bit binary. */
8865
8866 static bfd_boolean
8867 mips_32bit_flags_p (flags)
8868 flagword flags;
8869 {
8870 return ((flags & EF_MIPS_32BITMODE) != 0
8871 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8872 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8873 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8874 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8875 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8876 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8877 }
8878
8879
8880 /* Merge backend specific data from an object file to the output
8881 object file when linking. */
8882
8883 bfd_boolean
8884 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
8885 bfd *ibfd;
8886 bfd *obfd;
8887 {
8888 flagword old_flags;
8889 flagword new_flags;
8890 bfd_boolean ok;
8891 bfd_boolean null_input_bfd = TRUE;
8892 asection *sec;
8893
8894 /* Check if we have the same endianess */
8895 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8896 return FALSE;
8897
8898 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8899 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8900 return TRUE;
8901
8902 new_flags = elf_elfheader (ibfd)->e_flags;
8903 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8904 old_flags = elf_elfheader (obfd)->e_flags;
8905
8906 if (! elf_flags_init (obfd))
8907 {
8908 elf_flags_init (obfd) = TRUE;
8909 elf_elfheader (obfd)->e_flags = new_flags;
8910 elf_elfheader (obfd)->e_ident[EI_CLASS]
8911 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8912
8913 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8914 && bfd_get_arch_info (obfd)->the_default)
8915 {
8916 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8917 bfd_get_mach (ibfd)))
8918 return FALSE;
8919 }
8920
8921 return TRUE;
8922 }
8923
8924 /* Check flag compatibility. */
8925
8926 new_flags &= ~EF_MIPS_NOREORDER;
8927 old_flags &= ~EF_MIPS_NOREORDER;
8928
8929 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8930 doesn't seem to matter. */
8931 new_flags &= ~EF_MIPS_XGOT;
8932 old_flags &= ~EF_MIPS_XGOT;
8933
8934 if (new_flags == old_flags)
8935 return TRUE;
8936
8937 /* Check to see if the input BFD actually contains any sections.
8938 If not, its flags may not have been initialised either, but it cannot
8939 actually cause any incompatibility. */
8940 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8941 {
8942 /* Ignore synthetic sections and empty .text, .data and .bss sections
8943 which are automatically generated by gas. */
8944 if (strcmp (sec->name, ".reginfo")
8945 && strcmp (sec->name, ".mdebug")
8946 && ((!strcmp (sec->name, ".text")
8947 || !strcmp (sec->name, ".data")
8948 || !strcmp (sec->name, ".bss"))
8949 && sec->_raw_size != 0))
8950 {
8951 null_input_bfd = FALSE;
8952 break;
8953 }
8954 }
8955 if (null_input_bfd)
8956 return TRUE;
8957
8958 ok = TRUE;
8959
8960 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
8961 {
8962 new_flags &= ~EF_MIPS_PIC;
8963 old_flags &= ~EF_MIPS_PIC;
8964 (*_bfd_error_handler)
8965 (_("%s: linking PIC files with non-PIC files"),
8966 bfd_archive_filename (ibfd));
8967 ok = FALSE;
8968 }
8969
8970 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
8971 {
8972 new_flags &= ~EF_MIPS_CPIC;
8973 old_flags &= ~EF_MIPS_CPIC;
8974 (*_bfd_error_handler)
8975 (_("%s: linking abicalls files with non-abicalls files"),
8976 bfd_archive_filename (ibfd));
8977 ok = FALSE;
8978 }
8979
8980 /* Compare the ISAs. */
8981 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8982 {
8983 (*_bfd_error_handler)
8984 (_("%s: linking 32-bit code with 64-bit code"),
8985 bfd_archive_filename (ibfd));
8986 ok = FALSE;
8987 }
8988 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8989 {
8990 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8991 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
8992 {
8993 /* Copy the architecture info from IBFD to OBFD. Also copy
8994 the 32-bit flag (if set) so that we continue to recognise
8995 OBFD as a 32-bit binary. */
8996 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8997 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8998 elf_elfheader (obfd)->e_flags
8999 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9000
9001 /* Copy across the ABI flags if OBFD doesn't use them
9002 and if that was what caused us to treat IBFD as 32-bit. */
9003 if ((old_flags & EF_MIPS_ABI) == 0
9004 && mips_32bit_flags_p (new_flags)
9005 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9006 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9007 }
9008 else
