bfd/
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
2421
2422 static bfd_vma
2423 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2424 asection *input_section, bfd_vma value,
2425 unsigned long r_symndx,
2426 struct mips_elf_link_hash_entry *h, int r_type)
2427 {
2428 asection *sgot;
2429 struct mips_got_info *g;
2430 struct mips_got_entry *entry;
2431
2432 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2433
2434 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2435 input_section, value,
2436 r_symndx, h, r_type);
2437 if (!entry)
2438 return MINUS_ONE;
2439
2440 if (TLS_RELOC_P (r_type))
2441 {
2442 if (entry->symndx == -1 && g->next == NULL)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2446 r_type, info, h, value);
2447 else
2448 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2449 r_type, info, h, value);
2450 }
2451 else
2452 return entry->gotidx;
2453 }
2454
2455 /* Returns the GOT index for the global symbol indicated by H. */
2456
2457 static bfd_vma
2458 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2459 int r_type, struct bfd_link_info *info)
2460 {
2461 bfd_vma index;
2462 asection *sgot;
2463 struct mips_got_info *g, *gg;
2464 long global_got_dynindx = 0;
2465
2466 gg = g = mips_elf_got_info (abfd, &sgot);
2467 if (g->bfd2got && ibfd)
2468 {
2469 struct mips_got_entry e, *p;
2470
2471 BFD_ASSERT (h->dynindx >= 0);
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (g->next != gg || TLS_RELOC_P (r_type))
2475 {
2476 e.abfd = ibfd;
2477 e.symndx = -1;
2478 e.d.h = (struct mips_elf_link_hash_entry *)h;
2479 e.tls_type = 0;
2480
2481 p = htab_find (g->got_entries, &e);
2482
2483 BFD_ASSERT (p->gotidx > 0);
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2494
2495 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2496 info, e.d.h, value);
2497 }
2498 else
2499 return p->gotidx;
2500 }
2501 }
2502
2503 if (gg->global_gotsym != NULL)
2504 global_got_dynindx = gg->global_gotsym->dynindx;
2505
2506 if (TLS_RELOC_P (r_type))
2507 {
2508 struct mips_elf_link_hash_entry *hm
2509 = (struct mips_elf_link_hash_entry *) h;
2510 bfd_vma value = MINUS_ONE;
2511
2512 if ((h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak)
2514 && h->root.u.def.section->output_section)
2515 value = (h->root.u.def.value
2516 + h->root.u.def.section->output_offset
2517 + h->root.u.def.section->output_section->vma);
2518
2519 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2520 r_type, info, hm, value);
2521 }
2522 else
2523 {
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2527 offset. */
2528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2529 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2530 * MIPS_ELF_GOT_SIZE (abfd));
2531 }
2532 BFD_ASSERT (index < sgot->size);
2533
2534 return index;
2535 }
2536
2537 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
2543
2544 static bfd_vma
2545 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2546 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2547 {
2548 asection *sgot;
2549 struct mips_got_info *g;
2550 bfd_vma page, index;
2551 struct mips_got_entry *entry;
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 input_section, page, 0,
2558 NULL, R_MIPS_GOT_PAGE);
2559
2560 if (!entry)
2561 return MINUS_ONE;
2562
2563 index = entry->gotidx;
2564
2565 if (offsetp)
2566 *offsetp = value - entry->d.address;
2567
2568 return index;
2569 }
2570
2571 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2575
2576 static bfd_vma
2577 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2578 asection *input_section, bfd_vma value,
2579 bfd_boolean external)
2580 {
2581 asection *sgot;
2582 struct mips_got_info *g;
2583 struct mips_got_entry *entry;
2584
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2589 if (! external)
2590 value = mips_elf_high (value) << 16;
2591
2592 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593
2594 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2595 input_section, value, 0,
2596 NULL, R_MIPS_GOT16);
2597 if (entry)
2598 return entry->gotidx;
2599 else
2600 return MINUS_ONE;
2601 }
2602
2603 /* Returns the offset for the entry at the INDEXth position
2604 in the GOT. */
2605
2606 static bfd_vma
2607 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2608 bfd *input_bfd, bfd_vma index)
2609 {
2610 asection *sgot;
2611 bfd_vma gp;
2612 struct mips_got_info *g;
2613
2614 g = mips_elf_got_info (dynobj, &sgot);
2615 gp = _bfd_get_gp_value (output_bfd)
2616 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2617
2618 return sgot->output_section->vma + sgot->output_offset + index - gp;
2619 }
2620
2621 /* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 instead. */
2625
2626 static struct mips_got_entry *
2627 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2628 bfd *ibfd, struct mips_got_info *gg,
2629 asection *sgot, asection *input_section,
2630 bfd_vma value, unsigned long r_symndx,
2631 struct mips_elf_link_hash_entry *h,
2632 int r_type)
2633 {
2634 struct mips_got_entry entry, **loc;
2635 struct mips_got_info *g;
2636 struct mips_elf_link_hash_table *htab;
2637
2638 htab = mips_elf_hash_table (info);
2639
2640 entry.abfd = NULL;
2641 entry.symndx = -1;
2642 entry.d.address = value;
2643 entry.tls_type = 0;
2644
2645 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 if (g == NULL)
2647 {
2648 g = mips_elf_got_for_ibfd (gg, abfd);
2649 BFD_ASSERT (g != NULL);
2650 }
2651
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
2656 BFD_ASSERT (h == NULL || h->root.forced_local);
2657 if (TLS_RELOC_P (r_type))
2658 {
2659 struct mips_got_entry *p;
2660
2661 entry.abfd = ibfd;
2662 if (r_type == R_MIPS_TLS_LDM)
2663 {
2664 entry.tls_type = GOT_TLS_LDM;
2665 entry.symndx = 0;
2666 entry.d.addend = 0;
2667 }
2668 else if (h == NULL)
2669 {
2670 entry.symndx = r_symndx;
2671 entry.d.addend = 0;
2672 }
2673 else
2674 entry.d.h = h;
2675
2676 p = (struct mips_got_entry *)
2677 htab_find (g->got_entries, &entry);
2678
2679 BFD_ASSERT (p);
2680 return p;
2681 }
2682
2683 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2684 INSERT);
2685 if (*loc)
2686 return *loc;
2687
2688 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2689 entry.tls_type = 0;
2690
2691 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2692
2693 if (! *loc)
2694 return NULL;
2695
2696 memcpy (*loc, &entry, sizeof entry);
2697
2698 if (g->assigned_gotno >= g->local_gotno)
2699 {
2700 (*loc)->gotidx = -1;
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value);
2705 return NULL;
2706 }
2707
2708 MIPS_ELF_PUT_WORD (abfd, value,
2709 (sgot->contents + entry.gotidx));
2710
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab->is_vxworks)
2717 {
2718 Elf_Internal_Rela outrel;
2719 asection *s, *output_section;
2720 bfd_byte *loc;
2721 bfd_vma got_address;
2722 int dynindx;
2723
2724 s = mips_elf_rel_dyn_section (info, FALSE);
2725 output_section = input_section->output_section;
2726 dynindx = elf_section_data (output_section)->dynindx;
2727 got_address = (sgot->output_section->vma
2728 + sgot->output_offset
2729 + entry.gotidx);
2730
2731 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2732 outrel.r_offset = got_address;
2733 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2734 outrel.r_addend = value - output_section->vma;
2735 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2736 }
2737
2738 return *loc;
2739 }
2740
2741 /* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2747
2748 static bfd_boolean
2749 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2750 {
2751 struct mips_elf_hash_sort_data hsd;
2752 struct mips_got_info *g;
2753 bfd *dynobj;
2754
2755 dynobj = elf_hash_table (info)->dynobj;
2756
2757 g = mips_elf_got_info (dynobj, NULL);
2758
2759 hsd.low = NULL;
2760 hsd.max_unref_got_dynindx =
2761 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g->next ? g->assigned_gotno : 0);
2770 hsd.max_non_got_dynindx = max_local;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2772 elf_hash_table (info)),
2773 mips_elf_sort_hash_table_f,
2774 &hsd);
2775
2776 /* There should have been enough room in the symbol table to
2777 accommodate both the GOT and non-GOT symbols. */
2778 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2779 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2780 <= elf_hash_table (info)->dynsymcount);
2781
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
2784 g->global_gotsym = hsd.low;
2785
2786 return TRUE;
2787 }
2788
2789 /* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2791 index. */
2792
2793 static bfd_boolean
2794 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2795 {
2796 struct mips_elf_hash_sort_data *hsd = data;
2797
2798 if (h->root.root.type == bfd_link_hash_warning)
2799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2800
2801 /* Symbols without dynamic symbol table entries aren't interesting
2802 at all. */
2803 if (h->root.dynindx == -1)
2804 return TRUE;
2805
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2809 -1. */
2810 if (h->root.got.offset == 2)
2811 {
2812 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2813
2814 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2815 hsd->low = (struct elf_link_hash_entry *) h;
2816 h->root.dynindx = hsd->max_unref_got_dynindx++;
2817 }
2818 else if (h->root.got.offset != 1)
2819 h->root.dynindx = hsd->max_non_got_dynindx++;
2820 else
2821 {
2822 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2823
2824 h->root.dynindx = --hsd->min_got_dynindx;
2825 hsd->low = (struct elf_link_hash_entry *) h;
2826 }
2827
2828 return TRUE;
2829 }
2830
2831 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2833 posterity. */
2834
2835 static bfd_boolean
2836 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2837 bfd *abfd, struct bfd_link_info *info,
2838 struct mips_got_info *g,
2839 unsigned char tls_flag)
2840 {
2841 struct mips_got_entry entry, **loc;
2842
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2844 table. */
2845 if (h->dynindx == -1)
2846 {
2847 switch (ELF_ST_VISIBILITY (h->other))
2848 {
2849 case STV_INTERNAL:
2850 case STV_HIDDEN:
2851 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2852 break;
2853 }
2854 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2855 return FALSE;
2856 }
2857
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g != NULL);
2860
2861 entry.abfd = abfd;
2862 entry.symndx = -1;
2863 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2864 entry.tls_type = 0;
2865
2866 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2867 INSERT);
2868
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
2871 if (*loc)
2872 {
2873 (*loc)->tls_type |= tls_flag;
2874 return TRUE;
2875 }
2876
2877 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2878
2879 if (! *loc)
2880 return FALSE;
2881
2882 entry.gotidx = -1;
2883 entry.tls_type = tls_flag;
2884
2885 memcpy (*loc, &entry, sizeof entry);
2886
2887 if (h->got.offset != MINUS_ONE)
2888 return TRUE;
2889
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
2893 if (tls_flag == 0)
2894 h->got.offset = 1;
2895
2896 return TRUE;
2897 }
2898
2899 /* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2901
2902 static bfd_boolean
2903 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2904 struct mips_got_info *g,
2905 unsigned char tls_flag)
2906 {
2907 struct mips_got_entry entry, **loc;
2908
2909 entry.abfd = abfd;
2910 entry.symndx = symndx;
2911 entry.d.addend = addend;
2912 entry.tls_type = tls_flag;
2913 loc = (struct mips_got_entry **)
2914 htab_find_slot (g->got_entries, &entry, INSERT);
2915
2916 if (*loc)
2917 {
2918 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2919 {
2920 g->tls_gotno += 2;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2924 {
2925 g->tls_gotno += 1;
2926 (*loc)->tls_type |= tls_flag;
2927 }
2928 return TRUE;
2929 }
2930
2931 if (tls_flag != 0)
2932 {
2933 entry.gotidx = -1;
2934 entry.tls_type = tls_flag;
2935 if (tls_flag == GOT_TLS_IE)
2936 g->tls_gotno += 1;
2937 else if (tls_flag == GOT_TLS_GD)
2938 g->tls_gotno += 2;
2939 else if (g->tls_ldm_offset == MINUS_ONE)
2940 {
2941 g->tls_ldm_offset = MINUS_TWO;
2942 g->tls_gotno += 2;
2943 }
2944 }
2945 else
2946 {
2947 entry.gotidx = g->local_gotno++;
2948 entry.tls_type = 0;
2949 }
2950
2951 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952
2953 if (! *loc)
2954 return FALSE;
2955
2956 memcpy (*loc, &entry, sizeof entry);
2957
2958 return TRUE;
2959 }
2960 \f
2961 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2962
2963 static hashval_t
2964 mips_elf_bfd2got_entry_hash (const void *entry_)
2965 {
2966 const struct mips_elf_bfd2got_hash *entry
2967 = (struct mips_elf_bfd2got_hash *)entry_;
2968
2969 return entry->bfd->id;
2970 }
2971
2972 /* Check whether two hash entries have the same bfd. */
2973
2974 static int
2975 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2976 {
2977 const struct mips_elf_bfd2got_hash *e1
2978 = (const struct mips_elf_bfd2got_hash *)entry1;
2979 const struct mips_elf_bfd2got_hash *e2
2980 = (const struct mips_elf_bfd2got_hash *)entry2;
2981
2982 return e1->bfd == e2->bfd;
2983 }
2984
2985 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2986 be the master GOT data. */
2987
2988 static struct mips_got_info *
2989 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2990 {
2991 struct mips_elf_bfd2got_hash e, *p;
2992
2993 if (! g->bfd2got)
2994 return g;
2995
2996 e.bfd = ibfd;
2997 p = htab_find (g->bfd2got, &e);
2998 return p ? p->g : NULL;
2999 }
3000
3001 /* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3003 bfd requires. */
3004
3005 static int
3006 mips_elf_make_got_per_bfd (void **entryp, void *p)
3007 {
3008 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3009 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3010 htab_t bfd2got = arg->bfd2got;
3011 struct mips_got_info *g;
3012 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3013 void **bfdgotp;
3014
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3016 none exists. */
3017 bfdgot_entry.bfd = entry->abfd;
3018 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3019 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3020
3021 if (bfdgot != NULL)
3022 g = bfdgot->g;
3023 else
3024 {
3025 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3026 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3027
3028 if (bfdgot == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 *bfdgotp = bfdgot;
3035
3036 bfdgot->bfd = entry->abfd;
3037 bfdgot->g = g = (struct mips_got_info *)
3038 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3039 if (g == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->global_gotsym = NULL;
3046 g->global_gotno = 0;
3047 g->local_gotno = 0;
3048 g->assigned_gotno = -1;
3049 g->tls_gotno = 0;
3050 g->tls_assigned_gotno = 0;
3051 g->tls_ldm_offset = MINUS_ONE;
3052 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3053 mips_elf_multi_got_entry_eq, NULL);
3054 if (g->got_entries == NULL)
3055 {
3056 arg->obfd = 0;
3057 return 0;
3058 }
3059
3060 g->bfd2got = NULL;
3061 g->next = NULL;
3062 }
3063
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3066 if (*entryp != NULL)
3067 return 1;
3068
3069 *entryp = entry;
3070
3071 if (entry->tls_type)
3072 {
3073 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3074 g->tls_gotno += 2;
3075 if (entry->tls_type & GOT_TLS_IE)
3076 g->tls_gotno += 1;
3077 }
3078 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3079 ++g->local_gotno;
3080 else
3081 ++g->global_gotno;
3082
3083 return 1;
3084 }
3085
3086 /* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3092
3093 static int
3094 mips_elf_merge_gots (void **bfd2got_, void *p)
3095 {
3096 struct mips_elf_bfd2got_hash *bfd2got
3097 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3098 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3099 unsigned int lcount = bfd2got->g->local_gotno;
3100 unsigned int gcount = bfd2got->g->global_gotno;
3101 unsigned int tcount = bfd2got->g->tls_gotno;
3102 unsigned int maxcnt = arg->max_count;
3103 bfd_boolean too_many_for_tls = FALSE;
3104
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3109 if (tcount > 0)
3110 {
3111 unsigned int primary_total = lcount + tcount + arg->global_count;
3112 if (primary_total > maxcnt)
3113 too_many_for_tls = TRUE;
3114 }
3115
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
3118 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3119 && ! too_many_for_tls)
3120 {
3121 arg->primary = bfd2got->g;
3122 arg->primary_count = lcount + gcount;
3123 }
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
3127 else if (arg->primary && ! too_many_for_tls
3128 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3129 {
3130 struct mips_got_info *g = bfd2got->g;
3131 int old_lcount = arg->primary->local_gotno;
3132 int old_gcount = arg->primary->global_gotno;
3133 int old_tcount = arg->primary->tls_gotno;
3134
3135 bfd2got->g = arg->primary;
3136
3137 htab_traverse (g->got_entries,
3138 mips_elf_make_got_per_bfd,
3139 arg);
3140 if (arg->obfd == NULL)
3141 return 0;
3142
3143 htab_delete (g->got_entries);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3146 table anyway. */
3147
3148 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3149 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3150 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3151
3152 arg->primary_count = arg->primary->local_gotno
3153 + arg->primary->global_gotno + arg->primary->tls_gotno;
3154 }
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg->current
3157 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3158 {
3159 struct mips_got_info *g = bfd2got->g;
3160 int old_lcount = arg->current->local_gotno;
3161 int old_gcount = arg->current->global_gotno;
3162 int old_tcount = arg->current->tls_gotno;
3163
3164 bfd2got->g = arg->current;
3165
3166 htab_traverse (g->got_entries,
3167 mips_elf_make_got_per_bfd,
3168 arg);
3169 if (arg->obfd == NULL)
3170 return 0;
3171
3172 htab_delete (g->got_entries);
3173
3174 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3175 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3176 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3177
3178 arg->current_count = arg->current->local_gotno
3179 + arg->current->global_gotno + arg->current->tls_gotno;
3180 }
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3184 else
3185 {
3186 bfd2got->g->next = arg->current;
3187 arg->current = bfd2got->g;
3188
3189 arg->current_count = lcount + gcount + 2 * tcount;
3190 }
3191
3192 return 1;
3193 }
3194
3195 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
3197
3198 static int
3199 mips_elf_initialize_tls_index (void **entryp, void *p)
3200 {
3201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3202 struct mips_got_info *g = p;
3203 bfd_vma next_index;
3204
3205 /* We're only interested in TLS symbols. */
3206 if (entry->tls_type == 0)
3207 return 1;
3208
3209 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3210
3211 if (entry->symndx == -1 && g->next == NULL)
3212 {
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3216 return 1;
3217 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3218 entry->d.h->tls_got_offset = next_index;
3219 }
3220 else
3221 {
3222 if (entry->tls_type & GOT_TLS_LDM)
3223 {
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3228 {
3229 entry->gotidx = g->tls_ldm_offset;
3230 return 1;
3231 }
3232 g->tls_ldm_offset = next_index;
3233 }
3234 entry->gotidx = next_index;
3235 }
3236
3237 /* Account for the entries we've just allocated. */
3238 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3239 g->tls_assigned_gotno += 2;
3240 if (entry->tls_type & GOT_TLS_IE)
3241 g->tls_assigned_gotno += 1;
3242
3243 return 1;
3244 }
3245
3246 /* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3249
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3257 marked as not eligible for lazy resolution through a function
3258 stub. */
3259 static int
3260 mips_elf_set_global_got_offset (void **entryp, void *p)
3261 {
3262 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3263 struct mips_elf_set_global_got_offset_arg *arg
3264 = (struct mips_elf_set_global_got_offset_arg *)p;
3265 struct mips_got_info *g = arg->g;
3266
3267 if (g && entry->tls_type != GOT_NORMAL)
3268 arg->needed_relocs +=
3269 mips_tls_got_relocs (arg->info, entry->tls_type,
3270 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271
3272 if (entry->abfd != NULL && entry->symndx == -1
3273 && entry->d.h->root.dynindx != -1
3274 && entry->d.h->tls_type == GOT_NORMAL)
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292 }
3293
3294 /* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296 static int
3297 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3298 {
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307 }
3308
3309 /* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315 static int
3316 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3317 {
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
3331
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
3351
3352 return 1;
3353 }
3354
3355 /* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357 static void
3358 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3359 {
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371 }
3372
3373 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375 static bfd_vma
3376 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3377 {
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
3388
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
3391 }
3392
3393 /* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396 static bfd_boolean
3397 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
3400 {
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3407 mips_elf_bfd2got_entry_eq, NULL);
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3427 / MIPS_ELF_GOT_SIZE (abfd))
3428 - MIPS_RESERVED_GOTNO (info) - pages);
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
3441 /* If we do not find any suitable primary GOT, create an empty one. */
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
3452 g->next->tls_gotno = 0;
3453 g->next->assigned_gotno = 0;
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
3458 NULL);
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
3479
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
3505
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
3555 gg->tls_gotno = 0;
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
3563 assign += MIPS_RESERVED_GOTNO (info);
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3579
3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3581 g = gn;
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3587 }
3588 while (g);
3589
3590 got->size = (gg->next->local_gotno
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3593
3594 return TRUE;
3595 }
3596
3597 \f
3598 /* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601 static const Elf_Internal_Rela *
3602 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
3605 {
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
3608 while (relocation < relend)
3609 {
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
3618 return NULL;
3619 }
3620
3621 /* Return whether a relocation is against a local symbol. */
3622
3623 static bfd_boolean
3624 mips_elf_local_relocation_p (bfd *input_bfd,
3625 const Elf_Internal_Rela *relocation,
3626 asection **local_sections,
3627 bfd_boolean check_forced)
3628 {
3629 unsigned long r_symndx;
3630 Elf_Internal_Shdr *symtab_hdr;
3631 struct mips_elf_link_hash_entry *h;
3632 size_t extsymoff;
3633
3634 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3636 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3637
3638 if (r_symndx < extsymoff)
3639 return TRUE;
3640 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3641 return TRUE;
3642
3643 if (check_forced)
3644 {
3645 /* Look up the hash table to check whether the symbol
3646 was forced local. */
3647 h = (struct mips_elf_link_hash_entry *)
3648 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3649 /* Find the real hash-table entry for this symbol. */
3650 while (h->root.root.type == bfd_link_hash_indirect
3651 || h->root.root.type == bfd_link_hash_warning)
3652 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3653 if (h->root.forced_local)
3654 return TRUE;
3655 }
3656
3657 return FALSE;
3658 }
3659 \f
3660 /* Sign-extend VALUE, which has the indicated number of BITS. */
3661
3662 bfd_vma
3663 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3664 {
3665 if (value & ((bfd_vma) 1 << (bits - 1)))
3666 /* VALUE is negative. */
3667 value |= ((bfd_vma) - 1) << bits;
3668
3669 return value;
3670 }
3671
3672 /* Return non-zero if the indicated VALUE has overflowed the maximum
3673 range expressible by a signed number with the indicated number of
3674 BITS. */
3675
3676 static bfd_boolean
3677 mips_elf_overflow_p (bfd_vma value, int bits)
3678 {
3679 bfd_signed_vma svalue = (bfd_signed_vma) value;
3680
3681 if (svalue > (1 << (bits - 1)) - 1)
3682 /* The value is too big. */
3683 return TRUE;
3684 else if (svalue < -(1 << (bits - 1)))
3685 /* The value is too small. */
3686 return TRUE;
3687
3688 /* All is well. */
3689 return FALSE;
3690 }
3691
3692 /* Calculate the %high function. */
3693
3694 static bfd_vma
3695 mips_elf_high (bfd_vma value)
3696 {
3697 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3698 }
3699
3700 /* Calculate the %higher function. */
3701
3702 static bfd_vma
3703 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3704 {
3705 #ifdef BFD64
3706 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3707 #else
3708 abort ();
3709 return MINUS_ONE;
3710 #endif
3711 }
3712
3713 /* Calculate the %highest function. */
3714
3715 static bfd_vma
3716 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3717 {
3718 #ifdef BFD64
3719 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3720 #else
3721 abort ();
3722 return MINUS_ONE;
3723 #endif
3724 }
3725 \f
3726 /* Create the .compact_rel section. */
3727
3728 static bfd_boolean
3729 mips_elf_create_compact_rel_section
3730 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3731 {
3732 flagword flags;
3733 register asection *s;
3734
3735 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3736 {
3737 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3738 | SEC_READONLY);
3739
3740 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3741 if (s == NULL
3742 || ! bfd_set_section_alignment (abfd, s,
3743 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3744 return FALSE;
3745
3746 s->size = sizeof (Elf32_External_compact_rel);
3747 }
3748
3749 return TRUE;
3750 }
3751
3752 /* Create the .got section to hold the global offset table. */
3753
3754 static bfd_boolean
3755 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3756 bfd_boolean maybe_exclude)
3757 {
3758 flagword flags;
3759 register asection *s;
3760 struct elf_link_hash_entry *h;
3761 struct bfd_link_hash_entry *bh;
3762 struct mips_got_info *g;
3763 bfd_size_type amt;
3764 struct mips_elf_link_hash_table *htab;
3765
3766 htab = mips_elf_hash_table (info);
3767
3768 /* This function may be called more than once. */
3769 s = mips_elf_got_section (abfd, TRUE);
3770 if (s)
3771 {
3772 if (! maybe_exclude)
3773 s->flags &= ~SEC_EXCLUDE;
3774 return TRUE;
3775 }
3776
3777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3778 | SEC_LINKER_CREATED);
3779
3780 if (maybe_exclude)
3781 flags |= SEC_EXCLUDE;
3782
3783 /* We have to use an alignment of 2**4 here because this is hardcoded
3784 in the function stub generation and in the linker script. */
3785 s = bfd_make_section_with_flags (abfd, ".got", flags);
3786 if (s == NULL
3787 || ! bfd_set_section_alignment (abfd, s, 4))
3788 return FALSE;
3789
3790 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3791 linker script because we don't want to define the symbol if we
3792 are not creating a global offset table. */
3793 bh = NULL;
3794 if (! (_bfd_generic_link_add_one_symbol
3795 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3796 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3797 return FALSE;
3798
3799 h = (struct elf_link_hash_entry *) bh;
3800 h->non_elf = 0;
3801 h->def_regular = 1;
3802 h->type = STT_OBJECT;
3803 elf_hash_table (info)->hgot = h;
3804
3805 if (info->shared
3806 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3807 return FALSE;
3808
3809 amt = sizeof (struct mips_got_info);
3810 g = bfd_alloc (abfd, amt);
3811 if (g == NULL)
3812 return FALSE;
3813 g->global_gotsym = NULL;
3814 g->global_gotno = 0;
3815 g->tls_gotno = 0;
3816 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3817 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3818 g->bfd2got = NULL;
3819 g->next = NULL;
3820 g->tls_ldm_offset = MINUS_ONE;
3821 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3822 mips_elf_got_entry_eq, NULL);
3823 if (g->got_entries == NULL)
3824 return FALSE;
3825 mips_elf_section_data (s)->u.got_info = g;
3826 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3827 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3828
3829 /* VxWorks also needs a .got.plt section. */
3830 if (htab->is_vxworks)
3831 {
3832 s = bfd_make_section_with_flags (abfd, ".got.plt",
3833 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3835 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3836 return FALSE;
3837
3838 htab->sgotplt = s;
3839 }
3840 return TRUE;
3841 }
3842 \f
3843 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3844 __GOTT_INDEX__ symbols. These symbols are only special for
3845 shared objects; they are not used in executables. */
3846
3847 static bfd_boolean
3848 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3849 {
3850 return (mips_elf_hash_table (info)->is_vxworks
3851 && info->shared
3852 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3853 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3854 }
3855 \f
3856 /* Calculate the value produced by the RELOCATION (which comes from
3857 the INPUT_BFD). The ADDEND is the addend to use for this
3858 RELOCATION; RELOCATION->R_ADDEND is ignored.
3859
3860 The result of the relocation calculation is stored in VALUEP.
3861 REQUIRE_JALXP indicates whether or not the opcode used with this
3862 relocation must be JALX.
3863
3864 This function returns bfd_reloc_continue if the caller need take no
3865 further action regarding this relocation, bfd_reloc_notsupported if
3866 something goes dramatically wrong, bfd_reloc_overflow if an
3867 overflow occurs, and bfd_reloc_ok to indicate success. */
3868
3869 static bfd_reloc_status_type
3870 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3871 asection *input_section,
3872 struct bfd_link_info *info,
3873 const Elf_Internal_Rela *relocation,
3874 bfd_vma addend, reloc_howto_type *howto,
3875 Elf_Internal_Sym *local_syms,
3876 asection **local_sections, bfd_vma *valuep,
3877 const char **namep, bfd_boolean *require_jalxp,
3878 bfd_boolean save_addend)
3879 {
3880 /* The eventual value we will return. */
3881 bfd_vma value;
3882 /* The address of the symbol against which the relocation is
3883 occurring. */
3884 bfd_vma symbol = 0;
3885 /* The final GP value to be used for the relocatable, executable, or
3886 shared object file being produced. */
3887 bfd_vma gp = MINUS_ONE;
3888 /* The place (section offset or address) of the storage unit being
3889 relocated. */
3890 bfd_vma p;
3891 /* The value of GP used to create the relocatable object. */
3892 bfd_vma gp0 = MINUS_ONE;
3893 /* The offset into the global offset table at which the address of
3894 the relocation entry symbol, adjusted by the addend, resides
3895 during execution. */
3896 bfd_vma g = MINUS_ONE;
3897 /* The section in which the symbol referenced by the relocation is
3898 located. */
3899 asection *sec = NULL;
3900 struct mips_elf_link_hash_entry *h = NULL;
3901 /* TRUE if the symbol referred to by this relocation is a local
3902 symbol. */
3903 bfd_boolean local_p, was_local_p;
3904 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3905 bfd_boolean gp_disp_p = FALSE;
3906 /* TRUE if the symbol referred to by this relocation is
3907 "__gnu_local_gp". */
3908 bfd_boolean gnu_local_gp_p = FALSE;
3909 Elf_Internal_Shdr *symtab_hdr;
3910 size_t extsymoff;
3911 unsigned long r_symndx;
3912 int r_type;
3913 /* TRUE if overflow occurred during the calculation of the
3914 relocation value. */
3915 bfd_boolean overflowed_p;
3916 /* TRUE if this relocation refers to a MIPS16 function. */
3917 bfd_boolean target_is_16_bit_code_p = FALSE;
3918 struct mips_elf_link_hash_table *htab;
3919 bfd *dynobj;
3920
3921 dynobj = elf_hash_table (info)->dynobj;
3922 htab = mips_elf_hash_table (info);
3923
3924 /* Parse the relocation. */
3925 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3926 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3927 p = (input_section->output_section->vma
3928 + input_section->output_offset
3929 + relocation->r_offset);
3930
3931 /* Assume that there will be no overflow. */
3932 overflowed_p = FALSE;
3933
3934 /* Figure out whether or not the symbol is local, and get the offset
3935 used in the array of hash table entries. */
3936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3937 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3938 local_sections, FALSE);
3939 was_local_p = local_p;
3940 if (! elf_bad_symtab (input_bfd))
3941 extsymoff = symtab_hdr->sh_info;
3942 else
3943 {
3944 /* The symbol table does not follow the rule that local symbols
3945 must come before globals. */
3946 extsymoff = 0;
3947 }
3948
3949 /* Figure out the value of the symbol. */
3950 if (local_p)
3951 {
3952 Elf_Internal_Sym *sym;
3953
3954 sym = local_syms + r_symndx;
3955 sec = local_sections[r_symndx];
3956
3957 symbol = sec->output_section->vma + sec->output_offset;
3958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3959 || (sec->flags & SEC_MERGE))
3960 symbol += sym->st_value;
3961 if ((sec->flags & SEC_MERGE)
3962 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3963 {
3964 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3965 addend -= symbol;
3966 addend += sec->output_section->vma + sec->output_offset;
3967 }
3968
3969 /* MIPS16 text labels should be treated as odd. */
3970 if (sym->st_other == STO_MIPS16)
3971 ++symbol;
3972
3973 /* Record the name of this symbol, for our caller. */
3974 *namep = bfd_elf_string_from_elf_section (input_bfd,
3975 symtab_hdr->sh_link,
3976 sym->st_name);
3977 if (*namep == '\0')
3978 *namep = bfd_section_name (input_bfd, sec);
3979
3980 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3981 }
3982 else
3983 {
3984 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3985
3986 /* For global symbols we look up the symbol in the hash-table. */
3987 h = ((struct mips_elf_link_hash_entry *)
3988 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3989 /* Find the real hash-table entry for this symbol. */
3990 while (h->root.root.type == bfd_link_hash_indirect
3991 || h->root.root.type == bfd_link_hash_warning)
3992 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3993
3994 /* Record the name of this symbol, for our caller. */
3995 *namep = h->root.root.root.string;
3996
3997 /* See if this is the special _gp_disp symbol. Note that such a
3998 symbol must always be a global symbol. */
3999 if (strcmp (*namep, "_gp_disp") == 0
4000 && ! NEWABI_P (input_bfd))
4001 {
4002 /* Relocations against _gp_disp are permitted only with
4003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4005 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4006 return bfd_reloc_notsupported;
4007
4008 gp_disp_p = TRUE;
4009 }
4010 /* See if this is the special _gp symbol. Note that such a
4011 symbol must always be a global symbol. */
4012 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4013 gnu_local_gp_p = TRUE;
4014
4015
4016 /* If this symbol is defined, calculate its address. Note that
4017 _gp_disp is a magic symbol, always implicitly defined by the
4018 linker, so it's inappropriate to check to see whether or not
4019 its defined. */
4020 else if ((h->root.root.type == bfd_link_hash_defined
4021 || h->root.root.type == bfd_link_hash_defweak)
4022 && h->root.root.u.def.section)
4023 {
4024 sec = h->root.root.u.def.section;
4025 if (sec->output_section)
4026 symbol = (h->root.root.u.def.value
4027 + sec->output_section->vma
4028 + sec->output_offset);
4029 else
4030 symbol = h->root.root.u.def.value;
4031 }
4032 else if (h->root.root.type == bfd_link_hash_undefweak)
4033 /* We allow relocations against undefined weak symbols, giving
4034 it the value zero, so that you can undefined weak functions
4035 and check to see if they exist by looking at their
4036 addresses. */
4037 symbol = 0;
4038 else if (info->unresolved_syms_in_objects == RM_IGNORE
4039 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4040 symbol = 0;
4041 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4042 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4043 {
4044 /* If this is a dynamic link, we should have created a
4045 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4046 in in _bfd_mips_elf_create_dynamic_sections.
