MIPS/BFD: Don't stop processing on a cross-mode jump conversion error
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system. */
2094
2095 static inline bfd_boolean
2096 mips16_reloc_p (int r_type)
2097 {
2098 switch (r_type)
2099 {
2100 case R_MIPS16_26:
2101 case R_MIPS16_GPREL:
2102 case R_MIPS16_GOT16:
2103 case R_MIPS16_CALL16:
2104 case R_MIPS16_HI16:
2105 case R_MIPS16_LO16:
2106 case R_MIPS16_TLS_GD:
2107 case R_MIPS16_TLS_LDM:
2108 case R_MIPS16_TLS_DTPREL_HI16:
2109 case R_MIPS16_TLS_DTPREL_LO16:
2110 case R_MIPS16_TLS_GOTTPREL:
2111 case R_MIPS16_TLS_TPREL_HI16:
2112 case R_MIPS16_TLS_TPREL_LO16:
2113 return TRUE;
2114
2115 default:
2116 return FALSE;
2117 }
2118 }
2119
2120 /* Check if a microMIPS reloc. */
2121
2122 static inline bfd_boolean
2123 micromips_reloc_p (unsigned int r_type)
2124 {
2125 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2126 }
2127
2128 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2129 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2130 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2131
2132 static inline bfd_boolean
2133 micromips_reloc_shuffle_p (unsigned int r_type)
2134 {
2135 return (micromips_reloc_p (r_type)
2136 && r_type != R_MICROMIPS_PC7_S1
2137 && r_type != R_MICROMIPS_PC10_S1);
2138 }
2139
2140 static inline bfd_boolean
2141 got16_reloc_p (int r_type)
2142 {
2143 return (r_type == R_MIPS_GOT16
2144 || r_type == R_MIPS16_GOT16
2145 || r_type == R_MICROMIPS_GOT16);
2146 }
2147
2148 static inline bfd_boolean
2149 call16_reloc_p (int r_type)
2150 {
2151 return (r_type == R_MIPS_CALL16
2152 || r_type == R_MIPS16_CALL16
2153 || r_type == R_MICROMIPS_CALL16);
2154 }
2155
2156 static inline bfd_boolean
2157 got_disp_reloc_p (unsigned int r_type)
2158 {
2159 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2160 }
2161
2162 static inline bfd_boolean
2163 got_page_reloc_p (unsigned int r_type)
2164 {
2165 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2166 }
2167
2168 static inline bfd_boolean
2169 got_lo16_reloc_p (unsigned int r_type)
2170 {
2171 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2172 }
2173
2174 static inline bfd_boolean
2175 call_hi16_reloc_p (unsigned int r_type)
2176 {
2177 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2178 }
2179
2180 static inline bfd_boolean
2181 call_lo16_reloc_p (unsigned int r_type)
2182 {
2183 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2184 }
2185
2186 static inline bfd_boolean
2187 hi16_reloc_p (int r_type)
2188 {
2189 return (r_type == R_MIPS_HI16
2190 || r_type == R_MIPS16_HI16
2191 || r_type == R_MICROMIPS_HI16
2192 || r_type == R_MIPS_PCHI16);
2193 }
2194
2195 static inline bfd_boolean
2196 lo16_reloc_p (int r_type)
2197 {
2198 return (r_type == R_MIPS_LO16
2199 || r_type == R_MIPS16_LO16
2200 || r_type == R_MICROMIPS_LO16
2201 || r_type == R_MIPS_PCLO16);
2202 }
2203
2204 static inline bfd_boolean
2205 mips16_call_reloc_p (int r_type)
2206 {
2207 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2208 }
2209
2210 static inline bfd_boolean
2211 jal_reloc_p (int r_type)
2212 {
2213 return (r_type == R_MIPS_26
2214 || r_type == R_MIPS16_26
2215 || r_type == R_MICROMIPS_26_S1);
2216 }
2217
2218 static inline bfd_boolean
2219 b_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_PC26_S2
2222 || r_type == R_MIPS_PC21_S2
2223 || r_type == R_MIPS_PC16
2224 || r_type == R_MIPS_GNU_REL16_S2);
2225 }
2226
2227 static inline bfd_boolean
2228 aligned_pcrel_reloc_p (int r_type)
2229 {
2230 return (r_type == R_MIPS_PC18_S3
2231 || r_type == R_MIPS_PC19_S2);
2232 }
2233
2234 static inline bfd_boolean
2235 micromips_branch_reloc_p (int r_type)
2236 {
2237 return (r_type == R_MICROMIPS_26_S1
2238 || r_type == R_MICROMIPS_PC16_S1
2239 || r_type == R_MICROMIPS_PC10_S1
2240 || r_type == R_MICROMIPS_PC7_S1);
2241 }
2242
2243 static inline bfd_boolean
2244 tls_gd_reloc_p (unsigned int r_type)
2245 {
2246 return (r_type == R_MIPS_TLS_GD
2247 || r_type == R_MIPS16_TLS_GD
2248 || r_type == R_MICROMIPS_TLS_GD);
2249 }
2250
2251 static inline bfd_boolean
2252 tls_ldm_reloc_p (unsigned int r_type)
2253 {
2254 return (r_type == R_MIPS_TLS_LDM
2255 || r_type == R_MIPS16_TLS_LDM
2256 || r_type == R_MICROMIPS_TLS_LDM);
2257 }
2258
2259 static inline bfd_boolean
2260 tls_gottprel_reloc_p (unsigned int r_type)
2261 {
2262 return (r_type == R_MIPS_TLS_GOTTPREL
2263 || r_type == R_MIPS16_TLS_GOTTPREL
2264 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2265 }
2266
2267 void
2268 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2269 bfd_boolean jal_shuffle, bfd_byte *data)
2270 {
2271 bfd_vma first, second, val;
2272
2273 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2274 return;
2275
2276 /* Pick up the first and second halfwords of the instruction. */
2277 first = bfd_get_16 (abfd, data);
2278 second = bfd_get_16 (abfd, data + 2);
2279 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2280 val = first << 16 | second;
2281 else if (r_type != R_MIPS16_26)
2282 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2283 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2284 else
2285 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2286 | ((first & 0x1f) << 21) | second);
2287 bfd_put_32 (abfd, val, data);
2288 }
2289
2290 void
2291 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2292 bfd_boolean jal_shuffle, bfd_byte *data)
2293 {
2294 bfd_vma first, second, val;
2295
2296 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2297 return;
2298
2299 val = bfd_get_32 (abfd, data);
2300 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2301 {
2302 second = val & 0xffff;
2303 first = val >> 16;
2304 }
2305 else if (r_type != R_MIPS16_26)
2306 {
2307 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2308 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2309 }
2310 else
2311 {
2312 second = val & 0xffff;
2313 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2314 | ((val >> 21) & 0x1f);
2315 }
2316 bfd_put_16 (abfd, second, data + 2);
2317 bfd_put_16 (abfd, first, data);
2318 }
2319
2320 bfd_reloc_status_type
2321 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2322 arelent *reloc_entry, asection *input_section,
2323 bfd_boolean relocatable, void *data, bfd_vma gp)
2324 {
2325 bfd_vma relocation;
2326 bfd_signed_vma val;
2327 bfd_reloc_status_type status;
2328
2329 if (bfd_is_com_section (symbol->section))
2330 relocation = 0;
2331 else
2332 relocation = symbol->value;
2333
2334 relocation += symbol->section->output_section->vma;
2335 relocation += symbol->section->output_offset;
2336
2337 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2338 return bfd_reloc_outofrange;
2339
2340 /* Set val to the offset into the section or symbol. */
2341 val = reloc_entry->addend;
2342
2343 _bfd_mips_elf_sign_extend (val, 16);
2344
2345 /* Adjust val for the final section location and GP value. If we
2346 are producing relocatable output, we don't want to do this for
2347 an external symbol. */
2348 if (! relocatable
2349 || (symbol->flags & BSF_SECTION_SYM) != 0)
2350 val += relocation - gp;
2351
2352 if (reloc_entry->howto->partial_inplace)
2353 {
2354 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2355 (bfd_byte *) data
2356 + reloc_entry->address);
2357 if (status != bfd_reloc_ok)
2358 return status;
2359 }
2360 else
2361 reloc_entry->addend = val;
2362
2363 if (relocatable)
2364 reloc_entry->address += input_section->output_offset;
2365
2366 return bfd_reloc_ok;
2367 }
2368
2369 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2370 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2371 that contains the relocation field and DATA points to the start of
2372 INPUT_SECTION. */
2373
2374 struct mips_hi16
2375 {
2376 struct mips_hi16 *next;
2377 bfd_byte *data;
2378 asection *input_section;
2379 arelent rel;
2380 };
2381
2382 /* FIXME: This should not be a static variable. */
2383
2384 static struct mips_hi16 *mips_hi16_list;
2385
2386 /* A howto special_function for REL *HI16 relocations. We can only
2387 calculate the correct value once we've seen the partnering
2388 *LO16 relocation, so just save the information for later.
2389
2390 The ABI requires that the *LO16 immediately follow the *HI16.
2391 However, as a GNU extension, we permit an arbitrary number of
2392 *HI16s to be associated with a single *LO16. This significantly
2393 simplies the relocation handling in gcc. */
2394
2395 bfd_reloc_status_type
2396 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2397 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2398 asection *input_section, bfd *output_bfd,
2399 char **error_message ATTRIBUTE_UNUSED)
2400 {
2401 struct mips_hi16 *n;
2402
2403 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2404 return bfd_reloc_outofrange;
2405
2406 n = bfd_malloc (sizeof *n);
2407 if (n == NULL)
2408 return bfd_reloc_outofrange;
2409
2410 n->next = mips_hi16_list;
2411 n->data = data;
2412 n->input_section = input_section;
2413 n->rel = *reloc_entry;
2414 mips_hi16_list = n;
2415
2416 if (output_bfd != NULL)
2417 reloc_entry->address += input_section->output_offset;
2418
2419 return bfd_reloc_ok;
2420 }
2421
2422 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2423 like any other 16-bit relocation when applied to global symbols, but is
2424 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2425
2426 bfd_reloc_status_type
2427 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2428 void *data, asection *input_section,
2429 bfd *output_bfd, char **error_message)
2430 {
2431 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2432 || bfd_is_und_section (bfd_get_section (symbol))
2433 || bfd_is_com_section (bfd_get_section (symbol)))
2434 /* The relocation is against a global symbol. */
2435 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2436 input_section, output_bfd,
2437 error_message);
2438
2439 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2440 input_section, output_bfd, error_message);
2441 }
2442
2443 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2444 is a straightforward 16 bit inplace relocation, but we must deal with
2445 any partnering high-part relocations as well. */
2446
2447 bfd_reloc_status_type
2448 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2449 void *data, asection *input_section,
2450 bfd *output_bfd, char **error_message)
2451 {
2452 bfd_vma vallo;
2453 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2454
2455 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2456 return bfd_reloc_outofrange;
2457
2458 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2459 location);
2460 vallo = bfd_get_32 (abfd, location);
2461 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2462 location);
2463
2464 while (mips_hi16_list != NULL)
2465 {
2466 bfd_reloc_status_type ret;
2467 struct mips_hi16 *hi;
2468
2469 hi = mips_hi16_list;
2470
2471 /* R_MIPS*_GOT16 relocations are something of a special case. We
2472 want to install the addend in the same way as for a R_MIPS*_HI16
2473 relocation (with a rightshift of 16). However, since GOT16
2474 relocations can also be used with global symbols, their howto
2475 has a rightshift of 0. */
2476 if (hi->rel.howto->type == R_MIPS_GOT16)
2477 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2478 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2479 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2480 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2481 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2482
2483 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2484 carry or borrow will induce a change of +1 or -1 in the high part. */
2485 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2486
2487 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2488 hi->input_section, output_bfd,
2489 error_message);
2490 if (ret != bfd_reloc_ok)
2491 return ret;
2492
2493 mips_hi16_list = hi->next;
2494 free (hi);
2495 }
2496
2497 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2498 input_section, output_bfd,
2499 error_message);
2500 }
2501
2502 /* A generic howto special_function. This calculates and installs the
2503 relocation itself, thus avoiding the oft-discussed problems in
2504 bfd_perform_relocation and bfd_install_relocation. */
2505
2506 bfd_reloc_status_type
2507 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2508 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2509 asection *input_section, bfd *output_bfd,
2510 char **error_message ATTRIBUTE_UNUSED)
2511 {
2512 bfd_signed_vma val;
2513 bfd_reloc_status_type status;
2514 bfd_boolean relocatable;
2515
2516 relocatable = (output_bfd != NULL);
2517
2518 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2519 return bfd_reloc_outofrange;
2520
2521 /* Build up the field adjustment in VAL. */
2522 val = 0;
2523 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2524 {
2525 /* Either we're calculating the final field value or we have a
2526 relocation against a section symbol. Add in the section's
2527 offset or address. */
2528 val += symbol->section->output_section->vma;
2529 val += symbol->section->output_offset;
2530 }
2531
2532 if (!relocatable)
2533 {
2534 /* We're calculating the final field value. Add in the symbol's value
2535 and, if pc-relative, subtract the address of the field itself. */
2536 val += symbol->value;
2537 if (reloc_entry->howto->pc_relative)
2538 {
2539 val -= input_section->output_section->vma;
2540 val -= input_section->output_offset;
2541 val -= reloc_entry->address;
2542 }
2543 }
2544
2545 /* VAL is now the final adjustment. If we're keeping this relocation
2546 in the output file, and if the relocation uses a separate addend,
2547 we just need to add VAL to that addend. Otherwise we need to add
2548 VAL to the relocation field itself. */
2549 if (relocatable && !reloc_entry->howto->partial_inplace)
2550 reloc_entry->addend += val;
2551 else
2552 {
2553 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2554
2555 /* Add in the separate addend, if any. */
2556 val += reloc_entry->addend;
2557
2558 /* Add VAL to the relocation field. */
2559 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2560 location);
2561 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2562 location);
2563 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2564 location);
2565
2566 if (status != bfd_reloc_ok)
2567 return status;
2568 }
2569
2570 if (relocatable)
2571 reloc_entry->address += input_section->output_offset;
2572
2573 return bfd_reloc_ok;
2574 }
2575 \f
2576 /* Swap an entry in a .gptab section. Note that these routines rely
2577 on the equivalence of the two elements of the union. */
2578
2579 static void
2580 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2581 Elf32_gptab *in)
2582 {
2583 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2584 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2585 }
2586
2587 static void
2588 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2589 Elf32_External_gptab *ex)
2590 {
2591 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2592 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2593 }
2594
2595 static void
2596 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2597 Elf32_External_compact_rel *ex)
2598 {
2599 H_PUT_32 (abfd, in->id1, ex->id1);
2600 H_PUT_32 (abfd, in->num, ex->num);
2601 H_PUT_32 (abfd, in->id2, ex->id2);
2602 H_PUT_32 (abfd, in->offset, ex->offset);
2603 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2604 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2605 }
2606
2607 static void
2608 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2609 Elf32_External_crinfo *ex)
2610 {
2611 unsigned long l;
2612
2613 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2614 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2615 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2616 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2617 H_PUT_32 (abfd, l, ex->info);
2618 H_PUT_32 (abfd, in->konst, ex->konst);
2619 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2620 }
2621 \f
2622 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2623 routines swap this structure in and out. They are used outside of
2624 BFD, so they are globally visible. */
2625
2626 void
2627 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2628 Elf32_RegInfo *in)
2629 {
2630 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2631 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2632 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2633 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2634 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2635 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2636 }
2637
2638 void
2639 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2640 Elf32_External_RegInfo *ex)
2641 {
2642 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2643 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2644 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2645 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2646 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2647 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2648 }
2649
2650 /* In the 64 bit ABI, the .MIPS.options section holds register
2651 information in an Elf64_Reginfo structure. These routines swap
2652 them in and out. They are globally visible because they are used
2653 outside of BFD. These routines are here so that gas can call them
2654 without worrying about whether the 64 bit ABI has been included. */
2655
2656 void
2657 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2658 Elf64_Internal_RegInfo *in)
2659 {
2660 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2661 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2662 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2663 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2664 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2665 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2666 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2667 }
2668
2669 void
2670 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2671 Elf64_External_RegInfo *ex)
2672 {
2673 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2674 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* Swap in an options header. */
2683
2684 void
2685 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2686 Elf_Internal_Options *in)
2687 {
2688 in->kind = H_GET_8 (abfd, ex->kind);
2689 in->size = H_GET_8 (abfd, ex->size);
2690 in->section = H_GET_16 (abfd, ex->section);
2691 in->info = H_GET_32 (abfd, ex->info);
2692 }
2693
2694 /* Swap out an options header. */
2695
2696 void
2697 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2698 Elf_External_Options *ex)
2699 {
2700 H_PUT_8 (abfd, in->kind, ex->kind);
2701 H_PUT_8 (abfd, in->size, ex->size);
2702 H_PUT_16 (abfd, in->section, ex->section);
2703 H_PUT_32 (abfd, in->info, ex->info);
2704 }
2705
2706 /* Swap in an abiflags structure. */
2707
2708 void
2709 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2710 const Elf_External_ABIFlags_v0 *ex,
2711 Elf_Internal_ABIFlags_v0 *in)
2712 {
2713 in->version = H_GET_16 (abfd, ex->version);
2714 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2715 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2716 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2717 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2718 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2719 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2720 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2721 in->ases = H_GET_32 (abfd, ex->ases);
2722 in->flags1 = H_GET_32 (abfd, ex->flags1);
2723 in->flags2 = H_GET_32 (abfd, ex->flags2);
2724 }
2725
2726 /* Swap out an abiflags structure. */
2727
2728 void
2729 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2730 const Elf_Internal_ABIFlags_v0 *in,
2731 Elf_External_ABIFlags_v0 *ex)
2732 {
2733 H_PUT_16 (abfd, in->version, ex->version);
2734 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2735 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2736 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2737 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2738 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2739 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2740 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2741 H_PUT_32 (abfd, in->ases, ex->ases);
2742 H_PUT_32 (abfd, in->flags1, ex->flags1);
2743 H_PUT_32 (abfd, in->flags2, ex->flags2);
2744 }
2745 \f
2746 /* This function is called via qsort() to sort the dynamic relocation
2747 entries by increasing r_symndx value. */
2748
2749 static int
2750 sort_dynamic_relocs (const void *arg1, const void *arg2)
2751 {
2752 Elf_Internal_Rela int_reloc1;
2753 Elf_Internal_Rela int_reloc2;
2754 int diff;
2755
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2757 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2758
2759 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2760 if (diff != 0)
2761 return diff;
2762
2763 if (int_reloc1.r_offset < int_reloc2.r_offset)
2764 return -1;
2765 if (int_reloc1.r_offset > int_reloc2.r_offset)
2766 return 1;
2767 return 0;
2768 }
2769
2770 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2771
2772 static int
2773 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2774 const void *arg2 ATTRIBUTE_UNUSED)
2775 {
2776 #ifdef BFD64
2777 Elf_Internal_Rela int_reloc1[3];
2778 Elf_Internal_Rela int_reloc2[3];
2779
2780 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2781 (reldyn_sorting_bfd, arg1, int_reloc1);
2782 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2783 (reldyn_sorting_bfd, arg2, int_reloc2);
2784
2785 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2786 return -1;
2787 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2788 return 1;
2789
2790 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2791 return -1;
2792 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2793 return 1;
2794 return 0;
2795 #else
2796 abort ();
2797 #endif
2798 }
2799
2800
2801 /* This routine is used to write out ECOFF debugging external symbol
2802 information. It is called via mips_elf_link_hash_traverse. The
2803 ECOFF external symbol information must match the ELF external
2804 symbol information. Unfortunately, at this point we don't know
2805 whether a symbol is required by reloc information, so the two
2806 tables may wind up being different. We must sort out the external
2807 symbol information before we can set the final size of the .mdebug
2808 section, and we must set the size of the .mdebug section before we
2809 can relocate any sections, and we can't know which symbols are
2810 required by relocation until we relocate the sections.
2811 Fortunately, it is relatively unlikely that any symbol will be
2812 stripped but required by a reloc. In particular, it can not happen
2813 when generating a final executable. */
2814
2815 static bfd_boolean
2816 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2817 {
2818 struct extsym_info *einfo = data;
2819 bfd_boolean strip;
2820 asection *sec, *output_section;
2821
2822 if (h->root.indx == -2)
2823 strip = FALSE;
2824 else if ((h->root.def_dynamic
2825 || h->root.ref_dynamic
2826 || h->root.type == bfd_link_hash_new)
2827 && !h->root.def_regular
2828 && !h->root.ref_regular)
2829 strip = TRUE;
2830 else if (einfo->info->strip == strip_all
2831 || (einfo->info->strip == strip_some
2832 && bfd_hash_lookup (einfo->info->keep_hash,
2833 h->root.root.root.string,
2834 FALSE, FALSE) == NULL))
2835 strip = TRUE;
2836 else
2837 strip = FALSE;
2838
2839 if (strip)
2840 return TRUE;
2841
2842 if (h->esym.ifd == -2)
2843 {
2844 h->esym.jmptbl = 0;
2845 h->esym.cobol_main = 0;
2846 h->esym.weakext = 0;
2847 h->esym.reserved = 0;
2848 h->esym.ifd = ifdNil;
2849 h->esym.asym.value = 0;
2850 h->esym.asym.st = stGlobal;
2851
2852 if (h->root.root.type == bfd_link_hash_undefined
2853 || h->root.root.type == bfd_link_hash_undefweak)
2854 {
2855 const char *name;
2856
2857 /* Use undefined class. Also, set class and type for some
2858 special symbols. */
2859 name = h->root.root.root.string;
2860 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2861 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2862 {
2863 h->esym.asym.sc = scData;
2864 h->esym.asym.st = stLabel;
2865 h->esym.asym.value = 0;
2866 }
2867 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2868 {
2869 h->esym.asym.sc = scAbs;
2870 h->esym.asym.st = stLabel;
2871 h->esym.asym.value =
2872 mips_elf_hash_table (einfo->info)->procedure_count;
2873 }
2874 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2875 {
2876 h->esym.asym.sc = scAbs;
2877 h->esym.asym.st = stLabel;
2878 h->esym.asym.value = elf_gp (einfo->abfd);
2879 }
2880 else
2881 h->esym.asym.sc = scUndefined;
2882 }
2883 else if (h->root.root.type != bfd_link_hash_defined
2884 && h->root.root.type != bfd_link_hash_defweak)
2885 h->esym.asym.sc = scAbs;
2886 else
2887 {
2888 const char *name;
2889
2890 sec = h->root.root.u.def.section;
2891 output_section = sec->output_section;
2892
2893 /* When making a shared library and symbol h is the one from
2894 the another shared library, OUTPUT_SECTION may be null. */
2895 if (output_section == NULL)
2896 h->esym.asym.sc = scUndefined;
2897 else
2898 {
2899 name = bfd_section_name (output_section->owner, output_section);
2900
2901 if (strcmp (name, ".text") == 0)
2902 h->esym.asym.sc = scText;
2903 else if (strcmp (name, ".data") == 0)
2904 h->esym.asym.sc = scData;
2905 else if (strcmp (name, ".sdata") == 0)
2906 h->esym.asym.sc = scSData;
2907 else if (strcmp (name, ".rodata") == 0
2908 || strcmp (name, ".rdata") == 0)
2909 h->esym.asym.sc = scRData;
2910 else if (strcmp (name, ".bss") == 0)
2911 h->esym.asym.sc = scBss;
2912 else if (strcmp (name, ".sbss") == 0)
2913 h->esym.asym.sc = scSBss;
2914 else if (strcmp (name, ".init") == 0)
2915 h->esym.asym.sc = scInit;
2916 else if (strcmp (name, ".fini") == 0)
2917 h->esym.asym.sc = scFini;
2918 else
2919 h->esym.asym.sc = scAbs;
2920 }
2921 }
2922
2923 h->esym.asym.reserved = 0;
2924 h->esym.asym.index = indexNil;
2925 }
2926
2927 if (h->root.root.type == bfd_link_hash_common)
2928 h->esym.asym.value = h->root.root.u.c.size;
2929 else if (h->root.root.type == bfd_link_hash_defined
2930 || h->root.root.type == bfd_link_hash_defweak)
2931 {
2932 if (h->esym.asym.sc == scCommon)
2933 h->esym.asym.sc = scBss;
2934 else if (h->esym.asym.sc == scSCommon)
2935 h->esym.asym.sc = scSBss;
2936
2937 sec = h->root.root.u.def.section;
2938 output_section = sec->output_section;
2939 if (output_section != NULL)
2940 h->esym.asym.value = (h->root.root.u.def.value
2941 + sec->output_offset
2942 + output_section->vma);
2943 else
2944 h->esym.asym.value = 0;
2945 }
2946 else
2947 {
2948 struct mips_elf_link_hash_entry *hd = h;
2949
2950 while (hd->root.root.type == bfd_link_hash_indirect)
2951 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2952
2953 if (hd->needs_lazy_stub)
2954 {
2955 BFD_ASSERT (hd->root.plt.plist != NULL);
2956 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2957 /* Set type and value for a symbol with a function stub. */
2958 h->esym.asym.st = stProc;
2959 sec = hd->root.root.u.def.section;
2960 if (sec == NULL)
2961 h->esym.asym.value = 0;
2962 else
2963 {
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 }
2973 }
2974
2975 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2976 h->root.root.root.string,
2977 &h->esym))
2978 {
2979 einfo->failed = TRUE;
2980 return FALSE;
2981 }
2982
2983 return TRUE;
2984 }
2985
2986 /* A comparison routine used to sort .gptab entries. */
2987
2988 static int
2989 gptab_compare (const void *p1, const void *p2)
2990 {
2991 const Elf32_gptab *a1 = p1;
2992 const Elf32_gptab *a2 = p2;
2993
2994 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2995 }
2996 \f
2997 /* Functions to manage the got entry hash table. */
2998
2999 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3000 hash number. */
3001
3002 static INLINE hashval_t
3003 mips_elf_hash_bfd_vma (bfd_vma addr)
3004 {
3005 #ifdef BFD64
3006 return addr + (addr >> 32);
3007 #else
3008 return addr;
3009 #endif
3010 }
3011
3012 static hashval_t
3013 mips_elf_got_entry_hash (const void *entry_)
3014 {
3015 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3016
3017 return (entry->symndx
3018 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3019 + (entry->tls_type == GOT_TLS_LDM ? 0
3020 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3021 : entry->symndx >= 0 ? (entry->abfd->id
3022 + mips_elf_hash_bfd_vma (entry->d.addend))
3023 : entry->d.h->root.root.root.hash));
3024 }
3025
3026 static int
3027 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3028 {
3029 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3030 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3031
3032 return (e1->symndx == e2->symndx
3033 && e1->tls_type == e2->tls_type
3034 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3035 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3036 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3037 && e1->d.addend == e2->d.addend)
3038 : e2->abfd && e1->d.h == e2->d.h));
3039 }
3040
3041 static hashval_t
3042 mips_got_page_ref_hash (const void *ref_)
3043 {
3044 const struct mips_got_page_ref *ref;
3045
3046 ref = (const struct mips_got_page_ref *) ref_;
3047 return ((ref->symndx >= 0
3048 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3049 : ref->u.h->root.root.root.hash)
3050 + mips_elf_hash_bfd_vma (ref->addend));
3051 }
3052
3053 static int
3054 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3055 {
3056 const struct mips_got_page_ref *ref1, *ref2;
3057
3058 ref1 = (const struct mips_got_page_ref *) ref1_;
3059 ref2 = (const struct mips_got_page_ref *) ref2_;
3060 return (ref1->symndx == ref2->symndx
3061 && (ref1->symndx < 0
3062 ? ref1->u.h == ref2->u.h
3063 : ref1->u.abfd == ref2->u.abfd)
3064 && ref1->addend == ref2->addend);
3065 }
3066
3067 static hashval_t
3068 mips_got_page_entry_hash (const void *entry_)
3069 {
3070 const struct mips_got_page_entry *entry;
3071
3072 entry = (const struct mips_got_page_entry *) entry_;
3073 return entry->sec->id;
3074 }
3075
3076 static int
3077 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3078 {
3079 const struct mips_got_page_entry *entry1, *entry2;
3080
3081 entry1 = (const struct mips_got_page_entry *) entry1_;
3082 entry2 = (const struct mips_got_page_entry *) entry2_;
3083 return entry1->sec == entry2->sec;
3084 }
3085 \f
3086 /* Create and return a new mips_got_info structure. */
3087
3088 static struct mips_got_info *
3089 mips_elf_create_got_info (bfd *abfd)
3090 {
3091 struct mips_got_info *g;
3092
3093 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3094 if (g == NULL)
3095 return NULL;
3096
3097 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3098 mips_elf_got_entry_eq, NULL);
3099 if (g->got_entries == NULL)
3100 return NULL;
3101
3102 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3103 mips_got_page_ref_eq, NULL);
3104 if (g->got_page_refs == NULL)
3105 return NULL;
3106
3107 return g;
3108 }
3109
3110 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3111 CREATE_P and if ABFD doesn't already have a GOT. */
3112
3113 static struct mips_got_info *
3114 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3115 {
3116 struct mips_elf_obj_tdata *tdata;
3117
3118 if (!is_mips_elf (abfd))
3119 return NULL;
3120
3121 tdata = mips_elf_tdata (abfd);
3122 if (!tdata->got && create_p)
3123 tdata->got = mips_elf_create_got_info (abfd);
3124 return tdata->got;
3125 }
3126
3127 /* Record that ABFD should use output GOT G. */
3128
3129 static void
3130 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3131 {
3132 struct mips_elf_obj_tdata *tdata;
3133
3134 BFD_ASSERT (is_mips_elf (abfd));
3135 tdata = mips_elf_tdata (abfd);
3136 if (tdata->got)
3137 {
3138 /* The GOT structure itself and the hash table entries are
3139 allocated to a bfd, but the hash tables aren't. */
3140 htab_delete (tdata->got->got_entries);
3141 htab_delete (tdata->got->got_page_refs);
3142 if (tdata->got->got_page_entries)
3143 htab_delete (tdata->got->got_page_entries);
3144 }
3145 tdata->got = g;
3146 }
3147
3148 /* Return the dynamic relocation section. If it doesn't exist, try to
3149 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3150 if creation fails. */
3151
3152 static asection *
3153 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3154 {
3155 const char *dname;
3156 asection *sreloc;
3157 bfd *dynobj;
3158
3159 dname = MIPS_ELF_REL_DYN_NAME (info);
3160 dynobj = elf_hash_table (info)->dynobj;
3161 sreloc = bfd_get_linker_section (dynobj, dname);
3162 if (sreloc == NULL && create_p)
3163 {
3164 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3165 (SEC_ALLOC
3166 | SEC_LOAD
3167 | SEC_HAS_CONTENTS
3168 | SEC_IN_MEMORY
3169 | SEC_LINKER_CREATED
3170 | SEC_READONLY));
3171 if (sreloc == NULL
3172 || ! bfd_set_section_alignment (dynobj, sreloc,
3173 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3174 return NULL;
3175 }
3176 return sreloc;
3177 }
3178
3179 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3180
3181 static int
3182 mips_elf_reloc_tls_type (unsigned int r_type)
3183 {
3184 if (tls_gd_reloc_p (r_type))
3185 return GOT_TLS_GD;
3186
3187 if (tls_ldm_reloc_p (r_type))
3188 return GOT_TLS_LDM;
3189
3190 if (tls_gottprel_reloc_p (r_type))
3191 return GOT_TLS_IE;
3192
3193 return GOT_TLS_NONE;
3194 }
3195
3196 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3197
3198 static int
3199 mips_tls_got_entries (unsigned int type)
3200 {
3201 switch (type)
3202 {
3203 case GOT_TLS_GD:
3204 case GOT_TLS_LDM:
3205 return 2;
3206
3207 case GOT_TLS_IE:
3208 return 1;
3209
3210 case GOT_TLS_NONE:
3211 return 0;
3212 }
3213 abort ();
3214 }
3215
3216 /* Count the number of relocations needed for a TLS GOT entry, with
3217 access types from TLS_TYPE, and symbol H (or a local symbol if H
3218 is NULL). */
3219
3220 static int
3221 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3222 struct elf_link_hash_entry *h)
3223 {
3224 int indx = 0;
3225 bfd_boolean need_relocs = FALSE;
3226 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3227
3228 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3229 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3230 indx = h->dynindx;
3231
3232 if ((bfd_link_pic (info) || indx != 0)
3233 && (h == NULL
3234 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3235 || h->root.type != bfd_link_hash_undefweak))
3236 need_relocs = TRUE;
3237
3238 if (!need_relocs)
3239 return 0;
3240
3241 switch (tls_type)
3242 {
3243 case GOT_TLS_GD:
3244 return indx != 0 ? 2 : 1;
3245
3246 case GOT_TLS_IE:
3247 return 1;
3248
3249 case GOT_TLS_LDM:
3250 return bfd_link_pic (info) ? 1 : 0;
3251
3252 default:
3253 return 0;
3254 }
3255 }
3256
3257 /* Add the number of GOT entries and TLS relocations required by ENTRY
3258 to G. */
3259
3260 static void
3261 mips_elf_count_got_entry (struct bfd_link_info *info,
3262 struct mips_got_info *g,
3263 struct mips_got_entry *entry)
3264 {
3265 if (entry->tls_type)
3266 {
3267 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3268 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3269 entry->symndx < 0
3270 ? &entry->d.h->root : NULL);
3271 }
3272 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3273 g->local_gotno += 1;
3274 else
3275 g->global_gotno += 1;
3276 }
3277
3278 /* Output a simple dynamic relocation into SRELOC. */
3279
3280 static void
3281 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3282 asection *sreloc,
3283 unsigned long reloc_index,
3284 unsigned long indx,
3285 int r_type,
3286 bfd_vma offset)
3287 {
3288 Elf_Internal_Rela rel[3];
3289
3290 memset (rel, 0, sizeof (rel));
3291
3292 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3293 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3294
3295 if (ABI_64_P (output_bfd))
3296 {
3297 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3298 (output_bfd, &rel[0],
3299 (sreloc->contents
3300 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3301 }
3302 else
3303 bfd_elf32_swap_reloc_out
3304 (output_bfd, &rel[0],
3305 (sreloc->contents
3306 + reloc_index * sizeof (Elf32_External_Rel)));
3307 }
3308
3309 /* Initialize a set of TLS GOT entries for one symbol. */
3310
3311 static void
3312 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3313 struct mips_got_entry *entry,
3314 struct mips_elf_link_hash_entry *h,
3315 bfd_vma value)
3316 {
3317 struct mips_elf_link_hash_table *htab;
3318 int indx;
3319 asection *sreloc, *sgot;
3320 bfd_vma got_offset, got_offset2;
3321 bfd_boolean need_relocs = FALSE;
3322
3323 htab = mips_elf_hash_table (info);
3324 if (htab == NULL)
3325 return;
3326
3327 sgot = htab->sgot;
3328
3329 indx = 0;
3330 if (h != NULL)
3331 {
3332 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3333
3334 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3335 &h->root)
3336 && (!bfd_link_pic (info)
3337 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3338 indx = h->root.dynindx;
3339 }
3340
3341 if (entry->tls_initialized)
3342 return;
3343
3344 if ((bfd_link_pic (info) || indx != 0)
3345 && (h == NULL
3346 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3347 || h->root.type != bfd_link_hash_undefweak))
3348 need_relocs = TRUE;
3349
3350 /* MINUS_ONE means the symbol is not defined in this object. It may not
3351 be defined at all; assume that the value doesn't matter in that
3352 case. Otherwise complain if we would use the value. */
3353 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3354 || h->root.root.type == bfd_link_hash_undefweak);
3355
3356 /* Emit necessary relocations. */
3357 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3358 got_offset = entry->gotidx;
3359
3360 switch (entry->tls_type)
3361 {
3362 case GOT_TLS_GD:
3363 /* General Dynamic. */
3364 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3365
3366 if (need_relocs)
3367 {
3368 mips_elf_output_dynamic_relocation
3369 (abfd, sreloc, sreloc->reloc_count++, indx,
3370 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3371 sgot->output_offset + sgot->output_section->vma + got_offset);
3372
3373 if (indx)
3374 mips_elf_output_dynamic_relocation
3375 (abfd, sreloc, sreloc->reloc_count++, indx,
3376 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3377 sgot->output_offset + sgot->output_section->vma + got_offset2);
3378 else
3379 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3380 sgot->contents + got_offset2);
3381 }
3382 else
3383 {
3384 MIPS_ELF_PUT_WORD (abfd, 1,
3385 sgot->contents + got_offset);
3386 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3387 sgot->contents + got_offset2);
3388 }
3389 break;
3390
3391 case GOT_TLS_IE:
3392 /* Initial Exec model. */
3393 if (need_relocs)
3394 {
3395 if (indx == 0)
3396 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3397 sgot->contents + got_offset);
3398 else
3399 MIPS_ELF_PUT_WORD (abfd, 0,
3400 sgot->contents + got_offset);
3401
3402 mips_elf_output_dynamic_relocation
3403 (abfd, sreloc, sreloc->reloc_count++, indx,
3404 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3405 sgot->output_offset + sgot->output_section->vma + got_offset);
3406 }
3407 else
3408 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3409 sgot->contents + got_offset);
3410 break;
3411
3412 case GOT_TLS_LDM:
3413 /* The initial offset is zero, and the LD offsets will include the
3414 bias by DTP_OFFSET. */
3415 MIPS_ELF_PUT_WORD (abfd, 0,
3416 sgot->contents + got_offset
3417 + MIPS_ELF_GOT_SIZE (abfd));
3418
3419 if (!bfd_link_pic (info))
3420 MIPS_ELF_PUT_WORD (abfd, 1,
3421 sgot->contents + got_offset);
3422 else
3423 mips_elf_output_dynamic_relocation
3424 (abfd, sreloc, sreloc->reloc_count++, indx,
3425 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3426 sgot->output_offset + sgot->output_section->vma + got_offset);
3427 break;
3428
3429 default:
3430 abort ();
3431 }
3432
3433 entry->tls_initialized = TRUE;
3434 }
3435
3436 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3437 for global symbol H. .got.plt comes before the GOT, so the offset
3438 will be negative. */
3439
3440 static bfd_vma
3441 mips_elf_gotplt_index (struct bfd_link_info *info,
3442 struct elf_link_hash_entry *h)
3443 {
3444 bfd_vma got_address, got_value;
3445 struct mips_elf_link_hash_table *htab;
3446
3447 htab = mips_elf_hash_table (info);
3448 BFD_ASSERT (htab != NULL);
3449
3450 BFD_ASSERT (h->plt.plist != NULL);
3451 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3452
3453 /* Calculate the address of the associated .got.plt entry. */
3454 got_address = (htab->sgotplt->output_section->vma
3455 + htab->sgotplt->output_offset
3456 + (h->plt.plist->gotplt_index
3457 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3458
3459 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3460 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3461 + htab->root.hgot->root.u.def.section->output_offset
3462 + htab->root.hgot->root.u.def.value);
3463
3464 return got_address - got_value;
3465 }
3466
3467 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3468 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3469 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3470 offset can be found. */
3471
3472 static bfd_vma
3473 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3474 bfd_vma value, unsigned long r_symndx,
3475 struct mips_elf_link_hash_entry *h, int r_type)
3476 {
3477 struct mips_elf_link_hash_table *htab;
3478 struct mips_got_entry *entry;
3479
3480 htab = mips_elf_hash_table (info);
3481 BFD_ASSERT (htab != NULL);
3482
3483 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3484 r_symndx, h, r_type);
3485 if (!entry)
3486 return MINUS_ONE;
3487
3488 if (entry->tls_type)
3489 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3490 return entry->gotidx;
3491 }
3492
3493 /* Return the GOT index of global symbol H in the primary GOT. */
3494
3495 static bfd_vma
3496 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3497 struct elf_link_hash_entry *h)
3498 {
3499 struct mips_elf_link_hash_table *htab;
3500 long global_got_dynindx;
3501 struct mips_got_info *g;
3502 bfd_vma got_index;
3503
3504 htab = mips_elf_hash_table (info);
3505 BFD_ASSERT (htab != NULL);
3506
3507 global_got_dynindx = 0;
3508 if (htab->global_gotsym != NULL)
3509 global_got_dynindx = htab->global_gotsym->dynindx;
3510
3511 /* Once we determine the global GOT entry with the lowest dynamic
3512 symbol table index, we must put all dynamic symbols with greater
3513 indices into the primary GOT. That makes it easy to calculate the
3514 GOT offset. */
3515 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3516 g = mips_elf_bfd_got (obfd, FALSE);
3517 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3518 * MIPS_ELF_GOT_SIZE (obfd));
3519 BFD_ASSERT (got_index < htab->sgot->size);
3520
3521 return got_index;
3522 }
3523
3524 /* Return the GOT index for the global symbol indicated by H, which is
3525 referenced by a relocation of type R_TYPE in IBFD. */
3526
3527 static bfd_vma
3528 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3529 struct elf_link_hash_entry *h, int r_type)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 struct mips_got_info *g;
3533 struct mips_got_entry lookup, *entry;
3534 bfd_vma gotidx;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 g = mips_elf_bfd_got (ibfd, FALSE);
3540 BFD_ASSERT (g);
3541
3542 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3543 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3544 return mips_elf_primary_global_got_index (obfd, info, h);
3545
3546 lookup.abfd = ibfd;
3547 lookup.symndx = -1;
3548 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3549 entry = htab_find (g->got_entries, &lookup);
3550 BFD_ASSERT (entry);
3551
3552 gotidx = entry->gotidx;
3553 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3554
3555 if (lookup.tls_type)
3556 {
3557 bfd_vma value = MINUS_ONE;
3558
3559 if ((h->root.type == bfd_link_hash_defined
3560 || h->root.type == bfd_link_hash_defweak)
3561 && h->root.u.def.section->output_section)
3562 value = (h->root.u.def.value
3563 + h->root.u.def.section->output_offset
3564 + h->root.u.def.section->output_section->vma);
3565
3566 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3567 }
3568 return gotidx;
3569 }
3570
3571 /* Find a GOT page entry that points to within 32KB of VALUE. These
3572 entries are supposed to be placed at small offsets in the GOT, i.e.,
3573 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3574 entry could be created. If OFFSETP is nonnull, use it to return the
3575 offset of the GOT entry from VALUE. */
3576
3577 static bfd_vma
3578 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3579 bfd_vma value, bfd_vma *offsetp)
3580 {
3581 bfd_vma page, got_index;
3582 struct mips_got_entry *entry;
3583
3584 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3585 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3586 NULL, R_MIPS_GOT_PAGE);
3587
3588 if (!entry)
3589 return MINUS_ONE;
3590
3591 got_index = entry->gotidx;
3592
3593 if (offsetp)
3594 *offsetp = value - entry->d.address;
3595
3596 return got_index;
3597 }
3598
3599 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3600 EXTERNAL is true if the relocation was originally against a global
3601 symbol that binds locally. */
3602
3603 static bfd_vma
3604 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_boolean external)
3606 {
3607 struct mips_got_entry *entry;
3608
3609 /* GOT16 relocations against local symbols are followed by a LO16
3610 relocation; those against global symbols are not. Thus if the
3611 symbol was originally local, the GOT16 relocation should load the
3612 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3613 if (! external)
3614 value = mips_elf_high (value) << 16;
3615
3616 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3617 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3618 same in all cases. */
3619 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3620 NULL, R_MIPS_GOT16);
3621 if (entry)
3622 return entry->gotidx;
3623 else
3624 return MINUS_ONE;
3625 }
3626
3627 /* Returns the offset for the entry at the INDEXth position
3628 in the GOT. */
3629
3630 static bfd_vma
3631 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3632 bfd *input_bfd, bfd_vma got_index)
3633 {
3634 struct mips_elf_link_hash_table *htab;
3635 asection *sgot;
3636 bfd_vma gp;
3637
3638 htab = mips_elf_hash_table (info);
3639 BFD_ASSERT (htab != NULL);
3640
3641 sgot = htab->sgot;
3642 gp = _bfd_get_gp_value (output_bfd)
3643 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3644
3645 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3646 }
3647
3648 /* Create and return a local GOT entry for VALUE, which was calculated
3649 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3650 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3651 instead. */
3652
3653 static struct mips_got_entry *
3654 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3655 bfd *ibfd, bfd_vma value,
3656 unsigned long r_symndx,
3657 struct mips_elf_link_hash_entry *h,
3658 int r_type)
3659 {
3660 struct mips_got_entry lookup, *entry;
3661 void **loc;
3662 struct mips_got_info *g;
3663 struct mips_elf_link_hash_table *htab;
3664 bfd_vma gotidx;
3665
3666 htab = mips_elf_hash_table (info);
3667 BFD_ASSERT (htab != NULL);
3668
3669 g = mips_elf_bfd_got (ibfd, FALSE);
3670 if (g == NULL)
3671 {
3672 g = mips_elf_bfd_got (abfd, FALSE);
3673 BFD_ASSERT (g != NULL);
3674 }
3675
3676 /* This function shouldn't be called for symbols that live in the global
3677 area of the GOT. */
3678 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3679
3680 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3681 if (lookup.tls_type)
3682 {
3683 lookup.abfd = ibfd;
3684 if (tls_ldm_reloc_p (r_type))
3685 {
3686 lookup.symndx = 0;
3687 lookup.d.addend = 0;
3688 }
3689 else if (h == NULL)
3690 {
3691 lookup.symndx = r_symndx;
3692 lookup.d.addend = 0;
3693 }
3694 else
3695 {
3696 lookup.symndx = -1;
3697 lookup.d.h = h;
3698 }
3699
3700 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3701 BFD_ASSERT (entry);
3702
3703 gotidx = entry->gotidx;
3704 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3705
3706 return entry;
3707 }
3708
3709 lookup.abfd = NULL;
3710 lookup.symndx = -1;
3711 lookup.d.address = value;
3712 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3713 if (!loc)
3714 return NULL;
3715
3716 entry = (struct mips_got_entry *) *loc;
3717 if (entry)
3718 return entry;
3719
3720 if (g->assigned_low_gotno > g->assigned_high_gotno)
3721 {
3722 /* We didn't allocate enough space in the GOT. */
3723 (*_bfd_error_handler)
3724 (_("not enough GOT space for local GOT entries"));
3725 bfd_set_error (bfd_error_bad_value);
3726 return NULL;
3727 }
3728
3729 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3730 if (!entry)
3731 return NULL;
3732
3733 if (got16_reloc_p (r_type)
3734 || call16_reloc_p (r_type)
3735 || got_page_reloc_p (r_type)
3736 || got_disp_reloc_p (r_type))
3737 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3738 else
3739 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3740
3741 *entry = lookup;
3742 *loc = entry;
3743
3744 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3745
3746 /* These GOT entries need a dynamic relocation on VxWorks. */
3747 if (htab->is_vxworks)
3748 {
3749 Elf_Internal_Rela outrel;
3750 asection *s;
3751 bfd_byte *rloc;
3752 bfd_vma got_address;
3753
3754 s = mips_elf_rel_dyn_section (info, FALSE);
3755 got_address = (htab->sgot->output_section->vma
3756 + htab->sgot->output_offset
3757 + entry->gotidx);
3758
3759 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3760 outrel.r_offset = got_address;
3761 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3762 outrel.r_addend = value;
3763 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3764 }
3765
3766 return entry;
3767 }
3768
3769 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3770 The number might be exact or a worst-case estimate, depending on how
3771 much information is available to elf_backend_omit_section_dynsym at
3772 the current linking stage. */
3773
3774 static bfd_size_type
3775 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3776 {
3777 bfd_size_type count;
3778
3779 count = 0;
3780 if (bfd_link_pic (info)
3781 || elf_hash_table (info)->is_relocatable_executable)
3782 {
3783 asection *p;
3784 const struct elf_backend_data *bed;
3785
3786 bed = get_elf_backend_data (output_bfd);
3787 for (p = output_bfd->sections; p ; p = p->next)
3788 if ((p->flags & SEC_EXCLUDE) == 0
3789 && (p->flags & SEC_ALLOC) != 0
3790 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3791 ++count;
3792 }
3793 return count;
3794 }
3795
3796 /* Sort the dynamic symbol table so that symbols that need GOT entries
3797 appear towards the end. */
3798
3799 static bfd_boolean
3800 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3801 {
3802 struct mips_elf_link_hash_table *htab;
3803 struct mips_elf_hash_sort_data hsd;
3804 struct mips_got_info *g;
3805
3806 if (elf_hash_table (info)->dynsymcount == 0)
3807 return TRUE;
3808
3809 htab = mips_elf_hash_table (info);
3810 BFD_ASSERT (htab != NULL);
3811
3812 g = htab->got_info;
3813 if (g == NULL)
3814 return TRUE;
3815
3816 hsd.low = NULL;
3817 hsd.max_unref_got_dynindx
3818 = hsd.min_got_dynindx
3819 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3820 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3821 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3822 elf_hash_table (info)),
3823 mips_elf_sort_hash_table_f,
3824 &hsd);
3825
3826 /* There should have been enough room in the symbol table to
3827 accommodate both the GOT and non-GOT symbols. */
3828 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3829 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3830 == elf_hash_table (info)->dynsymcount);
3831 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3832 == g->global_gotno);
3833
3834 /* Now we know which dynamic symbol has the lowest dynamic symbol
3835 table index in the GOT. */
3836 htab->global_gotsym = hsd.low;
3837
3838 return TRUE;
3839 }
3840
3841 /* If H needs a GOT entry, assign it the highest available dynamic
3842 index. Otherwise, assign it the lowest available dynamic
3843 index. */
3844
3845 static bfd_boolean
3846 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3847 {
3848 struct mips_elf_hash_sort_data *hsd = data;
3849
3850 /* Symbols without dynamic symbol table entries aren't interesting
3851 at all. */
3852 if (h->root.dynindx == -1)
3853 return TRUE;
3854
3855 switch (h->global_got_area)
3856 {
3857 case GGA_NONE:
3858 h->root.dynindx = hsd->max_non_got_dynindx++;
3859 break;
3860
3861 case GGA_NORMAL:
3862 h->root.dynindx = --hsd->min_got_dynindx;
3863 hsd->low = (struct elf_link_hash_entry *) h;
3864 break;
3865
3866 case GGA_RELOC_ONLY:
3867 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3868 hsd->low = (struct elf_link_hash_entry *) h;
3869 h->root.dynindx = hsd->max_unref_got_dynindx++;
3870 break;
3871 }
3872
3873 return TRUE;
3874 }
3875
3876 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3877 (which is owned by the caller and shouldn't be added to the
3878 hash table directly). */
3879
3880 static bfd_boolean
3881 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3882 struct mips_got_entry *lookup)
3883 {
3884 struct mips_elf_link_hash_table *htab;
3885 struct mips_got_entry *entry;
3886 struct mips_got_info *g;
3887 void **loc, **bfd_loc;
3888
3889 /* Make sure there's a slot for this entry in the master GOT. */
3890 htab = mips_elf_hash_table (info);
3891 g = htab->got_info;
3892 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3893 if (!loc)
3894 return FALSE;
3895
3896 /* Populate the entry if it isn't already. */
3897 entry = (struct mips_got_entry *) *loc;
3898 if (!entry)
3899 {
3900 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3901 if (!entry)
3902 return FALSE;
3903
3904 lookup->tls_initialized = FALSE;
3905 lookup->gotidx = -1;
3906 *entry = *lookup;
3907 *loc = entry;
3908 }
3909
3910 /* Reuse the same GOT entry for the BFD's GOT. */
3911 g = mips_elf_bfd_got (abfd, TRUE);
3912 if (!g)
3913 return FALSE;
3914
3915 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3916 if (!bfd_loc)
3917 return FALSE;
3918
3919 if (!*bfd_loc)
3920 *bfd_loc = entry;
3921 return TRUE;
3922 }
3923
3924 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3925 entry for it. FOR_CALL is true if the caller is only interested in
3926 using the GOT entry for calls. */
3927
3928 static bfd_boolean
3929 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3930 bfd *abfd, struct bfd_link_info *info,
3931 bfd_boolean for_call, int r_type)
3932 {
3933 struct mips_elf_link_hash_table *htab;
3934 struct mips_elf_link_hash_entry *hmips;
3935 struct mips_got_entry entry;
3936 unsigned char tls_type;
3937
3938 htab = mips_elf_hash_table (info);
3939 BFD_ASSERT (htab != NULL);
3940
3941 hmips = (struct mips_elf_link_hash_entry *) h;
3942 if (!for_call)
3943 hmips->got_only_for_calls = FALSE;
3944
3945 /* A global symbol in the GOT must also be in the dynamic symbol
3946 table. */
3947 if (h->dynindx == -1)
3948 {
3949 switch (ELF_ST_VISIBILITY (h->other))
3950 {
3951 case STV_INTERNAL:
3952 case STV_HIDDEN:
3953 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3954 break;
3955 }
3956 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3957 return FALSE;
3958 }
3959
3960 tls_type = mips_elf_reloc_tls_type (r_type);
3961 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3962 hmips->global_got_area = GGA_NORMAL;
3963
3964 entry.abfd = abfd;
3965 entry.symndx = -1;
3966 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3967 entry.tls_type = tls_type;
3968 return mips_elf_record_got_entry (info, abfd, &entry);
3969 }
3970
3971 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3972 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3973
3974 static bfd_boolean
3975 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3976 struct bfd_link_info *info, int r_type)
3977 {
3978 struct mips_elf_link_hash_table *htab;
3979 struct mips_got_info *g;
3980 struct mips_got_entry entry;
3981
3982 htab = mips_elf_hash_table (info);
3983 BFD_ASSERT (htab != NULL);
3984
3985 g = htab->got_info;
3986 BFD_ASSERT (g != NULL);
3987
3988 entry.abfd = abfd;
3989 entry.symndx = symndx;
3990 entry.d.addend = addend;
3991 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3992 return mips_elf_record_got_entry (info, abfd, &entry);
3993 }
3994
3995 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3996 H is the symbol's hash table entry, or null if SYMNDX is local
3997 to ABFD. */
3998
3999 static bfd_boolean
4000 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4001 long symndx, struct elf_link_hash_entry *h,
4002 bfd_signed_vma addend)
4003 {
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g1, *g2;
4006 struct mips_got_page_ref lookup, *entry;
4007 void **loc, **bfd_loc;
4008
4009 htab = mips_elf_hash_table (info);
4010 BFD_ASSERT (htab != NULL);
4011
4012 g1 = htab->got_info;
4013 BFD_ASSERT (g1 != NULL);
4014
4015 if (h)
4016 {
4017 lookup.symndx = -1;
4018 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4019 }
4020 else
4021 {
4022 lookup.symndx = symndx;
4023 lookup.u.abfd = abfd;
4024 }
4025 lookup.addend = addend;
4026 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4027 if (loc == NULL)
4028 return FALSE;
4029
4030 entry = (struct mips_got_page_ref *) *loc;
4031 if (!entry)
4032 {
4033 entry = bfd_alloc (abfd, sizeof (*entry));
4034 if (!entry)
4035 return FALSE;
4036
4037 *entry = lookup;
4038 *loc = entry;
4039 }
4040
4041 /* Add the same entry to the BFD's GOT. */
4042 g2 = mips_elf_bfd_got (abfd, TRUE);
4043 if (!g2)
4044 return FALSE;
4045
4046 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4047 if (!bfd_loc)
4048 return FALSE;
4049
4050 if (!*bfd_loc)
4051 *bfd_loc = entry;
4052
4053 return TRUE;
4054 }
4055
4056 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4057
4058 static void
4059 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4060 unsigned int n)
4061 {
4062 asection *s;
4063 struct mips_elf_link_hash_table *htab;
4064
4065 htab = mips_elf_hash_table (info);
4066 BFD_ASSERT (htab != NULL);
4067
4068 s = mips_elf_rel_dyn_section (info, FALSE);
4069 BFD_ASSERT (s != NULL);
4070
4071 if (htab->is_vxworks)
4072 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4073 else
4074 {
4075 if (s->size == 0)
4076 {
4077 /* Make room for a null element. */
4078 s->size += MIPS_ELF_REL_SIZE (abfd);
4079 ++s->reloc_count;
4080 }
4081 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4082 }
4083 }
4084 \f
4085 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4086 mips_elf_traverse_got_arg structure. Count the number of GOT
4087 entries and TLS relocs. Set DATA->value to true if we need
4088 to resolve indirect or warning symbols and then recreate the GOT. */
4089
4090 static int
4091 mips_elf_check_recreate_got (void **entryp, void *data)
4092 {
4093 struct mips_got_entry *entry;
4094 struct mips_elf_traverse_got_arg *arg;
4095
4096 entry = (struct mips_got_entry *) *entryp;
4097 arg = (struct mips_elf_traverse_got_arg *) data;
4098 if (entry->abfd != NULL && entry->symndx == -1)
4099 {
4100 struct mips_elf_link_hash_entry *h;
4101
4102 h = entry->d.h;
4103 if (h->root.root.type == bfd_link_hash_indirect
4104 || h->root.root.type == bfd_link_hash_warning)
4105 {
4106 arg->value = TRUE;
4107 return 0;
4108 }
4109 }
4110 mips_elf_count_got_entry (arg->info, arg->g, entry);
4111 return 1;
4112 }
4113
4114 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4116 converting entries for indirect and warning symbols into entries
4117 for the target symbol. Set DATA->g to null on error. */
4118
4119 static int
4120 mips_elf_recreate_got (void **entryp, void *data)
4121 {
4122 struct mips_got_entry new_entry, *entry;
4123 struct mips_elf_traverse_got_arg *arg;
4124 void **slot;
4125
4126 entry = (struct mips_got_entry *) *entryp;
4127 arg = (struct mips_elf_traverse_got_arg *) data;
4128 if (entry->abfd != NULL
4129 && entry->symndx == -1
4130 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4131 || entry->d.h->root.root.type == bfd_link_hash_warning))
4132 {
4133 struct mips_elf_link_hash_entry *h;
4134
4135 new_entry = *entry;
4136 entry = &new_entry;
4137 h = entry->d.h;
4138 do
4139 {
4140 BFD_ASSERT (h->global_got_area == GGA_NONE);
4141 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4142 }
4143 while (h->root.root.type == bfd_link_hash_indirect
4144 || h->root.root.type == bfd_link_hash_warning);
4145 entry->d.h = h;
4146 }
4147 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4148 if (slot == NULL)
4149 {
4150 arg->g = NULL;
4151 return 0;
4152 }
4153 if (*slot == NULL)
4154 {
4155 if (entry == &new_entry)
4156 {
4157 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4158 if (!entry)
4159 {
4160 arg->g = NULL;
4161 return 0;
4162 }
4163 *entry = new_entry;
4164 }
4165 *slot = entry;
4166 mips_elf_count_got_entry (arg->info, arg->g, entry);
4167 }
4168 return 1;
4169 }
4170
4171 /* Return the maximum number of GOT page entries required for RANGE. */
4172
4173 static bfd_vma
4174 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4175 {
4176 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4177 }
4178
4179 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4180
4181 static bfd_boolean
4182 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4183 asection *sec, bfd_signed_vma addend)
4184 {
4185 struct mips_got_info *g = arg->g;
4186 struct mips_got_page_entry lookup, *entry;
4187 struct mips_got_page_range **range_ptr, *range;
4188 bfd_vma old_pages, new_pages;
4189 void **loc;
4190
4191 /* Find the mips_got_page_entry hash table entry for this section. */
4192 lookup.sec = sec;
4193 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4194 if (loc == NULL)
4195 return FALSE;
4196
4197 /* Create a mips_got_page_entry if this is the first time we've
4198 seen the section. */
4199 entry = (struct mips_got_page_entry *) *loc;
4200 if (!entry)
4201 {
4202 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4203 if (!entry)
4204 return FALSE;
4205
4206 entry->sec = sec;
4207 *loc = entry;
4208 }
4209
4210 /* Skip over ranges whose maximum extent cannot share a page entry
4211 with ADDEND. */
4212 range_ptr = &entry->ranges;
4213 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4214 range_ptr = &(*range_ptr)->next;
4215
4216 /* If we scanned to the end of the list, or found a range whose
4217 minimum extent cannot share a page entry with ADDEND, create
4218 a new singleton range. */
4219 range = *range_ptr;
4220 if (!range || addend < range->min_addend - 0xffff)
4221 {
4222 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4223 if (!range)
4224 return FALSE;
4225
4226 range->next = *range_ptr;
4227 range->min_addend = addend;
4228 range->max_addend = addend;
4229
4230 *range_ptr = range;
4231 entry->num_pages++;
4232 g->page_gotno++;
4233 return TRUE;
4234 }
4235
4236 /* Remember how many pages the old range contributed. */
4237 old_pages = mips_elf_pages_for_range (range);
4238
4239 /* Update the ranges. */
4240 if (addend < range->min_addend)
4241 range->min_addend = addend;
4242 else if (addend > range->max_addend)
4243 {
4244 if (range->next && addend >= range->next->min_addend - 0xffff)
4245 {
4246 old_pages += mips_elf_pages_for_range (range->next);
4247 range->max_addend = range->next->max_addend;
4248 range->next = range->next->next;
4249 }
4250 else
4251 range->max_addend = addend;
4252 }
4253
4254 /* Record any change in the total estimate. */
4255 new_pages = mips_elf_pages_for_range (range);
4256 if (old_pages != new_pages)
4257 {
4258 entry->num_pages += new_pages - old_pages;
4259 g->page_gotno += new_pages - old_pages;
4260 }
4261
4262 return TRUE;
4263 }
4264
4265 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4266 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4267 whether the page reference described by *REFP needs a GOT page entry,
4268 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4269
4270 static bfd_boolean
4271 mips_elf_resolve_got_page_ref (void **refp, void *data)
4272 {
4273 struct mips_got_page_ref *ref;
4274 struct mips_elf_traverse_got_arg *arg;
4275 struct mips_elf_link_hash_table *htab;
4276 asection *sec;
4277 bfd_vma addend;
4278
4279 ref = (struct mips_got_page_ref *) *refp;
4280 arg = (struct mips_elf_traverse_got_arg *) data;
4281 htab = mips_elf_hash_table (arg->info);
4282
4283 if (ref->symndx < 0)
4284 {
4285 struct mips_elf_link_hash_entry *h;
4286
4287 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4288 h = ref->u.h;
4289 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4290 return 1;
4291
4292 /* Ignore undefined symbols; we'll issue an error later if
4293 appropriate. */
4294 if (!((h->root.root.type == bfd_link_hash_defined
4295 || h->root.root.type == bfd_link_hash_defweak)
4296 && h->root.root.u.def.section))
4297 return 1;
4298
4299 sec = h->root.root.u.def.section;
4300 addend = h->root.root.u.def.value + ref->addend;
4301 }
4302 else
4303 {
4304 Elf_Internal_Sym *isym;
4305
4306 /* Read in the symbol. */
4307 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4308 ref->symndx);
4309 if (isym == NULL)
4310 {
4311 arg->g = NULL;
4312 return 0;
4313 }
4314
4315 /* Get the associated input section. */
4316 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4317 if (sec == NULL)
4318 {
4319 arg->g = NULL;
4320 return 0;
4321 }
4322
4323 /* If this is a mergable section, work out the section and offset
4324 of the merged data. For section symbols, the addend specifies
4325 of the offset _of_ the first byte in the data, otherwise it
4326 specifies the offset _from_ the first byte. */
4327 if (sec->flags & SEC_MERGE)
4328 {
4329 void *secinfo;
4330
4331 secinfo = elf_section_data (sec)->sec_info;
4332 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4333 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4334 isym->st_value + ref->addend);
4335 else
4336 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4337 isym->st_value) + ref->addend;
4338 }
4339 else
4340 addend = isym->st_value + ref->addend;
4341 }
4342 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4343 {
4344 arg->g = NULL;
4345 return 0;
4346 }
4347 return 1;
4348 }
4349
4350 /* If any entries in G->got_entries are for indirect or warning symbols,
4351 replace them with entries for the target symbol. Convert g->got_page_refs
4352 into got_page_entry structures and estimate the number of page entries
4353 that they require. */
4354
4355 static bfd_boolean
4356 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4357 struct mips_got_info *g)
4358 {
4359 struct mips_elf_traverse_got_arg tga;
4360 struct mips_got_info oldg;
4361
4362 oldg = *g;
4363
4364 tga.info = info;
4365 tga.g = g;
4366 tga.value = FALSE;
4367 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4368 if (tga.value)
4369 {
4370 *g = oldg;
4371 g->got_entries = htab_create (htab_size (oldg.got_entries),
4372 mips_elf_got_entry_hash,
4373 mips_elf_got_entry_eq, NULL);
4374 if (!g->got_entries)
4375 return FALSE;
4376
4377 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4378 if (!tga.g)
4379 return FALSE;
4380
4381 htab_delete (oldg.got_entries);
4382 }
4383
4384 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4385 mips_got_page_entry_eq, NULL);
4386 if (g->got_page_entries == NULL)
4387 return FALSE;
4388
4389 tga.info = info;
4390 tga.g = g;
4391 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4392
4393 return TRUE;
4394 }
4395
4396 /* Return true if a GOT entry for H should live in the local rather than
4397 global GOT area. */
4398
4399 static bfd_boolean
4400 mips_use_local_got_p (struct bfd_link_info *info,
4401 struct mips_elf_link_hash_entry *h)
4402 {
4403 /* Symbols that aren't in the dynamic symbol table must live in the
4404 local GOT. This includes symbols that are completely undefined
4405 and which therefore don't bind locally. We'll report undefined
4406 symbols later if appropriate. */
4407 if (h->root.dynindx == -1)
4408 return TRUE;
4409
4410 /* Symbols that bind locally can (and in the case of forced-local
4411 symbols, must) live in the local GOT. */
4412 if (h->got_only_for_calls
4413 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4414 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4415 return TRUE;
4416
4417 /* If this is an executable that must provide a definition of the symbol,
4418 either though PLTs or copy relocations, then that address should go in
4419 the local rather than global GOT. */
4420 if (bfd_link_executable (info) && h->has_static_relocs)
4421 return TRUE;
4422
4423 return FALSE;
4424 }
4425
4426 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4427 link_info structure. Decide whether the hash entry needs an entry in
4428 the global part of the primary GOT, setting global_got_area accordingly.