9009 {
9010 /* The ISAs aren't compatible. */
9011 (*_bfd_error_handler)
9012 (_("%s: linking %s module with previous %s modules"),
9013 bfd_archive_filename (ibfd),
9014 bfd_printable_name (ibfd),
9015 bfd_printable_name (obfd));
9016 ok = FALSE;
9017 }
9018 }
9019
9020 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9021 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9022
9023 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9024 does set EI_CLASS differently from any 32-bit ABI. */
9025 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9026 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9027 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9028 {
9029 /* Only error if both are set (to different values). */
9030 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9031 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9032 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9033 {
9034 (*_bfd_error_handler)
9035 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9036 bfd_archive_filename (ibfd),
9037 elf_mips_abi_name (ibfd),
9038 elf_mips_abi_name (obfd));
9039 ok = FALSE;
9040 }
9041 new_flags &= ~EF_MIPS_ABI;
9042 old_flags &= ~EF_MIPS_ABI;
9043 }
9044
9045 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9046 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9047 {
9048 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9049
9050 new_flags &= ~ EF_MIPS_ARCH_ASE;
9051 old_flags &= ~ EF_MIPS_ARCH_ASE;
9052 }
9053
9054 /* Warn about any other mismatches */
9055 if (new_flags != old_flags)
9056 {
9057 (*_bfd_error_handler)
9058 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9059 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9060 (unsigned long) old_flags);
9061 ok = FALSE;
9062 }
9063
9064 if (! ok)
9065 {
9066 bfd_set_error (bfd_error_bad_value);
9067 return FALSE;
9068 }
9069
9070 return TRUE;
9071 }
9072
9073 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9074
9075 bfd_boolean
9076 _bfd_mips_elf_set_private_flags (abfd, flags)
9077 bfd *abfd;
9078 flagword flags;
9079 {
9080 BFD_ASSERT (!elf_flags_init (abfd)
9081 || elf_elfheader (abfd)->e_flags == flags);
9082
9083 elf_elfheader (abfd)->e_flags = flags;
9084 elf_flags_init (abfd) = TRUE;
9085 return TRUE;
9086 }
9087
9088 bfd_boolean
9089 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9090 bfd *abfd;
9091 PTR ptr;
9092 {
9093 FILE *file = (FILE *) ptr;
9094
9095 BFD_ASSERT (abfd != NULL && ptr != NULL);
9096
9097 /* Print normal ELF private data. */
9098 _bfd_elf_print_private_bfd_data (abfd, ptr);
9099
9100 /* xgettext:c-format */
9101 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9102
9103 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9104 fprintf (file, _(" [abi=O32]"));
9105 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9106 fprintf (file, _(" [abi=O64]"));
9107 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9108 fprintf (file, _(" [abi=EABI32]"));
9109 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9110 fprintf (file, _(" [abi=EABI64]"));
9111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9112 fprintf (file, _(" [abi unknown]"));
9113 else if (ABI_N32_P (abfd))
9114 fprintf (file, _(" [abi=N32]"));
9115 else if (ABI_64_P (abfd))
9116 fprintf (file, _(" [abi=64]"));
9117 else
9118 fprintf (file, _(" [no abi set]"));
9119
9120 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9121 fprintf (file, _(" [mips1]"));
9122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9123 fprintf (file, _(" [mips2]"));
9124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9125 fprintf (file, _(" [mips3]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9127 fprintf (file, _(" [mips4]"));
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9129 fprintf (file, _(" [mips5]"));
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9131 fprintf (file, _(" [mips32]"));
9132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9133 fprintf (file, _(" [mips64]"));
9134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9135 fprintf (file, _(" [mips32r2]"));
9136 else
9137 fprintf (file, _(" [unknown ISA]"));
9138
9139 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9140 fprintf (file, _(" [mdmx]"));
9141
9142 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9143 fprintf (file, _(" [mips16]"));
9144
9145 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9146 fprintf (file, _(" [32bitmode]"));
9147 else
9148 fprintf (file, _(" [not 32bitmode]"));
9149
9150 fputc ('\n', file);
9151
9152 return TRUE;
9153 }