4047 Otherwise, we should define the symbol with a value of 0.
4048 FIXME: It should probably get into the symbol table
4049 somehow as well. */
4050 BFD_ASSERT (! info->shared);
4051 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4052 symbol = 0;
4053 }
4054 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4055 {
4056 /* This is an optional symbol - an Irix specific extension to the
4057 ELF spec. Ignore it for now.
4058 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4059 than simply ignoring them, but we do not handle this for now.
4060 For information see the "64-bit ELF Object File Specification"
4061 which is available from here:
4062 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4063 symbol = 0;
4064 }
4065 else
4066 {
4067 if (! ((*info->callbacks->undefined_symbol)
4068 (info, h->root.root.root.string, input_bfd,
4069 input_section, relocation->r_offset,
4070 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4071 || ELF_ST_VISIBILITY (h->root.other))))
4072 return bfd_reloc_undefined;
4073 symbol = 0;
4074 }
4075
4076 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4077 }
4078
4079 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4080 need to redirect the call to the stub, unless we're already *in*
4081 a stub. */
4082 if (r_type != R_MIPS16_26 && !info->relocatable
4083 && ((h != NULL && h->fn_stub != NULL)
4084 || (local_p
4085 && elf_tdata (input_bfd)->local_stubs != NULL
4086 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4087 && !mips16_stub_section_p (input_bfd, input_section))
4088 {
4089 /* This is a 32- or 64-bit call to a 16-bit function. We should
4090 have already noticed that we were going to need the
4091 stub. */
4092 if (local_p)
4093 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4094 else
4095 {
4096 BFD_ASSERT (h->need_fn_stub);
4097 sec = h->fn_stub;
4098 }
4099
4100 symbol = sec->output_section->vma + sec->output_offset;
4101 /* The target is 16-bit, but the stub isn't. */
4102 target_is_16_bit_code_p = FALSE;
4103 }
4104 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4105 need to redirect the call to the stub. */
4106 else if (r_type == R_MIPS16_26 && !info->relocatable
4107 && h != NULL
4108 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4109 || (local_p
4110 && elf_tdata (input_bfd)->local_call_stubs != NULL
4111 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4112 && !target_is_16_bit_code_p)
4113 {
4114 if (local_p)
4115 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4116 else
4117 {
4118 /* If both call_stub and call_fp_stub are defined, we can figure
4119 out which one to use by checking which one appears in the input
4120 file. */
4121 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4122 {
4123 asection *o;
4124
4125 sec = NULL;
4126 for (o = input_bfd->sections; o != NULL; o = o->next)
4127 {
4128 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4129 {
4130 sec = h->call_fp_stub;
4131 break;
4132 }
4133 }
4134 if (sec == NULL)
4135 sec = h->call_stub;
4136 }
4137 else if (h->call_stub != NULL)
4138 sec = h->call_stub;
4139 else
4140 sec = h->call_fp_stub;
4141 }
4142
4143 BFD_ASSERT (sec->size > 0);
4144 symbol = sec->output_section->vma + sec->output_offset;
4145 }
4146
4147 /* Calls from 16-bit code to 32-bit code and vice versa require the
4148 special jalx instruction. */
4149 *require_jalxp = (!info->relocatable
4150 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4151 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4152
4153 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4154 local_sections, TRUE);
4155
4156 /* If we haven't already determined the GOT offset, or the GP value,
4157 and we're going to need it, get it now. */
4158 switch (r_type)
4159 {
4160 case R_MIPS_GOT_PAGE:
4161 case R_MIPS_GOT_OFST:
4162 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4163 bind locally. */
4164 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4165 if (local_p || r_type == R_MIPS_GOT_OFST)
4166 break;
4167 /* Fall through. */
4168
4169 case R_MIPS_CALL16:
4170 case R_MIPS_GOT16:
4171 case R_MIPS_GOT_DISP:
4172 case R_MIPS_GOT_HI16:
4173 case R_MIPS_CALL_HI16:
4174 case R_MIPS_GOT_LO16:
4175 case R_MIPS_CALL_LO16:
4176 case R_MIPS_TLS_GD:
4177 case R_MIPS_TLS_GOTTPREL:
4178 case R_MIPS_TLS_LDM:
4179 /* Find the index into the GOT where this value is located. */
4180 if (r_type == R_MIPS_TLS_LDM)
4181 {
4182 g = mips_elf_local_got_index (abfd, input_bfd, info,
4183 sec, 0, 0, NULL, r_type);
4184 if (g == MINUS_ONE)
4185 return bfd_reloc_outofrange;
4186 }
4187 else if (!local_p)
4188 {
4189 /* On VxWorks, CALL relocations should refer to the .got.plt
4190 entry, which is initialized to point at the PLT stub. */
4191 if (htab->is_vxworks
4192 && (r_type == R_MIPS_CALL_HI16
4193 || r_type == R_MIPS_CALL_LO16
4194 || r_type == R_MIPS_CALL16))
4195 {
4196 BFD_ASSERT (addend == 0);
4197 BFD_ASSERT (h->root.needs_plt);
4198 g = mips_elf_gotplt_index (info, &h->root);
4199 }
4200 else
4201 {
4202 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4203 GOT_PAGE relocation that decays to GOT_DISP because the
4204 symbol turns out to be global. The addend is then added
4205 as GOT_OFST. */
4206 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4207 g = mips_elf_global_got_index (dynobj, input_bfd,
4208 &h->root, r_type, info);
4209 if (h->tls_type == GOT_NORMAL
4210 && (! elf_hash_table(info)->dynamic_sections_created
4211 || (info->shared
4212 && (info->symbolic || h->root.forced_local)
4213 && h->root.def_regular)))
4214 {
4215 /* This is a static link or a -Bsymbolic link. The
4216 symbol is defined locally, or was forced to be local.
4217 We must initialize this entry in the GOT. */
4218 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4219 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4220 }
4221 }
4222 }
4223 else if (!htab->is_vxworks
4224 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4225 /* The calculation below does not involve "g". */
4226 break;
4227 else
4228 {
4229 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4230 symbol + addend, r_symndx, h, r_type);
4231 if (g == MINUS_ONE)
4232 return bfd_reloc_outofrange;
4233 }
4234
4235 /* Convert GOT indices to actual offsets. */
4236 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4237 break;
4238
4239 case R_MIPS_HI16:
4240 case R_MIPS_LO16:
4241 case R_MIPS_GPREL16:
4242 case R_MIPS_GPREL32:
4243 case R_MIPS_LITERAL:
4244 case R_MIPS16_HI16:
4245 case R_MIPS16_LO16:
4246 case R_MIPS16_GPREL:
4247 gp0 = _bfd_get_gp_value (input_bfd);
4248 gp = _bfd_get_gp_value (abfd);
4249 if (dynobj)
4250 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4251 input_bfd);
4252 break;
4253
4254 default:
4255 break;
4256 }
4257
4258 if (gnu_local_gp_p)
4259 symbol = gp;
4260
4261 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4262 symbols are resolved by the loader. Add them to .rela.dyn. */
4263 if (h != NULL && is_gott_symbol (info, &h->root))
4264 {
4265 Elf_Internal_Rela outrel;
4266 bfd_byte *loc;
4267 asection *s;
4268
4269 s = mips_elf_rel_dyn_section (info, FALSE);
4270 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4271
4272 outrel.r_offset = (input_section->output_section->vma
4273 + input_section->output_offset
4274 + relocation->r_offset);
4275 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4276 outrel.r_addend = addend;
4277 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4278
4279 /* If we've written this relocation for a readonly section,
4280 we need to set DF_TEXTREL again, so that we do not delete the
4281 DT_TEXTREL tag. */
4282 if (MIPS_ELF_READONLY_SECTION (input_section))
4283 info->flags |= DF_TEXTREL;
4284
4285 *valuep = 0;
4286 return bfd_reloc_ok;
4287 }
4288
4289 /* Figure out what kind of relocation is being performed. */
4290 switch (r_type)
4291 {
4292 case R_MIPS_NONE:
4293 return bfd_reloc_continue;
4294
4295 case R_MIPS_16:
4296 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4297 overflowed_p = mips_elf_overflow_p (value, 16);
4298 break;
4299
4300 case R_MIPS_32:
4301 case R_MIPS_REL32:
4302 case R_MIPS_64:
4303 if ((info->shared
4304 || (!htab->is_vxworks
4305 && htab->root.dynamic_sections_created
4306 && h != NULL
4307 && h->root.def_dynamic
4308 && !h->root.def_regular))
4309 && r_symndx != 0
4310 && (input_section->flags & SEC_ALLOC) != 0)
4311 {
4312 /* If we're creating a shared library, or this relocation is
4313 against a symbol in a shared library, then we can't know
4314 where the symbol will end up. So, we create a relocation
4315 record in the output, and leave the job up to the dynamic
4316 linker.
4317
4318 In VxWorks executables, references to external symbols
4319 are handled using copy relocs or PLT stubs, so there's
4320 no need to add a dynamic relocation here. */
4321 value = addend;
4322 if (!mips_elf_create_dynamic_relocation (abfd,
4323 info,
4324 relocation,
4325 h,
4326 sec,
4327 symbol,
4328 &value,
4329 input_section))
4330 return bfd_reloc_undefined;
4331 }
4332 else
4333 {
4334 if (r_type != R_MIPS_REL32)
4335 value = symbol + addend;
4336 else
4337 value = addend;
4338 }
4339 value &= howto->dst_mask;
4340 break;
4341
4342 case R_MIPS_PC32:
4343 value = symbol + addend - p;
4344 value &= howto->dst_mask;
4345 break;
4346
4347 case R_MIPS16_26:
4348 /* The calculation for R_MIPS16_26 is just the same as for an
4349 R_MIPS_26. It's only the storage of the relocated field into
4350 the output file that's different. That's handled in
4351 mips_elf_perform_relocation. So, we just fall through to the
4352 R_MIPS_26 case here. */
4353 case R_MIPS_26:
4354 if (local_p)
4355 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4356 else
4357 {
4358 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4359 if (h->root.root.type != bfd_link_hash_undefweak)
4360 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4361 }
4362 value &= howto->dst_mask;
4363 break;
4364
4365 case R_MIPS_TLS_DTPREL_HI16:
4366 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4367 & howto->dst_mask);
4368 break;
4369
4370 case R_MIPS_TLS_DTPREL_LO16:
4371 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4372 break;
4373
4374 case R_MIPS_TLS_TPREL_HI16:
4375 value = (mips_elf_high (addend + symbol - tprel_base (info))
4376 & howto->dst_mask);
4377 break;
4378
4379 case R_MIPS_TLS_TPREL_LO16:
4380 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4381 break;
4382
4383 case R_MIPS_HI16:
4384 case R_MIPS16_HI16:
4385 if (!gp_disp_p)
4386 {
4387 value = mips_elf_high (addend + symbol);
4388 value &= howto->dst_mask;
4389 }
4390 else
4391 {
4392 /* For MIPS16 ABI code we generate this sequence
4393 0: li $v0,%hi(_gp_disp)
4394 4: addiupc $v1,%lo(_gp_disp)
4395 8: sll $v0,16
4396 12: addu $v0,$v1
4397 14: move $gp,$v0
4398 So the offsets of hi and lo relocs are the same, but the
4399 $pc is four higher than $t9 would be, so reduce
4400 both reloc addends by 4. */
4401 if (r_type == R_MIPS16_HI16)
4402 value = mips_elf_high (addend + gp - p - 4);
4403 else
4404 value = mips_elf_high (addend + gp - p);
4405 overflowed_p = mips_elf_overflow_p (value, 16);
4406 }
4407 break;
4408
4409 case R_MIPS_LO16:
4410 case R_MIPS16_LO16:
4411 if (!gp_disp_p)
4412 value = (symbol + addend) & howto->dst_mask;
4413 else
4414 {
4415 /* See the comment for R_MIPS16_HI16 above for the reason
4416 for this conditional. */
4417 if (r_type == R_MIPS16_LO16)
4418 value = addend + gp - p;
4419 else
4420 value = addend + gp - p + 4;
4421 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4422 for overflow. But, on, say, IRIX5, relocations against
4423 _gp_disp are normally generated from the .cpload
4424 pseudo-op. It generates code that normally looks like
4425 this:
4426
4427 lui $gp,%hi(_gp_disp)
4428 addiu $gp,$gp,%lo(_gp_disp)
4429 addu $gp,$gp,$t9
4430
4431 Here $t9 holds the address of the function being called,
4432 as required by the MIPS ELF ABI. The R_MIPS_LO16
4433 relocation can easily overflow in this situation, but the
4434 R_MIPS_HI16 relocation will handle the overflow.
4435 Therefore, we consider this a bug in the MIPS ABI, and do
4436 not check for overflow here. */
4437 }
4438 break;
4439
4440 case R_MIPS_LITERAL:
4441 /* Because we don't merge literal sections, we can handle this
4442 just like R_MIPS_GPREL16. In the long run, we should merge
4443 shared literals, and then we will need to additional work
4444 here. */
4445
4446 /* Fall through. */
4447
4448 case R_MIPS16_GPREL:
4449 /* The R_MIPS16_GPREL performs the same calculation as
4450 R_MIPS_GPREL16, but stores the relocated bits in a different
4451 order. We don't need to do anything special here; the
4452 differences are handled in mips_elf_perform_relocation. */
4453 case R_MIPS_GPREL16:
4454 /* Only sign-extend the addend if it was extracted from the
4455 instruction. If the addend was separate, leave it alone,
4456 otherwise we may lose significant bits. */
4457 if (howto->partial_inplace)
4458 addend = _bfd_mips_elf_sign_extend (addend, 16);
4459 value = symbol + addend - gp;
4460 /* If the symbol was local, any earlier relocatable links will
4461 have adjusted its addend with the gp offset, so compensate
4462 for that now. Don't do it for symbols forced local in this
4463 link, though, since they won't have had the gp offset applied
4464 to them before. */
4465 if (was_local_p)
4466 value += gp0;
4467 overflowed_p = mips_elf_overflow_p (value, 16);
4468 break;
4469
4470 case R_MIPS_GOT16:
4471 case R_MIPS_CALL16:
4472 /* VxWorks does not have separate local and global semantics for
4473 R_MIPS_GOT16; every relocation evaluates to "G". */
4474 if (!htab->is_vxworks && local_p)
4475 {
4476 bfd_boolean forced;
4477
4478 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4479 local_sections, FALSE);
4480 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4481 symbol + addend, forced);
4482 if (value == MINUS_ONE)
4483 return bfd_reloc_outofrange;
4484 value
4485 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4486 overflowed_p = mips_elf_overflow_p (value, 16);
4487 break;
4488 }
4489
4490 /* Fall through. */
4491
4492 case R_MIPS_TLS_GD:
4493 case R_MIPS_TLS_GOTTPREL:
4494 case R_MIPS_TLS_LDM:
4495 case R_MIPS_GOT_DISP:
4496 got_disp:
4497 value = g;
4498 overflowed_p = mips_elf_overflow_p (value, 16);
4499 break;
4500
4501 case R_MIPS_GPREL32:
4502 value = (addend + symbol + gp0 - gp);
4503 if (!save_addend)
4504 value &= howto->dst_mask;
4505 break;
4506
4507 case R_MIPS_PC16:
4508 case R_MIPS_GNU_REL16_S2:
4509 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4510 overflowed_p = mips_elf_overflow_p (value, 18);
4511 value >>= howto->rightshift;
4512 value &= howto->dst_mask;
4513 break;
4514
4515 case R_MIPS_GOT_HI16:
4516 case R_MIPS_CALL_HI16:
4517 /* We're allowed to handle these two relocations identically.
4518 The dynamic linker is allowed to handle the CALL relocations
4519 differently by creating a lazy evaluation stub. */
4520 value = g;
4521 value = mips_elf_high (value);
4522 value &= howto->dst_mask;
4523 break;
4524
4525 case R_MIPS_GOT_LO16:
4526 case R_MIPS_CALL_LO16:
4527 value = g & howto->dst_mask;
4528 break;
4529
4530 case R_MIPS_GOT_PAGE:
4531 /* GOT_PAGE relocations that reference non-local symbols decay
4532 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4533 0. */
4534 if (! local_p)
4535 goto got_disp;
4536 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4537 symbol + addend, NULL);
4538 if (value == MINUS_ONE)
4539 return bfd_reloc_outofrange;
4540 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4542 break;
4543
4544 case R_MIPS_GOT_OFST:
4545 if (local_p)
4546 mips_elf_got_page (abfd, input_bfd, info, sec,
4547 symbol + addend, &value);
4548 else
4549 value = addend;
4550 overflowed_p = mips_elf_overflow_p (value, 16);
4551 break;
4552
4553 case R_MIPS_SUB:
4554 value = symbol - addend;
4555 value &= howto->dst_mask;
4556 break;
4557
4558 case R_MIPS_HIGHER:
4559 value = mips_elf_higher (addend + symbol);
4560 value &= howto->dst_mask;
4561 break;
4562
4563 case R_MIPS_HIGHEST:
4564 value = mips_elf_highest (addend + symbol);
4565 value &= howto->dst_mask;
4566 break;
4567
4568 case R_MIPS_SCN_DISP:
4569 value = symbol + addend - sec->output_offset;
4570 value &= howto->dst_mask;
4571 break;
4572
4573 case R_MIPS_JALR:
4574 /* This relocation is only a hint. In some cases, we optimize
4575 it into a bal instruction. But we don't try to optimize
4576 branches to the PLT; that will wind up wasting time. */
4577 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4578 return bfd_reloc_continue;
4579 value = symbol + addend;
4580 break;
4581
4582 case R_MIPS_PJUMP:
4583 case R_MIPS_GNU_VTINHERIT:
4584 case R_MIPS_GNU_VTENTRY:
4585 /* We don't do anything with these at present. */
4586 return bfd_reloc_continue;
4587
4588 default:
4589 /* An unrecognized relocation type. */
4590 return bfd_reloc_notsupported;
4591 }
4592
4593 /* Store the VALUE for our caller. */
4594 *valuep = value;
4595 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4596 }
4597
4598 /* Obtain the field relocated by RELOCATION. */
4599
4600 static bfd_vma
4601 mips_elf_obtain_contents (reloc_howto_type *howto,
4602 const Elf_Internal_Rela *relocation,
4603 bfd *input_bfd, bfd_byte *contents)
4604 {
4605 bfd_vma x;
4606 bfd_byte *location = contents + relocation->r_offset;
4607
4608 /* Obtain the bytes. */
4609 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4610
4611 return x;
4612 }
4613
4614 /* It has been determined that the result of the RELOCATION is the
4615 VALUE. Use HOWTO to place VALUE into the output file at the
4616 appropriate position. The SECTION is the section to which the
4617 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4618 for the relocation must be either JAL or JALX, and it is
4619 unconditionally converted to JALX.
4620
4621 Returns FALSE if anything goes wrong. */
4622
4623 static bfd_boolean
4624 mips_elf_perform_relocation (struct bfd_link_info *info,
4625 reloc_howto_type *howto,
4626 const Elf_Internal_Rela *relocation,
4627 bfd_vma value, bfd *input_bfd,
4628 asection *input_section, bfd_byte *contents,
4629 bfd_boolean require_jalx)
4630 {
4631 bfd_vma x;
4632 bfd_byte *location;
4633 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4634
4635 /* Figure out where the relocation is occurring. */
4636 location = contents + relocation->r_offset;
4637
4638 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4639
4640 /* Obtain the current value. */
4641 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4642
4643 /* Clear the field we are setting. */
4644 x &= ~howto->dst_mask;
4645
4646 /* Set the field. */
4647 x |= (value & howto->dst_mask);
4648
4649 /* If required, turn JAL into JALX. */
4650 if (require_jalx)
4651 {
4652 bfd_boolean ok;
4653 bfd_vma opcode = x >> 26;
4654 bfd_vma jalx_opcode;
4655
4656 /* Check to see if the opcode is already JAL or JALX. */
4657 if (r_type == R_MIPS16_26)
4658 {
4659 ok = ((opcode == 0x6) || (opcode == 0x7));
4660 jalx_opcode = 0x7;
4661 }
4662 else
4663 {
4664 ok = ((opcode == 0x3) || (opcode == 0x1d));
4665 jalx_opcode = 0x1d;
4666 }
4667
4668 /* If the opcode is not JAL or JALX, there's a problem. */
4669 if (!ok)
4670 {
4671 (*_bfd_error_handler)
4672 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4673 input_bfd,
4674 input_section,
4675 (unsigned long) relocation->r_offset);
4676 bfd_set_error (bfd_error_bad_value);
4677 return FALSE;
4678 }
4679
4680 /* Make this the JALX opcode. */
4681 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4682 }
4683
4684 /* On the RM9000, bal is faster than jal, because bal uses branch
4685 prediction hardware. If we are linking for the RM9000, and we
4686 see jal, and bal fits, use it instead. Note that this
4687 transformation should be safe for all architectures. */
4688 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4689 && !info->relocatable
4690 && !require_jalx
4691 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4692 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4693 {
4694 bfd_vma addr;
4695 bfd_vma dest;
4696 bfd_signed_vma off;
4697
4698 addr = (input_section->output_section->vma
4699 + input_section->output_offset
4700 + relocation->r_offset
4701 + 4);
4702 if (r_type == R_MIPS_26)
4703 dest = (value << 2) | ((addr >> 28) << 28);
4704 else
4705 dest = value;
4706 off = dest - addr;
4707 if (off <= 0x1ffff && off >= -0x20000)
4708 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4709 }
4710
4711 /* Put the value into the output. */
4712 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4713
4714 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4715 location);
4716
4717 return TRUE;
4718 }
4719
4720 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4721
4722 static bfd_boolean
4723 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4724 {
4725 const char *name = bfd_get_section_name (abfd, section);
4726
4727 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4728 }
4729 \f
4730 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4731
4732 static void
4733 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4734 unsigned int n)
4735 {
4736 asection *s;
4737 struct mips_elf_link_hash_table *htab;
4738
4739 htab = mips_elf_hash_table (info);
4740 s = mips_elf_rel_dyn_section (info, FALSE);
4741 BFD_ASSERT (s != NULL);
4742
4743 if (htab->is_vxworks)
4744 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4745 else
4746 {
4747 if (s->size == 0)
4748 {
4749 /* Make room for a null element. */
4750 s->size += MIPS_ELF_REL_SIZE (abfd);
4751 ++s->reloc_count;
4752 }
4753 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4754 }
4755 }
4756
4757 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4758 is the original relocation, which is now being transformed into a
4759 dynamic relocation. The ADDENDP is adjusted if necessary; the
4760 caller should store the result in place of the original addend. */
4761
4762 static bfd_boolean
4763 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4764 struct bfd_link_info *info,
4765 const Elf_Internal_Rela *rel,
4766 struct mips_elf_link_hash_entry *h,
4767 asection *sec, bfd_vma symbol,
4768 bfd_vma *addendp, asection *input_section)
4769 {
4770 Elf_Internal_Rela outrel[3];
4771 asection *sreloc;
4772 bfd *dynobj;
4773 int r_type;
4774 long indx;
4775 bfd_boolean defined_p;
4776 struct mips_elf_link_hash_table *htab;
4777
4778 htab = mips_elf_hash_table (info);
4779 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4780 dynobj = elf_hash_table (info)->dynobj;
4781 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4782 BFD_ASSERT (sreloc != NULL);
4783 BFD_ASSERT (sreloc->contents != NULL);
4784 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4785 < sreloc->size);
4786
4787 outrel[0].r_offset =
4788 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4789 outrel[1].r_offset =
4790 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4791 outrel[2].r_offset =
4792 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4793
4794 if (outrel[0].r_offset == MINUS_ONE)
4795 /* The relocation field has been deleted. */
4796 return TRUE;
4797
4798 if (outrel[0].r_offset == MINUS_TWO)
4799 {
4800 /* The relocation field has been converted into a relative value of
4801 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4802 the field to be fully relocated, so add in the symbol's value. */
4803 *addendp += symbol;
4804 return TRUE;
4805 }
4806
4807 /* We must now calculate the dynamic symbol table index to use
4808 in the relocation. */
4809 if (h != NULL
4810 && (!h->root.def_regular
4811 || (info->shared && !info->symbolic && !h->root.forced_local)))
4812 {
4813 indx = h->root.dynindx;
4814 if (SGI_COMPAT (output_bfd))
4815 defined_p = h->root.def_regular;
4816 else
4817 /* ??? glibc's ld.so just adds the final GOT entry to the
4818 relocation field. It therefore treats relocs against
4819 defined symbols in the same way as relocs against
4820 undefined symbols. */
4821 defined_p = FALSE;
4822 }
4823 else
4824 {
4825 if (sec != NULL && bfd_is_abs_section (sec))
4826 indx = 0;
4827 else if (sec == NULL || sec->owner == NULL)
4828 {
4829 bfd_set_error (bfd_error_bad_value);
4830 return FALSE;
4831 }
4832 else
4833 {
4834 indx = elf_section_data (sec->output_section)->dynindx;
4835 if (indx == 0)
4836 {
4837 asection *osec = htab->root.text_index_section;
4838 indx = elf_section_data (osec)->dynindx;
4839 }
4840 if (indx == 0)
4841 abort ();
4842 }
4843
4844 /* Instead of generating a relocation using the section
4845 symbol, we may as well make it a fully relative
4846 relocation. We want to avoid generating relocations to
4847 local symbols because we used to generate them
4848 incorrectly, without adding the original symbol value,
4849 which is mandated by the ABI for section symbols. In
4850 order to give dynamic loaders and applications time to
4851 phase out the incorrect use, we refrain from emitting
4852 section-relative relocations. It's not like they're
4853 useful, after all. This should be a bit more efficient
4854 as well. */
4855 /* ??? Although this behavior is compatible with glibc's ld.so,
4856 the ABI says that relocations against STN_UNDEF should have
4857 a symbol value of 0. Irix rld honors this, so relocations
4858 against STN_UNDEF have no effect. */
4859 if (!SGI_COMPAT (output_bfd))
4860 indx = 0;
4861 defined_p = TRUE;
4862 }
4863
4864 /* If the relocation was previously an absolute relocation and
4865 this symbol will not be referred to by the relocation, we must
4866 adjust it by the value we give it in the dynamic symbol table.
4867 Otherwise leave the job up to the dynamic linker. */
4868 if (defined_p && r_type != R_MIPS_REL32)
4869 *addendp += symbol;
4870
4871 if (htab->is_vxworks)
4872 /* VxWorks uses non-relative relocations for this. */
4873 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4874 else
4875 /* The relocation is always an REL32 relocation because we don't
4876 know where the shared library will wind up at load-time. */
4877 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4878 R_MIPS_REL32);
4879
4880 /* For strict adherence to the ABI specification, we should
4881 generate a R_MIPS_64 relocation record by itself before the
4882 _REL32/_64 record as well, such that the addend is read in as
4883 a 64-bit value (REL32 is a 32-bit relocation, after all).
