* elfxx-mips.c (mips_elf_calculate_relocation): Test for R_MIPS_26
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590 #define MINUS_TWO (((bfd_vma)0) - 2)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. */
603 #define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607 #define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
612 #define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616 #define MIPS_FUNCTION_STUB_SIZE (16)
617
618 /* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621 #define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626 #ifdef BFD64
627 #define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629 #define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631 #define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633 #define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635 #else
636 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637 #define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639 #define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641 #define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643 #endif
644 \f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679 #define FN_STUB ".mips16.fn."
680 #define CALL_STUB ".mips16.call."
681 #define CALL_FP_STUB ".mips16.call.fp."
682 \f
683 /* Look up an entry in a MIPS ELF linker hash table. */
684
685 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690 /* Traverse a MIPS ELF linker hash table. */
691
692 #define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698 /* Get the MIPS ELF linker hash table from a link_info structure. */
699
700 #define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703 /* Create an entry in a MIPS ELF linker hash table. */
704
705 static struct bfd_hash_entry *
706 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741 }
742
743 bfd_boolean
744 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745 {
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755 }
756 \f
757 /* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760 bfd_boolean
761 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763 {
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784 #define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810 #undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842 }
843 \f
844 /* Swap RPDR (runtime procedure table entry) for output. */
845
846 static void
847 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848 {
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860 #if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862 #endif
863 }
864
865 /* Create a runtime procedure table from the .mdebug section. */
866
867 static bfd_boolean
868 mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871 {
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013 }
1014
1015 /* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018 static bfd_boolean
1019 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021 {
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->size = 0;
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
1043 h->call_stub->size = 0;
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
1055 h->call_fp_stub->size = 0;
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
1061 return TRUE;
1062 }
1063 \f
1064 bfd_reloc_status_type
1065 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
1068 {
1069 bfd_vma relocation;
1070 bfd_signed_vma val;
1071 bfd_reloc_status_type status;
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1082 return bfd_reloc_outofrange;
1083
1084 /* Set val to the offset into the section or symbol. */
1085 val = reloc_entry->addend;
1086
1087 _bfd_mips_elf_sign_extend (val, 16);
1088
1089 /* Adjust val for the final section location and GP value. If we
1090 are producing relocatable output, we don't want to do this for
1091 an external symbol. */
1092 if (! relocatable
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
1096 if (reloc_entry->howto->partial_inplace)
1097 {
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
1103 }
1104 else
1105 reloc_entry->addend = val;
1106
1107 if (relocatable)
1108 reloc_entry->address += input_section->output_offset;
1109
1110 return bfd_reloc_ok;
1111 }
1112
1113 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118 struct mips_hi16
1119 {
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124 };
1125
1126 /* FIXME: This should not be a static variable. */
1127
1128 static struct mips_hi16 *mips_hi16_list;
1129
1130 /* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139 bfd_reloc_status_type
1140 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144 {
1145 struct mips_hi16 *n;
1146
1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164 }
1165
1166 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170 bfd_reloc_status_type
1171 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174 {
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185 }
1186
1187 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191 bfd_reloc_status_type
1192 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195 {
1196 bfd_vma vallo;
1197
1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234 }
1235
1236 /* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240 bfd_reloc_status_type
1241 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245 {
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
1300
1301 return bfd_reloc_ok;
1302 }
1303 \f
1304 /* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307 static void
1308 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
1310 {
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313 }
1314
1315 static void
1316 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
1318 {
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321 }
1322
1323 static void
1324 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
1326 {
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333 }
1334
1335 static void
1336 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
1338 {
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348 }
1349 \f
1350 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354 void
1355 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
1357 {
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364 }
1365
1366 void
1367 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
1369 {
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376 }
1377
1378 /* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384 void
1385 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
1387 {
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395 }
1396
1397 void
1398 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
1400 {
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408 }
1409
1410 /* Swap in an options header. */
1411
1412 void
1413 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
1415 {
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420 }
1421
1422 /* Swap out an options header. */
1423
1424 void
1425 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
1427 {
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432 }
1433 \f
1434 /* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437 static int
1438 sort_dynamic_relocs (const void *arg1, const void *arg2)
1439 {
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
1442
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1445
1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1447 }
1448
1449 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451 static int
1452 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1453 {
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464 }
1465
1466
1467 /* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
1481 static bfd_boolean
1482 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1483 {
1484 struct extsym_info *einfo = data;
1485 bfd_boolean strip;
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
1492 strip = FALSE;
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
1497 strip = TRUE;
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
1504 else
1505 strip = FALSE;
1506
1507 if (strip)
1508 return TRUE;
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
1614 else if (h->root.needs_plt)
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
1617 bfd_boolean no_fn_stub = h->no_fn_stub;
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642 #if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644 #endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
1652 einfo->failed = TRUE;
1653 return FALSE;
1654 }
1655
1656 return TRUE;
1657 }
1658
1659 /* A comparison routine used to sort .gptab entries. */
1660
1661 static int
1662 gptab_compare (const void *p1, const void *p2)
1663 {
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668 }
1669 \f
1670 /* Functions to manage the got entry hash table. */
1671
1672 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675 static INLINE hashval_t
1676 mips_elf_hash_bfd_vma (bfd_vma addr)
1677 {
1678 #ifdef BFD64
1679 return addr + (addr >> 32);
1680 #else
1681 return addr;
1682 #endif
1683 }
1684
1685 /* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
1689 static hashval_t
1690 mips_elf_got_entry_hash (const void *entry_)
1691 {
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
1694 return entry->symndx
1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
1699 }
1700
1701 static int
1702 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1703 {
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711 }
1712
1713 /* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718 static hashval_t
1719 mips_elf_multi_got_entry_hash (const void *entry_)
1720 {
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730 }
1731
1732 static int
1733 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1734 {
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
1743 }
1744 \f
1745 /* Returns the dynamic relocation section for DYNOBJ. */
1746
1747 static asection *
1748 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1749 {
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1767 return NULL;
1768 }
1769 return sreloc;
1770 }
1771
1772 /* Returns the GOT section for ABFD. */
1773
1774 static asection *
1775 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1776 {
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
1782 }
1783
1784 /* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788 static struct mips_got_info *
1789 mips_elf_got_info (bfd *abfd, asection **sgotp)
1790 {
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
1794 sgot = mips_elf_got_section (abfd, TRUE);
1795 BFD_ASSERT (sgot != NULL);
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
1803 return g;
1804 }
1805
1806 /* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810 static bfd_vma
1811 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
1813 {
1814 asection *sgot;
1815 struct mips_got_info *g;
1816 struct mips_got_entry *entry;
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
1825 }
1826
1827 /* Returns the GOT index for the global symbol indicated by H. */
1828
1829 static bfd_vma
1830 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1831 {
1832 bfd_vma index;
1833 asection *sgot;
1834 struct mips_got_info *g, *gg;
1835 long global_got_dynindx = 0;
1836
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
1841
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
1851 p = htab_find (g->got_entries, &e);
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1867 * MIPS_ELF_GOT_SIZE (abfd));
1868 BFD_ASSERT (index < sgot->size);
1869
1870 return index;
1871 }
1872
1873 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879 static bfd_vma
1880 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
1882 {
1883 asection *sgot;
1884 struct mips_got_info *g;
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
1893
1894 if (!entry)
1895 return MINUS_ONE;
1896
1897 index = entry->gotidx;
1898
1899 if (offsetp)
1900 *offsetp = value - entry->d.address;
1901
1902 return index;
1903 }
1904
1905 /* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908 static bfd_vma
1909 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
1911 {
1912 asection *sgot;
1913 struct mips_got_info *g;
1914 struct mips_got_entry *entry;
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
1932 }
1933
1934 /* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937 static bfd_vma
1938 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
1940 {
1941 asection *sgot;
1942 bfd_vma gp;
1943 struct mips_got_info *g;
1944
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1948
1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
1950 }
1951
1952 /* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
1955 static struct mips_got_entry *
1956 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
1959 {
1960 struct mips_got_entry entry, **loc;
1961 struct mips_got_info *g;
1962
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
1978
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
1985
1986 memcpy (*loc, &entry, sizeof entry);
1987
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
1990 (*loc)->gotidx = -1;
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
2002 }
2003
2004 /* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
2011 static bfd_boolean
2012 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2013 {
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
2020 g = mips_elf_got_info (dynobj, NULL);
2021
2022 hsd.low = NULL;
2023 hsd.max_unref_got_dynindx =
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
2040 accommodate both the GOT and non-GOT symbols. */
2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
2047 g->global_gotsym = hsd.low;
2048
2049 return TRUE;
2050 }
2051
2052 /* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
2056 static bfd_boolean
2057 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2058 {
2059 struct mips_elf_hash_sort_data *hsd = data;
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
2067 return TRUE;
2068
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
2087 return TRUE;
2088 }
2089
2090 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
2094 static bfd_boolean
2095 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
2098 {
2099 struct mips_got_entry entry, **loc;
2100
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2110 break;
2111 }
2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2113 return FALSE;
2114 }
2115
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
2132
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
2136 if (h->got.offset != MINUS_ONE)
2137 return TRUE;
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
2144 return TRUE;
2145 }
2146
2147 /* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150 static bfd_boolean
2151 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
2153 {
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
2171
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175 }
2176 \f
2177 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179 static hashval_t
2180 mips_elf_bfd2got_entry_hash (const void *entry_)
2181 {
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186 }
2187
2188 /* Check whether two hash entries have the same bfd. */
2189
2190 static int
2191 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2192 {
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199 }
2200
2201 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2202 be the master GOT data. */
2203
2204 static struct mips_got_info *
2205 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2206 {
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
2213 p = htab_find (g->bfd2got, &e);
2214 return p ? p->g : NULL;
2215 }
2216
2217 /* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221 static int
2222 mips_elf_make_got_per_bfd (void **entryp, void *p)
2223 {
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
2230
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2266 mips_elf_multi_got_entry_eq, NULL);
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
2281
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290 }
2291
2292 /* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299 static int
2300 mips_elf_merge_gots (void **bfd2got_, void *p)
2301 {
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
2308
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
2376
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381 }
2382
2383 /* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2394 marked as not eligible for lazy resolution through a function
2395 stub. */
2396 static int
2397 mips_elf_set_global_got_offset (void **entryp, void *p)
2398 {
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423 }
2424
2425 /* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427 static int
2428 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2429 {
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438 }
2439
2440 /* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446 static int
2447 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2448 {
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
2462
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
2482
2483 return 1;
2484 }
2485
2486 /* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488 static void
2489 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2490 {
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502 }
2503
2504 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506 static bfd_vma
2507 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2508 {
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
2519
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521 }
2522
2523 /* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526 static bfd_boolean
2527 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
2530 {
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2537 mips_elf_bfd2got_entry_eq, NULL);
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
2582 NULL);
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
2603
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
2629
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2702 }
2703 while (g);
2704
2705 got->size = (gg->next->local_gotno
2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2707
2708 return TRUE;
2709 }
2710
2711 \f
2712 /* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715 static const Elf_Internal_Rela *
2716 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
2719 {
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731 }
2732
2733 /* Return whether a relocation is against a local symbol. */
2734
2735 static bfd_boolean
2736 mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
2740 {
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
2751 return TRUE;
2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2753 return TRUE;
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2765 if (h->root.forced_local)
2766 return TRUE;
2767 }
2768
2769 return FALSE;
2770 }
2771 \f
2772 /* Sign-extend VALUE, which has the indicated number of BITS. */
2773
2774 bfd_vma
2775 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2776 {
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782 }
2783
2784 /* Return non-zero if the indicated VALUE has overflowed the maximum
2785 range expressible by a signed number with the indicated number of
2786 BITS. */
2787
2788 static bfd_boolean
2789 mips_elf_overflow_p (bfd_vma value, int bits)
2790 {
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
2795 return TRUE;
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
2798 return TRUE;
2799
2800 /* All is well. */
2801 return FALSE;
2802 }
2803
2804 /* Calculate the %high function. */
2805
2806 static bfd_vma
2807 mips_elf_high (bfd_vma value)
2808 {
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810 }
2811
2812 /* Calculate the %higher function. */
2813
2814 static bfd_vma
2815 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2816 {
2817 #ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819 #else
2820 abort ();
2821 return MINUS_ONE;
2822 #endif
2823 }
2824
2825 /* Calculate the %highest function. */
2826
2827 static bfd_vma
2828 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2829 {
2830 #ifdef BFD64
2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2832 #else
2833 abort ();
2834 return MINUS_ONE;
2835 #endif
2836 }
2837 \f
2838 /* Create the .compact_rel section. */
2839
2840 static bfd_boolean
2841 mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2843 {
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2857 return FALSE;
2858
2859 s->size = sizeof (Elf32_External_compact_rel);
2860 }
2861
2862 return TRUE;
2863 }
2864
2865 /* Create the .got section to hold the global offset table. */
2866
2867 static bfd_boolean
2868 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
2870 {
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
2874 struct bfd_link_hash_entry *bh;
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
2898 || ! bfd_set_section_alignment (abfd, s, 4))
2899 return FALSE;
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
2904 bh = NULL;
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2908 return FALSE;
2909
2910 h = (struct elf_link_hash_entry *) bh;
2911 h->non_elf = 0;
2912 h->def_regular = 1;
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2917 return FALSE;
2918
2919 amt = sizeof (struct mips_got_info);
2920 g = bfd_alloc (abfd, amt);
2921 if (g == NULL)
2922 return FALSE;
2923 g->global_gotsym = NULL;
2924 g->global_gotno = 0;
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2927 g->bfd2got = NULL;
2928 g->next = NULL;
2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2930 mips_elf_got_entry_eq, NULL);
2931 if (g->got_entries == NULL)
2932 return FALSE;
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953 static bfd_reloc_status_type
2954 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
2963 {
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
2985 /* TRUE if the symbol referred to by this relocation is a local
2986 symbol. */
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
2994 /* TRUE if overflow occurred during the calculation of the
2995 relocation value. */
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
3008 overflowed_p = FALSE;
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3014 local_sections, FALSE);
3015 was_local_p = local_p;
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
3036 symbol += sym->st_value;
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
3075 if (strcmp (*namep, "_gp_disp") == 0
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
3083 gp_disp_p = TRUE;
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
3140 if (r_type != R_MIPS16_26 && !info->relocatable
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
3161 else if (r_type == R_MIPS16_26 && !info->relocatable
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
3191 BFD_ASSERT (sec->size > 0);
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
3197 *require_jalxp = (!info->relocatable
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3202 local_sections, TRUE);
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
3208 case R_MIPS_GOT_PAGE:
3209 case R_MIPS_GOT_OFST:
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3213 if (local_p || r_type == R_MIPS_GOT_OFST)
3214 break;
3215 /* Fall through. */
3216
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3233 input_bfd,
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
3238 && h->root.def_regular))
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3262 abfd, input_bfd, g);
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
3335 break;
3336
3337 case R_MIPS_GNU_REL16_S2:
3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3352 else
3353 {
3354 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3355 overflowed_p = (value >> 26) != ((p + 4) >> 28);
3356 }
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_HI16:
3361 if (!gp_disp_p)
3362 {
3363 value = mips_elf_high (addend + symbol);
3364 value &= howto->dst_mask;
3365 }
3366 else
3367 {
3368 value = mips_elf_high (addend + gp - p);
3369 overflowed_p = mips_elf_overflow_p (value, 16);
3370 }
3371 break;
3372
3373 case R_MIPS_LO16:
3374 if (!gp_disp_p)
3375 value = (symbol + addend) & howto->dst_mask;
3376 else
3377 {
3378 value = addend + gp - p + 4;
3379 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3380 for overflow. But, on, say, IRIX5, relocations against
3381 _gp_disp are normally generated from the .cpload
3382 pseudo-op. It generates code that normally looks like
3383 this:
3384
3385 lui $gp,%hi(_gp_disp)
3386 addiu $gp,$gp,%lo(_gp_disp)
3387 addu $gp,$gp,$t9
3388
3389 Here $t9 holds the address of the function being called,
3390 as required by the MIPS ELF ABI. The R_MIPS_LO16
3391 relocation can easily overflow in this situation, but the
3392 R_MIPS_HI16 relocation will handle the overflow.
3393 Therefore, we consider this a bug in the MIPS ABI, and do
3394 not check for overflow here. */
3395 }
3396 break;
3397
3398 case R_MIPS_LITERAL:
3399 /* Because we don't merge literal sections, we can handle this
3400 just like R_MIPS_GPREL16. In the long run, we should merge
3401 shared literals, and then we will need to additional work
3402 here. */
3403
3404 /* Fall through. */
3405
3406 case R_MIPS16_GPREL:
3407 /* The R_MIPS16_GPREL performs the same calculation as
3408 R_MIPS_GPREL16, but stores the relocated bits in a different
3409 order. We don't need to do anything special here; the
3410 differences are handled in mips_elf_perform_relocation. */
3411 case R_MIPS_GPREL16:
3412 /* Only sign-extend the addend if it was extracted from the
3413 instruction. If the addend was separate, leave it alone,
3414 otherwise we may lose significant bits. */
3415 if (howto->partial_inplace)
3416 addend = _bfd_mips_elf_sign_extend (addend, 16);
3417 value = symbol + addend - gp;
3418 /* If the symbol was local, any earlier relocatable links will
3419 have adjusted its addend with the gp offset, so compensate
3420 for that now. Don't do it for symbols forced local in this
3421 link, though, since they won't have had the gp offset applied
3422 to them before. */
3423 if (was_local_p)
3424 value += gp0;
3425 overflowed_p = mips_elf_overflow_p (value, 16);
3426 break;
3427
3428 case R_MIPS_GOT16:
3429 case R_MIPS_CALL16:
3430 if (local_p)
3431 {
3432 bfd_boolean forced;
3433
3434 /* The special case is when the symbol is forced to be local. We
3435 need the full address in the GOT since no R_MIPS_LO16 relocation
3436 follows. */
3437 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3438 local_sections, FALSE);
3439 value = mips_elf_got16_entry (abfd, input_bfd, info,
3440 symbol + addend, forced);
3441 if (value == MINUS_ONE)
3442 return bfd_reloc_outofrange;
3443 value
3444 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3445 abfd, input_bfd, value);
3446 overflowed_p = mips_elf_overflow_p (value, 16);
3447 break;
3448 }
3449
3450 /* Fall through. */
3451
3452 case R_MIPS_GOT_DISP:
3453 got_disp:
3454 value = g;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GPREL32:
3459 value = (addend + symbol + gp0 - gp);
3460 if (!save_addend)
3461 value &= howto->dst_mask;
3462 break;
3463
3464 case R_MIPS_PC16:
3465 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3466 overflowed_p = mips_elf_overflow_p (value, 16);
3467 break;
3468
3469 case R_MIPS_GOT_HI16:
3470 case R_MIPS_CALL_HI16:
3471 /* We're allowed to handle these two relocations identically.
3472 The dynamic linker is allowed to handle the CALL relocations
3473 differently by creating a lazy evaluation stub. */
3474 value = g;
3475 value = mips_elf_high (value);
3476 value &= howto->dst_mask;
3477 break;
3478
3479 case R_MIPS_GOT_LO16:
3480 case R_MIPS_CALL_LO16:
3481 value = g & howto->dst_mask;
3482 break;
3483
3484 case R_MIPS_GOT_PAGE:
3485 /* GOT_PAGE relocations that reference non-local symbols decay
3486 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3487 0. */
3488 if (! local_p)
3489 goto got_disp;
3490 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3491 if (value == MINUS_ONE)
3492 return bfd_reloc_outofrange;
3493 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3494 abfd, input_bfd, value);
3495 overflowed_p = mips_elf_overflow_p (value, 16);
3496 break;
3497
3498 case R_MIPS_GOT_OFST:
3499 if (local_p)
3500 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3501 else
3502 value = addend;
3503 overflowed_p = mips_elf_overflow_p (value, 16);
3504 break;
3505
3506 case R_MIPS_SUB:
3507 value = symbol - addend;
3508 value &= howto->dst_mask;
3509 break;
3510
3511 case R_MIPS_HIGHER:
3512 value = mips_elf_higher (addend + symbol);
3513 value &= howto->dst_mask;
3514 break;
3515
3516 case R_MIPS_HIGHEST:
3517 value = mips_elf_highest (addend + symbol);
3518 value &= howto->dst_mask;
3519 break;
3520
3521 case R_MIPS_SCN_DISP:
3522 value = symbol + addend - sec->output_offset;
3523 value &= howto->dst_mask;
3524 break;
3525
3526 case R_MIPS_PJUMP:
3527 case R_MIPS_JALR:
3528 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3529 hint; we could improve performance by honoring that hint. */
3530 return bfd_reloc_continue;
3531
3532 case R_MIPS_GNU_VTINHERIT:
3533 case R_MIPS_GNU_VTENTRY:
3534 /* We don't do anything with these at present. */
3535 return bfd_reloc_continue;
3536
3537 default:
3538 /* An unrecognized relocation type. */
3539 return bfd_reloc_notsupported;
3540 }
3541
3542 /* Store the VALUE for our caller. */
3543 *valuep = value;
3544 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3545 }
3546
3547 /* Obtain the field relocated by RELOCATION. */
3548
3549 static bfd_vma
3550 mips_elf_obtain_contents (reloc_howto_type *howto,
3551 const Elf_Internal_Rela *relocation,
3552 bfd *input_bfd, bfd_byte *contents)
3553 {
3554 bfd_vma x;
3555 bfd_byte *location = contents + relocation->r_offset;
3556
3557 /* Obtain the bytes. */
3558 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3559
3560 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3561 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3562 && bfd_little_endian (input_bfd))
3563 /* The two 16-bit words will be reversed on a little-endian system.
3564 See mips_elf_perform_relocation for more details. */
3565 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3566
3567 return x;
3568 }
3569
3570 /* It has been determined that the result of the RELOCATION is the
3571 VALUE. Use HOWTO to place VALUE into the output file at the
3572 appropriate position. The SECTION is the section to which the
3573 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3574 for the relocation must be either JAL or JALX, and it is
3575 unconditionally converted to JALX.
3576
3577 Returns FALSE if anything goes wrong. */
3578
3579 static bfd_boolean
3580 mips_elf_perform_relocation (struct bfd_link_info *info,
3581 reloc_howto_type *howto,
3582 const Elf_Internal_Rela *relocation,
3583 bfd_vma value, bfd *input_bfd,
3584 asection *input_section, bfd_byte *contents,
3585 bfd_boolean require_jalx)
3586 {
3587 bfd_vma x;
3588 bfd_byte *location;
3589 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3590
3591 /* Figure out where the relocation is occurring. */
3592 location = contents + relocation->r_offset;
3593
3594 /* Obtain the current value. */
3595 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3596
3597 /* Clear the field we are setting. */
3598 x &= ~howto->dst_mask;
3599
3600 /* If this is the R_MIPS16_26 relocation, we must store the
3601 value in a funny way. */
3602 if (r_type == R_MIPS16_26)
3603 {
3604 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3605 Most mips16 instructions are 16 bits, but these instructions
3606 are 32 bits.
3607
3608 The format of these instructions is:
3609
3610 +--------------+--------------------------------+
3611 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3612 +--------------+--------------------------------+
3613 ! Immediate 15:0 !
3614 +-----------------------------------------------+
3615
3616 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3617 Note that the immediate value in the first word is swapped.
3618
3619 When producing a relocatable object file, R_MIPS16_26 is
3620 handled mostly like R_MIPS_26. In particular, the addend is
3621 stored as a straight 26-bit value in a 32-bit instruction.
3622 (gas makes life simpler for itself by never adjusting a
3623 R_MIPS16_26 reloc to be against a section, so the addend is
3624 always zero). However, the 32 bit instruction is stored as 2
3625 16-bit values, rather than a single 32-bit value. In a
3626 big-endian file, the result is the same; in a little-endian
3627 file, the two 16-bit halves of the 32 bit value are swapped.
3628 This is so that a disassembler can recognize the jal
3629 instruction.
