bfd/
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS type of this GOT entry: GOT_NORMAL, GOT_TLS_IE, GOT_TLS_GD
105 or GOT_TLS_LDM. An LDM GOT entry will be a local symbol entry with
106 r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
119 {
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123 };
124
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
128 {
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137 };
138
139 /* This structure is used to hold .got information when linking. */
140
141 struct mips_got_info
142 {
143 /* The number of global .got entries. */
144 unsigned int global_gotno;
145 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
146 unsigned int reloc_only_gotno;
147 /* The number of .got slots used for TLS. */
148 unsigned int tls_gotno;
149 /* The first unused TLS .got entry. Used only during
150 mips_elf_initialize_tls_index. */
151 unsigned int tls_assigned_gotno;
152 /* The number of local .got entries, eventually including page entries. */
153 unsigned int local_gotno;
154 /* The maximum number of page entries needed. */
155 unsigned int page_gotno;
156 /* The number of relocations needed for the GOT entries. */
157 unsigned int relocs;
158 /* The number of local .got entries we have used. */
159 unsigned int assigned_gotno;
160 /* A hash table holding members of the got. */
161 struct htab *got_entries;
162 /* A hash table of mips_got_page_entry structures. */
163 struct htab *got_page_entries;
164 /* A hash table mapping input bfds to other mips_got_info. NULL
165 unless multi-got was necessary. */
166 struct htab *bfd2got;
167 /* In multi-got links, a pointer to the next got (err, rather, most
168 of the time, it points to the previous got). */
169 struct mips_got_info *next;
170 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
171 for none, or MINUS_TWO for not yet assigned. This is needed
172 because a single-GOT link may have multiple hash table entries
173 for the LDM. It does not get initialized in multi-GOT mode. */
174 bfd_vma tls_ldm_offset;
175 };
176
177 /* Map an input bfd to a got in a multi-got link. */
178
179 struct mips_elf_bfd2got_hash
180 {
181 bfd *bfd;
182 struct mips_got_info *g;
183 };
184
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
297 #define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299 #define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301 #define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303
304 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307 struct mips_elf_hash_sort_data
308 {
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
314 long min_got_dynindx;
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
317 with dynamic relocations pointing to it from non-primary GOTs). */
318 long max_unref_got_dynindx;
319 /* The greatest dynamic symbol table index not corresponding to a
320 symbol without a GOT entry. */
321 long max_non_got_dynindx;
322 };
323
324 /* The MIPS ELF linker needs additional information for each symbol in
325 the global hash table. */
326
327 struct mips_elf_link_hash_entry
328 {
329 struct elf_link_hash_entry root;
330
331 /* External symbol information. */
332 EXTR esym;
333
334 /* The la25 stub we have created for ths symbol, if any. */
335 struct mips_elf_la25_stub *la25_stub;
336
337 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
338 this symbol. */
339 unsigned int possibly_dynamic_relocs;
340
341 /* If there is a stub that 32 bit functions should use to call this
342 16 bit function, this points to the section containing the stub. */
343 asection *fn_stub;
344
345 /* If there is a stub that 16 bit functions should use to call this
346 32 bit function, this points to the section containing the stub. */
347 asection *call_stub;
348
349 /* This is like the call_stub field, but it is used if the function
350 being called returns a floating point value. */
351 asection *call_fp_stub;
352
353 #define GOT_NORMAL 0
354 #define GOT_TLS_GD 1
355 #define GOT_TLS_LDM 2
356 #define GOT_TLS_IE 4
357 #define GOT_TLS_TYPE 7
358 #define GOT_TLS_OFFSET_DONE 0x40
359 #define GOT_TLS_DONE 0x80
360 unsigned char tls_ie_type;
361 unsigned char tls_gd_type;
362
363 /* These fields are only used in single-GOT mode; in multi-GOT mode there
364 is one mips_got_entry per GOT entry, so the offset is stored
365 there. In single-GOT mode there may be many mips_got_entry
366 structures all referring to the same GOT slot. */
367 bfd_vma tls_ie_got_offset;
368 bfd_vma tls_gd_got_offset;
369
370 /* The highest GGA_* value that satisfies all references to this symbol. */
371 unsigned int global_got_area : 2;
372
373 /* True if all GOT relocations against this symbol are for calls. This is
374 a looser condition than no_fn_stub below, because there may be other
375 non-call non-GOT relocations against the symbol. */
376 unsigned int got_only_for_calls : 1;
377
378 /* True if one of the relocations described by possibly_dynamic_relocs
379 is against a readonly section. */
380 unsigned int readonly_reloc : 1;
381
382 /* True if there is a relocation against this symbol that must be
383 resolved by the static linker (in other words, if the relocation
384 cannot possibly be made dynamic). */
385 unsigned int has_static_relocs : 1;
386
387 /* True if we must not create a .MIPS.stubs entry for this symbol.
388 This is set, for example, if there are relocations related to
389 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
390 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
391 unsigned int no_fn_stub : 1;
392
393 /* Whether we need the fn_stub; this is true if this symbol appears
394 in any relocs other than a 16 bit call. */
395 unsigned int need_fn_stub : 1;
396
397 /* True if this symbol is referenced by branch relocations from
398 any non-PIC input file. This is used to determine whether an
399 la25 stub is required. */
400 unsigned int has_nonpic_branches : 1;
401
402 /* Does this symbol need a traditional MIPS lazy-binding stub
403 (as opposed to a PLT entry)? */
404 unsigned int needs_lazy_stub : 1;
405 };
406
407 /* MIPS ELF linker hash table. */
408
409 struct mips_elf_link_hash_table
410 {
411 struct elf_link_hash_table root;
412
413 /* The number of .rtproc entries. */
414 bfd_size_type procedure_count;
415
416 /* The size of the .compact_rel section (if SGI_COMPAT). */
417 bfd_size_type compact_rel_size;
418
419 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
420 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
421 bfd_boolean use_rld_obj_head;
422
423 /* The __rld_map or __rld_obj_head symbol. */
424 struct elf_link_hash_entry *rld_symbol;
425
426 /* This is set if we see any mips16 stub sections. */
427 bfd_boolean mips16_stubs_seen;
428
429 /* True if we can generate copy relocs and PLTs. */
430 bfd_boolean use_plts_and_copy_relocs;
431
432 /* True if we're generating code for VxWorks. */
433 bfd_boolean is_vxworks;
434
435 /* True if we already reported the small-data section overflow. */
436 bfd_boolean small_data_overflow_reported;
437
438 /* Shortcuts to some dynamic sections, or NULL if they are not
439 being used. */
440 asection *srelbss;
441 asection *sdynbss;
442 asection *srelplt;
443 asection *srelplt2;
444 asection *sgotplt;
445 asection *splt;
446 asection *sstubs;
447 asection *sgot;
448
449 /* The master GOT information. */
450 struct mips_got_info *got_info;
451
452 /* The global symbol in the GOT with the lowest index in the dynamic
453 symbol table. */
454 struct elf_link_hash_entry *global_gotsym;
455
456 /* The size of the PLT header in bytes. */
457 bfd_vma plt_header_size;
458
459 /* The size of a PLT entry in bytes. */
460 bfd_vma plt_entry_size;
461
462 /* The number of functions that need a lazy-binding stub. */
463 bfd_vma lazy_stub_count;
464
465 /* The size of a function stub entry in bytes. */
466 bfd_vma function_stub_size;
467
468 /* The number of reserved entries at the beginning of the GOT. */
469 unsigned int reserved_gotno;
470
471 /* The section used for mips_elf_la25_stub trampolines.
472 See the comment above that structure for details. */
473 asection *strampoline;
474
475 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
476 pairs. */
477 htab_t la25_stubs;
478
479 /* A function FN (NAME, IS, OS) that creates a new input section
480 called NAME and links it to output section OS. If IS is nonnull,
481 the new section should go immediately before it, otherwise it
482 should go at the (current) beginning of OS.
483
484 The function returns the new section on success, otherwise it
485 returns null. */
486 asection *(*add_stub_section) (const char *, asection *, asection *);
487 };
488
489 /* Get the MIPS ELF linker hash table from a link_info structure. */
490
491 #define mips_elf_hash_table(p) \
492 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
493 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
494
495 /* A structure used to communicate with htab_traverse callbacks. */
496 struct mips_htab_traverse_info
497 {
498 /* The usual link-wide information. */
499 struct bfd_link_info *info;
500 bfd *output_bfd;
501
502 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
503 bfd_boolean error;
504 };
505
506 /* MIPS ELF private object data. */
507
508 struct mips_elf_obj_tdata
509 {
510 /* Generic ELF private object data. */
511 struct elf_obj_tdata root;
512
513 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
514 bfd *abi_fp_bfd;
515 };
516
517 /* Get MIPS ELF private object data from BFD's tdata. */
518
519 #define mips_elf_tdata(bfd) \
520 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
521
522 #define TLS_RELOC_P(r_type) \
523 (r_type == R_MIPS_TLS_DTPMOD32 \
524 || r_type == R_MIPS_TLS_DTPMOD64 \
525 || r_type == R_MIPS_TLS_DTPREL32 \
526 || r_type == R_MIPS_TLS_DTPREL64 \
527 || r_type == R_MIPS_TLS_GD \
528 || r_type == R_MIPS_TLS_LDM \
529 || r_type == R_MIPS_TLS_DTPREL_HI16 \
530 || r_type == R_MIPS_TLS_DTPREL_LO16 \
531 || r_type == R_MIPS_TLS_GOTTPREL \
532 || r_type == R_MIPS_TLS_TPREL32 \
533 || r_type == R_MIPS_TLS_TPREL64 \
534 || r_type == R_MIPS_TLS_TPREL_HI16 \
535 || r_type == R_MIPS_TLS_TPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GD \
537 || r_type == R_MIPS16_TLS_LDM \
538 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
539 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
540 || r_type == R_MIPS16_TLS_GOTTPREL \
541 || r_type == R_MIPS16_TLS_TPREL_HI16 \
542 || r_type == R_MIPS16_TLS_TPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GD \
544 || r_type == R_MICROMIPS_TLS_LDM \
545 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
546 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
547 || r_type == R_MICROMIPS_TLS_GOTTPREL \
548 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
550
551 /* Structure used to pass information to mips_elf_output_extsym. */
552
553 struct extsym_info
554 {
555 bfd *abfd;
556 struct bfd_link_info *info;
557 struct ecoff_debug_info *debug;
558 const struct ecoff_debug_swap *swap;
559 bfd_boolean failed;
560 };
561
562 /* The names of the runtime procedure table symbols used on IRIX5. */
563
564 static const char * const mips_elf_dynsym_rtproc_names[] =
565 {
566 "_procedure_table",
567 "_procedure_string_table",
568 "_procedure_table_size",
569 NULL
570 };
571
572 /* These structures are used to generate the .compact_rel section on
573 IRIX5. */
574
575 typedef struct
576 {
577 unsigned long id1; /* Always one? */
578 unsigned long num; /* Number of compact relocation entries. */
579 unsigned long id2; /* Always two? */
580 unsigned long offset; /* The file offset of the first relocation. */
581 unsigned long reserved0; /* Zero? */
582 unsigned long reserved1; /* Zero? */
583 } Elf32_compact_rel;
584
585 typedef struct
586 {
587 bfd_byte id1[4];
588 bfd_byte num[4];
589 bfd_byte id2[4];
590 bfd_byte offset[4];
591 bfd_byte reserved0[4];
592 bfd_byte reserved1[4];
593 } Elf32_External_compact_rel;
594
595 typedef struct
596 {
597 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
598 unsigned int rtype : 4; /* Relocation types. See below. */
599 unsigned int dist2to : 8;
600 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
601 unsigned long konst; /* KONST field. See below. */
602 unsigned long vaddr; /* VADDR to be relocated. */
603 } Elf32_crinfo;
604
605 typedef struct
606 {
607 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
608 unsigned int rtype : 4; /* Relocation types. See below. */
609 unsigned int dist2to : 8;
610 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
611 unsigned long konst; /* KONST field. See below. */
612 } Elf32_crinfo2;
613
614 typedef struct
615 {
616 bfd_byte info[4];
617 bfd_byte konst[4];
618 bfd_byte vaddr[4];
619 } Elf32_External_crinfo;
620
621 typedef struct
622 {
623 bfd_byte info[4];
624 bfd_byte konst[4];
625 } Elf32_External_crinfo2;
626
627 /* These are the constants used to swap the bitfields in a crinfo. */
628
629 #define CRINFO_CTYPE (0x1)
630 #define CRINFO_CTYPE_SH (31)
631 #define CRINFO_RTYPE (0xf)
632 #define CRINFO_RTYPE_SH (27)
633 #define CRINFO_DIST2TO (0xff)
634 #define CRINFO_DIST2TO_SH (19)
635 #define CRINFO_RELVADDR (0x7ffff)
636 #define CRINFO_RELVADDR_SH (0)
637
638 /* A compact relocation info has long (3 words) or short (2 words)
639 formats. A short format doesn't have VADDR field and relvaddr
640 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
641 #define CRF_MIPS_LONG 1
642 #define CRF_MIPS_SHORT 0
643
644 /* There are 4 types of compact relocation at least. The value KONST
645 has different meaning for each type:
646
647 (type) (konst)
648 CT_MIPS_REL32 Address in data
649 CT_MIPS_WORD Address in word (XXX)
650 CT_MIPS_GPHI_LO GP - vaddr
651 CT_MIPS_JMPAD Address to jump
652 */
653
654 #define CRT_MIPS_REL32 0xa
655 #define CRT_MIPS_WORD 0xb
656 #define CRT_MIPS_GPHI_LO 0xc
657 #define CRT_MIPS_JMPAD 0xd
658
659 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
660 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
661 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
662 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
663 \f
664 /* The structure of the runtime procedure descriptor created by the
665 loader for use by the static exception system. */
666
667 typedef struct runtime_pdr {
668 bfd_vma adr; /* Memory address of start of procedure. */
669 long regmask; /* Save register mask. */
670 long regoffset; /* Save register offset. */
671 long fregmask; /* Save floating point register mask. */
672 long fregoffset; /* Save floating point register offset. */
673 long frameoffset; /* Frame size. */
674 short framereg; /* Frame pointer register. */
675 short pcreg; /* Offset or reg of return pc. */
676 long irpss; /* Index into the runtime string table. */
677 long reserved;
678 struct exception_info *exception_info;/* Pointer to exception array. */
679 } RPDR, *pRPDR;
680 #define cbRPDR sizeof (RPDR)
681 #define rpdNil ((pRPDR) 0)
682 \f
683 static struct mips_got_entry *mips_elf_create_local_got_entry
684 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
685 struct mips_elf_link_hash_entry *, int);
686 static bfd_boolean mips_elf_sort_hash_table_f
687 (struct mips_elf_link_hash_entry *, void *);
688 static bfd_vma mips_elf_high
689 (bfd_vma);
690 static bfd_boolean mips_elf_create_dynamic_relocation
691 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
692 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
693 bfd_vma *, asection *);
694 static bfd_vma mips_elf_adjust_gp
695 (bfd *, struct mips_got_info *, bfd *);
696 static struct mips_got_info *mips_elf_got_for_ibfd
697 (struct mips_got_info *, bfd *);
698
699 /* This will be used when we sort the dynamic relocation records. */
700 static bfd *reldyn_sorting_bfd;
701
702 /* True if ABFD is for CPUs with load interlocking that include
703 non-MIPS1 CPUs and R3900. */
704 #define LOAD_INTERLOCKS_P(abfd) \
705 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
706 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
707
708 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
709 This should be safe for all architectures. We enable this predicate
710 for RM9000 for now. */
711 #define JAL_TO_BAL_P(abfd) \
712 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
713
714 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
715 This should be safe for all architectures. We enable this predicate for
716 all CPUs. */
717 #define JALR_TO_BAL_P(abfd) 1
718
719 /* True if ABFD is for CPUs that are faster if JR is converted to B.
720 This should be safe for all architectures. We enable this predicate for
721 all CPUs. */
722 #define JR_TO_B_P(abfd) 1
723
724 /* True if ABFD is a PIC object. */
725 #define PIC_OBJECT_P(abfd) \
726 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
727
728 /* Nonzero if ABFD is using the N32 ABI. */
729 #define ABI_N32_P(abfd) \
730 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
731
732 /* Nonzero if ABFD is using the N64 ABI. */
733 #define ABI_64_P(abfd) \
734 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
735
736 /* Nonzero if ABFD is using NewABI conventions. */
737 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
738
739 /* The IRIX compatibility level we are striving for. */
740 #define IRIX_COMPAT(abfd) \
741 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
742
743 /* Whether we are trying to be compatible with IRIX at all. */
744 #define SGI_COMPAT(abfd) \
745 (IRIX_COMPAT (abfd) != ict_none)
746
747 /* The name of the options section. */
748 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
749 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
750
751 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
752 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
753 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
754 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
755
756 /* Whether the section is readonly. */
757 #define MIPS_ELF_READONLY_SECTION(sec) \
758 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
759 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
760
761 /* The name of the stub section. */
762 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
763
764 /* The size of an external REL relocation. */
765 #define MIPS_ELF_REL_SIZE(abfd) \
766 (get_elf_backend_data (abfd)->s->sizeof_rel)
767
768 /* The size of an external RELA relocation. */
769 #define MIPS_ELF_RELA_SIZE(abfd) \
770 (get_elf_backend_data (abfd)->s->sizeof_rela)
771
772 /* The size of an external dynamic table entry. */
773 #define MIPS_ELF_DYN_SIZE(abfd) \
774 (get_elf_backend_data (abfd)->s->sizeof_dyn)
775
776 /* The size of a GOT entry. */
777 #define MIPS_ELF_GOT_SIZE(abfd) \
778 (get_elf_backend_data (abfd)->s->arch_size / 8)
779
780 /* The size of the .rld_map section. */
781 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
782 (get_elf_backend_data (abfd)->s->arch_size / 8)
783
784 /* The size of a symbol-table entry. */
785 #define MIPS_ELF_SYM_SIZE(abfd) \
786 (get_elf_backend_data (abfd)->s->sizeof_sym)
787
788 /* The default alignment for sections, as a power of two. */
789 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
790 (get_elf_backend_data (abfd)->s->log_file_align)
791
792 /* Get word-sized data. */
793 #define MIPS_ELF_GET_WORD(abfd, ptr) \
794 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
795
796 /* Put out word-sized data. */
797 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
798 (ABI_64_P (abfd) \
799 ? bfd_put_64 (abfd, val, ptr) \
800 : bfd_put_32 (abfd, val, ptr))
801
802 /* The opcode for word-sized loads (LW or LD). */
803 #define MIPS_ELF_LOAD_WORD(abfd) \
804 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
805
806 /* Add a dynamic symbol table-entry. */
807 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
808 _bfd_elf_add_dynamic_entry (info, tag, val)
809
810 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
811 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
812
813 /* The name of the dynamic relocation section. */
814 #define MIPS_ELF_REL_DYN_NAME(INFO) \
815 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
816
817 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
818 from smaller values. Start with zero, widen, *then* decrement. */
819 #define MINUS_ONE (((bfd_vma)0) - 1)
820 #define MINUS_TWO (((bfd_vma)0) - 2)
821
822 /* The value to write into got[1] for SVR4 targets, to identify it is
823 a GNU object. The dynamic linker can then use got[1] to store the
824 module pointer. */
825 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
826 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
827
828 /* The offset of $gp from the beginning of the .got section. */
829 #define ELF_MIPS_GP_OFFSET(INFO) \
830 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
831
832 /* The maximum size of the GOT for it to be addressable using 16-bit
833 offsets from $gp. */
834 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
835
836 /* Instructions which appear in a stub. */
837 #define STUB_LW(abfd) \
838 ((ABI_64_P (abfd) \
839 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
840 : 0x8f998010)) /* lw t9,0x8010(gp) */
841 #define STUB_MOVE(abfd) \
842 ((ABI_64_P (abfd) \
843 ? 0x03e0782d /* daddu t7,ra */ \
844 : 0x03e07821)) /* addu t7,ra */
845 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
846 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
847 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
848 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
849 #define STUB_LI16S(abfd, VAL) \
850 ((ABI_64_P (abfd) \
851 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
852 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
853
854 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
855 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
856
857 /* The name of the dynamic interpreter. This is put in the .interp
858 section. */
859
860 #define ELF_DYNAMIC_INTERPRETER(abfd) \
861 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
862 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
863 : "/usr/lib/libc.so.1")
864
865 #ifdef BFD64
866 #define MNAME(bfd,pre,pos) \
867 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
868 #define ELF_R_SYM(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
870 #define ELF_R_TYPE(bfd, i) \
871 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
872 #define ELF_R_INFO(bfd, s, t) \
873 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
874 #else
875 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
876 #define ELF_R_SYM(bfd, i) \
877 (ELF32_R_SYM (i))
878 #define ELF_R_TYPE(bfd, i) \
879 (ELF32_R_TYPE (i))
880 #define ELF_R_INFO(bfd, s, t) \
881 (ELF32_R_INFO (s, t))
882 #endif
883 \f
884 /* The mips16 compiler uses a couple of special sections to handle
885 floating point arguments.
886
887 Section names that look like .mips16.fn.FNNAME contain stubs that
888 copy floating point arguments from the fp regs to the gp regs and
889 then jump to FNNAME. If any 32 bit function calls FNNAME, the
890 call should be redirected to the stub instead. If no 32 bit
891 function calls FNNAME, the stub should be discarded. We need to
892 consider any reference to the function, not just a call, because
893 if the address of the function is taken we will need the stub,
894 since the address might be passed to a 32 bit function.
895
896 Section names that look like .mips16.call.FNNAME contain stubs
897 that copy floating point arguments from the gp regs to the fp
898 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
899 then any 16 bit function that calls FNNAME should be redirected
900 to the stub instead. If FNNAME is not a 32 bit function, the
901 stub should be discarded.
902
903 .mips16.call.fp.FNNAME sections are similar, but contain stubs
904 which call FNNAME and then copy the return value from the fp regs
905 to the gp regs. These stubs store the return value in $18 while
906 calling FNNAME; any function which might call one of these stubs
907 must arrange to save $18 around the call. (This case is not
908 needed for 32 bit functions that call 16 bit functions, because
909 16 bit functions always return floating point values in both
910 $f0/$f1 and $2/$3.)
911
912 Note that in all cases FNNAME might be defined statically.
913 Therefore, FNNAME is not used literally. Instead, the relocation
914 information will indicate which symbol the section is for.
915
916 We record any stubs that we find in the symbol table. */
917
918 #define FN_STUB ".mips16.fn."
919 #define CALL_STUB ".mips16.call."
920 #define CALL_FP_STUB ".mips16.call.fp."
921
922 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
923 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
924 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
925 \f
926 /* The format of the first PLT entry in an O32 executable. */
927 static const bfd_vma mips_o32_exec_plt0_entry[] =
928 {
929 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
930 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
931 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
932 0x031cc023, /* subu $24, $24, $28 */
933 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
934 0x0018c082, /* srl $24, $24, 2 */
935 0x0320f809, /* jalr $25 */
936 0x2718fffe /* subu $24, $24, 2 */
937 };
938
939 /* The format of the first PLT entry in an N32 executable. Different
940 because gp ($28) is not available; we use t2 ($14) instead. */
941 static const bfd_vma mips_n32_exec_plt0_entry[] =
942 {
943 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
944 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
945 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
946 0x030ec023, /* subu $24, $24, $14 */
947 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
948 0x0018c082, /* srl $24, $24, 2 */
949 0x0320f809, /* jalr $25 */
950 0x2718fffe /* subu $24, $24, 2 */
951 };
952
953 /* The format of the first PLT entry in an N64 executable. Different
954 from N32 because of the increased size of GOT entries. */
955 static const bfd_vma mips_n64_exec_plt0_entry[] =
956 {
957 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
958 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
959 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
960 0x030ec023, /* subu $24, $24, $14 */
961 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
962 0x0018c0c2, /* srl $24, $24, 3 */
963 0x0320f809, /* jalr $25 */
964 0x2718fffe /* subu $24, $24, 2 */
965 };
966
967 /* The format of subsequent PLT entries. */
968 static const bfd_vma mips_exec_plt_entry[] =
969 {
970 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
971 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
972 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
973 0x03200008 /* jr $25 */
974 };
975
976 /* The format of the first PLT entry in a VxWorks executable. */
977 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
978 {
979 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
980 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
981 0x8f390008, /* lw t9, 8(t9) */
982 0x00000000, /* nop */
983 0x03200008, /* jr t9 */
984 0x00000000 /* nop */
985 };
986
987 /* The format of subsequent PLT entries. */
988 static const bfd_vma mips_vxworks_exec_plt_entry[] =
989 {
990 0x10000000, /* b .PLT_resolver */
991 0x24180000, /* li t8, <pltindex> */
992 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
993 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
994 0x8f390000, /* lw t9, 0(t9) */
995 0x00000000, /* nop */
996 0x03200008, /* jr t9 */
997 0x00000000 /* nop */
998 };
999
1000 /* The format of the first PLT entry in a VxWorks shared object. */
1001 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1002 {
1003 0x8f990008, /* lw t9, 8(gp) */
1004 0x00000000, /* nop */
1005 0x03200008, /* jr t9 */
1006 0x00000000, /* nop */
1007 0x00000000, /* nop */
1008 0x00000000 /* nop */
1009 };
1010
1011 /* The format of subsequent PLT entries. */
1012 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1013 {
1014 0x10000000, /* b .PLT_resolver */
1015 0x24180000 /* li t8, <pltindex> */
1016 };
1017 \f
1018 /* microMIPS 32-bit opcode helper installer. */
1019
1020 static void
1021 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1022 {
1023 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1024 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1025 }
1026
1027 /* microMIPS 32-bit opcode helper retriever. */
1028
1029 static bfd_vma
1030 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1031 {
1032 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1033 }
1034 \f
1035 /* Look up an entry in a MIPS ELF linker hash table. */
1036
1037 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1038 ((struct mips_elf_link_hash_entry *) \
1039 elf_link_hash_lookup (&(table)->root, (string), (create), \
1040 (copy), (follow)))
1041
1042 /* Traverse a MIPS ELF linker hash table. */
1043
1044 #define mips_elf_link_hash_traverse(table, func, info) \
1045 (elf_link_hash_traverse \
1046 (&(table)->root, \
1047 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1048 (info)))
1049
1050 /* Find the base offsets for thread-local storage in this object,
1051 for GD/LD and IE/LE respectively. */
1052
1053 #define TP_OFFSET 0x7000
1054 #define DTP_OFFSET 0x8000
1055
1056 static bfd_vma
1057 dtprel_base (struct bfd_link_info *info)
1058 {
1059 /* If tls_sec is NULL, we should have signalled an error already. */
1060 if (elf_hash_table (info)->tls_sec == NULL)
1061 return 0;
1062 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1063 }
1064
1065 static bfd_vma
1066 tprel_base (struct bfd_link_info *info)
1067 {
1068 /* If tls_sec is NULL, we should have signalled an error already. */
1069 if (elf_hash_table (info)->tls_sec == NULL)
1070 return 0;
1071 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1072 }
1073
1074 /* Create an entry in a MIPS ELF linker hash table. */
1075
1076 static struct bfd_hash_entry *
1077 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1078 struct bfd_hash_table *table, const char *string)
1079 {
1080 struct mips_elf_link_hash_entry *ret =
1081 (struct mips_elf_link_hash_entry *) entry;
1082
1083 /* Allocate the structure if it has not already been allocated by a
1084 subclass. */
1085 if (ret == NULL)
1086 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1087 if (ret == NULL)
1088 return (struct bfd_hash_entry *) ret;
1089
1090 /* Call the allocation method of the superclass. */
1091 ret = ((struct mips_elf_link_hash_entry *)
1092 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1093 table, string));
1094 if (ret != NULL)
1095 {
1096 /* Set local fields. */
1097 memset (&ret->esym, 0, sizeof (EXTR));
1098 /* We use -2 as a marker to indicate that the information has
1099 not been set. -1 means there is no associated ifd. */
1100 ret->esym.ifd = -2;
1101 ret->la25_stub = 0;
1102 ret->possibly_dynamic_relocs = 0;
1103 ret->fn_stub = NULL;
1104 ret->call_stub = NULL;
1105 ret->call_fp_stub = NULL;
1106 ret->tls_ie_type = GOT_NORMAL;
1107 ret->tls_gd_type = GOT_NORMAL;
1108 ret->global_got_area = GGA_NONE;
1109 ret->got_only_for_calls = TRUE;
1110 ret->readonly_reloc = FALSE;
1111 ret->has_static_relocs = FALSE;
1112 ret->no_fn_stub = FALSE;
1113 ret->need_fn_stub = FALSE;
1114 ret->has_nonpic_branches = FALSE;
1115 ret->needs_lazy_stub = FALSE;
1116 }
1117
1118 return (struct bfd_hash_entry *) ret;
1119 }
1120
1121 /* Allocate MIPS ELF private object data. */
1122
1123 bfd_boolean
1124 _bfd_mips_elf_mkobject (bfd *abfd)
1125 {
1126 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1127 MIPS_ELF_DATA);
1128 }
1129
1130 bfd_boolean
1131 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1132 {
1133 if (!sec->used_by_bfd)
1134 {
1135 struct _mips_elf_section_data *sdata;
1136 bfd_size_type amt = sizeof (*sdata);
1137
1138 sdata = bfd_zalloc (abfd, amt);
1139 if (sdata == NULL)
1140 return FALSE;
1141 sec->used_by_bfd = sdata;
1142 }
1143
1144 return _bfd_elf_new_section_hook (abfd, sec);
1145 }
1146 \f
1147 /* Read ECOFF debugging information from a .mdebug section into a
1148 ecoff_debug_info structure. */
1149
1150 bfd_boolean
1151 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1152 struct ecoff_debug_info *debug)
1153 {
1154 HDRR *symhdr;
1155 const struct ecoff_debug_swap *swap;
1156 char *ext_hdr;
1157
1158 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1159 memset (debug, 0, sizeof (*debug));
1160
1161 ext_hdr = bfd_malloc (swap->external_hdr_size);
1162 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1163 goto error_return;
1164
1165 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1166 swap->external_hdr_size))
1167 goto error_return;
1168
1169 symhdr = &debug->symbolic_header;
1170 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1171
1172 /* The symbolic header contains absolute file offsets and sizes to
1173 read. */
1174 #define READ(ptr, offset, count, size, type) \
1175 if (symhdr->count == 0) \
1176 debug->ptr = NULL; \
1177 else \
1178 { \
1179 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1180 debug->ptr = bfd_malloc (amt); \
1181 if (debug->ptr == NULL) \
1182 goto error_return; \
1183 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1184 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1185 goto error_return; \
1186 }
1187
1188 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1189 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1190 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1191 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1192 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1193 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1194 union aux_ext *);
1195 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1196 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1197 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1198 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1199 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1200 #undef READ
1201
1202 debug->fdr = NULL;
1203
1204 return TRUE;
1205
1206 error_return:
1207 if (ext_hdr != NULL)
1208 free (ext_hdr);
1209 if (debug->line != NULL)
1210 free (debug->line);
1211 if (debug->external_dnr != NULL)
1212 free (debug->external_dnr);
1213 if (debug->external_pdr != NULL)
1214 free (debug->external_pdr);
1215 if (debug->external_sym != NULL)
1216 free (debug->external_sym);
1217 if (debug->external_opt != NULL)
1218 free (debug->external_opt);
1219 if (debug->external_aux != NULL)
1220 free (debug->external_aux);
1221 if (debug->ss != NULL)
1222 free (debug->ss);
1223 if (debug->ssext != NULL)
1224 free (debug->ssext);
1225 if (debug->external_fdr != NULL)
1226 free (debug->external_fdr);
1227 if (debug->external_rfd != NULL)
1228 free (debug->external_rfd);
1229 if (debug->external_ext != NULL)
1230 free (debug->external_ext);
1231 return FALSE;
1232 }
1233 \f
1234 /* Swap RPDR (runtime procedure table entry) for output. */
1235
1236 static void
1237 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1238 {
1239 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1240 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1241 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1242 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1243 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1244 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1245
1246 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1247 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1248
1249 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1250 }
1251
1252 /* Create a runtime procedure table from the .mdebug section. */
1253
1254 static bfd_boolean
1255 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1256 struct bfd_link_info *info, asection *s,
1257 struct ecoff_debug_info *debug)
1258 {
1259 const struct ecoff_debug_swap *swap;
1260 HDRR *hdr = &debug->symbolic_header;
1261 RPDR *rpdr, *rp;
1262 struct rpdr_ext *erp;
1263 void *rtproc;
1264 struct pdr_ext *epdr;
1265 struct sym_ext *esym;
1266 char *ss, **sv;
1267 char *str;
1268 bfd_size_type size;
1269 bfd_size_type count;
1270 unsigned long sindex;
1271 unsigned long i;
1272 PDR pdr;
1273 SYMR sym;
1274 const char *no_name_func = _("static procedure (no name)");
1275
1276 epdr = NULL;
1277 rpdr = NULL;
1278 esym = NULL;
1279 ss = NULL;
1280 sv = NULL;
1281
1282 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1283
1284 sindex = strlen (no_name_func) + 1;
1285 count = hdr->ipdMax;
1286 if (count > 0)
1287 {
1288 size = swap->external_pdr_size;
1289
1290 epdr = bfd_malloc (size * count);
1291 if (epdr == NULL)
1292 goto error_return;
1293
1294 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1295 goto error_return;
1296
1297 size = sizeof (RPDR);
1298 rp = rpdr = bfd_malloc (size * count);
1299 if (rpdr == NULL)
1300 goto error_return;
1301
1302 size = sizeof (char *);
1303 sv = bfd_malloc (size * count);
1304 if (sv == NULL)
1305 goto error_return;
1306
1307 count = hdr->isymMax;
1308 size = swap->external_sym_size;
1309 esym = bfd_malloc (size * count);
1310 if (esym == NULL)
1311 goto error_return;
1312
1313 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1314 goto error_return;
1315
1316 count = hdr->issMax;
1317 ss = bfd_malloc (count);
1318 if (ss == NULL)
1319 goto error_return;
1320 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1321 goto error_return;
1322
1323 count = hdr->ipdMax;
1324 for (i = 0; i < (unsigned long) count; i++, rp++)
1325 {
1326 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1327 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1328 rp->adr = sym.value;
1329 rp->regmask = pdr.regmask;
1330 rp->regoffset = pdr.regoffset;
1331 rp->fregmask = pdr.fregmask;
1332 rp->fregoffset = pdr.fregoffset;
1333 rp->frameoffset = pdr.frameoffset;
1334 rp->framereg = pdr.framereg;
1335 rp->pcreg = pdr.pcreg;
1336 rp->irpss = sindex;
1337 sv[i] = ss + sym.iss;
1338 sindex += strlen (sv[i]) + 1;
1339 }
1340 }
1341
1342 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1343 size = BFD_ALIGN (size, 16);
1344 rtproc = bfd_alloc (abfd, size);
1345 if (rtproc == NULL)
1346 {
1347 mips_elf_hash_table (info)->procedure_count = 0;
1348 goto error_return;
1349 }
1350
1351 mips_elf_hash_table (info)->procedure_count = count + 2;
1352
1353 erp = rtproc;
1354 memset (erp, 0, sizeof (struct rpdr_ext));
1355 erp++;
1356 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1357 strcpy (str, no_name_func);
1358 str += strlen (no_name_func) + 1;
1359 for (i = 0; i < count; i++)
1360 {
1361 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1362 strcpy (str, sv[i]);
1363 str += strlen (sv[i]) + 1;
1364 }
1365 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1366
1367 /* Set the size and contents of .rtproc section. */
1368 s->size = size;
1369 s->contents = rtproc;
1370
1371 /* Skip this section later on (I don't think this currently
1372 matters, but someday it might). */
1373 s->map_head.link_order = NULL;
1374
1375 if (epdr != NULL)
1376 free (epdr);
1377 if (rpdr != NULL)
1378 free (rpdr);
1379 if (esym != NULL)
1380 free (esym);
1381 if (ss != NULL)
1382 free (ss);
1383 if (sv != NULL)
1384 free (sv);
1385
1386 return TRUE;
1387
1388 error_return:
1389 if (epdr != NULL)
1390 free (epdr);
1391 if (rpdr != NULL)
1392 free (rpdr);
1393 if (esym != NULL)
1394 free (esym);
1395 if (ss != NULL)
1396 free (ss);
1397 if (sv != NULL)
1398 free (sv);
1399 return FALSE;
1400 }
1401 \f
1402 /* We're going to create a stub for H. Create a symbol for the stub's
1403 value and size, to help make the disassembly easier to read. */
1404
1405 static bfd_boolean
1406 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1407 struct mips_elf_link_hash_entry *h,
1408 const char *prefix, asection *s, bfd_vma value,
1409 bfd_vma size)
1410 {
1411 struct bfd_link_hash_entry *bh;
1412 struct elf_link_hash_entry *elfh;
1413 const char *name;
1414
1415 if (ELF_ST_IS_MICROMIPS (h->root.other))
1416 value |= 1;
1417
1418 /* Create a new symbol. */
1419 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1420 bh = NULL;
1421 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1422 BSF_LOCAL, s, value, NULL,
1423 TRUE, FALSE, &bh))
1424 return FALSE;
1425
1426 /* Make it a local function. */
1427 elfh = (struct elf_link_hash_entry *) bh;
1428 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1429 elfh->size = size;
1430 elfh->forced_local = 1;
1431 return TRUE;
1432 }
1433
1434 /* We're about to redefine H. Create a symbol to represent H's
1435 current value and size, to help make the disassembly easier
1436 to read. */
1437
1438 static bfd_boolean
1439 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1440 struct mips_elf_link_hash_entry *h,
1441 const char *prefix)
1442 {
1443 struct bfd_link_hash_entry *bh;
1444 struct elf_link_hash_entry *elfh;
1445 const char *name;
1446 asection *s;
1447 bfd_vma value;
1448
1449 /* Read the symbol's value. */
1450 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1451 || h->root.root.type == bfd_link_hash_defweak);
1452 s = h->root.root.u.def.section;
1453 value = h->root.root.u.def.value;
1454
1455 /* Create a new symbol. */
1456 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1457 bh = NULL;
1458 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1459 BSF_LOCAL, s, value, NULL,
1460 TRUE, FALSE, &bh))
1461 return FALSE;
1462
1463 /* Make it local and copy the other attributes from H. */
1464 elfh = (struct elf_link_hash_entry *) bh;
1465 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1466 elfh->other = h->root.other;
1467 elfh->size = h->root.size;
1468 elfh->forced_local = 1;
1469 return TRUE;
1470 }
1471
1472 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1473 function rather than to a hard-float stub. */
1474
1475 static bfd_boolean
1476 section_allows_mips16_refs_p (asection *section)
1477 {
1478 const char *name;
1479
1480 name = bfd_get_section_name (section->owner, section);
1481 return (FN_STUB_P (name)
1482 || CALL_STUB_P (name)
1483 || CALL_FP_STUB_P (name)
1484 || strcmp (name, ".pdr") == 0);
1485 }
1486
1487 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1488 stub section of some kind. Return the R_SYMNDX of the target
1489 function, or 0 if we can't decide which function that is. */
1490
1491 static unsigned long
1492 mips16_stub_symndx (const struct elf_backend_data *bed,
1493 asection *sec ATTRIBUTE_UNUSED,
1494 const Elf_Internal_Rela *relocs,
1495 const Elf_Internal_Rela *relend)
1496 {
1497 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1498 const Elf_Internal_Rela *rel;
1499
1500 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1501 one in a compound relocation. */
1502 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1503 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1504 return ELF_R_SYM (sec->owner, rel->r_info);
1505
1506 /* Otherwise trust the first relocation, whatever its kind. This is
1507 the traditional behavior. */
1508 if (relocs < relend)
1509 return ELF_R_SYM (sec->owner, relocs->r_info);
1510
1511 return 0;
1512 }
1513
1514 /* Check the mips16 stubs for a particular symbol, and see if we can
1515 discard them. */
1516
1517 static void
1518 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1519 struct mips_elf_link_hash_entry *h)
1520 {
1521 /* Dynamic symbols must use the standard call interface, in case other
1522 objects try to call them. */
1523 if (h->fn_stub != NULL
1524 && h->root.dynindx != -1)
1525 {
1526 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1527 h->need_fn_stub = TRUE;
1528 }
1529
1530 if (h->fn_stub != NULL
1531 && ! h->need_fn_stub)
1532 {
1533 /* We don't need the fn_stub; the only references to this symbol
1534 are 16 bit calls. Clobber the size to 0 to prevent it from
1535 being included in the link. */
1536 h->fn_stub->size = 0;
1537 h->fn_stub->flags &= ~SEC_RELOC;
1538 h->fn_stub->reloc_count = 0;
1539 h->fn_stub->flags |= SEC_EXCLUDE;
1540 }
1541
1542 if (h->call_stub != NULL
1543 && ELF_ST_IS_MIPS16 (h->root.other))
1544 {
1545 /* We don't need the call_stub; this is a 16 bit function, so
1546 calls from other 16 bit functions are OK. Clobber the size
1547 to 0 to prevent it from being included in the link. */
1548 h->call_stub->size = 0;
1549 h->call_stub->flags &= ~SEC_RELOC;
1550 h->call_stub->reloc_count = 0;
1551 h->call_stub->flags |= SEC_EXCLUDE;
1552 }
1553
1554 if (h->call_fp_stub != NULL
1555 && ELF_ST_IS_MIPS16 (h->root.other))
1556 {
1557 /* We don't need the call_stub; this is a 16 bit function, so
1558 calls from other 16 bit functions are OK. Clobber the size
1559 to 0 to prevent it from being included in the link. */
1560 h->call_fp_stub->size = 0;
1561 h->call_fp_stub->flags &= ~SEC_RELOC;
1562 h->call_fp_stub->reloc_count = 0;
1563 h->call_fp_stub->flags |= SEC_EXCLUDE;
1564 }
1565 }
1566
1567 /* Hashtable callbacks for mips_elf_la25_stubs. */
1568
1569 static hashval_t
1570 mips_elf_la25_stub_hash (const void *entry_)
1571 {
1572 const struct mips_elf_la25_stub *entry;
1573
1574 entry = (struct mips_elf_la25_stub *) entry_;
1575 return entry->h->root.root.u.def.section->id
1576 + entry->h->root.root.u.def.value;
1577 }
1578
1579 static int
1580 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1581 {
1582 const struct mips_elf_la25_stub *entry1, *entry2;
1583
1584 entry1 = (struct mips_elf_la25_stub *) entry1_;
1585 entry2 = (struct mips_elf_la25_stub *) entry2_;
1586 return ((entry1->h->root.root.u.def.section
1587 == entry2->h->root.root.u.def.section)
1588 && (entry1->h->root.root.u.def.value
1589 == entry2->h->root.root.u.def.value));
1590 }
1591
1592 /* Called by the linker to set up the la25 stub-creation code. FN is
1593 the linker's implementation of add_stub_function. Return true on
1594 success. */
1595
1596 bfd_boolean
1597 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1598 asection *(*fn) (const char *, asection *,
1599 asection *))
1600 {
1601 struct mips_elf_link_hash_table *htab;
1602
1603 htab = mips_elf_hash_table (info);
1604 if (htab == NULL)
1605 return FALSE;
1606
1607 htab->add_stub_section = fn;
1608 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1609 mips_elf_la25_stub_eq, NULL);
1610 if (htab->la25_stubs == NULL)
1611 return FALSE;
1612
1613 return TRUE;
1614 }
1615
1616 /* Return true if H is a locally-defined PIC function, in the sense
1617 that it or its fn_stub might need $25 to be valid on entry.