4884 However, since none of the existing ELF64 MIPS dynamic
4885 loaders seems to care, we don't waste space with these
4886 artificial relocations. If this turns out to not be true,
4887 mips_elf_allocate_dynamic_relocation() should be tweaked so
4888 as to make room for a pair of dynamic relocations per
4889 invocation if ABI_64_P, and here we should generate an
4890 additional relocation record with R_MIPS_64 by itself for a
4891 NULL symbol before this relocation record. */
4892 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4893 ABI_64_P (output_bfd)
4894 ? R_MIPS_64
4895 : R_MIPS_NONE);
4896 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4897
4898 /* Adjust the output offset of the relocation to reference the
4899 correct location in the output file. */
4900 outrel[0].r_offset += (input_section->output_section->vma
4901 + input_section->output_offset);
4902 outrel[1].r_offset += (input_section->output_section->vma
4903 + input_section->output_offset);
4904 outrel[2].r_offset += (input_section->output_section->vma
4905 + input_section->output_offset);
4906
4907 /* Put the relocation back out. We have to use the special
4908 relocation outputter in the 64-bit case since the 64-bit
4909 relocation format is non-standard. */
4910 if (ABI_64_P (output_bfd))
4911 {
4912 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4913 (output_bfd, &outrel[0],
4914 (sreloc->contents
4915 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4916 }
4917 else if (htab->is_vxworks)
4918 {
4919 /* VxWorks uses RELA rather than REL dynamic relocations. */
4920 outrel[0].r_addend = *addendp;
4921 bfd_elf32_swap_reloca_out
4922 (output_bfd, &outrel[0],
4923 (sreloc->contents
4924 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4925 }
4926 else
4927 bfd_elf32_swap_reloc_out
4928 (output_bfd, &outrel[0],
4929 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4930
4931 /* We've now added another relocation. */
4932 ++sreloc->reloc_count;
4933
4934 /* Make sure the output section is writable. The dynamic linker
4935 will be writing to it. */
4936 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4937 |= SHF_WRITE;
4938
4939 /* On IRIX5, make an entry of compact relocation info. */
4940 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4941 {
4942 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4943 bfd_byte *cr;
4944
4945 if (scpt)
4946 {
4947 Elf32_crinfo cptrel;
4948
4949 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4950 cptrel.vaddr = (rel->r_offset
4951 + input_section->output_section->vma
4952 + input_section->output_offset);
4953 if (r_type == R_MIPS_REL32)
4954 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4955 else
4956 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4957 mips_elf_set_cr_dist2to (cptrel, 0);
4958 cptrel.konst = *addendp;
4959
4960 cr = (scpt->contents
4961 + sizeof (Elf32_External_compact_rel));
4962 mips_elf_set_cr_relvaddr (cptrel, 0);
4963 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4964 ((Elf32_External_crinfo *) cr
4965 + scpt->reloc_count));
4966 ++scpt->reloc_count;
4967 }
4968 }
4969
4970 /* If we've written this relocation for a readonly section,
4971 we need to set DF_TEXTREL again, so that we do not delete the
4972 DT_TEXTREL tag. */
4973 if (MIPS_ELF_READONLY_SECTION (input_section))
4974 info->flags |= DF_TEXTREL;
4975
4976 return TRUE;
4977 }
4978 \f
4979 /* Return the MACH for a MIPS e_flags value. */
4980
4981 unsigned long
4982 _bfd_elf_mips_mach (flagword flags)
4983 {
4984 switch (flags & EF_MIPS_MACH)
4985 {
4986 case E_MIPS_MACH_3900:
4987 return bfd_mach_mips3900;
4988
4989 case E_MIPS_MACH_4010:
4990 return bfd_mach_mips4010;
4991
4992 case E_MIPS_MACH_4100:
4993 return bfd_mach_mips4100;
4994
4995 case E_MIPS_MACH_4111:
4996 return bfd_mach_mips4111;
4997
4998 case E_MIPS_MACH_4120:
4999 return bfd_mach_mips4120;
5000
5001 case E_MIPS_MACH_4650:
5002 return bfd_mach_mips4650;
5003
5004 case E_MIPS_MACH_5400:
5005 return bfd_mach_mips5400;
5006
5007 case E_MIPS_MACH_5500:
5008 return bfd_mach_mips5500;
5009
5010 case E_MIPS_MACH_9000:
5011 return bfd_mach_mips9000;
5012
5013 case E_MIPS_MACH_SB1:
5014 return bfd_mach_mips_sb1;
5015
5016 default:
5017 switch (flags & EF_MIPS_ARCH)
5018 {
5019 default:
5020 case E_MIPS_ARCH_1:
5021 return bfd_mach_mips3000;
5022
5023 case E_MIPS_ARCH_2:
5024 return bfd_mach_mips6000;
5025
5026 case E_MIPS_ARCH_3:
5027 return bfd_mach_mips4000;
5028
5029 case E_MIPS_ARCH_4:
5030 return bfd_mach_mips8000;
5031
5032 case E_MIPS_ARCH_5:
5033 return bfd_mach_mips5;
5034
5035 case E_MIPS_ARCH_32:
5036 return bfd_mach_mipsisa32;
5037
5038 case E_MIPS_ARCH_64:
5039 return bfd_mach_mipsisa64;
5040
5041 case E_MIPS_ARCH_32R2:
5042 return bfd_mach_mipsisa32r2;
5043
5044 case E_MIPS_ARCH_64R2:
5045 return bfd_mach_mipsisa64r2;
5046 }
5047 }
5048
5049 return 0;
5050 }
5051
5052 /* Return printable name for ABI. */
5053
5054 static INLINE char *
5055 elf_mips_abi_name (bfd *abfd)
5056 {
5057 flagword flags;
5058
5059 flags = elf_elfheader (abfd)->e_flags;
5060 switch (flags & EF_MIPS_ABI)
5061 {
5062 case 0:
5063 if (ABI_N32_P (abfd))
5064 return "N32";
5065 else if (ABI_64_P (abfd))
5066 return "64";
5067 else
5068 return "none";
5069 case E_MIPS_ABI_O32:
5070 return "O32";
5071 case E_MIPS_ABI_O64:
5072 return "O64";
5073 case E_MIPS_ABI_EABI32:
5074 return "EABI32";
5075 case E_MIPS_ABI_EABI64:
5076 return "EABI64";
5077 default:
5078 return "unknown abi";
5079 }
5080 }
5081 \f
5082 /* MIPS ELF uses two common sections. One is the usual one, and the
5083 other is for small objects. All the small objects are kept
5084 together, and then referenced via the gp pointer, which yields
5085 faster assembler code. This is what we use for the small common
5086 section. This approach is copied from ecoff.c. */
5087 static asection mips_elf_scom_section;
5088 static asymbol mips_elf_scom_symbol;
5089 static asymbol *mips_elf_scom_symbol_ptr;
5090
5091 /* MIPS ELF also uses an acommon section, which represents an
5092 allocated common symbol which may be overridden by a
5093 definition in a shared library. */
5094 static asection mips_elf_acom_section;
5095 static asymbol mips_elf_acom_symbol;
5096 static asymbol *mips_elf_acom_symbol_ptr;
5097
5098 /* Handle the special MIPS section numbers that a symbol may use.
5099 This is used for both the 32-bit and the 64-bit ABI. */
5100
5101 void
5102 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5103 {
5104 elf_symbol_type *elfsym;
5105
5106 elfsym = (elf_symbol_type *) asym;
5107 switch (elfsym->internal_elf_sym.st_shndx)
5108 {
5109 case SHN_MIPS_ACOMMON:
5110 /* This section is used in a dynamically linked executable file.
5111 It is an allocated common section. The dynamic linker can
5112 either resolve these symbols to something in a shared
5113 library, or it can just leave them here. For our purposes,
5114 we can consider these symbols to be in a new section. */
5115 if (mips_elf_acom_section.name == NULL)
5116 {
5117 /* Initialize the acommon section. */
5118 mips_elf_acom_section.name = ".acommon";
5119 mips_elf_acom_section.flags = SEC_ALLOC;
5120 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5121 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5122 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5123 mips_elf_acom_symbol.name = ".acommon";
5124 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5125 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5126 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5127 }
5128 asym->section = &mips_elf_acom_section;
5129 break;
5130
5131 case SHN_COMMON:
5132 /* Common symbols less than the GP size are automatically
5133 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5134 if (asym->value > elf_gp_size (abfd)
5135 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5136 || IRIX_COMPAT (abfd) == ict_irix6)
5137 break;
5138 /* Fall through. */
5139 case SHN_MIPS_SCOMMON:
5140 if (mips_elf_scom_section.name == NULL)
5141 {
5142 /* Initialize the small common section. */
5143 mips_elf_scom_section.name = ".scommon";
5144 mips_elf_scom_section.flags = SEC_IS_COMMON;
5145 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5146 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5147 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5148 mips_elf_scom_symbol.name = ".scommon";
5149 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5150 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5151 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5152 }
5153 asym->section = &mips_elf_scom_section;
5154 asym->value = elfsym->internal_elf_sym.st_size;
5155 break;
5156
5157 case SHN_MIPS_SUNDEFINED:
5158 asym->section = bfd_und_section_ptr;
5159 break;
5160
5161 case SHN_MIPS_TEXT:
5162 {
5163 asection *section = bfd_get_section_by_name (abfd, ".text");
5164
5165 BFD_ASSERT (SGI_COMPAT (abfd));
5166 if (section != NULL)
5167 {
5168 asym->section = section;
5169 /* MIPS_TEXT is a bit special, the address is not an offset
5170 to the base of the .text section. So substract the section
5171 base address to make it an offset. */
5172 asym->value -= section->vma;
5173 }
5174 }
5175 break;
5176
5177 case SHN_MIPS_DATA:
5178 {
5179 asection *section = bfd_get_section_by_name (abfd, ".data");
5180
5181 BFD_ASSERT (SGI_COMPAT (abfd));
5182 if (section != NULL)
5183 {
5184 asym->section = section;
5185 /* MIPS_DATA is a bit special, the address is not an offset
5186 to the base of the .data section. So substract the section
5187 base address to make it an offset. */
5188 asym->value -= section->vma;
5189 }
5190 }
5191 break;
5192 }
5193 }
5194 \f
5195 /* Implement elf_backend_eh_frame_address_size. This differs from
5196 the default in the way it handles EABI64.
5197
5198 EABI64 was originally specified as an LP64 ABI, and that is what
5199 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5200 historically accepted the combination of -mabi=eabi and -mlong32,
5201 and this ILP32 variation has become semi-official over time.
5202 Both forms use elf32 and have pointer-sized FDE addresses.
5203
5204 If an EABI object was generated by GCC 4.0 or above, it will have
5205 an empty .gcc_compiled_longXX section, where XX is the size of longs
5206 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5207 have no special marking to distinguish them from LP64 objects.
5208
5209 We don't want users of the official LP64 ABI to be punished for the
5210 existence of the ILP32 variant, but at the same time, we don't want
5211 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5212 We therefore take the following approach:
5213
5214 - If ABFD contains a .gcc_compiled_longXX section, use it to
5215 determine the pointer size.
5216
5217 - Otherwise check the type of the first relocation. Assume that
5218 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5219
5220 - Otherwise punt.
5221
5222 The second check is enough to detect LP64 objects generated by pre-4.0
5223 compilers because, in the kind of output generated by those compilers,
5224 the first relocation will be associated with either a CIE personality
5225 routine or an FDE start address. Furthermore, the compilers never
5226 used a special (non-pointer) encoding for this ABI.
5227
5228 Checking the relocation type should also be safe because there is no
5229 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5230 did so. */
5231
5232 unsigned int
5233 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5234 {
5235 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5236 return 8;
5237 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5238 {
5239 bfd_boolean long32_p, long64_p;
5240
5241 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5242 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5243 if (long32_p && long64_p)
5244 return 0;
5245 if (long32_p)
5246 return 4;
5247 if (long64_p)
5248 return 8;
5249
5250 if (sec->reloc_count > 0
5251 && elf_section_data (sec)->relocs != NULL
5252 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5253 == R_MIPS_64))
5254 return 8;
5255
5256 return 0;
5257 }
5258 return 4;
5259 }
5260 \f
5261 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5262 relocations against two unnamed section symbols to resolve to the
5263 same address. For example, if we have code like:
5264
5265 lw $4,%got_disp(.data)($gp)
5266 lw $25,%got_disp(.text)($gp)
5267 jalr $25
5268
5269 then the linker will resolve both relocations to .data and the program
5270 will jump there rather than to .text.
5271
5272 We can work around this problem by giving names to local section symbols.
5273 This is also what the MIPSpro tools do. */
5274
5275 bfd_boolean
5276 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5277 {
5278 return SGI_COMPAT (abfd);
5279 }
5280 \f
5281 /* Work over a section just before writing it out. This routine is
5282 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5283 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5284 a better way. */
5285
5286 bfd_boolean
5287 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5288 {
5289 if (hdr->sh_type == SHT_MIPS_REGINFO
5290 && hdr->sh_size > 0)
5291 {
5292 bfd_byte buf[4];
5293
5294 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5295 BFD_ASSERT (hdr->contents == NULL);
5296
5297 if (bfd_seek (abfd,
5298 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5299 SEEK_SET) != 0)
5300 return FALSE;
5301 H_PUT_32 (abfd, elf_gp (abfd), buf);
5302 if (bfd_bwrite (buf, 4, abfd) != 4)
5303 return FALSE;
5304 }
5305
5306 if (hdr->sh_type == SHT_MIPS_OPTIONS
5307 && hdr->bfd_section != NULL
5308 && mips_elf_section_data (hdr->bfd_section) != NULL
5309 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5310 {
5311 bfd_byte *contents, *l, *lend;
5312
5313 /* We stored the section contents in the tdata field in the
5314 set_section_contents routine. We save the section contents
5315 so that we don't have to read them again.
5316 At this point we know that elf_gp is set, so we can look
5317 through the section contents to see if there is an
5318 ODK_REGINFO structure. */
5319
5320 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5321 l = contents;
5322 lend = contents + hdr->sh_size;
5323 while (l + sizeof (Elf_External_Options) <= lend)
5324 {
5325 Elf_Internal_Options intopt;
5326
5327 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5328 &intopt);
5329 if (intopt.size < sizeof (Elf_External_Options))
5330 {
5331 (*_bfd_error_handler)
5332 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5333 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5334 break;
5335 }
5336 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5337 {
5338 bfd_byte buf[8];
5339
5340 if (bfd_seek (abfd,
5341 (hdr->sh_offset
5342 + (l - contents)
5343 + sizeof (Elf_External_Options)
5344 + (sizeof (Elf64_External_RegInfo) - 8)),
5345 SEEK_SET) != 0)
5346 return FALSE;
5347 H_PUT_64 (abfd, elf_gp (abfd), buf);
5348 if (bfd_bwrite (buf, 8, abfd) != 8)
5349 return FALSE;
5350 }
5351 else if (intopt.kind == ODK_REGINFO)
5352 {
5353 bfd_byte buf[4];
5354
5355 if (bfd_seek (abfd,
5356 (hdr->sh_offset
5357 + (l - contents)
5358 + sizeof (Elf_External_Options)
5359 + (sizeof (Elf32_External_RegInfo) - 4)),
5360 SEEK_SET) != 0)
5361 return FALSE;
5362 H_PUT_32 (abfd, elf_gp (abfd), buf);
5363 if (bfd_bwrite (buf, 4, abfd) != 4)
5364 return FALSE;
5365 }
5366 l += intopt.size;
5367 }
5368 }
5369
5370 if (hdr->bfd_section != NULL)
5371 {
5372 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5373
5374 if (strcmp (name, ".sdata") == 0
5375 || strcmp (name, ".lit8") == 0
5376 || strcmp (name, ".lit4") == 0)
5377 {
5378 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5379 hdr->sh_type = SHT_PROGBITS;
5380 }
5381 else if (strcmp (name, ".sbss") == 0)
5382 {
5383 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5384 hdr->sh_type = SHT_NOBITS;
5385 }
5386 else if (strcmp (name, ".srdata") == 0)
5387 {
5388 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5389 hdr->sh_type = SHT_PROGBITS;
5390 }
5391 else if (strcmp (name, ".compact_rel") == 0)
5392 {
5393 hdr->sh_flags = 0;
5394 hdr->sh_type = SHT_PROGBITS;
5395 }
5396 else if (strcmp (name, ".rtproc") == 0)
5397 {
5398 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5399 {
5400 unsigned int adjust;
5401
5402 adjust = hdr->sh_size % hdr->sh_addralign;
5403 if (adjust != 0)
5404 hdr->sh_size += hdr->sh_addralign - adjust;
5405 }
5406 }
5407 }
5408
5409 return TRUE;
5410 }
5411
5412 /* Handle a MIPS specific section when reading an object file. This
5413 is called when elfcode.h finds a section with an unknown type.
5414 This routine supports both the 32-bit and 64-bit ELF ABI.
5415
5416 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5417 how to. */
5418
5419 bfd_boolean
5420 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5421 Elf_Internal_Shdr *hdr,
5422 const char *name,
5423 int shindex)
5424 {
5425 flagword flags = 0;
5426
5427 /* There ought to be a place to keep ELF backend specific flags, but
5428 at the moment there isn't one. We just keep track of the
5429 sections by their name, instead. Fortunately, the ABI gives
5430 suggested names for all the MIPS specific sections, so we will
5431 probably get away with this. */
5432 switch (hdr->sh_type)
5433 {
5434 case SHT_MIPS_LIBLIST:
5435 if (strcmp (name, ".liblist") != 0)
5436 return FALSE;
5437 break;
5438 case SHT_MIPS_MSYM:
5439 if (strcmp (name, ".msym") != 0)
5440 return FALSE;
5441 break;
5442 case SHT_MIPS_CONFLICT:
5443 if (strcmp (name, ".conflict") != 0)
5444 return FALSE;
5445 break;
5446 case SHT_MIPS_GPTAB:
5447 if (! CONST_STRNEQ (name, ".gptab."))
5448 return FALSE;
5449 break;
5450 case SHT_MIPS_UCODE:
5451 if (strcmp (name, ".ucode") != 0)
5452 return FALSE;
5453 break;
5454 case SHT_MIPS_DEBUG:
5455 if (strcmp (name, ".mdebug") != 0)
5456 return FALSE;
5457 flags = SEC_DEBUGGING;
5458 break;
5459 case SHT_MIPS_REGINFO:
5460 if (strcmp (name, ".reginfo") != 0
5461 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5462 return FALSE;
5463 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5464 break;
5465 case SHT_MIPS_IFACE:
5466 if (strcmp (name, ".MIPS.interfaces") != 0)
5467 return FALSE;
5468 break;
5469 case SHT_MIPS_CONTENT:
5470 if (! CONST_STRNEQ (name, ".MIPS.content"))
5471 return FALSE;
5472 break;
5473 case SHT_MIPS_OPTIONS:
5474 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5475 return FALSE;
5476 break;
5477 case SHT_MIPS_DWARF:
5478 if (! CONST_STRNEQ (name, ".debug_"))
5479 return FALSE;
5480 break;
5481 case SHT_MIPS_SYMBOL_LIB:
5482 if (strcmp (name, ".MIPS.symlib") != 0)
5483 return FALSE;
5484 break;
5485 case SHT_MIPS_EVENTS:
5486 if (! CONST_STRNEQ (name, ".MIPS.events")
5487 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5488 return FALSE;
5489 break;
5490 default:
5491 break;
5492 }
5493
5494 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5495 return FALSE;
5496
5497 if (flags)
5498 {
5499 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5500 (bfd_get_section_flags (abfd,
5501 hdr->bfd_section)
5502 | flags)))
5503 return FALSE;
5504 }
5505
5506 /* FIXME: We should record sh_info for a .gptab section. */
5507
5508 /* For a .reginfo section, set the gp value in the tdata information
5509 from the contents of this section. We need the gp value while
5510 processing relocs, so we just get it now. The .reginfo section
5511 is not used in the 64-bit MIPS ELF ABI. */
5512 if (hdr->sh_type == SHT_MIPS_REGINFO)
5513 {
5514 Elf32_External_RegInfo ext;
5515 Elf32_RegInfo s;
5516
5517 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5518 &ext, 0, sizeof ext))
5519 return FALSE;
5520 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5521 elf_gp (abfd) = s.ri_gp_value;
5522 }
5523
5524 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5525 set the gp value based on what we find. We may see both
5526 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5527 they should agree. */
5528 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5529 {
5530 bfd_byte *contents, *l, *lend;
5531
5532 contents = bfd_malloc (hdr->sh_size);
5533 if (contents == NULL)
5534 return FALSE;
5535 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5536 0, hdr->sh_size))
5537 {
5538 free (contents);
5539 return FALSE;
5540 }
5541 l = contents;
5542 lend = contents + hdr->sh_size;
5543 while (l + sizeof (Elf_External_Options) <= lend)
5544 {
5545 Elf_Internal_Options intopt;
5546
5547 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5548 &intopt);
5549 if (intopt.size < sizeof (Elf_External_Options))
5550 {
5551 (*_bfd_error_handler)
5552 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5553 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5554 break;
5555 }
5556 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5557 {
5558 Elf64_Internal_RegInfo intreg;
5559
5560 bfd_mips_elf64_swap_reginfo_in
5561 (abfd,
5562 ((Elf64_External_RegInfo *)
5563 (l + sizeof (Elf_External_Options))),
5564 &intreg);
5565 elf_gp (abfd) = intreg.ri_gp_value;
5566 }
5567 else if (intopt.kind == ODK_REGINFO)
5568 {
5569 Elf32_RegInfo intreg;
5570
5571 bfd_mips_elf32_swap_reginfo_in
5572 (abfd,
5573 ((Elf32_External_RegInfo *)
5574 (l + sizeof (Elf_External_Options))),
5575 &intreg);
5576 elf_gp (abfd) = intreg.ri_gp_value;
5577 }
5578 l += intopt.size;
5579 }
5580 free (contents);
5581 }
5582
5583 return TRUE;
5584 }
5585
5586 /* Set the correct type for a MIPS ELF section. We do this by the
5587 section name, which is a hack, but ought to work. This routine is
5588 used by both the 32-bit and the 64-bit ABI. */
5589
5590 bfd_boolean
5591 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5592 {
5593 register const char *name;
5594 unsigned int sh_type;
5595
5596 name = bfd_get_section_name (abfd, sec);
5597 sh_type = hdr->sh_type;
5598
5599 if (strcmp (name, ".liblist") == 0)
5600 {
5601 hdr->sh_type = SHT_MIPS_LIBLIST;
5602 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5603 /* The sh_link field is set in final_write_processing. */
5604 }
5605 else if (strcmp (name, ".conflict") == 0)
5606 hdr->sh_type = SHT_MIPS_CONFLICT;
5607 else if (CONST_STRNEQ (name, ".gptab."))
5608 {
5609 hdr->sh_type = SHT_MIPS_GPTAB;
5610 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5611 /* The sh_info field is set in final_write_processing. */
5612 }
5613 else if (strcmp (name, ".ucode") == 0)
5614 hdr->sh_type = SHT_MIPS_UCODE;
5615 else if (strcmp (name, ".mdebug") == 0)
5616 {
5617 hdr->sh_type = SHT_MIPS_DEBUG;
5618 /* In a shared object on IRIX 5.3, the .mdebug section has an
5619 entsize of 0. FIXME: Does this matter? */
5620 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5621 hdr->sh_entsize = 0;
5622 else
5623 hdr->sh_entsize = 1;
5624 }
5625 else if (strcmp (name, ".reginfo") == 0)
5626 {
5627 hdr->sh_type = SHT_MIPS_REGINFO;
5628 /* In a shared object on IRIX 5.3, the .reginfo section has an
5629 entsize of 0x18. FIXME: Does this matter? */
5630 if (SGI_COMPAT (abfd))
5631 {
5632 if ((abfd->flags & DYNAMIC) != 0)
5633 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5634 else
5635 hdr->sh_entsize = 1;
5636 }
5637 else
5638 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5639 }
5640 else if (SGI_COMPAT (abfd)
5641 && (strcmp (name, ".hash") == 0
5642 || strcmp (name, ".dynamic") == 0
5643 || strcmp (name, ".dynstr") == 0))
5644 {
5645 if (SGI_COMPAT (abfd))
5646 hdr->sh_entsize = 0;
5647 #if 0
5648 /* This isn't how the IRIX6 linker behaves. */
5649 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5650 #endif
5651 }
5652 else if (strcmp (name, ".got") == 0
5653 || strcmp (name, ".srdata") == 0
5654 || strcmp (name, ".sdata") == 0
5655 || strcmp (name, ".sbss") == 0
5656 || strcmp (name, ".lit4") == 0
5657 || strcmp (name, ".lit8") == 0)
5658 hdr->sh_flags |= SHF_MIPS_GPREL;
5659 else if (strcmp (name, ".MIPS.interfaces") == 0)
5660 {
5661 hdr->sh_type = SHT_MIPS_IFACE;
5662 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5663 }
5664 else if (CONST_STRNEQ (name, ".MIPS.content"))
5665 {
5666 hdr->sh_type = SHT_MIPS_CONTENT;
5667 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5668 /* The sh_info field is set in final_write_processing. */
5669 }
5670 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5671 {
5672 hdr->sh_type = SHT_MIPS_OPTIONS;
5673 hdr->sh_entsize = 1;
5674 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5675 }
5676 else if (CONST_STRNEQ (name, ".debug_"))
5677 hdr->sh_type = SHT_MIPS_DWARF;
5678 else if (strcmp (name, ".MIPS.symlib") == 0)
5679 {
5680 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5681 /* The sh_link and sh_info fields are set in
5682 final_write_processing. */
5683 }
5684 else if (CONST_STRNEQ (name, ".MIPS.events")
5685 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5686 {
5687 hdr->sh_type = SHT_MIPS_EVENTS;
5688 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5689 /* The sh_link field is set in final_write_processing. */
5690 }
5691 else if (strcmp (name, ".msym") == 0)
5692 {
5693 hdr->sh_type = SHT_MIPS_MSYM;
5694 hdr->sh_flags |= SHF_ALLOC;
5695 hdr->sh_entsize = 8;
5696 }
5697
5698 /* In the unlikely event a special section is empty it has to lose its
5699 special meaning. This may happen e.g. when using `strip' with the
5700 "--only-keep-debug" option. */
5701 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5702 hdr->sh_type = sh_type;
5703
5704 /* The generic elf_fake_sections will set up REL_HDR using the default
5705 kind of relocations. We used to set up a second header for the
5706 non-default kind of relocations here, but only NewABI would use
5707 these, and the IRIX ld doesn't like resulting empty RELA sections.
5708 Thus we create those header only on demand now. */
5709
5710 return TRUE;
5711 }
5712
5713 /* Given a BFD section, try to locate the corresponding ELF section
5714 index. This is used by both the 32-bit and the 64-bit ABI.
5715 Actually, it's not clear to me that the 64-bit ABI supports these,
5716 but for non-PIC objects we will certainly want support for at least
5717 the .scommon section. */
5718
5719 bfd_boolean
5720 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5721 asection *sec, int *retval)
5722 {
5723 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5724 {
5725 *retval = SHN_MIPS_SCOMMON;
5726 return TRUE;
5727 }
5728 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5729 {
5730 *retval = SHN_MIPS_ACOMMON;
5731 return TRUE;
5732 }
5733 return FALSE;
5734 }
5735 \f
5736 /* Hook called by the linker routine which adds symbols from an object
5737 file. We must handle the special MIPS section numbers here. */
5738
5739 bfd_boolean
5740 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5741 Elf_Internal_Sym *sym, const char **namep,
5742 flagword *flagsp ATTRIBUTE_UNUSED,
5743 asection **secp, bfd_vma *valp)
5744 {
5745 if (SGI_COMPAT (abfd)
5746 && (abfd->flags & DYNAMIC) != 0
5747 && strcmp (*namep, "_rld_new_interface") == 0)
5748 {
5749 /* Skip IRIX5 rld entry name. */
5750 *namep = NULL;
5751 return TRUE;
5752 }
5753
5754 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5755 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5756 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5757 a magic symbol resolved by the linker, we ignore this bogus definition
5758 of _gp_disp. New ABI objects do not suffer from this problem so this
5759 is not done for them. */
5760 if (!NEWABI_P(abfd)
5761 && (sym->st_shndx == SHN_ABS)
5762 && (strcmp (*namep, "_gp_disp") == 0))
5763 {
5764 *namep = NULL;
5765 return TRUE;
5766 }
5767
5768 switch (sym->st_shndx)
5769 {
5770 case SHN_COMMON:
5771 /* Common symbols less than the GP size are automatically
5772 treated as SHN_MIPS_SCOMMON symbols. */
5773 if (sym->st_size > elf_gp_size (abfd)
5774 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5775 || IRIX_COMPAT (abfd) == ict_irix6)
5776 break;
5777 /* Fall through. */
5778 case SHN_MIPS_SCOMMON:
5779 *secp = bfd_make_section_old_way (abfd, ".scommon");
5780 (*secp)->flags |= SEC_IS_COMMON;
5781 *valp = sym->st_size;
5782 break;
5783
5784 case SHN_MIPS_TEXT:
5785 /* This section is used in a shared object. */
5786 if (elf_tdata (abfd)->elf_text_section == NULL)
5787 {
5788 asymbol *elf_text_symbol;
5789 asection *elf_text_section;
5790 bfd_size_type amt = sizeof (asection);
5791
5792 elf_text_section = bfd_zalloc (abfd, amt);
5793 if (elf_text_section == NULL)
5794 return FALSE;
5795
5796 amt = sizeof (asymbol);
5797 elf_text_symbol = bfd_zalloc (abfd, amt);
5798 if (elf_text_symbol == NULL)
5799 return FALSE;
5800
5801 /* Initialize the section. */
5802
5803 elf_tdata (abfd)->elf_text_section = elf_text_section;
5804 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5805
5806 elf_text_section->symbol = elf_text_symbol;
5807 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5808
5809 elf_text_section->name = ".text";
5810 elf_text_section->flags = SEC_NO_FLAGS;
5811 elf_text_section->output_section = NULL;
5812 elf_text_section->owner = abfd;
5813 elf_text_symbol->name = ".text";
5814 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5815 elf_text_symbol->section = elf_text_section;
5816 }
5817 /* This code used to do *secp = bfd_und_section_ptr if
5818 info->shared. I don't know why, and that doesn't make sense,
5819 so I took it out. */
5820 *secp = elf_tdata (abfd)->elf_text_section;
5821 break;
5822
5823 case SHN_MIPS_ACOMMON:
5824 /* Fall through. XXX Can we treat this as allocated data? */
5825 case SHN_MIPS_DATA:
5826 /* This section is used in a shared object. */
5827 if (elf_tdata (abfd)->elf_data_section == NULL)
5828 {
5829 asymbol *elf_data_symbol;
5830 asection *elf_data_section;
5831 bfd_size_type amt = sizeof (asection);
5832
5833 elf_data_section = bfd_zalloc (abfd, amt);
5834 if (elf_data_section == NULL)
5835 return FALSE;
5836
5837 amt = sizeof (asymbol);
5838 elf_data_symbol = bfd_zalloc (abfd, amt);
5839 if (elf_data_symbol == NULL)
5840 return FALSE;
5841
5842 /* Initialize the section. */
5843
5844 elf_tdata (abfd)->elf_data_section = elf_data_section;
5845 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5846
5847 elf_data_section->symbol = elf_data_symbol;
5848 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5849
5850 elf_data_section->name = ".data";
5851 elf_data_section->flags = SEC_NO_FLAGS;
5852 elf_data_section->output_section = NULL;
5853 elf_data_section->owner = abfd;
5854 elf_data_symbol->name = ".data";
5855 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5856 elf_data_symbol->section = elf_data_section;
5857 }
5858 /* This code used to do *secp = bfd_und_section_ptr if
5859 info->shared. I don't know why, and that doesn't make sense,
5860 so I took it out. */
5861 *secp = elf_tdata (abfd)->elf_data_section;
5862 break;
5863
5864 case SHN_MIPS_SUNDEFINED:
5865 *secp = bfd_und_section_ptr;
5866 break;
5867 }
5868
5869 if (SGI_COMPAT (abfd)
5870 && ! info->shared
5871 && info->hash->creator == abfd->xvec
5872 && strcmp (*namep, "__rld_obj_head") == 0)
5873 {
5874 struct elf_link_hash_entry *h;
5875 struct bfd_link_hash_entry *bh;
5876
5877 /* Mark __rld_obj_head as dynamic. */
5878 bh = NULL;
5879 if (! (_bfd_generic_link_add_one_symbol
5880 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5881 get_elf_backend_data (abfd)->collect, &bh)))
5882 return FALSE;
5883
5884 h = (struct elf_link_hash_entry *) bh;
5885 h->non_elf = 0;
5886 h->def_regular = 1;
5887 h->type = STT_OBJECT;
5888
5889 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5890 return FALSE;
5891
5892 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5893 }
5894
5895 /* If this is a mips16 text symbol, add 1 to the value to make it
5896 odd. This will cause something like .word SYM to come up with
5897 the right value when it is loaded into the PC. */
5898 if (sym->st_other == STO_MIPS16)
5899 ++*valp;
5900
5901 return TRUE;
5902 }
5903
5904 /* This hook function is called before the linker writes out a global
5905 symbol. We mark symbols as small common if appropriate. This is
5906 also where we undo the increment of the value for a mips16 symbol. */
5907
5908 bfd_boolean
5909 _bfd_mips_elf_link_output_symbol_hook
5910 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5911 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5912 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5913 {
5914 /* If we see a common symbol, which implies a relocatable link, then
5915 if a symbol was small common in an input file, mark it as small
5916 common in the output file. */
5917 if (sym->st_shndx == SHN_COMMON
5918 && strcmp (input_sec->name, ".scommon") == 0)
5919 sym->st_shndx = SHN_MIPS_SCOMMON;
5920
5921 if (sym->st_other == STO_MIPS16)
5922 sym->st_value &= ~1;
5923
5924 return TRUE;
5925 }
5926 \f
5927 /* Functions for the dynamic linker. */
5928
5929 /* Create dynamic sections when linking against a dynamic object. */
5930
5931 bfd_boolean
5932 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5933 {
5934 struct elf_link_hash_entry *h;
5935 struct bfd_link_hash_entry *bh;
5936 flagword flags;
5937 register asection *s;
5938 const char * const *namep;
5939 struct mips_elf_link_hash_table *htab;
5940
5941 htab = mips_elf_hash_table (info);
5942 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5943 | SEC_LINKER_CREATED | SEC_READONLY);
5944
5945 /* The psABI requires a read-only .dynamic section, but the VxWorks
5946 EABI doesn't. */
5947 if (!htab->is_vxworks)
5948 {
5949 s = bfd_get_section_by_name (abfd, ".dynamic");
5950 if (s != NULL)
5951 {
5952 if (! bfd_set_section_flags (abfd, s, flags))
5953 return FALSE;
5954 }
5955 }
5956
5957 /* We need to create .got section. */
5958 if (! mips_elf_create_got_section (abfd, info, FALSE))
5959 return FALSE;
5960
5961 if (! mips_elf_rel_dyn_section (info, TRUE))
5962 return FALSE;
5963
5964 /* Create .stub section. */
5965 if (bfd_get_section_by_name (abfd,
5966 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5967 {
5968 s = bfd_make_section_with_flags (abfd,
5969 MIPS_ELF_STUB_SECTION_NAME (abfd),
5970 flags | SEC_CODE);
5971 if (s == NULL
5972 || ! bfd_set_section_alignment (abfd, s,
5973 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5974 return FALSE;
5975 }
5976
5977 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5978 && !info->shared
5979 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5980 {
5981 s = bfd_make_section_with_flags (abfd, ".rld_map",
5982 flags &~ (flagword) SEC_READONLY);
5983 if (s == NULL
5984 || ! bfd_set_section_alignment (abfd, s,
5985 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5986 return FALSE;
5987 }
5988
5989 /* On IRIX5, we adjust add some additional symbols and change the
5990 alignments of several sections. There is no ABI documentation
5991 indicating that this is necessary on IRIX6, nor any evidence that
5992 the linker takes such action. */
5993 if (IRIX_COMPAT (abfd) == ict_irix5)
5994 {
5995 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5996 {
5997 bh = NULL;
5998 if (! (_bfd_generic_link_add_one_symbol
5999 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6000 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6001 return FALSE;
6002
6003 h = (struct elf_link_hash_entry *) bh;
6004 h->non_elf = 0;
6005 h->def_regular = 1;
6006 h->type = STT_SECTION;
6007
6008 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6009 return FALSE;
6010 }
6011
6012 /* We need to create a .compact_rel section. */
6013 if (SGI_COMPAT (abfd))
6014 {
6015 if (!mips_elf_create_compact_rel_section (abfd, info))
6016 return FALSE;
6017 }
6018
6019 /* Change alignments of some sections. */
6020 s = bfd_get_section_by_name (abfd, ".hash");
6021 if (s != NULL)
6022 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6023 s = bfd_get_section_by_name (abfd, ".dynsym");
6024 if (s != NULL)
6025 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6026 s = bfd_get_section_by_name (abfd, ".dynstr");
6027 if (s != NULL)
6028 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6029 s = bfd_get_section_by_name (abfd, ".reginfo");
6030 if (s != NULL)
6031 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6032 s = bfd_get_section_by_name (abfd, ".dynamic");
6033 if (s != NULL)
6034 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6035 }
6036
6037 if (!info->shared)
6038 {
6039 const char *name;
6040
6041 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6042 bh = NULL;
6043 if (!(_bfd_generic_link_add_one_symbol
6044 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6045 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6046 return FALSE;
6047
6048 h = (struct elf_link_hash_entry *) bh;
6049 h->non_elf = 0;
6050 h->def_regular = 1;
6051 h->type = STT_SECTION;
6052
6053 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6054 return FALSE;
6055
6056 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6057 {
6058 /* __rld_map is a four byte word located in the .data section
6059 and is filled in by the rtld to contain a pointer to
6060 the _r_debug structure. Its symbol value will be set in
6061 _bfd_mips_elf_finish_dynamic_symbol. */
6062 s = bfd_get_section_by_name (abfd, ".rld_map");
6063 BFD_ASSERT (s != NULL);
6064
6065 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6066 bh = NULL;
6067 if (!(_bfd_generic_link_add_one_symbol
6068 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6069 get_elf_backend_data (abfd)->collect, &bh)))
6070 return FALSE;
6071
6072 h = (struct elf_link_hash_entry *) bh;
6073 h->non_elf = 0;
6074 h->def_regular = 1;
6075 h->type = STT_OBJECT;
6076
6077 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6078 return FALSE;
6079 }
6080 }
6081
6082 if (htab->is_vxworks)
6083 {
6084 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6085 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6086 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6087 return FALSE;
6088
6089 /* Cache the sections created above. */
6090 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6091 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6092 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6093 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6094 if (!htab->sdynbss
6095 || (!htab->srelbss && !info->shared)
6096 || !htab->srelplt
6097 || !htab->splt)
6098 abort ();
6099
6100 /* Do the usual VxWorks handling. */
6101 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6102 return FALSE;
6103
6104 /* Work out the PLT sizes. */
6105 if (info->shared)
6106 {
6107 htab->plt_header_size
6108 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6109 htab->plt_entry_size
6110 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6111 }
6112 else
6113 {
6114 htab->plt_header_size
6115 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6116 htab->plt_entry_size
6117 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6118 }
6119 }
6120
6121 return TRUE;
6122 }
6123 \f
6124 /* Look through the relocs for a section during the first phase, and
6125 allocate space in the global offset table. */
6126
6127 bfd_boolean
6128 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6129 asection *sec, const Elf_Internal_Rela *relocs)
6130 {
6131 const char *name;
6132 bfd *dynobj;
6133 Elf_Internal_Shdr *symtab_hdr;
6134 struct elf_link_hash_entry **sym_hashes;
6135 struct mips_got_info *g;
6136 size_t extsymoff;
6137 const Elf_Internal_Rela *rel;
6138 const Elf_Internal_Rela *rel_end;
6139 asection *sgot;
6140 asection *sreloc;
6141 const struct elf_backend_data *bed;
6142 struct mips_elf_link_hash_table *htab;
6143
6144 if (info->relocatable)
6145 return TRUE;
6146
6147 htab = mips_elf_hash_table (info);
6148 dynobj = elf_hash_table (info)->dynobj;
6149 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6150 sym_hashes = elf_sym_hashes (abfd);
6151 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6152
6153 /* Check for the mips16 stub sections. */
6154
6155 name = bfd_get_section_name (abfd, sec);
6156 if (FN_STUB_P (name))
6157 {
6158 unsigned long r_symndx;
6159
6160 /* Look at the relocation information to figure out which symbol
6161 this is for. */
6162
6163 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6164
6165 if (r_symndx < extsymoff
6166 || sym_hashes[r_symndx - extsymoff] == NULL)
6167 {
6168 asection *o;
6169
6170 /* This stub is for a local symbol. This stub will only be
6171 needed if there is some relocation in this BFD, other
6172 than a 16 bit function call, which refers to this symbol. */
6173 for (o = abfd->sections; o != NULL; o = o->next)
6174 {
6175 Elf_Internal_Rela *sec_relocs;
6176 const Elf_Internal_Rela *r, *rend;
6177
6178 /* We can ignore stub sections when looking for relocs. */
6179 if ((o->flags & SEC_RELOC) == 0
6180 || o->reloc_count == 0
6181 || mips16_stub_section_p (abfd, o))
6182 continue;
6183
6184 sec_relocs
6185 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6186 info->keep_memory);
6187 if (sec_relocs == NULL)
6188 return FALSE;
6189
6190 rend = sec_relocs + o->reloc_count;
6191 for (r = sec_relocs; r < rend; r++)
6192 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6193 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6194 break;
6195
6196 if (elf_section_data (o)->relocs != sec_relocs)
6197 free (sec_relocs);
6198
6199 if (r < rend)
6200 break;
6201 }
6202
6203 if (o == NULL)
6204 {
6205 /* There is no non-call reloc for this stub, so we do
6206 not need it. Since this function is called before
6207 the linker maps input sections to output sections, we
6208 can easily discard it by setting the SEC_EXCLUDE
6209 flag. */
6210 sec->flags |= SEC_EXCLUDE;
6211 return TRUE;
6212 }
6213
6214 /* Record this stub in an array of local symbol stubs for
6215 this BFD. */
6216 if (elf_tdata (abfd)->local_stubs == NULL)
6217 {
6218 unsigned long symcount;
6219 asection **n;
6220 bfd_size_type amt;
6221
6222 if (elf_bad_symtab (abfd))
6223 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6224 else
6225 symcount = symtab_hdr->sh_info;
6226 amt = symcount * sizeof (asection *);
6227 n = bfd_zalloc (abfd, amt);
6228 if (n == NULL)
6229 return FALSE;
6230 elf_tdata (abfd)->local_stubs = n;
6231 }
6232
6233 sec->flags |= SEC_KEEP;
6234 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6235
6236 /* We don't need to set mips16_stubs_seen in this case.
