oops - spelling fixes accidentally omitted from previous delta.
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309
310 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
311 the dynamic symbols. */
312
313 struct mips_elf_hash_sort_data
314 {
315 /* The symbol in the global GOT with the lowest dynamic symbol table
316 index. */
317 struct elf_link_hash_entry *low;
318 /* The least dynamic symbol table index corresponding to a non-TLS
319 symbol with a GOT entry. */
320 long min_got_dynindx;
321 /* The greatest dynamic symbol table index corresponding to a symbol
322 with a GOT entry that is not referenced (e.g., a dynamic symbol
323 with dynamic relocations pointing to it from non-primary GOTs). */
324 long max_unref_got_dynindx;
325 /* The greatest dynamic symbol table index not corresponding to a
326 symbol without a GOT entry. */
327 long max_non_got_dynindx;
328 };
329
330 /* The MIPS ELF linker needs additional information for each symbol in
331 the global hash table. */
332
333 struct mips_elf_link_hash_entry
334 {
335 struct elf_link_hash_entry root;
336
337 /* External symbol information. */
338 EXTR esym;
339
340 /* The la25 stub we have created for ths symbol, if any. */
341 struct mips_elf_la25_stub *la25_stub;
342
343 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
344 this symbol. */
345 unsigned int possibly_dynamic_relocs;
346
347 /* If there is a stub that 32 bit functions should use to call this
348 16 bit function, this points to the section containing the stub. */
349 asection *fn_stub;
350
351 /* If there is a stub that 16 bit functions should use to call this
352 32 bit function, this points to the section containing the stub. */
353 asection *call_stub;
354
355 /* This is like the call_stub field, but it is used if the function
356 being called returns a floating point value. */
357 asection *call_fp_stub;
358
359 #define GOT_NORMAL 0
360 #define GOT_TLS_GD 1
361 #define GOT_TLS_LDM 2
362 #define GOT_TLS_IE 4
363 #define GOT_TLS_OFFSET_DONE 0x40
364 #define GOT_TLS_DONE 0x80
365 unsigned char tls_type;
366
367 /* This is only used in single-GOT mode; in multi-GOT mode there
368 is one mips_got_entry per GOT entry, so the offset is stored
369 there. In single-GOT mode there may be many mips_got_entry
370 structures all referring to the same GOT slot. It might be
371 possible to use root.got.offset instead, but that field is
372 overloaded already. */
373 bfd_vma tls_got_offset;
374
375 /* The highest GGA_* value that satisfies all references to this symbol. */
376 unsigned int global_got_area : 2;
377
378 /* True if all GOT relocations against this symbol are for calls. This is
379 a looser condition than no_fn_stub below, because there may be other
380 non-call non-GOT relocations against the symbol. */
381 unsigned int got_only_for_calls : 1;
382
383 /* True if one of the relocations described by possibly_dynamic_relocs
384 is against a readonly section. */
385 unsigned int readonly_reloc : 1;
386
387 /* True if there is a relocation against this symbol that must be
388 resolved by the static linker (in other words, if the relocation
389 cannot possibly be made dynamic). */
390 unsigned int has_static_relocs : 1;
391
392 /* True if we must not create a .MIPS.stubs entry for this symbol.
393 This is set, for example, if there are relocations related to
394 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
395 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
396 unsigned int no_fn_stub : 1;
397
398 /* Whether we need the fn_stub; this is true if this symbol appears
399 in any relocs other than a 16 bit call. */
400 unsigned int need_fn_stub : 1;
401
402 /* True if this symbol is referenced by branch relocations from
403 any non-PIC input file. This is used to determine whether an
404 la25 stub is required. */
405 unsigned int has_nonpic_branches : 1;
406
407 /* Does this symbol need a traditional MIPS lazy-binding stub
408 (as opposed to a PLT entry)? */
409 unsigned int needs_lazy_stub : 1;
410 };
411
412 /* MIPS ELF linker hash table. */
413
414 struct mips_elf_link_hash_table
415 {
416 struct elf_link_hash_table root;
417 #if 0
418 /* We no longer use this. */
419 /* String section indices for the dynamic section symbols. */
420 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
421 #endif
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
430 entry is set to the address of __rld_obj_head as in IRIX5. */
431 bfd_boolean use_rld_obj_head;
432
433 /* This is the value of the __rld_map or __rld_obj_head symbol. */
434 bfd_vma rld_value;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we're generating code for VxWorks. */
443 bfd_boolean is_vxworks;
444
445 /* True if we already reported the small-data section overflow. */
446 bfd_boolean small_data_overflow_reported;
447
448 /* Shortcuts to some dynamic sections, or NULL if they are not
449 being used. */
450 asection *srelbss;
451 asection *sdynbss;
452 asection *srelplt;
453 asection *srelplt2;
454 asection *sgotplt;
455 asection *splt;
456 asection *sstubs;
457 asection *sgot;
458
459 /* The master GOT information. */
460 struct mips_got_info *got_info;
461
462 /* The size of the PLT header in bytes. */
463 bfd_vma plt_header_size;
464
465 /* The size of a PLT entry in bytes. */
466 bfd_vma plt_entry_size;
467
468 /* The number of functions that need a lazy-binding stub. */
469 bfd_vma lazy_stub_count;
470
471 /* The size of a function stub entry in bytes. */
472 bfd_vma function_stub_size;
473
474 /* The number of reserved entries at the beginning of the GOT. */
475 unsigned int reserved_gotno;
476
477 /* The section used for mips_elf_la25_stub trampolines.
478 See the comment above that structure for details. */
479 asection *strampoline;
480
481 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
482 pairs. */
483 htab_t la25_stubs;
484
485 /* A function FN (NAME, IS, OS) that creates a new input section
486 called NAME and links it to output section OS. If IS is nonnull,
487 the new section should go immediately before it, otherwise it
488 should go at the (current) beginning of OS.
489
490 The function returns the new section on success, otherwise it
491 returns null. */
492 asection *(*add_stub_section) (const char *, asection *, asection *);
493 };
494
495 /* Get the MIPS ELF linker hash table from a link_info structure. */
496
497 #define mips_elf_hash_table(p) \
498 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
499 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
500
501 /* A structure used to communicate with htab_traverse callbacks. */
502 struct mips_htab_traverse_info
503 {
504 /* The usual link-wide information. */
505 struct bfd_link_info *info;
506 bfd *output_bfd;
507
508 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
509 bfd_boolean error;
510 };
511
512 #define TLS_RELOC_P(r_type) \
513 (r_type == R_MIPS_TLS_DTPMOD32 \
514 || r_type == R_MIPS_TLS_DTPMOD64 \
515 || r_type == R_MIPS_TLS_DTPREL32 \
516 || r_type == R_MIPS_TLS_DTPREL64 \
517 || r_type == R_MIPS_TLS_GD \
518 || r_type == R_MIPS_TLS_LDM \
519 || r_type == R_MIPS_TLS_DTPREL_HI16 \
520 || r_type == R_MIPS_TLS_DTPREL_LO16 \
521 || r_type == R_MIPS_TLS_GOTTPREL \
522 || r_type == R_MIPS_TLS_TPREL32 \
523 || r_type == R_MIPS_TLS_TPREL64 \
524 || r_type == R_MIPS_TLS_TPREL_HI16 \
525 || r_type == R_MIPS_TLS_TPREL_LO16)
526
527 /* Structure used to pass information to mips_elf_output_extsym. */
528
529 struct extsym_info
530 {
531 bfd *abfd;
532 struct bfd_link_info *info;
533 struct ecoff_debug_info *debug;
534 const struct ecoff_debug_swap *swap;
535 bfd_boolean failed;
536 };
537
538 /* The names of the runtime procedure table symbols used on IRIX5. */
539
540 static const char * const mips_elf_dynsym_rtproc_names[] =
541 {
542 "_procedure_table",
543 "_procedure_string_table",
544 "_procedure_table_size",
545 NULL
546 };
547
548 /* These structures are used to generate the .compact_rel section on
549 IRIX5. */
550
551 typedef struct
552 {
553 unsigned long id1; /* Always one? */
554 unsigned long num; /* Number of compact relocation entries. */
555 unsigned long id2; /* Always two? */
556 unsigned long offset; /* The file offset of the first relocation. */
557 unsigned long reserved0; /* Zero? */
558 unsigned long reserved1; /* Zero? */
559 } Elf32_compact_rel;
560
561 typedef struct
562 {
563 bfd_byte id1[4];
564 bfd_byte num[4];
565 bfd_byte id2[4];
566 bfd_byte offset[4];
567 bfd_byte reserved0[4];
568 bfd_byte reserved1[4];
569 } Elf32_External_compact_rel;
570
571 typedef struct
572 {
573 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
574 unsigned int rtype : 4; /* Relocation types. See below. */
575 unsigned int dist2to : 8;
576 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
577 unsigned long konst; /* KONST field. See below. */
578 unsigned long vaddr; /* VADDR to be relocated. */
579 } Elf32_crinfo;
580
581 typedef struct
582 {
583 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
584 unsigned int rtype : 4; /* Relocation types. See below. */
585 unsigned int dist2to : 8;
586 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
587 unsigned long konst; /* KONST field. See below. */
588 } Elf32_crinfo2;
589
590 typedef struct
591 {
592 bfd_byte info[4];
593 bfd_byte konst[4];
594 bfd_byte vaddr[4];
595 } Elf32_External_crinfo;
596
597 typedef struct
598 {
599 bfd_byte info[4];
600 bfd_byte konst[4];
601 } Elf32_External_crinfo2;
602
603 /* These are the constants used to swap the bitfields in a crinfo. */
604
605 #define CRINFO_CTYPE (0x1)
606 #define CRINFO_CTYPE_SH (31)
607 #define CRINFO_RTYPE (0xf)
608 #define CRINFO_RTYPE_SH (27)
609 #define CRINFO_DIST2TO (0xff)
610 #define CRINFO_DIST2TO_SH (19)
611 #define CRINFO_RELVADDR (0x7ffff)
612 #define CRINFO_RELVADDR_SH (0)
613
614 /* A compact relocation info has long (3 words) or short (2 words)
615 formats. A short format doesn't have VADDR field and relvaddr
616 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
617 #define CRF_MIPS_LONG 1
618 #define CRF_MIPS_SHORT 0
619
620 /* There are 4 types of compact relocation at least. The value KONST
621 has different meaning for each type:
622
623 (type) (konst)
624 CT_MIPS_REL32 Address in data
625 CT_MIPS_WORD Address in word (XXX)
626 CT_MIPS_GPHI_LO GP - vaddr
627 CT_MIPS_JMPAD Address to jump
628 */
629
630 #define CRT_MIPS_REL32 0xa
631 #define CRT_MIPS_WORD 0xb
632 #define CRT_MIPS_GPHI_LO 0xc
633 #define CRT_MIPS_JMPAD 0xd
634
635 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
636 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
637 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
638 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
639 \f
640 /* The structure of the runtime procedure descriptor created by the
641 loader for use by the static exception system. */
642
643 typedef struct runtime_pdr {
644 bfd_vma adr; /* Memory address of start of procedure. */
645 long regmask; /* Save register mask. */
646 long regoffset; /* Save register offset. */
647 long fregmask; /* Save floating point register mask. */
648 long fregoffset; /* Save floating point register offset. */
649 long frameoffset; /* Frame size. */
650 short framereg; /* Frame pointer register. */
651 short pcreg; /* Offset or reg of return pc. */
652 long irpss; /* Index into the runtime string table. */
653 long reserved;
654 struct exception_info *exception_info;/* Pointer to exception array. */
655 } RPDR, *pRPDR;
656 #define cbRPDR sizeof (RPDR)
657 #define rpdNil ((pRPDR) 0)
658 \f
659 static struct mips_got_entry *mips_elf_create_local_got_entry
660 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
661 struct mips_elf_link_hash_entry *, int);
662 static bfd_boolean mips_elf_sort_hash_table_f
663 (struct mips_elf_link_hash_entry *, void *);
664 static bfd_vma mips_elf_high
665 (bfd_vma);
666 static bfd_boolean mips_elf_create_dynamic_relocation
667 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
668 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
669 bfd_vma *, asection *);
670 static hashval_t mips_elf_got_entry_hash
671 (const void *);
672 static bfd_vma mips_elf_adjust_gp
673 (bfd *, struct mips_got_info *, bfd *);
674 static struct mips_got_info *mips_elf_got_for_ibfd
675 (struct mips_got_info *, bfd *);
676
677 /* This will be used when we sort the dynamic relocation records. */
678 static bfd *reldyn_sorting_bfd;
679
680 /* True if ABFD is for CPUs with load interlocking that include
681 non-MIPS1 CPUs and R3900. */
682 #define LOAD_INTERLOCKS_P(abfd) \
683 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
684 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
685
686 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
687 This should be safe for all architectures. We enable this predicate
688 for RM9000 for now. */
689 #define JAL_TO_BAL_P(abfd) \
690 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
691
692 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
693 This should be safe for all architectures. We enable this predicate for
694 all CPUs. */
695 #define JALR_TO_BAL_P(abfd) 1
696
697 /* True if ABFD is for CPUs that are faster if JR is converted to B.
698 This should be safe for all architectures. We enable this predicate for
699 all CPUs. */
700 #define JR_TO_B_P(abfd) 1
701
702 /* True if ABFD is a PIC object. */
703 #define PIC_OBJECT_P(abfd) \
704 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
705
706 /* Nonzero if ABFD is using the N32 ABI. */
707 #define ABI_N32_P(abfd) \
708 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
709
710 /* Nonzero if ABFD is using the N64 ABI. */
711 #define ABI_64_P(abfd) \
712 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
713
714 /* Nonzero if ABFD is using NewABI conventions. */
715 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
716
717 /* The IRIX compatibility level we are striving for. */
718 #define IRIX_COMPAT(abfd) \
719 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
720
721 /* Whether we are trying to be compatible with IRIX at all. */
722 #define SGI_COMPAT(abfd) \
723 (IRIX_COMPAT (abfd) != ict_none)
724
725 /* The name of the options section. */
726 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
727 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
728
729 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
730 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
731 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
732 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
733
734 /* Whether the section is readonly. */
735 #define MIPS_ELF_READONLY_SECTION(sec) \
736 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
737 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
738
739 /* The name of the stub section. */
740 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
741
742 /* The size of an external REL relocation. */
743 #define MIPS_ELF_REL_SIZE(abfd) \
744 (get_elf_backend_data (abfd)->s->sizeof_rel)
745
746 /* The size of an external RELA relocation. */
747 #define MIPS_ELF_RELA_SIZE(abfd) \
748 (get_elf_backend_data (abfd)->s->sizeof_rela)
749
750 /* The size of an external dynamic table entry. */
751 #define MIPS_ELF_DYN_SIZE(abfd) \
752 (get_elf_backend_data (abfd)->s->sizeof_dyn)
753
754 /* The size of a GOT entry. */
755 #define MIPS_ELF_GOT_SIZE(abfd) \
756 (get_elf_backend_data (abfd)->s->arch_size / 8)
757
758 /* The size of a symbol-table entry. */
759 #define MIPS_ELF_SYM_SIZE(abfd) \
760 (get_elf_backend_data (abfd)->s->sizeof_sym)
761
762 /* The default alignment for sections, as a power of two. */
763 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
764 (get_elf_backend_data (abfd)->s->log_file_align)
765
766 /* Get word-sized data. */
767 #define MIPS_ELF_GET_WORD(abfd, ptr) \
768 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
769
770 /* Put out word-sized data. */
771 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
772 (ABI_64_P (abfd) \
773 ? bfd_put_64 (abfd, val, ptr) \
774 : bfd_put_32 (abfd, val, ptr))
775
776 /* The opcode for word-sized loads (LW or LD). */
777 #define MIPS_ELF_LOAD_WORD(abfd) \
778 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
779
780 /* Add a dynamic symbol table-entry. */
781 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
782 _bfd_elf_add_dynamic_entry (info, tag, val)
783
784 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
785 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
786
787 /* The name of the dynamic relocation section. */
788 #define MIPS_ELF_REL_DYN_NAME(INFO) \
789 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
790
791 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
792 from smaller values. Start with zero, widen, *then* decrement. */
793 #define MINUS_ONE (((bfd_vma)0) - 1)
794 #define MINUS_TWO (((bfd_vma)0) - 2)
795
796 /* The value to write into got[1] for SVR4 targets, to identify it is
797 a GNU object. The dynamic linker can then use got[1] to store the
798 module pointer. */
799 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
800 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
801
802 /* The offset of $gp from the beginning of the .got section. */
803 #define ELF_MIPS_GP_OFFSET(INFO) \
804 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
805
806 /* The maximum size of the GOT for it to be addressable using 16-bit
807 offsets from $gp. */
808 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
809
810 /* Instructions which appear in a stub. */
811 #define STUB_LW(abfd) \
812 ((ABI_64_P (abfd) \
813 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
814 : 0x8f998010)) /* lw t9,0x8010(gp) */
815 #define STUB_MOVE(abfd) \
816 ((ABI_64_P (abfd) \
817 ? 0x03e0782d /* daddu t7,ra */ \
818 : 0x03e07821)) /* addu t7,ra */
819 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
820 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
821 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
822 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
823 #define STUB_LI16S(abfd, VAL) \
824 ((ABI_64_P (abfd) \
825 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
826 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
827
828 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
829 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
830
831 /* The name of the dynamic interpreter. This is put in the .interp
832 section. */
833
834 #define ELF_DYNAMIC_INTERPRETER(abfd) \
835 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
836 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
837 : "/usr/lib/libc.so.1")
838
839 #ifdef BFD64
840 #define MNAME(bfd,pre,pos) \
841 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
842 #define ELF_R_SYM(bfd, i) \
843 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
844 #define ELF_R_TYPE(bfd, i) \
845 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
846 #define ELF_R_INFO(bfd, s, t) \
847 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
848 #else
849 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
850 #define ELF_R_SYM(bfd, i) \
851 (ELF32_R_SYM (i))
852 #define ELF_R_TYPE(bfd, i) \
853 (ELF32_R_TYPE (i))
854 #define ELF_R_INFO(bfd, s, t) \
855 (ELF32_R_INFO (s, t))
856 #endif
857 \f
858 /* The mips16 compiler uses a couple of special sections to handle
859 floating point arguments.
860
861 Section names that look like .mips16.fn.FNNAME contain stubs that
862 copy floating point arguments from the fp regs to the gp regs and
863 then jump to FNNAME. If any 32 bit function calls FNNAME, the
864 call should be redirected to the stub instead. If no 32 bit
865 function calls FNNAME, the stub should be discarded. We need to
866 consider any reference to the function, not just a call, because
867 if the address of the function is taken we will need the stub,
868 since the address might be passed to a 32 bit function.
869
870 Section names that look like .mips16.call.FNNAME contain stubs
871 that copy floating point arguments from the gp regs to the fp
872 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
873 then any 16 bit function that calls FNNAME should be redirected
874 to the stub instead. If FNNAME is not a 32 bit function, the
875 stub should be discarded.
876
877 .mips16.call.fp.FNNAME sections are similar, but contain stubs
878 which call FNNAME and then copy the return value from the fp regs
879 to the gp regs. These stubs store the return value in $18 while
880 calling FNNAME; any function which might call one of these stubs
881 must arrange to save $18 around the call. (This case is not
882 needed for 32 bit functions that call 16 bit functions, because
883 16 bit functions always return floating point values in both
884 $f0/$f1 and $2/$3.)
885
886 Note that in all cases FNNAME might be defined statically.
887 Therefore, FNNAME is not used literally. Instead, the relocation
888 information will indicate which symbol the section is for.
889
890 We record any stubs that we find in the symbol table. */
891
892 #define FN_STUB ".mips16.fn."
893 #define CALL_STUB ".mips16.call."
894 #define CALL_FP_STUB ".mips16.call.fp."
895
896 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
897 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
898 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
899 \f
900 /* The format of the first PLT entry in an O32 executable. */
901 static const bfd_vma mips_o32_exec_plt0_entry[] =
902 {
903 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
904 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
905 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
906 0x031cc023, /* subu $24, $24, $28 */
907 0x03e07821, /* move $15, $31 */
908 0x0018c082, /* srl $24, $24, 2 */
909 0x0320f809, /* jalr $25 */
910 0x2718fffe /* subu $24, $24, 2 */
911 };
912
913 /* The format of the first PLT entry in an N32 executable. Different
914 because gp ($28) is not available; we use t2 ($14) instead. */
915 static const bfd_vma mips_n32_exec_plt0_entry[] =
916 {
917 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
918 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
919 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
920 0x030ec023, /* subu $24, $24, $14 */
921 0x03e07821, /* move $15, $31 */
922 0x0018c082, /* srl $24, $24, 2 */
923 0x0320f809, /* jalr $25 */
924 0x2718fffe /* subu $24, $24, 2 */
925 };
926
927 /* The format of the first PLT entry in an N64 executable. Different
928 from N32 because of the increased size of GOT entries. */
929 static const bfd_vma mips_n64_exec_plt0_entry[] =
930 {
931 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
932 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
933 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
934 0x030ec023, /* subu $24, $24, $14 */
935 0x03e07821, /* move $15, $31 */
936 0x0018c0c2, /* srl $24, $24, 3 */
937 0x0320f809, /* jalr $25 */
938 0x2718fffe /* subu $24, $24, 2 */
939 };
940
941 /* The format of subsequent PLT entries. */
942 static const bfd_vma mips_exec_plt_entry[] =
943 {
944 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
945 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
946 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
947 0x03200008 /* jr $25 */
948 };
949
950 /* The format of the first PLT entry in a VxWorks executable. */
951 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
952 {
953 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
954 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
955 0x8f390008, /* lw t9, 8(t9) */
956 0x00000000, /* nop */
957 0x03200008, /* jr t9 */
958 0x00000000 /* nop */
959 };
960
961 /* The format of subsequent PLT entries. */
962 static const bfd_vma mips_vxworks_exec_plt_entry[] =
963 {
964 0x10000000, /* b .PLT_resolver */
965 0x24180000, /* li t8, <pltindex> */
966 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
967 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
968 0x8f390000, /* lw t9, 0(t9) */
969 0x00000000, /* nop */
970 0x03200008, /* jr t9 */
971 0x00000000 /* nop */
972 };
973
974 /* The format of the first PLT entry in a VxWorks shared object. */
975 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
976 {
977 0x8f990008, /* lw t9, 8(gp) */
978 0x00000000, /* nop */
979 0x03200008, /* jr t9 */
980 0x00000000, /* nop */
981 0x00000000, /* nop */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_shared_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000 /* li t8, <pltindex> */
990 };
991 \f
992 /* Look up an entry in a MIPS ELF linker hash table. */
993
994 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
995 ((struct mips_elf_link_hash_entry *) \
996 elf_link_hash_lookup (&(table)->root, (string), (create), \
997 (copy), (follow)))
998
999 /* Traverse a MIPS ELF linker hash table. */
1000
1001 #define mips_elf_link_hash_traverse(table, func, info) \
1002 (elf_link_hash_traverse \
1003 (&(table)->root, \
1004 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1005 (info)))
1006
1007 /* Find the base offsets for thread-local storage in this object,
1008 for GD/LD and IE/LE respectively. */
1009
1010 #define TP_OFFSET 0x7000
1011 #define DTP_OFFSET 0x8000
1012
1013 static bfd_vma
1014 dtprel_base (struct bfd_link_info *info)
1015 {
1016 /* If tls_sec is NULL, we should have signalled an error already. */
1017 if (elf_hash_table (info)->tls_sec == NULL)
1018 return 0;
1019 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1020 }
1021
1022 static bfd_vma
1023 tprel_base (struct bfd_link_info *info)
1024 {
1025 /* If tls_sec is NULL, we should have signalled an error already. */
1026 if (elf_hash_table (info)->tls_sec == NULL)
1027 return 0;
1028 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1029 }
1030
1031 /* Create an entry in a MIPS ELF linker hash table. */
1032
1033 static struct bfd_hash_entry *
1034 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1035 struct bfd_hash_table *table, const char *string)
1036 {
1037 struct mips_elf_link_hash_entry *ret =
1038 (struct mips_elf_link_hash_entry *) entry;
1039
1040 /* Allocate the structure if it has not already been allocated by a
1041 subclass. */
1042 if (ret == NULL)
1043 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1044 if (ret == NULL)
1045 return (struct bfd_hash_entry *) ret;
1046
1047 /* Call the allocation method of the superclass. */
1048 ret = ((struct mips_elf_link_hash_entry *)
1049 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1050 table, string));
1051 if (ret != NULL)
1052 {
1053 /* Set local fields. */
1054 memset (&ret->esym, 0, sizeof (EXTR));
1055 /* We use -2 as a marker to indicate that the information has
1056 not been set. -1 means there is no associated ifd. */
1057 ret->esym.ifd = -2;
1058 ret->la25_stub = 0;
1059 ret->possibly_dynamic_relocs = 0;
1060 ret->fn_stub = NULL;
1061 ret->call_stub = NULL;
1062 ret->call_fp_stub = NULL;
1063 ret->tls_type = GOT_NORMAL;
1064 ret->global_got_area = GGA_NONE;
1065 ret->got_only_for_calls = TRUE;
1066 ret->readonly_reloc = FALSE;
1067 ret->has_static_relocs = FALSE;
1068 ret->no_fn_stub = FALSE;
1069 ret->need_fn_stub = FALSE;
1070 ret->has_nonpic_branches = FALSE;
1071 ret->needs_lazy_stub = FALSE;
1072 }
1073
1074 return (struct bfd_hash_entry *) ret;
1075 }
1076
1077 bfd_boolean
1078 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1079 {
1080 if (!sec->used_by_bfd)
1081 {
1082 struct _mips_elf_section_data *sdata;
1083 bfd_size_type amt = sizeof (*sdata);
1084
1085 sdata = bfd_zalloc (abfd, amt);
1086 if (sdata == NULL)
1087 return FALSE;
1088 sec->used_by_bfd = sdata;
1089 }
1090
1091 return _bfd_elf_new_section_hook (abfd, sec);
1092 }
1093 \f
1094 /* Read ECOFF debugging information from a .mdebug section into a
1095 ecoff_debug_info structure. */
1096
1097 bfd_boolean
1098 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1099 struct ecoff_debug_info *debug)
1100 {
1101 HDRR *symhdr;
1102 const struct ecoff_debug_swap *swap;
1103 char *ext_hdr;
1104
1105 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1106 memset (debug, 0, sizeof (*debug));
1107
1108 ext_hdr = bfd_malloc (swap->external_hdr_size);
1109 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1110 goto error_return;
1111
1112 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1113 swap->external_hdr_size))
1114 goto error_return;
1115
1116 symhdr = &debug->symbolic_header;
1117 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1118
1119 /* The symbolic header contains absolute file offsets and sizes to
1120 read. */
1121 #define READ(ptr, offset, count, size, type) \
1122 if (symhdr->count == 0) \
1123 debug->ptr = NULL; \
1124 else \
1125 { \
1126 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1127 debug->ptr = bfd_malloc (amt); \
1128 if (debug->ptr == NULL) \
1129 goto error_return; \
1130 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1131 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1132 goto error_return; \
1133 }
1134
1135 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1136 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1137 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1138 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1139 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1140 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1141 union aux_ext *);
1142 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1143 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1144 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1145 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1146 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1147 #undef READ
1148
1149 debug->fdr = NULL;
1150
1151 return TRUE;
1152
1153 error_return:
1154 if (ext_hdr != NULL)
1155 free (ext_hdr);
1156 if (debug->line != NULL)
1157 free (debug->line);
1158 if (debug->external_dnr != NULL)
1159 free (debug->external_dnr);
1160 if (debug->external_pdr != NULL)
1161 free (debug->external_pdr);
1162 if (debug->external_sym != NULL)
1163 free (debug->external_sym);
1164 if (debug->external_opt != NULL)
1165 free (debug->external_opt);
1166 if (debug->external_aux != NULL)
1167 free (debug->external_aux);
1168 if (debug->ss != NULL)
1169 free (debug->ss);
1170 if (debug->ssext != NULL)
1171 free (debug->ssext);
1172 if (debug->external_fdr != NULL)
1173 free (debug->external_fdr);
1174 if (debug->external_rfd != NULL)
1175 free (debug->external_rfd);
1176 if (debug->external_ext != NULL)
1177 free (debug->external_ext);
1178 return FALSE;
1179 }
1180 \f
1181 /* Swap RPDR (runtime procedure table entry) for output. */
1182
1183 static void
1184 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1185 {
1186 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1187 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1188 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1189 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1190 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1191 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1192
1193 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1194 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1195
1196 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1197 }
1198
1199 /* Create a runtime procedure table from the .mdebug section. */
1200
1201 static bfd_boolean
1202 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1203 struct bfd_link_info *info, asection *s,
1204 struct ecoff_debug_info *debug)
1205 {
1206 const struct ecoff_debug_swap *swap;
1207 HDRR *hdr = &debug->symbolic_header;
1208 RPDR *rpdr, *rp;
1209 struct rpdr_ext *erp;
1210 void *rtproc;
1211 struct pdr_ext *epdr;
1212 struct sym_ext *esym;
1213 char *ss, **sv;
1214 char *str;
1215 bfd_size_type size;
1216 bfd_size_type count;
1217 unsigned long sindex;
1218 unsigned long i;
1219 PDR pdr;
1220 SYMR sym;
1221 const char *no_name_func = _("static procedure (no name)");
1222
1223 epdr = NULL;
1224 rpdr = NULL;
1225 esym = NULL;
1226 ss = NULL;
1227 sv = NULL;
1228
1229 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1230
1231 sindex = strlen (no_name_func) + 1;
1232 count = hdr->ipdMax;
1233 if (count > 0)
1234 {
1235 size = swap->external_pdr_size;
1236
1237 epdr = bfd_malloc (size * count);
1238 if (epdr == NULL)
1239 goto error_return;
1240
1241 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1242 goto error_return;
1243
1244 size = sizeof (RPDR);
1245 rp = rpdr = bfd_malloc (size * count);
1246 if (rpdr == NULL)
1247 goto error_return;
1248
1249 size = sizeof (char *);
1250 sv = bfd_malloc (size * count);
1251 if (sv == NULL)
1252 goto error_return;
1253
1254 count = hdr->isymMax;
1255 size = swap->external_sym_size;
1256 esym = bfd_malloc (size * count);
1257 if (esym == NULL)
1258 goto error_return;
1259
1260 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1261 goto error_return;
1262
1263 count = hdr->issMax;
1264 ss = bfd_malloc (count);
1265 if (ss == NULL)
1266 goto error_return;
1267 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1268 goto error_return;
1269
1270 count = hdr->ipdMax;
1271 for (i = 0; i < (unsigned long) count; i++, rp++)
1272 {
1273 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1274 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1275 rp->adr = sym.value;
1276 rp->regmask = pdr.regmask;
1277 rp->regoffset = pdr.regoffset;
1278 rp->fregmask = pdr.fregmask;
1279 rp->fregoffset = pdr.fregoffset;
1280 rp->frameoffset = pdr.frameoffset;
1281 rp->framereg = pdr.framereg;
1282 rp->pcreg = pdr.pcreg;
1283 rp->irpss = sindex;
1284 sv[i] = ss + sym.iss;
1285 sindex += strlen (sv[i]) + 1;
1286 }
1287 }
1288
1289 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1290 size = BFD_ALIGN (size, 16);
1291 rtproc = bfd_alloc (abfd, size);
1292 if (rtproc == NULL)
1293 {
1294 mips_elf_hash_table (info)->procedure_count = 0;
1295 goto error_return;
1296 }
1297
1298 mips_elf_hash_table (info)->procedure_count = count + 2;
1299
1300 erp = rtproc;
1301 memset (erp, 0, sizeof (struct rpdr_ext));
1302 erp++;
1303 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1304 strcpy (str, no_name_func);
1305 str += strlen (no_name_func) + 1;
1306 for (i = 0; i < count; i++)
1307 {
1308 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1309 strcpy (str, sv[i]);
1310 str += strlen (sv[i]) + 1;
1311 }
1312 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1313
1314 /* Set the size and contents of .rtproc section. */
1315 s->size = size;
1316 s->contents = rtproc;
1317
1318 /* Skip this section later on (I don't think this currently
1319 matters, but someday it might). */
1320 s->map_head.link_order = NULL;
1321
1322 if (epdr != NULL)
1323 free (epdr);
1324 if (rpdr != NULL)
1325 free (rpdr);
1326 if (esym != NULL)
1327 free (esym);
1328 if (ss != NULL)
1329 free (ss);
1330 if (sv != NULL)
1331 free (sv);
1332
1333 return TRUE;
1334
1335 error_return:
1336 if (epdr != NULL)
1337 free (epdr);
1338 if (rpdr != NULL)
1339 free (rpdr);
1340 if (esym != NULL)
1341 free (esym);
1342 if (ss != NULL)
1343 free (ss);
1344 if (sv != NULL)
1345 free (sv);
1346 return FALSE;
1347 }
1348 \f
1349 /* We're going to create a stub for H. Create a symbol for the stub's
1350 value and size, to help make the disassembly easier to read. */
1351
1352 static bfd_boolean
1353 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1354 struct mips_elf_link_hash_entry *h,
1355 const char *prefix, asection *s, bfd_vma value,
1356 bfd_vma size)
1357 {
1358 struct bfd_link_hash_entry *bh;
1359 struct elf_link_hash_entry *elfh;
1360 const char *name;
1361
1362 /* Create a new symbol. */
1363 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1364 bh = NULL;
1365 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1366 BSF_LOCAL, s, value, NULL,
1367 TRUE, FALSE, &bh))
1368 return FALSE;
1369
1370 /* Make it a local function. */
1371 elfh = (struct elf_link_hash_entry *) bh;
1372 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1373 elfh->size = size;
1374 elfh->forced_local = 1;
1375 return TRUE;
1376 }
1377
1378 /* We're about to redefine H. Create a symbol to represent H's
1379 current value and size, to help make the disassembly easier
1380 to read. */
1381
1382 static bfd_boolean
1383 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1384 struct mips_elf_link_hash_entry *h,
1385 const char *prefix)
1386 {
1387 struct bfd_link_hash_entry *bh;
1388 struct elf_link_hash_entry *elfh;
1389 const char *name;
1390 asection *s;
1391 bfd_vma value;
1392
1393 /* Read the symbol's value. */
1394 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1395 || h->root.root.type == bfd_link_hash_defweak);
1396 s = h->root.root.u.def.section;
1397 value = h->root.root.u.def.value;
1398
1399 /* Create a new symbol. */
1400 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1401 bh = NULL;
1402 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1403 BSF_LOCAL, s, value, NULL,
1404 TRUE, FALSE, &bh))
1405 return FALSE;
1406
1407 /* Make it local and copy the other attributes from H. */
1408 elfh = (struct elf_link_hash_entry *) bh;
1409 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1410 elfh->other = h->root.other;
1411 elfh->size = h->root.size;
1412 elfh->forced_local = 1;
1413 return TRUE;
1414 }
1415
1416 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1417 function rather than to a hard-float stub. */
1418
1419 static bfd_boolean
1420 section_allows_mips16_refs_p (asection *section)
1421 {
1422 const char *name;
1423
1424 name = bfd_get_section_name (section->owner, section);
1425 return (FN_STUB_P (name)
1426 || CALL_STUB_P (name)
1427 || CALL_FP_STUB_P (name)
1428 || strcmp (name, ".pdr") == 0);
1429 }
1430
1431 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1432 stub section of some kind. Return the R_SYMNDX of the target
1433 function, or 0 if we can't decide which function that is. */
1434
1435 static unsigned long
1436 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1437 const Elf_Internal_Rela *relocs,
1438 const Elf_Internal_Rela *relend)
1439 {
1440 const Elf_Internal_Rela *rel;
1441
1442 /* Trust the first R_MIPS_NONE relocation, if any. */
1443 for (rel = relocs; rel < relend; rel++)
1444 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1445 return ELF_R_SYM (sec->owner, rel->r_info);
1446
1447 /* Otherwise trust the first relocation, whatever its kind. This is
1448 the traditional behavior. */
1449 if (relocs < relend)
1450 return ELF_R_SYM (sec->owner, relocs->r_info);
1451
1452 return 0;
1453 }
1454
1455 /* Check the mips16 stubs for a particular symbol, and see if we can
1456 discard them. */
1457
1458 static void
1459 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1460 struct mips_elf_link_hash_entry *h)
1461 {
1462 /* Dynamic symbols must use the standard call interface, in case other
1463 objects try to call them. */
1464 if (h->fn_stub != NULL
1465 && h->root.dynindx != -1)
1466 {
1467 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1468 h->need_fn_stub = TRUE;
1469 }
1470
1471 if (h->fn_stub != NULL
1472 && ! h->need_fn_stub)
1473 {
1474 /* We don't need the fn_stub; the only references to this symbol
1475 are 16 bit calls. Clobber the size to 0 to prevent it from
1476 being included in the link. */
1477 h->fn_stub->size = 0;
1478 h->fn_stub->flags &= ~SEC_RELOC;
1479 h->fn_stub->reloc_count = 0;
1480 h->fn_stub->flags |= SEC_EXCLUDE;
1481 }
1482
1483 if (h->call_stub != NULL
1484 && ELF_ST_IS_MIPS16 (h->root.other))
1485 {
1486 /* We don't need the call_stub; this is a 16 bit function, so
1487 calls from other 16 bit functions are OK. Clobber the size
1488 to 0 to prevent it from being included in the link. */
1489 h->call_stub->size = 0;
1490 h->call_stub->flags &= ~SEC_RELOC;
1491 h->call_stub->reloc_count = 0;
1492 h->call_stub->flags |= SEC_EXCLUDE;
1493 }
1494
1495 if (h->call_fp_stub != NULL
1496 && ELF_ST_IS_MIPS16 (h->root.other))
1497 {
1498 /* We don't need the call_stub; this is a 16 bit function, so
1499 calls from other 16 bit functions are OK. Clobber the size
1500 to 0 to prevent it from being included in the link. */
1501 h->call_fp_stub->size = 0;
1502 h->call_fp_stub->flags &= ~SEC_RELOC;
1503 h->call_fp_stub->reloc_count = 0;
1504 h->call_fp_stub->flags |= SEC_EXCLUDE;
1505 }
1506 }
1507
1508 /* Hashtable callbacks for mips_elf_la25_stubs. */
1509
1510 static hashval_t
1511 mips_elf_la25_stub_hash (const void *entry_)
1512 {
1513 const struct mips_elf_la25_stub *entry;
1514
1515 entry = (struct mips_elf_la25_stub *) entry_;
1516 return entry->h->root.root.u.def.section->id
1517 + entry->h->root.root.u.def.value;
1518 }
1519
1520 static int
1521 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1522 {
1523 const struct mips_elf_la25_stub *entry1, *entry2;
1524
1525 entry1 = (struct mips_elf_la25_stub *) entry1_;
1526 entry2 = (struct mips_elf_la25_stub *) entry2_;
1527 return ((entry1->h->root.root.u.def.section
1528 == entry2->h->root.root.u.def.section)
1529 && (entry1->h->root.root.u.def.value
1530 == entry2->h->root.root.u.def.value));
1531 }
1532
1533 /* Called by the linker to set up the la25 stub-creation code. FN is
1534 the linker's implementation of add_stub_function. Return true on
1535 success. */
1536
1537 bfd_boolean
1538 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1539 asection *(*fn) (const char *, asection *,
1540 asection *))
1541 {
1542 struct mips_elf_link_hash_table *htab;
1543
1544 htab = mips_elf_hash_table (info);
1545 if (htab == NULL)
1546 return FALSE;
1547
1548 htab->add_stub_section = fn;
1549 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1550 mips_elf_la25_stub_eq, NULL);
1551 if (htab->la25_stubs == NULL)
1552 return FALSE;
1553
1554 return TRUE;
1555 }
1556
1557 /* Return true if H is a locally-defined PIC function, in the sense
1558 that it might need $25 to be valid on entry. Note that MIPS16
1559 functions never need $25 to be valid on entry; they set up $gp
1560 using PC-relative instructions instead. */
1561
1562 static bfd_boolean
1563 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1564 {
1565 return ((h->root.root.type == bfd_link_hash_defined
1566 || h->root.root.type == bfd_link_hash_defweak)
1567 && h->root.def_regular
1568 && !bfd_is_abs_section (h->root.root.u.def.section)
1569 && !ELF_ST_IS_MIPS16 (h->root.other)
1570 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1571 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1572 }
1573
1574 /* STUB describes an la25 stub that we have decided to implement
1575 by inserting an LUI/ADDIU pair before the target function.
1576 Create the section and redirect the function symbol to it. */
1577
1578 static bfd_boolean
1579 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1580 struct bfd_link_info *info)
1581 {
1582 struct mips_elf_link_hash_table *htab;
1583 char *name;
1584 asection *s, *input_section;
1585 unsigned int align;
1586
1587 htab = mips_elf_hash_table (info);
1588 if (htab == NULL)
1589 return FALSE;
1590
1591 /* Create a unique name for the new section. */
1592 name = bfd_malloc (11 + sizeof (".text.stub."));
1593 if (name == NULL)
1594 return FALSE;
1595 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1596
1597 /* Create the section. */
1598 input_section = stub->h->root.root.u.def.section;
1599 s = htab->add_stub_section (name, input_section,
1600 input_section->output_section);
1601 if (s == NULL)
1602 return FALSE;
1603
1604 /* Make sure that any padding goes before the stub. */
1605 align = input_section->alignment_power;
1606 if (!bfd_set_section_alignment (s->owner, s, align))
1607 return FALSE;
1608 if (align > 3)
1609 s->size = (1 << align) - 8;
1610
1611 /* Create a symbol for the stub. */
1612 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1613 stub->stub_section = s;
1614 stub->offset = s->size;
1615
1616 /* Allocate room for it. */
1617 s->size += 8;
1618 return TRUE;
1619 }
1620
1621 /* STUB describes an la25 stub that we have decided to implement
1622 with a separate trampoline. Allocate room for it and redirect
1623 the function symbol to it. */
1624
1625 static bfd_boolean
1626 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1627 struct bfd_link_info *info)
1628 {
1629 struct mips_elf_link_hash_table *htab;
1630 asection *s;
1631
1632 htab = mips_elf_hash_table (info);
1633 if (htab == NULL)
1634 return FALSE;
1635
1636 /* Create a trampoline section, if we haven't already. */
1637 s = htab->strampoline;
1638 if (s == NULL)
1639 {
1640 asection *input_section = stub->h->root.root.u.def.section;
1641 s = htab->add_stub_section (".text", NULL,
1642 input_section->output_section);
1643 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1644 return FALSE;
1645 htab->strampoline = s;
1646 }
1647
1648 /* Create a symbol for the stub. */
1649 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1650 stub->stub_section = s;
1651 stub->offset = s->size;
1652
1653 /* Allocate room for it. */
1654 s->size += 16;
1655 return TRUE;
1656 }
1657
1658 /* H describes a symbol that needs an la25 stub. Make sure that an
1659 appropriate stub exists and point H at it. */
1660
1661 static bfd_boolean
1662 mips_elf_add_la25_stub (struct bfd_link_info *info,
1663 struct mips_elf_link_hash_entry *h)
1664 {
1665 struct mips_elf_link_hash_table *htab;
1666 struct mips_elf_la25_stub search, *stub;
1667 bfd_boolean use_trampoline_p;
1668 asection *s;
1669 bfd_vma value;
1670 void **slot;
1671
1672 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1673 of the section and if we would need no more than 2 nops. */
1674 s = h->root.root.u.def.section;
1675 value = h->root.root.u.def.value;
1676 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1677
1678 /* Describe the stub we want. */
1679 search.stub_section = NULL;
1680 search.offset = 0;
1681 search.h = h;
1682
1683 /* See if we've already created an equivalent stub. */
1684 htab = mips_elf_hash_table (info);
1685 if (htab == NULL)
1686 return FALSE;
1687
1688 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1689 if (slot == NULL)
1690 return FALSE;
1691
1692 stub = (struct mips_elf_la25_stub *) *slot;
1693 if (stub != NULL)
1694 {
1695 /* We can reuse the existing stub. */
1696 h->la25_stub = stub;
1697 return TRUE;
1698 }
1699
1700 /* Create a permanent copy of ENTRY and add it to the hash table. */
1701 stub = bfd_malloc (sizeof (search));
1702 if (stub == NULL)
1703 return FALSE;
1704 *stub = search;
1705 *slot = stub;
1706
1707 h->la25_stub = stub;
1708 return (use_trampoline_p
1709 ? mips_elf_add_la25_trampoline (stub, info)
1710 : mips_elf_add_la25_intro (stub, info));
1711 }
1712
1713 /* A mips_elf_link_hash_traverse callback that is called before sizing
1714 sections. DATA points to a mips_htab_traverse_info structure. */
1715
1716 static bfd_boolean
1717 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1718 {
1719 struct mips_htab_traverse_info *hti;
1720
1721 hti = (struct mips_htab_traverse_info *) data;
1722 if (h->root.root.type == bfd_link_hash_warning)
1723 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1724
1725 if (!hti->info->relocatable)
1726 mips_elf_check_mips16_stubs (hti->info, h);
1727
1728 if (mips_elf_local_pic_function_p (h))
1729 {
1730 /* H is a function that might need $25 to be valid on entry.
1731 If we're creating a non-PIC relocatable object, mark H as
1732 being PIC. If we're creating a non-relocatable object with
1733 non-PIC branches and jumps to H, make sure that H has an la25
1734 stub. */
1735 if (hti->info->relocatable)
1736 {
1737 if (!PIC_OBJECT_P (hti->output_bfd))
1738 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1739 }
1740 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1741 {
1742 hti->error = TRUE;
1743 return FALSE;
1744 }
1745 }
1746 return TRUE;
1747 }
1748 \f
1749 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1750 Most mips16 instructions are 16 bits, but these instructions
1751 are 32 bits.
1752
1753 The format of these instructions is:
1754
1755 +--------------+--------------------------------+
1756 | JALX | X| Imm 20:16 | Imm 25:21 |
1757 +--------------+--------------------------------+
1758 | Immediate 15:0 |
1759 +-----------------------------------------------+
1760
1761 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1762 Note that the immediate value in the first word is swapped.
1763
1764 When producing a relocatable object file, R_MIPS16_26 is
1765 handled mostly like R_MIPS_26. In particular, the addend is
1766 stored as a straight 26-bit value in a 32-bit instruction.
1767 (gas makes life simpler for itself by never adjusting a
1768 R_MIPS16_26 reloc to be against a section, so the addend is
1769 always zero). However, the 32 bit instruction is stored as 2
1770 16-bit values, rather than a single 32-bit value. In a
1771 big-endian file, the result is the same; in a little-endian
1772 file, the two 16-bit halves of the 32 bit value are swapped.
1773 This is so that a disassembler can recognize the jal
1774 instruction.
1775
1776 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1777 instruction stored as two 16-bit values. The addend A is the
1778 contents of the targ26 field. The calculation is the same as
1779 R_MIPS_26. When storing the calculated value, reorder the
1780 immediate value as shown above, and don't forget to store the
1781 value as two 16-bit values.
1782
1783 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1784 defined as
1785
1786 big-endian:
1787 +--------+----------------------+
1788 | | |
1789 | | targ26-16 |
1790 |31 26|25 0|
1791 +--------+----------------------+
1792
1793 little-endian:
1794 +----------+------+-------------+
1795 | | | |
1796 | sub1 | | sub2 |
1797 |0 9|10 15|16 31|
1798 +----------+--------------------+
1799 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1800 ((sub1 << 16) | sub2)).
1801
1802 When producing a relocatable object file, the calculation is
1803 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1804 When producing a fully linked file, the calculation is
1805 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1806 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1807
1808 The table below lists the other MIPS16 instruction relocations.
1809 Each one is calculated in the same way as the non-MIPS16 relocation
1810 given on the right, but using the extended MIPS16 layout of 16-bit
1811 immediate fields:
1812
1813 R_MIPS16_GPREL R_MIPS_GPREL16
1814 R_MIPS16_GOT16 R_MIPS_GOT16
1815 R_MIPS16_CALL16 R_MIPS_CALL16
1816 R_MIPS16_HI16 R_MIPS_HI16
1817 R_MIPS16_LO16 R_MIPS_LO16
1818
1819 A typical instruction will have a format like this:
1820
1821 +--------------+--------------------------------+
1822 | EXTEND | Imm 10:5 | Imm 15:11 |
1823 +--------------+--------------------------------+
1824 | Major | rx | ry | Imm 4:0 |
1825 +--------------+--------------------------------+
1826
1827 EXTEND is the five bit value 11110. Major is the instruction
1828 opcode.