4429 Count the number of global symbols that are in the primary GOT only
4430 because they have relocations against them (reloc_only_gotno). */
4431
4432 static int
4433 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4434 {
4435 struct bfd_link_info *info;
4436 struct mips_elf_link_hash_table *htab;
4437 struct mips_got_info *g;
4438
4439 info = (struct bfd_link_info *) data;
4440 htab = mips_elf_hash_table (info);
4441 g = htab->got_info;
4442 if (h->global_got_area != GGA_NONE)
4443 {
4444 /* Make a final decision about whether the symbol belongs in the
4445 local or global GOT. */
4446 if (mips_use_local_got_p (info, h))
4447 /* The symbol belongs in the local GOT. We no longer need this
4448 entry if it was only used for relocations; those relocations
4449 will be against the null or section symbol instead of H. */
4450 h->global_got_area = GGA_NONE;
4451 else if (htab->is_vxworks
4452 && h->got_only_for_calls
4453 && h->root.plt.plist->mips_offset != MINUS_ONE)
4454 /* On VxWorks, calls can refer directly to the .got.plt entry;
4455 they don't need entries in the regular GOT. .got.plt entries
4456 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4457 h->global_got_area = GGA_NONE;
4458 else if (h->global_got_area == GGA_RELOC_ONLY)
4459 {
4460 g->reloc_only_gotno++;
4461 g->global_gotno++;
4462 }
4463 }
4464 return 1;
4465 }
4466 \f
4467 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4468 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4469
4470 static int
4471 mips_elf_add_got_entry (void **entryp, void *data)
4472 {
4473 struct mips_got_entry *entry;
4474 struct mips_elf_traverse_got_arg *arg;
4475 void **slot;
4476
4477 entry = (struct mips_got_entry *) *entryp;
4478 arg = (struct mips_elf_traverse_got_arg *) data;
4479 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4480 if (!slot)
4481 {
4482 arg->g = NULL;
4483 return 0;
4484 }
4485 if (!*slot)
4486 {
4487 *slot = entry;
4488 mips_elf_count_got_entry (arg->info, arg->g, entry);
4489 }
4490 return 1;
4491 }
4492
4493 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4495
4496 static int
4497 mips_elf_add_got_page_entry (void **entryp, void *data)
4498 {
4499 struct mips_got_page_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4501 void **slot;
4502
4503 entry = (struct mips_got_page_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4506 if (!slot)
4507 {
4508 arg->g = NULL;
4509 return 0;
4510 }
4511 if (!*slot)
4512 {
4513 *slot = entry;
4514 arg->g->page_gotno += entry->num_pages;
4515 }
4516 return 1;
4517 }
4518
4519 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4520 this would lead to overflow, 1 if they were merged successfully,
4521 and 0 if a merge failed due to lack of memory. (These values are chosen
4522 so that nonnegative return values can be returned by a htab_traverse
4523 callback.) */
4524
4525 static int
4526 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4527 struct mips_got_info *to,
4528 struct mips_elf_got_per_bfd_arg *arg)
4529 {
4530 struct mips_elf_traverse_got_arg tga;
4531 unsigned int estimate;
4532
4533 /* Work out how many page entries we would need for the combined GOT. */
4534 estimate = arg->max_pages;
4535 if (estimate >= from->page_gotno + to->page_gotno)
4536 estimate = from->page_gotno + to->page_gotno;
4537
4538 /* And conservatively estimate how many local and TLS entries
4539 would be needed. */
4540 estimate += from->local_gotno + to->local_gotno;
4541 estimate += from->tls_gotno + to->tls_gotno;
4542
4543 /* If we're merging with the primary got, any TLS relocations will
4544 come after the full set of global entries. Otherwise estimate those
4545 conservatively as well. */
4546 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4547 estimate += arg->global_count;
4548 else
4549 estimate += from->global_gotno + to->global_gotno;
4550
4551 /* Bail out if the combined GOT might be too big. */
4552 if (estimate > arg->max_count)
4553 return -1;
4554
4555 /* Transfer the bfd's got information from FROM to TO. */
4556 tga.info = arg->info;
4557 tga.g = to;
4558 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4559 if (!tga.g)
4560 return 0;
4561
4562 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4563 if (!tga.g)
4564 return 0;
4565
4566 mips_elf_replace_bfd_got (abfd, to);
4567 return 1;
4568 }
4569
4570 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4571 as possible of the primary got, since it doesn't require explicit
4572 dynamic relocations, but don't use bfds that would reference global
4573 symbols out of the addressable range. Failing the primary got,
4574 attempt to merge with the current got, or finish the current got
4575 and then make make the new got current. */
4576
4577 static bfd_boolean
4578 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4579 struct mips_elf_got_per_bfd_arg *arg)
4580 {
4581 unsigned int estimate;
4582 int result;
4583
4584 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4585 return FALSE;
4586
4587 /* Work out the number of page, local and TLS entries. */
4588 estimate = arg->max_pages;
4589 if (estimate > g->page_gotno)
4590 estimate = g->page_gotno;
4591 estimate += g->local_gotno + g->tls_gotno;
4592
4593 /* We place TLS GOT entries after both locals and globals. The globals
4594 for the primary GOT may overflow the normal GOT size limit, so be
4595 sure not to merge a GOT which requires TLS with the primary GOT in that
4596 case. This doesn't affect non-primary GOTs. */
4597 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4598
4599 if (estimate <= arg->max_count)
4600 {
4601 /* If we don't have a primary GOT, use it as
4602 a starting point for the primary GOT. */
4603 if (!arg->primary)
4604 {
4605 arg->primary = g;
4606 return TRUE;
4607 }
4608
4609 /* Try merging with the primary GOT. */
4610 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4611 if (result >= 0)
4612 return result;
4613 }
4614
4615 /* If we can merge with the last-created got, do it. */
4616 if (arg->current)
4617 {
4618 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4619 if (result >= 0)
4620 return result;
4621 }
4622
4623 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4624 fits; if it turns out that it doesn't, we'll get relocation
4625 overflows anyway. */
4626 g->next = arg->current;
4627 arg->current = g;
4628
4629 return TRUE;
4630 }
4631
4632 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4633 to GOTIDX, duplicating the entry if it has already been assigned
4634 an index in a different GOT. */
4635
4636 static bfd_boolean
4637 mips_elf_set_gotidx (void **entryp, long gotidx)
4638 {
4639 struct mips_got_entry *entry;
4640
4641 entry = (struct mips_got_entry *) *entryp;
4642 if (entry->gotidx > 0)
4643 {
4644 struct mips_got_entry *new_entry;
4645
4646 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4647 if (!new_entry)
4648 return FALSE;
4649
4650 *new_entry = *entry;
4651 *entryp = new_entry;
4652 entry = new_entry;
4653 }
4654 entry->gotidx = gotidx;
4655 return TRUE;
4656 }
4657
4658 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4659 mips_elf_traverse_got_arg in which DATA->value is the size of one
4660 GOT entry. Set DATA->g to null on failure. */
4661
4662 static int
4663 mips_elf_initialize_tls_index (void **entryp, void *data)
4664 {
4665 struct mips_got_entry *entry;
4666 struct mips_elf_traverse_got_arg *arg;
4667
4668 /* We're only interested in TLS symbols. */
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->tls_type == GOT_TLS_NONE)
4671 return 1;
4672
4673 arg = (struct mips_elf_traverse_got_arg *) data;
4674 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4675 {
4676 arg->g = NULL;
4677 return 0;
4678 }
4679
4680 /* Account for the entries we've just allocated. */
4681 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4682 return 1;
4683 }
4684
4685 /* A htab_traverse callback for GOT entries, where DATA points to a
4686 mips_elf_traverse_got_arg. Set the global_got_area of each global
4687 symbol to DATA->value. */
4688
4689 static int
4690 mips_elf_set_global_got_area (void **entryp, void *data)
4691 {
4692 struct mips_got_entry *entry;
4693 struct mips_elf_traverse_got_arg *arg;
4694
4695 entry = (struct mips_got_entry *) *entryp;
4696 arg = (struct mips_elf_traverse_got_arg *) data;
4697 if (entry->abfd != NULL
4698 && entry->symndx == -1
4699 && entry->d.h->global_got_area != GGA_NONE)
4700 entry->d.h->global_got_area = arg->value;
4701 return 1;
4702 }
4703
4704 /* A htab_traverse callback for secondary GOT entries, where DATA points
4705 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4706 and record the number of relocations they require. DATA->value is
4707 the size of one GOT entry. Set DATA->g to null on failure. */
4708
4709 static int
4710 mips_elf_set_global_gotidx (void **entryp, void *data)
4711 {
4712 struct mips_got_entry *entry;
4713 struct mips_elf_traverse_got_arg *arg;
4714
4715 entry = (struct mips_got_entry *) *entryp;
4716 arg = (struct mips_elf_traverse_got_arg *) data;
4717 if (entry->abfd != NULL
4718 && entry->symndx == -1
4719 && entry->d.h->global_got_area != GGA_NONE)
4720 {
4721 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4722 {
4723 arg->g = NULL;
4724 return 0;
4725 }
4726 arg->g->assigned_low_gotno += 1;
4727
4728 if (bfd_link_pic (arg->info)
4729 || (elf_hash_table (arg->info)->dynamic_sections_created
4730 && entry->d.h->root.def_dynamic
4731 && !entry->d.h->root.def_regular))
4732 arg->g->relocs += 1;
4733 }
4734
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for GOT entries for which DATA is the
4739 bfd_link_info. Forbid any global symbols from having traditional
4740 lazy-binding stubs. */
4741
4742 static int
4743 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4744 {
4745 struct bfd_link_info *info;
4746 struct mips_elf_link_hash_table *htab;
4747 struct mips_got_entry *entry;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 info = (struct bfd_link_info *) data;
4751 htab = mips_elf_hash_table (info);
4752 BFD_ASSERT (htab != NULL);
4753
4754 if (entry->abfd != NULL
4755 && entry->symndx == -1
4756 && entry->d.h->needs_lazy_stub)
4757 {
4758 entry->d.h->needs_lazy_stub = FALSE;
4759 htab->lazy_stub_count--;
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4766 the primary GOT. */
4767 static bfd_vma
4768 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4769 {
4770 if (!g->next)
4771 return 0;
4772
4773 g = mips_elf_bfd_got (ibfd, FALSE);
4774 if (! g)
4775 return 0;
4776
4777 BFD_ASSERT (g->next);
4778
4779 g = g->next;
4780
4781 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4782 * MIPS_ELF_GOT_SIZE (abfd);
4783 }
4784
4785 /* Turn a single GOT that is too big for 16-bit addressing into
4786 a sequence of GOTs, each one 16-bit addressable. */
4787
4788 static bfd_boolean
4789 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4790 asection *got, bfd_size_type pages)
4791 {
4792 struct mips_elf_link_hash_table *htab;
4793 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4794 struct mips_elf_traverse_got_arg tga;
4795 struct mips_got_info *g, *gg;
4796 unsigned int assign, needed_relocs;
4797 bfd *dynobj, *ibfd;
4798
4799 dynobj = elf_hash_table (info)->dynobj;
4800 htab = mips_elf_hash_table (info);
4801 BFD_ASSERT (htab != NULL);
4802
4803 g = htab->got_info;
4804
4805 got_per_bfd_arg.obfd = abfd;
4806 got_per_bfd_arg.info = info;
4807 got_per_bfd_arg.current = NULL;
4808 got_per_bfd_arg.primary = NULL;
4809 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4810 / MIPS_ELF_GOT_SIZE (abfd))
4811 - htab->reserved_gotno);
4812 got_per_bfd_arg.max_pages = pages;
4813 /* The number of globals that will be included in the primary GOT.
4814 See the calls to mips_elf_set_global_got_area below for more
4815 information. */
4816 got_per_bfd_arg.global_count = g->global_gotno;
4817
4818 /* Try to merge the GOTs of input bfds together, as long as they
4819 don't seem to exceed the maximum GOT size, choosing one of them
4820 to be the primary GOT. */
4821 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4822 {
4823 gg = mips_elf_bfd_got (ibfd, FALSE);
4824 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4825 return FALSE;
4826 }
4827
4828 /* If we do not find any suitable primary GOT, create an empty one. */
4829 if (got_per_bfd_arg.primary == NULL)
4830 g->next = mips_elf_create_got_info (abfd);
4831 else
4832 g->next = got_per_bfd_arg.primary;
4833 g->next->next = got_per_bfd_arg.current;
4834
4835 /* GG is now the master GOT, and G is the primary GOT. */
4836 gg = g;
4837 g = g->next;
4838
4839 /* Map the output bfd to the primary got. That's what we're going
4840 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4841 didn't mark in check_relocs, and we want a quick way to find it.
4842 We can't just use gg->next because we're going to reverse the
4843 list. */
4844 mips_elf_replace_bfd_got (abfd, g);
4845
4846 /* Every symbol that is referenced in a dynamic relocation must be
4847 present in the primary GOT, so arrange for them to appear after
4848 those that are actually referenced. */
4849 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4850 g->global_gotno = gg->global_gotno;
4851
4852 tga.info = info;
4853 tga.value = GGA_RELOC_ONLY;
4854 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4855 tga.value = GGA_NORMAL;
4856 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4857
4858 /* Now go through the GOTs assigning them offset ranges.
4859 [assigned_low_gotno, local_gotno[ will be set to the range of local
4860 entries in each GOT. We can then compute the end of a GOT by
4861 adding local_gotno to global_gotno. We reverse the list and make
4862 it circular since then we'll be able to quickly compute the
4863 beginning of a GOT, by computing the end of its predecessor. To
4864 avoid special cases for the primary GOT, while still preserving
4865 assertions that are valid for both single- and multi-got links,
4866 we arrange for the main got struct to have the right number of
4867 global entries, but set its local_gotno such that the initial
4868 offset of the primary GOT is zero. Remember that the primary GOT
4869 will become the last item in the circular linked list, so it
4870 points back to the master GOT. */
4871 gg->local_gotno = -g->global_gotno;
4872 gg->global_gotno = g->global_gotno;
4873 gg->tls_gotno = 0;
4874 assign = 0;
4875 gg->next = gg;
4876
4877 do
4878 {
4879 struct mips_got_info *gn;
4880
4881 assign += htab->reserved_gotno;
4882 g->assigned_low_gotno = assign;
4883 g->local_gotno += assign;
4884 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4885 g->assigned_high_gotno = g->local_gotno - 1;
4886 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4887
4888 /* Take g out of the direct list, and push it onto the reversed
4889 list that gg points to. g->next is guaranteed to be nonnull after
4890 this operation, as required by mips_elf_initialize_tls_index. */
4891 gn = g->next;
4892 g->next = gg->next;
4893 gg->next = g;
4894
4895 /* Set up any TLS entries. We always place the TLS entries after
4896 all non-TLS entries. */
4897 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4898 tga.g = g;
4899 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4900 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4901 if (!tga.g)
4902 return FALSE;
4903 BFD_ASSERT (g->tls_assigned_gotno == assign);
4904
4905 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4906 g = gn;
4907
4908 /* Forbid global symbols in every non-primary GOT from having
4909 lazy-binding stubs. */
4910 if (g)
4911 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4912 }
4913 while (g);
4914
4915 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4916
4917 needed_relocs = 0;
4918 for (g = gg->next; g && g->next != gg; g = g->next)
4919 {
4920 unsigned int save_assign;
4921
4922 /* Assign offsets to global GOT entries and count how many
4923 relocations they need. */
4924 save_assign = g->assigned_low_gotno;
4925 g->assigned_low_gotno = g->local_gotno;
4926 tga.info = info;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 tga.g = g;
4929 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4930 if (!tga.g)
4931 return FALSE;
4932 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4933 g->assigned_low_gotno = save_assign;
4934
4935 if (bfd_link_pic (info))
4936 {
4937 g->relocs += g->local_gotno - g->assigned_low_gotno;
4938 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4939 + g->next->global_gotno
4940 + g->next->tls_gotno
4941 + htab->reserved_gotno);
4942 }
4943 needed_relocs += g->relocs;
4944 }
4945 needed_relocs += g->relocs;
4946
4947 if (needed_relocs)
4948 mips_elf_allocate_dynamic_relocations (dynobj, info,
4949 needed_relocs);
4950
4951 return TRUE;
4952 }
4953
4954 \f
4955 /* Returns the first relocation of type r_type found, beginning with
4956 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4957
4958 static const Elf_Internal_Rela *
4959 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4960 const Elf_Internal_Rela *relocation,
4961 const Elf_Internal_Rela *relend)
4962 {
4963 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4964
4965 while (relocation < relend)
4966 {
4967 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4968 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4969 return relocation;
4970
4971 ++relocation;
4972 }
4973
4974 /* We didn't find it. */
4975 return NULL;
4976 }
4977
4978 /* Return whether an input relocation is against a local symbol. */
4979
4980 static bfd_boolean
4981 mips_elf_local_relocation_p (bfd *input_bfd,
4982 const Elf_Internal_Rela *relocation,
4983 asection **local_sections)
4984 {
4985 unsigned long r_symndx;
4986 Elf_Internal_Shdr *symtab_hdr;
4987 size_t extsymoff;
4988
4989 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4990 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4991 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4992
4993 if (r_symndx < extsymoff)
4994 return TRUE;
4995 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4996 return TRUE;
4997
4998 return FALSE;
4999 }
5000 \f
5001 /* Sign-extend VALUE, which has the indicated number of BITS. */
5002
5003 bfd_vma
5004 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5005 {
5006 if (value & ((bfd_vma) 1 << (bits - 1)))
5007 /* VALUE is negative. */
5008 value |= ((bfd_vma) - 1) << bits;
5009
5010 return value;
5011 }
5012
5013 /* Return non-zero if the indicated VALUE has overflowed the maximum
5014 range expressible by a signed number with the indicated number of
5015 BITS. */
5016
5017 static bfd_boolean
5018 mips_elf_overflow_p (bfd_vma value, int bits)
5019 {
5020 bfd_signed_vma svalue = (bfd_signed_vma) value;
5021
5022 if (svalue > (1 << (bits - 1)) - 1)
5023 /* The value is too big. */
5024 return TRUE;
5025 else if (svalue < -(1 << (bits - 1)))
5026 /* The value is too small. */
5027 return TRUE;
5028
5029 /* All is well. */
5030 return FALSE;
5031 }
5032
5033 /* Calculate the %high function. */
5034
5035 static bfd_vma
5036 mips_elf_high (bfd_vma value)
5037 {
5038 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5039 }
5040
5041 /* Calculate the %higher function. */
5042
5043 static bfd_vma
5044 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5045 {
5046 #ifdef BFD64
5047 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5048 #else
5049 abort ();
5050 return MINUS_ONE;
5051 #endif
5052 }
5053
5054 /* Calculate the %highest function. */
5055
5056 static bfd_vma
5057 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5058 {
5059 #ifdef BFD64
5060 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5061 #else
5062 abort ();
5063 return MINUS_ONE;
5064 #endif
5065 }
5066 \f
5067 /* Create the .compact_rel section. */
5068
5069 static bfd_boolean
5070 mips_elf_create_compact_rel_section
5071 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5072 {
5073 flagword flags;
5074 register asection *s;
5075
5076 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5077 {
5078 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5079 | SEC_READONLY);
5080
5081 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5082 if (s == NULL
5083 || ! bfd_set_section_alignment (abfd, s,
5084 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5085 return FALSE;
5086
5087 s->size = sizeof (Elf32_External_compact_rel);
5088 }
5089
5090 return TRUE;
5091 }
5092
5093 /* Create the .got section to hold the global offset table. */
5094
5095 static bfd_boolean
5096 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5097 {
5098 flagword flags;
5099 register asection *s;
5100 struct elf_link_hash_entry *h;
5101 struct bfd_link_hash_entry *bh;
5102 struct mips_elf_link_hash_table *htab;
5103
5104 htab = mips_elf_hash_table (info);
5105 BFD_ASSERT (htab != NULL);
5106
5107 /* This function may be called more than once. */
5108 if (htab->sgot)
5109 return TRUE;
5110
5111 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5112 | SEC_LINKER_CREATED);
5113
5114 /* We have to use an alignment of 2**4 here because this is hardcoded
5115 in the function stub generation and in the linker script. */
5116 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5117 if (s == NULL
5118 || ! bfd_set_section_alignment (abfd, s, 4))
5119 return FALSE;
5120 htab->sgot = s;
5121
5122 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5123 linker script because we don't want to define the symbol if we
5124 are not creating a global offset table. */
5125 bh = NULL;
5126 if (! (_bfd_generic_link_add_one_symbol
5127 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5128 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5129 return FALSE;
5130
5131 h = (struct elf_link_hash_entry *) bh;
5132 h->non_elf = 0;
5133 h->def_regular = 1;
5134 h->type = STT_OBJECT;
5135 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5136 elf_hash_table (info)->hgot = h;
5137
5138 if (bfd_link_pic (info)
5139 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5140 return FALSE;
5141
5142 htab->got_info = mips_elf_create_got_info (abfd);
5143 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5144 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5145
5146 /* We also need a .got.plt section when generating PLTs. */
5147 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5148 SEC_ALLOC | SEC_LOAD
5149 | SEC_HAS_CONTENTS
5150 | SEC_IN_MEMORY
5151 | SEC_LINKER_CREATED);
5152 if (s == NULL)
5153 return FALSE;
5154 htab->sgotplt = s;
5155
5156 return TRUE;
5157 }
5158 \f
5159 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5160 __GOTT_INDEX__ symbols. These symbols are only special for
5161 shared objects; they are not used in executables. */
5162
5163 static bfd_boolean
5164 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5165 {
5166 return (mips_elf_hash_table (info)->is_vxworks
5167 && bfd_link_pic (info)
5168 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5169 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5170 }
5171
5172 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5173 require an la25 stub. See also mips_elf_local_pic_function_p,
5174 which determines whether the destination function ever requires a
5175 stub. */
5176
5177 static bfd_boolean
5178 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5179 bfd_boolean target_is_16_bit_code_p)
5180 {
5181 /* We specifically ignore branches and jumps from EF_PIC objects,
5182 where the onus is on the compiler or programmer to perform any
5183 necessary initialization of $25. Sometimes such initialization
5184 is unnecessary; for example, -mno-shared functions do not use
5185 the incoming value of $25, and may therefore be called directly. */
5186 if (PIC_OBJECT_P (input_bfd))
5187 return FALSE;
5188
5189 switch (r_type)
5190 {
5191 case R_MIPS_26:
5192 case R_MIPS_PC16:
5193 case R_MIPS_PC21_S2:
5194 case R_MIPS_PC26_S2:
5195 case R_MICROMIPS_26_S1:
5196 case R_MICROMIPS_PC7_S1:
5197 case R_MICROMIPS_PC10_S1:
5198 case R_MICROMIPS_PC16_S1:
5199 case R_MICROMIPS_PC23_S2:
5200 return TRUE;
5201
5202 case R_MIPS16_26:
5203 return !target_is_16_bit_code_p;
5204
5205 default:
5206 return FALSE;
5207 }
5208 }
5209 \f
5210 /* Calculate the value produced by the RELOCATION (which comes from
5211 the INPUT_BFD). The ADDEND is the addend to use for this
5212 RELOCATION; RELOCATION->R_ADDEND is ignored.
5213
5214 The result of the relocation calculation is stored in VALUEP.
5215 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5216 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5217
5218 This function returns bfd_reloc_continue if the caller need take no
5219 further action regarding this relocation, bfd_reloc_notsupported if
5220 something goes dramatically wrong, bfd_reloc_overflow if an
5221 overflow occurs, and bfd_reloc_ok to indicate success. */
5222
5223 static bfd_reloc_status_type
5224 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5225 asection *input_section,
5226 struct bfd_link_info *info,
5227 const Elf_Internal_Rela *relocation,
5228 bfd_vma addend, reloc_howto_type *howto,
5229 Elf_Internal_Sym *local_syms,
5230 asection **local_sections, bfd_vma *valuep,
5231 const char **namep,
5232 bfd_boolean *cross_mode_jump_p,
5233 bfd_boolean save_addend)
5234 {
5235 /* The eventual value we will return. */
5236 bfd_vma value;
5237 /* The address of the symbol against which the relocation is
5238 occurring. */
5239 bfd_vma symbol = 0;
5240 /* The final GP value to be used for the relocatable, executable, or
5241 shared object file being produced. */
5242 bfd_vma gp;
5243 /* The place (section offset or address) of the storage unit being
5244 relocated. */
5245 bfd_vma p;
5246 /* The value of GP used to create the relocatable object. */
5247 bfd_vma gp0;
5248 /* The offset into the global offset table at which the address of
5249 the relocation entry symbol, adjusted by the addend, resides
5250 during execution. */
5251 bfd_vma g = MINUS_ONE;
5252 /* The section in which the symbol referenced by the relocation is
5253 located. */
5254 asection *sec = NULL;
5255 struct mips_elf_link_hash_entry *h = NULL;
5256 /* TRUE if the symbol referred to by this relocation is a local
5257 symbol. */
5258 bfd_boolean local_p, was_local_p;
5259 /* TRUE if the symbol referred to by this relocation is a section
5260 symbol. */
5261 bfd_boolean section_p = FALSE;
5262 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5263 bfd_boolean gp_disp_p = FALSE;
5264 /* TRUE if the symbol referred to by this relocation is
5265 "__gnu_local_gp". */
5266 bfd_boolean gnu_local_gp_p = FALSE;
5267 Elf_Internal_Shdr *symtab_hdr;
5268 size_t extsymoff;
5269 unsigned long r_symndx;
5270 int r_type;
5271 /* TRUE if overflow occurred during the calculation of the
5272 relocation value. */
5273 bfd_boolean overflowed_p;
5274 /* TRUE if this relocation refers to a MIPS16 function. */
5275 bfd_boolean target_is_16_bit_code_p = FALSE;
5276 bfd_boolean target_is_micromips_code_p = FALSE;
5277 struct mips_elf_link_hash_table *htab;
5278 bfd *dynobj;
5279
5280 dynobj = elf_hash_table (info)->dynobj;
5281 htab = mips_elf_hash_table (info);
5282 BFD_ASSERT (htab != NULL);
5283
5284 /* Parse the relocation. */
5285 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5286 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5287 p = (input_section->output_section->vma
5288 + input_section->output_offset
5289 + relocation->r_offset);
5290
5291 /* Assume that there will be no overflow. */
5292 overflowed_p = FALSE;
5293
5294 /* Figure out whether or not the symbol is local, and get the offset
5295 used in the array of hash table entries. */
5296 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5297 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5298 local_sections);
5299 was_local_p = local_p;
5300 if (! elf_bad_symtab (input_bfd))
5301 extsymoff = symtab_hdr->sh_info;
5302 else
5303 {
5304 /* The symbol table does not follow the rule that local symbols
5305 must come before globals. */
5306 extsymoff = 0;
5307 }
5308
5309 /* Figure out the value of the symbol. */
5310 if (local_p)
5311 {
5312 Elf_Internal_Sym *sym;
5313
5314 sym = local_syms + r_symndx;
5315 sec = local_sections[r_symndx];
5316
5317 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5318
5319 symbol = sec->output_section->vma + sec->output_offset;
5320 if (!section_p || (sec->flags & SEC_MERGE))
5321 symbol += sym->st_value;
5322 if ((sec->flags & SEC_MERGE) && section_p)
5323 {
5324 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5325 addend -= symbol;
5326 addend += sec->output_section->vma + sec->output_offset;
5327 }
5328
5329 /* MIPS16/microMIPS text labels should be treated as odd. */
5330 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5331 ++symbol;
5332
5333 /* Record the name of this symbol, for our caller. */
5334 *namep = bfd_elf_string_from_elf_section (input_bfd,
5335 symtab_hdr->sh_link,
5336 sym->st_name);
5337 if (*namep == NULL || **namep == '\0')
5338 *namep = bfd_section_name (input_bfd, sec);
5339
5340 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5341 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5342 }
5343 else
5344 {
5345 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5346
5347 /* For global symbols we look up the symbol in the hash-table. */
5348 h = ((struct mips_elf_link_hash_entry *)
5349 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5350 /* Find the real hash-table entry for this symbol. */
5351 while (h->root.root.type == bfd_link_hash_indirect
5352 || h->root.root.type == bfd_link_hash_warning)
5353 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5354
5355 /* Record the name of this symbol, for our caller. */
5356 *namep = h->root.root.root.string;
5357
5358 /* See if this is the special _gp_disp symbol. Note that such a
5359 symbol must always be a global symbol. */
5360 if (strcmp (*namep, "_gp_disp") == 0
5361 && ! NEWABI_P (input_bfd))
5362 {
5363 /* Relocations against _gp_disp are permitted only with
5364 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5365 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5366 return bfd_reloc_notsupported;
5367
5368 gp_disp_p = TRUE;
5369 }
5370 /* See if this is the special _gp symbol. Note that such a
5371 symbol must always be a global symbol. */
5372 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5373 gnu_local_gp_p = TRUE;
5374
5375
5376 /* If this symbol is defined, calculate its address. Note that
5377 _gp_disp is a magic symbol, always implicitly defined by the
5378 linker, so it's inappropriate to check to see whether or not
5379 its defined. */
5380 else if ((h->root.root.type == bfd_link_hash_defined
5381 || h->root.root.type == bfd_link_hash_defweak)
5382 && h->root.root.u.def.section)
5383 {
5384 sec = h->root.root.u.def.section;
5385 if (sec->output_section)
5386 symbol = (h->root.root.u.def.value
5387 + sec->output_section->vma
5388 + sec->output_offset);
5389 else
5390 symbol = h->root.root.u.def.value;
5391 }
5392 else if (h->root.root.type == bfd_link_hash_undefweak)
5393 /* We allow relocations against undefined weak symbols, giving
5394 it the value zero, so that you can undefined weak functions
5395 and check to see if they exist by looking at their
5396 addresses. */
5397 symbol = 0;
5398 else if (info->unresolved_syms_in_objects == RM_IGNORE
5399 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5400 symbol = 0;
5401 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5402 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5403 {
5404 /* If this is a dynamic link, we should have created a
5405 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5406 in in _bfd_mips_elf_create_dynamic_sections.
5407 Otherwise, we should define the symbol with a value of 0.
5408 FIXME: It should probably get into the symbol table
5409 somehow as well. */
5410 BFD_ASSERT (! bfd_link_pic (info));
5411 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5412 symbol = 0;
5413 }
5414 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5415 {
5416 /* This is an optional symbol - an Irix specific extension to the
5417 ELF spec. Ignore it for now.
5418 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5419 than simply ignoring them, but we do not handle this for now.
5420 For information see the "64-bit ELF Object File Specification"
5421 which is available from here:
5422 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5423 symbol = 0;
5424 }
5425 else
5426 {
5427 (*info->callbacks->undefined_symbol)
5428 (info, h->root.root.root.string, input_bfd,
5429 input_section, relocation->r_offset,
5430 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5431 || ELF_ST_VISIBILITY (h->root.other));
5432 return bfd_reloc_undefined;
5433 }
5434
5435 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5436 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5437 }
5438
5439 /* If this is a reference to a 16-bit function with a stub, we need
5440 to redirect the relocation to the stub unless:
5441
5442 (a) the relocation is for a MIPS16 JAL;
5443
5444 (b) the relocation is for a MIPS16 PIC call, and there are no
5445 non-MIPS16 uses of the GOT slot; or
5446
5447 (c) the section allows direct references to MIPS16 functions. */
5448 if (r_type != R_MIPS16_26
5449 && !bfd_link_relocatable (info)
5450 && ((h != NULL
5451 && h->fn_stub != NULL
5452 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5453 || (local_p
5454 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5455 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5456 && !section_allows_mips16_refs_p (input_section))
5457 {
5458 /* This is a 32- or 64-bit call to a 16-bit function. We should
5459 have already noticed that we were going to need the
5460 stub. */
5461 if (local_p)
5462 {
5463 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5464 value = 0;
5465 }
5466 else
5467 {
5468 BFD_ASSERT (h->need_fn_stub);
5469 if (h->la25_stub)
5470 {
5471 /* If a LA25 header for the stub itself exists, point to the
5472 prepended LUI/ADDIU sequence. */
5473 sec = h->la25_stub->stub_section;
5474 value = h->la25_stub->offset;
5475 }
5476 else
5477 {
5478 sec = h->fn_stub;
5479 value = 0;
5480 }
5481 }
5482
5483 symbol = sec->output_section->vma + sec->output_offset + value;
5484 /* The target is 16-bit, but the stub isn't. */
5485 target_is_16_bit_code_p = FALSE;
5486 }
5487 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5488 to a standard MIPS function, we need to redirect the call to the stub.