1618 Note that MIPS16 functions set up $gp using PC-relative instructions,
1619 so they themselves never need $25 to be valid. Only non-MIPS16
1620 entry points are of interest here. */
1621
1622 static bfd_boolean
1623 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1624 {
1625 return ((h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak)
1627 && h->root.def_regular
1628 && !bfd_is_abs_section (h->root.root.u.def.section)
1629 && (!ELF_ST_IS_MIPS16 (h->root.other)
1630 || (h->fn_stub && h->need_fn_stub))
1631 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1632 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1633 }
1634
1635 /* Set *SEC to the input section that contains the target of STUB.
1636 Return the offset of the target from the start of that section. */
1637
1638 static bfd_vma
1639 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1640 asection **sec)
1641 {
1642 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1643 {
1644 BFD_ASSERT (stub->h->need_fn_stub);
1645 *sec = stub->h->fn_stub;
1646 return 0;
1647 }
1648 else
1649 {
1650 *sec = stub->h->root.root.u.def.section;
1651 return stub->h->root.root.u.def.value;
1652 }
1653 }
1654
1655 /* STUB describes an la25 stub that we have decided to implement
1656 by inserting an LUI/ADDIU pair before the target function.
1657 Create the section and redirect the function symbol to it. */
1658
1659 static bfd_boolean
1660 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1661 struct bfd_link_info *info)
1662 {
1663 struct mips_elf_link_hash_table *htab;
1664 char *name;
1665 asection *s, *input_section;
1666 unsigned int align;
1667
1668 htab = mips_elf_hash_table (info);
1669 if (htab == NULL)
1670 return FALSE;
1671
1672 /* Create a unique name for the new section. */
1673 name = bfd_malloc (11 + sizeof (".text.stub."));
1674 if (name == NULL)
1675 return FALSE;
1676 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1677
1678 /* Create the section. */
1679 mips_elf_get_la25_target (stub, &input_section);
1680 s = htab->add_stub_section (name, input_section,
1681 input_section->output_section);
1682 if (s == NULL)
1683 return FALSE;
1684
1685 /* Make sure that any padding goes before the stub. */
1686 align = input_section->alignment_power;
1687 if (!bfd_set_section_alignment (s->owner, s, align))
1688 return FALSE;
1689 if (align > 3)
1690 s->size = (1 << align) - 8;
1691
1692 /* Create a symbol for the stub. */
1693 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1694 stub->stub_section = s;
1695 stub->offset = s->size;
1696
1697 /* Allocate room for it. */
1698 s->size += 8;
1699 return TRUE;
1700 }
1701
1702 /* STUB describes an la25 stub that we have decided to implement
1703 with a separate trampoline. Allocate room for it and redirect
1704 the function symbol to it. */
1705
1706 static bfd_boolean
1707 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1708 struct bfd_link_info *info)
1709 {
1710 struct mips_elf_link_hash_table *htab;
1711 asection *s;
1712
1713 htab = mips_elf_hash_table (info);
1714 if (htab == NULL)
1715 return FALSE;
1716
1717 /* Create a trampoline section, if we haven't already. */
1718 s = htab->strampoline;
1719 if (s == NULL)
1720 {
1721 asection *input_section = stub->h->root.root.u.def.section;
1722 s = htab->add_stub_section (".text", NULL,
1723 input_section->output_section);
1724 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1725 return FALSE;
1726 htab->strampoline = s;
1727 }
1728
1729 /* Create a symbol for the stub. */
1730 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1731 stub->stub_section = s;
1732 stub->offset = s->size;
1733
1734 /* Allocate room for it. */
1735 s->size += 16;
1736 return TRUE;
1737 }
1738
1739 /* H describes a symbol that needs an la25 stub. Make sure that an
1740 appropriate stub exists and point H at it. */
1741
1742 static bfd_boolean
1743 mips_elf_add_la25_stub (struct bfd_link_info *info,
1744 struct mips_elf_link_hash_entry *h)
1745 {
1746 struct mips_elf_link_hash_table *htab;
1747 struct mips_elf_la25_stub search, *stub;
1748 bfd_boolean use_trampoline_p;
1749 asection *s;
1750 bfd_vma value;
1751 void **slot;
1752
1753 /* Describe the stub we want. */
1754 search.stub_section = NULL;
1755 search.offset = 0;
1756 search.h = h;
1757
1758 /* See if we've already created an equivalent stub. */
1759 htab = mips_elf_hash_table (info);
1760 if (htab == NULL)
1761 return FALSE;
1762
1763 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1764 if (slot == NULL)
1765 return FALSE;
1766
1767 stub = (struct mips_elf_la25_stub *) *slot;
1768 if (stub != NULL)
1769 {
1770 /* We can reuse the existing stub. */
1771 h->la25_stub = stub;
1772 return TRUE;
1773 }
1774
1775 /* Create a permanent copy of ENTRY and add it to the hash table. */
1776 stub = bfd_malloc (sizeof (search));
1777 if (stub == NULL)
1778 return FALSE;
1779 *stub = search;
1780 *slot = stub;
1781
1782 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1783 of the section and if we would need no more than 2 nops. */
1784 value = mips_elf_get_la25_target (stub, &s);
1785 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1786
1787 h->la25_stub = stub;
1788 return (use_trampoline_p
1789 ? mips_elf_add_la25_trampoline (stub, info)
1790 : mips_elf_add_la25_intro (stub, info));
1791 }
1792
1793 /* A mips_elf_link_hash_traverse callback that is called before sizing
1794 sections. DATA points to a mips_htab_traverse_info structure. */
1795
1796 static bfd_boolean
1797 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1798 {
1799 struct mips_htab_traverse_info *hti;
1800
1801 hti = (struct mips_htab_traverse_info *) data;
1802 if (!hti->info->relocatable)
1803 mips_elf_check_mips16_stubs (hti->info, h);
1804
1805 if (mips_elf_local_pic_function_p (h))
1806 {
1807 /* PR 12845: If H is in a section that has been garbage
1808 collected it will have its output section set to *ABS*. */
1809 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1810 return TRUE;
1811
1812 /* H is a function that might need $25 to be valid on entry.
1813 If we're creating a non-PIC relocatable object, mark H as
1814 being PIC. If we're creating a non-relocatable object with
1815 non-PIC branches and jumps to H, make sure that H has an la25
1816 stub. */
1817 if (hti->info->relocatable)
1818 {
1819 if (!PIC_OBJECT_P (hti->output_bfd))
1820 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1821 }
1822 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1823 {
1824 hti->error = TRUE;
1825 return FALSE;
1826 }
1827 }
1828 return TRUE;
1829 }
1830 \f
1831 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1832 Most mips16 instructions are 16 bits, but these instructions
1833 are 32 bits.
1834
1835 The format of these instructions is:
1836
1837 +--------------+--------------------------------+
1838 | JALX | X| Imm 20:16 | Imm 25:21 |
1839 +--------------+--------------------------------+
1840 | Immediate 15:0 |
1841 +-----------------------------------------------+
1842
1843 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1844 Note that the immediate value in the first word is swapped.
1845
1846 When producing a relocatable object file, R_MIPS16_26 is
1847 handled mostly like R_MIPS_26. In particular, the addend is
1848 stored as a straight 26-bit value in a 32-bit instruction.
1849 (gas makes life simpler for itself by never adjusting a
1850 R_MIPS16_26 reloc to be against a section, so the addend is
1851 always zero). However, the 32 bit instruction is stored as 2
1852 16-bit values, rather than a single 32-bit value. In a
1853 big-endian file, the result is the same; in a little-endian
1854 file, the two 16-bit halves of the 32 bit value are swapped.
1855 This is so that a disassembler can recognize the jal
1856 instruction.
1857
1858 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1859 instruction stored as two 16-bit values. The addend A is the
1860 contents of the targ26 field. The calculation is the same as
1861 R_MIPS_26. When storing the calculated value, reorder the
1862 immediate value as shown above, and don't forget to store the
1863 value as two 16-bit values.
1864
1865 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1866 defined as
1867
1868 big-endian:
1869 +--------+----------------------+
1870 | | |
1871 | | targ26-16 |
1872 |31 26|25 0|
1873 +--------+----------------------+
1874
1875 little-endian:
1876 +----------+------+-------------+
1877 | | | |
1878 | sub1 | | sub2 |
1879 |0 9|10 15|16 31|
1880 +----------+--------------------+
1881 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1882 ((sub1 << 16) | sub2)).
1883
1884 When producing a relocatable object file, the calculation is
1885 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1886 When producing a fully linked file, the calculation is
1887 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1888 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1889
1890 The table below lists the other MIPS16 instruction relocations.
1891 Each one is calculated in the same way as the non-MIPS16 relocation
1892 given on the right, but using the extended MIPS16 layout of 16-bit
1893 immediate fields:
1894
1895 R_MIPS16_GPREL R_MIPS_GPREL16
1896 R_MIPS16_GOT16 R_MIPS_GOT16
1897 R_MIPS16_CALL16 R_MIPS_CALL16
1898 R_MIPS16_HI16 R_MIPS_HI16
1899 R_MIPS16_LO16 R_MIPS_LO16
1900
1901 A typical instruction will have a format like this:
1902
1903 +--------------+--------------------------------+
1904 | EXTEND | Imm 10:5 | Imm 15:11 |
1905 +--------------+--------------------------------+
1906 | Major | rx | ry | Imm 4:0 |
1907 +--------------+--------------------------------+
1908
1909 EXTEND is the five bit value 11110. Major is the instruction
1910 opcode.
1911
1912 All we need to do here is shuffle the bits appropriately.
1913 As above, the two 16-bit halves must be swapped on a
1914 little-endian system. */
1915
1916 static inline bfd_boolean
1917 mips16_reloc_p (int r_type)
1918 {
1919 switch (r_type)
1920 {
1921 case R_MIPS16_26:
1922 case R_MIPS16_GPREL:
1923 case R_MIPS16_GOT16:
1924 case R_MIPS16_CALL16:
1925 case R_MIPS16_HI16:
1926 case R_MIPS16_LO16:
1927 case R_MIPS16_TLS_GD:
1928 case R_MIPS16_TLS_LDM:
1929 case R_MIPS16_TLS_DTPREL_HI16:
1930 case R_MIPS16_TLS_DTPREL_LO16:
1931 case R_MIPS16_TLS_GOTTPREL:
1932 case R_MIPS16_TLS_TPREL_HI16:
1933 case R_MIPS16_TLS_TPREL_LO16:
1934 return TRUE;
1935
1936 default:
1937 return FALSE;
1938 }
1939 }
1940
1941 /* Check if a microMIPS reloc. */
1942
1943 static inline bfd_boolean
1944 micromips_reloc_p (unsigned int r_type)
1945 {
1946 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1947 }
1948
1949 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1950 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1951 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1952
1953 static inline bfd_boolean
1954 micromips_reloc_shuffle_p (unsigned int r_type)
1955 {
1956 return (micromips_reloc_p (r_type)
1957 && r_type != R_MICROMIPS_PC7_S1
1958 && r_type != R_MICROMIPS_PC10_S1);
1959 }
1960
1961 static inline bfd_boolean
1962 got16_reloc_p (int r_type)
1963 {
1964 return (r_type == R_MIPS_GOT16
1965 || r_type == R_MIPS16_GOT16
1966 || r_type == R_MICROMIPS_GOT16);
1967 }
1968
1969 static inline bfd_boolean
1970 call16_reloc_p (int r_type)
1971 {
1972 return (r_type == R_MIPS_CALL16
1973 || r_type == R_MIPS16_CALL16
1974 || r_type == R_MICROMIPS_CALL16);
1975 }
1976
1977 static inline bfd_boolean
1978 got_disp_reloc_p (unsigned int r_type)
1979 {
1980 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1981 }
1982
1983 static inline bfd_boolean
1984 got_page_reloc_p (unsigned int r_type)
1985 {
1986 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1987 }
1988
1989 static inline bfd_boolean
1990 got_ofst_reloc_p (unsigned int r_type)
1991 {
1992 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1993 }
1994
1995 static inline bfd_boolean
1996 got_hi16_reloc_p (unsigned int r_type)
1997 {
1998 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1999 }
2000
2001 static inline bfd_boolean
2002 got_lo16_reloc_p (unsigned int r_type)
2003 {
2004 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2005 }
2006
2007 static inline bfd_boolean
2008 call_hi16_reloc_p (unsigned int r_type)
2009 {
2010 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2011 }
2012
2013 static inline bfd_boolean
2014 call_lo16_reloc_p (unsigned int r_type)
2015 {
2016 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2017 }
2018
2019 static inline bfd_boolean
2020 hi16_reloc_p (int r_type)
2021 {
2022 return (r_type == R_MIPS_HI16
2023 || r_type == R_MIPS16_HI16
2024 || r_type == R_MICROMIPS_HI16);
2025 }
2026
2027 static inline bfd_boolean
2028 lo16_reloc_p (int r_type)
2029 {
2030 return (r_type == R_MIPS_LO16
2031 || r_type == R_MIPS16_LO16
2032 || r_type == R_MICROMIPS_LO16);
2033 }
2034
2035 static inline bfd_boolean
2036 mips16_call_reloc_p (int r_type)
2037 {
2038 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2039 }
2040
2041 static inline bfd_boolean
2042 jal_reloc_p (int r_type)
2043 {
2044 return (r_type == R_MIPS_26
2045 || r_type == R_MIPS16_26
2046 || r_type == R_MICROMIPS_26_S1);
2047 }
2048
2049 static inline bfd_boolean
2050 micromips_branch_reloc_p (int r_type)
2051 {
2052 return (r_type == R_MICROMIPS_26_S1
2053 || r_type == R_MICROMIPS_PC16_S1
2054 || r_type == R_MICROMIPS_PC10_S1
2055 || r_type == R_MICROMIPS_PC7_S1);
2056 }
2057
2058 static inline bfd_boolean
2059 tls_gd_reloc_p (unsigned int r_type)
2060 {
2061 return (r_type == R_MIPS_TLS_GD
2062 || r_type == R_MIPS16_TLS_GD
2063 || r_type == R_MICROMIPS_TLS_GD);
2064 }
2065
2066 static inline bfd_boolean
2067 tls_ldm_reloc_p (unsigned int r_type)
2068 {
2069 return (r_type == R_MIPS_TLS_LDM
2070 || r_type == R_MIPS16_TLS_LDM
2071 || r_type == R_MICROMIPS_TLS_LDM);
2072 }
2073
2074 static inline bfd_boolean
2075 tls_gottprel_reloc_p (unsigned int r_type)
2076 {
2077 return (r_type == R_MIPS_TLS_GOTTPREL
2078 || r_type == R_MIPS16_TLS_GOTTPREL
2079 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2080 }
2081
2082 void
2083 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2084 bfd_boolean jal_shuffle, bfd_byte *data)
2085 {
2086 bfd_vma first, second, val;
2087
2088 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2089 return;
2090
2091 /* Pick up the first and second halfwords of the instruction. */
2092 first = bfd_get_16 (abfd, data);
2093 second = bfd_get_16 (abfd, data + 2);
2094 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2095 val = first << 16 | second;
2096 else if (r_type != R_MIPS16_26)
2097 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2098 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2099 else
2100 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2101 | ((first & 0x1f) << 21) | second);
2102 bfd_put_32 (abfd, val, data);
2103 }
2104
2105 void
2106 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2107 bfd_boolean jal_shuffle, bfd_byte *data)
2108 {
2109 bfd_vma first, second, val;
2110
2111 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2112 return;
2113
2114 val = bfd_get_32 (abfd, data);
2115 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2116 {
2117 second = val & 0xffff;
2118 first = val >> 16;
2119 }
2120 else if (r_type != R_MIPS16_26)
2121 {
2122 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2123 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2124 }
2125 else
2126 {
2127 second = val & 0xffff;
2128 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2129 | ((val >> 21) & 0x1f);
2130 }
2131 bfd_put_16 (abfd, second, data + 2);
2132 bfd_put_16 (abfd, first, data);
2133 }
2134
2135 bfd_reloc_status_type
2136 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2137 arelent *reloc_entry, asection *input_section,
2138 bfd_boolean relocatable, void *data, bfd_vma gp)
2139 {
2140 bfd_vma relocation;
2141 bfd_signed_vma val;
2142 bfd_reloc_status_type status;
2143
2144 if (bfd_is_com_section (symbol->section))
2145 relocation = 0;
2146 else
2147 relocation = symbol->value;
2148
2149 relocation += symbol->section->output_section->vma;
2150 relocation += symbol->section->output_offset;
2151
2152 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2153 return bfd_reloc_outofrange;
2154
2155 /* Set val to the offset into the section or symbol. */
2156 val = reloc_entry->addend;
2157
2158 _bfd_mips_elf_sign_extend (val, 16);
2159
2160 /* Adjust val for the final section location and GP value. If we
2161 are producing relocatable output, we don't want to do this for
2162 an external symbol. */
2163 if (! relocatable
2164 || (symbol->flags & BSF_SECTION_SYM) != 0)
2165 val += relocation - gp;
2166
2167 if (reloc_entry->howto->partial_inplace)
2168 {
2169 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2170 (bfd_byte *) data
2171 + reloc_entry->address);
2172 if (status != bfd_reloc_ok)
2173 return status;
2174 }
2175 else
2176 reloc_entry->addend = val;
2177
2178 if (relocatable)
2179 reloc_entry->address += input_section->output_offset;
2180
2181 return bfd_reloc_ok;
2182 }
2183
2184 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2185 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2186 that contains the relocation field and DATA points to the start of
2187 INPUT_SECTION. */
2188
2189 struct mips_hi16
2190 {
2191 struct mips_hi16 *next;
2192 bfd_byte *data;
2193 asection *input_section;
2194 arelent rel;
2195 };
2196
2197 /* FIXME: This should not be a static variable. */
2198
2199 static struct mips_hi16 *mips_hi16_list;
2200
2201 /* A howto special_function for REL *HI16 relocations. We can only
2202 calculate the correct value once we've seen the partnering
2203 *LO16 relocation, so just save the information for later.
2204
2205 The ABI requires that the *LO16 immediately follow the *HI16.
2206 However, as a GNU extension, we permit an arbitrary number of
2207 *HI16s to be associated with a single *LO16. This significantly
2208 simplies the relocation handling in gcc. */
2209
2210 bfd_reloc_status_type
2211 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2212 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2213 asection *input_section, bfd *output_bfd,
2214 char **error_message ATTRIBUTE_UNUSED)
2215 {
2216 struct mips_hi16 *n;
2217
2218 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2219 return bfd_reloc_outofrange;
2220
2221 n = bfd_malloc (sizeof *n);
2222 if (n == NULL)
2223 return bfd_reloc_outofrange;
2224
2225 n->next = mips_hi16_list;
2226 n->data = data;
2227 n->input_section = input_section;
2228 n->rel = *reloc_entry;
2229 mips_hi16_list = n;
2230
2231 if (output_bfd != NULL)
2232 reloc_entry->address += input_section->output_offset;
2233
2234 return bfd_reloc_ok;
2235 }
2236
2237 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2238 like any other 16-bit relocation when applied to global symbols, but is
2239 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2240
2241 bfd_reloc_status_type
2242 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2243 void *data, asection *input_section,
2244 bfd *output_bfd, char **error_message)
2245 {
2246 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2247 || bfd_is_und_section (bfd_get_section (symbol))
2248 || bfd_is_com_section (bfd_get_section (symbol)))
2249 /* The relocation is against a global symbol. */
2250 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2251 input_section, output_bfd,
2252 error_message);
2253
2254 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2255 input_section, output_bfd, error_message);
2256 }
2257
2258 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2259 is a straightforward 16 bit inplace relocation, but we must deal with
2260 any partnering high-part relocations as well. */
2261
2262 bfd_reloc_status_type
2263 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2264 void *data, asection *input_section,
2265 bfd *output_bfd, char **error_message)
2266 {
2267 bfd_vma vallo;
2268 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2269
2270 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2271 return bfd_reloc_outofrange;
2272
2273 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2274 location);
2275 vallo = bfd_get_32 (abfd, location);
2276 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2277 location);
2278
2279 while (mips_hi16_list != NULL)
2280 {
2281 bfd_reloc_status_type ret;
2282 struct mips_hi16 *hi;
2283
2284 hi = mips_hi16_list;
2285
2286 /* R_MIPS*_GOT16 relocations are something of a special case. We
2287 want to install the addend in the same way as for a R_MIPS*_HI16
2288 relocation (with a rightshift of 16). However, since GOT16
2289 relocations can also be used with global symbols, their howto
2290 has a rightshift of 0. */
2291 if (hi->rel.howto->type == R_MIPS_GOT16)
2292 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2293 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2294 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2295 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2296 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2297
2298 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2299 carry or borrow will induce a change of +1 or -1 in the high part. */
2300 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2301
2302 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2303 hi->input_section, output_bfd,
2304 error_message);
2305 if (ret != bfd_reloc_ok)
2306 return ret;
2307
2308 mips_hi16_list = hi->next;
2309 free (hi);
2310 }
2311
2312 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2313 input_section, output_bfd,
2314 error_message);
2315 }
2316
2317 /* A generic howto special_function. This calculates and installs the
2318 relocation itself, thus avoiding the oft-discussed problems in
2319 bfd_perform_relocation and bfd_install_relocation. */
2320
2321 bfd_reloc_status_type
2322 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2323 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2324 asection *input_section, bfd *output_bfd,
2325 char **error_message ATTRIBUTE_UNUSED)
2326 {
2327 bfd_signed_vma val;
2328 bfd_reloc_status_type status;
2329 bfd_boolean relocatable;
2330
2331 relocatable = (output_bfd != NULL);
2332
2333 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2334 return bfd_reloc_outofrange;
2335
2336 /* Build up the field adjustment in VAL. */
2337 val = 0;
2338 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2339 {
2340 /* Either we're calculating the final field value or we have a
2341 relocation against a section symbol. Add in the section's
2342 offset or address. */
2343 val += symbol->section->output_section->vma;
2344 val += symbol->section->output_offset;
2345 }
2346
2347 if (!relocatable)
2348 {
2349 /* We're calculating the final field value. Add in the symbol's value
2350 and, if pc-relative, subtract the address of the field itself. */
2351 val += symbol->value;
2352 if (reloc_entry->howto->pc_relative)
2353 {
2354 val -= input_section->output_section->vma;
2355 val -= input_section->output_offset;
2356 val -= reloc_entry->address;
2357 }
2358 }
2359
2360 /* VAL is now the final adjustment. If we're keeping this relocation
2361 in the output file, and if the relocation uses a separate addend,
2362 we just need to add VAL to that addend. Otherwise we need to add
2363 VAL to the relocation field itself. */
2364 if (relocatable && !reloc_entry->howto->partial_inplace)
2365 reloc_entry->addend += val;
2366 else
2367 {
2368 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2369
2370 /* Add in the separate addend, if any. */
2371 val += reloc_entry->addend;
2372
2373 /* Add VAL to the relocation field. */
2374 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2375 location);
2376 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2377 location);
2378 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2379 location);
2380
2381 if (status != bfd_reloc_ok)
2382 return status;
2383 }
2384
2385 if (relocatable)
2386 reloc_entry->address += input_section->output_offset;
2387
2388 return bfd_reloc_ok;
2389 }
2390 \f
2391 /* Swap an entry in a .gptab section. Note that these routines rely
2392 on the equivalence of the two elements of the union. */
2393
2394 static void
2395 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2396 Elf32_gptab *in)
2397 {
2398 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2399 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2400 }
2401
2402 static void
2403 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2404 Elf32_External_gptab *ex)
2405 {
2406 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2407 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2408 }
2409
2410 static void
2411 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2412 Elf32_External_compact_rel *ex)
2413 {
2414 H_PUT_32 (abfd, in->id1, ex->id1);
2415 H_PUT_32 (abfd, in->num, ex->num);
2416 H_PUT_32 (abfd, in->id2, ex->id2);
2417 H_PUT_32 (abfd, in->offset, ex->offset);
2418 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2419 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2420 }
2421
2422 static void
2423 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2424 Elf32_External_crinfo *ex)
2425 {
2426 unsigned long l;
2427
2428 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2429 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2430 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2431 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2432 H_PUT_32 (abfd, l, ex->info);
2433 H_PUT_32 (abfd, in->konst, ex->konst);
2434 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2435 }
2436 \f
2437 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2438 routines swap this structure in and out. They are used outside of
2439 BFD, so they are globally visible. */
2440
2441 void
2442 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2443 Elf32_RegInfo *in)
2444 {
2445 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2446 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2447 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2448 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2449 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2450 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2451 }
2452
2453 void
2454 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2455 Elf32_External_RegInfo *ex)
2456 {
2457 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2458 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2459 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2460 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2461 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2462 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2463 }
2464
2465 /* In the 64 bit ABI, the .MIPS.options section holds register
2466 information in an Elf64_Reginfo structure. These routines swap
2467 them in and out. They are globally visible because they are used
2468 outside of BFD. These routines are here so that gas can call them
2469 without worrying about whether the 64 bit ABI has been included. */
2470
2471 void
2472 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2473 Elf64_Internal_RegInfo *in)
2474 {
2475 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2476 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2477 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2478 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2479 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2480 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2481 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2482 }
2483
2484 void
2485 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2486 Elf64_External_RegInfo *ex)
2487 {
2488 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2489 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2490 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2491 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2492 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2493 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2494 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2495 }
2496
2497 /* Swap in an options header. */
2498
2499 void
2500 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2501 Elf_Internal_Options *in)
2502 {
2503 in->kind = H_GET_8 (abfd, ex->kind);
2504 in->size = H_GET_8 (abfd, ex->size);
2505 in->section = H_GET_16 (abfd, ex->section);
2506 in->info = H_GET_32 (abfd, ex->info);
2507 }
2508
2509 /* Swap out an options header. */
2510
2511 void
2512 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2513 Elf_External_Options *ex)
2514 {
2515 H_PUT_8 (abfd, in->kind, ex->kind);
2516 H_PUT_8 (abfd, in->size, ex->size);
2517 H_PUT_16 (abfd, in->section, ex->section);
2518 H_PUT_32 (abfd, in->info, ex->info);
2519 }
2520 \f
2521 /* This function is called via qsort() to sort the dynamic relocation
2522 entries by increasing r_symndx value. */
2523
2524 static int
2525 sort_dynamic_relocs (const void *arg1, const void *arg2)
2526 {
2527 Elf_Internal_Rela int_reloc1;
2528 Elf_Internal_Rela int_reloc2;
2529 int diff;
2530
2531 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2532 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2533
2534 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2535 if (diff != 0)
2536 return diff;
2537
2538 if (int_reloc1.r_offset < int_reloc2.r_offset)
2539 return -1;
2540 if (int_reloc1.r_offset > int_reloc2.r_offset)
2541 return 1;
2542 return 0;
2543 }
2544
2545 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2546
2547 static int
2548 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2549 const void *arg2 ATTRIBUTE_UNUSED)
2550 {
2551 #ifdef BFD64
2552 Elf_Internal_Rela int_reloc1[3];
2553 Elf_Internal_Rela int_reloc2[3];
2554
2555 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2556 (reldyn_sorting_bfd, arg1, int_reloc1);
2557 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2558 (reldyn_sorting_bfd, arg2, int_reloc2);
2559
2560 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2561 return -1;
2562 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2563 return 1;
2564
2565 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2566 return -1;
2567 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2568 return 1;
2569 return 0;
2570 #else
2571 abort ();
2572 #endif
2573 }
2574
2575
2576 /* This routine is used to write out ECOFF debugging external symbol
2577 information. It is called via mips_elf_link_hash_traverse. The
2578 ECOFF external symbol information must match the ELF external
2579 symbol information. Unfortunately, at this point we don't know
2580 whether a symbol is required by reloc information, so the two
2581 tables may wind up being different. We must sort out the external
2582 symbol information before we can set the final size of the .mdebug
2583 section, and we must set the size of the .mdebug section before we
2584 can relocate any sections, and we can't know which symbols are
2585 required by relocation until we relocate the sections.