1829
1830 All we need to do here is shuffle the bits appropriately.
1831 As above, the two 16-bit halves must be swapped on a
1832 little-endian system. */
1833
1834 static inline bfd_boolean
1835 mips16_reloc_p (int r_type)
1836 {
1837 switch (r_type)
1838 {
1839 case R_MIPS16_26:
1840 case R_MIPS16_GPREL:
1841 case R_MIPS16_GOT16:
1842 case R_MIPS16_CALL16:
1843 case R_MIPS16_HI16:
1844 case R_MIPS16_LO16:
1845 return TRUE;
1846
1847 default:
1848 return FALSE;
1849 }
1850 }
1851
1852 static inline bfd_boolean
1853 got16_reloc_p (int r_type)
1854 {
1855 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1856 }
1857
1858 static inline bfd_boolean
1859 call16_reloc_p (int r_type)
1860 {
1861 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1862 }
1863
1864 static inline bfd_boolean
1865 hi16_reloc_p (int r_type)
1866 {
1867 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1868 }
1869
1870 static inline bfd_boolean
1871 lo16_reloc_p (int r_type)
1872 {
1873 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1874 }
1875
1876 static inline bfd_boolean
1877 mips16_call_reloc_p (int r_type)
1878 {
1879 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1880 }
1881
1882 static inline bfd_boolean
1883 jal_reloc_p (int r_type)
1884 {
1885 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1886 }
1887
1888 void
1889 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1890 bfd_boolean jal_shuffle, bfd_byte *data)
1891 {
1892 bfd_vma extend, insn, val;
1893
1894 if (!mips16_reloc_p (r_type))
1895 return;
1896
1897 /* Pick up the mips16 extend instruction and the real instruction. */
1898 extend = bfd_get_16 (abfd, data);
1899 insn = bfd_get_16 (abfd, data + 2);
1900 if (r_type == R_MIPS16_26)
1901 {
1902 if (jal_shuffle)
1903 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1904 | ((extend & 0x1f) << 21) | insn;
1905 else
1906 val = extend << 16 | insn;
1907 }
1908 else
1909 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1910 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1911 bfd_put_32 (abfd, val, data);
1912 }
1913
1914 void
1915 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1916 bfd_boolean jal_shuffle, bfd_byte *data)
1917 {
1918 bfd_vma extend, insn, val;
1919
1920 if (!mips16_reloc_p (r_type))
1921 return;
1922
1923 val = bfd_get_32 (abfd, data);
1924 if (r_type == R_MIPS16_26)
1925 {
1926 if (jal_shuffle)
1927 {
1928 insn = val & 0xffff;
1929 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1930 | ((val >> 21) & 0x1f);
1931 }
1932 else
1933 {
1934 insn = val & 0xffff;
1935 extend = val >> 16;
1936 }
1937 }
1938 else
1939 {
1940 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1941 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1942 }
1943 bfd_put_16 (abfd, insn, data + 2);
1944 bfd_put_16 (abfd, extend, data);
1945 }
1946
1947 bfd_reloc_status_type
1948 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1949 arelent *reloc_entry, asection *input_section,
1950 bfd_boolean relocatable, void *data, bfd_vma gp)
1951 {
1952 bfd_vma relocation;
1953 bfd_signed_vma val;
1954 bfd_reloc_status_type status;
1955
1956 if (bfd_is_com_section (symbol->section))
1957 relocation = 0;
1958 else
1959 relocation = symbol->value;
1960
1961 relocation += symbol->section->output_section->vma;
1962 relocation += symbol->section->output_offset;
1963
1964 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1965 return bfd_reloc_outofrange;
1966
1967 /* Set val to the offset into the section or symbol. */
1968 val = reloc_entry->addend;
1969
1970 _bfd_mips_elf_sign_extend (val, 16);
1971
1972 /* Adjust val for the final section location and GP value. If we
1973 are producing relocatable output, we don't want to do this for
1974 an external symbol. */
1975 if (! relocatable
1976 || (symbol->flags & BSF_SECTION_SYM) != 0)
1977 val += relocation - gp;
1978
1979 if (reloc_entry->howto->partial_inplace)
1980 {
1981 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1982 (bfd_byte *) data
1983 + reloc_entry->address);
1984 if (status != bfd_reloc_ok)
1985 return status;
1986 }
1987 else
1988 reloc_entry->addend = val;
1989
1990 if (relocatable)
1991 reloc_entry->address += input_section->output_offset;
1992
1993 return bfd_reloc_ok;
1994 }
1995
1996 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1997 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1998 that contains the relocation field and DATA points to the start of
1999 INPUT_SECTION. */
2000
2001 struct mips_hi16
2002 {
2003 struct mips_hi16 *next;
2004 bfd_byte *data;
2005 asection *input_section;
2006 arelent rel;
2007 };
2008
2009 /* FIXME: This should not be a static variable. */
2010
2011 static struct mips_hi16 *mips_hi16_list;
2012
2013 /* A howto special_function for REL *HI16 relocations. We can only
2014 calculate the correct value once we've seen the partnering
2015 *LO16 relocation, so just save the information for later.
2016
2017 The ABI requires that the *LO16 immediately follow the *HI16.
2018 However, as a GNU extension, we permit an arbitrary number of
2019 *HI16s to be associated with a single *LO16. This significantly
2020 simplies the relocation handling in gcc. */
2021
2022 bfd_reloc_status_type
2023 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2024 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2025 asection *input_section, bfd *output_bfd,
2026 char **error_message ATTRIBUTE_UNUSED)
2027 {
2028 struct mips_hi16 *n;
2029
2030 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2031 return bfd_reloc_outofrange;
2032
2033 n = bfd_malloc (sizeof *n);
2034 if (n == NULL)
2035 return bfd_reloc_outofrange;
2036
2037 n->next = mips_hi16_list;
2038 n->data = data;
2039 n->input_section = input_section;
2040 n->rel = *reloc_entry;
2041 mips_hi16_list = n;
2042
2043 if (output_bfd != NULL)
2044 reloc_entry->address += input_section->output_offset;
2045
2046 return bfd_reloc_ok;
2047 }
2048
2049 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2050 like any other 16-bit relocation when applied to global symbols, but is
2051 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2052
2053 bfd_reloc_status_type
2054 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2055 void *data, asection *input_section,
2056 bfd *output_bfd, char **error_message)
2057 {
2058 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2059 || bfd_is_und_section (bfd_get_section (symbol))
2060 || bfd_is_com_section (bfd_get_section (symbol)))
2061 /* The relocation is against a global symbol. */
2062 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2063 input_section, output_bfd,
2064 error_message);
2065
2066 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2067 input_section, output_bfd, error_message);
2068 }
2069
2070 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2071 is a straightforward 16 bit inplace relocation, but we must deal with
2072 any partnering high-part relocations as well. */
2073
2074 bfd_reloc_status_type
2075 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2076 void *data, asection *input_section,
2077 bfd *output_bfd, char **error_message)
2078 {
2079 bfd_vma vallo;
2080 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2081
2082 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2083 return bfd_reloc_outofrange;
2084
2085 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2086 location);
2087 vallo = bfd_get_32 (abfd, location);
2088 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2089 location);
2090
2091 while (mips_hi16_list != NULL)
2092 {
2093 bfd_reloc_status_type ret;
2094 struct mips_hi16 *hi;
2095
2096 hi = mips_hi16_list;
2097
2098 /* R_MIPS*_GOT16 relocations are something of a special case. We
2099 want to install the addend in the same way as for a R_MIPS*_HI16
2100 relocation (with a rightshift of 16). However, since GOT16
2101 relocations can also be used with global symbols, their howto
2102 has a rightshift of 0. */
2103 if (hi->rel.howto->type == R_MIPS_GOT16)
2104 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2105 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2106 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2107
2108 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2109 carry or borrow will induce a change of +1 or -1 in the high part. */
2110 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2111
2112 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2113 hi->input_section, output_bfd,
2114 error_message);
2115 if (ret != bfd_reloc_ok)
2116 return ret;
2117
2118 mips_hi16_list = hi->next;
2119 free (hi);
2120 }
2121
2122 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2123 input_section, output_bfd,
2124 error_message);
2125 }
2126
2127 /* A generic howto special_function. This calculates and installs the
2128 relocation itself, thus avoiding the oft-discussed problems in
2129 bfd_perform_relocation and bfd_install_relocation. */
2130
2131 bfd_reloc_status_type
2132 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2133 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2134 asection *input_section, bfd *output_bfd,
2135 char **error_message ATTRIBUTE_UNUSED)
2136 {
2137 bfd_signed_vma val;
2138 bfd_reloc_status_type status;
2139 bfd_boolean relocatable;
2140
2141 relocatable = (output_bfd != NULL);
2142
2143 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2144 return bfd_reloc_outofrange;
2145
2146 /* Build up the field adjustment in VAL. */
2147 val = 0;
2148 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2149 {
2150 /* Either we're calculating the final field value or we have a
2151 relocation against a section symbol. Add in the section's
2152 offset or address. */
2153 val += symbol->section->output_section->vma;
2154 val += symbol->section->output_offset;
2155 }
2156
2157 if (!relocatable)
2158 {
2159 /* We're calculating the final field value. Add in the symbol's value
2160 and, if pc-relative, subtract the address of the field itself. */
2161 val += symbol->value;
2162 if (reloc_entry->howto->pc_relative)
2163 {
2164 val -= input_section->output_section->vma;
2165 val -= input_section->output_offset;
2166 val -= reloc_entry->address;
2167 }
2168 }
2169
2170 /* VAL is now the final adjustment. If we're keeping this relocation
2171 in the output file, and if the relocation uses a separate addend,
2172 we just need to add VAL to that addend. Otherwise we need to add
2173 VAL to the relocation field itself. */
2174 if (relocatable && !reloc_entry->howto->partial_inplace)
2175 reloc_entry->addend += val;
2176 else
2177 {
2178 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2179
2180 /* Add in the separate addend, if any. */
2181 val += reloc_entry->addend;
2182
2183 /* Add VAL to the relocation field. */
2184 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2185 location);
2186 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2187 location);
2188 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2189 location);
2190
2191 if (status != bfd_reloc_ok)
2192 return status;
2193 }
2194
2195 if (relocatable)
2196 reloc_entry->address += input_section->output_offset;
2197
2198 return bfd_reloc_ok;
2199 }
2200 \f
2201 /* Swap an entry in a .gptab section. Note that these routines rely
2202 on the equivalence of the two elements of the union. */
2203
2204 static void
2205 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2206 Elf32_gptab *in)
2207 {
2208 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2209 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2210 }
2211
2212 static void
2213 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2214 Elf32_External_gptab *ex)
2215 {
2216 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2217 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2218 }
2219
2220 static void
2221 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2222 Elf32_External_compact_rel *ex)
2223 {
2224 H_PUT_32 (abfd, in->id1, ex->id1);
2225 H_PUT_32 (abfd, in->num, ex->num);
2226 H_PUT_32 (abfd, in->id2, ex->id2);
2227 H_PUT_32 (abfd, in->offset, ex->offset);
2228 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2229 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2230 }
2231
2232 static void
2233 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2234 Elf32_External_crinfo *ex)
2235 {
2236 unsigned long l;
2237
2238 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2239 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2240 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2241 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2242 H_PUT_32 (abfd, l, ex->info);
2243 H_PUT_32 (abfd, in->konst, ex->konst);
2244 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2245 }
2246 \f
2247 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2248 routines swap this structure in and out. They are used outside of
2249 BFD, so they are globally visible. */
2250
2251 void
2252 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2253 Elf32_RegInfo *in)
2254 {
2255 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2256 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2257 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2258 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2259 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2260 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2261 }
2262
2263 void
2264 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2265 Elf32_External_RegInfo *ex)
2266 {
2267 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2268 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2269 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2270 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2271 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2272 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2273 }
2274
2275 /* In the 64 bit ABI, the .MIPS.options section holds register
2276 information in an Elf64_Reginfo structure. These routines swap
2277 them in and out. They are globally visible because they are used
2278 outside of BFD. These routines are here so that gas can call them
2279 without worrying about whether the 64 bit ABI has been included. */
2280
2281 void
2282 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2283 Elf64_Internal_RegInfo *in)
2284 {
2285 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2286 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2287 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2288 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2289 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2290 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2291 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2292 }
2293
2294 void
2295 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2296 Elf64_External_RegInfo *ex)
2297 {
2298 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2299 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2300 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2301 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2302 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2303 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2304 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2305 }
2306
2307 /* Swap in an options header. */
2308
2309 void
2310 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2311 Elf_Internal_Options *in)
2312 {
2313 in->kind = H_GET_8 (abfd, ex->kind);
2314 in->size = H_GET_8 (abfd, ex->size);
2315 in->section = H_GET_16 (abfd, ex->section);
2316 in->info = H_GET_32 (abfd, ex->info);
2317 }
2318
2319 /* Swap out an options header. */
2320
2321 void
2322 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2323 Elf_External_Options *ex)
2324 {
2325 H_PUT_8 (abfd, in->kind, ex->kind);
2326 H_PUT_8 (abfd, in->size, ex->size);
2327 H_PUT_16 (abfd, in->section, ex->section);
2328 H_PUT_32 (abfd, in->info, ex->info);
2329 }
2330 \f
2331 /* This function is called via qsort() to sort the dynamic relocation
2332 entries by increasing r_symndx value. */
2333
2334 static int
2335 sort_dynamic_relocs (const void *arg1, const void *arg2)
2336 {
2337 Elf_Internal_Rela int_reloc1;
2338 Elf_Internal_Rela int_reloc2;
2339 int diff;
2340
2341 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2342 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2343
2344 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2345 if (diff != 0)
2346 return diff;
2347
2348 if (int_reloc1.r_offset < int_reloc2.r_offset)
2349 return -1;
2350 if (int_reloc1.r_offset > int_reloc2.r_offset)
2351 return 1;
2352 return 0;
2353 }
2354
2355 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2356
2357 static int
2358 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2359 const void *arg2 ATTRIBUTE_UNUSED)
2360 {
2361 #ifdef BFD64
2362 Elf_Internal_Rela int_reloc1[3];
2363 Elf_Internal_Rela int_reloc2[3];
2364
2365 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2366 (reldyn_sorting_bfd, arg1, int_reloc1);
2367 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2368 (reldyn_sorting_bfd, arg2, int_reloc2);
2369
2370 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2371 return -1;
2372 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2373 return 1;
2374
2375 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2376 return -1;
2377 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2378 return 1;
2379 return 0;
2380 #else
2381 abort ();
2382 #endif
2383 }
2384
2385
2386 /* This routine is used to write out ECOFF debugging external symbol
2387 information. It is called via mips_elf_link_hash_traverse. The
2388 ECOFF external symbol information must match the ELF external
2389 symbol information. Unfortunately, at this point we don't know
2390 whether a symbol is required by reloc information, so the two
2391 tables may wind up being different. We must sort out the external
2392 symbol information before we can set the final size of the .mdebug
2393 section, and we must set the size of the .mdebug section before we
2394 can relocate any sections, and we can't know which symbols are
2395 required by relocation until we relocate the sections.
2396 Fortunately, it is relatively unlikely that any symbol will be
2397 stripped but required by a reloc. In particular, it can not happen
2398 when generating a final executable. */
2399
2400 static bfd_boolean
2401 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2402 {
2403 struct extsym_info *einfo = data;
2404 bfd_boolean strip;
2405 asection *sec, *output_section;
2406
2407 if (h->root.root.type == bfd_link_hash_warning)
2408 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2409
2410 if (h->root.indx == -2)
2411 strip = FALSE;
2412 else if ((h->root.def_dynamic
2413 || h->root.ref_dynamic
2414 || h->root.type == bfd_link_hash_new)
2415 && !h->root.def_regular
2416 && !h->root.ref_regular)
2417 strip = TRUE;
2418 else if (einfo->info->strip == strip_all
2419 || (einfo->info->strip == strip_some
2420 && bfd_hash_lookup (einfo->info->keep_hash,
2421 h->root.root.root.string,
2422 FALSE, FALSE) == NULL))
2423 strip = TRUE;
2424 else
2425 strip = FALSE;
2426
2427 if (strip)
2428 return TRUE;
2429
2430 if (h->esym.ifd == -2)
2431 {
2432 h->esym.jmptbl = 0;
2433 h->esym.cobol_main = 0;
2434 h->esym.weakext = 0;
2435 h->esym.reserved = 0;
2436 h->esym.ifd = ifdNil;
2437 h->esym.asym.value = 0;
2438 h->esym.asym.st = stGlobal;
2439
2440 if (h->root.root.type == bfd_link_hash_undefined
2441 || h->root.root.type == bfd_link_hash_undefweak)
2442 {
2443 const char *name;
2444
2445 /* Use undefined class. Also, set class and type for some
2446 special symbols. */
2447 name = h->root.root.root.string;
2448 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2449 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2450 {
2451 h->esym.asym.sc = scData;
2452 h->esym.asym.st = stLabel;
2453 h->esym.asym.value = 0;
2454 }
2455 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2456 {
2457 h->esym.asym.sc = scAbs;
2458 h->esym.asym.st = stLabel;
2459 h->esym.asym.value =
2460 mips_elf_hash_table (einfo->info)->procedure_count;
2461 }
2462 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2463 {
2464 h->esym.asym.sc = scAbs;
2465 h->esym.asym.st = stLabel;
2466 h->esym.asym.value = elf_gp (einfo->abfd);
2467 }
2468 else
2469 h->esym.asym.sc = scUndefined;
2470 }
2471 else if (h->root.root.type != bfd_link_hash_defined
2472 && h->root.root.type != bfd_link_hash_defweak)
2473 h->esym.asym.sc = scAbs;
2474 else
2475 {
2476 const char *name;
2477
2478 sec = h->root.root.u.def.section;
2479 output_section = sec->output_section;
2480
2481 /* When making a shared library and symbol h is the one from
2482 the another shared library, OUTPUT_SECTION may be null. */
2483 if (output_section == NULL)
2484 h->esym.asym.sc = scUndefined;
2485 else
2486 {
2487 name = bfd_section_name (output_section->owner, output_section);
2488
2489 if (strcmp (name, ".text") == 0)
2490 h->esym.asym.sc = scText;
2491 else if (strcmp (name, ".data") == 0)
2492 h->esym.asym.sc = scData;
2493 else if (strcmp (name, ".sdata") == 0)
2494 h->esym.asym.sc = scSData;
2495 else if (strcmp (name, ".rodata") == 0
2496 || strcmp (name, ".rdata") == 0)
2497 h->esym.asym.sc = scRData;
2498 else if (strcmp (name, ".bss") == 0)
2499 h->esym.asym.sc = scBss;
2500 else if (strcmp (name, ".sbss") == 0)
2501 h->esym.asym.sc = scSBss;
2502 else if (strcmp (name, ".init") == 0)
2503 h->esym.asym.sc = scInit;
2504 else if (strcmp (name, ".fini") == 0)
2505 h->esym.asym.sc = scFini;
2506 else
2507 h->esym.asym.sc = scAbs;
2508 }
2509 }
2510
2511 h->esym.asym.reserved = 0;
2512 h->esym.asym.index = indexNil;
2513 }
2514
2515 if (h->root.root.type == bfd_link_hash_common)
2516 h->esym.asym.value = h->root.root.u.c.size;
2517 else if (h->root.root.type == bfd_link_hash_defined
2518 || h->root.root.type == bfd_link_hash_defweak)
2519 {
2520 if (h->esym.asym.sc == scCommon)
2521 h->esym.asym.sc = scBss;
2522 else if (h->esym.asym.sc == scSCommon)
2523 h->esym.asym.sc = scSBss;
2524
2525 sec = h->root.root.u.def.section;
2526 output_section = sec->output_section;
2527 if (output_section != NULL)
2528 h->esym.asym.value = (h->root.root.u.def.value
2529 + sec->output_offset
2530 + output_section->vma);
2531 else
2532 h->esym.asym.value = 0;
2533 }
2534 else
2535 {
2536 struct mips_elf_link_hash_entry *hd = h;
2537
2538 while (hd->root.root.type == bfd_link_hash_indirect)
2539 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2540
2541 if (hd->needs_lazy_stub)
2542 {
2543 /* Set type and value for a symbol with a function stub. */
2544 h->esym.asym.st = stProc;
2545 sec = hd->root.root.u.def.section;
2546 if (sec == NULL)
2547 h->esym.asym.value = 0;
2548 else
2549 {
2550 output_section = sec->output_section;
2551 if (output_section != NULL)
2552 h->esym.asym.value = (hd->root.plt.offset
2553 + sec->output_offset
2554 + output_section->vma);
2555 else
2556 h->esym.asym.value = 0;
2557 }
2558 }
2559 }
2560
2561 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2562 h->root.root.root.string,
2563 &h->esym))
2564 {
2565 einfo->failed = TRUE;
2566 return FALSE;
2567 }
2568
2569 return TRUE;
2570 }
2571
2572 /* A comparison routine used to sort .gptab entries. */
2573
2574 static int
2575 gptab_compare (const void *p1, const void *p2)
2576 {
2577 const Elf32_gptab *a1 = p1;
2578 const Elf32_gptab *a2 = p2;
2579
2580 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2581 }
2582 \f
2583 /* Functions to manage the got entry hash table. */
2584
2585 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2586 hash number. */
2587
2588 static INLINE hashval_t
2589 mips_elf_hash_bfd_vma (bfd_vma addr)
2590 {
2591 #ifdef BFD64
2592 return addr + (addr >> 32);
2593 #else
2594 return addr;
2595 #endif
2596 }
2597
2598 /* got_entries only match if they're identical, except for gotidx, so
2599 use all fields to compute the hash, and compare the appropriate
2600 union members. */
2601
2602 static hashval_t
2603 mips_elf_got_entry_hash (const void *entry_)
2604 {
2605 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2606
2607 return entry->symndx
2608 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2609 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2610 : entry->abfd->id
2611 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2612 : entry->d.h->root.root.root.hash));
2613 }
2614
2615 static int
2616 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2617 {
2618 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2619 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2620
2621 /* An LDM entry can only match another LDM entry. */
2622 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2623 return 0;
2624
2625 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2626 && (! e1->abfd ? e1->d.address == e2->d.address
2627 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2628 : e1->d.h == e2->d.h);
2629 }
2630
2631 /* multi_got_entries are still a match in the case of global objects,
2632 even if the input bfd in which they're referenced differs, so the
2633 hash computation and compare functions are adjusted
2634 accordingly. */
2635
2636 static hashval_t
2637 mips_elf_multi_got_entry_hash (const void *entry_)
2638 {
2639 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2640
2641 return entry->symndx
2642 + (! entry->abfd
2643 ? mips_elf_hash_bfd_vma (entry->d.address)
2644 : entry->symndx >= 0
2645 ? ((entry->tls_type & GOT_TLS_LDM)
2646 ? (GOT_TLS_LDM << 17)
2647 : (entry->abfd->id
2648 + mips_elf_hash_bfd_vma (entry->d.addend)))
2649 : entry->d.h->root.root.root.hash);
2650 }
2651
2652 static int
2653 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2654 {
2655 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2656 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2657
2658 /* Any two LDM entries match. */
2659 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2660 return 1;
2661
2662 /* Nothing else matches an LDM entry. */
2663 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2664 return 0;
2665
2666 return e1->symndx == e2->symndx
2667 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2668 : e1->abfd == NULL || e2->abfd == NULL
2669 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2670 : e1->d.h == e2->d.h);
2671 }
2672
2673 static hashval_t
2674 mips_got_page_entry_hash (const void *entry_)
2675 {
2676 const struct mips_got_page_entry *entry;
2677
2678 entry = (const struct mips_got_page_entry *) entry_;
2679 return entry->abfd->id + entry->symndx;
2680 }
2681
2682 static int
2683 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2684 {
2685 const struct mips_got_page_entry *entry1, *entry2;
2686
2687 entry1 = (const struct mips_got_page_entry *) entry1_;
2688 entry2 = (const struct mips_got_page_entry *) entry2_;
2689 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2690 }
2691 \f
2692 /* Return the dynamic relocation section. If it doesn't exist, try to
2693 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2694 if creation fails. */
2695
2696 static asection *
2697 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2698 {
2699 const char *dname;
2700 asection *sreloc;
2701 bfd *dynobj;
2702
2703 dname = MIPS_ELF_REL_DYN_NAME (info);
2704 dynobj = elf_hash_table (info)->dynobj;
2705 sreloc = bfd_get_section_by_name (dynobj, dname);
2706 if (sreloc == NULL && create_p)
2707 {
2708 sreloc = bfd_make_section_with_flags (dynobj, dname,
2709 (SEC_ALLOC
2710 | SEC_LOAD
2711 | SEC_HAS_CONTENTS
2712 | SEC_IN_MEMORY
2713 | SEC_LINKER_CREATED
2714 | SEC_READONLY));
2715 if (sreloc == NULL
2716 || ! bfd_set_section_alignment (dynobj, sreloc,
2717 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2718 return NULL;
2719 }
2720 return sreloc;
2721 }
2722
2723 /* Count the number of relocations needed for a TLS GOT entry, with
2724 access types from TLS_TYPE, and symbol H (or a local symbol if H
2725 is NULL). */
2726
2727 static int
2728 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2729 struct elf_link_hash_entry *h)
2730 {
2731 int indx = 0;
2732 int ret = 0;
2733 bfd_boolean need_relocs = FALSE;
2734 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2735
2736 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2737 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2738 indx = h->dynindx;
2739
2740 if ((info->shared || indx != 0)
2741 && (h == NULL
2742 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2743 || h->root.type != bfd_link_hash_undefweak))
2744 need_relocs = TRUE;
2745
2746 if (!need_relocs)
2747 return FALSE;
2748
2749 if (tls_type & GOT_TLS_GD)
2750 {
2751 ret++;
2752 if (indx != 0)
2753 ret++;
2754 }
2755
2756 if (tls_type & GOT_TLS_IE)
2757 ret++;
2758
2759 if ((tls_type & GOT_TLS_LDM) && info->shared)
2760 ret++;
2761
2762 return ret;
2763 }
2764
2765 /* Count the number of TLS relocations required for the GOT entry in
2766 ARG1, if it describes a local symbol. */
2767
2768 static int
2769 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2770 {
2771 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2772 struct mips_elf_count_tls_arg *arg = arg2;
2773
2774 if (entry->abfd != NULL && entry->symndx != -1)
2775 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2776
2777 return 1;
2778 }
2779
2780 /* Count the number of TLS GOT entries required for the global (or
2781 forced-local) symbol in ARG1. */
2782
2783 static int
2784 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2785 {
2786 struct mips_elf_link_hash_entry *hm
2787 = (struct mips_elf_link_hash_entry *) arg1;
2788 struct mips_elf_count_tls_arg *arg = arg2;
2789
2790 if (hm->tls_type & GOT_TLS_GD)
2791 arg->needed += 2;
2792 if (hm->tls_type & GOT_TLS_IE)
2793 arg->needed += 1;
2794
2795 return 1;
2796 }
2797
2798 /* Count the number of TLS relocations required for the global (or
2799 forced-local) symbol in ARG1. */
2800
2801 static int
2802 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2803 {
2804 struct mips_elf_link_hash_entry *hm
2805 = (struct mips_elf_link_hash_entry *) arg1;
2806 struct mips_elf_count_tls_arg *arg = arg2;
2807
2808 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2809
2810 return 1;
2811 }
2812
2813 /* Output a simple dynamic relocation into SRELOC. */
2814
2815 static void
2816 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2817 asection *sreloc,
2818 unsigned long reloc_index,
2819 unsigned long indx,
2820 int r_type,
2821 bfd_vma offset)
2822 {
2823 Elf_Internal_Rela rel[3];
2824
2825 memset (rel, 0, sizeof (rel));
2826
2827 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2828 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2829
2830 if (ABI_64_P (output_bfd))
2831 {
2832 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2833 (output_bfd, &rel[0],
2834 (sreloc->contents
2835 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2836 }
2837 else
2838 bfd_elf32_swap_reloc_out
2839 (output_bfd, &rel[0],
2840 (sreloc->contents
2841 + reloc_index * sizeof (Elf32_External_Rel)));
2842 }
2843
2844 /* Initialize a set of TLS GOT entries for one symbol. */
2845
2846 static void
2847 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2848 unsigned char *tls_type_p,
2849 struct bfd_link_info *info,
2850 struct mips_elf_link_hash_entry *h,
2851 bfd_vma value)
2852 {
2853 struct mips_elf_link_hash_table *htab;
2854 int indx;
2855 asection *sreloc, *sgot;
2856 bfd_vma offset, offset2;
2857 bfd_boolean need_relocs = FALSE;
2858
2859 htab = mips_elf_hash_table (info);
2860 if (htab == NULL)
2861 return;
2862
2863 sgot = htab->sgot;
2864
2865 indx = 0;
2866 if (h != NULL)
2867 {
2868 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2869
2870 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2871 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2872 indx = h->root.dynindx;
2873 }
2874
2875 if (*tls_type_p & GOT_TLS_DONE)
2876 return;
2877
2878 if ((info->shared || indx != 0)
2879 && (h == NULL
2880 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2881 || h->root.type != bfd_link_hash_undefweak))
2882 need_relocs = TRUE;
2883
2884 /* MINUS_ONE means the symbol is not defined in this object. It may not
2885 be defined at all; assume that the value doesn't matter in that
2886 case. Otherwise complain if we would use the value. */
2887 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2888 || h->root.root.type == bfd_link_hash_undefweak);
2889
2890 /* Emit necessary relocations. */
2891 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2892
2893 /* General Dynamic. */
2894 if (*tls_type_p & GOT_TLS_GD)
2895 {
2896 offset = got_offset;
2897 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2898
2899 if (need_relocs)
2900 {
2901 mips_elf_output_dynamic_relocation
2902 (abfd, sreloc, sreloc->reloc_count++, indx,
2903 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2904 sgot->output_offset + sgot->output_section->vma + offset);
2905
2906 if (indx)
2907 mips_elf_output_dynamic_relocation
2908 (abfd, sreloc, sreloc->reloc_count++, indx,
2909 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2910 sgot->output_offset + sgot->output_section->vma + offset2);
2911 else
2912 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2913 sgot->contents + offset2);
2914 }
2915 else
2916 {
2917 MIPS_ELF_PUT_WORD (abfd, 1,
2918 sgot->contents + offset);
2919 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2920 sgot->contents + offset2);
2921 }
2922
2923 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2924 }
2925
2926 /* Initial Exec model. */
2927 if (*tls_type_p & GOT_TLS_IE)
2928 {
2929 offset = got_offset;
2930
2931 if (need_relocs)
2932 {
2933 if (indx == 0)
2934 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2935 sgot->contents + offset);
2936 else
2937 MIPS_ELF_PUT_WORD (abfd, 0,
2938 sgot->contents + offset);
2939
2940 mips_elf_output_dynamic_relocation
2941 (abfd, sreloc, sreloc->reloc_count++, indx,
2942 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2943 sgot->output_offset + sgot->output_section->vma + offset);
2944 }
2945 else
2946 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2947 sgot->contents + offset);
2948 }
2949
2950 if (*tls_type_p & GOT_TLS_LDM)
2951 {
2952 /* The initial offset is zero, and the LD offsets will include the
2953 bias by DTP_OFFSET. */
2954 MIPS_ELF_PUT_WORD (abfd, 0,
2955 sgot->contents + got_offset
2956 + MIPS_ELF_GOT_SIZE (abfd));
2957
2958 if (!info->shared)
2959 MIPS_ELF_PUT_WORD (abfd, 1,
2960 sgot->contents + got_offset);
2961 else
2962 mips_elf_output_dynamic_relocation
2963 (abfd, sreloc, sreloc->reloc_count++, indx,
2964 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2965 sgot->output_offset + sgot->output_section->vma + got_offset);
2966 }
2967
2968 *tls_type_p |= GOT_TLS_DONE;
2969 }
2970
2971 /* Return the GOT index to use for a relocation of type R_TYPE against
2972 a symbol accessed using TLS_TYPE models. The GOT entries for this
2973 symbol in this GOT start at GOT_INDEX. This function initializes the
2974 GOT entries and corresponding relocations. */
2975
2976 static bfd_vma
2977 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2978 int r_type, struct bfd_link_info *info,
2979 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2980 {
2981 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2982 || r_type == R_MIPS_TLS_LDM);
2983
2984 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2985
2986 if (r_type == R_MIPS_TLS_GOTTPREL)
2987 {
2988 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2989 if (*tls_type & GOT_TLS_GD)
2990 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2991 else
2992 return got_index;
2993 }
2994
2995 if (r_type == R_MIPS_TLS_GD)
2996 {
2997 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2998 return got_index;
2999 }
3000
3001 if (r_type == R_MIPS_TLS_LDM)
3002 {
3003 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3004 return got_index;
3005 }
3006
3007 return got_index;
3008 }
3009
3010 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3011 for global symbol H. .got.plt comes before the GOT, so the offset
3012 will be negative. */
3013
3014 static bfd_vma
3015 mips_elf_gotplt_index (struct bfd_link_info *info,
3016 struct elf_link_hash_entry *h)
3017 {
3018 bfd_vma plt_index, got_address, got_value;
3019 struct mips_elf_link_hash_table *htab;
3020
3021 htab = mips_elf_hash_table (info);
3022 BFD_ASSERT (htab != NULL);
3023
3024 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3025
3026 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3027 section starts with reserved entries. */
3028 BFD_ASSERT (htab->is_vxworks);
3029
3030 /* Calculate the index of the symbol's PLT entry. */
3031 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3032
3033 /* Calculate the address of the associated .got.plt entry. */
3034 got_address = (htab->sgotplt->output_section->vma
3035 + htab->sgotplt->output_offset
3036 + plt_index * 4);
3037
3038 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3039 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3040 + htab->root.hgot->root.u.def.section->output_offset
3041 + htab->root.hgot->root.u.def.value);
3042
3043 return got_address - got_value;
3044 }
3045
3046 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3047 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3048 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3049 offset can be found. */
3050
3051 static bfd_vma
3052 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3053 bfd_vma value, unsigned long r_symndx,
3054 struct mips_elf_link_hash_entry *h, int r_type)
3055 {
3056 struct mips_elf_link_hash_table *htab;
3057 struct mips_got_entry *entry;
3058
3059 htab = mips_elf_hash_table (info);
3060 BFD_ASSERT (htab != NULL);
3061
3062 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3063 r_symndx, h, r_type);
3064 if (!entry)
3065 return MINUS_ONE;
3066
3067 if (TLS_RELOC_P (r_type))
3068 {
3069 if (entry->symndx == -1 && htab->got_info->next == NULL)
3070 /* A type (3) entry in the single-GOT case. We use the symbol's
3071 hash table entry to track the index. */
3072 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3073 r_type, info, h, value);
3074 else
3075 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3076 r_type, info, h, value);
3077 }
3078 else
3079 return entry->gotidx;
3080 }
3081
3082 /* Returns the GOT index for the global symbol indicated by H. */
3083
3084 static bfd_vma
3085 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3086 int r_type, struct bfd_link_info *info)
3087 {
3088 struct mips_elf_link_hash_table *htab;
3089 bfd_vma got_index;
3090 struct mips_got_info *g, *gg;
3091 long global_got_dynindx = 0;
3092
3093 htab = mips_elf_hash_table (info);
3094 BFD_ASSERT (htab != NULL);
3095
3096 gg = g = htab->got_info;
3097 if (g->bfd2got && ibfd)
3098 {
3099 struct mips_got_entry e, *p;
3100
3101 BFD_ASSERT (h->dynindx >= 0);
3102
3103 g = mips_elf_got_for_ibfd (g, ibfd);
3104 if (g->next != gg || TLS_RELOC_P (r_type))
3105 {
3106 e.abfd = ibfd;
3107 e.symndx = -1;
3108 e.d.h = (struct mips_elf_link_hash_entry *)h;
3109 e.tls_type = 0;
3110
3111 p = htab_find (g->got_entries, &e);
3112
3113 BFD_ASSERT (p->gotidx > 0);
3114
3115 if (TLS_RELOC_P (r_type))
3116 {
3117 bfd_vma value = MINUS_ONE;
3118 if ((h->root.type == bfd_link_hash_defined
3119 || h->root.type == bfd_link_hash_defweak)
3120 && h->root.u.def.section->output_section)
3121 value = (h->root.u.def.value
3122 + h->root.u.def.section->output_offset
3123 + h->root.u.def.section->output_section->vma);
3124
3125 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3126 info, e.d.h, value);
3127 }
3128 else
3129 return p->gotidx;
3130 }
3131 }
3132
3133 if (gg->global_gotsym != NULL)
3134 global_got_dynindx = gg->global_gotsym->dynindx;
3135
3136 if (TLS_RELOC_P (r_type))
3137 {
3138 struct mips_elf_link_hash_entry *hm
3139 = (struct mips_elf_link_hash_entry *) h;
3140 bfd_vma value = MINUS_ONE;
3141
3142 if ((h->root.type == bfd_link_hash_defined
3143 || h->root.type == bfd_link_hash_defweak)
3144 && h->root.u.def.section->output_section)
3145 value = (h->root.u.def.value
3146 + h->root.u.def.section->output_offset
3147 + h->root.u.def.section->output_section->vma);
3148
3149 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3150 r_type, info, hm, value);
3151 }
3152 else
3153 {
3154 /* Once we determine the global GOT entry with the lowest dynamic
3155 symbol table index, we must put all dynamic symbols with greater
3156 indices into the GOT. That makes it easy to calculate the GOT
3157 offset. */
3158 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3159 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3160 * MIPS_ELF_GOT_SIZE (abfd));
3161 }
3162 BFD_ASSERT (got_index < htab->sgot->size);
3163
3164 return got_index;
3165 }
3166
3167 /* Find a GOT page entry that points to within 32KB of VALUE. These
3168 entries are supposed to be placed at small offsets in the GOT, i.e.,
3169 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3170 entry could be created. If OFFSETP is nonnull, use it to return the
3171 offset of the GOT entry from VALUE. */
3172
3173 static bfd_vma
3174 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3175 bfd_vma value, bfd_vma *offsetp)
3176 {
3177 bfd_vma page, got_index;
3178 struct mips_got_entry *entry;
3179
3180 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3181 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3182 NULL, R_MIPS_GOT_PAGE);
3183
3184 if (!entry)
3185 return MINUS_ONE;
3186
3187 got_index = entry->gotidx;
3188
3189 if (offsetp)
3190 *offsetp = value - entry->d.address;
3191
3192 return got_index;
3193 }
3194
3195 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3196 EXTERNAL is true if the relocation was originally against a global
3197 symbol that binds locally. */
3198
3199 static bfd_vma
3200 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3201 bfd_vma value, bfd_boolean external)
3202 {
3203 struct mips_got_entry *entry;
3204
3205 /* GOT16 relocations against local symbols are followed by a LO16
3206 relocation; those against global symbols are not. Thus if the
3207 symbol was originally local, the GOT16 relocation should load the
3208 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3209 if (! external)
3210 value = mips_elf_high (value) << 16;
3211
3212 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3213 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3214 same in all cases. */
3215 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3216 NULL, R_MIPS_GOT16);
3217 if (entry)
3218 return entry->gotidx;
3219 else
3220 return MINUS_ONE;
3221 }
3222
3223 /* Returns the offset for the entry at the INDEXth position
3224 in the GOT. */
3225
3226 static bfd_vma
3227 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3228 bfd *input_bfd, bfd_vma got_index)
3229 {
3230 struct mips_elf_link_hash_table *htab;
3231 asection *sgot;
3232 bfd_vma gp;
3233
3234 htab = mips_elf_hash_table (info);
3235 BFD_ASSERT (htab != NULL);
3236
3237 sgot = htab->sgot;
3238 gp = _bfd_get_gp_value (output_bfd)
3239 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3240
3241 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3242 }
3243
3244 /* Create and return a local GOT entry for VALUE, which was calculated
3245 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3246 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3247 instead. */
3248
3249 static struct mips_got_entry *
3250 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3251 bfd *ibfd, bfd_vma value,
3252 unsigned long r_symndx,
3253 struct mips_elf_link_hash_entry *h,
3254 int r_type)
3255 {
3256 struct mips_got_entry entry, **loc;
3257 struct mips_got_info *g;
3258 struct mips_elf_link_hash_table *htab;
3259
3260 htab = mips_elf_hash_table (info);
3261 BFD_ASSERT (htab != NULL);
3262
3263 entry.abfd = NULL;
3264 entry.symndx = -1;
3265 entry.d.address = value;
3266 entry.tls_type = 0;
3267
3268 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3269 if (g == NULL)
3270 {
3271 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3272 BFD_ASSERT (g != NULL);
3273 }
3274
3275 /* This function shouldn't be called for symbols that live in the global
3276 area of the GOT. */
3277 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3278 if (TLS_RELOC_P (r_type))
3279 {
3280 struct mips_got_entry *p;
3281
3282 entry.abfd = ibfd;
3283 if (r_type == R_MIPS_TLS_LDM)
3284 {
3285 entry.tls_type = GOT_TLS_LDM;
3286 entry.symndx = 0;
3287 entry.d.addend = 0;
3288 }
3289 else if (h == NULL)
3290 {
3291 entry.symndx = r_symndx;
3292 entry.d.addend = 0;
3293 }
3294 else
3295 entry.d.h = h;
3296
3297 p = (struct mips_got_entry *)
3298 htab_find (g->got_entries, &entry);
3299
3300 BFD_ASSERT (p);
3301 return p;
3302 }
3303
3304 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3305 INSERT);
3306 if (*loc)
3307 return *loc;
3308
3309 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3310 entry.tls_type = 0;
3311
3312 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3313
3314 if (! *loc)
3315 return NULL;
3316
3317 memcpy (*loc, &entry, sizeof entry);
3318
3319 if (g->assigned_gotno > g->local_gotno)
3320 {
3321 (*loc)->gotidx = -1;
3322 /* We didn't allocate enough space in the GOT. */
3323 (*_bfd_error_handler)
3324 (_("not enough GOT space for local GOT entries"));
3325 bfd_set_error (bfd_error_bad_value);
3326 return NULL;
3327 }
3328
3329 MIPS_ELF_PUT_WORD (abfd, value,
3330 (htab->sgot->contents + entry.gotidx));
3331
3332 /* These GOT entries need a dynamic relocation on VxWorks. */
3333 if (htab->is_vxworks)
3334 {
3335 Elf_Internal_Rela outrel;
3336 asection *s;
3337 bfd_byte *rloc;
3338 bfd_vma got_address;
3339
3340 s = mips_elf_rel_dyn_section (info, FALSE);
3341 got_address = (htab->sgot->output_section->vma
3342 + htab->sgot->output_offset
3343 + entry.gotidx);
3344
3345 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3346 outrel.r_offset = got_address;
3347 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3348 outrel.r_addend = value;
3349 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3350 }
3351
3352 return *loc;
3353 }
3354
3355 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3356 The number might be exact or a worst-case estimate, depending on how
3357 much information is available to elf_backend_omit_section_dynsym at
3358 the current linking stage. */
3359
3360 static bfd_size_type
3361 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3362 {
3363 bfd_size_type count;
3364
3365 count = 0;
3366 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3367 {
3368 asection *p;
3369 const struct elf_backend_data *bed;
3370
3371 bed = get_elf_backend_data (output_bfd);
3372 for (p = output_bfd->sections; p ; p = p->next)
3373 if ((p->flags & SEC_EXCLUDE) == 0
3374 && (p->flags & SEC_ALLOC) != 0
3375 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3376 ++count;
3377 }
3378 return count;
3379 }
3380
3381 /* Sort the dynamic symbol table so that symbols that need GOT entries
3382 appear towards the end. */
3383
3384 static bfd_boolean
3385 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3386 {
3387 struct mips_elf_link_hash_table *htab;
3388 struct mips_elf_hash_sort_data hsd;
3389 struct mips_got_info *g;
3390
3391 if (elf_hash_table (info)->dynsymcount == 0)
3392 return TRUE;
3393
3394 htab = mips_elf_hash_table (info);
3395 BFD_ASSERT (htab != NULL);
3396
3397 g = htab->got_info;
3398 if (g == NULL)
3399 return TRUE;
3400
3401 hsd.low = NULL;
3402 hsd.max_unref_got_dynindx
3403 = hsd.min_got_dynindx
3404 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3405 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3406 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3407 elf_hash_table (info)),
3408 mips_elf_sort_hash_table_f,
3409 &hsd);
3410
3411 /* There should have been enough room in the symbol table to
3412 accommodate both the GOT and non-GOT symbols. */
3413 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3414 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3415 == elf_hash_table (info)->dynsymcount);
3416 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3417 == g->global_gotno);
3418
3419 /* Now we know which dynamic symbol has the lowest dynamic symbol
3420 table index in the GOT. */
3421 g->global_gotsym = hsd.low;
3422
3423 return TRUE;
3424 }
3425
3426 /* If H needs a GOT entry, assign it the highest available dynamic
3427 index. Otherwise, assign it the lowest available dynamic
3428 index. */
3429
3430 static bfd_boolean
3431 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3432 {
3433 struct mips_elf_hash_sort_data *hsd = data;
3434
3435 if (h->root.root.type == bfd_link_hash_warning)
3436 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3437
3438 /* Symbols without dynamic symbol table entries aren't interesting
3439 at all. */
3440 if (h->root.dynindx == -1)
3441 return TRUE;
3442
3443 switch (h->global_got_area)
3444 {
3445 case GGA_NONE:
3446 h->root.dynindx = hsd->max_non_got_dynindx++;
3447 break;
3448
3449 case GGA_NORMAL:
3450 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3451
3452 h->root.dynindx = --hsd->min_got_dynindx;
3453 hsd->low = (struct elf_link_hash_entry *) h;
3454 break;
3455
3456 case GGA_RELOC_ONLY:
3457 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3458
3459 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3460 hsd->low = (struct elf_link_hash_entry *) h;
3461 h->root.dynindx = hsd->max_unref_got_dynindx++;
3462 break;
3463 }
3464
3465 return TRUE;
3466 }
3467
3468 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3469 symbol table index lower than any we've seen to date, record it for
3470 posterity. FOR_CALL is true if the caller is only interested in
3471 using the GOT entry for calls. */
3472
3473 static bfd_boolean
3474 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3475 bfd *abfd, struct bfd_link_info *info,
3476 bfd_boolean for_call,
3477 unsigned char tls_flag)
3478 {
3479 struct mips_elf_link_hash_table *htab;
3480 struct mips_elf_link_hash_entry *hmips;
3481 struct mips_got_entry entry, **loc;
3482 struct mips_got_info *g;
3483
3484 htab = mips_elf_hash_table (info);
3485 BFD_ASSERT (htab != NULL);
3486
3487 hmips = (struct mips_elf_link_hash_entry *) h;
3488 if (!for_call)
3489 hmips->got_only_for_calls = FALSE;
3490
3491 /* A global symbol in the GOT must also be in the dynamic symbol
3492 table. */
3493 if (h->dynindx == -1)
3494 {
3495 switch (ELF_ST_VISIBILITY (h->other))
3496 {
3497 case STV_INTERNAL:
3498 case STV_HIDDEN:
3499 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3500 break;
3501 }
3502 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3503 return FALSE;
3504 }
3505
3506 /* Make sure we have a GOT to put this entry into. */
3507 g = htab->got_info;
3508 BFD_ASSERT (g != NULL);
3509
3510 entry.abfd = abfd;
3511 entry.symndx = -1;
3512 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3513 entry.tls_type = 0;
3514
3515 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3516 INSERT);
3517
3518 /* If we've already marked this entry as needing GOT space, we don't
3519 need to do it again. */
3520 if (*loc)
3521 {
3522 (*loc)->tls_type |= tls_flag;
3523 return TRUE;
3524 }
3525
3526 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3527
3528 if (! *loc)
3529 return FALSE;
3530
3531 entry.gotidx = -1;
3532 entry.tls_type = tls_flag;
3533
3534 memcpy (*loc, &entry, sizeof entry);
3535
3536 if (tls_flag == 0)
3537 hmips->global_got_area = GGA_NORMAL;
3538
3539 return TRUE;
3540 }
3541
3542 /* Reserve space in G for a GOT entry containing the value of symbol
3543 SYMNDX in input bfd ABDF, plus ADDEND. */
3544
3545 static bfd_boolean
3546 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3547 struct bfd_link_info *info,
3548 unsigned char tls_flag)
3549 {
3550 struct mips_elf_link_hash_table *htab;
3551 struct mips_got_info *g;
3552 struct mips_got_entry entry, **loc;
3553
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3556
3557 g = htab->got_info;
3558 BFD_ASSERT (g != NULL);
3559
3560 entry.abfd = abfd;
3561 entry.symndx = symndx;
3562 entry.d.addend = addend;
3563 entry.tls_type = tls_flag;
3564 loc = (struct mips_got_entry **)
3565 htab_find_slot (g->got_entries, &entry, INSERT);
3566
3567 if (*loc)
3568 {
3569 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3570 {
3571 g->tls_gotno += 2;
3572 (*loc)->tls_type |= tls_flag;
3573 }
3574 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3575 {
3576 g->tls_gotno += 1;
3577 (*loc)->tls_type |= tls_flag;
3578 }
3579 return TRUE;
3580 }
3581
3582 if (tls_flag != 0)
3583 {
3584 entry.gotidx = -1;
3585 entry.tls_type = tls_flag;
3586 if (tls_flag == GOT_TLS_IE)
3587 g->tls_gotno += 1;
3588 else if (tls_flag == GOT_TLS_GD)
3589 g->tls_gotno += 2;
3590 else if (g->tls_ldm_offset == MINUS_ONE)
3591 {
3592 g->tls_ldm_offset = MINUS_TWO;
3593 g->tls_gotno += 2;
3594 }
3595 }
3596 else
3597 {
3598 entry.gotidx = g->local_gotno++;
3599 entry.tls_type = 0;
3600 }
3601
3602 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3603
3604 if (! *loc)
3605 return FALSE;
3606
3607 memcpy (*loc, &entry, sizeof entry);
3608
3609 return TRUE;
3610 }
3611
3612 /* Return the maximum number of GOT page entries required for RANGE. */
3613
3614 static bfd_vma
3615 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3616 {
3617 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3618 }
3619
3620 /* Record that ABFD has a page relocation against symbol SYMNDX and
3621 that ADDEND is the addend for that relocation.