6237 That flag is used to see whether we need to look through
6238 the global symbol table for stubs. We don't need to set
6239 it here, because we just have a local stub. */
6240 }
6241 else
6242 {
6243 struct mips_elf_link_hash_entry *h;
6244
6245 h = ((struct mips_elf_link_hash_entry *)
6246 sym_hashes[r_symndx - extsymoff]);
6247
6248 while (h->root.root.type == bfd_link_hash_indirect
6249 || h->root.root.type == bfd_link_hash_warning)
6250 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6251
6252 /* H is the symbol this stub is for. */
6253
6254 /* If we already have an appropriate stub for this function, we
6255 don't need another one, so we can discard this one. Since
6256 this function is called before the linker maps input sections
6257 to output sections, we can easily discard it by setting the
6258 SEC_EXCLUDE flag. */
6259 if (h->fn_stub != NULL)
6260 {
6261 sec->flags |= SEC_EXCLUDE;
6262 return TRUE;
6263 }
6264
6265 sec->flags |= SEC_KEEP;
6266 h->fn_stub = sec;
6267 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6268 }
6269 }
6270 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6271 {
6272 unsigned long r_symndx;
6273 struct mips_elf_link_hash_entry *h;
6274 asection **loc;
6275
6276 /* Look at the relocation information to figure out which symbol
6277 this is for. */
6278
6279 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6280
6281 if (r_symndx < extsymoff
6282 || sym_hashes[r_symndx - extsymoff] == NULL)
6283 {
6284 asection *o;
6285
6286 /* This stub is for a local symbol. This stub will only be
6287 needed if there is some relocation (R_MIPS16_26) in this BFD
6288 that refers to this symbol. */
6289 for (o = abfd->sections; o != NULL; o = o->next)
6290 {
6291 Elf_Internal_Rela *sec_relocs;
6292 const Elf_Internal_Rela *r, *rend;
6293
6294 /* We can ignore stub sections when looking for relocs. */
6295 if ((o->flags & SEC_RELOC) == 0
6296 || o->reloc_count == 0
6297 || mips16_stub_section_p (abfd, o))
6298 continue;
6299
6300 sec_relocs
6301 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6302 info->keep_memory);
6303 if (sec_relocs == NULL)
6304 return FALSE;
6305
6306 rend = sec_relocs + o->reloc_count;
6307 for (r = sec_relocs; r < rend; r++)
6308 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6309 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6310 break;
6311
6312 if (elf_section_data (o)->relocs != sec_relocs)
6313 free (sec_relocs);
6314
6315 if (r < rend)
6316 break;
6317 }
6318
6319 if (o == NULL)
6320 {
6321 /* There is no non-call reloc for this stub, so we do
6322 not need it. Since this function is called before
6323 the linker maps input sections to output sections, we
6324 can easily discard it by setting the SEC_EXCLUDE
6325 flag. */
6326 sec->flags |= SEC_EXCLUDE;
6327 return TRUE;
6328 }
6329
6330 /* Record this stub in an array of local symbol call_stubs for
6331 this BFD. */
6332 if (elf_tdata (abfd)->local_call_stubs == NULL)
6333 {
6334 unsigned long symcount;
6335 asection **n;
6336 bfd_size_type amt;
6337
6338 if (elf_bad_symtab (abfd))
6339 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6340 else
6341 symcount = symtab_hdr->sh_info;
6342 amt = symcount * sizeof (asection *);
6343 n = bfd_zalloc (abfd, amt);
6344 if (n == NULL)
6345 return FALSE;
6346 elf_tdata (abfd)->local_call_stubs = n;
6347 }
6348
6349 sec->flags |= SEC_KEEP;
6350 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6351
6352 /* We don't need to set mips16_stubs_seen in this case.
6353 That flag is used to see whether we need to look through
6354 the global symbol table for stubs. We don't need to set
6355 it here, because we just have a local stub. */
6356 }
6357 else
6358 {
6359 h = ((struct mips_elf_link_hash_entry *)
6360 sym_hashes[r_symndx - extsymoff]);
6361
6362 /* H is the symbol this stub is for. */
6363
6364 if (CALL_FP_STUB_P (name))
6365 loc = &h->call_fp_stub;
6366 else
6367 loc = &h->call_stub;
6368
6369 /* If we already have an appropriate stub for this function, we
6370 don't need another one, so we can discard this one. Since
6371 this function is called before the linker maps input sections
6372 to output sections, we can easily discard it by setting the
6373 SEC_EXCLUDE flag. */
6374 if (*loc != NULL)
6375 {
6376 sec->flags |= SEC_EXCLUDE;
6377 return TRUE;
6378 }
6379
6380 sec->flags |= SEC_KEEP;
6381 *loc = sec;
6382 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6383 }
6384 }
6385
6386 if (dynobj == NULL)
6387 {
6388 sgot = NULL;
6389 g = NULL;
6390 }
6391 else
6392 {
6393 sgot = mips_elf_got_section (dynobj, FALSE);
6394 if (sgot == NULL)
6395 g = NULL;
6396 else
6397 {
6398 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6399 g = mips_elf_section_data (sgot)->u.got_info;
6400 BFD_ASSERT (g != NULL);
6401 }
6402 }
6403
6404 sreloc = NULL;
6405 bed = get_elf_backend_data (abfd);
6406 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6407 for (rel = relocs; rel < rel_end; ++rel)
6408 {
6409 unsigned long r_symndx;
6410 unsigned int r_type;
6411 struct elf_link_hash_entry *h;
6412
6413 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6414 r_type = ELF_R_TYPE (abfd, rel->r_info);
6415
6416 if (r_symndx < extsymoff)
6417 h = NULL;
6418 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6419 {
6420 (*_bfd_error_handler)
6421 (_("%B: Malformed reloc detected for section %s"),
6422 abfd, name);
6423 bfd_set_error (bfd_error_bad_value);
6424 return FALSE;
6425 }
6426 else
6427 {
6428 h = sym_hashes[r_symndx - extsymoff];
6429
6430 /* This may be an indirect symbol created because of a version. */
6431 if (h != NULL)
6432 {
6433 while (h->root.type == bfd_link_hash_indirect)
6434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6435 }
6436 }
6437
6438 /* Some relocs require a global offset table. */
6439 if (dynobj == NULL || sgot == NULL)
6440 {
6441 switch (r_type)
6442 {
6443 case R_MIPS_GOT16:
6444 case R_MIPS_CALL16:
6445 case R_MIPS_CALL_HI16:
6446 case R_MIPS_CALL_LO16:
6447 case R_MIPS_GOT_HI16:
6448 case R_MIPS_GOT_LO16:
6449 case R_MIPS_GOT_PAGE:
6450 case R_MIPS_GOT_OFST:
6451 case R_MIPS_GOT_DISP:
6452 case R_MIPS_TLS_GOTTPREL:
6453 case R_MIPS_TLS_GD:
6454 case R_MIPS_TLS_LDM:
6455 if (dynobj == NULL)
6456 elf_hash_table (info)->dynobj = dynobj = abfd;
6457 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6458 return FALSE;
6459 g = mips_elf_got_info (dynobj, &sgot);
6460 if (htab->is_vxworks && !info->shared)
6461 {
6462 (*_bfd_error_handler)
6463 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6464 abfd, (unsigned long) rel->r_offset);
6465 bfd_set_error (bfd_error_bad_value);
6466 return FALSE;
6467 }
6468 break;
6469
6470 case R_MIPS_32:
6471 case R_MIPS_REL32:
6472 case R_MIPS_64:
6473 /* In VxWorks executables, references to external symbols
6474 are handled using copy relocs or PLT stubs, so there's
6475 no need to add a dynamic relocation here. */
6476 if (dynobj == NULL
6477 && (info->shared || (h != NULL && !htab->is_vxworks))
6478 && (sec->flags & SEC_ALLOC) != 0)
6479 elf_hash_table (info)->dynobj = dynobj = abfd;
6480 break;
6481
6482 default:
6483 break;
6484 }
6485 }
6486
6487 if (h)
6488 {
6489 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6490
6491 /* Relocations against the special VxWorks __GOTT_BASE__ and
6492 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6493 room for them in .rela.dyn. */
6494 if (is_gott_symbol (info, h))
6495 {
6496 if (sreloc == NULL)
6497 {
6498 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6499 if (sreloc == NULL)
6500 return FALSE;
6501 }
6502 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6503 if (MIPS_ELF_READONLY_SECTION (sec))
6504 /* We tell the dynamic linker that there are
6505 relocations against the text segment. */
6506 info->flags |= DF_TEXTREL;
6507 }
6508 }
6509 else if (r_type == R_MIPS_CALL_LO16
6510 || r_type == R_MIPS_GOT_LO16
6511 || r_type == R_MIPS_GOT_DISP
6512 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6513 {
6514 /* We may need a local GOT entry for this relocation. We
6515 don't count R_MIPS_GOT_PAGE because we can estimate the
6516 maximum number of pages needed by looking at the size of
6517 the segment. Similar comments apply to R_MIPS_GOT16 and
6518 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6519 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6520 R_MIPS_CALL_HI16 because these are always followed by an
6521 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6522 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6523 rel->r_addend, g, 0))
6524 return FALSE;
6525 }
6526
6527 switch (r_type)
6528 {
6529 case R_MIPS_CALL16:
6530 if (h == NULL)
6531 {
6532 (*_bfd_error_handler)
6533 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6534 abfd, (unsigned long) rel->r_offset);
6535 bfd_set_error (bfd_error_bad_value);
6536 return FALSE;
6537 }
6538 /* Fall through. */
6539
6540 case R_MIPS_CALL_HI16:
6541 case R_MIPS_CALL_LO16:
6542 if (h != NULL)
6543 {
6544 /* VxWorks call relocations point the function's .got.plt
6545 entry, which will be allocated by adjust_dynamic_symbol.
6546 Otherwise, this symbol requires a global GOT entry. */
6547 if (!htab->is_vxworks
6548 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6549 return FALSE;
6550
6551 /* We need a stub, not a plt entry for the undefined
6552 function. But we record it as if it needs plt. See
6553 _bfd_elf_adjust_dynamic_symbol. */
6554 h->needs_plt = 1;
6555 h->type = STT_FUNC;
6556 }
6557 break;
6558
6559 case R_MIPS_GOT_PAGE:
6560 /* If this is a global, overridable symbol, GOT_PAGE will
6561 decay to GOT_DISP, so we'll need a GOT entry for it. */
6562 if (h == NULL)
6563 break;
6564 else
6565 {
6566 struct mips_elf_link_hash_entry *hmips =
6567 (struct mips_elf_link_hash_entry *) h;
6568
6569 while (hmips->root.root.type == bfd_link_hash_indirect
6570 || hmips->root.root.type == bfd_link_hash_warning)
6571 hmips = (struct mips_elf_link_hash_entry *)
6572 hmips->root.root.u.i.link;
6573
6574 if (hmips->root.def_regular
6575 && ! (info->shared && ! info->symbolic
6576 && ! hmips->root.forced_local))
6577 break;
6578 }
6579 /* Fall through. */
6580
6581 case R_MIPS_GOT16:
6582 case R_MIPS_GOT_HI16:
6583 case R_MIPS_GOT_LO16:
6584 case R_MIPS_GOT_DISP:
6585 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6586 return FALSE;
6587 break;
6588
6589 case R_MIPS_TLS_GOTTPREL:
6590 if (info->shared)
6591 info->flags |= DF_STATIC_TLS;
6592 /* Fall through */
6593
6594 case R_MIPS_TLS_LDM:
6595 if (r_type == R_MIPS_TLS_LDM)
6596 {
6597 r_symndx = 0;
6598 h = NULL;
6599 }
6600 /* Fall through */
6601
6602 case R_MIPS_TLS_GD:
6603 /* This symbol requires a global offset table entry, or two
6604 for TLS GD relocations. */
6605 {
6606 unsigned char flag = (r_type == R_MIPS_TLS_GD
6607 ? GOT_TLS_GD
6608 : r_type == R_MIPS_TLS_LDM
6609 ? GOT_TLS_LDM
6610 : GOT_TLS_IE);
6611 if (h != NULL)
6612 {
6613 struct mips_elf_link_hash_entry *hmips =
6614 (struct mips_elf_link_hash_entry *) h;
6615 hmips->tls_type |= flag;
6616
6617 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6618 return FALSE;
6619 }
6620 else
6621 {
6622 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6623
6624 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6625 rel->r_addend, g, flag))
6626 return FALSE;
6627 }
6628 }
6629 break;
6630
6631 case R_MIPS_32:
6632 case R_MIPS_REL32:
6633 case R_MIPS_64:
6634 /* In VxWorks executables, references to external symbols
6635 are handled using copy relocs or PLT stubs, so there's
6636 no need to add a .rela.dyn entry for this relocation. */
6637 if ((info->shared || (h != NULL && !htab->is_vxworks))
6638 && (sec->flags & SEC_ALLOC) != 0)
6639 {
6640 if (sreloc == NULL)
6641 {
6642 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6643 if (sreloc == NULL)
6644 return FALSE;
6645 }
6646 if (info->shared)
6647 {
6648 /* When creating a shared object, we must copy these
6649 reloc types into the output file as R_MIPS_REL32
6650 relocs. Make room for this reloc in .rel(a).dyn. */
6651 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6652 if (MIPS_ELF_READONLY_SECTION (sec))
6653 /* We tell the dynamic linker that there are
6654 relocations against the text segment. */
6655 info->flags |= DF_TEXTREL;
6656 }
6657 else
6658 {
6659 struct mips_elf_link_hash_entry *hmips;
6660
6661 /* We only need to copy this reloc if the symbol is
6662 defined in a dynamic object. */
6663 hmips = (struct mips_elf_link_hash_entry *) h;
6664 ++hmips->possibly_dynamic_relocs;
6665 if (MIPS_ELF_READONLY_SECTION (sec))
6666 /* We need it to tell the dynamic linker if there
6667 are relocations against the text segment. */
6668 hmips->readonly_reloc = TRUE;
6669 }
6670
6671 /* Even though we don't directly need a GOT entry for
6672 this symbol, a symbol must have a dynamic symbol
6673 table index greater that DT_MIPS_GOTSYM if there are
6674 dynamic relocations against it. This does not apply
6675 to VxWorks, which does not have the usual coupling
6676 between global GOT entries and .dynsym entries. */
6677 if (h != NULL && !htab->is_vxworks)
6678 {
6679 if (dynobj == NULL)
6680 elf_hash_table (info)->dynobj = dynobj = abfd;
6681 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6682 return FALSE;
6683 g = mips_elf_got_info (dynobj, &sgot);
6684 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6685 return FALSE;
6686 }
6687 }
6688
6689 if (SGI_COMPAT (abfd))
6690 mips_elf_hash_table (info)->compact_rel_size +=
6691 sizeof (Elf32_External_crinfo);
6692 break;
6693
6694 case R_MIPS_PC16:
6695 if (h)
6696 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6697 break;
6698
6699 case R_MIPS_26:
6700 if (h)
6701 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6702 /* Fall through. */
6703
6704 case R_MIPS_GPREL16:
6705 case R_MIPS_LITERAL:
6706 case R_MIPS_GPREL32:
6707 if (SGI_COMPAT (abfd))
6708 mips_elf_hash_table (info)->compact_rel_size +=
6709 sizeof (Elf32_External_crinfo);
6710 break;
6711
6712 /* This relocation describes the C++ object vtable hierarchy.
6713 Reconstruct it for later use during GC. */
6714 case R_MIPS_GNU_VTINHERIT:
6715 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6716 return FALSE;
6717 break;
6718
6719 /* This relocation describes which C++ vtable entries are actually
6720 used. Record for later use during GC. */
6721 case R_MIPS_GNU_VTENTRY:
6722 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6723 return FALSE;
6724 break;
6725
6726 default:
6727 break;
6728 }
6729
6730 /* We must not create a stub for a symbol that has relocations
6731 related to taking the function's address. This doesn't apply to
6732 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6733 a normal .got entry. */
6734 if (!htab->is_vxworks && h != NULL)
6735 switch (r_type)
6736 {
6737 default:
6738 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6739 break;
6740 case R_MIPS_CALL16:
6741 case R_MIPS_CALL_HI16:
6742 case R_MIPS_CALL_LO16:
6743 case R_MIPS_JALR:
6744 break;
6745 }
6746
6747 /* If this reloc is not a 16 bit call, and it has a global
6748 symbol, then we will need the fn_stub if there is one.
6749 References from a stub section do not count. */
6750 if (h != NULL
6751 && r_type != R_MIPS16_26
6752 && !mips16_stub_section_p (abfd, sec))
6753 {
6754 struct mips_elf_link_hash_entry *mh;
6755
6756 mh = (struct mips_elf_link_hash_entry *) h;
6757 mh->need_fn_stub = TRUE;
6758 }
6759 }
6760
6761 return TRUE;
6762 }
6763 \f
6764 bfd_boolean
6765 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6766 struct bfd_link_info *link_info,
6767 bfd_boolean *again)
6768 {
6769 Elf_Internal_Rela *internal_relocs;
6770 Elf_Internal_Rela *irel, *irelend;
6771 Elf_Internal_Shdr *symtab_hdr;
6772 bfd_byte *contents = NULL;
6773 size_t extsymoff;
6774 bfd_boolean changed_contents = FALSE;
6775 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6776 Elf_Internal_Sym *isymbuf = NULL;
6777
6778 /* We are not currently changing any sizes, so only one pass. */
6779 *again = FALSE;
6780
6781 if (link_info->relocatable)
6782 return TRUE;
6783
6784 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6785 link_info->keep_memory);
6786 if (internal_relocs == NULL)
6787 return TRUE;
6788
6789 irelend = internal_relocs + sec->reloc_count
6790 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6791 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6792 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6793
6794 for (irel = internal_relocs; irel < irelend; irel++)
6795 {
6796 bfd_vma symval;
6797 bfd_signed_vma sym_offset;
6798 unsigned int r_type;
6799 unsigned long r_symndx;
6800 asection *sym_sec;
6801 unsigned long instruction;
6802
6803 /* Turn jalr into bgezal, and jr into beq, if they're marked
6804 with a JALR relocation, that indicate where they jump to.