2586 Fortunately, it is relatively unlikely that any symbol will be
2587 stripped but required by a reloc. In particular, it can not happen
2588 when generating a final executable. */
2589
2590 static bfd_boolean
2591 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2592 {
2593 struct extsym_info *einfo = data;
2594 bfd_boolean strip;
2595 asection *sec, *output_section;
2596
2597 if (h->root.indx == -2)
2598 strip = FALSE;
2599 else if ((h->root.def_dynamic
2600 || h->root.ref_dynamic
2601 || h->root.type == bfd_link_hash_new)
2602 && !h->root.def_regular
2603 && !h->root.ref_regular)
2604 strip = TRUE;
2605 else if (einfo->info->strip == strip_all
2606 || (einfo->info->strip == strip_some
2607 && bfd_hash_lookup (einfo->info->keep_hash,
2608 h->root.root.root.string,
2609 FALSE, FALSE) == NULL))
2610 strip = TRUE;
2611 else
2612 strip = FALSE;
2613
2614 if (strip)
2615 return TRUE;
2616
2617 if (h->esym.ifd == -2)
2618 {
2619 h->esym.jmptbl = 0;
2620 h->esym.cobol_main = 0;
2621 h->esym.weakext = 0;
2622 h->esym.reserved = 0;
2623 h->esym.ifd = ifdNil;
2624 h->esym.asym.value = 0;
2625 h->esym.asym.st = stGlobal;
2626
2627 if (h->root.root.type == bfd_link_hash_undefined
2628 || h->root.root.type == bfd_link_hash_undefweak)
2629 {
2630 const char *name;
2631
2632 /* Use undefined class. Also, set class and type for some
2633 special symbols. */
2634 name = h->root.root.root.string;
2635 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2636 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2637 {
2638 h->esym.asym.sc = scData;
2639 h->esym.asym.st = stLabel;
2640 h->esym.asym.value = 0;
2641 }
2642 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2643 {
2644 h->esym.asym.sc = scAbs;
2645 h->esym.asym.st = stLabel;
2646 h->esym.asym.value =
2647 mips_elf_hash_table (einfo->info)->procedure_count;
2648 }
2649 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2650 {
2651 h->esym.asym.sc = scAbs;
2652 h->esym.asym.st = stLabel;
2653 h->esym.asym.value = elf_gp (einfo->abfd);
2654 }
2655 else
2656 h->esym.asym.sc = scUndefined;
2657 }
2658 else if (h->root.root.type != bfd_link_hash_defined
2659 && h->root.root.type != bfd_link_hash_defweak)
2660 h->esym.asym.sc = scAbs;
2661 else
2662 {
2663 const char *name;
2664
2665 sec = h->root.root.u.def.section;
2666 output_section = sec->output_section;
2667
2668 /* When making a shared library and symbol h is the one from
2669 the another shared library, OUTPUT_SECTION may be null. */
2670 if (output_section == NULL)
2671 h->esym.asym.sc = scUndefined;
2672 else
2673 {
2674 name = bfd_section_name (output_section->owner, output_section);
2675
2676 if (strcmp (name, ".text") == 0)
2677 h->esym.asym.sc = scText;
2678 else if (strcmp (name, ".data") == 0)
2679 h->esym.asym.sc = scData;
2680 else if (strcmp (name, ".sdata") == 0)
2681 h->esym.asym.sc = scSData;
2682 else if (strcmp (name, ".rodata") == 0
2683 || strcmp (name, ".rdata") == 0)
2684 h->esym.asym.sc = scRData;
2685 else if (strcmp (name, ".bss") == 0)
2686 h->esym.asym.sc = scBss;
2687 else if (strcmp (name, ".sbss") == 0)
2688 h->esym.asym.sc = scSBss;
2689 else if (strcmp (name, ".init") == 0)
2690 h->esym.asym.sc = scInit;
2691 else if (strcmp (name, ".fini") == 0)
2692 h->esym.asym.sc = scFini;
2693 else
2694 h->esym.asym.sc = scAbs;
2695 }
2696 }
2697
2698 h->esym.asym.reserved = 0;
2699 h->esym.asym.index = indexNil;
2700 }
2701
2702 if (h->root.root.type == bfd_link_hash_common)
2703 h->esym.asym.value = h->root.root.u.c.size;
2704 else if (h->root.root.type == bfd_link_hash_defined
2705 || h->root.root.type == bfd_link_hash_defweak)
2706 {
2707 if (h->esym.asym.sc == scCommon)
2708 h->esym.asym.sc = scBss;
2709 else if (h->esym.asym.sc == scSCommon)
2710 h->esym.asym.sc = scSBss;
2711
2712 sec = h->root.root.u.def.section;
2713 output_section = sec->output_section;
2714 if (output_section != NULL)
2715 h->esym.asym.value = (h->root.root.u.def.value
2716 + sec->output_offset
2717 + output_section->vma);
2718 else
2719 h->esym.asym.value = 0;
2720 }
2721 else
2722 {
2723 struct mips_elf_link_hash_entry *hd = h;
2724
2725 while (hd->root.root.type == bfd_link_hash_indirect)
2726 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2727
2728 if (hd->needs_lazy_stub)
2729 {
2730 /* Set type and value for a symbol with a function stub. */
2731 h->esym.asym.st = stProc;
2732 sec = hd->root.root.u.def.section;
2733 if (sec == NULL)
2734 h->esym.asym.value = 0;
2735 else
2736 {
2737 output_section = sec->output_section;
2738 if (output_section != NULL)
2739 h->esym.asym.value = (hd->root.plt.offset
2740 + sec->output_offset
2741 + output_section->vma);
2742 else
2743 h->esym.asym.value = 0;
2744 }
2745 }
2746 }
2747
2748 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2749 h->root.root.root.string,
2750 &h->esym))
2751 {
2752 einfo->failed = TRUE;
2753 return FALSE;
2754 }
2755
2756 return TRUE;
2757 }
2758
2759 /* A comparison routine used to sort .gptab entries. */
2760
2761 static int
2762 gptab_compare (const void *p1, const void *p2)
2763 {
2764 const Elf32_gptab *a1 = p1;
2765 const Elf32_gptab *a2 = p2;
2766
2767 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2768 }
2769 \f
2770 /* Functions to manage the got entry hash table. */
2771
2772 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2773 hash number. */
2774
2775 static INLINE hashval_t
2776 mips_elf_hash_bfd_vma (bfd_vma addr)
2777 {
2778 #ifdef BFD64
2779 return addr + (addr >> 32);
2780 #else
2781 return addr;
2782 #endif
2783 }
2784
2785 /* got_entries only match if they're identical, except for gotidx, so
2786 use all fields to compute the hash, and compare the appropriate
2787 union members. */
2788
2789 static int
2790 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2791 {
2792 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2793 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2794
2795 return (e1->abfd == e2->abfd
2796 && e1->symndx == e2->symndx
2797 && (e1->tls_type & GOT_TLS_TYPE) == (e2->tls_type & GOT_TLS_TYPE)
2798 && (!e1->abfd ? e1->d.address == e2->d.address
2799 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2800 : e1->d.h == e2->d.h));
2801 }
2802
2803 /* multi_got_entries are still a match in the case of global objects,
2804 even if the input bfd in which they're referenced differs, so the
2805 hash computation and compare functions are adjusted
2806 accordingly. */
2807
2808 static hashval_t
2809 mips_elf_got_entry_hash (const void *entry_)
2810 {
2811 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2812
2813 return (entry->symndx
2814 + (((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM) << 18)
2815 + ((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? 0
2816 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2817 : entry->symndx >= 0 ? (entry->abfd->id
2818 + mips_elf_hash_bfd_vma (entry->d.addend))
2819 : entry->d.h->root.root.root.hash));
2820 }
2821
2822 static int
2823 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2824 {
2825 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2826 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2827
2828 return (e1->symndx == e2->symndx
2829 && (e1->tls_type & GOT_TLS_TYPE) == (e2->tls_type & GOT_TLS_TYPE)
2830 && ((e1->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM ? TRUE
2831 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2832 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2833 && e1->d.addend == e2->d.addend)
2834 : e2->abfd && e1->d.h == e2->d.h));
2835 }
2836
2837 static hashval_t
2838 mips_got_page_entry_hash (const void *entry_)
2839 {
2840 const struct mips_got_page_entry *entry;
2841
2842 entry = (const struct mips_got_page_entry *) entry_;
2843 return entry->abfd->id + entry->symndx;
2844 }
2845
2846 static int
2847 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2848 {
2849 const struct mips_got_page_entry *entry1, *entry2;
2850
2851 entry1 = (const struct mips_got_page_entry *) entry1_;
2852 entry2 = (const struct mips_got_page_entry *) entry2_;
2853 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2854 }
2855 \f
2856 /* Create and return a new mips_got_info structure. MASTER_GOT_P
2857 is true if this is the master GOT rather than a multigot. */
2858
2859 static struct mips_got_info *
2860 mips_elf_create_got_info (bfd *abfd, bfd_boolean master_got_p)
2861 {
2862 struct mips_got_info *g;
2863
2864 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2865 if (g == NULL)
2866 return NULL;
2867
2868 g->tls_ldm_offset = MINUS_ONE;
2869 if (master_got_p)
2870 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2871 mips_elf_got_entry_eq, NULL);
2872 else
2873 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2874 mips_elf_multi_got_entry_eq, NULL);
2875 if (g->got_entries == NULL)
2876 return NULL;
2877
2878 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
2879 mips_got_page_entry_eq, NULL);
2880 if (g->got_page_entries == NULL)
2881 return NULL;
2882
2883 return g;
2884 }
2885
2886 /* Return the dynamic relocation section. If it doesn't exist, try to
2887 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2888 if creation fails. */
2889
2890 static asection *
2891 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2892 {
2893 const char *dname;
2894 asection *sreloc;
2895 bfd *dynobj;
2896
2897 dname = MIPS_ELF_REL_DYN_NAME (info);
2898 dynobj = elf_hash_table (info)->dynobj;
2899 sreloc = bfd_get_linker_section (dynobj, dname);
2900 if (sreloc == NULL && create_p)
2901 {
2902 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2903 (SEC_ALLOC
2904 | SEC_LOAD
2905 | SEC_HAS_CONTENTS
2906 | SEC_IN_MEMORY
2907 | SEC_LINKER_CREATED
2908 | SEC_READONLY));
2909 if (sreloc == NULL
2910 || ! bfd_set_section_alignment (dynobj, sreloc,
2911 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2912 return NULL;
2913 }
2914 return sreloc;
2915 }
2916
2917 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2918
2919 static int
2920 mips_elf_reloc_tls_type (unsigned int r_type)
2921 {
2922 if (tls_gd_reloc_p (r_type))
2923 return GOT_TLS_GD;
2924
2925 if (tls_ldm_reloc_p (r_type))
2926 return GOT_TLS_LDM;
2927
2928 if (tls_gottprel_reloc_p (r_type))
2929 return GOT_TLS_IE;
2930
2931 return GOT_NORMAL;
2932 }
2933
2934 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2935
2936 static int
2937 mips_tls_got_entries (unsigned int type)
2938 {
2939 switch (type)
2940 {
2941 case GOT_TLS_GD:
2942 case GOT_TLS_LDM:
2943 return 2;
2944
2945 case GOT_TLS_IE:
2946 return 1;
2947
2948 case GOT_NORMAL:
2949 return 0;
2950 }
2951 abort ();
2952 }
2953
2954 /* Count the number of relocations needed for a TLS GOT entry, with
2955 access types from TLS_TYPE, and symbol H (or a local symbol if H
2956 is NULL). */
2957
2958 static int
2959 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2960 struct elf_link_hash_entry *h)
2961 {
2962 int indx = 0;
2963 bfd_boolean need_relocs = FALSE;
2964 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2965
2966 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2967 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2968 indx = h->dynindx;
2969
2970 if ((info->shared || indx != 0)
2971 && (h == NULL
2972 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2973 || h->root.type != bfd_link_hash_undefweak))
2974 need_relocs = TRUE;
2975
2976 if (!need_relocs)
2977 return 0;
2978
2979 switch (tls_type & GOT_TLS_TYPE)
2980 {
2981 case GOT_TLS_GD:
2982 return indx != 0 ? 2 : 1;
2983
2984 case GOT_TLS_IE:
2985 return 1;
2986
2987 case GOT_TLS_LDM:
2988 return info->shared ? 1 : 0;
2989
2990 default:
2991 return 0;
2992 }
2993 }
2994
2995 /* Add the number of GOT entries and TLS relocations required by ENTRY
2996 to G. */
2997
2998 static void
2999 mips_elf_count_got_entry (struct bfd_link_info *info,
3000 struct mips_got_info *g,
3001 struct mips_got_entry *entry)
3002 {
3003 unsigned char tls_type;
3004
3005 tls_type = entry->tls_type & GOT_TLS_TYPE;
3006 if (tls_type)
3007 {
3008 g->tls_gotno += mips_tls_got_entries (tls_type);
3009 g->relocs += mips_tls_got_relocs (info, tls_type,
3010 entry->symndx < 0
3011 ? &entry->d.h->root : NULL);
3012 }
3013 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3014 g->local_gotno += 1;
3015 else
3016 g->global_gotno += 1;
3017 }
3018
3019 /* A htab_traverse callback. If *SLOT describes a GOT entry for a local
3020 symbol, count the number of GOT entries and TLS relocations that it
3021 requires. DATA points to a mips_elf_traverse_got_arg structure. */
3022
3023 static int
3024 mips_elf_count_local_got_entries (void **entryp, void *data)
3025 {
3026 struct mips_got_entry *entry;
3027 struct mips_elf_traverse_got_arg *arg;
3028
3029 entry = (struct mips_got_entry *) *entryp;
3030 arg = (struct mips_elf_traverse_got_arg *) data;
3031 if (entry->abfd != NULL && entry->symndx != -1)
3032 {
3033 if ((entry->tls_type & GOT_TLS_TYPE) == GOT_TLS_LDM)
3034 {
3035 if (arg->g->tls_ldm_offset == MINUS_TWO)
3036 return 1;
3037 arg->g->tls_ldm_offset = MINUS_TWO;
3038 }
3039 mips_elf_count_got_entry (arg->info, arg->g, entry);
3040 }
3041
3042 return 1;
3043 }
3044
3045 /* Count the number of TLS GOT entries and relocationss required for the
3046 global (or forced-local) symbol in ARG1. */
3047
3048 static int
3049 mips_elf_count_global_tls_entries (void *entry, void *data)
3050 {
3051 struct mips_elf_link_hash_entry *hm;
3052 struct mips_elf_traverse_got_arg *arg;
3053
3054 hm = (struct mips_elf_link_hash_entry *) entry;
3055 if (hm->root.root.type == bfd_link_hash_indirect
3056 || hm->root.root.type == bfd_link_hash_warning)
3057 return 1;
3058
3059 arg = (struct mips_elf_traverse_got_arg *) data;
3060 if (hm->tls_gd_type)
3061 {
3062 arg->g->tls_gotno += 2;
3063 arg->g->relocs += mips_tls_got_relocs (arg->info, hm->tls_gd_type,
3064 &hm->root);
3065 }
3066 if (hm->tls_ie_type)
3067 {
3068 arg->g->tls_gotno += 1;
3069 arg->g->relocs += mips_tls_got_relocs (arg->info, hm->tls_ie_type,
3070 &hm->root);
3071 }
3072
3073 return 1;
3074 }
3075
3076 /* Output a simple dynamic relocation into SRELOC. */
3077
3078 static void
3079 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3080 asection *sreloc,
3081 unsigned long reloc_index,
3082 unsigned long indx,
3083 int r_type,
3084 bfd_vma offset)
3085 {
3086 Elf_Internal_Rela rel[3];
3087
3088 memset (rel, 0, sizeof (rel));
3089
3090 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3091 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3092
3093 if (ABI_64_P (output_bfd))
3094 {
3095 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3096 (output_bfd, &rel[0],
3097 (sreloc->contents
3098 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3099 }
3100 else
3101 bfd_elf32_swap_reloc_out
3102 (output_bfd, &rel[0],
3103 (sreloc->contents
3104 + reloc_index * sizeof (Elf32_External_Rel)));
3105 }
3106
3107 /* Initialize a set of TLS GOT entries for one symbol. */
3108
3109 static void
3110 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3111 unsigned char *tls_type_p,
3112 struct bfd_link_info *info,
3113 struct mips_elf_link_hash_entry *h,
3114 bfd_vma value)
3115 {
3116 struct mips_elf_link_hash_table *htab;
3117 int indx;
3118 asection *sreloc, *sgot;
3119 bfd_vma got_offset2;
3120 bfd_boolean need_relocs = FALSE;
3121
3122 htab = mips_elf_hash_table (info);
3123 if (htab == NULL)
3124 return;
3125
3126 sgot = htab->sgot;
3127
3128 indx = 0;
3129 if (h != NULL)
3130 {
3131 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3132
3133 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3134 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3135 indx = h->root.dynindx;
3136 }
3137
3138 if (*tls_type_p & GOT_TLS_DONE)
3139 return;
3140
3141 if ((info->shared || indx != 0)
3142 && (h == NULL
3143 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3144 || h->root.type != bfd_link_hash_undefweak))
3145 need_relocs = TRUE;
3146
3147 /* MINUS_ONE means the symbol is not defined in this object. It may not
3148 be defined at all; assume that the value doesn't matter in that
3149 case. Otherwise complain if we would use the value. */
3150 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3151 || h->root.root.type == bfd_link_hash_undefweak);
3152
3153 /* Emit necessary relocations. */
3154 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3155
3156 switch (*tls_type_p & GOT_TLS_TYPE)
3157 {
3158 case GOT_TLS_GD:
3159 /* General Dynamic. */
3160 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3161
3162 if (need_relocs)
3163 {
3164 mips_elf_output_dynamic_relocation
3165 (abfd, sreloc, sreloc->reloc_count++, indx,
3166 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3167 sgot->output_offset + sgot->output_section->vma + got_offset);
3168
3169 if (indx)
3170 mips_elf_output_dynamic_relocation
3171 (abfd, sreloc, sreloc->reloc_count++, indx,
3172 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3173 sgot->output_offset + sgot->output_section->vma + got_offset2);
3174 else
3175 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3176 sgot->contents + got_offset2);
3177 }
3178 else
3179 {
3180 MIPS_ELF_PUT_WORD (abfd, 1,
3181 sgot->contents + got_offset);
3182 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3183 sgot->contents + got_offset2);
3184 }
3185 break;
3186
3187 case GOT_TLS_IE:
3188 /* Initial Exec model. */
3189 if (need_relocs)
3190 {
3191 if (indx == 0)
3192 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3193 sgot->contents + got_offset);
3194 else
3195 MIPS_ELF_PUT_WORD (abfd, 0,
3196 sgot->contents + got_offset);
3197
3198 mips_elf_output_dynamic_relocation
3199 (abfd, sreloc, sreloc->reloc_count++, indx,
3200 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3201 sgot->output_offset + sgot->output_section->vma + got_offset);
3202 }
3203 else
3204 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3205 sgot->contents + got_offset);
3206 break;
3207
3208 case GOT_TLS_LDM:
3209 /* The initial offset is zero, and the LD offsets will include the
3210 bias by DTP_OFFSET. */
3211 MIPS_ELF_PUT_WORD (abfd, 0,
3212 sgot->contents + got_offset
3213 + MIPS_ELF_GOT_SIZE (abfd));
3214
3215 if (!info->shared)
3216 MIPS_ELF_PUT_WORD (abfd, 1,
3217 sgot->contents + got_offset);
3218 else
3219 mips_elf_output_dynamic_relocation
3220 (abfd, sreloc, sreloc->reloc_count++, indx,
3221 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3222 sgot->output_offset + sgot->output_section->vma + got_offset);
3223 break;
3224
3225 default:
3226 abort ();
3227 }
3228
3229 *tls_type_p |= GOT_TLS_DONE;
3230 }
3231
3232 /* Return the GOT index to use for a relocation against H using the
3233 TLS model in *TLS_TYPE. The GOT entries for this symbol/model
3234 combination start at GOT_INDEX into ABFD's GOT. This function
3235 initializes the GOT entries and corresponding relocations. */
3236
3237 static bfd_vma
3238 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3239 struct bfd_link_info *info,
3240 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3241 {
3242 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3243 return got_index;
3244 }
3245
3246 /* Return the GOT index to use for a relocation of type R_TYPE against H
3247 in ABFD. */
3248
3249 static bfd_vma
3250 mips_tls_single_got_index (bfd *abfd, int r_type, struct bfd_link_info *info,
3251 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3252 {
3253 if (tls_gottprel_reloc_p (r_type))
3254 return mips_tls_got_index (abfd, h->tls_ie_got_offset, &h->tls_ie_type,
3255 info, h, symbol);
3256 if (tls_gd_reloc_p (r_type))
3257 return mips_tls_got_index (abfd, h->tls_gd_got_offset, &h->tls_gd_type,
3258 info, h, symbol);
3259 abort ();
3260 }
3261
3262 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3263 for global symbol H. .got.plt comes before the GOT, so the offset
3264 will be negative. */
3265
3266 static bfd_vma
3267 mips_elf_gotplt_index (struct bfd_link_info *info,
3268 struct elf_link_hash_entry *h)
3269 {
3270 bfd_vma plt_index, got_address, got_value;
3271 struct mips_elf_link_hash_table *htab;
3272
3273 htab = mips_elf_hash_table (info);
3274 BFD_ASSERT (htab != NULL);
3275
3276 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3277
3278 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3279 section starts with reserved entries. */
3280 BFD_ASSERT (htab->is_vxworks);
3281
3282 /* Calculate the index of the symbol's PLT entry. */
3283 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3284
3285 /* Calculate the address of the associated .got.plt entry. */
3286 got_address = (htab->sgotplt->output_section->vma
3287 + htab->sgotplt->output_offset
3288 + plt_index * 4);
3289
3290 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3291 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3292 + htab->root.hgot->root.u.def.section->output_offset
3293 + htab->root.hgot->root.u.def.value);
3294
3295 return got_address - got_value;
3296 }
3297
3298 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3299 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3300 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3301 offset can be found. */
3302
3303 static bfd_vma
3304 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3305 bfd_vma value, unsigned long r_symndx,
3306 struct mips_elf_link_hash_entry *h, int r_type)
3307 {
3308 struct mips_elf_link_hash_table *htab;
3309 struct mips_got_entry *entry;
3310
3311 htab = mips_elf_hash_table (info);
3312 BFD_ASSERT (htab != NULL);
3313
3314 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3315 r_symndx, h, r_type);
3316 if (!entry)
3317 return MINUS_ONE;
3318
3319 if (entry->tls_type)
3320 {
3321 if (entry->symndx == -1 && htab->got_info->next == NULL)
3322 /* A type (3) entry in the single-GOT case. We use the symbol's
3323 hash table entry to track the index. */
3324 return mips_tls_single_got_index (abfd, r_type, info, h, value);
3325 else
3326 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3327 info, h, value);
3328 }
3329 else
3330 return entry->gotidx;
3331 }
3332
3333 /* Returns the GOT index for the global symbol indicated by H. */
3334
3335 static bfd_vma
3336 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3337 int r_type, struct bfd_link_info *info)
3338 {
3339 struct mips_elf_link_hash_table *htab;
3340 bfd_vma got_index;
3341 struct mips_got_info *g, *gg;
3342 long global_got_dynindx = 0;
3343
3344 htab = mips_elf_hash_table (info);
3345 BFD_ASSERT (htab != NULL);
3346
3347 gg = g = htab->got_info;
3348 if (g->bfd2got && ibfd)
3349 {
3350 struct mips_got_entry e, *p;
3351
3352 BFD_ASSERT (h->dynindx >= 0);
3353
3354 g = mips_elf_got_for_ibfd (g, ibfd);
3355 if (g->next != gg || TLS_RELOC_P (r_type))
3356 {
3357 e.abfd = ibfd;
3358 e.symndx = -1;
3359 e.d.h = (struct mips_elf_link_hash_entry *)h;
3360 e.tls_type = mips_elf_reloc_tls_type (r_type);
3361
3362 p = htab_find (g->got_entries, &e);
3363
3364 BFD_ASSERT (p && p->gotidx > 0);
3365
3366 if (p->tls_type)
3367 {
3368 bfd_vma value = MINUS_ONE;
3369 if ((h->root.type == bfd_link_hash_defined
3370 || h->root.type == bfd_link_hash_defweak)
3371 && h->root.u.def.section->output_section)
3372 value = (h->root.u.def.value
3373 + h->root.u.def.section->output_offset
3374 + h->root.u.def.section->output_section->vma);
3375
3376 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type,
3377 info, e.d.h, value);
3378 }
3379 else
3380 return p->gotidx;
3381 }
3382 }
3383
3384 if (htab->global_gotsym != NULL)
3385 global_got_dynindx = htab->global_gotsym->dynindx;
3386
3387 if (TLS_RELOC_P (r_type))
3388 {
3389 struct mips_elf_link_hash_entry *hm
3390 = (struct mips_elf_link_hash_entry *) h;
3391 bfd_vma value = MINUS_ONE;
3392
3393 if ((h->root.type == bfd_link_hash_defined
3394 || h->root.type == bfd_link_hash_defweak)
3395 && h->root.u.def.section->output_section)
3396 value = (h->root.u.def.value
3397 + h->root.u.def.section->output_offset
3398 + h->root.u.def.section->output_section->vma);
3399
3400 got_index = mips_tls_single_got_index (abfd, r_type, info, hm, value);
3401 }
3402 else
3403 {
3404 /* Once we determine the global GOT entry with the lowest dynamic
3405 symbol table index, we must put all dynamic symbols with greater
3406 indices into the GOT. That makes it easy to calculate the GOT
3407 offset. */
3408 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3409 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3410 * MIPS_ELF_GOT_SIZE (abfd));
3411 }
3412 BFD_ASSERT (got_index < htab->sgot->size);
3413
3414 return got_index;
3415 }
3416
3417 /* Find a GOT page entry that points to within 32KB of VALUE. These
3418 entries are supposed to be placed at small offsets in the GOT, i.e.,
3419 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3420 entry could be created. If OFFSETP is nonnull, use it to return the
3421 offset of the GOT entry from VALUE. */
3422
3423 static bfd_vma
3424 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3425 bfd_vma value, bfd_vma *offsetp)
3426 {
3427 bfd_vma page, got_index;
3428 struct mips_got_entry *entry;
3429
3430 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3431 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3432 NULL, R_MIPS_GOT_PAGE);
3433
3434 if (!entry)
3435 return MINUS_ONE;
3436
3437 got_index = entry->gotidx;
3438
3439 if (offsetp)
3440 *offsetp = value - entry->d.address;
3441
3442 return got_index;
3443 }
3444
3445 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3446 EXTERNAL is true if the relocation was originally against a global
3447 symbol that binds locally. */
3448
3449 static bfd_vma
3450 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3451 bfd_vma value, bfd_boolean external)
3452 {
3453 struct mips_got_entry *entry;
3454
3455 /* GOT16 relocations against local symbols are followed by a LO16
3456 relocation; those against global symbols are not. Thus if the
3457 symbol was originally local, the GOT16 relocation should load the
3458 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3459 if (! external)
3460 value = mips_elf_high (value) << 16;
3461
3462 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3463 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3464 same in all cases. */
3465 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3466 NULL, R_MIPS_GOT16);
3467 if (entry)
3468 return entry->gotidx;
3469 else
3470 return MINUS_ONE;
3471 }
3472
3473 /* Returns the offset for the entry at the INDEXth position
3474 in the GOT. */
3475
3476 static bfd_vma
3477 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3478 bfd *input_bfd, bfd_vma got_index)
3479 {
3480 struct mips_elf_link_hash_table *htab;
3481 asection *sgot;
3482 bfd_vma gp;
3483
3484 htab = mips_elf_hash_table (info);
3485 BFD_ASSERT (htab != NULL);
3486
3487 sgot = htab->sgot;
3488 gp = _bfd_get_gp_value (output_bfd)
3489 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3490
3491 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3492 }
3493
3494 /* Create and return a local GOT entry for VALUE, which was calculated
3495 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3496 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3497 instead. */
3498
3499 static struct mips_got_entry *
3500 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3501 bfd *ibfd, bfd_vma value,
3502 unsigned long r_symndx,
3503 struct mips_elf_link_hash_entry *h,
3504 int r_type)
3505 {
3506 struct mips_got_entry entry, **loc;
3507 struct mips_got_info *g;
3508 struct mips_elf_link_hash_table *htab;
3509
3510 htab = mips_elf_hash_table (info);
3511 BFD_ASSERT (htab != NULL);
3512
3513 entry.abfd = NULL;
3514 entry.symndx = -1;
3515 entry.d.address = value;
3516 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3517
3518 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3519 if (g == NULL)
3520 {
3521 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3522 BFD_ASSERT (g != NULL);
3523 }
3524
3525 /* This function shouldn't be called for symbols that live in the global
3526 area of the GOT. */
3527 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3528 if (entry.tls_type)
3529 {
3530 struct mips_got_entry *p;
3531
3532 entry.abfd = ibfd;
3533 if (tls_ldm_reloc_p (r_type))
3534 {
3535 entry.symndx = 0;
3536 entry.d.addend = 0;
3537 }
3538 else if (h == NULL)
3539 {
3540 entry.symndx = r_symndx;
3541 entry.d.addend = 0;
3542 }
3543 else
3544 entry.d.h = h;
3545
3546 p = (struct mips_got_entry *)
3547 htab_find (g->got_entries, &entry);
3548
3549 BFD_ASSERT (p);
3550 return p;
3551 }
3552
3553 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3554 INSERT);
3555 if (*loc)
3556 return *loc;
3557
3558 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3559
3560 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3561
3562 if (! *loc)
3563 return NULL;
3564
3565 memcpy (*loc, &entry, sizeof entry);
3566
3567 if (g->assigned_gotno > g->local_gotno)
3568 {
3569 (*loc)->gotidx = -1;
3570 /* We didn't allocate enough space in the GOT. */
3571 (*_bfd_error_handler)
3572 (_("not enough GOT space for local GOT entries"));
3573 bfd_set_error (bfd_error_bad_value);
3574 return NULL;
3575 }
3576
3577 MIPS_ELF_PUT_WORD (abfd, value,
3578 (htab->sgot->contents + entry.gotidx));
3579
3580 /* These GOT entries need a dynamic relocation on VxWorks. */
3581 if (htab->is_vxworks)
3582 {
3583 Elf_Internal_Rela outrel;
3584 asection *s;
3585 bfd_byte *rloc;
3586 bfd_vma got_address;
3587
3588 s = mips_elf_rel_dyn_section (info, FALSE);
3589 got_address = (htab->sgot->output_section->vma
3590 + htab->sgot->output_offset
3591 + entry.gotidx);
3592
3593 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3594 outrel.r_offset = got_address;
3595 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3596 outrel.r_addend = value;
3597 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3598 }
3599
3600 return *loc;
3601 }
3602
3603 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3604 The number might be exact or a worst-case estimate, depending on how
3605 much information is available to elf_backend_omit_section_dynsym at
3606 the current linking stage. */
3607
3608 static bfd_size_type
3609 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3610 {
3611 bfd_size_type count;
3612
3613 count = 0;
3614 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3615 {
3616 asection *p;
3617 const struct elf_backend_data *bed;
3618
3619 bed = get_elf_backend_data (output_bfd);
3620 for (p = output_bfd->sections; p ; p = p->next)
3621 if ((p->flags & SEC_EXCLUDE) == 0
3622 && (p->flags & SEC_ALLOC) != 0
3623 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3624 ++count;
3625 }
3626 return count;
3627 }
3628
3629 /* Sort the dynamic symbol table so that symbols that need GOT entries
3630 appear towards the end. */
3631
3632 static bfd_boolean
3633 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3634 {
3635 struct mips_elf_link_hash_table *htab;
3636 struct mips_elf_hash_sort_data hsd;
3637 struct mips_got_info *g;
3638
3639 if (elf_hash_table (info)->dynsymcount == 0)
3640 return TRUE;
3641
3642 htab = mips_elf_hash_table (info);
3643 BFD_ASSERT (htab != NULL);
3644
3645 g = htab->got_info;
3646 if (g == NULL)
3647 return TRUE;
3648
3649 hsd.low = NULL;
3650 hsd.max_unref_got_dynindx
3651 = hsd.min_got_dynindx
3652 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3653 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3654 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3655 elf_hash_table (info)),
3656 mips_elf_sort_hash_table_f,
3657 &hsd);
3658
3659 /* There should have been enough room in the symbol table to
3660 accommodate both the GOT and non-GOT symbols. */
3661 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3662 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3663 == elf_hash_table (info)->dynsymcount);
3664 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3665 == g->global_gotno);
3666
3667 /* Now we know which dynamic symbol has the lowest dynamic symbol
3668 table index in the GOT. */
3669 htab->global_gotsym = hsd.low;
3670
3671 return TRUE;
3672 }
3673
3674 /* If H needs a GOT entry, assign it the highest available dynamic
3675 index. Otherwise, assign it the lowest available dynamic
3676 index. */
3677
3678 static bfd_boolean
3679 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3680 {
3681 struct mips_elf_hash_sort_data *hsd = data;
3682
3683 /* Symbols without dynamic symbol table entries aren't interesting
3684 at all. */
3685 if (h->root.dynindx == -1)
3686 return TRUE;
3687
3688 switch (h->global_got_area)
3689 {
3690 case GGA_NONE:
3691 h->root.dynindx = hsd->max_non_got_dynindx++;
3692 break;
3693
3694 case GGA_NORMAL:
3695 h->root.dynindx = --hsd->min_got_dynindx;
3696 hsd->low = (struct elf_link_hash_entry *) h;
3697 break;
3698
3699 case GGA_RELOC_ONLY:
3700 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3701 hsd->low = (struct elf_link_hash_entry *) h;
3702 h->root.dynindx = hsd->max_unref_got_dynindx++;
3703 break;
3704 }
3705
3706 return TRUE;
3707 }
3708
3709 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3710 entry for it. FOR_CALL is true if the caller is only interested in
3711 using the GOT entry for calls. */
3712
3713 static bfd_boolean
3714 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3715 bfd *abfd, struct bfd_link_info *info,
3716 bfd_boolean for_call, int r_type)
3717 {
3718 struct mips_elf_link_hash_table *htab;
3719 struct mips_elf_link_hash_entry *hmips;
3720 struct mips_got_entry entry, **loc;
3721 struct mips_got_info *g;
3722
3723 htab = mips_elf_hash_table (info);
3724 BFD_ASSERT (htab != NULL);
3725
3726 hmips = (struct mips_elf_link_hash_entry *) h;
3727 if (!for_call)
3728 hmips->got_only_for_calls = FALSE;
3729
3730 /* A global symbol in the GOT must also be in the dynamic symbol
3731 table. */
3732 if (h->dynindx == -1)
3733 {
3734 switch (ELF_ST_VISIBILITY (h->other))
3735 {
3736 case STV_INTERNAL:
3737 case STV_HIDDEN:
3738 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3739 break;
3740 }
3741 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3742 return FALSE;
3743 }
3744
3745 /* Make sure we have a GOT to put this entry into. */
3746 g = htab->got_info;
3747 BFD_ASSERT (g != NULL);
3748
3749 entry.abfd = abfd;
3750 entry.symndx = -1;
3751 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3752 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3753
3754 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3755 INSERT);
3756
3757 /* If we've already marked this entry as needing GOT space, we don't
3758 need to do it again. */
3759 if (*loc)
3760 return TRUE;
3761
3762 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3763
3764 if (! *loc)
3765 return FALSE;
3766
3767 entry.gotidx = -1;
3768
3769 memcpy (*loc, &entry, sizeof entry);
3770
3771 if (entry.tls_type == GOT_NORMAL)
3772 hmips->global_got_area = GGA_NORMAL;
3773 else if (entry.tls_type == GOT_TLS_IE)
3774 hmips->tls_ie_type = entry.tls_type;
3775 else if (entry.tls_type == GOT_TLS_GD)
3776 hmips->tls_gd_type = entry.tls_type;
3777
3778 return TRUE;
3779 }
3780
3781 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3782 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3783
3784 static bfd_boolean
3785 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3786 struct bfd_link_info *info, int r_type)
3787 {
3788 struct mips_elf_link_hash_table *htab;
3789 struct mips_got_info *g;
3790 struct mips_got_entry entry, **loc;
3791
3792 htab = mips_elf_hash_table (info);
3793 BFD_ASSERT (htab != NULL);
3794
3795 g = htab->got_info;
3796 BFD_ASSERT (g != NULL);
3797
3798 entry.abfd = abfd;
3799 entry.symndx = symndx;
3800 entry.d.addend = addend;
3801 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3802 loc = (struct mips_got_entry **)
3803 htab_find_slot (g->got_entries, &entry, INSERT);
3804
3805 if (*loc)
3806 return TRUE;
3807
3808 entry.gotidx = -1;
3809
3810 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3811
3812 if (! *loc)
3813 return FALSE;
3814
3815 memcpy (*loc, &entry, sizeof entry);
3816
3817 return TRUE;
3818 }
3819
3820 /* Return the maximum number of GOT page entries required for RANGE. */
3821
3822 static bfd_vma
3823 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3824 {
3825 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3826 }
3827
3828 /* Record that ABFD has a page relocation against symbol SYMNDX and
3829 that ADDEND is the addend for that relocation.