5489 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5490 indirect calls should use an indirect stub instead. */
5491 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5492 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5493 || (local_p
5494 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5495 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5496 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5497 {
5498 if (local_p)
5499 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5500 else
5501 {
5502 /* If both call_stub and call_fp_stub are defined, we can figure
5503 out which one to use by checking which one appears in the input
5504 file. */
5505 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5506 {
5507 asection *o;
5508
5509 sec = NULL;
5510 for (o = input_bfd->sections; o != NULL; o = o->next)
5511 {
5512 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5513 {
5514 sec = h->call_fp_stub;
5515 break;
5516 }
5517 }
5518 if (sec == NULL)
5519 sec = h->call_stub;
5520 }
5521 else if (h->call_stub != NULL)
5522 sec = h->call_stub;
5523 else
5524 sec = h->call_fp_stub;
5525 }
5526
5527 BFD_ASSERT (sec->size > 0);
5528 symbol = sec->output_section->vma + sec->output_offset;
5529 }
5530 /* If this is a direct call to a PIC function, redirect to the
5531 non-PIC stub. */
5532 else if (h != NULL && h->la25_stub
5533 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5534 target_is_16_bit_code_p))
5535 symbol = (h->la25_stub->stub_section->output_section->vma
5536 + h->la25_stub->stub_section->output_offset
5537 + h->la25_stub->offset);
5538 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5539 entry is used if a standard PLT entry has also been made. In this
5540 case the symbol will have been set by mips_elf_set_plt_sym_value
5541 to point to the standard PLT entry, so redirect to the compressed
5542 one. */
5543 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5544 && !bfd_link_relocatable (info)
5545 && h != NULL
5546 && h->use_plt_entry
5547 && h->root.plt.plist->comp_offset != MINUS_ONE
5548 && h->root.plt.plist->mips_offset != MINUS_ONE)
5549 {
5550 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5551
5552 sec = htab->splt;
5553 symbol = (sec->output_section->vma
5554 + sec->output_offset
5555 + htab->plt_header_size
5556 + htab->plt_mips_offset
5557 + h->root.plt.plist->comp_offset
5558 + 1);
5559
5560 target_is_16_bit_code_p = !micromips_p;
5561 target_is_micromips_code_p = micromips_p;
5562 }
5563
5564 /* Make sure MIPS16 and microMIPS are not used together. */
5565 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5566 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5567 {
5568 (*_bfd_error_handler)
5569 (_("MIPS16 and microMIPS functions cannot call each other"));
5570 return bfd_reloc_notsupported;
5571 }
5572
5573 /* Calls from 16-bit code to 32-bit code and vice versa require the
5574 mode change. However, we can ignore calls to undefined weak symbols,
5575 which should never be executed at runtime. This exception is important
5576 because the assembly writer may have "known" that any definition of the
5577 symbol would be 16-bit code, and that direct jumps were therefore
5578 acceptable. */
5579 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5580 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5581 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5582 || (r_type == R_MICROMIPS_26_S1
5583 && !target_is_micromips_code_p)
5584 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5585 && (target_is_16_bit_code_p
5586 || target_is_micromips_code_p))));
5587
5588 local_p = (h == NULL || mips_use_local_got_p (info, h));
5589
5590 gp0 = _bfd_get_gp_value (input_bfd);
5591 gp = _bfd_get_gp_value (abfd);
5592 if (htab->got_info)
5593 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5594
5595 if (gnu_local_gp_p)
5596 symbol = gp;
5597
5598 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5599 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5600 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5601 if (got_page_reloc_p (r_type) && !local_p)
5602 {
5603 r_type = (micromips_reloc_p (r_type)
5604 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5605 addend = 0;
5606 }
5607
5608 /* If we haven't already determined the GOT offset, and we're going
5609 to need it, get it now. */
5610 switch (r_type)
5611 {
5612 case R_MIPS16_CALL16:
5613 case R_MIPS16_GOT16:
5614 case R_MIPS_CALL16:
5615 case R_MIPS_GOT16:
5616 case R_MIPS_GOT_DISP:
5617 case R_MIPS_GOT_HI16:
5618 case R_MIPS_CALL_HI16:
5619 case R_MIPS_GOT_LO16:
5620 case R_MIPS_CALL_LO16:
5621 case R_MICROMIPS_CALL16:
5622 case R_MICROMIPS_GOT16:
5623 case R_MICROMIPS_GOT_DISP:
5624 case R_MICROMIPS_GOT_HI16:
5625 case R_MICROMIPS_CALL_HI16:
5626 case R_MICROMIPS_GOT_LO16:
5627 case R_MICROMIPS_CALL_LO16:
5628 case R_MIPS_TLS_GD:
5629 case R_MIPS_TLS_GOTTPREL:
5630 case R_MIPS_TLS_LDM:
5631 case R_MIPS16_TLS_GD:
5632 case R_MIPS16_TLS_GOTTPREL:
5633 case R_MIPS16_TLS_LDM:
5634 case R_MICROMIPS_TLS_GD:
5635 case R_MICROMIPS_TLS_GOTTPREL:
5636 case R_MICROMIPS_TLS_LDM:
5637 /* Find the index into the GOT where this value is located. */
5638 if (tls_ldm_reloc_p (r_type))
5639 {
5640 g = mips_elf_local_got_index (abfd, input_bfd, info,
5641 0, 0, NULL, r_type);
5642 if (g == MINUS_ONE)
5643 return bfd_reloc_outofrange;
5644 }
5645 else if (!local_p)
5646 {
5647 /* On VxWorks, CALL relocations should refer to the .got.plt
5648 entry, which is initialized to point at the PLT stub. */
5649 if (htab->is_vxworks
5650 && (call_hi16_reloc_p (r_type)
5651 || call_lo16_reloc_p (r_type)
5652 || call16_reloc_p (r_type)))
5653 {
5654 BFD_ASSERT (addend == 0);
5655 BFD_ASSERT (h->root.needs_plt);
5656 g = mips_elf_gotplt_index (info, &h->root);
5657 }
5658 else
5659 {
5660 BFD_ASSERT (addend == 0);
5661 g = mips_elf_global_got_index (abfd, info, input_bfd,
5662 &h->root, r_type);
5663 if (!TLS_RELOC_P (r_type)
5664 && !elf_hash_table (info)->dynamic_sections_created)
5665 /* This is a static link. We must initialize the GOT entry. */
5666 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5667 }
5668 }
5669 else if (!htab->is_vxworks
5670 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5671 /* The calculation below does not involve "g". */
5672 break;
5673 else
5674 {
5675 g = mips_elf_local_got_index (abfd, input_bfd, info,
5676 symbol + addend, r_symndx, h, r_type);
5677 if (g == MINUS_ONE)
5678 return bfd_reloc_outofrange;
5679 }
5680
5681 /* Convert GOT indices to actual offsets. */
5682 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5683 break;
5684 }
5685
5686 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5687 symbols are resolved by the loader. Add them to .rela.dyn. */
5688 if (h != NULL && is_gott_symbol (info, &h->root))
5689 {
5690 Elf_Internal_Rela outrel;
5691 bfd_byte *loc;
5692 asection *s;
5693
5694 s = mips_elf_rel_dyn_section (info, FALSE);
5695 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5696
5697 outrel.r_offset = (input_section->output_section->vma
5698 + input_section->output_offset
5699 + relocation->r_offset);
5700 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5701 outrel.r_addend = addend;
5702 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5703
5704 /* If we've written this relocation for a readonly section,
5705 we need to set DF_TEXTREL again, so that we do not delete the
5706 DT_TEXTREL tag. */
5707 if (MIPS_ELF_READONLY_SECTION (input_section))
5708 info->flags |= DF_TEXTREL;
5709
5710 *valuep = 0;
5711 return bfd_reloc_ok;
5712 }
5713
5714 /* Figure out what kind of relocation is being performed. */
5715 switch (r_type)
5716 {
5717 case R_MIPS_NONE:
5718 return bfd_reloc_continue;
5719
5720 case R_MIPS_16:
5721 if (howto->partial_inplace)
5722 addend = _bfd_mips_elf_sign_extend (addend, 16);
5723 value = symbol + addend;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_32:
5728 case R_MIPS_REL32:
5729 case R_MIPS_64:
5730 if ((bfd_link_pic (info)
5731 || (htab->root.dynamic_sections_created
5732 && h != NULL
5733 && h->root.def_dynamic
5734 && !h->root.def_regular
5735 && !h->has_static_relocs))
5736 && r_symndx != STN_UNDEF
5737 && (h == NULL
5738 || h->root.root.type != bfd_link_hash_undefweak
5739 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5740 && (input_section->flags & SEC_ALLOC) != 0)
5741 {
5742 /* If we're creating a shared library, then we can't know
5743 where the symbol will end up. So, we create a relocation
5744 record in the output, and leave the job up to the dynamic
5745 linker. We must do the same for executable references to
5746 shared library symbols, unless we've decided to use copy
5747 relocs or PLTs instead. */
5748 value = addend;
5749 if (!mips_elf_create_dynamic_relocation (abfd,
5750 info,
5751 relocation,
5752 h,
5753 sec,
5754 symbol,
5755 &value,
5756 input_section))
5757 return bfd_reloc_undefined;
5758 }
5759 else
5760 {
5761 if (r_type != R_MIPS_REL32)
5762 value = symbol + addend;
5763 else
5764 value = addend;
5765 }
5766 value &= howto->dst_mask;
5767 break;
5768
5769 case R_MIPS_PC32:
5770 value = symbol + addend - p;
5771 value &= howto->dst_mask;
5772 break;
5773
5774 case R_MIPS16_26:
5775 /* The calculation for R_MIPS16_26 is just the same as for an
5776 R_MIPS_26. It's only the storage of the relocated field into
5777 the output file that's different. That's handled in
5778 mips_elf_perform_relocation. So, we just fall through to the
5779 R_MIPS_26 case here. */
5780 case R_MIPS_26:
5781 case R_MICROMIPS_26_S1:
5782 {
5783 unsigned int shift;
5784
5785 /* Shift is 2, unusually, for microMIPS JALX. */
5786 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5787
5788 if (howto->partial_inplace && !section_p)
5789 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5790 else
5791 value = addend;
5792 value += symbol;
5793
5794 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5795 the correct ISA mode selector and bit 1 must be 0. */
5796 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26))
5797 return bfd_reloc_outofrange;
5798
5799 value >>= shift;
5800 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5801 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5802 value &= howto->dst_mask;
5803 }
5804 break;
5805
5806 case R_MIPS_TLS_DTPREL_HI16:
5807 case R_MIPS16_TLS_DTPREL_HI16:
5808 case R_MICROMIPS_TLS_DTPREL_HI16:
5809 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5810 & howto->dst_mask);
5811 break;
5812
5813 case R_MIPS_TLS_DTPREL_LO16:
5814 case R_MIPS_TLS_DTPREL32:
5815 case R_MIPS_TLS_DTPREL64:
5816 case R_MIPS16_TLS_DTPREL_LO16:
5817 case R_MICROMIPS_TLS_DTPREL_LO16:
5818 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5819 break;
5820
5821 case R_MIPS_TLS_TPREL_HI16:
5822 case R_MIPS16_TLS_TPREL_HI16:
5823 case R_MICROMIPS_TLS_TPREL_HI16:
5824 value = (mips_elf_high (addend + symbol - tprel_base (info))
5825 & howto->dst_mask);
5826 break;
5827
5828 case R_MIPS_TLS_TPREL_LO16:
5829 case R_MIPS_TLS_TPREL32:
5830 case R_MIPS_TLS_TPREL64:
5831 case R_MIPS16_TLS_TPREL_LO16:
5832 case R_MICROMIPS_TLS_TPREL_LO16:
5833 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5834 break;
5835
5836 case R_MIPS_HI16:
5837 case R_MIPS16_HI16:
5838 case R_MICROMIPS_HI16:
5839 if (!gp_disp_p)
5840 {
5841 value = mips_elf_high (addend + symbol);
5842 value &= howto->dst_mask;
5843 }
5844 else
5845 {
5846 /* For MIPS16 ABI code we generate this sequence
5847 0: li $v0,%hi(_gp_disp)
5848 4: addiupc $v1,%lo(_gp_disp)
5849 8: sll $v0,16
5850 12: addu $v0,$v1
5851 14: move $gp,$v0
5852 So the offsets of hi and lo relocs are the same, but the
5853 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5854 ADDIUPC clears the low two bits of the instruction address,
5855 so the base is ($t9 + 4) & ~3. */
5856 if (r_type == R_MIPS16_HI16)
5857 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5858 /* The microMIPS .cpload sequence uses the same assembly
5859 instructions as the traditional psABI version, but the
5860 incoming $t9 has the low bit set. */
5861 else if (r_type == R_MICROMIPS_HI16)
5862 value = mips_elf_high (addend + gp - p - 1);
5863 else
5864 value = mips_elf_high (addend + gp - p);
5865 overflowed_p = mips_elf_overflow_p (value, 16);
5866 }
5867 break;
5868
5869 case R_MIPS_LO16:
5870 case R_MIPS16_LO16:
5871 case R_MICROMIPS_LO16:
5872 case R_MICROMIPS_HI0_LO16:
5873 if (!gp_disp_p)
5874 value = (symbol + addend) & howto->dst_mask;
5875 else
5876 {
5877 /* See the comment for R_MIPS16_HI16 above for the reason
5878 for this conditional. */
5879 if (r_type == R_MIPS16_LO16)
5880 value = addend + gp - (p & ~(bfd_vma) 0x3);
5881 else if (r_type == R_MICROMIPS_LO16
5882 || r_type == R_MICROMIPS_HI0_LO16)
5883 value = addend + gp - p + 3;
5884 else
5885 value = addend + gp - p + 4;
5886 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5887 for overflow. But, on, say, IRIX5, relocations against
5888 _gp_disp are normally generated from the .cpload
5889 pseudo-op. It generates code that normally looks like
5890 this:
5891
5892 lui $gp,%hi(_gp_disp)
5893 addiu $gp,$gp,%lo(_gp_disp)
5894 addu $gp,$gp,$t9
5895
5896 Here $t9 holds the address of the function being called,
5897 as required by the MIPS ELF ABI. The R_MIPS_LO16
5898 relocation can easily overflow in this situation, but the
5899 R_MIPS_HI16 relocation will handle the overflow.
5900 Therefore, we consider this a bug in the MIPS ABI, and do
5901 not check for overflow here. */
5902 }
5903 break;
5904
5905 case R_MIPS_LITERAL:
5906 case R_MICROMIPS_LITERAL:
5907 /* Because we don't merge literal sections, we can handle this
5908 just like R_MIPS_GPREL16. In the long run, we should merge
5909 shared literals, and then we will need to additional work
5910 here. */
5911
5912 /* Fall through. */
5913
5914 case R_MIPS16_GPREL:
5915 /* The R_MIPS16_GPREL performs the same calculation as
5916 R_MIPS_GPREL16, but stores the relocated bits in a different
5917 order. We don't need to do anything special here; the
5918 differences are handled in mips_elf_perform_relocation. */
5919 case R_MIPS_GPREL16:
5920 case R_MICROMIPS_GPREL7_S2:
5921 case R_MICROMIPS_GPREL16:
5922 /* Only sign-extend the addend if it was extracted from the
5923 instruction. If the addend was separate, leave it alone,
5924 otherwise we may lose significant bits. */
5925 if (howto->partial_inplace)
5926 addend = _bfd_mips_elf_sign_extend (addend, 16);
5927 value = symbol + addend - gp;
5928 /* If the symbol was local, any earlier relocatable links will
5929 have adjusted its addend with the gp offset, so compensate
5930 for that now. Don't do it for symbols forced local in this
5931 link, though, since they won't have had the gp offset applied
5932 to them before. */
5933 if (was_local_p)
5934 value += gp0;
5935 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5936 overflowed_p = mips_elf_overflow_p (value, 16);
5937 break;
5938
5939 case R_MIPS16_GOT16:
5940 case R_MIPS16_CALL16:
5941 case R_MIPS_GOT16:
5942 case R_MIPS_CALL16:
5943 case R_MICROMIPS_GOT16:
5944 case R_MICROMIPS_CALL16:
5945 /* VxWorks does not have separate local and global semantics for
5946 R_MIPS*_GOT16; every relocation evaluates to "G". */
5947 if (!htab->is_vxworks && local_p)
5948 {
5949 value = mips_elf_got16_entry (abfd, input_bfd, info,
5950 symbol + addend, !was_local_p);
5951 if (value == MINUS_ONE)
5952 return bfd_reloc_outofrange;
5953 value
5954 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5955 overflowed_p = mips_elf_overflow_p (value, 16);
5956 break;
5957 }
5958
5959 /* Fall through. */
5960
5961 case R_MIPS_TLS_GD:
5962 case R_MIPS_TLS_GOTTPREL:
5963 case R_MIPS_TLS_LDM:
5964 case R_MIPS_GOT_DISP:
5965 case R_MIPS16_TLS_GD:
5966 case R_MIPS16_TLS_GOTTPREL:
5967 case R_MIPS16_TLS_LDM:
5968 case R_MICROMIPS_TLS_GD:
5969 case R_MICROMIPS_TLS_GOTTPREL:
5970 case R_MICROMIPS_TLS_LDM:
5971 case R_MICROMIPS_GOT_DISP:
5972 value = g;
5973 overflowed_p = mips_elf_overflow_p (value, 16);
5974 break;
5975
5976 case R_MIPS_GPREL32:
5977 value = (addend + symbol + gp0 - gp);
5978 if (!save_addend)
5979 value &= howto->dst_mask;
5980 break;
5981
5982 case R_MIPS_PC16:
5983 case R_MIPS_GNU_REL16_S2:
5984 if (howto->partial_inplace)
5985 addend = _bfd_mips_elf_sign_extend (addend, 18);
5986
5987 if ((symbol + addend) & 3)
5988 return bfd_reloc_outofrange;
5989
5990 value = symbol + addend - p;
5991 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5992 overflowed_p = mips_elf_overflow_p (value, 18);
5993 value >>= howto->rightshift;
5994 value &= howto->dst_mask;
5995 break;
5996
5997 case R_MIPS_PC21_S2:
5998 if (howto->partial_inplace)
5999 addend = _bfd_mips_elf_sign_extend (addend, 23);
6000
6001 if ((symbol + addend) & 3)
6002 return bfd_reloc_outofrange;
6003
6004 value = symbol + addend - p;
6005 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6006 overflowed_p = mips_elf_overflow_p (value, 23);
6007 value >>= howto->rightshift;
6008 value &= howto->dst_mask;
6009 break;
6010
6011 case R_MIPS_PC26_S2:
6012 if (howto->partial_inplace)
6013 addend = _bfd_mips_elf_sign_extend (addend, 28);
6014
6015 if ((symbol + addend) & 3)
6016 return bfd_reloc_outofrange;
6017
6018 value = symbol + addend - p;
6019 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6020 overflowed_p = mips_elf_overflow_p (value, 28);
6021 value >>= howto->rightshift;
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC18_S3:
6026 if (howto->partial_inplace)
6027 addend = _bfd_mips_elf_sign_extend (addend, 21);
6028
6029 if ((symbol + addend) & 7)
6030 return bfd_reloc_outofrange;
6031
6032 value = symbol + addend - ((p | 7) ^ 7);
6033 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6034 overflowed_p = mips_elf_overflow_p (value, 21);
6035 value >>= howto->rightshift;
6036 value &= howto->dst_mask;
6037 break;
6038
6039 case R_MIPS_PC19_S2:
6040 if (howto->partial_inplace)
6041 addend = _bfd_mips_elf_sign_extend (addend, 21);
6042
6043 if ((symbol + addend) & 3)
6044 return bfd_reloc_outofrange;
6045
6046 value = symbol + addend - p;
6047 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6048 overflowed_p = mips_elf_overflow_p (value, 21);
6049 value >>= howto->rightshift;
6050 value &= howto->dst_mask;
6051 break;
6052
6053 case R_MIPS_PCHI16:
6054 value = mips_elf_high (symbol + addend - p);
6055 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6056 overflowed_p = mips_elf_overflow_p (value, 16);
6057 value &= howto->dst_mask;
6058 break;
6059
6060 case R_MIPS_PCLO16:
6061 if (howto->partial_inplace)
6062 addend = _bfd_mips_elf_sign_extend (addend, 16);
6063 value = symbol + addend - p;
6064 value &= howto->dst_mask;
6065 break;
6066
6067 case R_MICROMIPS_PC7_S1:
6068 if (howto->partial_inplace)
6069 addend = _bfd_mips_elf_sign_extend (addend, 8);
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 8);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
6077 case R_MICROMIPS_PC10_S1:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 11);
6080 value = symbol + addend - p;
6081 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6082 overflowed_p = mips_elf_overflow_p (value, 11);
6083 value >>= howto->rightshift;
6084 value &= howto->dst_mask;
6085 break;
6086
6087 case R_MICROMIPS_PC16_S1:
6088 if (howto->partial_inplace)
6089 addend = _bfd_mips_elf_sign_extend (addend, 17);
6090 value = symbol + addend - p;
6091 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6092 overflowed_p = mips_elf_overflow_p (value, 17);
6093 value >>= howto->rightshift;
6094 value &= howto->dst_mask;
6095 break;
6096
6097 case R_MICROMIPS_PC23_S2:
6098 if (howto->partial_inplace)
6099 addend = _bfd_mips_elf_sign_extend (addend, 25);
6100 value = symbol + addend - ((p | 3) ^ 3);
6101 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6102 overflowed_p = mips_elf_overflow_p (value, 25);
6103 value >>= howto->rightshift;
6104 value &= howto->dst_mask;
6105 break;
6106
6107 case R_MIPS_GOT_HI16:
6108 case R_MIPS_CALL_HI16:
6109 case R_MICROMIPS_GOT_HI16:
6110 case R_MICROMIPS_CALL_HI16:
6111 /* We're allowed to handle these two relocations identically.
6112 The dynamic linker is allowed to handle the CALL relocations
6113 differently by creating a lazy evaluation stub. */
6114 value = g;
6115 value = mips_elf_high (value);
6116 value &= howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_GOT_LO16:
6120 case R_MIPS_CALL_LO16:
6121 case R_MICROMIPS_GOT_LO16:
6122 case R_MICROMIPS_CALL_LO16:
6123 value = g & howto->dst_mask;
6124 break;
6125
6126 case R_MIPS_GOT_PAGE:
6127 case R_MICROMIPS_GOT_PAGE:
6128 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6129 if (value == MINUS_ONE)
6130 return bfd_reloc_outofrange;
6131 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6132 overflowed_p = mips_elf_overflow_p (value, 16);
6133 break;
6134
6135 case R_MIPS_GOT_OFST:
6136 case R_MICROMIPS_GOT_OFST:
6137 if (local_p)
6138 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6139 else
6140 value = addend;
6141 overflowed_p = mips_elf_overflow_p (value, 16);
6142 break;
6143
6144 case R_MIPS_SUB:
6145 case R_MICROMIPS_SUB:
6146 value = symbol - addend;
6147 value &= howto->dst_mask;
6148 break;
6149
6150 case R_MIPS_HIGHER:
6151 case R_MICROMIPS_HIGHER:
6152 value = mips_elf_higher (addend + symbol);
6153 value &= howto->dst_mask;
6154 break;
6155
6156 case R_MIPS_HIGHEST:
6157 case R_MICROMIPS_HIGHEST:
6158 value = mips_elf_highest (addend + symbol);
6159 value &= howto->dst_mask;
6160 break;
6161
6162 case R_MIPS_SCN_DISP:
6163 case R_MICROMIPS_SCN_DISP:
6164 value = symbol + addend - sec->output_offset;
6165 value &= howto->dst_mask;
6166 break;
6167
6168 case R_MIPS_JALR:
6169 case R_MICROMIPS_JALR:
6170 /* This relocation is only a hint. In some cases, we optimize
6171 it into a bal instruction. But we don't try to optimize
6172 when the symbol does not resolve locally. */
6173 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6174 return bfd_reloc_continue;
6175 value = symbol + addend;
6176 break;
6177
6178 case R_MIPS_PJUMP:
6179 case R_MIPS_GNU_VTINHERIT:
6180 case R_MIPS_GNU_VTENTRY:
6181 /* We don't do anything with these at present. */
6182 return bfd_reloc_continue;
6183
6184 default:
6185 /* An unrecognized relocation type. */
6186 return bfd_reloc_notsupported;
6187 }
6188
6189 /* Store the VALUE for our caller. */
6190 *valuep = value;
6191 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6192 }
6193
6194 /* Obtain the field relocated by RELOCATION. */
6195
6196 static bfd_vma
6197 mips_elf_obtain_contents (reloc_howto_type *howto,
6198 const Elf_Internal_Rela *relocation,
6199 bfd *input_bfd, bfd_byte *contents)
6200 {
6201 bfd_vma x = 0;
6202 bfd_byte *location = contents + relocation->r_offset;
6203 unsigned int size = bfd_get_reloc_size (howto);
6204
6205 /* Obtain the bytes. */
6206 if (size != 0)
6207 x = bfd_get (8 * size, input_bfd, location);
6208
6209 return x;
6210 }
6211
6212 /* It has been determined that the result of the RELOCATION is the
6213 VALUE. Use HOWTO to place VALUE into the output file at the
6214 appropriate position. The SECTION is the section to which the
6215 relocation applies.
6216 CROSS_MODE_JUMP_P is true if the relocation field
6217 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6218
6219 Returns FALSE if anything goes wrong. */
6220
6221 static bfd_boolean
6222 mips_elf_perform_relocation (struct bfd_link_info *info,
6223 reloc_howto_type *howto,
6224 const Elf_Internal_Rela *relocation,
6225 bfd_vma value, bfd *input_bfd,
6226 asection *input_section, bfd_byte *contents,
6227 bfd_boolean cross_mode_jump_p)
6228 {
6229 bfd_vma x;
6230 bfd_byte *location;
6231 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6232 unsigned int size;
6233
6234 /* Figure out where the relocation is occurring. */
6235 location = contents + relocation->r_offset;
6236
6237 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6238
6239 /* Obtain the current value. */
6240 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6241
6242 /* Clear the field we are setting. */
6243 x &= ~howto->dst_mask;
6244
6245 /* Set the field. */
6246 x |= (value & howto->dst_mask);
6247
6248 /* If required, turn JAL into JALX. */
6249 if (cross_mode_jump_p && jal_reloc_p (r_type))
6250 {
6251 bfd_boolean ok;
6252 bfd_vma opcode = x >> 26;
6253 bfd_vma jalx_opcode;
6254
6255 /* Check to see if the opcode is already JAL or JALX. */
6256 if (r_type == R_MIPS16_26)
6257 {
6258 ok = ((opcode == 0x6) || (opcode == 0x7));
6259 jalx_opcode = 0x7;
6260 }
6261 else if (r_type == R_MICROMIPS_26_S1)
6262 {
6263 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6264 jalx_opcode = 0x3c;
6265 }
6266 else
6267 {
6268 ok = ((opcode == 0x3) || (opcode == 0x1d));
6269 jalx_opcode = 0x1d;
6270 }
6271
6272 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6273 convert J or JALS to JALX. */
6274 if (!ok)
6275 {
6276 info->callbacks->einfo
6277 (_("%X%H: Unsupported jump between ISA modes; "
6278 "consider recompiling with interlinking enabled\n"),
6279 input_bfd, input_section, relocation->r_offset);
6280 return TRUE;
6281 }
6282
6283 /* Make this the JALX opcode. */
6284 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6285 }
6286
6287 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6288 range. */
6289 if (!bfd_link_relocatable (info)
6290 && !cross_mode_jump_p
6291 && ((JAL_TO_BAL_P (input_bfd)
6292 && r_type == R_MIPS_26
6293 && (x >> 26) == 0x3) /* jal addr */
6294 || (JALR_TO_BAL_P (input_bfd)
6295 && r_type == R_MIPS_JALR
6296 && x == 0x0320f809) /* jalr t9 */
6297 || (JR_TO_B_P (input_bfd)
6298 && r_type == R_MIPS_JALR
6299 && x == 0x03200008))) /* jr t9 */
6300 {
6301 bfd_vma addr;
6302 bfd_vma dest;
6303 bfd_signed_vma off;
6304
6305 addr = (input_section->output_section->vma
6306 + input_section->output_offset
6307 + relocation->r_offset
6308 + 4);
6309 if (r_type == R_MIPS_26)
6310 dest = (value << 2) | ((addr >> 28) << 28);
6311 else
6312 dest = value;
6313 off = dest - addr;
6314 if (off <= 0x1ffff && off >= -0x20000)
6315 {
6316 if (x == 0x03200008) /* jr t9 */
6317 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6318 else
6319 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6320 }
6321 }
6322
6323 /* Put the value into the output. */
6324 size = bfd_get_reloc_size (howto);
6325 if (size != 0)
6326 bfd_put (8 * size, input_bfd, x, location);
6327
6328 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6329 location);
6330
6331 return TRUE;
6332 }
6333 \f
6334 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6335 is the original relocation, which is now being transformed into a
6336 dynamic relocation. The ADDENDP is adjusted if necessary; the
6337 caller should store the result in place of the original addend. */
6338
6339 static bfd_boolean
6340 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6341 struct bfd_link_info *info,
6342 const Elf_Internal_Rela *rel,
6343 struct mips_elf_link_hash_entry *h,
6344 asection *sec, bfd_vma symbol,
6345 bfd_vma *addendp, asection *input_section)
6346 {
6347 Elf_Internal_Rela outrel[3];
6348 asection *sreloc;
6349 bfd *dynobj;
6350 int r_type;
6351 long indx;
6352 bfd_boolean defined_p;
6353 struct mips_elf_link_hash_table *htab;
6354
6355 htab = mips_elf_hash_table (info);
6356 BFD_ASSERT (htab != NULL);
6357
6358 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6359 dynobj = elf_hash_table (info)->dynobj;
6360 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6361 BFD_ASSERT (sreloc != NULL);
6362 BFD_ASSERT (sreloc->contents != NULL);
6363 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6364 < sreloc->size);
6365
6366 outrel[0].r_offset =
6367 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6368 if (ABI_64_P (output_bfd))
6369 {
6370 outrel[1].r_offset =
6371 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6372 outrel[2].r_offset =
6373 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6374 }
6375
6376 if (outrel[0].r_offset == MINUS_ONE)
6377 /* The relocation field has been deleted. */
6378 return TRUE;
6379
6380 if (outrel[0].r_offset == MINUS_TWO)
6381 {
6382 /* The relocation field has been converted into a relative value of
6383 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6384 the field to be fully relocated, so add in the symbol's value. */
6385 *addendp += symbol;
6386 return TRUE;
6387 }
6388
6389 /* We must now calculate the dynamic symbol table index to use
6390 in the relocation. */
6391 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6392 {
6393 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6394 indx = h->root.dynindx;
6395 if (SGI_COMPAT (output_bfd))
6396 defined_p = h->root.def_regular;
6397 else
6398 /* ??? glibc's ld.so just adds the final GOT entry to the
6399 relocation field. It therefore treats relocs against
6400 defined symbols in the same way as relocs against
6401 undefined symbols. */
6402 defined_p = FALSE;
6403 }
6404 else
6405 {
6406 if (sec != NULL && bfd_is_abs_section (sec))
6407 indx = 0;
6408 else if (sec == NULL || sec->owner == NULL)
6409 {
6410 bfd_set_error (bfd_error_bad_value);
6411 return FALSE;
6412 }
6413 else
6414 {
6415 indx = elf_section_data (sec->output_section)->dynindx;
6416 if (indx == 0)
6417 {
6418 asection *osec = htab->root.text_index_section;
6419 indx = elf_section_data (osec)->dynindx;
6420 }
6421 if (indx == 0)
6422 abort ();
6423 }
6424
6425 /* Instead of generating a relocation using the section
6426 symbol, we may as well make it a fully relative
6427 relocation. We want to avoid generating relocations to
6428 local symbols because we used to generate them
6429 incorrectly, without adding the original symbol value,
6430 which is mandated by the ABI for section symbols. In
6431 order to give dynamic loaders and applications time to
6432 phase out the incorrect use, we refrain from emitting
6433 section-relative relocations. It's not like they're
6434 useful, after all. This should be a bit more efficient
6435 as well. */
6436 /* ??? Although this behavior is compatible with glibc's ld.so,
6437 the ABI says that relocations against STN_UNDEF should have
6438 a symbol value of 0. Irix rld honors this, so relocations
6439 against STN_UNDEF have no effect. */
6440 if (!SGI_COMPAT (output_bfd))
6441 indx = 0;
6442 defined_p = TRUE;
6443 }
6444
6445 /* If the relocation was previously an absolute relocation and
6446 this symbol will not be referred to by the relocation, we must
6447 adjust it by the value we give it in the dynamic symbol table.
6448 Otherwise leave the job up to the dynamic linker. */
6449 if (defined_p && r_type != R_MIPS_REL32)
6450 *addendp += symbol;
6451
6452 if (htab->is_vxworks)
6453 /* VxWorks uses non-relative relocations for this. */
6454 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6455 else
6456 /* The relocation is always an REL32 relocation because we don't
6457 know where the shared library will wind up at load-time. */
6458 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6459 R_MIPS_REL32);
6460
6461 /* For strict adherence to the ABI specification, we should
6462 generate a R_MIPS_64 relocation record by itself before the
6463 _REL32/_64 record as well, such that the addend is read in as
6464 a 64-bit value (REL32 is a 32-bit relocation, after all).
6465 However, since none of the existing ELF64 MIPS dynamic
6466 loaders seems to care, we don't waste space with these
6467 artificial relocations. If this turns out to not be true,
6468 mips_elf_allocate_dynamic_relocation() should be tweaked so
6469 as to make room for a pair of dynamic relocations per
6470 invocation if ABI_64_P, and here we should generate an
6471 additional relocation record with R_MIPS_64 by itself for a
6472 NULL symbol before this relocation record. */
6473 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6474 ABI_64_P (output_bfd)
6475 ? R_MIPS_64
6476 : R_MIPS_NONE);
6477 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6478
6479 /* Adjust the output offset of the relocation to reference the
6480 correct location in the output file. */
6481 outrel[0].r_offset += (input_section->output_section->vma
6482 + input_section->output_offset);
6483 outrel[1].r_offset += (input_section->output_section->vma
6484 + input_section->output_offset);
6485 outrel[2].r_offset += (input_section->output_section->vma
6486 + input_section->output_offset);
6487
6488 /* Put the relocation back out. We have to use the special
6489 relocation outputter in the 64-bit case since the 64-bit
6490 relocation format is non-standard. */
6491 if (ABI_64_P (output_bfd))
6492 {
6493 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6494 (output_bfd, &outrel[0],
6495 (sreloc->contents
6496 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6497 }
6498 else if (htab->is_vxworks)
6499 {
6500 /* VxWorks uses RELA rather than REL dynamic relocations. */
6501 outrel[0].r_addend = *addendp;
6502 bfd_elf32_swap_reloca_out
6503 (output_bfd, &outrel[0],
6504 (sreloc->contents
6505 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6506 }
6507 else
6508 bfd_elf32_swap_reloc_out
6509 (output_bfd, &outrel[0],
6510 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6511
6512 /* We've now added another relocation. */
6513 ++sreloc->reloc_count;
6514
6515 /* Make sure the output section is writable. The dynamic linker
6516 will be writing to it. */
6517 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6518 |= SHF_WRITE;
6519
6520 /* On IRIX5, make an entry of compact relocation info. */
6521 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6522 {
6523 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6524 bfd_byte *cr;
6525
6526 if (scpt)
6527 {
6528 Elf32_crinfo cptrel;
6529
6530 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6531 cptrel.vaddr = (rel->r_offset
6532 + input_section->output_section->vma
6533 + input_section->output_offset);
6534 if (r_type == R_MIPS_REL32)
6535 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6536 else
6537 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6538 mips_elf_set_cr_dist2to (cptrel, 0);
6539 cptrel.konst = *addendp;
6540
6541 cr = (scpt->contents
6542 + sizeof (Elf32_External_compact_rel));
6543 mips_elf_set_cr_relvaddr (cptrel, 0);
6544 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6545 ((Elf32_External_crinfo *) cr
6546 + scpt->reloc_count));
6547 ++scpt->reloc_count;
6548 }
6549 }
6550
6551 /* If we've written this relocation for a readonly section,
6552 we need to set DF_TEXTREL again, so that we do not delete the
6553 DT_TEXTREL tag. */
6554 if (MIPS_ELF_READONLY_SECTION (input_section))
6555 info->flags |= DF_TEXTREL;
6556
6557 return TRUE;
6558 }
6559 \f
6560 /* Return the MACH for a MIPS e_flags value. */
6561
6562 unsigned long
6563 _bfd_elf_mips_mach (flagword flags)
6564 {
6565 switch (flags & EF_MIPS_MACH)
6566 {
6567 case E_MIPS_MACH_3900:
6568 return bfd_mach_mips3900;
6569
6570 case E_MIPS_MACH_4010:
6571 return bfd_mach_mips4010;
6572
6573 case E_MIPS_MACH_4100:
6574 return bfd_mach_mips4100;
6575
6576 case E_MIPS_MACH_4111:
6577 return bfd_mach_mips4111;
6578
6579 case E_MIPS_MACH_4120:
6580 return bfd_mach_mips4120;
6581
6582 case E_MIPS_MACH_4650:
6583 return bfd_mach_mips4650;
6584
6585 case E_MIPS_MACH_5400:
6586 return bfd_mach_mips5400;
6587
6588 case E_MIPS_MACH_5500:
6589 return bfd_mach_mips5500;
6590
6591 case E_MIPS_MACH_5900:
6592 return bfd_mach_mips5900;
6593
6594 case E_MIPS_MACH_9000:
6595 return bfd_mach_mips9000;
6596
6597 case E_MIPS_MACH_SB1:
6598 return bfd_mach_mips_sb1;
6599
6600 case E_MIPS_MACH_LS2E:
6601 return bfd_mach_mips_loongson_2e;
6602
6603 case E_MIPS_MACH_LS2F:
6604 return bfd_mach_mips_loongson_2f;
6605
6606 case E_MIPS_MACH_LS3A:
6607 return bfd_mach_mips_loongson_3a;
6608
6609 case E_MIPS_MACH_OCTEON3:
6610 return bfd_mach_mips_octeon3;
6611
6612 case E_MIPS_MACH_OCTEON2:
6613 return bfd_mach_mips_octeon2;
6614
6615 case E_MIPS_MACH_OCTEON:
6616 return bfd_mach_mips_octeon;
6617
6618 case E_MIPS_MACH_XLR:
6619 return bfd_mach_mips_xlr;
6620
6621 default:
6622 switch (flags & EF_MIPS_ARCH)
6623 {
6624 default:
6625 case E_MIPS_ARCH_1:
6626 return bfd_mach_mips3000;
6627
6628 case E_MIPS_ARCH_2:
6629 return bfd_mach_mips6000;
6630
6631 case E_MIPS_ARCH_3:
6632 return bfd_mach_mips4000;
6633
6634 case E_MIPS_ARCH_4:
6635 return bfd_mach_mips8000;
6636
6637 case E_MIPS_ARCH_5:
6638 return bfd_mach_mips5;
6639
6640 case E_MIPS_ARCH_32:
6641 return bfd_mach_mipsisa32;
6642
6643 case E_MIPS_ARCH_64:
6644 return bfd_mach_mipsisa64;
6645
6646 case E_MIPS_ARCH_32R2:
6647 return bfd_mach_mipsisa32r2;
6648
6649 case E_MIPS_ARCH_64R2:
6650 return bfd_mach_mipsisa64r2;
6651
6652 case E_MIPS_ARCH_32R6:
6653 return bfd_mach_mipsisa32r6;
6654
6655 case E_MIPS_ARCH_64R6:
6656 return bfd_mach_mipsisa64r6;
6657 }
6658 }
6659
6660 return 0;
6661 }
6662
6663 /* Return printable name for ABI. */
6664
6665 static INLINE char *
6666 elf_mips_abi_name (bfd *abfd)
6667 {
6668 flagword flags;
6669
6670 flags = elf_elfheader (abfd)->e_flags;
6671 switch (flags & EF_MIPS_ABI)
6672 {
6673 case 0:
6674 if (ABI_N32_P (abfd))
6675 return "N32";
6676 else if (ABI_64_P (abfd))
6677 return "64";
6678 else
6679 return "none";
6680 case E_MIPS_ABI_O32:
6681 return "O32";
6682 case E_MIPS_ABI_O64:
6683 return "O64";
6684 case E_MIPS_ABI_EABI32:
6685 return "EABI32";
6686 case E_MIPS_ABI_EABI64:
6687 return "EABI64";
6688 default:
6689 return "unknown abi";
6690 }
6691 }
6692 \f
6693 /* MIPS ELF uses two common sections. One is the usual one, and the
6694 other is for small objects. All the small objects are kept
6695 together, and then referenced via the gp pointer, which yields
6696 faster assembler code. This is what we use for the small common
6697 section. This approach is copied from ecoff.c. */
6698 static asection mips_elf_scom_section;
6699 static asymbol mips_elf_scom_symbol;
6700 static asymbol *mips_elf_scom_symbol_ptr;
6701
6702 /* MIPS ELF also uses an acommon section, which represents an
6703 allocated common symbol which may be overridden by a
6704 definition in a shared library. */
6705 static asection mips_elf_acom_section;
6706 static asymbol mips_elf_acom_symbol;
6707 static asymbol *mips_elf_acom_symbol_ptr;
6708
6709 /* This is used for both the 32-bit and the 64-bit ABI. */
6710
6711 void
6712 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6713 {
6714 elf_symbol_type *elfsym;
6715
6716 /* Handle the special MIPS section numbers that a symbol may use. */
6717 elfsym = (elf_symbol_type *) asym;
6718 switch (elfsym->internal_elf_sym.st_shndx)
6719 {
6720 case SHN_MIPS_ACOMMON:
6721 /* This section is used in a dynamically linked executable file.
6722 It is an allocated common section. The dynamic linker can
6723 either resolve these symbols to something in a shared
6724 library, or it can just leave them here. For our purposes,
6725 we can consider these symbols to be in a new section. */
6726 if (mips_elf_acom_section.name == NULL)
6727 {
6728 /* Initialize the acommon section. */
6729 mips_elf_acom_section.name = ".acommon";
6730 mips_elf_acom_section.flags = SEC_ALLOC;
6731 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6732 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6733 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6734 mips_elf_acom_symbol.name = ".acommon";
6735 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6736 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6737 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6738 }
6739 asym->section = &mips_elf_acom_section;
6740 break;
6741
6742 case SHN_COMMON:
6743 /* Common symbols less than the GP size are automatically
6744 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6745 if (asym->value > elf_gp_size (abfd)
6746 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6747 || IRIX_COMPAT (abfd) == ict_irix6)
6748 break;
6749 /* Fall through. */
6750 case SHN_MIPS_SCOMMON:
6751 if (mips_elf_scom_section.name == NULL)
6752 {
6753 /* Initialize the small common section. */
6754 mips_elf_scom_section.name = ".scommon";
6755 mips_elf_scom_section.flags = SEC_IS_COMMON;
6756 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6757 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6758 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6759 mips_elf_scom_symbol.name = ".scommon";
6760 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6761 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6762 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6763 }
6764 asym->section = &mips_elf_scom_section;
6765 asym->value = elfsym->internal_elf_sym.st_size;
6766 break;
6767
6768 case SHN_MIPS_SUNDEFINED:
6769 asym->section = bfd_und_section_ptr;
6770 break;
6771
6772 case SHN_MIPS_TEXT:
6773 {
6774 asection *section = bfd_get_section_by_name (abfd, ".text");
6775
6776 if (section != NULL)
6777 {
6778 asym->section = section;
6779 /* MIPS_TEXT is a bit special, the address is not an offset
6780 to the base of the .text section. So substract the section
6781 base address to make it an offset. */
6782 asym->value -= section->vma;
6783 }
6784 }
6785 break;
6786
6787 case SHN_MIPS_DATA:
6788 {
6789 asection *section = bfd_get_section_by_name (abfd, ".data");
6790
6791 if (section != NULL)
6792 {
6793 asym->section = section;
6794 /* MIPS_DATA is a bit special, the address is not an offset
6795 to the base of the .data section. So substract the section
6796 base address to make it an offset. */
6797 asym->value -= section->vma;
6798 }
6799 }
6800 break;
6801 }
6802
6803 /* If this is an odd-valued function symbol, assume it's a MIPS16
6804 or microMIPS one. */
6805 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6806 && (asym->value & 1) != 0)
6807 {
6808 asym->value--;
6809 if (MICROMIPS_P (abfd))
6810 elfsym->internal_elf_sym.st_other
6811 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6812 else
6813 elfsym->internal_elf_sym.st_other
6814 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6815 }
6816 }
6817 \f
6818 /* Implement elf_backend_eh_frame_address_size. This differs from
6819 the default in the way it handles EABI64.
6820
6821 EABI64 was originally specified as an LP64 ABI, and that is what
6822 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6823 historically accepted the combination of -mabi=eabi and -mlong32,
6824 and this ILP32 variation has become semi-official over time.
6825 Both forms use elf32 and have pointer-sized FDE addresses.
6826
6827 If an EABI object was generated by GCC 4.0 or above, it will have
6828 an empty .gcc_compiled_longXX section, where XX is the size of longs
6829 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6830 have no special marking to distinguish them from LP64 objects.
6831
6832 We don't want users of the official LP64 ABI to be punished for the
6833 existence of the ILP32 variant, but at the same time, we don't want
6834 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6835 We therefore take the following approach:
6836
6837 - If ABFD contains a .gcc_compiled_longXX section, use it to
6838 determine the pointer size.
6839
6840 - Otherwise check the type of the first relocation. Assume that
6841 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6842
6843 - Otherwise punt.
6844
6845 The second check is enough to detect LP64 objects generated by pre-4.0
6846 compilers because, in the kind of output generated by those compilers,
6847 the first relocation will be associated with either a CIE personality
6848 routine or an FDE start address. Furthermore, the compilers never
6849 used a special (non-pointer) encoding for this ABI.
6850
6851 Checking the relocation type should also be safe because there is no
6852 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6853 did so. */
6854
6855 unsigned int
6856 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6857 {
6858 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6859 return 8;
6860 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6861 {
6862 bfd_boolean long32_p, long64_p;
6863
6864 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6865 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6866 if (long32_p && long64_p)
6867 return 0;
6868 if (long32_p)
6869 return 4;
6870 if (long64_p)
6871 return 8;
6872
6873 if (sec->reloc_count > 0
6874 && elf_section_data (sec)->relocs != NULL
6875 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6876 == R_MIPS_64))
6877 return 8;
6878
6879 return 0;
6880 }
6881 return 4;
6882 }
6883 \f
6884 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6885 relocations against two unnamed section symbols to resolve to the
6886 same address. For example, if we have code like:
6887
6888 lw $4,%got_disp(.data)($gp)
6889 lw $25,%got_disp(.text)($gp)
6890 jalr $25
6891
6892 then the linker will resolve both relocations to .data and the program
6893 will jump there rather than to .text.
6894
6895 We can work around this problem by giving names to local section symbols.
6896 This is also what the MIPSpro tools do. */
6897
6898 bfd_boolean
6899 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6900 {
6901 return SGI_COMPAT (abfd);
6902 }
6903 \f
6904 /* Work over a section just before writing it out. This routine is
6905 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6906 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6907 a better way. */
6908
6909 bfd_boolean
6910 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6911 {
6912 if (hdr->sh_type == SHT_MIPS_REGINFO
6913 && hdr->sh_size > 0)
6914 {
6915 bfd_byte buf[4];
6916
6917 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6918 BFD_ASSERT (hdr->contents == NULL);
6919
6920 if (bfd_seek (abfd,
6921 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6922 SEEK_SET) != 0)
6923 return FALSE;
6924 H_PUT_32 (abfd, elf_gp (abfd), buf);
6925 if (bfd_bwrite (buf, 4, abfd) != 4)
6926 return FALSE;
6927 }
6928
6929 if (hdr->sh_type == SHT_MIPS_OPTIONS
6930 && hdr->bfd_section != NULL
6931 && mips_elf_section_data (hdr->bfd_section) != NULL
6932 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6933 {
6934 bfd_byte *contents, *l, *lend;
6935
6936 /* We stored the section contents in the tdata field in the
6937 set_section_contents routine. We save the section contents
6938 so that we don't have to read them again.
6939 At this point we know that elf_gp is set, so we can look
6940 through the section contents to see if there is an
6941 ODK_REGINFO structure. */
6942
6943 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6944 l = contents;
6945 lend = contents + hdr->sh_size;
6946 while (l + sizeof (Elf_External_Options) <= lend)
6947 {
6948 Elf_Internal_Options intopt;
6949
6950 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6951 &intopt);
6952 if (intopt.size < sizeof (Elf_External_Options))
6953 {
6954 (*_bfd_error_handler)
6955 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6956 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6957 break;
6958 }
6959 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6960 {
6961 bfd_byte buf[8];
6962
6963 if (bfd_seek (abfd,
6964 (hdr->sh_offset
6965 + (l - contents)
6966 + sizeof (Elf_External_Options)
6967 + (sizeof (Elf64_External_RegInfo) - 8)),
6968 SEEK_SET) != 0)
6969 return FALSE;
6970 H_PUT_64 (abfd, elf_gp (abfd), buf);
6971 if (bfd_bwrite (buf, 8, abfd) != 8)
6972 return FALSE;
6973 }
6974 else if (intopt.kind == ODK_REGINFO)
6975 {
6976 bfd_byte buf[4];
6977
6978 if (bfd_seek (abfd,
6979 (hdr->sh_offset
6980 + (l - contents)
6981 + sizeof (Elf_External_Options)
6982 + (sizeof (Elf32_External_RegInfo) - 4)),
6983 SEEK_SET) != 0)
6984 return FALSE;
6985 H_PUT_32 (abfd, elf_gp (abfd), buf);
6986 if (bfd_bwrite (buf, 4, abfd) != 4)
6987 return FALSE;
6988 }
6989 l += intopt.size;
6990 }
6991 }
6992
6993 if (hdr->bfd_section != NULL)
6994 {
6995 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6996
6997 /* .sbss is not handled specially here because the GNU/Linux
6998 prelinker can convert .sbss from NOBITS to PROGBITS and
6999 changing it back to NOBITS breaks the binary. The entry in
7000 _bfd_mips_elf_special_sections will ensure the correct flags
7001 are set on .sbss if BFD creates it without reading it from an
7002 input file, and without special handling here the flags set
7003 on it in an input file will be followed. */
7004 if (strcmp (name, ".sdata") == 0
7005 || strcmp (name, ".lit8") == 0
7006 || strcmp (name, ".lit4") == 0)
7007 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7008 else if (strcmp (name, ".srdata") == 0)
7009 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7010 else if (strcmp (name, ".compact_rel") == 0)
7011 hdr->sh_flags = 0;
7012 else if (strcmp (name, ".rtproc") == 0)
7013 {
7014 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7015 {
7016 unsigned int adjust;
7017
7018 adjust = hdr->sh_size % hdr->sh_addralign;
7019 if (adjust != 0)
7020 hdr->sh_size += hdr->sh_addralign - adjust;
7021 }
7022 }
7023 }
7024
7025 return TRUE;
7026 }
7027
7028 /* Handle a MIPS specific section when reading an object file. This
7029 is called when elfcode.h finds a section with an unknown type.
7030 This routine supports both the 32-bit and 64-bit ELF ABI.
7031
7032 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7033 how to. */
7034
7035 bfd_boolean
7036 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7037 Elf_Internal_Shdr *hdr,
7038 const char *name,
7039 int shindex)
7040 {
7041 flagword flags = 0;
7042
7043 /* There ought to be a place to keep ELF backend specific flags, but
7044 at the moment there isn't one. We just keep track of the
7045 sections by their name, instead. Fortunately, the ABI gives
7046 suggested names for all the MIPS specific sections, so we will
7047 probably get away with this. */
7048 switch (hdr->sh_type)
7049 {
7050 case SHT_MIPS_LIBLIST:
7051 if (strcmp (name, ".liblist") != 0)
7052 return FALSE;
7053 break;
7054 case SHT_MIPS_MSYM:
7055 if (strcmp (name, ".msym") != 0)
7056 return FALSE;
7057 break;
7058 case SHT_MIPS_CONFLICT:
7059 if (strcmp (name, ".conflict") != 0)
7060 return FALSE;
7061 break;
7062 case SHT_MIPS_GPTAB:
7063 if (! CONST_STRNEQ (name, ".gptab."))
7064 return FALSE;
7065 break;
7066 case SHT_MIPS_UCODE:
7067 if (strcmp (name, ".ucode") != 0)
7068 return FALSE;
7069 break;
7070 case SHT_MIPS_DEBUG:
7071 if (strcmp (name, ".mdebug") != 0)
7072 return FALSE;
7073 flags = SEC_DEBUGGING;
7074 break;
7075 case SHT_MIPS_REGINFO:
7076 if (strcmp (name, ".reginfo") != 0
7077 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7078 return FALSE;
7079 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7080 break;
7081 case SHT_MIPS_IFACE:
7082 if (strcmp (name, ".MIPS.interfaces") != 0)
7083 return FALSE;
7084 break;
7085 case SHT_MIPS_CONTENT:
7086 if (! CONST_STRNEQ (name, ".MIPS.content"))
7087 return FALSE;
7088 break;
7089 case SHT_MIPS_OPTIONS:
7090 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7091 return FALSE;
7092 break;
7093 case SHT_MIPS_ABIFLAGS:
7094 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7095 return FALSE;
7096 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7097 break;
7098 case SHT_MIPS_DWARF:
7099 if (! CONST_STRNEQ (name, ".debug_")
7100 && ! CONST_STRNEQ (name, ".zdebug_"))
7101 return FALSE;
7102 break;
7103 case SHT_MIPS_SYMBOL_LIB:
7104 if (strcmp (name, ".MIPS.symlib") != 0)
7105 return FALSE;
7106 break;
7107 case SHT_MIPS_EVENTS:
7108 if (! CONST_STRNEQ (name, ".MIPS.events")
7109 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7110 return FALSE;
7111 break;
7112 default:
7113 break;
7114 }
7115
7116 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7117 return FALSE;
7118
7119 if (flags)
7120 {
7121 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7122 (bfd_get_section_flags (abfd,
7123 hdr->bfd_section)
7124 | flags)))
7125 return FALSE;
7126 }
7127
7128 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7129 {
7130 Elf_External_ABIFlags_v0 ext;
7131
7132 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7133 &ext, 0, sizeof ext))
7134 return FALSE;
7135 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7136 &mips_elf_tdata (abfd)->abiflags);
7137 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7138 return FALSE;
7139 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7140 }
7141
7142 /* FIXME: We should record sh_info for a .gptab section. */
7143
7144 /* For a .reginfo section, set the gp value in the tdata information
7145 from the contents of this section. We need the gp value while
7146 processing relocs, so we just get it now. The .reginfo section
7147 is not used in the 64-bit MIPS ELF ABI. */
7148 if (hdr->sh_type == SHT_MIPS_REGINFO)
7149 {
7150 Elf32_External_RegInfo ext;
7151 Elf32_RegInfo s;
7152
7153 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7154 &ext, 0, sizeof ext))
7155 return FALSE;
7156 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7157 elf_gp (abfd) = s.ri_gp_value;
7158 }
7159
7160 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7161 set the gp value based on what we find. We may see both
7162 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7163 they should agree. */
7164 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7165 {
7166 bfd_byte *contents, *l, *lend;
7167
7168 contents = bfd_malloc (hdr->sh_size);
7169 if (contents == NULL)
7170 return FALSE;
7171 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7172 0, hdr->sh_size))
7173 {
7174 free (contents);
7175 return FALSE;
7176 }
7177 l = contents;
7178 lend = contents + hdr->sh_size;
7179 while (l + sizeof (Elf_External_Options) <= lend)
7180 {
7181 Elf_Internal_Options intopt;
7182
7183 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7184 &intopt);
7185 if (intopt.size < sizeof (Elf_External_Options))
7186 {
7187 (*_bfd_error_handler)
7188 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7189 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7190 break;
7191 }
7192 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7193 {
7194 Elf64_Internal_RegInfo intreg;
7195
7196 bfd_mips_elf64_swap_reginfo_in
7197 (abfd,
7198 ((Elf64_External_RegInfo *)
7199 (l + sizeof (Elf_External_Options))),
7200 &intreg);
7201 elf_gp (abfd) = intreg.ri_gp_value;
7202 }
7203 else if (intopt.kind == ODK_REGINFO)
7204 {
7205 Elf32_RegInfo intreg;
7206
7207 bfd_mips_elf32_swap_reginfo_in
7208 (abfd,
7209 ((Elf32_External_RegInfo *)
7210 (l + sizeof (Elf_External_Options))),
7211 &intreg);
7212 elf_gp (abfd) = intreg.ri_gp_value;
7213 }
7214 l += intopt.size;
7215 }
7216 free (contents);
7217 }
7218
7219 return TRUE;
7220 }
7221
7222 /* Set the correct type for a MIPS ELF section. We do this by the
7223 section name, which is a hack, but ought to work. This routine is
7224 used by both the 32-bit and the 64-bit ABI. */
7225
7226 bfd_boolean
7227 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7228 {
7229 const char *name = bfd_get_section_name (abfd, sec);
7230
7231 if (strcmp (name, ".liblist") == 0)
7232 {
7233 hdr->sh_type = SHT_MIPS_LIBLIST;
7234 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7235 /* The sh_link field is set in final_write_processing. */
7236 }
7237 else if (strcmp (name, ".conflict") == 0)
7238 hdr->sh_type = SHT_MIPS_CONFLICT;
7239 else if (CONST_STRNEQ (name, ".gptab."))
7240 {
7241 hdr->sh_type = SHT_MIPS_GPTAB;
7242 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7243 /* The sh_info field is set in final_write_processing. */
7244 }
7245 else if (strcmp (name, ".ucode") == 0)
7246 hdr->sh_type = SHT_MIPS_UCODE;
7247 else if (strcmp (name, ".mdebug") == 0)
7248 {
7249 hdr->sh_type = SHT_MIPS_DEBUG;
7250 /* In a shared object on IRIX 5.3, the .mdebug section has an
7251 entsize of 0. FIXME: Does this matter? */
7252 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7253 hdr->sh_entsize = 0;
7254 else
7255 hdr->sh_entsize = 1;
7256 }
7257 else if (strcmp (name, ".reginfo") == 0)
7258 {
7259 hdr->sh_type = SHT_MIPS_REGINFO;
7260 /* In a shared object on IRIX 5.3, the .reginfo section has an
7261 entsize of 0x18. FIXME: Does this matter? */
7262 if (SGI_COMPAT (abfd))
7263 {
7264 if ((abfd->flags & DYNAMIC) != 0)
7265 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7266 else
7267 hdr->sh_entsize = 1;
7268 }
7269 else
7270 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7271 }
7272 else if (SGI_COMPAT (abfd)
7273 && (strcmp (name, ".hash") == 0
7274 || strcmp (name, ".dynamic") == 0
7275 || strcmp (name, ".dynstr") == 0))
7276 {
7277 if (SGI_COMPAT (abfd))
7278 hdr->sh_entsize = 0;
7279 #if 0
7280 /* This isn't how the IRIX6 linker behaves. */
7281 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7282 #endif
7283 }
7284 else if (strcmp (name, ".got") == 0
7285 || strcmp (name, ".srdata") == 0
7286 || strcmp (name, ".sdata") == 0
7287 || strcmp (name, ".sbss") == 0
7288 || strcmp (name, ".lit4") == 0
7289 || strcmp (name, ".lit8") == 0)
7290 hdr->sh_flags |= SHF_MIPS_GPREL;
7291 else if (strcmp (name, ".MIPS.interfaces") == 0)
7292 {
7293 hdr->sh_type = SHT_MIPS_IFACE;
7294 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7295 }
7296 else if (CONST_STRNEQ (name, ".MIPS.content"))
7297 {
7298 hdr->sh_type = SHT_MIPS_CONTENT;
7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7300 /* The sh_info field is set in final_write_processing. */
7301 }
7302 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7303 {
7304 hdr->sh_type = SHT_MIPS_OPTIONS;
7305 hdr->sh_entsize = 1;
7306 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7307 }
7308 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7309 {
7310 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7311 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7312 }
7313 else if (CONST_STRNEQ (name, ".debug_")
7314 || CONST_STRNEQ (name, ".zdebug_"))
7315 {
7316 hdr->sh_type = SHT_MIPS_DWARF;
7317
7318 /* Irix facilities such as libexc expect a single .debug_frame
7319 per executable, the system ones have NOSTRIP set and the linker
7320 doesn't merge sections with different flags so ... */
7321 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7322 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7323 }
7324 else if (strcmp (name, ".MIPS.symlib") == 0)
7325 {
7326 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7327 /* The sh_link and sh_info fields are set in
7328 final_write_processing. */
7329 }
7330 else if (CONST_STRNEQ (name, ".MIPS.events")
7331 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7332 {
7333 hdr->sh_type = SHT_MIPS_EVENTS;
7334 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7335 /* The sh_link field is set in final_write_processing. */
7336 }
7337 else if (strcmp (name, ".msym") == 0)
7338 {
7339 hdr->sh_type = SHT_MIPS_MSYM;
7340 hdr->sh_flags |= SHF_ALLOC;
7341 hdr->sh_entsize = 8;
7342 }
7343
7344 /* The generic elf_fake_sections will set up REL_HDR using the default
7345 kind of relocations. We used to set up a second header for the
7346 non-default kind of relocations here, but only NewABI would use
7347 these, and the IRIX ld doesn't like resulting empty RELA sections.