3630
3631 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3632 instruction stored as two 16-bit values. The addend A is the
3633 contents of the targ26 field. The calculation is the same as
3634 R_MIPS_26. When storing the calculated value, reorder the
3635 immediate value as shown above, and don't forget to store the
3636 value as two 16-bit values.
3637
3638 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3639 defined as
3640
3641 big-endian:
3642 +--------+----------------------+
3643 | | |
3644 | | targ26-16 |
3645 |31 26|25 0|
3646 +--------+----------------------+
3647
3648 little-endian:
3649 +----------+------+-------------+
3650 | | | |
3651 | sub1 | | sub2 |
3652 |0 9|10 15|16 31|
3653 +----------+--------------------+
3654 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3655 ((sub1 << 16) | sub2)).
3656
3657 When producing a relocatable object file, the calculation is
3658 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3659 When producing a fully linked file, the calculation is
3660 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3661 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3662
3663 if (!info->relocatable)
3664 /* Shuffle the bits according to the formula above. */
3665 value = (((value & 0x1f0000) << 5)
3666 | ((value & 0x3e00000) >> 5)
3667 | (value & 0xffff));
3668 }
3669 else if (r_type == R_MIPS16_GPREL)
3670 {
3671 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3672 mode. A typical instruction will have a format like this:
3673
3674 +--------------+--------------------------------+
3675 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3676 +--------------+--------------------------------+
3677 ! Major ! rx ! ry ! Imm 4:0 !
3678 +--------------+--------------------------------+
3679
3680 EXTEND is the five bit value 11110. Major is the instruction
3681 opcode.
3682
3683 This is handled exactly like R_MIPS_GPREL16, except that the
3684 addend is retrieved and stored as shown in this diagram; that
3685 is, the Imm fields above replace the V-rel16 field.
3686
3687 All we need to do here is shuffle the bits appropriately. As
3688 above, the two 16-bit halves must be swapped on a
3689 little-endian system. */
3690 value = (((value & 0x7e0) << 16)
3691 | ((value & 0xf800) << 5)
3692 | (value & 0x1f));
3693 }
3694
3695 /* Set the field. */
3696 x |= (value & howto->dst_mask);
3697
3698 /* If required, turn JAL into JALX. */
3699 if (require_jalx)
3700 {
3701 bfd_boolean ok;
3702 bfd_vma opcode = x >> 26;
3703 bfd_vma jalx_opcode;
3704
3705 /* Check to see if the opcode is already JAL or JALX. */
3706 if (r_type == R_MIPS16_26)
3707 {
3708 ok = ((opcode == 0x6) || (opcode == 0x7));
3709 jalx_opcode = 0x7;
3710 }
3711 else
3712 {
3713 ok = ((opcode == 0x3) || (opcode == 0x1d));
3714 jalx_opcode = 0x1d;
3715 }
3716
3717 /* If the opcode is not JAL or JALX, there's a problem. */
3718 if (!ok)
3719 {
3720 (*_bfd_error_handler)
3721 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3722 input_bfd,
3723 input_section,
3724 (unsigned long) relocation->r_offset);
3725 bfd_set_error (bfd_error_bad_value);
3726 return FALSE;
3727 }
3728
3729 /* Make this the JALX opcode. */
3730 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3731 }
3732
3733 /* Swap the high- and low-order 16 bits on little-endian systems
3734 when doing a MIPS16 relocation. */
3735 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3736 && bfd_little_endian (input_bfd))
3737 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3738
3739 /* Put the value into the output. */
3740 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3741 return TRUE;
3742 }
3743
3744 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3745
3746 static bfd_boolean
3747 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3748 {
3749 const char *name = bfd_get_section_name (abfd, section);
3750
3751 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3752 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3753 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3754 }
3755 \f
3756 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3757
3758 static void
3759 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3760 {
3761 asection *s;
3762
3763 s = mips_elf_rel_dyn_section (abfd, FALSE);
3764 BFD_ASSERT (s != NULL);
3765
3766 if (s->size == 0)
3767 {
3768 /* Make room for a null element. */
3769 s->size += MIPS_ELF_REL_SIZE (abfd);
3770 ++s->reloc_count;
3771 }
3772 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3773 }
3774
3775 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3776 is the original relocation, which is now being transformed into a
3777 dynamic relocation. The ADDENDP is adjusted if necessary; the
3778 caller should store the result in place of the original addend. */
3779
3780 static bfd_boolean
3781 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3782 struct bfd_link_info *info,
3783 const Elf_Internal_Rela *rel,
3784 struct mips_elf_link_hash_entry *h,
3785 asection *sec, bfd_vma symbol,
3786 bfd_vma *addendp, asection *input_section)
3787 {
3788 Elf_Internal_Rela outrel[3];
3789 asection *sreloc;
3790 bfd *dynobj;
3791 int r_type;
3792 long indx;
3793 bfd_boolean defined_p;
3794
3795 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3796 dynobj = elf_hash_table (info)->dynobj;
3797 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3798 BFD_ASSERT (sreloc != NULL);
3799 BFD_ASSERT (sreloc->contents != NULL);
3800 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3801 < sreloc->size);
3802
3803 outrel[0].r_offset =
3804 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3805 outrel[1].r_offset =
3806 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3807 outrel[2].r_offset =
3808 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3809
3810 #if 0
3811 /* We begin by assuming that the offset for the dynamic relocation
3812 is the same as for the original relocation. We'll adjust this
3813 later to reflect the correct output offsets. */
3814 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3815 {
3816 outrel[1].r_offset = rel[1].r_offset;
3817 outrel[2].r_offset = rel[2].r_offset;
3818 }
3819 else
3820 {
3821 /* Except that in a stab section things are more complex.
3822 Because we compress stab information, the offset given in the
3823 relocation may not be the one we want; we must let the stabs
3824 machinery tell us the offset. */
3825 outrel[1].r_offset = outrel[0].r_offset;
3826 outrel[2].r_offset = outrel[0].r_offset;
3827 /* If we didn't need the relocation at all, this value will be
3828 -1. */
3829 if (outrel[0].r_offset == MINUS_ONE)
3830 skip = TRUE;
3831 }
3832 #endif
3833
3834 if (outrel[0].r_offset == MINUS_ONE)
3835 /* The relocation field has been deleted. */
3836 return TRUE;
3837
3838 if (outrel[0].r_offset == MINUS_TWO)
3839 {
3840 /* The relocation field has been converted into a relative value of
3841 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3842 the field to be fully relocated, so add in the symbol's value. */
3843 *addendp += symbol;
3844 return TRUE;
3845 }
3846
3847 /* We must now calculate the dynamic symbol table index to use
3848 in the relocation. */
3849 if (h != NULL
3850 && (! info->symbolic || !h->root.def_regular)
3851 /* h->root.dynindx may be -1 if this symbol was marked to
3852 become local. */
3853 && h->root.dynindx != -1)
3854 {
3855 indx = h->root.dynindx;
3856 if (SGI_COMPAT (output_bfd))
3857 defined_p = h->root.def_regular;
3858 else
3859 /* ??? glibc's ld.so just adds the final GOT entry to the
3860 relocation field. It therefore treats relocs against
3861 defined symbols in the same way as relocs against
3862 undefined symbols. */
3863 defined_p = FALSE;
3864 }
3865 else
3866 {
3867 if (sec != NULL && bfd_is_abs_section (sec))
3868 indx = 0;
3869 else if (sec == NULL || sec->owner == NULL)
3870 {
3871 bfd_set_error (bfd_error_bad_value);
3872 return FALSE;
3873 }
3874 else
3875 {
3876 indx = elf_section_data (sec->output_section)->dynindx;
3877 if (indx == 0)
3878 abort ();
3879 }
3880
3881 /* Instead of generating a relocation using the section
3882 symbol, we may as well make it a fully relative
3883 relocation. We want to avoid generating relocations to
3884 local symbols because we used to generate them
3885 incorrectly, without adding the original symbol value,
3886 which is mandated by the ABI for section symbols. In
3887 order to give dynamic loaders and applications time to
3888 phase out the incorrect use, we refrain from emitting
3889 section-relative relocations. It's not like they're
3890 useful, after all. This should be a bit more efficient
3891 as well. */
3892 /* ??? Although this behavior is compatible with glibc's ld.so,
3893 the ABI says that relocations against STN_UNDEF should have
3894 a symbol value of 0. Irix rld honors this, so relocations
3895 against STN_UNDEF have no effect. */
3896 if (!SGI_COMPAT (output_bfd))
3897 indx = 0;
3898 defined_p = TRUE;
3899 }
3900
3901 /* If the relocation was previously an absolute relocation and
3902 this symbol will not be referred to by the relocation, we must
3903 adjust it by the value we give it in the dynamic symbol table.
3904 Otherwise leave the job up to the dynamic linker. */
3905 if (defined_p && r_type != R_MIPS_REL32)
3906 *addendp += symbol;
3907
3908 /* The relocation is always an REL32 relocation because we don't
3909 know where the shared library will wind up at load-time. */
3910 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3911 R_MIPS_REL32);
3912 /* For strict adherence to the ABI specification, we should
3913 generate a R_MIPS_64 relocation record by itself before the
3914 _REL32/_64 record as well, such that the addend is read in as
3915 a 64-bit value (REL32 is a 32-bit relocation, after all).
3916 However, since none of the existing ELF64 MIPS dynamic
3917 loaders seems to care, we don't waste space with these
3918 artificial relocations. If this turns out to not be true,
3919 mips_elf_allocate_dynamic_relocation() should be tweaked so
3920 as to make room for a pair of dynamic relocations per
3921 invocation if ABI_64_P, and here we should generate an
3922 additional relocation record with R_MIPS_64 by itself for a
3923 NULL symbol before this relocation record. */
3924 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3925 ABI_64_P (output_bfd)
3926 ? R_MIPS_64
3927 : R_MIPS_NONE);
3928 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3929
3930 /* Adjust the output offset of the relocation to reference the
3931 correct location in the output file. */
3932 outrel[0].r_offset += (input_section->output_section->vma
3933 + input_section->output_offset);
3934 outrel[1].r_offset += (input_section->output_section->vma
3935 + input_section->output_offset);
3936 outrel[2].r_offset += (input_section->output_section->vma
3937 + input_section->output_offset);
3938
3939 /* Put the relocation back out. We have to use the special
3940 relocation outputter in the 64-bit case since the 64-bit
3941 relocation format is non-standard. */
3942 if (ABI_64_P (output_bfd))
3943 {
3944 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3945 (output_bfd, &outrel[0],
3946 (sreloc->contents
3947 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3948 }
3949 else
3950 bfd_elf32_swap_reloc_out
3951 (output_bfd, &outrel[0],
3952 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3953
3954 /* We've now added another relocation. */
3955 ++sreloc->reloc_count;
3956
3957 /* Make sure the output section is writable. The dynamic linker
3958 will be writing to it. */
3959 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3960 |= SHF_WRITE;
3961
3962 /* On IRIX5, make an entry of compact relocation info. */
3963 if (IRIX_COMPAT (output_bfd) == ict_irix5)
3964 {
3965 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3966 bfd_byte *cr;
3967
3968 if (scpt)
3969 {
3970 Elf32_crinfo cptrel;
3971
3972 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3973 cptrel.vaddr = (rel->r_offset
3974 + input_section->output_section->vma
3975 + input_section->output_offset);
3976 if (r_type == R_MIPS_REL32)
3977 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3978 else
3979 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3980 mips_elf_set_cr_dist2to (cptrel, 0);
3981 cptrel.konst = *addendp;
3982
3983 cr = (scpt->contents
3984 + sizeof (Elf32_External_compact_rel));
3985 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3986 ((Elf32_External_crinfo *) cr
3987 + scpt->reloc_count));
3988 ++scpt->reloc_count;
3989 }
3990 }
3991
3992 return TRUE;
3993 }
3994 \f
3995 /* Return the MACH for a MIPS e_flags value. */
3996
3997 unsigned long
3998 _bfd_elf_mips_mach (flagword flags)
3999 {
4000 switch (flags & EF_MIPS_MACH)
4001 {
4002 case E_MIPS_MACH_3900:
4003 return bfd_mach_mips3900;
4004
4005 case E_MIPS_MACH_4010:
4006 return bfd_mach_mips4010;
4007
4008 case E_MIPS_MACH_4100:
4009 return bfd_mach_mips4100;
4010
4011 case E_MIPS_MACH_4111:
4012 return bfd_mach_mips4111;
4013
4014 case E_MIPS_MACH_4120:
4015 return bfd_mach_mips4120;
4016
4017 case E_MIPS_MACH_4650:
4018 return bfd_mach_mips4650;
4019
4020 case E_MIPS_MACH_5400:
4021 return bfd_mach_mips5400;
4022
4023 case E_MIPS_MACH_5500:
4024 return bfd_mach_mips5500;
4025
4026 case E_MIPS_MACH_SB1:
4027 return bfd_mach_mips_sb1;
4028
4029 default:
4030 switch (flags & EF_MIPS_ARCH)
4031 {
4032 default:
4033 case E_MIPS_ARCH_1:
4034 return bfd_mach_mips3000;
4035 break;
4036
4037 case E_MIPS_ARCH_2:
4038 return bfd_mach_mips6000;
4039 break;
4040
4041 case E_MIPS_ARCH_3:
4042 return bfd_mach_mips4000;
4043 break;
4044
4045 case E_MIPS_ARCH_4:
4046 return bfd_mach_mips8000;
4047 break;
4048
4049 case E_MIPS_ARCH_5:
4050 return bfd_mach_mips5;
4051 break;
4052
4053 case E_MIPS_ARCH_32:
4054 return bfd_mach_mipsisa32;
4055 break;
4056
4057 case E_MIPS_ARCH_64:
4058 return bfd_mach_mipsisa64;
4059 break;
4060
4061 case E_MIPS_ARCH_32R2:
4062 return bfd_mach_mipsisa32r2;
4063 break;
4064
4065 case E_MIPS_ARCH_64R2:
4066 return bfd_mach_mipsisa64r2;
4067 break;
4068 }
4069 }
4070
4071 return 0;
4072 }
4073
4074 /* Return printable name for ABI. */
4075
4076 static INLINE char *
4077 elf_mips_abi_name (bfd *abfd)
4078 {
4079 flagword flags;
4080
4081 flags = elf_elfheader (abfd)->e_flags;
4082 switch (flags & EF_MIPS_ABI)
4083 {
4084 case 0:
4085 if (ABI_N32_P (abfd))
4086 return "N32";
4087 else if (ABI_64_P (abfd))
4088 return "64";
4089 else
4090 return "none";
4091 case E_MIPS_ABI_O32:
4092 return "O32";
4093 case E_MIPS_ABI_O64:
4094 return "O64";
4095 case E_MIPS_ABI_EABI32:
4096 return "EABI32";
4097 case E_MIPS_ABI_EABI64:
4098 return "EABI64";
4099 default:
4100 return "unknown abi";
4101 }
4102 }
4103 \f
4104 /* MIPS ELF uses two common sections. One is the usual one, and the
4105 other is for small objects. All the small objects are kept
4106 together, and then referenced via the gp pointer, which yields
4107 faster assembler code. This is what we use for the small common
4108 section. This approach is copied from ecoff.c. */
4109 static asection mips_elf_scom_section;
4110 static asymbol mips_elf_scom_symbol;
4111 static asymbol *mips_elf_scom_symbol_ptr;
4112
4113 /* MIPS ELF also uses an acommon section, which represents an
4114 allocated common symbol which may be overridden by a
4115 definition in a shared library. */
4116 static asection mips_elf_acom_section;
4117 static asymbol mips_elf_acom_symbol;
4118 static asymbol *mips_elf_acom_symbol_ptr;
4119
4120 /* Handle the special MIPS section numbers that a symbol may use.
4121 This is used for both the 32-bit and the 64-bit ABI. */
4122
4123 void
4124 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4125 {
4126 elf_symbol_type *elfsym;
4127
4128 elfsym = (elf_symbol_type *) asym;
4129 switch (elfsym->internal_elf_sym.st_shndx)
4130 {
4131 case SHN_MIPS_ACOMMON:
4132 /* This section is used in a dynamically linked executable file.
4133 It is an allocated common section. The dynamic linker can
4134 either resolve these symbols to something in a shared
4135 library, or it can just leave them here. For our purposes,
4136 we can consider these symbols to be in a new section. */
4137 if (mips_elf_acom_section.name == NULL)
4138 {
4139 /* Initialize the acommon section. */
4140 mips_elf_acom_section.name = ".acommon";
4141 mips_elf_acom_section.flags = SEC_ALLOC;
4142 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4143 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4144 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4145 mips_elf_acom_symbol.name = ".acommon";
4146 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4147 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4148 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4149 }
4150 asym->section = &mips_elf_acom_section;
4151 break;
4152
4153 case SHN_COMMON:
4154 /* Common symbols less than the GP size are automatically
4155 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4156 if (asym->value > elf_gp_size (abfd)
4157 || IRIX_COMPAT (abfd) == ict_irix6)
4158 break;
4159 /* Fall through. */
4160 case SHN_MIPS_SCOMMON:
4161 if (mips_elf_scom_section.name == NULL)
4162 {
4163 /* Initialize the small common section. */
4164 mips_elf_scom_section.name = ".scommon";
4165 mips_elf_scom_section.flags = SEC_IS_COMMON;
4166 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4167 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4168 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4169 mips_elf_scom_symbol.name = ".scommon";
4170 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4171 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4172 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4173 }
4174 asym->section = &mips_elf_scom_section;
4175 asym->value = elfsym->internal_elf_sym.st_size;
4176 break;
4177
4178 case SHN_MIPS_SUNDEFINED:
4179 asym->section = bfd_und_section_ptr;
4180 break;
4181
4182 case SHN_MIPS_TEXT:
4183 {
4184 asection *section = bfd_get_section_by_name (abfd, ".text");
4185
4186 BFD_ASSERT (SGI_COMPAT (abfd));
4187 if (section != NULL)
4188 {
4189 asym->section = section;
4190 /* MIPS_TEXT is a bit special, the address is not an offset
4191 to the base of the .text section. So substract the section
4192 base address to make it an offset. */
4193 asym->value -= section->vma;
4194 }
4195 }
4196 break;
4197
4198 case SHN_MIPS_DATA:
4199 {
4200 asection *section = bfd_get_section_by_name (abfd, ".data");
4201
4202 BFD_ASSERT (SGI_COMPAT (abfd));
4203 if (section != NULL)
4204 {
4205 asym->section = section;
4206 /* MIPS_DATA is a bit special, the address is not an offset
4207 to the base of the .data section. So substract the section
4208 base address to make it an offset. */
4209 asym->value -= section->vma;
4210 }
4211 }
4212 break;
4213 }
4214 }
4215 \f
4216 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4217 relocations against two unnamed section symbols to resolve to the
4218 same address. For example, if we have code like:
4219
4220 lw $4,%got_disp(.data)($gp)
4221 lw $25,%got_disp(.text)($gp)
4222 jalr $25
4223
4224 then the linker will resolve both relocations to .data and the program
4225 will jump there rather than to .text.
4226
4227 We can work around this problem by giving names to local section symbols.
4228 This is also what the MIPSpro tools do. */
4229
4230 bfd_boolean
4231 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4232 {
4233 return SGI_COMPAT (abfd);
4234 }
4235 \f
4236 /* Work over a section just before writing it out. This routine is
4237 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4238 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4239 a better way. */
4240
4241 bfd_boolean
4242 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4243 {
4244 if (hdr->sh_type == SHT_MIPS_REGINFO
4245 && hdr->sh_size > 0)
4246 {
4247 bfd_byte buf[4];
4248
4249 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4250 BFD_ASSERT (hdr->contents == NULL);
4251
4252 if (bfd_seek (abfd,
4253 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4254 SEEK_SET) != 0)
4255 return FALSE;
4256 H_PUT_32 (abfd, elf_gp (abfd), buf);
4257 if (bfd_bwrite (buf, 4, abfd) != 4)
4258 return FALSE;
4259 }
4260
4261 if (hdr->sh_type == SHT_MIPS_OPTIONS
4262 && hdr->bfd_section != NULL
4263 && mips_elf_section_data (hdr->bfd_section) != NULL
4264 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4265 {
4266 bfd_byte *contents, *l, *lend;
4267
4268 /* We stored the section contents in the tdata field in the
4269 set_section_contents routine. We save the section contents
4270 so that we don't have to read them again.
4271 At this point we know that elf_gp is set, so we can look
4272 through the section contents to see if there is an
4273 ODK_REGINFO structure. */
4274
4275 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4276 l = contents;
4277 lend = contents + hdr->sh_size;
4278 while (l + sizeof (Elf_External_Options) <= lend)
4279 {
4280 Elf_Internal_Options intopt;
4281
4282 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4283 &intopt);
4284 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4285 {
4286 bfd_byte buf[8];
4287
4288 if (bfd_seek (abfd,
4289 (hdr->sh_offset
4290 + (l - contents)
4291 + sizeof (Elf_External_Options)
4292 + (sizeof (Elf64_External_RegInfo) - 8)),
4293 SEEK_SET) != 0)
4294 return FALSE;
4295 H_PUT_64 (abfd, elf_gp (abfd), buf);
4296 if (bfd_bwrite (buf, 8, abfd) != 8)
4297 return FALSE;
4298 }
4299 else if (intopt.kind == ODK_REGINFO)
4300 {
4301 bfd_byte buf[4];
4302
4303 if (bfd_seek (abfd,
4304 (hdr->sh_offset
4305 + (l - contents)
4306 + sizeof (Elf_External_Options)
4307 + (sizeof (Elf32_External_RegInfo) - 4)),
4308 SEEK_SET) != 0)
4309 return FALSE;
4310 H_PUT_32 (abfd, elf_gp (abfd), buf);
4311 if (bfd_bwrite (buf, 4, abfd) != 4)
4312 return FALSE;
4313 }
4314 l += intopt.size;
4315 }
4316 }
4317
4318 if (hdr->bfd_section != NULL)
4319 {
4320 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4321
4322 if (strcmp (name, ".sdata") == 0
4323 || strcmp (name, ".lit8") == 0
4324 || strcmp (name, ".lit4") == 0)
4325 {
4326 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4327 hdr->sh_type = SHT_PROGBITS;
4328 }
4329 else if (strcmp (name, ".sbss") == 0)
4330 {
4331 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4332 hdr->sh_type = SHT_NOBITS;
4333 }
4334 else if (strcmp (name, ".srdata") == 0)
4335 {
4336 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4337 hdr->sh_type = SHT_PROGBITS;
4338 }
4339 else if (strcmp (name, ".compact_rel") == 0)
4340 {
4341 hdr->sh_flags = 0;
4342 hdr->sh_type = SHT_PROGBITS;
4343 }
4344 else if (strcmp (name, ".rtproc") == 0)
4345 {
4346 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4347 {
4348 unsigned int adjust;
4349
4350 adjust = hdr->sh_size % hdr->sh_addralign;
4351 if (adjust != 0)
4352 hdr->sh_size += hdr->sh_addralign - adjust;
4353 }
4354 }
4355 }
4356
4357 return TRUE;
4358 }
4359
4360 /* Handle a MIPS specific section when reading an object file. This
4361 is called when elfcode.h finds a section with an unknown type.