3622
3623 This function creates an upper bound on the number of GOT slots
3624 required; no attempt is made to combine references to non-overridable
3625 global symbols across multiple input files. */
3626
3627 static bfd_boolean
3628 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3629 long symndx, bfd_signed_vma addend)
3630 {
3631 struct mips_elf_link_hash_table *htab;
3632 struct mips_got_info *g;
3633 struct mips_got_page_entry lookup, *entry;
3634 struct mips_got_page_range **range_ptr, *range;
3635 bfd_vma old_pages, new_pages;
3636 void **loc;
3637
3638 htab = mips_elf_hash_table (info);
3639 BFD_ASSERT (htab != NULL);
3640
3641 g = htab->got_info;
3642 BFD_ASSERT (g != NULL);
3643
3644 /* Find the mips_got_page_entry hash table entry for this symbol. */
3645 lookup.abfd = abfd;
3646 lookup.symndx = symndx;
3647 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3648 if (loc == NULL)
3649 return FALSE;
3650
3651 /* Create a mips_got_page_entry if this is the first time we've
3652 seen the symbol. */
3653 entry = (struct mips_got_page_entry *) *loc;
3654 if (!entry)
3655 {
3656 entry = bfd_alloc (abfd, sizeof (*entry));
3657 if (!entry)
3658 return FALSE;
3659
3660 entry->abfd = abfd;
3661 entry->symndx = symndx;
3662 entry->ranges = NULL;
3663 entry->num_pages = 0;
3664 *loc = entry;
3665 }
3666
3667 /* Skip over ranges whose maximum extent cannot share a page entry
3668 with ADDEND. */
3669 range_ptr = &entry->ranges;
3670 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3671 range_ptr = &(*range_ptr)->next;
3672
3673 /* If we scanned to the end of the list, or found a range whose
3674 minimum extent cannot share a page entry with ADDEND, create
3675 a new singleton range. */
3676 range = *range_ptr;
3677 if (!range || addend < range->min_addend - 0xffff)
3678 {
3679 range = bfd_alloc (abfd, sizeof (*range));
3680 if (!range)
3681 return FALSE;
3682
3683 range->next = *range_ptr;
3684 range->min_addend = addend;
3685 range->max_addend = addend;
3686
3687 *range_ptr = range;
3688 entry->num_pages++;
3689 g->page_gotno++;
3690 return TRUE;
3691 }
3692
3693 /* Remember how many pages the old range contributed. */
3694 old_pages = mips_elf_pages_for_range (range);
3695
3696 /* Update the ranges. */
3697 if (addend < range->min_addend)
3698 range->min_addend = addend;
3699 else if (addend > range->max_addend)
3700 {
3701 if (range->next && addend >= range->next->min_addend - 0xffff)
3702 {
3703 old_pages += mips_elf_pages_for_range (range->next);
3704 range->max_addend = range->next->max_addend;
3705 range->next = range->next->next;
3706 }
3707 else
3708 range->max_addend = addend;
3709 }
3710
3711 /* Record any change in the total estimate. */
3712 new_pages = mips_elf_pages_for_range (range);
3713 if (old_pages != new_pages)
3714 {
3715 entry->num_pages += new_pages - old_pages;
3716 g->page_gotno += new_pages - old_pages;
3717 }
3718
3719 return TRUE;
3720 }
3721
3722 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3723
3724 static void
3725 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3726 unsigned int n)
3727 {
3728 asection *s;
3729 struct mips_elf_link_hash_table *htab;
3730
3731 htab = mips_elf_hash_table (info);
3732 BFD_ASSERT (htab != NULL);
3733
3734 s = mips_elf_rel_dyn_section (info, FALSE);
3735 BFD_ASSERT (s != NULL);
3736
3737 if (htab->is_vxworks)
3738 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3739 else
3740 {
3741 if (s->size == 0)
3742 {
3743 /* Make room for a null element. */
3744 s->size += MIPS_ELF_REL_SIZE (abfd);
3745 ++s->reloc_count;
3746 }
3747 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3748 }
3749 }
3750 \f
3751 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3752 if the GOT entry is for an indirect or warning symbol. */
3753
3754 static int
3755 mips_elf_check_recreate_got (void **entryp, void *data)
3756 {
3757 struct mips_got_entry *entry;
3758 bfd_boolean *must_recreate;
3759
3760 entry = (struct mips_got_entry *) *entryp;
3761 must_recreate = (bfd_boolean *) data;
3762 if (entry->abfd != NULL && entry->symndx == -1)
3763 {
3764 struct mips_elf_link_hash_entry *h;
3765
3766 h = entry->d.h;
3767 if (h->root.root.type == bfd_link_hash_indirect
3768 || h->root.root.type == bfd_link_hash_warning)
3769 {
3770 *must_recreate = TRUE;
3771 return 0;
3772 }
3773 }
3774 return 1;
3775 }
3776
3777 /* A htab_traverse callback for GOT entries. Add all entries to
3778 hash table *DATA, converting entries for indirect and warning
3779 symbols into entries for the target symbol. Set *DATA to null
3780 on error. */
3781
3782 static int
3783 mips_elf_recreate_got (void **entryp, void *data)
3784 {
3785 htab_t *new_got;
3786 struct mips_got_entry *entry;
3787 void **slot;
3788
3789 new_got = (htab_t *) data;
3790 entry = (struct mips_got_entry *) *entryp;
3791 if (entry->abfd != NULL && entry->symndx == -1)
3792 {
3793 struct mips_elf_link_hash_entry *h;
3794
3795 h = entry->d.h;
3796 while (h->root.root.type == bfd_link_hash_indirect
3797 || h->root.root.type == bfd_link_hash_warning)
3798 {
3799 BFD_ASSERT (h->global_got_area == GGA_NONE);
3800 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3801 }
3802 entry->d.h = h;
3803 }
3804 slot = htab_find_slot (*new_got, entry, INSERT);
3805 if (slot == NULL)
3806 {
3807 *new_got = NULL;
3808 return 0;
3809 }
3810 if (*slot == NULL)
3811 *slot = entry;
3812 else
3813 free (entry);
3814 return 1;
3815 }
3816
3817 /* If any entries in G->got_entries are for indirect or warning symbols,
3818 replace them with entries for the target symbol. */
3819
3820 static bfd_boolean
3821 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3822 {
3823 bfd_boolean must_recreate;
3824 htab_t new_got;
3825
3826 must_recreate = FALSE;
3827 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3828 if (must_recreate)
3829 {
3830 new_got = htab_create (htab_size (g->got_entries),
3831 mips_elf_got_entry_hash,
3832 mips_elf_got_entry_eq, NULL);
3833 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3834 if (new_got == NULL)
3835 return FALSE;
3836
3837 /* Each entry in g->got_entries has either been copied to new_got
3838 or freed. Now delete the hash table itself. */
3839 htab_delete (g->got_entries);
3840 g->got_entries = new_got;
3841 }
3842 return TRUE;
3843 }
3844
3845 /* A mips_elf_link_hash_traverse callback for which DATA points
3846 to the link_info structure. Count the number of type (3) entries
3847 in the master GOT. */
3848
3849 static int
3850 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3851 {
3852 struct bfd_link_info *info;
3853 struct mips_elf_link_hash_table *htab;
3854 struct mips_got_info *g;
3855
3856 info = (struct bfd_link_info *) data;
3857 htab = mips_elf_hash_table (info);
3858 g = htab->got_info;
3859 if (h->global_got_area != GGA_NONE)
3860 {
3861 /* Make a final decision about whether the symbol belongs in the
3862 local or global GOT. Symbols that bind locally can (and in the
3863 case of forced-local symbols, must) live in the local GOT.
3864 Those that are aren't in the dynamic symbol table must also
3865 live in the local GOT.
3866
3867 Note that the former condition does not always imply the
3868 latter: symbols do not bind locally if they are completely
3869 undefined. We'll report undefined symbols later if appropriate. */
3870 if (h->root.dynindx == -1
3871 || (h->got_only_for_calls
3872 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3873 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3874 {
3875 /* The symbol belongs in the local GOT. We no longer need this
3876 entry if it was only used for relocations; those relocations
3877 will be against the null or section symbol instead of H. */
3878 if (h->global_got_area != GGA_RELOC_ONLY)
3879 g->local_gotno++;
3880 h->global_got_area = GGA_NONE;
3881 }
3882 else if (htab->is_vxworks
3883 && h->got_only_for_calls
3884 && h->root.plt.offset != MINUS_ONE)
3885 /* On VxWorks, calls can refer directly to the .got.plt entry;
3886 they don't need entries in the regular GOT. .got.plt entries
3887 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3888 h->global_got_area = GGA_NONE;
3889 else
3890 {
3891 g->global_gotno++;
3892 if (h->global_got_area == GGA_RELOC_ONLY)
3893 g->reloc_only_gotno++;
3894 }
3895 }
3896 return 1;
3897 }
3898 \f
3899 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3900
3901 static hashval_t
3902 mips_elf_bfd2got_entry_hash (const void *entry_)
3903 {
3904 const struct mips_elf_bfd2got_hash *entry
3905 = (struct mips_elf_bfd2got_hash *)entry_;
3906
3907 return entry->bfd->id;
3908 }
3909
3910 /* Check whether two hash entries have the same bfd. */
3911
3912 static int
3913 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3914 {
3915 const struct mips_elf_bfd2got_hash *e1
3916 = (const struct mips_elf_bfd2got_hash *)entry1;
3917 const struct mips_elf_bfd2got_hash *e2
3918 = (const struct mips_elf_bfd2got_hash *)entry2;
3919
3920 return e1->bfd == e2->bfd;
3921 }
3922
3923 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3924 be the master GOT data. */
3925
3926 static struct mips_got_info *
3927 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3928 {
3929 struct mips_elf_bfd2got_hash e, *p;
3930
3931 if (! g->bfd2got)
3932 return g;
3933
3934 e.bfd = ibfd;
3935 p = htab_find (g->bfd2got, &e);
3936 return p ? p->g : NULL;
3937 }
3938
3939 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3940 Return NULL if an error occured. */
3941
3942 static struct mips_got_info *
3943 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3944 bfd *input_bfd)
3945 {
3946 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3947 struct mips_got_info *g;
3948 void **bfdgotp;
3949
3950 bfdgot_entry.bfd = input_bfd;
3951 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3952 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3953
3954 if (bfdgot == NULL)
3955 {
3956 bfdgot = ((struct mips_elf_bfd2got_hash *)
3957 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3958 if (bfdgot == NULL)
3959 return NULL;
3960
3961 *bfdgotp = bfdgot;
3962
3963 g = ((struct mips_got_info *)
3964 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3965 if (g == NULL)
3966 return NULL;
3967
3968 bfdgot->bfd = input_bfd;
3969 bfdgot->g = g;
3970
3971 g->global_gotsym = NULL;
3972 g->global_gotno = 0;
3973 g->reloc_only_gotno = 0;
3974 g->local_gotno = 0;
3975 g->page_gotno = 0;
3976 g->assigned_gotno = -1;
3977 g->tls_gotno = 0;
3978 g->tls_assigned_gotno = 0;
3979 g->tls_ldm_offset = MINUS_ONE;
3980 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3981 mips_elf_multi_got_entry_eq, NULL);
3982 if (g->got_entries == NULL)
3983 return NULL;
3984
3985 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3986 mips_got_page_entry_eq, NULL);
3987 if (g->got_page_entries == NULL)
3988 return NULL;
3989
3990 g->bfd2got = NULL;
3991 g->next = NULL;
3992 }
3993
3994 return bfdgot->g;
3995 }
3996
3997 /* A htab_traverse callback for the entries in the master got.
3998 Create one separate got for each bfd that has entries in the global
3999 got, such that we can tell how many local and global entries each
4000 bfd requires. */
4001
4002 static int
4003 mips_elf_make_got_per_bfd (void **entryp, void *p)
4004 {
4005 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4006 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4007 struct mips_got_info *g;
4008
4009 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4010 if (g == NULL)
4011 {
4012 arg->obfd = NULL;
4013 return 0;
4014 }
4015
4016 /* Insert the GOT entry in the bfd's got entry hash table. */
4017 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4018 if (*entryp != NULL)
4019 return 1;
4020
4021 *entryp = entry;
4022
4023 if (entry->tls_type)
4024 {
4025 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4026 g->tls_gotno += 2;
4027 if (entry->tls_type & GOT_TLS_IE)
4028 g->tls_gotno += 1;
4029 }
4030 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4031 ++g->local_gotno;
4032 else
4033 ++g->global_gotno;
4034
4035 return 1;
4036 }
4037
4038 /* A htab_traverse callback for the page entries in the master got.
4039 Associate each page entry with the bfd's got. */
4040
4041 static int
4042 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4043 {
4044 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4045 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4046 struct mips_got_info *g;
4047
4048 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4049 if (g == NULL)
4050 {
4051 arg->obfd = NULL;
4052 return 0;
4053 }
4054
4055 /* Insert the GOT entry in the bfd's got entry hash table. */
4056 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4057 if (*entryp != NULL)
4058 return 1;
4059
4060 *entryp = entry;
4061 g->page_gotno += entry->num_pages;
4062 return 1;
4063 }
4064
4065 /* Consider merging the got described by BFD2GOT with TO, using the
4066 information given by ARG. Return -1 if this would lead to overflow,
4067 1 if they were merged successfully, and 0 if a merge failed due to
4068 lack of memory. (These values are chosen so that nonnegative return
4069 values can be returned by a htab_traverse callback.) */
4070
4071 static int
4072 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4073 struct mips_got_info *to,
4074 struct mips_elf_got_per_bfd_arg *arg)
4075 {
4076 struct mips_got_info *from = bfd2got->g;
4077 unsigned int estimate;
4078
4079 /* Work out how many page entries we would need for the combined GOT. */
4080 estimate = arg->max_pages;
4081 if (estimate >= from->page_gotno + to->page_gotno)
4082 estimate = from->page_gotno + to->page_gotno;
4083
4084 /* And conservatively estimate how many local and TLS entries
4085 would be needed. */
4086 estimate += from->local_gotno + to->local_gotno;
4087 estimate += from->tls_gotno + to->tls_gotno;
4088
4089 /* If we're merging with the primary got, we will always have
4090 the full set of global entries. Otherwise estimate those
4091 conservatively as well. */
4092 if (to == arg->primary)
4093 estimate += arg->global_count;
4094 else
4095 estimate += from->global_gotno + to->global_gotno;
4096
4097 /* Bail out if the combined GOT might be too big. */
4098 if (estimate > arg->max_count)
4099 return -1;
4100
4101 /* Commit to the merge. Record that TO is now the bfd for this got. */
4102 bfd2got->g = to;
4103
4104 /* Transfer the bfd's got information from FROM to TO. */
4105 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4106 if (arg->obfd == NULL)
4107 return 0;
4108
4109 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4110 if (arg->obfd == NULL)
4111 return 0;
4112
4113 /* We don't have to worry about releasing memory of the actual
4114 got entries, since they're all in the master got_entries hash
4115 table anyway. */
4116 htab_delete (from->got_entries);
4117 htab_delete (from->got_page_entries);
4118 return 1;
4119 }
4120
4121 /* Attempt to merge gots of different input bfds. Try to use as much
4122 as possible of the primary got, since it doesn't require explicit
4123 dynamic relocations, but don't use bfds that would reference global
4124 symbols out of the addressable range. Failing the primary got,
4125 attempt to merge with the current got, or finish the current got
4126 and then make make the new got current. */
4127
4128 static int
4129 mips_elf_merge_gots (void **bfd2got_, void *p)
4130 {
4131 struct mips_elf_bfd2got_hash *bfd2got
4132 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4133 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4134 struct mips_got_info *g;
4135 unsigned int estimate;
4136 int result;
4137
4138 g = bfd2got->g;
4139
4140 /* Work out the number of page, local and TLS entries. */
4141 estimate = arg->max_pages;
4142 if (estimate > g->page_gotno)
4143 estimate = g->page_gotno;
4144 estimate += g->local_gotno + g->tls_gotno;
4145
4146 /* We place TLS GOT entries after both locals and globals. The globals
4147 for the primary GOT may overflow the normal GOT size limit, so be
4148 sure not to merge a GOT which requires TLS with the primary GOT in that
4149 case. This doesn't affect non-primary GOTs. */
4150 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4151
4152 if (estimate <= arg->max_count)
4153 {
4154 /* If we don't have a primary GOT, use it as
4155 a starting point for the primary GOT. */
4156 if (!arg->primary)
4157 {
4158 arg->primary = bfd2got->g;
4159 return 1;
4160 }
4161
4162 /* Try merging with the primary GOT. */
4163 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4164 if (result >= 0)
4165 return result;
4166 }
4167
4168 /* If we can merge with the last-created got, do it. */
4169 if (arg->current)
4170 {
4171 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4172 if (result >= 0)
4173 return result;
4174 }
4175
4176 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4177 fits; if it turns out that it doesn't, we'll get relocation
4178 overflows anyway. */
4179 g->next = arg->current;
4180 arg->current = g;
4181
4182 return 1;
4183 }
4184
4185 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4186 is null iff there is just a single GOT. */
4187
4188 static int
4189 mips_elf_initialize_tls_index (void **entryp, void *p)
4190 {
4191 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4192 struct mips_got_info *g = p;
4193 bfd_vma next_index;
4194 unsigned char tls_type;
4195
4196 /* We're only interested in TLS symbols. */
4197 if (entry->tls_type == 0)
4198 return 1;
4199
4200 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4201
4202 if (entry->symndx == -1 && g->next == NULL)
4203 {
4204 /* A type (3) got entry in the single-GOT case. We use the symbol's
4205 hash table entry to track its index. */
4206 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4207 return 1;
4208 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4209 entry->d.h->tls_got_offset = next_index;
4210 tls_type = entry->d.h->tls_type;
4211 }
4212 else
4213 {
4214 if (entry->tls_type & GOT_TLS_LDM)
4215 {
4216 /* There are separate mips_got_entry objects for each input bfd
4217 that requires an LDM entry. Make sure that all LDM entries in
4218 a GOT resolve to the same index. */
4219 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4220 {
4221 entry->gotidx = g->tls_ldm_offset;
4222 return 1;
4223 }
4224 g->tls_ldm_offset = next_index;
4225 }
4226 entry->gotidx = next_index;
4227 tls_type = entry->tls_type;
4228 }
4229
4230 /* Account for the entries we've just allocated. */
4231 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4232 g->tls_assigned_gotno += 2;
4233 if (tls_type & GOT_TLS_IE)
4234 g->tls_assigned_gotno += 1;
4235
4236 return 1;
4237 }
4238
4239 /* If passed a NULL mips_got_info in the argument, set the marker used
4240 to tell whether a global symbol needs a got entry (in the primary
4241 got) to the given VALUE.
4242
4243 If passed a pointer G to a mips_got_info in the argument (it must
4244 not be the primary GOT), compute the offset from the beginning of
4245 the (primary) GOT section to the entry in G corresponding to the
4246 global symbol. G's assigned_gotno must contain the index of the
4247 first available global GOT entry in G. VALUE must contain the size
4248 of a GOT entry in bytes. For each global GOT entry that requires a
4249 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4250 marked as not eligible for lazy resolution through a function
4251 stub. */
4252 static int
4253 mips_elf_set_global_got_offset (void **entryp, void *p)
4254 {
4255 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4256 struct mips_elf_set_global_got_offset_arg *arg
4257 = (struct mips_elf_set_global_got_offset_arg *)p;
4258 struct mips_got_info *g = arg->g;
4259
4260 if (g && entry->tls_type != GOT_NORMAL)
4261 arg->needed_relocs +=
4262 mips_tls_got_relocs (arg->info, entry->tls_type,
4263 entry->symndx == -1 ? &entry->d.h->root : NULL);
4264
4265 if (entry->abfd != NULL
4266 && entry->symndx == -1
4267 && entry->d.h->global_got_area != GGA_NONE)
4268 {
4269 if (g)
4270 {
4271 BFD_ASSERT (g->global_gotsym == NULL);
4272
4273 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4274 if (arg->info->shared
4275 || (elf_hash_table (arg->info)->dynamic_sections_created
4276 && entry->d.h->root.def_dynamic
4277 && !entry->d.h->root.def_regular))
4278 ++arg->needed_relocs;
4279 }
4280 else
4281 entry->d.h->global_got_area = arg->value;
4282 }
4283
4284 return 1;
4285 }
4286
4287 /* A htab_traverse callback for GOT entries for which DATA is the
4288 bfd_link_info. Forbid any global symbols from having traditional
4289 lazy-binding stubs. */
4290
4291 static int
4292 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4293 {
4294 struct bfd_link_info *info;
4295 struct mips_elf_link_hash_table *htab;
4296 struct mips_got_entry *entry;
4297
4298 entry = (struct mips_got_entry *) *entryp;
4299 info = (struct bfd_link_info *) data;
4300 htab = mips_elf_hash_table (info);
4301 BFD_ASSERT (htab != NULL);
4302
4303 if (entry->abfd != NULL
4304 && entry->symndx == -1
4305 && entry->d.h->needs_lazy_stub)
4306 {
4307 entry->d.h->needs_lazy_stub = FALSE;
4308 htab->lazy_stub_count--;
4309 }
4310
4311 return 1;
4312 }
4313
4314 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4315 the primary GOT. */
4316 static bfd_vma
4317 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4318 {
4319 if (g->bfd2got == NULL)
4320 return 0;
4321
4322 g = mips_elf_got_for_ibfd (g, ibfd);
4323 if (! g)
4324 return 0;
4325
4326 BFD_ASSERT (g->next);
4327
4328 g = g->next;
4329
4330 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4331 * MIPS_ELF_GOT_SIZE (abfd);
4332 }
4333
4334 /* Turn a single GOT that is too big for 16-bit addressing into
4335 a sequence of GOTs, each one 16-bit addressable. */
4336
4337 static bfd_boolean
4338 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4339 asection *got, bfd_size_type pages)
4340 {
4341 struct mips_elf_link_hash_table *htab;
4342 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4343 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4344 struct mips_got_info *g, *gg;
4345 unsigned int assign, needed_relocs;
4346 bfd *dynobj;
4347
4348 dynobj = elf_hash_table (info)->dynobj;
4349 htab = mips_elf_hash_table (info);
4350 BFD_ASSERT (htab != NULL);
4351
4352 g = htab->got_info;
4353 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4354 mips_elf_bfd2got_entry_eq, NULL);
4355 if (g->bfd2got == NULL)
4356 return FALSE;
4357
4358 got_per_bfd_arg.bfd2got = g->bfd2got;
4359 got_per_bfd_arg.obfd = abfd;
4360 got_per_bfd_arg.info = info;
4361
4362 /* Count how many GOT entries each input bfd requires, creating a
4363 map from bfd to got info while at that. */
4364 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4365 if (got_per_bfd_arg.obfd == NULL)
4366 return FALSE;
4367
4368 /* Also count how many page entries each input bfd requires. */
4369 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4370 &got_per_bfd_arg);
4371 if (got_per_bfd_arg.obfd == NULL)
4372 return FALSE;
4373
4374 got_per_bfd_arg.current = NULL;
4375 got_per_bfd_arg.primary = NULL;
4376 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4377 / MIPS_ELF_GOT_SIZE (abfd))
4378 - htab->reserved_gotno);
4379 got_per_bfd_arg.max_pages = pages;
4380 /* The number of globals that will be included in the primary GOT.
4381 See the calls to mips_elf_set_global_got_offset below for more
4382 information. */
4383 got_per_bfd_arg.global_count = g->global_gotno;
4384
4385 /* Try to merge the GOTs of input bfds together, as long as they
4386 don't seem to exceed the maximum GOT size, choosing one of them
4387 to be the primary GOT. */
4388 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4389 if (got_per_bfd_arg.obfd == NULL)
4390 return FALSE;
4391
4392 /* If we do not find any suitable primary GOT, create an empty one. */
4393 if (got_per_bfd_arg.primary == NULL)
4394 {
4395 g->next = (struct mips_got_info *)
4396 bfd_alloc (abfd, sizeof (struct mips_got_info));
4397 if (g->next == NULL)
4398 return FALSE;
4399
4400 g->next->global_gotsym = NULL;
4401 g->next->global_gotno = 0;
4402 g->next->reloc_only_gotno = 0;
4403 g->next->local_gotno = 0;
4404 g->next->page_gotno = 0;
4405 g->next->tls_gotno = 0;
4406 g->next->assigned_gotno = 0;
4407 g->next->tls_assigned_gotno = 0;
4408 g->next->tls_ldm_offset = MINUS_ONE;
4409 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4410 mips_elf_multi_got_entry_eq,
4411 NULL);
4412 if (g->next->got_entries == NULL)
4413 return FALSE;
4414 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4415 mips_got_page_entry_eq,
4416 NULL);
4417 if (g->next->got_page_entries == NULL)
4418 return FALSE;
4419 g->next->bfd2got = NULL;
4420 }
4421 else
4422 g->next = got_per_bfd_arg.primary;
4423 g->next->next = got_per_bfd_arg.current;
4424
4425 /* GG is now the master GOT, and G is the primary GOT. */
4426 gg = g;
4427 g = g->next;
4428
4429 /* Map the output bfd to the primary got. That's what we're going
4430 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4431 didn't mark in check_relocs, and we want a quick way to find it.
4432 We can't just use gg->next because we're going to reverse the
4433 list. */
4434 {
4435 struct mips_elf_bfd2got_hash *bfdgot;
4436 void **bfdgotp;
4437
4438 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4439 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4440
4441 if (bfdgot == NULL)
4442 return FALSE;
4443
4444 bfdgot->bfd = abfd;
4445 bfdgot->g = g;
4446 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4447
4448 BFD_ASSERT (*bfdgotp == NULL);
4449 *bfdgotp = bfdgot;
4450 }
4451
4452 /* Every symbol that is referenced in a dynamic relocation must be
4453 present in the primary GOT, so arrange for them to appear after
4454 those that are actually referenced. */
4455 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4456 g->global_gotno = gg->global_gotno;
4457
4458 set_got_offset_arg.g = NULL;
4459 set_got_offset_arg.value = GGA_RELOC_ONLY;
4460 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4461 &set_got_offset_arg);
4462 set_got_offset_arg.value = GGA_NORMAL;
4463 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4464 &set_got_offset_arg);
4465
4466 /* Now go through the GOTs assigning them offset ranges.
4467 [assigned_gotno, local_gotno[ will be set to the range of local
4468 entries in each GOT. We can then compute the end of a GOT by
4469 adding local_gotno to global_gotno. We reverse the list and make
4470 it circular since then we'll be able to quickly compute the
4471 beginning of a GOT, by computing the end of its predecessor. To
4472 avoid special cases for the primary GOT, while still preserving
4473 assertions that are valid for both single- and multi-got links,
4474 we arrange for the main got struct to have the right number of
4475 global entries, but set its local_gotno such that the initial
4476 offset of the primary GOT is zero. Remember that the primary GOT
4477 will become the last item in the circular linked list, so it
4478 points back to the master GOT. */
4479 gg->local_gotno = -g->global_gotno;
4480 gg->global_gotno = g->global_gotno;
4481 gg->tls_gotno = 0;
4482 assign = 0;
4483 gg->next = gg;
4484
4485 do
4486 {
4487 struct mips_got_info *gn;
4488
4489 assign += htab->reserved_gotno;
4490 g->assigned_gotno = assign;
4491 g->local_gotno += assign;
4492 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4493 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4494
4495 /* Take g out of the direct list, and push it onto the reversed
4496 list that gg points to. g->next is guaranteed to be nonnull after
4497 this operation, as required by mips_elf_initialize_tls_index. */
4498 gn = g->next;
4499 g->next = gg->next;
4500 gg->next = g;
4501
4502 /* Set up any TLS entries. We always place the TLS entries after
4503 all non-TLS entries. */
4504 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4505 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4506
4507 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4508 g = gn;
4509
4510 /* Forbid global symbols in every non-primary GOT from having
4511 lazy-binding stubs. */
4512 if (g)
4513 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4514 }
4515 while (g);
4516
4517 got->size = (gg->next->local_gotno
4518 + gg->next->global_gotno
4519 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4520
4521 needed_relocs = 0;
4522 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4523 set_got_offset_arg.info = info;
4524 for (g = gg->next; g && g->next != gg; g = g->next)
4525 {
4526 unsigned int save_assign;
4527
4528 /* Assign offsets to global GOT entries. */
4529 save_assign = g->assigned_gotno;
4530 g->assigned_gotno = g->local_gotno;
4531 set_got_offset_arg.g = g;
4532 set_got_offset_arg.needed_relocs = 0;
4533 htab_traverse (g->got_entries,
4534 mips_elf_set_global_got_offset,
4535 &set_got_offset_arg);
4536 needed_relocs += set_got_offset_arg.needed_relocs;
4537 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4538
4539 g->assigned_gotno = save_assign;
4540 if (info->shared)
4541 {
4542 needed_relocs += g->local_gotno - g->assigned_gotno;
4543 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4544 + g->next->global_gotno
4545 + g->next->tls_gotno
4546 + htab->reserved_gotno);
4547 }
4548 }
4549
4550 if (needed_relocs)
4551 mips_elf_allocate_dynamic_relocations (dynobj, info,
4552 needed_relocs);
4553
4554 return TRUE;
4555 }
4556
4557 \f
4558 /* Returns the first relocation of type r_type found, beginning with
4559 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4560
4561 static const Elf_Internal_Rela *
4562 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4563 const Elf_Internal_Rela *relocation,
4564 const Elf_Internal_Rela *relend)
4565 {
4566 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4567
4568 while (relocation < relend)
4569 {
4570 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4571 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4572 return relocation;
4573
4574 ++relocation;
4575 }
4576
4577 /* We didn't find it. */
4578 return NULL;
4579 }
4580
4581 /* Return whether an input relocation is against a local symbol. */
4582
4583 static bfd_boolean
4584 mips_elf_local_relocation_p (bfd *input_bfd,
4585 const Elf_Internal_Rela *relocation,
4586 asection **local_sections)
4587 {
4588 unsigned long r_symndx;
4589 Elf_Internal_Shdr *symtab_hdr;
4590 size_t extsymoff;
4591
4592 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4593 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4594 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4595
4596 if (r_symndx < extsymoff)
4597 return TRUE;
4598 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4599 return TRUE;
4600
4601 return FALSE;
4602 }
4603 \f
4604 /* Sign-extend VALUE, which has the indicated number of BITS. */
4605
4606 bfd_vma
4607 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4608 {
4609 if (value & ((bfd_vma) 1 << (bits - 1)))
4610 /* VALUE is negative. */
4611 value |= ((bfd_vma) - 1) << bits;
4612
4613 return value;
4614 }
4615
4616 /* Return non-zero if the indicated VALUE has overflowed the maximum
4617 range expressible by a signed number with the indicated number of
4618 BITS. */
4619
4620 static bfd_boolean
4621 mips_elf_overflow_p (bfd_vma value, int bits)
4622 {
4623 bfd_signed_vma svalue = (bfd_signed_vma) value;
4624
4625 if (svalue > (1 << (bits - 1)) - 1)
4626 /* The value is too big. */
4627 return TRUE;
4628 else if (svalue < -(1 << (bits - 1)))
4629 /* The value is too small. */
4630 return TRUE;
4631
4632 /* All is well. */
4633 return FALSE;
4634 }
4635
4636 /* Calculate the %high function. */
4637
4638 static bfd_vma
4639 mips_elf_high (bfd_vma value)
4640 {
4641 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4642 }
4643
4644 /* Calculate the %higher function. */
4645
4646 static bfd_vma
4647 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4648 {
4649 #ifdef BFD64
4650 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4651 #else
4652 abort ();
4653 return MINUS_ONE;
4654 #endif
4655 }
4656
4657 /* Calculate the %highest function. */
4658
4659 static bfd_vma
4660 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4661 {
4662 #ifdef BFD64
4663 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4664 #else
4665 abort ();
4666 return MINUS_ONE;
4667 #endif
4668 }
4669 \f
4670 /* Create the .compact_rel section. */
4671
4672 static bfd_boolean
4673 mips_elf_create_compact_rel_section
4674 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4675 {
4676 flagword flags;
4677 register asection *s;
4678
4679 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4680 {
4681 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4682 | SEC_READONLY);
4683
4684 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4685 if (s == NULL
4686 || ! bfd_set_section_alignment (abfd, s,
4687 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4688 return FALSE;
4689
4690 s->size = sizeof (Elf32_External_compact_rel);
4691 }
4692
4693 return TRUE;
4694 }
4695
4696 /* Create the .got section to hold the global offset table. */
4697
4698 static bfd_boolean
4699 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4700 {
4701 flagword flags;
4702 register asection *s;
4703 struct elf_link_hash_entry *h;
4704 struct bfd_link_hash_entry *bh;
4705 struct mips_got_info *g;
4706 bfd_size_type amt;
4707 struct mips_elf_link_hash_table *htab;
4708
4709 htab = mips_elf_hash_table (info);
4710 BFD_ASSERT (htab != NULL);
4711
4712 /* This function may be called more than once. */
4713 if (htab->sgot)
4714 return TRUE;
4715
4716 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4717 | SEC_LINKER_CREATED);
4718
4719 /* We have to use an alignment of 2**4 here because this is hardcoded
4720 in the function stub generation and in the linker script. */
4721 s = bfd_make_section_with_flags (abfd, ".got", flags);
4722 if (s == NULL
4723 || ! bfd_set_section_alignment (abfd, s, 4))
4724 return FALSE;
4725 htab->sgot = s;
4726
4727 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4728 linker script because we don't want to define the symbol if we
4729 are not creating a global offset table. */
4730 bh = NULL;
4731 if (! (_bfd_generic_link_add_one_symbol
4732 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4733 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4734 return FALSE;
4735
4736 h = (struct elf_link_hash_entry *) bh;
4737 h->non_elf = 0;
4738 h->def_regular = 1;
4739 h->type = STT_OBJECT;
4740 elf_hash_table (info)->hgot = h;
4741
4742 if (info->shared
4743 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4744 return FALSE;
4745
4746 amt = sizeof (struct mips_got_info);
4747 g = bfd_alloc (abfd, amt);
4748 if (g == NULL)
4749 return FALSE;
4750 g->global_gotsym = NULL;
4751 g->global_gotno = 0;
4752 g->reloc_only_gotno = 0;
4753 g->tls_gotno = 0;
4754 g->local_gotno = 0;
4755 g->page_gotno = 0;
4756 g->assigned_gotno = 0;
4757 g->bfd2got = NULL;
4758 g->next = NULL;
4759 g->tls_ldm_offset = MINUS_ONE;
4760 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4761 mips_elf_got_entry_eq, NULL);
4762 if (g->got_entries == NULL)
4763 return FALSE;
4764 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4765 mips_got_page_entry_eq, NULL);
4766 if (g->got_page_entries == NULL)
4767 return FALSE;
4768 htab->got_info = g;
4769 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4770 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4771
4772 /* We also need a .got.plt section when generating PLTs. */
4773 s = bfd_make_section_with_flags (abfd, ".got.plt",
4774 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4775 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4776 if (s == NULL)
4777 return FALSE;
4778 htab->sgotplt = s;
4779
4780 return TRUE;
4781 }
4782 \f
4783 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4784 __GOTT_INDEX__ symbols. These symbols are only special for
4785 shared objects; they are not used in executables. */
4786
4787 static bfd_boolean
4788 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4789 {
4790 return (mips_elf_hash_table (info)->is_vxworks
4791 && info->shared
4792 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4793 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4794 }
4795
4796 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4797 require an la25 stub. See also mips_elf_local_pic_function_p,
4798 which determines whether the destination function ever requires a
4799 stub. */
4800
4801 static bfd_boolean
4802 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4803 {
4804 /* We specifically ignore branches and jumps from EF_PIC objects,
4805 where the onus is on the compiler or programmer to perform any
4806 necessary initialization of $25. Sometimes such initialization
4807 is unnecessary; for example, -mno-shared functions do not use
4808 the incoming value of $25, and may therefore be called directly. */
4809 if (PIC_OBJECT_P (input_bfd))
4810 return FALSE;
4811
4812 switch (r_type)
4813 {
4814 case R_MIPS_26:
4815 case R_MIPS_PC16:
4816 case R_MIPS16_26:
4817 return TRUE;
4818
4819 default:
4820 return FALSE;
4821 }
4822 }
4823 \f
4824 /* Calculate the value produced by the RELOCATION (which comes from
4825 the INPUT_BFD). The ADDEND is the addend to use for this
4826 RELOCATION; RELOCATION->R_ADDEND is ignored.
4827
4828 The result of the relocation calculation is stored in VALUEP.
4829 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4830 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4831
4832 This function returns bfd_reloc_continue if the caller need take no
4833 further action regarding this relocation, bfd_reloc_notsupported if
4834 something goes dramatically wrong, bfd_reloc_overflow if an
4835 overflow occurs, and bfd_reloc_ok to indicate success. */
4836
4837 static bfd_reloc_status_type
4838 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4839 asection *input_section,
4840 struct bfd_link_info *info,
4841 const Elf_Internal_Rela *relocation,
4842 bfd_vma addend, reloc_howto_type *howto,
4843 Elf_Internal_Sym *local_syms,
4844 asection **local_sections, bfd_vma *valuep,
4845 const char **namep,
4846 bfd_boolean *cross_mode_jump_p,
4847 bfd_boolean save_addend)
4848 {
4849 /* The eventual value we will return. */
4850 bfd_vma value;
4851 /* The address of the symbol against which the relocation is
4852 occurring. */
4853 bfd_vma symbol = 0;
4854 /* The final GP value to be used for the relocatable, executable, or
4855 shared object file being produced. */
4856 bfd_vma gp;
4857 /* The place (section offset or address) of the storage unit being
4858 relocated. */
4859 bfd_vma p;
4860 /* The value of GP used to create the relocatable object. */
4861 bfd_vma gp0;
4862 /* The offset into the global offset table at which the address of
4863 the relocation entry symbol, adjusted by the addend, resides
4864 during execution. */
4865 bfd_vma g = MINUS_ONE;
4866 /* The section in which the symbol referenced by the relocation is
4867 located. */
4868 asection *sec = NULL;
4869 struct mips_elf_link_hash_entry *h = NULL;
4870 /* TRUE if the symbol referred to by this relocation is a local
4871 symbol. */
4872 bfd_boolean local_p, was_local_p;
4873 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4874 bfd_boolean gp_disp_p = FALSE;
4875 /* TRUE if the symbol referred to by this relocation is
4876 "__gnu_local_gp". */
4877 bfd_boolean gnu_local_gp_p = FALSE;
4878 Elf_Internal_Shdr *symtab_hdr;
4879 size_t extsymoff;
4880 unsigned long r_symndx;
4881 int r_type;
4882 /* TRUE if overflow occurred during the calculation of the
4883 relocation value. */
4884 bfd_boolean overflowed_p;
4885 /* TRUE if this relocation refers to a MIPS16 function. */
4886 bfd_boolean target_is_16_bit_code_p = FALSE;
4887 struct mips_elf_link_hash_table *htab;
4888 bfd *dynobj;
4889
4890 dynobj = elf_hash_table (info)->dynobj;
4891 htab = mips_elf_hash_table (info);
4892 BFD_ASSERT (htab != NULL);
4893
4894 /* Parse the relocation. */
4895 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4896 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4897 p = (input_section->output_section->vma
4898 + input_section->output_offset
4899 + relocation->r_offset);
4900
4901 /* Assume that there will be no overflow. */
4902 overflowed_p = FALSE;
4903
4904 /* Figure out whether or not the symbol is local, and get the offset
4905 used in the array of hash table entries. */
4906 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4907 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4908 local_sections);
4909 was_local_p = local_p;
4910 if (! elf_bad_symtab (input_bfd))
4911 extsymoff = symtab_hdr->sh_info;
4912 else
4913 {
4914 /* The symbol table does not follow the rule that local symbols
4915 must come before globals. */
4916 extsymoff = 0;
4917 }
4918
4919 /* Figure out the value of the symbol. */
4920 if (local_p)
4921 {
4922 Elf_Internal_Sym *sym;
4923
4924 sym = local_syms + r_symndx;
4925 sec = local_sections[r_symndx];
4926
4927 symbol = sec->output_section->vma + sec->output_offset;
4928 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4929 || (sec->flags & SEC_MERGE))
4930 symbol += sym->st_value;
4931 if ((sec->flags & SEC_MERGE)
4932 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4933 {
4934 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4935 addend -= symbol;
4936 addend += sec->output_section->vma + sec->output_offset;
4937 }
4938
4939 /* MIPS16 text labels should be treated as odd. */
4940 if (ELF_ST_IS_MIPS16 (sym->st_other))
4941 ++symbol;
4942
4943 /* Record the name of this symbol, for our caller. */
4944 *namep = bfd_elf_string_from_elf_section (input_bfd,
4945 symtab_hdr->sh_link,
4946 sym->st_name);
4947 if (*namep == '\0')
4948 *namep = bfd_section_name (input_bfd, sec);
4949
4950 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4951 }
4952 else
4953 {
4954 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4955
4956 /* For global symbols we look up the symbol in the hash-table. */
4957 h = ((struct mips_elf_link_hash_entry *)
4958 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4959 /* Find the real hash-table entry for this symbol. */
4960 while (h->root.root.type == bfd_link_hash_indirect
4961 || h->root.root.type == bfd_link_hash_warning)
4962 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4963
4964 /* Record the name of this symbol, for our caller. */
4965 *namep = h->root.root.root.string;
4966
4967 /* See if this is the special _gp_disp symbol. Note that such a
4968 symbol must always be a global symbol. */
4969 if (strcmp (*namep, "_gp_disp") == 0
4970 && ! NEWABI_P (input_bfd))
4971 {
4972 /* Relocations against _gp_disp are permitted only with
4973 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4974 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4975 return bfd_reloc_notsupported;
4976
4977 gp_disp_p = TRUE;
4978 }
4979 /* See if this is the special _gp symbol. Note that such a
4980 symbol must always be a global symbol. */
4981 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4982 gnu_local_gp_p = TRUE;
4983
4984
4985 /* If this symbol is defined, calculate its address. Note that
4986 _gp_disp is a magic symbol, always implicitly defined by the
4987 linker, so it's inappropriate to check to see whether or not
4988 its defined. */
4989 else if ((h->root.root.type == bfd_link_hash_defined
4990 || h->root.root.type == bfd_link_hash_defweak)
4991 && h->root.root.u.def.section)
4992 {
4993 sec = h->root.root.u.def.section;
4994 if (sec->output_section)
4995 symbol = (h->root.root.u.def.value
4996 + sec->output_section->vma
4997 + sec->output_offset);
4998 else
4999 symbol = h->root.root.u.def.value;
5000 }
5001 else if (h->root.root.type == bfd_link_hash_undefweak)
5002 /* We allow relocations against undefined weak symbols, giving
5003 it the value zero, so that you can undefined weak functions
5004 and check to see if they exist by looking at their
5005 addresses. */
5006 symbol = 0;
5007 else if (info->unresolved_syms_in_objects == RM_IGNORE
5008 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5009 symbol = 0;
5010 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5011 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5012 {
5013 /* If this is a dynamic link, we should have created a
5014 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5015 in in _bfd_mips_elf_create_dynamic_sections.
5016 Otherwise, we should define the symbol with a value of 0.
5017 FIXME: It should probably get into the symbol table
5018 somehow as well. */
5019 BFD_ASSERT (! info->shared);
5020 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5021 symbol = 0;
5022 }
5023 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5024 {
5025 /* This is an optional symbol - an Irix specific extension to the
5026 ELF spec. Ignore it for now.
5027 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5028 than simply ignoring them, but we do not handle this for now.