7348 Thus we create those header only on demand now. */
7349
7350 return TRUE;
7351 }
7352
7353 /* Given a BFD section, try to locate the corresponding ELF section
7354 index. This is used by both the 32-bit and the 64-bit ABI.
7355 Actually, it's not clear to me that the 64-bit ABI supports these,
7356 but for non-PIC objects we will certainly want support for at least
7357 the .scommon section. */
7358
7359 bfd_boolean
7360 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7361 asection *sec, int *retval)
7362 {
7363 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7364 {
7365 *retval = SHN_MIPS_SCOMMON;
7366 return TRUE;
7367 }
7368 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7369 {
7370 *retval = SHN_MIPS_ACOMMON;
7371 return TRUE;
7372 }
7373 return FALSE;
7374 }
7375 \f
7376 /* Hook called by the linker routine which adds symbols from an object
7377 file. We must handle the special MIPS section numbers here. */
7378
7379 bfd_boolean
7380 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7381 Elf_Internal_Sym *sym, const char **namep,
7382 flagword *flagsp ATTRIBUTE_UNUSED,
7383 asection **secp, bfd_vma *valp)
7384 {
7385 if (SGI_COMPAT (abfd)
7386 && (abfd->flags & DYNAMIC) != 0
7387 && strcmp (*namep, "_rld_new_interface") == 0)
7388 {
7389 /* Skip IRIX5 rld entry name. */
7390 *namep = NULL;
7391 return TRUE;
7392 }
7393
7394 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7395 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7396 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7397 a magic symbol resolved by the linker, we ignore this bogus definition
7398 of _gp_disp. New ABI objects do not suffer from this problem so this
7399 is not done for them. */
7400 if (!NEWABI_P(abfd)
7401 && (sym->st_shndx == SHN_ABS)
7402 && (strcmp (*namep, "_gp_disp") == 0))
7403 {
7404 *namep = NULL;
7405 return TRUE;
7406 }
7407
7408 switch (sym->st_shndx)
7409 {
7410 case SHN_COMMON:
7411 /* Common symbols less than the GP size are automatically
7412 treated as SHN_MIPS_SCOMMON symbols. */
7413 if (sym->st_size > elf_gp_size (abfd)
7414 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7415 || IRIX_COMPAT (abfd) == ict_irix6)
7416 break;
7417 /* Fall through. */
7418 case SHN_MIPS_SCOMMON:
7419 *secp = bfd_make_section_old_way (abfd, ".scommon");
7420 (*secp)->flags |= SEC_IS_COMMON;
7421 *valp = sym->st_size;
7422 break;
7423
7424 case SHN_MIPS_TEXT:
7425 /* This section is used in a shared object. */
7426 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7427 {
7428 asymbol *elf_text_symbol;
7429 asection *elf_text_section;
7430 bfd_size_type amt = sizeof (asection);
7431
7432 elf_text_section = bfd_zalloc (abfd, amt);
7433 if (elf_text_section == NULL)
7434 return FALSE;
7435
7436 amt = sizeof (asymbol);
7437 elf_text_symbol = bfd_zalloc (abfd, amt);
7438 if (elf_text_symbol == NULL)
7439 return FALSE;
7440
7441 /* Initialize the section. */
7442
7443 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7444 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7445
7446 elf_text_section->symbol = elf_text_symbol;
7447 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7448
7449 elf_text_section->name = ".text";
7450 elf_text_section->flags = SEC_NO_FLAGS;
7451 elf_text_section->output_section = NULL;
7452 elf_text_section->owner = abfd;
7453 elf_text_symbol->name = ".text";
7454 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7455 elf_text_symbol->section = elf_text_section;
7456 }
7457 /* This code used to do *secp = bfd_und_section_ptr if
7458 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7459 so I took it out. */
7460 *secp = mips_elf_tdata (abfd)->elf_text_section;
7461 break;
7462
7463 case SHN_MIPS_ACOMMON:
7464 /* Fall through. XXX Can we treat this as allocated data? */
7465 case SHN_MIPS_DATA:
7466 /* This section is used in a shared object. */
7467 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7468 {
7469 asymbol *elf_data_symbol;
7470 asection *elf_data_section;
7471 bfd_size_type amt = sizeof (asection);
7472
7473 elf_data_section = bfd_zalloc (abfd, amt);
7474 if (elf_data_section == NULL)
7475 return FALSE;
7476
7477 amt = sizeof (asymbol);
7478 elf_data_symbol = bfd_zalloc (abfd, amt);
7479 if (elf_data_symbol == NULL)
7480 return FALSE;
7481
7482 /* Initialize the section. */
7483
7484 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7485 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7486
7487 elf_data_section->symbol = elf_data_symbol;
7488 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7489
7490 elf_data_section->name = ".data";
7491 elf_data_section->flags = SEC_NO_FLAGS;
7492 elf_data_section->output_section = NULL;
7493 elf_data_section->owner = abfd;
7494 elf_data_symbol->name = ".data";
7495 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7496 elf_data_symbol->section = elf_data_section;
7497 }
7498 /* This code used to do *secp = bfd_und_section_ptr if
7499 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7500 so I took it out. */
7501 *secp = mips_elf_tdata (abfd)->elf_data_section;
7502 break;
7503
7504 case SHN_MIPS_SUNDEFINED:
7505 *secp = bfd_und_section_ptr;
7506 break;
7507 }
7508
7509 if (SGI_COMPAT (abfd)
7510 && ! bfd_link_pic (info)
7511 && info->output_bfd->xvec == abfd->xvec
7512 && strcmp (*namep, "__rld_obj_head") == 0)
7513 {
7514 struct elf_link_hash_entry *h;
7515 struct bfd_link_hash_entry *bh;
7516
7517 /* Mark __rld_obj_head as dynamic. */
7518 bh = NULL;
7519 if (! (_bfd_generic_link_add_one_symbol
7520 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7521 get_elf_backend_data (abfd)->collect, &bh)))
7522 return FALSE;
7523
7524 h = (struct elf_link_hash_entry *) bh;
7525 h->non_elf = 0;
7526 h->def_regular = 1;
7527 h->type = STT_OBJECT;
7528
7529 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7530 return FALSE;
7531
7532 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7533 mips_elf_hash_table (info)->rld_symbol = h;
7534 }
7535
7536 /* If this is a mips16 text symbol, add 1 to the value to make it
7537 odd. This will cause something like .word SYM to come up with
7538 the right value when it is loaded into the PC. */
7539 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7540 ++*valp;
7541
7542 return TRUE;
7543 }
7544
7545 /* This hook function is called before the linker writes out a global
7546 symbol. We mark symbols as small common if appropriate. This is
7547 also where we undo the increment of the value for a mips16 symbol. */
7548
7549 int
7550 _bfd_mips_elf_link_output_symbol_hook
7551 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7552 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7553 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7554 {
7555 /* If we see a common symbol, which implies a relocatable link, then
7556 if a symbol was small common in an input file, mark it as small
7557 common in the output file. */
7558 if (sym->st_shndx == SHN_COMMON
7559 && strcmp (input_sec->name, ".scommon") == 0)
7560 sym->st_shndx = SHN_MIPS_SCOMMON;
7561
7562 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7563 sym->st_value &= ~1;
7564
7565 return 1;
7566 }
7567 \f
7568 /* Functions for the dynamic linker. */
7569
7570 /* Create dynamic sections when linking against a dynamic object. */
7571
7572 bfd_boolean
7573 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7574 {
7575 struct elf_link_hash_entry *h;
7576 struct bfd_link_hash_entry *bh;
7577 flagword flags;
7578 register asection *s;
7579 const char * const *namep;
7580 struct mips_elf_link_hash_table *htab;
7581
7582 htab = mips_elf_hash_table (info);
7583 BFD_ASSERT (htab != NULL);
7584
7585 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7586 | SEC_LINKER_CREATED | SEC_READONLY);
7587
7588 /* The psABI requires a read-only .dynamic section, but the VxWorks
7589 EABI doesn't. */
7590 if (!htab->is_vxworks)
7591 {
7592 s = bfd_get_linker_section (abfd, ".dynamic");
7593 if (s != NULL)
7594 {
7595 if (! bfd_set_section_flags (abfd, s, flags))
7596 return FALSE;
7597 }
7598 }
7599
7600 /* We need to create .got section. */
7601 if (!mips_elf_create_got_section (abfd, info))
7602 return FALSE;
7603
7604 if (! mips_elf_rel_dyn_section (info, TRUE))
7605 return FALSE;
7606
7607 /* Create .stub section. */
7608 s = bfd_make_section_anyway_with_flags (abfd,
7609 MIPS_ELF_STUB_SECTION_NAME (abfd),
7610 flags | SEC_CODE);
7611 if (s == NULL
7612 || ! bfd_set_section_alignment (abfd, s,
7613 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7614 return FALSE;
7615 htab->sstubs = s;
7616
7617 if (!mips_elf_hash_table (info)->use_rld_obj_head
7618 && bfd_link_executable (info)
7619 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7620 {
7621 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7622 flags &~ (flagword) SEC_READONLY);
7623 if (s == NULL
7624 || ! bfd_set_section_alignment (abfd, s,
7625 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7626 return FALSE;
7627 }
7628
7629 /* On IRIX5, we adjust add some additional symbols and change the
7630 alignments of several sections. There is no ABI documentation
7631 indicating that this is necessary on IRIX6, nor any evidence that
7632 the linker takes such action. */
7633 if (IRIX_COMPAT (abfd) == ict_irix5)
7634 {
7635 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7636 {
7637 bh = NULL;
7638 if (! (_bfd_generic_link_add_one_symbol
7639 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7640 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7641 return FALSE;
7642
7643 h = (struct elf_link_hash_entry *) bh;
7644 h->non_elf = 0;
7645 h->def_regular = 1;
7646 h->type = STT_SECTION;
7647
7648 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7649 return FALSE;
7650 }
7651
7652 /* We need to create a .compact_rel section. */
7653 if (SGI_COMPAT (abfd))
7654 {
7655 if (!mips_elf_create_compact_rel_section (abfd, info))
7656 return FALSE;
7657 }
7658
7659 /* Change alignments of some sections. */
7660 s = bfd_get_linker_section (abfd, ".hash");
7661 if (s != NULL)
7662 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7663
7664 s = bfd_get_linker_section (abfd, ".dynsym");
7665 if (s != NULL)
7666 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7667
7668 s = bfd_get_linker_section (abfd, ".dynstr");
7669 if (s != NULL)
7670 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7671
7672 /* ??? */
7673 s = bfd_get_section_by_name (abfd, ".reginfo");
7674 if (s != NULL)
7675 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7676
7677 s = bfd_get_linker_section (abfd, ".dynamic");
7678 if (s != NULL)
7679 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7680 }
7681
7682 if (bfd_link_executable (info))
7683 {
7684 const char *name;
7685
7686 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7687 bh = NULL;
7688 if (!(_bfd_generic_link_add_one_symbol
7689 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7690 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7691 return FALSE;
7692
7693 h = (struct elf_link_hash_entry *) bh;
7694 h->non_elf = 0;
7695 h->def_regular = 1;
7696 h->type = STT_SECTION;
7697
7698 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7699 return FALSE;
7700
7701 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7702 {
7703 /* __rld_map is a four byte word located in the .data section
7704 and is filled in by the rtld to contain a pointer to
7705 the _r_debug structure. Its symbol value will be set in
7706 _bfd_mips_elf_finish_dynamic_symbol. */
7707 s = bfd_get_linker_section (abfd, ".rld_map");
7708 BFD_ASSERT (s != NULL);
7709
7710 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7711 bh = NULL;
7712 if (!(_bfd_generic_link_add_one_symbol
7713 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7714 get_elf_backend_data (abfd)->collect, &bh)))
7715 return FALSE;
7716
7717 h = (struct elf_link_hash_entry *) bh;
7718 h->non_elf = 0;
7719 h->def_regular = 1;
7720 h->type = STT_OBJECT;
7721
7722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7723 return FALSE;
7724 mips_elf_hash_table (info)->rld_symbol = h;
7725 }
7726 }
7727
7728 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7729 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7730 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7731 return FALSE;
7732
7733 /* Cache the sections created above. */
7734 htab->splt = bfd_get_linker_section (abfd, ".plt");
7735 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7736 if (htab->is_vxworks)
7737 {
7738 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7739 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7740 }
7741 else
7742 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7743 if (!htab->sdynbss
7744 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7745 || !htab->srelplt
7746 || !htab->splt)
7747 abort ();
7748
7749 /* Do the usual VxWorks handling. */
7750 if (htab->is_vxworks
7751 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7752 return FALSE;
7753
7754 return TRUE;
7755 }
7756 \f
7757 /* Return true if relocation REL against section SEC is a REL rather than
7758 RELA relocation. RELOCS is the first relocation in the section and
7759 ABFD is the bfd that contains SEC. */
7760
7761 static bfd_boolean
7762 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7763 const Elf_Internal_Rela *relocs,
7764 const Elf_Internal_Rela *rel)
7765 {
7766 Elf_Internal_Shdr *rel_hdr;
7767 const struct elf_backend_data *bed;
7768
7769 /* To determine which flavor of relocation this is, we depend on the
7770 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7771 rel_hdr = elf_section_data (sec)->rel.hdr;
7772 if (rel_hdr == NULL)
7773 return FALSE;
7774 bed = get_elf_backend_data (abfd);
7775 return ((size_t) (rel - relocs)
7776 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7777 }
7778
7779 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7780 HOWTO is the relocation's howto and CONTENTS points to the contents
7781 of the section that REL is against. */
7782
7783 static bfd_vma
7784 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7785 reloc_howto_type *howto, bfd_byte *contents)
7786 {
7787 bfd_byte *location;
7788 unsigned int r_type;
7789 bfd_vma addend;
7790 bfd_vma bytes;
7791
7792 r_type = ELF_R_TYPE (abfd, rel->r_info);
7793 location = contents + rel->r_offset;
7794
7795 /* Get the addend, which is stored in the input file. */
7796 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7797 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7798 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7799
7800 addend = bytes & howto->src_mask;
7801
7802 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7803 accordingly. */
7804 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7805 addend <<= 1;
7806
7807 return addend;
7808 }
7809
7810 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7811 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7812 and update *ADDEND with the final addend. Return true on success
7813 or false if the LO16 could not be found. RELEND is the exclusive
7814 upper bound on the relocations for REL's section. */
7815
7816 static bfd_boolean
7817 mips_elf_add_lo16_rel_addend (bfd *abfd,
7818 const Elf_Internal_Rela *rel,
7819 const Elf_Internal_Rela *relend,
7820 bfd_byte *contents, bfd_vma *addend)
7821 {
7822 unsigned int r_type, lo16_type;
7823 const Elf_Internal_Rela *lo16_relocation;
7824 reloc_howto_type *lo16_howto;
7825 bfd_vma l;
7826
7827 r_type = ELF_R_TYPE (abfd, rel->r_info);
7828 if (mips16_reloc_p (r_type))
7829 lo16_type = R_MIPS16_LO16;
7830 else if (micromips_reloc_p (r_type))
7831 lo16_type = R_MICROMIPS_LO16;
7832 else if (r_type == R_MIPS_PCHI16)
7833 lo16_type = R_MIPS_PCLO16;
7834 else
7835 lo16_type = R_MIPS_LO16;
7836
7837 /* The combined value is the sum of the HI16 addend, left-shifted by
7838 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7839 code does a `lui' of the HI16 value, and then an `addiu' of the
7840 LO16 value.)
7841
7842 Scan ahead to find a matching LO16 relocation.
7843
7844 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7845 be immediately following. However, for the IRIX6 ABI, the next
7846 relocation may be a composed relocation consisting of several
7847 relocations for the same address. In that case, the R_MIPS_LO16
7848 relocation may occur as one of these. We permit a similar
7849 extension in general, as that is useful for GCC.
7850
7851 In some cases GCC dead code elimination removes the LO16 but keeps
7852 the corresponding HI16. This is strictly speaking a violation of
7853 the ABI but not immediately harmful. */
7854 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7855 if (lo16_relocation == NULL)
7856 return FALSE;
7857
7858 /* Obtain the addend kept there. */
7859 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7860 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7861
7862 l <<= lo16_howto->rightshift;
7863 l = _bfd_mips_elf_sign_extend (l, 16);
7864
7865 *addend <<= 16;
7866 *addend += l;
7867 return TRUE;
7868 }
7869
7870 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7871 store the contents in *CONTENTS on success. Assume that *CONTENTS
7872 already holds the contents if it is nonull on entry. */
7873
7874 static bfd_boolean
7875 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7876 {
7877 if (*contents)
7878 return TRUE;
7879
7880 /* Get cached copy if it exists. */
7881 if (elf_section_data (sec)->this_hdr.contents != NULL)
7882 {
7883 *contents = elf_section_data (sec)->this_hdr.contents;
7884 return TRUE;
7885 }
7886
7887 return bfd_malloc_and_get_section (abfd, sec, contents);
7888 }
7889
7890 /* Make a new PLT record to keep internal data. */
7891
7892 static struct plt_entry *
7893 mips_elf_make_plt_record (bfd *abfd)
7894 {
7895 struct plt_entry *entry;
7896
7897 entry = bfd_zalloc (abfd, sizeof (*entry));
7898 if (entry == NULL)
7899 return NULL;
7900
7901 entry->stub_offset = MINUS_ONE;
7902 entry->mips_offset = MINUS_ONE;
7903 entry->comp_offset = MINUS_ONE;
7904 entry->gotplt_index = MINUS_ONE;
7905 return entry;
7906 }
7907
7908 /* Look through the relocs for a section during the first phase, and
7909 allocate space in the global offset table and record the need for
7910 standard MIPS and compressed procedure linkage table entries. */
7911
7912 bfd_boolean
7913 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7914 asection *sec, const Elf_Internal_Rela *relocs)
7915 {
7916 const char *name;
7917 bfd *dynobj;
7918 Elf_Internal_Shdr *symtab_hdr;
7919 struct elf_link_hash_entry **sym_hashes;
7920 size_t extsymoff;
7921 const Elf_Internal_Rela *rel;
7922 const Elf_Internal_Rela *rel_end;
7923 asection *sreloc;
7924 const struct elf_backend_data *bed;
7925 struct mips_elf_link_hash_table *htab;
7926 bfd_byte *contents;
7927 bfd_vma addend;
7928 reloc_howto_type *howto;
7929
7930 if (bfd_link_relocatable (info))
7931 return TRUE;
7932
7933 htab = mips_elf_hash_table (info);
7934 BFD_ASSERT (htab != NULL);
7935
7936 dynobj = elf_hash_table (info)->dynobj;
7937 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7938 sym_hashes = elf_sym_hashes (abfd);
7939 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7940
7941 bed = get_elf_backend_data (abfd);
7942 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7943
7944 /* Check for the mips16 stub sections. */
7945
7946 name = bfd_get_section_name (abfd, sec);
7947 if (FN_STUB_P (name))
7948 {
7949 unsigned long r_symndx;
7950
7951 /* Look at the relocation information to figure out which symbol
7952 this is for. */
7953
7954 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7955 if (r_symndx == 0)
7956 {
7957 (*_bfd_error_handler)
7958 (_("%B: Warning: cannot determine the target function for"
7959 " stub section `%s'"),
7960 abfd, name);
7961 bfd_set_error (bfd_error_bad_value);
7962 return FALSE;
7963 }
7964
7965 if (r_symndx < extsymoff
7966 || sym_hashes[r_symndx - extsymoff] == NULL)
7967 {
7968 asection *o;
7969
7970 /* This stub is for a local symbol. This stub will only be
7971 needed if there is some relocation in this BFD, other
7972 than a 16 bit function call, which refers to this symbol. */
7973 for (o = abfd->sections; o != NULL; o = o->next)
7974 {
7975 Elf_Internal_Rela *sec_relocs;
7976 const Elf_Internal_Rela *r, *rend;
7977
7978 /* We can ignore stub sections when looking for relocs. */
7979 if ((o->flags & SEC_RELOC) == 0
7980 || o->reloc_count == 0
7981 || section_allows_mips16_refs_p (o))
7982 continue;
7983
7984 sec_relocs
7985 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7986 info->keep_memory);
7987 if (sec_relocs == NULL)
7988 return FALSE;
7989
7990 rend = sec_relocs + o->reloc_count;
7991 for (r = sec_relocs; r < rend; r++)
7992 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7993 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7994 break;
7995
7996 if (elf_section_data (o)->relocs != sec_relocs)
7997 free (sec_relocs);
7998
7999 if (r < rend)
8000 break;
8001 }
8002
8003 if (o == NULL)
8004 {
8005 /* There is no non-call reloc for this stub, so we do
8006 not need it. Since this function is called before
8007 the linker maps input sections to output sections, we
8008 can easily discard it by setting the SEC_EXCLUDE
8009 flag. */
8010 sec->flags |= SEC_EXCLUDE;
8011 return TRUE;
8012 }
8013
8014 /* Record this stub in an array of local symbol stubs for
8015 this BFD. */
8016 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8017 {
8018 unsigned long symcount;
8019 asection **n;
8020 bfd_size_type amt;
8021
8022 if (elf_bad_symtab (abfd))
8023 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8024 else
8025 symcount = symtab_hdr->sh_info;
8026 amt = symcount * sizeof (asection *);
8027 n = bfd_zalloc (abfd, amt);
8028 if (n == NULL)
8029 return FALSE;
8030 mips_elf_tdata (abfd)->local_stubs = n;
8031 }
8032
8033 sec->flags |= SEC_KEEP;
8034 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8035
8036 /* We don't need to set mips16_stubs_seen in this case.
8037 That flag is used to see whether we need to look through
8038 the global symbol table for stubs. We don't need to set
8039 it here, because we just have a local stub. */
8040 }
8041 else
8042 {
8043 struct mips_elf_link_hash_entry *h;
8044
8045 h = ((struct mips_elf_link_hash_entry *)
8046 sym_hashes[r_symndx - extsymoff]);
8047
8048 while (h->root.root.type == bfd_link_hash_indirect
8049 || h->root.root.type == bfd_link_hash_warning)
8050 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8051
8052 /* H is the symbol this stub is for. */
8053
8054 /* If we already have an appropriate stub for this function, we
8055 don't need another one, so we can discard this one. Since
8056 this function is called before the linker maps input sections
8057 to output sections, we can easily discard it by setting the
8058 SEC_EXCLUDE flag. */
8059 if (h->fn_stub != NULL)
8060 {
8061 sec->flags |= SEC_EXCLUDE;
8062 return TRUE;
8063 }
8064
8065 sec->flags |= SEC_KEEP;
8066 h->fn_stub = sec;
8067 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8068 }
8069 }
8070 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8071 {
8072 unsigned long r_symndx;
8073 struct mips_elf_link_hash_entry *h;
8074 asection **loc;
8075
8076 /* Look at the relocation information to figure out which symbol
8077 this is for. */
8078
8079 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8080 if (r_symndx == 0)
8081 {
8082 (*_bfd_error_handler)
8083 (_("%B: Warning: cannot determine the target function for"
8084 " stub section `%s'"),
8085 abfd, name);
8086 bfd_set_error (bfd_error_bad_value);
8087 return FALSE;
8088 }
8089
8090 if (r_symndx < extsymoff
8091 || sym_hashes[r_symndx - extsymoff] == NULL)
8092 {
8093 asection *o;
8094
8095 /* This stub is for a local symbol. This stub will only be
8096 needed if there is some relocation (R_MIPS16_26) in this BFD
8097 that refers to this symbol. */
8098 for (o = abfd->sections; o != NULL; o = o->next)
8099 {
8100 Elf_Internal_Rela *sec_relocs;
8101 const Elf_Internal_Rela *r, *rend;
8102
8103 /* We can ignore stub sections when looking for relocs. */
8104 if ((o->flags & SEC_RELOC) == 0
8105 || o->reloc_count == 0
8106 || section_allows_mips16_refs_p (o))
8107 continue;
8108
8109 sec_relocs
8110 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8111 info->keep_memory);
8112 if (sec_relocs == NULL)
8113 return FALSE;
8114
8115 rend = sec_relocs + o->reloc_count;
8116 for (r = sec_relocs; r < rend; r++)
8117 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8118 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8119 break;
8120
8121 if (elf_section_data (o)->relocs != sec_relocs)
8122 free (sec_relocs);
8123
8124 if (r < rend)
8125 break;
8126 }
8127
8128 if (o == NULL)
8129 {
8130 /* There is no non-call reloc for this stub, so we do
8131 not need it. Since this function is called before
8132 the linker maps input sections to output sections, we
8133 can easily discard it by setting the SEC_EXCLUDE
8134 flag. */
8135 sec->flags |= SEC_EXCLUDE;
8136 return TRUE;
8137 }
8138
8139 /* Record this stub in an array of local symbol call_stubs for
8140 this BFD. */
8141 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8142 {
8143 unsigned long symcount;
8144 asection **n;
8145 bfd_size_type amt;
8146
8147 if (elf_bad_symtab (abfd))
8148 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8149 else
8150 symcount = symtab_hdr->sh_info;
8151 amt = symcount * sizeof (asection *);
8152 n = bfd_zalloc (abfd, amt);
8153 if (n == NULL)
8154 return FALSE;
8155 mips_elf_tdata (abfd)->local_call_stubs = n;
8156 }
8157
8158 sec->flags |= SEC_KEEP;
8159 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8160
8161 /* We don't need to set mips16_stubs_seen in this case.
8162 That flag is used to see whether we need to look through
8163 the global symbol table for stubs. We don't need to set
8164 it here, because we just have a local stub. */
8165 }
8166 else
8167 {
8168 h = ((struct mips_elf_link_hash_entry *)
8169 sym_hashes[r_symndx - extsymoff]);
8170
8171 /* H is the symbol this stub is for. */
8172
8173 if (CALL_FP_STUB_P (name))
8174 loc = &h->call_fp_stub;
8175 else
8176 loc = &h->call_stub;
8177
8178 /* If we already have an appropriate stub for this function, we
8179 don't need another one, so we can discard this one. Since
8180 this function is called before the linker maps input sections
8181 to output sections, we can easily discard it by setting the
8182 SEC_EXCLUDE flag. */
8183 if (*loc != NULL)
8184 {
8185 sec->flags |= SEC_EXCLUDE;
8186 return TRUE;
8187 }
8188
8189 sec->flags |= SEC_KEEP;
8190 *loc = sec;
8191 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8192 }
8193 }
8194
8195 sreloc = NULL;
8196 contents = NULL;
8197 for (rel = relocs; rel < rel_end; ++rel)
8198 {
8199 unsigned long r_symndx;
8200 unsigned int r_type;
8201 struct elf_link_hash_entry *h;
8202 bfd_boolean can_make_dynamic_p;
8203 bfd_boolean call_reloc_p;
8204 bfd_boolean constrain_symbol_p;
8205
8206 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8207 r_type = ELF_R_TYPE (abfd, rel->r_info);
8208
8209 if (r_symndx < extsymoff)
8210 h = NULL;
8211 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8212 {
8213 (*_bfd_error_handler)
8214 (_("%B: Malformed reloc detected for section %s"),
8215 abfd, name);
8216 bfd_set_error (bfd_error_bad_value);
8217 return FALSE;
8218 }
8219 else
8220 {
8221 h = sym_hashes[r_symndx - extsymoff];
8222 if (h != NULL)
8223 {
8224 while (h->root.type == bfd_link_hash_indirect
8225 || h->root.type == bfd_link_hash_warning)
8226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8227
8228 /* PR15323, ref flags aren't set for references in the
8229 same object. */
8230 h->root.non_ir_ref = 1;
8231 }
8232 }
8233
8234 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8235 relocation into a dynamic one. */
8236 can_make_dynamic_p = FALSE;
8237
8238 /* Set CALL_RELOC_P to true if the relocation is for a call,
8239 and if pointer equality therefore doesn't matter. */
8240 call_reloc_p = FALSE;
8241
8242 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8243 into account when deciding how to define the symbol.
8244 Relocations in nonallocatable sections such as .pdr and
8245 .debug* should have no effect. */
8246 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8247
8248 switch (r_type)
8249 {
8250 case R_MIPS_CALL16:
8251 case R_MIPS_CALL_HI16:
8252 case R_MIPS_CALL_LO16:
8253 case R_MIPS16_CALL16:
8254 case R_MICROMIPS_CALL16:
8255 case R_MICROMIPS_CALL_HI16:
8256 case R_MICROMIPS_CALL_LO16:
8257 call_reloc_p = TRUE;
8258 /* Fall through. */
8259
8260 case R_MIPS_GOT16:
8261 case R_MIPS_GOT_HI16:
8262 case R_MIPS_GOT_LO16:
8263 case R_MIPS_GOT_PAGE:
8264 case R_MIPS_GOT_OFST:
8265 case R_MIPS_GOT_DISP:
8266 case R_MIPS_TLS_GOTTPREL:
8267 case R_MIPS_TLS_GD:
8268 case R_MIPS_TLS_LDM:
8269 case R_MIPS16_GOT16:
8270 case R_MIPS16_TLS_GOTTPREL:
8271 case R_MIPS16_TLS_GD:
8272 case R_MIPS16_TLS_LDM:
8273 case R_MICROMIPS_GOT16:
8274 case R_MICROMIPS_GOT_HI16:
8275 case R_MICROMIPS_GOT_LO16:
8276 case R_MICROMIPS_GOT_PAGE:
8277 case R_MICROMIPS_GOT_OFST:
8278 case R_MICROMIPS_GOT_DISP:
8279 case R_MICROMIPS_TLS_GOTTPREL:
8280 case R_MICROMIPS_TLS_GD:
8281 case R_MICROMIPS_TLS_LDM:
8282 if (dynobj == NULL)
8283 elf_hash_table (info)->dynobj = dynobj = abfd;
8284 if (!mips_elf_create_got_section (dynobj, info))
8285 return FALSE;
8286 if (htab->is_vxworks && !bfd_link_pic (info))
8287 {
8288 (*_bfd_error_handler)
8289 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8290 abfd, (unsigned long) rel->r_offset);
8291 bfd_set_error (bfd_error_bad_value);
8292 return FALSE;
8293 }
8294 can_make_dynamic_p = TRUE;
8295 break;
8296
8297 case R_MIPS_NONE:
8298 case R_MIPS_JALR:
8299 case R_MICROMIPS_JALR:
8300 /* These relocations have empty fields and are purely there to
8301 provide link information. The symbol value doesn't matter. */
8302 constrain_symbol_p = FALSE;
8303 break;
8304
8305 case R_MIPS_GPREL16:
8306 case R_MIPS_GPREL32:
8307 case R_MIPS16_GPREL:
8308 case R_MICROMIPS_GPREL16:
8309 /* GP-relative relocations always resolve to a definition in a
8310 regular input file, ignoring the one-definition rule. This is
8311 important for the GP setup sequence in NewABI code, which
8312 always resolves to a local function even if other relocations
8313 against the symbol wouldn't. */
8314 constrain_symbol_p = FALSE;
8315 break;
8316
8317 case R_MIPS_32:
8318 case R_MIPS_REL32:
8319 case R_MIPS_64:
8320 /* In VxWorks executables, references to external symbols
8321 must be handled using copy relocs or PLT entries; it is not
8322 possible to convert this relocation into a dynamic one.
8323
8324 For executables that use PLTs and copy-relocs, we have a
8325 choice between converting the relocation into a dynamic
8326 one or using copy relocations or PLT entries. It is
8327 usually better to do the former, unless the relocation is
8328 against a read-only section. */
8329 if ((bfd_link_pic (info)
8330 || (h != NULL
8331 && !htab->is_vxworks
8332 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8333 && !(!info->nocopyreloc
8334 && !PIC_OBJECT_P (abfd)
8335 && MIPS_ELF_READONLY_SECTION (sec))))
8336 && (sec->flags & SEC_ALLOC) != 0)
8337 {
8338 can_make_dynamic_p = TRUE;
8339 if (dynobj == NULL)
8340 elf_hash_table (info)->dynobj = dynobj = abfd;
8341 }
8342 break;
8343
8344 case R_MIPS_26:
8345 case R_MIPS_PC16:
8346 case R_MIPS_PC21_S2:
8347 case R_MIPS_PC26_S2:
8348 case R_MIPS16_26:
8349 case R_MICROMIPS_26_S1:
8350 case R_MICROMIPS_PC7_S1:
8351 case R_MICROMIPS_PC10_S1:
8352 case R_MICROMIPS_PC16_S1:
8353 case R_MICROMIPS_PC23_S2:
8354 call_reloc_p = TRUE;
8355 break;
8356 }
8357
8358 if (h)
8359 {
8360 if (constrain_symbol_p)
8361 {
8362 if (!can_make_dynamic_p)
8363 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8364
8365 if (!call_reloc_p)
8366 h->pointer_equality_needed = 1;
8367
8368 /* We must not create a stub for a symbol that has
8369 relocations related to taking the function's address.
8370 This doesn't apply to VxWorks, where CALL relocs refer
8371 to a .got.plt entry instead of a normal .got entry. */
8372 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8373 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8374 }
8375
8376 /* Relocations against the special VxWorks __GOTT_BASE__ and
8377 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8378 room for them in .rela.dyn. */
8379 if (is_gott_symbol (info, h))
8380 {
8381 if (sreloc == NULL)
8382 {
8383 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8384 if (sreloc == NULL)
8385 return FALSE;
8386 }
8387 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8388 if (MIPS_ELF_READONLY_SECTION (sec))
8389 /* We tell the dynamic linker that there are
8390 relocations against the text segment. */
8391 info->flags |= DF_TEXTREL;
8392 }
8393 }
8394 else if (call_lo16_reloc_p (r_type)
8395 || got_lo16_reloc_p (r_type)
8396 || got_disp_reloc_p (r_type)
8397 || (got16_reloc_p (r_type) && htab->is_vxworks))
8398 {
8399 /* We may need a local GOT entry for this relocation. We
8400 don't count R_MIPS_GOT_PAGE because we can estimate the
8401 maximum number of pages needed by looking at the size of
8402 the segment. Similar comments apply to R_MIPS*_GOT16 and
8403 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8404 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8405 R_MIPS_CALL_HI16 because these are always followed by an
8406 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8407 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8408 rel->r_addend, info, r_type))
8409 return FALSE;
8410 }
8411
8412 if (h != NULL
8413 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8414 ELF_ST_IS_MIPS16 (h->other)))
8415 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8416
8417 switch (r_type)
8418 {
8419 case R_MIPS_CALL16:
8420 case R_MIPS16_CALL16:
8421 case R_MICROMIPS_CALL16:
8422 if (h == NULL)
8423 {
8424 (*_bfd_error_handler)
8425 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8426 abfd, (unsigned long) rel->r_offset);
8427 bfd_set_error (bfd_error_bad_value);
8428 return FALSE;
8429 }
8430 /* Fall through. */
8431
8432 case R_MIPS_CALL_HI16:
8433 case R_MIPS_CALL_LO16:
8434 case R_MICROMIPS_CALL_HI16:
8435 case R_MICROMIPS_CALL_LO16:
8436 if (h != NULL)
8437 {
8438 /* Make sure there is room in the regular GOT to hold the
8439 function's address. We may eliminate it in favour of
8440 a .got.plt entry later; see mips_elf_count_got_symbols. */
8441 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8442 r_type))
8443 return FALSE;
8444
8445 /* We need a stub, not a plt entry for the undefined
8446 function. But we record it as if it needs plt. See
8447 _bfd_elf_adjust_dynamic_symbol. */
8448 h->needs_plt = 1;
8449 h->type = STT_FUNC;
8450 }
8451 break;
8452
8453 case R_MIPS_GOT_PAGE:
8454 case R_MICROMIPS_GOT_PAGE:
8455 case R_MIPS16_GOT16:
8456 case R_MIPS_GOT16:
8457 case R_MIPS_GOT_HI16:
8458 case R_MIPS_GOT_LO16:
8459 case R_MICROMIPS_GOT16:
8460 case R_MICROMIPS_GOT_HI16:
8461 case R_MICROMIPS_GOT_LO16:
8462 if (!h || got_page_reloc_p (r_type))
8463 {
8464 /* This relocation needs (or may need, if h != NULL) a
8465 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8466 know for sure until we know whether the symbol is
8467 preemptible. */
8468 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8469 {
8470 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8471 return FALSE;
8472 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8473 addend = mips_elf_read_rel_addend (abfd, rel,
8474 howto, contents);
8475 if (got16_reloc_p (r_type))
8476 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8477 contents, &addend);
8478 else
8479 addend <<= howto->rightshift;
8480 }
8481 else
8482 addend = rel->r_addend;
8483 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8484 h, addend))
8485 return FALSE;
8486
8487 if (h)
8488 {
8489 struct mips_elf_link_hash_entry *hmips =
8490 (struct mips_elf_link_hash_entry *) h;
8491
8492 /* This symbol is definitely not overridable. */
8493 if (hmips->root.def_regular
8494 && ! (bfd_link_pic (info) && ! info->symbolic
8495 && ! hmips->root.forced_local))
8496 h = NULL;
8497 }
8498 }
8499 /* If this is a global, overridable symbol, GOT_PAGE will
8500 decay to GOT_DISP, so we'll need a GOT entry for it. */
8501 /* Fall through. */
8502
8503 case R_MIPS_GOT_DISP:
8504 case R_MICROMIPS_GOT_DISP:
8505 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8506 FALSE, r_type))
8507 return FALSE;
8508 break;
8509
8510 case R_MIPS_TLS_GOTTPREL:
8511 case R_MIPS16_TLS_GOTTPREL:
8512 case R_MICROMIPS_TLS_GOTTPREL:
8513 if (bfd_link_pic (info))
8514 info->flags |= DF_STATIC_TLS;
8515 /* Fall through */
8516
8517 case R_MIPS_TLS_LDM:
8518 case R_MIPS16_TLS_LDM:
8519 case R_MICROMIPS_TLS_LDM:
8520 if (tls_ldm_reloc_p (r_type))
8521 {
8522 r_symndx = STN_UNDEF;
8523 h = NULL;
8524 }
8525 /* Fall through */
8526
8527 case R_MIPS_TLS_GD:
8528 case R_MIPS16_TLS_GD:
8529 case R_MICROMIPS_TLS_GD:
8530 /* This symbol requires a global offset table entry, or two
8531 for TLS GD relocations. */
8532 if (h != NULL)
8533 {
8534 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8535 FALSE, r_type))
8536 return FALSE;
8537 }
8538 else
8539 {
8540 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8541 rel->r_addend,
8542 info, r_type))
8543 return FALSE;
8544 }
8545 break;
8546
8547 case R_MIPS_32:
8548 case R_MIPS_REL32:
8549 case R_MIPS_64:
8550 /* In VxWorks executables, references to external symbols
8551 are handled using copy relocs or PLT stubs, so there's
8552 no need to add a .rela.dyn entry for this relocation. */
8553 if (can_make_dynamic_p)
8554 {
8555 if (sreloc == NULL)
8556 {
8557 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8558 if (sreloc == NULL)
8559 return FALSE;
8560 }
8561 if (bfd_link_pic (info) && h == NULL)
8562 {
8563 /* When creating a shared object, we must copy these
8564 reloc types into the output file as R_MIPS_REL32
8565 relocs. Make room for this reloc in .rel(a).dyn. */
8566 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8567 if (MIPS_ELF_READONLY_SECTION (sec))
8568 /* We tell the dynamic linker that there are
8569 relocations against the text segment. */
8570 info->flags |= DF_TEXTREL;
8571 }
8572 else
8573 {
8574 struct mips_elf_link_hash_entry *hmips;
8575
8576 /* For a shared object, we must copy this relocation
8577 unless the symbol turns out to be undefined and
8578 weak with non-default visibility, in which case
8579 it will be left as zero.
8580
8581 We could elide R_MIPS_REL32 for locally binding symbols
8582 in shared libraries, but do not yet do so.
8583
8584 For an executable, we only need to copy this
8585 reloc if the symbol is defined in a dynamic
8586 object. */
8587 hmips = (struct mips_elf_link_hash_entry *) h;
8588 ++hmips->possibly_dynamic_relocs;
8589 if (MIPS_ELF_READONLY_SECTION (sec))
8590 /* We need it to tell the dynamic linker if there
8591 are relocations against the text segment. */
8592 hmips->readonly_reloc = TRUE;
8593 }
8594 }
8595
8596 if (SGI_COMPAT (abfd))
8597 mips_elf_hash_table (info)->compact_rel_size +=
8598 sizeof (Elf32_External_crinfo);
8599 break;
8600
8601 case R_MIPS_26:
8602 case R_MIPS_GPREL16:
8603 case R_MIPS_LITERAL:
8604 case R_MIPS_GPREL32:
8605 case R_MICROMIPS_26_S1:
8606 case R_MICROMIPS_GPREL16:
8607 case R_MICROMIPS_LITERAL:
8608 case R_MICROMIPS_GPREL7_S2:
8609 if (SGI_COMPAT (abfd))
8610 mips_elf_hash_table (info)->compact_rel_size +=
8611 sizeof (Elf32_External_crinfo);
8612 break;
8613
8614 /* This relocation describes the C++ object vtable hierarchy.
8615 Reconstruct it for later use during GC. */
8616 case R_MIPS_GNU_VTINHERIT:
8617 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8618 return FALSE;
8619 break;
8620
8621 /* This relocation describes which C++ vtable entries are actually
8622 used. Record for later use during GC. */
8623 case R_MIPS_GNU_VTENTRY:
8624 BFD_ASSERT (h != NULL);
8625 if (h != NULL
8626 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8627 return FALSE;
8628 break;
8629
8630 default:
8631 break;
8632 }
8633
8634 /* Record the need for a PLT entry. At this point we don't know
8635 yet if we are going to create a PLT in the first place, but
8636 we only record whether the relocation requires a standard MIPS
8637 or a compressed code entry anyway. If we don't make a PLT after
8638 all, then we'll just ignore these arrangements. Likewise if
8639 a PLT entry is not created because the symbol is satisfied
8640 locally. */
8641 if (h != NULL
8642 && jal_reloc_p (r_type)
8643 && !SYMBOL_CALLS_LOCAL (info, h))
8644 {
8645 if (h->plt.plist == NULL)
8646 h->plt.plist = mips_elf_make_plt_record (abfd);
8647 if (h->plt.plist == NULL)
8648 return FALSE;
8649
8650 if (r_type == R_MIPS_26)
8651 h->plt.plist->need_mips = TRUE;
8652 else
8653 h->plt.plist->need_comp = TRUE;
8654 }
8655
8656 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8657 if there is one. We only need to handle global symbols here;
8658 we decide whether to keep or delete stubs for local symbols
8659 when processing the stub's relocations. */
8660 if (h != NULL
8661 && !mips16_call_reloc_p (r_type)
8662 && !section_allows_mips16_refs_p (sec))
8663 {
8664 struct mips_elf_link_hash_entry *mh;
8665
8666 mh = (struct mips_elf_link_hash_entry *) h;
8667 mh->need_fn_stub = TRUE;
8668 }
8669
8670 /* Refuse some position-dependent relocations when creating a
8671 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8672 not PIC, but we can create dynamic relocations and the result
8673 will be fine. Also do not refuse R_MIPS_LO16, which can be
8674 combined with R_MIPS_GOT16. */
8675 if (bfd_link_pic (info))
8676 {
8677 switch (r_type)
8678 {
8679 case R_MIPS16_HI16:
8680 case R_MIPS_HI16:
8681 case R_MIPS_HIGHER:
8682 case R_MIPS_HIGHEST:
8683 case R_MICROMIPS_HI16:
8684 case R_MICROMIPS_HIGHER:
8685 case R_MICROMIPS_HIGHEST:
8686 /* Don't refuse a high part relocation if it's against
8687 no symbol (e.g. part of a compound relocation). */
8688 if (r_symndx == STN_UNDEF)
8689 break;
8690
8691 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8692 and has a special meaning. */
8693 if (!NEWABI_P (abfd) && h != NULL
8694 && strcmp (h->root.root.string, "_gp_disp") == 0)
8695 break;
8696
8697 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8698 if (is_gott_symbol (info, h))
8699 break;
8700
8701 /* FALLTHROUGH */
8702
8703 case R_MIPS16_26:
8704 case R_MIPS_26:
8705 case R_MICROMIPS_26_S1:
8706 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8707 (*_bfd_error_handler)
8708 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8709 abfd, howto->name,
8710 (h) ? h->root.root.string : "a local symbol");
8711 bfd_set_error (bfd_error_bad_value);
8712 return FALSE;
8713 default:
8714 break;
8715 }
8716 }
8717 }
8718
8719 return TRUE;
8720 }
8721 \f
8722 bfd_boolean
8723 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8724 struct bfd_link_info *link_info,
8725 bfd_boolean *again)
8726 {
8727 Elf_Internal_Rela *internal_relocs;
8728 Elf_Internal_Rela *irel, *irelend;
8729 Elf_Internal_Shdr *symtab_hdr;
8730 bfd_byte *contents = NULL;
8731 size_t extsymoff;
8732 bfd_boolean changed_contents = FALSE;
8733 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8734 Elf_Internal_Sym *isymbuf = NULL;
8735
8736 /* We are not currently changing any sizes, so only one pass. */
8737 *again = FALSE;
8738
8739 if (bfd_link_relocatable (link_info))
8740 return TRUE;
8741
8742 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8743 link_info->keep_memory);
8744 if (internal_relocs == NULL)
8745 return TRUE;
8746
8747 irelend = internal_relocs + sec->reloc_count
8748 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8749 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8750 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8751
8752 for (irel = internal_relocs; irel < irelend; irel++)
8753 {
8754 bfd_vma symval;
8755 bfd_signed_vma sym_offset;
8756 unsigned int r_type;
8757 unsigned long r_symndx;
8758 asection *sym_sec;
8759 unsigned long instruction;
8760
8761 /* Turn jalr into bgezal, and jr into beq, if they're marked
8762 with a JALR relocation, that indicate where they jump to.
8763 This saves some pipeline bubbles. */
8764 r_type = ELF_R_TYPE (abfd, irel->r_info);
8765 if (r_type != R_MIPS_JALR)
8766 continue;
8767
8768 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8769 /* Compute the address of the jump target. */
8770 if (r_symndx >= extsymoff)
8771 {
8772 struct mips_elf_link_hash_entry *h
8773 = ((struct mips_elf_link_hash_entry *)
8774 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8775
8776 while (h->root.root.type == bfd_link_hash_indirect
8777 || h->root.root.type == bfd_link_hash_warning)
8778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8779
8780 /* If a symbol is undefined, or if it may be overridden,
8781 skip it. */
8782 if (! ((h->root.root.type == bfd_link_hash_defined
8783 || h->root.root.type == bfd_link_hash_defweak)
8784 && h->root.root.u.def.section)
8785 || (bfd_link_pic (link_info) && ! link_info->symbolic
8786 && !h->root.forced_local))
8787 continue;
8788
8789 sym_sec = h->root.root.u.def.section;
8790 if (sym_sec->output_section)
8791 symval = (h->root.root.u.def.value
8792 + sym_sec->output_section->vma
8793 + sym_sec->output_offset);
8794 else
8795 symval = h->root.root.u.def.value;
8796 }
8797 else
8798 {
8799 Elf_Internal_Sym *isym;
8800
8801 /* Read this BFD's symbols if we haven't done so already. */
8802 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8803 {
8804 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8805 if (isymbuf == NULL)
8806 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8807 symtab_hdr->sh_info, 0,
8808 NULL, NULL, NULL);
8809 if (isymbuf == NULL)
8810 goto relax_return;
8811 }
8812
8813 isym = isymbuf + r_symndx;
8814 if (isym->st_shndx == SHN_UNDEF)
8815 continue;
8816 else if (isym->st_shndx == SHN_ABS)
8817 sym_sec = bfd_abs_section_ptr;
8818 else if (isym->st_shndx == SHN_COMMON)
8819 sym_sec = bfd_com_section_ptr;
8820 else
8821 sym_sec
8822 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8823 symval = isym->st_value
8824 + sym_sec->output_section->vma
8825 + sym_sec->output_offset;
8826 }
8827
8828 /* Compute branch offset, from delay slot of the jump to the
8829 branch target. */
8830 sym_offset = (symval + irel->r_addend)
8831 - (sec_start + irel->r_offset + 4);
8832
8833 /* Branch offset must be properly aligned. */
8834 if ((sym_offset & 3) != 0)
8835 continue;
8836
8837 sym_offset >>= 2;
8838
8839 /* Check that it's in range. */
8840 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8841 continue;
8842
8843 /* Get the section contents if we haven't done so already. */
8844 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8845 goto relax_return;
8846
8847 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8848
8849 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8850 if ((instruction & 0xfc1fffff) == 0x0000f809)
8851 instruction = 0x04110000;
8852 /* If it was jr <reg>, turn it into b <target>. */
8853 else if ((instruction & 0xfc1fffff) == 0x00000008)
8854 instruction = 0x10000000;
8855 else
8856 continue;
8857
8858 instruction |= (sym_offset & 0xffff);
8859 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8860 changed_contents = TRUE;
8861 }
8862
8863 if (contents != NULL
8864 && elf_section_data (sec)->this_hdr.contents != contents)
8865 {
8866 if (!changed_contents && !link_info->keep_memory)
8867 free (contents);
8868 else
8869 {
8870 /* Cache the section contents for elf_link_input_bfd. */
8871 elf_section_data (sec)->this_hdr.contents = contents;
8872 }
8873 }
8874 return TRUE;
8875
8876 relax_return:
8877 if (contents != NULL
8878 && elf_section_data (sec)->this_hdr.contents != contents)
8879 free (contents);
8880 return FALSE;
8881 }
8882 \f
8883 /* Allocate space for global sym dynamic relocs. */
8884
8885 static bfd_boolean
8886 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8887 {
8888 struct bfd_link_info *info = inf;
8889 bfd *dynobj;
8890 struct mips_elf_link_hash_entry *hmips;
8891 struct mips_elf_link_hash_table *htab;
8892
8893 htab = mips_elf_hash_table (info);
8894 BFD_ASSERT (htab != NULL);
8895
8896 dynobj = elf_hash_table (info)->dynobj;
8897 hmips = (struct mips_elf_link_hash_entry *) h;
8898
8899 /* VxWorks executables are handled elsewhere; we only need to
8900 allocate relocations in shared objects. */
8901 if (htab->is_vxworks && !bfd_link_pic (info))
8902 return TRUE;
8903
8904 /* Ignore indirect symbols. All relocations against such symbols
8905 will be redirected to the target symbol. */
8906 if (h->root.type == bfd_link_hash_indirect)
8907 return TRUE;
8908
8909 /* If this symbol is defined in a dynamic object, or we are creating
8910 a shared library, we will need to copy any R_MIPS_32 or
8911 R_MIPS_REL32 relocs against it into the output file. */
8912 if (! bfd_link_relocatable (info)
8913 && hmips->possibly_dynamic_relocs != 0
8914 && (h->root.type == bfd_link_hash_defweak
8915 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8916 || bfd_link_pic (info)))
8917 {
8918 bfd_boolean do_copy = TRUE;
8919
8920 if (h->root.type == bfd_link_hash_undefweak)
8921 {
8922 /* Do not copy relocations for undefined weak symbols with
8923 non-default visibility. */
8924 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8925 do_copy = FALSE;
8926
8927 /* Make sure undefined weak symbols are output as a dynamic
8928 symbol in PIEs. */
8929 else if (h->dynindx == -1 && !h->forced_local)
8930 {
8931 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8932 return FALSE;
8933 }
8934 }
8935
8936 if (do_copy)
8937 {
8938 /* Even though we don't directly need a GOT entry for this symbol,
8939 the SVR4 psABI requires it to have a dynamic symbol table
8940 index greater that DT_MIPS_GOTSYM if there are dynamic
8941 relocations against it.
8942
8943 VxWorks does not enforce the same mapping between the GOT
8944 and the symbol table, so the same requirement does not
8945 apply there. */
8946 if (!htab->is_vxworks)
8947 {
8948 if (hmips->global_got_area > GGA_RELOC_ONLY)
8949 hmips->global_got_area = GGA_RELOC_ONLY;
8950 hmips->got_only_for_calls = FALSE;
8951 }
8952
8953 mips_elf_allocate_dynamic_relocations
8954 (dynobj, info, hmips->possibly_dynamic_relocs);
8955 if (hmips->readonly_reloc)
8956 /* We tell the dynamic linker that there are relocations
8957 against the text segment. */
8958 info->flags |= DF_TEXTREL;
8959 }
8960 }
8961
8962 return TRUE;
8963 }
8964
8965 /* Adjust a symbol defined by a dynamic object and referenced by a
8966 regular object. The current definition is in some section of the
8967 dynamic object, but we're not including those sections. We have to
8968 change the definition to something the rest of the link can
8969 understand. */
8970
8971 bfd_boolean
8972 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8973 struct elf_link_hash_entry *h)
8974 {
8975 bfd *dynobj;
8976 struct mips_elf_link_hash_entry *hmips;
8977 struct mips_elf_link_hash_table *htab;
8978
8979 htab = mips_elf_hash_table (info);
8980 BFD_ASSERT (htab != NULL);
8981
8982 dynobj = elf_hash_table (info)->dynobj;
8983 hmips = (struct mips_elf_link_hash_entry *) h;
8984
8985 /* Make sure we know what is going on here. */
8986 BFD_ASSERT (dynobj != NULL
8987 && (h->needs_plt
8988 || h->u.weakdef != NULL
8989 || (h->def_dynamic
8990 && h->ref_regular
8991 && !h->def_regular)));
8992
8993 hmips = (struct mips_elf_link_hash_entry *) h;
8994
8995 /* If there are call relocations against an externally-defined symbol,
8996 see whether we can create a MIPS lazy-binding stub for it. We can
8997 only do this if all references to the function are through call
8998 relocations, and in that case, the traditional lazy-binding stubs
8999 are much more efficient than PLT entries.