4362 This routine supports both the 32-bit and 64-bit ELF ABI.
4363
4364 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4365 how to. */
4366
4367 bfd_boolean
4368 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4369 const char *name)
4370 {
4371 flagword flags = 0;
4372
4373 /* There ought to be a place to keep ELF backend specific flags, but
4374 at the moment there isn't one. We just keep track of the
4375 sections by their name, instead. Fortunately, the ABI gives
4376 suggested names for all the MIPS specific sections, so we will
4377 probably get away with this. */
4378 switch (hdr->sh_type)
4379 {
4380 case SHT_MIPS_LIBLIST:
4381 if (strcmp (name, ".liblist") != 0)
4382 return FALSE;
4383 break;
4384 case SHT_MIPS_MSYM:
4385 if (strcmp (name, ".msym") != 0)
4386 return FALSE;
4387 break;
4388 case SHT_MIPS_CONFLICT:
4389 if (strcmp (name, ".conflict") != 0)
4390 return FALSE;
4391 break;
4392 case SHT_MIPS_GPTAB:
4393 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4394 return FALSE;
4395 break;
4396 case SHT_MIPS_UCODE:
4397 if (strcmp (name, ".ucode") != 0)
4398 return FALSE;
4399 break;
4400 case SHT_MIPS_DEBUG:
4401 if (strcmp (name, ".mdebug") != 0)
4402 return FALSE;
4403 flags = SEC_DEBUGGING;
4404 break;
4405 case SHT_MIPS_REGINFO:
4406 if (strcmp (name, ".reginfo") != 0
4407 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4408 return FALSE;
4409 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4410 break;
4411 case SHT_MIPS_IFACE:
4412 if (strcmp (name, ".MIPS.interfaces") != 0)
4413 return FALSE;
4414 break;
4415 case SHT_MIPS_CONTENT:
4416 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4417 return FALSE;
4418 break;
4419 case SHT_MIPS_OPTIONS:
4420 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4421 return FALSE;
4422 break;
4423 case SHT_MIPS_DWARF:
4424 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4425 return FALSE;
4426 break;
4427 case SHT_MIPS_SYMBOL_LIB:
4428 if (strcmp (name, ".MIPS.symlib") != 0)
4429 return FALSE;
4430 break;
4431 case SHT_MIPS_EVENTS:
4432 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4433 && strncmp (name, ".MIPS.post_rel",
4434 sizeof ".MIPS.post_rel" - 1) != 0)
4435 return FALSE;
4436 break;
4437 default:
4438 return FALSE;
4439 }
4440
4441 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4442 return FALSE;
4443
4444 if (flags)
4445 {
4446 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4447 (bfd_get_section_flags (abfd,
4448 hdr->bfd_section)
4449 | flags)))
4450 return FALSE;
4451 }
4452
4453 /* FIXME: We should record sh_info for a .gptab section. */
4454
4455 /* For a .reginfo section, set the gp value in the tdata information
4456 from the contents of this section. We need the gp value while
4457 processing relocs, so we just get it now. The .reginfo section
4458 is not used in the 64-bit MIPS ELF ABI. */
4459 if (hdr->sh_type == SHT_MIPS_REGINFO)
4460 {
4461 Elf32_External_RegInfo ext;
4462 Elf32_RegInfo s;
4463
4464 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4465 &ext, 0, sizeof ext))
4466 return FALSE;
4467 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4468 elf_gp (abfd) = s.ri_gp_value;
4469 }
4470
4471 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4472 set the gp value based on what we find. We may see both
4473 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4474 they should agree. */
4475 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4476 {
4477 bfd_byte *contents, *l, *lend;
4478
4479 contents = bfd_malloc (hdr->sh_size);
4480 if (contents == NULL)
4481 return FALSE;
4482 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4483 0, hdr->sh_size))
4484 {
4485 free (contents);
4486 return FALSE;
4487 }
4488 l = contents;
4489 lend = contents + hdr->sh_size;
4490 while (l + sizeof (Elf_External_Options) <= lend)
4491 {
4492 Elf_Internal_Options intopt;
4493
4494 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4495 &intopt);
4496 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4497 {
4498 Elf64_Internal_RegInfo intreg;
4499
4500 bfd_mips_elf64_swap_reginfo_in
4501 (abfd,
4502 ((Elf64_External_RegInfo *)
4503 (l + sizeof (Elf_External_Options))),
4504 &intreg);
4505 elf_gp (abfd) = intreg.ri_gp_value;
4506 }
4507 else if (intopt.kind == ODK_REGINFO)
4508 {
4509 Elf32_RegInfo intreg;
4510
4511 bfd_mips_elf32_swap_reginfo_in
4512 (abfd,
4513 ((Elf32_External_RegInfo *)
4514 (l + sizeof (Elf_External_Options))),
4515 &intreg);
4516 elf_gp (abfd) = intreg.ri_gp_value;
4517 }
4518 l += intopt.size;
4519 }
4520 free (contents);
4521 }
4522
4523 return TRUE;
4524 }
4525
4526 /* Set the correct type for a MIPS ELF section. We do this by the
4527 section name, which is a hack, but ought to work. This routine is
4528 used by both the 32-bit and the 64-bit ABI. */
4529
4530 bfd_boolean
4531 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4532 {
4533 register const char *name;
4534
4535 name = bfd_get_section_name (abfd, sec);
4536
4537 if (strcmp (name, ".liblist") == 0)
4538 {
4539 hdr->sh_type = SHT_MIPS_LIBLIST;
4540 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
4541 /* The sh_link field is set in final_write_processing. */
4542 }
4543 else if (strcmp (name, ".conflict") == 0)
4544 hdr->sh_type = SHT_MIPS_CONFLICT;
4545 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4546 {
4547 hdr->sh_type = SHT_MIPS_GPTAB;
4548 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4549 /* The sh_info field is set in final_write_processing. */
4550 }
4551 else if (strcmp (name, ".ucode") == 0)
4552 hdr->sh_type = SHT_MIPS_UCODE;
4553 else if (strcmp (name, ".mdebug") == 0)
4554 {
4555 hdr->sh_type = SHT_MIPS_DEBUG;
4556 /* In a shared object on IRIX 5.3, the .mdebug section has an
4557 entsize of 0. FIXME: Does this matter? */
4558 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4559 hdr->sh_entsize = 0;
4560 else
4561 hdr->sh_entsize = 1;
4562 }
4563 else if (strcmp (name, ".reginfo") == 0)
4564 {
4565 hdr->sh_type = SHT_MIPS_REGINFO;
4566 /* In a shared object on IRIX 5.3, the .reginfo section has an
4567 entsize of 0x18. FIXME: Does this matter? */
4568 if (SGI_COMPAT (abfd))
4569 {
4570 if ((abfd->flags & DYNAMIC) != 0)
4571 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4572 else
4573 hdr->sh_entsize = 1;
4574 }
4575 else
4576 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4577 }
4578 else if (SGI_COMPAT (abfd)
4579 && (strcmp (name, ".hash") == 0
4580 || strcmp (name, ".dynamic") == 0
4581 || strcmp (name, ".dynstr") == 0))
4582 {
4583 if (SGI_COMPAT (abfd))
4584 hdr->sh_entsize = 0;
4585 #if 0
4586 /* This isn't how the IRIX6 linker behaves. */
4587 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4588 #endif
4589 }
4590 else if (strcmp (name, ".got") == 0
4591 || strcmp (name, ".srdata") == 0
4592 || strcmp (name, ".sdata") == 0
4593 || strcmp (name, ".sbss") == 0
4594 || strcmp (name, ".lit4") == 0
4595 || strcmp (name, ".lit8") == 0)
4596 hdr->sh_flags |= SHF_MIPS_GPREL;
4597 else if (strcmp (name, ".MIPS.interfaces") == 0)
4598 {
4599 hdr->sh_type = SHT_MIPS_IFACE;
4600 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4601 }
4602 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4603 {
4604 hdr->sh_type = SHT_MIPS_CONTENT;
4605 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4606 /* The sh_info field is set in final_write_processing. */
4607 }
4608 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4609 {
4610 hdr->sh_type = SHT_MIPS_OPTIONS;
4611 hdr->sh_entsize = 1;
4612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4613 }
4614 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4615 hdr->sh_type = SHT_MIPS_DWARF;
4616 else if (strcmp (name, ".MIPS.symlib") == 0)
4617 {
4618 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4619 /* The sh_link and sh_info fields are set in
4620 final_write_processing. */
4621 }
4622 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4623 || strncmp (name, ".MIPS.post_rel",
4624 sizeof ".MIPS.post_rel" - 1) == 0)
4625 {
4626 hdr->sh_type = SHT_MIPS_EVENTS;
4627 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4628 /* The sh_link field is set in final_write_processing. */
4629 }
4630 else if (strcmp (name, ".msym") == 0)
4631 {
4632 hdr->sh_type = SHT_MIPS_MSYM;
4633 hdr->sh_flags |= SHF_ALLOC;
4634 hdr->sh_entsize = 8;
4635 }
4636
4637 /* The generic elf_fake_sections will set up REL_HDR using the default
4638 kind of relocations. We used to set up a second header for the
4639 non-default kind of relocations here, but only NewABI would use
4640 these, and the IRIX ld doesn't like resulting empty RELA sections.
4641 Thus we create those header only on demand now. */
4642
4643 return TRUE;
4644 }
4645
4646 /* Given a BFD section, try to locate the corresponding ELF section
4647 index. This is used by both the 32-bit and the 64-bit ABI.
4648 Actually, it's not clear to me that the 64-bit ABI supports these,
4649 but for non-PIC objects we will certainly want support for at least
4650 the .scommon section. */
4651
4652 bfd_boolean
4653 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4654 asection *sec, int *retval)
4655 {
4656 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4657 {
4658 *retval = SHN_MIPS_SCOMMON;
4659 return TRUE;
4660 }
4661 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4662 {
4663 *retval = SHN_MIPS_ACOMMON;
4664 return TRUE;
4665 }
4666 return FALSE;
4667 }
4668 \f
4669 /* Hook called by the linker routine which adds symbols from an object
4670 file. We must handle the special MIPS section numbers here. */
4671
4672 bfd_boolean
4673 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4674 Elf_Internal_Sym *sym, const char **namep,
4675 flagword *flagsp ATTRIBUTE_UNUSED,
4676 asection **secp, bfd_vma *valp)
4677 {
4678 if (SGI_COMPAT (abfd)
4679 && (abfd->flags & DYNAMIC) != 0
4680 && strcmp (*namep, "_rld_new_interface") == 0)
4681 {
4682 /* Skip IRIX5 rld entry name. */
4683 *namep = NULL;
4684 return TRUE;
4685 }
4686
4687 switch (sym->st_shndx)
4688 {
4689 case SHN_COMMON:
4690 /* Common symbols less than the GP size are automatically
4691 treated as SHN_MIPS_SCOMMON symbols. */
4692 if (sym->st_size > elf_gp_size (abfd)
4693 || IRIX_COMPAT (abfd) == ict_irix6)
4694 break;
4695 /* Fall through. */
4696 case SHN_MIPS_SCOMMON:
4697 *secp = bfd_make_section_old_way (abfd, ".scommon");
4698 (*secp)->flags |= SEC_IS_COMMON;
4699 *valp = sym->st_size;
4700 break;
4701
4702 case SHN_MIPS_TEXT:
4703 /* This section is used in a shared object. */
4704 if (elf_tdata (abfd)->elf_text_section == NULL)
4705 {
4706 asymbol *elf_text_symbol;
4707 asection *elf_text_section;
4708 bfd_size_type amt = sizeof (asection);
4709
4710 elf_text_section = bfd_zalloc (abfd, amt);
4711 if (elf_text_section == NULL)
4712 return FALSE;
4713
4714 amt = sizeof (asymbol);
4715 elf_text_symbol = bfd_zalloc (abfd, amt);
4716 if (elf_text_symbol == NULL)
4717 return FALSE;
4718
4719 /* Initialize the section. */
4720
4721 elf_tdata (abfd)->elf_text_section = elf_text_section;
4722 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4723
4724 elf_text_section->symbol = elf_text_symbol;
4725 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4726
4727 elf_text_section->name = ".text";
4728 elf_text_section->flags = SEC_NO_FLAGS;
4729 elf_text_section->output_section = NULL;
4730 elf_text_section->owner = abfd;
4731 elf_text_symbol->name = ".text";
4732 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4733 elf_text_symbol->section = elf_text_section;
4734 }
4735 /* This code used to do *secp = bfd_und_section_ptr if
4736 info->shared. I don't know why, and that doesn't make sense,
4737 so I took it out. */
4738 *secp = elf_tdata (abfd)->elf_text_section;
4739 break;
4740
4741 case SHN_MIPS_ACOMMON:
4742 /* Fall through. XXX Can we treat this as allocated data? */
4743 case SHN_MIPS_DATA:
4744 /* This section is used in a shared object. */
4745 if (elf_tdata (abfd)->elf_data_section == NULL)
4746 {
4747 asymbol *elf_data_symbol;
4748 asection *elf_data_section;
4749 bfd_size_type amt = sizeof (asection);
4750
4751 elf_data_section = bfd_zalloc (abfd, amt);
4752 if (elf_data_section == NULL)
4753 return FALSE;
4754
4755 amt = sizeof (asymbol);
4756 elf_data_symbol = bfd_zalloc (abfd, amt);
4757 if (elf_data_symbol == NULL)
4758 return FALSE;
4759
4760 /* Initialize the section. */
4761
4762 elf_tdata (abfd)->elf_data_section = elf_data_section;
4763 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4764
4765 elf_data_section->symbol = elf_data_symbol;
4766 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4767
4768 elf_data_section->name = ".data";
4769 elf_data_section->flags = SEC_NO_FLAGS;
4770 elf_data_section->output_section = NULL;
4771 elf_data_section->owner = abfd;
4772 elf_data_symbol->name = ".data";
4773 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4774 elf_data_symbol->section = elf_data_section;
4775 }
4776 /* This code used to do *secp = bfd_und_section_ptr if
4777 info->shared. I don't know why, and that doesn't make sense,
4778 so I took it out. */
4779 *secp = elf_tdata (abfd)->elf_data_section;
4780 break;
4781
4782 case SHN_MIPS_SUNDEFINED:
4783 *secp = bfd_und_section_ptr;
4784 break;
4785 }
4786
4787 if (SGI_COMPAT (abfd)
4788 && ! info->shared
4789 && info->hash->creator == abfd->xvec
4790 && strcmp (*namep, "__rld_obj_head") == 0)
4791 {
4792 struct elf_link_hash_entry *h;
4793 struct bfd_link_hash_entry *bh;
4794
4795 /* Mark __rld_obj_head as dynamic. */
4796 bh = NULL;
4797 if (! (_bfd_generic_link_add_one_symbol
4798 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4799 get_elf_backend_data (abfd)->collect, &bh)))
4800 return FALSE;
4801
4802 h = (struct elf_link_hash_entry *) bh;
4803 h->non_elf = 0;
4804 h->def_regular = 1;
4805 h->type = STT_OBJECT;
4806
4807 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4808 return FALSE;
4809
4810 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4811 }
4812
4813 /* If this is a mips16 text symbol, add 1 to the value to make it
4814 odd. This will cause something like .word SYM to come up with
4815 the right value when it is loaded into the PC. */
4816 if (sym->st_other == STO_MIPS16)
4817 ++*valp;
4818
4819 return TRUE;
4820 }
4821
4822 /* This hook function is called before the linker writes out a global
4823 symbol. We mark symbols as small common if appropriate. This is
4824 also where we undo the increment of the value for a mips16 symbol. */
4825
4826 bfd_boolean
4827 _bfd_mips_elf_link_output_symbol_hook
4828 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4829 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4830 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4831 {
4832 /* If we see a common symbol, which implies a relocatable link, then
4833 if a symbol was small common in an input file, mark it as small
4834 common in the output file. */
4835 if (sym->st_shndx == SHN_COMMON
4836 && strcmp (input_sec->name, ".scommon") == 0)
4837 sym->st_shndx = SHN_MIPS_SCOMMON;
4838
4839 if (sym->st_other == STO_MIPS16)
4840 sym->st_value &= ~1;
4841
4842 return TRUE;
4843 }
4844 \f
4845 /* Functions for the dynamic linker. */
4846
4847 /* Create dynamic sections when linking against a dynamic object. */
4848
4849 bfd_boolean
4850 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4851 {
4852 struct elf_link_hash_entry *h;
4853 struct bfd_link_hash_entry *bh;
4854 flagword flags;
4855 register asection *s;
4856 const char * const *namep;
4857
4858 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4859 | SEC_LINKER_CREATED | SEC_READONLY);
4860
4861 /* Mips ABI requests the .dynamic section to be read only. */
4862 s = bfd_get_section_by_name (abfd, ".dynamic");
4863 if (s != NULL)
4864 {
4865 if (! bfd_set_section_flags (abfd, s, flags))
4866 return FALSE;
4867 }
4868
4869 /* We need to create .got section. */
4870 if (! mips_elf_create_got_section (abfd, info, FALSE))
4871 return FALSE;
4872
4873 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4874 return FALSE;
4875
4876 /* Create .stub section. */
4877 if (bfd_get_section_by_name (abfd,
4878 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4879 {
4880 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4881 if (s == NULL
4882 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4883 || ! bfd_set_section_alignment (abfd, s,
4884 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4885 return FALSE;
4886 }
4887
4888 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4889 && !info->shared
4890 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4891 {
4892 s = bfd_make_section (abfd, ".rld_map");
4893 if (s == NULL
4894 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4895 || ! bfd_set_section_alignment (abfd, s,
4896 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4897 return FALSE;
4898 }
4899
4900 /* On IRIX5, we adjust add some additional symbols and change the
4901 alignments of several sections. There is no ABI documentation
4902 indicating that this is necessary on IRIX6, nor any evidence that
4903 the linker takes such action. */
4904 if (IRIX_COMPAT (abfd) == ict_irix5)
4905 {
4906 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4907 {
4908 bh = NULL;
4909 if (! (_bfd_generic_link_add_one_symbol
4910 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4911 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4912 return FALSE;
4913
4914 h = (struct elf_link_hash_entry *) bh;
4915 h->non_elf = 0;
4916 h->def_regular = 1;
4917 h->type = STT_SECTION;
4918
4919 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4920 return FALSE;
4921 }
4922
4923 /* We need to create a .compact_rel section. */
4924 if (SGI_COMPAT (abfd))
4925 {
4926 if (!mips_elf_create_compact_rel_section (abfd, info))
4927 return FALSE;
4928 }
4929
4930 /* Change alignments of some sections. */
4931 s = bfd_get_section_by_name (abfd, ".hash");
4932 if (s != NULL)
4933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4934 s = bfd_get_section_by_name (abfd, ".dynsym");
4935 if (s != NULL)
4936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4937 s = bfd_get_section_by_name (abfd, ".dynstr");
4938 if (s != NULL)
4939 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4940 s = bfd_get_section_by_name (abfd, ".reginfo");
4941 if (s != NULL)
4942 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4943 s = bfd_get_section_by_name (abfd, ".dynamic");
4944 if (s != NULL)
4945 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4946 }
4947
4948 if (!info->shared)
4949 {
4950 const char *name;
4951
4952 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4953 bh = NULL;
4954 if (!(_bfd_generic_link_add_one_symbol
4955 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4956 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4957 return FALSE;
4958
4959 h = (struct elf_link_hash_entry *) bh;
4960 h->non_elf = 0;
4961 h->def_regular = 1;
4962 h->type = STT_SECTION;
4963
4964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4965 return FALSE;
4966
4967 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4968 {
4969 /* __rld_map is a four byte word located in the .data section
4970 and is filled in by the rtld to contain a pointer to
4971 the _r_debug structure. Its symbol value will be set in
4972 _bfd_mips_elf_finish_dynamic_symbol. */
4973 s = bfd_get_section_by_name (abfd, ".rld_map");
4974 BFD_ASSERT (s != NULL);
4975
4976 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4977 bh = NULL;
4978 if (!(_bfd_generic_link_add_one_symbol
4979 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
4980 get_elf_backend_data (abfd)->collect, &bh)))
4981 return FALSE;
4982
4983 h = (struct elf_link_hash_entry *) bh;
4984 h->non_elf = 0;
4985 h->def_regular = 1;
4986 h->type = STT_OBJECT;
4987
4988 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4989 return FALSE;
4990 }
4991 }
4992
4993 return TRUE;
4994 }
4995 \f
4996 /* Look through the relocs for a section during the first phase, and
4997 allocate space in the global offset table. */
4998
4999 bfd_boolean
5000 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5001 asection *sec, const Elf_Internal_Rela *relocs)
5002 {
5003 const char *name;
5004 bfd *dynobj;
5005 Elf_Internal_Shdr *symtab_hdr;
5006 struct elf_link_hash_entry **sym_hashes;
5007 struct mips_got_info *g;
5008 size_t extsymoff;
5009 const Elf_Internal_Rela *rel;
5010 const Elf_Internal_Rela *rel_end;
5011 asection *sgot;
5012 asection *sreloc;
5013 const struct elf_backend_data *bed;
5014
5015 if (info->relocatable)
5016 return TRUE;
5017
5018 dynobj = elf_hash_table (info)->dynobj;
5019 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5020 sym_hashes = elf_sym_hashes (abfd);
5021 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5022
5023 /* Check for the mips16 stub sections. */
5024
5025 name = bfd_get_section_name (abfd, sec);
5026 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5027 {
5028 unsigned long r_symndx;
5029
5030 /* Look at the relocation information to figure out which symbol
5031 this is for. */
5032
5033 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5034
5035 if (r_symndx < extsymoff
5036 || sym_hashes[r_symndx - extsymoff] == NULL)
5037 {
5038 asection *o;
5039
5040 /* This stub is for a local symbol. This stub will only be
5041 needed if there is some relocation in this BFD, other
5042 than a 16 bit function call, which refers to this symbol. */
5043 for (o = abfd->sections; o != NULL; o = o->next)
5044 {
5045 Elf_Internal_Rela *sec_relocs;
5046 const Elf_Internal_Rela *r, *rend;
5047
5048 /* We can ignore stub sections when looking for relocs. */
5049 if ((o->flags & SEC_RELOC) == 0
5050 || o->reloc_count == 0
5051 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5052 sizeof FN_STUB - 1) == 0
5053 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5054 sizeof CALL_STUB - 1) == 0
5055 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5056 sizeof CALL_FP_STUB - 1) == 0)
5057 continue;
5058
5059 sec_relocs
5060 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5061 info->keep_memory);
5062 if (sec_relocs == NULL)
5063 return FALSE;
5064
5065 rend = sec_relocs + o->reloc_count;
5066 for (r = sec_relocs; r < rend; r++)
5067 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5068 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5069 break;
5070
5071 if (elf_section_data (o)->relocs != sec_relocs)
5072 free (sec_relocs);
5073
5074 if (r < rend)
5075 break;
5076 }
5077
5078 if (o == NULL)
5079 {
5080 /* There is no non-call reloc for this stub, so we do
5081 not need it. Since this function is called before
5082 the linker maps input sections to output sections, we
5083 can easily discard it by setting the SEC_EXCLUDE
5084 flag. */
5085 sec->flags |= SEC_EXCLUDE;
5086 return TRUE;
5087 }
5088
5089 /* Record this stub in an array of local symbol stubs for
5090 this BFD. */
5091 if (elf_tdata (abfd)->local_stubs == NULL)
5092 {
5093 unsigned long symcount;
5094 asection **n;
5095 bfd_size_type amt;
5096
5097 if (elf_bad_symtab (abfd))
5098 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5099 else
5100 symcount = symtab_hdr->sh_info;
5101 amt = symcount * sizeof (asection *);
5102 n = bfd_zalloc (abfd, amt);
5103 if (n == NULL)
5104 return FALSE;
5105 elf_tdata (abfd)->local_stubs = n;
5106 }
5107
5108 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5109
5110 /* We don't need to set mips16_stubs_seen in this case.