6805 This saves some pipeline bubbles. */
6806 r_type = ELF_R_TYPE (abfd, irel->r_info);
6807 if (r_type != R_MIPS_JALR)
6808 continue;
6809
6810 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6811 /* Compute the address of the jump target. */
6812 if (r_symndx >= extsymoff)
6813 {
6814 struct mips_elf_link_hash_entry *h
6815 = ((struct mips_elf_link_hash_entry *)
6816 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6817
6818 while (h->root.root.type == bfd_link_hash_indirect
6819 || h->root.root.type == bfd_link_hash_warning)
6820 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6821
6822 /* If a symbol is undefined, or if it may be overridden,
6823 skip it. */
6824 if (! ((h->root.root.type == bfd_link_hash_defined
6825 || h->root.root.type == bfd_link_hash_defweak)
6826 && h->root.root.u.def.section)
6827 || (link_info->shared && ! link_info->symbolic
6828 && !h->root.forced_local))
6829 continue;
6830
6831 sym_sec = h->root.root.u.def.section;
6832 if (sym_sec->output_section)
6833 symval = (h->root.root.u.def.value
6834 + sym_sec->output_section->vma
6835 + sym_sec->output_offset);
6836 else
6837 symval = h->root.root.u.def.value;
6838 }
6839 else
6840 {
6841 Elf_Internal_Sym *isym;
6842
6843 /* Read this BFD's symbols if we haven't done so already. */
6844 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6845 {
6846 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6847 if (isymbuf == NULL)
6848 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6849 symtab_hdr->sh_info, 0,
6850 NULL, NULL, NULL);
6851 if (isymbuf == NULL)
6852 goto relax_return;
6853 }
6854
6855 isym = isymbuf + r_symndx;
6856 if (isym->st_shndx == SHN_UNDEF)
6857 continue;
6858 else if (isym->st_shndx == SHN_ABS)
6859 sym_sec = bfd_abs_section_ptr;
6860 else if (isym->st_shndx == SHN_COMMON)
6861 sym_sec = bfd_com_section_ptr;
6862 else
6863 sym_sec
6864 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6865 symval = isym->st_value
6866 + sym_sec->output_section->vma
6867 + sym_sec->output_offset;
6868 }
6869
6870 /* Compute branch offset, from delay slot of the jump to the
6871 branch target. */
6872 sym_offset = (symval + irel->r_addend)
6873 - (sec_start + irel->r_offset + 4);
6874
6875 /* Branch offset must be properly aligned. */
6876 if ((sym_offset & 3) != 0)
6877 continue;
6878
6879 sym_offset >>= 2;
6880
6881 /* Check that it's in range. */
6882 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6883 continue;
6884
6885 /* Get the section contents if we haven't done so already. */
6886 if (contents == NULL)
6887 {
6888 /* Get cached copy if it exists. */
6889 if (elf_section_data (sec)->this_hdr.contents != NULL)
6890 contents = elf_section_data (sec)->this_hdr.contents;
6891 else
6892 {
6893 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6894 goto relax_return;
6895 }
6896 }
6897
6898 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6899
6900 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6901 if ((instruction & 0xfc1fffff) == 0x0000f809)
6902 instruction = 0x04110000;
6903 /* If it was jr <reg>, turn it into b <target>. */
6904 else if ((instruction & 0xfc1fffff) == 0x00000008)
6905 instruction = 0x10000000;
6906 else
6907 continue;
6908
6909 instruction |= (sym_offset & 0xffff);
6910 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6911 changed_contents = TRUE;
6912 }
6913
6914 if (contents != NULL
6915 && elf_section_data (sec)->this_hdr.contents != contents)
6916 {
6917 if (!changed_contents && !link_info->keep_memory)
6918 free (contents);
6919 else
6920 {
6921 /* Cache the section contents for elf_link_input_bfd. */
6922 elf_section_data (sec)->this_hdr.contents = contents;
6923 }
6924 }
6925 return TRUE;
6926
6927 relax_return:
6928 if (contents != NULL
6929 && elf_section_data (sec)->this_hdr.contents != contents)
6930 free (contents);
6931 return FALSE;
6932 }
6933 \f
6934 /* Adjust a symbol defined by a dynamic object and referenced by a
6935 regular object. The current definition is in some section of the
6936 dynamic object, but we're not including those sections. We have to
6937 change the definition to something the rest of the link can
6938 understand. */
6939
6940 bfd_boolean
6941 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6942 struct elf_link_hash_entry *h)
6943 {
6944 bfd *dynobj;
6945 struct mips_elf_link_hash_entry *hmips;
6946 asection *s;
6947 struct mips_elf_link_hash_table *htab;
6948
6949 htab = mips_elf_hash_table (info);
6950 dynobj = elf_hash_table (info)->dynobj;
6951
6952 /* Make sure we know what is going on here. */
6953 BFD_ASSERT (dynobj != NULL
6954 && (h->needs_plt
6955 || h->u.weakdef != NULL
6956 || (h->def_dynamic
6957 && h->ref_regular
6958 && !h->def_regular)));
6959
6960 /* If this symbol is defined in a dynamic object, we need to copy
6961 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6962 file. */
6963 hmips = (struct mips_elf_link_hash_entry *) h;
6964 if (! info->relocatable
6965 && hmips->possibly_dynamic_relocs != 0
6966 && (h->root.type == bfd_link_hash_defweak
6967 || !h->def_regular))
6968 {
6969 mips_elf_allocate_dynamic_relocations
6970 (dynobj, info, hmips->possibly_dynamic_relocs);
6971 if (hmips->readonly_reloc)
6972 /* We tell the dynamic linker that there are relocations
6973 against the text segment. */
6974 info->flags |= DF_TEXTREL;
6975 }
6976
6977 /* For a function, create a stub, if allowed. */
6978 if (! hmips->no_fn_stub
6979 && h->needs_plt)
6980 {
6981 if (! elf_hash_table (info)->dynamic_sections_created)
6982 return TRUE;
6983
6984 /* If this symbol is not defined in a regular file, then set
6985 the symbol to the stub location. This is required to make
6986 function pointers compare as equal between the normal
6987 executable and the shared library. */
6988 if (!h->def_regular)
6989 {
6990 /* We need .stub section. */
6991 s = bfd_get_section_by_name (dynobj,
6992 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6993 BFD_ASSERT (s != NULL);
6994
6995 h->root.u.def.section = s;
6996 h->root.u.def.value = s->size;
6997
6998 /* XXX Write this stub address somewhere. */
6999 h->plt.offset = s->size;
7000
7001 /* Make room for this stub code. */
7002 s->size += htab->function_stub_size;
7003
7004 /* The last half word of the stub will be filled with the index
7005 of this symbol in .dynsym section. */
7006 return TRUE;
7007 }
7008 }
7009 else if ((h->type == STT_FUNC)
7010 && !h->needs_plt)
7011 {
7012 /* This will set the entry for this symbol in the GOT to 0, and
7013 the dynamic linker will take care of this. */
7014 h->root.u.def.value = 0;
7015 return TRUE;
7016 }
7017
7018 /* If this is a weak symbol, and there is a real definition, the
7019 processor independent code will have arranged for us to see the
7020 real definition first, and we can just use the same value. */
7021 if (h->u.weakdef != NULL)
7022 {
7023 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7024 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7025 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7026 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7027 return TRUE;
7028 }
7029
7030 /* This is a reference to a symbol defined by a dynamic object which
7031 is not a function. */
7032
7033 return TRUE;
7034 }
7035
7036 /* Likewise, for VxWorks. */
7037
7038 bfd_boolean
7039 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7040 struct elf_link_hash_entry *h)
7041 {
7042 bfd *dynobj;
7043 struct mips_elf_link_hash_entry *hmips;
7044 struct mips_elf_link_hash_table *htab;
7045 unsigned int power_of_two;
7046
7047 htab = mips_elf_hash_table (info);
7048 dynobj = elf_hash_table (info)->dynobj;
7049 hmips = (struct mips_elf_link_hash_entry *) h;
7050
7051 /* Make sure we know what is going on here. */
7052 BFD_ASSERT (dynobj != NULL
7053 && (h->needs_plt
7054 || h->needs_copy
7055 || h->u.weakdef != NULL
7056 || (h->def_dynamic
7057 && h->ref_regular
7058 && !h->def_regular)));
7059
7060 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7061 either (a) we want to branch to the symbol or (b) we're linking an
7062 executable that needs a canonical function address. In the latter
7063 case, the canonical address will be the address of the executable's
7064 load stub. */
7065 if ((hmips->is_branch_target
7066 || (!info->shared
7067 && h->type == STT_FUNC
7068 && hmips->is_relocation_target))
7069 && h->def_dynamic
7070 && h->ref_regular
7071 && !h->def_regular
7072 && !h->forced_local)
7073 h->needs_plt = 1;
7074
7075 /* Locally-binding symbols do not need a PLT stub; we can refer to
7076 the functions directly. */
7077 else if (h->needs_plt
7078 && (SYMBOL_CALLS_LOCAL (info, h)
7079 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7080 && h->root.type == bfd_link_hash_undefweak)))
7081 {
7082 h->needs_plt = 0;
7083 return TRUE;
7084 }
7085
7086 if (h->needs_plt)
7087 {
7088 /* If this is the first symbol to need a PLT entry, allocate room
7089 for the header, and for the header's .rela.plt.unloaded entries. */
7090 if (htab->splt->size == 0)
7091 {
7092 htab->splt->size += htab->plt_header_size;
7093 if (!info->shared)
7094 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7095 }
7096
7097 /* Assign the next .plt entry to this symbol. */
7098 h->plt.offset = htab->splt->size;
7099 htab->splt->size += htab->plt_entry_size;
7100
7101 /* If the output file has no definition of the symbol, set the
7102 symbol's value to the address of the stub. For executables,
7103 point at the PLT load stub rather than the lazy resolution stub;
7104 this stub will become the canonical function address. */
7105 if (!h->def_regular)
7106 {
7107 h->root.u.def.section = htab->splt;
7108 h->root.u.def.value = h->plt.offset;
7109 if (!info->shared)
7110 h->root.u.def.value += 8;
7111 }
7112
7113 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7114 htab->sgotplt->size += 4;
7115 htab->srelplt->size += sizeof (Elf32_External_Rela);
7116
7117 /* Make room for the .rela.plt.unloaded relocations. */
7118 if (!info->shared)
7119 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7120
7121 return TRUE;
7122 }
7123
7124 /* If a function symbol is defined by a dynamic object, and we do not
7125 need a PLT stub for it, the symbol's value should be zero. */
7126 if (h->type == STT_FUNC
7127 && h->def_dynamic
7128 && h->ref_regular
7129 && !h->def_regular)
7130 {
7131 h->root.u.def.value = 0;
7132 return TRUE;
7133 }
7134
7135 /* If this is a weak symbol, and there is a real definition, the
7136 processor independent code will have arranged for us to see the
7137 real definition first, and we can just use the same value. */
7138 if (h->u.weakdef != NULL)
7139 {
7140 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7141 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7142 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7143 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7144 return TRUE;
7145 }
7146
7147 /* This is a reference to a symbol defined by a dynamic object which
7148 is not a function. */
7149 if (info->shared)
7150 return TRUE;
7151
7152 /* We must allocate the symbol in our .dynbss section, which will
7153 become part of the .bss section of the executable. There will be
7154 an entry for this symbol in the .dynsym section. The dynamic
7155 object will contain position independent code, so all references
7156 from the dynamic object to this symbol will go through the global
7157 offset table. The dynamic linker will use the .dynsym entry to
7158 determine the address it must put in the global offset table, so
7159 both the dynamic object and the regular object will refer to the
7160 same memory location for the variable. */
7161
7162 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7163 {
7164 htab->srelbss->size += sizeof (Elf32_External_Rela);
7165 h->needs_copy = 1;
7166 }
7167
7168 /* We need to figure out the alignment required for this symbol. */
7169 power_of_two = bfd_log2 (h->size);
7170 if (power_of_two > 4)
7171 power_of_two = 4;
7172
7173 /* Apply the required alignment. */
7174 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7175 (bfd_size_type) 1 << power_of_two);
7176 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7177 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7178 return FALSE;
7179
7180 /* Define the symbol as being at this point in the section. */
7181 h->root.u.def.section = htab->sdynbss;
7182 h->root.u.def.value = htab->sdynbss->size;
7183
7184 /* Increment the section size to make room for the symbol. */
7185 htab->sdynbss->size += h->size;
7186
7187 return TRUE;
7188 }
7189 \f
7190 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7191 The number might be exact or a worst-case estimate, depending on how
7192 much information is available to elf_backend_omit_section_dynsym at
7193 the current linking stage. */
7194
7195 static bfd_size_type
7196 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7197 {
7198 bfd_size_type count;
7199
7200 count = 0;
7201 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7202 {
7203 asection *p;
7204 const struct elf_backend_data *bed;
7205
7206 bed = get_elf_backend_data (output_bfd);
7207 for (p = output_bfd->sections; p ; p = p->next)
7208 if ((p->flags & SEC_EXCLUDE) == 0
7209 && (p->flags & SEC_ALLOC) != 0
7210 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7211 ++count;
7212 }
7213 return count;
7214 }
7215
7216 /* This function is called after all the input files have been read,
7217 and the input sections have been assigned to output sections. We
7218 check for any mips16 stub sections that we can discard. */
7219
7220 bfd_boolean
7221 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7222 struct bfd_link_info *info)
7223 {
7224 asection *ri;
7225
7226 bfd *dynobj;
7227 asection *s;
7228 struct mips_got_info *g;
7229 int i;
7230 bfd_size_type loadable_size = 0;
7231 bfd_size_type local_gotno;
7232 bfd_size_type dynsymcount;
7233 bfd *sub;
7234 struct mips_elf_count_tls_arg count_tls_arg;
7235 struct mips_elf_link_hash_table *htab;
7236
7237 htab = mips_elf_hash_table (info);
7238
7239 /* The .reginfo section has a fixed size. */
7240 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7241 if (ri != NULL)
7242 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7243
7244 if (! (info->relocatable
7245 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7246 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7247 mips_elf_check_mips16_stubs, NULL);
7248
7249 dynobj = elf_hash_table (info)->dynobj;
7250 if (dynobj == NULL)
7251 /* Relocatable links don't have it. */
7252 return TRUE;
7253
7254 g = mips_elf_got_info (dynobj, &s);
7255 if (s == NULL)
7256 return TRUE;
7257
7258 /* Calculate the total loadable size of the output. That
7259 will give us the maximum number of GOT_PAGE entries
7260 required. */
7261 for (sub = info->input_bfds; sub; sub = sub->link_next)
7262 {
7263 asection *subsection;
7264
7265 for (subsection = sub->sections;
7266 subsection;
7267 subsection = subsection->next)
7268 {
7269 if ((subsection->flags & SEC_ALLOC) == 0)
7270 continue;
7271 loadable_size += ((subsection->size + 0xf)
7272 &~ (bfd_size_type) 0xf);
7273 }
7274 }
7275
7276 /* There has to be a global GOT entry for every symbol with
7277 a dynamic symbol table index of DT_MIPS_GOTSYM or
7278 higher. Therefore, it make sense to put those symbols
7279 that need GOT entries at the end of the symbol table. We
7280 do that here. */
7281 if (! mips_elf_sort_hash_table (info, 1))
7282 return FALSE;
7283
7284 if (g->global_gotsym != NULL)
7285 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7286 else
7287 /* If there are no global symbols, or none requiring
7288 relocations, then GLOBAL_GOTSYM will be NULL. */
7289 i = 0;
7290
7291 /* Get a worst-case estimate of the number of dynamic symbols needed.
7292 At this point, dynsymcount does not account for section symbols
7293 and count_section_dynsyms may overestimate the number that will
7294 be needed. */
7295 dynsymcount = (elf_hash_table (info)->dynsymcount
7296 + count_section_dynsyms (output_bfd, info));
7297
7298 /* Determine the size of one stub entry. */
7299 htab->function_stub_size = (dynsymcount > 0x10000
7300 ? MIPS_FUNCTION_STUB_BIG_SIZE
7301 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7302
7303 /* In the worst case, we'll get one stub per dynamic symbol, plus
7304 one to account for the dummy entry at the end required by IRIX
7305 rld. */
7306 loadable_size += htab->function_stub_size * (i + 1);
7307
7308 if (htab->is_vxworks)
7309 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7310 relocations against local symbols evaluate to "G", and the EABI does
7311 not include R_MIPS_GOT_PAGE. */
7312 local_gotno = 0;
7313 else
7314 /* Assume there are two loadable segments consisting of contiguous
7315 sections. Is 5 enough? */
7316 local_gotno = (loadable_size >> 16) + 5;
7317
7318 g->local_gotno += local_gotno;
7319 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7320
7321 g->global_gotno = i;
7322 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7323
7324 /* We need to calculate tls_gotno for global symbols at this point
7325 instead of building it up earlier, to avoid doublecounting
7326 entries for one global symbol from multiple input files. */
7327 count_tls_arg.info = info;
7328 count_tls_arg.needed = 0;
7329 elf_link_hash_traverse (elf_hash_table (info),
7330 mips_elf_count_global_tls_entries,
7331 &count_tls_arg);
7332 g->tls_gotno += count_tls_arg.needed;
7333 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7334
7335 mips_elf_resolve_final_got_entries (g);
7336
7337 /* VxWorks does not support multiple GOTs. It initializes $gp to
7338 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7339 dynamic loader. */
7340 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7341 {
7342 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7343 return FALSE;
7344 }
7345 else
7346 {
7347 /* Set up TLS entries for the first GOT. */
7348 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7349 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7350 }
7351
7352 return TRUE;
7353 }
7354
7355 /* Set the sizes of the dynamic sections. */
7356
7357 bfd_boolean
7358 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7359 struct bfd_link_info *info)
7360 {
7361 bfd *dynobj;
7362 asection *s, *sreldyn;
7363 bfd_boolean reltext;
7364 struct mips_elf_link_hash_table *htab;
7365
7366 htab = mips_elf_hash_table (info);
7367 dynobj = elf_hash_table (info)->dynobj;
7368 BFD_ASSERT (dynobj != NULL);
7369
7370 if (elf_hash_table (info)->dynamic_sections_created)
7371 {
7372 /* Set the contents of the .interp section to the interpreter. */
7373 if (info->executable)
7374 {
7375 s = bfd_get_section_by_name (dynobj, ".interp");
7376 BFD_ASSERT (s != NULL);
7377 s->size
7378 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7379 s->contents
7380 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7381 }
7382 }
7383
7384 /* The check_relocs and adjust_dynamic_symbol entry points have
7385 determined the sizes of the various dynamic sections. Allocate
7386 memory for them. */
7387 reltext = FALSE;
7388 sreldyn = NULL;
7389 for (s = dynobj->sections; s != NULL; s = s->next)
7390 {
7391 const char *name;
7392
7393 /* It's OK to base decisions on the section name, because none
7394 of the dynobj section names depend upon the input files. */
7395 name = bfd_get_section_name (dynobj, s);
7396
7397 if ((s->flags & SEC_LINKER_CREATED) == 0)
7398 continue;
7399
7400 if (CONST_STRNEQ (name, ".rel"))
7401 {
7402 if (s->size != 0)
7403 {
7404 const char *outname;
7405 asection *target;
7406
7407 /* If this relocation section applies to a read only
7408 section, then we probably need a DT_TEXTREL entry.
7409 If the relocation section is .rel(a).dyn, we always
7410 assert a DT_TEXTREL entry rather than testing whether
7411 there exists a relocation to a read only section or
7412 not. */
7413 outname = bfd_get_section_name (output_bfd,
7414 s->output_section);
7415 target = bfd_get_section_by_name (output_bfd, outname + 4);
7416 if ((target != NULL
7417 && (target->flags & SEC_READONLY) != 0
7418 && (target->flags & SEC_ALLOC) != 0)
7419 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7420 reltext = TRUE;
7421
7422 /* We use the reloc_count field as a counter if we need
7423 to copy relocs into the output file. */
7424 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7425 s->reloc_count = 0;
7426
7427 /* If combreloc is enabled, elf_link_sort_relocs() will
7428 sort relocations, but in a different way than we do,
7429 and before we're done creating relocations. Also, it
7430 will move them around between input sections'
7431 relocation's contents, so our sorting would be
7432 broken, so don't let it run. */
7433 info->combreloc = 0;
7434 }
7435 }
7436 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7437 {
7438 /* Executables do not need a GOT. */
7439 if (info->shared)
7440 {
7441 /* Allocate relocations for all but the reserved entries. */
7442 struct mips_got_info *g;
7443 unsigned int count;
7444
7445 g = mips_elf_got_info (dynobj, NULL);
7446 count = (g->global_gotno
7447 + g->local_gotno
7448 - MIPS_RESERVED_GOTNO (info));
7449 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7450 }
7451 }
7452 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7453 {
7454 /* _bfd_mips_elf_always_size_sections() has already done
7455 most of the work, but some symbols may have been mapped
7456 to versions that we must now resolve in the got_entries
7457 hash tables. */
7458 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7459 struct mips_got_info *g = gg;
7460 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7461 unsigned int needed_relocs = 0;
7462
7463 if (gg->next)
7464 {
7465 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7466 set_got_offset_arg.info = info;
7467
7468 /* NOTE 2005-02-03: How can this call, or the next, ever
7469 find any indirect entries to resolve? They were all
7470 resolved in mips_elf_multi_got. */
7471 mips_elf_resolve_final_got_entries (gg);
7472 for (g = gg->next; g && g->next != gg; g = g->next)
7473 {
7474 unsigned int save_assign;
7475
7476 mips_elf_resolve_final_got_entries (g);
7477
7478 /* Assign offsets to global GOT entries. */
7479 save_assign = g->assigned_gotno;
7480 g->assigned_gotno = g->local_gotno;
7481 set_got_offset_arg.g = g;
7482 set_got_offset_arg.needed_relocs = 0;
7483 htab_traverse (g->got_entries,
7484 mips_elf_set_global_got_offset,
7485 &set_got_offset_arg);
7486 needed_relocs += set_got_offset_arg.needed_relocs;
7487 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7488 <= g->global_gotno);
7489
7490 g->assigned_gotno = save_assign;
7491 if (info->shared)
7492 {
7493 needed_relocs += g->local_gotno - g->assigned_gotno;
7494 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7495 + g->next->global_gotno
7496 + g->next->tls_gotno
7497 + MIPS_RESERVED_GOTNO (info));
7498 }
7499 }
7500 }
7501 else
7502 {
7503 struct mips_elf_count_tls_arg arg;
7504 arg.info = info;
7505 arg.needed = 0;
7506
7507 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7508 &arg);
7509 elf_link_hash_traverse (elf_hash_table (info),
7510 mips_elf_count_global_tls_relocs,
7511 &arg);
7512
7513 needed_relocs += arg.needed;
7514 }
7515
7516 if (needed_relocs)
7517 mips_elf_allocate_dynamic_relocations (dynobj, info,
7518 needed_relocs);
7519 }
7520 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7521 {
7522 /* IRIX rld assumes that the function stub isn't at the end
7523 of .text section. So put a dummy. XXX */
7524 s->size += htab->function_stub_size;
7525 }
7526 else if (! info->shared
7527 && ! mips_elf_hash_table (info)->use_rld_obj_head
7528 && CONST_STRNEQ (name, ".rld_map"))
7529 {
7530 /* We add a room for __rld_map. It will be filled in by the
7531 rtld to contain a pointer to the _r_debug structure. */
7532 s->size += 4;
7533 }
7534 else if (SGI_COMPAT (output_bfd)
7535 && CONST_STRNEQ (name, ".compact_rel"))
7536 s->size += mips_elf_hash_table (info)->compact_rel_size;
7537 else if (! CONST_STRNEQ (name, ".init")
7538 && s != htab->sgotplt
7539 && s != htab->splt)
7540 {
7541 /* It's not one of our sections, so don't allocate space. */
7542 continue;
7543 }
7544
7545 if (s->size == 0)
7546 {
7547 s->flags |= SEC_EXCLUDE;
7548 continue;
7549 }
7550
7551 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7552 continue;
7553
7554 /* Allocate memory for this section last, since we may increase its
7555 size above. */
7556 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7557 {
7558 sreldyn = s;
7559 continue;
7560 }
7561
7562 /* Allocate memory for the section contents. */
7563 s->contents = bfd_zalloc (dynobj, s->size);
7564 if (s->contents == NULL)
7565 {
7566 bfd_set_error (bfd_error_no_memory);
7567 return FALSE;
7568 }
7569 }
7570
7571 /* Allocate memory for the .rel(a).dyn section. */
7572 if (sreldyn != NULL)
7573 {
7574 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7575 if (sreldyn->contents == NULL)
7576 {
7577 bfd_set_error (bfd_error_no_memory);
7578 return FALSE;
7579 }
7580 }
7581
7582 if (elf_hash_table (info)->dynamic_sections_created)
7583 {
7584 /* Add some entries to the .dynamic section. We fill in the
7585 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7586 must add the entries now so that we get the correct size for
7587 the .dynamic section. */
7588
7589 /* SGI object has the equivalence of DT_DEBUG in the
7590 DT_MIPS_RLD_MAP entry. This must come first because glibc
7591 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7592 looks at the first one it sees. */
7593 if (!info->shared
7594 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7595 return FALSE;
7596
7597 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7598 used by the debugger. */
7599 if (info->executable
7600 && !SGI_COMPAT (output_bfd)
7601 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7602 return FALSE;
7603
7604 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7605 info->flags |= DF_TEXTREL;
7606
7607 if ((info->flags & DF_TEXTREL) != 0)
7608 {
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7610 return FALSE;
7611
7612 /* Clear the DF_TEXTREL flag. It will be set again if we
7613 write out an actual text relocation; we may not, because
7614 at this point we do not know whether e.g. any .eh_frame
7615 absolute relocations have been converted to PC-relative. */
7616 info->flags &= ~DF_TEXTREL;
7617 }
7618
7619 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7620 return FALSE;
7621
7622 if (htab->is_vxworks)
7623 {
7624 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7625 use any of the DT_MIPS_* tags. */
7626 if (mips_elf_rel_dyn_section (info, FALSE))
7627 {
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7629 return FALSE;
7630
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7632 return FALSE;
7633
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7635 return FALSE;
7636 }
7637 if (htab->splt->size > 0)
7638 {
7639 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7640 return FALSE;
7641
7642 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7643 return FALSE;
7644
7645 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7646 return FALSE;
7647 }
7648 }
7649 else
7650 {
7651 if (mips_elf_rel_dyn_section (info, FALSE))
7652 {
7653 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7654 return FALSE;
7655
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7657 return FALSE;
7658
7659 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7660 return FALSE;
7661 }
7662
7663 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7664 return FALSE;
7665
7666 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7667 return FALSE;
7668
7669 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7670 return FALSE;
7671
7672 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7673 return FALSE;
7674
7675 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7676 return FALSE;
7677
7678 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7679 return FALSE;
7680
7681 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7682 return FALSE;
7683
7684 if (IRIX_COMPAT (dynobj) == ict_irix5
7685 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7686 return FALSE;
7687
7688 if (IRIX_COMPAT (dynobj) == ict_irix6
7689 && (bfd_get_section_by_name
7690 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7691 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7692 return FALSE;
7693 }
7694 }
7695
7696 return TRUE;
7697 }
7698 \f
7699 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7700 Adjust its R_ADDEND field so that it is correct for the output file.
7701 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7702 and sections respectively; both use symbol indexes. */
7703
7704 static void
7705 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7706 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7707 asection **local_sections, Elf_Internal_Rela *rel)
7708 {
7709 unsigned int r_type, r_symndx;
7710 Elf_Internal_Sym *sym;
7711 asection *sec;
7712
7713 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7714 {
7715 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7716 if (r_type == R_MIPS16_GPREL
7717 || r_type == R_MIPS_GPREL16
7718 || r_type == R_MIPS_GPREL32
7719 || r_type == R_MIPS_LITERAL)
7720 {
7721 rel->r_addend += _bfd_get_gp_value (input_bfd);
7722 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7723 }
7724
7725 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7726 sym = local_syms + r_symndx;
7727
7728 /* Adjust REL's addend to account for section merging. */
7729 if (!info->relocatable)
7730 {
7731 sec = local_sections[r_symndx];
7732 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7733 }
7734
7735 /* This would normally be done by the rela_normal code in elflink.c. */
7736 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7737 rel->r_addend += local_sections[r_symndx]->output_offset;
7738 }
7739 }
7740
7741 /* Relocate a MIPS ELF section. */
7742
7743 bfd_boolean
7744 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7745 bfd *input_bfd, asection *input_section,
7746 bfd_byte *contents, Elf_Internal_Rela *relocs,
7747 Elf_Internal_Sym *local_syms,
7748 asection **local_sections)
7749 {
7750 Elf_Internal_Rela *rel;
7751 const Elf_Internal_Rela *relend;
7752 bfd_vma addend = 0;
7753 bfd_boolean use_saved_addend_p = FALSE;
7754 const struct elf_backend_data *bed;
7755
7756 bed = get_elf_backend_data (output_bfd);
7757 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7758 for (rel = relocs; rel < relend; ++rel)
7759 {
7760 const char *name;
7761 bfd_vma value = 0;
7762 reloc_howto_type *howto;
7763 bfd_boolean require_jalx;
7764 /* TRUE if the relocation is a RELA relocation, rather than a
7765 REL relocation. */
7766 bfd_boolean rela_relocation_p = TRUE;
7767 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7768 const char *msg;
7769 unsigned long r_symndx;
7770 asection *sec;
7771 Elf_Internal_Shdr *symtab_hdr;
7772 struct elf_link_hash_entry *h;
7773
7774 /* Find the relocation howto for this relocation. */
7775 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7776 NEWABI_P (input_bfd)
7777 && (MIPS_RELOC_RELA_P
7778 (input_bfd, input_section,
7779 rel - relocs)));
7780
7781 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7782 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7783 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7784 {
7785 sec = local_sections[r_symndx];
7786 h = NULL;
7787 }
7788 else
7789 {
7790 unsigned long extsymoff;
7791
7792 extsymoff = 0;
7793 if (!elf_bad_symtab (input_bfd))
7794 extsymoff = symtab_hdr->sh_info;
7795 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7796 while (h->root.type == bfd_link_hash_indirect
7797 || h->root.type == bfd_link_hash_warning)
7798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7799
7800 sec = NULL;
7801 if (h->root.type == bfd_link_hash_defined
7802 || h->root.type == bfd_link_hash_defweak)
7803 sec = h->root.u.def.section;
7804 }
7805
7806 if (sec != NULL && elf_discarded_section (sec))
7807 {
7808 /* For relocs against symbols from removed linkonce sections,
7809 or sections discarded by a linker script, we just want the
7810 section contents zeroed. Avoid any special processing. */
7811 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7812 rel->r_info = 0;
7813 rel->r_addend = 0;
7814 continue;
7815 }
7816
7817 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7818 {
7819 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7820 64-bit code, but make sure all their addresses are in the
7821 lowermost or uppermost 32-bit section of the 64-bit address
7822 space. Thus, when they use an R_MIPS_64 they mean what is
7823 usually meant by R_MIPS_32, with the exception that the
7824 stored value is sign-extended to 64 bits. */
7825 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7826
7827 /* On big-endian systems, we need to lie about the position
7828 of the reloc. */
7829 if (bfd_big_endian (input_bfd))
7830 rel->r_offset += 4;
7831 }
7832
7833 if (!use_saved_addend_p)
7834 {
7835 Elf_Internal_Shdr *rel_hdr;
7836
7837 /* If these relocations were originally of the REL variety,
7838 we must pull the addend out of the field that will be
7839 relocated. Otherwise, we simply use the contents of the
7840 RELA relocation. To determine which flavor or relocation
7841 this is, we depend on the fact that the INPUT_SECTION's
7842 REL_HDR is read before its REL_HDR2. */
7843 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7844 if ((size_t) (rel - relocs)
7845 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7846 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7847 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7848 {
7849 bfd_byte *location = contents + rel->r_offset;
7850
7851 /* Note that this is a REL relocation. */
7852 rela_relocation_p = FALSE;
7853
7854 /* Get the addend, which is stored in the input file. */
7855 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7856 location);
7857 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7858 contents);
7859 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7860 location);
7861
7862 addend &= howto->src_mask;
7863
7864 /* For some kinds of relocations, the ADDEND is a
7865 combination of the addend stored in two different
7866 relocations. */
7867 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7868 || (r_type == R_MIPS_GOT16
7869 && mips_elf_local_relocation_p (input_bfd, rel,
7870 local_sections, FALSE)))
7871 {
7872 const Elf_Internal_Rela *lo16_relocation;
7873 reloc_howto_type *lo16_howto;
7874 int lo16_type;
7875
7876 if (r_type == R_MIPS16_HI16)
7877 lo16_type = R_MIPS16_LO16;
7878 else
7879 lo16_type = R_MIPS_LO16;
7880
7881 /* The combined value is the sum of the HI16 addend,
7882 left-shifted by sixteen bits, and the LO16
7883 addend, sign extended. (Usually, the code does
7884 a `lui' of the HI16 value, and then an `addiu' of
7885 the LO16 value.)
7886
7887 Scan ahead to find a matching LO16 relocation.
7888
7889 According to the MIPS ELF ABI, the R_MIPS_LO16
7890 relocation must be immediately following.
7891 However, for the IRIX6 ABI, the next relocation
7892 may be a composed relocation consisting of
7893 several relocations for the same address. In
7894 that case, the R_MIPS_LO16 relocation may occur
7895 as one of these. We permit a similar extension
7896 in general, as that is useful for GCC.