5029 For information see the "64-bit ELF Object File Specification"
5030 which is available from here:
5031 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5032 symbol = 0;
5033 }
5034 else if ((*info->callbacks->undefined_symbol)
5035 (info, h->root.root.root.string, input_bfd,
5036 input_section, relocation->r_offset,
5037 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5038 || ELF_ST_VISIBILITY (h->root.other)))
5039 {
5040 return bfd_reloc_undefined;
5041 }
5042 else
5043 {
5044 return bfd_reloc_notsupported;
5045 }
5046
5047 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5048 }
5049
5050 /* If this is a reference to a 16-bit function with a stub, we need
5051 to redirect the relocation to the stub unless:
5052
5053 (a) the relocation is for a MIPS16 JAL;
5054
5055 (b) the relocation is for a MIPS16 PIC call, and there are no
5056 non-MIPS16 uses of the GOT slot; or
5057
5058 (c) the section allows direct references to MIPS16 functions. */
5059 if (r_type != R_MIPS16_26
5060 && !info->relocatable
5061 && ((h != NULL
5062 && h->fn_stub != NULL
5063 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5064 || (local_p
5065 && elf_tdata (input_bfd)->local_stubs != NULL
5066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5067 && !section_allows_mips16_refs_p (input_section))
5068 {
5069 /* This is a 32- or 64-bit call to a 16-bit function. We should
5070 have already noticed that we were going to need the
5071 stub. */
5072 if (local_p)
5073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5074 else
5075 {
5076 BFD_ASSERT (h->need_fn_stub);
5077 sec = h->fn_stub;
5078 }
5079
5080 symbol = sec->output_section->vma + sec->output_offset;
5081 /* The target is 16-bit, but the stub isn't. */
5082 target_is_16_bit_code_p = FALSE;
5083 }
5084 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5085 need to redirect the call to the stub. Note that we specifically
5086 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5087 use an indirect stub instead. */
5088 else if (r_type == R_MIPS16_26 && !info->relocatable
5089 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5090 || (local_p
5091 && elf_tdata (input_bfd)->local_call_stubs != NULL
5092 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5093 && !target_is_16_bit_code_p)
5094 {
5095 if (local_p)
5096 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5097 else
5098 {
5099 /* If both call_stub and call_fp_stub are defined, we can figure
5100 out which one to use by checking which one appears in the input
5101 file. */
5102 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5103 {
5104 asection *o;
5105
5106 sec = NULL;
5107 for (o = input_bfd->sections; o != NULL; o = o->next)
5108 {
5109 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5110 {
5111 sec = h->call_fp_stub;
5112 break;
5113 }
5114 }
5115 if (sec == NULL)
5116 sec = h->call_stub;
5117 }
5118 else if (h->call_stub != NULL)
5119 sec = h->call_stub;
5120 else
5121 sec = h->call_fp_stub;
5122 }
5123
5124 BFD_ASSERT (sec->size > 0);
5125 symbol = sec->output_section->vma + sec->output_offset;
5126 }
5127 /* If this is a direct call to a PIC function, redirect to the
5128 non-PIC stub. */
5129 else if (h != NULL && h->la25_stub
5130 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5131 symbol = (h->la25_stub->stub_section->output_section->vma
5132 + h->la25_stub->stub_section->output_offset
5133 + h->la25_stub->offset);
5134
5135 /* Calls from 16-bit code to 32-bit code and vice versa require the
5136 mode change. */
5137 *cross_mode_jump_p = !info->relocatable
5138 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5139 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5140 && target_is_16_bit_code_p));
5141
5142 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5143
5144 gp0 = _bfd_get_gp_value (input_bfd);
5145 gp = _bfd_get_gp_value (abfd);
5146 if (htab->got_info)
5147 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5148
5149 if (gnu_local_gp_p)
5150 symbol = gp;
5151
5152 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5153 The addend is applied by the corresponding R_MIPS_GOT_OFST. */
5154 if (r_type == R_MIPS_GOT_PAGE && !local_p)
5155 {
5156 r_type = R_MIPS_GOT_DISP;
5157 addend = 0;
5158 }
5159
5160 /* If we haven't already determined the GOT offset, and we're going
5161 to need it, get it now. */
5162 switch (r_type)
5163 {
5164 case R_MIPS16_CALL16:
5165 case R_MIPS16_GOT16:
5166 case R_MIPS_CALL16:
5167 case R_MIPS_GOT16:
5168 case R_MIPS_GOT_DISP:
5169 case R_MIPS_GOT_HI16:
5170 case R_MIPS_CALL_HI16:
5171 case R_MIPS_GOT_LO16:
5172 case R_MIPS_CALL_LO16:
5173 case R_MIPS_TLS_GD:
5174 case R_MIPS_TLS_GOTTPREL:
5175 case R_MIPS_TLS_LDM:
5176 /* Find the index into the GOT where this value is located. */
5177 if (r_type == R_MIPS_TLS_LDM)
5178 {
5179 g = mips_elf_local_got_index (abfd, input_bfd, info,
5180 0, 0, NULL, r_type);
5181 if (g == MINUS_ONE)
5182 return bfd_reloc_outofrange;
5183 }
5184 else if (!local_p)
5185 {
5186 /* On VxWorks, CALL relocations should refer to the .got.plt
5187 entry, which is initialized to point at the PLT stub. */
5188 if (htab->is_vxworks
5189 && (r_type == R_MIPS_CALL_HI16
5190 || r_type == R_MIPS_CALL_LO16
5191 || call16_reloc_p (r_type)))
5192 {
5193 BFD_ASSERT (addend == 0);
5194 BFD_ASSERT (h->root.needs_plt);
5195 g = mips_elf_gotplt_index (info, &h->root);
5196 }
5197 else
5198 {
5199 BFD_ASSERT (addend == 0);
5200 g = mips_elf_global_got_index (dynobj, input_bfd,
5201 &h->root, r_type, info);
5202 if (h->tls_type == GOT_NORMAL
5203 && !elf_hash_table (info)->dynamic_sections_created)
5204 /* This is a static link. We must initialize the GOT entry. */
5205 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5206 }
5207 }
5208 else if (!htab->is_vxworks
5209 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5210 /* The calculation below does not involve "g". */
5211 break;
5212 else
5213 {
5214 g = mips_elf_local_got_index (abfd, input_bfd, info,
5215 symbol + addend, r_symndx, h, r_type);
5216 if (g == MINUS_ONE)
5217 return bfd_reloc_outofrange;
5218 }
5219
5220 /* Convert GOT indices to actual offsets. */
5221 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5222 break;
5223 }
5224
5225 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5226 symbols are resolved by the loader. Add them to .rela.dyn. */
5227 if (h != NULL && is_gott_symbol (info, &h->root))
5228 {
5229 Elf_Internal_Rela outrel;
5230 bfd_byte *loc;
5231 asection *s;
5232
5233 s = mips_elf_rel_dyn_section (info, FALSE);
5234 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5235
5236 outrel.r_offset = (input_section->output_section->vma
5237 + input_section->output_offset
5238 + relocation->r_offset);
5239 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5240 outrel.r_addend = addend;
5241 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5242
5243 /* If we've written this relocation for a readonly section,
5244 we need to set DF_TEXTREL again, so that we do not delete the
5245 DT_TEXTREL tag. */
5246 if (MIPS_ELF_READONLY_SECTION (input_section))
5247 info->flags |= DF_TEXTREL;
5248
5249 *valuep = 0;
5250 return bfd_reloc_ok;
5251 }
5252
5253 /* Figure out what kind of relocation is being performed. */
5254 switch (r_type)
5255 {
5256 case R_MIPS_NONE:
5257 return bfd_reloc_continue;
5258
5259 case R_MIPS_16:
5260 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5261 overflowed_p = mips_elf_overflow_p (value, 16);
5262 break;
5263
5264 case R_MIPS_32:
5265 case R_MIPS_REL32:
5266 case R_MIPS_64:
5267 if ((info->shared
5268 || (htab->root.dynamic_sections_created
5269 && h != NULL
5270 && h->root.def_dynamic
5271 && !h->root.def_regular
5272 && !h->has_static_relocs))
5273 && r_symndx != STN_UNDEF
5274 && (h == NULL
5275 || h->root.root.type != bfd_link_hash_undefweak
5276 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5277 && (input_section->flags & SEC_ALLOC) != 0)
5278 {
5279 /* If we're creating a shared library, then we can't know
5280 where the symbol will end up. So, we create a relocation
5281 record in the output, and leave the job up to the dynamic
5282 linker. We must do the same for executable references to
5283 shared library symbols, unless we've decided to use copy
5284 relocs or PLTs instead. */
5285 value = addend;
5286 if (!mips_elf_create_dynamic_relocation (abfd,
5287 info,
5288 relocation,
5289 h,
5290 sec,
5291 symbol,
5292 &value,
5293 input_section))
5294 return bfd_reloc_undefined;
5295 }
5296 else
5297 {
5298 if (r_type != R_MIPS_REL32)
5299 value = symbol + addend;
5300 else
5301 value = addend;
5302 }
5303 value &= howto->dst_mask;
5304 break;
5305
5306 case R_MIPS_PC32:
5307 value = symbol + addend - p;
5308 value &= howto->dst_mask;
5309 break;
5310
5311 case R_MIPS16_26:
5312 /* The calculation for R_MIPS16_26 is just the same as for an
5313 R_MIPS_26. It's only the storage of the relocated field into
5314 the output file that's different. That's handled in
5315 mips_elf_perform_relocation. So, we just fall through to the
5316 R_MIPS_26 case here. */
5317 case R_MIPS_26:
5318 if (was_local_p)
5319 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5320 else
5321 {
5322 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5323 if (h->root.root.type != bfd_link_hash_undefweak)
5324 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5325 }
5326 value &= howto->dst_mask;
5327 break;
5328
5329 case R_MIPS_TLS_DTPREL_HI16:
5330 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5331 & howto->dst_mask);
5332 break;
5333
5334 case R_MIPS_TLS_DTPREL_LO16:
5335 case R_MIPS_TLS_DTPREL32:
5336 case R_MIPS_TLS_DTPREL64:
5337 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5338 break;
5339
5340 case R_MIPS_TLS_TPREL_HI16:
5341 value = (mips_elf_high (addend + symbol - tprel_base (info))
5342 & howto->dst_mask);
5343 break;
5344
5345 case R_MIPS_TLS_TPREL_LO16:
5346 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5347 break;
5348
5349 case R_MIPS_HI16:
5350 case R_MIPS16_HI16:
5351 if (!gp_disp_p)
5352 {
5353 value = mips_elf_high (addend + symbol);
5354 value &= howto->dst_mask;
5355 }
5356 else
5357 {
5358 /* For MIPS16 ABI code we generate this sequence
5359 0: li $v0,%hi(_gp_disp)
5360 4: addiupc $v1,%lo(_gp_disp)
5361 8: sll $v0,16
5362 12: addu $v0,$v1
5363 14: move $gp,$v0
5364 So the offsets of hi and lo relocs are the same, but the
5365 $pc is four higher than $t9 would be, so reduce
5366 both reloc addends by 4. */
5367 if (r_type == R_MIPS16_HI16)
5368 value = mips_elf_high (addend + gp - p - 4);
5369 else
5370 value = mips_elf_high (addend + gp - p);
5371 overflowed_p = mips_elf_overflow_p (value, 16);
5372 }
5373 break;
5374
5375 case R_MIPS_LO16:
5376 case R_MIPS16_LO16:
5377 if (!gp_disp_p)
5378 value = (symbol + addend) & howto->dst_mask;
5379 else
5380 {
5381 /* See the comment for R_MIPS16_HI16 above for the reason
5382 for this conditional. */
5383 if (r_type == R_MIPS16_LO16)
5384 value = addend + gp - p;
5385 else
5386 value = addend + gp - p + 4;
5387 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5388 for overflow. But, on, say, IRIX5, relocations against
5389 _gp_disp are normally generated from the .cpload
5390 pseudo-op. It generates code that normally looks like
5391 this:
5392
5393 lui $gp,%hi(_gp_disp)
5394 addiu $gp,$gp,%lo(_gp_disp)
5395 addu $gp,$gp,$t9
5396
5397 Here $t9 holds the address of the function being called,
5398 as required by the MIPS ELF ABI. The R_MIPS_LO16
5399 relocation can easily overflow in this situation, but the
5400 R_MIPS_HI16 relocation will handle the overflow.
5401 Therefore, we consider this a bug in the MIPS ABI, and do
5402 not check for overflow here. */
5403 }
5404 break;
5405
5406 case R_MIPS_LITERAL:
5407 /* Because we don't merge literal sections, we can handle this
5408 just like R_MIPS_GPREL16. In the long run, we should merge
5409 shared literals, and then we will need to additional work
5410 here. */
5411
5412 /* Fall through. */
5413
5414 case R_MIPS16_GPREL:
5415 /* The R_MIPS16_GPREL performs the same calculation as
5416 R_MIPS_GPREL16, but stores the relocated bits in a different
5417 order. We don't need to do anything special here; the
5418 differences are handled in mips_elf_perform_relocation. */
5419 case R_MIPS_GPREL16:
5420 /* Only sign-extend the addend if it was extracted from the
5421 instruction. If the addend was separate, leave it alone,
5422 otherwise we may lose significant bits. */
5423 if (howto->partial_inplace)
5424 addend = _bfd_mips_elf_sign_extend (addend, 16);
5425 value = symbol + addend - gp;
5426 /* If the symbol was local, any earlier relocatable links will
5427 have adjusted its addend with the gp offset, so compensate
5428 for that now. Don't do it for symbols forced local in this
5429 link, though, since they won't have had the gp offset applied
5430 to them before. */
5431 if (was_local_p)
5432 value += gp0;
5433 overflowed_p = mips_elf_overflow_p (value, 16);
5434 break;
5435
5436 case R_MIPS16_GOT16:
5437 case R_MIPS16_CALL16:
5438 case R_MIPS_GOT16:
5439 case R_MIPS_CALL16:
5440 /* VxWorks does not have separate local and global semantics for
5441 R_MIPS*_GOT16; every relocation evaluates to "G". */
5442 if (!htab->is_vxworks && local_p)
5443 {
5444 value = mips_elf_got16_entry (abfd, input_bfd, info,
5445 symbol + addend, !was_local_p);
5446 if (value == MINUS_ONE)
5447 return bfd_reloc_outofrange;
5448 value
5449 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5450 overflowed_p = mips_elf_overflow_p (value, 16);
5451 break;
5452 }
5453
5454 /* Fall through. */
5455
5456 case R_MIPS_TLS_GD:
5457 case R_MIPS_TLS_GOTTPREL:
5458 case R_MIPS_TLS_LDM:
5459 case R_MIPS_GOT_DISP:
5460 value = g;
5461 overflowed_p = mips_elf_overflow_p (value, 16);
5462 break;
5463
5464 case R_MIPS_GPREL32:
5465 value = (addend + symbol + gp0 - gp);
5466 if (!save_addend)
5467 value &= howto->dst_mask;
5468 break;
5469
5470 case R_MIPS_PC16:
5471 case R_MIPS_GNU_REL16_S2:
5472 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5473 overflowed_p = mips_elf_overflow_p (value, 18);
5474 value >>= howto->rightshift;
5475 value &= howto->dst_mask;
5476 break;
5477
5478 case R_MIPS_GOT_HI16:
5479 case R_MIPS_CALL_HI16:
5480 /* We're allowed to handle these two relocations identically.
5481 The dynamic linker is allowed to handle the CALL relocations
5482 differently by creating a lazy evaluation stub. */
5483 value = g;
5484 value = mips_elf_high (value);
5485 value &= howto->dst_mask;
5486 break;
5487
5488 case R_MIPS_GOT_LO16:
5489 case R_MIPS_CALL_LO16:
5490 value = g & howto->dst_mask;
5491 break;
5492
5493 case R_MIPS_GOT_PAGE:
5494 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5495 if (value == MINUS_ONE)
5496 return bfd_reloc_outofrange;
5497 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5498 overflowed_p = mips_elf_overflow_p (value, 16);
5499 break;
5500
5501 case R_MIPS_GOT_OFST:
5502 if (local_p)
5503 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5504 else
5505 value = addend;
5506 overflowed_p = mips_elf_overflow_p (value, 16);
5507 break;
5508
5509 case R_MIPS_SUB:
5510 value = symbol - addend;
5511 value &= howto->dst_mask;
5512 break;
5513
5514 case R_MIPS_HIGHER:
5515 value = mips_elf_higher (addend + symbol);
5516 value &= howto->dst_mask;
5517 break;
5518
5519 case R_MIPS_HIGHEST:
5520 value = mips_elf_highest (addend + symbol);
5521 value &= howto->dst_mask;
5522 break;
5523
5524 case R_MIPS_SCN_DISP:
5525 value = symbol + addend - sec->output_offset;
5526 value &= howto->dst_mask;
5527 break;
5528
5529 case R_MIPS_JALR:
5530 /* This relocation is only a hint. In some cases, we optimize
5531 it into a bal instruction. But we don't try to optimize
5532 when the symbol does not resolve locally. */
5533 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5534 return bfd_reloc_continue;
5535 value = symbol + addend;
5536 break;
5537
5538 case R_MIPS_PJUMP:
5539 case R_MIPS_GNU_VTINHERIT:
5540 case R_MIPS_GNU_VTENTRY:
5541 /* We don't do anything with these at present. */
5542 return bfd_reloc_continue;
5543
5544 default:
5545 /* An unrecognized relocation type. */
5546 return bfd_reloc_notsupported;
5547 }
5548
5549 /* Store the VALUE for our caller. */
5550 *valuep = value;
5551 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5552 }
5553
5554 /* Obtain the field relocated by RELOCATION. */
5555
5556 static bfd_vma
5557 mips_elf_obtain_contents (reloc_howto_type *howto,
5558 const Elf_Internal_Rela *relocation,
5559 bfd *input_bfd, bfd_byte *contents)
5560 {
5561 bfd_vma x;
5562 bfd_byte *location = contents + relocation->r_offset;
5563
5564 /* Obtain the bytes. */
5565 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5566
5567 return x;
5568 }
5569
5570 /* It has been determined that the result of the RELOCATION is the
5571 VALUE. Use HOWTO to place VALUE into the output file at the
5572 appropriate position. The SECTION is the section to which the
5573 relocation applies.
5574 CROSS_MODE_JUMP_P is true if the relocation field
5575 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5576
5577 Returns FALSE if anything goes wrong. */
5578
5579 static bfd_boolean
5580 mips_elf_perform_relocation (struct bfd_link_info *info,
5581 reloc_howto_type *howto,
5582 const Elf_Internal_Rela *relocation,
5583 bfd_vma value, bfd *input_bfd,
5584 asection *input_section, bfd_byte *contents,
5585 bfd_boolean cross_mode_jump_p)
5586 {
5587 bfd_vma x;
5588 bfd_byte *location;
5589 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5590
5591 /* Figure out where the relocation is occurring. */
5592 location = contents + relocation->r_offset;
5593
5594 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5595
5596 /* Obtain the current value. */
5597 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5598
5599 /* Clear the field we are setting. */
5600 x &= ~howto->dst_mask;
5601
5602 /* Set the field. */
5603 x |= (value & howto->dst_mask);
5604
5605 /* If required, turn JAL into JALX. */
5606 if (cross_mode_jump_p && jal_reloc_p (r_type))
5607 {
5608 bfd_boolean ok;
5609 bfd_vma opcode = x >> 26;
5610 bfd_vma jalx_opcode;
5611
5612 /* Check to see if the opcode is already JAL or JALX. */
5613 if (r_type == R_MIPS16_26)
5614 {
5615 ok = ((opcode == 0x6) || (opcode == 0x7));
5616 jalx_opcode = 0x7;
5617 }
5618 else
5619 {
5620 ok = ((opcode == 0x3) || (opcode == 0x1d));
5621 jalx_opcode = 0x1d;
5622 }
5623
5624 /* If the opcode is not JAL or JALX, there's a problem. */
5625 if (!ok)
5626 {
5627 (*_bfd_error_handler)
5628 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5629 input_bfd,
5630 input_section,
5631 (unsigned long) relocation->r_offset);
5632 bfd_set_error (bfd_error_bad_value);
5633 return FALSE;
5634 }
5635
5636 /* Make this the JALX opcode. */
5637 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5638 }
5639
5640 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5641 range. */
5642 if (!info->relocatable
5643 && !cross_mode_jump_p
5644 && ((JAL_TO_BAL_P (input_bfd)
5645 && r_type == R_MIPS_26
5646 && (x >> 26) == 0x3) /* jal addr */
5647 || (JALR_TO_BAL_P (input_bfd)
5648 && r_type == R_MIPS_JALR
5649 && x == 0x0320f809) /* jalr t9 */
5650 || (JR_TO_B_P (input_bfd)
5651 && r_type == R_MIPS_JALR
5652 && x == 0x03200008))) /* jr t9 */
5653 {
5654 bfd_vma addr;
5655 bfd_vma dest;
5656 bfd_signed_vma off;
5657
5658 addr = (input_section->output_section->vma
5659 + input_section->output_offset
5660 + relocation->r_offset
5661 + 4);
5662 if (r_type == R_MIPS_26)
5663 dest = (value << 2) | ((addr >> 28) << 28);
5664 else
5665 dest = value;
5666 off = dest - addr;
5667 if (off <= 0x1ffff && off >= -0x20000)
5668 {
5669 if (x == 0x03200008) /* jr t9 */
5670 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5671 else
5672 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5673 }
5674 }
5675
5676 /* Put the value into the output. */
5677 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5678
5679 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5680 location);
5681
5682 return TRUE;
5683 }
5684 \f
5685 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5686 is the original relocation, which is now being transformed into a
5687 dynamic relocation. The ADDENDP is adjusted if necessary; the
5688 caller should store the result in place of the original addend. */
5689
5690 static bfd_boolean
5691 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5692 struct bfd_link_info *info,
5693 const Elf_Internal_Rela *rel,
5694 struct mips_elf_link_hash_entry *h,
5695 asection *sec, bfd_vma symbol,
5696 bfd_vma *addendp, asection *input_section)
5697 {
5698 Elf_Internal_Rela outrel[3];
5699 asection *sreloc;
5700 bfd *dynobj;
5701 int r_type;
5702 long indx;
5703 bfd_boolean defined_p;
5704 struct mips_elf_link_hash_table *htab;
5705
5706 htab = mips_elf_hash_table (info);
5707 BFD_ASSERT (htab != NULL);
5708
5709 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5710 dynobj = elf_hash_table (info)->dynobj;
5711 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5712 BFD_ASSERT (sreloc != NULL);
5713 BFD_ASSERT (sreloc->contents != NULL);
5714 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5715 < sreloc->size);
5716
5717 outrel[0].r_offset =
5718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5719 if (ABI_64_P (output_bfd))
5720 {
5721 outrel[1].r_offset =
5722 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5723 outrel[2].r_offset =
5724 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5725 }
5726
5727 if (outrel[0].r_offset == MINUS_ONE)
5728 /* The relocation field has been deleted. */
5729 return TRUE;
5730
5731 if (outrel[0].r_offset == MINUS_TWO)
5732 {
5733 /* The relocation field has been converted into a relative value of
5734 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5735 the field to be fully relocated, so add in the symbol's value. */
5736 *addendp += symbol;
5737 return TRUE;
5738 }
5739
5740 /* We must now calculate the dynamic symbol table index to use
5741 in the relocation. */
5742 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5743 {
5744 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5745 indx = h->root.dynindx;
5746 if (SGI_COMPAT (output_bfd))
5747 defined_p = h->root.def_regular;
5748 else
5749 /* ??? glibc's ld.so just adds the final GOT entry to the
5750 relocation field. It therefore treats relocs against
5751 defined symbols in the same way as relocs against
5752 undefined symbols. */
5753 defined_p = FALSE;
5754 }
5755 else
5756 {
5757 if (sec != NULL && bfd_is_abs_section (sec))
5758 indx = 0;
5759 else if (sec == NULL || sec->owner == NULL)
5760 {
5761 bfd_set_error (bfd_error_bad_value);
5762 return FALSE;
5763 }
5764 else
5765 {
5766 indx = elf_section_data (sec->output_section)->dynindx;
5767 if (indx == 0)
5768 {
5769 asection *osec = htab->root.text_index_section;
5770 indx = elf_section_data (osec)->dynindx;
5771 }
5772 if (indx == 0)
5773 abort ();
5774 }
5775
5776 /* Instead of generating a relocation using the section
5777 symbol, we may as well make it a fully relative
5778 relocation. We want to avoid generating relocations to
5779 local symbols because we used to generate them
5780 incorrectly, without adding the original symbol value,
5781 which is mandated by the ABI for section symbols. In
5782 order to give dynamic loaders and applications time to
5783 phase out the incorrect use, we refrain from emitting
5784 section-relative relocations. It's not like they're
5785 useful, after all. This should be a bit more efficient
5786 as well. */
5787 /* ??? Although this behavior is compatible with glibc's ld.so,
5788 the ABI says that relocations against STN_UNDEF should have
5789 a symbol value of 0. Irix rld honors this, so relocations
5790 against STN_UNDEF have no effect. */
5791 if (!SGI_COMPAT (output_bfd))
5792 indx = 0;
5793 defined_p = TRUE;
5794 }
5795
5796 /* If the relocation was previously an absolute relocation and
5797 this symbol will not be referred to by the relocation, we must
5798 adjust it by the value we give it in the dynamic symbol table.
5799 Otherwise leave the job up to the dynamic linker. */
5800 if (defined_p && r_type != R_MIPS_REL32)
5801 *addendp += symbol;
5802
5803 if (htab->is_vxworks)
5804 /* VxWorks uses non-relative relocations for this. */
5805 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5806 else
5807 /* The relocation is always an REL32 relocation because we don't
5808 know where the shared library will wind up at load-time. */
5809 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5810 R_MIPS_REL32);
5811
5812 /* For strict adherence to the ABI specification, we should
5813 generate a R_MIPS_64 relocation record by itself before the
5814 _REL32/_64 record as well, such that the addend is read in as
5815 a 64-bit value (REL32 is a 32-bit relocation, after all).
5816 However, since none of the existing ELF64 MIPS dynamic
5817 loaders seems to care, we don't waste space with these
5818 artificial relocations. If this turns out to not be true,
5819 mips_elf_allocate_dynamic_relocation() should be tweaked so
5820 as to make room for a pair of dynamic relocations per
5821 invocation if ABI_64_P, and here we should generate an
5822 additional relocation record with R_MIPS_64 by itself for a
5823 NULL symbol before this relocation record. */
5824 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5825 ABI_64_P (output_bfd)
5826 ? R_MIPS_64
5827 : R_MIPS_NONE);
5828 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5829
5830 /* Adjust the output offset of the relocation to reference the
5831 correct location in the output file. */
5832 outrel[0].r_offset += (input_section->output_section->vma
5833 + input_section->output_offset);
5834 outrel[1].r_offset += (input_section->output_section->vma
5835 + input_section->output_offset);
5836 outrel[2].r_offset += (input_section->output_section->vma
5837 + input_section->output_offset);
5838
5839 /* Put the relocation back out. We have to use the special
5840 relocation outputter in the 64-bit case since the 64-bit
5841 relocation format is non-standard. */
5842 if (ABI_64_P (output_bfd))
5843 {
5844 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5845 (output_bfd, &outrel[0],
5846 (sreloc->contents
5847 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5848 }
5849 else if (htab->is_vxworks)
5850 {
5851 /* VxWorks uses RELA rather than REL dynamic relocations. */
5852 outrel[0].r_addend = *addendp;
5853 bfd_elf32_swap_reloca_out
5854 (output_bfd, &outrel[0],
5855 (sreloc->contents
5856 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5857 }
5858 else
5859 bfd_elf32_swap_reloc_out
5860 (output_bfd, &outrel[0],
5861 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5862
5863 /* We've now added another relocation. */
5864 ++sreloc->reloc_count;
5865
5866 /* Make sure the output section is writable. The dynamic linker
5867 will be writing to it. */
5868 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5869 |= SHF_WRITE;
5870
5871 /* On IRIX5, make an entry of compact relocation info. */
5872 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5873 {
5874 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5875 bfd_byte *cr;
5876
5877 if (scpt)
5878 {
5879 Elf32_crinfo cptrel;
5880
5881 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5882 cptrel.vaddr = (rel->r_offset
5883 + input_section->output_section->vma
5884 + input_section->output_offset);
5885 if (r_type == R_MIPS_REL32)
5886 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5887 else
5888 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5889 mips_elf_set_cr_dist2to (cptrel, 0);
5890 cptrel.konst = *addendp;
5891
5892 cr = (scpt->contents
5893 + sizeof (Elf32_External_compact_rel));
5894 mips_elf_set_cr_relvaddr (cptrel, 0);
5895 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5896 ((Elf32_External_crinfo *) cr
5897 + scpt->reloc_count));
5898 ++scpt->reloc_count;
5899 }
5900 }
5901
5902 /* If we've written this relocation for a readonly section,
5903 we need to set DF_TEXTREL again, so that we do not delete the
5904 DT_TEXTREL tag. */
5905 if (MIPS_ELF_READONLY_SECTION (input_section))
5906 info->flags |= DF_TEXTREL;
5907
5908 return TRUE;
5909 }
5910 \f
5911 /* Return the MACH for a MIPS e_flags value. */
5912
5913 unsigned long
5914 _bfd_elf_mips_mach (flagword flags)
5915 {
5916 switch (flags & EF_MIPS_MACH)
5917 {
5918 case E_MIPS_MACH_3900:
5919 return bfd_mach_mips3900;
5920
5921 case E_MIPS_MACH_4010:
5922 return bfd_mach_mips4010;
5923
5924 case E_MIPS_MACH_4100:
5925 return bfd_mach_mips4100;
5926
5927 case E_MIPS_MACH_4111:
5928 return bfd_mach_mips4111;
5929
5930 case E_MIPS_MACH_4120:
5931 return bfd_mach_mips4120;
5932
5933 case E_MIPS_MACH_4650:
5934 return bfd_mach_mips4650;
5935
5936 case E_MIPS_MACH_5400:
5937 return bfd_mach_mips5400;
5938
5939 case E_MIPS_MACH_5500:
5940 return bfd_mach_mips5500;
5941
5942 case E_MIPS_MACH_9000:
5943 return bfd_mach_mips9000;
5944
5945 case E_MIPS_MACH_SB1:
5946 return bfd_mach_mips_sb1;
5947
5948 case E_MIPS_MACH_LS2E:
5949 return bfd_mach_mips_loongson_2e;
5950
5951 case E_MIPS_MACH_LS2F:
5952 return bfd_mach_mips_loongson_2f;
5953
5954 case E_MIPS_MACH_LS3A:
5955 return bfd_mach_mips_loongson_3a;
5956
5957 case E_MIPS_MACH_OCTEON:
5958 return bfd_mach_mips_octeon;
5959
5960 case E_MIPS_MACH_XLR:
5961 return bfd_mach_mips_xlr;
5962
5963 default:
5964 switch (flags & EF_MIPS_ARCH)
5965 {
5966 default:
5967 case E_MIPS_ARCH_1:
5968 return bfd_mach_mips3000;
5969
5970 case E_MIPS_ARCH_2:
5971 return bfd_mach_mips6000;
5972
5973 case E_MIPS_ARCH_3:
5974 return bfd_mach_mips4000;
5975
5976 case E_MIPS_ARCH_4:
5977 return bfd_mach_mips8000;
5978
5979 case E_MIPS_ARCH_5:
5980 return bfd_mach_mips5;
5981
5982 case E_MIPS_ARCH_32:
5983 return bfd_mach_mipsisa32;
5984
5985 case E_MIPS_ARCH_64:
5986 return bfd_mach_mipsisa64;
5987
5988 case E_MIPS_ARCH_32R2:
5989 return bfd_mach_mipsisa32r2;
5990
5991 case E_MIPS_ARCH_64R2:
5992 return bfd_mach_mipsisa64r2;
5993 }
5994 }
5995
5996 return 0;
5997 }
5998
5999 /* Return printable name for ABI. */
6000
6001 static INLINE char *
6002 elf_mips_abi_name (bfd *abfd)
6003 {
6004 flagword flags;
6005
6006 flags = elf_elfheader (abfd)->e_flags;
6007 switch (flags & EF_MIPS_ABI)
6008 {
6009 case 0:
6010 if (ABI_N32_P (abfd))
6011 return "N32";
6012 else if (ABI_64_P (abfd))
6013 return "64";
6014 else
6015 return "none";
6016 case E_MIPS_ABI_O32:
6017 return "O32";
6018 case E_MIPS_ABI_O64:
6019 return "O64";
6020 case E_MIPS_ABI_EABI32:
6021 return "EABI32";
6022 case E_MIPS_ABI_EABI64:
6023 return "EABI64";
6024 default:
6025 return "unknown abi";
6026 }
6027 }
6028 \f
6029 /* MIPS ELF uses two common sections. One is the usual one, and the
6030 other is for small objects. All the small objects are kept
6031 together, and then referenced via the gp pointer, which yields
6032 faster assembler code. This is what we use for the small common
6033 section. This approach is copied from ecoff.c. */
6034 static asection mips_elf_scom_section;
6035 static asymbol mips_elf_scom_symbol;
6036 static asymbol *mips_elf_scom_symbol_ptr;
6037
6038 /* MIPS ELF also uses an acommon section, which represents an
6039 allocated common symbol which may be overridden by a
6040 definition in a shared library. */
6041 static asection mips_elf_acom_section;
6042 static asymbol mips_elf_acom_symbol;
6043 static asymbol *mips_elf_acom_symbol_ptr;
6044
6045 /* This is used for both the 32-bit and the 64-bit ABI. */
6046
6047 void
6048 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6049 {
6050 elf_symbol_type *elfsym;
6051
6052 /* Handle the special MIPS section numbers that a symbol may use. */
6053 elfsym = (elf_symbol_type *) asym;
6054 switch (elfsym->internal_elf_sym.st_shndx)
6055 {
6056 case SHN_MIPS_ACOMMON:
6057 /* This section is used in a dynamically linked executable file.
6058 It is an allocated common section. The dynamic linker can
6059 either resolve these symbols to something in a shared
6060 library, or it can just leave them here. For our purposes,
6061 we can consider these symbols to be in a new section. */
6062 if (mips_elf_acom_section.name == NULL)
6063 {
6064 /* Initialize the acommon section. */
6065 mips_elf_acom_section.name = ".acommon";
6066 mips_elf_acom_section.flags = SEC_ALLOC;
6067 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6068 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6069 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6070 mips_elf_acom_symbol.name = ".acommon";
6071 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6072 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6073 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6074 }
6075 asym->section = &mips_elf_acom_section;
6076 break;
6077
6078 case SHN_COMMON:
6079 /* Common symbols less than the GP size are automatically
6080 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6081 if (asym->value > elf_gp_size (abfd)
6082 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6083 || IRIX_COMPAT (abfd) == ict_irix6)
6084 break;
6085 /* Fall through. */
6086 case SHN_MIPS_SCOMMON:
6087 if (mips_elf_scom_section.name == NULL)
6088 {
6089 /* Initialize the small common section. */
6090 mips_elf_scom_section.name = ".scommon";
6091 mips_elf_scom_section.flags = SEC_IS_COMMON;
6092 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6093 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6094 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6095 mips_elf_scom_symbol.name = ".scommon";
6096 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6097 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6098 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6099 }
6100 asym->section = &mips_elf_scom_section;
6101 asym->value = elfsym->internal_elf_sym.st_size;
6102 break;
6103
6104 case SHN_MIPS_SUNDEFINED:
6105 asym->section = bfd_und_section_ptr;
6106 break;
6107
6108 case SHN_MIPS_TEXT:
6109 {
6110 asection *section = bfd_get_section_by_name (abfd, ".text");
6111
6112 BFD_ASSERT (SGI_COMPAT (abfd));
6113 if (section != NULL)
6114 {
6115 asym->section = section;
6116 /* MIPS_TEXT is a bit special, the address is not an offset
6117 to the base of the .text section. So substract the section
6118 base address to make it an offset. */
6119 asym->value -= section->vma;
6120 }
6121 }
6122 break;
6123
6124 case SHN_MIPS_DATA:
6125 {
6126 asection *section = bfd_get_section_by_name (abfd, ".data");
6127
6128 BFD_ASSERT (SGI_COMPAT (abfd));
6129 if (section != NULL)
6130 {
6131 asym->section = section;
6132 /* MIPS_DATA is a bit special, the address is not an offset
6133 to the base of the .data section. So substract the section
6134 base address to make it an offset. */
6135 asym->value -= section->vma;
6136 }
6137 }
6138 break;
6139 }
6140
6141 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6142 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6143 && (asym->value & 1) != 0)
6144 {
6145 asym->value--;
6146 elfsym->internal_elf_sym.st_other
6147 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6148 }
6149 }
6150 \f
6151 /* Implement elf_backend_eh_frame_address_size. This differs from
6152 the default in the way it handles EABI64.
6153
6154 EABI64 was originally specified as an LP64 ABI, and that is what
6155 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6156 historically accepted the combination of -mabi=eabi and -mlong32,
6157 and this ILP32 variation has become semi-official over time.
6158 Both forms use elf32 and have pointer-sized FDE addresses.
6159
6160 If an EABI object was generated by GCC 4.0 or above, it will have
6161 an empty .gcc_compiled_longXX section, where XX is the size of longs
6162 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6163 have no special marking to distinguish them from LP64 objects.
6164
6165 We don't want users of the official LP64 ABI to be punished for the
6166 existence of the ILP32 variant, but at the same time, we don't want
6167 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6168 We therefore take the following approach:
6169
6170 - If ABFD contains a .gcc_compiled_longXX section, use it to
6171 determine the pointer size.
6172
6173 - Otherwise check the type of the first relocation. Assume that
6174 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6175
6176 - Otherwise punt.
6177
6178 The second check is enough to detect LP64 objects generated by pre-4.0
6179 compilers because, in the kind of output generated by those compilers,
6180 the first relocation will be associated with either a CIE personality
6181 routine or an FDE start address. Furthermore, the compilers never
6182 used a special (non-pointer) encoding for this ABI.
6183
6184 Checking the relocation type should also be safe because there is no
6185 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6186 did so. */
6187
6188 unsigned int
6189 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6190 {
6191 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6192 return 8;
6193 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6194 {
6195 bfd_boolean long32_p, long64_p;
6196
6197 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6198 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6199 if (long32_p && long64_p)
6200 return 0;
6201 if (long32_p)
6202 return 4;
6203 if (long64_p)
6204 return 8;
6205
6206 if (sec->reloc_count > 0
6207 && elf_section_data (sec)->relocs != NULL
6208 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6209 == R_MIPS_64))
6210 return 8;
6211
6212 return 0;
6213 }
6214 return 4;
6215 }
6216 \f
6217 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6218 relocations against two unnamed section symbols to resolve to the
6219 same address. For example, if we have code like:
6220
6221 lw $4,%got_disp(.data)($gp)
6222 lw $25,%got_disp(.text)($gp)
6223 jalr $25
6224
6225 then the linker will resolve both relocations to .data and the program
6226 will jump there rather than to .text.
6227
6228 We can work around this problem by giving names to local section symbols.
6229 This is also what the MIPSpro tools do. */
6230
6231 bfd_boolean
6232 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6233 {
6234 return SGI_COMPAT (abfd);
6235 }
6236 \f
6237 /* Work over a section just before writing it out. This routine is
6238 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6239 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6240 a better way. */
6241
6242 bfd_boolean
6243 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6244 {
6245 if (hdr->sh_type == SHT_MIPS_REGINFO
6246 && hdr->sh_size > 0)
6247 {
6248 bfd_byte buf[4];
6249
6250 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6251 BFD_ASSERT (hdr->contents == NULL);
6252
6253 if (bfd_seek (abfd,
6254 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6255 SEEK_SET) != 0)
6256 return FALSE;
6257 H_PUT_32 (abfd, elf_gp (abfd), buf);
6258 if (bfd_bwrite (buf, 4, abfd) != 4)
6259 return FALSE;
6260 }
6261
6262 if (hdr->sh_type == SHT_MIPS_OPTIONS
6263 && hdr->bfd_section != NULL
6264 && mips_elf_section_data (hdr->bfd_section) != NULL
6265 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6266 {
6267 bfd_byte *contents, *l, *lend;
6268
6269 /* We stored the section contents in the tdata field in the
6270 set_section_contents routine. We save the section contents
6271 so that we don't have to read them again.
6272 At this point we know that elf_gp is set, so we can look
6273 through the section contents to see if there is an
6274 ODK_REGINFO structure. */
6275
6276 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6277 l = contents;
6278 lend = contents + hdr->sh_size;
6279 while (l + sizeof (Elf_External_Options) <= lend)
6280 {
6281 Elf_Internal_Options intopt;
6282
6283 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6284 &intopt);
6285 if (intopt.size < sizeof (Elf_External_Options))
6286 {
6287 (*_bfd_error_handler)
6288 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6289 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6290 break;
6291 }
6292 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6293 {
6294 bfd_byte buf[8];
6295
6296 if (bfd_seek (abfd,
6297 (hdr->sh_offset
6298 + (l - contents)
6299 + sizeof (Elf_External_Options)
6300 + (sizeof (Elf64_External_RegInfo) - 8)),
6301 SEEK_SET) != 0)
6302 return FALSE;
6303 H_PUT_64 (abfd, elf_gp (abfd), buf);
6304 if (bfd_bwrite (buf, 8, abfd) != 8)
6305 return FALSE;
6306 }
6307 else if (intopt.kind == ODK_REGINFO)
6308 {
6309 bfd_byte buf[4];
6310
6311 if (bfd_seek (abfd,
6312 (hdr->sh_offset
6313 + (l - contents)
6314 + sizeof (Elf_External_Options)
6315 + (sizeof (Elf32_External_RegInfo) - 4)),
6316 SEEK_SET) != 0)
6317 return FALSE;
6318 H_PUT_32 (abfd, elf_gp (abfd), buf);
6319 if (bfd_bwrite (buf, 4, abfd) != 4)
6320 return FALSE;
6321 }
6322 l += intopt.size;
6323 }
6324 }
6325
6326 if (hdr->bfd_section != NULL)
6327 {
6328 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6329
6330 /* .sbss is not handled specially here because the GNU/Linux
6331 prelinker can convert .sbss from NOBITS to PROGBITS and
6332 changing it back to NOBITS breaks the binary. The entry in
6333 _bfd_mips_elf_special_sections will ensure the correct flags
6334 are set on .sbss if BFD creates it without reading it from an
6335 input file, and without special handling here the flags set
6336 on it in an input file will be followed. */
6337 if (strcmp (name, ".sdata") == 0
6338 || strcmp (name, ".lit8") == 0
6339 || strcmp (name, ".lit4") == 0)
6340 {
6341 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6342 hdr->sh_type = SHT_PROGBITS;
6343 }
6344 else if (strcmp (name, ".srdata") == 0)
6345 {
6346 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6347 hdr->sh_type = SHT_PROGBITS;
6348 }
6349 else if (strcmp (name, ".compact_rel") == 0)
6350 {
6351 hdr->sh_flags = 0;
6352 hdr->sh_type = SHT_PROGBITS;
6353 }
6354 else if (strcmp (name, ".rtproc") == 0)
6355 {
6356 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6357 {
6358 unsigned int adjust;
6359
6360 adjust = hdr->sh_size % hdr->sh_addralign;
6361 if (adjust != 0)
6362 hdr->sh_size += hdr->sh_addralign - adjust;
6363 }
6364 }
6365 }
6366
6367 return TRUE;
6368 }
6369
6370 /* Handle a MIPS specific section when reading an object file. This
6371 is called when elfcode.h finds a section with an unknown type.
6372 This routine supports both the 32-bit and 64-bit ELF ABI.
6373
6374 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6375 how to. */
6376
6377 bfd_boolean
6378 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6379 Elf_Internal_Shdr *hdr,
6380 const char *name,
6381 int shindex)
6382 {
6383 flagword flags = 0;
6384
6385 /* There ought to be a place to keep ELF backend specific flags, but
6386 at the moment there isn't one. We just keep track of the
6387 sections by their name, instead. Fortunately, the ABI gives
6388 suggested names for all the MIPS specific sections, so we will
6389 probably get away with this. */
6390 switch (hdr->sh_type)
6391 {
6392 case SHT_MIPS_LIBLIST:
6393 if (strcmp (name, ".liblist") != 0)
6394 return FALSE;
6395 break;
6396 case SHT_MIPS_MSYM:
6397 if (strcmp (name, ".msym") != 0)
6398 return FALSE;
6399 break;
6400 case SHT_MIPS_CONFLICT:
6401 if (strcmp (name, ".conflict") != 0)
6402 return FALSE;
6403 break;
6404 case SHT_MIPS_GPTAB:
6405 if (! CONST_STRNEQ (name, ".gptab."))
6406 return FALSE;
6407 break;
6408 case SHT_MIPS_UCODE:
6409 if (strcmp (name, ".ucode") != 0)
6410 return FALSE;
6411 break;
6412 case SHT_MIPS_DEBUG:
6413 if (strcmp (name, ".mdebug") != 0)
6414 return FALSE;
6415 flags = SEC_DEBUGGING;
6416 break;
6417 case SHT_MIPS_REGINFO:
6418 if (strcmp (name, ".reginfo") != 0
6419 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6420 return FALSE;
6421 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6422 break;
6423 case SHT_MIPS_IFACE:
6424 if (strcmp (name, ".MIPS.interfaces") != 0)
6425 return FALSE;
6426 break;
6427 case SHT_MIPS_CONTENT:
6428 if (! CONST_STRNEQ (name, ".MIPS.content"))
6429 return FALSE;
6430 break;
6431 case SHT_MIPS_OPTIONS:
6432 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6433 return FALSE;
6434 break;
6435 case SHT_MIPS_DWARF:
6436 if (! CONST_STRNEQ (name, ".debug_")
6437 && ! CONST_STRNEQ (name, ".zdebug_"))
6438 return FALSE;
6439 break;
6440 case SHT_MIPS_SYMBOL_LIB:
6441 if (strcmp (name, ".MIPS.symlib") != 0)
6442 return FALSE;
6443 break;
6444 case SHT_MIPS_EVENTS:
6445 if (! CONST_STRNEQ (name, ".MIPS.events")
6446 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6447 return FALSE;
6448 break;
6449 default:
6450 break;
6451 }
6452
6453 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6454 return FALSE;
6455
6456 if (flags)
6457 {
6458 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6459 (bfd_get_section_flags (abfd,
6460 hdr->bfd_section)
6461 | flags)))
6462 return FALSE;
6463 }
6464
6465 /* FIXME: We should record sh_info for a .gptab section. */
6466
6467 /* For a .reginfo section, set the gp value in the tdata information
6468 from the contents of this section. We need the gp value while
6469 processing relocs, so we just get it now. The .reginfo section
6470 is not used in the 64-bit MIPS ELF ABI. */
6471 if (hdr->sh_type == SHT_MIPS_REGINFO)
6472 {
6473 Elf32_External_RegInfo ext;
6474 Elf32_RegInfo s;
6475
6476 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6477 &ext, 0, sizeof ext))
6478 return FALSE;
6479 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6480 elf_gp (abfd) = s.ri_gp_value;
6481 }
6482
6483 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6484 set the gp value based on what we find. We may see both
6485 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6486 they should agree. */
6487 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6488 {
6489 bfd_byte *contents, *l, *lend;
6490
6491 contents = bfd_malloc (hdr->sh_size);
6492 if (contents == NULL)
6493 return FALSE;
6494 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6495 0, hdr->sh_size))
6496 {
6497 free (contents);
6498 return FALSE;
6499 }
6500 l = contents;
6501 lend = contents + hdr->sh_size;
6502 while (l + sizeof (Elf_External_Options) <= lend)
6503 {
6504 Elf_Internal_Options intopt;
6505
6506 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6507 &intopt);
6508 if (intopt.size < sizeof (Elf_External_Options))
6509 {
6510 (*_bfd_error_handler)
6511 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6512 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6513 break;
6514 }
6515 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6516 {
6517 Elf64_Internal_RegInfo intreg;
6518
6519 bfd_mips_elf64_swap_reginfo_in
6520 (abfd,
6521 ((Elf64_External_RegInfo *)
6522 (l + sizeof (Elf_External_Options))),
6523 &intreg);
6524 elf_gp (abfd) = intreg.ri_gp_value;
6525 }
6526 else if (intopt.kind == ODK_REGINFO)
6527 {
6528 Elf32_RegInfo intreg;
6529
6530 bfd_mips_elf32_swap_reginfo_in
6531 (abfd,
6532 ((Elf32_External_RegInfo *)
6533 (l + sizeof (Elf_External_Options))),
6534 &intreg);
6535 elf_gp (abfd) = intreg.ri_gp_value;
6536 }
6537 l += intopt.size;
6538 }
6539 free (contents);
6540 }
6541
6542 return TRUE;
6543 }
6544
6545 /* Set the correct type for a MIPS ELF section. We do this by the
6546 section name, which is a hack, but ought to work. This routine is
6547 used by both the 32-bit and the 64-bit ABI. */
6548
6549 bfd_boolean
6550 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6551 {
6552 const char *name = bfd_get_section_name (abfd, sec);
6553
6554 if (strcmp (name, ".liblist") == 0)
6555 {
6556 hdr->sh_type = SHT_MIPS_LIBLIST;
6557 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6558 /* The sh_link field is set in final_write_processing. */
6559 }
6560 else if (strcmp (name, ".conflict") == 0)
6561 hdr->sh_type = SHT_MIPS_CONFLICT;
6562 else if (CONST_STRNEQ (name, ".gptab."))
6563 {
6564 hdr->sh_type = SHT_MIPS_GPTAB;
6565 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6566 /* The sh_info field is set in final_write_processing. */
6567 }
6568 else if (strcmp (name, ".ucode") == 0)
6569 hdr->sh_type = SHT_MIPS_UCODE;
6570 else if (strcmp (name, ".mdebug") == 0)
6571 {
6572 hdr->sh_type = SHT_MIPS_DEBUG;
6573 /* In a shared object on IRIX 5.3, the .mdebug section has an
6574 entsize of 0. FIXME: Does this matter? */
6575 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6576 hdr->sh_entsize = 0;
6577 else
6578 hdr->sh_entsize = 1;
6579 }
6580 else if (strcmp (name, ".reginfo") == 0)
6581 {
6582 hdr->sh_type = SHT_MIPS_REGINFO;
6583 /* In a shared object on IRIX 5.3, the .reginfo section has an
6584 entsize of 0x18. FIXME: Does this matter? */
6585 if (SGI_COMPAT (abfd))
6586 {
6587 if ((abfd->flags & DYNAMIC) != 0)
6588 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6589 else
6590 hdr->sh_entsize = 1;
6591 }
6592 else
6593 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6594 }
6595 else if (SGI_COMPAT (abfd)
6596 && (strcmp (name, ".hash") == 0
6597 || strcmp (name, ".dynamic") == 0
6598 || strcmp (name, ".dynstr") == 0))
6599 {
6600 if (SGI_COMPAT (abfd))
6601 hdr->sh_entsize = 0;
6602 #if 0
6603 /* This isn't how the IRIX6 linker behaves. */
6604 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6605 #endif
6606 }
6607 else if (strcmp (name, ".got") == 0
6608 || strcmp (name, ".srdata") == 0
6609 || strcmp (name, ".sdata") == 0
6610 || strcmp (name, ".sbss") == 0
6611 || strcmp (name, ".lit4") == 0
6612 || strcmp (name, ".lit8") == 0)
6613 hdr->sh_flags |= SHF_MIPS_GPREL;
6614 else if (strcmp (name, ".MIPS.interfaces") == 0)
6615 {
6616 hdr->sh_type = SHT_MIPS_IFACE;
6617 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6618 }
6619 else if (CONST_STRNEQ (name, ".MIPS.content"))
6620 {
6621 hdr->sh_type = SHT_MIPS_CONTENT;
6622 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6623 /* The sh_info field is set in final_write_processing. */
6624 }
6625 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6626 {
6627 hdr->sh_type = SHT_MIPS_OPTIONS;
6628 hdr->sh_entsize = 1;
6629 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6630 }
6631 else if (CONST_STRNEQ (name, ".debug_")
6632 || CONST_STRNEQ (name, ".zdebug_"))
6633 {
6634 hdr->sh_type = SHT_MIPS_DWARF;
6635
6636 /* Irix facilities such as libexc expect a single .debug_frame
6637 per executable, the system ones have NOSTRIP set and the linker
6638 doesn't merge sections with different flags so ... */
6639 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6640 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6641 }
6642 else if (strcmp (name, ".MIPS.symlib") == 0)
6643 {
6644 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6645 /* The sh_link and sh_info fields are set in
6646 final_write_processing. */
6647 }
6648 else if (CONST_STRNEQ (name, ".MIPS.events")
6649 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6650 {
6651 hdr->sh_type = SHT_MIPS_EVENTS;
6652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6653 /* The sh_link field is set in final_write_processing. */
6654 }
6655 else if (strcmp (name, ".msym") == 0)
6656 {
6657 hdr->sh_type = SHT_MIPS_MSYM;
6658 hdr->sh_flags |= SHF_ALLOC;
6659 hdr->sh_entsize = 8;
6660 }
6661
6662 /* The generic elf_fake_sections will set up REL_HDR using the default
6663 kind of relocations. We used to set up a second header for the
6664 non-default kind of relocations here, but only NewABI would use
6665 these, and the IRIX ld doesn't like resulting empty RELA sections.