3830
3831 This function creates an upper bound on the number of GOT slots
3832 required; no attempt is made to combine references to non-overridable
3833 global symbols across multiple input files. */
3834
3835 static bfd_boolean
3836 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3837 long symndx, bfd_signed_vma addend)
3838 {
3839 struct mips_elf_link_hash_table *htab;
3840 struct mips_got_info *g;
3841 struct mips_got_page_entry lookup, *entry;
3842 struct mips_got_page_range **range_ptr, *range;
3843 bfd_vma old_pages, new_pages;
3844 void **loc;
3845
3846 htab = mips_elf_hash_table (info);
3847 BFD_ASSERT (htab != NULL);
3848
3849 g = htab->got_info;
3850 BFD_ASSERT (g != NULL);
3851
3852 /* Find the mips_got_page_entry hash table entry for this symbol. */
3853 lookup.abfd = abfd;
3854 lookup.symndx = symndx;
3855 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3856 if (loc == NULL)
3857 return FALSE;
3858
3859 /* Create a mips_got_page_entry if this is the first time we've
3860 seen the symbol. */
3861 entry = (struct mips_got_page_entry *) *loc;
3862 if (!entry)
3863 {
3864 entry = bfd_alloc (abfd, sizeof (*entry));
3865 if (!entry)
3866 return FALSE;
3867
3868 entry->abfd = abfd;
3869 entry->symndx = symndx;
3870 entry->ranges = NULL;
3871 entry->num_pages = 0;
3872 *loc = entry;
3873 }
3874
3875 /* Skip over ranges whose maximum extent cannot share a page entry
3876 with ADDEND. */
3877 range_ptr = &entry->ranges;
3878 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3879 range_ptr = &(*range_ptr)->next;
3880
3881 /* If we scanned to the end of the list, or found a range whose
3882 minimum extent cannot share a page entry with ADDEND, create
3883 a new singleton range. */
3884 range = *range_ptr;
3885 if (!range || addend < range->min_addend - 0xffff)
3886 {
3887 range = bfd_alloc (abfd, sizeof (*range));
3888 if (!range)
3889 return FALSE;
3890
3891 range->next = *range_ptr;
3892 range->min_addend = addend;
3893 range->max_addend = addend;
3894
3895 *range_ptr = range;
3896 entry->num_pages++;
3897 g->page_gotno++;
3898 return TRUE;
3899 }
3900
3901 /* Remember how many pages the old range contributed. */
3902 old_pages = mips_elf_pages_for_range (range);
3903
3904 /* Update the ranges. */
3905 if (addend < range->min_addend)
3906 range->min_addend = addend;
3907 else if (addend > range->max_addend)
3908 {
3909 if (range->next && addend >= range->next->min_addend - 0xffff)
3910 {
3911 old_pages += mips_elf_pages_for_range (range->next);
3912 range->max_addend = range->next->max_addend;
3913 range->next = range->next->next;
3914 }
3915 else
3916 range->max_addend = addend;
3917 }
3918
3919 /* Record any change in the total estimate. */
3920 new_pages = mips_elf_pages_for_range (range);
3921 if (old_pages != new_pages)
3922 {
3923 entry->num_pages += new_pages - old_pages;
3924 g->page_gotno += new_pages - old_pages;
3925 }
3926
3927 return TRUE;
3928 }
3929
3930 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3931
3932 static void
3933 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3934 unsigned int n)
3935 {
3936 asection *s;
3937 struct mips_elf_link_hash_table *htab;
3938
3939 htab = mips_elf_hash_table (info);
3940 BFD_ASSERT (htab != NULL);
3941
3942 s = mips_elf_rel_dyn_section (info, FALSE);
3943 BFD_ASSERT (s != NULL);
3944
3945 if (htab->is_vxworks)
3946 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3947 else
3948 {
3949 if (s->size == 0)
3950 {
3951 /* Make room for a null element. */
3952 s->size += MIPS_ELF_REL_SIZE (abfd);
3953 ++s->reloc_count;
3954 }
3955 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3956 }
3957 }
3958 \f
3959 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3960 if the GOT entry is for an indirect or warning symbol. */
3961
3962 static int
3963 mips_elf_check_recreate_got (void **entryp, void *data)
3964 {
3965 struct mips_got_entry *entry;
3966 bfd_boolean *must_recreate;
3967
3968 entry = (struct mips_got_entry *) *entryp;
3969 must_recreate = (bfd_boolean *) data;
3970 if (entry->abfd != NULL && entry->symndx == -1)
3971 {
3972 struct mips_elf_link_hash_entry *h;
3973
3974 h = entry->d.h;
3975 if (h->root.root.type == bfd_link_hash_indirect
3976 || h->root.root.type == bfd_link_hash_warning)
3977 {
3978 *must_recreate = TRUE;
3979 return 0;
3980 }
3981 }
3982 return 1;
3983 }
3984
3985 /* A htab_traverse callback for GOT entries. Add all entries to
3986 hash table *DATA, converting entries for indirect and warning
3987 symbols into entries for the target symbol. Set *DATA to null
3988 on error. */
3989
3990 static int
3991 mips_elf_recreate_got (void **entryp, void *data)
3992 {
3993 htab_t *new_got;
3994 struct mips_got_entry new_entry, *entry;
3995 void **slot;
3996
3997 new_got = (htab_t *) data;
3998 entry = (struct mips_got_entry *) *entryp;
3999 if (entry->abfd != NULL
4000 && entry->symndx == -1
4001 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4002 || entry->d.h->root.root.type == bfd_link_hash_warning))
4003 {
4004 struct mips_elf_link_hash_entry *h;
4005
4006 new_entry = *entry;
4007 entry = &new_entry;
4008 h = entry->d.h;
4009 do
4010 {
4011 BFD_ASSERT (h->global_got_area == GGA_NONE);
4012 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4013 }
4014 while (h->root.root.type == bfd_link_hash_indirect
4015 || h->root.root.type == bfd_link_hash_warning);
4016 entry->d.h = h;
4017 }
4018 slot = htab_find_slot (*new_got, entry, INSERT);
4019 if (slot == NULL)
4020 {
4021 *new_got = NULL;
4022 return 0;
4023 }
4024 if (*slot == NULL)
4025 {
4026 if (entry == &new_entry)
4027 {
4028 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4029 if (!entry)
4030 {
4031 *new_got = NULL;
4032 return 0;
4033 }
4034 *entry = new_entry;
4035 }
4036 *slot = entry;
4037 }
4038 return 1;
4039 }
4040
4041 /* If any entries in G->got_entries are for indirect or warning symbols,
4042 replace them with entries for the target symbol. */
4043
4044 static bfd_boolean
4045 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4046 {
4047 bfd_boolean must_recreate;
4048 htab_t new_got;
4049
4050 must_recreate = FALSE;
4051 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4052 if (must_recreate)
4053 {
4054 new_got = htab_create (htab_size (g->got_entries),
4055 mips_elf_got_entry_hash,
4056 mips_elf_got_entry_eq, NULL);
4057 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4058 if (new_got == NULL)
4059 return FALSE;
4060
4061 htab_delete (g->got_entries);
4062 g->got_entries = new_got;
4063 }
4064 return TRUE;
4065 }
4066
4067 /* A mips_elf_link_hash_traverse callback for which DATA points
4068 to the link_info structure. Count the number of type (3) entries
4069 in the master GOT. */
4070
4071 static int
4072 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4073 {
4074 struct bfd_link_info *info;
4075 struct mips_elf_link_hash_table *htab;
4076 struct mips_got_info *g;
4077
4078 info = (struct bfd_link_info *) data;
4079 htab = mips_elf_hash_table (info);
4080 g = htab->got_info;
4081 if (h->global_got_area != GGA_NONE)
4082 {
4083 /* Make a final decision about whether the symbol belongs in the
4084 local or global GOT. Symbols that bind locally can (and in the
4085 case of forced-local symbols, must) live in the local GOT.
4086 Those that are aren't in the dynamic symbol table must also
4087 live in the local GOT.
4088
4089 Note that the former condition does not always imply the
4090 latter: symbols do not bind locally if they are completely
4091 undefined. We'll report undefined symbols later if appropriate. */
4092 if (h->root.dynindx == -1
4093 || (h->got_only_for_calls
4094 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4095 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4096 {
4097 /* The symbol belongs in the local GOT. We no longer need this
4098 entry if it was only used for relocations; those relocations
4099 will be against the null or section symbol instead of H. */
4100 if (h->global_got_area != GGA_RELOC_ONLY)
4101 g->local_gotno++;
4102 h->global_got_area = GGA_NONE;
4103 }
4104 else if (htab->is_vxworks
4105 && h->got_only_for_calls
4106 && h->root.plt.offset != MINUS_ONE)
4107 /* On VxWorks, calls can refer directly to the .got.plt entry;
4108 they don't need entries in the regular GOT. .got.plt entries
4109 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4110 h->global_got_area = GGA_NONE;
4111 else
4112 {
4113 g->global_gotno++;
4114 if (h->global_got_area == GGA_RELOC_ONLY)
4115 g->reloc_only_gotno++;
4116 }
4117 }
4118 return 1;
4119 }
4120 \f
4121 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4122
4123 static hashval_t
4124 mips_elf_bfd2got_entry_hash (const void *entry_)
4125 {
4126 const struct mips_elf_bfd2got_hash *entry
4127 = (struct mips_elf_bfd2got_hash *)entry_;
4128
4129 return entry->bfd->id;
4130 }
4131
4132 /* Check whether two hash entries have the same bfd. */
4133
4134 static int
4135 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4136 {
4137 const struct mips_elf_bfd2got_hash *e1
4138 = (const struct mips_elf_bfd2got_hash *)entry1;
4139 const struct mips_elf_bfd2got_hash *e2
4140 = (const struct mips_elf_bfd2got_hash *)entry2;
4141
4142 return e1->bfd == e2->bfd;
4143 }
4144
4145 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4146 be the master GOT data. */
4147
4148 static struct mips_got_info *
4149 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4150 {
4151 struct mips_elf_bfd2got_hash e, *p;
4152
4153 if (! g->bfd2got)
4154 return g;
4155
4156 e.bfd = ibfd;
4157 p = htab_find (g->bfd2got, &e);
4158 return p ? p->g : NULL;
4159 }
4160
4161 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4162 Return NULL if an error occured. */
4163
4164 static struct mips_got_info *
4165 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4166 bfd *input_bfd)
4167 {
4168 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4169 void **bfdgotp;
4170
4171 bfdgot_entry.bfd = input_bfd;
4172 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4173 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4174
4175 if (bfdgot == NULL)
4176 {
4177 bfdgot = ((struct mips_elf_bfd2got_hash *)
4178 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4179 if (bfdgot == NULL)
4180 return NULL;
4181
4182 *bfdgotp = bfdgot;
4183
4184 bfdgot->bfd = input_bfd;
4185 bfdgot->g = mips_elf_create_got_info (input_bfd, FALSE);
4186 if (bfdgot->g == NULL)
4187 return NULL;
4188 }
4189
4190 return bfdgot->g;
4191 }
4192
4193 /* A htab_traverse callback for the entries in the master got.
4194 Create one separate got for each bfd that has entries in the global
4195 got, such that we can tell how many local and global entries each
4196 bfd requires. */
4197
4198 static int
4199 mips_elf_make_got_per_bfd (void **entryp, void *p)
4200 {
4201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4202 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4203 struct mips_got_info *g;
4204
4205 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4206 if (g == NULL)
4207 {
4208 arg->obfd = NULL;
4209 return 0;
4210 }
4211
4212 /* Insert the GOT entry in the bfd's got entry hash table. */
4213 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4214 if (*entryp != NULL)
4215 return 1;
4216
4217 *entryp = entry;
4218 mips_elf_count_got_entry (arg->info, g, entry);
4219
4220 return 1;
4221 }
4222
4223 /* A htab_traverse callback for the page entries in the master got.
4224 Associate each page entry with the bfd's got. */
4225
4226 static int
4227 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4228 {
4229 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4230 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4231 struct mips_got_info *g;
4232
4233 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4234 if (g == NULL)
4235 {
4236 arg->obfd = NULL;
4237 return 0;
4238 }
4239
4240 /* Insert the GOT entry in the bfd's got entry hash table. */
4241 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4242 if (*entryp != NULL)
4243 return 1;
4244
4245 *entryp = entry;
4246 g->page_gotno += entry->num_pages;
4247 return 1;
4248 }
4249
4250 /* Consider merging the got described by BFD2GOT with TO, using the
4251 information given by ARG. Return -1 if this would lead to overflow,
4252 1 if they were merged successfully, and 0 if a merge failed due to
4253 lack of memory. (These values are chosen so that nonnegative return
4254 values can be returned by a htab_traverse callback.) */
4255
4256 static int
4257 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4258 struct mips_got_info *to,
4259 struct mips_elf_got_per_bfd_arg *arg)
4260 {
4261 struct mips_got_info *from = bfd2got->g;
4262 unsigned int estimate;
4263
4264 /* Work out how many page entries we would need for the combined GOT. */
4265 estimate = arg->max_pages;
4266 if (estimate >= from->page_gotno + to->page_gotno)
4267 estimate = from->page_gotno + to->page_gotno;
4268
4269 /* And conservatively estimate how many local and TLS entries
4270 would be needed. */
4271 estimate += from->local_gotno + to->local_gotno;
4272 estimate += from->tls_gotno + to->tls_gotno;
4273
4274 /* If we're merging with the primary got, any TLS relocations will
4275 come after the full set of global entries. Otherwise estimate those
4276 conservatively as well. */
4277 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4278 estimate += arg->global_count;
4279 else
4280 estimate += from->global_gotno + to->global_gotno;
4281
4282 /* Bail out if the combined GOT might be too big. */
4283 if (estimate > arg->max_count)
4284 return -1;
4285
4286 /* Commit to the merge. Record that TO is now the bfd for this got. */
4287 bfd2got->g = to;
4288
4289 /* Transfer the bfd's got information from FROM to TO. */
4290 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4291 if (arg->obfd == NULL)
4292 return 0;
4293
4294 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4295 if (arg->obfd == NULL)
4296 return 0;
4297
4298 /* We don't have to worry about releasing memory of the actual
4299 got entries, since they're all in the master got_entries hash
4300 table anyway. */
4301 htab_delete (from->got_entries);
4302 htab_delete (from->got_page_entries);
4303 return 1;
4304 }
4305
4306 /* Attempt to merge gots of different input bfds. Try to use as much
4307 as possible of the primary got, since it doesn't require explicit
4308 dynamic relocations, but don't use bfds that would reference global
4309 symbols out of the addressable range. Failing the primary got,
4310 attempt to merge with the current got, or finish the current got
4311 and then make make the new got current. */
4312
4313 static int
4314 mips_elf_merge_gots (void **bfd2got_, void *p)
4315 {
4316 struct mips_elf_bfd2got_hash *bfd2got
4317 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4318 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4319 struct mips_got_info *g;
4320 unsigned int estimate;
4321 int result;
4322
4323 g = bfd2got->g;
4324
4325 /* Work out the number of page, local and TLS entries. */
4326 estimate = arg->max_pages;
4327 if (estimate > g->page_gotno)
4328 estimate = g->page_gotno;
4329 estimate += g->local_gotno + g->tls_gotno;
4330
4331 /* We place TLS GOT entries after both locals and globals. The globals
4332 for the primary GOT may overflow the normal GOT size limit, so be
4333 sure not to merge a GOT which requires TLS with the primary GOT in that
4334 case. This doesn't affect non-primary GOTs. */
4335 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4336
4337 if (estimate <= arg->max_count)
4338 {
4339 /* If we don't have a primary GOT, use it as
4340 a starting point for the primary GOT. */
4341 if (!arg->primary)
4342 {
4343 arg->primary = bfd2got->g;
4344 return 1;
4345 }
4346
4347 /* Try merging with the primary GOT. */
4348 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4349 if (result >= 0)
4350 return result;
4351 }
4352
4353 /* If we can merge with the last-created got, do it. */
4354 if (arg->current)
4355 {
4356 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4357 if (result >= 0)
4358 return result;
4359 }
4360
4361 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4362 fits; if it turns out that it doesn't, we'll get relocation
4363 overflows anyway. */
4364 g->next = arg->current;
4365 arg->current = g;
4366
4367 return 1;
4368 }
4369
4370 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4371 to GOTIDX, duplicating the entry if it has already been assigned
4372 an index in a different GOT. */
4373
4374 static bfd_boolean
4375 mips_elf_set_gotidx (void **entryp, long gotidx)
4376 {
4377 struct mips_got_entry *entry;
4378
4379 entry = (struct mips_got_entry *) *entryp;
4380 if (entry->gotidx > 0)
4381 {
4382 struct mips_got_entry *new_entry;
4383
4384 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4385 if (!new_entry)
4386 return FALSE;
4387
4388 *new_entry = *entry;
4389 *entryp = new_entry;
4390 entry = new_entry;
4391 }
4392 entry->gotidx = gotidx;
4393 return TRUE;
4394 }
4395
4396 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4397 mips_elf_traverse_got_arg in which DATA->value is the size of one
4398 GOT entry. Set DATA->g to null on failure. */
4399
4400 static int
4401 mips_elf_initialize_tls_index (void **entryp, void *data)
4402 {
4403 struct mips_got_entry *entry;
4404 struct mips_elf_traverse_got_arg *arg;
4405 struct mips_got_info *g;
4406 bfd_vma next_index;
4407 unsigned char tls_type;
4408
4409 /* We're only interested in TLS symbols. */
4410 entry = (struct mips_got_entry *) *entryp;
4411 tls_type = (entry->tls_type & GOT_TLS_TYPE);
4412 if (tls_type == 0)
4413 return 1;
4414
4415 arg = (struct mips_elf_traverse_got_arg *) data;
4416 g = arg->g;
4417 next_index = arg->value * g->tls_assigned_gotno;
4418
4419 if (entry->symndx == -1 && g->next == NULL)
4420 {
4421 /* A type (3) got entry in the single-GOT case. We use the symbol's
4422 hash table entry to track its index. */
4423 if (tls_type == GOT_TLS_IE)
4424 {
4425 if (entry->d.h->tls_ie_type & GOT_TLS_OFFSET_DONE)
4426 return 1;
4427 entry->d.h->tls_ie_type |= GOT_TLS_OFFSET_DONE;
4428 entry->d.h->tls_ie_got_offset = next_index;
4429 }
4430 else
4431 {
4432 BFD_ASSERT (tls_type == GOT_TLS_GD);
4433 if (entry->d.h->tls_gd_type & GOT_TLS_OFFSET_DONE)
4434 return 1;
4435 entry->d.h->tls_gd_type |= GOT_TLS_OFFSET_DONE;
4436 entry->d.h->tls_gd_got_offset = next_index;
4437 }
4438 }
4439 else
4440 {
4441 if (tls_type == GOT_TLS_LDM)
4442 {
4443 /* There are separate mips_got_entry objects for each input bfd
4444 that requires an LDM entry. Make sure that all LDM entries in
4445 a GOT resolve to the same index. */
4446 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4447 {
4448 entry->gotidx = g->tls_ldm_offset;
4449 return 1;
4450 }
4451 g->tls_ldm_offset = next_index;
4452 }
4453 if (!mips_elf_set_gotidx (entryp, next_index))
4454 {
4455 arg->g = NULL;
4456 return 0;
4457 }
4458 }
4459
4460 /* Account for the entries we've just allocated. */
4461 g->tls_assigned_gotno += mips_tls_got_entries (tls_type);
4462 return 1;
4463 }
4464
4465 /* A htab_traverse callback for GOT entries, where DATA points to a
4466 mips_elf_traverse_got_arg. Set the global_got_area of each global
4467 symbol to DATA->value. */
4468
4469 static int
4470 mips_elf_set_global_got_area (void **entryp, void *data)
4471 {
4472 struct mips_got_entry *entry;
4473 struct mips_elf_traverse_got_arg *arg;
4474
4475 entry = (struct mips_got_entry *) *entryp;
4476 arg = (struct mips_elf_traverse_got_arg *) data;
4477 if (entry->abfd != NULL
4478 && entry->symndx == -1
4479 && entry->d.h->global_got_area != GGA_NONE)
4480 entry->d.h->global_got_area = arg->value;
4481 return 1;
4482 }
4483
4484 /* A htab_traverse callback for secondary GOT entries, where DATA points
4485 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4486 and record the number of relocations they require. DATA->value is
4487 the size of one GOT entry. Set DATA->g to null on failure. */
4488
4489 static int
4490 mips_elf_set_global_gotidx (void **entryp, void *data)
4491 {
4492 struct mips_got_entry *entry;
4493 struct mips_elf_traverse_got_arg *arg;
4494
4495 entry = (struct mips_got_entry *) *entryp;
4496 arg = (struct mips_elf_traverse_got_arg *) data;
4497 if (entry->abfd != NULL
4498 && entry->symndx == -1
4499 && entry->d.h->global_got_area != GGA_NONE)
4500 {
4501 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4502 {
4503 arg->g = NULL;
4504 return 0;
4505 }
4506 arg->g->assigned_gotno += 1;
4507
4508 if (arg->info->shared
4509 || (elf_hash_table (arg->info)->dynamic_sections_created
4510 && entry->d.h->root.def_dynamic
4511 && !entry->d.h->root.def_regular))
4512 arg->g->relocs += 1;
4513 }
4514
4515 return 1;
4516 }
4517
4518 /* A htab_traverse callback for GOT entries for which DATA is the
4519 bfd_link_info. Forbid any global symbols from having traditional
4520 lazy-binding stubs. */
4521
4522 static int
4523 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4524 {
4525 struct bfd_link_info *info;
4526 struct mips_elf_link_hash_table *htab;
4527 struct mips_got_entry *entry;
4528
4529 entry = (struct mips_got_entry *) *entryp;
4530 info = (struct bfd_link_info *) data;
4531 htab = mips_elf_hash_table (info);
4532 BFD_ASSERT (htab != NULL);
4533
4534 if (entry->abfd != NULL
4535 && entry->symndx == -1
4536 && entry->d.h->needs_lazy_stub)
4537 {
4538 entry->d.h->needs_lazy_stub = FALSE;
4539 htab->lazy_stub_count--;
4540 }
4541
4542 return 1;
4543 }
4544
4545 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4546 the primary GOT. */
4547 static bfd_vma
4548 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4549 {
4550 if (g->bfd2got == NULL)
4551 return 0;
4552
4553 g = mips_elf_got_for_ibfd (g, ibfd);
4554 if (! g)
4555 return 0;
4556
4557 BFD_ASSERT (g->next);
4558
4559 g = g->next;
4560
4561 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4562 * MIPS_ELF_GOT_SIZE (abfd);
4563 }
4564
4565 /* Turn a single GOT that is too big for 16-bit addressing into
4566 a sequence of GOTs, each one 16-bit addressable. */
4567
4568 static bfd_boolean
4569 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4570 asection *got, bfd_size_type pages)
4571 {
4572 struct mips_elf_link_hash_table *htab;
4573 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4574 struct mips_elf_traverse_got_arg tga;
4575 struct mips_got_info *g, *gg;
4576 unsigned int assign, needed_relocs;
4577 bfd *dynobj;
4578
4579 dynobj = elf_hash_table (info)->dynobj;
4580 htab = mips_elf_hash_table (info);
4581 BFD_ASSERT (htab != NULL);
4582
4583 g = htab->got_info;
4584 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4585 mips_elf_bfd2got_entry_eq, NULL);
4586 if (g->bfd2got == NULL)
4587 return FALSE;
4588
4589 got_per_bfd_arg.bfd2got = g->bfd2got;
4590 got_per_bfd_arg.obfd = abfd;
4591 got_per_bfd_arg.info = info;
4592
4593 /* Count how many GOT entries each input bfd requires, creating a
4594 map from bfd to got info while at that. */
4595 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4596 if (got_per_bfd_arg.obfd == NULL)
4597 return FALSE;
4598
4599 /* Also count how many page entries each input bfd requires. */
4600 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4601 &got_per_bfd_arg);
4602 if (got_per_bfd_arg.obfd == NULL)
4603 return FALSE;
4604
4605 got_per_bfd_arg.current = NULL;
4606 got_per_bfd_arg.primary = NULL;
4607 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4608 / MIPS_ELF_GOT_SIZE (abfd))
4609 - htab->reserved_gotno);
4610 got_per_bfd_arg.max_pages = pages;
4611 /* The number of globals that will be included in the primary GOT.
4612 See the calls to mips_elf_set_global_got_area below for more
4613 information. */
4614 got_per_bfd_arg.global_count = g->global_gotno;
4615
4616 /* Try to merge the GOTs of input bfds together, as long as they
4617 don't seem to exceed the maximum GOT size, choosing one of them
4618 to be the primary GOT. */
4619 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4620 if (got_per_bfd_arg.obfd == NULL)
4621 return FALSE;
4622
4623 /* If we do not find any suitable primary GOT, create an empty one. */
4624 if (got_per_bfd_arg.primary == NULL)
4625 g->next = mips_elf_create_got_info (abfd, FALSE);
4626 else
4627 g->next = got_per_bfd_arg.primary;
4628 g->next->next = got_per_bfd_arg.current;
4629
4630 /* GG is now the master GOT, and G is the primary GOT. */
4631 gg = g;
4632 g = g->next;
4633
4634 /* Map the output bfd to the primary got. That's what we're going
4635 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4636 didn't mark in check_relocs, and we want a quick way to find it.
4637 We can't just use gg->next because we're going to reverse the
4638 list. */
4639 {
4640 struct mips_elf_bfd2got_hash *bfdgot;
4641 void **bfdgotp;
4642
4643 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4644 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4645
4646 if (bfdgot == NULL)
4647 return FALSE;
4648
4649 bfdgot->bfd = abfd;
4650 bfdgot->g = g;
4651 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4652
4653 BFD_ASSERT (*bfdgotp == NULL);
4654 *bfdgotp = bfdgot;
4655 }
4656
4657 /* Every symbol that is referenced in a dynamic relocation must be
4658 present in the primary GOT, so arrange for them to appear after
4659 those that are actually referenced. */
4660 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4661 g->global_gotno = gg->global_gotno;
4662
4663 tga.info = info;
4664 tga.value = GGA_RELOC_ONLY;
4665 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4666 tga.value = GGA_NORMAL;
4667 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4668
4669 /* Now go through the GOTs assigning them offset ranges.
4670 [assigned_gotno, local_gotno[ will be set to the range of local
4671 entries in each GOT. We can then compute the end of a GOT by
4672 adding local_gotno to global_gotno. We reverse the list and make
4673 it circular since then we'll be able to quickly compute the
4674 beginning of a GOT, by computing the end of its predecessor. To
4675 avoid special cases for the primary GOT, while still preserving
4676 assertions that are valid for both single- and multi-got links,
4677 we arrange for the main got struct to have the right number of
4678 global entries, but set its local_gotno such that the initial
4679 offset of the primary GOT is zero. Remember that the primary GOT
4680 will become the last item in the circular linked list, so it
4681 points back to the master GOT. */
4682 gg->local_gotno = -g->global_gotno;
4683 gg->global_gotno = g->global_gotno;
4684 gg->tls_gotno = 0;
4685 assign = 0;
4686 gg->next = gg;
4687
4688 do
4689 {
4690 struct mips_got_info *gn;
4691
4692 assign += htab->reserved_gotno;
4693 g->assigned_gotno = assign;
4694 g->local_gotno += assign;
4695 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4696 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4697
4698 /* Take g out of the direct list, and push it onto the reversed
4699 list that gg points to. g->next is guaranteed to be nonnull after
4700 this operation, as required by mips_elf_initialize_tls_index. */
4701 gn = g->next;
4702 g->next = gg->next;
4703 gg->next = g;
4704
4705 /* Set up any TLS entries. We always place the TLS entries after
4706 all non-TLS entries. */
4707 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4708 tga.g = g;
4709 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4710 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4711 if (!tga.g)
4712 return FALSE;
4713 BFD_ASSERT (g->tls_assigned_gotno == assign);
4714
4715 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4716 g = gn;
4717
4718 /* Forbid global symbols in every non-primary GOT from having
4719 lazy-binding stubs. */
4720 if (g)
4721 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4722 }
4723 while (g);
4724
4725 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4726
4727 needed_relocs = 0;
4728 for (g = gg->next; g && g->next != gg; g = g->next)
4729 {
4730 unsigned int save_assign;
4731
4732 /* Assign offsets to global GOT entries and count how many
4733 relocations they need. */
4734 save_assign = g->assigned_gotno;
4735 g->assigned_gotno = g->local_gotno;
4736 tga.info = info;
4737 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4738 tga.g = g;
4739 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4740 if (!tga.g)
4741 return FALSE;
4742 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4743 g->assigned_gotno = save_assign;
4744
4745 if (info->shared)
4746 {
4747 g->relocs += g->local_gotno - g->assigned_gotno;
4748 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4749 + g->next->global_gotno
4750 + g->next->tls_gotno
4751 + htab->reserved_gotno);
4752 }
4753 needed_relocs += g->relocs;
4754 }
4755 needed_relocs += g->relocs;
4756
4757 if (needed_relocs)
4758 mips_elf_allocate_dynamic_relocations (dynobj, info,
4759 needed_relocs);
4760
4761 return TRUE;
4762 }
4763
4764 \f
4765 /* Returns the first relocation of type r_type found, beginning with
4766 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4767
4768 static const Elf_Internal_Rela *
4769 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4770 const Elf_Internal_Rela *relocation,
4771 const Elf_Internal_Rela *relend)
4772 {
4773 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4774
4775 while (relocation < relend)
4776 {
4777 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4778 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4779 return relocation;
4780
4781 ++relocation;
4782 }
4783
4784 /* We didn't find it. */
4785 return NULL;
4786 }
4787
4788 /* Return whether an input relocation is against a local symbol. */
4789
4790 static bfd_boolean
4791 mips_elf_local_relocation_p (bfd *input_bfd,
4792 const Elf_Internal_Rela *relocation,
4793 asection **local_sections)
4794 {
4795 unsigned long r_symndx;
4796 Elf_Internal_Shdr *symtab_hdr;
4797 size_t extsymoff;
4798
4799 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4800 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4801 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4802
4803 if (r_symndx < extsymoff)
4804 return TRUE;
4805 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4806 return TRUE;
4807
4808 return FALSE;
4809 }
4810 \f
4811 /* Sign-extend VALUE, which has the indicated number of BITS. */
4812
4813 bfd_vma
4814 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4815 {
4816 if (value & ((bfd_vma) 1 << (bits - 1)))
4817 /* VALUE is negative. */
4818 value |= ((bfd_vma) - 1) << bits;
4819
4820 return value;
4821 }
4822
4823 /* Return non-zero if the indicated VALUE has overflowed the maximum
4824 range expressible by a signed number with the indicated number of
4825 BITS. */
4826
4827 static bfd_boolean
4828 mips_elf_overflow_p (bfd_vma value, int bits)
4829 {
4830 bfd_signed_vma svalue = (bfd_signed_vma) value;
4831
4832 if (svalue > (1 << (bits - 1)) - 1)
4833 /* The value is too big. */
4834 return TRUE;
4835 else if (svalue < -(1 << (bits - 1)))
4836 /* The value is too small. */
4837 return TRUE;
4838
4839 /* All is well. */
4840 return FALSE;
4841 }
4842
4843 /* Calculate the %high function. */
4844
4845 static bfd_vma
4846 mips_elf_high (bfd_vma value)
4847 {
4848 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4849 }
4850
4851 /* Calculate the %higher function. */
4852
4853 static bfd_vma
4854 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4855 {
4856 #ifdef BFD64
4857 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4858 #else
4859 abort ();
4860 return MINUS_ONE;
4861 #endif
4862 }
4863
4864 /* Calculate the %highest function. */
4865
4866 static bfd_vma
4867 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4868 {
4869 #ifdef BFD64
4870 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4871 #else
4872 abort ();
4873 return MINUS_ONE;
4874 #endif
4875 }
4876 \f
4877 /* Create the .compact_rel section. */
4878
4879 static bfd_boolean
4880 mips_elf_create_compact_rel_section
4881 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4882 {
4883 flagword flags;
4884 register asection *s;
4885
4886 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4887 {
4888 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4889 | SEC_READONLY);
4890
4891 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4892 if (s == NULL
4893 || ! bfd_set_section_alignment (abfd, s,
4894 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4895 return FALSE;
4896
4897 s->size = sizeof (Elf32_External_compact_rel);
4898 }
4899
4900 return TRUE;
4901 }
4902
4903 /* Create the .got section to hold the global offset table. */
4904
4905 static bfd_boolean
4906 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4907 {
4908 flagword flags;
4909 register asection *s;
4910 struct elf_link_hash_entry *h;
4911 struct bfd_link_hash_entry *bh;
4912 struct mips_elf_link_hash_table *htab;
4913
4914 htab = mips_elf_hash_table (info);
4915 BFD_ASSERT (htab != NULL);
4916
4917 /* This function may be called more than once. */
4918 if (htab->sgot)
4919 return TRUE;
4920
4921 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4922 | SEC_LINKER_CREATED);
4923
4924 /* We have to use an alignment of 2**4 here because this is hardcoded
4925 in the function stub generation and in the linker script. */
4926 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4927 if (s == NULL
4928 || ! bfd_set_section_alignment (abfd, s, 4))
4929 return FALSE;
4930 htab->sgot = s;
4931
4932 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4933 linker script because we don't want to define the symbol if we
4934 are not creating a global offset table. */
4935 bh = NULL;
4936 if (! (_bfd_generic_link_add_one_symbol
4937 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4938 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4939 return FALSE;
4940
4941 h = (struct elf_link_hash_entry *) bh;
4942 h->non_elf = 0;
4943 h->def_regular = 1;
4944 h->type = STT_OBJECT;
4945 elf_hash_table (info)->hgot = h;
4946
4947 if (info->shared
4948 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4949 return FALSE;
4950
4951 htab->got_info = mips_elf_create_got_info (abfd, TRUE);
4952 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4953 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4954
4955 /* We also need a .got.plt section when generating PLTs. */
4956 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4957 SEC_ALLOC | SEC_LOAD
4958 | SEC_HAS_CONTENTS
4959 | SEC_IN_MEMORY
4960 | SEC_LINKER_CREATED);
4961 if (s == NULL)
4962 return FALSE;
4963 htab->sgotplt = s;
4964
4965 return TRUE;
4966 }
4967 \f
4968 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4969 __GOTT_INDEX__ symbols. These symbols are only special for
4970 shared objects; they are not used in executables. */
4971
4972 static bfd_boolean
4973 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4974 {
4975 return (mips_elf_hash_table (info)->is_vxworks
4976 && info->shared
4977 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4978 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4979 }
4980
4981 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4982 require an la25 stub. See also mips_elf_local_pic_function_p,
4983 which determines whether the destination function ever requires a
4984 stub. */
4985
4986 static bfd_boolean
4987 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4988 bfd_boolean target_is_16_bit_code_p)
4989 {
4990 /* We specifically ignore branches and jumps from EF_PIC objects,
4991 where the onus is on the compiler or programmer to perform any
4992 necessary initialization of $25. Sometimes such initialization
4993 is unnecessary; for example, -mno-shared functions do not use
4994 the incoming value of $25, and may therefore be called directly. */
4995 if (PIC_OBJECT_P (input_bfd))
4996 return FALSE;
4997
4998 switch (r_type)
4999 {
5000 case R_MIPS_26:
5001 case R_MIPS_PC16:
5002 case R_MICROMIPS_26_S1:
5003 case R_MICROMIPS_PC7_S1:
5004 case R_MICROMIPS_PC10_S1:
5005 case R_MICROMIPS_PC16_S1:
5006 case R_MICROMIPS_PC23_S2:
5007 return TRUE;
5008
5009 case R_MIPS16_26:
5010 return !target_is_16_bit_code_p;
5011
5012 default:
5013 return FALSE;
5014 }
5015 }
5016 \f
5017 /* Calculate the value produced by the RELOCATION (which comes from
5018 the INPUT_BFD). The ADDEND is the addend to use for this
5019 RELOCATION; RELOCATION->R_ADDEND is ignored.
5020
5021 The result of the relocation calculation is stored in VALUEP.
5022 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5023 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5024
5025 This function returns bfd_reloc_continue if the caller need take no
5026 further action regarding this relocation, bfd_reloc_notsupported if
5027 something goes dramatically wrong, bfd_reloc_overflow if an
5028 overflow occurs, and bfd_reloc_ok to indicate success. */
5029
5030 static bfd_reloc_status_type
5031 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5032 asection *input_section,
5033 struct bfd_link_info *info,
5034 const Elf_Internal_Rela *relocation,
5035 bfd_vma addend, reloc_howto_type *howto,
5036 Elf_Internal_Sym *local_syms,
5037 asection **local_sections, bfd_vma *valuep,
5038 const char **namep,
5039 bfd_boolean *cross_mode_jump_p,
5040 bfd_boolean save_addend)
5041 {
5042 /* The eventual value we will return. */
5043 bfd_vma value;
5044 /* The address of the symbol against which the relocation is
5045 occurring. */
5046 bfd_vma symbol = 0;
5047 /* The final GP value to be used for the relocatable, executable, or
5048 shared object file being produced. */
5049 bfd_vma gp;
5050 /* The place (section offset or address) of the storage unit being
5051 relocated. */
5052 bfd_vma p;
5053 /* The value of GP used to create the relocatable object. */
5054 bfd_vma gp0;
5055 /* The offset into the global offset table at which the address of
5056 the relocation entry symbol, adjusted by the addend, resides
5057 during execution. */
5058 bfd_vma g = MINUS_ONE;
5059 /* The section in which the symbol referenced by the relocation is
5060 located. */
5061 asection *sec = NULL;
5062 struct mips_elf_link_hash_entry *h = NULL;
5063 /* TRUE if the symbol referred to by this relocation is a local
5064 symbol. */
5065 bfd_boolean local_p, was_local_p;
5066 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5067 bfd_boolean gp_disp_p = FALSE;
5068 /* TRUE if the symbol referred to by this relocation is
5069 "__gnu_local_gp". */
5070 bfd_boolean gnu_local_gp_p = FALSE;
5071 Elf_Internal_Shdr *symtab_hdr;
5072 size_t extsymoff;
5073 unsigned long r_symndx;
5074 int r_type;
5075 /* TRUE if overflow occurred during the calculation of the
5076 relocation value. */
5077 bfd_boolean overflowed_p;
5078 /* TRUE if this relocation refers to a MIPS16 function. */
5079 bfd_boolean target_is_16_bit_code_p = FALSE;
5080 bfd_boolean target_is_micromips_code_p = FALSE;
5081 struct mips_elf_link_hash_table *htab;
5082 bfd *dynobj;
5083
5084 dynobj = elf_hash_table (info)->dynobj;
5085 htab = mips_elf_hash_table (info);
5086 BFD_ASSERT (htab != NULL);
5087
5088 /* Parse the relocation. */
5089 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5090 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5091 p = (input_section->output_section->vma
5092 + input_section->output_offset
5093 + relocation->r_offset);
5094
5095 /* Assume that there will be no overflow. */
5096 overflowed_p = FALSE;
5097
5098 /* Figure out whether or not the symbol is local, and get the offset
5099 used in the array of hash table entries. */
5100 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5101 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5102 local_sections);
5103 was_local_p = local_p;
5104 if (! elf_bad_symtab (input_bfd))
5105 extsymoff = symtab_hdr->sh_info;
5106 else
5107 {
5108 /* The symbol table does not follow the rule that local symbols
5109 must come before globals. */
5110 extsymoff = 0;
5111 }
5112
5113 /* Figure out the value of the symbol. */
5114 if (local_p)
5115 {
5116 Elf_Internal_Sym *sym;
5117
5118 sym = local_syms + r_symndx;
5119 sec = local_sections[r_symndx];
5120
5121 symbol = sec->output_section->vma + sec->output_offset;
5122 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5123 || (sec->flags & SEC_MERGE))
5124 symbol += sym->st_value;
5125 if ((sec->flags & SEC_MERGE)
5126 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5127 {
5128 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5129 addend -= symbol;
5130 addend += sec->output_section->vma + sec->output_offset;
5131 }
5132
5133 /* MIPS16/microMIPS text labels should be treated as odd. */
5134 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5135 ++symbol;
5136
5137 /* Record the name of this symbol, for our caller. */
5138 *namep = bfd_elf_string_from_elf_section (input_bfd,
5139 symtab_hdr->sh_link,
5140 sym->st_name);
5141 if (*namep == '\0')
5142 *namep = bfd_section_name (input_bfd, sec);
5143
5144 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5145 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5146 }
5147 else
5148 {
5149 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5150
5151 /* For global symbols we look up the symbol in the hash-table. */
5152 h = ((struct mips_elf_link_hash_entry *)
5153 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5154 /* Find the real hash-table entry for this symbol. */
5155 while (h->root.root.type == bfd_link_hash_indirect
5156 || h->root.root.type == bfd_link_hash_warning)
5157 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5158
5159 /* Record the name of this symbol, for our caller. */
5160 *namep = h->root.root.root.string;
5161
5162 /* See if this is the special _gp_disp symbol. Note that such a
5163 symbol must always be a global symbol. */
5164 if (strcmp (*namep, "_gp_disp") == 0
5165 && ! NEWABI_P (input_bfd))
5166 {
5167 /* Relocations against _gp_disp are permitted only with
5168 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5169 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5170 return bfd_reloc_notsupported;
5171
5172 gp_disp_p = TRUE;
5173 }
5174 /* See if this is the special _gp symbol. Note that such a
5175 symbol must always be a global symbol. */
5176 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5177 gnu_local_gp_p = TRUE;
5178
5179
5180 /* If this symbol is defined, calculate its address. Note that
5181 _gp_disp is a magic symbol, always implicitly defined by the
5182 linker, so it's inappropriate to check to see whether or not
5183 its defined. */
5184 else if ((h->root.root.type == bfd_link_hash_defined
5185 || h->root.root.type == bfd_link_hash_defweak)
5186 && h->root.root.u.def.section)
5187 {
5188 sec = h->root.root.u.def.section;
5189 if (sec->output_section)
5190 symbol = (h->root.root.u.def.value
5191 + sec->output_section->vma
5192 + sec->output_offset);
5193 else
5194 symbol = h->root.root.u.def.value;
5195 }
5196 else if (h->root.root.type == bfd_link_hash_undefweak)
5197 /* We allow relocations against undefined weak symbols, giving
5198 it the value zero, so that you can undefined weak functions
5199 and check to see if they exist by looking at their
5200 addresses. */
5201 symbol = 0;
5202 else if (info->unresolved_syms_in_objects == RM_IGNORE
5203 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5204 symbol = 0;
5205 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5206 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5207 {
5208 /* If this is a dynamic link, we should have created a
5209 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5210 in in _bfd_mips_elf_create_dynamic_sections.