5111 That flag is used to see whether we need to look through
5112 the global symbol table for stubs. We don't need to set
5113 it here, because we just have a local stub. */
5114 }
5115 else
5116 {
5117 struct mips_elf_link_hash_entry *h;
5118
5119 h = ((struct mips_elf_link_hash_entry *)
5120 sym_hashes[r_symndx - extsymoff]);
5121
5122 /* H is the symbol this stub is for. */
5123
5124 h->fn_stub = sec;
5125 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5126 }
5127 }
5128 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5129 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5130 {
5131 unsigned long r_symndx;
5132 struct mips_elf_link_hash_entry *h;
5133 asection **loc;
5134
5135 /* Look at the relocation information to figure out which symbol
5136 this is for. */
5137
5138 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5139
5140 if (r_symndx < extsymoff
5141 || sym_hashes[r_symndx - extsymoff] == NULL)
5142 {
5143 /* This stub was actually built for a static symbol defined
5144 in the same file. We assume that all static symbols in
5145 mips16 code are themselves mips16, so we can simply
5146 discard this stub. Since this function is called before
5147 the linker maps input sections to output sections, we can
5148 easily discard it by setting the SEC_EXCLUDE flag. */
5149 sec->flags |= SEC_EXCLUDE;
5150 return TRUE;
5151 }
5152
5153 h = ((struct mips_elf_link_hash_entry *)
5154 sym_hashes[r_symndx - extsymoff]);
5155
5156 /* H is the symbol this stub is for. */
5157
5158 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5159 loc = &h->call_fp_stub;
5160 else
5161 loc = &h->call_stub;
5162
5163 /* If we already have an appropriate stub for this function, we
5164 don't need another one, so we can discard this one. Since
5165 this function is called before the linker maps input sections
5166 to output sections, we can easily discard it by setting the
5167 SEC_EXCLUDE flag. We can also discard this section if we
5168 happen to already know that this is a mips16 function; it is
5169 not necessary to check this here, as it is checked later, but
5170 it is slightly faster to check now. */
5171 if (*loc != NULL || h->root.other == STO_MIPS16)
5172 {
5173 sec->flags |= SEC_EXCLUDE;
5174 return TRUE;
5175 }
5176
5177 *loc = sec;
5178 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5179 }
5180
5181 if (dynobj == NULL)
5182 {
5183 sgot = NULL;
5184 g = NULL;
5185 }
5186 else
5187 {
5188 sgot = mips_elf_got_section (dynobj, FALSE);
5189 if (sgot == NULL)
5190 g = NULL;
5191 else
5192 {
5193 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5194 g = mips_elf_section_data (sgot)->u.got_info;
5195 BFD_ASSERT (g != NULL);
5196 }
5197 }
5198
5199 sreloc = NULL;
5200 bed = get_elf_backend_data (abfd);
5201 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5202 for (rel = relocs; rel < rel_end; ++rel)
5203 {
5204 unsigned long r_symndx;
5205 unsigned int r_type;
5206 struct elf_link_hash_entry *h;
5207
5208 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5209 r_type = ELF_R_TYPE (abfd, rel->r_info);
5210
5211 if (r_symndx < extsymoff)
5212 h = NULL;
5213 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5214 {
5215 (*_bfd_error_handler)
5216 (_("%B: Malformed reloc detected for section %s"),
5217 abfd, name);
5218 bfd_set_error (bfd_error_bad_value);
5219 return FALSE;
5220 }
5221 else
5222 {
5223 h = sym_hashes[r_symndx - extsymoff];
5224
5225 /* This may be an indirect symbol created because of a version. */
5226 if (h != NULL)
5227 {
5228 while (h->root.type == bfd_link_hash_indirect)
5229 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5230 }
5231 }
5232
5233 /* Some relocs require a global offset table. */
5234 if (dynobj == NULL || sgot == NULL)
5235 {
5236 switch (r_type)
5237 {
5238 case R_MIPS_GOT16:
5239 case R_MIPS_CALL16:
5240 case R_MIPS_CALL_HI16:
5241 case R_MIPS_CALL_LO16:
5242 case R_MIPS_GOT_HI16:
5243 case R_MIPS_GOT_LO16:
5244 case R_MIPS_GOT_PAGE:
5245 case R_MIPS_GOT_OFST:
5246 case R_MIPS_GOT_DISP:
5247 if (dynobj == NULL)
5248 elf_hash_table (info)->dynobj = dynobj = abfd;
5249 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5250 return FALSE;
5251 g = mips_elf_got_info (dynobj, &sgot);
5252 break;
5253
5254 case R_MIPS_32:
5255 case R_MIPS_REL32:
5256 case R_MIPS_64:
5257 if (dynobj == NULL
5258 && (info->shared || h != NULL)
5259 && (sec->flags & SEC_ALLOC) != 0)
5260 elf_hash_table (info)->dynobj = dynobj = abfd;
5261 break;
5262
5263 default:
5264 break;
5265 }
5266 }
5267
5268 if (!h && (r_type == R_MIPS_CALL_LO16
5269 || r_type == R_MIPS_GOT_LO16
5270 || r_type == R_MIPS_GOT_DISP))
5271 {
5272 /* We may need a local GOT entry for this relocation. We
5273 don't count R_MIPS_GOT_PAGE because we can estimate the
5274 maximum number of pages needed by looking at the size of
5275 the segment. Similar comments apply to R_MIPS_GOT16 and
5276 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5277 R_MIPS_CALL_HI16 because these are always followed by an
5278 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5279 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5280 rel->r_addend, g))
5281 return FALSE;
5282 }
5283
5284 switch (r_type)
5285 {
5286 case R_MIPS_CALL16:
5287 if (h == NULL)
5288 {
5289 (*_bfd_error_handler)
5290 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5291 abfd, (unsigned long) rel->r_offset);
5292 bfd_set_error (bfd_error_bad_value);
5293 return FALSE;
5294 }
5295 /* Fall through. */
5296
5297 case R_MIPS_CALL_HI16:
5298 case R_MIPS_CALL_LO16:
5299 if (h != NULL)
5300 {
5301 /* This symbol requires a global offset table entry. */
5302 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5303 return FALSE;
5304
5305 /* We need a stub, not a plt entry for the undefined
5306 function. But we record it as if it needs plt. See
5307 _bfd_elf_adjust_dynamic_symbol. */
5308 h->needs_plt = 1;
5309 h->type = STT_FUNC;
5310 }
5311 break;
5312
5313 case R_MIPS_GOT_PAGE:
5314 /* If this is a global, overridable symbol, GOT_PAGE will
5315 decay to GOT_DISP, so we'll need a GOT entry for it. */
5316 if (h == NULL)
5317 break;
5318 else
5319 {
5320 struct mips_elf_link_hash_entry *hmips =
5321 (struct mips_elf_link_hash_entry *) h;
5322
5323 while (hmips->root.root.type == bfd_link_hash_indirect
5324 || hmips->root.root.type == bfd_link_hash_warning)
5325 hmips = (struct mips_elf_link_hash_entry *)
5326 hmips->root.root.u.i.link;
5327
5328 if (hmips->root.def_regular
5329 && ! (info->shared && ! info->symbolic
5330 && ! hmips->root.forced_local))
5331 break;
5332 }
5333 /* Fall through. */
5334
5335 case R_MIPS_GOT16:
5336 case R_MIPS_GOT_HI16:
5337 case R_MIPS_GOT_LO16:
5338 case R_MIPS_GOT_DISP:
5339 /* This symbol requires a global offset table entry. */
5340 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5341 return FALSE;
5342 break;
5343
5344 case R_MIPS_32:
5345 case R_MIPS_REL32:
5346 case R_MIPS_64:
5347 if ((info->shared || h != NULL)
5348 && (sec->flags & SEC_ALLOC) != 0)
5349 {
5350 if (sreloc == NULL)
5351 {
5352 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5353 if (sreloc == NULL)
5354 return FALSE;
5355 }
5356 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5357 if (info->shared)
5358 {
5359 /* When creating a shared object, we must copy these
5360 reloc types into the output file as R_MIPS_REL32
5361 relocs. We make room for this reloc in the
5362 .rel.dyn reloc section. */
5363 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5364 if ((sec->flags & MIPS_READONLY_SECTION)
5365 == MIPS_READONLY_SECTION)
5366 /* We tell the dynamic linker that there are
5367 relocations against the text segment. */
5368 info->flags |= DF_TEXTREL;
5369 }
5370 else
5371 {
5372 struct mips_elf_link_hash_entry *hmips;
5373
5374 /* We only need to copy this reloc if the symbol is
5375 defined in a dynamic object. */
5376 hmips = (struct mips_elf_link_hash_entry *) h;
5377 ++hmips->possibly_dynamic_relocs;
5378 if ((sec->flags & MIPS_READONLY_SECTION)
5379 == MIPS_READONLY_SECTION)
5380 /* We need it to tell the dynamic linker if there
5381 are relocations against the text segment. */
5382 hmips->readonly_reloc = TRUE;
5383 }
5384
5385 /* Even though we don't directly need a GOT entry for
5386 this symbol, a symbol must have a dynamic symbol
5387 table index greater that DT_MIPS_GOTSYM if there are
5388 dynamic relocations against it. */
5389 if (h != NULL)
5390 {
5391 if (dynobj == NULL)
5392 elf_hash_table (info)->dynobj = dynobj = abfd;
5393 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5394 return FALSE;
5395 g = mips_elf_got_info (dynobj, &sgot);
5396 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5397 return FALSE;
5398 }
5399 }
5400
5401 if (SGI_COMPAT (abfd))
5402 mips_elf_hash_table (info)->compact_rel_size +=
5403 sizeof (Elf32_External_crinfo);
5404 break;
5405
5406 case R_MIPS_26:
5407 case R_MIPS_GPREL16:
5408 case R_MIPS_LITERAL:
5409 case R_MIPS_GPREL32:
5410 if (SGI_COMPAT (abfd))
5411 mips_elf_hash_table (info)->compact_rel_size +=
5412 sizeof (Elf32_External_crinfo);
5413 break;
5414
5415 /* This relocation describes the C++ object vtable hierarchy.
5416 Reconstruct it for later use during GC. */
5417 case R_MIPS_GNU_VTINHERIT:
5418 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5419 return FALSE;
5420 break;
5421
5422 /* This relocation describes which C++ vtable entries are actually
5423 used. Record for later use during GC. */
5424 case R_MIPS_GNU_VTENTRY:
5425 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5426 return FALSE;
5427 break;
5428
5429 default:
5430 break;
5431 }
5432
5433 /* We must not create a stub for a symbol that has relocations
5434 related to taking the function's address. */
5435 switch (r_type)
5436 {
5437 default:
5438 if (h != NULL)
5439 {
5440 struct mips_elf_link_hash_entry *mh;
5441
5442 mh = (struct mips_elf_link_hash_entry *) h;
5443 mh->no_fn_stub = TRUE;
5444 }
5445 break;
5446 case R_MIPS_CALL16:
5447 case R_MIPS_CALL_HI16:
5448 case R_MIPS_CALL_LO16:
5449 case R_MIPS_JALR:
5450 break;
5451 }
5452
5453 /* If this reloc is not a 16 bit call, and it has a global
5454 symbol, then we will need the fn_stub if there is one.
5455 References from a stub section do not count. */
5456 if (h != NULL
5457 && r_type != R_MIPS16_26
5458 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5459 sizeof FN_STUB - 1) != 0
5460 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5461 sizeof CALL_STUB - 1) != 0
5462 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5463 sizeof CALL_FP_STUB - 1) != 0)
5464 {
5465 struct mips_elf_link_hash_entry *mh;
5466
5467 mh = (struct mips_elf_link_hash_entry *) h;
5468 mh->need_fn_stub = TRUE;
5469 }
5470 }
5471
5472 return TRUE;
5473 }
5474 \f
5475 bfd_boolean
5476 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5477 struct bfd_link_info *link_info,
5478 bfd_boolean *again)
5479 {
5480 Elf_Internal_Rela *internal_relocs;
5481 Elf_Internal_Rela *irel, *irelend;
5482 Elf_Internal_Shdr *symtab_hdr;
5483 bfd_byte *contents = NULL;
5484 size_t extsymoff;
5485 bfd_boolean changed_contents = FALSE;
5486 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5487 Elf_Internal_Sym *isymbuf = NULL;
5488
5489 /* We are not currently changing any sizes, so only one pass. */
5490 *again = FALSE;
5491
5492 if (link_info->relocatable)
5493 return TRUE;
5494
5495 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5496 link_info->keep_memory);
5497 if (internal_relocs == NULL)
5498 return TRUE;
5499
5500 irelend = internal_relocs + sec->reloc_count
5501 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5502 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5503 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5504
5505 for (irel = internal_relocs; irel < irelend; irel++)
5506 {
5507 bfd_vma symval;
5508 bfd_signed_vma sym_offset;
5509 unsigned int r_type;
5510 unsigned long r_symndx;
5511 asection *sym_sec;
5512 unsigned long instruction;
5513
5514 /* Turn jalr into bgezal, and jr into beq, if they're marked
5515 with a JALR relocation, that indicate where they jump to.
5516 This saves some pipeline bubbles. */
5517 r_type = ELF_R_TYPE (abfd, irel->r_info);
5518 if (r_type != R_MIPS_JALR)
5519 continue;
5520
5521 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5522 /* Compute the address of the jump target. */
5523 if (r_symndx >= extsymoff)
5524 {
5525 struct mips_elf_link_hash_entry *h
5526 = ((struct mips_elf_link_hash_entry *)
5527 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5528
5529 while (h->root.root.type == bfd_link_hash_indirect
5530 || h->root.root.type == bfd_link_hash_warning)
5531 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5532
5533 /* If a symbol is undefined, or if it may be overridden,
5534 skip it. */
5535 if (! ((h->root.root.type == bfd_link_hash_defined
5536 || h->root.root.type == bfd_link_hash_defweak)
5537 && h->root.root.u.def.section)
5538 || (link_info->shared && ! link_info->symbolic
5539 && !h->root.forced_local))
5540 continue;
5541
5542 sym_sec = h->root.root.u.def.section;
5543 if (sym_sec->output_section)
5544 symval = (h->root.root.u.def.value
5545 + sym_sec->output_section->vma
5546 + sym_sec->output_offset);
5547 else
5548 symval = h->root.root.u.def.value;
5549 }
5550 else
5551 {
5552 Elf_Internal_Sym *isym;
5553
5554 /* Read this BFD's symbols if we haven't done so already. */
5555 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5556 {
5557 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5558 if (isymbuf == NULL)
5559 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5560 symtab_hdr->sh_info, 0,
5561 NULL, NULL, NULL);
5562 if (isymbuf == NULL)
5563 goto relax_return;
5564 }
5565
5566 isym = isymbuf + r_symndx;
5567 if (isym->st_shndx == SHN_UNDEF)
5568 continue;
5569 else if (isym->st_shndx == SHN_ABS)
5570 sym_sec = bfd_abs_section_ptr;
5571 else if (isym->st_shndx == SHN_COMMON)
5572 sym_sec = bfd_com_section_ptr;
5573 else
5574 sym_sec
5575 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5576 symval = isym->st_value
5577 + sym_sec->output_section->vma
5578 + sym_sec->output_offset;
5579 }
5580
5581 /* Compute branch offset, from delay slot of the jump to the
5582 branch target. */
5583 sym_offset = (symval + irel->r_addend)
5584 - (sec_start + irel->r_offset + 4);
5585
5586 /* Branch offset must be properly aligned. */
5587 if ((sym_offset & 3) != 0)
5588 continue;
5589
5590 sym_offset >>= 2;
5591
5592 /* Check that it's in range. */
5593 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5594 continue;
5595
5596 /* Get the section contents if we haven't done so already. */
5597 if (contents == NULL)
5598 {
5599 /* Get cached copy if it exists. */
5600 if (elf_section_data (sec)->this_hdr.contents != NULL)
5601 contents = elf_section_data (sec)->this_hdr.contents;
5602 else
5603 {
5604 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5605 goto relax_return;
5606 }
5607 }
5608
5609 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5610
5611 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5612 if ((instruction & 0xfc1fffff) == 0x0000f809)
5613 instruction = 0x04110000;
5614 /* If it was jr <reg>, turn it into b <target>. */
5615 else if ((instruction & 0xfc1fffff) == 0x00000008)
5616 instruction = 0x10000000;
5617 else
5618 continue;
5619
5620 instruction |= (sym_offset & 0xffff);
5621 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5622 changed_contents = TRUE;
5623 }
5624
5625 if (contents != NULL
5626 && elf_section_data (sec)->this_hdr.contents != contents)
5627 {
5628 if (!changed_contents && !link_info->keep_memory)
5629 free (contents);
5630 else
5631 {
5632 /* Cache the section contents for elf_link_input_bfd. */
5633 elf_section_data (sec)->this_hdr.contents = contents;
5634 }
5635 }
5636 return TRUE;
5637
5638 relax_return:
5639 if (contents != NULL
5640 && elf_section_data (sec)->this_hdr.contents != contents)
5641 free (contents);
5642 return FALSE;
5643 }
5644 \f
5645 /* Adjust a symbol defined by a dynamic object and referenced by a
5646 regular object. The current definition is in some section of the
5647 dynamic object, but we're not including those sections. We have to
5648 change the definition to something the rest of the link can
5649 understand. */
5650
5651 bfd_boolean
5652 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5653 struct elf_link_hash_entry *h)
5654 {
5655 bfd *dynobj;
5656 struct mips_elf_link_hash_entry *hmips;
5657 asection *s;
5658
5659 dynobj = elf_hash_table (info)->dynobj;
5660
5661 /* Make sure we know what is going on here. */
5662 BFD_ASSERT (dynobj != NULL
5663 && (h->needs_plt
5664 || h->u.weakdef != NULL
5665 || (h->def_dynamic
5666 && h->ref_regular
5667 && !h->def_regular)));
5668
5669 /* If this symbol is defined in a dynamic object, we need to copy
5670 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5671 file. */
5672 hmips = (struct mips_elf_link_hash_entry *) h;
5673 if (! info->relocatable
5674 && hmips->possibly_dynamic_relocs != 0
5675 && (h->root.type == bfd_link_hash_defweak
5676 || !h->def_regular))
5677 {
5678 mips_elf_allocate_dynamic_relocations (dynobj,
5679 hmips->possibly_dynamic_relocs);
5680 if (hmips->readonly_reloc)
5681 /* We tell the dynamic linker that there are relocations
5682 against the text segment. */
5683 info->flags |= DF_TEXTREL;
5684 }
5685
5686 /* For a function, create a stub, if allowed. */
5687 if (! hmips->no_fn_stub
5688 && h->needs_plt)
5689 {
5690 if (! elf_hash_table (info)->dynamic_sections_created)
5691 return TRUE;
5692
5693 /* If this symbol is not defined in a regular file, then set
5694 the symbol to the stub location. This is required to make
5695 function pointers compare as equal between the normal
5696 executable and the shared library. */
5697 if (!h->def_regular)
5698 {
5699 /* We need .stub section. */
5700 s = bfd_get_section_by_name (dynobj,
5701 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5702 BFD_ASSERT (s != NULL);
5703
5704 h->root.u.def.section = s;
5705 h->root.u.def.value = s->size;
5706
5707 /* XXX Write this stub address somewhere. */
5708 h->plt.offset = s->size;
5709
5710 /* Make room for this stub code. */
5711 s->size += MIPS_FUNCTION_STUB_SIZE;
5712
5713 /* The last half word of the stub will be filled with the index
5714 of this symbol in .dynsym section. */
5715 return TRUE;
5716 }
5717 }
5718 else if ((h->type == STT_FUNC)
5719 && !h->needs_plt)
5720 {
5721 /* This will set the entry for this symbol in the GOT to 0, and
5722 the dynamic linker will take care of this. */
5723 h->root.u.def.value = 0;
5724 return TRUE;
5725 }
5726
5727 /* If this is a weak symbol, and there is a real definition, the
5728 processor independent code will have arranged for us to see the
5729 real definition first, and we can just use the same value. */
5730 if (h->u.weakdef != NULL)
5731 {
5732 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5733 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5734 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5735 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5736 return TRUE;
5737 }
5738
5739 /* This is a reference to a symbol defined by a dynamic object which
5740 is not a function. */
5741
5742 return TRUE;
5743 }
5744 \f
5745 /* This function is called after all the input files have been read,
5746 and the input sections have been assigned to output sections. We
5747 check for any mips16 stub sections that we can discard. */
5748
5749 bfd_boolean
5750 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5751 struct bfd_link_info *info)
5752 {
5753 asection *ri;
5754
5755 bfd *dynobj;
5756 asection *s;
5757 struct mips_got_info *g;
5758 int i;
5759 bfd_size_type loadable_size = 0;
5760 bfd_size_type local_gotno;
5761 bfd *sub;
5762
5763 /* The .reginfo section has a fixed size. */
5764 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5765 if (ri != NULL)
5766 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5767
5768 if (! (info->relocatable
5769 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5770 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5771 mips_elf_check_mips16_stubs, NULL);
5772
5773 dynobj = elf_hash_table (info)->dynobj;
5774 if (dynobj == NULL)
5775 /* Relocatable links don't have it. */
5776 return TRUE;
5777
5778 g = mips_elf_got_info (dynobj, &s);
5779 if (s == NULL)
5780 return TRUE;
5781
5782 /* Calculate the total loadable size of the output. That
5783 will give us the maximum number of GOT_PAGE entries
5784 required. */
5785 for (sub = info->input_bfds; sub; sub = sub->link_next)
5786 {
5787 asection *subsection;
5788
5789 for (subsection = sub->sections;
5790 subsection;
5791 subsection = subsection->next)
5792 {
5793 if ((subsection->flags & SEC_ALLOC) == 0)
5794 continue;
5795 loadable_size += ((subsection->size + 0xf)
5796 &~ (bfd_size_type) 0xf);
5797 }
5798 }
5799
5800 /* There has to be a global GOT entry for every symbol with
5801 a dynamic symbol table index of DT_MIPS_GOTSYM or
5802 higher. Therefore, it make sense to put those symbols
5803 that need GOT entries at the end of the symbol table. We
5804 do that here. */
5805 if (! mips_elf_sort_hash_table (info, 1))
5806 return FALSE;
5807
5808 if (g->global_gotsym != NULL)
5809 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5810 else
5811 /* If there are no global symbols, or none requiring
5812 relocations, then GLOBAL_GOTSYM will be NULL. */
5813 i = 0;
5814
5815 /* In the worst case, we'll get one stub per dynamic symbol, plus
5816 one to account for the dummy entry at the end required by IRIX
5817 rld. */
5818 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5819
5820 /* Assume there are two loadable segments consisting of
5821 contiguous sections. Is 5 enough? */
5822 local_gotno = (loadable_size >> 16) + 5;
5823
5824 g->local_gotno += local_gotno;
5825 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5826
5827 g->global_gotno = i;
5828 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5829
5830 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5831 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5832 return FALSE;
5833
5834 return TRUE;
5835 }
5836
5837 /* Set the sizes of the dynamic sections. */
5838
5839 bfd_boolean
5840 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5841 struct bfd_link_info *info)
5842 {
5843 bfd *dynobj;
5844 asection *s;
5845 bfd_boolean reltext;
5846
5847 dynobj = elf_hash_table (info)->dynobj;
5848 BFD_ASSERT (dynobj != NULL);
5849
5850 if (elf_hash_table (info)->dynamic_sections_created)
5851 {
5852 /* Set the contents of the .interp section to the interpreter. */
5853 if (info->executable)
5854 {
5855 s = bfd_get_section_by_name (dynobj, ".interp");
5856 BFD_ASSERT (s != NULL);
5857 s->size
5858 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5859 s->contents
5860 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5861 }
5862 }
5863
5864 /* The check_relocs and adjust_dynamic_symbol entry points have
5865 determined the sizes of the various dynamic sections. Allocate
5866 memory for them. */
5867 reltext = FALSE;
5868 for (s = dynobj->sections; s != NULL; s = s->next)
5869 {
5870 const char *name;
5871 bfd_boolean strip;
5872
5873 /* It's OK to base decisions on the section name, because none
5874 of the dynobj section names depend upon the input files. */
5875 name = bfd_get_section_name (dynobj, s);
5876
5877 if ((s->flags & SEC_LINKER_CREATED) == 0)
5878 continue;
5879
5880 strip = FALSE;
5881
5882 if (strncmp (name, ".rel", 4) == 0)
5883 {
5884 if (s->size == 0)
5885 {
5886 /* We only strip the section if the output section name
5887 has the same name. Otherwise, there might be several
5888 input sections for this output section. FIXME: This
5889 code is probably not needed these days anyhow, since
5890 the linker now does not create empty output sections. */
5891 if (s->output_section != NULL
5892 && strcmp (name,
5893 bfd_get_section_name (s->output_section->owner,
5894 s->output_section)) == 0)
5895 strip = TRUE;
5896 }
5897 else
5898 {
5899 const char *outname;
5900 asection *target;
5901
5902 /* If this relocation section applies to a read only
5903 section, then we probably need a DT_TEXTREL entry.