7897
7898 In some cases GCC dead code elimination removes
7899 the LO16 but keeps the corresponding HI16. This
7900 is strictly speaking a violation of the ABI but
7901 not immediately harmful. */
7902 lo16_relocation = mips_elf_next_relocation (input_bfd,
7903 lo16_type,
7904 rel, relend);
7905 if (lo16_relocation == NULL)
7906 {
7907 const char *name;
7908
7909 if (h)
7910 name = h->root.root.string;
7911 else
7912 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7913 local_syms + r_symndx,
7914 sec);
7915 (*_bfd_error_handler)
7916 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7917 input_bfd, input_section, name, howto->name,
7918 rel->r_offset);
7919 }
7920 else
7921 {
7922 bfd_byte *lo16_location;
7923 bfd_vma l;
7924
7925 lo16_location = contents + lo16_relocation->r_offset;
7926
7927 /* Obtain the addend kept there. */
7928 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7929 lo16_type, FALSE);
7930 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7931 FALSE, lo16_location);
7932 l = mips_elf_obtain_contents (lo16_howto,
7933 lo16_relocation,
7934 input_bfd, contents);
7935 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7936 FALSE, lo16_location);
7937 l &= lo16_howto->src_mask;
7938 l <<= lo16_howto->rightshift;
7939 l = _bfd_mips_elf_sign_extend (l, 16);
7940
7941 addend <<= 16;
7942
7943 /* Compute the combined addend. */
7944 addend += l;
7945 }
7946 }
7947 else
7948 addend <<= howto->rightshift;
7949 }
7950 else
7951 addend = rel->r_addend;
7952 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7953 local_syms, local_sections, rel);
7954 }
7955
7956 if (info->relocatable)
7957 {
7958 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7959 && bfd_big_endian (input_bfd))
7960 rel->r_offset -= 4;
7961
7962 if (!rela_relocation_p && rel->r_addend)
7963 {
7964 addend += rel->r_addend;
7965 if (r_type == R_MIPS_HI16
7966 || r_type == R_MIPS_GOT16)
7967 addend = mips_elf_high (addend);
7968 else if (r_type == R_MIPS_HIGHER)
7969 addend = mips_elf_higher (addend);
7970 else if (r_type == R_MIPS_HIGHEST)
7971 addend = mips_elf_highest (addend);
7972 else
7973 addend >>= howto->rightshift;
7974
7975 /* We use the source mask, rather than the destination
7976 mask because the place to which we are writing will be
7977 source of the addend in the final link. */
7978 addend &= howto->src_mask;
7979
7980 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7981 /* See the comment above about using R_MIPS_64 in the 32-bit
7982 ABI. Here, we need to update the addend. It would be
7983 possible to get away with just using the R_MIPS_32 reloc
7984 but for endianness. */
7985 {
7986 bfd_vma sign_bits;
7987 bfd_vma low_bits;
7988 bfd_vma high_bits;
7989
7990 if (addend & ((bfd_vma) 1 << 31))
7991 #ifdef BFD64
7992 sign_bits = ((bfd_vma) 1 << 32) - 1;
7993 #else
7994 sign_bits = -1;
7995 #endif
7996 else
7997 sign_bits = 0;
7998
7999 /* If we don't know that we have a 64-bit type,
8000 do two separate stores. */
8001 if (bfd_big_endian (input_bfd))
8002 {
8003 /* Store the sign-bits (which are most significant)
8004 first. */
8005 low_bits = sign_bits;
8006 high_bits = addend;
8007 }
8008 else
8009 {
8010 low_bits = addend;
8011 high_bits = sign_bits;
8012 }
8013 bfd_put_32 (input_bfd, low_bits,
8014 contents + rel->r_offset);
8015 bfd_put_32 (input_bfd, high_bits,
8016 contents + rel->r_offset + 4);
8017 continue;
8018 }
8019
8020 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8021 input_bfd, input_section,
8022 contents, FALSE))
8023 return FALSE;
8024 }
8025
8026 /* Go on to the next relocation. */
8027 continue;
8028 }
8029
8030 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8031 relocations for the same offset. In that case we are
8032 supposed to treat the output of each relocation as the addend
8033 for the next. */
8034 if (rel + 1 < relend
8035 && rel->r_offset == rel[1].r_offset
8036 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8037 use_saved_addend_p = TRUE;
8038 else
8039 use_saved_addend_p = FALSE;
8040
8041 /* Figure out what value we are supposed to relocate. */
8042 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8043 input_section, info, rel,
8044 addend, howto, local_syms,
8045 local_sections, &value,
8046 &name, &require_jalx,
8047 use_saved_addend_p))
8048 {
8049 case bfd_reloc_continue:
8050 /* There's nothing to do. */
8051 continue;
8052
8053 case bfd_reloc_undefined:
8054 /* mips_elf_calculate_relocation already called the
8055 undefined_symbol callback. There's no real point in
8056 trying to perform the relocation at this point, so we
8057 just skip ahead to the next relocation. */
8058 continue;
8059
8060 case bfd_reloc_notsupported:
8061 msg = _("internal error: unsupported relocation error");
8062 info->callbacks->warning
8063 (info, msg, name, input_bfd, input_section, rel->r_offset);
8064 return FALSE;
8065
8066 case bfd_reloc_overflow:
8067 if (use_saved_addend_p)
8068 /* Ignore overflow until we reach the last relocation for
8069 a given location. */
8070 ;
8071 else
8072 {
8073 BFD_ASSERT (name != NULL);
8074 if (! ((*info->callbacks->reloc_overflow)
8075 (info, NULL, name, howto->name, (bfd_vma) 0,
8076 input_bfd, input_section, rel->r_offset)))
8077 return FALSE;
8078 }
8079 break;
8080
8081 case bfd_reloc_ok:
8082 break;
8083
8084 default:
8085 abort ();
8086 break;
8087 }
8088
8089 /* If we've got another relocation for the address, keep going
8090 until we reach the last one. */
8091 if (use_saved_addend_p)
8092 {
8093 addend = value;
8094 continue;
8095 }
8096
8097 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8098 /* See the comment above about using R_MIPS_64 in the 32-bit
8099 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8100 that calculated the right value. Now, however, we
8101 sign-extend the 32-bit result to 64-bits, and store it as a
8102 64-bit value. We are especially generous here in that we
8103 go to extreme lengths to support this usage on systems with
8104 only a 32-bit VMA. */
8105 {
8106 bfd_vma sign_bits;
8107 bfd_vma low_bits;
8108 bfd_vma high_bits;
8109
8110 if (value & ((bfd_vma) 1 << 31))
8111 #ifdef BFD64
8112 sign_bits = ((bfd_vma) 1 << 32) - 1;
8113 #else
8114 sign_bits = -1;
8115 #endif
8116 else
8117 sign_bits = 0;
8118
8119 /* If we don't know that we have a 64-bit type,
8120 do two separate stores. */
8121 if (bfd_big_endian (input_bfd))
8122 {
8123 /* Undo what we did above. */
8124 rel->r_offset -= 4;
8125 /* Store the sign-bits (which are most significant)
8126 first. */
8127 low_bits = sign_bits;
8128 high_bits = value;
8129 }
8130 else
8131 {
8132 low_bits = value;
8133 high_bits = sign_bits;
8134 }
8135 bfd_put_32 (input_bfd, low_bits,
8136 contents + rel->r_offset);
8137 bfd_put_32 (input_bfd, high_bits,
8138 contents + rel->r_offset + 4);
8139 continue;
8140 }
8141
8142 /* Actually perform the relocation. */
8143 if (! mips_elf_perform_relocation (info, howto, rel, value,
8144 input_bfd, input_section,
8145 contents, require_jalx))
8146 return FALSE;
8147 }
8148
8149 return TRUE;
8150 }
8151 \f
8152 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8153 adjust it appropriately now. */
8154
8155 static void
8156 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8157 const char *name, Elf_Internal_Sym *sym)
8158 {
8159 /* The linker script takes care of providing names and values for
8160 these, but we must place them into the right sections. */
8161 static const char* const text_section_symbols[] = {
8162 "_ftext",
8163 "_etext",
8164 "__dso_displacement",
8165 "__elf_header",
8166 "__program_header_table",
8167 NULL
8168 };
8169
8170 static const char* const data_section_symbols[] = {
8171 "_fdata",
8172 "_edata",
8173 "_end",
8174 "_fbss",
8175 NULL
8176 };
8177
8178 const char* const *p;
8179 int i;
8180
8181 for (i = 0; i < 2; ++i)
8182 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8183 *p;
8184 ++p)
8185 if (strcmp (*p, name) == 0)
8186 {
8187 /* All of these symbols are given type STT_SECTION by the
8188 IRIX6 linker. */
8189 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8190 sym->st_other = STO_PROTECTED;
8191
8192 /* The IRIX linker puts these symbols in special sections. */
8193 if (i == 0)
8194 sym->st_shndx = SHN_MIPS_TEXT;
8195 else
8196 sym->st_shndx = SHN_MIPS_DATA;
8197
8198 break;
8199 }
8200 }
8201
8202 /* Finish up dynamic symbol handling. We set the contents of various
8203 dynamic sections here. */
8204
8205 bfd_boolean
8206 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8207 struct bfd_link_info *info,
8208 struct elf_link_hash_entry *h,
8209 Elf_Internal_Sym *sym)
8210 {
8211 bfd *dynobj;
8212 asection *sgot;
8213 struct mips_got_info *g, *gg;
8214 const char *name;
8215 int idx;
8216 struct mips_elf_link_hash_table *htab;
8217
8218 htab = mips_elf_hash_table (info);
8219 dynobj = elf_hash_table (info)->dynobj;
8220
8221 if (h->plt.offset != MINUS_ONE)
8222 {
8223 asection *s;
8224 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8225
8226 /* This symbol has a stub. Set it up. */
8227
8228 BFD_ASSERT (h->dynindx != -1);
8229
8230 s = bfd_get_section_by_name (dynobj,
8231 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8232 BFD_ASSERT (s != NULL);
8233
8234 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8235 || (h->dynindx <= 0xffff));
8236
8237 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8238 sign extension at runtime in the stub, resulting in a negative
8239 index value. */
8240 if (h->dynindx & ~0x7fffffff)
8241 return FALSE;
8242
8243 /* Fill the stub. */
8244 idx = 0;
8245 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8246 idx += 4;
8247 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8248 idx += 4;
8249 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8250 {
8251 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8252 stub + idx);
8253 idx += 4;
8254 }
8255 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8256 idx += 4;
8257
8258 /* If a large stub is not required and sign extension is not a
8259 problem, then use legacy code in the stub. */
8260 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8261 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8262 else if (h->dynindx & ~0x7fff)
8263 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8264 else
8265 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8266 stub + idx);
8267
8268 BFD_ASSERT (h->plt.offset <= s->size);
8269 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8270
8271 /* Mark the symbol as undefined. plt.offset != -1 occurs
8272 only for the referenced symbol. */
8273 sym->st_shndx = SHN_UNDEF;
8274
8275 /* The run-time linker uses the st_value field of the symbol
8276 to reset the global offset table entry for this external
8277 to its stub address when unlinking a shared object. */
8278 sym->st_value = (s->output_section->vma + s->output_offset
8279 + h->plt.offset);
8280 }
8281
8282 BFD_ASSERT (h->dynindx != -1
8283 || h->forced_local);
8284
8285 sgot = mips_elf_got_section (dynobj, FALSE);
8286 BFD_ASSERT (sgot != NULL);
8287 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8288 g = mips_elf_section_data (sgot)->u.got_info;
8289 BFD_ASSERT (g != NULL);
8290
8291 /* Run through the global symbol table, creating GOT entries for all
8292 the symbols that need them. */
8293 if (g->global_gotsym != NULL
8294 && h->dynindx >= g->global_gotsym->dynindx)
8295 {
8296 bfd_vma offset;
8297 bfd_vma value;
8298
8299 value = sym->st_value;
8300 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8301 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8302 }
8303
8304 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8305 {
8306 struct mips_got_entry e, *p;
8307 bfd_vma entry;
8308 bfd_vma offset;
8309
8310 gg = g;
8311
8312 e.abfd = output_bfd;
8313 e.symndx = -1;
8314 e.d.h = (struct mips_elf_link_hash_entry *)h;
8315 e.tls_type = 0;
8316
8317 for (g = g->next; g->next != gg; g = g->next)
8318 {
8319 if (g->got_entries
8320 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8321 &e)))
8322 {
8323 offset = p->gotidx;
8324 if (info->shared
8325 || (elf_hash_table (info)->dynamic_sections_created
8326 && p->d.h != NULL
8327 && p->d.h->root.def_dynamic
8328 && !p->d.h->root.def_regular))
8329 {
8330 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8331 the various compatibility problems, it's easier to mock
8332 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8333 mips_elf_create_dynamic_relocation to calculate the
8334 appropriate addend. */
8335 Elf_Internal_Rela rel[3];
8336
8337 memset (rel, 0, sizeof (rel));
8338 if (ABI_64_P (output_bfd))
8339 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8340 else
8341 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8342 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8343
8344 entry = 0;
8345 if (! (mips_elf_create_dynamic_relocation
8346 (output_bfd, info, rel,
8347 e.d.h, NULL, sym->st_value, &entry, sgot)))
8348 return FALSE;
8349 }
8350 else
8351 entry = sym->st_value;
8352 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8353 }
8354 }
8355 }
8356
8357 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8358 name = h->root.root.string;
8359 if (strcmp (name, "_DYNAMIC") == 0
8360 || h == elf_hash_table (info)->hgot)
8361 sym->st_shndx = SHN_ABS;
8362 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8363 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8364 {
8365 sym->st_shndx = SHN_ABS;
8366 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8367 sym->st_value = 1;
8368 }
8369 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8370 {
8371 sym->st_shndx = SHN_ABS;
8372 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8373 sym->st_value = elf_gp (output_bfd);
8374 }
8375 else if (SGI_COMPAT (output_bfd))
8376 {
8377 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8378 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8379 {
8380 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8381 sym->st_other = STO_PROTECTED;
8382 sym->st_value = 0;
8383 sym->st_shndx = SHN_MIPS_DATA;
8384 }
8385 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8386 {
8387 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8388 sym->st_other = STO_PROTECTED;
8389 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8390 sym->st_shndx = SHN_ABS;
8391 }
8392 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8393 {
8394 if (h->type == STT_FUNC)
8395 sym->st_shndx = SHN_MIPS_TEXT;
8396 else if (h->type == STT_OBJECT)
8397 sym->st_shndx = SHN_MIPS_DATA;
8398 }
8399 }
8400
8401 /* Handle the IRIX6-specific symbols. */
8402 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8403 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8404
8405 if (! info->shared)
8406 {
8407 if (! mips_elf_hash_table (info)->use_rld_obj_head
8408 && (strcmp (name, "__rld_map") == 0
8409 || strcmp (name, "__RLD_MAP") == 0))
8410 {
8411 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8412 BFD_ASSERT (s != NULL);
8413 sym->st_value = s->output_section->vma + s->output_offset;
8414 bfd_put_32 (output_bfd, 0, s->contents);
8415 if (mips_elf_hash_table (info)->rld_value == 0)
8416 mips_elf_hash_table (info)->rld_value = sym->st_value;
8417 }
8418 else if (mips_elf_hash_table (info)->use_rld_obj_head
8419 && strcmp (name, "__rld_obj_head") == 0)
8420 {
8421 /* IRIX6 does not use a .rld_map section. */
8422 if (IRIX_COMPAT (output_bfd) == ict_irix5
8423 || IRIX_COMPAT (output_bfd) == ict_none)
8424 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8425 != NULL);
8426 mips_elf_hash_table (info)->rld_value = sym->st_value;
8427 }
8428 }
8429
8430 /* If this is a mips16 symbol, force the value to be even. */
8431 if (sym->st_other == STO_MIPS16)
8432 sym->st_value &= ~1;
8433
8434 return TRUE;
8435 }
8436
8437 /* Likewise, for VxWorks. */
8438
8439 bfd_boolean
8440 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8441 struct bfd_link_info *info,
8442 struct elf_link_hash_entry *h,
8443 Elf_Internal_Sym *sym)
8444 {
8445 bfd *dynobj;
8446 asection *sgot;
8447 struct mips_got_info *g;
8448 struct mips_elf_link_hash_table *htab;
8449
8450 htab = mips_elf_hash_table (info);
8451 dynobj = elf_hash_table (info)->dynobj;
8452
8453 if (h->plt.offset != (bfd_vma) -1)
8454 {
8455 bfd_byte *loc;
8456 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8457 Elf_Internal_Rela rel;
8458 static const bfd_vma *plt_entry;
8459
8460 BFD_ASSERT (h->dynindx != -1);
8461 BFD_ASSERT (htab->splt != NULL);
8462 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8463
8464 /* Calculate the address of the .plt entry. */
8465 plt_address = (htab->splt->output_section->vma
8466 + htab->splt->output_offset
8467 + h->plt.offset);
8468
8469 /* Calculate the index of the entry. */
8470 plt_index = ((h->plt.offset - htab->plt_header_size)
8471 / htab->plt_entry_size);
8472
8473 /* Calculate the address of the .got.plt entry. */
8474 got_address = (htab->sgotplt->output_section->vma
8475 + htab->sgotplt->output_offset
8476 + plt_index * 4);
8477
8478 /* Calculate the offset of the .got.plt entry from
8479 _GLOBAL_OFFSET_TABLE_. */
8480 got_offset = mips_elf_gotplt_index (info, h);
8481
8482 /* Calculate the offset for the branch at the start of the PLT
8483 entry. The branch jumps to the beginning of .plt. */
8484 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8485
8486 /* Fill in the initial value of the .got.plt entry. */
8487 bfd_put_32 (output_bfd, plt_address,
8488 htab->sgotplt->contents + plt_index * 4);
8489
8490 /* Find out where the .plt entry should go. */
8491 loc = htab->splt->contents + h->plt.offset;
8492
8493 if (info->shared)
8494 {
8495 plt_entry = mips_vxworks_shared_plt_entry;
8496 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8497 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8498 }
8499 else
8500 {
8501 bfd_vma got_address_high, got_address_low;
8502
8503 plt_entry = mips_vxworks_exec_plt_entry;
8504 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8505 got_address_low = got_address & 0xffff;
8506
8507 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8508 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8509 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8510 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8511 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8512 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8513 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8514 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8515
8516 loc = (htab->srelplt2->contents
8517 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8518
8519 /* Emit a relocation for the .got.plt entry. */
8520 rel.r_offset = got_address;
8521 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8522 rel.r_addend = h->plt.offset;
8523 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8524
8525 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8526 loc += sizeof (Elf32_External_Rela);
8527 rel.r_offset = plt_address + 8;
8528 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8529 rel.r_addend = got_offset;
8530 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8531
8532 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8533 loc += sizeof (Elf32_External_Rela);
8534 rel.r_offset += 4;
8535 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8536 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8537 }
8538
8539 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8540 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8541 rel.r_offset = got_address;
8542 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8543 rel.r_addend = 0;
8544 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8545
8546 if (!h->def_regular)
8547 sym->st_shndx = SHN_UNDEF;
8548 }
8549
8550 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8551
8552 sgot = mips_elf_got_section (dynobj, FALSE);
8553 BFD_ASSERT (sgot != NULL);
8554 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8555 g = mips_elf_section_data (sgot)->u.got_info;
8556 BFD_ASSERT (g != NULL);
8557
8558 /* See if this symbol has an entry in the GOT. */
8559 if (g->global_gotsym != NULL
8560 && h->dynindx >= g->global_gotsym->dynindx)
8561 {
8562 bfd_vma offset;
8563 Elf_Internal_Rela outrel;
8564 bfd_byte *loc;
8565 asection *s;
8566
8567 /* Install the symbol value in the GOT. */
8568 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8569 R_MIPS_GOT16, info);
8570 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8571
8572 /* Add a dynamic relocation for it. */
8573 s = mips_elf_rel_dyn_section (info, FALSE);
8574 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8575 outrel.r_offset = (sgot->output_section->vma
8576 + sgot->output_offset
8577 + offset);
8578 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8579 outrel.r_addend = 0;
8580 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8581 }
8582
8583 /* Emit a copy reloc, if needed. */
8584 if (h->needs_copy)
8585 {
8586 Elf_Internal_Rela rel;
8587
8588 BFD_ASSERT (h->dynindx != -1);
8589
8590 rel.r_offset = (h->root.u.def.section->output_section->vma
8591 + h->root.u.def.section->output_offset
8592 + h->root.u.def.value);
8593 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8594 rel.r_addend = 0;
8595 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8596 htab->srelbss->contents
8597 + (htab->srelbss->reloc_count
8598 * sizeof (Elf32_External_Rela)));
8599 ++htab->srelbss->reloc_count;
8600 }
8601
8602 /* If this is a mips16 symbol, force the value to be even. */
8603 if (sym->st_other == STO_MIPS16)
8604 sym->st_value &= ~1;
8605
8606 return TRUE;
8607 }
8608
8609 /* Install the PLT header for a VxWorks executable and finalize the
8610 contents of .rela.plt.unloaded. */
8611
8612 static void
8613 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8614 {
8615 Elf_Internal_Rela rela;
8616 bfd_byte *loc;
8617 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8618 static const bfd_vma *plt_entry;
8619 struct mips_elf_link_hash_table *htab;
8620
8621 htab = mips_elf_hash_table (info);
8622 plt_entry = mips_vxworks_exec_plt0_entry;
8623
8624 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8625 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8626 + htab->root.hgot->root.u.def.section->output_offset
8627 + htab->root.hgot->root.u.def.value);
8628
8629 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8630 got_value_low = got_value & 0xffff;
8631
8632 /* Calculate the address of the PLT header. */
8633 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8634
8635 /* Install the PLT header. */
8636 loc = htab->splt->contents;
8637 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8638 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8639 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8640 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8641 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8642 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8643
8644 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8645 loc = htab->srelplt2->contents;
8646 rela.r_offset = plt_address;
8647 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8648 rela.r_addend = 0;
8649 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8650 loc += sizeof (Elf32_External_Rela);
8651
8652 /* Output the relocation for the following addiu of
8653 %lo(_GLOBAL_OFFSET_TABLE_). */
8654 rela.r_offset += 4;
8655 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8656 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8657 loc += sizeof (Elf32_External_Rela);
8658
8659 /* Fix up the remaining relocations. They may have the wrong
8660 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8661 in which symbols were output. */
8662 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8663 {
8664 Elf_Internal_Rela rel;
8665
8666 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8667 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8668 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8669 loc += sizeof (Elf32_External_Rela);
8670
8671 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8672 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8673 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8674 loc += sizeof (Elf32_External_Rela);
8675
8676 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8677 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8678 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8679 loc += sizeof (Elf32_External_Rela);
8680 }
8681 }
8682
8683 /* Install the PLT header for a VxWorks shared library. */
8684
8685 static void
8686 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8687 {
8688 unsigned int i;
8689 struct mips_elf_link_hash_table *htab;
8690
8691 htab = mips_elf_hash_table (info);
8692
8693 /* We just need to copy the entry byte-by-byte. */
8694 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8695 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8696 htab->splt->contents + i * 4);
8697 }
8698
8699 /* Finish up the dynamic sections. */
8700
8701 bfd_boolean
8702 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8703 struct bfd_link_info *info)
8704 {
8705 bfd *dynobj;
8706 asection *sdyn;
8707 asection *sgot;
8708 struct mips_got_info *gg, *g;
8709 struct mips_elf_link_hash_table *htab;
8710
8711 htab = mips_elf_hash_table (info);
8712 dynobj = elf_hash_table (info)->dynobj;
8713
8714 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8715
8716 sgot = mips_elf_got_section (dynobj, FALSE);
8717 if (sgot == NULL)
8718 gg = g = NULL;
8719 else
8720 {
8721 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8722 gg = mips_elf_section_data (sgot)->u.got_info;
8723 BFD_ASSERT (gg != NULL);
8724 g = mips_elf_got_for_ibfd (gg, output_bfd);
8725 BFD_ASSERT (g != NULL);
8726 }
8727
8728 if (elf_hash_table (info)->dynamic_sections_created)
8729 {
8730 bfd_byte *b;
8731 int dyn_to_skip = 0, dyn_skipped = 0;
8732
8733 BFD_ASSERT (sdyn != NULL);
8734 BFD_ASSERT (g != NULL);
8735
8736 for (b = sdyn->contents;
8737 b < sdyn->contents + sdyn->size;
8738 b += MIPS_ELF_DYN_SIZE (dynobj))
8739 {
8740 Elf_Internal_Dyn dyn;
8741 const char *name;
8742 size_t elemsize;
8743 asection *s;
8744 bfd_boolean swap_out_p;
8745
8746 /* Read in the current dynamic entry. */
8747 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8748
8749 /* Assume that we're going to modify it and write it out. */
8750 swap_out_p = TRUE;
8751
8752 switch (dyn.d_tag)
8753 {
8754 case DT_RELENT:
8755 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8756 break;
8757
8758 case DT_RELAENT:
8759 BFD_ASSERT (htab->is_vxworks);
8760 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8761 break;
8762
8763 case DT_STRSZ:
8764 /* Rewrite DT_STRSZ. */
8765 dyn.d_un.d_val =
8766 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8767 break;
8768
8769 case DT_PLTGOT:
8770 name = ".got";
8771 if (htab->is_vxworks)
8772 {
8773 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8774 of the ".got" section in DYNOBJ. */
8775 s = bfd_get_section_by_name (dynobj, name);
8776 BFD_ASSERT (s != NULL);
8777 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8778 }
8779 else
8780 {
8781 s = bfd_get_section_by_name (output_bfd, name);
8782 BFD_ASSERT (s != NULL);
8783 dyn.d_un.d_ptr = s->vma;
8784 }
8785 break;
8786
8787 case DT_MIPS_RLD_VERSION:
8788 dyn.d_un.d_val = 1; /* XXX */
8789 break;
8790
8791 case DT_MIPS_FLAGS:
8792 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8793 break;
8794
8795 case DT_MIPS_TIME_STAMP:
8796 {
8797 time_t t;
8798 time (&t);
8799 dyn.d_un.d_val = t;
8800 }
8801 break;
8802
8803 case DT_MIPS_ICHECKSUM:
8804 /* XXX FIXME: */
8805 swap_out_p = FALSE;
8806 break;
8807
8808 case DT_MIPS_IVERSION:
8809 /* XXX FIXME: */
8810 swap_out_p = FALSE;
8811 break;
8812
8813 case DT_MIPS_BASE_ADDRESS:
8814 s = output_bfd->sections;
8815 BFD_ASSERT (s != NULL);
8816 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8817 break;
8818
8819 case DT_MIPS_LOCAL_GOTNO:
8820 dyn.d_un.d_val = g->local_gotno;
8821 break;
8822
8823 case DT_MIPS_UNREFEXTNO:
8824 /* The index into the dynamic symbol table which is the
8825 entry of the first external symbol that is not
8826 referenced within the same object. */
8827 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8828 break;
8829
8830 case DT_MIPS_GOTSYM:
8831 if (gg->global_gotsym)
8832 {
8833 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8834 break;
8835 }
8836 /* In case if we don't have global got symbols we default
8837 to setting DT_MIPS_GOTSYM to the same value as
8838 DT_MIPS_SYMTABNO, so we just fall through. */
8839
8840 case DT_MIPS_SYMTABNO:
8841 name = ".dynsym";
8842 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8843 s = bfd_get_section_by_name (output_bfd, name);
8844 BFD_ASSERT (s != NULL);
8845
8846 dyn.d_un.d_val = s->size / elemsize;
8847 break;
8848
8849 case DT_MIPS_HIPAGENO:
8850 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8851 break;
8852
8853 case DT_MIPS_RLD_MAP:
8854 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8855 break;
8856
8857 case DT_MIPS_OPTIONS:
8858 s = (bfd_get_section_by_name
8859 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8860 dyn.d_un.d_ptr = s->vma;
8861 break;
8862
8863 case DT_RELASZ:
8864 BFD_ASSERT (htab->is_vxworks);
8865 /* The count does not include the JUMP_SLOT relocations. */
8866 if (htab->srelplt)
8867 dyn.d_un.d_val -= htab->srelplt->size;
8868 break;
8869
8870 case DT_PLTREL:
8871 BFD_ASSERT (htab->is_vxworks);
8872 dyn.d_un.d_val = DT_RELA;
8873 break;
8874
8875 case DT_PLTRELSZ:
8876 BFD_ASSERT (htab->is_vxworks);
8877 dyn.d_un.d_val = htab->srelplt->size;
8878 break;
8879
8880 case DT_JMPREL:
8881 BFD_ASSERT (htab->is_vxworks);
8882 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8883 + htab->srelplt->output_offset);
8884 break;
8885
8886 case DT_TEXTREL:
8887 /* If we didn't need any text relocations after all, delete
8888 the dynamic tag. */
8889 if (!(info->flags & DF_TEXTREL))
8890 {
8891 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8892 swap_out_p = FALSE;
8893 }
8894 break;
8895
8896 case DT_FLAGS:
8897 /* If we didn't need any text relocations after all, clear
8898 DF_TEXTREL from DT_FLAGS. */
8899 if (!(info->flags & DF_TEXTREL))
8900 dyn.d_un.d_val &= ~DF_TEXTREL;
8901 else
8902 swap_out_p = FALSE;
8903 break;
8904
8905 default:
8906 swap_out_p = FALSE;
8907 break;
8908 }
8909
8910 if (swap_out_p || dyn_skipped)
8911 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8912 (dynobj, &dyn, b - dyn_skipped);
8913
8914 if (dyn_to_skip)
8915 {
8916 dyn_skipped += dyn_to_skip;
8917 dyn_to_skip = 0;
8918 }
8919 }
8920
8921 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8922 if (dyn_skipped > 0)
8923 memset (b - dyn_skipped, 0, dyn_skipped);
8924 }
8925
8926 if (sgot != NULL && sgot->size > 0)
8927 {
8928 if (htab->is_vxworks)
8929 {
8930 /* The first entry of the global offset table points to the
8931 ".dynamic" section. The second is initialized by the
8932 loader and contains the shared library identifier.
8933 The third is also initialized by the loader and points
8934 to the lazy resolution stub. */
8935 MIPS_ELF_PUT_WORD (output_bfd,
8936 sdyn->output_offset + sdyn->output_section->vma,
8937 sgot->contents);
8938 MIPS_ELF_PUT_WORD (output_bfd, 0,
8939 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8940 MIPS_ELF_PUT_WORD (output_bfd, 0,
8941 sgot->contents
8942 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8943 }
8944 else
8945 {
8946 /* The first entry of the global offset table will be filled at
8947 runtime. The second entry will be used by some runtime loaders.