6666 Thus we create those header only on demand now. */
6667
6668 return TRUE;
6669 }
6670
6671 /* Given a BFD section, try to locate the corresponding ELF section
6672 index. This is used by both the 32-bit and the 64-bit ABI.
6673 Actually, it's not clear to me that the 64-bit ABI supports these,
6674 but for non-PIC objects we will certainly want support for at least
6675 the .scommon section. */
6676
6677 bfd_boolean
6678 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6679 asection *sec, int *retval)
6680 {
6681 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6682 {
6683 *retval = SHN_MIPS_SCOMMON;
6684 return TRUE;
6685 }
6686 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6687 {
6688 *retval = SHN_MIPS_ACOMMON;
6689 return TRUE;
6690 }
6691 return FALSE;
6692 }
6693 \f
6694 /* Hook called by the linker routine which adds symbols from an object
6695 file. We must handle the special MIPS section numbers here. */
6696
6697 bfd_boolean
6698 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6699 Elf_Internal_Sym *sym, const char **namep,
6700 flagword *flagsp ATTRIBUTE_UNUSED,
6701 asection **secp, bfd_vma *valp)
6702 {
6703 if (SGI_COMPAT (abfd)
6704 && (abfd->flags & DYNAMIC) != 0
6705 && strcmp (*namep, "_rld_new_interface") == 0)
6706 {
6707 /* Skip IRIX5 rld entry name. */
6708 *namep = NULL;
6709 return TRUE;
6710 }
6711
6712 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6713 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6714 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6715 a magic symbol resolved by the linker, we ignore this bogus definition
6716 of _gp_disp. New ABI objects do not suffer from this problem so this
6717 is not done for them. */
6718 if (!NEWABI_P(abfd)
6719 && (sym->st_shndx == SHN_ABS)
6720 && (strcmp (*namep, "_gp_disp") == 0))
6721 {
6722 *namep = NULL;
6723 return TRUE;
6724 }
6725
6726 switch (sym->st_shndx)
6727 {
6728 case SHN_COMMON:
6729 /* Common symbols less than the GP size are automatically
6730 treated as SHN_MIPS_SCOMMON symbols. */
6731 if (sym->st_size > elf_gp_size (abfd)
6732 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6733 || IRIX_COMPAT (abfd) == ict_irix6)
6734 break;
6735 /* Fall through. */
6736 case SHN_MIPS_SCOMMON:
6737 *secp = bfd_make_section_old_way (abfd, ".scommon");
6738 (*secp)->flags |= SEC_IS_COMMON;
6739 *valp = sym->st_size;
6740 break;
6741
6742 case SHN_MIPS_TEXT:
6743 /* This section is used in a shared object. */
6744 if (elf_tdata (abfd)->elf_text_section == NULL)
6745 {
6746 asymbol *elf_text_symbol;
6747 asection *elf_text_section;
6748 bfd_size_type amt = sizeof (asection);
6749
6750 elf_text_section = bfd_zalloc (abfd, amt);
6751 if (elf_text_section == NULL)
6752 return FALSE;
6753
6754 amt = sizeof (asymbol);
6755 elf_text_symbol = bfd_zalloc (abfd, amt);
6756 if (elf_text_symbol == NULL)
6757 return FALSE;
6758
6759 /* Initialize the section. */
6760
6761 elf_tdata (abfd)->elf_text_section = elf_text_section;
6762 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6763
6764 elf_text_section->symbol = elf_text_symbol;
6765 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6766
6767 elf_text_section->name = ".text";
6768 elf_text_section->flags = SEC_NO_FLAGS;
6769 elf_text_section->output_section = NULL;
6770 elf_text_section->owner = abfd;
6771 elf_text_symbol->name = ".text";
6772 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6773 elf_text_symbol->section = elf_text_section;
6774 }
6775 /* This code used to do *secp = bfd_und_section_ptr if
6776 info->shared. I don't know why, and that doesn't make sense,
6777 so I took it out. */
6778 *secp = elf_tdata (abfd)->elf_text_section;
6779 break;
6780
6781 case SHN_MIPS_ACOMMON:
6782 /* Fall through. XXX Can we treat this as allocated data? */
6783 case SHN_MIPS_DATA:
6784 /* This section is used in a shared object. */
6785 if (elf_tdata (abfd)->elf_data_section == NULL)
6786 {
6787 asymbol *elf_data_symbol;
6788 asection *elf_data_section;
6789 bfd_size_type amt = sizeof (asection);
6790
6791 elf_data_section = bfd_zalloc (abfd, amt);
6792 if (elf_data_section == NULL)
6793 return FALSE;
6794
6795 amt = sizeof (asymbol);
6796 elf_data_symbol = bfd_zalloc (abfd, amt);
6797 if (elf_data_symbol == NULL)
6798 return FALSE;
6799
6800 /* Initialize the section. */
6801
6802 elf_tdata (abfd)->elf_data_section = elf_data_section;
6803 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6804
6805 elf_data_section->symbol = elf_data_symbol;
6806 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6807
6808 elf_data_section->name = ".data";
6809 elf_data_section->flags = SEC_NO_FLAGS;
6810 elf_data_section->output_section = NULL;
6811 elf_data_section->owner = abfd;
6812 elf_data_symbol->name = ".data";
6813 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6814 elf_data_symbol->section = elf_data_section;
6815 }
6816 /* This code used to do *secp = bfd_und_section_ptr if
6817 info->shared. I don't know why, and that doesn't make sense,
6818 so I took it out. */
6819 *secp = elf_tdata (abfd)->elf_data_section;
6820 break;
6821
6822 case SHN_MIPS_SUNDEFINED:
6823 *secp = bfd_und_section_ptr;
6824 break;
6825 }
6826
6827 if (SGI_COMPAT (abfd)
6828 && ! info->shared
6829 && info->output_bfd->xvec == abfd->xvec
6830 && strcmp (*namep, "__rld_obj_head") == 0)
6831 {
6832 struct elf_link_hash_entry *h;
6833 struct bfd_link_hash_entry *bh;
6834
6835 /* Mark __rld_obj_head as dynamic. */
6836 bh = NULL;
6837 if (! (_bfd_generic_link_add_one_symbol
6838 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6839 get_elf_backend_data (abfd)->collect, &bh)))
6840 return FALSE;
6841
6842 h = (struct elf_link_hash_entry *) bh;
6843 h->non_elf = 0;
6844 h->def_regular = 1;
6845 h->type = STT_OBJECT;
6846
6847 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6848 return FALSE;
6849
6850 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6851 }
6852
6853 /* If this is a mips16 text symbol, add 1 to the value to make it
6854 odd. This will cause something like .word SYM to come up with
6855 the right value when it is loaded into the PC. */
6856 if (ELF_ST_IS_MIPS16 (sym->st_other))
6857 ++*valp;
6858
6859 return TRUE;
6860 }
6861
6862 /* This hook function is called before the linker writes out a global
6863 symbol. We mark symbols as small common if appropriate. This is
6864 also where we undo the increment of the value for a mips16 symbol. */
6865
6866 int
6867 _bfd_mips_elf_link_output_symbol_hook
6868 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6869 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6870 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6871 {
6872 /* If we see a common symbol, which implies a relocatable link, then
6873 if a symbol was small common in an input file, mark it as small
6874 common in the output file. */
6875 if (sym->st_shndx == SHN_COMMON
6876 && strcmp (input_sec->name, ".scommon") == 0)
6877 sym->st_shndx = SHN_MIPS_SCOMMON;
6878
6879 if (ELF_ST_IS_MIPS16 (sym->st_other))
6880 sym->st_value &= ~1;
6881
6882 return 1;
6883 }
6884 \f
6885 /* Functions for the dynamic linker. */
6886
6887 /* Create dynamic sections when linking against a dynamic object. */
6888
6889 bfd_boolean
6890 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6891 {
6892 struct elf_link_hash_entry *h;
6893 struct bfd_link_hash_entry *bh;
6894 flagword flags;
6895 register asection *s;
6896 const char * const *namep;
6897 struct mips_elf_link_hash_table *htab;
6898
6899 htab = mips_elf_hash_table (info);
6900 BFD_ASSERT (htab != NULL);
6901
6902 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6903 | SEC_LINKER_CREATED | SEC_READONLY);
6904
6905 /* The psABI requires a read-only .dynamic section, but the VxWorks
6906 EABI doesn't. */
6907 if (!htab->is_vxworks)
6908 {
6909 s = bfd_get_section_by_name (abfd, ".dynamic");
6910 if (s != NULL)
6911 {
6912 if (! bfd_set_section_flags (abfd, s, flags))
6913 return FALSE;
6914 }
6915 }
6916
6917 /* We need to create .got section. */
6918 if (!mips_elf_create_got_section (abfd, info))
6919 return FALSE;
6920
6921 if (! mips_elf_rel_dyn_section (info, TRUE))
6922 return FALSE;
6923
6924 /* Create .stub section. */
6925 s = bfd_make_section_with_flags (abfd,
6926 MIPS_ELF_STUB_SECTION_NAME (abfd),
6927 flags | SEC_CODE);
6928 if (s == NULL
6929 || ! bfd_set_section_alignment (abfd, s,
6930 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6931 return FALSE;
6932 htab->sstubs = s;
6933
6934 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6935 && !info->shared
6936 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6937 {
6938 s = bfd_make_section_with_flags (abfd, ".rld_map",
6939 flags &~ (flagword) SEC_READONLY);
6940 if (s == NULL
6941 || ! bfd_set_section_alignment (abfd, s,
6942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6943 return FALSE;
6944 }
6945
6946 /* On IRIX5, we adjust add some additional symbols and change the
6947 alignments of several sections. There is no ABI documentation
6948 indicating that this is necessary on IRIX6, nor any evidence that
6949 the linker takes such action. */
6950 if (IRIX_COMPAT (abfd) == ict_irix5)
6951 {
6952 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6953 {
6954 bh = NULL;
6955 if (! (_bfd_generic_link_add_one_symbol
6956 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6957 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6958 return FALSE;
6959
6960 h = (struct elf_link_hash_entry *) bh;
6961 h->non_elf = 0;
6962 h->def_regular = 1;
6963 h->type = STT_SECTION;
6964
6965 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6966 return FALSE;
6967 }
6968
6969 /* We need to create a .compact_rel section. */
6970 if (SGI_COMPAT (abfd))
6971 {
6972 if (!mips_elf_create_compact_rel_section (abfd, info))
6973 return FALSE;
6974 }
6975
6976 /* Change alignments of some sections. */
6977 s = bfd_get_section_by_name (abfd, ".hash");
6978 if (s != NULL)
6979 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6980 s = bfd_get_section_by_name (abfd, ".dynsym");
6981 if (s != NULL)
6982 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6983 s = bfd_get_section_by_name (abfd, ".dynstr");
6984 if (s != NULL)
6985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6986 s = bfd_get_section_by_name (abfd, ".reginfo");
6987 if (s != NULL)
6988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6989 s = bfd_get_section_by_name (abfd, ".dynamic");
6990 if (s != NULL)
6991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6992 }
6993
6994 if (!info->shared)
6995 {
6996 const char *name;
6997
6998 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6999 bh = NULL;
7000 if (!(_bfd_generic_link_add_one_symbol
7001 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7002 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7003 return FALSE;
7004
7005 h = (struct elf_link_hash_entry *) bh;
7006 h->non_elf = 0;
7007 h->def_regular = 1;
7008 h->type = STT_SECTION;
7009
7010 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7011 return FALSE;
7012
7013 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7014 {
7015 /* __rld_map is a four byte word located in the .data section
7016 and is filled in by the rtld to contain a pointer to
7017 the _r_debug structure. Its symbol value will be set in
7018 _bfd_mips_elf_finish_dynamic_symbol. */
7019 s = bfd_get_section_by_name (abfd, ".rld_map");
7020 BFD_ASSERT (s != NULL);
7021
7022 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7023 bh = NULL;
7024 if (!(_bfd_generic_link_add_one_symbol
7025 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7026 get_elf_backend_data (abfd)->collect, &bh)))
7027 return FALSE;
7028
7029 h = (struct elf_link_hash_entry *) bh;
7030 h->non_elf = 0;
7031 h->def_regular = 1;
7032 h->type = STT_OBJECT;
7033
7034 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7035 return FALSE;
7036 }
7037 }
7038
7039 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7040 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7041 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7042 return FALSE;
7043
7044 /* Cache the sections created above. */
7045 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7046 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7047 if (htab->is_vxworks)
7048 {
7049 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7050 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7051 }
7052 else
7053 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7054 if (!htab->sdynbss
7055 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7056 || !htab->srelplt
7057 || !htab->splt)
7058 abort ();
7059
7060 if (htab->is_vxworks)
7061 {
7062 /* Do the usual VxWorks handling. */
7063 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7064 return FALSE;
7065
7066 /* Work out the PLT sizes. */
7067 if (info->shared)
7068 {
7069 htab->plt_header_size
7070 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7071 htab->plt_entry_size
7072 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7073 }
7074 else
7075 {
7076 htab->plt_header_size
7077 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7078 htab->plt_entry_size
7079 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7080 }
7081 }
7082 else if (!info->shared)
7083 {
7084 /* All variants of the plt0 entry are the same size. */
7085 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7086 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7087 }
7088
7089 return TRUE;
7090 }
7091 \f
7092 /* Return true if relocation REL against section SEC is a REL rather than
7093 RELA relocation. RELOCS is the first relocation in the section and
7094 ABFD is the bfd that contains SEC. */
7095
7096 static bfd_boolean
7097 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7098 const Elf_Internal_Rela *relocs,
7099 const Elf_Internal_Rela *rel)
7100 {
7101 Elf_Internal_Shdr *rel_hdr;
7102 const struct elf_backend_data *bed;
7103
7104 /* To determine which flavor of relocation this is, we depend on the
7105 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7106 rel_hdr = elf_section_data (sec)->rel.hdr;
7107 if (rel_hdr == NULL)
7108 return FALSE;
7109 bed = get_elf_backend_data (abfd);
7110 return ((size_t) (rel - relocs)
7111 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7112 }
7113
7114 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7115 HOWTO is the relocation's howto and CONTENTS points to the contents
7116 of the section that REL is against. */
7117
7118 static bfd_vma
7119 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7120 reloc_howto_type *howto, bfd_byte *contents)
7121 {
7122 bfd_byte *location;
7123 unsigned int r_type;
7124 bfd_vma addend;
7125
7126 r_type = ELF_R_TYPE (abfd, rel->r_info);
7127 location = contents + rel->r_offset;
7128
7129 /* Get the addend, which is stored in the input file. */
7130 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7131 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7132 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7133
7134 return addend & howto->src_mask;
7135 }
7136
7137 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7138 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7139 and update *ADDEND with the final addend. Return true on success
7140 or false if the LO16 could not be found. RELEND is the exclusive
7141 upper bound on the relocations for REL's section. */
7142
7143 static bfd_boolean
7144 mips_elf_add_lo16_rel_addend (bfd *abfd,
7145 const Elf_Internal_Rela *rel,
7146 const Elf_Internal_Rela *relend,
7147 bfd_byte *contents, bfd_vma *addend)
7148 {
7149 unsigned int r_type, lo16_type;
7150 const Elf_Internal_Rela *lo16_relocation;
7151 reloc_howto_type *lo16_howto;
7152 bfd_vma l;
7153
7154 r_type = ELF_R_TYPE (abfd, rel->r_info);
7155 if (mips16_reloc_p (r_type))
7156 lo16_type = R_MIPS16_LO16;
7157 else
7158 lo16_type = R_MIPS_LO16;
7159
7160 /* The combined value is the sum of the HI16 addend, left-shifted by
7161 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7162 code does a `lui' of the HI16 value, and then an `addiu' of the
7163 LO16 value.)
7164
7165 Scan ahead to find a matching LO16 relocation.
7166
7167 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7168 be immediately following. However, for the IRIX6 ABI, the next
7169 relocation may be a composed relocation consisting of several
7170 relocations for the same address. In that case, the R_MIPS_LO16
7171 relocation may occur as one of these. We permit a similar
7172 extension in general, as that is useful for GCC.
7173
7174 In some cases GCC dead code elimination removes the LO16 but keeps
7175 the corresponding HI16. This is strictly speaking a violation of
7176 the ABI but not immediately harmful. */
7177 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7178 if (lo16_relocation == NULL)
7179 return FALSE;
7180
7181 /* Obtain the addend kept there. */
7182 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7183 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7184
7185 l <<= lo16_howto->rightshift;
7186 l = _bfd_mips_elf_sign_extend (l, 16);
7187
7188 *addend <<= 16;
7189 *addend += l;
7190 return TRUE;
7191 }
7192
7193 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7194 store the contents in *CONTENTS on success. Assume that *CONTENTS
7195 already holds the contents if it is nonull on entry. */
7196
7197 static bfd_boolean
7198 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7199 {
7200 if (*contents)
7201 return TRUE;
7202
7203 /* Get cached copy if it exists. */
7204 if (elf_section_data (sec)->this_hdr.contents != NULL)
7205 {
7206 *contents = elf_section_data (sec)->this_hdr.contents;
7207 return TRUE;
7208 }
7209
7210 return bfd_malloc_and_get_section (abfd, sec, contents);
7211 }
7212
7213 /* Look through the relocs for a section during the first phase, and
7214 allocate space in the global offset table. */
7215
7216 bfd_boolean
7217 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7218 asection *sec, const Elf_Internal_Rela *relocs)
7219 {
7220 const char *name;
7221 bfd *dynobj;
7222 Elf_Internal_Shdr *symtab_hdr;
7223 struct elf_link_hash_entry **sym_hashes;
7224 size_t extsymoff;
7225 const Elf_Internal_Rela *rel;
7226 const Elf_Internal_Rela *rel_end;
7227 asection *sreloc;
7228 const struct elf_backend_data *bed;
7229 struct mips_elf_link_hash_table *htab;
7230 bfd_byte *contents;
7231 bfd_vma addend;
7232 reloc_howto_type *howto;
7233
7234 if (info->relocatable)
7235 return TRUE;
7236
7237 htab = mips_elf_hash_table (info);
7238 BFD_ASSERT (htab != NULL);
7239
7240 dynobj = elf_hash_table (info)->dynobj;
7241 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7242 sym_hashes = elf_sym_hashes (abfd);
7243 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7244
7245 bed = get_elf_backend_data (abfd);
7246 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7247
7248 /* Check for the mips16 stub sections. */
7249
7250 name = bfd_get_section_name (abfd, sec);
7251 if (FN_STUB_P (name))
7252 {
7253 unsigned long r_symndx;
7254
7255 /* Look at the relocation information to figure out which symbol
7256 this is for. */
7257
7258 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7259 if (r_symndx == 0)
7260 {
7261 (*_bfd_error_handler)
7262 (_("%B: Warning: cannot determine the target function for"
7263 " stub section `%s'"),
7264 abfd, name);
7265 bfd_set_error (bfd_error_bad_value);
7266 return FALSE;
7267 }
7268
7269 if (r_symndx < extsymoff
7270 || sym_hashes[r_symndx - extsymoff] == NULL)
7271 {
7272 asection *o;
7273
7274 /* This stub is for a local symbol. This stub will only be
7275 needed if there is some relocation in this BFD, other
7276 than a 16 bit function call, which refers to this symbol. */
7277 for (o = abfd->sections; o != NULL; o = o->next)
7278 {
7279 Elf_Internal_Rela *sec_relocs;
7280 const Elf_Internal_Rela *r, *rend;
7281
7282 /* We can ignore stub sections when looking for relocs. */
7283 if ((o->flags & SEC_RELOC) == 0
7284 || o->reloc_count == 0
7285 || section_allows_mips16_refs_p (o))
7286 continue;
7287
7288 sec_relocs
7289 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7290 info->keep_memory);
7291 if (sec_relocs == NULL)
7292 return FALSE;
7293
7294 rend = sec_relocs + o->reloc_count;
7295 for (r = sec_relocs; r < rend; r++)
7296 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7297 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7298 break;
7299
7300 if (elf_section_data (o)->relocs != sec_relocs)
7301 free (sec_relocs);
7302
7303 if (r < rend)
7304 break;
7305 }
7306
7307 if (o == NULL)
7308 {
7309 /* There is no non-call reloc for this stub, so we do
7310 not need it. Since this function is called before
7311 the linker maps input sections to output sections, we
7312 can easily discard it by setting the SEC_EXCLUDE
7313 flag. */
7314 sec->flags |= SEC_EXCLUDE;
7315 return TRUE;
7316 }
7317
7318 /* Record this stub in an array of local symbol stubs for
7319 this BFD. */
7320 if (elf_tdata (abfd)->local_stubs == NULL)
7321 {
7322 unsigned long symcount;
7323 asection **n;
7324 bfd_size_type amt;
7325
7326 if (elf_bad_symtab (abfd))
7327 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7328 else
7329 symcount = symtab_hdr->sh_info;
7330 amt = symcount * sizeof (asection *);
7331 n = bfd_zalloc (abfd, amt);
7332 if (n == NULL)
7333 return FALSE;
7334 elf_tdata (abfd)->local_stubs = n;
7335 }
7336
7337 sec->flags |= SEC_KEEP;
7338 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7339
7340 /* We don't need to set mips16_stubs_seen in this case.
7341 That flag is used to see whether we need to look through
7342 the global symbol table for stubs. We don't need to set
7343 it here, because we just have a local stub. */
7344 }
7345 else
7346 {
7347 struct mips_elf_link_hash_entry *h;
7348
7349 h = ((struct mips_elf_link_hash_entry *)
7350 sym_hashes[r_symndx - extsymoff]);
7351
7352 while (h->root.root.type == bfd_link_hash_indirect
7353 || h->root.root.type == bfd_link_hash_warning)
7354 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7355
7356 /* H is the symbol this stub is for. */
7357
7358 /* If we already have an appropriate stub for this function, we
7359 don't need another one, so we can discard this one. Since
7360 this function is called before the linker maps input sections
7361 to output sections, we can easily discard it by setting the
7362 SEC_EXCLUDE flag. */
7363 if (h->fn_stub != NULL)
7364 {
7365 sec->flags |= SEC_EXCLUDE;
7366 return TRUE;
7367 }
7368
7369 sec->flags |= SEC_KEEP;
7370 h->fn_stub = sec;
7371 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7372 }
7373 }
7374 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7375 {
7376 unsigned long r_symndx;
7377 struct mips_elf_link_hash_entry *h;
7378 asection **loc;
7379
7380 /* Look at the relocation information to figure out which symbol
7381 this is for. */
7382
7383 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7384 if (r_symndx == 0)
7385 {
7386 (*_bfd_error_handler)
7387 (_("%B: Warning: cannot determine the target function for"
7388 " stub section `%s'"),
7389 abfd, name);
7390 bfd_set_error (bfd_error_bad_value);
7391 return FALSE;
7392 }
7393
7394 if (r_symndx < extsymoff
7395 || sym_hashes[r_symndx - extsymoff] == NULL)
7396 {
7397 asection *o;
7398
7399 /* This stub is for a local symbol. This stub will only be
7400 needed if there is some relocation (R_MIPS16_26) in this BFD
7401 that refers to this symbol. */
7402 for (o = abfd->sections; o != NULL; o = o->next)
7403 {
7404 Elf_Internal_Rela *sec_relocs;
7405 const Elf_Internal_Rela *r, *rend;
7406
7407 /* We can ignore stub sections when looking for relocs. */
7408 if ((o->flags & SEC_RELOC) == 0
7409 || o->reloc_count == 0
7410 || section_allows_mips16_refs_p (o))
7411 continue;
7412
7413 sec_relocs
7414 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7415 info->keep_memory);
7416 if (sec_relocs == NULL)
7417 return FALSE;
7418
7419 rend = sec_relocs + o->reloc_count;
7420 for (r = sec_relocs; r < rend; r++)
7421 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7422 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7423 break;
7424
7425 if (elf_section_data (o)->relocs != sec_relocs)
7426 free (sec_relocs);
7427
7428 if (r < rend)
7429 break;
7430 }
7431
7432 if (o == NULL)
7433 {
7434 /* There is no non-call reloc for this stub, so we do
7435 not need it. Since this function is called before
7436 the linker maps input sections to output sections, we
7437 can easily discard it by setting the SEC_EXCLUDE
7438 flag. */
7439 sec->flags |= SEC_EXCLUDE;
7440 return TRUE;
7441 }
7442
7443 /* Record this stub in an array of local symbol call_stubs for
7444 this BFD. */
7445 if (elf_tdata (abfd)->local_call_stubs == NULL)
7446 {
7447 unsigned long symcount;
7448 asection **n;
7449 bfd_size_type amt;
7450
7451 if (elf_bad_symtab (abfd))
7452 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7453 else
7454 symcount = symtab_hdr->sh_info;
7455 amt = symcount * sizeof (asection *);
7456 n = bfd_zalloc (abfd, amt);
7457 if (n == NULL)
7458 return FALSE;
7459 elf_tdata (abfd)->local_call_stubs = n;
7460 }
7461
7462 sec->flags |= SEC_KEEP;
7463 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7464
7465 /* We don't need to set mips16_stubs_seen in this case.
7466 That flag is used to see whether we need to look through
7467 the global symbol table for stubs. We don't need to set
7468 it here, because we just have a local stub. */
7469 }
7470 else
7471 {
7472 h = ((struct mips_elf_link_hash_entry *)
7473 sym_hashes[r_symndx - extsymoff]);
7474
7475 /* H is the symbol this stub is for. */
7476
7477 if (CALL_FP_STUB_P (name))
7478 loc = &h->call_fp_stub;
7479 else
7480 loc = &h->call_stub;
7481
7482 /* If we already have an appropriate stub for this function, we
7483 don't need another one, so we can discard this one. Since
7484 this function is called before the linker maps input sections
7485 to output sections, we can easily discard it by setting the
7486 SEC_EXCLUDE flag. */
7487 if (*loc != NULL)
7488 {
7489 sec->flags |= SEC_EXCLUDE;
7490 return TRUE;
7491 }
7492
7493 sec->flags |= SEC_KEEP;
7494 *loc = sec;
7495 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7496 }
7497 }
7498
7499 sreloc = NULL;
7500 contents = NULL;
7501 for (rel = relocs; rel < rel_end; ++rel)
7502 {
7503 unsigned long r_symndx;
7504 unsigned int r_type;
7505 struct elf_link_hash_entry *h;
7506 bfd_boolean can_make_dynamic_p;
7507
7508 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7509 r_type = ELF_R_TYPE (abfd, rel->r_info);
7510
7511 if (r_symndx < extsymoff)
7512 h = NULL;
7513 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7514 {
7515 (*_bfd_error_handler)
7516 (_("%B: Malformed reloc detected for section %s"),
7517 abfd, name);
7518 bfd_set_error (bfd_error_bad_value);
7519 return FALSE;
7520 }
7521 else
7522 {
7523 h = sym_hashes[r_symndx - extsymoff];
7524 while (h != NULL
7525 && (h->root.type == bfd_link_hash_indirect
7526 || h->root.type == bfd_link_hash_warning))
7527 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7528 }
7529
7530 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7531 relocation into a dynamic one. */
7532 can_make_dynamic_p = FALSE;
7533 switch (r_type)
7534 {
7535 case R_MIPS16_GOT16:
7536 case R_MIPS16_CALL16:
7537 case R_MIPS_GOT16:
7538 case R_MIPS_CALL16:
7539 case R_MIPS_CALL_HI16:
7540 case R_MIPS_CALL_LO16:
7541 case R_MIPS_GOT_HI16:
7542 case R_MIPS_GOT_LO16:
7543 case R_MIPS_GOT_PAGE:
7544 case R_MIPS_GOT_OFST:
7545 case R_MIPS_GOT_DISP:
7546 case R_MIPS_TLS_GOTTPREL:
7547 case R_MIPS_TLS_GD:
7548 case R_MIPS_TLS_LDM:
7549 if (dynobj == NULL)
7550 elf_hash_table (info)->dynobj = dynobj = abfd;
7551 if (!mips_elf_create_got_section (dynobj, info))
7552 return FALSE;
7553 if (htab->is_vxworks && !info->shared)
7554 {
7555 (*_bfd_error_handler)
7556 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7557 abfd, (unsigned long) rel->r_offset);
7558 bfd_set_error (bfd_error_bad_value);
7559 return FALSE;
7560 }
7561 break;
7562
7563 /* This is just a hint; it can safely be ignored. Don't set
7564 has_static_relocs for the corresponding symbol. */
7565 case R_MIPS_JALR:
7566 break;
7567
7568 case R_MIPS_32:
7569 case R_MIPS_REL32:
7570 case R_MIPS_64:
7571 /* In VxWorks executables, references to external symbols
7572 must be handled using copy relocs or PLT entries; it is not
7573 possible to convert this relocation into a dynamic one.
7574
7575 For executables that use PLTs and copy-relocs, we have a
7576 choice between converting the relocation into a dynamic
7577 one or using copy relocations or PLT entries. It is
7578 usually better to do the former, unless the relocation is
7579 against a read-only section. */
7580 if ((info->shared
7581 || (h != NULL
7582 && !htab->is_vxworks
7583 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7584 && !(!info->nocopyreloc
7585 && !PIC_OBJECT_P (abfd)
7586 && MIPS_ELF_READONLY_SECTION (sec))))
7587 && (sec->flags & SEC_ALLOC) != 0)
7588 {
7589 can_make_dynamic_p = TRUE;
7590 if (dynobj == NULL)
7591 elf_hash_table (info)->dynobj = dynobj = abfd;
7592 break;
7593 }
7594 /* For sections that are not SEC_ALLOC a copy reloc would be
7595 output if possible (implying questionable semantics for
7596 read-only data objects) or otherwise the final link would
7597 fail as ld.so will not process them and could not therefore
7598 handle any outstanding dynamic relocations.
7599
7600 For such sections that are also SEC_DEBUGGING, we can avoid
7601 these problems by simply ignoring any relocs as these
7602 sections have a predefined use and we know it is safe to do
7603 so.
7604
7605 This is needed in cases such as a global symbol definition
7606 in a shared library causing a common symbol from an object
7607 file to be converted to an undefined reference. If that
7608 happens, then all the relocations against this symbol from
7609 SEC_DEBUGGING sections in the object file will resolve to
7610 nil. */
7611 if ((sec->flags & SEC_DEBUGGING) != 0)
7612 break;
7613 /* Fall through. */
7614
7615 default:
7616 /* Most static relocations require pointer equality, except
7617 for branches. */
7618 if (h)
7619 h->pointer_equality_needed = TRUE;
7620 /* Fall through. */
7621
7622 case R_MIPS_26:
7623 case R_MIPS_PC16:
7624 case R_MIPS16_26:
7625 if (h)
7626 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7627 break;
7628 }
7629
7630 if (h)
7631 {
7632 /* Relocations against the special VxWorks __GOTT_BASE__ and
7633 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7634 room for them in .rela.dyn. */
7635 if (is_gott_symbol (info, h))
7636 {
7637 if (sreloc == NULL)
7638 {
7639 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7640 if (sreloc == NULL)
7641 return FALSE;
7642 }
7643 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7644 if (MIPS_ELF_READONLY_SECTION (sec))
7645 /* We tell the dynamic linker that there are
7646 relocations against the text segment. */
7647 info->flags |= DF_TEXTREL;
7648 }
7649 }
7650 else if (r_type == R_MIPS_CALL_LO16
7651 || r_type == R_MIPS_GOT_LO16
7652 || r_type == R_MIPS_GOT_DISP
7653 || (got16_reloc_p (r_type) && htab->is_vxworks))
7654 {
7655 /* We may need a local GOT entry for this relocation. We
7656 don't count R_MIPS_GOT_PAGE because we can estimate the
7657 maximum number of pages needed by looking at the size of
7658 the segment. Similar comments apply to R_MIPS*_GOT16 and
7659 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7660 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7661 R_MIPS_CALL_HI16 because these are always followed by an
7662 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7663 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7664 rel->r_addend, info, 0))
7665 return FALSE;
7666 }
7667
7668 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7669 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7670
7671 switch (r_type)
7672 {
7673 case R_MIPS_CALL16:
7674 case R_MIPS16_CALL16:
7675 if (h == NULL)
7676 {
7677 (*_bfd_error_handler)
7678 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7679 abfd, (unsigned long) rel->r_offset);
7680 bfd_set_error (bfd_error_bad_value);
7681 return FALSE;
7682 }
7683 /* Fall through. */
7684
7685 case R_MIPS_CALL_HI16:
7686 case R_MIPS_CALL_LO16:
7687 if (h != NULL)
7688 {
7689 /* Make sure there is room in the regular GOT to hold the
7690 function's address. We may eliminate it in favour of
7691 a .got.plt entry later; see mips_elf_count_got_symbols. */
7692 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7693 return FALSE;
7694
7695 /* We need a stub, not a plt entry for the undefined
7696 function. But we record it as if it needs plt. See
7697 _bfd_elf_adjust_dynamic_symbol. */
7698 h->needs_plt = 1;
7699 h->type = STT_FUNC;
7700 }
7701 break;
7702
7703 case R_MIPS_GOT_PAGE:
7704 /* If this is a global, overridable symbol, GOT_PAGE will
7705 decay to GOT_DISP, so we'll need a GOT entry for it. */
7706 if (h)
7707 {
7708 struct mips_elf_link_hash_entry *hmips =
7709 (struct mips_elf_link_hash_entry *) h;
7710
7711 /* This symbol is definitely not overridable. */
7712 if (hmips->root.def_regular
7713 && ! (info->shared && ! info->symbolic
7714 && ! hmips->root.forced_local))
7715 h = NULL;
7716 }
7717 /* Fall through. */
7718
7719 case R_MIPS16_GOT16:
7720 case R_MIPS_GOT16:
7721 case R_MIPS_GOT_HI16:
7722 case R_MIPS_GOT_LO16:
7723 if (!h || r_type == R_MIPS_GOT_PAGE)
7724 {
7725 /* This relocation needs (or may need, if h != NULL) a
7726 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7727 know for sure until we know whether the symbol is
7728 preemptible. */
7729 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7730 {
7731 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7732 return FALSE;
7733 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7734 addend = mips_elf_read_rel_addend (abfd, rel,
7735 howto, contents);
7736 if (got16_reloc_p (r_type))
7737 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7738 contents, &addend);
7739 else
7740 addend <<= howto->rightshift;
7741 }
7742 else
7743 addend = rel->r_addend;
7744 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7745 addend))
7746 return FALSE;
7747 }
7748 /* Fall through. */
7749
7750 case R_MIPS_GOT_DISP:
7751 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7752 FALSE, 0))
7753 return FALSE;
7754 break;
7755
7756 case R_MIPS_TLS_GOTTPREL:
7757 if (info->shared)
7758 info->flags |= DF_STATIC_TLS;
7759 /* Fall through */
7760
7761 case R_MIPS_TLS_LDM:
7762 if (r_type == R_MIPS_TLS_LDM)
7763 {
7764 r_symndx = STN_UNDEF;
7765 h = NULL;
7766 }
7767 /* Fall through */
7768
7769 case R_MIPS_TLS_GD:
7770 /* This symbol requires a global offset table entry, or two
7771 for TLS GD relocations. */
7772 {
7773 unsigned char flag = (r_type == R_MIPS_TLS_GD
7774 ? GOT_TLS_GD
7775 : r_type == R_MIPS_TLS_LDM
7776 ? GOT_TLS_LDM
7777 : GOT_TLS_IE);
7778 if (h != NULL)
7779 {
7780 struct mips_elf_link_hash_entry *hmips =
7781 (struct mips_elf_link_hash_entry *) h;
7782 hmips->tls_type |= flag;
7783
7784 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7785 FALSE, flag))
7786 return FALSE;
7787 }
7788 else
7789 {
7790 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
7791
7792 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7793 rel->r_addend,
7794 info, flag))
7795 return FALSE;
7796 }
7797 }
7798 break;
7799
7800 case R_MIPS_32:
7801 case R_MIPS_REL32:
7802 case R_MIPS_64:
7803 /* In VxWorks executables, references to external symbols
7804 are handled using copy relocs or PLT stubs, so there's
7805 no need to add a .rela.dyn entry for this relocation. */
7806 if (can_make_dynamic_p)
7807 {
7808 if (sreloc == NULL)
7809 {
7810 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7811 if (sreloc == NULL)
7812 return FALSE;
7813 }
7814 if (info->shared && h == NULL)
7815 {
7816 /* When creating a shared object, we must copy these
7817 reloc types into the output file as R_MIPS_REL32
7818 relocs. Make room for this reloc in .rel(a).dyn. */
7819 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7820 if (MIPS_ELF_READONLY_SECTION (sec))
7821 /* We tell the dynamic linker that there are
7822 relocations against the text segment. */
7823 info->flags |= DF_TEXTREL;
7824 }
7825 else
7826 {
7827 struct mips_elf_link_hash_entry *hmips;
7828
7829 /* For a shared object, we must copy this relocation
7830 unless the symbol turns out to be undefined and
7831 weak with non-default visibility, in which case
7832 it will be left as zero.
7833
7834 We could elide R_MIPS_REL32 for locally binding symbols
7835 in shared libraries, but do not yet do so.
7836
7837 For an executable, we only need to copy this
7838 reloc if the symbol is defined in a dynamic
7839 object. */
7840 hmips = (struct mips_elf_link_hash_entry *) h;
7841 ++hmips->possibly_dynamic_relocs;
7842 if (MIPS_ELF_READONLY_SECTION (sec))
7843 /* We need it to tell the dynamic linker if there
7844 are relocations against the text segment. */
7845 hmips->readonly_reloc = TRUE;
7846 }
7847 }
7848
7849 if (SGI_COMPAT (abfd))
7850 mips_elf_hash_table (info)->compact_rel_size +=
7851 sizeof (Elf32_External_crinfo);
7852 break;
7853
7854 case R_MIPS_26:
7855 case R_MIPS_GPREL16:
7856 case R_MIPS_LITERAL:
7857 case R_MIPS_GPREL32:
7858 if (SGI_COMPAT (abfd))
7859 mips_elf_hash_table (info)->compact_rel_size +=
7860 sizeof (Elf32_External_crinfo);
7861 break;
7862
7863 /* This relocation describes the C++ object vtable hierarchy.
7864 Reconstruct it for later use during GC. */
7865 case R_MIPS_GNU_VTINHERIT:
7866 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7867 return FALSE;
7868 break;
7869
7870 /* This relocation describes which C++ vtable entries are actually
7871 used. Record for later use during GC. */
7872 case R_MIPS_GNU_VTENTRY:
7873 BFD_ASSERT (h != NULL);
7874 if (h != NULL
7875 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7876 return FALSE;
7877 break;
7878
7879 default:
7880 break;
7881 }
7882
7883 /* We must not create a stub for a symbol that has relocations
7884 related to taking the function's address. This doesn't apply to
7885 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7886 a normal .got entry. */
7887 if (!htab->is_vxworks && h != NULL)
7888 switch (r_type)
7889 {
7890 default:
7891 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7892 break;
7893 case R_MIPS16_CALL16:
7894 case R_MIPS_CALL16:
7895 case R_MIPS_CALL_HI16:
7896 case R_MIPS_CALL_LO16:
7897 case R_MIPS_JALR:
7898 break;
7899 }
7900
7901 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7902 if there is one. We only need to handle global symbols here;
7903 we decide whether to keep or delete stubs for local symbols
7904 when processing the stub's relocations. */
7905 if (h != NULL
7906 && !mips16_call_reloc_p (r_type)
7907 && !section_allows_mips16_refs_p (sec))
7908 {
7909 struct mips_elf_link_hash_entry *mh;
7910
7911 mh = (struct mips_elf_link_hash_entry *) h;
7912 mh->need_fn_stub = TRUE;
7913 }
7914
7915 /* Refuse some position-dependent relocations when creating a
7916 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7917 not PIC, but we can create dynamic relocations and the result
7918 will be fine. Also do not refuse R_MIPS_LO16, which can be
7919 combined with R_MIPS_GOT16. */
7920 if (info->shared)
7921 {
7922 switch (r_type)
7923 {
7924 case R_MIPS16_HI16:
7925 case R_MIPS_HI16:
7926 case R_MIPS_HIGHER:
7927 case R_MIPS_HIGHEST:
7928 /* Don't refuse a high part relocation if it's against
7929 no symbol (e.g. part of a compound relocation). */
7930 if (r_symndx == STN_UNDEF)
7931 break;
7932
7933 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7934 and has a special meaning. */
7935 if (!NEWABI_P (abfd) && h != NULL
7936 && strcmp (h->root.root.string, "_gp_disp") == 0)
7937 break;
7938
7939 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
7940 if (is_gott_symbol (info, h))
7941 break;
7942
7943 /* FALLTHROUGH */
7944
7945 case R_MIPS16_26:
7946 case R_MIPS_26:
7947 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7948 (*_bfd_error_handler)
7949 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7950 abfd, howto->name,
7951 (h) ? h->root.root.string : "a local symbol");
7952 bfd_set_error (bfd_error_bad_value);
7953 return FALSE;
7954 default:
7955 break;
7956 }
7957 }
7958 }
7959
7960 return TRUE;
7961 }
7962 \f
7963 bfd_boolean
7964 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7965 struct bfd_link_info *link_info,
7966 bfd_boolean *again)
7967 {
7968 Elf_Internal_Rela *internal_relocs;
7969 Elf_Internal_Rela *irel, *irelend;
7970 Elf_Internal_Shdr *symtab_hdr;
7971 bfd_byte *contents = NULL;
7972 size_t extsymoff;
7973 bfd_boolean changed_contents = FALSE;
7974 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7975 Elf_Internal_Sym *isymbuf = NULL;
7976
7977 /* We are not currently changing any sizes, so only one pass. */
7978 *again = FALSE;
7979
7980 if (link_info->relocatable)
7981 return TRUE;
7982
7983 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7984 link_info->keep_memory);
7985 if (internal_relocs == NULL)
7986 return TRUE;
7987
7988 irelend = internal_relocs + sec->reloc_count
7989 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7990 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7991 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7992
7993 for (irel = internal_relocs; irel < irelend; irel++)
7994 {
7995 bfd_vma symval;
7996 bfd_signed_vma sym_offset;
7997 unsigned int r_type;
7998 unsigned long r_symndx;
7999 asection *sym_sec;
8000 unsigned long instruction;
8001
8002 /* Turn jalr into bgezal, and jr into beq, if they're marked
8003 with a JALR relocation, that indicate where they jump to.
8004 This saves some pipeline bubbles. */
8005 r_type = ELF_R_TYPE (abfd, irel->r_info);
8006 if (r_type != R_MIPS_JALR)
8007 continue;
8008
8009 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8010 /* Compute the address of the jump target. */
8011 if (r_symndx >= extsymoff)
8012 {
8013 struct mips_elf_link_hash_entry *h
8014 = ((struct mips_elf_link_hash_entry *)
8015 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8016
8017 while (h->root.root.type == bfd_link_hash_indirect
8018 || h->root.root.type == bfd_link_hash_warning)
8019 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8020
8021 /* If a symbol is undefined, or if it may be overridden,
8022 skip it. */
8023 if (! ((h->root.root.type == bfd_link_hash_defined
8024 || h->root.root.type == bfd_link_hash_defweak)
8025 && h->root.root.u.def.section)
8026 || (link_info->shared && ! link_info->symbolic
8027 && !h->root.forced_local))
8028 continue;
8029
8030 sym_sec = h->root.root.u.def.section;
8031 if (sym_sec->output_section)
8032 symval = (h->root.root.u.def.value
8033 + sym_sec->output_section->vma
8034 + sym_sec->output_offset);
8035 else
8036 symval = h->root.root.u.def.value;
8037 }
8038 else
8039 {
8040 Elf_Internal_Sym *isym;
8041
8042 /* Read this BFD's symbols if we haven't done so already. */
8043 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8044 {
8045 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8046 if (isymbuf == NULL)
8047 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8048 symtab_hdr->sh_info, 0,
8049 NULL, NULL, NULL);
8050 if (isymbuf == NULL)
8051 goto relax_return;
8052 }
8053
8054 isym = isymbuf + r_symndx;
8055 if (isym->st_shndx == SHN_UNDEF)
8056 continue;
8057 else if (isym->st_shndx == SHN_ABS)
8058 sym_sec = bfd_abs_section_ptr;
8059 else if (isym->st_shndx == SHN_COMMON)
8060 sym_sec = bfd_com_section_ptr;
8061 else
8062 sym_sec
8063 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8064 symval = isym->st_value
8065 + sym_sec->output_section->vma
8066 + sym_sec->output_offset;
8067 }
8068
8069 /* Compute branch offset, from delay slot of the jump to the
8070 branch target. */
8071 sym_offset = (symval + irel->r_addend)
8072 - (sec_start + irel->r_offset + 4);
8073
8074 /* Branch offset must be properly aligned. */
8075 if ((sym_offset & 3) != 0)
8076 continue;
8077
8078 sym_offset >>= 2;
8079
8080 /* Check that it's in range. */
8081 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8082 continue;
8083
8084 /* Get the section contents if we haven't done so already. */
8085 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8086 goto relax_return;
8087
8088 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8089
8090 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8091 if ((instruction & 0xfc1fffff) == 0x0000f809)
8092 instruction = 0x04110000;
8093 /* If it was jr <reg>, turn it into b <target>. */
8094 else if ((instruction & 0xfc1fffff) == 0x00000008)
8095 instruction = 0x10000000;
8096 else
8097 continue;
8098
8099 instruction |= (sym_offset & 0xffff);
8100 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8101 changed_contents = TRUE;
8102 }
8103
8104 if (contents != NULL
8105 && elf_section_data (sec)->this_hdr.contents != contents)
8106 {
8107 if (!changed_contents && !link_info->keep_memory)
8108 free (contents);
8109 else
8110 {
8111 /* Cache the section contents for elf_link_input_bfd. */
8112 elf_section_data (sec)->this_hdr.contents = contents;
8113 }
8114 }
8115 return TRUE;
8116
8117 relax_return:
8118 if (contents != NULL
8119 && elf_section_data (sec)->this_hdr.contents != contents)
8120 free (contents);
8121 return FALSE;
8122 }
8123 \f
8124 /* Allocate space for global sym dynamic relocs. */
8125
8126 static bfd_boolean
8127 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8128 {
8129 struct bfd_link_info *info = inf;
8130 bfd *dynobj;
8131 struct mips_elf_link_hash_entry *hmips;
8132 struct mips_elf_link_hash_table *htab;
8133
8134 htab = mips_elf_hash_table (info);
8135 BFD_ASSERT (htab != NULL);
8136
8137 dynobj = elf_hash_table (info)->dynobj;
8138 hmips = (struct mips_elf_link_hash_entry *) h;
8139
8140 /* VxWorks executables are handled elsewhere; we only need to
8141 allocate relocations in shared objects. */
8142 if (htab->is_vxworks && !info->shared)
8143 return TRUE;
8144
8145 /* Ignore indirect and warning symbols. All relocations against
8146 such symbols will be redirected to the target symbol. */
8147 if (h->root.type == bfd_link_hash_indirect
8148 || h->root.type == bfd_link_hash_warning)
8149 return TRUE;
8150
8151 /* If this symbol is defined in a dynamic object, or we are creating
8152 a shared library, we will need to copy any R_MIPS_32 or
8153 R_MIPS_REL32 relocs against it into the output file. */
8154 if (! info->relocatable
8155 && hmips->possibly_dynamic_relocs != 0
8156 && (h->root.type == bfd_link_hash_defweak
8157 || !h->def_regular
8158 || info->shared))
8159 {
8160 bfd_boolean do_copy = TRUE;
8161
8162 if (h->root.type == bfd_link_hash_undefweak)
8163 {
8164 /* Do not copy relocations for undefined weak symbols with
8165 non-default visibility. */
8166 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8167 do_copy = FALSE;
8168
8169 /* Make sure undefined weak symbols are output as a dynamic
8170 symbol in PIEs. */
8171 else if (h->dynindx == -1 && !h->forced_local)
8172 {
8173 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8174 return FALSE;
8175 }
8176 }
8177
8178 if (do_copy)
8179 {
8180 /* Even though we don't directly need a GOT entry for this symbol,
8181 the SVR4 psABI requires it to have a dynamic symbol table
8182 index greater that DT_MIPS_GOTSYM if there are dynamic
8183 relocations against it.