5904 If the relocation section is .rel.dyn, we always
5905 assert a DT_TEXTREL entry rather than testing whether
5906 there exists a relocation to a read only section or
5907 not. */
5908 outname = bfd_get_section_name (output_bfd,
5909 s->output_section);
5910 target = bfd_get_section_by_name (output_bfd, outname + 4);
5911 if ((target != NULL
5912 && (target->flags & SEC_READONLY) != 0
5913 && (target->flags & SEC_ALLOC) != 0)
5914 || strcmp (outname, ".rel.dyn") == 0)
5915 reltext = TRUE;
5916
5917 /* We use the reloc_count field as a counter if we need
5918 to copy relocs into the output file. */
5919 if (strcmp (name, ".rel.dyn") != 0)
5920 s->reloc_count = 0;
5921
5922 /* If combreloc is enabled, elf_link_sort_relocs() will
5923 sort relocations, but in a different way than we do,
5924 and before we're done creating relocations. Also, it
5925 will move them around between input sections'
5926 relocation's contents, so our sorting would be
5927 broken, so don't let it run. */
5928 info->combreloc = 0;
5929 }
5930 }
5931 else if (strncmp (name, ".got", 4) == 0)
5932 {
5933 /* _bfd_mips_elf_always_size_sections() has already done
5934 most of the work, but some symbols may have been mapped
5935 to versions that we must now resolve in the got_entries
5936 hash tables. */
5937 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5938 struct mips_got_info *g = gg;
5939 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5940 unsigned int needed_relocs = 0;
5941
5942 if (gg->next)
5943 {
5944 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5945 set_got_offset_arg.info = info;
5946
5947 mips_elf_resolve_final_got_entries (gg);
5948 for (g = gg->next; g && g->next != gg; g = g->next)
5949 {
5950 unsigned int save_assign;
5951
5952 mips_elf_resolve_final_got_entries (g);
5953
5954 /* Assign offsets to global GOT entries. */
5955 save_assign = g->assigned_gotno;
5956 g->assigned_gotno = g->local_gotno;
5957 set_got_offset_arg.g = g;
5958 set_got_offset_arg.needed_relocs = 0;
5959 htab_traverse (g->got_entries,
5960 mips_elf_set_global_got_offset,
5961 &set_got_offset_arg);
5962 needed_relocs += set_got_offset_arg.needed_relocs;
5963 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5964 <= g->global_gotno);
5965
5966 g->assigned_gotno = save_assign;
5967 if (info->shared)
5968 {
5969 needed_relocs += g->local_gotno - g->assigned_gotno;
5970 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5971 + g->next->global_gotno
5972 + MIPS_RESERVED_GOTNO);
5973 }
5974 }
5975
5976 if (needed_relocs)
5977 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5978 }
5979 }
5980 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5981 {
5982 /* IRIX rld assumes that the function stub isn't at the end
5983 of .text section. So put a dummy. XXX */
5984 s->size += MIPS_FUNCTION_STUB_SIZE;
5985 }
5986 else if (! info->shared
5987 && ! mips_elf_hash_table (info)->use_rld_obj_head
5988 && strncmp (name, ".rld_map", 8) == 0)
5989 {
5990 /* We add a room for __rld_map. It will be filled in by the
5991 rtld to contain a pointer to the _r_debug structure. */
5992 s->size += 4;
5993 }
5994 else if (SGI_COMPAT (output_bfd)
5995 && strncmp (name, ".compact_rel", 12) == 0)
5996 s->size += mips_elf_hash_table (info)->compact_rel_size;
5997 else if (strncmp (name, ".init", 5) != 0)
5998 {
5999 /* It's not one of our sections, so don't allocate space. */
6000 continue;
6001 }
6002
6003 if (strip)
6004 {
6005 _bfd_strip_section_from_output (info, s);
6006 continue;
6007 }
6008
6009 /* Allocate memory for the section contents. */
6010 s->contents = bfd_zalloc (dynobj, s->size);
6011 if (s->contents == NULL && s->size != 0)
6012 {
6013 bfd_set_error (bfd_error_no_memory);
6014 return FALSE;
6015 }
6016 }
6017
6018 if (elf_hash_table (info)->dynamic_sections_created)
6019 {
6020 /* Add some entries to the .dynamic section. We fill in the
6021 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6022 must add the entries now so that we get the correct size for
6023 the .dynamic section. The DT_DEBUG entry is filled in by the
6024 dynamic linker and used by the debugger. */
6025 if (! info->shared)
6026 {
6027 /* SGI object has the equivalence of DT_DEBUG in the
6028 DT_MIPS_RLD_MAP entry. */
6029 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6030 return FALSE;
6031 if (!SGI_COMPAT (output_bfd))
6032 {
6033 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6034 return FALSE;
6035 }
6036 }
6037 else
6038 {
6039 /* Shared libraries on traditional mips have DT_DEBUG. */
6040 if (!SGI_COMPAT (output_bfd))
6041 {
6042 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6043 return FALSE;
6044 }
6045 }
6046
6047 if (reltext && SGI_COMPAT (output_bfd))
6048 info->flags |= DF_TEXTREL;
6049
6050 if ((info->flags & DF_TEXTREL) != 0)
6051 {
6052 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6053 return FALSE;
6054 }
6055
6056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6057 return FALSE;
6058
6059 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6060 {
6061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6062 return FALSE;
6063
6064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6065 return FALSE;
6066
6067 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6068 return FALSE;
6069 }
6070
6071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6072 return FALSE;
6073
6074 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6075 return FALSE;
6076
6077 #if 0
6078 /* Time stamps in executable files are a bad idea. */
6079 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6080 return FALSE;
6081 #endif
6082
6083 #if 0 /* FIXME */
6084 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6085 return FALSE;
6086 #endif
6087
6088 #if 0 /* FIXME */
6089 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6090 return FALSE;
6091 #endif
6092
6093 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6094 return FALSE;
6095
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6097 return FALSE;
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6100 return FALSE;
6101
6102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6103 return FALSE;
6104
6105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6106 return FALSE;
6107
6108 if (IRIX_COMPAT (dynobj) == ict_irix5
6109 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6110 return FALSE;
6111
6112 if (IRIX_COMPAT (dynobj) == ict_irix6
6113 && (bfd_get_section_by_name
6114 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6115 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6116 return FALSE;
6117 }
6118
6119 return TRUE;
6120 }
6121 \f
6122 /* Relocate a MIPS ELF section. */
6123
6124 bfd_boolean
6125 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6126 bfd *input_bfd, asection *input_section,
6127 bfd_byte *contents, Elf_Internal_Rela *relocs,
6128 Elf_Internal_Sym *local_syms,
6129 asection **local_sections)
6130 {
6131 Elf_Internal_Rela *rel;
6132 const Elf_Internal_Rela *relend;
6133 bfd_vma addend = 0;
6134 bfd_boolean use_saved_addend_p = FALSE;
6135 const struct elf_backend_data *bed;
6136
6137 bed = get_elf_backend_data (output_bfd);
6138 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6139 for (rel = relocs; rel < relend; ++rel)
6140 {
6141 const char *name;
6142 bfd_vma value;
6143 reloc_howto_type *howto;
6144 bfd_boolean require_jalx;
6145 /* TRUE if the relocation is a RELA relocation, rather than a
6146 REL relocation. */
6147 bfd_boolean rela_relocation_p = TRUE;
6148 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6149 const char *msg;
6150
6151 /* Find the relocation howto for this relocation. */
6152 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6153 {
6154 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6155 64-bit code, but make sure all their addresses are in the
6156 lowermost or uppermost 32-bit section of the 64-bit address
6157 space. Thus, when they use an R_MIPS_64 they mean what is
6158 usually meant by R_MIPS_32, with the exception that the
6159 stored value is sign-extended to 64 bits. */
6160 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6161
6162 /* On big-endian systems, we need to lie about the position
6163 of the reloc. */
6164 if (bfd_big_endian (input_bfd))
6165 rel->r_offset += 4;
6166 }
6167 else
6168 /* NewABI defaults to RELA relocations. */
6169 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6170 NEWABI_P (input_bfd)
6171 && (MIPS_RELOC_RELA_P
6172 (input_bfd, input_section,
6173 rel - relocs)));
6174
6175 if (!use_saved_addend_p)
6176 {
6177 Elf_Internal_Shdr *rel_hdr;
6178
6179 /* If these relocations were originally of the REL variety,
6180 we must pull the addend out of the field that will be
6181 relocated. Otherwise, we simply use the contents of the
6182 RELA relocation. To determine which flavor or relocation
6183 this is, we depend on the fact that the INPUT_SECTION's
6184 REL_HDR is read before its REL_HDR2. */
6185 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6186 if ((size_t) (rel - relocs)
6187 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6188 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6189 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6190 {
6191 /* Note that this is a REL relocation. */
6192 rela_relocation_p = FALSE;
6193
6194 /* Get the addend, which is stored in the input file. */
6195 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6196 contents);
6197 addend &= howto->src_mask;
6198
6199 /* For some kinds of relocations, the ADDEND is a
6200 combination of the addend stored in two different
6201 relocations. */
6202 if (r_type == R_MIPS_HI16
6203 || (r_type == R_MIPS_GOT16
6204 && mips_elf_local_relocation_p (input_bfd, rel,
6205 local_sections, FALSE)))
6206 {
6207 bfd_vma l;
6208 const Elf_Internal_Rela *lo16_relocation;
6209 reloc_howto_type *lo16_howto;
6210
6211 /* The combined value is the sum of the HI16 addend,
6212 left-shifted by sixteen bits, and the LO16
6213 addend, sign extended. (Usually, the code does
6214 a `lui' of the HI16 value, and then an `addiu' of
6215 the LO16 value.)
6216
6217 Scan ahead to find a matching LO16 relocation.
6218
6219 According to the MIPS ELF ABI, the R_MIPS_LO16
6220 relocation must be immediately following.
6221 However, for the IRIX6 ABI, the next relocation
6222 may be a composed relocation consisting of
6223 several relocations for the same address. In
6224 that case, the R_MIPS_LO16 relocation may occur
6225 as one of these. We permit a similar extension
6226 in general, as that is useful for GCC. */
6227 lo16_relocation = mips_elf_next_relocation (input_bfd,
6228 R_MIPS_LO16,
6229 rel, relend);
6230 if (lo16_relocation == NULL)
6231 return FALSE;
6232
6233 /* Obtain the addend kept there. */
6234 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6235 R_MIPS_LO16, FALSE);
6236 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6237 input_bfd, contents);
6238 l &= lo16_howto->src_mask;
6239 l <<= lo16_howto->rightshift;
6240 l = _bfd_mips_elf_sign_extend (l, 16);
6241
6242 addend <<= 16;
6243
6244 /* Compute the combined addend. */
6245 addend += l;
6246 }
6247 else if (r_type == R_MIPS16_GPREL)
6248 {
6249 /* The addend is scrambled in the object file. See
6250 mips_elf_perform_relocation for details on the
6251 format. */
6252 addend = (((addend & 0x1f0000) >> 5)
6253 | ((addend & 0x7e00000) >> 16)
6254 | (addend & 0x1f));
6255 }
6256 else
6257 addend <<= howto->rightshift;
6258 }
6259 else
6260 addend = rel->r_addend;
6261 }
6262
6263 if (info->relocatable)
6264 {
6265 Elf_Internal_Sym *sym;
6266 unsigned long r_symndx;
6267
6268 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6269 && bfd_big_endian (input_bfd))
6270 rel->r_offset -= 4;
6271
6272 /* Since we're just relocating, all we need to do is copy
6273 the relocations back out to the object file, unless
6274 they're against a section symbol, in which case we need
6275 to adjust by the section offset, or unless they're GP
6276 relative in which case we need to adjust by the amount
6277 that we're adjusting GP in this relocatable object. */
6278
6279 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6280 FALSE))
6281 /* There's nothing to do for non-local relocations. */
6282 continue;
6283
6284 if (r_type == R_MIPS16_GPREL
6285 || r_type == R_MIPS_GPREL16
6286 || r_type == R_MIPS_GPREL32
6287 || r_type == R_MIPS_LITERAL)
6288 addend -= (_bfd_get_gp_value (output_bfd)
6289 - _bfd_get_gp_value (input_bfd));
6290
6291 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6292 sym = local_syms + r_symndx;
6293 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6294 /* Adjust the addend appropriately. */
6295 addend += local_sections[r_symndx]->output_offset;
6296
6297 if (rela_relocation_p)
6298 /* If this is a RELA relocation, just update the addend. */
6299 rel->r_addend = addend;
6300 else
6301 {
6302 if (r_type == R_MIPS_HI16
6303 || r_type == R_MIPS_GOT16)
6304 addend = mips_elf_high (addend);
6305 else if (r_type == R_MIPS_HIGHER)
6306 addend = mips_elf_higher (addend);
6307 else if (r_type == R_MIPS_HIGHEST)
6308 addend = mips_elf_highest (addend);
6309 else
6310 addend >>= howto->rightshift;
6311
6312 /* We use the source mask, rather than the destination
6313 mask because the place to which we are writing will be
6314 source of the addend in the final link. */
6315 addend &= howto->src_mask;
6316
6317 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6318 /* See the comment above about using R_MIPS_64 in the 32-bit
6319 ABI. Here, we need to update the addend. It would be
6320 possible to get away with just using the R_MIPS_32 reloc
6321 but for endianness. */
6322 {
6323 bfd_vma sign_bits;
6324 bfd_vma low_bits;
6325 bfd_vma high_bits;
6326
6327 if (addend & ((bfd_vma) 1 << 31))
6328 #ifdef BFD64
6329 sign_bits = ((bfd_vma) 1 << 32) - 1;
6330 #else
6331 sign_bits = -1;
6332 #endif
6333 else
6334 sign_bits = 0;
6335
6336 /* If we don't know that we have a 64-bit type,
6337 do two separate stores. */
6338 if (bfd_big_endian (input_bfd))
6339 {
6340 /* Store the sign-bits (which are most significant)
6341 first. */
6342 low_bits = sign_bits;
6343 high_bits = addend;
6344 }
6345 else
6346 {
6347 low_bits = addend;
6348 high_bits = sign_bits;
6349 }
6350 bfd_put_32 (input_bfd, low_bits,
6351 contents + rel->r_offset);
6352 bfd_put_32 (input_bfd, high_bits,
6353 contents + rel->r_offset + 4);
6354 continue;
6355 }
6356
6357 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6358 input_bfd, input_section,
6359 contents, FALSE))
6360 return FALSE;
6361 }
6362
6363 /* Go on to the next relocation. */
6364 continue;
6365 }
6366
6367 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6368 relocations for the same offset. In that case we are
6369 supposed to treat the output of each relocation as the addend
6370 for the next. */
6371 if (rel + 1 < relend
6372 && rel->r_offset == rel[1].r_offset
6373 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6374 use_saved_addend_p = TRUE;
6375 else
6376 use_saved_addend_p = FALSE;
6377
6378 /* Figure out what value we are supposed to relocate. */
6379 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6380 input_section, info, rel,
6381 addend, howto, local_syms,
6382 local_sections, &value,
6383 &name, &require_jalx,
6384 use_saved_addend_p))
6385 {
6386 case bfd_reloc_continue:
6387 /* There's nothing to do. */
6388 continue;
6389
6390 case bfd_reloc_undefined:
6391 /* mips_elf_calculate_relocation already called the
6392 undefined_symbol callback. There's no real point in
6393 trying to perform the relocation at this point, so we
6394 just skip ahead to the next relocation. */
6395 continue;
6396
6397 case bfd_reloc_notsupported:
6398 msg = _("internal error: unsupported relocation error");
6399 info->callbacks->warning
6400 (info, msg, name, input_bfd, input_section, rel->r_offset);
6401 return FALSE;
6402
6403 case bfd_reloc_overflow:
6404 if (use_saved_addend_p)
6405 /* Ignore overflow until we reach the last relocation for
6406 a given location. */
6407 ;
6408 else
6409 {
6410 BFD_ASSERT (name != NULL);
6411 if (! ((*info->callbacks->reloc_overflow)
6412 (info, NULL, name, howto->name, (bfd_vma) 0,
6413 input_bfd, input_section, rel->r_offset)))
6414 return FALSE;
6415 }
6416 break;
6417
6418 case bfd_reloc_ok:
6419 break;
6420
6421 default:
6422 abort ();
6423 break;
6424 }
6425
6426 /* If we've got another relocation for the address, keep going
6427 until we reach the last one. */
6428 if (use_saved_addend_p)
6429 {
6430 addend = value;
6431 continue;
6432 }
6433
6434 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6435 /* See the comment above about using R_MIPS_64 in the 32-bit
6436 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6437 that calculated the right value. Now, however, we
6438 sign-extend the 32-bit result to 64-bits, and store it as a
6439 64-bit value. We are especially generous here in that we
6440 go to extreme lengths to support this usage on systems with
6441 only a 32-bit VMA. */
6442 {
6443 bfd_vma sign_bits;
6444 bfd_vma low_bits;
6445 bfd_vma high_bits;
6446
6447 if (value & ((bfd_vma) 1 << 31))
6448 #ifdef BFD64
6449 sign_bits = ((bfd_vma) 1 << 32) - 1;
6450 #else
6451 sign_bits = -1;
6452 #endif
6453 else
6454 sign_bits = 0;
6455
6456 /* If we don't know that we have a 64-bit type,
6457 do two separate stores. */
6458 if (bfd_big_endian (input_bfd))
6459 {
6460 /* Undo what we did above. */
6461 rel->r_offset -= 4;
6462 /* Store the sign-bits (which are most significant)
6463 first. */
6464 low_bits = sign_bits;
6465 high_bits = value;
6466 }
6467 else
6468 {
6469 low_bits = value;
6470 high_bits = sign_bits;
6471 }
6472 bfd_put_32 (input_bfd, low_bits,
6473 contents + rel->r_offset);
6474 bfd_put_32 (input_bfd, high_bits,
6475 contents + rel->r_offset + 4);
6476 continue;
6477 }
6478
6479 /* Actually perform the relocation. */
6480 if (! mips_elf_perform_relocation (info, howto, rel, value,
6481 input_bfd, input_section,
6482 contents, require_jalx))
6483 return FALSE;
6484 }
6485
6486 return TRUE;
6487 }
6488 \f
6489 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6490 adjust it appropriately now. */
6491
6492 static void
6493 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6494 const char *name, Elf_Internal_Sym *sym)
6495 {
6496 /* The linker script takes care of providing names and values for
6497 these, but we must place them into the right sections. */
6498 static const char* const text_section_symbols[] = {
6499 "_ftext",
6500 "_etext",
6501 "__dso_displacement",
6502 "__elf_header",
6503 "__program_header_table",
6504 NULL
6505 };
6506
6507 static const char* const data_section_symbols[] = {
6508 "_fdata",
6509 "_edata",
6510 "_end",
6511 "_fbss",
6512 NULL
6513 };
6514
6515 const char* const *p;
6516 int i;
6517
6518 for (i = 0; i < 2; ++i)
6519 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6520 *p;
6521 ++p)
6522 if (strcmp (*p, name) == 0)
6523 {
6524 /* All of these symbols are given type STT_SECTION by the
6525 IRIX6 linker. */
6526 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6527 sym->st_other = STO_PROTECTED;
6528
6529 /* The IRIX linker puts these symbols in special sections. */
6530 if (i == 0)
6531 sym->st_shndx = SHN_MIPS_TEXT;
6532 else
6533 sym->st_shndx = SHN_MIPS_DATA;
6534
6535 break;
6536 }
6537 }
6538
6539 /* Finish up dynamic symbol handling. We set the contents of various
6540 dynamic sections here. */
6541
6542 bfd_boolean
6543 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6544 struct bfd_link_info *info,
6545 struct elf_link_hash_entry *h,
6546 Elf_Internal_Sym *sym)
6547 {
6548 bfd *dynobj;
6549 asection *sgot;
6550 struct mips_got_info *g, *gg;
6551 const char *name;
6552
6553 dynobj = elf_hash_table (info)->dynobj;
6554
6555 if (h->plt.offset != MINUS_ONE)
6556 {
6557 asection *s;
6558 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6559
6560 /* This symbol has a stub. Set it up. */
6561
6562 BFD_ASSERT (h->dynindx != -1);
6563
6564 s = bfd_get_section_by_name (dynobj,
6565 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6566 BFD_ASSERT (s != NULL);
6567
6568 /* FIXME: Can h->dynindex be more than 64K? */
6569 if (h->dynindx & 0xffff0000)
6570 return FALSE;
6571
6572 /* Fill the stub. */
6573 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6574 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6575 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6576 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6577
6578 BFD_ASSERT (h->plt.offset <= s->size);
6579 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6580
6581 /* Mark the symbol as undefined. plt.offset != -1 occurs
6582 only for the referenced symbol. */
6583 sym->st_shndx = SHN_UNDEF;
6584
6585 /* The run-time linker uses the st_value field of the symbol
6586 to reset the global offset table entry for this external
6587 to its stub address when unlinking a shared object. */
6588 sym->st_value = (s->output_section->vma + s->output_offset
6589 + h->plt.offset);
6590 }
6591
6592 BFD_ASSERT (h->dynindx != -1
6593 || h->forced_local);
6594
6595 sgot = mips_elf_got_section (dynobj, FALSE);
6596 BFD_ASSERT (sgot != NULL);
6597 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6598 g = mips_elf_section_data (sgot)->u.got_info;
6599 BFD_ASSERT (g != NULL);
6600
6601 /* Run through the global symbol table, creating GOT entries for all
6602 the symbols that need them. */
6603 if (g->global_gotsym != NULL
6604 && h->dynindx >= g->global_gotsym->dynindx)
6605 {
6606 bfd_vma offset;
6607 bfd_vma value;
6608
6609 value = sym->st_value;
6610 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6611 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6612 }
6613
6614 if (g->next && h->dynindx != -1)
6615 {
6616 struct mips_got_entry e, *p;
6617 bfd_vma entry;
6618 bfd_vma offset;
6619
6620 gg = g;
6621
6622 e.abfd = output_bfd;
6623 e.symndx = -1;
6624 e.d.h = (struct mips_elf_link_hash_entry *)h;
6625
6626 for (g = g->next; g->next != gg; g = g->next)
6627 {
6628 if (g->got_entries
6629 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6630 &e)))
6631 {
6632 offset = p->gotidx;
6633 if (info->shared
6634 || (elf_hash_table (info)->dynamic_sections_created
6635 && p->d.h != NULL
6636 && p->d.h->root.def_dynamic
6637 && !p->d.h->root.def_regular))
6638 {
6639 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6640 the various compatibility problems, it's easier to mock
6641 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6642 mips_elf_create_dynamic_relocation to calculate the
6643 appropriate addend. */
6644 Elf_Internal_Rela rel[3];
6645
6646 memset (rel, 0, sizeof (rel));
6647 if (ABI_64_P (output_bfd))
6648 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6649 else
6650 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6651 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6652
6653 entry = 0;
6654 if (! (mips_elf_create_dynamic_relocation
6655 (output_bfd, info, rel,
6656 e.d.h, NULL, sym->st_value, &entry, sgot)))
6657 return FALSE;
6658 }
6659 else
6660 entry = sym->st_value;
6661 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6662 }
6663 }
6664 }
6665
6666 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6667 name = h->root.root.string;
6668 if (strcmp (name, "_DYNAMIC") == 0
6669 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6670 sym->st_shndx = SHN_ABS;
6671 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6672 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6673 {
6674 sym->st_shndx = SHN_ABS;
6675 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6676 sym->st_value = 1;
6677 }
6678 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6679 {
6680 sym->st_shndx = SHN_ABS;
6681 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6682 sym->st_value = elf_gp (output_bfd);
6683 }
6684 else if (SGI_COMPAT (output_bfd))
6685 {
6686 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6687 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6688 {
6689 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6690 sym->st_other = STO_PROTECTED;
6691 sym->st_value = 0;
6692 sym->st_shndx = SHN_MIPS_DATA;
6693 }
6694 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6695 {
6696 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6697 sym->st_other = STO_PROTECTED;
6698 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6699 sym->st_shndx = SHN_ABS;
6700 }
6701 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6702 {
6703 if (h->type == STT_FUNC)
6704 sym->st_shndx = SHN_MIPS_TEXT;
6705 else if (h->type == STT_OBJECT)
6706 sym->st_shndx = SHN_MIPS_DATA;
6707 }
6708 }
6709
6710 /* Handle the IRIX6-specific symbols. */
6711 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6712 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6713
6714 if (! info->shared)
6715 {
6716 if (! mips_elf_hash_table (info)->use_rld_obj_head
6717 && (strcmp (name, "__rld_map") == 0
6718 || strcmp (name, "__RLD_MAP") == 0))
6719 {
6720 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6721 BFD_ASSERT (s != NULL);
6722 sym->st_value = s->output_section->vma + s->output_offset;
6723 bfd_put_32 (output_bfd, 0, s->contents);
6724 if (mips_elf_hash_table (info)->rld_value == 0)
6725 mips_elf_hash_table (info)->rld_value = sym->st_value;
6726 }
6727 else if (mips_elf_hash_table (info)->use_rld_obj_head
6728 && strcmp (name, "__rld_obj_head") == 0)
6729 {
6730 /* IRIX6 does not use a .rld_map section. */
6731 if (IRIX_COMPAT (output_bfd) == ict_irix5
6732 || IRIX_COMPAT (output_bfd) == ict_none)
6733 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6734 != NULL);
6735 mips_elf_hash_table (info)->rld_value = sym->st_value;
6736 }
6737 }
6738
6739 /* If this is a mips16 symbol, force the value to be even. */
6740 if (sym->st_other == STO_MIPS16)
6741 sym->st_value &= ~1;
6742
6743 return TRUE;
6744 }
6745
6746 /* Finish up the dynamic sections. */
6747
6748 bfd_boolean
6749 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6750 struct bfd_link_info *info)
6751 {
6752 bfd *dynobj;
6753 asection *sdyn;
6754 asection *sgot;
6755 struct mips_got_info *gg, *g;
6756
6757 dynobj = elf_hash_table (info)->dynobj;
6758
6759 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6760
6761 sgot = mips_elf_got_section (dynobj, FALSE);
6762 if (sgot == NULL)
6763 gg = g = NULL;
6764 else
6765 {
6766 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6767 gg = mips_elf_section_data (sgot)->u.got_info;
6768 BFD_ASSERT (gg != NULL);
6769 g = mips_elf_got_for_ibfd (gg, output_bfd);
6770 BFD_ASSERT (g != NULL);
6771 }
6772
6773 if (elf_hash_table (info)->dynamic_sections_created)
6774 {
6775 bfd_byte *b;
6776
6777 BFD_ASSERT (sdyn != NULL);
6778 BFD_ASSERT (g != NULL);
6779
6780 for (b = sdyn->contents;
6781 b < sdyn->contents + sdyn->size;
6782 b += MIPS_ELF_DYN_SIZE (dynobj))
6783 {
6784 Elf_Internal_Dyn dyn;
6785 const char *name;
6786 size_t elemsize;
6787 asection *s;
6788 bfd_boolean swap_out_p;
6789
6790 /* Read in the current dynamic entry. */
6791 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6792
6793 /* Assume that we're going to modify it and write it out. */
6794 swap_out_p = TRUE;
6795
6796 switch (dyn.d_tag)
6797 {
6798 case DT_RELENT:
6799 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6800 BFD_ASSERT (s != NULL);
6801 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6802 break;
6803
6804 case DT_STRSZ:
6805 /* Rewrite DT_STRSZ. */
6806 dyn.d_un.d_val =
6807 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6808 break;
6809
6810 case DT_PLTGOT:
6811 name = ".got";
6812 s = bfd_get_section_by_name (output_bfd, name);
6813 BFD_ASSERT (s != NULL);
6814 dyn.d_un.d_ptr = s->vma;
6815 break;
6816
6817 case DT_MIPS_RLD_VERSION:
6818 dyn.d_un.d_val = 1; /* XXX */
6819 break;
6820
6821 case DT_MIPS_FLAGS:
6822 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6823 break;
6824
6825 case DT_MIPS_TIME_STAMP:
6826 time ((time_t *) &dyn.d_un.d_val);
6827 break;
6828
6829 case DT_MIPS_ICHECKSUM:
6830 /* XXX FIXME: */
6831 swap_out_p = FALSE;
6832 break;
6833
6834 case DT_MIPS_IVERSION:
6835 /* XXX FIXME: */
6836 swap_out_p = FALSE;
6837 break;
6838
6839 case DT_MIPS_BASE_ADDRESS:
6840 s = output_bfd->sections;
6841 BFD_ASSERT (s != NULL);
6842 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6843 break;
6844
6845 case DT_MIPS_LOCAL_GOTNO:
6846 dyn.d_un.d_val = g->local_gotno;
6847 break;
6848
6849 case DT_MIPS_UNREFEXTNO:
6850 /* The index into the dynamic symbol table which is the
6851 entry of the first external symbol that is not
6852 referenced within the same object. */
6853 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6854 break;
6855
6856 case DT_MIPS_GOTSYM:
6857 if (gg->global_gotsym)
6858 {
6859 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6860 break;
6861 }
6862 /* In case if we don't have global got symbols we default
6863 to setting DT_MIPS_GOTSYM to the same value as
6864 DT_MIPS_SYMTABNO, so we just fall through. */
6865
6866 case DT_MIPS_SYMTABNO:
6867 name = ".dynsym";
6868 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6869 s = bfd_get_section_by_name (output_bfd, name);
6870 BFD_ASSERT (s != NULL);
6871
6872 dyn.d_un.d_val = s->size / elemsize;
6873 break;
6874
6875 case DT_MIPS_HIPAGENO:
6876 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6877 break;
6878
6879 case DT_MIPS_RLD_MAP:
6880 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6881 break;
6882
6883 case DT_MIPS_OPTIONS:
6884 s = (bfd_get_section_by_name
6885 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6886 dyn.d_un.d_ptr = s->vma;
6887 break;
6888
6889 case DT_RELSZ:
6890 /* Reduce DT_RELSZ to account for any relocations we
6891 decided not to make. This is for the n64 irix rld,
6892 which doesn't seem to apply any relocations if there
6893 are trailing null entries. */
6894 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6895 dyn.d_un.d_val = (s->reloc_count
6896 * (ABI_64_P (output_bfd)
6897 ? sizeof (Elf64_Mips_External_Rel)
6898 : sizeof (Elf32_External_Rel)));
6899 break;
6900
6901 default:
6902 swap_out_p = FALSE;
6903 break;
6904 }
6905
6906 if (swap_out_p)
6907 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6908 (dynobj, &dyn, b);
6909 }
6910 }
6911
6912 /* The first entry of the global offset table will be filled at
6913 runtime. The second entry will be used by some runtime loaders.