9000
9001 Traditional stubs are only available on SVR4 psABI-based systems;
9002 VxWorks always uses PLTs instead. */
9003 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9004 {
9005 if (! elf_hash_table (info)->dynamic_sections_created)
9006 return TRUE;
9007
9008 /* If this symbol is not defined in a regular file, then set
9009 the symbol to the stub location. This is required to make
9010 function pointers compare as equal between the normal
9011 executable and the shared library. */
9012 if (!h->def_regular)
9013 {
9014 hmips->needs_lazy_stub = TRUE;
9015 htab->lazy_stub_count++;
9016 return TRUE;
9017 }
9018 }
9019 /* As above, VxWorks requires PLT entries for externally-defined
9020 functions that are only accessed through call relocations.
9021
9022 Both VxWorks and non-VxWorks targets also need PLT entries if there
9023 are static-only relocations against an externally-defined function.
9024 This can technically occur for shared libraries if there are
9025 branches to the symbol, although it is unlikely that this will be
9026 used in practice due to the short ranges involved. It can occur
9027 for any relative or absolute relocation in executables; in that
9028 case, the PLT entry becomes the function's canonical address. */
9029 else if (((h->needs_plt && !hmips->no_fn_stub)
9030 || (h->type == STT_FUNC && hmips->has_static_relocs))
9031 && htab->use_plts_and_copy_relocs
9032 && !SYMBOL_CALLS_LOCAL (info, h)
9033 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9034 && h->root.type == bfd_link_hash_undefweak))
9035 {
9036 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9037 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9038
9039 /* If this is the first symbol to need a PLT entry, then make some
9040 basic setup. Also work out PLT entry sizes. We'll need them
9041 for PLT offset calculations. */
9042 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9043 {
9044 BFD_ASSERT (htab->sgotplt->size == 0);
9045 BFD_ASSERT (htab->plt_got_index == 0);
9046
9047 /* If we're using the PLT additions to the psABI, each PLT
9048 entry is 16 bytes and the PLT0 entry is 32 bytes.
9049 Encourage better cache usage by aligning. We do this
9050 lazily to avoid pessimizing traditional objects. */
9051 if (!htab->is_vxworks
9052 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9053 return FALSE;
9054
9055 /* Make sure that .got.plt is word-aligned. We do this lazily
9056 for the same reason as above. */
9057 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9058 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9059 return FALSE;
9060
9061 /* On non-VxWorks targets, the first two entries in .got.plt
9062 are reserved. */
9063 if (!htab->is_vxworks)
9064 htab->plt_got_index
9065 += (get_elf_backend_data (dynobj)->got_header_size
9066 / MIPS_ELF_GOT_SIZE (dynobj));
9067
9068 /* On VxWorks, also allocate room for the header's
9069 .rela.plt.unloaded entries. */
9070 if (htab->is_vxworks && !bfd_link_pic (info))
9071 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9072
9073 /* Now work out the sizes of individual PLT entries. */
9074 if (htab->is_vxworks && bfd_link_pic (info))
9075 htab->plt_mips_entry_size
9076 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9077 else if (htab->is_vxworks)
9078 htab->plt_mips_entry_size
9079 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9080 else if (newabi_p)
9081 htab->plt_mips_entry_size
9082 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9083 else if (!micromips_p)
9084 {
9085 htab->plt_mips_entry_size
9086 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9087 htab->plt_comp_entry_size
9088 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9089 }
9090 else if (htab->insn32)
9091 {
9092 htab->plt_mips_entry_size
9093 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9094 htab->plt_comp_entry_size
9095 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9096 }
9097 else
9098 {
9099 htab->plt_mips_entry_size
9100 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9101 htab->plt_comp_entry_size
9102 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9103 }
9104 }
9105
9106 if (h->plt.plist == NULL)
9107 h->plt.plist = mips_elf_make_plt_record (dynobj);
9108 if (h->plt.plist == NULL)
9109 return FALSE;
9110
9111 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9112 n32 or n64, so always use a standard entry there.
9113
9114 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9115 all MIPS16 calls will go via that stub, and there is no benefit
9116 to having a MIPS16 entry. And in the case of call_stub a
9117 standard entry actually has to be used as the stub ends with a J
9118 instruction. */
9119 if (newabi_p
9120 || htab->is_vxworks
9121 || hmips->call_stub
9122 || hmips->call_fp_stub)
9123 {
9124 h->plt.plist->need_mips = TRUE;
9125 h->plt.plist->need_comp = FALSE;
9126 }
9127
9128 /* Otherwise, if there are no direct calls to the function, we
9129 have a free choice of whether to use standard or compressed
9130 entries. Prefer microMIPS entries if the object is known to
9131 contain microMIPS code, so that it becomes possible to create
9132 pure microMIPS binaries. Prefer standard entries otherwise,
9133 because MIPS16 ones are no smaller and are usually slower. */
9134 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9135 {
9136 if (micromips_p)
9137 h->plt.plist->need_comp = TRUE;
9138 else
9139 h->plt.plist->need_mips = TRUE;
9140 }
9141
9142 if (h->plt.plist->need_mips)
9143 {
9144 h->plt.plist->mips_offset = htab->plt_mips_offset;
9145 htab->plt_mips_offset += htab->plt_mips_entry_size;
9146 }
9147 if (h->plt.plist->need_comp)
9148 {
9149 h->plt.plist->comp_offset = htab->plt_comp_offset;
9150 htab->plt_comp_offset += htab->plt_comp_entry_size;
9151 }
9152
9153 /* Reserve the corresponding .got.plt entry now too. */
9154 h->plt.plist->gotplt_index = htab->plt_got_index++;
9155
9156 /* If the output file has no definition of the symbol, set the
9157 symbol's value to the address of the stub. */
9158 if (!bfd_link_pic (info) && !h->def_regular)
9159 hmips->use_plt_entry = TRUE;
9160
9161 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9162 htab->srelplt->size += (htab->is_vxworks
9163 ? MIPS_ELF_RELA_SIZE (dynobj)
9164 : MIPS_ELF_REL_SIZE (dynobj));
9165
9166 /* Make room for the .rela.plt.unloaded relocations. */
9167 if (htab->is_vxworks && !bfd_link_pic (info))
9168 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9169
9170 /* All relocations against this symbol that could have been made
9171 dynamic will now refer to the PLT entry instead. */
9172 hmips->possibly_dynamic_relocs = 0;
9173
9174 return TRUE;
9175 }
9176
9177 /* If this is a weak symbol, and there is a real definition, the
9178 processor independent code will have arranged for us to see the
9179 real definition first, and we can just use the same value. */
9180 if (h->u.weakdef != NULL)
9181 {
9182 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9183 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9184 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9185 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9186 return TRUE;
9187 }
9188
9189 /* Otherwise, there is nothing further to do for symbols defined
9190 in regular objects. */
9191 if (h->def_regular)
9192 return TRUE;
9193
9194 /* There's also nothing more to do if we'll convert all relocations
9195 against this symbol into dynamic relocations. */
9196 if (!hmips->has_static_relocs)
9197 return TRUE;
9198
9199 /* We're now relying on copy relocations. Complain if we have
9200 some that we can't convert. */
9201 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9202 {
9203 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9204 "dynamic symbol %s"),
9205 h->root.root.string);
9206 bfd_set_error (bfd_error_bad_value);
9207 return FALSE;
9208 }
9209
9210 /* We must allocate the symbol in our .dynbss section, which will
9211 become part of the .bss section of the executable. There will be
9212 an entry for this symbol in the .dynsym section. The dynamic
9213 object will contain position independent code, so all references
9214 from the dynamic object to this symbol will go through the global
9215 offset table. The dynamic linker will use the .dynsym entry to
9216 determine the address it must put in the global offset table, so
9217 both the dynamic object and the regular object will refer to the
9218 same memory location for the variable. */
9219
9220 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9221 {
9222 if (htab->is_vxworks)
9223 htab->srelbss->size += sizeof (Elf32_External_Rela);
9224 else
9225 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9226 h->needs_copy = 1;
9227 }
9228
9229 /* All relocations against this symbol that could have been made
9230 dynamic will now refer to the local copy instead. */
9231 hmips->possibly_dynamic_relocs = 0;
9232
9233 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9234 }
9235 \f
9236 /* This function is called after all the input files have been read,
9237 and the input sections have been assigned to output sections. We
9238 check for any mips16 stub sections that we can discard. */
9239
9240 bfd_boolean
9241 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9242 struct bfd_link_info *info)
9243 {
9244 asection *sect;
9245 struct mips_elf_link_hash_table *htab;
9246 struct mips_htab_traverse_info hti;
9247
9248 htab = mips_elf_hash_table (info);
9249 BFD_ASSERT (htab != NULL);
9250
9251 /* The .reginfo section has a fixed size. */
9252 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9253 if (sect != NULL)
9254 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9255
9256 /* The .MIPS.abiflags section has a fixed size. */
9257 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9258 if (sect != NULL)
9259 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9260
9261 hti.info = info;
9262 hti.output_bfd = output_bfd;
9263 hti.error = FALSE;
9264 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9265 mips_elf_check_symbols, &hti);
9266 if (hti.error)
9267 return FALSE;
9268
9269 return TRUE;
9270 }
9271
9272 /* If the link uses a GOT, lay it out and work out its size. */
9273
9274 static bfd_boolean
9275 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9276 {
9277 bfd *dynobj;
9278 asection *s;
9279 struct mips_got_info *g;
9280 bfd_size_type loadable_size = 0;
9281 bfd_size_type page_gotno;
9282 bfd *ibfd;
9283 struct mips_elf_traverse_got_arg tga;
9284 struct mips_elf_link_hash_table *htab;
9285
9286 htab = mips_elf_hash_table (info);
9287 BFD_ASSERT (htab != NULL);
9288
9289 s = htab->sgot;
9290 if (s == NULL)
9291 return TRUE;
9292
9293 dynobj = elf_hash_table (info)->dynobj;
9294 g = htab->got_info;
9295
9296 /* Allocate room for the reserved entries. VxWorks always reserves
9297 3 entries; other objects only reserve 2 entries. */
9298 BFD_ASSERT (g->assigned_low_gotno == 0);
9299 if (htab->is_vxworks)
9300 htab->reserved_gotno = 3;
9301 else
9302 htab->reserved_gotno = 2;
9303 g->local_gotno += htab->reserved_gotno;
9304 g->assigned_low_gotno = htab->reserved_gotno;
9305
9306 /* Decide which symbols need to go in the global part of the GOT and
9307 count the number of reloc-only GOT symbols. */
9308 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9309
9310 if (!mips_elf_resolve_final_got_entries (info, g))
9311 return FALSE;
9312
9313 /* Calculate the total loadable size of the output. That
9314 will give us the maximum number of GOT_PAGE entries
9315 required. */
9316 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9317 {
9318 asection *subsection;
9319
9320 for (subsection = ibfd->sections;
9321 subsection;
9322 subsection = subsection->next)
9323 {
9324 if ((subsection->flags & SEC_ALLOC) == 0)
9325 continue;
9326 loadable_size += ((subsection->size + 0xf)
9327 &~ (bfd_size_type) 0xf);
9328 }
9329 }
9330
9331 if (htab->is_vxworks)
9332 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9333 relocations against local symbols evaluate to "G", and the EABI does
9334 not include R_MIPS_GOT_PAGE. */
9335 page_gotno = 0;
9336 else
9337 /* Assume there are two loadable segments consisting of contiguous
9338 sections. Is 5 enough? */
9339 page_gotno = (loadable_size >> 16) + 5;
9340
9341 /* Choose the smaller of the two page estimates; both are intended to be
9342 conservative. */
9343 if (page_gotno > g->page_gotno)
9344 page_gotno = g->page_gotno;
9345
9346 g->local_gotno += page_gotno;
9347 g->assigned_high_gotno = g->local_gotno - 1;
9348
9349 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9350 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9351 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9352
9353 /* VxWorks does not support multiple GOTs. It initializes $gp to
9354 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9355 dynamic loader. */
9356 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9357 {
9358 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9359 return FALSE;
9360 }
9361 else
9362 {
9363 /* Record that all bfds use G. This also has the effect of freeing
9364 the per-bfd GOTs, which we no longer need. */
9365 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9366 if (mips_elf_bfd_got (ibfd, FALSE))
9367 mips_elf_replace_bfd_got (ibfd, g);
9368 mips_elf_replace_bfd_got (output_bfd, g);
9369
9370 /* Set up TLS entries. */
9371 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9372 tga.info = info;
9373 tga.g = g;
9374 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9375 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9376 if (!tga.g)
9377 return FALSE;
9378 BFD_ASSERT (g->tls_assigned_gotno
9379 == g->global_gotno + g->local_gotno + g->tls_gotno);
9380
9381 /* Each VxWorks GOT entry needs an explicit relocation. */
9382 if (htab->is_vxworks && bfd_link_pic (info))
9383 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9384
9385 /* Allocate room for the TLS relocations. */
9386 if (g->relocs)
9387 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9388 }
9389
9390 return TRUE;
9391 }
9392
9393 /* Estimate the size of the .MIPS.stubs section. */
9394
9395 static void
9396 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9397 {
9398 struct mips_elf_link_hash_table *htab;
9399 bfd_size_type dynsymcount;
9400
9401 htab = mips_elf_hash_table (info);
9402 BFD_ASSERT (htab != NULL);
9403
9404 if (htab->lazy_stub_count == 0)
9405 return;
9406
9407 /* IRIX rld assumes that a function stub isn't at the end of the .text
9408 section, so add a dummy entry to the end. */
9409 htab->lazy_stub_count++;
9410
9411 /* Get a worst-case estimate of the number of dynamic symbols needed.
9412 At this point, dynsymcount does not account for section symbols
9413 and count_section_dynsyms may overestimate the number that will
9414 be needed. */
9415 dynsymcount = (elf_hash_table (info)->dynsymcount
9416 + count_section_dynsyms (output_bfd, info));
9417
9418 /* Determine the size of one stub entry. There's no disadvantage
9419 from using microMIPS code here, so for the sake of pure-microMIPS
9420 binaries we prefer it whenever there's any microMIPS code in
9421 output produced at all. This has a benefit of stubs being
9422 shorter by 4 bytes each too, unless in the insn32 mode. */
9423 if (!MICROMIPS_P (output_bfd))
9424 htab->function_stub_size = (dynsymcount > 0x10000
9425 ? MIPS_FUNCTION_STUB_BIG_SIZE
9426 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9427 else if (htab->insn32)
9428 htab->function_stub_size = (dynsymcount > 0x10000
9429 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9430 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9431 else
9432 htab->function_stub_size = (dynsymcount > 0x10000
9433 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9434 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9435
9436 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9437 }
9438
9439 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9440 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9441 stub, allocate an entry in the stubs section. */
9442
9443 static bfd_boolean
9444 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9445 {
9446 struct mips_htab_traverse_info *hti = data;
9447 struct mips_elf_link_hash_table *htab;
9448 struct bfd_link_info *info;
9449 bfd *output_bfd;
9450
9451 info = hti->info;
9452 output_bfd = hti->output_bfd;
9453 htab = mips_elf_hash_table (info);
9454 BFD_ASSERT (htab != NULL);
9455
9456 if (h->needs_lazy_stub)
9457 {
9458 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9459 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9460 bfd_vma isa_bit = micromips_p;
9461
9462 BFD_ASSERT (htab->root.dynobj != NULL);
9463 if (h->root.plt.plist == NULL)
9464 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9465 if (h->root.plt.plist == NULL)
9466 {
9467 hti->error = TRUE;
9468 return FALSE;
9469 }
9470 h->root.root.u.def.section = htab->sstubs;
9471 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9472 h->root.plt.plist->stub_offset = htab->sstubs->size;
9473 h->root.other = other;
9474 htab->sstubs->size += htab->function_stub_size;
9475 }
9476 return TRUE;
9477 }
9478
9479 /* Allocate offsets in the stubs section to each symbol that needs one.
9480 Set the final size of the .MIPS.stub section. */
9481
9482 static bfd_boolean
9483 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9484 {
9485 bfd *output_bfd = info->output_bfd;
9486 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9487 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9488 bfd_vma isa_bit = micromips_p;
9489 struct mips_elf_link_hash_table *htab;
9490 struct mips_htab_traverse_info hti;
9491 struct elf_link_hash_entry *h;
9492 bfd *dynobj;
9493
9494 htab = mips_elf_hash_table (info);
9495 BFD_ASSERT (htab != NULL);
9496
9497 if (htab->lazy_stub_count == 0)
9498 return TRUE;
9499
9500 htab->sstubs->size = 0;
9501 hti.info = info;
9502 hti.output_bfd = output_bfd;
9503 hti.error = FALSE;
9504 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9505 if (hti.error)
9506 return FALSE;
9507 htab->sstubs->size += htab->function_stub_size;
9508 BFD_ASSERT (htab->sstubs->size
9509 == htab->lazy_stub_count * htab->function_stub_size);
9510
9511 dynobj = elf_hash_table (info)->dynobj;
9512 BFD_ASSERT (dynobj != NULL);
9513 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9514 if (h == NULL)
9515 return FALSE;
9516 h->root.u.def.value = isa_bit;
9517 h->other = other;
9518 h->type = STT_FUNC;
9519
9520 return TRUE;
9521 }
9522
9523 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9524 bfd_link_info. If H uses the address of a PLT entry as the value
9525 of the symbol, then set the entry in the symbol table now. Prefer
9526 a standard MIPS PLT entry. */
9527
9528 static bfd_boolean
9529 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9530 {
9531 struct bfd_link_info *info = data;
9532 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9533 struct mips_elf_link_hash_table *htab;
9534 unsigned int other;
9535 bfd_vma isa_bit;
9536 bfd_vma val;
9537
9538 htab = mips_elf_hash_table (info);
9539 BFD_ASSERT (htab != NULL);
9540
9541 if (h->use_plt_entry)
9542 {
9543 BFD_ASSERT (h->root.plt.plist != NULL);
9544 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9545 || h->root.plt.plist->comp_offset != MINUS_ONE);
9546
9547 val = htab->plt_header_size;
9548 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9549 {
9550 isa_bit = 0;
9551 val += h->root.plt.plist->mips_offset;
9552 other = 0;
9553 }
9554 else
9555 {
9556 isa_bit = 1;
9557 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9558 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9559 }
9560 val += isa_bit;
9561 /* For VxWorks, point at the PLT load stub rather than the lazy
9562 resolution stub; this stub will become the canonical function
9563 address. */
9564 if (htab->is_vxworks)
9565 val += 8;
9566
9567 h->root.root.u.def.section = htab->splt;
9568 h->root.root.u.def.value = val;
9569 h->root.other = other;
9570 }
9571
9572 return TRUE;
9573 }
9574
9575 /* Set the sizes of the dynamic sections. */
9576
9577 bfd_boolean
9578 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9579 struct bfd_link_info *info)
9580 {
9581 bfd *dynobj;
9582 asection *s, *sreldyn;
9583 bfd_boolean reltext;
9584 struct mips_elf_link_hash_table *htab;
9585
9586 htab = mips_elf_hash_table (info);
9587 BFD_ASSERT (htab != NULL);
9588 dynobj = elf_hash_table (info)->dynobj;
9589 BFD_ASSERT (dynobj != NULL);
9590
9591 if (elf_hash_table (info)->dynamic_sections_created)
9592 {
9593 /* Set the contents of the .interp section to the interpreter. */
9594 if (bfd_link_executable (info) && !info->nointerp)
9595 {
9596 s = bfd_get_linker_section (dynobj, ".interp");
9597 BFD_ASSERT (s != NULL);
9598 s->size
9599 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9600 s->contents
9601 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9602 }
9603
9604 /* Figure out the size of the PLT header if we know that we
9605 are using it. For the sake of cache alignment always use
9606 a standard header whenever any standard entries are present
9607 even if microMIPS entries are present as well. This also
9608 lets the microMIPS header rely on the value of $v0 only set
9609 by microMIPS entries, for a small size reduction.
9610
9611 Set symbol table entry values for symbols that use the
9612 address of their PLT entry now that we can calculate it.
9613
9614 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9615 haven't already in _bfd_elf_create_dynamic_sections. */
9616 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9617 {
9618 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9619 && !htab->plt_mips_offset);
9620 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9621 bfd_vma isa_bit = micromips_p;
9622 struct elf_link_hash_entry *h;
9623 bfd_vma size;
9624
9625 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9626 BFD_ASSERT (htab->sgotplt->size == 0);
9627 BFD_ASSERT (htab->splt->size == 0);
9628
9629 if (htab->is_vxworks && bfd_link_pic (info))
9630 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9631 else if (htab->is_vxworks)
9632 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9633 else if (ABI_64_P (output_bfd))
9634 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9635 else if (ABI_N32_P (output_bfd))
9636 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9637 else if (!micromips_p)
9638 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9639 else if (htab->insn32)
9640 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9641 else
9642 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9643
9644 htab->plt_header_is_comp = micromips_p;
9645 htab->plt_header_size = size;
9646 htab->splt->size = (size
9647 + htab->plt_mips_offset
9648 + htab->plt_comp_offset);
9649 htab->sgotplt->size = (htab->plt_got_index
9650 * MIPS_ELF_GOT_SIZE (dynobj));
9651
9652 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9653
9654 if (htab->root.hplt == NULL)
9655 {
9656 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9657 "_PROCEDURE_LINKAGE_TABLE_");
9658 htab->root.hplt = h;
9659 if (h == NULL)
9660 return FALSE;
9661 }
9662
9663 h = htab->root.hplt;
9664 h->root.u.def.value = isa_bit;
9665 h->other = other;
9666 h->type = STT_FUNC;
9667 }
9668 }
9669
9670 /* Allocate space for global sym dynamic relocs. */
9671 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9672
9673 mips_elf_estimate_stub_size (output_bfd, info);
9674
9675 if (!mips_elf_lay_out_got (output_bfd, info))
9676 return FALSE;
9677
9678 mips_elf_lay_out_lazy_stubs (info);
9679
9680 /* The check_relocs and adjust_dynamic_symbol entry points have
9681 determined the sizes of the various dynamic sections. Allocate
9682 memory for them. */
9683 reltext = FALSE;
9684 for (s = dynobj->sections; s != NULL; s = s->next)
9685 {
9686 const char *name;
9687
9688 /* It's OK to base decisions on the section name, because none
9689 of the dynobj section names depend upon the input files. */
9690 name = bfd_get_section_name (dynobj, s);
9691
9692 if ((s->flags & SEC_LINKER_CREATED) == 0)
9693 continue;
9694
9695 if (CONST_STRNEQ (name, ".rel"))
9696 {
9697 if (s->size != 0)
9698 {
9699 const char *outname;
9700 asection *target;
9701
9702 /* If this relocation section applies to a read only
9703 section, then we probably need a DT_TEXTREL entry.
9704 If the relocation section is .rel(a).dyn, we always
9705 assert a DT_TEXTREL entry rather than testing whether
9706 there exists a relocation to a read only section or
9707 not. */
9708 outname = bfd_get_section_name (output_bfd,
9709 s->output_section);
9710 target = bfd_get_section_by_name (output_bfd, outname + 4);
9711 if ((target != NULL
9712 && (target->flags & SEC_READONLY) != 0
9713 && (target->flags & SEC_ALLOC) != 0)
9714 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9715 reltext = TRUE;
9716
9717 /* We use the reloc_count field as a counter if we need
9718 to copy relocs into the output file. */
9719 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9720 s->reloc_count = 0;
9721
9722 /* If combreloc is enabled, elf_link_sort_relocs() will
9723 sort relocations, but in a different way than we do,
9724 and before we're done creating relocations. Also, it
9725 will move them around between input sections'
9726 relocation's contents, so our sorting would be
9727 broken, so don't let it run. */
9728 info->combreloc = 0;
9729 }
9730 }
9731 else if (bfd_link_executable (info)
9732 && ! mips_elf_hash_table (info)->use_rld_obj_head
9733 && CONST_STRNEQ (name, ".rld_map"))
9734 {
9735 /* We add a room for __rld_map. It will be filled in by the
9736 rtld to contain a pointer to the _r_debug structure. */
9737 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9738 }
9739 else if (SGI_COMPAT (output_bfd)
9740 && CONST_STRNEQ (name, ".compact_rel"))
9741 s->size += mips_elf_hash_table (info)->compact_rel_size;
9742 else if (s == htab->splt)
9743 {
9744 /* If the last PLT entry has a branch delay slot, allocate
9745 room for an extra nop to fill the delay slot. This is
9746 for CPUs without load interlocking. */
9747 if (! LOAD_INTERLOCKS_P (output_bfd)
9748 && ! htab->is_vxworks && s->size > 0)
9749 s->size += 4;
9750 }
9751 else if (! CONST_STRNEQ (name, ".init")
9752 && s != htab->sgot
9753 && s != htab->sgotplt
9754 && s != htab->sstubs
9755 && s != htab->sdynbss)
9756 {
9757 /* It's not one of our sections, so don't allocate space. */
9758 continue;
9759 }
9760
9761 if (s->size == 0)
9762 {
9763 s->flags |= SEC_EXCLUDE;
9764 continue;
9765 }
9766
9767 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9768 continue;
9769
9770 /* Allocate memory for the section contents. */
9771 s->contents = bfd_zalloc (dynobj, s->size);
9772 if (s->contents == NULL)
9773 {
9774 bfd_set_error (bfd_error_no_memory);
9775 return FALSE;
9776 }
9777 }
9778
9779 if (elf_hash_table (info)->dynamic_sections_created)
9780 {
9781 /* Add some entries to the .dynamic section. We fill in the
9782 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9783 must add the entries now so that we get the correct size for
9784 the .dynamic section. */
9785
9786 /* SGI object has the equivalence of DT_DEBUG in the
9787 DT_MIPS_RLD_MAP entry. This must come first because glibc
9788 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9789 may only look at the first one they see. */
9790 if (!bfd_link_pic (info)
9791 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9792 return FALSE;
9793
9794 if (bfd_link_executable (info)
9795 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9796 return FALSE;
9797
9798 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9799 used by the debugger. */
9800 if (bfd_link_executable (info)
9801 && !SGI_COMPAT (output_bfd)
9802 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9803 return FALSE;
9804
9805 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9806 info->flags |= DF_TEXTREL;
9807
9808 if ((info->flags & DF_TEXTREL) != 0)
9809 {
9810 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9811 return FALSE;
9812
9813 /* Clear the DF_TEXTREL flag. It will be set again if we
9814 write out an actual text relocation; we may not, because
9815 at this point we do not know whether e.g. any .eh_frame
9816 absolute relocations have been converted to PC-relative. */
9817 info->flags &= ~DF_TEXTREL;
9818 }
9819
9820 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9821 return FALSE;
9822
9823 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9824 if (htab->is_vxworks)
9825 {
9826 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9827 use any of the DT_MIPS_* tags. */
9828 if (sreldyn && sreldyn->size > 0)
9829 {
9830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9831 return FALSE;
9832
9833 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9834 return FALSE;
9835
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9837 return FALSE;
9838 }
9839 }
9840 else
9841 {
9842 if (sreldyn && sreldyn->size > 0)
9843 {
9844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9845 return FALSE;
9846
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9848 return FALSE;
9849
9850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9851 return FALSE;
9852 }
9853
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9855 return FALSE;
9856
9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9858 return FALSE;
9859
9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9861 return FALSE;
9862
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9864 return FALSE;
9865
9866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9867 return FALSE;
9868
9869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9870 return FALSE;
9871
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9873 return FALSE;
9874
9875 if (IRIX_COMPAT (dynobj) == ict_irix5
9876 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9877 return FALSE;
9878
9879 if (IRIX_COMPAT (dynobj) == ict_irix6
9880 && (bfd_get_section_by_name
9881 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9882 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9883 return FALSE;
9884 }
9885 if (htab->splt->size > 0)
9886 {
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9888 return FALSE;
9889
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9891 return FALSE;
9892
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9894 return FALSE;
9895
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9897 return FALSE;
9898 }
9899 if (htab->is_vxworks
9900 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9901 return FALSE;
9902 }
9903
9904 return TRUE;
9905 }
9906 \f
9907 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9908 Adjust its R_ADDEND field so that it is correct for the output file.
9909 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9910 and sections respectively; both use symbol indexes. */
9911
9912 static void
9913 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9914 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9915 asection **local_sections, Elf_Internal_Rela *rel)
9916 {
9917 unsigned int r_type, r_symndx;
9918 Elf_Internal_Sym *sym;
9919 asection *sec;
9920
9921 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9922 {
9923 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9924 if (gprel16_reloc_p (r_type)
9925 || r_type == R_MIPS_GPREL32
9926 || literal_reloc_p (r_type))
9927 {
9928 rel->r_addend += _bfd_get_gp_value (input_bfd);
9929 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9930 }
9931
9932 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9933 sym = local_syms + r_symndx;
9934
9935 /* Adjust REL's addend to account for section merging. */
9936 if (!bfd_link_relocatable (info))
9937 {
9938 sec = local_sections[r_symndx];
9939 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9940 }
9941
9942 /* This would normally be done by the rela_normal code in elflink.c. */
9943 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9944 rel->r_addend += local_sections[r_symndx]->output_offset;
9945 }
9946 }
9947
9948 /* Handle relocations against symbols from removed linkonce sections,
9949 or sections discarded by a linker script. We use this wrapper around
9950 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9951 on 64-bit ELF targets. In this case for any relocation handled, which
9952 always be the first in a triplet, the remaining two have to be processed
9953 together with the first, even if they are R_MIPS_NONE. It is the symbol
9954 index referred by the first reloc that applies to all the three and the
9955 remaining two never refer to an object symbol. And it is the final
9956 relocation (the last non-null one) that determines the output field of
9957 the whole relocation so retrieve the corresponding howto structure for
9958 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9959
9960 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9961 and therefore requires to be pasted in a loop. It also defines a block
9962 and does not protect any of its arguments, hence the extra brackets. */
9963
9964 static void
9965 mips_reloc_against_discarded_section (bfd *output_bfd,
9966 struct bfd_link_info *info,
9967 bfd *input_bfd, asection *input_section,
9968 Elf_Internal_Rela **rel,
9969 const Elf_Internal_Rela **relend,
9970 bfd_boolean rel_reloc,
9971 reloc_howto_type *howto,
9972 bfd_byte *contents)
9973 {
9974 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9975 int count = bed->s->int_rels_per_ext_rel;
9976 unsigned int r_type;
9977 int i;
9978
9979 for (i = count - 1; i > 0; i--)
9980 {
9981 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9982 if (r_type != R_MIPS_NONE)
9983 {
9984 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9985 break;
9986 }
9987 }
9988 do
9989 {
9990 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9991 (*rel), count, (*relend),
9992 howto, i, contents);
9993 }
9994 while (0);
9995 }
9996
9997 /* Relocate a MIPS ELF section. */
9998
9999 bfd_boolean
10000 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10001 bfd *input_bfd, asection *input_section,
10002 bfd_byte *contents, Elf_Internal_Rela *relocs,
10003 Elf_Internal_Sym *local_syms,
10004 asection **local_sections)
10005 {
10006 Elf_Internal_Rela *rel;
10007 const Elf_Internal_Rela *relend;
10008 bfd_vma addend = 0;
10009 bfd_boolean use_saved_addend_p = FALSE;
10010 const struct elf_backend_data *bed;
10011
10012 bed = get_elf_backend_data (output_bfd);
10013 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10014 for (rel = relocs; rel < relend; ++rel)
10015 {
10016 const char *name;
10017 bfd_vma value = 0;
10018 reloc_howto_type *howto;
10019 bfd_boolean cross_mode_jump_p = FALSE;
10020 /* TRUE if the relocation is a RELA relocation, rather than a
10021 REL relocation. */
10022 bfd_boolean rela_relocation_p = TRUE;
10023 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10024 const char *msg;
10025 unsigned long r_symndx;
10026 asection *sec;
10027 Elf_Internal_Shdr *symtab_hdr;
10028 struct elf_link_hash_entry *h;
10029 bfd_boolean rel_reloc;
10030
10031 rel_reloc = (NEWABI_P (input_bfd)
10032 && mips_elf_rel_relocation_p (input_bfd, input_section,
10033 relocs, rel));
10034 /* Find the relocation howto for this relocation. */
10035 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10036
10037 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10038 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10039 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10040 {
10041 sec = local_sections[r_symndx];
10042 h = NULL;
10043 }
10044 else
10045 {
10046 unsigned long extsymoff;
10047
10048 extsymoff = 0;
10049 if (!elf_bad_symtab (input_bfd))
10050 extsymoff = symtab_hdr->sh_info;
10051 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10052 while (h->root.type == bfd_link_hash_indirect
10053 || h->root.type == bfd_link_hash_warning)
10054 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10055
10056 sec = NULL;
10057 if (h->root.type == bfd_link_hash_defined
10058 || h->root.type == bfd_link_hash_defweak)
10059 sec = h->root.u.def.section;
10060 }
10061
10062 if (sec != NULL && discarded_section (sec))
10063 {
10064 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10065 input_section, &rel, &relend,
10066 rel_reloc, howto, contents);
10067 continue;
10068 }
10069
10070 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10071 {
10072 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10073 64-bit code, but make sure all their addresses are in the
10074 lowermost or uppermost 32-bit section of the 64-bit address
10075 space. Thus, when they use an R_MIPS_64 they mean what is
10076 usually meant by R_MIPS_32, with the exception that the
10077 stored value is sign-extended to 64 bits. */
10078 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10079
10080 /* On big-endian systems, we need to lie about the position
10081 of the reloc. */
10082 if (bfd_big_endian (input_bfd))
10083 rel->r_offset += 4;
10084 }
10085
10086 if (!use_saved_addend_p)
10087 {
10088 /* If these relocations were originally of the REL variety,
10089 we must pull the addend out of the field that will be
10090 relocated. Otherwise, we simply use the contents of the
10091 RELA relocation. */
10092 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10093 relocs, rel))
10094 {
10095 rela_relocation_p = FALSE;
10096 addend = mips_elf_read_rel_addend (input_bfd, rel,
10097 howto, contents);
10098 if (hi16_reloc_p (r_type)
10099 || (got16_reloc_p (r_type)
10100 && mips_elf_local_relocation_p (input_bfd, rel,
10101 local_sections)))
10102 {
10103 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10104 contents, &addend))
10105 {
10106 if (h)
10107 name = h->root.root.string;
10108 else
10109 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10110 local_syms + r_symndx,
10111 sec);
10112 (*_bfd_error_handler)
10113 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10114 input_bfd, input_section, name, howto->name,
10115 rel->r_offset);
10116 }
10117 }
10118 else
10119 addend <<= howto->rightshift;
10120 }
10121 else
10122 addend = rel->r_addend;
10123 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10124 local_syms, local_sections, rel);
10125 }
10126
10127 if (bfd_link_relocatable (info))
10128 {
10129 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10130 && bfd_big_endian (input_bfd))
10131 rel->r_offset -= 4;
10132
10133 if (!rela_relocation_p && rel->r_addend)
10134 {
10135 addend += rel->r_addend;
10136 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10137 addend = mips_elf_high (addend);
10138 else if (r_type == R_MIPS_HIGHER)
10139 addend = mips_elf_higher (addend);
10140 else if (r_type == R_MIPS_HIGHEST)
10141 addend = mips_elf_highest (addend);
10142 else
10143 addend >>= howto->rightshift;
10144
10145 /* We use the source mask, rather than the destination
10146 mask because the place to which we are writing will be
10147 source of the addend in the final link. */
10148 addend &= howto->src_mask;
10149
10150 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10151 /* See the comment above about using R_MIPS_64 in the 32-bit
10152 ABI. Here, we need to update the addend. It would be
10153 possible to get away with just using the R_MIPS_32 reloc
10154 but for endianness. */
10155 {
10156 bfd_vma sign_bits;
10157 bfd_vma low_bits;
10158 bfd_vma high_bits;
10159
10160 if (addend & ((bfd_vma) 1 << 31))
10161 #ifdef BFD64
10162 sign_bits = ((bfd_vma) 1 << 32) - 1;
10163 #else
10164 sign_bits = -1;
10165 #endif
10166 else
10167 sign_bits = 0;
10168
10169 /* If we don't know that we have a 64-bit type,
10170 do two separate stores. */
10171 if (bfd_big_endian (input_bfd))
10172 {
10173 /* Store the sign-bits (which are most significant)
10174 first. */
10175 low_bits = sign_bits;
10176 high_bits = addend;
10177 }
10178 else
10179 {
10180 low_bits = addend;
10181 high_bits = sign_bits;
10182 }
10183 bfd_put_32 (input_bfd, low_bits,
10184 contents + rel->r_offset);
10185 bfd_put_32 (input_bfd, high_bits,
10186 contents + rel->r_offset + 4);
10187 continue;
10188 }
10189
10190 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10191 input_bfd, input_section,
10192 contents, FALSE))
10193 return FALSE;
10194 }
10195
10196 /* Go on to the next relocation. */
10197 continue;
10198 }
10199
10200 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10201 relocations for the same offset. In that case we are
10202 supposed to treat the output of each relocation as the addend
10203 for the next. */
10204 if (rel + 1 < relend
10205 && rel->r_offset == rel[1].r_offset
10206 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10207 use_saved_addend_p = TRUE;
10208 else
10209 use_saved_addend_p = FALSE;
10210
10211 /* Figure out what value we are supposed to relocate. */
10212 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10213 input_section, info, rel,
10214 addend, howto, local_syms,
10215 local_sections, &value,
10216 &name, &cross_mode_jump_p,
10217 use_saved_addend_p))
10218 {
10219 case bfd_reloc_continue:
10220 /* There's nothing to do. */
10221 continue;
10222
10223 case bfd_reloc_undefined:
10224 /* mips_elf_calculate_relocation already called the
10225 undefined_symbol callback. There's no real point in
10226 trying to perform the relocation at this point, so we
10227 just skip ahead to the next relocation. */
10228 continue;
10229
10230 case bfd_reloc_notsupported:
10231 msg = _("internal error: unsupported relocation error");
10232 info->callbacks->warning
10233 (info, msg, name, input_bfd, input_section, rel->r_offset);
10234 return FALSE;
10235
10236 case bfd_reloc_overflow:
10237 if (use_saved_addend_p)
10238 /* Ignore overflow until we reach the last relocation for
10239 a given location. */
10240 ;
10241 else
10242 {
10243 struct mips_elf_link_hash_table *htab;
10244
10245 htab = mips_elf_hash_table (info);
10246 BFD_ASSERT (htab != NULL);
10247 BFD_ASSERT (name != NULL);
10248 if (!htab->small_data_overflow_reported
10249 && (gprel16_reloc_p (howto->type)
10250 || literal_reloc_p (howto->type)))
10251 {
10252 msg = _("small-data section exceeds 64KB;"
10253 " lower small-data size limit (see option -G)");
10254
10255 htab->small_data_overflow_reported = TRUE;
10256 (*info->callbacks->einfo) ("%P: %s\n", msg);
10257 }
10258 (*info->callbacks->reloc_overflow)
10259 (info, NULL, name, howto->name, (bfd_vma) 0,
10260 input_bfd, input_section, rel->r_offset);
10261 }
10262 break;
10263
10264 case bfd_reloc_ok:
10265 break;
10266
10267 case bfd_reloc_outofrange:
10268 msg = NULL;
10269 if (jal_reloc_p (howto->type))
10270 msg = _("JALX to a non-word-aligned address");
10271 else if (b_reloc_p (howto->type))
10272 msg = _("Branch to a non-instruction-aligned address");
10273 else if (aligned_pcrel_reloc_p (howto->type))
10274 msg = _("PC-relative load from unaligned address");
10275 if (msg)
10276 {
10277 info->callbacks->einfo
10278 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10279 break;
10280 }
10281 /* Fall through. */
10282
10283 default:
10284 abort ();
10285 break;
10286 }
10287
10288 /* If we've got another relocation for the address, keep going
10289 until we reach the last one. */
10290 if (use_saved_addend_p)
10291 {
10292 addend = value;
10293 continue;
10294 }
10295
10296 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10297 /* See the comment above about using R_MIPS_64 in the 32-bit
10298 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10299 that calculated the right value. Now, however, we
10300 sign-extend the 32-bit result to 64-bits, and store it as a
10301 64-bit value. We are especially generous here in that we
10302 go to extreme lengths to support this usage on systems with
10303 only a 32-bit VMA. */
10304 {
10305 bfd_vma sign_bits;
10306 bfd_vma low_bits;
10307 bfd_vma high_bits;
10308
10309 if (value & ((bfd_vma) 1 << 31))
10310 #ifdef BFD64
10311 sign_bits = ((bfd_vma) 1 << 32) - 1;
10312 #else
10313 sign_bits = -1;
10314 #endif
10315 else
10316 sign_bits = 0;
10317
10318 /* If we don't know that we have a 64-bit type,
10319 do two separate stores. */
10320 if (bfd_big_endian (input_bfd))
10321 {
10322 /* Undo what we did above. */
10323 rel->r_offset -= 4;
10324 /* Store the sign-bits (which are most significant)
10325 first. */
10326 low_bits = sign_bits;
10327 high_bits = value;
10328 }
10329 else
10330 {
10331 low_bits = value;
10332 high_bits = sign_bits;
10333 }
10334 bfd_put_32 (input_bfd, low_bits,
10335 contents + rel->r_offset);
10336 bfd_put_32 (input_bfd, high_bits,
10337 contents + rel->r_offset + 4);
10338 continue;
10339 }
10340
10341 /* Actually perform the relocation. */
10342 if (! mips_elf_perform_relocation (info, howto, rel, value,
10343 input_bfd, input_section,
10344 contents, cross_mode_jump_p))
10345 return FALSE;
10346 }
10347
10348 return TRUE;
10349 }
10350 \f
10351 /* A function that iterates over each entry in la25_stubs and fills
10352 in the code for each one. DATA points to a mips_htab_traverse_info. */
10353
10354 static int
10355 mips_elf_create_la25_stub (void **slot, void *data)
10356 {
10357 struct mips_htab_traverse_info *hti;
10358 struct mips_elf_link_hash_table *htab;
10359 struct mips_elf_la25_stub *stub;
10360 asection *s;
10361 bfd_byte *loc;
10362 bfd_vma offset, target, target_high, target_low;
10363
10364 stub = (struct mips_elf_la25_stub *) *slot;
10365 hti = (struct mips_htab_traverse_info *) data;
10366 htab = mips_elf_hash_table (hti->info);
10367 BFD_ASSERT (htab != NULL);
10368
10369 /* Create the section contents, if we haven't already. */
10370 s = stub->stub_section;
10371 loc = s->contents;
10372 if (loc == NULL)
10373 {
10374 loc = bfd_malloc (s->size);
10375 if (loc == NULL)
10376 {
10377 hti->error = TRUE;
10378 return FALSE;
10379 }
10380 s->contents = loc;
10381 }
10382
10383 /* Work out where in the section this stub should go. */
10384 offset = stub->offset;
10385
10386 /* Work out the target address. */
10387 target = mips_elf_get_la25_target (stub, &s);
10388 target += s->output_section->vma + s->output_offset;
10389
10390 target_high = ((target + 0x8000) >> 16) & 0xffff;
10391 target_low = (target & 0xffff);
10392
10393 if (stub->stub_section != htab->strampoline)
10394 {
10395 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10396 of the section and write the two instructions at the end. */
10397 memset (loc, 0, offset);
10398 loc += offset;
10399 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10400 {
10401 bfd_put_micromips_32 (hti->output_bfd,
10402 LA25_LUI_MICROMIPS (target_high),
10403 loc);
10404 bfd_put_micromips_32 (hti->output_bfd,
10405 LA25_ADDIU_MICROMIPS (target_low),
10406 loc + 4);
10407 }
10408 else
10409 {
10410 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10411 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10412 }
10413 }
10414 else
10415 {
10416 /* This is trampoline. */
10417 loc += offset;
10418 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10419 {
10420 bfd_put_micromips_32 (hti->output_bfd,
10421 LA25_LUI_MICROMIPS (target_high), loc);
10422 bfd_put_micromips_32 (hti->output_bfd,
10423 LA25_J_MICROMIPS (target), loc + 4);
10424 bfd_put_micromips_32 (hti->output_bfd,
10425 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10426 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10427 }
10428 else
10429 {
10430 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10431 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10432 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10433 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10434 }
10435 }
10436 return TRUE;
10437 }
10438
10439 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10440 adjust it appropriately now. */
10441
10442 static void
10443 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10444 const char *name, Elf_Internal_Sym *sym)
10445 {
10446 /* The linker script takes care of providing names and values for
10447 these, but we must place them into the right sections. */
10448 static const char* const text_section_symbols[] = {
10449 "_ftext",
10450 "_etext",
10451 "__dso_displacement",
10452 "__elf_header",
10453 "__program_header_table",
10454 NULL
10455 };
10456
10457 static const char* const data_section_symbols[] = {
10458 "_fdata",
10459 "_edata",
10460 "_end",
10461 "_fbss",
10462 NULL
10463 };
10464
10465 const char* const *p;
10466 int i;
10467
10468 for (i = 0; i < 2; ++i)
10469 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10470 *p;
10471 ++p)
10472 if (strcmp (*p, name) == 0)
10473 {
10474 /* All of these symbols are given type STT_SECTION by the
10475 IRIX6 linker. */
10476 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10477 sym->st_other = STO_PROTECTED;
10478
10479 /* The IRIX linker puts these symbols in special sections. */
10480 if (i == 0)
10481 sym->st_shndx = SHN_MIPS_TEXT;
10482 else
10483 sym->st_shndx = SHN_MIPS_DATA;
10484
10485 break;
10486 }
10487 }
10488
10489 /* Finish up dynamic symbol handling. We set the contents of various
10490 dynamic sections here. */
10491
10492 bfd_boolean
10493 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10494 struct bfd_link_info *info,
10495 struct elf_link_hash_entry *h,
10496 Elf_Internal_Sym *sym)
10497 {
10498 bfd *dynobj;
10499 asection *sgot;
10500 struct mips_got_info *g, *gg;
10501 const char *name;
10502 int idx;
10503 struct mips_elf_link_hash_table *htab;
10504 struct mips_elf_link_hash_entry *hmips;
10505
10506 htab = mips_elf_hash_table (info);
10507 BFD_ASSERT (htab != NULL);
10508 dynobj = elf_hash_table (info)->dynobj;
10509 hmips = (struct mips_elf_link_hash_entry *) h;
10510
10511 BFD_ASSERT (!htab->is_vxworks);
10512
10513 if (h->plt.plist != NULL
10514 && (h->plt.plist->mips_offset != MINUS_ONE
10515 || h->plt.plist->comp_offset != MINUS_ONE))
10516 {
10517 /* We've decided to create a PLT entry for this symbol. */
10518 bfd_byte *loc;
10519 bfd_vma header_address, got_address;
10520 bfd_vma got_address_high, got_address_low, load;
10521 bfd_vma got_index;
10522 bfd_vma isa_bit;
10523
10524 got_index = h->plt.plist->gotplt_index;
10525
10526 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10527 BFD_ASSERT (h->dynindx != -1);
10528 BFD_ASSERT (htab->splt != NULL);
10529 BFD_ASSERT (got_index != MINUS_ONE);
10530 BFD_ASSERT (!h->def_regular);
10531
10532 /* Calculate the address of the PLT header. */
10533 isa_bit = htab->plt_header_is_comp;
10534 header_address = (htab->splt->output_section->vma
10535 + htab->splt->output_offset + isa_bit);
10536
10537 /* Calculate the address of the .got.plt entry. */
10538 got_address = (htab->sgotplt->output_section->vma
10539 + htab->sgotplt->output_offset
10540 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10541
10542 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10543 got_address_low = got_address & 0xffff;
10544
10545 /* Initially point the .got.plt entry at the PLT header. */
10546 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10547 if (ABI_64_P (output_bfd))
10548 bfd_put_64 (output_bfd, header_address, loc);
10549 else
10550 bfd_put_32 (output_bfd, header_address, loc);
10551
10552 /* Now handle the PLT itself. First the standard entry (the order
10553 does not matter, we just have to pick one). */
10554 if (h->plt.plist->mips_offset != MINUS_ONE)
10555 {
10556 const bfd_vma *plt_entry;
10557 bfd_vma plt_offset;
10558
10559 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10560
10561 BFD_ASSERT (plt_offset <= htab->splt->size);
10562
10563 /* Find out where the .plt entry should go. */
10564 loc = htab->splt->contents + plt_offset;
10565
10566 /* Pick the load opcode. */
10567 load = MIPS_ELF_LOAD_WORD (output_bfd);
10568
10569 /* Fill in the PLT entry itself. */
10570
10571 if (MIPSR6_P (output_bfd))
10572 plt_entry = mipsr6_exec_plt_entry;
10573 else
10574 plt_entry = mips_exec_plt_entry;
10575 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10576 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10577 loc + 4);
10578
10579 if (! LOAD_INTERLOCKS_P (output_bfd))
10580 {
10581 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10582 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10583 }
10584 else
10585 {
10586 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10587 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10588 loc + 12);
10589 }
10590 }
10591
10592 /* Now the compressed entry. They come after any standard ones. */
10593 if (h->plt.plist->comp_offset != MINUS_ONE)
10594 {
10595 bfd_vma plt_offset;
10596
10597 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10598 + h->plt.plist->comp_offset);
10599
10600 BFD_ASSERT (plt_offset <= htab->splt->size);
10601
10602 /* Find out where the .plt entry should go. */
10603 loc = htab->splt->contents + plt_offset;
10604
10605 /* Fill in the PLT entry itself. */
10606 if (!MICROMIPS_P (output_bfd))
10607 {
10608 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10609
10610 bfd_put_16 (output_bfd, plt_entry[0], loc);
10611 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10612 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10613 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10614 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10615 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10616 bfd_put_32 (output_bfd, got_address, loc + 12);
10617 }
10618 else if (htab->insn32)
10619 {
10620 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10621
10622 bfd_put_16 (output_bfd, plt_entry[0], loc);
10623 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10624 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10625 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10626 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10627 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10628 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10629 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10630 }
10631 else
10632 {
10633 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10634 bfd_signed_vma gotpc_offset;
10635 bfd_vma loc_address;
10636
10637 BFD_ASSERT (got_address % 4 == 0);
10638
10639 loc_address = (htab->splt->output_section->vma
10640 + htab->splt->output_offset + plt_offset);
10641 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10642
10643 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10644 if (gotpc_offset + 0x1000000 >= 0x2000000)
10645 {
10646 (*_bfd_error_handler)
10647 (_("%B: `%A' offset of %ld from `%A' "
10648 "beyond the range of ADDIUPC"),
10649 output_bfd,
10650 htab->sgotplt->output_section,
10651 htab->splt->output_section,
10652 (long) gotpc_offset);
10653 bfd_set_error (bfd_error_no_error);
10654 return FALSE;
10655 }
10656 bfd_put_16 (output_bfd,
10657 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10658 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10659 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10660 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10661 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10662 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10663 }
10664 }
10665
10666 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10667 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10668 got_index - 2, h->dynindx,
10669 R_MIPS_JUMP_SLOT, got_address);
10670
10671 /* We distinguish between PLT entries and lazy-binding stubs by
10672 giving the former an st_other value of STO_MIPS_PLT. Set the
10673 flag and leave the value if there are any relocations in the
10674 binary where pointer equality matters. */
10675 sym->st_shndx = SHN_UNDEF;
10676 if (h->pointer_equality_needed)
10677 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10678 else
10679 {
10680 sym->st_value = 0;
10681 sym->st_other = 0;
10682 }
10683 }
10684
10685 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10686 {
10687 /* We've decided to create a lazy-binding stub. */
10688 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10689 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10690 bfd_vma stub_size = htab->function_stub_size;
10691 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10692 bfd_vma isa_bit = micromips_p;
10693 bfd_vma stub_big_size;
10694
10695 if (!micromips_p)
10696 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10697 else if (htab->insn32)
10698 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10699 else
10700 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10701
10702 /* This symbol has a stub. Set it up. */
10703
10704 BFD_ASSERT (h->dynindx != -1);
10705
10706 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10707
10708 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10709 sign extension at runtime in the stub, resulting in a negative
10710 index value. */
10711 if (h->dynindx & ~0x7fffffff)
10712 return FALSE;
10713
10714 /* Fill the stub. */
10715 if (micromips_p)
10716 {
10717 idx = 0;
10718 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10719 stub + idx);
10720 idx += 4;
10721 if (htab->insn32)
10722 {
10723 bfd_put_micromips_32 (output_bfd,
10724 STUB_MOVE32_MICROMIPS, stub + idx);
10725 idx += 4;
10726 }
10727 else
10728 {
10729 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10730 idx += 2;
10731 }
10732 if (stub_size == stub_big_size)
10733 {
10734 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10735
10736 bfd_put_micromips_32 (output_bfd,
10737 STUB_LUI_MICROMIPS (dynindx_hi),
10738 stub + idx);
10739 idx += 4;
10740 }
10741 if (htab->insn32)
10742 {
10743 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10744 stub + idx);
10745 idx += 4;
10746 }
10747 else
10748 {
10749 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10750 idx += 2;
10751 }
10752
10753 /* If a large stub is not required and sign extension is not a
10754 problem, then use legacy code in the stub. */
10755 if (stub_size == stub_big_size)
10756 bfd_put_micromips_32 (output_bfd,
10757 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10758 stub + idx);
10759 else if (h->dynindx & ~0x7fff)
10760 bfd_put_micromips_32 (output_bfd,
10761 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10762 stub + idx);
10763 else
10764 bfd_put_micromips_32 (output_bfd,
10765 STUB_LI16S_MICROMIPS (output_bfd,
10766 h->dynindx),
10767 stub + idx);
10768 }
10769 else
10770 {
10771 idx = 0;
10772 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10773 idx += 4;
10774 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10775 idx += 4;
10776 if (stub_size == stub_big_size)
10777 {
10778 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10779 stub + idx);
10780 idx += 4;
10781 }
10782 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10783 idx += 4;
10784
10785 /* If a large stub is not required and sign extension is not a
10786 problem, then use legacy code in the stub. */
10787 if (stub_size == stub_big_size)
10788 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10789 stub + idx);
10790 else if (h->dynindx & ~0x7fff)
10791 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10792 stub + idx);
10793 else
10794 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10795 stub + idx);
10796 }
10797