8184
8185 VxWorks does not enforce the same mapping between the GOT
8186 and the symbol table, so the same requirement does not
8187 apply there. */
8188 if (!htab->is_vxworks)
8189 {
8190 if (hmips->global_got_area > GGA_RELOC_ONLY)
8191 hmips->global_got_area = GGA_RELOC_ONLY;
8192 hmips->got_only_for_calls = FALSE;
8193 }
8194
8195 mips_elf_allocate_dynamic_relocations
8196 (dynobj, info, hmips->possibly_dynamic_relocs);
8197 if (hmips->readonly_reloc)
8198 /* We tell the dynamic linker that there are relocations
8199 against the text segment. */
8200 info->flags |= DF_TEXTREL;
8201 }
8202 }
8203
8204 return TRUE;
8205 }
8206
8207 /* Adjust a symbol defined by a dynamic object and referenced by a
8208 regular object. The current definition is in some section of the
8209 dynamic object, but we're not including those sections. We have to
8210 change the definition to something the rest of the link can
8211 understand. */
8212
8213 bfd_boolean
8214 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8215 struct elf_link_hash_entry *h)
8216 {
8217 bfd *dynobj;
8218 struct mips_elf_link_hash_entry *hmips;
8219 struct mips_elf_link_hash_table *htab;
8220
8221 htab = mips_elf_hash_table (info);
8222 BFD_ASSERT (htab != NULL);
8223
8224 dynobj = elf_hash_table (info)->dynobj;
8225 hmips = (struct mips_elf_link_hash_entry *) h;
8226
8227 /* Make sure we know what is going on here. */
8228 BFD_ASSERT (dynobj != NULL
8229 && (h->needs_plt
8230 || h->u.weakdef != NULL
8231 || (h->def_dynamic
8232 && h->ref_regular
8233 && !h->def_regular)));
8234
8235 hmips = (struct mips_elf_link_hash_entry *) h;
8236
8237 /* If there are call relocations against an externally-defined symbol,
8238 see whether we can create a MIPS lazy-binding stub for it. We can
8239 only do this if all references to the function are through call
8240 relocations, and in that case, the traditional lazy-binding stubs
8241 are much more efficient than PLT entries.
8242
8243 Traditional stubs are only available on SVR4 psABI-based systems;
8244 VxWorks always uses PLTs instead. */
8245 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8246 {
8247 if (! elf_hash_table (info)->dynamic_sections_created)
8248 return TRUE;
8249
8250 /* If this symbol is not defined in a regular file, then set
8251 the symbol to the stub location. This is required to make
8252 function pointers compare as equal between the normal
8253 executable and the shared library. */
8254 if (!h->def_regular)
8255 {
8256 hmips->needs_lazy_stub = TRUE;
8257 htab->lazy_stub_count++;
8258 return TRUE;
8259 }
8260 }
8261 /* As above, VxWorks requires PLT entries for externally-defined
8262 functions that are only accessed through call relocations.
8263
8264 Both VxWorks and non-VxWorks targets also need PLT entries if there
8265 are static-only relocations against an externally-defined function.
8266 This can technically occur for shared libraries if there are
8267 branches to the symbol, although it is unlikely that this will be
8268 used in practice due to the short ranges involved. It can occur
8269 for any relative or absolute relocation in executables; in that
8270 case, the PLT entry becomes the function's canonical address. */
8271 else if (((h->needs_plt && !hmips->no_fn_stub)
8272 || (h->type == STT_FUNC && hmips->has_static_relocs))
8273 && htab->use_plts_and_copy_relocs
8274 && !SYMBOL_CALLS_LOCAL (info, h)
8275 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8276 && h->root.type == bfd_link_hash_undefweak))
8277 {
8278 /* If this is the first symbol to need a PLT entry, allocate room
8279 for the header. */
8280 if (htab->splt->size == 0)
8281 {
8282 BFD_ASSERT (htab->sgotplt->size == 0);
8283
8284 /* If we're using the PLT additions to the psABI, each PLT
8285 entry is 16 bytes and the PLT0 entry is 32 bytes.
8286 Encourage better cache usage by aligning. We do this
8287 lazily to avoid pessimizing traditional objects. */
8288 if (!htab->is_vxworks
8289 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8290 return FALSE;
8291
8292 /* Make sure that .got.plt is word-aligned. We do this lazily
8293 for the same reason as above. */
8294 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8295 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8296 return FALSE;
8297
8298 htab->splt->size += htab->plt_header_size;
8299
8300 /* On non-VxWorks targets, the first two entries in .got.plt
8301 are reserved. */
8302 if (!htab->is_vxworks)
8303 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8304
8305 /* On VxWorks, also allocate room for the header's
8306 .rela.plt.unloaded entries. */
8307 if (htab->is_vxworks && !info->shared)
8308 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8309 }
8310
8311 /* Assign the next .plt entry to this symbol. */
8312 h->plt.offset = htab->splt->size;
8313 htab->splt->size += htab->plt_entry_size;
8314
8315 /* If the output file has no definition of the symbol, set the
8316 symbol's value to the address of the stub. */
8317 if (!info->shared && !h->def_regular)
8318 {
8319 h->root.u.def.section = htab->splt;
8320 h->root.u.def.value = h->plt.offset;
8321 /* For VxWorks, point at the PLT load stub rather than the
8322 lazy resolution stub; this stub will become the canonical
8323 function address. */
8324 if (htab->is_vxworks)
8325 h->root.u.def.value += 8;
8326 }
8327
8328 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8329 relocation. */
8330 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8331 htab->srelplt->size += (htab->is_vxworks
8332 ? MIPS_ELF_RELA_SIZE (dynobj)
8333 : MIPS_ELF_REL_SIZE (dynobj));
8334
8335 /* Make room for the .rela.plt.unloaded relocations. */
8336 if (htab->is_vxworks && !info->shared)
8337 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8338
8339 /* All relocations against this symbol that could have been made
8340 dynamic will now refer to the PLT entry instead. */
8341 hmips->possibly_dynamic_relocs = 0;
8342
8343 return TRUE;
8344 }
8345
8346 /* If this is a weak symbol, and there is a real definition, the
8347 processor independent code will have arranged for us to see the
8348 real definition first, and we can just use the same value. */
8349 if (h->u.weakdef != NULL)
8350 {
8351 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8352 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8353 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8354 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8355 return TRUE;
8356 }
8357
8358 /* Otherwise, there is nothing further to do for symbols defined
8359 in regular objects. */
8360 if (h->def_regular)
8361 return TRUE;
8362
8363 /* There's also nothing more to do if we'll convert all relocations
8364 against this symbol into dynamic relocations. */
8365 if (!hmips->has_static_relocs)
8366 return TRUE;
8367
8368 /* We're now relying on copy relocations. Complain if we have
8369 some that we can't convert. */
8370 if (!htab->use_plts_and_copy_relocs || info->shared)
8371 {
8372 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8373 "dynamic symbol %s"),
8374 h->root.root.string);
8375 bfd_set_error (bfd_error_bad_value);
8376 return FALSE;
8377 }
8378
8379 /* We must allocate the symbol in our .dynbss section, which will
8380 become part of the .bss section of the executable. There will be
8381 an entry for this symbol in the .dynsym section. The dynamic
8382 object will contain position independent code, so all references
8383 from the dynamic object to this symbol will go through the global
8384 offset table. The dynamic linker will use the .dynsym entry to
8385 determine the address it must put in the global offset table, so
8386 both the dynamic object and the regular object will refer to the
8387 same memory location for the variable. */
8388
8389 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8390 {
8391 if (htab->is_vxworks)
8392 htab->srelbss->size += sizeof (Elf32_External_Rela);
8393 else
8394 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8395 h->needs_copy = 1;
8396 }
8397
8398 /* All relocations against this symbol that could have been made
8399 dynamic will now refer to the local copy instead. */
8400 hmips->possibly_dynamic_relocs = 0;
8401
8402 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8403 }
8404 \f
8405 /* This function is called after all the input files have been read,
8406 and the input sections have been assigned to output sections. We
8407 check for any mips16 stub sections that we can discard. */
8408
8409 bfd_boolean
8410 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8411 struct bfd_link_info *info)
8412 {
8413 asection *ri;
8414 struct mips_elf_link_hash_table *htab;
8415 struct mips_htab_traverse_info hti;
8416
8417 htab = mips_elf_hash_table (info);
8418 BFD_ASSERT (htab != NULL);
8419
8420 /* The .reginfo section has a fixed size. */
8421 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8422 if (ri != NULL)
8423 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8424
8425 hti.info = info;
8426 hti.output_bfd = output_bfd;
8427 hti.error = FALSE;
8428 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8429 mips_elf_check_symbols, &hti);
8430 if (hti.error)
8431 return FALSE;
8432
8433 return TRUE;
8434 }
8435
8436 /* If the link uses a GOT, lay it out and work out its size. */
8437
8438 static bfd_boolean
8439 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8440 {
8441 bfd *dynobj;
8442 asection *s;
8443 struct mips_got_info *g;
8444 bfd_size_type loadable_size = 0;
8445 bfd_size_type page_gotno;
8446 bfd *sub;
8447 struct mips_elf_count_tls_arg count_tls_arg;
8448 struct mips_elf_link_hash_table *htab;
8449
8450 htab = mips_elf_hash_table (info);
8451 BFD_ASSERT (htab != NULL);
8452
8453 s = htab->sgot;
8454 if (s == NULL)
8455 return TRUE;
8456
8457 dynobj = elf_hash_table (info)->dynobj;
8458 g = htab->got_info;
8459
8460 /* Allocate room for the reserved entries. VxWorks always reserves
8461 3 entries; other objects only reserve 2 entries. */
8462 BFD_ASSERT (g->assigned_gotno == 0);
8463 if (htab->is_vxworks)
8464 htab->reserved_gotno = 3;
8465 else
8466 htab->reserved_gotno = 2;
8467 g->local_gotno += htab->reserved_gotno;
8468 g->assigned_gotno = htab->reserved_gotno;
8469
8470 /* Replace entries for indirect and warning symbols with entries for
8471 the target symbol. */
8472 if (!mips_elf_resolve_final_got_entries (g))
8473 return FALSE;
8474
8475 /* Count the number of GOT symbols. */
8476 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8477
8478 /* Calculate the total loadable size of the output. That
8479 will give us the maximum number of GOT_PAGE entries
8480 required. */
8481 for (sub = info->input_bfds; sub; sub = sub->link_next)
8482 {
8483 asection *subsection;
8484
8485 for (subsection = sub->sections;
8486 subsection;
8487 subsection = subsection->next)
8488 {
8489 if ((subsection->flags & SEC_ALLOC) == 0)
8490 continue;
8491 loadable_size += ((subsection->size + 0xf)
8492 &~ (bfd_size_type) 0xf);
8493 }
8494 }
8495
8496 if (htab->is_vxworks)
8497 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8498 relocations against local symbols evaluate to "G", and the EABI does
8499 not include R_MIPS_GOT_PAGE. */
8500 page_gotno = 0;
8501 else
8502 /* Assume there are two loadable segments consisting of contiguous
8503 sections. Is 5 enough? */
8504 page_gotno = (loadable_size >> 16) + 5;
8505
8506 /* Choose the smaller of the two estimates; both are intended to be
8507 conservative. */
8508 if (page_gotno > g->page_gotno)
8509 page_gotno = g->page_gotno;
8510
8511 g->local_gotno += page_gotno;
8512 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8513 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8514
8515 /* We need to calculate tls_gotno for global symbols at this point
8516 instead of building it up earlier, to avoid doublecounting
8517 entries for one global symbol from multiple input files. */
8518 count_tls_arg.info = info;
8519 count_tls_arg.needed = 0;
8520 elf_link_hash_traverse (elf_hash_table (info),
8521 mips_elf_count_global_tls_entries,
8522 &count_tls_arg);
8523 g->tls_gotno += count_tls_arg.needed;
8524 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8525
8526 /* VxWorks does not support multiple GOTs. It initializes $gp to
8527 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8528 dynamic loader. */
8529 if (htab->is_vxworks)
8530 {
8531 /* VxWorks executables do not need a GOT. */
8532 if (info->shared)
8533 {
8534 /* Each VxWorks GOT entry needs an explicit relocation. */
8535 unsigned int count;
8536
8537 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8538 if (count)
8539 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8540 }
8541 }
8542 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8543 {
8544 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8545 return FALSE;
8546 }
8547 else
8548 {
8549 struct mips_elf_count_tls_arg arg;
8550
8551 /* Set up TLS entries. */
8552 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8553 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8554
8555 /* Allocate room for the TLS relocations. */
8556 arg.info = info;
8557 arg.needed = 0;
8558 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8559 elf_link_hash_traverse (elf_hash_table (info),
8560 mips_elf_count_global_tls_relocs,
8561 &arg);
8562 if (arg.needed)
8563 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8564 }
8565
8566 return TRUE;
8567 }
8568
8569 /* Estimate the size of the .MIPS.stubs section. */
8570
8571 static void
8572 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8573 {
8574 struct mips_elf_link_hash_table *htab;
8575 bfd_size_type dynsymcount;
8576
8577 htab = mips_elf_hash_table (info);
8578 BFD_ASSERT (htab != NULL);
8579
8580 if (htab->lazy_stub_count == 0)
8581 return;
8582
8583 /* IRIX rld assumes that a function stub isn't at the end of the .text
8584 section, so add a dummy entry to the end. */
8585 htab->lazy_stub_count++;
8586
8587 /* Get a worst-case estimate of the number of dynamic symbols needed.
8588 At this point, dynsymcount does not account for section symbols
8589 and count_section_dynsyms may overestimate the number that will
8590 be needed. */
8591 dynsymcount = (elf_hash_table (info)->dynsymcount
8592 + count_section_dynsyms (output_bfd, info));
8593
8594 /* Determine the size of one stub entry. */
8595 htab->function_stub_size = (dynsymcount > 0x10000
8596 ? MIPS_FUNCTION_STUB_BIG_SIZE
8597 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8598
8599 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8600 }
8601
8602 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8603 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8604 allocate an entry in the stubs section. */
8605
8606 static bfd_boolean
8607 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8608 {
8609 struct mips_elf_link_hash_table *htab;
8610
8611 htab = (struct mips_elf_link_hash_table *) data;
8612 if (h->needs_lazy_stub)
8613 {
8614 h->root.root.u.def.section = htab->sstubs;
8615 h->root.root.u.def.value = htab->sstubs->size;
8616 h->root.plt.offset = htab->sstubs->size;
8617 htab->sstubs->size += htab->function_stub_size;
8618 }
8619 return TRUE;
8620 }
8621
8622 /* Allocate offsets in the stubs section to each symbol that needs one.
8623 Set the final size of the .MIPS.stub section. */
8624
8625 static void
8626 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8627 {
8628 struct mips_elf_link_hash_table *htab;
8629
8630 htab = mips_elf_hash_table (info);
8631 BFD_ASSERT (htab != NULL);
8632
8633 if (htab->lazy_stub_count == 0)
8634 return;
8635
8636 htab->sstubs->size = 0;
8637 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8638 htab->sstubs->size += htab->function_stub_size;
8639 BFD_ASSERT (htab->sstubs->size
8640 == htab->lazy_stub_count * htab->function_stub_size);
8641 }
8642
8643 /* Set the sizes of the dynamic sections. */
8644
8645 bfd_boolean
8646 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8647 struct bfd_link_info *info)
8648 {
8649 bfd *dynobj;
8650 asection *s, *sreldyn;
8651 bfd_boolean reltext;
8652 struct mips_elf_link_hash_table *htab;
8653
8654 htab = mips_elf_hash_table (info);
8655 BFD_ASSERT (htab != NULL);
8656 dynobj = elf_hash_table (info)->dynobj;
8657 BFD_ASSERT (dynobj != NULL);
8658
8659 if (elf_hash_table (info)->dynamic_sections_created)
8660 {
8661 /* Set the contents of the .interp section to the interpreter. */
8662 if (info->executable)
8663 {
8664 s = bfd_get_section_by_name (dynobj, ".interp");
8665 BFD_ASSERT (s != NULL);
8666 s->size
8667 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8668 s->contents
8669 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8670 }
8671
8672 /* Create a symbol for the PLT, if we know that we are using it. */
8673 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8674 {
8675 struct elf_link_hash_entry *h;
8676
8677 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8678
8679 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8680 "_PROCEDURE_LINKAGE_TABLE_");
8681 htab->root.hplt = h;
8682 if (h == NULL)
8683 return FALSE;
8684 h->type = STT_FUNC;
8685 }
8686 }
8687
8688 /* Allocate space for global sym dynamic relocs. */
8689 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8690
8691 mips_elf_estimate_stub_size (output_bfd, info);
8692
8693 if (!mips_elf_lay_out_got (output_bfd, info))
8694 return FALSE;
8695
8696 mips_elf_lay_out_lazy_stubs (info);
8697
8698 /* The check_relocs and adjust_dynamic_symbol entry points have
8699 determined the sizes of the various dynamic sections. Allocate
8700 memory for them. */
8701 reltext = FALSE;
8702 for (s = dynobj->sections; s != NULL; s = s->next)
8703 {
8704 const char *name;
8705
8706 /* It's OK to base decisions on the section name, because none
8707 of the dynobj section names depend upon the input files. */
8708 name = bfd_get_section_name (dynobj, s);
8709
8710 if ((s->flags & SEC_LINKER_CREATED) == 0)
8711 continue;
8712
8713 if (CONST_STRNEQ (name, ".rel"))
8714 {
8715 if (s->size != 0)
8716 {
8717 const char *outname;
8718 asection *target;
8719
8720 /* If this relocation section applies to a read only
8721 section, then we probably need a DT_TEXTREL entry.
8722 If the relocation section is .rel(a).dyn, we always
8723 assert a DT_TEXTREL entry rather than testing whether
8724 there exists a relocation to a read only section or
8725 not. */
8726 outname = bfd_get_section_name (output_bfd,
8727 s->output_section);
8728 target = bfd_get_section_by_name (output_bfd, outname + 4);
8729 if ((target != NULL
8730 && (target->flags & SEC_READONLY) != 0
8731 && (target->flags & SEC_ALLOC) != 0)
8732 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8733 reltext = TRUE;
8734
8735 /* We use the reloc_count field as a counter if we need
8736 to copy relocs into the output file. */
8737 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8738 s->reloc_count = 0;
8739
8740 /* If combreloc is enabled, elf_link_sort_relocs() will
8741 sort relocations, but in a different way than we do,
8742 and before we're done creating relocations. Also, it
8743 will move them around between input sections'
8744 relocation's contents, so our sorting would be
8745 broken, so don't let it run. */
8746 info->combreloc = 0;
8747 }
8748 }
8749 else if (! info->shared
8750 && ! mips_elf_hash_table (info)->use_rld_obj_head
8751 && CONST_STRNEQ (name, ".rld_map"))
8752 {
8753 /* We add a room for __rld_map. It will be filled in by the
8754 rtld to contain a pointer to the _r_debug structure. */
8755 s->size += 4;
8756 }
8757 else if (SGI_COMPAT (output_bfd)
8758 && CONST_STRNEQ (name, ".compact_rel"))
8759 s->size += mips_elf_hash_table (info)->compact_rel_size;
8760 else if (s == htab->splt)
8761 {
8762 /* If the last PLT entry has a branch delay slot, allocate
8763 room for an extra nop to fill the delay slot. This is
8764 for CPUs without load interlocking. */
8765 if (! LOAD_INTERLOCKS_P (output_bfd)
8766 && ! htab->is_vxworks && s->size > 0)
8767 s->size += 4;
8768 }
8769 else if (! CONST_STRNEQ (name, ".init")
8770 && s != htab->sgot
8771 && s != htab->sgotplt
8772 && s != htab->sstubs
8773 && s != htab->sdynbss)
8774 {
8775 /* It's not one of our sections, so don't allocate space. */
8776 continue;
8777 }
8778
8779 if (s->size == 0)
8780 {
8781 s->flags |= SEC_EXCLUDE;
8782 continue;
8783 }
8784
8785 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8786 continue;
8787
8788 /* Allocate memory for the section contents. */
8789 s->contents = bfd_zalloc (dynobj, s->size);
8790 if (s->contents == NULL)
8791 {
8792 bfd_set_error (bfd_error_no_memory);
8793 return FALSE;
8794 }
8795 }
8796
8797 if (elf_hash_table (info)->dynamic_sections_created)
8798 {
8799 /* Add some entries to the .dynamic section. We fill in the
8800 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8801 must add the entries now so that we get the correct size for
8802 the .dynamic section. */
8803
8804 /* SGI object has the equivalence of DT_DEBUG in the
8805 DT_MIPS_RLD_MAP entry. This must come first because glibc
8806 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8807 looks at the first one it sees. */
8808 if (!info->shared
8809 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8810 return FALSE;
8811
8812 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8813 used by the debugger. */
8814 if (info->executable
8815 && !SGI_COMPAT (output_bfd)
8816 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8817 return FALSE;
8818
8819 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8820 info->flags |= DF_TEXTREL;
8821
8822 if ((info->flags & DF_TEXTREL) != 0)
8823 {
8824 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8825 return FALSE;
8826
8827 /* Clear the DF_TEXTREL flag. It will be set again if we
8828 write out an actual text relocation; we may not, because
8829 at this point we do not know whether e.g. any .eh_frame
8830 absolute relocations have been converted to PC-relative. */
8831 info->flags &= ~DF_TEXTREL;
8832 }
8833
8834 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8835 return FALSE;
8836
8837 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8838 if (htab->is_vxworks)
8839 {
8840 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8841 use any of the DT_MIPS_* tags. */
8842 if (sreldyn && sreldyn->size > 0)
8843 {
8844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8845 return FALSE;
8846
8847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8848 return FALSE;
8849
8850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8851 return FALSE;
8852 }
8853 }
8854 else
8855 {
8856 if (sreldyn && sreldyn->size > 0)
8857 {
8858 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8859 return FALSE;
8860
8861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8862 return FALSE;
8863
8864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8865 return FALSE;
8866 }
8867
8868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8869 return FALSE;
8870
8871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8872 return FALSE;
8873
8874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8875 return FALSE;
8876
8877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8878 return FALSE;
8879
8880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8881 return FALSE;
8882
8883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8884 return FALSE;
8885
8886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8887 return FALSE;
8888
8889 if (IRIX_COMPAT (dynobj) == ict_irix5
8890 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8891 return FALSE;
8892
8893 if (IRIX_COMPAT (dynobj) == ict_irix6
8894 && (bfd_get_section_by_name
8895 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8896 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8897 return FALSE;
8898 }
8899 if (htab->splt->size > 0)
8900 {
8901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8902 return FALSE;
8903
8904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8905 return FALSE;
8906
8907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8908 return FALSE;
8909
8910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8911 return FALSE;
8912 }
8913 if (htab->is_vxworks
8914 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8915 return FALSE;
8916 }
8917
8918 return TRUE;
8919 }
8920 \f
8921 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8922 Adjust its R_ADDEND field so that it is correct for the output file.
8923 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8924 and sections respectively; both use symbol indexes. */
8925
8926 static void
8927 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8928 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8929 asection **local_sections, Elf_Internal_Rela *rel)
8930 {
8931 unsigned int r_type, r_symndx;
8932 Elf_Internal_Sym *sym;
8933 asection *sec;
8934
8935 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8936 {
8937 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8938 if (r_type == R_MIPS16_GPREL
8939 || r_type == R_MIPS_GPREL16
8940 || r_type == R_MIPS_GPREL32
8941 || r_type == R_MIPS_LITERAL)
8942 {
8943 rel->r_addend += _bfd_get_gp_value (input_bfd);
8944 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8945 }
8946
8947 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8948 sym = local_syms + r_symndx;
8949
8950 /* Adjust REL's addend to account for section merging. */
8951 if (!info->relocatable)
8952 {
8953 sec = local_sections[r_symndx];
8954 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8955 }
8956
8957 /* This would normally be done by the rela_normal code in elflink.c. */
8958 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8959 rel->r_addend += local_sections[r_symndx]->output_offset;
8960 }
8961 }
8962
8963 /* Relocate a MIPS ELF section. */
8964
8965 bfd_boolean
8966 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8967 bfd *input_bfd, asection *input_section,
8968 bfd_byte *contents, Elf_Internal_Rela *relocs,
8969 Elf_Internal_Sym *local_syms,
8970 asection **local_sections)
8971 {
8972 Elf_Internal_Rela *rel;
8973 const Elf_Internal_Rela *relend;
8974 bfd_vma addend = 0;
8975 bfd_boolean use_saved_addend_p = FALSE;
8976 const struct elf_backend_data *bed;
8977
8978 bed = get_elf_backend_data (output_bfd);
8979 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8980 for (rel = relocs; rel < relend; ++rel)
8981 {
8982 const char *name;
8983 bfd_vma value = 0;
8984 reloc_howto_type *howto;
8985 bfd_boolean cross_mode_jump_p;
8986 /* TRUE if the relocation is a RELA relocation, rather than a
8987 REL relocation. */
8988 bfd_boolean rela_relocation_p = TRUE;
8989 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8990 const char *msg;
8991 unsigned long r_symndx;
8992 asection *sec;
8993 Elf_Internal_Shdr *symtab_hdr;
8994 struct elf_link_hash_entry *h;
8995 bfd_boolean rel_reloc;
8996
8997 rel_reloc = (NEWABI_P (input_bfd)
8998 && mips_elf_rel_relocation_p (input_bfd, input_section,
8999 relocs, rel));
9000 /* Find the relocation howto for this relocation. */
9001 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9002
9003 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9004 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9005 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9006 {
9007 sec = local_sections[r_symndx];
9008 h = NULL;
9009 }
9010 else
9011 {
9012 unsigned long extsymoff;
9013
9014 extsymoff = 0;
9015 if (!elf_bad_symtab (input_bfd))
9016 extsymoff = symtab_hdr->sh_info;
9017 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9018 while (h->root.type == bfd_link_hash_indirect
9019 || h->root.type == bfd_link_hash_warning)
9020 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9021
9022 sec = NULL;
9023 if (h->root.type == bfd_link_hash_defined
9024 || h->root.type == bfd_link_hash_defweak)
9025 sec = h->root.u.def.section;
9026 }
9027
9028 if (sec != NULL && elf_discarded_section (sec))
9029 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9030 rel, relend, howto, contents);
9031
9032 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9033 {
9034 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9035 64-bit code, but make sure all their addresses are in the
9036 lowermost or uppermost 32-bit section of the 64-bit address
9037 space. Thus, when they use an R_MIPS_64 they mean what is
9038 usually meant by R_MIPS_32, with the exception that the
9039 stored value is sign-extended to 64 bits. */
9040 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9041
9042 /* On big-endian systems, we need to lie about the position
9043 of the reloc. */
9044 if (bfd_big_endian (input_bfd))
9045 rel->r_offset += 4;
9046 }
9047
9048 if (!use_saved_addend_p)
9049 {
9050 /* If these relocations were originally of the REL variety,
9051 we must pull the addend out of the field that will be
9052 relocated. Otherwise, we simply use the contents of the
9053 RELA relocation. */
9054 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9055 relocs, rel))
9056 {
9057 rela_relocation_p = FALSE;
9058 addend = mips_elf_read_rel_addend (input_bfd, rel,
9059 howto, contents);
9060 if (hi16_reloc_p (r_type)
9061 || (got16_reloc_p (r_type)
9062 && mips_elf_local_relocation_p (input_bfd, rel,
9063 local_sections)))
9064 {
9065 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9066 contents, &addend))
9067 {
9068 if (h)
9069 name = h->root.root.string;
9070 else
9071 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9072 local_syms + r_symndx,
9073 sec);
9074 (*_bfd_error_handler)
9075 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9076 input_bfd, input_section, name, howto->name,
9077 rel->r_offset);
9078 }
9079 }
9080 else
9081 addend <<= howto->rightshift;
9082 }
9083 else
9084 addend = rel->r_addend;
9085 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9086 local_syms, local_sections, rel);
9087 }
9088
9089 if (info->relocatable)
9090 {
9091 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9092 && bfd_big_endian (input_bfd))
9093 rel->r_offset -= 4;
9094
9095 if (!rela_relocation_p && rel->r_addend)
9096 {
9097 addend += rel->r_addend;
9098 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9099 addend = mips_elf_high (addend);
9100 else if (r_type == R_MIPS_HIGHER)
9101 addend = mips_elf_higher (addend);
9102 else if (r_type == R_MIPS_HIGHEST)
9103 addend = mips_elf_highest (addend);
9104 else
9105 addend >>= howto->rightshift;
9106
9107 /* We use the source mask, rather than the destination
9108 mask because the place to which we are writing will be
9109 source of the addend in the final link. */
9110 addend &= howto->src_mask;
9111
9112 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9113 /* See the comment above about using R_MIPS_64 in the 32-bit
9114 ABI. Here, we need to update the addend. It would be
9115 possible to get away with just using the R_MIPS_32 reloc
9116 but for endianness. */
9117 {
9118 bfd_vma sign_bits;
9119 bfd_vma low_bits;
9120 bfd_vma high_bits;
9121
9122 if (addend & ((bfd_vma) 1 << 31))
9123 #ifdef BFD64
9124 sign_bits = ((bfd_vma) 1 << 32) - 1;
9125 #else
9126 sign_bits = -1;
9127 #endif
9128 else
9129 sign_bits = 0;
9130
9131 /* If we don't know that we have a 64-bit type,
9132 do two separate stores. */
9133 if (bfd_big_endian (input_bfd))
9134 {
9135 /* Store the sign-bits (which are most significant)
9136 first. */
9137 low_bits = sign_bits;
9138 high_bits = addend;
9139 }
9140 else
9141 {
9142 low_bits = addend;
9143 high_bits = sign_bits;
9144 }
9145 bfd_put_32 (input_bfd, low_bits,
9146 contents + rel->r_offset);
9147 bfd_put_32 (input_bfd, high_bits,
9148 contents + rel->r_offset + 4);
9149 continue;
9150 }
9151
9152 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9153 input_bfd, input_section,
9154 contents, FALSE))
9155 return FALSE;
9156 }
9157
9158 /* Go on to the next relocation. */
9159 continue;
9160 }
9161
9162 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9163 relocations for the same offset. In that case we are
9164 supposed to treat the output of each relocation as the addend
9165 for the next. */
9166 if (rel + 1 < relend
9167 && rel->r_offset == rel[1].r_offset
9168 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9169 use_saved_addend_p = TRUE;
9170 else
9171 use_saved_addend_p = FALSE;
9172
9173 /* Figure out what value we are supposed to relocate. */
9174 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9175 input_section, info, rel,
9176 addend, howto, local_syms,
9177 local_sections, &value,
9178 &name, &cross_mode_jump_p,
9179 use_saved_addend_p))
9180 {
9181 case bfd_reloc_continue:
9182 /* There's nothing to do. */
9183 continue;
9184
9185 case bfd_reloc_undefined:
9186 /* mips_elf_calculate_relocation already called the
9187 undefined_symbol callback. There's no real point in
9188 trying to perform the relocation at this point, so we
9189 just skip ahead to the next relocation. */
9190 continue;
9191
9192 case bfd_reloc_notsupported:
9193 msg = _("internal error: unsupported relocation error");
9194 info->callbacks->warning
9195 (info, msg, name, input_bfd, input_section, rel->r_offset);
9196 return FALSE;
9197
9198 case bfd_reloc_overflow:
9199 if (use_saved_addend_p)
9200 /* Ignore overflow until we reach the last relocation for
9201 a given location. */
9202 ;
9203 else
9204 {
9205 struct mips_elf_link_hash_table *htab;
9206
9207 htab = mips_elf_hash_table (info);
9208 BFD_ASSERT (htab != NULL);
9209 BFD_ASSERT (name != NULL);
9210 if (!htab->small_data_overflow_reported
9211 && (gprel16_reloc_p (howto->type)
9212 || howto->type == R_MIPS_LITERAL))
9213 {
9214 msg = _("small-data section exceeds 64KB;"
9215 " lower small-data size limit (see option -G)");
9216
9217 htab->small_data_overflow_reported = TRUE;
9218 (*info->callbacks->einfo) ("%P: %s\n", msg);
9219 }
9220 if (! ((*info->callbacks->reloc_overflow)
9221 (info, NULL, name, howto->name, (bfd_vma) 0,
9222 input_bfd, input_section, rel->r_offset)))
9223 return FALSE;
9224 }
9225 break;
9226
9227 case bfd_reloc_ok:
9228 break;
9229
9230 default:
9231 abort ();
9232 break;
9233 }
9234
9235 /* If we've got another relocation for the address, keep going
9236 until we reach the last one. */
9237 if (use_saved_addend_p)
9238 {
9239 addend = value;
9240 continue;
9241 }
9242
9243 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9244 /* See the comment above about using R_MIPS_64 in the 32-bit
9245 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9246 that calculated the right value. Now, however, we
9247 sign-extend the 32-bit result to 64-bits, and store it as a
9248 64-bit value. We are especially generous here in that we
9249 go to extreme lengths to support this usage on systems with
9250 only a 32-bit VMA. */
9251 {
9252 bfd_vma sign_bits;
9253 bfd_vma low_bits;
9254 bfd_vma high_bits;
9255
9256 if (value & ((bfd_vma) 1 << 31))
9257 #ifdef BFD64
9258 sign_bits = ((bfd_vma) 1 << 32) - 1;
9259 #else
9260 sign_bits = -1;
9261 #endif
9262 else
9263 sign_bits = 0;
9264
9265 /* If we don't know that we have a 64-bit type,
9266 do two separate stores. */
9267 if (bfd_big_endian (input_bfd))
9268 {
9269 /* Undo what we did above. */
9270 rel->r_offset -= 4;
9271 /* Store the sign-bits (which are most significant)
9272 first. */
9273 low_bits = sign_bits;
9274 high_bits = value;
9275 }
9276 else
9277 {
9278 low_bits = value;
9279 high_bits = sign_bits;
9280 }
9281 bfd_put_32 (input_bfd, low_bits,
9282 contents + rel->r_offset);
9283 bfd_put_32 (input_bfd, high_bits,
9284 contents + rel->r_offset + 4);
9285 continue;
9286 }
9287
9288 /* Actually perform the relocation. */
9289 if (! mips_elf_perform_relocation (info, howto, rel, value,
9290 input_bfd, input_section,
9291 contents, cross_mode_jump_p))
9292 return FALSE;
9293 }
9294
9295 return TRUE;
9296 }
9297 \f
9298 /* A function that iterates over each entry in la25_stubs and fills
9299 in the code for each one. DATA points to a mips_htab_traverse_info. */
9300
9301 static int
9302 mips_elf_create_la25_stub (void **slot, void *data)
9303 {
9304 struct mips_htab_traverse_info *hti;
9305 struct mips_elf_link_hash_table *htab;
9306 struct mips_elf_la25_stub *stub;
9307 asection *s;
9308 bfd_byte *loc;
9309 bfd_vma offset, target, target_high, target_low;
9310
9311 stub = (struct mips_elf_la25_stub *) *slot;
9312 hti = (struct mips_htab_traverse_info *) data;
9313 htab = mips_elf_hash_table (hti->info);
9314 BFD_ASSERT (htab != NULL);
9315
9316 /* Create the section contents, if we haven't already. */
9317 s = stub->stub_section;
9318 loc = s->contents;
9319 if (loc == NULL)
9320 {
9321 loc = bfd_malloc (s->size);
9322 if (loc == NULL)
9323 {
9324 hti->error = TRUE;
9325 return FALSE;
9326 }
9327 s->contents = loc;
9328 }
9329
9330 /* Work out where in the section this stub should go. */
9331 offset = stub->offset;
9332
9333 /* Work out the target address. */
9334 target = (stub->h->root.root.u.def.section->output_section->vma
9335 + stub->h->root.root.u.def.section->output_offset
9336 + stub->h->root.root.u.def.value);
9337 target_high = ((target + 0x8000) >> 16) & 0xffff;
9338 target_low = (target & 0xffff);
9339
9340 if (stub->stub_section != htab->strampoline)
9341 {
9342 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9343 of the section and write the two instructions at the end. */
9344 memset (loc, 0, offset);
9345 loc += offset;
9346 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9347 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9348 }
9349 else
9350 {
9351 /* This is trampoline. */
9352 loc += offset;
9353 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9354 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9355 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9356 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9357 }
9358 return TRUE;
9359 }
9360
9361 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9362 adjust it appropriately now. */
9363
9364 static void
9365 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9366 const char *name, Elf_Internal_Sym *sym)
9367 {
9368 /* The linker script takes care of providing names and values for
9369 these, but we must place them into the right sections. */
9370 static const char* const text_section_symbols[] = {
9371 "_ftext",
9372 "_etext",
9373 "__dso_displacement",
9374 "__elf_header",
9375 "__program_header_table",
9376 NULL
9377 };
9378
9379 static const char* const data_section_symbols[] = {
9380 "_fdata",
9381 "_edata",
9382 "_end",
9383 "_fbss",
9384 NULL
9385 };
9386
9387 const char* const *p;
9388 int i;
9389
9390 for (i = 0; i < 2; ++i)
9391 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9392 *p;
9393 ++p)
9394 if (strcmp (*p, name) == 0)
9395 {
9396 /* All of these symbols are given type STT_SECTION by the
9397 IRIX6 linker. */
9398 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9399 sym->st_other = STO_PROTECTED;
9400
9401 /* The IRIX linker puts these symbols in special sections. */
9402 if (i == 0)
9403 sym->st_shndx = SHN_MIPS_TEXT;
9404 else
9405 sym->st_shndx = SHN_MIPS_DATA;
9406
9407 break;
9408 }
9409 }
9410
9411 /* Finish up dynamic symbol handling. We set the contents of various
9412 dynamic sections here. */
9413
9414 bfd_boolean
9415 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9416 struct bfd_link_info *info,
9417 struct elf_link_hash_entry *h,
9418 Elf_Internal_Sym *sym)
9419 {
9420 bfd *dynobj;
9421 asection *sgot;
9422 struct mips_got_info *g, *gg;
9423 const char *name;
9424 int idx;
9425 struct mips_elf_link_hash_table *htab;
9426 struct mips_elf_link_hash_entry *hmips;
9427
9428 htab = mips_elf_hash_table (info);
9429 BFD_ASSERT (htab != NULL);
9430 dynobj = elf_hash_table (info)->dynobj;
9431 hmips = (struct mips_elf_link_hash_entry *) h;
9432
9433 BFD_ASSERT (!htab->is_vxworks);
9434
9435 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9436 {
9437 /* We've decided to create a PLT entry for this symbol. */
9438 bfd_byte *loc;
9439 bfd_vma header_address, plt_index, got_address;
9440 bfd_vma got_address_high, got_address_low, load;
9441 const bfd_vma *plt_entry;
9442
9443 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9444 BFD_ASSERT (h->dynindx != -1);
9445 BFD_ASSERT (htab->splt != NULL);
9446 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9447 BFD_ASSERT (!h->def_regular);
9448
9449 /* Calculate the address of the PLT header. */
9450 header_address = (htab->splt->output_section->vma
9451 + htab->splt->output_offset);
9452
9453 /* Calculate the index of the entry. */
9454 plt_index = ((h->plt.offset - htab->plt_header_size)
9455 / htab->plt_entry_size);
9456
9457 /* Calculate the address of the .got.plt entry. */
9458 got_address = (htab->sgotplt->output_section->vma
9459 + htab->sgotplt->output_offset
9460 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9461 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9462 got_address_low = got_address & 0xffff;
9463
9464 /* Initially point the .got.plt entry at the PLT header. */
9465 loc = (htab->sgotplt->contents
9466 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9467 if (ABI_64_P (output_bfd))
9468 bfd_put_64 (output_bfd, header_address, loc);
9469 else
9470 bfd_put_32 (output_bfd, header_address, loc);
9471
9472 /* Find out where the .plt entry should go. */
9473 loc = htab->splt->contents + h->plt.offset;
9474
9475 /* Pick the load opcode. */
9476 load = MIPS_ELF_LOAD_WORD (output_bfd);
9477
9478 /* Fill in the PLT entry itself. */
9479 plt_entry = mips_exec_plt_entry;
9480 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9481 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9482
9483 if (! LOAD_INTERLOCKS_P (output_bfd))
9484 {
9485 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9486 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9487 }
9488 else
9489 {
9490 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9491 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9492 }
9493
9494 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9495 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9496 plt_index, h->dynindx,
9497 R_MIPS_JUMP_SLOT, got_address);
9498
9499 /* We distinguish between PLT entries and lazy-binding stubs by
9500 giving the former an st_other value of STO_MIPS_PLT. Set the
9501 flag and leave the value if there are any relocations in the
9502 binary where pointer equality matters. */
9503 sym->st_shndx = SHN_UNDEF;
9504 if (h->pointer_equality_needed)
9505 sym->st_other = STO_MIPS_PLT;
9506 else
9507 sym->st_value = 0;
9508 }
9509 else if (h->plt.offset != MINUS_ONE)
9510 {
9511 /* We've decided to create a lazy-binding stub. */
9512 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9513
9514 /* This symbol has a stub. Set it up. */
9515
9516 BFD_ASSERT (h->dynindx != -1);
9517
9518 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9519 || (h->dynindx <= 0xffff));
9520
9521 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9522 sign extension at runtime in the stub, resulting in a negative
9523 index value. */
9524 if (h->dynindx & ~0x7fffffff)
9525 return FALSE;
9526
9527 /* Fill the stub. */
9528 idx = 0;
9529 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9530 idx += 4;
9531 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9532 idx += 4;
9533 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9534 {
9535 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9536 stub + idx);
9537 idx += 4;
9538 }
9539 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9540 idx += 4;
9541
9542 /* If a large stub is not required and sign extension is not a
9543 problem, then use legacy code in the stub. */
9544 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9545 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9546 else if (h->dynindx & ~0x7fff)
9547 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9548 else
9549 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9550 stub + idx);
9551
9552 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9553 memcpy (htab->sstubs->contents + h->plt.offset,
9554 stub, htab->function_stub_size);
9555
9556 /* Mark the symbol as undefined. plt.offset != -1 occurs
9557 only for the referenced symbol. */
9558 sym->st_shndx = SHN_UNDEF;
9559
9560 /* The run-time linker uses the st_value field of the symbol
9561 to reset the global offset table entry for this external
9562 to its stub address when unlinking a shared object. */
9563 sym->st_value = (htab->sstubs->output_section->vma
9564 + htab->sstubs->output_offset
9565 + h->plt.offset);
9566 }
9567
9568 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9569 refer to the stub, since only the stub uses the standard calling
9570 conventions. */
9571 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9572 {
9573 BFD_ASSERT (hmips->need_fn_stub);
9574 sym->st_value = (hmips->fn_stub->output_section->vma
9575 + hmips->fn_stub->output_offset);
9576 sym->st_size = hmips->fn_stub->size;
9577 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9578 }
9579
9580 BFD_ASSERT (h->dynindx != -1
9581 || h->forced_local);
9582
9583 sgot = htab->sgot;
9584 g = htab->got_info;
9585 BFD_ASSERT (g != NULL);
9586
9587 /* Run through the global symbol table, creating GOT entries for all
9588 the symbols that need them. */
9589 if (hmips->global_got_area != GGA_NONE)
9590 {
9591 bfd_vma offset;
9592 bfd_vma value;
9593
9594 value = sym->st_value;
9595 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9596 R_MIPS_GOT16, info);
9597 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9598 }
9599
9600 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9601 {
9602 struct mips_got_entry e, *p;
9603 bfd_vma entry;
9604 bfd_vma offset;
9605
9606 gg = g;
9607
9608 e.abfd = output_bfd;
9609 e.symndx = -1;
9610 e.d.h = hmips;
9611 e.tls_type = 0;
9612
9613 for (g = g->next; g->next != gg; g = g->next)
9614 {
9615 if (g->got_entries
9616 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9617 &e)))
9618 {
9619 offset = p->gotidx;
9620 if (info->shared
9621 || (elf_hash_table (info)->dynamic_sections_created
9622 && p->d.h != NULL
9623 && p->d.h->root.def_dynamic
9624 && !p->d.h->root.def_regular))
9625 {
9626 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9627 the various compatibility problems, it's easier to mock
9628 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9629 mips_elf_create_dynamic_relocation to calculate the
9630 appropriate addend. */
9631 Elf_Internal_Rela rel[3];
9632
9633 memset (rel, 0, sizeof (rel));
9634 if (ABI_64_P (output_bfd))
9635 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9636 else
9637 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9638 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9639
9640 entry = 0;
9641 if (! (mips_elf_create_dynamic_relocation
9642 (output_bfd, info, rel,
9643 e.d.h, NULL, sym->st_value, &entry, sgot)))
9644 return FALSE;
9645 }
9646 else
9647 entry = sym->st_value;
9648 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9649 }
9650 }
9651 }
9652
9653 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9654 name = h->root.root.string;
9655 if (strcmp (name, "_DYNAMIC") == 0
9656 || h == elf_hash_table (info)->hgot)
9657 sym->st_shndx = SHN_ABS;
9658 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9659 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9660 {
9661 sym->st_shndx = SHN_ABS;
9662 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9663 sym->st_value = 1;
9664 }
9665 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9666 {
9667 sym->st_shndx = SHN_ABS;
9668 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9669 sym->st_value = elf_gp (output_bfd);
9670 }
9671 else if (SGI_COMPAT (output_bfd))
9672 {
9673 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9674 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9675 {
9676 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9677 sym->st_other = STO_PROTECTED;
9678 sym->st_value = 0;
9679 sym->st_shndx = SHN_MIPS_DATA;
9680 }
9681 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9682 {
9683 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9684 sym->st_other = STO_PROTECTED;
9685 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9686 sym->st_shndx = SHN_ABS;
9687 }
9688 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9689 {
9690 if (h->type == STT_FUNC)
9691 sym->st_shndx = SHN_MIPS_TEXT;
9692 else if (h->type == STT_OBJECT)
9693 sym->st_shndx = SHN_MIPS_DATA;
9694 }
9695 }
9696
9697 /* Emit a copy reloc, if needed. */
9698 if (h->needs_copy)
9699 {
9700 asection *s;
9701 bfd_vma symval;
9702
9703 BFD_ASSERT (h->dynindx != -1);