5211 Otherwise, we should define the symbol with a value of 0.
5212 FIXME: It should probably get into the symbol table
5213 somehow as well. */
5214 BFD_ASSERT (! info->shared);
5215 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5216 symbol = 0;
5217 }
5218 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5219 {
5220 /* This is an optional symbol - an Irix specific extension to the
5221 ELF spec. Ignore it for now.
5222 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5223 than simply ignoring them, but we do not handle this for now.
5224 For information see the "64-bit ELF Object File Specification"
5225 which is available from here:
5226 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5227 symbol = 0;
5228 }
5229 else if ((*info->callbacks->undefined_symbol)
5230 (info, h->root.root.root.string, input_bfd,
5231 input_section, relocation->r_offset,
5232 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5233 || ELF_ST_VISIBILITY (h->root.other)))
5234 {
5235 return bfd_reloc_undefined;
5236 }
5237 else
5238 {
5239 return bfd_reloc_notsupported;
5240 }
5241
5242 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5243 /* If the output section is the PLT section,
5244 then the target is not microMIPS. */
5245 target_is_micromips_code_p = (htab->splt != sec
5246 && ELF_ST_IS_MICROMIPS (h->root.other));
5247 }
5248
5249 /* If this is a reference to a 16-bit function with a stub, we need
5250 to redirect the relocation to the stub unless:
5251
5252 (a) the relocation is for a MIPS16 JAL;
5253
5254 (b) the relocation is for a MIPS16 PIC call, and there are no
5255 non-MIPS16 uses of the GOT slot; or
5256
5257 (c) the section allows direct references to MIPS16 functions. */
5258 if (r_type != R_MIPS16_26
5259 && !info->relocatable
5260 && ((h != NULL
5261 && h->fn_stub != NULL
5262 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5263 || (local_p
5264 && elf_tdata (input_bfd)->local_stubs != NULL
5265 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5266 && !section_allows_mips16_refs_p (input_section))
5267 {
5268 /* This is a 32- or 64-bit call to a 16-bit function. We should
5269 have already noticed that we were going to need the
5270 stub. */
5271 if (local_p)
5272 {
5273 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5274 value = 0;
5275 }
5276 else
5277 {
5278 BFD_ASSERT (h->need_fn_stub);
5279 if (h->la25_stub)
5280 {
5281 /* If a LA25 header for the stub itself exists, point to the
5282 prepended LUI/ADDIU sequence. */
5283 sec = h->la25_stub->stub_section;
5284 value = h->la25_stub->offset;
5285 }
5286 else
5287 {
5288 sec = h->fn_stub;
5289 value = 0;
5290 }
5291 }
5292
5293 symbol = sec->output_section->vma + sec->output_offset + value;
5294 /* The target is 16-bit, but the stub isn't. */
5295 target_is_16_bit_code_p = FALSE;
5296 }
5297 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5298 need to redirect the call to the stub. Note that we specifically
5299 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5300 use an indirect stub instead. */
5301 else if (r_type == R_MIPS16_26 && !info->relocatable
5302 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5303 || (local_p
5304 && elf_tdata (input_bfd)->local_call_stubs != NULL
5305 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5306 && !target_is_16_bit_code_p)
5307 {
5308 if (local_p)
5309 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5310 else
5311 {
5312 /* If both call_stub and call_fp_stub are defined, we can figure
5313 out which one to use by checking which one appears in the input
5314 file. */
5315 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5316 {
5317 asection *o;
5318
5319 sec = NULL;
5320 for (o = input_bfd->sections; o != NULL; o = o->next)
5321 {
5322 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5323 {
5324 sec = h->call_fp_stub;
5325 break;
5326 }
5327 }
5328 if (sec == NULL)
5329 sec = h->call_stub;
5330 }
5331 else if (h->call_stub != NULL)
5332 sec = h->call_stub;
5333 else
5334 sec = h->call_fp_stub;
5335 }
5336
5337 BFD_ASSERT (sec->size > 0);
5338 symbol = sec->output_section->vma + sec->output_offset;
5339 }
5340 /* If this is a direct call to a PIC function, redirect to the
5341 non-PIC stub. */
5342 else if (h != NULL && h->la25_stub
5343 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5344 target_is_16_bit_code_p))
5345 symbol = (h->la25_stub->stub_section->output_section->vma
5346 + h->la25_stub->stub_section->output_offset
5347 + h->la25_stub->offset);
5348
5349 /* Make sure MIPS16 and microMIPS are not used together. */
5350 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5351 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5352 {
5353 (*_bfd_error_handler)
5354 (_("MIPS16 and microMIPS functions cannot call each other"));
5355 return bfd_reloc_notsupported;
5356 }
5357
5358 /* Calls from 16-bit code to 32-bit code and vice versa require the
5359 mode change. However, we can ignore calls to undefined weak symbols,
5360 which should never be executed at runtime. This exception is important
5361 because the assembly writer may have "known" that any definition of the
5362 symbol would be 16-bit code, and that direct jumps were therefore
5363 acceptable. */
5364 *cross_mode_jump_p = (!info->relocatable
5365 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5366 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5367 || (r_type == R_MICROMIPS_26_S1
5368 && !target_is_micromips_code_p)
5369 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5370 && (target_is_16_bit_code_p
5371 || target_is_micromips_code_p))));
5372
5373 local_p = (h == NULL
5374 || (h->got_only_for_calls
5375 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5376 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5377
5378 gp0 = _bfd_get_gp_value (input_bfd);
5379 gp = _bfd_get_gp_value (abfd);
5380 if (htab->got_info)
5381 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5382
5383 if (gnu_local_gp_p)
5384 symbol = gp;
5385
5386 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5387 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5388 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5389 if (got_page_reloc_p (r_type) && !local_p)
5390 {
5391 r_type = (micromips_reloc_p (r_type)
5392 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5393 addend = 0;
5394 }
5395
5396 /* If we haven't already determined the GOT offset, and we're going
5397 to need it, get it now. */
5398 switch (r_type)
5399 {
5400 case R_MIPS16_CALL16:
5401 case R_MIPS16_GOT16:
5402 case R_MIPS_CALL16:
5403 case R_MIPS_GOT16:
5404 case R_MIPS_GOT_DISP:
5405 case R_MIPS_GOT_HI16:
5406 case R_MIPS_CALL_HI16:
5407 case R_MIPS_GOT_LO16:
5408 case R_MIPS_CALL_LO16:
5409 case R_MICROMIPS_CALL16:
5410 case R_MICROMIPS_GOT16:
5411 case R_MICROMIPS_GOT_DISP:
5412 case R_MICROMIPS_GOT_HI16:
5413 case R_MICROMIPS_CALL_HI16:
5414 case R_MICROMIPS_GOT_LO16:
5415 case R_MICROMIPS_CALL_LO16:
5416 case R_MIPS_TLS_GD:
5417 case R_MIPS_TLS_GOTTPREL:
5418 case R_MIPS_TLS_LDM:
5419 case R_MIPS16_TLS_GD:
5420 case R_MIPS16_TLS_GOTTPREL:
5421 case R_MIPS16_TLS_LDM:
5422 case R_MICROMIPS_TLS_GD:
5423 case R_MICROMIPS_TLS_GOTTPREL:
5424 case R_MICROMIPS_TLS_LDM:
5425 /* Find the index into the GOT where this value is located. */
5426 if (tls_ldm_reloc_p (r_type))
5427 {
5428 g = mips_elf_local_got_index (abfd, input_bfd, info,
5429 0, 0, NULL, r_type);
5430 if (g == MINUS_ONE)
5431 return bfd_reloc_outofrange;
5432 }
5433 else if (!local_p)
5434 {
5435 /* On VxWorks, CALL relocations should refer to the .got.plt
5436 entry, which is initialized to point at the PLT stub. */
5437 if (htab->is_vxworks
5438 && (call_hi16_reloc_p (r_type)
5439 || call_lo16_reloc_p (r_type)
5440 || call16_reloc_p (r_type)))
5441 {
5442 BFD_ASSERT (addend == 0);
5443 BFD_ASSERT (h->root.needs_plt);
5444 g = mips_elf_gotplt_index (info, &h->root);
5445 }
5446 else
5447 {
5448 BFD_ASSERT (addend == 0);
5449 g = mips_elf_global_got_index (dynobj, input_bfd,
5450 &h->root, r_type, info);
5451 if (!TLS_RELOC_P (r_type)
5452 && !elf_hash_table (info)->dynamic_sections_created)
5453 /* This is a static link. We must initialize the GOT entry. */
5454 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5455 }
5456 }
5457 else if (!htab->is_vxworks
5458 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5459 /* The calculation below does not involve "g". */
5460 break;
5461 else
5462 {
5463 g = mips_elf_local_got_index (abfd, input_bfd, info,
5464 symbol + addend, r_symndx, h, r_type);
5465 if (g == MINUS_ONE)
5466 return bfd_reloc_outofrange;
5467 }
5468
5469 /* Convert GOT indices to actual offsets. */
5470 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5471 break;
5472 }
5473
5474 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5475 symbols are resolved by the loader. Add them to .rela.dyn. */
5476 if (h != NULL && is_gott_symbol (info, &h->root))
5477 {
5478 Elf_Internal_Rela outrel;
5479 bfd_byte *loc;
5480 asection *s;
5481
5482 s = mips_elf_rel_dyn_section (info, FALSE);
5483 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5484
5485 outrel.r_offset = (input_section->output_section->vma
5486 + input_section->output_offset
5487 + relocation->r_offset);
5488 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5489 outrel.r_addend = addend;
5490 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5491
5492 /* If we've written this relocation for a readonly section,
5493 we need to set DF_TEXTREL again, so that we do not delete the
5494 DT_TEXTREL tag. */
5495 if (MIPS_ELF_READONLY_SECTION (input_section))
5496 info->flags |= DF_TEXTREL;
5497
5498 *valuep = 0;
5499 return bfd_reloc_ok;
5500 }
5501
5502 /* Figure out what kind of relocation is being performed. */
5503 switch (r_type)
5504 {
5505 case R_MIPS_NONE:
5506 return bfd_reloc_continue;
5507
5508 case R_MIPS_16:
5509 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5510 overflowed_p = mips_elf_overflow_p (value, 16);
5511 break;
5512
5513 case R_MIPS_32:
5514 case R_MIPS_REL32:
5515 case R_MIPS_64:
5516 if ((info->shared
5517 || (htab->root.dynamic_sections_created
5518 && h != NULL
5519 && h->root.def_dynamic
5520 && !h->root.def_regular
5521 && !h->has_static_relocs))
5522 && r_symndx != STN_UNDEF
5523 && (h == NULL
5524 || h->root.root.type != bfd_link_hash_undefweak
5525 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5526 && (input_section->flags & SEC_ALLOC) != 0)
5527 {
5528 /* If we're creating a shared library, then we can't know
5529 where the symbol will end up. So, we create a relocation
5530 record in the output, and leave the job up to the dynamic
5531 linker. We must do the same for executable references to
5532 shared library symbols, unless we've decided to use copy
5533 relocs or PLTs instead. */
5534 value = addend;
5535 if (!mips_elf_create_dynamic_relocation (abfd,
5536 info,
5537 relocation,
5538 h,
5539 sec,
5540 symbol,
5541 &value,
5542 input_section))
5543 return bfd_reloc_undefined;
5544 }
5545 else
5546 {
5547 if (r_type != R_MIPS_REL32)
5548 value = symbol + addend;
5549 else
5550 value = addend;
5551 }
5552 value &= howto->dst_mask;
5553 break;
5554
5555 case R_MIPS_PC32:
5556 value = symbol + addend - p;
5557 value &= howto->dst_mask;
5558 break;
5559
5560 case R_MIPS16_26:
5561 /* The calculation for R_MIPS16_26 is just the same as for an
5562 R_MIPS_26. It's only the storage of the relocated field into
5563 the output file that's different. That's handled in
5564 mips_elf_perform_relocation. So, we just fall through to the
5565 R_MIPS_26 case here. */
5566 case R_MIPS_26:
5567 case R_MICROMIPS_26_S1:
5568 {
5569 unsigned int shift;
5570
5571 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5572 the correct ISA mode selector and bit 1 must be 0. */
5573 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5574 return bfd_reloc_outofrange;
5575
5576 /* Shift is 2, unusually, for microMIPS JALX. */
5577 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5578
5579 if (was_local_p)
5580 value = addend | ((p + 4) & (0xfc000000 << shift));
5581 else
5582 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5583 value = (value + symbol) >> shift;
5584 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5585 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5586 value &= howto->dst_mask;
5587 }
5588 break;
5589
5590 case R_MIPS_TLS_DTPREL_HI16:
5591 case R_MIPS16_TLS_DTPREL_HI16:
5592 case R_MICROMIPS_TLS_DTPREL_HI16:
5593 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5594 & howto->dst_mask);
5595 break;
5596
5597 case R_MIPS_TLS_DTPREL_LO16:
5598 case R_MIPS_TLS_DTPREL32:
5599 case R_MIPS_TLS_DTPREL64:
5600 case R_MIPS16_TLS_DTPREL_LO16:
5601 case R_MICROMIPS_TLS_DTPREL_LO16:
5602 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5603 break;
5604
5605 case R_MIPS_TLS_TPREL_HI16:
5606 case R_MIPS16_TLS_TPREL_HI16:
5607 case R_MICROMIPS_TLS_TPREL_HI16:
5608 value = (mips_elf_high (addend + symbol - tprel_base (info))
5609 & howto->dst_mask);
5610 break;
5611
5612 case R_MIPS_TLS_TPREL_LO16:
5613 case R_MIPS_TLS_TPREL32:
5614 case R_MIPS_TLS_TPREL64:
5615 case R_MIPS16_TLS_TPREL_LO16:
5616 case R_MICROMIPS_TLS_TPREL_LO16:
5617 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5618 break;
5619
5620 case R_MIPS_HI16:
5621 case R_MIPS16_HI16:
5622 case R_MICROMIPS_HI16:
5623 if (!gp_disp_p)
5624 {
5625 value = mips_elf_high (addend + symbol);
5626 value &= howto->dst_mask;
5627 }
5628 else
5629 {
5630 /* For MIPS16 ABI code we generate this sequence
5631 0: li $v0,%hi(_gp_disp)
5632 4: addiupc $v1,%lo(_gp_disp)
5633 8: sll $v0,16
5634 12: addu $v0,$v1
5635 14: move $gp,$v0
5636 So the offsets of hi and lo relocs are the same, but the
5637 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5638 ADDIUPC clears the low two bits of the instruction address,
5639 so the base is ($t9 + 4) & ~3. */
5640 if (r_type == R_MIPS16_HI16)
5641 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5642 /* The microMIPS .cpload sequence uses the same assembly
5643 instructions as the traditional psABI version, but the
5644 incoming $t9 has the low bit set. */
5645 else if (r_type == R_MICROMIPS_HI16)
5646 value = mips_elf_high (addend + gp - p - 1);
5647 else
5648 value = mips_elf_high (addend + gp - p);
5649 overflowed_p = mips_elf_overflow_p (value, 16);
5650 }
5651 break;
5652
5653 case R_MIPS_LO16:
5654 case R_MIPS16_LO16:
5655 case R_MICROMIPS_LO16:
5656 case R_MICROMIPS_HI0_LO16:
5657 if (!gp_disp_p)
5658 value = (symbol + addend) & howto->dst_mask;
5659 else
5660 {
5661 /* See the comment for R_MIPS16_HI16 above for the reason
5662 for this conditional. */
5663 if (r_type == R_MIPS16_LO16)
5664 value = addend + gp - (p & ~(bfd_vma) 0x3);
5665 else if (r_type == R_MICROMIPS_LO16
5666 || r_type == R_MICROMIPS_HI0_LO16)
5667 value = addend + gp - p + 3;
5668 else
5669 value = addend + gp - p + 4;
5670 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5671 for overflow. But, on, say, IRIX5, relocations against
5672 _gp_disp are normally generated from the .cpload
5673 pseudo-op. It generates code that normally looks like
5674 this:
5675
5676 lui $gp,%hi(_gp_disp)
5677 addiu $gp,$gp,%lo(_gp_disp)
5678 addu $gp,$gp,$t9
5679
5680 Here $t9 holds the address of the function being called,
5681 as required by the MIPS ELF ABI. The R_MIPS_LO16
5682 relocation can easily overflow in this situation, but the
5683 R_MIPS_HI16 relocation will handle the overflow.
5684 Therefore, we consider this a bug in the MIPS ABI, and do
5685 not check for overflow here. */
5686 }
5687 break;
5688
5689 case R_MIPS_LITERAL:
5690 case R_MICROMIPS_LITERAL:
5691 /* Because we don't merge literal sections, we can handle this
5692 just like R_MIPS_GPREL16. In the long run, we should merge
5693 shared literals, and then we will need to additional work
5694 here. */
5695
5696 /* Fall through. */
5697
5698 case R_MIPS16_GPREL:
5699 /* The R_MIPS16_GPREL performs the same calculation as
5700 R_MIPS_GPREL16, but stores the relocated bits in a different
5701 order. We don't need to do anything special here; the
5702 differences are handled in mips_elf_perform_relocation. */
5703 case R_MIPS_GPREL16:
5704 case R_MICROMIPS_GPREL7_S2:
5705 case R_MICROMIPS_GPREL16:
5706 /* Only sign-extend the addend if it was extracted from the
5707 instruction. If the addend was separate, leave it alone,
5708 otherwise we may lose significant bits. */
5709 if (howto->partial_inplace)
5710 addend = _bfd_mips_elf_sign_extend (addend, 16);
5711 value = symbol + addend - gp;
5712 /* If the symbol was local, any earlier relocatable links will
5713 have adjusted its addend with the gp offset, so compensate
5714 for that now. Don't do it for symbols forced local in this
5715 link, though, since they won't have had the gp offset applied
5716 to them before. */
5717 if (was_local_p)
5718 value += gp0;
5719 overflowed_p = mips_elf_overflow_p (value, 16);
5720 break;
5721
5722 case R_MIPS16_GOT16:
5723 case R_MIPS16_CALL16:
5724 case R_MIPS_GOT16:
5725 case R_MIPS_CALL16:
5726 case R_MICROMIPS_GOT16:
5727 case R_MICROMIPS_CALL16:
5728 /* VxWorks does not have separate local and global semantics for
5729 R_MIPS*_GOT16; every relocation evaluates to "G". */
5730 if (!htab->is_vxworks && local_p)
5731 {
5732 value = mips_elf_got16_entry (abfd, input_bfd, info,
5733 symbol + addend, !was_local_p);
5734 if (value == MINUS_ONE)
5735 return bfd_reloc_outofrange;
5736 value
5737 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5738 overflowed_p = mips_elf_overflow_p (value, 16);
5739 break;
5740 }
5741
5742 /* Fall through. */
5743
5744 case R_MIPS_TLS_GD:
5745 case R_MIPS_TLS_GOTTPREL:
5746 case R_MIPS_TLS_LDM:
5747 case R_MIPS_GOT_DISP:
5748 case R_MIPS16_TLS_GD:
5749 case R_MIPS16_TLS_GOTTPREL:
5750 case R_MIPS16_TLS_LDM:
5751 case R_MICROMIPS_TLS_GD:
5752 case R_MICROMIPS_TLS_GOTTPREL:
5753 case R_MICROMIPS_TLS_LDM:
5754 case R_MICROMIPS_GOT_DISP:
5755 value = g;
5756 overflowed_p = mips_elf_overflow_p (value, 16);
5757 break;
5758
5759 case R_MIPS_GPREL32:
5760 value = (addend + symbol + gp0 - gp);
5761 if (!save_addend)
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS_PC16:
5766 case R_MIPS_GNU_REL16_S2:
5767 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5768 overflowed_p = mips_elf_overflow_p (value, 18);
5769 value >>= howto->rightshift;
5770 value &= howto->dst_mask;
5771 break;
5772
5773 case R_MICROMIPS_PC7_S1:
5774 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5775 overflowed_p = mips_elf_overflow_p (value, 8);
5776 value >>= howto->rightshift;
5777 value &= howto->dst_mask;
5778 break;
5779
5780 case R_MICROMIPS_PC10_S1:
5781 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5782 overflowed_p = mips_elf_overflow_p (value, 11);
5783 value >>= howto->rightshift;
5784 value &= howto->dst_mask;
5785 break;
5786
5787 case R_MICROMIPS_PC16_S1:
5788 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5789 overflowed_p = mips_elf_overflow_p (value, 17);
5790 value >>= howto->rightshift;
5791 value &= howto->dst_mask;
5792 break;
5793
5794 case R_MICROMIPS_PC23_S2:
5795 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5796 overflowed_p = mips_elf_overflow_p (value, 25);
5797 value >>= howto->rightshift;
5798 value &= howto->dst_mask;
5799 break;
5800
5801 case R_MIPS_GOT_HI16:
5802 case R_MIPS_CALL_HI16:
5803 case R_MICROMIPS_GOT_HI16:
5804 case R_MICROMIPS_CALL_HI16:
5805 /* We're allowed to handle these two relocations identically.
5806 The dynamic linker is allowed to handle the CALL relocations
5807 differently by creating a lazy evaluation stub. */
5808 value = g;
5809 value = mips_elf_high (value);
5810 value &= howto->dst_mask;
5811 break;
5812
5813 case R_MIPS_GOT_LO16:
5814 case R_MIPS_CALL_LO16:
5815 case R_MICROMIPS_GOT_LO16:
5816 case R_MICROMIPS_CALL_LO16:
5817 value = g & howto->dst_mask;
5818 break;
5819
5820 case R_MIPS_GOT_PAGE:
5821 case R_MICROMIPS_GOT_PAGE:
5822 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5823 if (value == MINUS_ONE)
5824 return bfd_reloc_outofrange;
5825 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5826 overflowed_p = mips_elf_overflow_p (value, 16);
5827 break;
5828
5829 case R_MIPS_GOT_OFST:
5830 case R_MICROMIPS_GOT_OFST:
5831 if (local_p)
5832 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5833 else
5834 value = addend;
5835 overflowed_p = mips_elf_overflow_p (value, 16);
5836 break;
5837
5838 case R_MIPS_SUB:
5839 case R_MICROMIPS_SUB:
5840 value = symbol - addend;
5841 value &= howto->dst_mask;
5842 break;
5843
5844 case R_MIPS_HIGHER:
5845 case R_MICROMIPS_HIGHER:
5846 value = mips_elf_higher (addend + symbol);
5847 value &= howto->dst_mask;
5848 break;
5849
5850 case R_MIPS_HIGHEST:
5851 case R_MICROMIPS_HIGHEST:
5852 value = mips_elf_highest (addend + symbol);
5853 value &= howto->dst_mask;
5854 break;
5855
5856 case R_MIPS_SCN_DISP:
5857 case R_MICROMIPS_SCN_DISP:
5858 value = symbol + addend - sec->output_offset;
5859 value &= howto->dst_mask;
5860 break;
5861
5862 case R_MIPS_JALR:
5863 case R_MICROMIPS_JALR:
5864 /* This relocation is only a hint. In some cases, we optimize
5865 it into a bal instruction. But we don't try to optimize
5866 when the symbol does not resolve locally. */
5867 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5868 return bfd_reloc_continue;
5869 value = symbol + addend;
5870 break;
5871
5872 case R_MIPS_PJUMP:
5873 case R_MIPS_GNU_VTINHERIT:
5874 case R_MIPS_GNU_VTENTRY:
5875 /* We don't do anything with these at present. */
5876 return bfd_reloc_continue;
5877
5878 default:
5879 /* An unrecognized relocation type. */
5880 return bfd_reloc_notsupported;
5881 }
5882
5883 /* Store the VALUE for our caller. */
5884 *valuep = value;
5885 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5886 }
5887
5888 /* Obtain the field relocated by RELOCATION. */
5889
5890 static bfd_vma
5891 mips_elf_obtain_contents (reloc_howto_type *howto,
5892 const Elf_Internal_Rela *relocation,
5893 bfd *input_bfd, bfd_byte *contents)
5894 {
5895 bfd_vma x;
5896 bfd_byte *location = contents + relocation->r_offset;
5897
5898 /* Obtain the bytes. */
5899 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5900
5901 return x;
5902 }
5903
5904 /* It has been determined that the result of the RELOCATION is the
5905 VALUE. Use HOWTO to place VALUE into the output file at the
5906 appropriate position. The SECTION is the section to which the
5907 relocation applies.
5908 CROSS_MODE_JUMP_P is true if the relocation field
5909 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5910
5911 Returns FALSE if anything goes wrong. */
5912
5913 static bfd_boolean
5914 mips_elf_perform_relocation (struct bfd_link_info *info,
5915 reloc_howto_type *howto,
5916 const Elf_Internal_Rela *relocation,
5917 bfd_vma value, bfd *input_bfd,
5918 asection *input_section, bfd_byte *contents,
5919 bfd_boolean cross_mode_jump_p)
5920 {
5921 bfd_vma x;
5922 bfd_byte *location;
5923 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5924
5925 /* Figure out where the relocation is occurring. */
5926 location = contents + relocation->r_offset;
5927
5928 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5929
5930 /* Obtain the current value. */
5931 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5932
5933 /* Clear the field we are setting. */
5934 x &= ~howto->dst_mask;
5935
5936 /* Set the field. */
5937 x |= (value & howto->dst_mask);
5938
5939 /* If required, turn JAL into JALX. */
5940 if (cross_mode_jump_p && jal_reloc_p (r_type))
5941 {
5942 bfd_boolean ok;
5943 bfd_vma opcode = x >> 26;
5944 bfd_vma jalx_opcode;
5945
5946 /* Check to see if the opcode is already JAL or JALX. */
5947 if (r_type == R_MIPS16_26)
5948 {
5949 ok = ((opcode == 0x6) || (opcode == 0x7));
5950 jalx_opcode = 0x7;
5951 }
5952 else if (r_type == R_MICROMIPS_26_S1)
5953 {
5954 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5955 jalx_opcode = 0x3c;
5956 }
5957 else
5958 {
5959 ok = ((opcode == 0x3) || (opcode == 0x1d));
5960 jalx_opcode = 0x1d;
5961 }
5962
5963 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5964 convert J or JALS to JALX. */
5965 if (!ok)
5966 {
5967 (*_bfd_error_handler)
5968 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5969 input_bfd,
5970 input_section,
5971 (unsigned long) relocation->r_offset);
5972 bfd_set_error (bfd_error_bad_value);
5973 return FALSE;
5974 }
5975
5976 /* Make this the JALX opcode. */
5977 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5978 }
5979
5980 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5981 range. */
5982 if (!info->relocatable
5983 && !cross_mode_jump_p
5984 && ((JAL_TO_BAL_P (input_bfd)
5985 && r_type == R_MIPS_26
5986 && (x >> 26) == 0x3) /* jal addr */
5987 || (JALR_TO_BAL_P (input_bfd)
5988 && r_type == R_MIPS_JALR
5989 && x == 0x0320f809) /* jalr t9 */
5990 || (JR_TO_B_P (input_bfd)
5991 && r_type == R_MIPS_JALR
5992 && x == 0x03200008))) /* jr t9 */
5993 {
5994 bfd_vma addr;
5995 bfd_vma dest;
5996 bfd_signed_vma off;
5997
5998 addr = (input_section->output_section->vma
5999 + input_section->output_offset
6000 + relocation->r_offset
6001 + 4);
6002 if (r_type == R_MIPS_26)
6003 dest = (value << 2) | ((addr >> 28) << 28);
6004 else
6005 dest = value;
6006 off = dest - addr;
6007 if (off <= 0x1ffff && off >= -0x20000)
6008 {
6009 if (x == 0x03200008) /* jr t9 */
6010 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6011 else
6012 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6013 }
6014 }
6015
6016 /* Put the value into the output. */
6017 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6018
6019 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6020 location);
6021
6022 return TRUE;
6023 }
6024 \f
6025 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6026 is the original relocation, which is now being transformed into a
6027 dynamic relocation. The ADDENDP is adjusted if necessary; the
6028 caller should store the result in place of the original addend. */
6029
6030 static bfd_boolean
6031 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6032 struct bfd_link_info *info,
6033 const Elf_Internal_Rela *rel,
6034 struct mips_elf_link_hash_entry *h,
6035 asection *sec, bfd_vma symbol,
6036 bfd_vma *addendp, asection *input_section)
6037 {
6038 Elf_Internal_Rela outrel[3];
6039 asection *sreloc;
6040 bfd *dynobj;
6041 int r_type;
6042 long indx;
6043 bfd_boolean defined_p;
6044 struct mips_elf_link_hash_table *htab;
6045
6046 htab = mips_elf_hash_table (info);
6047 BFD_ASSERT (htab != NULL);
6048
6049 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6050 dynobj = elf_hash_table (info)->dynobj;
6051 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6052 BFD_ASSERT (sreloc != NULL);
6053 BFD_ASSERT (sreloc->contents != NULL);
6054 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6055 < sreloc->size);
6056
6057 outrel[0].r_offset =
6058 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6059 if (ABI_64_P (output_bfd))
6060 {
6061 outrel[1].r_offset =
6062 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6063 outrel[2].r_offset =
6064 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6065 }
6066
6067 if (outrel[0].r_offset == MINUS_ONE)
6068 /* The relocation field has been deleted. */
6069 return TRUE;
6070
6071 if (outrel[0].r_offset == MINUS_TWO)
6072 {
6073 /* The relocation field has been converted into a relative value of
6074 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6075 the field to be fully relocated, so add in the symbol's value. */
6076 *addendp += symbol;
6077 return TRUE;
6078 }
6079
6080 /* We must now calculate the dynamic symbol table index to use
6081 in the relocation. */
6082 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6083 {
6084 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6085 indx = h->root.dynindx;
6086 if (SGI_COMPAT (output_bfd))
6087 defined_p = h->root.def_regular;
6088 else
6089 /* ??? glibc's ld.so just adds the final GOT entry to the
6090 relocation field. It therefore treats relocs against
6091 defined symbols in the same way as relocs against
6092 undefined symbols. */
6093 defined_p = FALSE;
6094 }
6095 else
6096 {
6097 if (sec != NULL && bfd_is_abs_section (sec))
6098 indx = 0;
6099 else if (sec == NULL || sec->owner == NULL)
6100 {
6101 bfd_set_error (bfd_error_bad_value);
6102 return FALSE;
6103 }
6104 else
6105 {
6106 indx = elf_section_data (sec->output_section)->dynindx;
6107 if (indx == 0)
6108 {
6109 asection *osec = htab->root.text_index_section;
6110 indx = elf_section_data (osec)->dynindx;
6111 }
6112 if (indx == 0)
6113 abort ();
6114 }
6115
6116 /* Instead of generating a relocation using the section
6117 symbol, we may as well make it a fully relative
6118 relocation. We want to avoid generating relocations to
6119 local symbols because we used to generate them
6120 incorrectly, without adding the original symbol value,
6121 which is mandated by the ABI for section symbols. In
6122 order to give dynamic loaders and applications time to
6123 phase out the incorrect use, we refrain from emitting
6124 section-relative relocations. It's not like they're
6125 useful, after all. This should be a bit more efficient
6126 as well. */
6127 /* ??? Although this behavior is compatible with glibc's ld.so,
6128 the ABI says that relocations against STN_UNDEF should have
6129 a symbol value of 0. Irix rld honors this, so relocations
6130 against STN_UNDEF have no effect. */
6131 if (!SGI_COMPAT (output_bfd))
6132 indx = 0;
6133 defined_p = TRUE;
6134 }
6135
6136 /* If the relocation was previously an absolute relocation and
6137 this symbol will not be referred to by the relocation, we must
6138 adjust it by the value we give it in the dynamic symbol table.
6139 Otherwise leave the job up to the dynamic linker. */
6140 if (defined_p && r_type != R_MIPS_REL32)
6141 *addendp += symbol;
6142
6143 if (htab->is_vxworks)
6144 /* VxWorks uses non-relative relocations for this. */
6145 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6146 else
6147 /* The relocation is always an REL32 relocation because we don't
6148 know where the shared library will wind up at load-time. */
6149 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6150 R_MIPS_REL32);
6151
6152 /* For strict adherence to the ABI specification, we should
6153 generate a R_MIPS_64 relocation record by itself before the
6154 _REL32/_64 record as well, such that the addend is read in as
6155 a 64-bit value (REL32 is a 32-bit relocation, after all).