6914 This isn't the case of IRIX rld. */
6915 if (sgot != NULL && sgot->size > 0)
6916 {
6917 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6918 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6919 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6920 }
6921
6922 if (sgot != NULL)
6923 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6924 = MIPS_ELF_GOT_SIZE (output_bfd);
6925
6926 /* Generate dynamic relocations for the non-primary gots. */
6927 if (gg != NULL && gg->next)
6928 {
6929 Elf_Internal_Rela rel[3];
6930 bfd_vma addend = 0;
6931
6932 memset (rel, 0, sizeof (rel));
6933 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6934
6935 for (g = gg->next; g->next != gg; g = g->next)
6936 {
6937 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6938
6939 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6940 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6941 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6942 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6943
6944 if (! info->shared)
6945 continue;
6946
6947 while (index < g->assigned_gotno)
6948 {
6949 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6950 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6951 if (!(mips_elf_create_dynamic_relocation
6952 (output_bfd, info, rel, NULL,
6953 bfd_abs_section_ptr,
6954 0, &addend, sgot)))
6955 return FALSE;
6956 BFD_ASSERT (addend == 0);
6957 }
6958 }
6959 }
6960
6961 {
6962 asection *s;
6963 Elf32_compact_rel cpt;
6964
6965 if (SGI_COMPAT (output_bfd))
6966 {
6967 /* Write .compact_rel section out. */
6968 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6969 if (s != NULL)
6970 {
6971 cpt.id1 = 1;
6972 cpt.num = s->reloc_count;
6973 cpt.id2 = 2;
6974 cpt.offset = (s->output_section->filepos
6975 + sizeof (Elf32_External_compact_rel));
6976 cpt.reserved0 = 0;
6977 cpt.reserved1 = 0;
6978 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6979 ((Elf32_External_compact_rel *)
6980 s->contents));
6981
6982 /* Clean up a dummy stub function entry in .text. */
6983 s = bfd_get_section_by_name (dynobj,
6984 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6985 if (s != NULL)
6986 {
6987 file_ptr dummy_offset;
6988
6989 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
6990 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
6991 memset (s->contents + dummy_offset, 0,
6992 MIPS_FUNCTION_STUB_SIZE);
6993 }
6994 }
6995 }
6996
6997 /* We need to sort the entries of the dynamic relocation section. */
6998
6999 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7000
7001 if (s != NULL
7002 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7003 {
7004 reldyn_sorting_bfd = output_bfd;
7005
7006 if (ABI_64_P (output_bfd))
7007 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7008 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7009 else
7010 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7011 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7012 }
7013 }
7014
7015 return TRUE;
7016 }
7017
7018
7019 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7020
7021 static void
7022 mips_set_isa_flags (bfd *abfd)
7023 {
7024 flagword val;
7025
7026 switch (bfd_get_mach (abfd))
7027 {
7028 default:
7029 case bfd_mach_mips3000:
7030 val = E_MIPS_ARCH_1;
7031 break;
7032
7033 case bfd_mach_mips3900:
7034 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7035 break;
7036
7037 case bfd_mach_mips6000:
7038 val = E_MIPS_ARCH_2;
7039 break;
7040
7041 case bfd_mach_mips4000:
7042 case bfd_mach_mips4300:
7043 case bfd_mach_mips4400:
7044 case bfd_mach_mips4600:
7045 val = E_MIPS_ARCH_3;
7046 break;
7047
7048 case bfd_mach_mips4010:
7049 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7050 break;
7051
7052 case bfd_mach_mips4100:
7053 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7054 break;
7055
7056 case bfd_mach_mips4111:
7057 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7058 break;
7059
7060 case bfd_mach_mips4120:
7061 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7062 break;
7063
7064 case bfd_mach_mips4650:
7065 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7066 break;
7067
7068 case bfd_mach_mips5400:
7069 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7070 break;
7071
7072 case bfd_mach_mips5500:
7073 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7074 break;
7075
7076 case bfd_mach_mips5000:
7077 case bfd_mach_mips7000:
7078 case bfd_mach_mips8000:
7079 case bfd_mach_mips10000:
7080 case bfd_mach_mips12000:
7081 val = E_MIPS_ARCH_4;
7082 break;
7083
7084 case bfd_mach_mips5:
7085 val = E_MIPS_ARCH_5;
7086 break;
7087
7088 case bfd_mach_mips_sb1:
7089 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7090 break;
7091
7092 case bfd_mach_mipsisa32:
7093 val = E_MIPS_ARCH_32;
7094 break;
7095
7096 case bfd_mach_mipsisa64:
7097 val = E_MIPS_ARCH_64;
7098 break;
7099
7100 case bfd_mach_mipsisa32r2:
7101 val = E_MIPS_ARCH_32R2;
7102 break;
7103
7104 case bfd_mach_mipsisa64r2:
7105 val = E_MIPS_ARCH_64R2;
7106 break;
7107 }
7108 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7109 elf_elfheader (abfd)->e_flags |= val;
7110
7111 }
7112
7113
7114 /* The final processing done just before writing out a MIPS ELF object
7115 file. This gets the MIPS architecture right based on the machine
7116 number. This is used by both the 32-bit and the 64-bit ABI. */
7117
7118 void
7119 _bfd_mips_elf_final_write_processing (bfd *abfd,
7120 bfd_boolean linker ATTRIBUTE_UNUSED)
7121 {
7122 unsigned int i;
7123 Elf_Internal_Shdr **hdrpp;
7124 const char *name;
7125 asection *sec;
7126
7127 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7128 is nonzero. This is for compatibility with old objects, which used
7129 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7130 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7131 mips_set_isa_flags (abfd);
7132
7133 /* Set the sh_info field for .gptab sections and other appropriate
7134 info for each special section. */
7135 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7136 i < elf_numsections (abfd);
7137 i++, hdrpp++)
7138 {
7139 switch ((*hdrpp)->sh_type)
7140 {
7141 case SHT_MIPS_MSYM:
7142 case SHT_MIPS_LIBLIST:
7143 sec = bfd_get_section_by_name (abfd, ".dynstr");
7144 if (sec != NULL)
7145 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7146 break;
7147
7148 case SHT_MIPS_GPTAB:
7149 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7150 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7151 BFD_ASSERT (name != NULL
7152 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7153 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7154 BFD_ASSERT (sec != NULL);
7155 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7156 break;
7157
7158 case SHT_MIPS_CONTENT:
7159 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7160 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7161 BFD_ASSERT (name != NULL
7162 && strncmp (name, ".MIPS.content",
7163 sizeof ".MIPS.content" - 1) == 0);
7164 sec = bfd_get_section_by_name (abfd,
7165 name + sizeof ".MIPS.content" - 1);
7166 BFD_ASSERT (sec != NULL);
7167 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7168 break;
7169
7170 case SHT_MIPS_SYMBOL_LIB:
7171 sec = bfd_get_section_by_name (abfd, ".dynsym");
7172 if (sec != NULL)
7173 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7174 sec = bfd_get_section_by_name (abfd, ".liblist");
7175 if (sec != NULL)
7176 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7177 break;
7178
7179 case SHT_MIPS_EVENTS:
7180 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7181 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7182 BFD_ASSERT (name != NULL);
7183 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7184 sec = bfd_get_section_by_name (abfd,
7185 name + sizeof ".MIPS.events" - 1);
7186 else
7187 {
7188 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7189 sizeof ".MIPS.post_rel" - 1) == 0);
7190 sec = bfd_get_section_by_name (abfd,
7191 (name
7192 + sizeof ".MIPS.post_rel" - 1));
7193 }
7194 BFD_ASSERT (sec != NULL);
7195 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7196 break;
7197
7198 }
7199 }
7200 }
7201 \f
7202 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7203 segments. */
7204
7205 int
7206 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7207 {
7208 asection *s;
7209 int ret = 0;
7210
7211 /* See if we need a PT_MIPS_REGINFO segment. */
7212 s = bfd_get_section_by_name (abfd, ".reginfo");
7213 if (s && (s->flags & SEC_LOAD))
7214 ++ret;
7215
7216 /* See if we need a PT_MIPS_OPTIONS segment. */
7217 if (IRIX_COMPAT (abfd) == ict_irix6
7218 && bfd_get_section_by_name (abfd,
7219 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7220 ++ret;
7221
7222 /* See if we need a PT_MIPS_RTPROC segment. */
7223 if (IRIX_COMPAT (abfd) == ict_irix5
7224 && bfd_get_section_by_name (abfd, ".dynamic")
7225 && bfd_get_section_by_name (abfd, ".mdebug"))
7226 ++ret;
7227
7228 return ret;
7229 }
7230
7231 /* Modify the segment map for an IRIX5 executable. */
7232
7233 bfd_boolean
7234 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7235 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7236 {
7237 asection *s;
7238 struct elf_segment_map *m, **pm;
7239 bfd_size_type amt;
7240
7241 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7242 segment. */
7243 s = bfd_get_section_by_name (abfd, ".reginfo");
7244 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7245 {
7246 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7247 if (m->p_type == PT_MIPS_REGINFO)
7248 break;
7249 if (m == NULL)
7250 {
7251 amt = sizeof *m;
7252 m = bfd_zalloc (abfd, amt);
7253 if (m == NULL)
7254 return FALSE;
7255
7256 m->p_type = PT_MIPS_REGINFO;
7257 m->count = 1;
7258 m->sections[0] = s;
7259
7260 /* We want to put it after the PHDR and INTERP segments. */
7261 pm = &elf_tdata (abfd)->segment_map;
7262 while (*pm != NULL
7263 && ((*pm)->p_type == PT_PHDR
7264 || (*pm)->p_type == PT_INTERP))
7265 pm = &(*pm)->next;
7266
7267 m->next = *pm;
7268 *pm = m;
7269 }
7270 }
7271
7272 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7273 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7274 PT_MIPS_OPTIONS segment immediately following the program header
7275 table. */
7276 if (NEWABI_P (abfd)
7277 /* On non-IRIX6 new abi, we'll have already created a segment
7278 for this section, so don't create another. I'm not sure this
7279 is not also the case for IRIX 6, but I can't test it right
7280 now. */
7281 && IRIX_COMPAT (abfd) == ict_irix6)
7282 {
7283 for (s = abfd->sections; s; s = s->next)
7284 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7285 break;
7286
7287 if (s)
7288 {
7289 struct elf_segment_map *options_segment;
7290
7291 pm = &elf_tdata (abfd)->segment_map;
7292 while (*pm != NULL
7293 && ((*pm)->p_type == PT_PHDR
7294 || (*pm)->p_type == PT_INTERP))
7295 pm = &(*pm)->next;
7296
7297 amt = sizeof (struct elf_segment_map);
7298 options_segment = bfd_zalloc (abfd, amt);
7299 options_segment->next = *pm;
7300 options_segment->p_type = PT_MIPS_OPTIONS;
7301 options_segment->p_flags = PF_R;
7302 options_segment->p_flags_valid = TRUE;
7303 options_segment->count = 1;
7304 options_segment->sections[0] = s;
7305 *pm = options_segment;
7306 }
7307 }
7308 else
7309 {
7310 if (IRIX_COMPAT (abfd) == ict_irix5)
7311 {
7312 /* If there are .dynamic and .mdebug sections, we make a room
7313 for the RTPROC header. FIXME: Rewrite without section names. */
7314 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7315 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7316 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7317 {
7318 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7319 if (m->p_type == PT_MIPS_RTPROC)
7320 break;
7321 if (m == NULL)
7322 {
7323 amt = sizeof *m;
7324 m = bfd_zalloc (abfd, amt);
7325 if (m == NULL)
7326 return FALSE;
7327
7328 m->p_type = PT_MIPS_RTPROC;
7329
7330 s = bfd_get_section_by_name (abfd, ".rtproc");
7331 if (s == NULL)
7332 {
7333 m->count = 0;
7334 m->p_flags = 0;
7335 m->p_flags_valid = 1;
7336 }
7337 else
7338 {
7339 m->count = 1;
7340 m->sections[0] = s;
7341 }
7342
7343 /* We want to put it after the DYNAMIC segment. */
7344 pm = &elf_tdata (abfd)->segment_map;
7345 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7346 pm = &(*pm)->next;
7347 if (*pm != NULL)
7348 pm = &(*pm)->next;
7349
7350 m->next = *pm;
7351 *pm = m;
7352 }
7353 }
7354 }
7355 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7356 .dynstr, .dynsym, and .hash sections, and everything in
7357 between. */
7358 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7359 pm = &(*pm)->next)
7360 if ((*pm)->p_type == PT_DYNAMIC)
7361 break;
7362 m = *pm;
7363 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7364 {
7365 /* For a normal mips executable the permissions for the PT_DYNAMIC
7366 segment are read, write and execute. We do that here since
7367 the code in elf.c sets only the read permission. This matters
7368 sometimes for the dynamic linker. */
7369 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7370 {
7371 m->p_flags = PF_R | PF_W | PF_X;
7372 m->p_flags_valid = 1;
7373 }
7374 }
7375 if (m != NULL
7376 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7377 {
7378 static const char *sec_names[] =
7379 {
7380 ".dynamic", ".dynstr", ".dynsym", ".hash"
7381 };
7382 bfd_vma low, high;
7383 unsigned int i, c;
7384 struct elf_segment_map *n;
7385
7386 low = ~(bfd_vma) 0;
7387 high = 0;
7388 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7389 {
7390 s = bfd_get_section_by_name (abfd, sec_names[i]);
7391 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7392 {
7393 bfd_size_type sz;
7394
7395 if (low > s->vma)
7396 low = s->vma;
7397 sz = s->size;
7398 if (high < s->vma + sz)
7399 high = s->vma + sz;
7400 }
7401 }
7402
7403 c = 0;
7404 for (s = abfd->sections; s != NULL; s = s->next)
7405 if ((s->flags & SEC_LOAD) != 0
7406 && s->vma >= low
7407 && s->vma + s->size <= high)
7408 ++c;
7409
7410 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7411 n = bfd_zalloc (abfd, amt);
7412 if (n == NULL)
7413 return FALSE;
7414 *n = *m;
7415 n->count = c;
7416
7417 i = 0;
7418 for (s = abfd->sections; s != NULL; s = s->next)
7419 {
7420 if ((s->flags & SEC_LOAD) != 0
7421 && s->vma >= low
7422 && s->vma + s->size <= high)
7423 {
7424 n->sections[i] = s;
7425 ++i;
7426 }
7427 }
7428
7429 *pm = n;
7430 }
7431 }
7432
7433 return TRUE;
7434 }
7435 \f
7436 /* Return the section that should be marked against GC for a given
7437 relocation. */
7438
7439 asection *
7440 _bfd_mips_elf_gc_mark_hook (asection *sec,
7441 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7442 Elf_Internal_Rela *rel,
7443 struct elf_link_hash_entry *h,
7444 Elf_Internal_Sym *sym)
7445 {
7446 /* ??? Do mips16 stub sections need to be handled special? */
7447
7448 if (h != NULL)
7449 {
7450 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7451 {
7452 case R_MIPS_GNU_VTINHERIT:
7453 case R_MIPS_GNU_VTENTRY:
7454 break;
7455
7456 default:
7457 switch (h->root.type)
7458 {
7459 case bfd_link_hash_defined:
7460 case bfd_link_hash_defweak:
7461 return h->root.u.def.section;
7462
7463 case bfd_link_hash_common:
7464 return h->root.u.c.p->section;
7465
7466 default:
7467 break;
7468 }
7469 }
7470 }
7471 else
7472 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7473
7474 return NULL;
7475 }
7476
7477 /* Update the got entry reference counts for the section being removed. */
7478
7479 bfd_boolean
7480 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7481 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7482 asection *sec ATTRIBUTE_UNUSED,
7483 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7484 {
7485 #if 0
7486 Elf_Internal_Shdr *symtab_hdr;
7487 struct elf_link_hash_entry **sym_hashes;
7488 bfd_signed_vma *local_got_refcounts;
7489 const Elf_Internal_Rela *rel, *relend;
7490 unsigned long r_symndx;
7491 struct elf_link_hash_entry *h;
7492
7493 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7494 sym_hashes = elf_sym_hashes (abfd);
7495 local_got_refcounts = elf_local_got_refcounts (abfd);
7496
7497 relend = relocs + sec->reloc_count;
7498 for (rel = relocs; rel < relend; rel++)
7499 switch (ELF_R_TYPE (abfd, rel->r_info))
7500 {
7501 case R_MIPS_GOT16:
7502 case R_MIPS_CALL16:
7503 case R_MIPS_CALL_HI16:
7504 case R_MIPS_CALL_LO16:
7505 case R_MIPS_GOT_HI16:
7506 case R_MIPS_GOT_LO16:
7507 case R_MIPS_GOT_DISP:
7508 case R_MIPS_GOT_PAGE:
7509 case R_MIPS_GOT_OFST:
7510 /* ??? It would seem that the existing MIPS code does no sort
7511 of reference counting or whatnot on its GOT and PLT entries,
7512 so it is not possible to garbage collect them at this time. */
7513 break;
7514
7515 default:
7516 break;
7517 }
7518 #endif
7519
7520 return TRUE;
7521 }
7522 \f
7523 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7524 hiding the old indirect symbol. Process additional relocation
7525 information. Also called for weakdefs, in which case we just let
7526 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7527
7528 void
7529 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7530 struct elf_link_hash_entry *dir,
7531 struct elf_link_hash_entry *ind)
7532 {
7533 struct mips_elf_link_hash_entry *dirmips, *indmips;
7534
7535 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7536
7537 if (ind->root.type != bfd_link_hash_indirect)
7538 return;
7539
7540 dirmips = (struct mips_elf_link_hash_entry *) dir;
7541 indmips = (struct mips_elf_link_hash_entry *) ind;
7542 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7543 if (indmips->readonly_reloc)
7544 dirmips->readonly_reloc = TRUE;
7545 if (indmips->no_fn_stub)
7546 dirmips->no_fn_stub = TRUE;
7547 }
7548
7549 void
7550 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7551 struct elf_link_hash_entry *entry,
7552 bfd_boolean force_local)
7553 {
7554 bfd *dynobj;
7555 asection *got;
7556 struct mips_got_info *g;
7557 struct mips_elf_link_hash_entry *h;
7558
7559 h = (struct mips_elf_link_hash_entry *) entry;
7560 if (h->forced_local)
7561 return;
7562 h->forced_local = force_local;
7563
7564 dynobj = elf_hash_table (info)->dynobj;
7565 if (dynobj != NULL && force_local)
7566 {
7567 got = mips_elf_got_section (dynobj, FALSE);
7568 g = mips_elf_section_data (got)->u.got_info;
7569
7570 if (g->next)
7571 {
7572 struct mips_got_entry e;
7573 struct mips_got_info *gg = g;
7574
7575 /* Since we're turning what used to be a global symbol into a
7576 local one, bump up the number of local entries of each GOT
7577 that had an entry for it. This will automatically decrease
7578 the number of global entries, since global_gotno is actually
7579 the upper limit of global entries. */
7580 e.abfd = dynobj;
7581 e.symndx = -1;
7582 e.d.h = h;
7583
7584 for (g = g->next; g != gg; g = g->next)
7585 if (htab_find (g->got_entries, &e))
7586 {
7587 BFD_ASSERT (g->global_gotno > 0);
7588 g->local_gotno++;
7589 g->global_gotno--;
7590 }
7591
7592 /* If this was a global symbol forced into the primary GOT, we
7593 no longer need an entry for it. We can't release the entry
7594 at this point, but we must at least stop counting it as one
7595 of the symbols that required a forced got entry. */
7596 if (h->root.got.offset == 2)
7597 {
7598 BFD_ASSERT (gg->assigned_gotno > 0);
7599 gg->assigned_gotno--;
7600 }
7601 }
7602 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7603 /* If we haven't got through GOT allocation yet, just bump up the
7604 number of local entries, as this symbol won't be counted as
7605 global. */
7606 g->local_gotno++;