10798 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10799 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10800 stub, stub_size);
10801
10802 /* Mark the symbol as undefined. stub_offset != -1 occurs
10803 only for the referenced symbol. */
10804 sym->st_shndx = SHN_UNDEF;
10805
10806 /* The run-time linker uses the st_value field of the symbol
10807 to reset the global offset table entry for this external
10808 to its stub address when unlinking a shared object. */
10809 sym->st_value = (htab->sstubs->output_section->vma
10810 + htab->sstubs->output_offset
10811 + h->plt.plist->stub_offset
10812 + isa_bit);
10813 sym->st_other = other;
10814 }
10815
10816 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10817 refer to the stub, since only the stub uses the standard calling
10818 conventions. */
10819 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10820 {
10821 BFD_ASSERT (hmips->need_fn_stub);
10822 sym->st_value = (hmips->fn_stub->output_section->vma
10823 + hmips->fn_stub->output_offset);
10824 sym->st_size = hmips->fn_stub->size;
10825 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10826 }
10827
10828 BFD_ASSERT (h->dynindx != -1
10829 || h->forced_local);
10830
10831 sgot = htab->sgot;
10832 g = htab->got_info;
10833 BFD_ASSERT (g != NULL);
10834
10835 /* Run through the global symbol table, creating GOT entries for all
10836 the symbols that need them. */
10837 if (hmips->global_got_area != GGA_NONE)
10838 {
10839 bfd_vma offset;
10840 bfd_vma value;
10841
10842 value = sym->st_value;
10843 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10844 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10845 }
10846
10847 if (hmips->global_got_area != GGA_NONE && g->next)
10848 {
10849 struct mips_got_entry e, *p;
10850 bfd_vma entry;
10851 bfd_vma offset;
10852
10853 gg = g;
10854
10855 e.abfd = output_bfd;
10856 e.symndx = -1;
10857 e.d.h = hmips;
10858 e.tls_type = GOT_TLS_NONE;
10859
10860 for (g = g->next; g->next != gg; g = g->next)
10861 {
10862 if (g->got_entries
10863 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10864 &e)))
10865 {
10866 offset = p->gotidx;
10867 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10868 if (bfd_link_pic (info)
10869 || (elf_hash_table (info)->dynamic_sections_created
10870 && p->d.h != NULL
10871 && p->d.h->root.def_dynamic
10872 && !p->d.h->root.def_regular))
10873 {
10874 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10875 the various compatibility problems, it's easier to mock
10876 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10877 mips_elf_create_dynamic_relocation to calculate the
10878 appropriate addend. */
10879 Elf_Internal_Rela rel[3];
10880
10881 memset (rel, 0, sizeof (rel));
10882 if (ABI_64_P (output_bfd))
10883 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10884 else
10885 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10886 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10887
10888 entry = 0;
10889 if (! (mips_elf_create_dynamic_relocation
10890 (output_bfd, info, rel,
10891 e.d.h, NULL, sym->st_value, &entry, sgot)))
10892 return FALSE;
10893 }
10894 else
10895 entry = sym->st_value;
10896 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10897 }
10898 }
10899 }
10900
10901 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10902 name = h->root.root.string;
10903 if (h == elf_hash_table (info)->hdynamic
10904 || h == elf_hash_table (info)->hgot)
10905 sym->st_shndx = SHN_ABS;
10906 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10907 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10908 {
10909 sym->st_shndx = SHN_ABS;
10910 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10911 sym->st_value = 1;
10912 }
10913 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10914 {
10915 sym->st_shndx = SHN_ABS;
10916 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10917 sym->st_value = elf_gp (output_bfd);
10918 }
10919 else if (SGI_COMPAT (output_bfd))
10920 {
10921 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10922 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10923 {
10924 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10925 sym->st_other = STO_PROTECTED;
10926 sym->st_value = 0;
10927 sym->st_shndx = SHN_MIPS_DATA;
10928 }
10929 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10930 {
10931 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10932 sym->st_other = STO_PROTECTED;
10933 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10934 sym->st_shndx = SHN_ABS;
10935 }
10936 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10937 {
10938 if (h->type == STT_FUNC)
10939 sym->st_shndx = SHN_MIPS_TEXT;
10940 else if (h->type == STT_OBJECT)
10941 sym->st_shndx = SHN_MIPS_DATA;
10942 }
10943 }
10944
10945 /* Emit a copy reloc, if needed. */
10946 if (h->needs_copy)
10947 {
10948 asection *s;
10949 bfd_vma symval;
10950
10951 BFD_ASSERT (h->dynindx != -1);
10952 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10953
10954 s = mips_elf_rel_dyn_section (info, FALSE);
10955 symval = (h->root.u.def.section->output_section->vma
10956 + h->root.u.def.section->output_offset
10957 + h->root.u.def.value);
10958 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10959 h->dynindx, R_MIPS_COPY, symval);
10960 }
10961
10962 /* Handle the IRIX6-specific symbols. */
10963 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10964 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10965
10966 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10967 to treat compressed symbols like any other. */
10968 if (ELF_ST_IS_MIPS16 (sym->st_other))
10969 {
10970 BFD_ASSERT (sym->st_value & 1);
10971 sym->st_other -= STO_MIPS16;
10972 }
10973 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10974 {
10975 BFD_ASSERT (sym->st_value & 1);
10976 sym->st_other -= STO_MICROMIPS;
10977 }
10978
10979 return TRUE;
10980 }
10981
10982 /* Likewise, for VxWorks. */
10983
10984 bfd_boolean
10985 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10986 struct bfd_link_info *info,
10987 struct elf_link_hash_entry *h,
10988 Elf_Internal_Sym *sym)
10989 {
10990 bfd *dynobj;
10991 asection *sgot;
10992 struct mips_got_info *g;
10993 struct mips_elf_link_hash_table *htab;
10994 struct mips_elf_link_hash_entry *hmips;
10995
10996 htab = mips_elf_hash_table (info);
10997 BFD_ASSERT (htab != NULL);
10998 dynobj = elf_hash_table (info)->dynobj;
10999 hmips = (struct mips_elf_link_hash_entry *) h;
11000
11001 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11002 {
11003 bfd_byte *loc;
11004 bfd_vma plt_address, got_address, got_offset, branch_offset;
11005 Elf_Internal_Rela rel;
11006 static const bfd_vma *plt_entry;
11007 bfd_vma gotplt_index;
11008 bfd_vma plt_offset;
11009
11010 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11011 gotplt_index = h->plt.plist->gotplt_index;
11012
11013 BFD_ASSERT (h->dynindx != -1);
11014 BFD_ASSERT (htab->splt != NULL);
11015 BFD_ASSERT (gotplt_index != MINUS_ONE);
11016 BFD_ASSERT (plt_offset <= htab->splt->size);
11017
11018 /* Calculate the address of the .plt entry. */
11019 plt_address = (htab->splt->output_section->vma
11020 + htab->splt->output_offset
11021 + plt_offset);
11022
11023 /* Calculate the address of the .got.plt entry. */
11024 got_address = (htab->sgotplt->output_section->vma
11025 + htab->sgotplt->output_offset
11026 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11027
11028 /* Calculate the offset of the .got.plt entry from
11029 _GLOBAL_OFFSET_TABLE_. */
11030 got_offset = mips_elf_gotplt_index (info, h);
11031
11032 /* Calculate the offset for the branch at the start of the PLT
11033 entry. The branch jumps to the beginning of .plt. */
11034 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11035
11036 /* Fill in the initial value of the .got.plt entry. */
11037 bfd_put_32 (output_bfd, plt_address,
11038 (htab->sgotplt->contents
11039 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11040
11041 /* Find out where the .plt entry should go. */
11042 loc = htab->splt->contents + plt_offset;
11043
11044 if (bfd_link_pic (info))
11045 {
11046 plt_entry = mips_vxworks_shared_plt_entry;
11047 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11048 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11049 }
11050 else
11051 {
11052 bfd_vma got_address_high, got_address_low;
11053
11054 plt_entry = mips_vxworks_exec_plt_entry;
11055 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11056 got_address_low = got_address & 0xffff;
11057
11058 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11059 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11060 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11061 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11062 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11063 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11064 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11065 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11066
11067 loc = (htab->srelplt2->contents
11068 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11069
11070 /* Emit a relocation for the .got.plt entry. */
11071 rel.r_offset = got_address;
11072 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11073 rel.r_addend = plt_offset;
11074 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11075
11076 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11077 loc += sizeof (Elf32_External_Rela);
11078 rel.r_offset = plt_address + 8;
11079 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11080 rel.r_addend = got_offset;
11081 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11082
11083 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11084 loc += sizeof (Elf32_External_Rela);
11085 rel.r_offset += 4;
11086 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11087 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11088 }
11089
11090 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11091 loc = (htab->srelplt->contents
11092 + gotplt_index * sizeof (Elf32_External_Rela));
11093 rel.r_offset = got_address;
11094 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11095 rel.r_addend = 0;
11096 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11097
11098 if (!h->def_regular)
11099 sym->st_shndx = SHN_UNDEF;
11100 }
11101
11102 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11103
11104 sgot = htab->sgot;
11105 g = htab->got_info;
11106 BFD_ASSERT (g != NULL);
11107
11108 /* See if this symbol has an entry in the GOT. */
11109 if (hmips->global_got_area != GGA_NONE)
11110 {
11111 bfd_vma offset;
11112 Elf_Internal_Rela outrel;
11113 bfd_byte *loc;
11114 asection *s;
11115
11116 /* Install the symbol value in the GOT. */
11117 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11118 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11119
11120 /* Add a dynamic relocation for it. */
11121 s = mips_elf_rel_dyn_section (info, FALSE);
11122 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11123 outrel.r_offset = (sgot->output_section->vma
11124 + sgot->output_offset
11125 + offset);
11126 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11127 outrel.r_addend = 0;
11128 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11129 }
11130
11131 /* Emit a copy reloc, if needed. */
11132 if (h->needs_copy)
11133 {
11134 Elf_Internal_Rela rel;
11135
11136 BFD_ASSERT (h->dynindx != -1);
11137
11138 rel.r_offset = (h->root.u.def.section->output_section->vma
11139 + h->root.u.def.section->output_offset
11140 + h->root.u.def.value);
11141 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11142 rel.r_addend = 0;
11143 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11144 htab->srelbss->contents
11145 + (htab->srelbss->reloc_count
11146 * sizeof (Elf32_External_Rela)));
11147 ++htab->srelbss->reloc_count;
11148 }
11149
11150 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11151 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11152 sym->st_value &= ~1;
11153
11154 return TRUE;
11155 }
11156
11157 /* Write out a plt0 entry to the beginning of .plt. */
11158
11159 static bfd_boolean
11160 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11161 {
11162 bfd_byte *loc;
11163 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11164 static const bfd_vma *plt_entry;
11165 struct mips_elf_link_hash_table *htab;
11166
11167 htab = mips_elf_hash_table (info);
11168 BFD_ASSERT (htab != NULL);
11169
11170 if (ABI_64_P (output_bfd))
11171 plt_entry = mips_n64_exec_plt0_entry;
11172 else if (ABI_N32_P (output_bfd))
11173 plt_entry = mips_n32_exec_plt0_entry;
11174 else if (!htab->plt_header_is_comp)
11175 plt_entry = mips_o32_exec_plt0_entry;
11176 else if (htab->insn32)
11177 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11178 else
11179 plt_entry = micromips_o32_exec_plt0_entry;
11180
11181 /* Calculate the value of .got.plt. */
11182 gotplt_value = (htab->sgotplt->output_section->vma
11183 + htab->sgotplt->output_offset);
11184 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11185 gotplt_value_low = gotplt_value & 0xffff;
11186
11187 /* The PLT sequence is not safe for N64 if .got.plt's address can
11188 not be loaded in two instructions. */
11189 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11190 || ~(gotplt_value | 0x7fffffff) == 0);
11191
11192 /* Install the PLT header. */
11193 loc = htab->splt->contents;
11194 if (plt_entry == micromips_o32_exec_plt0_entry)
11195 {
11196 bfd_vma gotpc_offset;
11197 bfd_vma loc_address;
11198 size_t i;
11199
11200 BFD_ASSERT (gotplt_value % 4 == 0);
11201
11202 loc_address = (htab->splt->output_section->vma
11203 + htab->splt->output_offset);
11204 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11205
11206 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11207 if (gotpc_offset + 0x1000000 >= 0x2000000)
11208 {
11209 (*_bfd_error_handler)
11210 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11211 output_bfd,
11212 htab->sgotplt->output_section,
11213 htab->splt->output_section,
11214 (long) gotpc_offset);
11215 bfd_set_error (bfd_error_no_error);
11216 return FALSE;
11217 }
11218 bfd_put_16 (output_bfd,
11219 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11220 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11221 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11222 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11223 }
11224 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11225 {
11226 size_t i;
11227
11228 bfd_put_16 (output_bfd, plt_entry[0], loc);
11229 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11230 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11231 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11232 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11233 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11234 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11235 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11236 }
11237 else
11238 {
11239 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11240 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11241 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11242 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11243 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11244 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11245 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11246 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11247 }
11248
11249 return TRUE;
11250 }
11251
11252 /* Install the PLT header for a VxWorks executable and finalize the
11253 contents of .rela.plt.unloaded. */
11254
11255 static void
11256 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11257 {
11258 Elf_Internal_Rela rela;
11259 bfd_byte *loc;
11260 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11261 static const bfd_vma *plt_entry;
11262 struct mips_elf_link_hash_table *htab;
11263
11264 htab = mips_elf_hash_table (info);
11265 BFD_ASSERT (htab != NULL);
11266
11267 plt_entry = mips_vxworks_exec_plt0_entry;
11268
11269 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11270 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11271 + htab->root.hgot->root.u.def.section->output_offset
11272 + htab->root.hgot->root.u.def.value);
11273
11274 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11275 got_value_low = got_value & 0xffff;
11276
11277 /* Calculate the address of the PLT header. */
11278 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11279
11280 /* Install the PLT header. */
11281 loc = htab->splt->contents;
11282 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11283 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11284 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11285 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11286 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11287 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11288
11289 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11290 loc = htab->srelplt2->contents;
11291 rela.r_offset = plt_address;
11292 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11293 rela.r_addend = 0;
11294 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11295 loc += sizeof (Elf32_External_Rela);
11296
11297 /* Output the relocation for the following addiu of
11298 %lo(_GLOBAL_OFFSET_TABLE_). */
11299 rela.r_offset += 4;
11300 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11301 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11302 loc += sizeof (Elf32_External_Rela);
11303
11304 /* Fix up the remaining relocations. They may have the wrong
11305 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11306 in which symbols were output. */
11307 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11308 {
11309 Elf_Internal_Rela rel;
11310
11311 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11312 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11313 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11314 loc += sizeof (Elf32_External_Rela);
11315
11316 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11317 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11318 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11319 loc += sizeof (Elf32_External_Rela);
11320
11321 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11322 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11323 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11324 loc += sizeof (Elf32_External_Rela);
11325 }
11326 }
11327
11328 /* Install the PLT header for a VxWorks shared library. */
11329
11330 static void
11331 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11332 {
11333 unsigned int i;
11334 struct mips_elf_link_hash_table *htab;
11335
11336 htab = mips_elf_hash_table (info);
11337 BFD_ASSERT (htab != NULL);
11338
11339 /* We just need to copy the entry byte-by-byte. */
11340 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11341 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11342 htab->splt->contents + i * 4);
11343 }
11344
11345 /* Finish up the dynamic sections. */
11346
11347 bfd_boolean
11348 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11349 struct bfd_link_info *info)
11350 {
11351 bfd *dynobj;
11352 asection *sdyn;
11353 asection *sgot;
11354 struct mips_got_info *gg, *g;
11355 struct mips_elf_link_hash_table *htab;
11356
11357 htab = mips_elf_hash_table (info);
11358 BFD_ASSERT (htab != NULL);
11359
11360 dynobj = elf_hash_table (info)->dynobj;
11361
11362 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11363
11364 sgot = htab->sgot;
11365 gg = htab->got_info;
11366
11367 if (elf_hash_table (info)->dynamic_sections_created)
11368 {
11369 bfd_byte *b;
11370 int dyn_to_skip = 0, dyn_skipped = 0;
11371
11372 BFD_ASSERT (sdyn != NULL);
11373 BFD_ASSERT (gg != NULL);
11374
11375 g = mips_elf_bfd_got (output_bfd, FALSE);
11376 BFD_ASSERT (g != NULL);
11377
11378 for (b = sdyn->contents;
11379 b < sdyn->contents + sdyn->size;
11380 b += MIPS_ELF_DYN_SIZE (dynobj))
11381 {
11382 Elf_Internal_Dyn dyn;
11383 const char *name;
11384 size_t elemsize;
11385 asection *s;
11386 bfd_boolean swap_out_p;
11387
11388 /* Read in the current dynamic entry. */
11389 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11390
11391 /* Assume that we're going to modify it and write it out. */
11392 swap_out_p = TRUE;
11393
11394 switch (dyn.d_tag)
11395 {
11396 case DT_RELENT:
11397 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11398 break;
11399
11400 case DT_RELAENT:
11401 BFD_ASSERT (htab->is_vxworks);
11402 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11403 break;
11404
11405 case DT_STRSZ:
11406 /* Rewrite DT_STRSZ. */
11407 dyn.d_un.d_val =
11408 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11409 break;
11410
11411 case DT_PLTGOT:
11412 s = htab->sgot;
11413 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11414 break;
11415
11416 case DT_MIPS_PLTGOT:
11417 s = htab->sgotplt;
11418 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11419 break;
11420
11421 case DT_MIPS_RLD_VERSION:
11422 dyn.d_un.d_val = 1; /* XXX */
11423 break;
11424
11425 case DT_MIPS_FLAGS:
11426 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11427 break;
11428
11429 case DT_MIPS_TIME_STAMP:
11430 {
11431 time_t t;
11432 time (&t);
11433 dyn.d_un.d_val = t;
11434 }
11435 break;
11436
11437 case DT_MIPS_ICHECKSUM:
11438 /* XXX FIXME: */
11439 swap_out_p = FALSE;
11440 break;
11441
11442 case DT_MIPS_IVERSION:
11443 /* XXX FIXME: */
11444 swap_out_p = FALSE;
11445 break;
11446
11447 case DT_MIPS_BASE_ADDRESS:
11448 s = output_bfd->sections;
11449 BFD_ASSERT (s != NULL);
11450 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11451 break;
11452
11453 case DT_MIPS_LOCAL_GOTNO:
11454 dyn.d_un.d_val = g->local_gotno;
11455 break;
11456
11457 case DT_MIPS_UNREFEXTNO:
11458 /* The index into the dynamic symbol table which is the
11459 entry of the first external symbol that is not
11460 referenced within the same object. */
11461 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11462 break;
11463
11464 case DT_MIPS_GOTSYM:
11465 if (htab->global_gotsym)
11466 {
11467 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11468 break;
11469 }
11470 /* In case if we don't have global got symbols we default
11471 to setting DT_MIPS_GOTSYM to the same value as
11472 DT_MIPS_SYMTABNO, so we just fall through. */
11473
11474 case DT_MIPS_SYMTABNO:
11475 name = ".dynsym";
11476 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11477 s = bfd_get_linker_section (dynobj, name);
11478
11479 if (s != NULL)
11480 dyn.d_un.d_val = s->size / elemsize;
11481 else
11482 dyn.d_un.d_val = 0;
11483 break;
11484
11485 case DT_MIPS_HIPAGENO:
11486 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11487 break;
11488
11489 case DT_MIPS_RLD_MAP:
11490 {
11491 struct elf_link_hash_entry *h;
11492 h = mips_elf_hash_table (info)->rld_symbol;
11493 if (!h)
11494 {
11495 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11496 swap_out_p = FALSE;
11497 break;
11498 }
11499 s = h->root.u.def.section;
11500
11501 /* The MIPS_RLD_MAP tag stores the absolute address of the
11502 debug pointer. */
11503 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11504 + h->root.u.def.value);
11505 }
11506 break;
11507
11508 case DT_MIPS_RLD_MAP_REL:
11509 {
11510 struct elf_link_hash_entry *h;
11511 bfd_vma dt_addr, rld_addr;
11512 h = mips_elf_hash_table (info)->rld_symbol;
11513 if (!h)
11514 {
11515 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11516 swap_out_p = FALSE;
11517 break;
11518 }
11519 s = h->root.u.def.section;
11520
11521 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11522 pointer, relative to the address of the tag. */
11523 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11524 + (b - sdyn->contents));
11525 rld_addr = (s->output_section->vma + s->output_offset
11526 + h->root.u.def.value);
11527 dyn.d_un.d_ptr = rld_addr - dt_addr;
11528 }
11529 break;
11530
11531 case DT_MIPS_OPTIONS:
11532 s = (bfd_get_section_by_name
11533 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11534 dyn.d_un.d_ptr = s->vma;
11535 break;
11536
11537 case DT_RELASZ:
11538 BFD_ASSERT (htab->is_vxworks);
11539 /* The count does not include the JUMP_SLOT relocations. */
11540 if (htab->srelplt)
11541 dyn.d_un.d_val -= htab->srelplt->size;
11542 break;
11543
11544 case DT_PLTREL:
11545 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11546 if (htab->is_vxworks)
11547 dyn.d_un.d_val = DT_RELA;
11548 else
11549 dyn.d_un.d_val = DT_REL;
11550 break;
11551
11552 case DT_PLTRELSZ:
11553 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11554 dyn.d_un.d_val = htab->srelplt->size;
11555 break;
11556
11557 case DT_JMPREL:
11558 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11559 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11560 + htab->srelplt->output_offset);
11561 break;
11562
11563 case DT_TEXTREL:
11564 /* If we didn't need any text relocations after all, delete
11565 the dynamic tag. */
11566 if (!(info->flags & DF_TEXTREL))
11567 {
11568 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11569 swap_out_p = FALSE;
11570 }
11571 break;
11572
11573 case DT_FLAGS:
11574 /* If we didn't need any text relocations after all, clear
11575 DF_TEXTREL from DT_FLAGS. */
11576 if (!(info->flags & DF_TEXTREL))
11577 dyn.d_un.d_val &= ~DF_TEXTREL;
11578 else
11579 swap_out_p = FALSE;
11580 break;
11581
11582 default:
11583 swap_out_p = FALSE;
11584 if (htab->is_vxworks
11585 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11586 swap_out_p = TRUE;
11587 break;
11588 }
11589
11590 if (swap_out_p || dyn_skipped)
11591 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11592 (dynobj, &dyn, b - dyn_skipped);
11593
11594 if (dyn_to_skip)
11595 {
11596 dyn_skipped += dyn_to_skip;
11597 dyn_to_skip = 0;
11598 }
11599 }
11600
11601 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11602 if (dyn_skipped > 0)
11603 memset (b - dyn_skipped, 0, dyn_skipped);
11604 }
11605
11606 if (sgot != NULL && sgot->size > 0
11607 && !bfd_is_abs_section (sgot->output_section))
11608 {
11609 if (htab->is_vxworks)
11610 {
11611 /* The first entry of the global offset table points to the
11612 ".dynamic" section. The second is initialized by the
11613 loader and contains the shared library identifier.
11614 The third is also initialized by the loader and points
11615 to the lazy resolution stub. */
11616 MIPS_ELF_PUT_WORD (output_bfd,
11617 sdyn->output_offset + sdyn->output_section->vma,
11618 sgot->contents);
11619 MIPS_ELF_PUT_WORD (output_bfd, 0,
11620 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11621 MIPS_ELF_PUT_WORD (output_bfd, 0,
11622 sgot->contents
11623 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11624 }
11625 else
11626 {
11627 /* The first entry of the global offset table will be filled at
11628 runtime. The second entry will be used by some runtime loaders.
11629 This isn't the case of IRIX rld. */
11630 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11631 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11632 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11633 }
11634
11635 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11636 = MIPS_ELF_GOT_SIZE (output_bfd);
11637 }
11638
11639 /* Generate dynamic relocations for the non-primary gots. */
11640 if (gg != NULL && gg->next)
11641 {
11642 Elf_Internal_Rela rel[3];
11643 bfd_vma addend = 0;
11644
11645 memset (rel, 0, sizeof (rel));
11646 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11647
11648 for (g = gg->next; g->next != gg; g = g->next)
11649 {
11650 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11651 + g->next->tls_gotno;
11652
11653 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11654 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11655 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11656 sgot->contents
11657 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11658
11659 if (! bfd_link_pic (info))
11660 continue;
11661
11662 for (; got_index < g->local_gotno; got_index++)
11663 {
11664 if (got_index >= g->assigned_low_gotno
11665 && got_index <= g->assigned_high_gotno)
11666 continue;
11667
11668 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11669 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11670 if (!(mips_elf_create_dynamic_relocation
11671 (output_bfd, info, rel, NULL,
11672 bfd_abs_section_ptr,
11673 0, &addend, sgot)))
11674 return FALSE;
11675 BFD_ASSERT (addend == 0);
11676 }
11677 }
11678 }
11679
11680 /* The generation of dynamic relocations for the non-primary gots
11681 adds more dynamic relocations. We cannot count them until
11682 here. */
11683
11684 if (elf_hash_table (info)->dynamic_sections_created)
11685 {
11686 bfd_byte *b;
11687 bfd_boolean swap_out_p;
11688
11689 BFD_ASSERT (sdyn != NULL);
11690
11691 for (b = sdyn->contents;
11692 b < sdyn->contents + sdyn->size;
11693 b += MIPS_ELF_DYN_SIZE (dynobj))
11694 {
11695 Elf_Internal_Dyn dyn;
11696 asection *s;
11697
11698 /* Read in the current dynamic entry. */
11699 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11700
11701 /* Assume that we're going to modify it and write it out. */
11702 swap_out_p = TRUE;
11703
11704 switch (dyn.d_tag)
11705 {
11706 case DT_RELSZ:
11707 /* Reduce DT_RELSZ to account for any relocations we
11708 decided not to make. This is for the n64 irix rld,
11709 which doesn't seem to apply any relocations if there
11710 are trailing null entries. */
11711 s = mips_elf_rel_dyn_section (info, FALSE);
11712 dyn.d_un.d_val = (s->reloc_count
11713 * (ABI_64_P (output_bfd)
11714 ? sizeof (Elf64_Mips_External_Rel)
11715 : sizeof (Elf32_External_Rel)));
11716 /* Adjust the section size too. Tools like the prelinker
11717 can reasonably expect the values to the same. */
11718 elf_section_data (s->output_section)->this_hdr.sh_size
11719 = dyn.d_un.d_val;
11720 break;
11721
11722 default:
11723 swap_out_p = FALSE;
11724 break;
11725 }
11726
11727 if (swap_out_p)
11728 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11729 (dynobj, &dyn, b);
11730 }
11731 }
11732
11733 {
11734 asection *s;
11735 Elf32_compact_rel cpt;
11736
11737 if (SGI_COMPAT (output_bfd))
11738 {
11739 /* Write .compact_rel section out. */
11740 s = bfd_get_linker_section (dynobj, ".compact_rel");
11741 if (s != NULL)
11742 {
11743 cpt.id1 = 1;
11744 cpt.num = s->reloc_count;
11745 cpt.id2 = 2;
11746 cpt.offset = (s->output_section->filepos
11747 + sizeof (Elf32_External_compact_rel));
11748 cpt.reserved0 = 0;
11749 cpt.reserved1 = 0;
11750 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11751 ((Elf32_External_compact_rel *)
11752 s->contents));
11753
11754 /* Clean up a dummy stub function entry in .text. */
11755 if (htab->sstubs != NULL)
11756 {
11757 file_ptr dummy_offset;
11758
11759 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11760 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11761 memset (htab->sstubs->contents + dummy_offset, 0,
11762 htab->function_stub_size);
11763 }
11764 }
11765 }
11766
11767 /* The psABI says that the dynamic relocations must be sorted in
11768 increasing order of r_symndx. The VxWorks EABI doesn't require
11769 this, and because the code below handles REL rather than RELA
11770 relocations, using it for VxWorks would be outright harmful. */
11771 if (!htab->is_vxworks)
11772 {
11773 s = mips_elf_rel_dyn_section (info, FALSE);
11774 if (s != NULL
11775 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11776 {
11777 reldyn_sorting_bfd = output_bfd;
11778
11779 if (ABI_64_P (output_bfd))
11780 qsort ((Elf64_External_Rel *) s->contents + 1,
11781 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11782 sort_dynamic_relocs_64);
11783 else
11784 qsort ((Elf32_External_Rel *) s->contents + 1,
11785 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11786 sort_dynamic_relocs);
11787 }
11788 }
11789 }
11790
11791 if (htab->splt && htab->splt->size > 0)
11792 {
11793 if (htab->is_vxworks)
11794 {
11795 if (bfd_link_pic (info))
11796 mips_vxworks_finish_shared_plt (output_bfd, info);
11797 else
11798 mips_vxworks_finish_exec_plt (output_bfd, info);
11799 }
11800 else
11801 {
11802 BFD_ASSERT (!bfd_link_pic (info));
11803 if (!mips_finish_exec_plt (output_bfd, info))
11804 return FALSE;
11805 }
11806 }
11807 return TRUE;
11808 }
11809
11810
11811 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11812
11813 static void
11814 mips_set_isa_flags (bfd *abfd)
11815 {
11816 flagword val;
11817
11818 switch (bfd_get_mach (abfd))
11819 {
11820 default:
11821 case bfd_mach_mips3000:
11822 val = E_MIPS_ARCH_1;
11823 break;
11824
11825 case bfd_mach_mips3900:
11826 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11827 break;
11828
11829 case bfd_mach_mips6000:
11830 val = E_MIPS_ARCH_2;
11831 break;
11832
11833 case bfd_mach_mips4000:
11834 case bfd_mach_mips4300:
11835 case bfd_mach_mips4400:
11836 case bfd_mach_mips4600:
11837 val = E_MIPS_ARCH_3;
11838 break;
11839
11840 case bfd_mach_mips4010:
11841 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11842 break;
11843
11844 case bfd_mach_mips4100:
11845 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11846 break;
11847
11848 case bfd_mach_mips4111:
11849 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11850 break;
11851
11852 case bfd_mach_mips4120:
11853 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11854 break;
11855
11856 case bfd_mach_mips4650:
11857 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11858 break;
11859
11860 case bfd_mach_mips5400:
11861 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11862 break;
11863
11864 case bfd_mach_mips5500:
11865 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11866 break;
11867
11868 case bfd_mach_mips5900:
11869 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11870 break;
11871
11872 case bfd_mach_mips9000:
11873 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11874 break;
11875
11876 case bfd_mach_mips5000:
11877 case bfd_mach_mips7000:
11878 case bfd_mach_mips8000:
11879 case bfd_mach_mips10000:
11880 case bfd_mach_mips12000:
11881 case bfd_mach_mips14000:
11882 case bfd_mach_mips16000:
11883 val = E_MIPS_ARCH_4;
11884 break;
11885
11886 case bfd_mach_mips5:
11887 val = E_MIPS_ARCH_5;
11888 break;
11889
11890 case bfd_mach_mips_loongson_2e:
11891 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11892 break;
11893
11894 case bfd_mach_mips_loongson_2f:
11895 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11896 break;
11897
11898 case bfd_mach_mips_sb1:
11899 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11900 break;
11901
11902 case bfd_mach_mips_loongson_3a:
11903 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11904 break;
11905
11906 case bfd_mach_mips_octeon:
11907 case bfd_mach_mips_octeonp:
11908 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11909 break;
11910
11911 case bfd_mach_mips_octeon3:
11912 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11913 break;
11914
11915 case bfd_mach_mips_xlr:
11916 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11917 break;
11918
11919 case bfd_mach_mips_octeon2:
11920 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11921 break;
11922
11923 case bfd_mach_mipsisa32:
11924 val = E_MIPS_ARCH_32;
11925 break;
11926
11927 case bfd_mach_mipsisa64:
11928 val = E_MIPS_ARCH_64;
11929 break;
11930
11931 case bfd_mach_mipsisa32r2:
11932 case bfd_mach_mipsisa32r3:
11933 case bfd_mach_mipsisa32r5:
11934 val = E_MIPS_ARCH_32R2;
11935 break;
11936
11937 case bfd_mach_mipsisa64r2:
11938 case bfd_mach_mipsisa64r3:
11939 case bfd_mach_mipsisa64r5:
11940 val = E_MIPS_ARCH_64R2;
11941 break;
11942
11943 case bfd_mach_mipsisa32r6:
11944 val = E_MIPS_ARCH_32R6;
11945 break;
11946
11947 case bfd_mach_mipsisa64r6:
11948 val = E_MIPS_ARCH_64R6;
11949 break;
11950 }
11951 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11952 elf_elfheader (abfd)->e_flags |= val;
11953
11954 }
11955
11956
11957 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11958 Don't do so for code sections. We want to keep ordering of HI16/LO16
11959 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11960 relocs to be sorted. */
11961
11962 bfd_boolean
11963 _bfd_mips_elf_sort_relocs_p (asection *sec)
11964 {
11965 return (sec->flags & SEC_CODE) == 0;
11966 }
11967
11968
11969 /* The final processing done just before writing out a MIPS ELF object
11970 file. This gets the MIPS architecture right based on the machine
11971 number. This is used by both the 32-bit and the 64-bit ABI. */
11972
11973 void
11974 _bfd_mips_elf_final_write_processing (bfd *abfd,
11975 bfd_boolean linker ATTRIBUTE_UNUSED)
11976 {
11977 unsigned int i;
11978 Elf_Internal_Shdr **hdrpp;
11979 const char *name;
11980 asection *sec;
11981
11982 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11983 is nonzero. This is for compatibility with old objects, which used
11984 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11985 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11986 mips_set_isa_flags (abfd);
11987
11988 /* Set the sh_info field for .gptab sections and other appropriate
11989 info for each special section. */
11990 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11991 i < elf_numsections (abfd);
11992 i++, hdrpp++)
11993 {
11994 switch ((*hdrpp)->sh_type)
11995 {
11996 case SHT_MIPS_MSYM:
11997 case SHT_MIPS_LIBLIST:
11998 sec = bfd_get_section_by_name (abfd, ".dynstr");
11999 if (sec != NULL)
12000 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12001 break;
12002
12003 case SHT_MIPS_GPTAB:
12004 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12005 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12006 BFD_ASSERT (name != NULL
12007 && CONST_STRNEQ (name, ".gptab."));
12008 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12009 BFD_ASSERT (sec != NULL);
12010 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12011 break;
12012
12013 case SHT_MIPS_CONTENT:
12014 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12015 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12016 BFD_ASSERT (name != NULL
12017 && CONST_STRNEQ (name, ".MIPS.content"));
12018 sec = bfd_get_section_by_name (abfd,
12019 name + sizeof ".MIPS.content" - 1);
12020 BFD_ASSERT (sec != NULL);
12021 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12022 break;
12023
12024 case SHT_MIPS_SYMBOL_LIB:
12025 sec = bfd_get_section_by_name (abfd, ".dynsym");
12026 if (sec != NULL)
12027 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12028 sec = bfd_get_section_by_name (abfd, ".liblist");
12029 if (sec != NULL)
12030 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12031 break;
12032
12033 case SHT_MIPS_EVENTS:
12034 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12035 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12036 BFD_ASSERT (name != NULL);
12037 if (CONST_STRNEQ (name, ".MIPS.events"))
12038 sec = bfd_get_section_by_name (abfd,
12039 name + sizeof ".MIPS.events" - 1);
12040 else
12041 {
12042 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12043 sec = bfd_get_section_by_name (abfd,
12044 (name
12045 + sizeof ".MIPS.post_rel" - 1));
12046 }
12047 BFD_ASSERT (sec != NULL);
12048 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12049 break;
12050
12051 }
12052 }
12053 }
12054 \f
12055 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12056 segments. */
12057
12058 int
12059 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12060 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12061 {
12062 asection *s;
12063 int ret = 0;
12064
12065 /* See if we need a PT_MIPS_REGINFO segment. */
12066 s = bfd_get_section_by_name (abfd, ".reginfo");
12067 if (s && (s->flags & SEC_LOAD))
12068 ++ret;
12069
12070 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12071 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12072 ++ret;
12073
12074 /* See if we need a PT_MIPS_OPTIONS segment. */
12075 if (IRIX_COMPAT (abfd) == ict_irix6
12076 && bfd_get_section_by_name (abfd,
12077 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12078 ++ret;
12079
12080 /* See if we need a PT_MIPS_RTPROC segment. */
12081 if (IRIX_COMPAT (abfd) == ict_irix5
12082 && bfd_get_section_by_name (abfd, ".dynamic")
12083 && bfd_get_section_by_name (abfd, ".mdebug"))
12084 ++ret;
12085
12086 /* Allocate a PT_NULL header in dynamic objects. See
12087 _bfd_mips_elf_modify_segment_map for details. */
12088 if (!SGI_COMPAT (abfd)
12089 && bfd_get_section_by_name (abfd, ".dynamic"))
12090 ++ret;
12091
12092 return ret;
12093 }
12094
12095 /* Modify the segment map for an IRIX5 executable. */
12096
12097 bfd_boolean
12098 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12099 struct bfd_link_info *info)
12100 {
12101 asection *s;
12102 struct elf_segment_map *m, **pm;
12103 bfd_size_type amt;
12104
12105 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12106 segment. */
12107 s = bfd_get_section_by_name (abfd, ".reginfo");
12108 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12109 {
12110 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12111 if (m->p_type == PT_MIPS_REGINFO)
12112 break;
12113 if (m == NULL)
12114 {
12115 amt = sizeof *m;
12116 m = bfd_zalloc (abfd, amt);
12117 if (m == NULL)
12118 return FALSE;
12119
12120 m->p_type = PT_MIPS_REGINFO;
12121 m->count = 1;
12122 m->sections[0] = s;
12123
12124 /* We want to put it after the PHDR and INTERP segments. */
12125 pm = &elf_seg_map (abfd);
12126 while (*pm != NULL
12127 && ((*pm)->p_type == PT_PHDR
12128 || (*pm)->p_type == PT_INTERP))
12129 pm = &(*pm)->next;
12130
12131 m->next = *pm;
12132 *pm = m;
12133 }
12134 }
12135
12136 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12137 segment. */
12138 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12139 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12140 {
12141 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12142 if (m->p_type == PT_MIPS_ABIFLAGS)
12143 break;
12144 if (m == NULL)
12145 {
12146 amt = sizeof *m;
12147 m = bfd_zalloc (abfd, amt);
12148 if (m == NULL)
12149 return FALSE;
12150
12151 m->p_type = PT_MIPS_ABIFLAGS;
12152 m->count = 1;
12153 m->sections[0] = s;
12154
12155 /* We want to put it after the PHDR and INTERP segments. */
12156 pm = &elf_seg_map (abfd);
12157 while (*pm != NULL
12158 && ((*pm)->p_type == PT_PHDR
12159 || (*pm)->p_type == PT_INTERP))
12160 pm = &(*pm)->next;
12161
12162 m->next = *pm;
12163 *pm = m;
12164 }
12165 }
12166
12167 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12168 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12169 PT_MIPS_OPTIONS segment immediately following the program header
12170 table. */
12171 if (NEWABI_P (abfd)
12172 /* On non-IRIX6 new abi, we'll have already created a segment
12173 for this section, so don't create another. I'm not sure this
12174 is not also the case for IRIX 6, but I can't test it right
12175 now. */
12176 && IRIX_COMPAT (abfd) == ict_irix6)
12177 {
12178 for (s = abfd->sections; s; s = s->next)
12179 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12180 break;
12181
12182 if (s)
12183 {
12184 struct elf_segment_map *options_segment;
12185
12186 pm = &elf_seg_map (abfd);
12187 while (*pm != NULL
12188 && ((*pm)->p_type == PT_PHDR
12189 || (*pm)->p_type == PT_INTERP))
12190 pm = &(*pm)->next;
12191
12192 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12193 {
12194 amt = sizeof (struct elf_segment_map);
12195 options_segment = bfd_zalloc (abfd, amt);
12196 options_segment->next = *pm;
12197 options_segment->p_type = PT_MIPS_OPTIONS;
12198 options_segment->p_flags = PF_R;
12199 options_segment->p_flags_valid = TRUE;
12200 options_segment->count = 1;
12201 options_segment->sections[0] = s;
12202 *pm = options_segment;
12203 }
12204 }
12205 }
12206 else
12207 {
12208 if (IRIX_COMPAT (abfd) == ict_irix5)
12209 {
12210 /* If there are .dynamic and .mdebug sections, we make a room
12211 for the RTPROC header. FIXME: Rewrite without section names. */
12212 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12213 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12214 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12215 {
12216 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12217 if (m->p_type == PT_MIPS_RTPROC)
12218 break;
12219 if (m == NULL)
12220 {
12221 amt = sizeof *m;
12222 m = bfd_zalloc (abfd, amt);
12223 if (m == NULL)
12224 return FALSE;
12225
12226 m->p_type = PT_MIPS_RTPROC;
12227
12228 s = bfd_get_section_by_name (abfd, ".rtproc");
12229 if (s == NULL)
12230 {
12231 m->count = 0;
12232 m->p_flags = 0;
12233 m->p_flags_valid = 1;
12234 }
12235 else
12236 {
12237 m->count = 1;
12238 m->sections[0] = s;
12239 }
12240
12241 /* We want to put it after the DYNAMIC segment. */
12242 pm = &elf_seg_map (abfd);
12243 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12244 pm = &(*pm)->next;
12245 if (*pm != NULL)
12246 pm = &(*pm)->next;
12247
12248 m->next = *pm;
12249 *pm = m;
12250 }
12251 }
12252 }
12253 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12254 .dynstr, .dynsym, and .hash sections, and everything in
12255 between. */
12256 for (pm = &elf_seg_map (abfd); *pm != NULL;
12257 pm = &(*pm)->next)
12258 if ((*pm)->p_type == PT_DYNAMIC)
12259 break;
12260 m = *pm;
12261 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12262 glibc's dynamic linker has traditionally derived the number of
12263 tags from the p_filesz field, and sometimes allocates stack
12264 arrays of that size. An overly-big PT_DYNAMIC segment can
12265 be actively harmful in such cases. Making PT_DYNAMIC contain
12266 other sections can also make life hard for the prelinker,
12267 which might move one of the other sections to a different
12268 PT_LOAD segment. */
12269 if (SGI_COMPAT (abfd)
12270 && m != NULL
12271 && m->count == 1
12272 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12273 {
12274 static const char *sec_names[] =
12275 {
12276 ".dynamic", ".dynstr", ".dynsym", ".hash"
12277 };
12278 bfd_vma low, high;
12279 unsigned int i, c;
12280 struct elf_segment_map *n;
12281
12282 low = ~(bfd_vma) 0;
12283 high = 0;
12284 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12285 {
12286 s = bfd_get_section_by_name (abfd, sec_names[i]);
12287 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12288 {
12289 bfd_size_type sz;
12290
12291 if (low > s->vma)
12292 low = s->vma;
12293 sz = s->size;
12294 if (high < s->vma + sz)
12295 high = s->vma + sz;
12296 }
12297 }
12298
12299 c = 0;
12300 for (s = abfd->sections; s != NULL; s = s->next)
12301 if ((s->flags & SEC_LOAD) != 0
12302 && s->vma >= low
12303 && s->vma + s->size <= high)
12304 ++c;
12305
12306 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12307 n = bfd_zalloc (abfd, amt);
12308 if (n == NULL)
12309 return FALSE;
12310 *n = *m;
12311 n->count = c;
12312
12313 i = 0;
12314 for (s = abfd->sections; s != NULL; s = s->next)
12315 {
12316 if ((s->flags & SEC_LOAD) != 0
12317 && s->vma >= low
12318 && s->vma + s->size <= high)
12319 {
12320 n->sections[i] = s;
12321 ++i;
12322 }
12323 }
12324
12325 *pm = n;
12326 }
12327 }
12328
12329 /* Allocate a spare program header in dynamic objects so that tools
12330 like the prelinker can add an extra PT_LOAD entry.
12331
12332 If the prelinker needs to make room for a new PT_LOAD entry, its
12333 standard procedure is to move the first (read-only) sections into
12334 the new (writable) segment. However, the MIPS ABI requires
12335 .dynamic to be in a read-only segment, and the section will often
12336 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12337
12338 Although the prelinker could in principle move .dynamic to a
12339 writable segment, it seems better to allocate a spare program
12340 header instead, and avoid the need to move any sections.
12341 There is a long tradition of allocating spare dynamic tags,
12342 so allocating a spare program header seems like a natural
12343 extension.
12344
12345 If INFO is NULL, we may be copying an already prelinked binary
12346 with objcopy or strip, so do not add this header. */
12347 if (info != NULL
12348 && !SGI_COMPAT (abfd)
12349 && bfd_get_section_by_name (abfd, ".dynamic"))
12350 {
12351 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12352 if ((*pm)->p_type == PT_NULL)
12353 break;
12354 if (*pm == NULL)
12355 {
12356 m = bfd_zalloc (abfd, sizeof (*m));
12357 if (m == NULL)
12358 return FALSE;
12359
12360 m->p_type = PT_NULL;
12361 *pm = m;
12362 }
12363 }
12364
12365 return TRUE;
12366 }
12367 \f
12368 /* Return the section that should be marked against GC for a given
12369 relocation. */
12370
12371 asection *
12372 _bfd_mips_elf_gc_mark_hook (asection *sec,
12373 struct bfd_link_info *info,
12374 Elf_Internal_Rela *rel,
12375 struct elf_link_hash_entry *h,
12376 Elf_Internal_Sym *sym)
12377 {
12378 /* ??? Do mips16 stub sections need to be handled special? */
12379
12380 if (h != NULL)
12381 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12382 {
12383 case R_MIPS_GNU_VTINHERIT:
12384 case R_MIPS_GNU_VTENTRY:
12385 return NULL;
12386 }
12387
12388 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12389 }
12390
12391 /* Update the got entry reference counts for the section being removed. */
12392
12393 bfd_boolean
12394 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12395 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12396 asection *sec ATTRIBUTE_UNUSED,
12397 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12398 {
12399 #if 0
12400 Elf_Internal_Shdr *symtab_hdr;
12401 struct elf_link_hash_entry **sym_hashes;
12402 bfd_signed_vma *local_got_refcounts;
12403 const Elf_Internal_Rela *rel, *relend;
12404 unsigned long r_symndx;
12405 struct elf_link_hash_entry *h;
12406
12407 if (bfd_link_relocatable (info))
12408 return TRUE;
12409
12410 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12411 sym_hashes = elf_sym_hashes (abfd);
12412 local_got_refcounts = elf_local_got_refcounts (abfd);
12413
12414 relend = relocs + sec->reloc_count;
12415 for (rel = relocs; rel < relend; rel++)
12416 switch (ELF_R_TYPE (abfd, rel->r_info))
12417 {
12418 case R_MIPS16_GOT16:
12419 case R_MIPS16_CALL16:
12420 case R_MIPS_GOT16:
12421 case R_MIPS_CALL16:
12422 case R_MIPS_CALL_HI16:
12423 case R_MIPS_CALL_LO16:
12424 case R_MIPS_GOT_HI16:
12425 case R_MIPS_GOT_LO16:
12426 case R_MIPS_GOT_DISP:
12427 case R_MIPS_GOT_PAGE:
12428 case R_MIPS_GOT_OFST:
12429 case R_MICROMIPS_GOT16:
12430 case R_MICROMIPS_CALL16:
12431 case R_MICROMIPS_CALL_HI16:
12432 case R_MICROMIPS_CALL_LO16:
12433 case R_MICROMIPS_GOT_HI16:
12434 case R_MICROMIPS_GOT_LO16:
12435 case R_MICROMIPS_GOT_DISP:
12436 case R_MICROMIPS_GOT_PAGE:
12437 case R_MICROMIPS_GOT_OFST:
12438 /* ??? It would seem that the existing MIPS code does no sort
12439 of reference counting or whatnot on its GOT and PLT entries,
12440 so it is not possible to garbage collect them at this time. */
12441 break;
12442
12443 default:
12444 break;
12445 }
12446 #endif
12447
12448 return TRUE;
12449 }
12450
12451 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12452
12453 bfd_boolean
12454 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12455 elf_gc_mark_hook_fn gc_mark_hook)
12456 {
12457 bfd *sub;
12458
12459 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12460
12461 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12462 {
12463 asection *o;
12464
12465 if (! is_mips_elf (sub))
12466 continue;
12467
12468 for (o = sub->sections; o != NULL; o = o->next)
12469 if (!o->gc_mark
12470 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12471 (bfd_get_section_name (sub, o)))
12472 {
12473 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12474 return FALSE;
12475 }
12476 }
12477
12478 return TRUE;
12479 }
12480 \f
12481 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12482 hiding the old indirect symbol. Process additional relocation
12483 information. Also called for weakdefs, in which case we just let
12484 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12485
12486 void
12487 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12488 struct elf_link_hash_entry *dir,
12489 struct elf_link_hash_entry *ind)
12490 {
12491 struct mips_elf_link_hash_entry *dirmips, *indmips;
12492
12493 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12494
12495 dirmips = (struct mips_elf_link_hash_entry *) dir;
12496 indmips = (struct mips_elf_link_hash_entry *) ind;
12497 /* Any absolute non-dynamic relocations against an indirect or weak
12498 definition will be against the target symbol. */
12499 if (indmips->has_static_relocs)
12500 dirmips->has_static_relocs = TRUE;
12501
12502 if (ind->root.type != bfd_link_hash_indirect)
12503 return;
12504
12505 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12506 if (indmips->readonly_reloc)
12507 dirmips->readonly_reloc = TRUE;
12508 if (indmips->no_fn_stub)
12509 dirmips->no_fn_stub = TRUE;
12510 if (indmips->fn_stub)
12511 {
12512 dirmips->fn_stub = indmips->fn_stub;
12513 indmips->fn_stub = NULL;
12514 }
12515 if (indmips->need_fn_stub)
12516 {
12517 dirmips->need_fn_stub = TRUE;
12518 indmips->need_fn_stub = FALSE;
12519 }
12520 if (indmips->call_stub)
12521 {
12522 dirmips->call_stub = indmips->call_stub;
12523 indmips->call_stub = NULL;
12524 }
12525 if (indmips->call_fp_stub)
12526 {
12527 dirmips->call_fp_stub = indmips->call_fp_stub;
12528 indmips->call_fp_stub = NULL;
12529 }
12530 if (indmips->global_got_area < dirmips->global_got_area)
12531 dirmips->global_got_area = indmips->global_got_area;
12532 if (indmips->global_got_area < GGA_NONE)
12533 indmips->global_got_area = GGA_NONE;
12534 if (indmips->has_nonpic_branches)
12535 dirmips->has_nonpic_branches = TRUE;
12536 }
12537 \f
12538 #define PDR_SIZE 32
12539
12540 bfd_boolean
12541 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12542 struct bfd_link_info *info)
12543 {
12544 asection *o;
12545 bfd_boolean ret = FALSE;
12546 unsigned char *tdata;
12547 size_t i, skip;
12548
12549 o = bfd_get_section_by_name (abfd, ".pdr");
12550 if (! o)
12551 return FALSE;
12552 if (o->size == 0)
12553 return FALSE;
12554 if (o->size % PDR_SIZE != 0)
12555 return FALSE;
12556 if (o->output_section != NULL
12557 && bfd_is_abs_section (o->output_section))
12558 return FALSE;
12559
12560 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12561 if (! tdata)
12562 return FALSE;
12563
12564 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12565 info->keep_memory);
12566 if (!cookie->rels)
12567 {
12568 free (tdata);
12569 return FALSE;
12570 }
12571
12572 cookie->rel = cookie->rels;
12573 cookie->relend = cookie->rels + o->reloc_count;
12574
12575 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12576 {
12577 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12578 {
12579 tdata[i] = 1;
12580 skip ++;
12581 }
12582 }
12583
12584 if (skip != 0)
12585 {
12586 mips_elf_section_data (o)->u.tdata = tdata;
12587 if (o->rawsize == 0)
12588 o->rawsize = o->size;
12589 o->size -= skip * PDR_SIZE;
12590 ret = TRUE;
12591 }
12592 else
12593 free (tdata);
12594
12595 if (! info->keep_memory)
12596 free (cookie->rels);
12597
12598 return ret;
12599 }
12600
12601 bfd_boolean
12602 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12603 {
12604 if (strcmp (sec->name, ".pdr") == 0)
12605 return TRUE;
12606 return FALSE;
12607 }
12608
12609 bfd_boolean
12610 _bfd_mips_elf_write_section (bfd *output_bfd,
12611 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12612 asection *sec, bfd_byte *contents)
12613 {
12614 bfd_byte *to, *from, *end;
12615 int i;
12616
12617 if (strcmp (sec->name, ".pdr") != 0)
12618 return FALSE;
12619
12620 if (mips_elf_section_data (sec)->u.tdata == NULL)
12621 return FALSE;
12622
12623 to = contents;
12624 end = contents + sec->size;
12625 for (from = contents, i = 0;
12626 from < end;
12627 from += PDR_SIZE, i++)
12628 {
12629 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12630 continue;
12631 if (to != from)
12632 memcpy (to, from, PDR_SIZE);
12633 to += PDR_SIZE;
12634 }
12635 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12636 sec->output_offset, sec->size);
12637 return TRUE;
12638 }
12639 \f
12640 /* microMIPS code retains local labels for linker relaxation. Omit them
12641 from output by default for clarity. */
12642
12643 bfd_boolean
12644 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12645 {
12646 return _bfd_elf_is_local_label_name (abfd, sym->name);
12647 }
12648
12649 /* MIPS ELF uses a special find_nearest_line routine in order the
12650 handle the ECOFF debugging information. */
12651
12652 struct mips_elf_find_line
12653 {
12654 struct ecoff_debug_info d;
12655 struct ecoff_find_line i;
12656 };
12657
12658 bfd_boolean
12659 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12660 asection *section, bfd_vma offset,
12661 const char **filename_ptr,
12662 const char **functionname_ptr,
12663 unsigned int *line_ptr,
12664 unsigned int *discriminator_ptr)
12665 {
12666 asection *msec;
12667
12668 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12669 filename_ptr, functionname_ptr,
12670 line_ptr, discriminator_ptr,
12671 dwarf_debug_sections,
12672 ABI_64_P (abfd) ? 8 : 0,
12673 &elf_tdata (abfd)->dwarf2_find_line_info))
12674 return TRUE;
12675
12676 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12677 filename_ptr, functionname_ptr,
12678 line_ptr))
12679 return TRUE;
12680
12681 msec = bfd_get_section_by_name (abfd, ".mdebug");
12682 if (msec != NULL)
12683 {
12684 flagword origflags;
12685 struct mips_elf_find_line *fi;
12686 const struct ecoff_debug_swap * const swap =
12687 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12688
12689 /* If we are called during a link, mips_elf_final_link may have
12690 cleared the SEC_HAS_CONTENTS field. We force it back on here
12691 if appropriate (which it normally will be). */
12692 origflags = msec->flags;
12693 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12694 msec->flags |= SEC_HAS_CONTENTS;
12695
12696 fi = mips_elf_tdata (abfd)->find_line_info;
12697 if (fi == NULL)
12698 {
12699 bfd_size_type external_fdr_size;
12700 char *fraw_src;
12701 char *fraw_end;
12702 struct fdr *fdr_ptr;
12703 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12704
12705 fi = bfd_zalloc (abfd, amt);
12706 if (fi == NULL)
12707 {
12708 msec->flags = origflags;
12709 return FALSE;
12710 }
12711
12712 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12713 {
12714 msec->flags = origflags;
12715 return FALSE;
12716 }
12717
12718 /* Swap in the FDR information. */
12719 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12720 fi->d.fdr = bfd_alloc (abfd, amt);
12721 if (fi->d.fdr == NULL)
12722 {
12723 msec->flags = origflags;
12724 return FALSE;
12725 }
12726 external_fdr_size = swap->external_fdr_size;
12727 fdr_ptr = fi->d.fdr;
12728 fraw_src = (char *) fi->d.external_fdr;
12729 fraw_end = (fraw_src
12730 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12731 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12732 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12733
12734 mips_elf_tdata (abfd)->find_line_info = fi;
12735
12736 /* Note that we don't bother to ever free this information.