9704 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9705
9706 s = mips_elf_rel_dyn_section (info, FALSE);
9707 symval = (h->root.u.def.section->output_section->vma
9708 + h->root.u.def.section->output_offset
9709 + h->root.u.def.value);
9710 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9711 h->dynindx, R_MIPS_COPY, symval);
9712 }
9713
9714 /* Handle the IRIX6-specific symbols. */
9715 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9716 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9717
9718 if (! info->shared)
9719 {
9720 if (! mips_elf_hash_table (info)->use_rld_obj_head
9721 && (strcmp (name, "__rld_map") == 0
9722 || strcmp (name, "__RLD_MAP") == 0))
9723 {
9724 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9725 BFD_ASSERT (s != NULL);
9726 sym->st_value = s->output_section->vma + s->output_offset;
9727 bfd_put_32 (output_bfd, 0, s->contents);
9728 if (mips_elf_hash_table (info)->rld_value == 0)
9729 mips_elf_hash_table (info)->rld_value = sym->st_value;
9730 }
9731 else if (mips_elf_hash_table (info)->use_rld_obj_head
9732 && strcmp (name, "__rld_obj_head") == 0)
9733 {
9734 /* IRIX6 does not use a .rld_map section. */
9735 if (IRIX_COMPAT (output_bfd) == ict_irix5
9736 || IRIX_COMPAT (output_bfd) == ict_none)
9737 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9738 != NULL);
9739 mips_elf_hash_table (info)->rld_value = sym->st_value;
9740 }
9741 }
9742
9743 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9744 treat MIPS16 symbols like any other. */
9745 if (ELF_ST_IS_MIPS16 (sym->st_other))
9746 {
9747 BFD_ASSERT (sym->st_value & 1);
9748 sym->st_other -= STO_MIPS16;
9749 }
9750
9751 return TRUE;
9752 }
9753
9754 /* Likewise, for VxWorks. */
9755
9756 bfd_boolean
9757 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9758 struct bfd_link_info *info,
9759 struct elf_link_hash_entry *h,
9760 Elf_Internal_Sym *sym)
9761 {
9762 bfd *dynobj;
9763 asection *sgot;
9764 struct mips_got_info *g;
9765 struct mips_elf_link_hash_table *htab;
9766 struct mips_elf_link_hash_entry *hmips;
9767
9768 htab = mips_elf_hash_table (info);
9769 BFD_ASSERT (htab != NULL);
9770 dynobj = elf_hash_table (info)->dynobj;
9771 hmips = (struct mips_elf_link_hash_entry *) h;
9772
9773 if (h->plt.offset != (bfd_vma) -1)
9774 {
9775 bfd_byte *loc;
9776 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9777 Elf_Internal_Rela rel;
9778 static const bfd_vma *plt_entry;
9779
9780 BFD_ASSERT (h->dynindx != -1);
9781 BFD_ASSERT (htab->splt != NULL);
9782 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9783
9784 /* Calculate the address of the .plt entry. */
9785 plt_address = (htab->splt->output_section->vma
9786 + htab->splt->output_offset
9787 + h->plt.offset);
9788
9789 /* Calculate the index of the entry. */
9790 plt_index = ((h->plt.offset - htab->plt_header_size)
9791 / htab->plt_entry_size);
9792
9793 /* Calculate the address of the .got.plt entry. */
9794 got_address = (htab->sgotplt->output_section->vma
9795 + htab->sgotplt->output_offset
9796 + plt_index * 4);
9797
9798 /* Calculate the offset of the .got.plt entry from
9799 _GLOBAL_OFFSET_TABLE_. */
9800 got_offset = mips_elf_gotplt_index (info, h);
9801
9802 /* Calculate the offset for the branch at the start of the PLT
9803 entry. The branch jumps to the beginning of .plt. */
9804 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9805
9806 /* Fill in the initial value of the .got.plt entry. */
9807 bfd_put_32 (output_bfd, plt_address,
9808 htab->sgotplt->contents + plt_index * 4);
9809
9810 /* Find out where the .plt entry should go. */
9811 loc = htab->splt->contents + h->plt.offset;
9812
9813 if (info->shared)
9814 {
9815 plt_entry = mips_vxworks_shared_plt_entry;
9816 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9817 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9818 }
9819 else
9820 {
9821 bfd_vma got_address_high, got_address_low;
9822
9823 plt_entry = mips_vxworks_exec_plt_entry;
9824 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9825 got_address_low = got_address & 0xffff;
9826
9827 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9828 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9829 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9830 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9831 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9832 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9833 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9834 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9835
9836 loc = (htab->srelplt2->contents
9837 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9838
9839 /* Emit a relocation for the .got.plt entry. */
9840 rel.r_offset = got_address;
9841 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9842 rel.r_addend = h->plt.offset;
9843 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9844
9845 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9846 loc += sizeof (Elf32_External_Rela);
9847 rel.r_offset = plt_address + 8;
9848 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9849 rel.r_addend = got_offset;
9850 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9851
9852 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9853 loc += sizeof (Elf32_External_Rela);
9854 rel.r_offset += 4;
9855 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9856 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9857 }
9858
9859 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9860 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9861 rel.r_offset = got_address;
9862 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9863 rel.r_addend = 0;
9864 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9865
9866 if (!h->def_regular)
9867 sym->st_shndx = SHN_UNDEF;
9868 }
9869
9870 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9871
9872 sgot = htab->sgot;
9873 g = htab->got_info;
9874 BFD_ASSERT (g != NULL);
9875
9876 /* See if this symbol has an entry in the GOT. */
9877 if (hmips->global_got_area != GGA_NONE)
9878 {
9879 bfd_vma offset;
9880 Elf_Internal_Rela outrel;
9881 bfd_byte *loc;
9882 asection *s;
9883
9884 /* Install the symbol value in the GOT. */
9885 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9886 R_MIPS_GOT16, info);
9887 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9888
9889 /* Add a dynamic relocation for it. */
9890 s = mips_elf_rel_dyn_section (info, FALSE);
9891 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9892 outrel.r_offset = (sgot->output_section->vma
9893 + sgot->output_offset
9894 + offset);
9895 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9896 outrel.r_addend = 0;
9897 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9898 }
9899
9900 /* Emit a copy reloc, if needed. */
9901 if (h->needs_copy)
9902 {
9903 Elf_Internal_Rela rel;
9904
9905 BFD_ASSERT (h->dynindx != -1);
9906
9907 rel.r_offset = (h->root.u.def.section->output_section->vma
9908 + h->root.u.def.section->output_offset
9909 + h->root.u.def.value);
9910 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9911 rel.r_addend = 0;
9912 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9913 htab->srelbss->contents
9914 + (htab->srelbss->reloc_count
9915 * sizeof (Elf32_External_Rela)));
9916 ++htab->srelbss->reloc_count;
9917 }
9918
9919 /* If this is a mips16 symbol, force the value to be even. */
9920 if (ELF_ST_IS_MIPS16 (sym->st_other))
9921 sym->st_value &= ~1;
9922
9923 return TRUE;
9924 }
9925
9926 /* Write out a plt0 entry to the beginning of .plt. */
9927
9928 static void
9929 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9930 {
9931 bfd_byte *loc;
9932 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9933 static const bfd_vma *plt_entry;
9934 struct mips_elf_link_hash_table *htab;
9935
9936 htab = mips_elf_hash_table (info);
9937 BFD_ASSERT (htab != NULL);
9938
9939 if (ABI_64_P (output_bfd))
9940 plt_entry = mips_n64_exec_plt0_entry;
9941 else if (ABI_N32_P (output_bfd))
9942 plt_entry = mips_n32_exec_plt0_entry;
9943 else
9944 plt_entry = mips_o32_exec_plt0_entry;
9945
9946 /* Calculate the value of .got.plt. */
9947 gotplt_value = (htab->sgotplt->output_section->vma
9948 + htab->sgotplt->output_offset);
9949 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9950 gotplt_value_low = gotplt_value & 0xffff;
9951
9952 /* The PLT sequence is not safe for N64 if .got.plt's address can
9953 not be loaded in two instructions. */
9954 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9955 || ~(gotplt_value | 0x7fffffff) == 0);
9956
9957 /* Install the PLT header. */
9958 loc = htab->splt->contents;
9959 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9960 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9961 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9962 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9963 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9964 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9965 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9966 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9967 }
9968
9969 /* Install the PLT header for a VxWorks executable and finalize the
9970 contents of .rela.plt.unloaded. */
9971
9972 static void
9973 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9974 {
9975 Elf_Internal_Rela rela;
9976 bfd_byte *loc;
9977 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9978 static const bfd_vma *plt_entry;
9979 struct mips_elf_link_hash_table *htab;
9980
9981 htab = mips_elf_hash_table (info);
9982 BFD_ASSERT (htab != NULL);
9983
9984 plt_entry = mips_vxworks_exec_plt0_entry;
9985
9986 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9987 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9988 + htab->root.hgot->root.u.def.section->output_offset
9989 + htab->root.hgot->root.u.def.value);
9990
9991 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9992 got_value_low = got_value & 0xffff;
9993
9994 /* Calculate the address of the PLT header. */
9995 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9996
9997 /* Install the PLT header. */
9998 loc = htab->splt->contents;
9999 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10000 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10001 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10002 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10003 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10004 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10005
10006 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10007 loc = htab->srelplt2->contents;
10008 rela.r_offset = plt_address;
10009 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10010 rela.r_addend = 0;
10011 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10012 loc += sizeof (Elf32_External_Rela);
10013
10014 /* Output the relocation for the following addiu of
10015 %lo(_GLOBAL_OFFSET_TABLE_). */
10016 rela.r_offset += 4;
10017 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10018 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10019 loc += sizeof (Elf32_External_Rela);
10020
10021 /* Fix up the remaining relocations. They may have the wrong
10022 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10023 in which symbols were output. */
10024 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10025 {
10026 Elf_Internal_Rela rel;
10027
10028 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10029 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10030 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10031 loc += sizeof (Elf32_External_Rela);
10032
10033 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10034 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10035 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10036 loc += sizeof (Elf32_External_Rela);
10037
10038 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10039 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10040 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10041 loc += sizeof (Elf32_External_Rela);
10042 }
10043 }
10044
10045 /* Install the PLT header for a VxWorks shared library. */
10046
10047 static void
10048 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10049 {
10050 unsigned int i;
10051 struct mips_elf_link_hash_table *htab;
10052
10053 htab = mips_elf_hash_table (info);
10054 BFD_ASSERT (htab != NULL);
10055
10056 /* We just need to copy the entry byte-by-byte. */
10057 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10058 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10059 htab->splt->contents + i * 4);
10060 }
10061
10062 /* Finish up the dynamic sections. */
10063
10064 bfd_boolean
10065 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10066 struct bfd_link_info *info)
10067 {
10068 bfd *dynobj;
10069 asection *sdyn;
10070 asection *sgot;
10071 struct mips_got_info *gg, *g;
10072 struct mips_elf_link_hash_table *htab;
10073
10074 htab = mips_elf_hash_table (info);
10075 BFD_ASSERT (htab != NULL);
10076
10077 dynobj = elf_hash_table (info)->dynobj;
10078
10079 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10080
10081 sgot = htab->sgot;
10082 gg = htab->got_info;
10083
10084 if (elf_hash_table (info)->dynamic_sections_created)
10085 {
10086 bfd_byte *b;
10087 int dyn_to_skip = 0, dyn_skipped = 0;
10088
10089 BFD_ASSERT (sdyn != NULL);
10090 BFD_ASSERT (gg != NULL);
10091
10092 g = mips_elf_got_for_ibfd (gg, output_bfd);
10093 BFD_ASSERT (g != NULL);
10094
10095 for (b = sdyn->contents;
10096 b < sdyn->contents + sdyn->size;
10097 b += MIPS_ELF_DYN_SIZE (dynobj))
10098 {
10099 Elf_Internal_Dyn dyn;
10100 const char *name;
10101 size_t elemsize;
10102 asection *s;
10103 bfd_boolean swap_out_p;
10104
10105 /* Read in the current dynamic entry. */
10106 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10107
10108 /* Assume that we're going to modify it and write it out. */
10109 swap_out_p = TRUE;
10110
10111 switch (dyn.d_tag)
10112 {
10113 case DT_RELENT:
10114 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10115 break;
10116
10117 case DT_RELAENT:
10118 BFD_ASSERT (htab->is_vxworks);
10119 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10120 break;
10121
10122 case DT_STRSZ:
10123 /* Rewrite DT_STRSZ. */
10124 dyn.d_un.d_val =
10125 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10126 break;
10127
10128 case DT_PLTGOT:
10129 s = htab->sgot;
10130 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10131 break;
10132
10133 case DT_MIPS_PLTGOT:
10134 s = htab->sgotplt;
10135 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10136 break;
10137
10138 case DT_MIPS_RLD_VERSION:
10139 dyn.d_un.d_val = 1; /* XXX */
10140 break;
10141
10142 case DT_MIPS_FLAGS:
10143 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10144 break;
10145
10146 case DT_MIPS_TIME_STAMP:
10147 {
10148 time_t t;
10149 time (&t);
10150 dyn.d_un.d_val = t;
10151 }
10152 break;
10153
10154 case DT_MIPS_ICHECKSUM:
10155 /* XXX FIXME: */
10156 swap_out_p = FALSE;
10157 break;
10158
10159 case DT_MIPS_IVERSION:
10160 /* XXX FIXME: */
10161 swap_out_p = FALSE;
10162 break;
10163
10164 case DT_MIPS_BASE_ADDRESS:
10165 s = output_bfd->sections;
10166 BFD_ASSERT (s != NULL);
10167 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10168 break;
10169
10170 case DT_MIPS_LOCAL_GOTNO:
10171 dyn.d_un.d_val = g->local_gotno;
10172 break;
10173
10174 case DT_MIPS_UNREFEXTNO:
10175 /* The index into the dynamic symbol table which is the
10176 entry of the first external symbol that is not
10177 referenced within the same object. */
10178 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10179 break;
10180
10181 case DT_MIPS_GOTSYM:
10182 if (gg->global_gotsym)
10183 {
10184 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10185 break;
10186 }
10187 /* In case if we don't have global got symbols we default
10188 to setting DT_MIPS_GOTSYM to the same value as
10189 DT_MIPS_SYMTABNO, so we just fall through. */
10190
10191 case DT_MIPS_SYMTABNO:
10192 name = ".dynsym";
10193 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10194 s = bfd_get_section_by_name (output_bfd, name);
10195 BFD_ASSERT (s != NULL);
10196
10197 dyn.d_un.d_val = s->size / elemsize;
10198 break;
10199
10200 case DT_MIPS_HIPAGENO:
10201 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10202 break;
10203
10204 case DT_MIPS_RLD_MAP:
10205 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10206 break;
10207
10208 case DT_MIPS_OPTIONS:
10209 s = (bfd_get_section_by_name
10210 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10211 dyn.d_un.d_ptr = s->vma;
10212 break;
10213
10214 case DT_RELASZ:
10215 BFD_ASSERT (htab->is_vxworks);
10216 /* The count does not include the JUMP_SLOT relocations. */
10217 if (htab->srelplt)
10218 dyn.d_un.d_val -= htab->srelplt->size;
10219 break;
10220
10221 case DT_PLTREL:
10222 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10223 if (htab->is_vxworks)
10224 dyn.d_un.d_val = DT_RELA;
10225 else
10226 dyn.d_un.d_val = DT_REL;
10227 break;
10228
10229 case DT_PLTRELSZ:
10230 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10231 dyn.d_un.d_val = htab->srelplt->size;
10232 break;
10233
10234 case DT_JMPREL:
10235 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10236 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10237 + htab->srelplt->output_offset);
10238 break;
10239
10240 case DT_TEXTREL:
10241 /* If we didn't need any text relocations after all, delete
10242 the dynamic tag. */
10243 if (!(info->flags & DF_TEXTREL))
10244 {
10245 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10246 swap_out_p = FALSE;
10247 }
10248 break;
10249
10250 case DT_FLAGS:
10251 /* If we didn't need any text relocations after all, clear
10252 DF_TEXTREL from DT_FLAGS. */
10253 if (!(info->flags & DF_TEXTREL))
10254 dyn.d_un.d_val &= ~DF_TEXTREL;
10255 else
10256 swap_out_p = FALSE;
10257 break;
10258
10259 default:
10260 swap_out_p = FALSE;
10261 if (htab->is_vxworks
10262 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10263 swap_out_p = TRUE;
10264 break;
10265 }
10266
10267 if (swap_out_p || dyn_skipped)
10268 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10269 (dynobj, &dyn, b - dyn_skipped);
10270
10271 if (dyn_to_skip)
10272 {
10273 dyn_skipped += dyn_to_skip;
10274 dyn_to_skip = 0;
10275 }
10276 }
10277
10278 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10279 if (dyn_skipped > 0)
10280 memset (b - dyn_skipped, 0, dyn_skipped);
10281 }
10282
10283 if (sgot != NULL && sgot->size > 0
10284 && !bfd_is_abs_section (sgot->output_section))
10285 {
10286 if (htab->is_vxworks)
10287 {
10288 /* The first entry of the global offset table points to the
10289 ".dynamic" section. The second is initialized by the
10290 loader and contains the shared library identifier.
10291 The third is also initialized by the loader and points
10292 to the lazy resolution stub. */
10293 MIPS_ELF_PUT_WORD (output_bfd,
10294 sdyn->output_offset + sdyn->output_section->vma,
10295 sgot->contents);
10296 MIPS_ELF_PUT_WORD (output_bfd, 0,
10297 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10298 MIPS_ELF_PUT_WORD (output_bfd, 0,
10299 sgot->contents
10300 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10301 }
10302 else
10303 {
10304 /* The first entry of the global offset table will be filled at
10305 runtime. The second entry will be used by some runtime loaders.
10306 This isn't the case of IRIX rld. */
10307 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10308 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10309 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10310 }
10311
10312 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10313 = MIPS_ELF_GOT_SIZE (output_bfd);
10314 }
10315
10316 /* Generate dynamic relocations for the non-primary gots. */
10317 if (gg != NULL && gg->next)
10318 {
10319 Elf_Internal_Rela rel[3];
10320 bfd_vma addend = 0;
10321
10322 memset (rel, 0, sizeof (rel));
10323 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10324
10325 for (g = gg->next; g->next != gg; g = g->next)
10326 {
10327 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10328 + g->next->tls_gotno;
10329
10330 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10331 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10332 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10333 sgot->contents
10334 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10335
10336 if (! info->shared)
10337 continue;
10338
10339 while (got_index < g->assigned_gotno)
10340 {
10341 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10342 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10343 if (!(mips_elf_create_dynamic_relocation
10344 (output_bfd, info, rel, NULL,
10345 bfd_abs_section_ptr,
10346 0, &addend, sgot)))
10347 return FALSE;
10348 BFD_ASSERT (addend == 0);
10349 }
10350 }
10351 }
10352
10353 /* The generation of dynamic relocations for the non-primary gots
10354 adds more dynamic relocations. We cannot count them until
10355 here. */
10356
10357 if (elf_hash_table (info)->dynamic_sections_created)
10358 {
10359 bfd_byte *b;
10360 bfd_boolean swap_out_p;
10361
10362 BFD_ASSERT (sdyn != NULL);
10363
10364 for (b = sdyn->contents;
10365 b < sdyn->contents + sdyn->size;
10366 b += MIPS_ELF_DYN_SIZE (dynobj))
10367 {
10368 Elf_Internal_Dyn dyn;
10369 asection *s;
10370
10371 /* Read in the current dynamic entry. */
10372 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10373
10374 /* Assume that we're going to modify it and write it out. */
10375 swap_out_p = TRUE;
10376
10377 switch (dyn.d_tag)
10378 {
10379 case DT_RELSZ:
10380 /* Reduce DT_RELSZ to account for any relocations we
10381 decided not to make. This is for the n64 irix rld,
10382 which doesn't seem to apply any relocations if there
10383 are trailing null entries. */
10384 s = mips_elf_rel_dyn_section (info, FALSE);
10385 dyn.d_un.d_val = (s->reloc_count
10386 * (ABI_64_P (output_bfd)
10387 ? sizeof (Elf64_Mips_External_Rel)
10388 : sizeof (Elf32_External_Rel)));
10389 /* Adjust the section size too. Tools like the prelinker
10390 can reasonably expect the values to the same. */
10391 elf_section_data (s->output_section)->this_hdr.sh_size
10392 = dyn.d_un.d_val;
10393 break;
10394
10395 default:
10396 swap_out_p = FALSE;
10397 break;
10398 }
10399
10400 if (swap_out_p)
10401 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10402 (dynobj, &dyn, b);
10403 }
10404 }
10405
10406 {
10407 asection *s;
10408 Elf32_compact_rel cpt;
10409
10410 if (SGI_COMPAT (output_bfd))
10411 {
10412 /* Write .compact_rel section out. */
10413 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10414 if (s != NULL)
10415 {
10416 cpt.id1 = 1;
10417 cpt.num = s->reloc_count;
10418 cpt.id2 = 2;
10419 cpt.offset = (s->output_section->filepos
10420 + sizeof (Elf32_External_compact_rel));
10421 cpt.reserved0 = 0;
10422 cpt.reserved1 = 0;
10423 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10424 ((Elf32_External_compact_rel *)
10425 s->contents));
10426
10427 /* Clean up a dummy stub function entry in .text. */
10428 if (htab->sstubs != NULL)
10429 {
10430 file_ptr dummy_offset;
10431
10432 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10433 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10434 memset (htab->sstubs->contents + dummy_offset, 0,
10435 htab->function_stub_size);
10436 }
10437 }
10438 }
10439
10440 /* The psABI says that the dynamic relocations must be sorted in
10441 increasing order of r_symndx. The VxWorks EABI doesn't require
10442 this, and because the code below handles REL rather than RELA
10443 relocations, using it for VxWorks would be outright harmful. */
10444 if (!htab->is_vxworks)
10445 {
10446 s = mips_elf_rel_dyn_section (info, FALSE);
10447 if (s != NULL
10448 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10449 {
10450 reldyn_sorting_bfd = output_bfd;
10451
10452 if (ABI_64_P (output_bfd))
10453 qsort ((Elf64_External_Rel *) s->contents + 1,
10454 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10455 sort_dynamic_relocs_64);
10456 else
10457 qsort ((Elf32_External_Rel *) s->contents + 1,
10458 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10459 sort_dynamic_relocs);
10460 }
10461 }
10462 }
10463
10464 if (htab->splt && htab->splt->size > 0)
10465 {
10466 if (htab->is_vxworks)
10467 {
10468 if (info->shared)
10469 mips_vxworks_finish_shared_plt (output_bfd, info);
10470 else
10471 mips_vxworks_finish_exec_plt (output_bfd, info);
10472 }
10473 else
10474 {
10475 BFD_ASSERT (!info->shared);
10476 mips_finish_exec_plt (output_bfd, info);
10477 }
10478 }
10479 return TRUE;
10480 }
10481
10482
10483 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10484
10485 static void
10486 mips_set_isa_flags (bfd *abfd)
10487 {
10488 flagword val;
10489
10490 switch (bfd_get_mach (abfd))
10491 {
10492 default:
10493 case bfd_mach_mips3000:
10494 val = E_MIPS_ARCH_1;
10495 break;
10496
10497 case bfd_mach_mips3900:
10498 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10499 break;
10500
10501 case bfd_mach_mips6000:
10502 val = E_MIPS_ARCH_2;
10503 break;
10504
10505 case bfd_mach_mips4000:
10506 case bfd_mach_mips4300:
10507 case bfd_mach_mips4400:
10508 case bfd_mach_mips4600:
10509 val = E_MIPS_ARCH_3;
10510 break;
10511
10512 case bfd_mach_mips4010:
10513 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10514 break;
10515
10516 case bfd_mach_mips4100:
10517 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10518 break;
10519
10520 case bfd_mach_mips4111:
10521 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10522 break;
10523
10524 case bfd_mach_mips4120:
10525 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10526 break;
10527
10528 case bfd_mach_mips4650:
10529 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10530 break;
10531
10532 case bfd_mach_mips5400:
10533 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10534 break;
10535
10536 case bfd_mach_mips5500:
10537 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10538 break;
10539
10540 case bfd_mach_mips9000:
10541 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10542 break;
10543
10544 case bfd_mach_mips5000:
10545 case bfd_mach_mips7000:
10546 case bfd_mach_mips8000:
10547 case bfd_mach_mips10000:
10548 case bfd_mach_mips12000:
10549 case bfd_mach_mips14000:
10550 case bfd_mach_mips16000:
10551 val = E_MIPS_ARCH_4;
10552 break;
10553
10554 case bfd_mach_mips5:
10555 val = E_MIPS_ARCH_5;
10556 break;
10557
10558 case bfd_mach_mips_loongson_2e:
10559 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10560 break;
10561
10562 case bfd_mach_mips_loongson_2f:
10563 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10564 break;
10565
10566 case bfd_mach_mips_sb1:
10567 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10568 break;
10569
10570 case bfd_mach_mips_loongson_3a:
10571 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10572 break;
10573
10574 case bfd_mach_mips_octeon:
10575 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10576 break;
10577
10578 case bfd_mach_mips_xlr:
10579 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10580 break;
10581
10582 case bfd_mach_mipsisa32:
10583 val = E_MIPS_ARCH_32;
10584 break;
10585
10586 case bfd_mach_mipsisa64:
10587 val = E_MIPS_ARCH_64;
10588 break;
10589
10590 case bfd_mach_mipsisa32r2:
10591 val = E_MIPS_ARCH_32R2;
10592 break;
10593
10594 case bfd_mach_mipsisa64r2:
10595 val = E_MIPS_ARCH_64R2;
10596 break;
10597 }
10598 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10599 elf_elfheader (abfd)->e_flags |= val;
10600
10601 }
10602
10603
10604 /* The final processing done just before writing out a MIPS ELF object
10605 file. This gets the MIPS architecture right based on the machine
10606 number. This is used by both the 32-bit and the 64-bit ABI. */
10607
10608 void
10609 _bfd_mips_elf_final_write_processing (bfd *abfd,
10610 bfd_boolean linker ATTRIBUTE_UNUSED)
10611 {
10612 unsigned int i;
10613 Elf_Internal_Shdr **hdrpp;
10614 const char *name;
10615 asection *sec;
10616
10617 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10618 is nonzero. This is for compatibility with old objects, which used
10619 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10620 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10621 mips_set_isa_flags (abfd);
10622
10623 /* Set the sh_info field for .gptab sections and other appropriate
10624 info for each special section. */
10625 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10626 i < elf_numsections (abfd);
10627 i++, hdrpp++)
10628 {
10629 switch ((*hdrpp)->sh_type)
10630 {
10631 case SHT_MIPS_MSYM:
10632 case SHT_MIPS_LIBLIST:
10633 sec = bfd_get_section_by_name (abfd, ".dynstr");
10634 if (sec != NULL)
10635 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10636 break;
10637
10638 case SHT_MIPS_GPTAB:
10639 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10640 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10641 BFD_ASSERT (name != NULL
10642 && CONST_STRNEQ (name, ".gptab."));
10643 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10644 BFD_ASSERT (sec != NULL);
10645 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10646 break;
10647
10648 case SHT_MIPS_CONTENT:
10649 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10650 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10651 BFD_ASSERT (name != NULL
10652 && CONST_STRNEQ (name, ".MIPS.content"));
10653 sec = bfd_get_section_by_name (abfd,
10654 name + sizeof ".MIPS.content" - 1);
10655 BFD_ASSERT (sec != NULL);
10656 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10657 break;
10658
10659 case SHT_MIPS_SYMBOL_LIB:
10660 sec = bfd_get_section_by_name (abfd, ".dynsym");
10661 if (sec != NULL)
10662 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10663 sec = bfd_get_section_by_name (abfd, ".liblist");
10664 if (sec != NULL)
10665 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10666 break;
10667
10668 case SHT_MIPS_EVENTS:
10669 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10670 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10671 BFD_ASSERT (name != NULL);
10672 if (CONST_STRNEQ (name, ".MIPS.events"))
10673 sec = bfd_get_section_by_name (abfd,
10674 name + sizeof ".MIPS.events" - 1);
10675 else
10676 {
10677 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10678 sec = bfd_get_section_by_name (abfd,
10679 (name
10680 + sizeof ".MIPS.post_rel" - 1));
10681 }
10682 BFD_ASSERT (sec != NULL);
10683 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10684 break;
10685
10686 }
10687 }
10688 }
10689 \f
10690 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10691 segments. */
10692
10693 int
10694 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10695 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10696 {
10697 asection *s;
10698 int ret = 0;
10699
10700 /* See if we need a PT_MIPS_REGINFO segment. */
10701 s = bfd_get_section_by_name (abfd, ".reginfo");
10702 if (s && (s->flags & SEC_LOAD))
10703 ++ret;
10704
10705 /* See if we need a PT_MIPS_OPTIONS segment. */
10706 if (IRIX_COMPAT (abfd) == ict_irix6
10707 && bfd_get_section_by_name (abfd,
10708 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10709 ++ret;
10710
10711 /* See if we need a PT_MIPS_RTPROC segment. */
10712 if (IRIX_COMPAT (abfd) == ict_irix5
10713 && bfd_get_section_by_name (abfd, ".dynamic")
10714 && bfd_get_section_by_name (abfd, ".mdebug"))
10715 ++ret;
10716
10717 /* Allocate a PT_NULL header in dynamic objects. See
10718 _bfd_mips_elf_modify_segment_map for details. */
10719 if (!SGI_COMPAT (abfd)
10720 && bfd_get_section_by_name (abfd, ".dynamic"))
10721 ++ret;
10722
10723 return ret;
10724 }
10725
10726 /* Modify the segment map for an IRIX5 executable. */
10727
10728 bfd_boolean
10729 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10730 struct bfd_link_info *info)
10731 {
10732 asection *s;
10733 struct elf_segment_map *m, **pm;
10734 bfd_size_type amt;
10735
10736 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10737 segment. */
10738 s = bfd_get_section_by_name (abfd, ".reginfo");
10739 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10740 {
10741 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10742 if (m->p_type == PT_MIPS_REGINFO)
10743 break;
10744 if (m == NULL)
10745 {
10746 amt = sizeof *m;
10747 m = bfd_zalloc (abfd, amt);
10748 if (m == NULL)
10749 return FALSE;
10750
10751 m->p_type = PT_MIPS_REGINFO;
10752 m->count = 1;
10753 m->sections[0] = s;
10754
10755 /* We want to put it after the PHDR and INTERP segments. */
10756 pm = &elf_tdata (abfd)->segment_map;
10757 while (*pm != NULL
10758 && ((*pm)->p_type == PT_PHDR
10759 || (*pm)->p_type == PT_INTERP))
10760 pm = &(*pm)->next;
10761
10762 m->next = *pm;
10763 *pm = m;
10764 }
10765 }
10766
10767 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10768 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10769 PT_MIPS_OPTIONS segment immediately following the program header
10770 table. */
10771 if (NEWABI_P (abfd)
10772 /* On non-IRIX6 new abi, we'll have already created a segment
10773 for this section, so don't create another. I'm not sure this
10774 is not also the case for IRIX 6, but I can't test it right
10775 now. */
10776 && IRIX_COMPAT (abfd) == ict_irix6)
10777 {
10778 for (s = abfd->sections; s; s = s->next)
10779 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10780 break;
10781
10782 if (s)
10783 {
10784 struct elf_segment_map *options_segment;
10785
10786 pm = &elf_tdata (abfd)->segment_map;
10787 while (*pm != NULL
10788 && ((*pm)->p_type == PT_PHDR
10789 || (*pm)->p_type == PT_INTERP))
10790 pm = &(*pm)->next;
10791
10792 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10793 {
10794 amt = sizeof (struct elf_segment_map);
10795 options_segment = bfd_zalloc (abfd, amt);
10796 options_segment->next = *pm;
10797 options_segment->p_type = PT_MIPS_OPTIONS;
10798 options_segment->p_flags = PF_R;
10799 options_segment->p_flags_valid = TRUE;
10800 options_segment->count = 1;
10801 options_segment->sections[0] = s;
10802 *pm = options_segment;
10803 }
10804 }
10805 }
10806 else
10807 {
10808 if (IRIX_COMPAT (abfd) == ict_irix5)
10809 {
10810 /* If there are .dynamic and .mdebug sections, we make a room
10811 for the RTPROC header. FIXME: Rewrite without section names. */
10812 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10813 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10814 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10815 {
10816 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10817 if (m->p_type == PT_MIPS_RTPROC)
10818 break;
10819 if (m == NULL)
10820 {
10821 amt = sizeof *m;
10822 m = bfd_zalloc (abfd, amt);
10823 if (m == NULL)
10824 return FALSE;
10825
10826 m->p_type = PT_MIPS_RTPROC;
10827
10828 s = bfd_get_section_by_name (abfd, ".rtproc");
10829 if (s == NULL)
10830 {
10831 m->count = 0;
10832 m->p_flags = 0;
10833 m->p_flags_valid = 1;
10834 }
10835 else
10836 {
10837 m->count = 1;
10838 m->sections[0] = s;
10839 }
10840
10841 /* We want to put it after the DYNAMIC segment. */
10842 pm = &elf_tdata (abfd)->segment_map;
10843 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10844 pm = &(*pm)->next;
10845 if (*pm != NULL)
10846 pm = &(*pm)->next;
10847
10848 m->next = *pm;
10849 *pm = m;
10850 }
10851 }
10852 }
10853 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10854 .dynstr, .dynsym, and .hash sections, and everything in
10855 between. */
10856 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10857 pm = &(*pm)->next)
10858 if ((*pm)->p_type == PT_DYNAMIC)
10859 break;
10860 m = *pm;
10861 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10862 {
10863 /* For a normal mips executable the permissions for the PT_DYNAMIC
10864 segment are read, write and execute. We do that here since
10865 the code in elf.c sets only the read permission. This matters
10866 sometimes for the dynamic linker. */
10867 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10868 {
10869 m->p_flags = PF_R | PF_W | PF_X;
10870 m->p_flags_valid = 1;
10871 }
10872 }
10873 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10874 glibc's dynamic linker has traditionally derived the number of
10875 tags from the p_filesz field, and sometimes allocates stack
10876 arrays of that size. An overly-big PT_DYNAMIC segment can
10877 be actively harmful in such cases. Making PT_DYNAMIC contain
10878 other sections can also make life hard for the prelinker,
10879 which might move one of the other sections to a different
10880 PT_LOAD segment. */
10881 if (SGI_COMPAT (abfd)
10882 && m != NULL
10883 && m->count == 1
10884 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10885 {
10886 static const char *sec_names[] =
10887 {
10888 ".dynamic", ".dynstr", ".dynsym", ".hash"
10889 };
10890 bfd_vma low, high;
10891 unsigned int i, c;
10892 struct elf_segment_map *n;
10893
10894 low = ~(bfd_vma) 0;
10895 high = 0;
10896 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10897 {
10898 s = bfd_get_section_by_name (abfd, sec_names[i]);
10899 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10900 {
10901 bfd_size_type sz;
10902
10903 if (low > s->vma)
10904 low = s->vma;
10905 sz = s->size;
10906 if (high < s->vma + sz)
10907 high = s->vma + sz;
10908 }
10909 }
10910
10911 c = 0;
10912 for (s = abfd->sections; s != NULL; s = s->next)
10913 if ((s->flags & SEC_LOAD) != 0
10914 && s->vma >= low
10915 && s->vma + s->size <= high)
10916 ++c;
10917
10918 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10919 n = bfd_zalloc (abfd, amt);
10920 if (n == NULL)
10921 return FALSE;
10922 *n = *m;
10923 n->count = c;
10924
10925 i = 0;
10926 for (s = abfd->sections; s != NULL; s = s->next)
10927 {
10928 if ((s->flags & SEC_LOAD) != 0
10929 && s->vma >= low
10930 && s->vma + s->size <= high)
10931 {
10932 n->sections[i] = s;
10933 ++i;
10934 }
10935 }
10936
10937 *pm = n;
10938 }
10939 }
10940
10941 /* Allocate a spare program header in dynamic objects so that tools
10942 like the prelinker can add an extra PT_LOAD entry.
10943
10944 If the prelinker needs to make room for a new PT_LOAD entry, its
10945 standard procedure is to move the first (read-only) sections into
10946 the new (writable) segment. However, the MIPS ABI requires
10947 .dynamic to be in a read-only segment, and the section will often
10948 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10949
10950 Although the prelinker could in principle move .dynamic to a
10951 writable segment, it seems better to allocate a spare program
10952 header instead, and avoid the need to move any sections.
10953 There is a long tradition of allocating spare dynamic tags,
10954 so allocating a spare program header seems like a natural
10955 extension.
10956
10957 If INFO is NULL, we may be copying an already prelinked binary
10958 with objcopy or strip, so do not add this header. */
10959 if (info != NULL
10960 && !SGI_COMPAT (abfd)
10961 && bfd_get_section_by_name (abfd, ".dynamic"))
10962 {
10963 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10964 if ((*pm)->p_type == PT_NULL)
10965 break;
10966 if (*pm == NULL)
10967 {
10968 m = bfd_zalloc (abfd, sizeof (*m));
10969 if (m == NULL)
10970 return FALSE;
10971
10972 m->p_type = PT_NULL;
10973 *pm = m;
10974 }
10975 }
10976
10977 return TRUE;
10978 }
10979 \f
10980 /* Return the section that should be marked against GC for a given
10981 relocation. */
10982
10983 asection *
10984 _bfd_mips_elf_gc_mark_hook (asection *sec,
10985 struct bfd_link_info *info,
10986 Elf_Internal_Rela *rel,
10987 struct elf_link_hash_entry *h,
10988 Elf_Internal_Sym *sym)
10989 {
10990 /* ??? Do mips16 stub sections need to be handled special? */
10991
10992 if (h != NULL)
10993 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10994 {
10995 case R_MIPS_GNU_VTINHERIT:
10996 case R_MIPS_GNU_VTENTRY:
10997 return NULL;
10998 }
10999
11000 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11001 }
11002
11003 /* Update the got entry reference counts for the section being removed. */
11004
11005 bfd_boolean
11006 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11007 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11008 asection *sec ATTRIBUTE_UNUSED,
11009 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11010 {
11011 #if 0
11012 Elf_Internal_Shdr *symtab_hdr;
11013 struct elf_link_hash_entry **sym_hashes;
11014 bfd_signed_vma *local_got_refcounts;
11015 const Elf_Internal_Rela *rel, *relend;
11016 unsigned long r_symndx;
11017 struct elf_link_hash_entry *h;
11018
11019 if (info->relocatable)
11020 return TRUE;
11021
11022 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11023 sym_hashes = elf_sym_hashes (abfd);
11024 local_got_refcounts = elf_local_got_refcounts (abfd);
11025
11026 relend = relocs + sec->reloc_count;
11027 for (rel = relocs; rel < relend; rel++)
11028 switch (ELF_R_TYPE (abfd, rel->r_info))
11029 {
11030 case R_MIPS16_GOT16:
11031 case R_MIPS16_CALL16:
11032 case R_MIPS_GOT16:
11033 case R_MIPS_CALL16:
11034 case R_MIPS_CALL_HI16:
11035 case R_MIPS_CALL_LO16:
11036 case R_MIPS_GOT_HI16:
11037 case R_MIPS_GOT_LO16:
11038 case R_MIPS_GOT_DISP:
11039 case R_MIPS_GOT_PAGE:
11040 case R_MIPS_GOT_OFST:
11041 /* ??? It would seem that the existing MIPS code does no sort
11042 of reference counting or whatnot on its GOT and PLT entries,
11043 so it is not possible to garbage collect them at this time. */
11044 break;
11045
11046 default:
11047 break;
11048 }
11049 #endif
11050
11051 return TRUE;
11052 }
11053 \f
11054 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11055 hiding the old indirect symbol. Process additional relocation
11056 information. Also called for weakdefs, in which case we just let
11057 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11058
11059 void
11060 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11061 struct elf_link_hash_entry *dir,
11062 struct elf_link_hash_entry *ind)
11063 {
11064 struct mips_elf_link_hash_entry *dirmips, *indmips;
11065
11066 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11067
11068 dirmips = (struct mips_elf_link_hash_entry *) dir;
11069 indmips = (struct mips_elf_link_hash_entry *) ind;
11070 /* Any absolute non-dynamic relocations against an indirect or weak
11071 definition will be against the target symbol. */
11072 if (indmips->has_static_relocs)
11073 dirmips->has_static_relocs = TRUE;
11074
11075 if (ind->root.type != bfd_link_hash_indirect)
11076 return;
11077
11078 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11079 if (indmips->readonly_reloc)
11080 dirmips->readonly_reloc = TRUE;
11081 if (indmips->no_fn_stub)
11082 dirmips->no_fn_stub = TRUE;
11083 if (indmips->fn_stub)
11084 {
11085 dirmips->fn_stub = indmips->fn_stub;
11086 indmips->fn_stub = NULL;
11087 }
11088 if (indmips->need_fn_stub)
11089 {
11090 dirmips->need_fn_stub = TRUE;
11091 indmips->need_fn_stub = FALSE;
11092 }
11093 if (indmips->call_stub)
11094 {
11095 dirmips->call_stub = indmips->call_stub;
11096 indmips->call_stub = NULL;
11097 }
11098 if (indmips->call_fp_stub)
11099 {
11100 dirmips->call_fp_stub = indmips->call_fp_stub;
11101 indmips->call_fp_stub = NULL;
11102 }
11103 if (indmips->global_got_area < dirmips->global_got_area)
11104 dirmips->global_got_area = indmips->global_got_area;
11105 if (indmips->global_got_area < GGA_NONE)
11106 indmips->global_got_area = GGA_NONE;
11107 if (indmips->has_nonpic_branches)
11108 dirmips->has_nonpic_branches = TRUE;
11109
11110 if (dirmips->tls_type == 0)
11111 dirmips->tls_type = indmips->tls_type;
11112 }
11113 \f
11114 #define PDR_SIZE 32
11115
11116 bfd_boolean
11117 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11118 struct bfd_link_info *info)
11119 {
11120 asection *o;
11121 bfd_boolean ret = FALSE;
11122 unsigned char *tdata;
11123 size_t i, skip;
11124
11125 o = bfd_get_section_by_name (abfd, ".pdr");
11126 if (! o)
11127 return FALSE;
11128 if (o->size == 0)
11129 return FALSE;
11130 if (o->size % PDR_SIZE != 0)
11131 return FALSE;
11132 if (o->output_section != NULL
11133 && bfd_is_abs_section (o->output_section))
11134 return FALSE;
11135
11136 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11137 if (! tdata)
11138 return FALSE;
11139
11140 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11141 info->keep_memory);
11142 if (!cookie->rels)
11143 {
11144 free (tdata);
11145 return FALSE;
11146 }
11147
11148 cookie->rel = cookie->rels;
11149 cookie->relend = cookie->rels + o->reloc_count;
11150
11151 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11152 {
11153 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11154 {
11155 tdata[i] = 1;
11156 skip ++;
11157 }
11158 }
11159
11160 if (skip != 0)
11161 {
11162 mips_elf_section_data (o)->u.tdata = tdata;
11163 o->size -= skip * PDR_SIZE;
11164 ret = TRUE;
11165 }
11166 else
11167 free (tdata);
11168
11169 if (! info->keep_memory)
11170 free (cookie->rels);
11171
11172 return ret;
11173 }
11174
11175 bfd_boolean
11176 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11177 {
11178 if (strcmp (sec->name, ".pdr") == 0)
11179 return TRUE;
11180 return FALSE;
11181 }
11182
11183 bfd_boolean
11184 _bfd_mips_elf_write_section (bfd *output_bfd,
11185 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11186 asection *sec, bfd_byte *contents)
11187 {
11188 bfd_byte *to, *from, *end;
11189 int i;
11190
11191 if (strcmp (sec->name, ".pdr") != 0)
11192 return FALSE;
11193
11194 if (mips_elf_section_data (sec)->u.tdata == NULL)
11195 return FALSE;
11196
11197 to = contents;
11198 end = contents + sec->size;
11199 for (from = contents, i = 0;
11200 from < end;
11201 from += PDR_SIZE, i++)
11202 {
11203 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11204 continue;
11205 if (to != from)
11206 memcpy (to, from, PDR_SIZE);
11207 to += PDR_SIZE;
11208 }
11209 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11210 sec->output_offset, sec->size);
11211 return TRUE;
11212 }
11213 \f
11214 /* MIPS ELF uses a special find_nearest_line routine in order the
11215 handle the ECOFF debugging information. */
11216
11217 struct mips_elf_find_line
11218 {
11219 struct ecoff_debug_info d;
11220 struct ecoff_find_line i;
11221 };
11222
11223 bfd_boolean
11224 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11225 asymbol **symbols, bfd_vma offset,
11226 const char **filename_ptr,
11227 const char **functionname_ptr,
11228 unsigned int *line_ptr)
11229 {
11230 asection *msec;
11231
11232 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11233 filename_ptr, functionname_ptr,
11234 line_ptr))
11235 return TRUE;
11236
11237 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11238 filename_ptr, functionname_ptr,
11239 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11240 &elf_tdata (abfd)->dwarf2_find_line_info))
11241 return TRUE;
11242
11243 msec = bfd_get_section_by_name (abfd, ".mdebug");
11244 if (msec != NULL)
11245 {
11246 flagword origflags;
11247 struct mips_elf_find_line *fi;
11248 const struct ecoff_debug_swap * const swap =
11249 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11250
11251 /* If we are called during a link, mips_elf_final_link may have
11252 cleared the SEC_HAS_CONTENTS field. We force it back on here
11253 if appropriate (which it normally will be). */
11254 origflags = msec->flags;
11255 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11256 msec->flags |= SEC_HAS_CONTENTS;
11257
11258 fi = elf_tdata (abfd)->find_line_info;
11259 if (fi == NULL)
11260 {
11261 bfd_size_type external_fdr_size;
11262 char *fraw_src;
11263 char *fraw_end;
11264 struct fdr *fdr_ptr;
11265 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11266
11267 fi = bfd_zalloc (abfd, amt);
11268 if (fi == NULL)
11269 {
11270 msec->flags = origflags;
11271 return FALSE;
11272 }
11273
11274 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11275 {
11276 msec->flags = origflags;
11277 return FALSE;
11278 }
11279
11280 /* Swap in the FDR information. */
11281 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11282 fi->d.fdr = bfd_alloc (abfd, amt);
11283 if (fi->d.fdr == NULL)
11284 {
11285 msec->flags = origflags;
11286 return FALSE;
11287 }
11288 external_fdr_size = swap->external_fdr_size;
11289 fdr_ptr = fi->d.fdr;
11290 fraw_src = (char *) fi->d.external_fdr;
11291 fraw_end = (fraw_src
11292 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11293 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11294 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11295
11296 elf_tdata (abfd)->find_line_info = fi;
11297
11298 /* Note that we don't bother to ever free this information.