6156 However, since none of the existing ELF64 MIPS dynamic
6157 loaders seems to care, we don't waste space with these
6158 artificial relocations. If this turns out to not be true,
6159 mips_elf_allocate_dynamic_relocation() should be tweaked so
6160 as to make room for a pair of dynamic relocations per
6161 invocation if ABI_64_P, and here we should generate an
6162 additional relocation record with R_MIPS_64 by itself for a
6163 NULL symbol before this relocation record. */
6164 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6165 ABI_64_P (output_bfd)
6166 ? R_MIPS_64
6167 : R_MIPS_NONE);
6168 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6169
6170 /* Adjust the output offset of the relocation to reference the
6171 correct location in the output file. */
6172 outrel[0].r_offset += (input_section->output_section->vma
6173 + input_section->output_offset);
6174 outrel[1].r_offset += (input_section->output_section->vma
6175 + input_section->output_offset);
6176 outrel[2].r_offset += (input_section->output_section->vma
6177 + input_section->output_offset);
6178
6179 /* Put the relocation back out. We have to use the special
6180 relocation outputter in the 64-bit case since the 64-bit
6181 relocation format is non-standard. */
6182 if (ABI_64_P (output_bfd))
6183 {
6184 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6185 (output_bfd, &outrel[0],
6186 (sreloc->contents
6187 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6188 }
6189 else if (htab->is_vxworks)
6190 {
6191 /* VxWorks uses RELA rather than REL dynamic relocations. */
6192 outrel[0].r_addend = *addendp;
6193 bfd_elf32_swap_reloca_out
6194 (output_bfd, &outrel[0],
6195 (sreloc->contents
6196 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6197 }
6198 else
6199 bfd_elf32_swap_reloc_out
6200 (output_bfd, &outrel[0],
6201 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6202
6203 /* We've now added another relocation. */
6204 ++sreloc->reloc_count;
6205
6206 /* Make sure the output section is writable. The dynamic linker
6207 will be writing to it. */
6208 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6209 |= SHF_WRITE;
6210
6211 /* On IRIX5, make an entry of compact relocation info. */
6212 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6213 {
6214 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6215 bfd_byte *cr;
6216
6217 if (scpt)
6218 {
6219 Elf32_crinfo cptrel;
6220
6221 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6222 cptrel.vaddr = (rel->r_offset
6223 + input_section->output_section->vma
6224 + input_section->output_offset);
6225 if (r_type == R_MIPS_REL32)
6226 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6227 else
6228 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6229 mips_elf_set_cr_dist2to (cptrel, 0);
6230 cptrel.konst = *addendp;
6231
6232 cr = (scpt->contents
6233 + sizeof (Elf32_External_compact_rel));
6234 mips_elf_set_cr_relvaddr (cptrel, 0);
6235 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6236 ((Elf32_External_crinfo *) cr
6237 + scpt->reloc_count));
6238 ++scpt->reloc_count;
6239 }
6240 }
6241
6242 /* If we've written this relocation for a readonly section,
6243 we need to set DF_TEXTREL again, so that we do not delete the
6244 DT_TEXTREL tag. */
6245 if (MIPS_ELF_READONLY_SECTION (input_section))
6246 info->flags |= DF_TEXTREL;
6247
6248 return TRUE;
6249 }
6250 \f
6251 /* Return the MACH for a MIPS e_flags value. */
6252
6253 unsigned long
6254 _bfd_elf_mips_mach (flagword flags)
6255 {
6256 switch (flags & EF_MIPS_MACH)
6257 {
6258 case E_MIPS_MACH_3900:
6259 return bfd_mach_mips3900;
6260
6261 case E_MIPS_MACH_4010:
6262 return bfd_mach_mips4010;
6263
6264 case E_MIPS_MACH_4100:
6265 return bfd_mach_mips4100;
6266
6267 case E_MIPS_MACH_4111:
6268 return bfd_mach_mips4111;
6269
6270 case E_MIPS_MACH_4120:
6271 return bfd_mach_mips4120;
6272
6273 case E_MIPS_MACH_4650:
6274 return bfd_mach_mips4650;
6275
6276 case E_MIPS_MACH_5400:
6277 return bfd_mach_mips5400;
6278
6279 case E_MIPS_MACH_5500:
6280 return bfd_mach_mips5500;
6281
6282 case E_MIPS_MACH_5900:
6283 return bfd_mach_mips5900;
6284
6285 case E_MIPS_MACH_9000:
6286 return bfd_mach_mips9000;
6287
6288 case E_MIPS_MACH_SB1:
6289 return bfd_mach_mips_sb1;
6290
6291 case E_MIPS_MACH_LS2E:
6292 return bfd_mach_mips_loongson_2e;
6293
6294 case E_MIPS_MACH_LS2F:
6295 return bfd_mach_mips_loongson_2f;
6296
6297 case E_MIPS_MACH_LS3A:
6298 return bfd_mach_mips_loongson_3a;
6299
6300 case E_MIPS_MACH_OCTEON2:
6301 return bfd_mach_mips_octeon2;
6302
6303 case E_MIPS_MACH_OCTEON:
6304 return bfd_mach_mips_octeon;
6305
6306 case E_MIPS_MACH_XLR:
6307 return bfd_mach_mips_xlr;
6308
6309 default:
6310 switch (flags & EF_MIPS_ARCH)
6311 {
6312 default:
6313 case E_MIPS_ARCH_1:
6314 return bfd_mach_mips3000;
6315
6316 case E_MIPS_ARCH_2:
6317 return bfd_mach_mips6000;
6318
6319 case E_MIPS_ARCH_3:
6320 return bfd_mach_mips4000;
6321
6322 case E_MIPS_ARCH_4:
6323 return bfd_mach_mips8000;
6324
6325 case E_MIPS_ARCH_5:
6326 return bfd_mach_mips5;
6327
6328 case E_MIPS_ARCH_32:
6329 return bfd_mach_mipsisa32;
6330
6331 case E_MIPS_ARCH_64:
6332 return bfd_mach_mipsisa64;
6333
6334 case E_MIPS_ARCH_32R2:
6335 return bfd_mach_mipsisa32r2;
6336
6337 case E_MIPS_ARCH_64R2:
6338 return bfd_mach_mipsisa64r2;
6339 }
6340 }
6341
6342 return 0;
6343 }
6344
6345 /* Return printable name for ABI. */
6346
6347 static INLINE char *
6348 elf_mips_abi_name (bfd *abfd)
6349 {
6350 flagword flags;
6351
6352 flags = elf_elfheader (abfd)->e_flags;
6353 switch (flags & EF_MIPS_ABI)
6354 {
6355 case 0:
6356 if (ABI_N32_P (abfd))
6357 return "N32";
6358 else if (ABI_64_P (abfd))
6359 return "64";
6360 else
6361 return "none";
6362 case E_MIPS_ABI_O32:
6363 return "O32";
6364 case E_MIPS_ABI_O64:
6365 return "O64";
6366 case E_MIPS_ABI_EABI32:
6367 return "EABI32";
6368 case E_MIPS_ABI_EABI64:
6369 return "EABI64";
6370 default:
6371 return "unknown abi";
6372 }
6373 }
6374 \f
6375 /* MIPS ELF uses two common sections. One is the usual one, and the
6376 other is for small objects. All the small objects are kept
6377 together, and then referenced via the gp pointer, which yields
6378 faster assembler code. This is what we use for the small common
6379 section. This approach is copied from ecoff.c. */
6380 static asection mips_elf_scom_section;
6381 static asymbol mips_elf_scom_symbol;
6382 static asymbol *mips_elf_scom_symbol_ptr;
6383
6384 /* MIPS ELF also uses an acommon section, which represents an
6385 allocated common symbol which may be overridden by a
6386 definition in a shared library. */
6387 static asection mips_elf_acom_section;
6388 static asymbol mips_elf_acom_symbol;
6389 static asymbol *mips_elf_acom_symbol_ptr;
6390
6391 /* This is used for both the 32-bit and the 64-bit ABI. */
6392
6393 void
6394 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6395 {
6396 elf_symbol_type *elfsym;
6397
6398 /* Handle the special MIPS section numbers that a symbol may use. */
6399 elfsym = (elf_symbol_type *) asym;
6400 switch (elfsym->internal_elf_sym.st_shndx)
6401 {
6402 case SHN_MIPS_ACOMMON:
6403 /* This section is used in a dynamically linked executable file.
6404 It is an allocated common section. The dynamic linker can
6405 either resolve these symbols to something in a shared
6406 library, or it can just leave them here. For our purposes,
6407 we can consider these symbols to be in a new section. */
6408 if (mips_elf_acom_section.name == NULL)
6409 {
6410 /* Initialize the acommon section. */
6411 mips_elf_acom_section.name = ".acommon";
6412 mips_elf_acom_section.flags = SEC_ALLOC;
6413 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6414 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6415 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6416 mips_elf_acom_symbol.name = ".acommon";
6417 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6418 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6419 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6420 }
6421 asym->section = &mips_elf_acom_section;
6422 break;
6423
6424 case SHN_COMMON:
6425 /* Common symbols less than the GP size are automatically
6426 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6427 if (asym->value > elf_gp_size (abfd)
6428 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6429 || IRIX_COMPAT (abfd) == ict_irix6)
6430 break;
6431 /* Fall through. */
6432 case SHN_MIPS_SCOMMON:
6433 if (mips_elf_scom_section.name == NULL)
6434 {
6435 /* Initialize the small common section. */
6436 mips_elf_scom_section.name = ".scommon";
6437 mips_elf_scom_section.flags = SEC_IS_COMMON;
6438 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6439 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6440 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6441 mips_elf_scom_symbol.name = ".scommon";
6442 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6443 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6444 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6445 }
6446 asym->section = &mips_elf_scom_section;
6447 asym->value = elfsym->internal_elf_sym.st_size;
6448 break;
6449
6450 case SHN_MIPS_SUNDEFINED:
6451 asym->section = bfd_und_section_ptr;
6452 break;
6453
6454 case SHN_MIPS_TEXT:
6455 {
6456 asection *section = bfd_get_section_by_name (abfd, ".text");
6457
6458 if (section != NULL)
6459 {
6460 asym->section = section;
6461 /* MIPS_TEXT is a bit special, the address is not an offset
6462 to the base of the .text section. So substract the section
6463 base address to make it an offset. */
6464 asym->value -= section->vma;
6465 }
6466 }
6467 break;
6468
6469 case SHN_MIPS_DATA:
6470 {
6471 asection *section = bfd_get_section_by_name (abfd, ".data");
6472
6473 if (section != NULL)
6474 {
6475 asym->section = section;
6476 /* MIPS_DATA is a bit special, the address is not an offset
6477 to the base of the .data section. So substract the section
6478 base address to make it an offset. */
6479 asym->value -= section->vma;
6480 }
6481 }
6482 break;
6483 }
6484
6485 /* If this is an odd-valued function symbol, assume it's a MIPS16
6486 or microMIPS one. */
6487 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6488 && (asym->value & 1) != 0)
6489 {
6490 asym->value--;
6491 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6492 elfsym->internal_elf_sym.st_other
6493 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6494 else
6495 elfsym->internal_elf_sym.st_other
6496 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6497 }
6498 }
6499 \f
6500 /* Implement elf_backend_eh_frame_address_size. This differs from
6501 the default in the way it handles EABI64.
6502
6503 EABI64 was originally specified as an LP64 ABI, and that is what
6504 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6505 historically accepted the combination of -mabi=eabi and -mlong32,
6506 and this ILP32 variation has become semi-official over time.
6507 Both forms use elf32 and have pointer-sized FDE addresses.
6508
6509 If an EABI object was generated by GCC 4.0 or above, it will have
6510 an empty .gcc_compiled_longXX section, where XX is the size of longs
6511 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6512 have no special marking to distinguish them from LP64 objects.
6513
6514 We don't want users of the official LP64 ABI to be punished for the
6515 existence of the ILP32 variant, but at the same time, we don't want
6516 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6517 We therefore take the following approach:
6518
6519 - If ABFD contains a .gcc_compiled_longXX section, use it to
6520 determine the pointer size.
6521
6522 - Otherwise check the type of the first relocation. Assume that
6523 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6524
6525 - Otherwise punt.
6526
6527 The second check is enough to detect LP64 objects generated by pre-4.0
6528 compilers because, in the kind of output generated by those compilers,
6529 the first relocation will be associated with either a CIE personality
6530 routine or an FDE start address. Furthermore, the compilers never
6531 used a special (non-pointer) encoding for this ABI.
6532
6533 Checking the relocation type should also be safe because there is no
6534 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6535 did so. */
6536
6537 unsigned int
6538 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6539 {
6540 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6541 return 8;
6542 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6543 {
6544 bfd_boolean long32_p, long64_p;
6545
6546 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6547 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6548 if (long32_p && long64_p)
6549 return 0;
6550 if (long32_p)
6551 return 4;
6552 if (long64_p)
6553 return 8;
6554
6555 if (sec->reloc_count > 0
6556 && elf_section_data (sec)->relocs != NULL
6557 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6558 == R_MIPS_64))
6559 return 8;
6560
6561 return 0;
6562 }
6563 return 4;
6564 }
6565 \f
6566 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6567 relocations against two unnamed section symbols to resolve to the
6568 same address. For example, if we have code like:
6569
6570 lw $4,%got_disp(.data)($gp)
6571 lw $25,%got_disp(.text)($gp)
6572 jalr $25
6573
6574 then the linker will resolve both relocations to .data and the program
6575 will jump there rather than to .text.
6576
6577 We can work around this problem by giving names to local section symbols.
6578 This is also what the MIPSpro tools do. */
6579
6580 bfd_boolean
6581 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6582 {
6583 return SGI_COMPAT (abfd);
6584 }
6585 \f
6586 /* Work over a section just before writing it out. This routine is
6587 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6588 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6589 a better way. */
6590
6591 bfd_boolean
6592 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6593 {
6594 if (hdr->sh_type == SHT_MIPS_REGINFO
6595 && hdr->sh_size > 0)
6596 {
6597 bfd_byte buf[4];
6598
6599 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6600 BFD_ASSERT (hdr->contents == NULL);
6601
6602 if (bfd_seek (abfd,
6603 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6604 SEEK_SET) != 0)
6605 return FALSE;
6606 H_PUT_32 (abfd, elf_gp (abfd), buf);
6607 if (bfd_bwrite (buf, 4, abfd) != 4)
6608 return FALSE;
6609 }
6610
6611 if (hdr->sh_type == SHT_MIPS_OPTIONS
6612 && hdr->bfd_section != NULL
6613 && mips_elf_section_data (hdr->bfd_section) != NULL
6614 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6615 {
6616 bfd_byte *contents, *l, *lend;
6617
6618 /* We stored the section contents in the tdata field in the
6619 set_section_contents routine. We save the section contents
6620 so that we don't have to read them again.
6621 At this point we know that elf_gp is set, so we can look
6622 through the section contents to see if there is an
6623 ODK_REGINFO structure. */
6624
6625 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6626 l = contents;
6627 lend = contents + hdr->sh_size;
6628 while (l + sizeof (Elf_External_Options) <= lend)
6629 {
6630 Elf_Internal_Options intopt;
6631
6632 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6633 &intopt);
6634 if (intopt.size < sizeof (Elf_External_Options))
6635 {
6636 (*_bfd_error_handler)
6637 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6638 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6639 break;
6640 }
6641 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6642 {
6643 bfd_byte buf[8];
6644
6645 if (bfd_seek (abfd,
6646 (hdr->sh_offset
6647 + (l - contents)
6648 + sizeof (Elf_External_Options)
6649 + (sizeof (Elf64_External_RegInfo) - 8)),
6650 SEEK_SET) != 0)
6651 return FALSE;
6652 H_PUT_64 (abfd, elf_gp (abfd), buf);
6653 if (bfd_bwrite (buf, 8, abfd) != 8)
6654 return FALSE;
6655 }
6656 else if (intopt.kind == ODK_REGINFO)
6657 {
6658 bfd_byte buf[4];
6659
6660 if (bfd_seek (abfd,
6661 (hdr->sh_offset
6662 + (l - contents)
6663 + sizeof (Elf_External_Options)
6664 + (sizeof (Elf32_External_RegInfo) - 4)),
6665 SEEK_SET) != 0)
6666 return FALSE;
6667 H_PUT_32 (abfd, elf_gp (abfd), buf);
6668 if (bfd_bwrite (buf, 4, abfd) != 4)
6669 return FALSE;
6670 }
6671 l += intopt.size;
6672 }
6673 }
6674
6675 if (hdr->bfd_section != NULL)
6676 {
6677 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6678
6679 /* .sbss is not handled specially here because the GNU/Linux
6680 prelinker can convert .sbss from NOBITS to PROGBITS and
6681 changing it back to NOBITS breaks the binary. The entry in
6682 _bfd_mips_elf_special_sections will ensure the correct flags
6683 are set on .sbss if BFD creates it without reading it from an
6684 input file, and without special handling here the flags set
6685 on it in an input file will be followed. */
6686 if (strcmp (name, ".sdata") == 0
6687 || strcmp (name, ".lit8") == 0
6688 || strcmp (name, ".lit4") == 0)
6689 {
6690 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6691 hdr->sh_type = SHT_PROGBITS;
6692 }
6693 else if (strcmp (name, ".srdata") == 0)
6694 {
6695 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6696 hdr->sh_type = SHT_PROGBITS;
6697 }
6698 else if (strcmp (name, ".compact_rel") == 0)
6699 {
6700 hdr->sh_flags = 0;
6701 hdr->sh_type = SHT_PROGBITS;
6702 }
6703 else if (strcmp (name, ".rtproc") == 0)
6704 {
6705 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6706 {
6707 unsigned int adjust;
6708
6709 adjust = hdr->sh_size % hdr->sh_addralign;
6710 if (adjust != 0)
6711 hdr->sh_size += hdr->sh_addralign - adjust;
6712 }
6713 }
6714 }
6715
6716 return TRUE;
6717 }
6718
6719 /* Handle a MIPS specific section when reading an object file. This
6720 is called when elfcode.h finds a section with an unknown type.
6721 This routine supports both the 32-bit and 64-bit ELF ABI.
6722
6723 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6724 how to. */
6725
6726 bfd_boolean
6727 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6728 Elf_Internal_Shdr *hdr,
6729 const char *name,
6730 int shindex)
6731 {
6732 flagword flags = 0;
6733
6734 /* There ought to be a place to keep ELF backend specific flags, but
6735 at the moment there isn't one. We just keep track of the
6736 sections by their name, instead. Fortunately, the ABI gives
6737 suggested names for all the MIPS specific sections, so we will
6738 probably get away with this. */
6739 switch (hdr->sh_type)
6740 {
6741 case SHT_MIPS_LIBLIST:
6742 if (strcmp (name, ".liblist") != 0)
6743 return FALSE;
6744 break;
6745 case SHT_MIPS_MSYM:
6746 if (strcmp (name, ".msym") != 0)
6747 return FALSE;
6748 break;
6749 case SHT_MIPS_CONFLICT:
6750 if (strcmp (name, ".conflict") != 0)
6751 return FALSE;
6752 break;
6753 case SHT_MIPS_GPTAB:
6754 if (! CONST_STRNEQ (name, ".gptab."))
6755 return FALSE;
6756 break;
6757 case SHT_MIPS_UCODE:
6758 if (strcmp (name, ".ucode") != 0)
6759 return FALSE;
6760 break;
6761 case SHT_MIPS_DEBUG:
6762 if (strcmp (name, ".mdebug") != 0)
6763 return FALSE;
6764 flags = SEC_DEBUGGING;
6765 break;
6766 case SHT_MIPS_REGINFO:
6767 if (strcmp (name, ".reginfo") != 0
6768 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6769 return FALSE;
6770 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6771 break;
6772 case SHT_MIPS_IFACE:
6773 if (strcmp (name, ".MIPS.interfaces") != 0)
6774 return FALSE;
6775 break;
6776 case SHT_MIPS_CONTENT:
6777 if (! CONST_STRNEQ (name, ".MIPS.content"))
6778 return FALSE;
6779 break;
6780 case SHT_MIPS_OPTIONS:
6781 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6782 return FALSE;
6783 break;
6784 case SHT_MIPS_DWARF:
6785 if (! CONST_STRNEQ (name, ".debug_")
6786 && ! CONST_STRNEQ (name, ".zdebug_"))
6787 return FALSE;
6788 break;
6789 case SHT_MIPS_SYMBOL_LIB:
6790 if (strcmp (name, ".MIPS.symlib") != 0)
6791 return FALSE;
6792 break;
6793 case SHT_MIPS_EVENTS:
6794 if (! CONST_STRNEQ (name, ".MIPS.events")
6795 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6796 return FALSE;
6797 break;
6798 default:
6799 break;
6800 }
6801
6802 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6803 return FALSE;
6804
6805 if (flags)
6806 {
6807 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6808 (bfd_get_section_flags (abfd,
6809 hdr->bfd_section)
6810 | flags)))
6811 return FALSE;
6812 }
6813
6814 /* FIXME: We should record sh_info for a .gptab section. */
6815
6816 /* For a .reginfo section, set the gp value in the tdata information
6817 from the contents of this section. We need the gp value while
6818 processing relocs, so we just get it now. The .reginfo section
6819 is not used in the 64-bit MIPS ELF ABI. */
6820 if (hdr->sh_type == SHT_MIPS_REGINFO)
6821 {
6822 Elf32_External_RegInfo ext;
6823 Elf32_RegInfo s;
6824
6825 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6826 &ext, 0, sizeof ext))
6827 return FALSE;
6828 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6829 elf_gp (abfd) = s.ri_gp_value;
6830 }
6831
6832 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6833 set the gp value based on what we find. We may see both
6834 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6835 they should agree. */
6836 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6837 {
6838 bfd_byte *contents, *l, *lend;
6839
6840 contents = bfd_malloc (hdr->sh_size);
6841 if (contents == NULL)
6842 return FALSE;
6843 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6844 0, hdr->sh_size))
6845 {
6846 free (contents);
6847 return FALSE;
6848 }
6849 l = contents;
6850 lend = contents + hdr->sh_size;
6851 while (l + sizeof (Elf_External_Options) <= lend)
6852 {
6853 Elf_Internal_Options intopt;
6854
6855 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6856 &intopt);
6857 if (intopt.size < sizeof (Elf_External_Options))
6858 {
6859 (*_bfd_error_handler)
6860 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6861 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6862 break;
6863 }
6864 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6865 {
6866 Elf64_Internal_RegInfo intreg;
6867
6868 bfd_mips_elf64_swap_reginfo_in
6869 (abfd,
6870 ((Elf64_External_RegInfo *)
6871 (l + sizeof (Elf_External_Options))),
6872 &intreg);
6873 elf_gp (abfd) = intreg.ri_gp_value;
6874 }
6875 else if (intopt.kind == ODK_REGINFO)
6876 {
6877 Elf32_RegInfo intreg;
6878
6879 bfd_mips_elf32_swap_reginfo_in
6880 (abfd,
6881 ((Elf32_External_RegInfo *)
6882 (l + sizeof (Elf_External_Options))),
6883 &intreg);
6884 elf_gp (abfd) = intreg.ri_gp_value;
6885 }
6886 l += intopt.size;
6887 }
6888 free (contents);
6889 }
6890
6891 return TRUE;
6892 }
6893
6894 /* Set the correct type for a MIPS ELF section. We do this by the
6895 section name, which is a hack, but ought to work. This routine is
6896 used by both the 32-bit and the 64-bit ABI. */
6897
6898 bfd_boolean
6899 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6900 {
6901 const char *name = bfd_get_section_name (abfd, sec);
6902
6903 if (strcmp (name, ".liblist") == 0)
6904 {
6905 hdr->sh_type = SHT_MIPS_LIBLIST;
6906 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6907 /* The sh_link field is set in final_write_processing. */
6908 }
6909 else if (strcmp (name, ".conflict") == 0)
6910 hdr->sh_type = SHT_MIPS_CONFLICT;
6911 else if (CONST_STRNEQ (name, ".gptab."))
6912 {
6913 hdr->sh_type = SHT_MIPS_GPTAB;
6914 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6915 /* The sh_info field is set in final_write_processing. */
6916 }
6917 else if (strcmp (name, ".ucode") == 0)
6918 hdr->sh_type = SHT_MIPS_UCODE;
6919 else if (strcmp (name, ".mdebug") == 0)
6920 {
6921 hdr->sh_type = SHT_MIPS_DEBUG;
6922 /* In a shared object on IRIX 5.3, the .mdebug section has an
6923 entsize of 0. FIXME: Does this matter? */
6924 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6925 hdr->sh_entsize = 0;
6926 else
6927 hdr->sh_entsize = 1;
6928 }
6929 else if (strcmp (name, ".reginfo") == 0)
6930 {
6931 hdr->sh_type = SHT_MIPS_REGINFO;
6932 /* In a shared object on IRIX 5.3, the .reginfo section has an
6933 entsize of 0x18. FIXME: Does this matter? */
6934 if (SGI_COMPAT (abfd))
6935 {
6936 if ((abfd->flags & DYNAMIC) != 0)
6937 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6938 else
6939 hdr->sh_entsize = 1;
6940 }
6941 else
6942 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6943 }
6944 else if (SGI_COMPAT (abfd)
6945 && (strcmp (name, ".hash") == 0
6946 || strcmp (name, ".dynamic") == 0
6947 || strcmp (name, ".dynstr") == 0))
6948 {
6949 if (SGI_COMPAT (abfd))
6950 hdr->sh_entsize = 0;
6951 #if 0
6952 /* This isn't how the IRIX6 linker behaves. */
6953 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6954 #endif
6955 }
6956 else if (strcmp (name, ".got") == 0
6957 || strcmp (name, ".srdata") == 0
6958 || strcmp (name, ".sdata") == 0
6959 || strcmp (name, ".sbss") == 0
6960 || strcmp (name, ".lit4") == 0
6961 || strcmp (name, ".lit8") == 0)
6962 hdr->sh_flags |= SHF_MIPS_GPREL;
6963 else if (strcmp (name, ".MIPS.interfaces") == 0)
6964 {
6965 hdr->sh_type = SHT_MIPS_IFACE;
6966 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6967 }
6968 else if (CONST_STRNEQ (name, ".MIPS.content"))
6969 {
6970 hdr->sh_type = SHT_MIPS_CONTENT;
6971 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6972 /* The sh_info field is set in final_write_processing. */
6973 }
6974 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6975 {
6976 hdr->sh_type = SHT_MIPS_OPTIONS;
6977 hdr->sh_entsize = 1;
6978 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6979 }
6980 else if (CONST_STRNEQ (name, ".debug_")
6981 || CONST_STRNEQ (name, ".zdebug_"))
6982 {
6983 hdr->sh_type = SHT_MIPS_DWARF;
6984
6985 /* Irix facilities such as libexc expect a single .debug_frame
6986 per executable, the system ones have NOSTRIP set and the linker
6987 doesn't merge sections with different flags so ... */
6988 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6989 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6990 }
6991 else if (strcmp (name, ".MIPS.symlib") == 0)
6992 {
6993 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6994 /* The sh_link and sh_info fields are set in
6995 final_write_processing. */
6996 }
6997 else if (CONST_STRNEQ (name, ".MIPS.events")
6998 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6999 {
7000 hdr->sh_type = SHT_MIPS_EVENTS;
7001 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7002 /* The sh_link field is set in final_write_processing. */
7003 }
7004 else if (strcmp (name, ".msym") == 0)
7005 {
7006 hdr->sh_type = SHT_MIPS_MSYM;
7007 hdr->sh_flags |= SHF_ALLOC;
7008 hdr->sh_entsize = 8;
7009 }
7010
7011 /* The generic elf_fake_sections will set up REL_HDR using the default
7012 kind of relocations. We used to set up a second header for the
7013 non-default kind of relocations here, but only NewABI would use
7014 these, and the IRIX ld doesn't like resulting empty RELA sections.
7015 Thus we create those header only on demand now. */
7016
7017 return TRUE;
7018 }
7019
7020 /* Given a BFD section, try to locate the corresponding ELF section
7021 index. This is used by both the 32-bit and the 64-bit ABI.
7022 Actually, it's not clear to me that the 64-bit ABI supports these,
7023 but for non-PIC objects we will certainly want support for at least
7024 the .scommon section. */
7025
7026 bfd_boolean
7027 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7028 asection *sec, int *retval)
7029 {
7030 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7031 {
7032 *retval = SHN_MIPS_SCOMMON;
7033 return TRUE;
7034 }
7035 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7036 {
7037 *retval = SHN_MIPS_ACOMMON;
7038 return TRUE;
7039 }
7040 return FALSE;
7041 }
7042 \f
7043 /* Hook called by the linker routine which adds symbols from an object
7044 file. We must handle the special MIPS section numbers here. */
7045
7046 bfd_boolean
7047 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7048 Elf_Internal_Sym *sym, const char **namep,
7049 flagword *flagsp ATTRIBUTE_UNUSED,
7050 asection **secp, bfd_vma *valp)
7051 {
7052 if (SGI_COMPAT (abfd)
7053 && (abfd->flags & DYNAMIC) != 0
7054 && strcmp (*namep, "_rld_new_interface") == 0)
7055 {
7056 /* Skip IRIX5 rld entry name. */
7057 *namep = NULL;
7058 return TRUE;
7059 }
7060
7061 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7062 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7063 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7064 a magic symbol resolved by the linker, we ignore this bogus definition
7065 of _gp_disp. New ABI objects do not suffer from this problem so this
7066 is not done for them. */
7067 if (!NEWABI_P(abfd)
7068 && (sym->st_shndx == SHN_ABS)
7069 && (strcmp (*namep, "_gp_disp") == 0))
7070 {
7071 *namep = NULL;
7072 return TRUE;
7073 }
7074
7075 switch (sym->st_shndx)
7076 {
7077 case SHN_COMMON:
7078 /* Common symbols less than the GP size are automatically
7079 treated as SHN_MIPS_SCOMMON symbols. */
7080 if (sym->st_size > elf_gp_size (abfd)
7081 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7082 || IRIX_COMPAT (abfd) == ict_irix6)
7083 break;
7084 /* Fall through. */
7085 case SHN_MIPS_SCOMMON:
7086 *secp = bfd_make_section_old_way (abfd, ".scommon");
7087 (*secp)->flags |= SEC_IS_COMMON;
7088 *valp = sym->st_size;
7089 break;
7090
7091 case SHN_MIPS_TEXT:
7092 /* This section is used in a shared object. */
7093 if (elf_tdata (abfd)->elf_text_section == NULL)
7094 {
7095 asymbol *elf_text_symbol;
7096 asection *elf_text_section;
7097 bfd_size_type amt = sizeof (asection);
7098
7099 elf_text_section = bfd_zalloc (abfd, amt);
7100 if (elf_text_section == NULL)
7101 return FALSE;
7102
7103 amt = sizeof (asymbol);
7104 elf_text_symbol = bfd_zalloc (abfd, amt);
7105 if (elf_text_symbol == NULL)
7106 return FALSE;
7107
7108 /* Initialize the section. */
7109
7110 elf_tdata (abfd)->elf_text_section = elf_text_section;
7111 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7112
7113 elf_text_section->symbol = elf_text_symbol;
7114 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7115
7116 elf_text_section->name = ".text";
7117 elf_text_section->flags = SEC_NO_FLAGS;
7118 elf_text_section->output_section = NULL;
7119 elf_text_section->owner = abfd;
7120 elf_text_symbol->name = ".text";
7121 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7122 elf_text_symbol->section = elf_text_section;
7123 }
7124 /* This code used to do *secp = bfd_und_section_ptr if
7125 info->shared. I don't know why, and that doesn't make sense,
7126 so I took it out. */
7127 *secp = elf_tdata (abfd)->elf_text_section;
7128 break;
7129
7130 case SHN_MIPS_ACOMMON:
7131 /* Fall through. XXX Can we treat this as allocated data? */
7132 case SHN_MIPS_DATA:
7133 /* This section is used in a shared object. */
7134 if (elf_tdata (abfd)->elf_data_section == NULL)
7135 {
7136 asymbol *elf_data_symbol;
7137 asection *elf_data_section;
7138 bfd_size_type amt = sizeof (asection);
7139
7140 elf_data_section = bfd_zalloc (abfd, amt);
7141 if (elf_data_section == NULL)
7142 return FALSE;
7143
7144 amt = sizeof (asymbol);
7145 elf_data_symbol = bfd_zalloc (abfd, amt);
7146 if (elf_data_symbol == NULL)
7147 return FALSE;
7148
7149 /* Initialize the section. */
7150
7151 elf_tdata (abfd)->elf_data_section = elf_data_section;
7152 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7153
7154 elf_data_section->symbol = elf_data_symbol;
7155 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7156
7157 elf_data_section->name = ".data";
7158 elf_data_section->flags = SEC_NO_FLAGS;
7159 elf_data_section->output_section = NULL;
7160 elf_data_section->owner = abfd;
7161 elf_data_symbol->name = ".data";
7162 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7163 elf_data_symbol->section = elf_data_section;
7164 }
7165 /* This code used to do *secp = bfd_und_section_ptr if
7166 info->shared. I don't know why, and that doesn't make sense,
7167 so I took it out. */
7168 *secp = elf_tdata (abfd)->elf_data_section;
7169 break;
7170
7171 case SHN_MIPS_SUNDEFINED:
7172 *secp = bfd_und_section_ptr;
7173 break;
7174 }
7175
7176 if (SGI_COMPAT (abfd)
7177 && ! info->shared
7178 && info->output_bfd->xvec == abfd->xvec
7179 && strcmp (*namep, "__rld_obj_head") == 0)
7180 {
7181 struct elf_link_hash_entry *h;
7182 struct bfd_link_hash_entry *bh;
7183
7184 /* Mark __rld_obj_head as dynamic. */
7185 bh = NULL;
7186 if (! (_bfd_generic_link_add_one_symbol
7187 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7188 get_elf_backend_data (abfd)->collect, &bh)))
7189 return FALSE;
7190
7191 h = (struct elf_link_hash_entry *) bh;
7192 h->non_elf = 0;
7193 h->def_regular = 1;
7194 h->type = STT_OBJECT;
7195
7196 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7197 return FALSE;
7198
7199 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7200 mips_elf_hash_table (info)->rld_symbol = h;
7201 }
7202
7203 /* If this is a mips16 text symbol, add 1 to the value to make it
7204 odd. This will cause something like .word SYM to come up with
7205 the right value when it is loaded into the PC. */
7206 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7207 ++*valp;
7208
7209 return TRUE;
7210 }
7211
7212 /* This hook function is called before the linker writes out a global
7213 symbol. We mark symbols as small common if appropriate. This is
7214 also where we undo the increment of the value for a mips16 symbol. */
7215
7216 int
7217 _bfd_mips_elf_link_output_symbol_hook
7218 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7219 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7220 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7221 {
7222 /* If we see a common symbol, which implies a relocatable link, then
7223 if a symbol was small common in an input file, mark it as small
7224 common in the output file. */
7225 if (sym->st_shndx == SHN_COMMON
7226 && strcmp (input_sec->name, ".scommon") == 0)
7227 sym->st_shndx = SHN_MIPS_SCOMMON;
7228
7229 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7230 sym->st_value &= ~1;
7231
7232 return 1;
7233 }
7234 \f
7235 /* Functions for the dynamic linker. */
7236
7237 /* Create dynamic sections when linking against a dynamic object. */
7238
7239 bfd_boolean
7240 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7241 {
7242 struct elf_link_hash_entry *h;
7243 struct bfd_link_hash_entry *bh;
7244 flagword flags;
7245 register asection *s;
7246 const char * const *namep;
7247 struct mips_elf_link_hash_table *htab;
7248
7249 htab = mips_elf_hash_table (info);
7250 BFD_ASSERT (htab != NULL);
7251
7252 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7253 | SEC_LINKER_CREATED | SEC_READONLY);
7254
7255 /* The psABI requires a read-only .dynamic section, but the VxWorks
7256 EABI doesn't. */
7257 if (!htab->is_vxworks)
7258 {
7259 s = bfd_get_linker_section (abfd, ".dynamic");
7260 if (s != NULL)
7261 {
7262 if (! bfd_set_section_flags (abfd, s, flags))
7263 return FALSE;
7264 }
7265 }
7266
7267 /* We need to create .got section. */
7268 if (!mips_elf_create_got_section (abfd, info))
7269 return FALSE;
7270
7271 if (! mips_elf_rel_dyn_section (info, TRUE))
7272 return FALSE;
7273
7274 /* Create .stub section. */
7275 s = bfd_make_section_anyway_with_flags (abfd,
7276 MIPS_ELF_STUB_SECTION_NAME (abfd),
7277 flags | SEC_CODE);
7278 if (s == NULL
7279 || ! bfd_set_section_alignment (abfd, s,
7280 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7281 return FALSE;
7282 htab->sstubs = s;
7283
7284 if (!mips_elf_hash_table (info)->use_rld_obj_head
7285 && !info->shared
7286 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7287 {
7288 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7289 flags &~ (flagword) SEC_READONLY);
7290 if (s == NULL
7291 || ! bfd_set_section_alignment (abfd, s,
7292 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7293 return FALSE;
7294 }
7295
7296 /* On IRIX5, we adjust add some additional symbols and change the
7297 alignments of several sections. There is no ABI documentation
7298 indicating that this is necessary on IRIX6, nor any evidence that
7299 the linker takes such action. */
7300 if (IRIX_COMPAT (abfd) == ict_irix5)
7301 {
7302 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7303 {
7304 bh = NULL;
7305 if (! (_bfd_generic_link_add_one_symbol
7306 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7307 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7308 return FALSE;
7309
7310 h = (struct elf_link_hash_entry *) bh;
7311 h->non_elf = 0;
7312 h->def_regular = 1;
7313 h->type = STT_SECTION;
7314
7315 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7316 return FALSE;
7317 }
7318
7319 /* We need to create a .compact_rel section. */
7320 if (SGI_COMPAT (abfd))
7321 {
7322 if (!mips_elf_create_compact_rel_section (abfd, info))
7323 return FALSE;
7324 }
7325
7326 /* Change alignments of some sections. */
7327 s = bfd_get_linker_section (abfd, ".hash");
7328 if (s != NULL)
7329 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7330 s = bfd_get_linker_section (abfd, ".dynsym");
7331 if (s != NULL)
7332 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7333 s = bfd_get_linker_section (abfd, ".dynstr");
7334 if (s != NULL)
7335 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7336 /* ??? */
7337 s = bfd_get_section_by_name (abfd, ".reginfo");
7338 if (s != NULL)
7339 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7340 s = bfd_get_linker_section (abfd, ".dynamic");
7341 if (s != NULL)
7342 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7343 }
7344
7345 if (!info->shared)
7346 {
7347 const char *name;
7348
7349 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7350 bh = NULL;
7351 if (!(_bfd_generic_link_add_one_symbol
7352 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7353 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7354 return FALSE;
7355
7356 h = (struct elf_link_hash_entry *) bh;
7357 h->non_elf = 0;
7358 h->def_regular = 1;
7359 h->type = STT_SECTION;
7360
7361 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7362 return FALSE;
7363
7364 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7365 {
7366 /* __rld_map is a four byte word located in the .data section
7367 and is filled in by the rtld to contain a pointer to
7368 the _r_debug structure. Its symbol value will be set in
7369 _bfd_mips_elf_finish_dynamic_symbol. */
7370 s = bfd_get_linker_section (abfd, ".rld_map");
7371 BFD_ASSERT (s != NULL);
7372
7373 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7374 bh = NULL;
7375 if (!(_bfd_generic_link_add_one_symbol
7376 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7377 get_elf_backend_data (abfd)->collect, &bh)))
7378 return FALSE;
7379
7380 h = (struct elf_link_hash_entry *) bh;
7381 h->non_elf = 0;
7382 h->def_regular = 1;
7383 h->type = STT_OBJECT;
7384
7385 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7386 return FALSE;
7387 mips_elf_hash_table (info)->rld_symbol = h;
7388 }
7389 }
7390
7391 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7392 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7393 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7394 return FALSE;
7395
7396 /* Cache the sections created above. */
7397 htab->splt = bfd_get_linker_section (abfd, ".plt");
7398 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7399 if (htab->is_vxworks)
7400 {
7401 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7402 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7403 }
7404 else
7405 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7406 if (!htab->sdynbss
7407 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7408 || !htab->srelplt
7409 || !htab->splt)
7410 abort ();
7411
7412 if (htab->is_vxworks)
7413 {
7414 /* Do the usual VxWorks handling. */
7415 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7416 return FALSE;
7417
7418 /* Work out the PLT sizes. */
7419 if (info->shared)
7420 {
7421 htab->plt_header_size
7422 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7423 htab->plt_entry_size
7424 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7425 }
7426 else
7427 {
7428 htab->plt_header_size
7429 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7430 htab->plt_entry_size
7431 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7432 }
7433 }
7434 else if (!info->shared)
7435 {
7436 /* All variants of the plt0 entry are the same size. */
7437 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7438 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7439 }
7440
7441 return TRUE;
7442 }
7443 \f
7444 /* Return true if relocation REL against section SEC is a REL rather than
7445 RELA relocation. RELOCS is the first relocation in the section and
7446 ABFD is the bfd that contains SEC. */
7447
7448 static bfd_boolean
7449 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7450 const Elf_Internal_Rela *relocs,
7451 const Elf_Internal_Rela *rel)
7452 {
7453 Elf_Internal_Shdr *rel_hdr;
7454 const struct elf_backend_data *bed;
7455
7456 /* To determine which flavor of relocation this is, we depend on the
7457 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7458 rel_hdr = elf_section_data (sec)->rel.hdr;
7459 if (rel_hdr == NULL)
7460 return FALSE;
7461 bed = get_elf_backend_data (abfd);
7462 return ((size_t) (rel - relocs)
7463 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7464 }
7465
7466 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7467 HOWTO is the relocation's howto and CONTENTS points to the contents
7468 of the section that REL is against. */
7469
7470 static bfd_vma
7471 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7472 reloc_howto_type *howto, bfd_byte *contents)
7473 {
7474 bfd_byte *location;
7475 unsigned int r_type;
7476 bfd_vma addend;
7477
7478 r_type = ELF_R_TYPE (abfd, rel->r_info);
7479 location = contents + rel->r_offset;
7480
7481 /* Get the addend, which is stored in the input file. */
7482 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7483 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7484 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7485
7486 return addend & howto->src_mask;
7487 }
7488
7489 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7490 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7491 and update *ADDEND with the final addend. Return true on success
7492 or false if the LO16 could not be found. RELEND is the exclusive
7493 upper bound on the relocations for REL's section. */
7494
7495 static bfd_boolean
7496 mips_elf_add_lo16_rel_addend (bfd *abfd,
7497 const Elf_Internal_Rela *rel,
7498 const Elf_Internal_Rela *relend,
7499 bfd_byte *contents, bfd_vma *addend)
7500 {
7501 unsigned int r_type, lo16_type;
7502 const Elf_Internal_Rela *lo16_relocation;
7503 reloc_howto_type *lo16_howto;
7504 bfd_vma l;
7505
7506 r_type = ELF_R_TYPE (abfd, rel->r_info);
7507 if (mips16_reloc_p (r_type))
7508 lo16_type = R_MIPS16_LO16;
7509 else if (micromips_reloc_p (r_type))
7510 lo16_type = R_MICROMIPS_LO16;
7511 else
7512 lo16_type = R_MIPS_LO16;
7513
7514 /* The combined value is the sum of the HI16 addend, left-shifted by
7515 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7516 code does a `lui' of the HI16 value, and then an `addiu' of the
7517 LO16 value.)
7518
7519 Scan ahead to find a matching LO16 relocation.
7520
7521 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7522 be immediately following. However, for the IRIX6 ABI, the next
7523 relocation may be a composed relocation consisting of several
7524 relocations for the same address. In that case, the R_MIPS_LO16
7525 relocation may occur as one of these. We permit a similar
7526 extension in general, as that is useful for GCC.