7607 else if (h->root.got.offset == 1)
7608 {
7609 /* If we're past non-multi-GOT allocation and this symbol had
7610 been marked for a global got entry, give it a local entry
7611 instead. */
7612 BFD_ASSERT (g->global_gotno > 0);
7613 g->local_gotno++;
7614 g->global_gotno--;
7615 }
7616 }
7617
7618 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7619 }
7620 \f
7621 #define PDR_SIZE 32
7622
7623 bfd_boolean
7624 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7625 struct bfd_link_info *info)
7626 {
7627 asection *o;
7628 bfd_boolean ret = FALSE;
7629 unsigned char *tdata;
7630 size_t i, skip;
7631
7632 o = bfd_get_section_by_name (abfd, ".pdr");
7633 if (! o)
7634 return FALSE;
7635 if (o->size == 0)
7636 return FALSE;
7637 if (o->size % PDR_SIZE != 0)
7638 return FALSE;
7639 if (o->output_section != NULL
7640 && bfd_is_abs_section (o->output_section))
7641 return FALSE;
7642
7643 tdata = bfd_zmalloc (o->size / PDR_SIZE);
7644 if (! tdata)
7645 return FALSE;
7646
7647 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7648 info->keep_memory);
7649 if (!cookie->rels)
7650 {
7651 free (tdata);
7652 return FALSE;
7653 }
7654
7655 cookie->rel = cookie->rels;
7656 cookie->relend = cookie->rels + o->reloc_count;
7657
7658 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
7659 {
7660 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7661 {
7662 tdata[i] = 1;
7663 skip ++;
7664 }
7665 }
7666
7667 if (skip != 0)
7668 {
7669 mips_elf_section_data (o)->u.tdata = tdata;
7670 o->size -= skip * PDR_SIZE;
7671 ret = TRUE;
7672 }
7673 else
7674 free (tdata);
7675
7676 if (! info->keep_memory)
7677 free (cookie->rels);
7678
7679 return ret;
7680 }
7681
7682 bfd_boolean
7683 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7684 {
7685 if (strcmp (sec->name, ".pdr") == 0)
7686 return TRUE;
7687 return FALSE;
7688 }
7689
7690 bfd_boolean
7691 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7692 bfd_byte *contents)
7693 {
7694 bfd_byte *to, *from, *end;
7695 int i;
7696
7697 if (strcmp (sec->name, ".pdr") != 0)
7698 return FALSE;
7699
7700 if (mips_elf_section_data (sec)->u.tdata == NULL)
7701 return FALSE;
7702
7703 to = contents;
7704 end = contents + sec->size;
7705 for (from = contents, i = 0;
7706 from < end;
7707 from += PDR_SIZE, i++)
7708 {
7709 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7710 continue;
7711 if (to != from)
7712 memcpy (to, from, PDR_SIZE);
7713 to += PDR_SIZE;
7714 }
7715 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7716 sec->output_offset, sec->size);
7717 return TRUE;
7718 }
7719 \f
7720 /* MIPS ELF uses a special find_nearest_line routine in order the
7721 handle the ECOFF debugging information. */
7722
7723 struct mips_elf_find_line
7724 {
7725 struct ecoff_debug_info d;
7726 struct ecoff_find_line i;
7727 };
7728
7729 bfd_boolean
7730 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7731 asymbol **symbols, bfd_vma offset,
7732 const char **filename_ptr,
7733 const char **functionname_ptr,
7734 unsigned int *line_ptr)
7735 {
7736 asection *msec;
7737
7738 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7739 filename_ptr, functionname_ptr,
7740 line_ptr))
7741 return TRUE;
7742
7743 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7744 filename_ptr, functionname_ptr,
7745 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7746 &elf_tdata (abfd)->dwarf2_find_line_info))
7747 return TRUE;
7748
7749 msec = bfd_get_section_by_name (abfd, ".mdebug");
7750 if (msec != NULL)
7751 {
7752 flagword origflags;
7753 struct mips_elf_find_line *fi;
7754 const struct ecoff_debug_swap * const swap =
7755 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7756
7757 /* If we are called during a link, mips_elf_final_link may have
7758 cleared the SEC_HAS_CONTENTS field. We force it back on here
7759 if appropriate (which it normally will be). */
7760 origflags = msec->flags;
7761 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7762 msec->flags |= SEC_HAS_CONTENTS;
7763
7764 fi = elf_tdata (abfd)->find_line_info;
7765 if (fi == NULL)
7766 {
7767 bfd_size_type external_fdr_size;
7768 char *fraw_src;
7769 char *fraw_end;
7770 struct fdr *fdr_ptr;
7771 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7772
7773 fi = bfd_zalloc (abfd, amt);
7774 if (fi == NULL)
7775 {
7776 msec->flags = origflags;
7777 return FALSE;
7778 }
7779
7780 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7781 {
7782 msec->flags = origflags;
7783 return FALSE;
7784 }
7785
7786 /* Swap in the FDR information. */
7787 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7788 fi->d.fdr = bfd_alloc (abfd, amt);
7789 if (fi->d.fdr == NULL)
7790 {
7791 msec->flags = origflags;
7792 return FALSE;
7793 }
7794 external_fdr_size = swap->external_fdr_size;
7795 fdr_ptr = fi->d.fdr;
7796 fraw_src = (char *) fi->d.external_fdr;
7797 fraw_end = (fraw_src
7798 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7799 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7800 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7801
7802 elf_tdata (abfd)->find_line_info = fi;
7803
7804 /* Note that we don't bother to ever free this information.
7805 find_nearest_line is either called all the time, as in
7806 objdump -l, so the information should be saved, or it is
7807 rarely called, as in ld error messages, so the memory
7808 wasted is unimportant. Still, it would probably be a
7809 good idea for free_cached_info to throw it away. */
7810 }
7811
7812 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7813 &fi->i, filename_ptr, functionname_ptr,
7814 line_ptr))
7815 {
7816 msec->flags = origflags;
7817 return TRUE;
7818 }
7819
7820 msec->flags = origflags;
7821 }
7822
7823 /* Fall back on the generic ELF find_nearest_line routine. */
7824
7825 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7826 filename_ptr, functionname_ptr,
7827 line_ptr);
7828 }
7829 \f
7830 /* When are writing out the .options or .MIPS.options section,
7831 remember the bytes we are writing out, so that we can install the
7832 GP value in the section_processing routine. */
7833
7834 bfd_boolean
7835 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7836 const void *location,
7837 file_ptr offset, bfd_size_type count)
7838 {
7839 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7840 {
7841 bfd_byte *c;
7842
7843 if (elf_section_data (section) == NULL)
7844 {
7845 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7846 section->used_by_bfd = bfd_zalloc (abfd, amt);
7847 if (elf_section_data (section) == NULL)
7848 return FALSE;
7849 }
7850 c = mips_elf_section_data (section)->u.tdata;
7851 if (c == NULL)
7852 {
7853 c = bfd_zalloc (abfd, section->size);
7854 if (c == NULL)
7855 return FALSE;
7856 mips_elf_section_data (section)->u.tdata = c;
7857 }
7858
7859 memcpy (c + offset, location, count);
7860 }
7861
7862 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7863 count);
7864 }
7865
7866 /* This is almost identical to bfd_generic_get_... except that some
7867 MIPS relocations need to be handled specially. Sigh. */
7868
7869 bfd_byte *
7870 _bfd_elf_mips_get_relocated_section_contents
7871 (bfd *abfd,
7872 struct bfd_link_info *link_info,
7873 struct bfd_link_order *link_order,
7874 bfd_byte *data,
7875 bfd_boolean relocatable,
7876 asymbol **symbols)
7877 {
7878 /* Get enough memory to hold the stuff */
7879 bfd *input_bfd = link_order->u.indirect.section->owner;
7880 asection *input_section = link_order->u.indirect.section;
7881 bfd_size_type sz;
7882
7883 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7884 arelent **reloc_vector = NULL;
7885 long reloc_count;
7886
7887 if (reloc_size < 0)
7888 goto error_return;
7889
7890 reloc_vector = bfd_malloc (reloc_size);
7891 if (reloc_vector == NULL && reloc_size != 0)
7892 goto error_return;
7893
7894 /* read in the section */
7895 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7896 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
7897 goto error_return;
7898
7899 reloc_count = bfd_canonicalize_reloc (input_bfd,
7900 input_section,
7901 reloc_vector,
7902 symbols);
7903 if (reloc_count < 0)
7904 goto error_return;
7905
7906 if (reloc_count > 0)
7907 {
7908 arelent **parent;
7909 /* for mips */
7910 int gp_found;
7911 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7912
7913 {
7914 struct bfd_hash_entry *h;
7915 struct bfd_link_hash_entry *lh;
7916 /* Skip all this stuff if we aren't mixing formats. */
7917 if (abfd && input_bfd
7918 && abfd->xvec == input_bfd->xvec)
7919 lh = 0;
7920 else
7921 {
7922 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7923 lh = (struct bfd_link_hash_entry *) h;
7924 }
7925 lookup:
7926 if (lh)
7927 {
7928 switch (lh->type)
7929 {
7930 case bfd_link_hash_undefined:
7931 case bfd_link_hash_undefweak:
7932 case bfd_link_hash_common:
7933 gp_found = 0;
7934 break;
7935 case bfd_link_hash_defined:
7936 case bfd_link_hash_defweak:
7937 gp_found = 1;
7938 gp = lh->u.def.value;
7939 break;
7940 case bfd_link_hash_indirect:
7941 case bfd_link_hash_warning:
7942 lh = lh->u.i.link;
7943 /* @@FIXME ignoring warning for now */
7944 goto lookup;
7945 case bfd_link_hash_new:
7946 default:
7947 abort ();
7948 }
7949 }
7950 else
7951 gp_found = 0;
7952 }
7953 /* end mips */
7954 for (parent = reloc_vector; *parent != NULL; parent++)
7955 {
7956 char *error_message = NULL;
7957 bfd_reloc_status_type r;
7958
7959 /* Specific to MIPS: Deal with relocation types that require
7960 knowing the gp of the output bfd. */
7961 asymbol *sym = *(*parent)->sym_ptr_ptr;
7962 if (bfd_is_abs_section (sym->section) && abfd)
7963 {
7964 /* The special_function wouldn't get called anyway. */
7965 }
7966 else if (!gp_found)
7967 {
7968 /* The gp isn't there; let the special function code
7969 fall over on its own. */
7970 }
7971 else if ((*parent)->howto->special_function
7972 == _bfd_mips_elf32_gprel16_reloc)
7973 {
7974 /* bypass special_function call */
7975 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7976 input_section, relocatable,
7977 data, gp);
7978 goto skip_bfd_perform_relocation;
7979 }
7980 /* end mips specific stuff */
7981
7982 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
7983 relocatable ? abfd : NULL,
7984 &error_message);
7985 skip_bfd_perform_relocation:
7986
7987 if (relocatable)
7988 {
7989 asection *os = input_section->output_section;
7990
7991 /* A partial link, so keep the relocs */
7992 os->orelocation[os->reloc_count] = *parent;
7993 os->reloc_count++;
7994 }
7995
7996 if (r != bfd_reloc_ok)
7997 {
7998 switch (r)
7999 {
8000 case bfd_reloc_undefined:
8001 if (!((*link_info->callbacks->undefined_symbol)
8002 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8003 input_bfd, input_section, (*parent)->address,
8004 TRUE)))
8005 goto error_return;
8006 break;
8007 case bfd_reloc_dangerous:
8008 BFD_ASSERT (error_message != NULL);
8009 if (!((*link_info->callbacks->reloc_dangerous)
8010 (link_info, error_message, input_bfd, input_section,
8011 (*parent)->address)))
8012 goto error_return;
8013 break;
8014 case bfd_reloc_overflow:
8015 if (!((*link_info->callbacks->reloc_overflow)
8016 (link_info, NULL,
8017 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8018 (*parent)->howto->name, (*parent)->addend,
8019 input_bfd, input_section, (*parent)->address)))
8020 goto error_return;
8021 break;
8022 case bfd_reloc_outofrange:
8023 default:
8024 abort ();
8025 break;
8026 }
8027
8028 }
8029 }
8030 }
8031 if (reloc_vector != NULL)
8032 free (reloc_vector);
8033 return data;
8034
8035 error_return:
8036 if (reloc_vector != NULL)
8037 free (reloc_vector);
8038 return NULL;
8039 }
8040 \f
8041 /* Create a MIPS ELF linker hash table. */
8042
8043 struct bfd_link_hash_table *
8044 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8045 {
8046 struct mips_elf_link_hash_table *ret;
8047 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8048
8049 ret = bfd_malloc (amt);
8050 if (ret == NULL)
8051 return NULL;
8052
8053 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8054 mips_elf_link_hash_newfunc))
8055 {
8056 free (ret);
8057 return NULL;
8058 }
8059
8060 #if 0
8061 /* We no longer use this. */
8062 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8063 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8064 #endif
8065 ret->procedure_count = 0;
8066 ret->compact_rel_size = 0;
8067 ret->use_rld_obj_head = FALSE;
8068 ret->rld_value = 0;
8069 ret->mips16_stubs_seen = FALSE;
8070
8071 return &ret->root.root;
8072 }
8073 \f
8074 /* We need to use a special link routine to handle the .reginfo and
8075 the .mdebug sections. We need to merge all instances of these
8076 sections together, not write them all out sequentially. */
8077
8078 bfd_boolean
8079 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8080 {
8081 asection **secpp;
8082 asection *o;
8083 struct bfd_link_order *p;
8084 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8085 asection *rtproc_sec;
8086 Elf32_RegInfo reginfo;
8087 struct ecoff_debug_info debug;
8088 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8089 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8090 HDRR *symhdr = &debug.symbolic_header;
8091 void *mdebug_handle = NULL;
8092 asection *s;
8093 EXTR esym;
8094 unsigned int i;
8095 bfd_size_type amt;
8096
8097 static const char * const secname[] =
8098 {
8099 ".text", ".init", ".fini", ".data",
8100 ".rodata", ".sdata", ".sbss", ".bss"
8101 };
8102 static const int sc[] =
8103 {
8104 scText, scInit, scFini, scData,
8105 scRData, scSData, scSBss, scBss
8106 };
8107
8108 /* We'd carefully arranged the dynamic symbol indices, and then the
8109 generic size_dynamic_sections renumbered them out from under us.
8110 Rather than trying somehow to prevent the renumbering, just do
8111 the sort again. */
8112 if (elf_hash_table (info)->dynamic_sections_created)
8113 {
8114 bfd *dynobj;
8115 asection *got;
8116 struct mips_got_info *g;
8117 bfd_size_type dynsecsymcount;
8118
8119 /* When we resort, we must tell mips_elf_sort_hash_table what
8120 the lowest index it may use is. That's the number of section
8121 symbols we're going to add. The generic ELF linker only
8122 adds these symbols when building a shared object. Note that
8123 we count the sections after (possibly) removing the .options
8124 section above. */
8125
8126 dynsecsymcount = 0;
8127 if (info->shared)
8128 {
8129 asection * p;
8130
8131 for (p = abfd->sections; p ; p = p->next)
8132 if ((p->flags & SEC_EXCLUDE) == 0
8133 && (p->flags & SEC_ALLOC) != 0
8134 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8135 ++ dynsecsymcount;
8136 }
8137
8138 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
8139 return FALSE;
8140
8141 /* Make sure we didn't grow the global .got region. */
8142 dynobj = elf_hash_table (info)->dynobj;
8143 got = mips_elf_got_section (dynobj, FALSE);
8144 g = mips_elf_section_data (got)->u.got_info;
8145
8146 if (g->global_gotsym != NULL)
8147 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8148 - g->global_gotsym->dynindx)
8149 <= g->global_gotno);
8150 }
8151
8152 #if 0
8153 /* We want to set the GP value for ld -r. */
8154 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8155 include it, even though we don't process it quite right. (Some
8156 entries are supposed to be merged.) Empirically, we seem to be
8157 better off including it then not. */
8158 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8159 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8160 {
8161 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8162 {
8163 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8164 if (p->type == bfd_indirect_link_order)
8165 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8166 (*secpp)->link_order_head = NULL;
8167 bfd_section_list_remove (abfd, secpp);
8168 --abfd->section_count;
8169
8170 break;
8171 }
8172 }
8173
8174 /* We include .MIPS.options, even though we don't process it quite right.
8175 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8176 to be better off including it than not. */
8177 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8178 {
8179 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8180 {
8181 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8182 if (p->type == bfd_indirect_link_order)
8183 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8184 (*secpp)->link_order_head = NULL;
8185 bfd_section_list_remove (abfd, secpp);
8186 --abfd->section_count;
8187
8188 break;
8189 }
8190 }
8191 #endif
8192
8193 /* Get a value for the GP register. */
8194 if (elf_gp (abfd) == 0)
8195 {
8196 struct bfd_link_hash_entry *h;
8197
8198 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8199 if (h != NULL && h->type == bfd_link_hash_defined)
8200 elf_gp (abfd) = (h->u.def.value
8201 + h->u.def.section->output_section->vma
8202 + h->u.def.section->output_offset);
8203 else if (info->relocatable)
8204 {
8205 bfd_vma lo = MINUS_ONE;
8206
8207 /* Find the GP-relative section with the lowest offset. */
8208 for (o = abfd->sections; o != NULL; o = o->next)
8209 if (o->vma < lo
8210 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8211 lo = o->vma;
8212
8213 /* And calculate GP relative to that. */
8214 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8215 }
8216 else
8217 {
8218 /* If the relocate_section function needs to do a reloc
8219 involving the GP value, it should make a reloc_dangerous
8220 callback to warn that GP is not defined. */
8221 }
8222 }
8223
8224 /* Go through the sections and collect the .reginfo and .mdebug
8225 information. */
8226 reginfo_sec = NULL;
8227 mdebug_sec = NULL;
8228 gptab_data_sec = NULL;
8229 gptab_bss_sec = NULL;
8230 for (o = abfd->sections; o != NULL; o = o->next)
8231 {
8232 if (strcmp (o->name, ".reginfo") == 0)
8233 {
8234 memset (&reginfo, 0, sizeof reginfo);
8235
8236 /* We have found the .reginfo section in the output file.
8237 Look through all the link_orders comprising it and merge
8238 the information together. */
8239 for (p = o->link_order_head; p != NULL; p = p->next)
8240 {
8241 asection *input_section;
8242 bfd *input_bfd;
8243 Elf32_External_RegInfo ext;
8244 Elf32_RegInfo sub;
8245
8246 if (p->type != bfd_indirect_link_order)
8247 {
8248 if (p->type == bfd_data_link_order)
8249 continue;
8250 abort ();
8251 }
8252
8253 input_section = p->u.indirect.section;
8254 input_bfd = input_section->owner;
8255
8256 if (! bfd_get_section_contents (input_bfd, input_section,
8257 &ext, 0, sizeof ext))
8258 return FALSE;
8259
8260 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8261
8262 reginfo.ri_gprmask |= sub.ri_gprmask;
8263 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8264 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8265 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8266 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8267
8268 /* ri_gp_value is set by the function
8269 mips_elf32_section_processing when the section is
8270 finally written out. */
8271
8272 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8273 elf_link_input_bfd ignores this section. */
8274 input_section->flags &= ~SEC_HAS_CONTENTS;
8275 }
8276
8277 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8278 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
8279
8280 /* Skip this section later on (I don't think this currently
8281 matters, but someday it might). */
8282 o->link_order_head = NULL;
8283
8284 reginfo_sec = o;
8285 }
8286
8287 if (strcmp (o->name, ".mdebug") == 0)
8288 {
8289 struct extsym_info einfo;
8290 bfd_vma last;
8291
8292 /* We have found the .mdebug section in the output file.