11299 find_nearest_line is either called all the time, as in
11300 objdump -l, so the information should be saved, or it is
11301 rarely called, as in ld error messages, so the memory
11302 wasted is unimportant. Still, it would probably be a
11303 good idea for free_cached_info to throw it away. */
11304 }
11305
11306 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11307 &fi->i, filename_ptr, functionname_ptr,
11308 line_ptr))
11309 {
11310 msec->flags = origflags;
11311 return TRUE;
11312 }
11313
11314 msec->flags = origflags;
11315 }
11316
11317 /* Fall back on the generic ELF find_nearest_line routine. */
11318
11319 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11320 filename_ptr, functionname_ptr,
11321 line_ptr);
11322 }
11323
11324 bfd_boolean
11325 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11326 const char **filename_ptr,
11327 const char **functionname_ptr,
11328 unsigned int *line_ptr)
11329 {
11330 bfd_boolean found;
11331 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11332 functionname_ptr, line_ptr,
11333 & elf_tdata (abfd)->dwarf2_find_line_info);
11334 return found;
11335 }
11336
11337 \f
11338 /* When are writing out the .options or .MIPS.options section,
11339 remember the bytes we are writing out, so that we can install the
11340 GP value in the section_processing routine. */
11341
11342 bfd_boolean
11343 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11344 const void *location,
11345 file_ptr offset, bfd_size_type count)
11346 {
11347 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11348 {
11349 bfd_byte *c;
11350
11351 if (elf_section_data (section) == NULL)
11352 {
11353 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11354 section->used_by_bfd = bfd_zalloc (abfd, amt);
11355 if (elf_section_data (section) == NULL)
11356 return FALSE;
11357 }
11358 c = mips_elf_section_data (section)->u.tdata;
11359 if (c == NULL)
11360 {
11361 c = bfd_zalloc (abfd, section->size);
11362 if (c == NULL)
11363 return FALSE;
11364 mips_elf_section_data (section)->u.tdata = c;
11365 }
11366
11367 memcpy (c + offset, location, count);
11368 }
11369
11370 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11371 count);
11372 }
11373
11374 /* This is almost identical to bfd_generic_get_... except that some
11375 MIPS relocations need to be handled specially. Sigh. */
11376
11377 bfd_byte *
11378 _bfd_elf_mips_get_relocated_section_contents
11379 (bfd *abfd,
11380 struct bfd_link_info *link_info,
11381 struct bfd_link_order *link_order,
11382 bfd_byte *data,
11383 bfd_boolean relocatable,
11384 asymbol **symbols)
11385 {
11386 /* Get enough memory to hold the stuff */
11387 bfd *input_bfd = link_order->u.indirect.section->owner;
11388 asection *input_section = link_order->u.indirect.section;
11389 bfd_size_type sz;
11390
11391 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11392 arelent **reloc_vector = NULL;
11393 long reloc_count;
11394
11395 if (reloc_size < 0)
11396 goto error_return;
11397
11398 reloc_vector = bfd_malloc (reloc_size);
11399 if (reloc_vector == NULL && reloc_size != 0)
11400 goto error_return;
11401
11402 /* read in the section */
11403 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11404 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11405 goto error_return;
11406
11407 reloc_count = bfd_canonicalize_reloc (input_bfd,
11408 input_section,
11409 reloc_vector,
11410 symbols);
11411 if (reloc_count < 0)
11412 goto error_return;
11413
11414 if (reloc_count > 0)
11415 {
11416 arelent **parent;
11417 /* for mips */
11418 int gp_found;
11419 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11420
11421 {
11422 struct bfd_hash_entry *h;
11423 struct bfd_link_hash_entry *lh;
11424 /* Skip all this stuff if we aren't mixing formats. */
11425 if (abfd && input_bfd
11426 && abfd->xvec == input_bfd->xvec)
11427 lh = 0;
11428 else
11429 {
11430 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11431 lh = (struct bfd_link_hash_entry *) h;
11432 }
11433 lookup:
11434 if (lh)
11435 {
11436 switch (lh->type)
11437 {
11438 case bfd_link_hash_undefined:
11439 case bfd_link_hash_undefweak:
11440 case bfd_link_hash_common:
11441 gp_found = 0;
11442 break;
11443 case bfd_link_hash_defined:
11444 case bfd_link_hash_defweak:
11445 gp_found = 1;
11446 gp = lh->u.def.value;
11447 break;
11448 case bfd_link_hash_indirect:
11449 case bfd_link_hash_warning:
11450 lh = lh->u.i.link;
11451 /* @@FIXME ignoring warning for now */
11452 goto lookup;
11453 case bfd_link_hash_new:
11454 default:
11455 abort ();
11456 }
11457 }
11458 else
11459 gp_found = 0;
11460 }
11461 /* end mips */
11462 for (parent = reloc_vector; *parent != NULL; parent++)
11463 {
11464 char *error_message = NULL;
11465 bfd_reloc_status_type r;
11466
11467 /* Specific to MIPS: Deal with relocation types that require
11468 knowing the gp of the output bfd. */
11469 asymbol *sym = *(*parent)->sym_ptr_ptr;
11470
11471 /* If we've managed to find the gp and have a special
11472 function for the relocation then go ahead, else default
11473 to the generic handling. */
11474 if (gp_found
11475 && (*parent)->howto->special_function
11476 == _bfd_mips_elf32_gprel16_reloc)
11477 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11478 input_section, relocatable,
11479 data, gp);
11480 else
11481 r = bfd_perform_relocation (input_bfd, *parent, data,
11482 input_section,
11483 relocatable ? abfd : NULL,
11484 &error_message);
11485
11486 if (relocatable)
11487 {
11488 asection *os = input_section->output_section;
11489
11490 /* A partial link, so keep the relocs */
11491 os->orelocation[os->reloc_count] = *parent;
11492 os->reloc_count++;
11493 }
11494
11495 if (r != bfd_reloc_ok)
11496 {
11497 switch (r)
11498 {
11499 case bfd_reloc_undefined:
11500 if (!((*link_info->callbacks->undefined_symbol)
11501 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11502 input_bfd, input_section, (*parent)->address, TRUE)))
11503 goto error_return;
11504 break;
11505 case bfd_reloc_dangerous:
11506 BFD_ASSERT (error_message != NULL);
11507 if (!((*link_info->callbacks->reloc_dangerous)
11508 (link_info, error_message, input_bfd, input_section,
11509 (*parent)->address)))
11510 goto error_return;
11511 break;
11512 case bfd_reloc_overflow:
11513 if (!((*link_info->callbacks->reloc_overflow)
11514 (link_info, NULL,
11515 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11516 (*parent)->howto->name, (*parent)->addend,
11517 input_bfd, input_section, (*parent)->address)))
11518 goto error_return;
11519 break;
11520 case bfd_reloc_outofrange:
11521 default:
11522 abort ();
11523 break;
11524 }
11525
11526 }
11527 }
11528 }
11529 if (reloc_vector != NULL)
11530 free (reloc_vector);
11531 return data;
11532
11533 error_return:
11534 if (reloc_vector != NULL)
11535 free (reloc_vector);
11536 return NULL;
11537 }
11538 \f
11539 /* Create a MIPS ELF linker hash table. */
11540
11541 struct bfd_link_hash_table *
11542 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11543 {
11544 struct mips_elf_link_hash_table *ret;
11545 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11546
11547 ret = bfd_malloc (amt);
11548 if (ret == NULL)
11549 return NULL;
11550
11551 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11552 mips_elf_link_hash_newfunc,
11553 sizeof (struct mips_elf_link_hash_entry),
11554 MIPS_ELF_DATA))
11555 {
11556 free (ret);
11557 return NULL;
11558 }
11559
11560 #if 0
11561 /* We no longer use this. */
11562 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11563 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11564 #endif
11565 ret->procedure_count = 0;
11566 ret->compact_rel_size = 0;
11567 ret->use_rld_obj_head = FALSE;
11568 ret->rld_value = 0;
11569 ret->mips16_stubs_seen = FALSE;
11570 ret->use_plts_and_copy_relocs = FALSE;
11571 ret->is_vxworks = FALSE;
11572 ret->small_data_overflow_reported = FALSE;
11573 ret->srelbss = NULL;
11574 ret->sdynbss = NULL;
11575 ret->srelplt = NULL;
11576 ret->srelplt2 = NULL;
11577 ret->sgotplt = NULL;
11578 ret->splt = NULL;
11579 ret->sstubs = NULL;
11580 ret->sgot = NULL;
11581 ret->got_info = NULL;
11582 ret->plt_header_size = 0;
11583 ret->plt_entry_size = 0;
11584 ret->lazy_stub_count = 0;
11585 ret->function_stub_size = 0;
11586 ret->strampoline = NULL;
11587 ret->la25_stubs = NULL;
11588 ret->add_stub_section = NULL;
11589
11590 return &ret->root.root;
11591 }
11592
11593 /* Likewise, but indicate that the target is VxWorks. */
11594
11595 struct bfd_link_hash_table *
11596 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11597 {
11598 struct bfd_link_hash_table *ret;
11599
11600 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11601 if (ret)
11602 {
11603 struct mips_elf_link_hash_table *htab;
11604
11605 htab = (struct mips_elf_link_hash_table *) ret;
11606 htab->use_plts_and_copy_relocs = TRUE;
11607 htab->is_vxworks = TRUE;
11608 }
11609 return ret;
11610 }
11611
11612 /* A function that the linker calls if we are allowed to use PLTs
11613 and copy relocs. */
11614
11615 void
11616 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11617 {
11618 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11619 }
11620 \f
11621 /* We need to use a special link routine to handle the .reginfo and
11622 the .mdebug sections. We need to merge all instances of these
11623 sections together, not write them all out sequentially. */
11624
11625 bfd_boolean
11626 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11627 {
11628 asection *o;
11629 struct bfd_link_order *p;
11630 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11631 asection *rtproc_sec;
11632 Elf32_RegInfo reginfo;
11633 struct ecoff_debug_info debug;
11634 struct mips_htab_traverse_info hti;
11635 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11636 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11637 HDRR *symhdr = &debug.symbolic_header;
11638 void *mdebug_handle = NULL;
11639 asection *s;
11640 EXTR esym;
11641 unsigned int i;
11642 bfd_size_type amt;
11643 struct mips_elf_link_hash_table *htab;
11644
11645 static const char * const secname[] =
11646 {
11647 ".text", ".init", ".fini", ".data",
11648 ".rodata", ".sdata", ".sbss", ".bss"
11649 };
11650 static const int sc[] =
11651 {
11652 scText, scInit, scFini, scData,
11653 scRData, scSData, scSBss, scBss
11654 };
11655
11656 /* Sort the dynamic symbols so that those with GOT entries come after
11657 those without. */
11658 htab = mips_elf_hash_table (info);
11659 BFD_ASSERT (htab != NULL);
11660
11661 if (!mips_elf_sort_hash_table (abfd, info))
11662 return FALSE;
11663
11664 /* Create any scheduled LA25 stubs. */
11665 hti.info = info;
11666 hti.output_bfd = abfd;
11667 hti.error = FALSE;
11668 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11669 if (hti.error)
11670 return FALSE;
11671
11672 /* Get a value for the GP register. */
11673 if (elf_gp (abfd) == 0)
11674 {
11675 struct bfd_link_hash_entry *h;
11676
11677 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11678 if (h != NULL && h->type == bfd_link_hash_defined)
11679 elf_gp (abfd) = (h->u.def.value
11680 + h->u.def.section->output_section->vma
11681 + h->u.def.section->output_offset);
11682 else if (htab->is_vxworks
11683 && (h = bfd_link_hash_lookup (info->hash,
11684 "_GLOBAL_OFFSET_TABLE_",
11685 FALSE, FALSE, TRUE))
11686 && h->type == bfd_link_hash_defined)
11687 elf_gp (abfd) = (h->u.def.section->output_section->vma
11688 + h->u.def.section->output_offset
11689 + h->u.def.value);
11690 else if (info->relocatable)
11691 {
11692 bfd_vma lo = MINUS_ONE;
11693
11694 /* Find the GP-relative section with the lowest offset. */
11695 for (o = abfd->sections; o != NULL; o = o->next)
11696 if (o->vma < lo
11697 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11698 lo = o->vma;
11699
11700 /* And calculate GP relative to that. */
11701 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11702 }
11703 else
11704 {
11705 /* If the relocate_section function needs to do a reloc
11706 involving the GP value, it should make a reloc_dangerous
11707 callback to warn that GP is not defined. */
11708 }
11709 }
11710
11711 /* Go through the sections and collect the .reginfo and .mdebug
11712 information. */
11713 reginfo_sec = NULL;
11714 mdebug_sec = NULL;
11715 gptab_data_sec = NULL;
11716 gptab_bss_sec = NULL;
11717 for (o = abfd->sections; o != NULL; o = o->next)
11718 {
11719 if (strcmp (o->name, ".reginfo") == 0)
11720 {
11721 memset (&reginfo, 0, sizeof reginfo);
11722
11723 /* We have found the .reginfo section in the output file.
11724 Look through all the link_orders comprising it and merge
11725 the information together. */
11726 for (p = o->map_head.link_order; p != NULL; p = p->next)
11727 {
11728 asection *input_section;
11729 bfd *input_bfd;
11730 Elf32_External_RegInfo ext;
11731 Elf32_RegInfo sub;
11732
11733 if (p->type != bfd_indirect_link_order)
11734 {
11735 if (p->type == bfd_data_link_order)
11736 continue;
11737 abort ();
11738 }
11739
11740 input_section = p->u.indirect.section;
11741 input_bfd = input_section->owner;
11742
11743 if (! bfd_get_section_contents (input_bfd, input_section,
11744 &ext, 0, sizeof ext))
11745 return FALSE;
11746
11747 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11748
11749 reginfo.ri_gprmask |= sub.ri_gprmask;
11750 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11751 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11752 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11753 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11754
11755 /* ri_gp_value is set by the function
11756 mips_elf32_section_processing when the section is
11757 finally written out. */
11758
11759 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11760 elf_link_input_bfd ignores this section. */
11761 input_section->flags &= ~SEC_HAS_CONTENTS;
11762 }
11763
11764 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11765 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11766
11767 /* Skip this section later on (I don't think this currently
11768 matters, but someday it might). */
11769 o->map_head.link_order = NULL;
11770
11771 reginfo_sec = o;
11772 }
11773
11774 if (strcmp (o->name, ".mdebug") == 0)
11775 {
11776 struct extsym_info einfo;
11777 bfd_vma last;
11778
11779 /* We have found the .mdebug section in the output file.
11780 Look through all the link_orders comprising it and merge
11781 the information together. */
11782 symhdr->magic = swap->sym_magic;
11783 /* FIXME: What should the version stamp be? */
11784 symhdr->vstamp = 0;
11785 symhdr->ilineMax = 0;
11786 symhdr->cbLine = 0;
11787 symhdr->idnMax = 0;
11788 symhdr->ipdMax = 0;
11789 symhdr->isymMax = 0;
11790 symhdr->ioptMax = 0;
11791 symhdr->iauxMax = 0;
11792 symhdr->issMax = 0;
11793 symhdr->issExtMax = 0;
11794 symhdr->ifdMax = 0;
11795 symhdr->crfd = 0;
11796 symhdr->iextMax = 0;
11797
11798 /* We accumulate the debugging information itself in the
11799 debug_info structure. */
11800 debug.line = NULL;
11801 debug.external_dnr = NULL;
11802 debug.external_pdr = NULL;
11803 debug.external_sym = NULL;
11804 debug.external_opt = NULL;
11805 debug.external_aux = NULL;
11806 debug.ss = NULL;
11807 debug.ssext = debug.ssext_end = NULL;
11808 debug.external_fdr = NULL;
11809 debug.external_rfd = NULL;
11810 debug.external_ext = debug.external_ext_end = NULL;
11811
11812 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11813 if (mdebug_handle == NULL)
11814 return FALSE;
11815
11816 esym.jmptbl = 0;
11817 esym.cobol_main = 0;
11818 esym.weakext = 0;
11819 esym.reserved = 0;
11820 esym.ifd = ifdNil;
11821 esym.asym.iss = issNil;
11822 esym.asym.st = stLocal;
11823 esym.asym.reserved = 0;
11824 esym.asym.index = indexNil;
11825 last = 0;
11826 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11827 {
11828 esym.asym.sc = sc[i];
11829 s = bfd_get_section_by_name (abfd, secname[i]);
11830 if (s != NULL)
11831 {
11832 esym.asym.value = s->vma;
11833 last = s->vma + s->size;
11834 }
11835 else
11836 esym.asym.value = last;
11837 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11838 secname[i], &esym))
11839 return FALSE;
11840 }
11841
11842 for (p = o->map_head.link_order; p != NULL; p = p->next)
11843 {
11844 asection *input_section;
11845 bfd *input_bfd;
11846 const struct ecoff_debug_swap *input_swap;
11847 struct ecoff_debug_info input_debug;
11848 char *eraw_src;
11849 char *eraw_end;
11850
11851 if (p->type != bfd_indirect_link_order)
11852 {
11853 if (p->type == bfd_data_link_order)
11854 continue;
11855 abort ();
11856 }
11857
11858 input_section = p->u.indirect.section;
11859 input_bfd = input_section->owner;
11860
11861 if (!is_mips_elf (input_bfd))
11862 {
11863 /* I don't know what a non MIPS ELF bfd would be
11864 doing with a .mdebug section, but I don't really
11865 want to deal with it. */
11866 continue;
11867 }
11868
11869 input_swap = (get_elf_backend_data (input_bfd)
11870 ->elf_backend_ecoff_debug_swap);
11871
11872 BFD_ASSERT (p->size == input_section->size);
11873
11874 /* The ECOFF linking code expects that we have already
11875 read in the debugging information and set up an
11876 ecoff_debug_info structure, so we do that now. */
11877 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11878 &input_debug))
11879 return FALSE;
11880
11881 if (! (bfd_ecoff_debug_accumulate
11882 (mdebug_handle, abfd, &debug, swap, input_bfd,
11883 &input_debug, input_swap, info)))
11884 return FALSE;
11885
11886 /* Loop through the external symbols. For each one with
11887 interesting information, try to find the symbol in
11888 the linker global hash table and save the information
11889 for the output external symbols. */
11890 eraw_src = input_debug.external_ext;
11891 eraw_end = (eraw_src
11892 + (input_debug.symbolic_header.iextMax
11893 * input_swap->external_ext_size));
11894 for (;
11895 eraw_src < eraw_end;
11896 eraw_src += input_swap->external_ext_size)
11897 {
11898 EXTR ext;
11899 const char *name;
11900 struct mips_elf_link_hash_entry *h;
11901
11902 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11903 if (ext.asym.sc == scNil
11904 || ext.asym.sc == scUndefined
11905 || ext.asym.sc == scSUndefined)
11906 continue;
11907
11908 name = input_debug.ssext + ext.asym.iss;
11909 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11910 name, FALSE, FALSE, TRUE);
11911 if (h == NULL || h->esym.ifd != -2)
11912 continue;
11913
11914 if (ext.ifd != -1)
11915 {
11916 BFD_ASSERT (ext.ifd
11917 < input_debug.symbolic_header.ifdMax);
11918 ext.ifd = input_debug.ifdmap[ext.ifd];
11919 }
11920
11921 h->esym = ext;
11922 }
11923
11924 /* Free up the information we just read. */
11925 free (input_debug.line);
11926 free (input_debug.external_dnr);
11927 free (input_debug.external_pdr);
11928 free (input_debug.external_sym);
11929 free (input_debug.external_opt);
11930 free (input_debug.external_aux);
11931 free (input_debug.ss);
11932 free (input_debug.ssext);
11933 free (input_debug.external_fdr);
11934 free (input_debug.external_rfd);
11935 free (input_debug.external_ext);
11936
11937 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11938 elf_link_input_bfd ignores this section. */
11939 input_section->flags &= ~SEC_HAS_CONTENTS;
11940 }
11941
11942 if (SGI_COMPAT (abfd) && info->shared)
11943 {
11944 /* Create .rtproc section. */
11945 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11946 if (rtproc_sec == NULL)
11947 {
11948 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11949 | SEC_LINKER_CREATED | SEC_READONLY);
11950
11951 rtproc_sec = bfd_make_section_with_flags (abfd,
11952 ".rtproc",
11953 flags);
11954 if (rtproc_sec == NULL
11955 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11956 return FALSE;
11957 }
11958
11959 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11960 info, rtproc_sec,
11961 &debug))
11962 return FALSE;
11963 }
11964
11965 /* Build the external symbol information. */
11966 einfo.abfd = abfd;
11967 einfo.info = info;
11968 einfo.debug = &debug;
11969 einfo.swap = swap;
11970 einfo.failed = FALSE;
11971 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11972 mips_elf_output_extsym, &einfo);
11973 if (einfo.failed)
11974 return FALSE;
11975
11976 /* Set the size of the .mdebug section. */
11977 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11978
11979 /* Skip this section later on (I don't think this currently
11980 matters, but someday it might). */
11981 o->map_head.link_order = NULL;
11982
11983 mdebug_sec = o;
11984 }
11985
11986 if (CONST_STRNEQ (o->name, ".gptab."))
11987 {
11988 const char *subname;
11989 unsigned int c;
11990 Elf32_gptab *tab;
11991 Elf32_External_gptab *ext_tab;
11992 unsigned int j;
11993
11994 /* The .gptab.sdata and .gptab.sbss sections hold
11995 information describing how the small data area would
11996 change depending upon the -G switch. These sections
11997 not used in executables files. */
11998 if (! info->relocatable)
11999 {
12000 for (p = o->map_head.link_order; p != NULL; p = p->next)
12001 {
12002 asection *input_section;
12003
12004 if (p->type != bfd_indirect_link_order)
12005 {
12006 if (p->type == bfd_data_link_order)
12007 continue;
12008 abort ();
12009 }
12010
12011 input_section = p->u.indirect.section;
12012
12013 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12014 elf_link_input_bfd ignores this section. */
12015 input_section->flags &= ~SEC_HAS_CONTENTS;
12016 }
12017
12018 /* Skip this section later on (I don't think this
12019 currently matters, but someday it might). */
12020 o->map_head.link_order = NULL;
12021
12022 /* Really remove the section. */
12023 bfd_section_list_remove (abfd, o);
12024 --abfd->section_count;
12025
12026 continue;
12027 }
12028
12029 /* There is one gptab for initialized data, and one for
12030 uninitialized data. */
12031 if (strcmp (o->name, ".gptab.sdata") == 0)
12032 gptab_data_sec = o;
12033 else if (strcmp (o->name, ".gptab.sbss") == 0)
12034 gptab_bss_sec = o;
12035 else
12036 {
12037 (*_bfd_error_handler)
12038 (_("%s: illegal section name `%s'"),
12039 bfd_get_filename (abfd), o->name);
12040 bfd_set_error (bfd_error_nonrepresentable_section);
12041 return FALSE;
12042 }
12043
12044 /* The linker script always combines .gptab.data and
12045 .gptab.sdata into .gptab.sdata, and likewise for
12046 .gptab.bss and .gptab.sbss. It is possible that there is
12047 no .sdata or .sbss section in the output file, in which
12048 case we must change the name of the output section. */
12049 subname = o->name + sizeof ".gptab" - 1;
12050 if (bfd_get_section_by_name (abfd, subname) == NULL)
12051 {
12052 if (o == gptab_data_sec)
12053 o->name = ".gptab.data";
12054 else
12055 o->name = ".gptab.bss";
12056 subname = o->name + sizeof ".gptab" - 1;
12057 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12058 }
12059
12060 /* Set up the first entry. */
12061 c = 1;
12062 amt = c * sizeof (Elf32_gptab);
12063 tab = bfd_malloc (amt);
12064 if (tab == NULL)
12065 return FALSE;
12066 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12067 tab[0].gt_header.gt_unused = 0;
12068
12069 /* Combine the input sections. */
12070 for (p = o->map_head.link_order; p != NULL; p = p->next)
12071 {
12072 asection *input_section;
12073 bfd *input_bfd;
12074 bfd_size_type size;
12075 unsigned long last;
12076 bfd_size_type gpentry;
12077
12078 if (p->type != bfd_indirect_link_order)
12079 {
12080 if (p->type == bfd_data_link_order)
12081 continue;
12082 abort ();
12083 }
12084
12085 input_section = p->u.indirect.section;
12086 input_bfd = input_section->owner;
12087
12088 /* Combine the gptab entries for this input section one
12089 by one. We know that the input gptab entries are
12090 sorted by ascending -G value. */
12091 size = input_section->size;
12092 last = 0;
12093 for (gpentry = sizeof (Elf32_External_gptab);
12094 gpentry < size;
12095 gpentry += sizeof (Elf32_External_gptab))
12096 {
12097 Elf32_External_gptab ext_gptab;
12098 Elf32_gptab int_gptab;
12099 unsigned long val;
12100 unsigned long add;
12101 bfd_boolean exact;
12102 unsigned int look;
12103
12104 if (! (bfd_get_section_contents
12105 (input_bfd, input_section, &ext_gptab, gpentry,
12106 sizeof (Elf32_External_gptab))))
12107 {
12108 free (tab);
12109 return FALSE;
12110 }
12111
12112 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12113 &int_gptab);
12114 val = int_gptab.gt_entry.gt_g_value;
12115 add = int_gptab.gt_entry.gt_bytes - last;
12116
12117 exact = FALSE;
12118 for (look = 1; look < c; look++)
12119 {
12120 if (tab[look].gt_entry.gt_g_value >= val)
12121 tab[look].gt_entry.gt_bytes += add;
12122
12123 if (tab[look].gt_entry.gt_g_value == val)
12124 exact = TRUE;
12125 }
12126
12127 if (! exact)
12128 {
12129 Elf32_gptab *new_tab;
12130 unsigned int max;
12131
12132 /* We need a new table entry. */
12133 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12134 new_tab = bfd_realloc (tab, amt);
12135 if (new_tab == NULL)
12136 {
12137 free (tab);
12138 return FALSE;
12139 }
12140 tab = new_tab;
12141 tab[c].gt_entry.gt_g_value = val;
12142 tab[c].gt_entry.gt_bytes = add;
12143
12144 /* Merge in the size for the next smallest -G
12145 value, since that will be implied by this new
12146 value. */
12147 max = 0;
12148 for (look = 1; look < c; look++)
12149 {
12150 if (tab[look].gt_entry.gt_g_value < val
12151 && (max == 0
12152 || (tab[look].gt_entry.gt_g_value
12153 > tab[max].gt_entry.gt_g_value)))
12154 max = look;
12155 }
12156 if (max != 0)
12157 tab[c].gt_entry.gt_bytes +=
12158 tab[max].gt_entry.gt_bytes;
12159
12160 ++c;
12161 }
12162
12163 last = int_gptab.gt_entry.gt_bytes;
12164 }
12165
12166 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12167 elf_link_input_bfd ignores this section. */
12168 input_section->flags &= ~SEC_HAS_CONTENTS;
12169 }
12170
12171 /* The table must be sorted by -G value. */
12172 if (c > 2)
12173 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12174
12175 /* Swap out the table. */
12176 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12177 ext_tab = bfd_alloc (abfd, amt);
12178 if (ext_tab == NULL)
12179 {
12180 free (tab);
12181 return FALSE;
12182 }
12183
12184 for (j = 0; j < c; j++)
12185 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12186 free (tab);
12187
12188 o->size = c * sizeof (Elf32_External_gptab);
12189 o->contents = (bfd_byte *) ext_tab;
12190
12191 /* Skip this section later on (I don't think this currently
12192 matters, but someday it might). */
12193 o->map_head.link_order = NULL;
12194 }
12195 }
12196
12197 /* Invoke the regular ELF backend linker to do all the work. */
12198 if (!bfd_elf_final_link (abfd, info))
12199 return FALSE;
12200
12201 /* Now write out the computed sections. */
12202
12203 if (reginfo_sec != NULL)
12204 {
12205 Elf32_External_RegInfo ext;
12206
12207 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12208 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12209 return FALSE;
12210 }
12211
12212 if (mdebug_sec != NULL)
12213 {
12214 BFD_ASSERT (abfd->output_has_begun);
12215 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12216 swap, info,
12217 mdebug_sec->filepos))
12218 return FALSE;
12219
12220 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12221 }
12222
12223 if (gptab_data_sec != NULL)
12224 {
12225 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12226 gptab_data_sec->contents,
12227 0, gptab_data_sec->size))
12228 return FALSE;
12229 }
12230
12231 if (gptab_bss_sec != NULL)
12232 {
12233 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12234 gptab_bss_sec->contents,
12235 0, gptab_bss_sec->size))
12236 return FALSE;
12237 }
12238
12239 if (SGI_COMPAT (abfd))
12240 {
12241 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12242 if (rtproc_sec != NULL)
12243 {
12244 if (! bfd_set_section_contents (abfd, rtproc_sec,
12245 rtproc_sec->contents,
12246 0, rtproc_sec->size))
12247 return FALSE;
12248 }
12249 }
12250
12251 return TRUE;
12252 }
12253 \f
12254 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12255
12256 struct mips_mach_extension {
12257 unsigned long extension, base;
12258 };
12259
12260
12261 /* An array describing how BFD machines relate to one another. The entries
12262 are ordered topologically with MIPS I extensions listed last. */
12263
12264 static const struct mips_mach_extension mips_mach_extensions[] = {
12265 /* MIPS64r2 extensions. */
12266 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12267
12268 /* MIPS64 extensions. */
12269 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12270 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12271 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12272 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
12273
12274 /* MIPS V extensions. */
12275 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12276
12277 /* R10000 extensions. */
12278 { bfd_mach_mips12000, bfd_mach_mips10000 },
12279 { bfd_mach_mips14000, bfd_mach_mips10000 },
12280 { bfd_mach_mips16000, bfd_mach_mips10000 },
12281
12282 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12283 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12284 better to allow vr5400 and vr5500 code to be merged anyway, since
12285 many libraries will just use the core ISA. Perhaps we could add
12286 some sort of ASE flag if this ever proves a problem. */
12287 { bfd_mach_mips5500, bfd_mach_mips5400 },
12288 { bfd_mach_mips5400, bfd_mach_mips5000 },
12289
12290 /* MIPS IV extensions. */
12291 { bfd_mach_mips5, bfd_mach_mips8000 },
12292 { bfd_mach_mips10000, bfd_mach_mips8000 },
12293 { bfd_mach_mips5000, bfd_mach_mips8000 },
12294 { bfd_mach_mips7000, bfd_mach_mips8000 },
12295 { bfd_mach_mips9000, bfd_mach_mips8000 },
12296
12297 /* VR4100 extensions. */
12298 { bfd_mach_mips4120, bfd_mach_mips4100 },
12299 { bfd_mach_mips4111, bfd_mach_mips4100 },
12300
12301 /* MIPS III extensions. */
12302 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12303 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12304 { bfd_mach_mips8000, bfd_mach_mips4000 },
12305 { bfd_mach_mips4650, bfd_mach_mips4000 },
12306 { bfd_mach_mips4600, bfd_mach_mips4000 },
12307 { bfd_mach_mips4400, bfd_mach_mips4000 },
12308 { bfd_mach_mips4300, bfd_mach_mips4000 },
12309 { bfd_mach_mips4100, bfd_mach_mips4000 },
12310 { bfd_mach_mips4010, bfd_mach_mips4000 },
12311
12312 /* MIPS32 extensions. */
12313 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12314
12315 /* MIPS II extensions. */
12316 { bfd_mach_mips4000, bfd_mach_mips6000 },
12317 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12318
12319 /* MIPS I extensions. */
12320 { bfd_mach_mips6000, bfd_mach_mips3000 },
12321 { bfd_mach_mips3900, bfd_mach_mips3000 }
12322 };
12323
12324
12325 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12326
12327 static bfd_boolean
12328 mips_mach_extends_p (unsigned long base, unsigned long extension)
12329 {
12330 size_t i;
12331
12332 if (extension == base)
12333 return TRUE;
12334
12335 if (base == bfd_mach_mipsisa32
12336 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12337 return TRUE;
12338
12339 if (base == bfd_mach_mipsisa32r2
12340 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12341 return TRUE;
12342
12343 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12344 if (extension == mips_mach_extensions[i].extension)
12345 {
12346 extension = mips_mach_extensions[i].base;
12347 if (extension == base)
12348 return TRUE;
12349 }
12350
12351 return FALSE;
12352 }
12353
12354
12355 /* Return true if the given ELF header flags describe a 32-bit binary. */
12356
12357 static bfd_boolean
12358 mips_32bit_flags_p (flagword flags)
12359 {
12360 return ((flags & EF_MIPS_32BITMODE) != 0
12361 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12362 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12363 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12364 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12365 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12366 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12367 }
12368
12369
12370 /* Merge object attributes from IBFD into OBFD. Raise an error if
12371 there are conflicting attributes. */
12372 static bfd_boolean
12373 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12374 {
12375 obj_attribute *in_attr;
12376 obj_attribute *out_attr;
12377
12378 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12379 {
12380 /* This is the first object. Copy the attributes. */
12381 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12382
12383 /* Use the Tag_null value to indicate the attributes have been
12384 initialized. */
12385 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12386
12387 return TRUE;
12388 }
12389
12390 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12391 non-conflicting ones. */
12392 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12393 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12394 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12395 {
12396 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12397 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12398 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12399 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12400 ;
12401 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12402 _bfd_error_handler
12403 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12404 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12405 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12406 _bfd_error_handler
12407 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12408 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12409 else
12410 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12411 {
12412 case 1:
12413 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12414 {
12415 case 2:
12416 _bfd_error_handler
12417 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12418 obfd, ibfd);
12419 break;
12420
12421 case 3:
12422 _bfd_error_handler
12423 (_("Warning: %B uses hard float, %B uses soft float"),
12424 obfd, ibfd);
12425 break;
12426
12427 case 4:
12428 _bfd_error_handler
12429 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12430 obfd, ibfd);
12431 break;
12432
12433 default:
12434 abort ();
12435 }
12436 break;
12437
12438 case 2:
12439 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12440 {
12441 case 1:
12442 _bfd_error_handler
12443 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12444 ibfd, obfd);
12445 break;
12446
12447 case 3:
12448 _bfd_error_handler
12449 (_("Warning: %B uses hard float, %B uses soft float"),
12450 obfd, ibfd);
12451 break;
12452
12453 case 4:
12454 _bfd_error_handler
12455 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12456 obfd, ibfd);
12457 break;
12458
12459 default:
12460 abort ();
12461 }
12462 break;
12463
12464 case 3:
12465 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12466 {
12467 case 1:
12468 case 2:
12469 case 4:
12470 _bfd_error_handler
12471 (_("Warning: %B uses hard float, %B uses soft float"),
12472 ibfd, obfd);
12473 break;
12474
12475 default:
12476 abort ();
12477 }
12478 break;
12479
12480 case 4:
12481 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12482 {
12483 case 1:
12484 _bfd_error_handler
12485 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12486 ibfd, obfd);
12487 break;
12488
12489 case 2:
12490 _bfd_error_handler
12491 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12492 ibfd, obfd);
12493 break;
12494
12495 case 3:
12496 _bfd_error_handler
12497 (_("Warning: %B uses hard float, %B uses soft float"),
12498 obfd, ibfd);
12499 break;
12500
12501 default:
12502 abort ();
12503 }
12504 break;
12505
12506 default:
12507 abort ();
12508 }
12509 }
12510
12511 /* Merge Tag_compatibility attributes and any common GNU ones. */
12512 _bfd_elf_merge_object_attributes (ibfd, obfd);
12513
12514 return TRUE;
12515 }
12516
12517 /* Merge backend specific data from an object file to the output
12518 object file when linking. */
12519
12520 bfd_boolean
12521 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12522 {
12523 flagword old_flags;
12524 flagword new_flags;
12525 bfd_boolean ok;
12526 bfd_boolean null_input_bfd = TRUE;
12527 asection *sec;
12528
12529 /* Check if we have the same endianness. */
12530 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12531 {
12532 (*_bfd_error_handler)
12533 (_("%B: endianness incompatible with that of the selected emulation"),
12534 ibfd);
12535 return FALSE;
12536 }
12537
12538 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12539 return TRUE;
12540
12541 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12542 {
12543 (*_bfd_error_handler)
12544 (_("%B: ABI is incompatible with that of the selected emulation"),
12545 ibfd);
12546 return FALSE;
12547 }
12548
12549 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12550 return FALSE;
12551
12552 new_flags = elf_elfheader (ibfd)->e_flags;
12553 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12554 old_flags = elf_elfheader (obfd)->e_flags;
12555
12556 if (! elf_flags_init (obfd))
12557 {
12558 elf_flags_init (obfd) = TRUE;
12559 elf_elfheader (obfd)->e_flags = new_flags;
12560 elf_elfheader (obfd)->e_ident[EI_CLASS]
12561 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12562
12563 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12564 && (bfd_get_arch_info (obfd)->the_default
12565 || mips_mach_extends_p (bfd_get_mach (obfd),
12566 bfd_get_mach (ibfd))))
12567 {
12568 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12569 bfd_get_mach (ibfd)))
12570 return FALSE;
12571 }
12572
12573 return TRUE;
12574 }
12575
12576 /* Check flag compatibility. */
12577
12578 new_flags &= ~EF_MIPS_NOREORDER;
12579 old_flags &= ~EF_MIPS_NOREORDER;
12580
12581 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12582 doesn't seem to matter. */
12583 new_flags &= ~EF_MIPS_XGOT;
12584 old_flags &= ~EF_MIPS_XGOT;
12585
12586 /* MIPSpro generates ucode info in n64 objects. Again, we should
12587 just be able to ignore this. */
12588 new_flags &= ~EF_MIPS_UCODE;
12589 old_flags &= ~EF_MIPS_UCODE;
12590
12591 /* DSOs should only be linked with CPIC code. */
12592 if ((ibfd->flags & DYNAMIC) != 0)
12593 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12594
12595 if (new_flags == old_flags)
12596 return TRUE;
12597
12598 /* Check to see if the input BFD actually contains any sections.
12599 If not, its flags may not have been initialised either, but it cannot
12600 actually cause any incompatibility. */
12601 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12602 {
12603 /* Ignore synthetic sections and empty .text, .data and .bss sections
12604 which are automatically generated by gas. Also ignore fake
12605 (s)common sections, since merely defining a common symbol does
12606 not affect compatibility. */
12607 if ((sec->flags & SEC_IS_COMMON) == 0
12608 && strcmp (sec->name, ".reginfo")
12609 && strcmp (sec->name, ".mdebug")
12610 && (sec->size != 0
12611 || (strcmp (sec->name, ".text")
12612 && strcmp (sec->name, ".data")
12613 && strcmp (sec->name, ".bss"))))
12614 {
12615 null_input_bfd = FALSE;
12616 break;
12617 }
12618 }
12619 if (null_input_bfd)
12620 return TRUE;
12621
12622 ok = TRUE;
12623
12624 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12625 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12626 {
12627 (*_bfd_error_handler)
12628 (_("%B: warning: linking abicalls files with non-abicalls files"),
12629 ibfd);
12630 ok = TRUE;
12631 }
12632
12633 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12634 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12635 if (! (new_flags & EF_MIPS_PIC))
12636 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12637
12638 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12639 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12640
12641 /* Compare the ISAs. */
12642 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12643 {
12644 (*_bfd_error_handler)
12645 (_("%B: linking 32-bit code with 64-bit code"),
12646 ibfd);
12647 ok = FALSE;
12648 }
12649 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12650 {
12651 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12652 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12653 {
12654 /* Copy the architecture info from IBFD to OBFD. Also copy
12655 the 32-bit flag (if set) so that we continue to recognise
12656 OBFD as a 32-bit binary. */
12657 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12658 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12659 elf_elfheader (obfd)->e_flags
12660 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12661
12662 /* Copy across the ABI flags if OBFD doesn't use them
12663 and if that was what caused us to treat IBFD as 32-bit. */
12664 if ((old_flags & EF_MIPS_ABI) == 0
12665 && mips_32bit_flags_p (new_flags)
12666 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12667 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12668 }
12669 else
12670 {
12671 /* The ISAs aren't compatible. */
12672 (*_bfd_error_handler)
12673 (_("%B: linking %s module with previous %s modules"),
12674 ibfd,
12675 bfd_printable_name (ibfd),
12676 bfd_printable_name (obfd));
12677 ok = FALSE;
12678 }
12679 }
12680
12681 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12682 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12683
12684 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12685 does set EI_CLASS differently from any 32-bit ABI. */
12686 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12687 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12688 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12689 {
12690 /* Only error if both are set (to different values). */
12691 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12692 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12693 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12694 {
12695 (*_bfd_error_handler)
12696 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12697 ibfd,
12698 elf_mips_abi_name (ibfd),
12699 elf_mips_abi_name (obfd));
12700 ok = FALSE;
12701 }
12702 new_flags &= ~EF_MIPS_ABI;
12703 old_flags &= ~EF_MIPS_ABI;
12704 }
12705
12706 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12707 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12708 {
12709 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12710
12711 new_flags &= ~ EF_MIPS_ARCH_ASE;
12712 old_flags &= ~ EF_MIPS_ARCH_ASE;
12713 }
12714
12715 /* Warn about any other mismatches */
12716 if (new_flags != old_flags)
12717 {
12718 (*_bfd_error_handler)
12719 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12720 ibfd, (unsigned long) new_flags,
12721 (unsigned long) old_flags);
12722 ok = FALSE;
12723 }
12724
12725 if (! ok)
12726 {
12727 bfd_set_error (bfd_error_bad_value);
12728 return FALSE;
12729 }
12730
12731 return TRUE;
12732 }
12733
12734 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12735
12736 bfd_boolean
12737 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12738 {
12739 BFD_ASSERT (!elf_flags_init (abfd)
12740 || elf_elfheader (abfd)->e_flags == flags);
12741
12742 elf_elfheader (abfd)->e_flags = flags;
12743 elf_flags_init (abfd) = TRUE;
12744 return TRUE;
12745 }
12746
12747 char *
12748 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12749 {
12750 switch (dtag)
12751 {
12752 default: return "";
12753 case DT_MIPS_RLD_VERSION:
12754 return "MIPS_RLD_VERSION";
12755 case DT_MIPS_TIME_STAMP:
12756 return "MIPS_TIME_STAMP";
12757 case DT_MIPS_ICHECKSUM:
12758 return "MIPS_ICHECKSUM";
12759 case DT_MIPS_IVERSION:
12760 return "MIPS_IVERSION";
12761 case DT_MIPS_FLAGS:
12762 return "MIPS_FLAGS";
12763 case DT_MIPS_BASE_ADDRESS:
12764 return "MIPS_BASE_ADDRESS";
12765 case DT_MIPS_MSYM:
12766 return "MIPS_MSYM";
12767 case DT_MIPS_CONFLICT:
12768 return "MIPS_CONFLICT";
12769 case DT_MIPS_LIBLIST:
12770 return "MIPS_LIBLIST";
12771 case DT_MIPS_LOCAL_GOTNO:
12772 return "MIPS_LOCAL_GOTNO";
12773 case DT_MIPS_CONFLICTNO:
12774 return "MIPS_CONFLICTNO";
12775 case DT_MIPS_LIBLISTNO:
12776 return "MIPS_LIBLISTNO";
12777 case DT_MIPS_SYMTABNO:
12778 return "MIPS_SYMTABNO";
12779 case DT_MIPS_UNREFEXTNO:
12780 return "MIPS_UNREFEXTNO";
12781 case DT_MIPS_GOTSYM:
12782 return "MIPS_GOTSYM";
12783 case DT_MIPS_HIPAGENO:
12784 return "MIPS_HIPAGENO";
12785 case DT_MIPS_RLD_MAP:
12786 return "MIPS_RLD_MAP";
12787 case DT_MIPS_DELTA_CLASS:
12788 return "MIPS_DELTA_CLASS";
12789 case DT_MIPS_DELTA_CLASS_NO:
12790 return "MIPS_DELTA_CLASS_NO";
12791 case DT_MIPS_DELTA_INSTANCE:
12792 return "MIPS_DELTA_INSTANCE";
12793 case DT_MIPS_DELTA_INSTANCE_NO:
12794 return "MIPS_DELTA_INSTANCE_NO";
12795 case DT_MIPS_DELTA_RELOC:
12796 return "MIPS_DELTA_RELOC";
12797 case DT_MIPS_DELTA_RELOC_NO:
12798 return "MIPS_DELTA_RELOC_NO";
12799 case DT_MIPS_DELTA_SYM:
12800 return "MIPS_DELTA_SYM";
12801 case DT_MIPS_DELTA_SYM_NO:
12802 return "MIPS_DELTA_SYM_NO";
12803 case DT_MIPS_DELTA_CLASSSYM:
12804 return "MIPS_DELTA_CLASSSYM";
12805 case DT_MIPS_DELTA_CLASSSYM_NO:
12806 return "MIPS_DELTA_CLASSSYM_NO";
12807 case DT_MIPS_CXX_FLAGS:
12808 return "MIPS_CXX_FLAGS";
12809 case DT_MIPS_PIXIE_INIT:
12810 return "MIPS_PIXIE_INIT";
12811 case DT_MIPS_SYMBOL_LIB:
12812 return "MIPS_SYMBOL_LIB";
12813 case DT_MIPS_LOCALPAGE_GOTIDX:
12814 return "MIPS_LOCALPAGE_GOTIDX";
12815 case DT_MIPS_LOCAL_GOTIDX:
12816 return "MIPS_LOCAL_GOTIDX";
12817 case DT_MIPS_HIDDEN_GOTIDX:
12818 return "MIPS_HIDDEN_GOTIDX";
12819 case DT_MIPS_PROTECTED_GOTIDX:
12820 return "MIPS_PROTECTED_GOT_IDX";
12821 case DT_MIPS_OPTIONS:
12822 return "MIPS_OPTIONS";
12823 case DT_MIPS_INTERFACE:
12824 return "MIPS_INTERFACE";
12825 case DT_MIPS_DYNSTR_ALIGN:
12826 return "DT_MIPS_DYNSTR_ALIGN";
12827 case DT_MIPS_INTERFACE_SIZE:
12828 return "DT_MIPS_INTERFACE_SIZE";
12829 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12830 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12831 case DT_MIPS_PERF_SUFFIX:
12832 return "DT_MIPS_PERF_SUFFIX";
12833 case DT_MIPS_COMPACT_SIZE:
12834 return "DT_MIPS_COMPACT_SIZE";
12835 case DT_MIPS_GP_VALUE:
12836 return "DT_MIPS_GP_VALUE";
12837 case DT_MIPS_AUX_DYNAMIC:
12838 return "DT_MIPS_AUX_DYNAMIC";
12839 case DT_MIPS_PLTGOT:
12840 return "DT_MIPS_PLTGOT";
12841 case DT_MIPS_RWPLT:
12842 return "DT_MIPS_RWPLT";
12843 }
12844 }
12845
12846 bfd_boolean
12847 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12848 {
12849 FILE *file = ptr;
12850
12851 BFD_ASSERT (abfd != NULL && ptr != NULL);
12852
12853 /* Print normal ELF private data. */
12854 _bfd_elf_print_private_bfd_data (abfd, ptr);
12855
12856 /* xgettext:c-format */
12857 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12858
12859 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12860 fprintf (file, _(" [abi=O32]"));
12861 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12862 fprintf (file, _(" [abi=O64]"));
12863 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12864 fprintf (file, _(" [abi=EABI32]"));
12865 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12866 fprintf (file, _(" [abi=EABI64]"));
12867 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12868 fprintf (file, _(" [abi unknown]"));
12869 else if (ABI_N32_P (abfd))
12870 fprintf (file, _(" [abi=N32]"));
12871 else if (ABI_64_P (abfd))
12872 fprintf (file, _(" [abi=64]"));
12873 else
12874 fprintf (file, _(" [no abi set]"));
12875
12876 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12877 fprintf (file, " [mips1]");
12878 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12879 fprintf (file, " [mips2]");
12880 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12881 fprintf (file, " [mips3]");
12882 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12883 fprintf (file, " [mips4]");
12884 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12885 fprintf (file, " [mips5]");
12886 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12887 fprintf (file, " [mips32]");
12888 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12889 fprintf (file, " [mips64]");
12890 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12891 fprintf (file, " [mips32r2]");
12892 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12893 fprintf (file, " [mips64r2]");
12894 else
12895 fprintf (file, _(" [unknown ISA]"));
12896
12897 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12898 fprintf (file, " [mdmx]");
12899
12900 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12901 fprintf (file, " [mips16]");
12902
12903 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12904 fprintf (file, " [32bitmode]");
12905 else
12906 fprintf (file, _(" [not 32bitmode]"));
12907
12908 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12909 fprintf (file, " [noreorder]");
12910
12911 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12912 fprintf (file, " [PIC]");
12913
12914 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12915 fprintf (file, " [CPIC]");
12916
12917 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12918 fprintf (file, " [XGOT]");
12919
12920 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12921 fprintf (file, " [UCODE]");
12922
12923 fputc ('\n', file);
12924
12925 return TRUE;
12926 }
12927
12928 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12929 {
12930 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12931 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12932 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12933 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12934 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12935 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12936 { NULL, 0, 0, 0, 0 }
12937 };
12938
12939 /* Merge non visibility st_other attributes. Ensure that the
12940 STO_OPTIONAL flag is copied into h->other, even if this is not a
12941 definiton of the symbol. */
12942 void
12943 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12944 const Elf_Internal_Sym *isym,
12945 bfd_boolean definition,
12946 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12947 {
12948 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12949 {
12950 unsigned char other;
12951
12952 other = (definition ? isym->st_other : h->other);
12953 other &= ~ELF_ST_VISIBILITY (-1);
12954 h->other = other | ELF_ST_VISIBILITY (h->other);
12955 }
12956
12957 if (!definition
12958 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12959 h->other |= STO_OPTIONAL;
12960 }
12961
12962 /* Decide whether an undefined symbol is special and can be ignored.
12963 This is the case for OPTIONAL symbols on IRIX. */
12964 bfd_boolean
12965 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12966 {
12967 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12968 }
12969
12970 bfd_boolean
12971 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12972 {
12973 return (sym->st_shndx == SHN_COMMON
12974 || sym->st_shndx == SHN_MIPS_ACOMMON
12975 || sym->st_shndx == SHN_MIPS_SCOMMON);
12976 }
12977
12978 /* Return address for Ith PLT stub in section PLT, for relocation REL
12979 or (bfd_vma) -1 if it should not be included. */
12980
12981 bfd_vma
12982 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12983 const arelent *rel ATTRIBUTE_UNUSED)
12984 {
12985 return (plt->vma
12986 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12987 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12988 }
12989
12990 void
12991 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12992 {
12993 struct mips_elf_link_hash_table *htab;
12994 Elf_Internal_Ehdr *i_ehdrp;
12995
12996 i_ehdrp = elf_elfheader (abfd);
12997 if (link_info)
12998 {
12999 htab = mips_elf_hash_table (link_info);
13000 BFD_ASSERT (htab != NULL);
13001
13002 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
13003 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
13004 }
13005 }