7527
7528 In some cases GCC dead code elimination removes the LO16 but keeps
7529 the corresponding HI16. This is strictly speaking a violation of
7530 the ABI but not immediately harmful. */
7531 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7532 if (lo16_relocation == NULL)
7533 return FALSE;
7534
7535 /* Obtain the addend kept there. */
7536 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7537 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7538
7539 l <<= lo16_howto->rightshift;
7540 l = _bfd_mips_elf_sign_extend (l, 16);
7541
7542 *addend <<= 16;
7543 *addend += l;
7544 return TRUE;
7545 }
7546
7547 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7548 store the contents in *CONTENTS on success. Assume that *CONTENTS
7549 already holds the contents if it is nonull on entry. */
7550
7551 static bfd_boolean
7552 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7553 {
7554 if (*contents)
7555 return TRUE;
7556
7557 /* Get cached copy if it exists. */
7558 if (elf_section_data (sec)->this_hdr.contents != NULL)
7559 {
7560 *contents = elf_section_data (sec)->this_hdr.contents;
7561 return TRUE;
7562 }
7563
7564 return bfd_malloc_and_get_section (abfd, sec, contents);
7565 }
7566
7567 /* Look through the relocs for a section during the first phase, and
7568 allocate space in the global offset table. */
7569
7570 bfd_boolean
7571 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7572 asection *sec, const Elf_Internal_Rela *relocs)
7573 {
7574 const char *name;
7575 bfd *dynobj;
7576 Elf_Internal_Shdr *symtab_hdr;
7577 struct elf_link_hash_entry **sym_hashes;
7578 size_t extsymoff;
7579 const Elf_Internal_Rela *rel;
7580 const Elf_Internal_Rela *rel_end;
7581 asection *sreloc;
7582 const struct elf_backend_data *bed;
7583 struct mips_elf_link_hash_table *htab;
7584 bfd_byte *contents;
7585 bfd_vma addend;
7586 reloc_howto_type *howto;
7587
7588 if (info->relocatable)
7589 return TRUE;
7590
7591 htab = mips_elf_hash_table (info);
7592 BFD_ASSERT (htab != NULL);
7593
7594 dynobj = elf_hash_table (info)->dynobj;
7595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7596 sym_hashes = elf_sym_hashes (abfd);
7597 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7598
7599 bed = get_elf_backend_data (abfd);
7600 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7601
7602 /* Check for the mips16 stub sections. */
7603
7604 name = bfd_get_section_name (abfd, sec);
7605 if (FN_STUB_P (name))
7606 {
7607 unsigned long r_symndx;
7608
7609 /* Look at the relocation information to figure out which symbol
7610 this is for. */
7611
7612 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7613 if (r_symndx == 0)
7614 {
7615 (*_bfd_error_handler)
7616 (_("%B: Warning: cannot determine the target function for"
7617 " stub section `%s'"),
7618 abfd, name);
7619 bfd_set_error (bfd_error_bad_value);
7620 return FALSE;
7621 }
7622
7623 if (r_symndx < extsymoff
7624 || sym_hashes[r_symndx - extsymoff] == NULL)
7625 {
7626 asection *o;
7627
7628 /* This stub is for a local symbol. This stub will only be
7629 needed if there is some relocation in this BFD, other
7630 than a 16 bit function call, which refers to this symbol. */
7631 for (o = abfd->sections; o != NULL; o = o->next)
7632 {
7633 Elf_Internal_Rela *sec_relocs;
7634 const Elf_Internal_Rela *r, *rend;
7635
7636 /* We can ignore stub sections when looking for relocs. */
7637 if ((o->flags & SEC_RELOC) == 0
7638 || o->reloc_count == 0
7639 || section_allows_mips16_refs_p (o))
7640 continue;
7641
7642 sec_relocs
7643 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7644 info->keep_memory);
7645 if (sec_relocs == NULL)
7646 return FALSE;
7647
7648 rend = sec_relocs + o->reloc_count;
7649 for (r = sec_relocs; r < rend; r++)
7650 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7651 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7652 break;
7653
7654 if (elf_section_data (o)->relocs != sec_relocs)
7655 free (sec_relocs);
7656
7657 if (r < rend)
7658 break;
7659 }
7660
7661 if (o == NULL)
7662 {
7663 /* There is no non-call reloc for this stub, so we do
7664 not need it. Since this function is called before
7665 the linker maps input sections to output sections, we
7666 can easily discard it by setting the SEC_EXCLUDE
7667 flag. */
7668 sec->flags |= SEC_EXCLUDE;
7669 return TRUE;
7670 }
7671
7672 /* Record this stub in an array of local symbol stubs for
7673 this BFD. */
7674 if (elf_tdata (abfd)->local_stubs == NULL)
7675 {
7676 unsigned long symcount;
7677 asection **n;
7678 bfd_size_type amt;
7679
7680 if (elf_bad_symtab (abfd))
7681 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7682 else
7683 symcount = symtab_hdr->sh_info;
7684 amt = symcount * sizeof (asection *);
7685 n = bfd_zalloc (abfd, amt);
7686 if (n == NULL)
7687 return FALSE;
7688 elf_tdata (abfd)->local_stubs = n;
7689 }
7690
7691 sec->flags |= SEC_KEEP;
7692 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7693
7694 /* We don't need to set mips16_stubs_seen in this case.
7695 That flag is used to see whether we need to look through
7696 the global symbol table for stubs. We don't need to set
7697 it here, because we just have a local stub. */
7698 }
7699 else
7700 {
7701 struct mips_elf_link_hash_entry *h;
7702
7703 h = ((struct mips_elf_link_hash_entry *)
7704 sym_hashes[r_symndx - extsymoff]);
7705
7706 while (h->root.root.type == bfd_link_hash_indirect
7707 || h->root.root.type == bfd_link_hash_warning)
7708 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7709
7710 /* H is the symbol this stub is for. */
7711
7712 /* If we already have an appropriate stub for this function, we
7713 don't need another one, so we can discard this one. Since
7714 this function is called before the linker maps input sections
7715 to output sections, we can easily discard it by setting the
7716 SEC_EXCLUDE flag. */
7717 if (h->fn_stub != NULL)
7718 {
7719 sec->flags |= SEC_EXCLUDE;
7720 return TRUE;
7721 }
7722
7723 sec->flags |= SEC_KEEP;
7724 h->fn_stub = sec;
7725 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7726 }
7727 }
7728 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7729 {
7730 unsigned long r_symndx;
7731 struct mips_elf_link_hash_entry *h;
7732 asection **loc;
7733
7734 /* Look at the relocation information to figure out which symbol
7735 this is for. */
7736
7737 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7738 if (r_symndx == 0)
7739 {
7740 (*_bfd_error_handler)
7741 (_("%B: Warning: cannot determine the target function for"
7742 " stub section `%s'"),
7743 abfd, name);
7744 bfd_set_error (bfd_error_bad_value);
7745 return FALSE;
7746 }
7747
7748 if (r_symndx < extsymoff
7749 || sym_hashes[r_symndx - extsymoff] == NULL)
7750 {
7751 asection *o;
7752
7753 /* This stub is for a local symbol. This stub will only be
7754 needed if there is some relocation (R_MIPS16_26) in this BFD
7755 that refers to this symbol. */
7756 for (o = abfd->sections; o != NULL; o = o->next)
7757 {
7758 Elf_Internal_Rela *sec_relocs;
7759 const Elf_Internal_Rela *r, *rend;
7760
7761 /* We can ignore stub sections when looking for relocs. */
7762 if ((o->flags & SEC_RELOC) == 0
7763 || o->reloc_count == 0
7764 || section_allows_mips16_refs_p (o))
7765 continue;
7766
7767 sec_relocs
7768 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7769 info->keep_memory);
7770 if (sec_relocs == NULL)
7771 return FALSE;
7772
7773 rend = sec_relocs + o->reloc_count;
7774 for (r = sec_relocs; r < rend; r++)
7775 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7776 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7777 break;
7778
7779 if (elf_section_data (o)->relocs != sec_relocs)
7780 free (sec_relocs);
7781
7782 if (r < rend)
7783 break;
7784 }
7785
7786 if (o == NULL)
7787 {
7788 /* There is no non-call reloc for this stub, so we do
7789 not need it. Since this function is called before
7790 the linker maps input sections to output sections, we
7791 can easily discard it by setting the SEC_EXCLUDE
7792 flag. */
7793 sec->flags |= SEC_EXCLUDE;
7794 return TRUE;
7795 }
7796
7797 /* Record this stub in an array of local symbol call_stubs for
7798 this BFD. */
7799 if (elf_tdata (abfd)->local_call_stubs == NULL)
7800 {
7801 unsigned long symcount;
7802 asection **n;
7803 bfd_size_type amt;
7804
7805 if (elf_bad_symtab (abfd))
7806 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7807 else
7808 symcount = symtab_hdr->sh_info;
7809 amt = symcount * sizeof (asection *);
7810 n = bfd_zalloc (abfd, amt);
7811 if (n == NULL)
7812 return FALSE;
7813 elf_tdata (abfd)->local_call_stubs = n;
7814 }
7815
7816 sec->flags |= SEC_KEEP;
7817 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7818
7819 /* We don't need to set mips16_stubs_seen in this case.
7820 That flag is used to see whether we need to look through
7821 the global symbol table for stubs. We don't need to set
7822 it here, because we just have a local stub. */
7823 }
7824 else
7825 {
7826 h = ((struct mips_elf_link_hash_entry *)
7827 sym_hashes[r_symndx - extsymoff]);
7828
7829 /* H is the symbol this stub is for. */
7830
7831 if (CALL_FP_STUB_P (name))
7832 loc = &h->call_fp_stub;
7833 else
7834 loc = &h->call_stub;
7835
7836 /* If we already have an appropriate stub for this function, we
7837 don't need another one, so we can discard this one. Since
7838 this function is called before the linker maps input sections
7839 to output sections, we can easily discard it by setting the
7840 SEC_EXCLUDE flag. */
7841 if (*loc != NULL)
7842 {
7843 sec->flags |= SEC_EXCLUDE;
7844 return TRUE;
7845 }
7846
7847 sec->flags |= SEC_KEEP;
7848 *loc = sec;
7849 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7850 }
7851 }
7852
7853 sreloc = NULL;
7854 contents = NULL;
7855 for (rel = relocs; rel < rel_end; ++rel)
7856 {
7857 unsigned long r_symndx;
7858 unsigned int r_type;
7859 struct elf_link_hash_entry *h;
7860 bfd_boolean can_make_dynamic_p;
7861
7862 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7863 r_type = ELF_R_TYPE (abfd, rel->r_info);
7864
7865 if (r_symndx < extsymoff)
7866 h = NULL;
7867 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7868 {
7869 (*_bfd_error_handler)
7870 (_("%B: Malformed reloc detected for section %s"),
7871 abfd, name);
7872 bfd_set_error (bfd_error_bad_value);
7873 return FALSE;
7874 }
7875 else
7876 {
7877 h = sym_hashes[r_symndx - extsymoff];
7878 while (h != NULL
7879 && (h->root.type == bfd_link_hash_indirect
7880 || h->root.type == bfd_link_hash_warning))
7881 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7882 }
7883
7884 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7885 relocation into a dynamic one. */
7886 can_make_dynamic_p = FALSE;
7887 switch (r_type)
7888 {
7889 case R_MIPS_GOT16:
7890 case R_MIPS_CALL16:
7891 case R_MIPS_CALL_HI16:
7892 case R_MIPS_CALL_LO16:
7893 case R_MIPS_GOT_HI16:
7894 case R_MIPS_GOT_LO16:
7895 case R_MIPS_GOT_PAGE:
7896 case R_MIPS_GOT_OFST:
7897 case R_MIPS_GOT_DISP:
7898 case R_MIPS_TLS_GOTTPREL:
7899 case R_MIPS_TLS_GD:
7900 case R_MIPS_TLS_LDM:
7901 case R_MIPS16_GOT16:
7902 case R_MIPS16_CALL16:
7903 case R_MIPS16_TLS_GOTTPREL:
7904 case R_MIPS16_TLS_GD:
7905 case R_MIPS16_TLS_LDM:
7906 case R_MICROMIPS_GOT16:
7907 case R_MICROMIPS_CALL16:
7908 case R_MICROMIPS_CALL_HI16:
7909 case R_MICROMIPS_CALL_LO16:
7910 case R_MICROMIPS_GOT_HI16:
7911 case R_MICROMIPS_GOT_LO16:
7912 case R_MICROMIPS_GOT_PAGE:
7913 case R_MICROMIPS_GOT_OFST:
7914 case R_MICROMIPS_GOT_DISP:
7915 case R_MICROMIPS_TLS_GOTTPREL:
7916 case R_MICROMIPS_TLS_GD:
7917 case R_MICROMIPS_TLS_LDM:
7918 if (dynobj == NULL)
7919 elf_hash_table (info)->dynobj = dynobj = abfd;
7920 if (!mips_elf_create_got_section (dynobj, info))
7921 return FALSE;
7922 if (htab->is_vxworks && !info->shared)
7923 {
7924 (*_bfd_error_handler)
7925 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7926 abfd, (unsigned long) rel->r_offset);
7927 bfd_set_error (bfd_error_bad_value);
7928 return FALSE;
7929 }
7930 break;
7931
7932 /* This is just a hint; it can safely be ignored. Don't set
7933 has_static_relocs for the corresponding symbol. */
7934 case R_MIPS_JALR:
7935 case R_MICROMIPS_JALR:
7936 break;
7937
7938 case R_MIPS_32:
7939 case R_MIPS_REL32:
7940 case R_MIPS_64:
7941 /* In VxWorks executables, references to external symbols
7942 must be handled using copy relocs or PLT entries; it is not
7943 possible to convert this relocation into a dynamic one.
7944
7945 For executables that use PLTs and copy-relocs, we have a
7946 choice between converting the relocation into a dynamic
7947 one or using copy relocations or PLT entries. It is
7948 usually better to do the former, unless the relocation is
7949 against a read-only section. */
7950 if ((info->shared
7951 || (h != NULL
7952 && !htab->is_vxworks
7953 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7954 && !(!info->nocopyreloc
7955 && !PIC_OBJECT_P (abfd)
7956 && MIPS_ELF_READONLY_SECTION (sec))))
7957 && (sec->flags & SEC_ALLOC) != 0)
7958 {
7959 can_make_dynamic_p = TRUE;
7960 if (dynobj == NULL)
7961 elf_hash_table (info)->dynobj = dynobj = abfd;
7962 break;
7963 }
7964 /* For sections that are not SEC_ALLOC a copy reloc would be
7965 output if possible (implying questionable semantics for
7966 read-only data objects) or otherwise the final link would
7967 fail as ld.so will not process them and could not therefore
7968 handle any outstanding dynamic relocations.
7969
7970 For such sections that are also SEC_DEBUGGING, we can avoid
7971 these problems by simply ignoring any relocs as these
7972 sections have a predefined use and we know it is safe to do
7973 so.
7974
7975 This is needed in cases such as a global symbol definition
7976 in a shared library causing a common symbol from an object
7977 file to be converted to an undefined reference. If that
7978 happens, then all the relocations against this symbol from
7979 SEC_DEBUGGING sections in the object file will resolve to
7980 nil. */
7981 if ((sec->flags & SEC_DEBUGGING) != 0)
7982 break;
7983 /* Fall through. */
7984
7985 default:
7986 /* Most static relocations require pointer equality, except
7987 for branches. */
7988 if (h)
7989 h->pointer_equality_needed = TRUE;
7990 /* Fall through. */
7991
7992 case R_MIPS_26:
7993 case R_MIPS_PC16:
7994 case R_MIPS16_26:
7995 case R_MICROMIPS_26_S1:
7996 case R_MICROMIPS_PC7_S1:
7997 case R_MICROMIPS_PC10_S1:
7998 case R_MICROMIPS_PC16_S1:
7999 case R_MICROMIPS_PC23_S2:
8000 if (h)
8001 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
8002 break;
8003 }
8004
8005 if (h)
8006 {
8007 /* Relocations against the special VxWorks __GOTT_BASE__ and
8008 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8009 room for them in .rela.dyn. */
8010 if (is_gott_symbol (info, h))
8011 {
8012 if (sreloc == NULL)
8013 {
8014 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8015 if (sreloc == NULL)
8016 return FALSE;
8017 }
8018 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8019 if (MIPS_ELF_READONLY_SECTION (sec))
8020 /* We tell the dynamic linker that there are
8021 relocations against the text segment. */
8022 info->flags |= DF_TEXTREL;
8023 }
8024 }
8025 else if (call_lo16_reloc_p (r_type)
8026 || got_lo16_reloc_p (r_type)
8027 || got_disp_reloc_p (r_type)
8028 || (got16_reloc_p (r_type) && htab->is_vxworks))
8029 {
8030 /* We may need a local GOT entry for this relocation. We
8031 don't count R_MIPS_GOT_PAGE because we can estimate the
8032 maximum number of pages needed by looking at the size of
8033 the segment. Similar comments apply to R_MIPS*_GOT16 and
8034 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8035 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8036 R_MIPS_CALL_HI16 because these are always followed by an
8037 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8038 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8039 rel->r_addend, info, r_type))
8040 return FALSE;
8041 }
8042
8043 if (h != NULL
8044 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8045 ELF_ST_IS_MIPS16 (h->other)))
8046 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8047
8048 switch (r_type)
8049 {
8050 case R_MIPS_CALL16:
8051 case R_MIPS16_CALL16:
8052 case R_MICROMIPS_CALL16:
8053 if (h == NULL)
8054 {
8055 (*_bfd_error_handler)
8056 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8057 abfd, (unsigned long) rel->r_offset);
8058 bfd_set_error (bfd_error_bad_value);
8059 return FALSE;
8060 }
8061 /* Fall through. */
8062
8063 case R_MIPS_CALL_HI16:
8064 case R_MIPS_CALL_LO16:
8065 case R_MICROMIPS_CALL_HI16:
8066 case R_MICROMIPS_CALL_LO16:
8067 if (h != NULL)
8068 {
8069 /* Make sure there is room in the regular GOT to hold the
8070 function's address. We may eliminate it in favour of
8071 a .got.plt entry later; see mips_elf_count_got_symbols. */
8072 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8073 r_type))
8074 return FALSE;
8075
8076 /* We need a stub, not a plt entry for the undefined
8077 function. But we record it as if it needs plt. See
8078 _bfd_elf_adjust_dynamic_symbol. */
8079 h->needs_plt = 1;
8080 h->type = STT_FUNC;
8081 }
8082 break;
8083
8084 case R_MIPS_GOT_PAGE:
8085 case R_MICROMIPS_GOT_PAGE:
8086 /* If this is a global, overridable symbol, GOT_PAGE will
8087 decay to GOT_DISP, so we'll need a GOT entry for it. */
8088 if (h)
8089 {
8090 struct mips_elf_link_hash_entry *hmips =
8091 (struct mips_elf_link_hash_entry *) h;
8092
8093 /* This symbol is definitely not overridable. */
8094 if (hmips->root.def_regular
8095 && ! (info->shared && ! info->symbolic
8096 && ! hmips->root.forced_local))
8097 h = NULL;
8098 }
8099 /* Fall through. */
8100
8101 case R_MIPS16_GOT16:
8102 case R_MIPS_GOT16:
8103 case R_MIPS_GOT_HI16:
8104 case R_MIPS_GOT_LO16:
8105 case R_MICROMIPS_GOT16:
8106 case R_MICROMIPS_GOT_HI16:
8107 case R_MICROMIPS_GOT_LO16:
8108 if (!h || got_page_reloc_p (r_type))
8109 {
8110 /* This relocation needs (or may need, if h != NULL) a
8111 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8112 know for sure until we know whether the symbol is
8113 preemptible. */
8114 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8115 {
8116 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8117 return FALSE;
8118 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8119 addend = mips_elf_read_rel_addend (abfd, rel,
8120 howto, contents);
8121 if (got16_reloc_p (r_type))
8122 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8123 contents, &addend);
8124 else
8125 addend <<= howto->rightshift;
8126 }
8127 else
8128 addend = rel->r_addend;
8129 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8130 addend))
8131 return FALSE;
8132 }
8133 /* Fall through. */
8134
8135 case R_MIPS_GOT_DISP:
8136 case R_MICROMIPS_GOT_DISP:
8137 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8138 FALSE, r_type))
8139 return FALSE;
8140 break;
8141
8142 case R_MIPS_TLS_GOTTPREL:
8143 case R_MIPS16_TLS_GOTTPREL:
8144 case R_MICROMIPS_TLS_GOTTPREL:
8145 if (info->shared)
8146 info->flags |= DF_STATIC_TLS;
8147 /* Fall through */
8148
8149 case R_MIPS_TLS_LDM:
8150 case R_MIPS16_TLS_LDM:
8151 case R_MICROMIPS_TLS_LDM:
8152 if (tls_ldm_reloc_p (r_type))
8153 {
8154 r_symndx = STN_UNDEF;
8155 h = NULL;
8156 }
8157 /* Fall through */
8158
8159 case R_MIPS_TLS_GD:
8160 case R_MIPS16_TLS_GD:
8161 case R_MICROMIPS_TLS_GD:
8162 /* This symbol requires a global offset table entry, or two
8163 for TLS GD relocations. */
8164 if (h != NULL)
8165 {
8166 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8167 FALSE, r_type))
8168 return FALSE;
8169 }
8170 else
8171 {
8172 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8173 rel->r_addend,
8174 info, r_type))
8175 return FALSE;
8176 }
8177 break;
8178
8179 case R_MIPS_32:
8180 case R_MIPS_REL32:
8181 case R_MIPS_64:
8182 /* In VxWorks executables, references to external symbols
8183 are handled using copy relocs or PLT stubs, so there's
8184 no need to add a .rela.dyn entry for this relocation. */
8185 if (can_make_dynamic_p)
8186 {
8187 if (sreloc == NULL)
8188 {
8189 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8190 if (sreloc == NULL)
8191 return FALSE;
8192 }
8193 if (info->shared && h == NULL)
8194 {
8195 /* When creating a shared object, we must copy these
8196 reloc types into the output file as R_MIPS_REL32
8197 relocs. Make room for this reloc in .rel(a).dyn. */
8198 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8199 if (MIPS_ELF_READONLY_SECTION (sec))
8200 /* We tell the dynamic linker that there are
8201 relocations against the text segment. */
8202 info->flags |= DF_TEXTREL;
8203 }
8204 else
8205 {
8206 struct mips_elf_link_hash_entry *hmips;
8207
8208 /* For a shared object, we must copy this relocation
8209 unless the symbol turns out to be undefined and
8210 weak with non-default visibility, in which case
8211 it will be left as zero.
8212
8213 We could elide R_MIPS_REL32 for locally binding symbols
8214 in shared libraries, but do not yet do so.
8215
8216 For an executable, we only need to copy this
8217 reloc if the symbol is defined in a dynamic
8218 object. */
8219 hmips = (struct mips_elf_link_hash_entry *) h;
8220 ++hmips->possibly_dynamic_relocs;
8221 if (MIPS_ELF_READONLY_SECTION (sec))
8222 /* We need it to tell the dynamic linker if there
8223 are relocations against the text segment. */
8224 hmips->readonly_reloc = TRUE;
8225 }
8226 }
8227
8228 if (SGI_COMPAT (abfd))
8229 mips_elf_hash_table (info)->compact_rel_size +=
8230 sizeof (Elf32_External_crinfo);
8231 break;
8232
8233 case R_MIPS_26:
8234 case R_MIPS_GPREL16:
8235 case R_MIPS_LITERAL:
8236 case R_MIPS_GPREL32:
8237 case R_MICROMIPS_26_S1:
8238 case R_MICROMIPS_GPREL16:
8239 case R_MICROMIPS_LITERAL:
8240 case R_MICROMIPS_GPREL7_S2:
8241 if (SGI_COMPAT (abfd))
8242 mips_elf_hash_table (info)->compact_rel_size +=
8243 sizeof (Elf32_External_crinfo);
8244 break;
8245
8246 /* This relocation describes the C++ object vtable hierarchy.
8247 Reconstruct it for later use during GC. */
8248 case R_MIPS_GNU_VTINHERIT:
8249 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8250 return FALSE;
8251 break;
8252
8253 /* This relocation describes which C++ vtable entries are actually
8254 used. Record for later use during GC. */
8255 case R_MIPS_GNU_VTENTRY:
8256 BFD_ASSERT (h != NULL);
8257 if (h != NULL
8258 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8259 return FALSE;
8260 break;
8261
8262 default:
8263 break;
8264 }
8265
8266 /* We must not create a stub for a symbol that has relocations
8267 related to taking the function's address. This doesn't apply to
8268 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8269 a normal .got entry. */
8270 if (!htab->is_vxworks && h != NULL)
8271 switch (r_type)
8272 {
8273 default:
8274 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8275 break;
8276 case R_MIPS16_CALL16:
8277 case R_MIPS_CALL16:
8278 case R_MIPS_CALL_HI16:
8279 case R_MIPS_CALL_LO16:
8280 case R_MIPS_JALR:
8281 case R_MICROMIPS_CALL16:
8282 case R_MICROMIPS_CALL_HI16:
8283 case R_MICROMIPS_CALL_LO16:
8284 case R_MICROMIPS_JALR:
8285 break;
8286 }
8287
8288 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8289 if there is one. We only need to handle global symbols here;
8290 we decide whether to keep or delete stubs for local symbols
8291 when processing the stub's relocations. */
8292 if (h != NULL
8293 && !mips16_call_reloc_p (r_type)
8294 && !section_allows_mips16_refs_p (sec))
8295 {
8296 struct mips_elf_link_hash_entry *mh;
8297
8298 mh = (struct mips_elf_link_hash_entry *) h;
8299 mh->need_fn_stub = TRUE;
8300 }
8301
8302 /* Refuse some position-dependent relocations when creating a
8303 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8304 not PIC, but we can create dynamic relocations and the result
8305 will be fine. Also do not refuse R_MIPS_LO16, which can be
8306 combined with R_MIPS_GOT16. */
8307 if (info->shared)
8308 {
8309 switch (r_type)
8310 {
8311 case R_MIPS16_HI16:
8312 case R_MIPS_HI16:
8313 case R_MIPS_HIGHER:
8314 case R_MIPS_HIGHEST:
8315 case R_MICROMIPS_HI16:
8316 case R_MICROMIPS_HIGHER:
8317 case R_MICROMIPS_HIGHEST:
8318 /* Don't refuse a high part relocation if it's against
8319 no symbol (e.g. part of a compound relocation). */
8320 if (r_symndx == STN_UNDEF)
8321 break;
8322
8323 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8324 and has a special meaning. */
8325 if (!NEWABI_P (abfd) && h != NULL
8326 && strcmp (h->root.root.string, "_gp_disp") == 0)
8327 break;
8328
8329 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8330 if (is_gott_symbol (info, h))
8331 break;
8332
8333 /* FALLTHROUGH */
8334
8335 case R_MIPS16_26:
8336 case R_MIPS_26:
8337 case R_MICROMIPS_26_S1:
8338 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8339 (*_bfd_error_handler)
8340 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8341 abfd, howto->name,
8342 (h) ? h->root.root.string : "a local symbol");
8343 bfd_set_error (bfd_error_bad_value);
8344 return FALSE;
8345 default:
8346 break;
8347 }
8348 }
8349 }
8350
8351 return TRUE;
8352 }
8353 \f
8354 bfd_boolean
8355 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8356 struct bfd_link_info *link_info,
8357 bfd_boolean *again)
8358 {
8359 Elf_Internal_Rela *internal_relocs;
8360 Elf_Internal_Rela *irel, *irelend;
8361 Elf_Internal_Shdr *symtab_hdr;
8362 bfd_byte *contents = NULL;
8363 size_t extsymoff;
8364 bfd_boolean changed_contents = FALSE;
8365 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8366 Elf_Internal_Sym *isymbuf = NULL;
8367
8368 /* We are not currently changing any sizes, so only one pass. */
8369 *again = FALSE;
8370
8371 if (link_info->relocatable)
8372 return TRUE;
8373
8374 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8375 link_info->keep_memory);
8376 if (internal_relocs == NULL)
8377 return TRUE;
8378
8379 irelend = internal_relocs + sec->reloc_count
8380 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8381 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8382 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8383
8384 for (irel = internal_relocs; irel < irelend; irel++)
8385 {
8386 bfd_vma symval;
8387 bfd_signed_vma sym_offset;
8388 unsigned int r_type;
8389 unsigned long r_symndx;
8390 asection *sym_sec;
8391 unsigned long instruction;
8392
8393 /* Turn jalr into bgezal, and jr into beq, if they're marked
8394 with a JALR relocation, that indicate where they jump to.
8395 This saves some pipeline bubbles. */
8396 r_type = ELF_R_TYPE (abfd, irel->r_info);
8397 if (r_type != R_MIPS_JALR)
8398 continue;
8399
8400 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8401 /* Compute the address of the jump target. */
8402 if (r_symndx >= extsymoff)
8403 {
8404 struct mips_elf_link_hash_entry *h
8405 = ((struct mips_elf_link_hash_entry *)
8406 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8407
8408 while (h->root.root.type == bfd_link_hash_indirect
8409 || h->root.root.type == bfd_link_hash_warning)
8410 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8411
8412 /* If a symbol is undefined, or if it may be overridden,
8413 skip it. */
8414 if (! ((h->root.root.type == bfd_link_hash_defined
8415 || h->root.root.type == bfd_link_hash_defweak)
8416 && h->root.root.u.def.section)
8417 || (link_info->shared && ! link_info->symbolic
8418 && !h->root.forced_local))
8419 continue;
8420
8421 sym_sec = h->root.root.u.def.section;
8422 if (sym_sec->output_section)
8423 symval = (h->root.root.u.def.value
8424 + sym_sec->output_section->vma
8425 + sym_sec->output_offset);
8426 else
8427 symval = h->root.root.u.def.value;
8428 }
8429 else
8430 {
8431 Elf_Internal_Sym *isym;
8432
8433 /* Read this BFD's symbols if we haven't done so already. */
8434 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8435 {
8436 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8437 if (isymbuf == NULL)
8438 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8439 symtab_hdr->sh_info, 0,
8440 NULL, NULL, NULL);
8441 if (isymbuf == NULL)
8442 goto relax_return;
8443 }
8444
8445 isym = isymbuf + r_symndx;
8446 if (isym->st_shndx == SHN_UNDEF)
8447 continue;
8448 else if (isym->st_shndx == SHN_ABS)
8449 sym_sec = bfd_abs_section_ptr;
8450 else if (isym->st_shndx == SHN_COMMON)
8451 sym_sec = bfd_com_section_ptr;
8452 else
8453 sym_sec
8454 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8455 symval = isym->st_value
8456 + sym_sec->output_section->vma
8457 + sym_sec->output_offset;
8458 }
8459
8460 /* Compute branch offset, from delay slot of the jump to the
8461 branch target. */
8462 sym_offset = (symval + irel->r_addend)
8463 - (sec_start + irel->r_offset + 4);
8464
8465 /* Branch offset must be properly aligned. */
8466 if ((sym_offset & 3) != 0)
8467 continue;
8468
8469 sym_offset >>= 2;
8470
8471 /* Check that it's in range. */
8472 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8473 continue;
8474
8475 /* Get the section contents if we haven't done so already. */
8476 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8477 goto relax_return;
8478
8479 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8480
8481 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8482 if ((instruction & 0xfc1fffff) == 0x0000f809)
8483 instruction = 0x04110000;
8484 /* If it was jr <reg>, turn it into b <target>. */
8485 else if ((instruction & 0xfc1fffff) == 0x00000008)
8486 instruction = 0x10000000;
8487 else
8488 continue;
8489
8490 instruction |= (sym_offset & 0xffff);
8491 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8492 changed_contents = TRUE;
8493 }
8494
8495 if (contents != NULL
8496 && elf_section_data (sec)->this_hdr.contents != contents)
8497 {
8498 if (!changed_contents && !link_info->keep_memory)
8499 free (contents);
8500 else
8501 {
8502 /* Cache the section contents for elf_link_input_bfd. */
8503 elf_section_data (sec)->this_hdr.contents = contents;
8504 }
8505 }
8506 return TRUE;
8507
8508 relax_return:
8509 if (contents != NULL
8510 && elf_section_data (sec)->this_hdr.contents != contents)
8511 free (contents);
8512 return FALSE;
8513 }
8514 \f
8515 /* Allocate space for global sym dynamic relocs. */
8516
8517 static bfd_boolean
8518 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8519 {
8520 struct bfd_link_info *info = inf;
8521 bfd *dynobj;
8522 struct mips_elf_link_hash_entry *hmips;
8523 struct mips_elf_link_hash_table *htab;
8524
8525 htab = mips_elf_hash_table (info);
8526 BFD_ASSERT (htab != NULL);
8527
8528 dynobj = elf_hash_table (info)->dynobj;
8529 hmips = (struct mips_elf_link_hash_entry *) h;
8530
8531 /* VxWorks executables are handled elsewhere; we only need to
8532 allocate relocations in shared objects. */
8533 if (htab->is_vxworks && !info->shared)
8534 return TRUE;
8535
8536 /* Ignore indirect symbols. All relocations against such symbols
8537 will be redirected to the target symbol. */
8538 if (h->root.type == bfd_link_hash_indirect)
8539 return TRUE;
8540
8541 /* If this symbol is defined in a dynamic object, or we are creating
8542 a shared library, we will need to copy any R_MIPS_32 or
8543 R_MIPS_REL32 relocs against it into the output file. */
8544 if (! info->relocatable
8545 && hmips->possibly_dynamic_relocs != 0
8546 && (h->root.type == bfd_link_hash_defweak
8547 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8548 || info->shared))
8549 {
8550 bfd_boolean do_copy = TRUE;
8551
8552 if (h->root.type == bfd_link_hash_undefweak)
8553 {
8554 /* Do not copy relocations for undefined weak symbols with
8555 non-default visibility. */
8556 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8557 do_copy = FALSE;
8558
8559 /* Make sure undefined weak symbols are output as a dynamic
8560 symbol in PIEs. */
8561 else if (h->dynindx == -1 && !h->forced_local)
8562 {
8563 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8564 return FALSE;
8565 }
8566 }
8567
8568 if (do_copy)
8569 {
8570 /* Even though we don't directly need a GOT entry for this symbol,
8571 the SVR4 psABI requires it to have a dynamic symbol table
8572 index greater that DT_MIPS_GOTSYM if there are dynamic
8573 relocations against it.