8948 This isn't the case of IRIX rld. */
8949 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8950 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8951 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8952 }
8953
8954 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8955 = MIPS_ELF_GOT_SIZE (output_bfd);
8956 }
8957
8958 /* Generate dynamic relocations for the non-primary gots. */
8959 if (gg != NULL && gg->next)
8960 {
8961 Elf_Internal_Rela rel[3];
8962 bfd_vma addend = 0;
8963
8964 memset (rel, 0, sizeof (rel));
8965 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8966
8967 for (g = gg->next; g->next != gg; g = g->next)
8968 {
8969 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8970 + g->next->tls_gotno;
8971
8972 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8973 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8974 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8975 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8976
8977 if (! info->shared)
8978 continue;
8979
8980 while (index < g->assigned_gotno)
8981 {
8982 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8983 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8984 if (!(mips_elf_create_dynamic_relocation
8985 (output_bfd, info, rel, NULL,
8986 bfd_abs_section_ptr,
8987 0, &addend, sgot)))
8988 return FALSE;
8989 BFD_ASSERT (addend == 0);
8990 }
8991 }
8992 }
8993
8994 /* The generation of dynamic relocations for the non-primary gots
8995 adds more dynamic relocations. We cannot count them until
8996 here. */
8997
8998 if (elf_hash_table (info)->dynamic_sections_created)
8999 {
9000 bfd_byte *b;
9001 bfd_boolean swap_out_p;
9002
9003 BFD_ASSERT (sdyn != NULL);
9004
9005 for (b = sdyn->contents;
9006 b < sdyn->contents + sdyn->size;
9007 b += MIPS_ELF_DYN_SIZE (dynobj))
9008 {
9009 Elf_Internal_Dyn dyn;
9010 asection *s;
9011
9012 /* Read in the current dynamic entry. */
9013 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9014
9015 /* Assume that we're going to modify it and write it out. */
9016 swap_out_p = TRUE;
9017
9018 switch (dyn.d_tag)
9019 {
9020 case DT_RELSZ:
9021 /* Reduce DT_RELSZ to account for any relocations we
9022 decided not to make. This is for the n64 irix rld,
9023 which doesn't seem to apply any relocations if there
9024 are trailing null entries. */
9025 s = mips_elf_rel_dyn_section (info, FALSE);
9026 dyn.d_un.d_val = (s->reloc_count
9027 * (ABI_64_P (output_bfd)
9028 ? sizeof (Elf64_Mips_External_Rel)
9029 : sizeof (Elf32_External_Rel)));
9030 /* Adjust the section size too. Tools like the prelinker
9031 can reasonably expect the values to the same. */
9032 elf_section_data (s->output_section)->this_hdr.sh_size
9033 = dyn.d_un.d_val;
9034 break;
9035
9036 default:
9037 swap_out_p = FALSE;
9038 break;
9039 }
9040
9041 if (swap_out_p)
9042 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9043 (dynobj, &dyn, b);
9044 }
9045 }
9046
9047 {
9048 asection *s;
9049 Elf32_compact_rel cpt;
9050
9051 if (SGI_COMPAT (output_bfd))
9052 {
9053 /* Write .compact_rel section out. */
9054 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9055 if (s != NULL)
9056 {
9057 cpt.id1 = 1;
9058 cpt.num = s->reloc_count;
9059 cpt.id2 = 2;
9060 cpt.offset = (s->output_section->filepos
9061 + sizeof (Elf32_External_compact_rel));
9062 cpt.reserved0 = 0;
9063 cpt.reserved1 = 0;
9064 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9065 ((Elf32_External_compact_rel *)
9066 s->contents));
9067
9068 /* Clean up a dummy stub function entry in .text. */
9069 s = bfd_get_section_by_name (dynobj,
9070 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9071 if (s != NULL)
9072 {
9073 file_ptr dummy_offset;
9074
9075 BFD_ASSERT (s->size >= htab->function_stub_size);
9076 dummy_offset = s->size - htab->function_stub_size;
9077 memset (s->contents + dummy_offset, 0,
9078 htab->function_stub_size);
9079 }
9080 }
9081 }
9082
9083 /* The psABI says that the dynamic relocations must be sorted in
9084 increasing order of r_symndx. The VxWorks EABI doesn't require
9085 this, and because the code below handles REL rather than RELA
9086 relocations, using it for VxWorks would be outright harmful. */
9087 if (!htab->is_vxworks)
9088 {
9089 s = mips_elf_rel_dyn_section (info, FALSE);
9090 if (s != NULL
9091 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9092 {
9093 reldyn_sorting_bfd = output_bfd;
9094
9095 if (ABI_64_P (output_bfd))
9096 qsort ((Elf64_External_Rel *) s->contents + 1,
9097 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9098 sort_dynamic_relocs_64);
9099 else
9100 qsort ((Elf32_External_Rel *) s->contents + 1,
9101 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9102 sort_dynamic_relocs);
9103 }
9104 }
9105 }
9106
9107 if (htab->is_vxworks && htab->splt->size > 0)
9108 {
9109 if (info->shared)
9110 mips_vxworks_finish_shared_plt (output_bfd, info);
9111 else
9112 mips_vxworks_finish_exec_plt (output_bfd, info);
9113 }
9114 return TRUE;
9115 }
9116
9117
9118 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9119
9120 static void
9121 mips_set_isa_flags (bfd *abfd)
9122 {
9123 flagword val;
9124
9125 switch (bfd_get_mach (abfd))
9126 {
9127 default:
9128 case bfd_mach_mips3000:
9129 val = E_MIPS_ARCH_1;
9130 break;
9131
9132 case bfd_mach_mips3900:
9133 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9134 break;
9135
9136 case bfd_mach_mips6000:
9137 val = E_MIPS_ARCH_2;
9138 break;
9139
9140 case bfd_mach_mips4000:
9141 case bfd_mach_mips4300:
9142 case bfd_mach_mips4400:
9143 case bfd_mach_mips4600:
9144 val = E_MIPS_ARCH_3;
9145 break;
9146
9147 case bfd_mach_mips4010:
9148 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9149 break;
9150
9151 case bfd_mach_mips4100:
9152 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9153 break;
9154
9155 case bfd_mach_mips4111:
9156 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9157 break;
9158
9159 case bfd_mach_mips4120:
9160 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9161 break;
9162
9163 case bfd_mach_mips4650:
9164 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9165 break;
9166
9167 case bfd_mach_mips5400:
9168 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9169 break;
9170
9171 case bfd_mach_mips5500:
9172 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9173 break;
9174
9175 case bfd_mach_mips9000:
9176 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9177 break;
9178
9179 case bfd_mach_mips5000:
9180 case bfd_mach_mips7000:
9181 case bfd_mach_mips8000:
9182 case bfd_mach_mips10000:
9183 case bfd_mach_mips12000:
9184 val = E_MIPS_ARCH_4;
9185 break;
9186
9187 case bfd_mach_mips5:
9188 val = E_MIPS_ARCH_5;
9189 break;
9190
9191 case bfd_mach_mips_sb1:
9192 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9193 break;
9194
9195 case bfd_mach_mipsisa32:
9196 val = E_MIPS_ARCH_32;
9197 break;
9198
9199 case bfd_mach_mipsisa64:
9200 val = E_MIPS_ARCH_64;
9201 break;
9202
9203 case bfd_mach_mipsisa32r2:
9204 val = E_MIPS_ARCH_32R2;
9205 break;
9206
9207 case bfd_mach_mipsisa64r2:
9208 val = E_MIPS_ARCH_64R2;
9209 break;
9210 }
9211 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9212 elf_elfheader (abfd)->e_flags |= val;
9213
9214 }
9215
9216
9217 /* The final processing done just before writing out a MIPS ELF object
9218 file. This gets the MIPS architecture right based on the machine
9219 number. This is used by both the 32-bit and the 64-bit ABI. */
9220
9221 void
9222 _bfd_mips_elf_final_write_processing (bfd *abfd,
9223 bfd_boolean linker ATTRIBUTE_UNUSED)
9224 {
9225 unsigned int i;
9226 Elf_Internal_Shdr **hdrpp;
9227 const char *name;
9228 asection *sec;
9229
9230 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9231 is nonzero. This is for compatibility with old objects, which used
9232 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9233 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9234 mips_set_isa_flags (abfd);
9235
9236 /* Set the sh_info field for .gptab sections and other appropriate
9237 info for each special section. */
9238 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9239 i < elf_numsections (abfd);
9240 i++, hdrpp++)
9241 {
9242 switch ((*hdrpp)->sh_type)
9243 {
9244 case SHT_MIPS_MSYM:
9245 case SHT_MIPS_LIBLIST:
9246 sec = bfd_get_section_by_name (abfd, ".dynstr");
9247 if (sec != NULL)
9248 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9249 break;
9250
9251 case SHT_MIPS_GPTAB:
9252 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9253 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9254 BFD_ASSERT (name != NULL
9255 && CONST_STRNEQ (name, ".gptab."));
9256 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9257 BFD_ASSERT (sec != NULL);
9258 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9259 break;
9260
9261 case SHT_MIPS_CONTENT:
9262 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9263 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9264 BFD_ASSERT (name != NULL
9265 && CONST_STRNEQ (name, ".MIPS.content"));
9266 sec = bfd_get_section_by_name (abfd,
9267 name + sizeof ".MIPS.content" - 1);
9268 BFD_ASSERT (sec != NULL);
9269 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9270 break;
9271
9272 case SHT_MIPS_SYMBOL_LIB:
9273 sec = bfd_get_section_by_name (abfd, ".dynsym");
9274 if (sec != NULL)
9275 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9276 sec = bfd_get_section_by_name (abfd, ".liblist");
9277 if (sec != NULL)
9278 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9279 break;
9280
9281 case SHT_MIPS_EVENTS:
9282 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9283 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9284 BFD_ASSERT (name != NULL);
9285 if (CONST_STRNEQ (name, ".MIPS.events"))
9286 sec = bfd_get_section_by_name (abfd,
9287 name + sizeof ".MIPS.events" - 1);
9288 else
9289 {
9290 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9291 sec = bfd_get_section_by_name (abfd,
9292 (name
9293 + sizeof ".MIPS.post_rel" - 1));
9294 }
9295 BFD_ASSERT (sec != NULL);
9296 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9297 break;
9298
9299 }
9300 }
9301 }
9302 \f
9303 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9304 segments. */
9305
9306 int
9307 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9308 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9309 {
9310 asection *s;
9311 int ret = 0;
9312
9313 /* See if we need a PT_MIPS_REGINFO segment. */
9314 s = bfd_get_section_by_name (abfd, ".reginfo");
9315 if (s && (s->flags & SEC_LOAD))
9316 ++ret;
9317
9318 /* See if we need a PT_MIPS_OPTIONS segment. */
9319 if (IRIX_COMPAT (abfd) == ict_irix6
9320 && bfd_get_section_by_name (abfd,
9321 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9322 ++ret;
9323
9324 /* See if we need a PT_MIPS_RTPROC segment. */
9325 if (IRIX_COMPAT (abfd) == ict_irix5
9326 && bfd_get_section_by_name (abfd, ".dynamic")
9327 && bfd_get_section_by_name (abfd, ".mdebug"))
9328 ++ret;
9329
9330 /* Allocate a PT_NULL header in dynamic objects. See
9331 _bfd_mips_elf_modify_segment_map for details. */
9332 if (!SGI_COMPAT (abfd)
9333 && bfd_get_section_by_name (abfd, ".dynamic"))
9334 ++ret;
9335
9336 return ret;
9337 }
9338
9339 /* Modify the segment map for an IRIX5 executable. */
9340
9341 bfd_boolean
9342 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9343 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9344 {
9345 asection *s;
9346 struct elf_segment_map *m, **pm;
9347 bfd_size_type amt;
9348
9349 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9350 segment. */
9351 s = bfd_get_section_by_name (abfd, ".reginfo");
9352 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9353 {
9354 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9355 if (m->p_type == PT_MIPS_REGINFO)
9356 break;
9357 if (m == NULL)
9358 {
9359 amt = sizeof *m;
9360 m = bfd_zalloc (abfd, amt);
9361 if (m == NULL)
9362 return FALSE;
9363
9364 m->p_type = PT_MIPS_REGINFO;
9365 m->count = 1;
9366 m->sections[0] = s;
9367
9368 /* We want to put it after the PHDR and INTERP segments. */
9369 pm = &elf_tdata (abfd)->segment_map;
9370 while (*pm != NULL
9371 && ((*pm)->p_type == PT_PHDR
9372 || (*pm)->p_type == PT_INTERP))
9373 pm = &(*pm)->next;
9374
9375 m->next = *pm;
9376 *pm = m;
9377 }
9378 }
9379
9380 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9381 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9382 PT_MIPS_OPTIONS segment immediately following the program header
9383 table. */
9384 if (NEWABI_P (abfd)
9385 /* On non-IRIX6 new abi, we'll have already created a segment
9386 for this section, so don't create another. I'm not sure this
9387 is not also the case for IRIX 6, but I can't test it right
9388 now. */
9389 && IRIX_COMPAT (abfd) == ict_irix6)
9390 {
9391 for (s = abfd->sections; s; s = s->next)
9392 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9393 break;
9394
9395 if (s)
9396 {
9397 struct elf_segment_map *options_segment;
9398
9399 pm = &elf_tdata (abfd)->segment_map;
9400 while (*pm != NULL
9401 && ((*pm)->p_type == PT_PHDR
9402 || (*pm)->p_type == PT_INTERP))
9403 pm = &(*pm)->next;
9404
9405 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9406 {
9407 amt = sizeof (struct elf_segment_map);
9408 options_segment = bfd_zalloc (abfd, amt);
9409 options_segment->next = *pm;
9410 options_segment->p_type = PT_MIPS_OPTIONS;
9411 options_segment->p_flags = PF_R;
9412 options_segment->p_flags_valid = TRUE;
9413 options_segment->count = 1;
9414 options_segment->sections[0] = s;
9415 *pm = options_segment;
9416 }
9417 }
9418 }
9419 else
9420 {
9421 if (IRIX_COMPAT (abfd) == ict_irix5)
9422 {
9423 /* If there are .dynamic and .mdebug sections, we make a room
9424 for the RTPROC header. FIXME: Rewrite without section names. */
9425 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9426 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9427 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9428 {
9429 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9430 if (m->p_type == PT_MIPS_RTPROC)
9431 break;
9432 if (m == NULL)
9433 {
9434 amt = sizeof *m;
9435 m = bfd_zalloc (abfd, amt);
9436 if (m == NULL)
9437 return FALSE;
9438
9439 m->p_type = PT_MIPS_RTPROC;
9440
9441 s = bfd_get_section_by_name (abfd, ".rtproc");
9442 if (s == NULL)
9443 {
9444 m->count = 0;
9445 m->p_flags = 0;
9446 m->p_flags_valid = 1;
9447 }
9448 else
9449 {
9450 m->count = 1;
9451 m->sections[0] = s;
9452 }
9453
9454 /* We want to put it after the DYNAMIC segment. */
9455 pm = &elf_tdata (abfd)->segment_map;
9456 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9457 pm = &(*pm)->next;
9458 if (*pm != NULL)
9459 pm = &(*pm)->next;
9460
9461 m->next = *pm;
9462 *pm = m;
9463 }
9464 }
9465 }
9466 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9467 .dynstr, .dynsym, and .hash sections, and everything in
9468 between. */
9469 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9470 pm = &(*pm)->next)
9471 if ((*pm)->p_type == PT_DYNAMIC)
9472 break;
9473 m = *pm;
9474 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9475 {
9476 /* For a normal mips executable the permissions for the PT_DYNAMIC
9477 segment are read, write and execute. We do that here since
9478 the code in elf.c sets only the read permission. This matters
9479 sometimes for the dynamic linker. */
9480 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9481 {
9482 m->p_flags = PF_R | PF_W | PF_X;
9483 m->p_flags_valid = 1;
9484 }
9485 }
9486 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9487 glibc's dynamic linker has traditionally derived the number of
9488 tags from the p_filesz field, and sometimes allocates stack
9489 arrays of that size. An overly-big PT_DYNAMIC segment can
9490 be actively harmful in such cases. Making PT_DYNAMIC contain
9491 other sections can also make life hard for the prelinker,
9492 which might move one of the other sections to a different
9493 PT_LOAD segment. */
9494 if (SGI_COMPAT (abfd)
9495 && m != NULL
9496 && m->count == 1
9497 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9498 {
9499 static const char *sec_names[] =
9500 {
9501 ".dynamic", ".dynstr", ".dynsym", ".hash"
9502 };
9503 bfd_vma low, high;
9504 unsigned int i, c;
9505 struct elf_segment_map *n;
9506
9507 low = ~(bfd_vma) 0;
9508 high = 0;
9509 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9510 {
9511 s = bfd_get_section_by_name (abfd, sec_names[i]);
9512 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9513 {
9514 bfd_size_type sz;
9515
9516 if (low > s->vma)
9517 low = s->vma;
9518 sz = s->size;
9519 if (high < s->vma + sz)
9520 high = s->vma + sz;
9521 }
9522 }
9523
9524 c = 0;
9525 for (s = abfd->sections; s != NULL; s = s->next)
9526 if ((s->flags & SEC_LOAD) != 0
9527 && s->vma >= low
9528 && s->vma + s->size <= high)
9529 ++c;
9530
9531 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9532 n = bfd_zalloc (abfd, amt);
9533 if (n == NULL)
9534 return FALSE;
9535 *n = *m;
9536 n->count = c;
9537
9538 i = 0;
9539 for (s = abfd->sections; s != NULL; s = s->next)
9540 {
9541 if ((s->flags & SEC_LOAD) != 0
9542 && s->vma >= low
9543 && s->vma + s->size <= high)
9544 {
9545 n->sections[i] = s;
9546 ++i;
9547 }
9548 }
9549
9550 *pm = n;
9551 }
9552 }
9553
9554 /* Allocate a spare program header in dynamic objects so that tools
9555 like the prelinker can add an extra PT_LOAD entry.
9556
9557 If the prelinker needs to make room for a new PT_LOAD entry, its
9558 standard procedure is to move the first (read-only) sections into
9559 the new (writable) segment. However, the MIPS ABI requires
9560 .dynamic to be in a read-only segment, and the section will often
9561 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9562
9563 Although the prelinker could in principle move .dynamic to a
9564 writable segment, it seems better to allocate a spare program
9565 header instead, and avoid the need to move any sections.
9566 There is a long tradition of allocating spare dynamic tags,
9567 so allocating a spare program header seems like a natural
9568 extension. */
9569 if (!SGI_COMPAT (abfd)
9570 && bfd_get_section_by_name (abfd, ".dynamic"))
9571 {
9572 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9573 if ((*pm)->p_type == PT_NULL)
9574 break;
9575 if (*pm == NULL)
9576 {
9577 m = bfd_zalloc (abfd, sizeof (*m));
9578 if (m == NULL)
9579 return FALSE;
9580
9581 m->p_type = PT_NULL;
9582 *pm = m;
9583 }
9584 }
9585
9586 return TRUE;
9587 }
9588 \f
9589 /* Return the section that should be marked against GC for a given
9590 relocation. */
9591
9592 asection *
9593 _bfd_mips_elf_gc_mark_hook (asection *sec,
9594 struct bfd_link_info *info,
9595 Elf_Internal_Rela *rel,
9596 struct elf_link_hash_entry *h,
9597 Elf_Internal_Sym *sym)
9598 {
9599 /* ??? Do mips16 stub sections need to be handled special? */
9600
9601 if (h != NULL)
9602 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9603 {
9604 case R_MIPS_GNU_VTINHERIT:
9605 case R_MIPS_GNU_VTENTRY:
9606 return NULL;
9607 }
9608
9609 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9610 }
9611
9612 /* Update the got entry reference counts for the section being removed. */
9613
9614 bfd_boolean
9615 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9616 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9617 asection *sec ATTRIBUTE_UNUSED,
9618 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9619 {
9620 #if 0
9621 Elf_Internal_Shdr *symtab_hdr;
9622 struct elf_link_hash_entry **sym_hashes;
9623 bfd_signed_vma *local_got_refcounts;
9624 const Elf_Internal_Rela *rel, *relend;
9625 unsigned long r_symndx;
9626 struct elf_link_hash_entry *h;
9627
9628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9629 sym_hashes = elf_sym_hashes (abfd);
9630 local_got_refcounts = elf_local_got_refcounts (abfd);
9631
9632 relend = relocs + sec->reloc_count;
9633 for (rel = relocs; rel < relend; rel++)
9634 switch (ELF_R_TYPE (abfd, rel->r_info))
9635 {
9636 case R_MIPS_GOT16:
9637 case R_MIPS_CALL16:
9638 case R_MIPS_CALL_HI16:
9639 case R_MIPS_CALL_LO16:
9640 case R_MIPS_GOT_HI16:
9641 case R_MIPS_GOT_LO16:
9642 case R_MIPS_GOT_DISP:
9643 case R_MIPS_GOT_PAGE:
9644 case R_MIPS_GOT_OFST:
9645 /* ??? It would seem that the existing MIPS code does no sort
9646 of reference counting or whatnot on its GOT and PLT entries,
9647 so it is not possible to garbage collect them at this time. */
9648 break;
9649
9650 default:
9651 break;
9652 }
9653 #endif
9654
9655 return TRUE;
9656 }
9657 \f
9658 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9659 hiding the old indirect symbol. Process additional relocation
9660 information. Also called for weakdefs, in which case we just let
9661 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9662
9663 void
9664 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9665 struct elf_link_hash_entry *dir,
9666 struct elf_link_hash_entry *ind)
9667 {
9668 struct mips_elf_link_hash_entry *dirmips, *indmips;
9669
9670 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9671
9672 if (ind->root.type != bfd_link_hash_indirect)
9673 return;
9674
9675 dirmips = (struct mips_elf_link_hash_entry *) dir;
9676 indmips = (struct mips_elf_link_hash_entry *) ind;
9677 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9678 if (indmips->readonly_reloc)
9679 dirmips->readonly_reloc = TRUE;
9680 if (indmips->no_fn_stub)
9681 dirmips->no_fn_stub = TRUE;
9682
9683 if (dirmips->tls_type == 0)
9684 dirmips->tls_type = indmips->tls_type;
9685 }
9686
9687 void
9688 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9689 struct elf_link_hash_entry *entry,
9690 bfd_boolean force_local)
9691 {
9692 bfd *dynobj;
9693 asection *got;
9694 struct mips_got_info *g;
9695 struct mips_elf_link_hash_entry *h;
9696
9697 h = (struct mips_elf_link_hash_entry *) entry;
9698 if (h->forced_local)
9699 return;
9700 h->forced_local = force_local;
9701
9702 dynobj = elf_hash_table (info)->dynobj;
9703 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9704 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9705 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9706 {
9707 if (g->next)
9708 {
9709 struct mips_got_entry e;
9710 struct mips_got_info *gg = g;
9711
9712 /* Since we're turning what used to be a global symbol into a
9713 local one, bump up the number of local entries of each GOT
9714 that had an entry for it. This will automatically decrease
9715 the number of global entries, since global_gotno is actually
9716 the upper limit of global entries. */
9717 e.abfd = dynobj;
9718 e.symndx = -1;
9719 e.d.h = h;
9720 e.tls_type = 0;
9721
9722 for (g = g->next; g != gg; g = g->next)
9723 if (htab_find (g->got_entries, &e))
9724 {
9725 BFD_ASSERT (g->global_gotno > 0);
9726 g->local_gotno++;
9727 g->global_gotno--;
9728 }
9729
9730 /* If this was a global symbol forced into the primary GOT, we
9731 no longer need an entry for it. We can't release the entry
9732 at this point, but we must at least stop counting it as one
9733 of the symbols that required a forced got entry. */
9734 if (h->root.got.offset == 2)
9735 {
9736 BFD_ASSERT (gg->assigned_gotno > 0);
9737 gg->assigned_gotno--;
9738 }
9739 }
9740 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9741 /* If we haven't got through GOT allocation yet, just bump up the
9742 number of local entries, as this symbol won't be counted as
9743 global. */
9744 g->local_gotno++;
9745 else if (h->root.got.offset == 1)
9746 {
9747 /* If we're past non-multi-GOT allocation and this symbol had
9748 been marked for a global got entry, give it a local entry
9749 instead. */
9750 BFD_ASSERT (g->global_gotno > 0);
9751 g->local_gotno++;
9752 g->global_gotno--;
9753 }
9754 }
9755
9756 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9757 }
9758 \f
9759 #define PDR_SIZE 32
9760
9761 bfd_boolean
9762 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9763 struct bfd_link_info *info)
9764 {
9765 asection *o;
9766 bfd_boolean ret = FALSE;
9767 unsigned char *tdata;
9768 size_t i, skip;
9769
9770 o = bfd_get_section_by_name (abfd, ".pdr");
9771 if (! o)
9772 return FALSE;
9773 if (o->size == 0)
9774 return FALSE;
9775 if (o->size % PDR_SIZE != 0)
9776 return FALSE;
9777 if (o->output_section != NULL
9778 && bfd_is_abs_section (o->output_section))
9779 return FALSE;
9780
9781 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9782 if (! tdata)
9783 return FALSE;
9784
9785 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9786 info->keep_memory);
9787 if (!cookie->rels)
9788 {
9789 free (tdata);
9790 return FALSE;
9791 }
9792
9793 cookie->rel = cookie->rels;
9794 cookie->relend = cookie->rels + o->reloc_count;
9795
9796 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9797 {
9798 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9799 {
9800 tdata[i] = 1;
9801 skip ++;
9802 }
9803 }
9804
9805 if (skip != 0)
9806 {
9807 mips_elf_section_data (o)->u.tdata = tdata;
9808 o->size -= skip * PDR_SIZE;
9809 ret = TRUE;
9810 }
9811 else
9812 free (tdata);
9813
9814 if (! info->keep_memory)
9815 free (cookie->rels);
9816
9817 return ret;
9818 }
9819
9820 bfd_boolean
9821 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9822 {
9823 if (strcmp (sec->name, ".pdr") == 0)
9824 return TRUE;
9825 return FALSE;
9826 }
9827
9828 bfd_boolean
9829 _bfd_mips_elf_write_section (bfd *output_bfd,
9830 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9831 asection *sec, bfd_byte *contents)
9832 {
9833 bfd_byte *to, *from, *end;
9834 int i;
9835
9836 if (strcmp (sec->name, ".pdr") != 0)
9837 return FALSE;
9838
9839 if (mips_elf_section_data (sec)->u.tdata == NULL)
9840 return FALSE;
9841
9842 to = contents;
9843 end = contents + sec->size;
9844 for (from = contents, i = 0;
9845 from < end;
9846 from += PDR_SIZE, i++)
9847 {
9848 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9849 continue;
9850 if (to != from)
9851 memcpy (to, from, PDR_SIZE);
9852 to += PDR_SIZE;
9853 }
9854 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9855 sec->output_offset, sec->size);
9856 return TRUE;
9857 }
9858 \f
9859 /* MIPS ELF uses a special find_nearest_line routine in order the
9860 handle the ECOFF debugging information. */
9861
9862 struct mips_elf_find_line
9863 {
9864 struct ecoff_debug_info d;
9865 struct ecoff_find_line i;
9866 };
9867
9868 bfd_boolean
9869 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9870 asymbol **symbols, bfd_vma offset,
9871 const char **filename_ptr,
9872 const char **functionname_ptr,
9873 unsigned int *line_ptr)
9874 {
9875 asection *msec;
9876
9877 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9878 filename_ptr, functionname_ptr,
9879 line_ptr))
9880 return TRUE;
9881
9882 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9883 filename_ptr, functionname_ptr,
9884 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9885 &elf_tdata (abfd)->dwarf2_find_line_info))
9886 return TRUE;
9887
9888 msec = bfd_get_section_by_name (abfd, ".mdebug");
9889 if (msec != NULL)
9890 {
9891 flagword origflags;
9892 struct mips_elf_find_line *fi;
9893 const struct ecoff_debug_swap * const swap =
9894 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9895
9896 /* If we are called during a link, mips_elf_final_link may have
9897 cleared the SEC_HAS_CONTENTS field. We force it back on here
9898 if appropriate (which it normally will be). */
9899 origflags = msec->flags;
9900 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9901 msec->flags |= SEC_HAS_CONTENTS;
9902
9903 fi = elf_tdata (abfd)->find_line_info;
9904 if (fi == NULL)
9905 {
9906 bfd_size_type external_fdr_size;
9907 char *fraw_src;
9908 char *fraw_end;
9909 struct fdr *fdr_ptr;
9910 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9911
9912 fi = bfd_zalloc (abfd, amt);
9913 if (fi == NULL)
9914 {
9915 msec->flags = origflags;
9916 return FALSE;
9917 }
9918
9919 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9920 {
9921 msec->flags = origflags;
9922 return FALSE;
9923 }
9924
9925 /* Swap in the FDR information. */
9926 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9927 fi->d.fdr = bfd_alloc (abfd, amt);
9928 if (fi->d.fdr == NULL)
9929 {
9930 msec->flags = origflags;
9931 return FALSE;
9932 }
9933 external_fdr_size = swap->external_fdr_size;
9934 fdr_ptr = fi->d.fdr;
9935 fraw_src = (char *) fi->d.external_fdr;
9936 fraw_end = (fraw_src
9937 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9938 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9939 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9940
9941 elf_tdata (abfd)->find_line_info = fi;
9942
9943 /* Note that we don't bother to ever free this information.
9944 find_nearest_line is either called all the time, as in
9945 objdump -l, so the information should be saved, or it is
9946 rarely called, as in ld error messages, so the memory
9947 wasted is unimportant. Still, it would probably be a
9948 good idea for free_cached_info to throw it away. */
9949 }
9950
9951 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9952 &fi->i, filename_ptr, functionname_ptr,
9953 line_ptr))
9954 {
9955 msec->flags = origflags;
9956 return TRUE;
9957 }
9958
9959 msec->flags = origflags;
9960 }
9961
9962 /* Fall back on the generic ELF find_nearest_line routine. */
9963
9964 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9965 filename_ptr, functionname_ptr,
9966 line_ptr);
9967 }
9968
9969 bfd_boolean
9970 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9971 const char **filename_ptr,
9972 const char **functionname_ptr,
9973 unsigned int *line_ptr)
9974 {
9975 bfd_boolean found;
9976 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9977 functionname_ptr, line_ptr,
9978 & elf_tdata (abfd)->dwarf2_find_line_info);
9979 return found;
9980 }
9981
9982 \f
9983 /* When are writing out the .options or .MIPS.options section,
9984 remember the bytes we are writing out, so that we can install the
9985 GP value in the section_processing routine. */
9986
9987 bfd_boolean
9988 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9989 const void *location,
9990 file_ptr offset, bfd_size_type count)
9991 {
9992 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9993 {
9994 bfd_byte *c;
9995
9996 if (elf_section_data (section) == NULL)
9997 {
9998 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9999 section->used_by_bfd = bfd_zalloc (abfd, amt);
10000 if (elf_section_data (section) == NULL)
10001 return FALSE;
10002 }
10003 c = mips_elf_section_data (section)->u.tdata;
10004 if (c == NULL)
10005 {
10006 c = bfd_zalloc (abfd, section->size);
10007 if (c == NULL)
10008 return FALSE;
10009 mips_elf_section_data (section)->u.tdata = c;
10010 }
10011
10012 memcpy (c + offset, location, count);
10013 }
10014
10015 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10016 count);
10017 }
10018
10019 /* This is almost identical to bfd_generic_get_... except that some
10020 MIPS relocations need to be handled specially. Sigh. */
10021
10022 bfd_byte *
10023 _bfd_elf_mips_get_relocated_section_contents
10024 (bfd *abfd,
10025 struct bfd_link_info *link_info,
10026 struct bfd_link_order *link_order,
10027 bfd_byte *data,
10028 bfd_boolean relocatable,
10029 asymbol **symbols)
10030 {
10031 /* Get enough memory to hold the stuff */
10032 bfd *input_bfd = link_order->u.indirect.section->owner;
10033 asection *input_section = link_order->u.indirect.section;
10034 bfd_size_type sz;
10035
10036 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10037 arelent **reloc_vector = NULL;
10038 long reloc_count;
10039
10040 if (reloc_size < 0)
10041 goto error_return;
10042
10043 reloc_vector = bfd_malloc (reloc_size);
10044 if (reloc_vector == NULL && reloc_size != 0)
10045 goto error_return;
10046
10047 /* read in the section */
10048 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10049 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10050 goto error_return;
10051
10052 reloc_count = bfd_canonicalize_reloc (input_bfd,
10053 input_section,
10054 reloc_vector,
10055 symbols);
10056 if (reloc_count < 0)
10057 goto error_return;
10058
10059 if (reloc_count > 0)
10060 {
10061 arelent **parent;
10062 /* for mips */
10063 int gp_found;
10064 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10065
10066 {
10067 struct bfd_hash_entry *h;
10068 struct bfd_link_hash_entry *lh;
10069 /* Skip all this stuff if we aren't mixing formats. */
10070 if (abfd && input_bfd
10071 && abfd->xvec == input_bfd->xvec)
10072 lh = 0;
10073 else
10074 {
10075 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10076 lh = (struct bfd_link_hash_entry *) h;
10077 }
10078 lookup:
10079 if (lh)
10080 {
10081 switch (lh->type)
10082 {
10083 case bfd_link_hash_undefined:
10084 case bfd_link_hash_undefweak:
10085 case bfd_link_hash_common:
10086 gp_found = 0;
10087 break;
10088 case bfd_link_hash_defined:
10089 case bfd_link_hash_defweak:
10090 gp_found = 1;
10091 gp = lh->u.def.value;
10092 break;
10093 case bfd_link_hash_indirect:
10094 case bfd_link_hash_warning:
10095 lh = lh->u.i.link;
10096 /* @@FIXME ignoring warning for now */
10097 goto lookup;
10098 case bfd_link_hash_new:
10099 default:
10100 abort ();
10101 }
10102 }
10103 else
10104 gp_found = 0;
10105 }
10106 /* end mips */
10107 for (parent = reloc_vector; *parent != NULL; parent++)
10108 {
10109 char *error_message = NULL;
10110 bfd_reloc_status_type r;
10111
10112 /* Specific to MIPS: Deal with relocation types that require
10113 knowing the gp of the output bfd. */
10114 asymbol *sym = *(*parent)->sym_ptr_ptr;
10115
10116 /* If we've managed to find the gp and have a special
10117 function for the relocation then go ahead, else default
10118 to the generic handling. */
10119 if (gp_found
10120 && (*parent)->howto->special_function
10121 == _bfd_mips_elf32_gprel16_reloc)
10122 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10123 input_section, relocatable,
10124 data, gp);
10125 else
10126 r = bfd_perform_relocation (input_bfd, *parent, data,
10127 input_section,
10128 relocatable ? abfd : NULL,
10129 &error_message);
10130
10131 if (relocatable)
10132 {
10133 asection *os = input_section->output_section;
10134
10135 /* A partial link, so keep the relocs */
10136 os->orelocation[os->reloc_count] = *parent;
10137 os->reloc_count++;
10138 }
10139
10140 if (r != bfd_reloc_ok)
10141 {
10142 switch (r)
10143 {
10144 case bfd_reloc_undefined:
10145 if (!((*link_info->callbacks->undefined_symbol)
10146 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10147 input_bfd, input_section, (*parent)->address, TRUE)))
10148 goto error_return;
10149 break;
10150 case bfd_reloc_dangerous:
10151 BFD_ASSERT (error_message != NULL);
10152 if (!((*link_info->callbacks->reloc_dangerous)
10153 (link_info, error_message, input_bfd, input_section,
10154 (*parent)->address)))
10155 goto error_return;
10156 break;
10157 case bfd_reloc_overflow:
10158 if (!((*link_info->callbacks->reloc_overflow)
10159 (link_info, NULL,
10160 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10161 (*parent)->howto->name, (*parent)->addend,
10162 input_bfd, input_section, (*parent)->address)))
10163 goto error_return;
10164 break;
10165 case bfd_reloc_outofrange:
10166 default:
10167 abort ();
10168 break;
10169 }
10170
10171 }
10172 }
10173 }
10174 if (reloc_vector != NULL)
10175 free (reloc_vector);
10176 return data;
10177
10178 error_return:
10179 if (reloc_vector != NULL)
10180 free (reloc_vector);
10181 return NULL;
10182 }
10183 \f
10184 /* Create a MIPS ELF linker hash table. */
10185
10186 struct bfd_link_hash_table *
10187 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10188 {
10189 struct mips_elf_link_hash_table *ret;
10190 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10191
10192 ret = bfd_malloc (amt);
10193 if (ret == NULL)
10194 return NULL;
10195
10196 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10197 mips_elf_link_hash_newfunc,
10198 sizeof (struct mips_elf_link_hash_entry)))
10199 {
10200 free (ret);
10201 return NULL;
10202 }
10203
10204 #if 0
10205 /* We no longer use this. */
10206 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10207 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10208 #endif
10209 ret->procedure_count = 0;
10210 ret->compact_rel_size = 0;
10211 ret->use_rld_obj_head = FALSE;
10212 ret->rld_value = 0;
10213 ret->mips16_stubs_seen = FALSE;
10214 ret->is_vxworks = FALSE;
10215 ret->srelbss = NULL;
10216 ret->sdynbss = NULL;
10217 ret->srelplt = NULL;
10218 ret->srelplt2 = NULL;
10219 ret->sgotplt = NULL;
10220 ret->splt = NULL;
10221 ret->plt_header_size = 0;
10222 ret->plt_entry_size = 0;
10223 ret->function_stub_size = 0;
10224
10225 return &ret->root.root;
10226 }
10227
10228 /* Likewise, but indicate that the target is VxWorks. */
10229
10230 struct bfd_link_hash_table *
10231 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10232 {
10233 struct bfd_link_hash_table *ret;
10234
10235 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10236 if (ret)
10237 {
10238 struct mips_elf_link_hash_table *htab;
10239
10240 htab = (struct mips_elf_link_hash_table *) ret;
10241 htab->is_vxworks = 1;
10242 }
10243 return ret;
10244 }
10245 \f
10246 /* We need to use a special link routine to handle the .reginfo and
10247 the .mdebug sections. We need to merge all instances of these
10248 sections together, not write them all out sequentially. */
10249
10250 bfd_boolean
10251 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10252 {
10253 asection *o;
10254 struct bfd_link_order *p;
10255 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10256 asection *rtproc_sec;
10257 Elf32_RegInfo reginfo;
10258 struct ecoff_debug_info debug;
10259 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10260 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10261 HDRR *symhdr = &debug.symbolic_header;
10262 void *mdebug_handle = NULL;
10263 asection *s;
10264 EXTR esym;
10265 unsigned int i;
10266 bfd_size_type amt;
10267 struct mips_elf_link_hash_table *htab;
10268
10269 static const char * const secname[] =
10270 {
10271 ".text", ".init", ".fini", ".data",
10272 ".rodata", ".sdata", ".sbss", ".bss"
10273 };
10274 static const int sc[] =
10275 {
10276 scText, scInit, scFini, scData,
10277 scRData, scSData, scSBss, scBss
10278 };
10279
10280 /* We'd carefully arranged the dynamic symbol indices, and then the
10281 generic size_dynamic_sections renumbered them out from under us.