12737 find_nearest_line is either called all the time, as in
12738 objdump -l, so the information should be saved, or it is
12739 rarely called, as in ld error messages, so the memory
12740 wasted is unimportant. Still, it would probably be a
12741 good idea for free_cached_info to throw it away. */
12742 }
12743
12744 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12745 &fi->i, filename_ptr, functionname_ptr,
12746 line_ptr))
12747 {
12748 msec->flags = origflags;
12749 return TRUE;
12750 }
12751
12752 msec->flags = origflags;
12753 }
12754
12755 /* Fall back on the generic ELF find_nearest_line routine. */
12756
12757 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12758 filename_ptr, functionname_ptr,
12759 line_ptr, discriminator_ptr);
12760 }
12761
12762 bfd_boolean
12763 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12764 const char **filename_ptr,
12765 const char **functionname_ptr,
12766 unsigned int *line_ptr)
12767 {
12768 bfd_boolean found;
12769 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12770 functionname_ptr, line_ptr,
12771 & elf_tdata (abfd)->dwarf2_find_line_info);
12772 return found;
12773 }
12774
12775 \f
12776 /* When are writing out the .options or .MIPS.options section,
12777 remember the bytes we are writing out, so that we can install the
12778 GP value in the section_processing routine. */
12779
12780 bfd_boolean
12781 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12782 const void *location,
12783 file_ptr offset, bfd_size_type count)
12784 {
12785 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12786 {
12787 bfd_byte *c;
12788
12789 if (elf_section_data (section) == NULL)
12790 {
12791 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12792 section->used_by_bfd = bfd_zalloc (abfd, amt);
12793 if (elf_section_data (section) == NULL)
12794 return FALSE;
12795 }
12796 c = mips_elf_section_data (section)->u.tdata;
12797 if (c == NULL)
12798 {
12799 c = bfd_zalloc (abfd, section->size);
12800 if (c == NULL)
12801 return FALSE;
12802 mips_elf_section_data (section)->u.tdata = c;
12803 }
12804
12805 memcpy (c + offset, location, count);
12806 }
12807
12808 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12809 count);
12810 }
12811
12812 /* This is almost identical to bfd_generic_get_... except that some
12813 MIPS relocations need to be handled specially. Sigh. */
12814
12815 bfd_byte *
12816 _bfd_elf_mips_get_relocated_section_contents
12817 (bfd *abfd,
12818 struct bfd_link_info *link_info,
12819 struct bfd_link_order *link_order,
12820 bfd_byte *data,
12821 bfd_boolean relocatable,
12822 asymbol **symbols)
12823 {
12824 /* Get enough memory to hold the stuff */
12825 bfd *input_bfd = link_order->u.indirect.section->owner;
12826 asection *input_section = link_order->u.indirect.section;
12827 bfd_size_type sz;
12828
12829 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12830 arelent **reloc_vector = NULL;
12831 long reloc_count;
12832
12833 if (reloc_size < 0)
12834 goto error_return;
12835
12836 reloc_vector = bfd_malloc (reloc_size);
12837 if (reloc_vector == NULL && reloc_size != 0)
12838 goto error_return;
12839
12840 /* read in the section */
12841 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12842 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12843 goto error_return;
12844
12845 reloc_count = bfd_canonicalize_reloc (input_bfd,
12846 input_section,
12847 reloc_vector,
12848 symbols);
12849 if (reloc_count < 0)
12850 goto error_return;
12851
12852 if (reloc_count > 0)
12853 {
12854 arelent **parent;
12855 /* for mips */
12856 int gp_found;
12857 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12858
12859 {
12860 struct bfd_hash_entry *h;
12861 struct bfd_link_hash_entry *lh;
12862 /* Skip all this stuff if we aren't mixing formats. */
12863 if (abfd && input_bfd
12864 && abfd->xvec == input_bfd->xvec)
12865 lh = 0;
12866 else
12867 {
12868 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12869 lh = (struct bfd_link_hash_entry *) h;
12870 }
12871 lookup:
12872 if (lh)
12873 {
12874 switch (lh->type)
12875 {
12876 case bfd_link_hash_undefined:
12877 case bfd_link_hash_undefweak:
12878 case bfd_link_hash_common:
12879 gp_found = 0;
12880 break;
12881 case bfd_link_hash_defined:
12882 case bfd_link_hash_defweak:
12883 gp_found = 1;
12884 gp = lh->u.def.value;
12885 break;
12886 case bfd_link_hash_indirect:
12887 case bfd_link_hash_warning:
12888 lh = lh->u.i.link;
12889 /* @@FIXME ignoring warning for now */
12890 goto lookup;
12891 case bfd_link_hash_new:
12892 default:
12893 abort ();
12894 }
12895 }
12896 else
12897 gp_found = 0;
12898 }
12899 /* end mips */
12900 for (parent = reloc_vector; *parent != NULL; parent++)
12901 {
12902 char *error_message = NULL;
12903 bfd_reloc_status_type r;
12904
12905 /* Specific to MIPS: Deal with relocation types that require
12906 knowing the gp of the output bfd. */
12907 asymbol *sym = *(*parent)->sym_ptr_ptr;
12908
12909 /* If we've managed to find the gp and have a special
12910 function for the relocation then go ahead, else default
12911 to the generic handling. */
12912 if (gp_found
12913 && (*parent)->howto->special_function
12914 == _bfd_mips_elf32_gprel16_reloc)
12915 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12916 input_section, relocatable,
12917 data, gp);
12918 else
12919 r = bfd_perform_relocation (input_bfd, *parent, data,
12920 input_section,
12921 relocatable ? abfd : NULL,
12922 &error_message);
12923
12924 if (relocatable)
12925 {
12926 asection *os = input_section->output_section;
12927
12928 /* A partial link, so keep the relocs */
12929 os->orelocation[os->reloc_count] = *parent;
12930 os->reloc_count++;
12931 }
12932
12933 if (r != bfd_reloc_ok)
12934 {
12935 switch (r)
12936 {
12937 case bfd_reloc_undefined:
12938 (*link_info->callbacks->undefined_symbol)
12939 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12940 input_bfd, input_section, (*parent)->address, TRUE);
12941 break;
12942 case bfd_reloc_dangerous:
12943 BFD_ASSERT (error_message != NULL);
12944 (*link_info->callbacks->reloc_dangerous)
12945 (link_info, error_message,
12946 input_bfd, input_section, (*parent)->address);
12947 break;
12948 case bfd_reloc_overflow:
12949 (*link_info->callbacks->reloc_overflow)
12950 (link_info, NULL,
12951 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12952 (*parent)->howto->name, (*parent)->addend,
12953 input_bfd, input_section, (*parent)->address);
12954 break;
12955 case bfd_reloc_outofrange:
12956 default:
12957 abort ();
12958 break;
12959 }
12960
12961 }
12962 }
12963 }
12964 if (reloc_vector != NULL)
12965 free (reloc_vector);
12966 return data;
12967
12968 error_return:
12969 if (reloc_vector != NULL)
12970 free (reloc_vector);
12971 return NULL;
12972 }
12973 \f
12974 static bfd_boolean
12975 mips_elf_relax_delete_bytes (bfd *abfd,
12976 asection *sec, bfd_vma addr, int count)
12977 {
12978 Elf_Internal_Shdr *symtab_hdr;
12979 unsigned int sec_shndx;
12980 bfd_byte *contents;
12981 Elf_Internal_Rela *irel, *irelend;
12982 Elf_Internal_Sym *isym;
12983 Elf_Internal_Sym *isymend;
12984 struct elf_link_hash_entry **sym_hashes;
12985 struct elf_link_hash_entry **end_hashes;
12986 struct elf_link_hash_entry **start_hashes;
12987 unsigned int symcount;
12988
12989 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12990 contents = elf_section_data (sec)->this_hdr.contents;
12991
12992 irel = elf_section_data (sec)->relocs;
12993 irelend = irel + sec->reloc_count;
12994
12995 /* Actually delete the bytes. */
12996 memmove (contents + addr, contents + addr + count,
12997 (size_t) (sec->size - addr - count));
12998 sec->size -= count;
12999
13000 /* Adjust all the relocs. */
13001 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13002 {
13003 /* Get the new reloc address. */
13004 if (irel->r_offset > addr)
13005 irel->r_offset -= count;
13006 }
13007
13008 BFD_ASSERT (addr % 2 == 0);
13009 BFD_ASSERT (count % 2 == 0);
13010
13011 /* Adjust the local symbols defined in this section. */
13012 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13013 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13014 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13015 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13016 isym->st_value -= count;
13017
13018 /* Now adjust the global symbols defined in this section. */
13019 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13020 - symtab_hdr->sh_info);
13021 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13022 end_hashes = sym_hashes + symcount;
13023
13024 for (; sym_hashes < end_hashes; sym_hashes++)
13025 {
13026 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13027
13028 if ((sym_hash->root.type == bfd_link_hash_defined
13029 || sym_hash->root.type == bfd_link_hash_defweak)
13030 && sym_hash->root.u.def.section == sec)
13031 {
13032 bfd_vma value = sym_hash->root.u.def.value;
13033
13034 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13035 value &= MINUS_TWO;
13036 if (value > addr)
13037 sym_hash->root.u.def.value -= count;
13038 }
13039 }
13040
13041 return TRUE;
13042 }
13043
13044
13045 /* Opcodes needed for microMIPS relaxation as found in
13046 opcodes/micromips-opc.c. */
13047
13048 struct opcode_descriptor {
13049 unsigned long match;
13050 unsigned long mask;
13051 };
13052
13053 /* The $ra register aka $31. */
13054
13055 #define RA 31
13056
13057 /* 32-bit instruction format register fields. */
13058
13059 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13060 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13061
13062 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13063
13064 #define OP16_VALID_REG(r) \
13065 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13066
13067
13068 /* 32-bit and 16-bit branches. */
13069
13070 static const struct opcode_descriptor b_insns_32[] = {
13071 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13072 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13073 { 0, 0 } /* End marker for find_match(). */
13074 };
13075
13076 static const struct opcode_descriptor bc_insn_32 =
13077 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13078
13079 static const struct opcode_descriptor bz_insn_32 =
13080 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13081
13082 static const struct opcode_descriptor bzal_insn_32 =
13083 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13084
13085 static const struct opcode_descriptor beq_insn_32 =
13086 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13087
13088 static const struct opcode_descriptor b_insn_16 =
13089 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13090
13091 static const struct opcode_descriptor bz_insn_16 =
13092 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13093
13094
13095 /* 32-bit and 16-bit branch EQ and NE zero. */
13096
13097 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13098 eq and second the ne. This convention is used when replacing a
13099 32-bit BEQ/BNE with the 16-bit version. */
13100
13101 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13102
13103 static const struct opcode_descriptor bz_rs_insns_32[] = {
13104 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13105 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13106 { 0, 0 } /* End marker for find_match(). */
13107 };
13108
13109 static const struct opcode_descriptor bz_rt_insns_32[] = {
13110 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13111 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13112 { 0, 0 } /* End marker for find_match(). */
13113 };
13114
13115 static const struct opcode_descriptor bzc_insns_32[] = {
13116 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13117 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13118 { 0, 0 } /* End marker for find_match(). */
13119 };
13120
13121 static const struct opcode_descriptor bz_insns_16[] = {
13122 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13123 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13124 { 0, 0 } /* End marker for find_match(). */
13125 };
13126
13127 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13128
13129 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13130 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13131
13132
13133 /* 32-bit instructions with a delay slot. */
13134
13135 static const struct opcode_descriptor jal_insn_32_bd16 =
13136 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13137
13138 static const struct opcode_descriptor jal_insn_32_bd32 =
13139 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13140
13141 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13142 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13143
13144 static const struct opcode_descriptor j_insn_32 =
13145 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13146
13147 static const struct opcode_descriptor jalr_insn_32 =
13148 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13149
13150 /* This table can be compacted, because no opcode replacement is made. */
13151
13152 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13153 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13154
13155 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13156 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13157
13158 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13159 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13160 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13161 { 0, 0 } /* End marker for find_match(). */
13162 };
13163
13164 /* This table can be compacted, because no opcode replacement is made. */
13165
13166 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13167 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13168
13169 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13170 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13171 { 0, 0 } /* End marker for find_match(). */
13172 };
13173
13174
13175 /* 16-bit instructions with a delay slot. */
13176
13177 static const struct opcode_descriptor jalr_insn_16_bd16 =
13178 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13179
13180 static const struct opcode_descriptor jalr_insn_16_bd32 =
13181 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13182
13183 static const struct opcode_descriptor jr_insn_16 =
13184 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13185
13186 #define JR16_REG(opcode) ((opcode) & 0x1f)
13187
13188 /* This table can be compacted, because no opcode replacement is made. */
13189
13190 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13191 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13192
13193 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13194 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13195 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13196 { 0, 0 } /* End marker for find_match(). */
13197 };
13198
13199
13200 /* LUI instruction. */
13201
13202 static const struct opcode_descriptor lui_insn =
13203 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13204
13205
13206 /* ADDIU instruction. */
13207
13208 static const struct opcode_descriptor addiu_insn =
13209 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13210
13211 static const struct opcode_descriptor addiupc_insn =
13212 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13213
13214 #define ADDIUPC_REG_FIELD(r) \
13215 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13216
13217
13218 /* Relaxable instructions in a JAL delay slot: MOVE. */
13219
13220 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13221 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13222 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13223 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13224
13225 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13226 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13227
13228 static const struct opcode_descriptor move_insns_32[] = {
13229 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13230 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13231 { 0, 0 } /* End marker for find_match(). */
13232 };
13233
13234 static const struct opcode_descriptor move_insn_16 =
13235 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13236
13237
13238 /* NOP instructions. */
13239
13240 static const struct opcode_descriptor nop_insn_32 =
13241 { /* "nop", "", */ 0x00000000, 0xffffffff };
13242
13243 static const struct opcode_descriptor nop_insn_16 =
13244 { /* "nop", "", */ 0x0c00, 0xffff };
13245
13246
13247 /* Instruction match support. */
13248
13249 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13250
13251 static int
13252 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13253 {
13254 unsigned long indx;
13255
13256 for (indx = 0; insn[indx].mask != 0; indx++)
13257 if (MATCH (opcode, insn[indx]))
13258 return indx;
13259
13260 return -1;
13261 }
13262
13263
13264 /* Branch and delay slot decoding support. */
13265
13266 /* If PTR points to what *might* be a 16-bit branch or jump, then
13267 return the minimum length of its delay slot, otherwise return 0.
13268 Non-zero results are not definitive as we might be checking against
13269 the second half of another instruction. */
13270
13271 static int
13272 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13273 {
13274 unsigned long opcode;
13275 int bdsize;
13276
13277 opcode = bfd_get_16 (abfd, ptr);
13278 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13279 /* 16-bit branch/jump with a 32-bit delay slot. */
13280 bdsize = 4;
13281 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13282 || find_match (opcode, ds_insns_16_bd16) >= 0)
13283 /* 16-bit branch/jump with a 16-bit delay slot. */
13284 bdsize = 2;
13285 else
13286 /* No delay slot. */
13287 bdsize = 0;
13288
13289 return bdsize;
13290 }
13291
13292 /* If PTR points to what *might* be a 32-bit branch or jump, then
13293 return the minimum length of its delay slot, otherwise return 0.
13294 Non-zero results are not definitive as we might be checking against
13295 the second half of another instruction. */
13296
13297 static int
13298 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13299 {
13300 unsigned long opcode;
13301 int bdsize;
13302
13303 opcode = bfd_get_micromips_32 (abfd, ptr);
13304 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13305 /* 32-bit branch/jump with a 32-bit delay slot. */
13306 bdsize = 4;
13307 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13308 /* 32-bit branch/jump with a 16-bit delay slot. */
13309 bdsize = 2;
13310 else
13311 /* No delay slot. */
13312 bdsize = 0;
13313
13314 return bdsize;
13315 }
13316
13317 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13318 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13319
13320 static bfd_boolean
13321 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13322 {
13323 unsigned long opcode;
13324
13325 opcode = bfd_get_16 (abfd, ptr);
13326 if (MATCH (opcode, b_insn_16)
13327 /* B16 */
13328 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13329 /* JR16 */
13330 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13331 /* BEQZ16, BNEZ16 */
13332 || (MATCH (opcode, jalr_insn_16_bd32)
13333 /* JALR16 */
13334 && reg != JR16_REG (opcode) && reg != RA))
13335 return TRUE;
13336
13337 return FALSE;
13338 }
13339
13340 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13341 then return TRUE, otherwise FALSE. */
13342
13343 static bfd_boolean
13344 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13345 {
13346 unsigned long opcode;
13347
13348 opcode = bfd_get_micromips_32 (abfd, ptr);
13349 if (MATCH (opcode, j_insn_32)
13350 /* J */
13351 || MATCH (opcode, bc_insn_32)
13352 /* BC1F, BC1T, BC2F, BC2T */
13353 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13354 /* JAL, JALX */
13355 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13356 /* BGEZ, BGTZ, BLEZ, BLTZ */
13357 || (MATCH (opcode, bzal_insn_32)
13358 /* BGEZAL, BLTZAL */
13359 && reg != OP32_SREG (opcode) && reg != RA)
13360 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13361 /* JALR, JALR.HB, BEQ, BNE */
13362 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13363 return TRUE;
13364
13365 return FALSE;
13366 }
13367
13368 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13369 IRELEND) at OFFSET indicate that there must be a compact branch there,
13370 then return TRUE, otherwise FALSE. */
13371
13372 static bfd_boolean
13373 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13374 const Elf_Internal_Rela *internal_relocs,
13375 const Elf_Internal_Rela *irelend)
13376 {
13377 const Elf_Internal_Rela *irel;
13378 unsigned long opcode;
13379
13380 opcode = bfd_get_micromips_32 (abfd, ptr);
13381 if (find_match (opcode, bzc_insns_32) < 0)
13382 return FALSE;
13383
13384 for (irel = internal_relocs; irel < irelend; irel++)
13385 if (irel->r_offset == offset
13386 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13387 return TRUE;
13388
13389 return FALSE;
13390 }
13391
13392 /* Bitsize checking. */
13393 #define IS_BITSIZE(val, N) \
13394 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13395 - (1ULL << ((N) - 1))) == (val))
13396
13397 \f
13398 bfd_boolean
13399 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13400 struct bfd_link_info *link_info,
13401 bfd_boolean *again)
13402 {
13403 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13404 Elf_Internal_Shdr *symtab_hdr;
13405 Elf_Internal_Rela *internal_relocs;
13406 Elf_Internal_Rela *irel, *irelend;
13407 bfd_byte *contents = NULL;
13408 Elf_Internal_Sym *isymbuf = NULL;
13409
13410 /* Assume nothing changes. */
13411 *again = FALSE;
13412
13413 /* We don't have to do anything for a relocatable link, if
13414 this section does not have relocs, or if this is not a
13415 code section. */
13416
13417 if (bfd_link_relocatable (link_info)
13418 || (sec->flags & SEC_RELOC) == 0
13419 || sec->reloc_count == 0
13420 || (sec->flags & SEC_CODE) == 0)
13421 return TRUE;
13422
13423 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13424
13425 /* Get a copy of the native relocations. */
13426 internal_relocs = (_bfd_elf_link_read_relocs
13427 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13428 link_info->keep_memory));
13429 if (internal_relocs == NULL)
13430 goto error_return;
13431
13432 /* Walk through them looking for relaxing opportunities. */
13433 irelend = internal_relocs + sec->reloc_count;
13434 for (irel = internal_relocs; irel < irelend; irel++)
13435 {
13436 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13437 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13438 bfd_boolean target_is_micromips_code_p;
13439 unsigned long opcode;
13440 bfd_vma symval;
13441 bfd_vma pcrval;
13442 bfd_byte *ptr;
13443 int fndopc;
13444
13445 /* The number of bytes to delete for relaxation and from where
13446 to delete these bytes starting at irel->r_offset. */
13447 int delcnt = 0;
13448 int deloff = 0;
13449
13450 /* If this isn't something that can be relaxed, then ignore
13451 this reloc. */
13452 if (r_type != R_MICROMIPS_HI16
13453 && r_type != R_MICROMIPS_PC16_S1
13454 && r_type != R_MICROMIPS_26_S1)
13455 continue;
13456
13457 /* Get the section contents if we haven't done so already. */
13458 if (contents == NULL)
13459 {
13460 /* Get cached copy if it exists. */
13461 if (elf_section_data (sec)->this_hdr.contents != NULL)
13462 contents = elf_section_data (sec)->this_hdr.contents;
13463 /* Go get them off disk. */
13464 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13465 goto error_return;
13466 }
13467 ptr = contents + irel->r_offset;
13468
13469 /* Read this BFD's local symbols if we haven't done so already. */
13470 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13471 {
13472 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13473 if (isymbuf == NULL)
13474 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13475 symtab_hdr->sh_info, 0,
13476 NULL, NULL, NULL);
13477 if (isymbuf == NULL)
13478 goto error_return;
13479 }
13480
13481 /* Get the value of the symbol referred to by the reloc. */
13482 if (r_symndx < symtab_hdr->sh_info)
13483 {
13484 /* A local symbol. */
13485 Elf_Internal_Sym *isym;
13486 asection *sym_sec;
13487
13488 isym = isymbuf + r_symndx;
13489 if (isym->st_shndx == SHN_UNDEF)
13490 sym_sec = bfd_und_section_ptr;
13491 else if (isym->st_shndx == SHN_ABS)
13492 sym_sec = bfd_abs_section_ptr;
13493 else if (isym->st_shndx == SHN_COMMON)
13494 sym_sec = bfd_com_section_ptr;
13495 else
13496 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13497 symval = (isym->st_value
13498 + sym_sec->output_section->vma
13499 + sym_sec->output_offset);
13500 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13501 }
13502 else
13503 {
13504 unsigned long indx;
13505 struct elf_link_hash_entry *h;
13506
13507 /* An external symbol. */
13508 indx = r_symndx - symtab_hdr->sh_info;
13509 h = elf_sym_hashes (abfd)[indx];
13510 BFD_ASSERT (h != NULL);
13511
13512 if (h->root.type != bfd_link_hash_defined
13513 && h->root.type != bfd_link_hash_defweak)
13514 /* This appears to be a reference to an undefined
13515 symbol. Just ignore it -- it will be caught by the
13516 regular reloc processing. */
13517 continue;
13518
13519 symval = (h->root.u.def.value
13520 + h->root.u.def.section->output_section->vma
13521 + h->root.u.def.section->output_offset);
13522 target_is_micromips_code_p = (!h->needs_plt
13523 && ELF_ST_IS_MICROMIPS (h->other));
13524 }
13525
13526
13527 /* For simplicity of coding, we are going to modify the
13528 section contents, the section relocs, and the BFD symbol
13529 table. We must tell the rest of the code not to free up this
13530 information. It would be possible to instead create a table
13531 of changes which have to be made, as is done in coff-mips.c;
13532 that would be more work, but would require less memory when
13533 the linker is run. */
13534
13535 /* Only 32-bit instructions relaxed. */
13536 if (irel->r_offset + 4 > sec->size)
13537 continue;
13538
13539 opcode = bfd_get_micromips_32 (abfd, ptr);
13540
13541 /* This is the pc-relative distance from the instruction the
13542 relocation is applied to, to the symbol referred. */
13543 pcrval = (symval
13544 - (sec->output_section->vma + sec->output_offset)
13545 - irel->r_offset);
13546
13547 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13548 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13549 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13550
13551 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13552
13553 where pcrval has first to be adjusted to apply against the LO16
13554 location (we make the adjustment later on, when we have figured
13555 out the offset). */
13556 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13557 {
13558 bfd_boolean bzc = FALSE;
13559 unsigned long nextopc;
13560 unsigned long reg;
13561 bfd_vma offset;
13562
13563 /* Give up if the previous reloc was a HI16 against this symbol
13564 too. */
13565 if (irel > internal_relocs
13566 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13567 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13568 continue;
13569
13570 /* Or if the next reloc is not a LO16 against this symbol. */
13571 if (irel + 1 >= irelend
13572 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13573 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13574 continue;
13575
13576 /* Or if the second next reloc is a LO16 against this symbol too. */
13577 if (irel + 2 >= irelend
13578 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13579 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13580 continue;
13581
13582 /* See if the LUI instruction *might* be in a branch delay slot.
13583 We check whether what looks like a 16-bit branch or jump is
13584 actually an immediate argument to a compact branch, and let
13585 it through if so. */
13586 if (irel->r_offset >= 2
13587 && check_br16_dslot (abfd, ptr - 2)
13588 && !(irel->r_offset >= 4
13589 && (bzc = check_relocated_bzc (abfd,
13590 ptr - 4, irel->r_offset - 4,
13591 internal_relocs, irelend))))
13592 continue;
13593 if (irel->r_offset >= 4
13594 && !bzc
13595 && check_br32_dslot (abfd, ptr - 4))
13596 continue;
13597
13598 reg = OP32_SREG (opcode);
13599
13600 /* We only relax adjacent instructions or ones separated with
13601 a branch or jump that has a delay slot. The branch or jump
13602 must not fiddle with the register used to hold the address.
13603 Subtract 4 for the LUI itself. */
13604 offset = irel[1].r_offset - irel[0].r_offset;
13605 switch (offset - 4)
13606 {
13607 case 0:
13608 break;
13609 case 2:
13610 if (check_br16 (abfd, ptr + 4, reg))
13611 break;
13612 continue;
13613 case 4:
13614 if (check_br32 (abfd, ptr + 4, reg))
13615 break;
13616 continue;
13617 default:
13618 continue;
13619 }
13620
13621 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13622
13623 /* Give up unless the same register is used with both
13624 relocations. */
13625 if (OP32_SREG (nextopc) != reg)
13626 continue;
13627
13628 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13629 and rounding up to take masking of the two LSBs into account. */
13630 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13631
13632 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13633 if (IS_BITSIZE (symval, 16))
13634 {
13635 /* Fix the relocation's type. */
13636 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13637
13638 /* Instructions using R_MICROMIPS_LO16 have the base or
13639 source register in bits 20:16. This register becomes $0
13640 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13641 nextopc &= ~0x001f0000;
13642 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13643 contents + irel[1].r_offset);
13644 }
13645
13646 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13647 We add 4 to take LUI deletion into account while checking
13648 the PC-relative distance. */
13649 else if (symval % 4 == 0
13650 && IS_BITSIZE (pcrval + 4, 25)
13651 && MATCH (nextopc, addiu_insn)
13652 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13653 && OP16_VALID_REG (OP32_TREG (nextopc)))
13654 {
13655 /* Fix the relocation's type. */
13656 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13657
13658 /* Replace ADDIU with the ADDIUPC version. */
13659 nextopc = (addiupc_insn.match
13660 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13661
13662 bfd_put_micromips_32 (abfd, nextopc,
13663 contents + irel[1].r_offset);
13664 }
13665
13666 /* Can't do anything, give up, sigh... */
13667 else
13668 continue;
13669
13670 /* Fix the relocation's type. */
13671 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13672
13673 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13674 delcnt = 4;
13675 deloff = 0;
13676 }
13677
13678 /* Compact branch relaxation -- due to the multitude of macros
13679 employed by the compiler/assembler, compact branches are not
13680 always generated. Obviously, this can/will be fixed elsewhere,
13681 but there is no drawback in double checking it here. */
13682 else if (r_type == R_MICROMIPS_PC16_S1
13683 && irel->r_offset + 5 < sec->size
13684 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13685 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13686 && ((!insn32
13687 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13688 nop_insn_16) ? 2 : 0))
13689 || (irel->r_offset + 7 < sec->size
13690 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13691 ptr + 4),
13692 nop_insn_32) ? 4 : 0))))
13693 {
13694 unsigned long reg;
13695
13696 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13697
13698 /* Replace BEQZ/BNEZ with the compact version. */
13699 opcode = (bzc_insns_32[fndopc].match
13700 | BZC32_REG_FIELD (reg)
13701 | (opcode & 0xffff)); /* Addend value. */
13702
13703 bfd_put_micromips_32 (abfd, opcode, ptr);
13704
13705 /* Delete the delay slot NOP: two or four bytes from
13706 irel->offset + 4; delcnt has already been set above. */
13707 deloff = 4;
13708 }
13709
13710 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13711 to check the distance from the next instruction, so subtract 2. */
13712 else if (!insn32
13713 && r_type == R_MICROMIPS_PC16_S1
13714 && IS_BITSIZE (pcrval - 2, 11)
13715 && find_match (opcode, b_insns_32) >= 0)
13716 {
13717 /* Fix the relocation's type. */
13718 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13719
13720 /* Replace the 32-bit opcode with a 16-bit opcode. */
13721 bfd_put_16 (abfd,
13722 (b_insn_16.match
13723 | (opcode & 0x3ff)), /* Addend value. */
13724 ptr);
13725
13726 /* Delete 2 bytes from irel->r_offset + 2. */
13727 delcnt = 2;
13728 deloff = 2;
13729 }
13730
13731 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13732 to check the distance from the next instruction, so subtract 2. */
13733 else if (!insn32
13734 && r_type == R_MICROMIPS_PC16_S1
13735 && IS_BITSIZE (pcrval - 2, 8)
13736 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13737 && OP16_VALID_REG (OP32_SREG (opcode)))
13738 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13739 && OP16_VALID_REG (OP32_TREG (opcode)))))
13740 {
13741 unsigned long reg;
13742
13743 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13744
13745 /* Fix the relocation's type. */
13746 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13747
13748 /* Replace the 32-bit opcode with a 16-bit opcode. */
13749 bfd_put_16 (abfd,
13750 (bz_insns_16[fndopc].match
13751 | BZ16_REG_FIELD (reg)
13752 | (opcode & 0x7f)), /* Addend value. */
13753 ptr);
13754
13755 /* Delete 2 bytes from irel->r_offset + 2. */
13756 delcnt = 2;
13757 deloff = 2;
13758 }
13759
13760 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13761 else if (!insn32
13762 && r_type == R_MICROMIPS_26_S1
13763 && target_is_micromips_code_p
13764 && irel->r_offset + 7 < sec->size
13765 && MATCH (opcode, jal_insn_32_bd32))
13766 {
13767 unsigned long n32opc;
13768 bfd_boolean relaxed = FALSE;
13769
13770 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13771
13772 if (MATCH (n32opc, nop_insn_32))
13773 {
13774 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13775 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13776
13777 relaxed = TRUE;
13778 }
13779 else if (find_match (n32opc, move_insns_32) >= 0)
13780 {
13781 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13782 bfd_put_16 (abfd,
13783 (move_insn_16.match
13784 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13785 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13786 ptr + 4);
13787
13788 relaxed = TRUE;
13789 }
13790 /* Other 32-bit instructions relaxable to 16-bit
13791 instructions will be handled here later. */
13792
13793 if (relaxed)
13794 {
13795 /* JAL with 32-bit delay slot that is changed to a JALS
13796 with 16-bit delay slot. */
13797 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13798
13799 /* Delete 2 bytes from irel->r_offset + 6. */
13800 delcnt = 2;
13801 deloff = 6;
13802 }
13803 }
13804
13805 if (delcnt != 0)
13806 {
13807 /* Note that we've changed the relocs, section contents, etc. */
13808 elf_section_data (sec)->relocs = internal_relocs;
13809 elf_section_data (sec)->this_hdr.contents = contents;
13810 symtab_hdr->contents = (unsigned char *) isymbuf;
13811
13812 /* Delete bytes depending on the delcnt and deloff. */
13813 if (!mips_elf_relax_delete_bytes (abfd, sec,
13814 irel->r_offset + deloff, delcnt))
13815 goto error_return;
13816
13817 /* That will change things, so we should relax again.
13818 Note that this is not required, and it may be slow. */
13819 *again = TRUE;
13820 }
13821 }
13822
13823 if (isymbuf != NULL
13824 && symtab_hdr->contents != (unsigned char *) isymbuf)
13825 {
13826 if (! link_info->keep_memory)
13827 free (isymbuf);
13828 else
13829 {
13830 /* Cache the symbols for elf_link_input_bfd. */
13831 symtab_hdr->contents = (unsigned char *) isymbuf;
13832 }
13833 }
13834
13835 if (contents != NULL
13836 && elf_section_data (sec)->this_hdr.contents != contents)
13837 {
13838 if (! link_info->keep_memory)
13839 free (contents);
13840 else
13841 {
13842 /* Cache the section contents for elf_link_input_bfd. */
13843 elf_section_data (sec)->this_hdr.contents = contents;
13844 }
13845 }
13846
13847 if (internal_relocs != NULL
13848 && elf_section_data (sec)->relocs != internal_relocs)
13849 free (internal_relocs);
13850
13851 return TRUE;
13852
13853 error_return:
13854 if (isymbuf != NULL
13855 && symtab_hdr->contents != (unsigned char *) isymbuf)
13856 free (isymbuf);
13857 if (contents != NULL
13858 && elf_section_data (sec)->this_hdr.contents != contents)
13859 free (contents);
13860 if (internal_relocs != NULL
13861 && elf_section_data (sec)->relocs != internal_relocs)
13862 free (internal_relocs);
13863
13864 return FALSE;
13865 }
13866 \f
13867 /* Create a MIPS ELF linker hash table. */
13868
13869 struct bfd_link_hash_table *
13870 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13871 {
13872 struct mips_elf_link_hash_table *ret;
13873 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13874
13875 ret = bfd_zmalloc (amt);
13876 if (ret == NULL)
13877 return NULL;
13878
13879 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13880 mips_elf_link_hash_newfunc,
13881 sizeof (struct mips_elf_link_hash_entry),
13882 MIPS_ELF_DATA))
13883 {
13884 free (ret);
13885 return NULL;
13886 }
13887 ret->root.init_plt_refcount.plist = NULL;
13888 ret->root.init_plt_offset.plist = NULL;
13889
13890 return &ret->root.root;
13891 }
13892
13893 /* Likewise, but indicate that the target is VxWorks. */
13894
13895 struct bfd_link_hash_table *
13896 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13897 {
13898 struct bfd_link_hash_table *ret;
13899
13900 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13901 if (ret)
13902 {
13903 struct mips_elf_link_hash_table *htab;
13904
13905 htab = (struct mips_elf_link_hash_table *) ret;
13906 htab->use_plts_and_copy_relocs = TRUE;
13907 htab->is_vxworks = TRUE;
13908 }
13909 return ret;
13910 }
13911
13912 /* A function that the linker calls if we are allowed to use PLTs
13913 and copy relocs. */
13914
13915 void
13916 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13917 {
13918 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13919 }
13920
13921 /* A function that the linker calls to select between all or only
13922 32-bit microMIPS instructions. */
13923
13924 void
13925 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13926 {
13927 mips_elf_hash_table (info)->insn32 = on;
13928 }
13929 \f
13930 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13931
13932 struct mips_mach_extension
13933 {
13934 unsigned long extension, base;
13935 };
13936
13937
13938 /* An array describing how BFD machines relate to one another. The entries
13939 are ordered topologically with MIPS I extensions listed last. */
13940
13941 static const struct mips_mach_extension mips_mach_extensions[] =
13942 {
13943 /* MIPS64r2 extensions. */
13944 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13945 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13946 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13947 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13948 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13949
13950 /* MIPS64 extensions. */
13951 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13952 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13953 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13954
13955 /* MIPS V extensions. */
13956 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13957
13958 /* R10000 extensions. */
13959 { bfd_mach_mips12000, bfd_mach_mips10000 },
13960 { bfd_mach_mips14000, bfd_mach_mips10000 },
13961 { bfd_mach_mips16000, bfd_mach_mips10000 },
13962
13963 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13964 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13965 better to allow vr5400 and vr5500 code to be merged anyway, since
13966 many libraries will just use the core ISA. Perhaps we could add
13967 some sort of ASE flag if this ever proves a problem. */
13968 { bfd_mach_mips5500, bfd_mach_mips5400 },
13969 { bfd_mach_mips5400, bfd_mach_mips5000 },
13970
13971 /* MIPS IV extensions. */
13972 { bfd_mach_mips5, bfd_mach_mips8000 },
13973 { bfd_mach_mips10000, bfd_mach_mips8000 },
13974 { bfd_mach_mips5000, bfd_mach_mips8000 },
13975 { bfd_mach_mips7000, bfd_mach_mips8000 },
13976 { bfd_mach_mips9000, bfd_mach_mips8000 },
13977
13978 /* VR4100 extensions. */
13979 { bfd_mach_mips4120, bfd_mach_mips4100 },
13980 { bfd_mach_mips4111, bfd_mach_mips4100 },
13981
13982 /* MIPS III extensions. */
13983 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13984 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13985 { bfd_mach_mips8000, bfd_mach_mips4000 },
13986 { bfd_mach_mips4650, bfd_mach_mips4000 },
13987 { bfd_mach_mips4600, bfd_mach_mips4000 },
13988 { bfd_mach_mips4400, bfd_mach_mips4000 },
13989 { bfd_mach_mips4300, bfd_mach_mips4000 },
13990 { bfd_mach_mips4100, bfd_mach_mips4000 },
13991 { bfd_mach_mips4010, bfd_mach_mips4000 },
13992 { bfd_mach_mips5900, bfd_mach_mips4000 },
13993
13994 /* MIPS32 extensions. */
13995 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13996
13997 /* MIPS II extensions. */
13998 { bfd_mach_mips4000, bfd_mach_mips6000 },
13999 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14000
14001 /* MIPS I extensions. */
14002 { bfd_mach_mips6000, bfd_mach_mips3000 },
14003 { bfd_mach_mips3900, bfd_mach_mips3000 }
14004 };
14005
14006 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14007
14008 static bfd_boolean
14009 mips_mach_extends_p (unsigned long base, unsigned long extension)
14010 {
14011 size_t i;
14012
14013 if (extension == base)
14014 return TRUE;
14015
14016 if (base == bfd_mach_mipsisa32
14017 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14018 return TRUE;
14019
14020 if (base == bfd_mach_mipsisa32r2
14021 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14022 return TRUE;
14023
14024 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14025 if (extension == mips_mach_extensions[i].extension)
14026 {
14027 extension = mips_mach_extensions[i].base;
14028 if (extension == base)
14029 return TRUE;
14030 }
14031
14032 return FALSE;
14033 }
14034
14035 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14036
14037 static unsigned long
14038 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14039 {
14040 switch (isa_ext)
14041 {
14042 case AFL_EXT_3900: return bfd_mach_mips3900;
14043 case AFL_EXT_4010: return bfd_mach_mips4010;
14044 case AFL_EXT_4100: return bfd_mach_mips4100;
14045 case AFL_EXT_4111: return bfd_mach_mips4111;
14046 case AFL_EXT_4120: return bfd_mach_mips4120;
14047 case AFL_EXT_4650: return bfd_mach_mips4650;
14048 case AFL_EXT_5400: return bfd_mach_mips5400;
14049 case AFL_EXT_5500: return bfd_mach_mips5500;
14050 case AFL_EXT_5900: return bfd_mach_mips5900;
14051 case AFL_EXT_10000: return bfd_mach_mips10000;
14052 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14053 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14054 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14055 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14056 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14057 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14058 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14059 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14060 default: return bfd_mach_mips3000;
14061 }
14062 }
14063
14064 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14065
14066 unsigned int
14067 bfd_mips_isa_ext (bfd *abfd)
14068 {
14069 switch (bfd_get_mach (abfd))
14070 {
14071 case bfd_mach_mips3900: return AFL_EXT_3900;
14072 case bfd_mach_mips4010: return AFL_EXT_4010;
14073 case bfd_mach_mips4100: return AFL_EXT_4100;
14074 case bfd_mach_mips4111: return AFL_EXT_4111;
14075 case bfd_mach_mips4120: return AFL_EXT_4120;
14076 case bfd_mach_mips4650: return AFL_EXT_4650;
14077 case bfd_mach_mips5400: return AFL_EXT_5400;
14078 case bfd_mach_mips5500: return AFL_EXT_5500;
14079 case bfd_mach_mips5900: return AFL_EXT_5900;
14080 case bfd_mach_mips10000: return AFL_EXT_10000;
14081 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14082 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14083 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14084 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14085 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14086 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14087 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14088 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14089 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14090 default: return 0;
14091 }
14092 }
14093
14094 /* Encode ISA level and revision as a single value. */
14095 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14096
14097 /* Decode a single value into level and revision. */
14098 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14099 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14100
14101 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14102
14103 static void
14104 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14105 {
14106 int new_isa = 0;
14107 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14108 {
14109 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14110 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14111 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14112 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14113 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14114 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14115 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14116 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14117 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14118 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14119 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14120 default:
14121 (*_bfd_error_handler)
14122 (_("%B: Unknown architecture %s"),
14123 abfd, bfd_printable_name (abfd));
14124 }
14125
14126 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14127 {
14128 abiflags->isa_level = ISA_LEVEL (new_isa);
14129 abiflags->isa_rev = ISA_REV (new_isa);
14130 }
14131
14132 /* Update the isa_ext if ABFD describes a further extension. */
14133 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14134 bfd_get_mach (abfd)))
14135 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14136 }
14137
14138 /* Return true if the given ELF header flags describe a 32-bit binary. */
14139
14140 static bfd_boolean
14141 mips_32bit_flags_p (flagword flags)
14142 {
14143 return ((flags & EF_MIPS_32BITMODE) != 0
14144 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14145 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14146 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14147 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14148 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14149 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14150 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14151 }
14152
14153 /* Infer the content of the ABI flags based on the elf header. */
14154
14155 static void
14156 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14157 {
14158 obj_attribute *in_attr;
14159
14160 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14161 update_mips_abiflags_isa (abfd, abiflags);
14162
14163 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14164 abiflags->gpr_size = AFL_REG_32;
14165 else
14166 abiflags->gpr_size = AFL_REG_64;
14167
14168 abiflags->cpr1_size = AFL_REG_NONE;
14169
14170 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14171 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14172
14173 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14174 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14175 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14176 && abiflags->gpr_size == AFL_REG_32))
14177 abiflags->cpr1_size = AFL_REG_32;
14178 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14179 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14180 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14181 abiflags->cpr1_size = AFL_REG_64;
14182
14183 abiflags->cpr2_size = AFL_REG_NONE;
14184
14185 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14186 abiflags->ases |= AFL_ASE_MDMX;
14187 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14188 abiflags->ases |= AFL_ASE_MIPS16;
14189 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14190 abiflags->ases |= AFL_ASE_MICROMIPS;
14191
14192 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14193 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14194 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14195 && abiflags->isa_level >= 32
14196 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14197 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14198 }
14199
14200 /* We need to use a special link routine to handle the .reginfo and
14201 the .mdebug sections. We need to merge all instances of these
14202 sections together, not write them all out sequentially. */
14203
14204 bfd_boolean
14205 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14206 {
14207 asection *o;
14208 struct bfd_link_order *p;
14209 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14210 asection *rtproc_sec, *abiflags_sec;
14211 Elf32_RegInfo reginfo;
14212 struct ecoff_debug_info debug;
14213 struct mips_htab_traverse_info hti;
14214 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14215 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14216 HDRR *symhdr = &debug.symbolic_header;
14217 void *mdebug_handle = NULL;
14218 asection *s;
14219 EXTR esym;
14220 unsigned int i;
14221 bfd_size_type amt;
14222 struct mips_elf_link_hash_table *htab;
14223
14224 static const char * const secname[] =
14225 {
14226 ".text", ".init", ".fini", ".data",
14227 ".rodata", ".sdata", ".sbss", ".bss"
14228 };
14229 static const int sc[] =
14230 {
14231 scText, scInit, scFini, scData,
14232 scRData, scSData, scSBss, scBss
14233 };
14234
14235 /* Sort the dynamic symbols so that those with GOT entries come after
14236 those without. */
14237 htab = mips_elf_hash_table (info);
14238 BFD_ASSERT (htab != NULL);
14239
14240 if (!mips_elf_sort_hash_table (abfd, info))
14241 return FALSE;
14242
14243 /* Create any scheduled LA25 stubs. */
14244 hti.info = info;
14245 hti.output_bfd = abfd;
14246 hti.error = FALSE;
14247 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14248 if (hti.error)
14249 return FALSE;
14250
14251 /* Get a value for the GP register. */
14252 if (elf_gp (abfd) == 0)
14253 {
14254 struct bfd_link_hash_entry *h;
14255
14256 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14257 if (h != NULL && h->type == bfd_link_hash_defined)
14258 elf_gp (abfd) = (h->u.def.value
14259 + h->u.def.section->output_section->vma
14260 + h->u.def.section->output_offset);
14261 else if (htab->is_vxworks
14262 && (h = bfd_link_hash_lookup (info->hash,
14263 "_GLOBAL_OFFSET_TABLE_",
14264 FALSE, FALSE, TRUE))
14265 && h->type == bfd_link_hash_defined)
14266 elf_gp (abfd) = (h->u.def.section->output_section->vma
14267 + h->u.def.section->output_offset
14268 + h->u.def.value);
14269 else if (bfd_link_relocatable (info))
14270 {
14271 bfd_vma lo = MINUS_ONE;
14272
14273 /* Find the GP-relative section with the lowest offset. */
14274 for (o = abfd->sections; o != NULL; o = o->next)
14275 if (o->vma < lo
14276 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14277 lo = o->vma;
14278
14279 /* And calculate GP relative to that. */
14280 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14281 }
14282 else
14283 {
14284 /* If the relocate_section function needs to do a reloc
14285 involving the GP value, it should make a reloc_dangerous
14286 callback to warn that GP is not defined. */
14287 }
14288 }
14289
14290 /* Go through the sections and collect the .reginfo and .mdebug
14291 information. */
14292 abiflags_sec = NULL;
14293 reginfo_sec = NULL;
14294 mdebug_sec = NULL;
14295 gptab_data_sec = NULL;
14296 gptab_bss_sec = NULL;
14297 for (o = abfd->sections; o != NULL; o = o->next)
14298 {
14299 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14300 {
14301 /* We have found the .MIPS.abiflags section in the output file.
14302 Look through all the link_orders comprising it and remove them.
14303 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14304 for (p = o->map_head.link_order; p != NULL; p = p->next)
14305 {
14306 asection *input_section;
14307
14308 if (p->type != bfd_indirect_link_order)
14309 {
14310 if (p->type == bfd_data_link_order)
14311 continue;
14312 abort ();
14313 }
14314
14315 input_section = p->u.indirect.section;
14316
14317 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14318 elf_link_input_bfd ignores this section. */
14319 input_section->flags &= ~SEC_HAS_CONTENTS;
14320 }
14321
14322 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14323 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14324
14325 /* Skip this section later on (I don't think this currently
14326 matters, but someday it might). */
14327 o->map_head.link_order = NULL;
14328
14329 abiflags_sec = o;
14330 }
14331
14332 if (strcmp (o->name, ".reginfo") == 0)
14333 {
14334 memset (&reginfo, 0, sizeof reginfo);
14335
14336 /* We have found the .reginfo section in the output file.
14337 Look through all the link_orders comprising it and merge
14338 the information together. */
14339 for (p = o->map_head.link_order; p != NULL; p = p->next)
14340 {
14341 asection *input_section;
14342 bfd *input_bfd;
14343 Elf32_External_RegInfo ext;
14344 Elf32_RegInfo sub;
14345
14346 if (p->type != bfd_indirect_link_order)
14347 {
14348 if (p->type == bfd_data_link_order)
14349 continue;
14350 abort ();
14351 }
14352
14353 input_section = p->u.indirect.section;
14354 input_bfd = input_section->owner;
14355
14356 if (! bfd_get_section_contents (input_bfd, input_section,
14357 &ext, 0, sizeof ext))
14358 return FALSE;
14359
14360 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14361
14362 reginfo.ri_gprmask |= sub.ri_gprmask;
14363 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14364 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14365 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14366 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14367
14368 /* ri_gp_value is set by the function
14369 mips_elf32_section_processing when the section is
14370 finally written out. */
14371
14372 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14373 elf_link_input_bfd ignores this section. */
14374 input_section->flags &= ~SEC_HAS_CONTENTS;
14375 }
14376
14377 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14378 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14379
14380 /* Skip this section later on (I don't think this currently
14381 matters, but someday it might). */
14382 o->map_head.link_order = NULL;
14383
14384 reginfo_sec = o;
14385 }
14386
14387 if (strcmp (o->name, ".mdebug") == 0)
14388 {
14389 struct extsym_info einfo;
14390 bfd_vma last;
14391
14392 /* We have found the .mdebug section in the output file.