8293 Look through all the link_orders comprising it and merge
8294 the information together. */
8295 symhdr->magic = swap->sym_magic;
8296 /* FIXME: What should the version stamp be? */
8297 symhdr->vstamp = 0;
8298 symhdr->ilineMax = 0;
8299 symhdr->cbLine = 0;
8300 symhdr->idnMax = 0;
8301 symhdr->ipdMax = 0;
8302 symhdr->isymMax = 0;
8303 symhdr->ioptMax = 0;
8304 symhdr->iauxMax = 0;
8305 symhdr->issMax = 0;
8306 symhdr->issExtMax = 0;
8307 symhdr->ifdMax = 0;
8308 symhdr->crfd = 0;
8309 symhdr->iextMax = 0;
8310
8311 /* We accumulate the debugging information itself in the
8312 debug_info structure. */
8313 debug.line = NULL;
8314 debug.external_dnr = NULL;
8315 debug.external_pdr = NULL;
8316 debug.external_sym = NULL;
8317 debug.external_opt = NULL;
8318 debug.external_aux = NULL;
8319 debug.ss = NULL;
8320 debug.ssext = debug.ssext_end = NULL;
8321 debug.external_fdr = NULL;
8322 debug.external_rfd = NULL;
8323 debug.external_ext = debug.external_ext_end = NULL;
8324
8325 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8326 if (mdebug_handle == NULL)
8327 return FALSE;
8328
8329 esym.jmptbl = 0;
8330 esym.cobol_main = 0;
8331 esym.weakext = 0;
8332 esym.reserved = 0;
8333 esym.ifd = ifdNil;
8334 esym.asym.iss = issNil;
8335 esym.asym.st = stLocal;
8336 esym.asym.reserved = 0;
8337 esym.asym.index = indexNil;
8338 last = 0;
8339 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8340 {
8341 esym.asym.sc = sc[i];
8342 s = bfd_get_section_by_name (abfd, secname[i]);
8343 if (s != NULL)
8344 {
8345 esym.asym.value = s->vma;
8346 last = s->vma + s->size;
8347 }
8348 else
8349 esym.asym.value = last;
8350 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8351 secname[i], &esym))
8352 return FALSE;
8353 }
8354
8355 for (p = o->link_order_head; p != NULL; p = p->next)
8356 {
8357 asection *input_section;
8358 bfd *input_bfd;
8359 const struct ecoff_debug_swap *input_swap;
8360 struct ecoff_debug_info input_debug;
8361 char *eraw_src;
8362 char *eraw_end;
8363
8364 if (p->type != bfd_indirect_link_order)
8365 {
8366 if (p->type == bfd_data_link_order)
8367 continue;
8368 abort ();
8369 }
8370
8371 input_section = p->u.indirect.section;
8372 input_bfd = input_section->owner;
8373
8374 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8375 || (get_elf_backend_data (input_bfd)
8376 ->elf_backend_ecoff_debug_swap) == NULL)
8377 {
8378 /* I don't know what a non MIPS ELF bfd would be
8379 doing with a .mdebug section, but I don't really
8380 want to deal with it. */
8381 continue;
8382 }
8383
8384 input_swap = (get_elf_backend_data (input_bfd)
8385 ->elf_backend_ecoff_debug_swap);
8386
8387 BFD_ASSERT (p->size == input_section->size);
8388
8389 /* The ECOFF linking code expects that we have already
8390 read in the debugging information and set up an
8391 ecoff_debug_info structure, so we do that now. */
8392 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8393 &input_debug))
8394 return FALSE;
8395
8396 if (! (bfd_ecoff_debug_accumulate
8397 (mdebug_handle, abfd, &debug, swap, input_bfd,
8398 &input_debug, input_swap, info)))
8399 return FALSE;
8400
8401 /* Loop through the external symbols. For each one with
8402 interesting information, try to find the symbol in
8403 the linker global hash table and save the information
8404 for the output external symbols. */
8405 eraw_src = input_debug.external_ext;
8406 eraw_end = (eraw_src
8407 + (input_debug.symbolic_header.iextMax
8408 * input_swap->external_ext_size));
8409 for (;
8410 eraw_src < eraw_end;
8411 eraw_src += input_swap->external_ext_size)
8412 {
8413 EXTR ext;
8414 const char *name;
8415 struct mips_elf_link_hash_entry *h;
8416
8417 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8418 if (ext.asym.sc == scNil
8419 || ext.asym.sc == scUndefined
8420 || ext.asym.sc == scSUndefined)
8421 continue;
8422
8423 name = input_debug.ssext + ext.asym.iss;
8424 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8425 name, FALSE, FALSE, TRUE);
8426 if (h == NULL || h->esym.ifd != -2)
8427 continue;
8428
8429 if (ext.ifd != -1)
8430 {
8431 BFD_ASSERT (ext.ifd
8432 < input_debug.symbolic_header.ifdMax);
8433 ext.ifd = input_debug.ifdmap[ext.ifd];
8434 }
8435
8436 h->esym = ext;
8437 }
8438
8439 /* Free up the information we just read. */
8440 free (input_debug.line);
8441 free (input_debug.external_dnr);
8442 free (input_debug.external_pdr);
8443 free (input_debug.external_sym);
8444 free (input_debug.external_opt);
8445 free (input_debug.external_aux);
8446 free (input_debug.ss);
8447 free (input_debug.ssext);
8448 free (input_debug.external_fdr);
8449 free (input_debug.external_rfd);
8450 free (input_debug.external_ext);
8451
8452 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8453 elf_link_input_bfd ignores this section. */
8454 input_section->flags &= ~SEC_HAS_CONTENTS;
8455 }
8456
8457 if (SGI_COMPAT (abfd) && info->shared)
8458 {
8459 /* Create .rtproc section. */
8460 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8461 if (rtproc_sec == NULL)
8462 {
8463 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8464 | SEC_LINKER_CREATED | SEC_READONLY);
8465
8466 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8467 if (rtproc_sec == NULL
8468 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8469 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8470 return FALSE;
8471 }
8472
8473 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8474 info, rtproc_sec,
8475 &debug))
8476 return FALSE;
8477 }
8478
8479 /* Build the external symbol information. */
8480 einfo.abfd = abfd;
8481 einfo.info = info;
8482 einfo.debug = &debug;
8483 einfo.swap = swap;
8484 einfo.failed = FALSE;
8485 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8486 mips_elf_output_extsym, &einfo);
8487 if (einfo.failed)
8488 return FALSE;
8489
8490 /* Set the size of the .mdebug section. */
8491 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
8492
8493 /* Skip this section later on (I don't think this currently
8494 matters, but someday it might). */
8495 o->link_order_head = NULL;
8496
8497 mdebug_sec = o;
8498 }
8499
8500 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8501 {
8502 const char *subname;
8503 unsigned int c;
8504 Elf32_gptab *tab;
8505 Elf32_External_gptab *ext_tab;
8506 unsigned int j;
8507
8508 /* The .gptab.sdata and .gptab.sbss sections hold
8509 information describing how the small data area would
8510 change depending upon the -G switch. These sections
8511 not used in executables files. */
8512 if (! info->relocatable)
8513 {
8514 for (p = o->link_order_head; p != NULL; p = p->next)
8515 {
8516 asection *input_section;
8517
8518 if (p->type != bfd_indirect_link_order)
8519 {
8520 if (p->type == bfd_data_link_order)
8521 continue;
8522 abort ();
8523 }
8524
8525 input_section = p->u.indirect.section;
8526
8527 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8528 elf_link_input_bfd ignores this section. */
8529 input_section->flags &= ~SEC_HAS_CONTENTS;
8530 }
8531
8532 /* Skip this section later on (I don't think this
8533 currently matters, but someday it might). */
8534 o->link_order_head = NULL;
8535
8536 /* Really remove the section. */
8537 for (secpp = &abfd->sections;
8538 *secpp != o;
8539 secpp = &(*secpp)->next)
8540 ;
8541 bfd_section_list_remove (abfd, secpp);
8542 --abfd->section_count;
8543
8544 continue;
8545 }
8546
8547 /* There is one gptab for initialized data, and one for
8548 uninitialized data. */
8549 if (strcmp (o->name, ".gptab.sdata") == 0)
8550 gptab_data_sec = o;
8551 else if (strcmp (o->name, ".gptab.sbss") == 0)
8552 gptab_bss_sec = o;
8553 else
8554 {
8555 (*_bfd_error_handler)
8556 (_("%s: illegal section name `%s'"),
8557 bfd_get_filename (abfd), o->name);
8558 bfd_set_error (bfd_error_nonrepresentable_section);
8559 return FALSE;
8560 }
8561
8562 /* The linker script always combines .gptab.data and
8563 .gptab.sdata into .gptab.sdata, and likewise for
8564 .gptab.bss and .gptab.sbss. It is possible that there is
8565 no .sdata or .sbss section in the output file, in which
8566 case we must change the name of the output section. */
8567 subname = o->name + sizeof ".gptab" - 1;
8568 if (bfd_get_section_by_name (abfd, subname) == NULL)
8569 {
8570 if (o == gptab_data_sec)
8571 o->name = ".gptab.data";
8572 else
8573 o->name = ".gptab.bss";
8574 subname = o->name + sizeof ".gptab" - 1;
8575 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8576 }
8577
8578 /* Set up the first entry. */
8579 c = 1;
8580 amt = c * sizeof (Elf32_gptab);
8581 tab = bfd_malloc (amt);
8582 if (tab == NULL)
8583 return FALSE;
8584 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8585 tab[0].gt_header.gt_unused = 0;
8586
8587 /* Combine the input sections. */
8588 for (p = o->link_order_head; p != NULL; p = p->next)
8589 {
8590 asection *input_section;
8591 bfd *input_bfd;
8592 bfd_size_type size;
8593 unsigned long last;
8594 bfd_size_type gpentry;
8595
8596 if (p->type != bfd_indirect_link_order)
8597 {
8598 if (p->type == bfd_data_link_order)
8599 continue;
8600 abort ();
8601 }
8602
8603 input_section = p->u.indirect.section;
8604 input_bfd = input_section->owner;
8605
8606 /* Combine the gptab entries for this input section one
8607 by one. We know that the input gptab entries are
8608 sorted by ascending -G value. */
8609 size = input_section->size;
8610 last = 0;
8611 for (gpentry = sizeof (Elf32_External_gptab);
8612 gpentry < size;
8613 gpentry += sizeof (Elf32_External_gptab))
8614 {
8615 Elf32_External_gptab ext_gptab;
8616 Elf32_gptab int_gptab;
8617 unsigned long val;
8618 unsigned long add;
8619 bfd_boolean exact;
8620 unsigned int look;
8621
8622 if (! (bfd_get_section_contents
8623 (input_bfd, input_section, &ext_gptab, gpentry,
8624 sizeof (Elf32_External_gptab))))
8625 {
8626 free (tab);
8627 return FALSE;
8628 }
8629
8630 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8631 &int_gptab);
8632 val = int_gptab.gt_entry.gt_g_value;
8633 add = int_gptab.gt_entry.gt_bytes - last;
8634
8635 exact = FALSE;
8636 for (look = 1; look < c; look++)
8637 {
8638 if (tab[look].gt_entry.gt_g_value >= val)
8639 tab[look].gt_entry.gt_bytes += add;
8640
8641 if (tab[look].gt_entry.gt_g_value == val)
8642 exact = TRUE;
8643 }
8644
8645 if (! exact)
8646 {
8647 Elf32_gptab *new_tab;
8648 unsigned int max;
8649
8650 /* We need a new table entry. */
8651 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8652 new_tab = bfd_realloc (tab, amt);
8653 if (new_tab == NULL)
8654 {
8655 free (tab);
8656 return FALSE;
8657 }
8658 tab = new_tab;
8659 tab[c].gt_entry.gt_g_value = val;
8660 tab[c].gt_entry.gt_bytes = add;
8661
8662 /* Merge in the size for the next smallest -G
8663 value, since that will be implied by this new
8664 value. */
8665 max = 0;
8666 for (look = 1; look < c; look++)
8667 {
8668 if (tab[look].gt_entry.gt_g_value < val
8669 && (max == 0
8670 || (tab[look].gt_entry.gt_g_value
8671 > tab[max].gt_entry.gt_g_value)))
8672 max = look;
8673 }
8674 if (max != 0)
8675 tab[c].gt_entry.gt_bytes +=
8676 tab[max].gt_entry.gt_bytes;
8677
8678 ++c;
8679 }
8680
8681 last = int_gptab.gt_entry.gt_bytes;
8682 }
8683
8684 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8685 elf_link_input_bfd ignores this section. */
8686 input_section->flags &= ~SEC_HAS_CONTENTS;
8687 }
8688
8689 /* The table must be sorted by -G value. */
8690 if (c > 2)
8691 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8692
8693 /* Swap out the table. */
8694 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8695 ext_tab = bfd_alloc (abfd, amt);
8696 if (ext_tab == NULL)
8697 {
8698 free (tab);
8699 return FALSE;
8700 }
8701
8702 for (j = 0; j < c; j++)
8703 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8704 free (tab);
8705
8706 o->size = c * sizeof (Elf32_External_gptab);
8707 o->contents = (bfd_byte *) ext_tab;
8708
8709 /* Skip this section later on (I don't think this currently
8710 matters, but someday it might). */
8711 o->link_order_head = NULL;
8712 }
8713 }
8714
8715 /* Invoke the regular ELF backend linker to do all the work. */
8716 if (!bfd_elf_final_link (abfd, info))
8717 return FALSE;
8718
8719 /* Now write out the computed sections. */
8720
8721 if (reginfo_sec != NULL)
8722 {
8723 Elf32_External_RegInfo ext;
8724
8725 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8726 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8727 return FALSE;
8728 }
8729
8730 if (mdebug_sec != NULL)
8731 {
8732 BFD_ASSERT (abfd->output_has_begun);
8733 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8734 swap, info,
8735 mdebug_sec->filepos))
8736 return FALSE;
8737
8738 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8739 }
8740
8741 if (gptab_data_sec != NULL)
8742 {
8743 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8744 gptab_data_sec->contents,
8745 0, gptab_data_sec->size))
8746 return FALSE;
8747 }
8748
8749 if (gptab_bss_sec != NULL)
8750 {
8751 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8752 gptab_bss_sec->contents,
8753 0, gptab_bss_sec->size))
8754 return FALSE;
8755 }
8756
8757 if (SGI_COMPAT (abfd))
8758 {
8759 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8760 if (rtproc_sec != NULL)
8761 {
8762 if (! bfd_set_section_contents (abfd, rtproc_sec,
8763 rtproc_sec->contents,
8764 0, rtproc_sec->size))
8765 return FALSE;
8766 }
8767 }
8768
8769 return TRUE;
8770 }
8771 \f
8772 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8773
8774 struct mips_mach_extension {
8775 unsigned long extension, base;
8776 };
8777
8778
8779 /* An array describing how BFD machines relate to one another. The entries
8780 are ordered topologically with MIPS I extensions listed last. */
8781
8782 static const struct mips_mach_extension mips_mach_extensions[] = {
8783 /* MIPS64 extensions. */
8784 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8785 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8786
8787 /* MIPS V extensions. */
8788 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8789
8790 /* R10000 extensions. */
8791 { bfd_mach_mips12000, bfd_mach_mips10000 },
8792
8793 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8794 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8795 better to allow vr5400 and vr5500 code to be merged anyway, since
8796 many libraries will just use the core ISA. Perhaps we could add
8797 some sort of ASE flag if this ever proves a problem. */
8798 { bfd_mach_mips5500, bfd_mach_mips5400 },
8799 { bfd_mach_mips5400, bfd_mach_mips5000 },
8800
8801 /* MIPS IV extensions. */
8802 { bfd_mach_mips5, bfd_mach_mips8000 },
8803 { bfd_mach_mips10000, bfd_mach_mips8000 },
8804 { bfd_mach_mips5000, bfd_mach_mips8000 },
8805 { bfd_mach_mips7000, bfd_mach_mips8000 },
8806
8807 /* VR4100 extensions. */
8808 { bfd_mach_mips4120, bfd_mach_mips4100 },
8809 { bfd_mach_mips4111, bfd_mach_mips4100 },
8810
8811 /* MIPS III extensions. */
8812 { bfd_mach_mips8000, bfd_mach_mips4000 },
8813 { bfd_mach_mips4650, bfd_mach_mips4000 },
8814 { bfd_mach_mips4600, bfd_mach_mips4000 },
8815 { bfd_mach_mips4400, bfd_mach_mips4000 },
8816 { bfd_mach_mips4300, bfd_mach_mips4000 },
8817 { bfd_mach_mips4100, bfd_mach_mips4000 },
8818 { bfd_mach_mips4010, bfd_mach_mips4000 },
8819
8820 /* MIPS32 extensions. */
8821 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8822
8823 /* MIPS II extensions. */
8824 { bfd_mach_mips4000, bfd_mach_mips6000 },
8825 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8826
8827 /* MIPS I extensions. */
8828 { bfd_mach_mips6000, bfd_mach_mips3000 },
8829 { bfd_mach_mips3900, bfd_mach_mips3000 }
8830 };
8831
8832
8833 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8834
8835 static bfd_boolean
8836 mips_mach_extends_p (unsigned long base, unsigned long extension)
8837 {
8838 size_t i;
8839
8840 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8841 if (extension == mips_mach_extensions[i].extension)
8842 extension = mips_mach_extensions[i].base;
8843
8844 return extension == base;
8845 }
8846
8847
8848 /* Return true if the given ELF header flags describe a 32-bit binary. */
8849
8850 static bfd_boolean
8851 mips_32bit_flags_p (flagword flags)
8852 {
8853 return ((flags & EF_MIPS_32BITMODE) != 0
8854 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8855 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8856 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8857 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8858 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8859 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8860 }
8861
8862
8863 /* Merge backend specific data from an object file to the output
8864 object file when linking. */
8865
8866 bfd_boolean
8867 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8868 {
8869 flagword old_flags;
8870 flagword new_flags;
8871 bfd_boolean ok;
8872 bfd_boolean null_input_bfd = TRUE;
8873 asection *sec;
8874
8875 /* Check if we have the same endianess */
8876 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8877 {
8878 (*_bfd_error_handler)
8879 (_("%B: endianness incompatible with that of the selected emulation"),
8880 ibfd);
8881 return FALSE;
8882 }
8883
8884 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8885 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8886 return TRUE;
8887
8888 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8889 {
8890 (*_bfd_error_handler)
8891 (_("%B: ABI is incompatible with that of the selected emulation"),
8892 ibfd);
8893 return FALSE;
8894 }
8895
8896 new_flags = elf_elfheader (ibfd)->e_flags;
8897 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8898 old_flags = elf_elfheader (obfd)->e_flags;
8899
8900 if (! elf_flags_init (obfd))
8901 {
8902 elf_flags_init (obfd) = TRUE;
8903 elf_elfheader (obfd)->e_flags = new_flags;
8904 elf_elfheader (obfd)->e_ident[EI_CLASS]
8905 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8906
8907 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8908 && bfd_get_arch_info (obfd)->the_default)
8909 {
8910 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8911 bfd_get_mach (ibfd)))
8912 return FALSE;
8913 }
8914
8915 return TRUE;
8916 }
8917
8918 /* Check flag compatibility. */
8919
8920 new_flags &= ~EF_MIPS_NOREORDER;
8921 old_flags &= ~EF_MIPS_NOREORDER;
8922
8923 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8924 doesn't seem to matter. */
8925 new_flags &= ~EF_MIPS_XGOT;
8926 old_flags &= ~EF_MIPS_XGOT;
8927
8928 /* MIPSpro generates ucode info in n64 objects. Again, we should
8929 just be able to ignore this. */
8930 new_flags &= ~EF_MIPS_UCODE;
8931 old_flags &= ~EF_MIPS_UCODE;
8932
8933 if (new_flags == old_flags)
8934 return TRUE;
8935
8936 /* Check to see if the input BFD actually contains any sections.
8937 If not, its flags may not have been initialised either, but it cannot
8938 actually cause any incompatibility. */
8939 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8940 {
8941 /* Ignore synthetic sections and empty .text, .data and .bss sections
8942 which are automatically generated by gas. */
8943 if (strcmp (sec->name, ".reginfo")
8944 && strcmp (sec->name, ".mdebug")
8945 && (sec->size != 0
8946 || (strcmp (sec->name, ".text")
8947 && strcmp (sec->name, ".data")
8948 && strcmp (sec->name, ".bss"))))
8949 {
8950 null_input_bfd = FALSE;
8951 break;
8952 }
8953 }
8954 if (null_input_bfd)
8955 return TRUE;
8956
8957 ok = TRUE;
8958
8959 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8960 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8961 {
8962 (*_bfd_error_handler)
8963 (_("%B: warning: linking PIC files with non-PIC files"),
8964 ibfd);
8965 ok = TRUE;
8966 }
8967
8968 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8969 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8970 if (! (new_flags & EF_MIPS_PIC))
8971 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8972
8973 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8974 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8975
8976 /* Compare the ISAs. */
8977 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8978 {
8979 (*_bfd_error_handler)
8980 (_("%B: linking 32-bit code with 64-bit code"),
8981 ibfd);
8982 ok = FALSE;
8983 }
8984 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8985 {
8986 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8987 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
8988 {
8989 /* Copy the architecture info from IBFD to OBFD. Also copy
8990 the 32-bit flag (if set) so that we continue to recognise
8991 OBFD as a 32-bit binary. */
8992 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8993 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8994 elf_elfheader (obfd)->e_flags
8995 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8996
8997 /* Copy across the ABI flags if OBFD doesn't use them
8998 and if that was what caused us to treat IBFD as 32-bit. */
8999 if ((old_flags & EF_MIPS_ABI) == 0
9000 && mips_32bit_flags_p (new_flags)
9001 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9002 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9003 }
9004 else
9005 {
9006 /* The ISAs aren't compatible. */
9007 (*_bfd_error_handler)
9008 (_("%B: linking %s module with previous %s modules"),
9009 ibfd,
9010 bfd_printable_name (ibfd),
9011 bfd_printable_name (obfd));
9012 ok = FALSE;
9013 }
9014 }
9015
9016 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9017 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9018
9019 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9020 does set EI_CLASS differently from any 32-bit ABI. */
9021 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9022 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9023 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9024 {
9025 /* Only error if both are set (to different values). */
9026 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9027 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9028 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9029 {
9030 (*_bfd_error_handler)
9031 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9032 ibfd,
9033 elf_mips_abi_name (ibfd),
9034 elf_mips_abi_name (obfd));
9035 ok = FALSE;
9036 }
9037 new_flags &= ~EF_MIPS_ABI;
9038 old_flags &= ~EF_MIPS_ABI;
9039 }
9040
9041 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9042 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9043 {
9044 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9045
9046 new_flags &= ~ EF_MIPS_ARCH_ASE;
9047 old_flags &= ~ EF_MIPS_ARCH_ASE;
9048 }
9049
9050 /* Warn about any other mismatches */
9051 if (new_flags != old_flags)
9052 {
9053 (*_bfd_error_handler)
9054 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9055 ibfd, (unsigned long) new_flags,
9056 (unsigned long) old_flags);
9057 ok = FALSE;
9058 }
9059
9060 if (! ok)
9061 {
9062 bfd_set_error (bfd_error_bad_value);
9063 return FALSE;
9064 }
9065
9066 return TRUE;
9067 }
9068
9069 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9070
9071 bfd_boolean
9072 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9073 {
9074 BFD_ASSERT (!elf_flags_init (abfd)
9075 || elf_elfheader (abfd)->e_flags == flags);
9076
9077 elf_elfheader (abfd)->e_flags = flags;
9078 elf_flags_init (abfd) = TRUE;
9079 return TRUE;
9080 }
9081
9082 bfd_boolean
9083 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9084 {
9085 FILE *file = ptr;
9086
9087 BFD_ASSERT (abfd != NULL && ptr != NULL);
9088
9089 /* Print normal ELF private data. */
9090 _bfd_elf_print_private_bfd_data (abfd, ptr);
9091
9092 /* xgettext:c-format */
9093 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9094
9095 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9096 fprintf (file, _(" [abi=O32]"));
9097 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9098 fprintf (file, _(" [abi=O64]"));
9099 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9100 fprintf (file, _(" [abi=EABI32]"));
9101 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9102 fprintf (file, _(" [abi=EABI64]"));
9103 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9104 fprintf (file, _(" [abi unknown]"));
9105 else if (ABI_N32_P (abfd))
9106 fprintf (file, _(" [abi=N32]"));
9107 else if (ABI_64_P (abfd))
9108 fprintf (file, _(" [abi=64]"));
9109 else
9110 fprintf (file, _(" [no abi set]"));
9111
9112 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9113 fprintf (file, _(" [mips1]"));
9114 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9115 fprintf (file, _(" [mips2]"));
9116 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9117 fprintf (file, _(" [mips3]"));
9118 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9119 fprintf (file, _(" [mips4]"));
9120 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9121 fprintf (file, _(" [mips5]"));
9122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9123 fprintf (file, _(" [mips32]"));
9124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9125 fprintf (file, _(" [mips64]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9127 fprintf (file, _(" [mips32r2]"));
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9129 fprintf (file, _(" [mips64r2]"));
9130 else
9131 fprintf (file, _(" [unknown ISA]"));
9132
9133 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9134 fprintf (file, _(" [mdmx]"));
9135
9136 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9137 fprintf (file, _(" [mips16]"));
9138
9139 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9140 fprintf (file, _(" [32bitmode]"));
9141 else
9142 fprintf (file, _(" [not 32bitmode]"));
9143
9144 fputc ('\n', file);
9145
9146 return TRUE;
9147 }
9148
9149 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9150 {
9151 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9152 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9153 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9154 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9155 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9156 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9157 { NULL, 0, 0, 0, 0 }
9158 };