10282 Rather than trying somehow to prevent the renumbering, just do
10283 the sort again. */
10284 htab = mips_elf_hash_table (info);
10285 if (elf_hash_table (info)->dynamic_sections_created)
10286 {
10287 bfd *dynobj;
10288 asection *got;
10289 struct mips_got_info *g;
10290 bfd_size_type dynsecsymcount;
10291
10292 /* When we resort, we must tell mips_elf_sort_hash_table what
10293 the lowest index it may use is. That's the number of section
10294 symbols we're going to add. The generic ELF linker only
10295 adds these symbols when building a shared object. Note that
10296 we count the sections after (possibly) removing the .options
10297 section above. */
10298
10299 dynsecsymcount = count_section_dynsyms (abfd, info);
10300 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10301 return FALSE;
10302
10303 /* Make sure we didn't grow the global .got region. */
10304 dynobj = elf_hash_table (info)->dynobj;
10305 got = mips_elf_got_section (dynobj, FALSE);
10306 g = mips_elf_section_data (got)->u.got_info;
10307
10308 if (g->global_gotsym != NULL)
10309 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10310 - g->global_gotsym->dynindx)
10311 <= g->global_gotno);
10312 }
10313
10314 /* Get a value for the GP register. */
10315 if (elf_gp (abfd) == 0)
10316 {
10317 struct bfd_link_hash_entry *h;
10318
10319 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10320 if (h != NULL && h->type == bfd_link_hash_defined)
10321 elf_gp (abfd) = (h->u.def.value
10322 + h->u.def.section->output_section->vma
10323 + h->u.def.section->output_offset);
10324 else if (htab->is_vxworks
10325 && (h = bfd_link_hash_lookup (info->hash,
10326 "_GLOBAL_OFFSET_TABLE_",
10327 FALSE, FALSE, TRUE))
10328 && h->type == bfd_link_hash_defined)
10329 elf_gp (abfd) = (h->u.def.section->output_section->vma
10330 + h->u.def.section->output_offset
10331 + h->u.def.value);
10332 else if (info->relocatable)
10333 {
10334 bfd_vma lo = MINUS_ONE;
10335
10336 /* Find the GP-relative section with the lowest offset. */
10337 for (o = abfd->sections; o != NULL; o = o->next)
10338 if (o->vma < lo
10339 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10340 lo = o->vma;
10341
10342 /* And calculate GP relative to that. */
10343 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10344 }
10345 else
10346 {
10347 /* If the relocate_section function needs to do a reloc
10348 involving the GP value, it should make a reloc_dangerous
10349 callback to warn that GP is not defined. */
10350 }
10351 }
10352
10353 /* Go through the sections and collect the .reginfo and .mdebug
10354 information. */
10355 reginfo_sec = NULL;
10356 mdebug_sec = NULL;
10357 gptab_data_sec = NULL;
10358 gptab_bss_sec = NULL;
10359 for (o = abfd->sections; o != NULL; o = o->next)
10360 {
10361 if (strcmp (o->name, ".reginfo") == 0)
10362 {
10363 memset (&reginfo, 0, sizeof reginfo);
10364
10365 /* We have found the .reginfo section in the output file.
10366 Look through all the link_orders comprising it and merge
10367 the information together. */
10368 for (p = o->map_head.link_order; p != NULL; p = p->next)
10369 {
10370 asection *input_section;
10371 bfd *input_bfd;
10372 Elf32_External_RegInfo ext;
10373 Elf32_RegInfo sub;
10374
10375 if (p->type != bfd_indirect_link_order)
10376 {
10377 if (p->type == bfd_data_link_order)
10378 continue;
10379 abort ();
10380 }
10381
10382 input_section = p->u.indirect.section;
10383 input_bfd = input_section->owner;
10384
10385 if (! bfd_get_section_contents (input_bfd, input_section,
10386 &ext, 0, sizeof ext))
10387 return FALSE;
10388
10389 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10390
10391 reginfo.ri_gprmask |= sub.ri_gprmask;
10392 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10393 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10394 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10395 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10396
10397 /* ri_gp_value is set by the function
10398 mips_elf32_section_processing when the section is
10399 finally written out. */
10400
10401 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10402 elf_link_input_bfd ignores this section. */
10403 input_section->flags &= ~SEC_HAS_CONTENTS;
10404 }
10405
10406 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10407 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10408
10409 /* Skip this section later on (I don't think this currently
10410 matters, but someday it might). */
10411 o->map_head.link_order = NULL;
10412
10413 reginfo_sec = o;
10414 }
10415
10416 if (strcmp (o->name, ".mdebug") == 0)
10417 {
10418 struct extsym_info einfo;
10419 bfd_vma last;
10420
10421 /* We have found the .mdebug section in the output file.
10422 Look through all the link_orders comprising it and merge
10423 the information together. */
10424 symhdr->magic = swap->sym_magic;
10425 /* FIXME: What should the version stamp be? */
10426 symhdr->vstamp = 0;
10427 symhdr->ilineMax = 0;
10428 symhdr->cbLine = 0;
10429 symhdr->idnMax = 0;
10430 symhdr->ipdMax = 0;
10431 symhdr->isymMax = 0;
10432 symhdr->ioptMax = 0;
10433 symhdr->iauxMax = 0;
10434 symhdr->issMax = 0;
10435 symhdr->issExtMax = 0;
10436 symhdr->ifdMax = 0;
10437 symhdr->crfd = 0;
10438 symhdr->iextMax = 0;
10439
10440 /* We accumulate the debugging information itself in the
10441 debug_info structure. */
10442 debug.line = NULL;
10443 debug.external_dnr = NULL;
10444 debug.external_pdr = NULL;
10445 debug.external_sym = NULL;
10446 debug.external_opt = NULL;
10447 debug.external_aux = NULL;
10448 debug.ss = NULL;
10449 debug.ssext = debug.ssext_end = NULL;
10450 debug.external_fdr = NULL;
10451 debug.external_rfd = NULL;
10452 debug.external_ext = debug.external_ext_end = NULL;
10453
10454 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10455 if (mdebug_handle == NULL)
10456 return FALSE;
10457
10458 esym.jmptbl = 0;
10459 esym.cobol_main = 0;
10460 esym.weakext = 0;
10461 esym.reserved = 0;
10462 esym.ifd = ifdNil;
10463 esym.asym.iss = issNil;
10464 esym.asym.st = stLocal;
10465 esym.asym.reserved = 0;
10466 esym.asym.index = indexNil;
10467 last = 0;
10468 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10469 {
10470 esym.asym.sc = sc[i];
10471 s = bfd_get_section_by_name (abfd, secname[i]);
10472 if (s != NULL)
10473 {
10474 esym.asym.value = s->vma;
10475 last = s->vma + s->size;
10476 }
10477 else
10478 esym.asym.value = last;
10479 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10480 secname[i], &esym))
10481 return FALSE;
10482 }
10483
10484 for (p = o->map_head.link_order; p != NULL; p = p->next)
10485 {
10486 asection *input_section;
10487 bfd *input_bfd;
10488 const struct ecoff_debug_swap *input_swap;
10489 struct ecoff_debug_info input_debug;
10490 char *eraw_src;
10491 char *eraw_end;
10492
10493 if (p->type != bfd_indirect_link_order)
10494 {
10495 if (p->type == bfd_data_link_order)
10496 continue;
10497 abort ();
10498 }
10499
10500 input_section = p->u.indirect.section;
10501 input_bfd = input_section->owner;
10502
10503 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10504 || (get_elf_backend_data (input_bfd)
10505 ->elf_backend_ecoff_debug_swap) == NULL)
10506 {
10507 /* I don't know what a non MIPS ELF bfd would be
10508 doing with a .mdebug section, but I don't really
10509 want to deal with it. */
10510 continue;
10511 }
10512
10513 input_swap = (get_elf_backend_data (input_bfd)
10514 ->elf_backend_ecoff_debug_swap);
10515
10516 BFD_ASSERT (p->size == input_section->size);
10517
10518 /* The ECOFF linking code expects that we have already
10519 read in the debugging information and set up an
10520 ecoff_debug_info structure, so we do that now. */
10521 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10522 &input_debug))
10523 return FALSE;
10524
10525 if (! (bfd_ecoff_debug_accumulate
10526 (mdebug_handle, abfd, &debug, swap, input_bfd,
10527 &input_debug, input_swap, info)))
10528 return FALSE;
10529
10530 /* Loop through the external symbols. For each one with
10531 interesting information, try to find the symbol in
10532 the linker global hash table and save the information
10533 for the output external symbols. */
10534 eraw_src = input_debug.external_ext;
10535 eraw_end = (eraw_src
10536 + (input_debug.symbolic_header.iextMax
10537 * input_swap->external_ext_size));
10538 for (;
10539 eraw_src < eraw_end;
10540 eraw_src += input_swap->external_ext_size)
10541 {
10542 EXTR ext;
10543 const char *name;
10544 struct mips_elf_link_hash_entry *h;
10545
10546 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10547 if (ext.asym.sc == scNil
10548 || ext.asym.sc == scUndefined
10549 || ext.asym.sc == scSUndefined)
10550 continue;
10551
10552 name = input_debug.ssext + ext.asym.iss;
10553 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10554 name, FALSE, FALSE, TRUE);
10555 if (h == NULL || h->esym.ifd != -2)
10556 continue;
10557
10558 if (ext.ifd != -1)
10559 {
10560 BFD_ASSERT (ext.ifd
10561 < input_debug.symbolic_header.ifdMax);
10562 ext.ifd = input_debug.ifdmap[ext.ifd];
10563 }
10564
10565 h->esym = ext;
10566 }
10567
10568 /* Free up the information we just read. */
10569 free (input_debug.line);
10570 free (input_debug.external_dnr);
10571 free (input_debug.external_pdr);
10572 free (input_debug.external_sym);
10573 free (input_debug.external_opt);
10574 free (input_debug.external_aux);
10575 free (input_debug.ss);
10576 free (input_debug.ssext);
10577 free (input_debug.external_fdr);
10578 free (input_debug.external_rfd);
10579 free (input_debug.external_ext);
10580
10581 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10582 elf_link_input_bfd ignores this section. */
10583 input_section->flags &= ~SEC_HAS_CONTENTS;
10584 }
10585
10586 if (SGI_COMPAT (abfd) && info->shared)
10587 {
10588 /* Create .rtproc section. */
10589 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10590 if (rtproc_sec == NULL)
10591 {
10592 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10593 | SEC_LINKER_CREATED | SEC_READONLY);
10594
10595 rtproc_sec = bfd_make_section_with_flags (abfd,
10596 ".rtproc",
10597 flags);
10598 if (rtproc_sec == NULL
10599 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10600 return FALSE;
10601 }
10602
10603 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10604 info, rtproc_sec,
10605 &debug))
10606 return FALSE;
10607 }
10608
10609 /* Build the external symbol information. */
10610 einfo.abfd = abfd;
10611 einfo.info = info;
10612 einfo.debug = &debug;
10613 einfo.swap = swap;
10614 einfo.failed = FALSE;
10615 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10616 mips_elf_output_extsym, &einfo);
10617 if (einfo.failed)
10618 return FALSE;
10619
10620 /* Set the size of the .mdebug section. */
10621 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10622
10623 /* Skip this section later on (I don't think this currently
10624 matters, but someday it might). */
10625 o->map_head.link_order = NULL;
10626
10627 mdebug_sec = o;
10628 }
10629
10630 if (CONST_STRNEQ (o->name, ".gptab."))
10631 {
10632 const char *subname;
10633 unsigned int c;
10634 Elf32_gptab *tab;
10635 Elf32_External_gptab *ext_tab;
10636 unsigned int j;
10637
10638 /* The .gptab.sdata and .gptab.sbss sections hold
10639 information describing how the small data area would
10640 change depending upon the -G switch. These sections
10641 not used in executables files. */
10642 if (! info->relocatable)
10643 {
10644 for (p = o->map_head.link_order; p != NULL; p = p->next)
10645 {
10646 asection *input_section;
10647
10648 if (p->type != bfd_indirect_link_order)
10649 {
10650 if (p->type == bfd_data_link_order)
10651 continue;
10652 abort ();
10653 }
10654
10655 input_section = p->u.indirect.section;
10656
10657 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10658 elf_link_input_bfd ignores this section. */
10659 input_section->flags &= ~SEC_HAS_CONTENTS;
10660 }
10661
10662 /* Skip this section later on (I don't think this
10663 currently matters, but someday it might). */
10664 o->map_head.link_order = NULL;
10665
10666 /* Really remove the section. */
10667 bfd_section_list_remove (abfd, o);
10668 --abfd->section_count;
10669
10670 continue;
10671 }
10672
10673 /* There is one gptab for initialized data, and one for
10674 uninitialized data. */
10675 if (strcmp (o->name, ".gptab.sdata") == 0)
10676 gptab_data_sec = o;
10677 else if (strcmp (o->name, ".gptab.sbss") == 0)
10678 gptab_bss_sec = o;
10679 else
10680 {
10681 (*_bfd_error_handler)
10682 (_("%s: illegal section name `%s'"),
10683 bfd_get_filename (abfd), o->name);
10684 bfd_set_error (bfd_error_nonrepresentable_section);
10685 return FALSE;
10686 }
10687
10688 /* The linker script always combines .gptab.data and
10689 .gptab.sdata into .gptab.sdata, and likewise for
10690 .gptab.bss and .gptab.sbss. It is possible that there is
10691 no .sdata or .sbss section in the output file, in which
10692 case we must change the name of the output section. */
10693 subname = o->name + sizeof ".gptab" - 1;
10694 if (bfd_get_section_by_name (abfd, subname) == NULL)
10695 {
10696 if (o == gptab_data_sec)
10697 o->name = ".gptab.data";
10698 else
10699 o->name = ".gptab.bss";
10700 subname = o->name + sizeof ".gptab" - 1;
10701 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10702 }
10703
10704 /* Set up the first entry. */
10705 c = 1;
10706 amt = c * sizeof (Elf32_gptab);
10707 tab = bfd_malloc (amt);
10708 if (tab == NULL)
10709 return FALSE;
10710 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10711 tab[0].gt_header.gt_unused = 0;
10712
10713 /* Combine the input sections. */
10714 for (p = o->map_head.link_order; p != NULL; p = p->next)
10715 {
10716 asection *input_section;
10717 bfd *input_bfd;
10718 bfd_size_type size;
10719 unsigned long last;
10720 bfd_size_type gpentry;
10721
10722 if (p->type != bfd_indirect_link_order)
10723 {
10724 if (p->type == bfd_data_link_order)
10725 continue;
10726 abort ();
10727 }
10728
10729 input_section = p->u.indirect.section;
10730 input_bfd = input_section->owner;
10731
10732 /* Combine the gptab entries for this input section one
10733 by one. We know that the input gptab entries are
10734 sorted by ascending -G value. */
10735 size = input_section->size;
10736 last = 0;
10737 for (gpentry = sizeof (Elf32_External_gptab);
10738 gpentry < size;
10739 gpentry += sizeof (Elf32_External_gptab))
10740 {
10741 Elf32_External_gptab ext_gptab;
10742 Elf32_gptab int_gptab;
10743 unsigned long val;
10744 unsigned long add;
10745 bfd_boolean exact;
10746 unsigned int look;
10747
10748 if (! (bfd_get_section_contents
10749 (input_bfd, input_section, &ext_gptab, gpentry,
10750 sizeof (Elf32_External_gptab))))
10751 {
10752 free (tab);
10753 return FALSE;
10754 }
10755
10756 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10757 &int_gptab);
10758 val = int_gptab.gt_entry.gt_g_value;
10759 add = int_gptab.gt_entry.gt_bytes - last;
10760
10761 exact = FALSE;
10762 for (look = 1; look < c; look++)
10763 {
10764 if (tab[look].gt_entry.gt_g_value >= val)
10765 tab[look].gt_entry.gt_bytes += add;
10766
10767 if (tab[look].gt_entry.gt_g_value == val)
10768 exact = TRUE;
10769 }
10770
10771 if (! exact)
10772 {
10773 Elf32_gptab *new_tab;
10774 unsigned int max;
10775
10776 /* We need a new table entry. */
10777 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10778 new_tab = bfd_realloc (tab, amt);
10779 if (new_tab == NULL)
10780 {
10781 free (tab);
10782 return FALSE;
10783 }
10784 tab = new_tab;
10785 tab[c].gt_entry.gt_g_value = val;
10786 tab[c].gt_entry.gt_bytes = add;
10787
10788 /* Merge in the size for the next smallest -G
10789 value, since that will be implied by this new
10790 value. */
10791 max = 0;
10792 for (look = 1; look < c; look++)
10793 {
10794 if (tab[look].gt_entry.gt_g_value < val
10795 && (max == 0
10796 || (tab[look].gt_entry.gt_g_value
10797 > tab[max].gt_entry.gt_g_value)))
10798 max = look;
10799 }
10800 if (max != 0)
10801 tab[c].gt_entry.gt_bytes +=
10802 tab[max].gt_entry.gt_bytes;
10803
10804 ++c;
10805 }
10806
10807 last = int_gptab.gt_entry.gt_bytes;
10808 }
10809
10810 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10811 elf_link_input_bfd ignores this section. */
10812 input_section->flags &= ~SEC_HAS_CONTENTS;
10813 }
10814
10815 /* The table must be sorted by -G value. */
10816 if (c > 2)
10817 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10818
10819 /* Swap out the table. */
10820 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10821 ext_tab = bfd_alloc (abfd, amt);
10822 if (ext_tab == NULL)
10823 {
10824 free (tab);
10825 return FALSE;
10826 }
10827
10828 for (j = 0; j < c; j++)
10829 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10830 free (tab);
10831
10832 o->size = c * sizeof (Elf32_External_gptab);
10833 o->contents = (bfd_byte *) ext_tab;
10834
10835 /* Skip this section later on (I don't think this currently
10836 matters, but someday it might). */
10837 o->map_head.link_order = NULL;
10838 }
10839 }
10840
10841 /* Invoke the regular ELF backend linker to do all the work. */
10842 if (!bfd_elf_final_link (abfd, info))
10843 return FALSE;
10844
10845 /* Now write out the computed sections. */
10846
10847 if (reginfo_sec != NULL)
10848 {
10849 Elf32_External_RegInfo ext;
10850
10851 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10852 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10853 return FALSE;
10854 }
10855
10856 if (mdebug_sec != NULL)
10857 {
10858 BFD_ASSERT (abfd->output_has_begun);
10859 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10860 swap, info,
10861 mdebug_sec->filepos))
10862 return FALSE;
10863
10864 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10865 }
10866
10867 if (gptab_data_sec != NULL)
10868 {
10869 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10870 gptab_data_sec->contents,
10871 0, gptab_data_sec->size))
10872 return FALSE;
10873 }
10874
10875 if (gptab_bss_sec != NULL)
10876 {
10877 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10878 gptab_bss_sec->contents,
10879 0, gptab_bss_sec->size))
10880 return FALSE;
10881 }
10882
10883 if (SGI_COMPAT (abfd))
10884 {
10885 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10886 if (rtproc_sec != NULL)
10887 {
10888 if (! bfd_set_section_contents (abfd, rtproc_sec,
10889 rtproc_sec->contents,
10890 0, rtproc_sec->size))
10891 return FALSE;
10892 }
10893 }
10894
10895 return TRUE;
10896 }
10897 \f
10898 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10899
10900 struct mips_mach_extension {
10901 unsigned long extension, base;
10902 };
10903
10904
10905 /* An array describing how BFD machines relate to one another. The entries
10906 are ordered topologically with MIPS I extensions listed last. */
10907
10908 static const struct mips_mach_extension mips_mach_extensions[] = {
10909 /* MIPS64 extensions. */
10910 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10911 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10912
10913 /* MIPS V extensions. */
10914 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10915
10916 /* R10000 extensions. */
10917 { bfd_mach_mips12000, bfd_mach_mips10000 },
10918
10919 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10920 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10921 better to allow vr5400 and vr5500 code to be merged anyway, since
10922 many libraries will just use the core ISA. Perhaps we could add
10923 some sort of ASE flag if this ever proves a problem. */
10924 { bfd_mach_mips5500, bfd_mach_mips5400 },
10925 { bfd_mach_mips5400, bfd_mach_mips5000 },
10926
10927 /* MIPS IV extensions. */
10928 { bfd_mach_mips5, bfd_mach_mips8000 },
10929 { bfd_mach_mips10000, bfd_mach_mips8000 },
10930 { bfd_mach_mips5000, bfd_mach_mips8000 },
10931 { bfd_mach_mips7000, bfd_mach_mips8000 },
10932 { bfd_mach_mips9000, bfd_mach_mips8000 },
10933
10934 /* VR4100 extensions. */
10935 { bfd_mach_mips4120, bfd_mach_mips4100 },
10936 { bfd_mach_mips4111, bfd_mach_mips4100 },
10937
10938 /* MIPS III extensions. */
10939 { bfd_mach_mips8000, bfd_mach_mips4000 },
10940 { bfd_mach_mips4650, bfd_mach_mips4000 },
10941 { bfd_mach_mips4600, bfd_mach_mips4000 },
10942 { bfd_mach_mips4400, bfd_mach_mips4000 },
10943 { bfd_mach_mips4300, bfd_mach_mips4000 },
10944 { bfd_mach_mips4100, bfd_mach_mips4000 },
10945 { bfd_mach_mips4010, bfd_mach_mips4000 },
10946
10947 /* MIPS32 extensions. */
10948 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10949
10950 /* MIPS II extensions. */
10951 { bfd_mach_mips4000, bfd_mach_mips6000 },
10952 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10953
10954 /* MIPS I extensions. */
10955 { bfd_mach_mips6000, bfd_mach_mips3000 },
10956 { bfd_mach_mips3900, bfd_mach_mips3000 }
10957 };
10958
10959
10960 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10961
10962 static bfd_boolean
10963 mips_mach_extends_p (unsigned long base, unsigned long extension)
10964 {
10965 size_t i;
10966
10967 if (extension == base)
10968 return TRUE;
10969
10970 if (base == bfd_mach_mipsisa32
10971 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10972 return TRUE;
10973
10974 if (base == bfd_mach_mipsisa32r2
10975 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10976 return TRUE;
10977
10978 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10979 if (extension == mips_mach_extensions[i].extension)
10980 {
10981 extension = mips_mach_extensions[i].base;
10982 if (extension == base)
10983 return TRUE;
10984 }
10985
10986 return FALSE;
10987 }
10988
10989
10990 /* Return true if the given ELF header flags describe a 32-bit binary. */
10991
10992 static bfd_boolean
10993 mips_32bit_flags_p (flagword flags)
10994 {
10995 return ((flags & EF_MIPS_32BITMODE) != 0
10996 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10997 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10998 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10999 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11000 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11001 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11002 }
11003
11004
11005 /* Merge backend specific data from an object file to the output
11006 object file when linking. */
11007
11008 bfd_boolean
11009 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11010 {
11011 flagword old_flags;
11012 flagword new_flags;
11013 bfd_boolean ok;
11014 bfd_boolean null_input_bfd = TRUE;
11015 asection *sec;
11016
11017 /* Check if we have the same endianess */
11018 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11019 {
11020 (*_bfd_error_handler)
11021 (_("%B: endianness incompatible with that of the selected emulation"),
11022 ibfd);
11023 return FALSE;
11024 }
11025
11026 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11027 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11028 return TRUE;
11029
11030 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11031 {
11032 (*_bfd_error_handler)
11033 (_("%B: ABI is incompatible with that of the selected emulation"),
11034 ibfd);
11035 return FALSE;
11036 }
11037
11038 new_flags = elf_elfheader (ibfd)->e_flags;
11039 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11040 old_flags = elf_elfheader (obfd)->e_flags;
11041
11042 if (! elf_flags_init (obfd))
11043 {
11044 elf_flags_init (obfd) = TRUE;
11045 elf_elfheader (obfd)->e_flags = new_flags;
11046 elf_elfheader (obfd)->e_ident[EI_CLASS]
11047 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11048
11049 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11050 && (bfd_get_arch_info (obfd)->the_default
11051 || mips_mach_extends_p (bfd_get_mach (obfd),
11052 bfd_get_mach (ibfd))))
11053 {
11054 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11055 bfd_get_mach (ibfd)))
11056 return FALSE;
11057 }
11058
11059 return TRUE;
11060 }
11061
11062 /* Check flag compatibility. */
11063
11064 new_flags &= ~EF_MIPS_NOREORDER;
11065 old_flags &= ~EF_MIPS_NOREORDER;
11066
11067 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11068 doesn't seem to matter. */
11069 new_flags &= ~EF_MIPS_XGOT;
11070 old_flags &= ~EF_MIPS_XGOT;
11071
11072 /* MIPSpro generates ucode info in n64 objects. Again, we should
11073 just be able to ignore this. */
11074 new_flags &= ~EF_MIPS_UCODE;
11075 old_flags &= ~EF_MIPS_UCODE;
11076
11077 /* Don't care about the PIC flags from dynamic objects; they are
11078 PIC by design. */
11079 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11080 && (ibfd->flags & DYNAMIC) != 0)
11081 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11082
11083 if (new_flags == old_flags)
11084 return TRUE;
11085
11086 /* Check to see if the input BFD actually contains any sections.
11087 If not, its flags may not have been initialised either, but it cannot
11088 actually cause any incompatibility. */
11089 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11090 {
11091 /* Ignore synthetic sections and empty .text, .data and .bss sections
11092 which are automatically generated by gas. */
11093 if (strcmp (sec->name, ".reginfo")
11094 && strcmp (sec->name, ".mdebug")
11095 && (sec->size != 0
11096 || (strcmp (sec->name, ".text")
11097 && strcmp (sec->name, ".data")
11098 && strcmp (sec->name, ".bss"))))
11099 {
11100 null_input_bfd = FALSE;
11101 break;
11102 }
11103 }
11104 if (null_input_bfd)
11105 return TRUE;
11106
11107 ok = TRUE;
11108
11109 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11110 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11111 {
11112 (*_bfd_error_handler)
11113 (_("%B: warning: linking PIC files with non-PIC files"),
11114 ibfd);
11115 ok = TRUE;
11116 }
11117
11118 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11119 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11120 if (! (new_flags & EF_MIPS_PIC))
11121 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11122
11123 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11124 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11125
11126 /* Compare the ISAs. */
11127 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11128 {
11129 (*_bfd_error_handler)
11130 (_("%B: linking 32-bit code with 64-bit code"),
11131 ibfd);
11132 ok = FALSE;
11133 }
11134 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11135 {
11136 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11137 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11138 {
11139 /* Copy the architecture info from IBFD to OBFD. Also copy
11140 the 32-bit flag (if set) so that we continue to recognise
11141 OBFD as a 32-bit binary. */
11142 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11143 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11144 elf_elfheader (obfd)->e_flags
11145 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11146
11147 /* Copy across the ABI flags if OBFD doesn't use them
11148 and if that was what caused us to treat IBFD as 32-bit. */
11149 if ((old_flags & EF_MIPS_ABI) == 0
11150 && mips_32bit_flags_p (new_flags)
11151 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11152 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11153 }
11154 else
11155 {
11156 /* The ISAs aren't compatible. */
11157 (*_bfd_error_handler)
11158 (_("%B: linking %s module with previous %s modules"),
11159 ibfd,
11160 bfd_printable_name (ibfd),
11161 bfd_printable_name (obfd));
11162 ok = FALSE;
11163 }
11164 }
11165
11166 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11167 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11168
11169 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11170 does set EI_CLASS differently from any 32-bit ABI. */
11171 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11172 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11173 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11174 {
11175 /* Only error if both are set (to different values). */
11176 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11177 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11178 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11179 {
11180 (*_bfd_error_handler)
11181 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11182 ibfd,
11183 elf_mips_abi_name (ibfd),
11184 elf_mips_abi_name (obfd));
11185 ok = FALSE;
11186 }
11187 new_flags &= ~EF_MIPS_ABI;
11188 old_flags &= ~EF_MIPS_ABI;
11189 }
11190
11191 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11192 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11193 {
11194 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11195
11196 new_flags &= ~ EF_MIPS_ARCH_ASE;
11197 old_flags &= ~ EF_MIPS_ARCH_ASE;
11198 }
11199
11200 /* Warn about any other mismatches */
11201 if (new_flags != old_flags)
11202 {
11203 (*_bfd_error_handler)
11204 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11205 ibfd, (unsigned long) new_flags,
11206 (unsigned long) old_flags);
11207 ok = FALSE;
11208 }
11209
11210 if (! ok)
11211 {
11212 bfd_set_error (bfd_error_bad_value);
11213 return FALSE;
11214 }
11215
11216 return TRUE;
11217 }
11218
11219 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11220
11221 bfd_boolean
11222 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11223 {
11224 BFD_ASSERT (!elf_flags_init (abfd)
11225 || elf_elfheader (abfd)->e_flags == flags);
11226
11227 elf_elfheader (abfd)->e_flags = flags;
11228 elf_flags_init (abfd) = TRUE;
11229 return TRUE;
11230 }
11231
11232 bfd_boolean
11233 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11234 {
11235 FILE *file = ptr;
11236
11237 BFD_ASSERT (abfd != NULL && ptr != NULL);
11238
11239 /* Print normal ELF private data. */
11240 _bfd_elf_print_private_bfd_data (abfd, ptr);
11241
11242 /* xgettext:c-format */
11243 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11244
11245 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11246 fprintf (file, _(" [abi=O32]"));
11247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11248 fprintf (file, _(" [abi=O64]"));
11249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11250 fprintf (file, _(" [abi=EABI32]"));
11251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11252 fprintf (file, _(" [abi=EABI64]"));
11253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11254 fprintf (file, _(" [abi unknown]"));
11255 else if (ABI_N32_P (abfd))
11256 fprintf (file, _(" [abi=N32]"));
11257 else if (ABI_64_P (abfd))
11258 fprintf (file, _(" [abi=64]"));
11259 else
11260 fprintf (file, _(" [no abi set]"));
11261
11262 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11263 fprintf (file, " [mips1]");
11264 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11265 fprintf (file, " [mips2]");
11266 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11267 fprintf (file, " [mips3]");
11268 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11269 fprintf (file, " [mips4]");
11270 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11271 fprintf (file, " [mips5]");
11272 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11273 fprintf (file, " [mips32]");
11274 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11275 fprintf (file, " [mips64]");
11276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11277 fprintf (file, " [mips32r2]");
11278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11279 fprintf (file, " [mips64r2]");
11280 else
11281 fprintf (file, _(" [unknown ISA]"));
11282
11283 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11284 fprintf (file, " [mdmx]");
11285
11286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11287 fprintf (file, " [mips16]");
11288
11289 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11290 fprintf (file, " [32bitmode]");
11291 else
11292 fprintf (file, _(" [not 32bitmode]"));
11293
11294 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11295 fprintf (file, " [noreorder]");
11296
11297 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11298 fprintf (file, " [PIC]");
11299
11300 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11301 fprintf (file, " [CPIC]");
11302
11303 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11304 fprintf (file, " [XGOT]");
11305
11306 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11307 fprintf (file, " [UCODE]");
11308
11309 fputc ('\n', file);
11310
11311 return TRUE;
11312 }
11313
11314 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11315 {
11316 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11317 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11318 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11319 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11320 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11321 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11322 { NULL, 0, 0, 0, 0 }
11323 };
11324
11325 /* Merge non visibility st_other attributes. Ensure that the
11326 STO_OPTIONAL flag is copied into h->other, even if this is not a
11327 definiton of the symbol. */
11328 void
11329 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11330 const Elf_Internal_Sym *isym,
11331 bfd_boolean definition,
11332 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11333 {
11334 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11335 {
11336 unsigned char other;
11337
11338 other = (definition ? isym->st_other : h->other);
11339 other &= ~ELF_ST_VISIBILITY (-1);
11340 h->other = other | ELF_ST_VISIBILITY (h->other);
11341 }
11342
11343 if (!definition
11344 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11345 h->other |= STO_OPTIONAL;
11346 }
11347
11348 /* Decide whether an undefined symbol is special and can be ignored.
11349 This is the case for OPTIONAL symbols on IRIX. */
11350 bfd_boolean
11351 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11352 {
11353 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11354 }
11355
11356 bfd_boolean
11357 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11358 {
11359 return (sym->st_shndx == SHN_COMMON
11360 || sym->st_shndx == SHN_MIPS_ACOMMON
11361 || sym->st_shndx == SHN_MIPS_SCOMMON);
11362 }