14393 Look through all the link_orders comprising it and merge
14394 the information together. */
14395 symhdr->magic = swap->sym_magic;
14396 /* FIXME: What should the version stamp be? */
14397 symhdr->vstamp = 0;
14398 symhdr->ilineMax = 0;
14399 symhdr->cbLine = 0;
14400 symhdr->idnMax = 0;
14401 symhdr->ipdMax = 0;
14402 symhdr->isymMax = 0;
14403 symhdr->ioptMax = 0;
14404 symhdr->iauxMax = 0;
14405 symhdr->issMax = 0;
14406 symhdr->issExtMax = 0;
14407 symhdr->ifdMax = 0;
14408 symhdr->crfd = 0;
14409 symhdr->iextMax = 0;
14410
14411 /* We accumulate the debugging information itself in the
14412 debug_info structure. */
14413 debug.line = NULL;
14414 debug.external_dnr = NULL;
14415 debug.external_pdr = NULL;
14416 debug.external_sym = NULL;
14417 debug.external_opt = NULL;
14418 debug.external_aux = NULL;
14419 debug.ss = NULL;
14420 debug.ssext = debug.ssext_end = NULL;
14421 debug.external_fdr = NULL;
14422 debug.external_rfd = NULL;
14423 debug.external_ext = debug.external_ext_end = NULL;
14424
14425 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14426 if (mdebug_handle == NULL)
14427 return FALSE;
14428
14429 esym.jmptbl = 0;
14430 esym.cobol_main = 0;
14431 esym.weakext = 0;
14432 esym.reserved = 0;
14433 esym.ifd = ifdNil;
14434 esym.asym.iss = issNil;
14435 esym.asym.st = stLocal;
14436 esym.asym.reserved = 0;
14437 esym.asym.index = indexNil;
14438 last = 0;
14439 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14440 {
14441 esym.asym.sc = sc[i];
14442 s = bfd_get_section_by_name (abfd, secname[i]);
14443 if (s != NULL)
14444 {
14445 esym.asym.value = s->vma;
14446 last = s->vma + s->size;
14447 }
14448 else
14449 esym.asym.value = last;
14450 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14451 secname[i], &esym))
14452 return FALSE;
14453 }
14454
14455 for (p = o->map_head.link_order; p != NULL; p = p->next)
14456 {
14457 asection *input_section;
14458 bfd *input_bfd;
14459 const struct ecoff_debug_swap *input_swap;
14460 struct ecoff_debug_info input_debug;
14461 char *eraw_src;
14462 char *eraw_end;
14463
14464 if (p->type != bfd_indirect_link_order)
14465 {
14466 if (p->type == bfd_data_link_order)
14467 continue;
14468 abort ();
14469 }
14470
14471 input_section = p->u.indirect.section;
14472 input_bfd = input_section->owner;
14473
14474 if (!is_mips_elf (input_bfd))
14475 {
14476 /* I don't know what a non MIPS ELF bfd would be
14477 doing with a .mdebug section, but I don't really
14478 want to deal with it. */
14479 continue;
14480 }
14481
14482 input_swap = (get_elf_backend_data (input_bfd)
14483 ->elf_backend_ecoff_debug_swap);
14484
14485 BFD_ASSERT (p->size == input_section->size);
14486
14487 /* The ECOFF linking code expects that we have already
14488 read in the debugging information and set up an
14489 ecoff_debug_info structure, so we do that now. */
14490 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14491 &input_debug))
14492 return FALSE;
14493
14494 if (! (bfd_ecoff_debug_accumulate
14495 (mdebug_handle, abfd, &debug, swap, input_bfd,
14496 &input_debug, input_swap, info)))
14497 return FALSE;
14498
14499 /* Loop through the external symbols. For each one with
14500 interesting information, try to find the symbol in
14501 the linker global hash table and save the information
14502 for the output external symbols. */
14503 eraw_src = input_debug.external_ext;
14504 eraw_end = (eraw_src
14505 + (input_debug.symbolic_header.iextMax
14506 * input_swap->external_ext_size));
14507 for (;
14508 eraw_src < eraw_end;
14509 eraw_src += input_swap->external_ext_size)
14510 {
14511 EXTR ext;
14512 const char *name;
14513 struct mips_elf_link_hash_entry *h;
14514
14515 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14516 if (ext.asym.sc == scNil
14517 || ext.asym.sc == scUndefined
14518 || ext.asym.sc == scSUndefined)
14519 continue;
14520
14521 name = input_debug.ssext + ext.asym.iss;
14522 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14523 name, FALSE, FALSE, TRUE);
14524 if (h == NULL || h->esym.ifd != -2)
14525 continue;
14526
14527 if (ext.ifd != -1)
14528 {
14529 BFD_ASSERT (ext.ifd
14530 < input_debug.symbolic_header.ifdMax);
14531 ext.ifd = input_debug.ifdmap[ext.ifd];
14532 }
14533
14534 h->esym = ext;
14535 }
14536
14537 /* Free up the information we just read. */
14538 free (input_debug.line);
14539 free (input_debug.external_dnr);
14540 free (input_debug.external_pdr);
14541 free (input_debug.external_sym);
14542 free (input_debug.external_opt);
14543 free (input_debug.external_aux);
14544 free (input_debug.ss);
14545 free (input_debug.ssext);
14546 free (input_debug.external_fdr);
14547 free (input_debug.external_rfd);
14548 free (input_debug.external_ext);
14549
14550 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14551 elf_link_input_bfd ignores this section. */
14552 input_section->flags &= ~SEC_HAS_CONTENTS;
14553 }
14554
14555 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14556 {
14557 /* Create .rtproc section. */
14558 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14559 if (rtproc_sec == NULL)
14560 {
14561 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14562 | SEC_LINKER_CREATED | SEC_READONLY);
14563
14564 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14565 ".rtproc",
14566 flags);
14567 if (rtproc_sec == NULL
14568 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14569 return FALSE;
14570 }
14571
14572 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14573 info, rtproc_sec,
14574 &debug))
14575 return FALSE;
14576 }
14577
14578 /* Build the external symbol information. */
14579 einfo.abfd = abfd;
14580 einfo.info = info;
14581 einfo.debug = &debug;
14582 einfo.swap = swap;
14583 einfo.failed = FALSE;
14584 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14585 mips_elf_output_extsym, &einfo);
14586 if (einfo.failed)
14587 return FALSE;
14588
14589 /* Set the size of the .mdebug section. */
14590 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14591
14592 /* Skip this section later on (I don't think this currently
14593 matters, but someday it might). */
14594 o->map_head.link_order = NULL;
14595
14596 mdebug_sec = o;
14597 }
14598
14599 if (CONST_STRNEQ (o->name, ".gptab."))
14600 {
14601 const char *subname;
14602 unsigned int c;
14603 Elf32_gptab *tab;
14604 Elf32_External_gptab *ext_tab;
14605 unsigned int j;
14606
14607 /* The .gptab.sdata and .gptab.sbss sections hold
14608 information describing how the small data area would
14609 change depending upon the -G switch. These sections
14610 not used in executables files. */
14611 if (! bfd_link_relocatable (info))
14612 {
14613 for (p = o->map_head.link_order; p != NULL; p = p->next)
14614 {
14615 asection *input_section;
14616
14617 if (p->type != bfd_indirect_link_order)
14618 {
14619 if (p->type == bfd_data_link_order)
14620 continue;
14621 abort ();
14622 }
14623
14624 input_section = p->u.indirect.section;
14625
14626 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14627 elf_link_input_bfd ignores this section. */
14628 input_section->flags &= ~SEC_HAS_CONTENTS;
14629 }
14630
14631 /* Skip this section later on (I don't think this
14632 currently matters, but someday it might). */
14633 o->map_head.link_order = NULL;
14634
14635 /* Really remove the section. */
14636 bfd_section_list_remove (abfd, o);
14637 --abfd->section_count;
14638
14639 continue;
14640 }
14641
14642 /* There is one gptab for initialized data, and one for
14643 uninitialized data. */
14644 if (strcmp (o->name, ".gptab.sdata") == 0)
14645 gptab_data_sec = o;
14646 else if (strcmp (o->name, ".gptab.sbss") == 0)
14647 gptab_bss_sec = o;
14648 else
14649 {
14650 (*_bfd_error_handler)
14651 (_("%s: illegal section name `%s'"),
14652 bfd_get_filename (abfd), o->name);
14653 bfd_set_error (bfd_error_nonrepresentable_section);
14654 return FALSE;
14655 }
14656
14657 /* The linker script always combines .gptab.data and
14658 .gptab.sdata into .gptab.sdata, and likewise for
14659 .gptab.bss and .gptab.sbss. It is possible that there is
14660 no .sdata or .sbss section in the output file, in which
14661 case we must change the name of the output section. */
14662 subname = o->name + sizeof ".gptab" - 1;
14663 if (bfd_get_section_by_name (abfd, subname) == NULL)
14664 {
14665 if (o == gptab_data_sec)
14666 o->name = ".gptab.data";
14667 else
14668 o->name = ".gptab.bss";
14669 subname = o->name + sizeof ".gptab" - 1;
14670 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14671 }
14672
14673 /* Set up the first entry. */
14674 c = 1;
14675 amt = c * sizeof (Elf32_gptab);
14676 tab = bfd_malloc (amt);
14677 if (tab == NULL)
14678 return FALSE;
14679 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14680 tab[0].gt_header.gt_unused = 0;
14681
14682 /* Combine the input sections. */
14683 for (p = o->map_head.link_order; p != NULL; p = p->next)
14684 {
14685 asection *input_section;
14686 bfd *input_bfd;
14687 bfd_size_type size;
14688 unsigned long last;
14689 bfd_size_type gpentry;
14690
14691 if (p->type != bfd_indirect_link_order)
14692 {
14693 if (p->type == bfd_data_link_order)
14694 continue;
14695 abort ();
14696 }
14697
14698 input_section = p->u.indirect.section;
14699 input_bfd = input_section->owner;
14700
14701 /* Combine the gptab entries for this input section one
14702 by one. We know that the input gptab entries are
14703 sorted by ascending -G value. */
14704 size = input_section->size;
14705 last = 0;
14706 for (gpentry = sizeof (Elf32_External_gptab);
14707 gpentry < size;
14708 gpentry += sizeof (Elf32_External_gptab))
14709 {
14710 Elf32_External_gptab ext_gptab;
14711 Elf32_gptab int_gptab;
14712 unsigned long val;
14713 unsigned long add;
14714 bfd_boolean exact;
14715 unsigned int look;
14716
14717 if (! (bfd_get_section_contents
14718 (input_bfd, input_section, &ext_gptab, gpentry,
14719 sizeof (Elf32_External_gptab))))
14720 {
14721 free (tab);
14722 return FALSE;
14723 }
14724
14725 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14726 &int_gptab);
14727 val = int_gptab.gt_entry.gt_g_value;
14728 add = int_gptab.gt_entry.gt_bytes - last;
14729
14730 exact = FALSE;
14731 for (look = 1; look < c; look++)
14732 {
14733 if (tab[look].gt_entry.gt_g_value >= val)
14734 tab[look].gt_entry.gt_bytes += add;
14735
14736 if (tab[look].gt_entry.gt_g_value == val)
14737 exact = TRUE;
14738 }
14739
14740 if (! exact)
14741 {
14742 Elf32_gptab *new_tab;
14743 unsigned int max;
14744
14745 /* We need a new table entry. */
14746 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14747 new_tab = bfd_realloc (tab, amt);
14748 if (new_tab == NULL)
14749 {
14750 free (tab);
14751 return FALSE;
14752 }
14753 tab = new_tab;
14754 tab[c].gt_entry.gt_g_value = val;
14755 tab[c].gt_entry.gt_bytes = add;
14756
14757 /* Merge in the size for the next smallest -G
14758 value, since that will be implied by this new
14759 value. */
14760 max = 0;
14761 for (look = 1; look < c; look++)
14762 {
14763 if (tab[look].gt_entry.gt_g_value < val
14764 && (max == 0
14765 || (tab[look].gt_entry.gt_g_value
14766 > tab[max].gt_entry.gt_g_value)))
14767 max = look;
14768 }
14769 if (max != 0)
14770 tab[c].gt_entry.gt_bytes +=
14771 tab[max].gt_entry.gt_bytes;
14772
14773 ++c;
14774 }
14775
14776 last = int_gptab.gt_entry.gt_bytes;
14777 }
14778
14779 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14780 elf_link_input_bfd ignores this section. */
14781 input_section->flags &= ~SEC_HAS_CONTENTS;
14782 }
14783
14784 /* The table must be sorted by -G value. */
14785 if (c > 2)
14786 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14787
14788 /* Swap out the table. */
14789 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14790 ext_tab = bfd_alloc (abfd, amt);
14791 if (ext_tab == NULL)
14792 {
14793 free (tab);
14794 return FALSE;
14795 }
14796
14797 for (j = 0; j < c; j++)
14798 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14799 free (tab);
14800
14801 o->size = c * sizeof (Elf32_External_gptab);
14802 o->contents = (bfd_byte *) ext_tab;
14803
14804 /* Skip this section later on (I don't think this currently
14805 matters, but someday it might). */
14806 o->map_head.link_order = NULL;
14807 }
14808 }
14809
14810 /* Invoke the regular ELF backend linker to do all the work. */
14811 if (!bfd_elf_final_link (abfd, info))
14812 return FALSE;
14813
14814 /* Now write out the computed sections. */
14815
14816 if (abiflags_sec != NULL)
14817 {
14818 Elf_External_ABIFlags_v0 ext;
14819 Elf_Internal_ABIFlags_v0 *abiflags;
14820
14821 abiflags = &mips_elf_tdata (abfd)->abiflags;
14822
14823 /* Set up the abiflags if no valid input sections were found. */
14824 if (!mips_elf_tdata (abfd)->abiflags_valid)
14825 {
14826 infer_mips_abiflags (abfd, abiflags);
14827 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14828 }
14829 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14830 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14831 return FALSE;
14832 }
14833
14834 if (reginfo_sec != NULL)
14835 {
14836 Elf32_External_RegInfo ext;
14837
14838 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14839 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14840 return FALSE;
14841 }
14842
14843 if (mdebug_sec != NULL)
14844 {
14845 BFD_ASSERT (abfd->output_has_begun);
14846 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14847 swap, info,
14848 mdebug_sec->filepos))
14849 return FALSE;
14850
14851 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14852 }
14853
14854 if (gptab_data_sec != NULL)
14855 {
14856 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14857 gptab_data_sec->contents,
14858 0, gptab_data_sec->size))
14859 return FALSE;
14860 }
14861
14862 if (gptab_bss_sec != NULL)
14863 {
14864 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14865 gptab_bss_sec->contents,
14866 0, gptab_bss_sec->size))
14867 return FALSE;
14868 }
14869
14870 if (SGI_COMPAT (abfd))
14871 {
14872 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14873 if (rtproc_sec != NULL)
14874 {
14875 if (! bfd_set_section_contents (abfd, rtproc_sec,
14876 rtproc_sec->contents,
14877 0, rtproc_sec->size))
14878 return FALSE;
14879 }
14880 }
14881
14882 return TRUE;
14883 }
14884 \f
14885 /* Merge object file header flags from IBFD into OBFD. Raise an error
14886 if there are conflicting settings. */
14887
14888 static bfd_boolean
14889 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14890 {
14891 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14892 flagword old_flags;
14893 flagword new_flags;
14894 bfd_boolean ok;
14895
14896 new_flags = elf_elfheader (ibfd)->e_flags;
14897 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14898 old_flags = elf_elfheader (obfd)->e_flags;
14899
14900 /* Check flag compatibility. */
14901
14902 new_flags &= ~EF_MIPS_NOREORDER;
14903 old_flags &= ~EF_MIPS_NOREORDER;
14904
14905 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14906 doesn't seem to matter. */
14907 new_flags &= ~EF_MIPS_XGOT;
14908 old_flags &= ~EF_MIPS_XGOT;
14909
14910 /* MIPSpro generates ucode info in n64 objects. Again, we should
14911 just be able to ignore this. */
14912 new_flags &= ~EF_MIPS_UCODE;
14913 old_flags &= ~EF_MIPS_UCODE;
14914
14915 /* DSOs should only be linked with CPIC code. */
14916 if ((ibfd->flags & DYNAMIC) != 0)
14917 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14918
14919 if (new_flags == old_flags)
14920 return TRUE;
14921
14922 ok = TRUE;
14923
14924 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14925 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14926 {
14927 (*_bfd_error_handler)
14928 (_("%B: warning: linking abicalls files with non-abicalls files"),
14929 ibfd);
14930 ok = TRUE;
14931 }
14932
14933 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14934 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14935 if (! (new_flags & EF_MIPS_PIC))
14936 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14937
14938 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14939 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14940
14941 /* Compare the ISAs. */
14942 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14943 {
14944 (*_bfd_error_handler)
14945 (_("%B: linking 32-bit code with 64-bit code"),
14946 ibfd);
14947 ok = FALSE;
14948 }
14949 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14950 {
14951 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14952 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14953 {
14954 /* Copy the architecture info from IBFD to OBFD. Also copy
14955 the 32-bit flag (if set) so that we continue to recognise
14956 OBFD as a 32-bit binary. */
14957 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14958 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14959 elf_elfheader (obfd)->e_flags
14960 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14961
14962 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14963 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14964
14965 /* Copy across the ABI flags if OBFD doesn't use them
14966 and if that was what caused us to treat IBFD as 32-bit. */
14967 if ((old_flags & EF_MIPS_ABI) == 0
14968 && mips_32bit_flags_p (new_flags)
14969 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14970 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14971 }
14972 else
14973 {
14974 /* The ISAs aren't compatible. */
14975 (*_bfd_error_handler)
14976 (_("%B: linking %s module with previous %s modules"),
14977 ibfd,
14978 bfd_printable_name (ibfd),
14979 bfd_printable_name (obfd));
14980 ok = FALSE;
14981 }
14982 }
14983
14984 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14985 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14986
14987 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14988 does set EI_CLASS differently from any 32-bit ABI. */
14989 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14990 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14991 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14992 {
14993 /* Only error if both are set (to different values). */
14994 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14995 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14996 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14997 {
14998 (*_bfd_error_handler)
14999 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15000 ibfd,
15001 elf_mips_abi_name (ibfd),
15002 elf_mips_abi_name (obfd));
15003 ok = FALSE;
15004 }
15005 new_flags &= ~EF_MIPS_ABI;
15006 old_flags &= ~EF_MIPS_ABI;
15007 }
15008
15009 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15010 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15011 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15012 {
15013 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15014 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15015 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15016 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15017 int micro_mis = old_m16 && new_micro;
15018 int m16_mis = old_micro && new_m16;
15019
15020 if (m16_mis || micro_mis)
15021 {
15022 (*_bfd_error_handler)
15023 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15024 ibfd,
15025 m16_mis ? "MIPS16" : "microMIPS",
15026 m16_mis ? "microMIPS" : "MIPS16");
15027 ok = FALSE;
15028 }
15029
15030 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15031
15032 new_flags &= ~ EF_MIPS_ARCH_ASE;
15033 old_flags &= ~ EF_MIPS_ARCH_ASE;
15034 }
15035
15036 /* Compare NaN encodings. */
15037 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15038 {
15039 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15040 ibfd,
15041 (new_flags & EF_MIPS_NAN2008
15042 ? "-mnan=2008" : "-mnan=legacy"),
15043 (old_flags & EF_MIPS_NAN2008
15044 ? "-mnan=2008" : "-mnan=legacy"));
15045 ok = FALSE;
15046 new_flags &= ~EF_MIPS_NAN2008;
15047 old_flags &= ~EF_MIPS_NAN2008;
15048 }
15049
15050 /* Compare FP64 state. */
15051 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15052 {
15053 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15054 ibfd,
15055 (new_flags & EF_MIPS_FP64
15056 ? "-mfp64" : "-mfp32"),
15057 (old_flags & EF_MIPS_FP64
15058 ? "-mfp64" : "-mfp32"));
15059 ok = FALSE;
15060 new_flags &= ~EF_MIPS_FP64;
15061 old_flags &= ~EF_MIPS_FP64;
15062 }
15063
15064 /* Warn about any other mismatches */
15065 if (new_flags != old_flags)
15066 {
15067 (*_bfd_error_handler)
15068 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15069 "(0x%lx)"),
15070 ibfd, (unsigned long) new_flags,
15071 (unsigned long) old_flags);
15072 ok = FALSE;
15073 }
15074
15075 return ok;
15076 }
15077
15078 /* Merge object attributes from IBFD into OBFD. Raise an error if
15079 there are conflicting attributes. */
15080 static bfd_boolean
15081 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15082 {
15083 obj_attribute *in_attr;
15084 obj_attribute *out_attr;
15085 bfd *abi_fp_bfd;
15086 bfd *abi_msa_bfd;
15087
15088 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15089 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15090 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15091 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15092
15093 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15094 if (!abi_msa_bfd
15095 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15096 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15097
15098 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15099 {
15100 /* This is the first object. Copy the attributes. */
15101 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15102
15103 /* Use the Tag_null value to indicate the attributes have been
15104 initialized. */
15105 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15106
15107 return TRUE;
15108 }
15109
15110 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15111 non-conflicting ones. */
15112 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15113 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15114 {
15115 int out_fp, in_fp;
15116
15117 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15118 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15119 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15120 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15121 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15122 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15123 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15124 || in_fp == Val_GNU_MIPS_ABI_FP_64
15125 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15126 {
15127 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15128 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15129 }
15130 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15131 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15132 || out_fp == Val_GNU_MIPS_ABI_FP_64
15133 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15134 /* Keep the current setting. */;
15135 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15136 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15137 {
15138 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15139 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15140 }
15141 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15142 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15143 /* Keep the current setting. */;
15144 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15145 {
15146 const char *out_string, *in_string;
15147
15148 out_string = _bfd_mips_fp_abi_string (out_fp);
15149 in_string = _bfd_mips_fp_abi_string (in_fp);
15150 /* First warn about cases involving unrecognised ABIs. */
15151 if (!out_string && !in_string)
15152 _bfd_error_handler
15153 (_("Warning: %B uses unknown floating point ABI %d "
15154 "(set by %B), %B uses unknown floating point ABI %d"),
15155 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15156 else if (!out_string)
15157 _bfd_error_handler
15158 (_("Warning: %B uses unknown floating point ABI %d "
15159 "(set by %B), %B uses %s"),
15160 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15161 else if (!in_string)
15162 _bfd_error_handler
15163 (_("Warning: %B uses %s (set by %B), "
15164 "%B uses unknown floating point ABI %d"),
15165 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15166 else
15167 {
15168 /* If one of the bfds is soft-float, the other must be
15169 hard-float. The exact choice of hard-float ABI isn't
15170 really relevant to the error message. */
15171 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15172 out_string = "-mhard-float";
15173 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15174 in_string = "-mhard-float";
15175 _bfd_error_handler
15176 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15177 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15178 }
15179 }
15180 }
15181
15182 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15183 non-conflicting ones. */
15184 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15185 {
15186 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15187 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15188 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15189 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15190 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15191 {
15192 case Val_GNU_MIPS_ABI_MSA_128:
15193 _bfd_error_handler
15194 (_("Warning: %B uses %s (set by %B), "
15195 "%B uses unknown MSA ABI %d"),
15196 obfd, abi_msa_bfd, ibfd,
15197 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15198 break;
15199
15200 default:
15201 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15202 {
15203 case Val_GNU_MIPS_ABI_MSA_128:
15204 _bfd_error_handler
15205 (_("Warning: %B uses unknown MSA ABI %d "
15206 "(set by %B), %B uses %s"),
15207 obfd, abi_msa_bfd, ibfd,
15208 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15209 break;
15210
15211 default:
15212 _bfd_error_handler
15213 (_("Warning: %B uses unknown MSA ABI %d "
15214 "(set by %B), %B uses unknown MSA ABI %d"),
15215 obfd, abi_msa_bfd, ibfd,
15216 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15217 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15218 break;
15219 }
15220 }
15221 }
15222
15223 /* Merge Tag_compatibility attributes and any common GNU ones. */
15224 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15225 }
15226
15227 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15228 there are conflicting settings. */
15229
15230 static bfd_boolean
15231 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15232 {
15233 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15234 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15235 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15236
15237 /* Update the output abiflags fp_abi using the computed fp_abi. */
15238 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15239
15240 #define max(a, b) ((a) > (b) ? (a) : (b))
15241 /* Merge abiflags. */
15242 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15243 in_tdata->abiflags.isa_level);
15244 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15245 in_tdata->abiflags.isa_rev);
15246 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15247 in_tdata->abiflags.gpr_size);
15248 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15249 in_tdata->abiflags.cpr1_size);
15250 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15251 in_tdata->abiflags.cpr2_size);
15252 #undef max
15253 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15254 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15255
15256 return TRUE;
15257 }
15258
15259 /* Merge backend specific data from an object file to the output
15260 object file when linking. */
15261
15262 bfd_boolean
15263 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15264 {
15265 struct mips_elf_obj_tdata *out_tdata;
15266 struct mips_elf_obj_tdata *in_tdata;
15267 bfd_boolean null_input_bfd = TRUE;
15268 asection *sec;
15269 bfd_boolean ok;
15270
15271 /* Check if we have the same endianness. */
15272 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15273 {
15274 (*_bfd_error_handler)
15275 (_("%B: endianness incompatible with that of the selected emulation"),
15276 ibfd);
15277 return FALSE;
15278 }
15279
15280 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15281 return TRUE;
15282
15283 in_tdata = mips_elf_tdata (ibfd);
15284 out_tdata = mips_elf_tdata (obfd);
15285
15286 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15287 {
15288 (*_bfd_error_handler)
15289 (_("%B: ABI is incompatible with that of the selected emulation"),
15290 ibfd);
15291 return FALSE;
15292 }
15293
15294 /* Check to see if the input BFD actually contains any sections. If not,
15295 then it has no attributes, and its flags may not have been initialized
15296 either, but it cannot actually cause any incompatibility. */
15297 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15298 {
15299 /* Ignore synthetic sections and empty .text, .data and .bss sections
15300 which are automatically generated by gas. Also ignore fake
15301 (s)common sections, since merely defining a common symbol does
15302 not affect compatibility. */
15303 if ((sec->flags & SEC_IS_COMMON) == 0
15304 && strcmp (sec->name, ".reginfo")
15305 && strcmp (sec->name, ".mdebug")
15306 && (sec->size != 0
15307 || (strcmp (sec->name, ".text")
15308 && strcmp (sec->name, ".data")
15309 && strcmp (sec->name, ".bss"))))
15310 {
15311 null_input_bfd = FALSE;
15312 break;
15313 }
15314 }
15315 if (null_input_bfd)
15316 return TRUE;
15317
15318 /* Populate abiflags using existing information. */
15319 if (in_tdata->abiflags_valid)
15320 {
15321 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15322 Elf_Internal_ABIFlags_v0 in_abiflags;
15323 Elf_Internal_ABIFlags_v0 abiflags;
15324
15325 /* Set up the FP ABI attribute from the abiflags if it is not already
15326 set. */
15327 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15328 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15329
15330 infer_mips_abiflags (ibfd, &abiflags);
15331 in_abiflags = in_tdata->abiflags;
15332
15333 /* It is not possible to infer the correct ISA revision
15334 for R3 or R5 so drop down to R2 for the checks. */
15335 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15336 in_abiflags.isa_rev = 2;
15337
15338 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15339 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15340 (*_bfd_error_handler)
15341 (_("%B: warning: Inconsistent ISA between e_flags and "
15342 ".MIPS.abiflags"), ibfd);
15343 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15344 && in_abiflags.fp_abi != abiflags.fp_abi)
15345 (*_bfd_error_handler)
15346 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15347 ".MIPS.abiflags"), ibfd);
15348 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15349 (*_bfd_error_handler)
15350 (_("%B: warning: Inconsistent ASEs between e_flags and "
15351 ".MIPS.abiflags"), ibfd);
15352 /* The isa_ext is allowed to be an extension of what can be inferred
15353 from e_flags. */
15354 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15355 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15356 (*_bfd_error_handler)
15357 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15358 ".MIPS.abiflags"), ibfd);
15359 if (in_abiflags.flags2 != 0)
15360 (*_bfd_error_handler)
15361 (_("%B: warning: Unexpected flag in the flags2 field of "
15362 ".MIPS.abiflags (0x%lx)"), ibfd,
15363 (unsigned long) in_abiflags.flags2);
15364 }
15365 else
15366 {
15367 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15368 in_tdata->abiflags_valid = TRUE;
15369 }
15370
15371 if (!out_tdata->abiflags_valid)
15372 {
15373 /* Copy input abiflags if output abiflags are not already valid. */
15374 out_tdata->abiflags = in_tdata->abiflags;
15375 out_tdata->abiflags_valid = TRUE;
15376 }
15377
15378 if (! elf_flags_init (obfd))
15379 {
15380 elf_flags_init (obfd) = TRUE;
15381 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15382 elf_elfheader (obfd)->e_ident[EI_CLASS]
15383 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15384
15385 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15386 && (bfd_get_arch_info (obfd)->the_default
15387 || mips_mach_extends_p (bfd_get_mach (obfd),
15388 bfd_get_mach (ibfd))))
15389 {
15390 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15391 bfd_get_mach (ibfd)))
15392 return FALSE;
15393
15394 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15395 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15396 }
15397
15398 ok = TRUE;
15399 }
15400 else
15401 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15402
15403 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15404
15405 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15406
15407 if (!ok)
15408 {
15409 bfd_set_error (bfd_error_bad_value);
15410 return FALSE;
15411 }
15412
15413 return TRUE;
15414 }
15415
15416 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15417
15418 bfd_boolean
15419 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15420 {
15421 BFD_ASSERT (!elf_flags_init (abfd)
15422 || elf_elfheader (abfd)->e_flags == flags);
15423
15424 elf_elfheader (abfd)->e_flags = flags;
15425 elf_flags_init (abfd) = TRUE;
15426 return TRUE;
15427 }
15428
15429 char *
15430 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15431 {
15432 switch (dtag)
15433 {
15434 default: return "";
15435 case DT_MIPS_RLD_VERSION:
15436 return "MIPS_RLD_VERSION";
15437 case DT_MIPS_TIME_STAMP:
15438 return "MIPS_TIME_STAMP";
15439 case DT_MIPS_ICHECKSUM:
15440 return "MIPS_ICHECKSUM";
15441 case DT_MIPS_IVERSION:
15442 return "MIPS_IVERSION";
15443 case DT_MIPS_FLAGS:
15444 return "MIPS_FLAGS";
15445 case DT_MIPS_BASE_ADDRESS:
15446 return "MIPS_BASE_ADDRESS";
15447 case DT_MIPS_MSYM:
15448 return "MIPS_MSYM";
15449 case DT_MIPS_CONFLICT:
15450 return "MIPS_CONFLICT";
15451 case DT_MIPS_LIBLIST:
15452 return "MIPS_LIBLIST";
15453 case DT_MIPS_LOCAL_GOTNO:
15454 return "MIPS_LOCAL_GOTNO";
15455 case DT_MIPS_CONFLICTNO:
15456 return "MIPS_CONFLICTNO";
15457 case DT_MIPS_LIBLISTNO:
15458 return "MIPS_LIBLISTNO";
15459 case DT_MIPS_SYMTABNO:
15460 return "MIPS_SYMTABNO";
15461 case DT_MIPS_UNREFEXTNO:
15462 return "MIPS_UNREFEXTNO";
15463 case DT_MIPS_GOTSYM:
15464 return "MIPS_GOTSYM";
15465 case DT_MIPS_HIPAGENO:
15466 return "MIPS_HIPAGENO";
15467 case DT_MIPS_RLD_MAP:
15468 return "MIPS_RLD_MAP";
15469 case DT_MIPS_RLD_MAP_REL:
15470 return "MIPS_RLD_MAP_REL";
15471 case DT_MIPS_DELTA_CLASS:
15472 return "MIPS_DELTA_CLASS";
15473 case DT_MIPS_DELTA_CLASS_NO:
15474 return "MIPS_DELTA_CLASS_NO";
15475 case DT_MIPS_DELTA_INSTANCE:
15476 return "MIPS_DELTA_INSTANCE";
15477 case DT_MIPS_DELTA_INSTANCE_NO:
15478 return "MIPS_DELTA_INSTANCE_NO";
15479 case DT_MIPS_DELTA_RELOC:
15480 return "MIPS_DELTA_RELOC";
15481 case DT_MIPS_DELTA_RELOC_NO:
15482 return "MIPS_DELTA_RELOC_NO";
15483 case DT_MIPS_DELTA_SYM:
15484 return "MIPS_DELTA_SYM";
15485 case DT_MIPS_DELTA_SYM_NO:
15486 return "MIPS_DELTA_SYM_NO";
15487 case DT_MIPS_DELTA_CLASSSYM:
15488 return "MIPS_DELTA_CLASSSYM";
15489 case DT_MIPS_DELTA_CLASSSYM_NO:
15490 return "MIPS_DELTA_CLASSSYM_NO";
15491 case DT_MIPS_CXX_FLAGS:
15492 return "MIPS_CXX_FLAGS";
15493 case DT_MIPS_PIXIE_INIT:
15494 return "MIPS_PIXIE_INIT";
15495 case DT_MIPS_SYMBOL_LIB:
15496 return "MIPS_SYMBOL_LIB";
15497 case DT_MIPS_LOCALPAGE_GOTIDX:
15498 return "MIPS_LOCALPAGE_GOTIDX";
15499 case DT_MIPS_LOCAL_GOTIDX:
15500 return "MIPS_LOCAL_GOTIDX";
15501 case DT_MIPS_HIDDEN_GOTIDX:
15502 return "MIPS_HIDDEN_GOTIDX";
15503 case DT_MIPS_PROTECTED_GOTIDX:
15504 return "MIPS_PROTECTED_GOT_IDX";
15505 case DT_MIPS_OPTIONS:
15506 return "MIPS_OPTIONS";
15507 case DT_MIPS_INTERFACE:
15508 return "MIPS_INTERFACE";
15509 case DT_MIPS_DYNSTR_ALIGN:
15510 return "DT_MIPS_DYNSTR_ALIGN";
15511 case DT_MIPS_INTERFACE_SIZE:
15512 return "DT_MIPS_INTERFACE_SIZE";
15513 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15514 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15515 case DT_MIPS_PERF_SUFFIX:
15516 return "DT_MIPS_PERF_SUFFIX";
15517 case DT_MIPS_COMPACT_SIZE:
15518 return "DT_MIPS_COMPACT_SIZE";
15519 case DT_MIPS_GP_VALUE:
15520 return "DT_MIPS_GP_VALUE";
15521 case DT_MIPS_AUX_DYNAMIC:
15522 return "DT_MIPS_AUX_DYNAMIC";
15523 case DT_MIPS_PLTGOT:
15524 return "DT_MIPS_PLTGOT";
15525 case DT_MIPS_RWPLT:
15526 return "DT_MIPS_RWPLT";
15527 }
15528 }
15529
15530 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15531 not known. */
15532
15533 const char *
15534 _bfd_mips_fp_abi_string (int fp)
15535 {
15536 switch (fp)
15537 {
15538 /* These strings aren't translated because they're simply
15539 option lists. */
15540 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15541 return "-mdouble-float";
15542
15543 case Val_GNU_MIPS_ABI_FP_SINGLE:
15544 return "-msingle-float";
15545
15546 case Val_GNU_MIPS_ABI_FP_SOFT:
15547 return "-msoft-float";
15548
15549 case Val_GNU_MIPS_ABI_FP_OLD_64:
15550 return _("-mips32r2 -mfp64 (12 callee-saved)");
15551
15552 case Val_GNU_MIPS_ABI_FP_XX:
15553 return "-mfpxx";
15554
15555 case Val_GNU_MIPS_ABI_FP_64:
15556 return "-mgp32 -mfp64";
15557
15558 case Val_GNU_MIPS_ABI_FP_64A:
15559 return "-mgp32 -mfp64 -mno-odd-spreg";
15560
15561 default:
15562 return 0;
15563 }
15564 }
15565
15566 static void
15567 print_mips_ases (FILE *file, unsigned int mask)
15568 {
15569 if (mask & AFL_ASE_DSP)
15570 fputs ("\n\tDSP ASE", file);
15571 if (mask & AFL_ASE_DSPR2)
15572 fputs ("\n\tDSP R2 ASE", file);
15573 if (mask & AFL_ASE_DSPR3)
15574 fputs ("\n\tDSP R3 ASE", file);
15575 if (mask & AFL_ASE_EVA)
15576 fputs ("\n\tEnhanced VA Scheme", file);
15577 if (mask & AFL_ASE_MCU)
15578 fputs ("\n\tMCU (MicroController) ASE", file);
15579 if (mask & AFL_ASE_MDMX)
15580 fputs ("\n\tMDMX ASE", file);
15581 if (mask & AFL_ASE_MIPS3D)
15582 fputs ("\n\tMIPS-3D ASE", file);
15583 if (mask & AFL_ASE_MT)
15584 fputs ("\n\tMT ASE", file);
15585 if (mask & AFL_ASE_SMARTMIPS)
15586 fputs ("\n\tSmartMIPS ASE", file);
15587 if (mask & AFL_ASE_VIRT)
15588 fputs ("\n\tVZ ASE", file);
15589 if (mask & AFL_ASE_MSA)
15590 fputs ("\n\tMSA ASE", file);
15591 if (mask & AFL_ASE_MIPS16)
15592 fputs ("\n\tMIPS16 ASE", file);
15593 if (mask & AFL_ASE_MICROMIPS)
15594 fputs ("\n\tMICROMIPS ASE", file);
15595 if (mask & AFL_ASE_XPA)
15596 fputs ("\n\tXPA ASE", file);
15597 if (mask == 0)
15598 fprintf (file, "\n\t%s", _("None"));
15599 else if ((mask & ~AFL_ASE_MASK) != 0)
15600 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15601 }
15602
15603 static void
15604 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15605 {
15606 switch (isa_ext)
15607 {
15608 case 0:
15609 fputs (_("None"), file);
15610 break;
15611 case AFL_EXT_XLR:
15612 fputs ("RMI XLR", file);
15613 break;
15614 case AFL_EXT_OCTEON3:
15615 fputs ("Cavium Networks Octeon3", file);
15616 break;
15617 case AFL_EXT_OCTEON2:
15618 fputs ("Cavium Networks Octeon2", file);
15619 break;
15620 case AFL_EXT_OCTEONP:
15621 fputs ("Cavium Networks OcteonP", file);
15622 break;
15623 case AFL_EXT_LOONGSON_3A:
15624 fputs ("Loongson 3A", file);
15625 break;
15626 case AFL_EXT_OCTEON:
15627 fputs ("Cavium Networks Octeon", file);
15628 break;
15629 case AFL_EXT_5900:
15630 fputs ("Toshiba R5900", file);
15631 break;
15632 case AFL_EXT_4650:
15633 fputs ("MIPS R4650", file);
15634 break;
15635 case AFL_EXT_4010:
15636 fputs ("LSI R4010", file);
15637 break;
15638 case AFL_EXT_4100:
15639 fputs ("NEC VR4100", file);
15640 break;
15641 case AFL_EXT_3900:
15642 fputs ("Toshiba R3900", file);
15643 break;
15644 case AFL_EXT_10000:
15645 fputs ("MIPS R10000", file);
15646 break;
15647 case AFL_EXT_SB1:
15648 fputs ("Broadcom SB-1", file);
15649 break;
15650 case AFL_EXT_4111:
15651 fputs ("NEC VR4111/VR4181", file);
15652 break;
15653 case AFL_EXT_4120:
15654 fputs ("NEC VR4120", file);
15655 break;
15656 case AFL_EXT_5400:
15657 fputs ("NEC VR5400", file);
15658 break;
15659 case AFL_EXT_5500:
15660 fputs ("NEC VR5500", file);
15661 break;
15662 case AFL_EXT_LOONGSON_2E:
15663 fputs ("ST Microelectronics Loongson 2E", file);
15664 break;
15665 case AFL_EXT_LOONGSON_2F:
15666 fputs ("ST Microelectronics Loongson 2F", file);
15667 break;
15668 default:
15669 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15670 break;
15671 }
15672 }
15673
15674 static void
15675 print_mips_fp_abi_value (FILE *file, int val)
15676 {
15677 switch (val)
15678 {
15679 case Val_GNU_MIPS_ABI_FP_ANY:
15680 fprintf (file, _("Hard or soft float\n"));
15681 break;
15682 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15683 fprintf (file, _("Hard float (double precision)\n"));
15684 break;
15685 case Val_GNU_MIPS_ABI_FP_SINGLE:
15686 fprintf (file, _("Hard float (single precision)\n"));
15687 break;
15688 case Val_GNU_MIPS_ABI_FP_SOFT:
15689 fprintf (file, _("Soft float\n"));
15690 break;
15691 case Val_GNU_MIPS_ABI_FP_OLD_64:
15692 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15693 break;
15694 case Val_GNU_MIPS_ABI_FP_XX:
15695 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15696 break;
15697 case Val_GNU_MIPS_ABI_FP_64:
15698 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15699 break;
15700 case Val_GNU_MIPS_ABI_FP_64A:
15701 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15702 break;
15703 default:
15704 fprintf (file, "??? (%d)\n", val);
15705 break;
15706 }
15707 }
15708
15709 static int
15710 get_mips_reg_size (int reg_size)
15711 {
15712 return (reg_size == AFL_REG_NONE) ? 0
15713 : (reg_size == AFL_REG_32) ? 32
15714 : (reg_size == AFL_REG_64) ? 64
15715 : (reg_size == AFL_REG_128) ? 128
15716 : -1;
15717 }
15718
15719 bfd_boolean
15720 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15721 {
15722 FILE *file = ptr;
15723
15724 BFD_ASSERT (abfd != NULL && ptr != NULL);
15725
15726 /* Print normal ELF private data. */
15727 _bfd_elf_print_private_bfd_data (abfd, ptr);
15728
15729 /* xgettext:c-format */
15730 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15731
15732 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15733 fprintf (file, _(" [abi=O32]"));
15734 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15735 fprintf (file, _(" [abi=O64]"));
15736 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15737 fprintf (file, _(" [abi=EABI32]"));
15738 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15739 fprintf (file, _(" [abi=EABI64]"));
15740 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15741 fprintf (file, _(" [abi unknown]"));
15742 else if (ABI_N32_P (abfd))
15743 fprintf (file, _(" [abi=N32]"));
15744 else if (ABI_64_P (abfd))
15745 fprintf (file, _(" [abi=64]"));
15746 else
15747 fprintf (file, _(" [no abi set]"));
15748
15749 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15750 fprintf (file, " [mips1]");
15751 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15752 fprintf (file, " [mips2]");
15753 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15754 fprintf (file, " [mips3]");
15755 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15756 fprintf (file, " [mips4]");
15757 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15758 fprintf (file, " [mips5]");
15759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15760 fprintf (file, " [mips32]");
15761 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15762 fprintf (file, " [mips64]");
15763 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15764 fprintf (file, " [mips32r2]");
15765 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15766 fprintf (file, " [mips64r2]");
15767 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15768 fprintf (file, " [mips32r6]");
15769 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15770 fprintf (file, " [mips64r6]");
15771 else
15772 fprintf (file, _(" [unknown ISA]"));
15773
15774 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15775 fprintf (file, " [mdmx]");
15776
15777 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15778 fprintf (file, " [mips16]");
15779
15780 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15781 fprintf (file, " [micromips]");
15782
15783 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15784 fprintf (file, " [nan2008]");
15785
15786 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15787 fprintf (file, " [old fp64]");
15788
15789 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15790 fprintf (file, " [32bitmode]");
15791 else
15792 fprintf (file, _(" [not 32bitmode]"));
15793
15794 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15795 fprintf (file, " [noreorder]");
15796
15797 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15798 fprintf (file, " [PIC]");
15799
15800 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15801 fprintf (file, " [CPIC]");
15802
15803 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15804 fprintf (file, " [XGOT]");
15805
15806 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15807 fprintf (file, " [UCODE]");
15808
15809 fputc ('\n', file);
15810
15811 if (mips_elf_tdata (abfd)->abiflags_valid)
15812 {
15813 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15814 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15815 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15816 if (abiflags->isa_rev > 1)
15817 fprintf (file, "r%d", abiflags->isa_rev);
15818 fprintf (file, "\nGPR size: %d",
15819 get_mips_reg_size (abiflags->gpr_size));
15820 fprintf (file, "\nCPR1 size: %d",
15821 get_mips_reg_size (abiflags->cpr1_size));
15822 fprintf (file, "\nCPR2 size: %d",
15823 get_mips_reg_size (abiflags->cpr2_size));
15824 fputs ("\nFP ABI: ", file);
15825 print_mips_fp_abi_value (file, abiflags->fp_abi);
15826 fputs ("ISA Extension: ", file);
15827 print_mips_isa_ext (file, abiflags->isa_ext);
15828 fputs ("\nASEs:", file);
15829 print_mips_ases (file, abiflags->ases);
15830 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15831 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15832 fputc ('\n', file);
15833 }
15834
15835 return TRUE;
15836 }
15837
15838 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15839 {
15840 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15841 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15842 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15843 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15844 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15845 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15846 { NULL, 0, 0, 0, 0 }
15847 };
15848
15849 /* Merge non visibility st_other attributes. Ensure that the
15850 STO_OPTIONAL flag is copied into h->other, even if this is not a
15851 definiton of the symbol. */
15852 void
15853 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15854 const Elf_Internal_Sym *isym,
15855 bfd_boolean definition,
15856 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15857 {
15858 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15859 {
15860 unsigned char other;
15861
15862 other = (definition ? isym->st_other : h->other);
15863 other &= ~ELF_ST_VISIBILITY (-1);
15864 h->other = other | ELF_ST_VISIBILITY (h->other);
15865 }
15866
15867 if (!definition
15868 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15869 h->other |= STO_OPTIONAL;
15870 }
15871
15872 /* Decide whether an undefined symbol is special and can be ignored.
15873 This is the case for OPTIONAL symbols on IRIX. */
15874 bfd_boolean
15875 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15876 {
15877 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15878 }
15879
15880 bfd_boolean
15881 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15882 {
15883 return (sym->st_shndx == SHN_COMMON
15884 || sym->st_shndx == SHN_MIPS_ACOMMON
15885 || sym->st_shndx == SHN_MIPS_SCOMMON);
15886 }
15887
15888 /* Return address for Ith PLT stub in section PLT, for relocation REL
15889 or (bfd_vma) -1 if it should not be included. */
15890
15891 bfd_vma
15892 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15893 const arelent *rel ATTRIBUTE_UNUSED)
15894 {
15895 return (plt->vma
15896 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15897 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15898 }
15899
15900 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15901 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15902 and .got.plt and also the slots may be of a different size each we walk
15903 the PLT manually fetching instructions and matching them against known
15904 patterns. To make things easier standard MIPS slots, if any, always come
15905 first. As we don't create proper ELF symbols we use the UDATA.I member
15906 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15907 with the ST_OTHER member of the ELF symbol. */
15908
15909 long
15910 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15911 long symcount ATTRIBUTE_UNUSED,
15912 asymbol **syms ATTRIBUTE_UNUSED,
15913 long dynsymcount, asymbol **dynsyms,
15914 asymbol **ret)
15915 {
15916 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15917 static const char microsuffix[] = "@micromipsplt";
15918 static const char m16suffix[] = "@mips16plt";
15919 static const char mipssuffix[] = "@plt";
15920
15921 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15923 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15924 Elf_Internal_Shdr *hdr;
15925 bfd_byte *plt_data;
15926 bfd_vma plt_offset;
15927 unsigned int other;
15928 bfd_vma entry_size;
15929 bfd_vma plt0_size;
15930 asection *relplt;
15931 bfd_vma opcode;
15932 asection *plt;
15933 asymbol *send;
15934 size_t size;
15935 char *names;
15936 long counti;
15937 arelent *p;
15938 asymbol *s;
15939 char *nend;
15940 long count;
15941 long pi;
15942 long i;
15943 long n;
15944
15945 *ret = NULL;
15946
15947 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15948 return 0;
15949
15950 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15951 if (relplt == NULL)
15952 return 0;
15953
15954 hdr = &elf_section_data (relplt)->this_hdr;
15955 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15956 return 0;
15957
15958 plt = bfd_get_section_by_name (abfd, ".plt");
15959 if (plt == NULL)
15960 return 0;
15961
15962 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15963 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15964 return -1;
15965 p = relplt->relocation;
15966
15967 /* Calculating the exact amount of space required for symbols would
15968 require two passes over the PLT, so just pessimise assuming two
15969 PLT slots per relocation. */
15970 count = relplt->size / hdr->sh_entsize;
15971 counti = count * bed->s->int_rels_per_ext_rel;
15972 size = 2 * count * sizeof (asymbol);
15973 size += count * (sizeof (mipssuffix) +
15974 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15975 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15976 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15977
15978 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15979 size += sizeof (asymbol) + sizeof (pltname);
15980
15981 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15982 return -1;
15983
15984 if (plt->size < 16)
15985 return -1;
15986
15987 s = *ret = bfd_malloc (size);
15988 if (s == NULL)
15989 return -1;
15990 send = s + 2 * count + 1;
15991
15992 names = (char *) send;
15993 nend = (char *) s + size;
15994 n = 0;
15995
15996 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15997 if (opcode == 0x3302fffe)
15998 {
15999 if (!micromips_p)
16000 return -1;
16001 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16002 other = STO_MICROMIPS;
16003 }
16004 else if (opcode == 0x0398c1d0)
16005 {
16006 if (!micromips_p)
16007 return -1;
16008 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16009 other = STO_MICROMIPS;
16010 }
16011 else
16012 {
16013 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16014 other = 0;
16015 }
16016
16017 s->the_bfd = abfd;
16018 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16019 s->section = plt;
16020 s->value = 0;
16021 s->name = names;
16022 s->udata.i = other;
16023 memcpy (names, pltname, sizeof (pltname));
16024 names += sizeof (pltname);
16025 ++s, ++n;
16026
16027 pi = 0;
16028 for (plt_offset = plt0_size;
16029 plt_offset + 8 <= plt->size && s < send;
16030 plt_offset += entry_size)
16031 {
16032 bfd_vma gotplt_addr;
16033 const char *suffix;
16034 bfd_vma gotplt_hi;
16035 bfd_vma gotplt_lo;
16036 size_t suffixlen;
16037
16038 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16039
16040 /* Check if the second word matches the expected MIPS16 instruction. */
16041 if (opcode == 0x651aeb00)
16042 {
16043 if (micromips_p)
16044 return -1;
16045 /* Truncated table??? */
16046 if (plt_offset + 16 > plt->size)
16047 break;
16048 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16049 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16050 suffixlen = sizeof (m16suffix);
16051 suffix = m16suffix;
16052 other = STO_MIPS16;
16053 }
16054 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16055 else if (opcode == 0xff220000)
16056 {
16057 if (!micromips_p)
16058 return -1;
16059 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16060 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16061 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16062 gotplt_lo <<= 2;
16063 gotplt_addr = gotplt_hi + gotplt_lo;
16064 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16065 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16066 suffixlen = sizeof (microsuffix);
16067 suffix = microsuffix;
16068 other = STO_MICROMIPS;
16069 }
16070 /* Likewise the expected microMIPS instruction (insn32 mode). */
16071 else if ((opcode & 0xffff0000) == 0xff2f0000)
16072 {
16073 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16074 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16075 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16076 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16077 gotplt_addr = gotplt_hi + gotplt_lo;
16078 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16079 suffixlen = sizeof (microsuffix);
16080 suffix = microsuffix;
16081 other = STO_MICROMIPS;
16082 }
16083 /* Otherwise assume standard MIPS code. */
16084 else
16085 {
16086 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16087 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16088 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16089 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16090 gotplt_addr = gotplt_hi + gotplt_lo;
16091 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16092 suffixlen = sizeof (mipssuffix);
16093 suffix = mipssuffix;
16094 other = 0;
16095 }
16096 /* Truncated table??? */
16097 if (plt_offset + entry_size > plt->size)
16098 break;
16099
16100 for (i = 0;
16101 i < count && p[pi].address != gotplt_addr;
16102 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16103
16104 if (i < count)
16105 {
16106 size_t namelen;
16107 size_t len;
16108
16109 *s = **p[pi].sym_ptr_ptr;
16110 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16111 we are defining a symbol, ensure one of them is set. */
16112 if ((s->flags & BSF_LOCAL) == 0)
16113 s->flags |= BSF_GLOBAL;
16114 s->flags |= BSF_SYNTHETIC;
16115 s->section = plt;
16116 s->value = plt_offset;
16117 s->name = names;
16118 s->udata.i = other;
16119
16120 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16121 namelen = len + suffixlen;
16122 if (names + namelen > nend)
16123 break;
16124
16125 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16126 names += len;
16127 memcpy (names, suffix, suffixlen);
16128 names += suffixlen;
16129
16130 ++s, ++n;
16131 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16132 }
16133 }
16134
16135 free (plt_data);
16136
16137 return n;
16138 }
16139
16140 void
16141 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16142 {
16143 struct mips_elf_link_hash_table *htab;
16144 Elf_Internal_Ehdr *i_ehdrp;
16145
16146 i_ehdrp = elf_elfheader (abfd);
16147 if (link_info)
16148 {
16149 htab = mips_elf_hash_table (link_info);
16150 BFD_ASSERT (htab != NULL);
16151
16152 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16153 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16154 }
16155
16156 _bfd_elf_post_process_headers (abfd, link_info);
16157
16158 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16159 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16160 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16161
16162 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16163 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16164 }
16165
16166 int
16167 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16168 {
16169 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16170 }
16171
16172 /* Return the opcode for can't unwind. */
16173
16174 int
16175 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16176 {
16177 return COMPACT_EH_CANT_UNWIND_OPCODE;
16178 }