8574
8575 VxWorks does not enforce the same mapping between the GOT
8576 and the symbol table, so the same requirement does not
8577 apply there. */
8578 if (!htab->is_vxworks)
8579 {
8580 if (hmips->global_got_area > GGA_RELOC_ONLY)
8581 hmips->global_got_area = GGA_RELOC_ONLY;
8582 hmips->got_only_for_calls = FALSE;
8583 }
8584
8585 mips_elf_allocate_dynamic_relocations
8586 (dynobj, info, hmips->possibly_dynamic_relocs);
8587 if (hmips->readonly_reloc)
8588 /* We tell the dynamic linker that there are relocations
8589 against the text segment. */
8590 info->flags |= DF_TEXTREL;
8591 }
8592 }
8593
8594 return TRUE;
8595 }
8596
8597 /* Adjust a symbol defined by a dynamic object and referenced by a
8598 regular object. The current definition is in some section of the
8599 dynamic object, but we're not including those sections. We have to
8600 change the definition to something the rest of the link can
8601 understand. */
8602
8603 bfd_boolean
8604 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8605 struct elf_link_hash_entry *h)
8606 {
8607 bfd *dynobj;
8608 struct mips_elf_link_hash_entry *hmips;
8609 struct mips_elf_link_hash_table *htab;
8610
8611 htab = mips_elf_hash_table (info);
8612 BFD_ASSERT (htab != NULL);
8613
8614 dynobj = elf_hash_table (info)->dynobj;
8615 hmips = (struct mips_elf_link_hash_entry *) h;
8616
8617 /* Make sure we know what is going on here. */
8618 BFD_ASSERT (dynobj != NULL
8619 && (h->needs_plt
8620 || h->u.weakdef != NULL
8621 || (h->def_dynamic
8622 && h->ref_regular
8623 && !h->def_regular)));
8624
8625 hmips = (struct mips_elf_link_hash_entry *) h;
8626
8627 /* If there are call relocations against an externally-defined symbol,
8628 see whether we can create a MIPS lazy-binding stub for it. We can
8629 only do this if all references to the function are through call
8630 relocations, and in that case, the traditional lazy-binding stubs
8631 are much more efficient than PLT entries.
8632
8633 Traditional stubs are only available on SVR4 psABI-based systems;
8634 VxWorks always uses PLTs instead. */
8635 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8636 {
8637 if (! elf_hash_table (info)->dynamic_sections_created)
8638 return TRUE;
8639
8640 /* If this symbol is not defined in a regular file, then set
8641 the symbol to the stub location. This is required to make
8642 function pointers compare as equal between the normal
8643 executable and the shared library. */
8644 if (!h->def_regular)
8645 {
8646 hmips->needs_lazy_stub = TRUE;
8647 htab->lazy_stub_count++;
8648 return TRUE;
8649 }
8650 }
8651 /* As above, VxWorks requires PLT entries for externally-defined
8652 functions that are only accessed through call relocations.
8653
8654 Both VxWorks and non-VxWorks targets also need PLT entries if there
8655 are static-only relocations against an externally-defined function.
8656 This can technically occur for shared libraries if there are
8657 branches to the symbol, although it is unlikely that this will be
8658 used in practice due to the short ranges involved. It can occur
8659 for any relative or absolute relocation in executables; in that
8660 case, the PLT entry becomes the function's canonical address. */
8661 else if (((h->needs_plt && !hmips->no_fn_stub)
8662 || (h->type == STT_FUNC && hmips->has_static_relocs))
8663 && htab->use_plts_and_copy_relocs
8664 && !SYMBOL_CALLS_LOCAL (info, h)
8665 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8666 && h->root.type == bfd_link_hash_undefweak))
8667 {
8668 /* If this is the first symbol to need a PLT entry, allocate room
8669 for the header. */
8670 if (htab->splt->size == 0)
8671 {
8672 BFD_ASSERT (htab->sgotplt->size == 0);
8673
8674 /* If we're using the PLT additions to the psABI, each PLT
8675 entry is 16 bytes and the PLT0 entry is 32 bytes.
8676 Encourage better cache usage by aligning. We do this
8677 lazily to avoid pessimizing traditional objects. */
8678 if (!htab->is_vxworks
8679 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8680 return FALSE;
8681
8682 /* Make sure that .got.plt is word-aligned. We do this lazily
8683 for the same reason as above. */
8684 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8685 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8686 return FALSE;
8687
8688 htab->splt->size += htab->plt_header_size;
8689
8690 /* On non-VxWorks targets, the first two entries in .got.plt
8691 are reserved. */
8692 if (!htab->is_vxworks)
8693 htab->sgotplt->size
8694 += get_elf_backend_data (dynobj)->got_header_size;
8695
8696 /* On VxWorks, also allocate room for the header's
8697 .rela.plt.unloaded entries. */
8698 if (htab->is_vxworks && !info->shared)
8699 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8700 }
8701
8702 /* Assign the next .plt entry to this symbol. */
8703 h->plt.offset = htab->splt->size;
8704 htab->splt->size += htab->plt_entry_size;
8705
8706 /* If the output file has no definition of the symbol, set the
8707 symbol's value to the address of the stub. */
8708 if (!info->shared && !h->def_regular)
8709 {
8710 h->root.u.def.section = htab->splt;
8711 h->root.u.def.value = h->plt.offset;
8712 /* For VxWorks, point at the PLT load stub rather than the
8713 lazy resolution stub; this stub will become the canonical
8714 function address. */
8715 if (htab->is_vxworks)
8716 h->root.u.def.value += 8;
8717 }
8718
8719 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8720 relocation. */
8721 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8722 htab->srelplt->size += (htab->is_vxworks
8723 ? MIPS_ELF_RELA_SIZE (dynobj)
8724 : MIPS_ELF_REL_SIZE (dynobj));
8725
8726 /* Make room for the .rela.plt.unloaded relocations. */
8727 if (htab->is_vxworks && !info->shared)
8728 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8729
8730 /* All relocations against this symbol that could have been made
8731 dynamic will now refer to the PLT entry instead. */
8732 hmips->possibly_dynamic_relocs = 0;
8733
8734 return TRUE;
8735 }
8736
8737 /* If this is a weak symbol, and there is a real definition, the
8738 processor independent code will have arranged for us to see the
8739 real definition first, and we can just use the same value. */
8740 if (h->u.weakdef != NULL)
8741 {
8742 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8743 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8744 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8745 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8746 return TRUE;
8747 }
8748
8749 /* Otherwise, there is nothing further to do for symbols defined
8750 in regular objects. */
8751 if (h->def_regular)
8752 return TRUE;
8753
8754 /* There's also nothing more to do if we'll convert all relocations
8755 against this symbol into dynamic relocations. */
8756 if (!hmips->has_static_relocs)
8757 return TRUE;
8758
8759 /* We're now relying on copy relocations. Complain if we have
8760 some that we can't convert. */
8761 if (!htab->use_plts_and_copy_relocs || info->shared)
8762 {
8763 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8764 "dynamic symbol %s"),
8765 h->root.root.string);
8766 bfd_set_error (bfd_error_bad_value);
8767 return FALSE;
8768 }
8769
8770 /* We must allocate the symbol in our .dynbss section, which will
8771 become part of the .bss section of the executable. There will be
8772 an entry for this symbol in the .dynsym section. The dynamic
8773 object will contain position independent code, so all references
8774 from the dynamic object to this symbol will go through the global
8775 offset table. The dynamic linker will use the .dynsym entry to
8776 determine the address it must put in the global offset table, so
8777 both the dynamic object and the regular object will refer to the
8778 same memory location for the variable. */
8779
8780 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8781 {
8782 if (htab->is_vxworks)
8783 htab->srelbss->size += sizeof (Elf32_External_Rela);
8784 else
8785 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8786 h->needs_copy = 1;
8787 }
8788
8789 /* All relocations against this symbol that could have been made
8790 dynamic will now refer to the local copy instead. */
8791 hmips->possibly_dynamic_relocs = 0;
8792
8793 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8794 }
8795 \f
8796 /* This function is called after all the input files have been read,
8797 and the input sections have been assigned to output sections. We
8798 check for any mips16 stub sections that we can discard. */
8799
8800 bfd_boolean
8801 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8802 struct bfd_link_info *info)
8803 {
8804 asection *ri;
8805 struct mips_elf_link_hash_table *htab;
8806 struct mips_htab_traverse_info hti;
8807
8808 htab = mips_elf_hash_table (info);
8809 BFD_ASSERT (htab != NULL);
8810
8811 /* The .reginfo section has a fixed size. */
8812 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8813 if (ri != NULL)
8814 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8815
8816 hti.info = info;
8817 hti.output_bfd = output_bfd;
8818 hti.error = FALSE;
8819 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8820 mips_elf_check_symbols, &hti);
8821 if (hti.error)
8822 return FALSE;
8823
8824 return TRUE;
8825 }
8826
8827 /* If the link uses a GOT, lay it out and work out its size. */
8828
8829 static bfd_boolean
8830 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8831 {
8832 bfd *dynobj;
8833 asection *s;
8834 struct mips_got_info *g;
8835 bfd_size_type loadable_size = 0;
8836 bfd_size_type page_gotno;
8837 bfd *sub;
8838 struct mips_elf_traverse_got_arg tga;
8839 struct mips_elf_link_hash_table *htab;
8840
8841 htab = mips_elf_hash_table (info);
8842 BFD_ASSERT (htab != NULL);
8843
8844 s = htab->sgot;
8845 if (s == NULL)
8846 return TRUE;
8847
8848 dynobj = elf_hash_table (info)->dynobj;
8849 g = htab->got_info;
8850
8851 /* Allocate room for the reserved entries. VxWorks always reserves
8852 3 entries; other objects only reserve 2 entries. */
8853 BFD_ASSERT (g->assigned_gotno == 0);
8854 if (htab->is_vxworks)
8855 htab->reserved_gotno = 3;
8856 else
8857 htab->reserved_gotno = 2;
8858 g->local_gotno += htab->reserved_gotno;
8859 g->assigned_gotno = htab->reserved_gotno;
8860
8861 /* Replace entries for indirect and warning symbols with entries for
8862 the target symbol. */
8863 if (!mips_elf_resolve_final_got_entries (g))
8864 return FALSE;
8865
8866 /* Count the number of GOT symbols. */
8867 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8868
8869 /* Calculate the total loadable size of the output. That
8870 will give us the maximum number of GOT_PAGE entries
8871 required. */
8872 for (sub = info->input_bfds; sub; sub = sub->link_next)
8873 {
8874 asection *subsection;
8875
8876 for (subsection = sub->sections;
8877 subsection;
8878 subsection = subsection->next)
8879 {
8880 if ((subsection->flags & SEC_ALLOC) == 0)
8881 continue;
8882 loadable_size += ((subsection->size + 0xf)
8883 &~ (bfd_size_type) 0xf);
8884 }
8885 }
8886
8887 if (htab->is_vxworks)
8888 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8889 relocations against local symbols evaluate to "G", and the EABI does
8890 not include R_MIPS_GOT_PAGE. */
8891 page_gotno = 0;
8892 else
8893 /* Assume there are two loadable segments consisting of contiguous
8894 sections. Is 5 enough? */
8895 page_gotno = (loadable_size >> 16) + 5;
8896
8897 /* Choose the smaller of the two estimates; both are intended to be
8898 conservative. */
8899 if (page_gotno > g->page_gotno)
8900 page_gotno = g->page_gotno;
8901
8902 g->local_gotno += page_gotno;
8903
8904 /* Count the number of local GOT entries and TLS relocs. */
8905 tga.info = info;
8906 tga.g = g;
8907 htab_traverse (g->got_entries, mips_elf_count_local_got_entries, &tga);
8908
8909 /* We need to calculate tls_gotno for global symbols at this point
8910 instead of building it up earlier, to avoid doublecounting
8911 entries for one global symbol from multiple input files. */
8912 elf_link_hash_traverse (elf_hash_table (info),
8913 mips_elf_count_global_tls_entries,
8914 &tga);
8915
8916 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8917 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8918 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8919
8920 /* VxWorks does not support multiple GOTs. It initializes $gp to
8921 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8922 dynamic loader. */
8923 if (htab->is_vxworks)
8924 {
8925 /* VxWorks executables do not need a GOT. */
8926 if (info->shared)
8927 {
8928 /* Each VxWorks GOT entry needs an explicit relocation. */
8929 unsigned int count;
8930
8931 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8932 if (count)
8933 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8934 }
8935 }
8936 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8937 {
8938 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8939 return FALSE;
8940 }
8941 else
8942 {
8943 /* Set up TLS entries. */
8944 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8945 tga.info = info;
8946 tga.g = g;
8947 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8948 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8949 if (!tga.g)
8950 return FALSE;
8951 BFD_ASSERT (g->tls_assigned_gotno
8952 == g->global_gotno + g->local_gotno + g->tls_gotno);
8953
8954 /* Allocate room for the TLS relocations. */
8955 if (g->relocs)
8956 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8957 }
8958
8959 return TRUE;
8960 }
8961
8962 /* Estimate the size of the .MIPS.stubs section. */
8963
8964 static void
8965 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8966 {
8967 struct mips_elf_link_hash_table *htab;
8968 bfd_size_type dynsymcount;
8969
8970 htab = mips_elf_hash_table (info);
8971 BFD_ASSERT (htab != NULL);
8972
8973 if (htab->lazy_stub_count == 0)
8974 return;
8975
8976 /* IRIX rld assumes that a function stub isn't at the end of the .text
8977 section, so add a dummy entry to the end. */
8978 htab->lazy_stub_count++;
8979
8980 /* Get a worst-case estimate of the number of dynamic symbols needed.
8981 At this point, dynsymcount does not account for section symbols
8982 and count_section_dynsyms may overestimate the number that will
8983 be needed. */
8984 dynsymcount = (elf_hash_table (info)->dynsymcount
8985 + count_section_dynsyms (output_bfd, info));
8986
8987 /* Determine the size of one stub entry. */
8988 htab->function_stub_size = (dynsymcount > 0x10000
8989 ? MIPS_FUNCTION_STUB_BIG_SIZE
8990 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8991
8992 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8993 }
8994
8995 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8996 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8997 allocate an entry in the stubs section. */
8998
8999 static bfd_boolean
9000 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
9001 {
9002 struct mips_elf_link_hash_table *htab;
9003
9004 htab = (struct mips_elf_link_hash_table *) data;
9005 if (h->needs_lazy_stub)
9006 {
9007 h->root.root.u.def.section = htab->sstubs;
9008 h->root.root.u.def.value = htab->sstubs->size;
9009 h->root.plt.offset = htab->sstubs->size;
9010 htab->sstubs->size += htab->function_stub_size;
9011 }
9012 return TRUE;
9013 }
9014
9015 /* Allocate offsets in the stubs section to each symbol that needs one.
9016 Set the final size of the .MIPS.stub section. */
9017
9018 static void
9019 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9020 {
9021 struct mips_elf_link_hash_table *htab;
9022
9023 htab = mips_elf_hash_table (info);
9024 BFD_ASSERT (htab != NULL);
9025
9026 if (htab->lazy_stub_count == 0)
9027 return;
9028
9029 htab->sstubs->size = 0;
9030 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9031 htab->sstubs->size += htab->function_stub_size;
9032 BFD_ASSERT (htab->sstubs->size
9033 == htab->lazy_stub_count * htab->function_stub_size);
9034 }
9035
9036 /* Set the sizes of the dynamic sections. */
9037
9038 bfd_boolean
9039 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9040 struct bfd_link_info *info)
9041 {
9042 bfd *dynobj;
9043 asection *s, *sreldyn;
9044 bfd_boolean reltext;
9045 struct mips_elf_link_hash_table *htab;
9046
9047 htab = mips_elf_hash_table (info);
9048 BFD_ASSERT (htab != NULL);
9049 dynobj = elf_hash_table (info)->dynobj;
9050 BFD_ASSERT (dynobj != NULL);
9051
9052 if (elf_hash_table (info)->dynamic_sections_created)
9053 {
9054 /* Set the contents of the .interp section to the interpreter. */
9055 if (info->executable)
9056 {
9057 s = bfd_get_linker_section (dynobj, ".interp");
9058 BFD_ASSERT (s != NULL);
9059 s->size
9060 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9061 s->contents
9062 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9063 }
9064
9065 /* Create a symbol for the PLT, if we know that we are using it. */
9066 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9067 {
9068 struct elf_link_hash_entry *h;
9069
9070 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9071
9072 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9073 "_PROCEDURE_LINKAGE_TABLE_");
9074 htab->root.hplt = h;
9075 if (h == NULL)
9076 return FALSE;
9077 h->type = STT_FUNC;
9078 }
9079 }
9080
9081 /* Allocate space for global sym dynamic relocs. */
9082 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9083
9084 mips_elf_estimate_stub_size (output_bfd, info);
9085
9086 if (!mips_elf_lay_out_got (output_bfd, info))
9087 return FALSE;
9088
9089 mips_elf_lay_out_lazy_stubs (info);
9090
9091 /* The check_relocs and adjust_dynamic_symbol entry points have
9092 determined the sizes of the various dynamic sections. Allocate
9093 memory for them. */
9094 reltext = FALSE;
9095 for (s = dynobj->sections; s != NULL; s = s->next)
9096 {
9097 const char *name;
9098
9099 /* It's OK to base decisions on the section name, because none
9100 of the dynobj section names depend upon the input files. */
9101 name = bfd_get_section_name (dynobj, s);
9102
9103 if ((s->flags & SEC_LINKER_CREATED) == 0)
9104 continue;
9105
9106 if (CONST_STRNEQ (name, ".rel"))
9107 {
9108 if (s->size != 0)
9109 {
9110 const char *outname;
9111 asection *target;
9112
9113 /* If this relocation section applies to a read only
9114 section, then we probably need a DT_TEXTREL entry.
9115 If the relocation section is .rel(a).dyn, we always
9116 assert a DT_TEXTREL entry rather than testing whether
9117 there exists a relocation to a read only section or
9118 not. */
9119 outname = bfd_get_section_name (output_bfd,
9120 s->output_section);
9121 target = bfd_get_section_by_name (output_bfd, outname + 4);
9122 if ((target != NULL
9123 && (target->flags & SEC_READONLY) != 0
9124 && (target->flags & SEC_ALLOC) != 0)
9125 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9126 reltext = TRUE;
9127
9128 /* We use the reloc_count field as a counter if we need
9129 to copy relocs into the output file. */
9130 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9131 s->reloc_count = 0;
9132
9133 /* If combreloc is enabled, elf_link_sort_relocs() will
9134 sort relocations, but in a different way than we do,
9135 and before we're done creating relocations. Also, it
9136 will move them around between input sections'
9137 relocation's contents, so our sorting would be
9138 broken, so don't let it run. */
9139 info->combreloc = 0;
9140 }
9141 }
9142 else if (! info->shared
9143 && ! mips_elf_hash_table (info)->use_rld_obj_head
9144 && CONST_STRNEQ (name, ".rld_map"))
9145 {
9146 /* We add a room for __rld_map. It will be filled in by the
9147 rtld to contain a pointer to the _r_debug structure. */
9148 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9149 }
9150 else if (SGI_COMPAT (output_bfd)
9151 && CONST_STRNEQ (name, ".compact_rel"))
9152 s->size += mips_elf_hash_table (info)->compact_rel_size;
9153 else if (s == htab->splt)
9154 {
9155 /* If the last PLT entry has a branch delay slot, allocate
9156 room for an extra nop to fill the delay slot. This is
9157 for CPUs without load interlocking. */
9158 if (! LOAD_INTERLOCKS_P (output_bfd)
9159 && ! htab->is_vxworks && s->size > 0)
9160 s->size += 4;
9161 }
9162 else if (! CONST_STRNEQ (name, ".init")
9163 && s != htab->sgot
9164 && s != htab->sgotplt
9165 && s != htab->sstubs
9166 && s != htab->sdynbss)
9167 {
9168 /* It's not one of our sections, so don't allocate space. */
9169 continue;
9170 }
9171
9172 if (s->size == 0)
9173 {
9174 s->flags |= SEC_EXCLUDE;
9175 continue;
9176 }
9177
9178 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9179 continue;
9180
9181 /* Allocate memory for the section contents. */
9182 s->contents = bfd_zalloc (dynobj, s->size);
9183 if (s->contents == NULL)
9184 {
9185 bfd_set_error (bfd_error_no_memory);
9186 return FALSE;
9187 }
9188 }
9189
9190 if (elf_hash_table (info)->dynamic_sections_created)
9191 {
9192 /* Add some entries to the .dynamic section. We fill in the
9193 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9194 must add the entries now so that we get the correct size for
9195 the .dynamic section. */
9196
9197 /* SGI object has the equivalence of DT_DEBUG in the
9198 DT_MIPS_RLD_MAP entry. This must come first because glibc
9199 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9200 may only look at the first one they see. */
9201 if (!info->shared
9202 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9203 return FALSE;
9204
9205 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9206 used by the debugger. */
9207 if (info->executable
9208 && !SGI_COMPAT (output_bfd)
9209 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9210 return FALSE;
9211
9212 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9213 info->flags |= DF_TEXTREL;
9214
9215 if ((info->flags & DF_TEXTREL) != 0)
9216 {
9217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9218 return FALSE;
9219
9220 /* Clear the DF_TEXTREL flag. It will be set again if we
9221 write out an actual text relocation; we may not, because
9222 at this point we do not know whether e.g. any .eh_frame
9223 absolute relocations have been converted to PC-relative. */
9224 info->flags &= ~DF_TEXTREL;
9225 }
9226
9227 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9228 return FALSE;
9229
9230 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9231 if (htab->is_vxworks)
9232 {
9233 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9234 use any of the DT_MIPS_* tags. */
9235 if (sreldyn && sreldyn->size > 0)
9236 {
9237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9238 return FALSE;
9239
9240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9241 return FALSE;
9242
9243 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9244 return FALSE;
9245 }
9246 }
9247 else
9248 {
9249 if (sreldyn && sreldyn->size > 0)
9250 {
9251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9252 return FALSE;
9253
9254 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9255 return FALSE;
9256
9257 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9258 return FALSE;
9259 }
9260
9261 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9262 return FALSE;
9263
9264 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9265 return FALSE;
9266
9267 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9268 return FALSE;
9269
9270 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9271 return FALSE;
9272
9273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9274 return FALSE;
9275
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9277 return FALSE;
9278
9279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9280 return FALSE;
9281
9282 if (IRIX_COMPAT (dynobj) == ict_irix5
9283 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9284 return FALSE;
9285
9286 if (IRIX_COMPAT (dynobj) == ict_irix6
9287 && (bfd_get_section_by_name
9288 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9289 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9290 return FALSE;
9291 }
9292 if (htab->splt->size > 0)
9293 {
9294 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9295 return FALSE;
9296
9297 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9298 return FALSE;
9299
9300 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9301 return FALSE;
9302
9303 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9304 return FALSE;
9305 }
9306 if (htab->is_vxworks
9307 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9308 return FALSE;
9309 }
9310
9311 return TRUE;
9312 }
9313 \f
9314 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9315 Adjust its R_ADDEND field so that it is correct for the output file.
9316 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9317 and sections respectively; both use symbol indexes. */
9318
9319 static void
9320 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9321 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9322 asection **local_sections, Elf_Internal_Rela *rel)
9323 {
9324 unsigned int r_type, r_symndx;
9325 Elf_Internal_Sym *sym;
9326 asection *sec;
9327
9328 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9329 {
9330 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9331 if (gprel16_reloc_p (r_type)
9332 || r_type == R_MIPS_GPREL32
9333 || literal_reloc_p (r_type))
9334 {
9335 rel->r_addend += _bfd_get_gp_value (input_bfd);
9336 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9337 }
9338
9339 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9340 sym = local_syms + r_symndx;
9341
9342 /* Adjust REL's addend to account for section merging. */
9343 if (!info->relocatable)
9344 {
9345 sec = local_sections[r_symndx];
9346 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9347 }
9348
9349 /* This would normally be done by the rela_normal code in elflink.c. */
9350 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9351 rel->r_addend += local_sections[r_symndx]->output_offset;
9352 }
9353 }
9354
9355 /* Handle relocations against symbols from removed linkonce sections,
9356 or sections discarded by a linker script. We use this wrapper around
9357 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9358 on 64-bit ELF targets. In this case for any relocation handled, which
9359 always be the first in a triplet, the remaining two have to be processed
9360 together with the first, even if they are R_MIPS_NONE. It is the symbol
9361 index referred by the first reloc that applies to all the three and the
9362 remaining two never refer to an object symbol. And it is the final
9363 relocation (the last non-null one) that determines the output field of
9364 the whole relocation so retrieve the corresponding howto structure for
9365 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9366
9367 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9368 and therefore requires to be pasted in a loop. It also defines a block
9369 and does not protect any of its arguments, hence the extra brackets. */
9370
9371 static void
9372 mips_reloc_against_discarded_section (bfd *output_bfd,
9373 struct bfd_link_info *info,
9374 bfd *input_bfd, asection *input_section,
9375 Elf_Internal_Rela **rel,
9376 const Elf_Internal_Rela **relend,
9377 bfd_boolean rel_reloc,
9378 reloc_howto_type *howto,
9379 bfd_byte *contents)
9380 {
9381 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9382 int count = bed->s->int_rels_per_ext_rel;
9383 unsigned int r_type;
9384 int i;
9385
9386 for (i = count - 1; i > 0; i--)
9387 {
9388 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9389 if (r_type != R_MIPS_NONE)
9390 {
9391 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9392 break;
9393 }
9394 }
9395 do
9396 {
9397 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9398 (*rel), count, (*relend),
9399 howto, i, contents);
9400 }
9401 while (0);
9402 }
9403
9404 /* Relocate a MIPS ELF section. */
9405
9406 bfd_boolean
9407 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9408 bfd *input_bfd, asection *input_section,
9409 bfd_byte *contents, Elf_Internal_Rela *relocs,
9410 Elf_Internal_Sym *local_syms,
9411 asection **local_sections)
9412 {
9413 Elf_Internal_Rela *rel;
9414 const Elf_Internal_Rela *relend;
9415 bfd_vma addend = 0;
9416 bfd_boolean use_saved_addend_p = FALSE;
9417 const struct elf_backend_data *bed;
9418
9419 bed = get_elf_backend_data (output_bfd);
9420 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9421 for (rel = relocs; rel < relend; ++rel)
9422 {
9423 const char *name;
9424 bfd_vma value = 0;
9425 reloc_howto_type *howto;
9426 bfd_boolean cross_mode_jump_p;
9427 /* TRUE if the relocation is a RELA relocation, rather than a
9428 REL relocation. */
9429 bfd_boolean rela_relocation_p = TRUE;
9430 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9431 const char *msg;
9432 unsigned long r_symndx;
9433 asection *sec;
9434 Elf_Internal_Shdr *symtab_hdr;
9435 struct elf_link_hash_entry *h;
9436 bfd_boolean rel_reloc;
9437
9438 rel_reloc = (NEWABI_P (input_bfd)
9439 && mips_elf_rel_relocation_p (input_bfd, input_section,
9440 relocs, rel));
9441 /* Find the relocation howto for this relocation. */
9442 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9443
9444 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9445 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9446 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9447 {
9448 sec = local_sections[r_symndx];
9449 h = NULL;
9450 }
9451 else
9452 {
9453 unsigned long extsymoff;
9454
9455 extsymoff = 0;
9456 if (!elf_bad_symtab (input_bfd))
9457 extsymoff = symtab_hdr->sh_info;
9458 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9459 while (h->root.type == bfd_link_hash_indirect
9460 || h->root.type == bfd_link_hash_warning)
9461 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9462
9463 sec = NULL;
9464 if (h->root.type == bfd_link_hash_defined
9465 || h->root.type == bfd_link_hash_defweak)
9466 sec = h->root.u.def.section;
9467 }
9468
9469 if (sec != NULL && discarded_section (sec))
9470 {
9471 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9472 input_section, &rel, &relend,
9473 rel_reloc, howto, contents);
9474 continue;
9475 }
9476
9477 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9478 {
9479 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9480 64-bit code, but make sure all their addresses are in the
9481 lowermost or uppermost 32-bit section of the 64-bit address
9482 space. Thus, when they use an R_MIPS_64 they mean what is
9483 usually meant by R_MIPS_32, with the exception that the
9484 stored value is sign-extended to 64 bits. */
9485 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9486
9487 /* On big-endian systems, we need to lie about the position
9488 of the reloc. */
9489 if (bfd_big_endian (input_bfd))
9490 rel->r_offset += 4;
9491 }
9492
9493 if (!use_saved_addend_p)
9494 {
9495 /* If these relocations were originally of the REL variety,
9496 we must pull the addend out of the field that will be
9497 relocated. Otherwise, we simply use the contents of the
9498 RELA relocation. */
9499 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9500 relocs, rel))
9501 {
9502 rela_relocation_p = FALSE;
9503 addend = mips_elf_read_rel_addend (input_bfd, rel,
9504 howto, contents);
9505 if (hi16_reloc_p (r_type)
9506 || (got16_reloc_p (r_type)
9507 && mips_elf_local_relocation_p (input_bfd, rel,
9508 local_sections)))
9509 {
9510 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9511 contents, &addend))
9512 {
9513 if (h)
9514 name = h->root.root.string;
9515 else
9516 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9517 local_syms + r_symndx,
9518 sec);
9519 (*_bfd_error_handler)
9520 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9521 input_bfd, input_section, name, howto->name,
9522 rel->r_offset);
9523 }
9524 }
9525 else
9526 addend <<= howto->rightshift;
9527 }
9528 else
9529 addend = rel->r_addend;
9530 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9531 local_syms, local_sections, rel);
9532 }
9533
9534 if (info->relocatable)
9535 {
9536 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9537 && bfd_big_endian (input_bfd))
9538 rel->r_offset -= 4;
9539
9540 if (!rela_relocation_p && rel->r_addend)
9541 {
9542 addend += rel->r_addend;
9543 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9544 addend = mips_elf_high (addend);
9545 else if (r_type == R_MIPS_HIGHER)
9546 addend = mips_elf_higher (addend);
9547 else if (r_type == R_MIPS_HIGHEST)
9548 addend = mips_elf_highest (addend);
9549 else
9550 addend >>= howto->rightshift;
9551
9552 /* We use the source mask, rather than the destination
9553 mask because the place to which we are writing will be
9554 source of the addend in the final link. */
9555 addend &= howto->src_mask;
9556
9557 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9558 /* See the comment above about using R_MIPS_64 in the 32-bit
9559 ABI. Here, we need to update the addend. It would be
9560 possible to get away with just using the R_MIPS_32 reloc
9561 but for endianness. */
9562 {
9563 bfd_vma sign_bits;
9564 bfd_vma low_bits;
9565 bfd_vma high_bits;
9566
9567 if (addend & ((bfd_vma) 1 << 31))
9568 #ifdef BFD64
9569 sign_bits = ((bfd_vma) 1 << 32) - 1;
9570 #else
9571 sign_bits = -1;
9572 #endif
9573 else
9574 sign_bits = 0;
9575
9576 /* If we don't know that we have a 64-bit type,
9577 do two separate stores. */
9578 if (bfd_big_endian (input_bfd))
9579 {
9580 /* Store the sign-bits (which are most significant)
9581 first. */
9582 low_bits = sign_bits;
9583 high_bits = addend;
9584 }
9585 else
9586 {
9587 low_bits = addend;
9588 high_bits = sign_bits;
9589 }
9590 bfd_put_32 (input_bfd, low_bits,
9591 contents + rel->r_offset);
9592 bfd_put_32 (input_bfd, high_bits,
9593 contents + rel->r_offset + 4);
9594 continue;
9595 }
9596
9597 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9598 input_bfd, input_section,
9599 contents, FALSE))
9600 return FALSE;
9601 }
9602
9603 /* Go on to the next relocation. */
9604 continue;
9605 }
9606
9607 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9608 relocations for the same offset. In that case we are
9609 supposed to treat the output of each relocation as the addend
9610 for the next. */
9611 if (rel + 1 < relend
9612 && rel->r_offset == rel[1].r_offset
9613 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9614 use_saved_addend_p = TRUE;
9615 else
9616 use_saved_addend_p = FALSE;
9617
9618 /* Figure out what value we are supposed to relocate. */
9619 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9620 input_section, info, rel,
9621 addend, howto, local_syms,
9622 local_sections, &value,
9623 &name, &cross_mode_jump_p,
9624 use_saved_addend_p))
9625 {
9626 case bfd_reloc_continue:
9627 /* There's nothing to do. */
9628 continue;
9629
9630 case bfd_reloc_undefined:
9631 /* mips_elf_calculate_relocation already called the
9632 undefined_symbol callback. There's no real point in
9633 trying to perform the relocation at this point, so we
9634 just skip ahead to the next relocation. */
9635 continue;
9636
9637 case bfd_reloc_notsupported:
9638 msg = _("internal error: unsupported relocation error");
9639 info->callbacks->warning
9640 (info, msg, name, input_bfd, input_section, rel->r_offset);
9641 return FALSE;
9642
9643 case bfd_reloc_overflow:
9644 if (use_saved_addend_p)
9645 /* Ignore overflow until we reach the last relocation for
9646 a given location. */
9647 ;
9648 else
9649 {
9650 struct mips_elf_link_hash_table *htab;
9651
9652 htab = mips_elf_hash_table (info);
9653 BFD_ASSERT (htab != NULL);
9654 BFD_ASSERT (name != NULL);
9655 if (!htab->small_data_overflow_reported
9656 && (gprel16_reloc_p (howto->type)
9657 || literal_reloc_p (howto->type)))
9658 {
9659 msg = _("small-data section exceeds 64KB;"
9660 " lower small-data size limit (see option -G)");
9661
9662 htab->small_data_overflow_reported = TRUE;
9663 (*info->callbacks->einfo) ("%P: %s\n", msg);
9664 }
9665 if (! ((*info->callbacks->reloc_overflow)
9666 (info, NULL, name, howto->name, (bfd_vma) 0,
9667 input_bfd, input_section, rel->r_offset)))
9668 return FALSE;
9669 }
9670 break;
9671
9672 case bfd_reloc_ok:
9673 break;
9674
9675 case bfd_reloc_outofrange:
9676 if (jal_reloc_p (howto->type))
9677 {
9678 msg = _("JALX to a non-word-aligned address");
9679 info->callbacks->warning
9680 (info, msg, name, input_bfd, input_section, rel->r_offset);
9681 return FALSE;
9682 }
9683 /* Fall through. */
9684
9685 default:
9686 abort ();
9687 break;
9688 }
9689
9690 /* If we've got another relocation for the address, keep going
9691 until we reach the last one. */
9692 if (use_saved_addend_p)
9693 {
9694 addend = value;
9695 continue;
9696 }
9697
9698 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9699 /* See the comment above about using R_MIPS_64 in the 32-bit
9700 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9701 that calculated the right value. Now, however, we
9702 sign-extend the 32-bit result to 64-bits, and store it as a
9703 64-bit value. We are especially generous here in that we
9704 go to extreme lengths to support this usage on systems with
9705 only a 32-bit VMA. */
9706 {
9707 bfd_vma sign_bits;
9708 bfd_vma low_bits;
9709 bfd_vma high_bits;
9710
9711 if (value & ((bfd_vma) 1 << 31))
9712 #ifdef BFD64
9713 sign_bits = ((bfd_vma) 1 << 32) - 1;
9714 #else
9715 sign_bits = -1;
9716 #endif
9717 else
9718 sign_bits = 0;
9719
9720 /* If we don't know that we have a 64-bit type,
9721 do two separate stores. */
9722 if (bfd_big_endian (input_bfd))
9723 {
9724 /* Undo what we did above. */
9725 rel->r_offset -= 4;
9726 /* Store the sign-bits (which are most significant)
9727 first. */
9728 low_bits = sign_bits;
9729 high_bits = value;
9730 }
9731 else
9732 {
9733 low_bits = value;
9734 high_bits = sign_bits;
9735 }
9736 bfd_put_32 (input_bfd, low_bits,
9737 contents + rel->r_offset);
9738 bfd_put_32 (input_bfd, high_bits,
9739 contents + rel->r_offset + 4);
9740 continue;
9741 }
9742
9743 /* Actually perform the relocation. */
9744 if (! mips_elf_perform_relocation (info, howto, rel, value,
9745 input_bfd, input_section,
9746 contents, cross_mode_jump_p))
9747 return FALSE;
9748 }
9749
9750 return TRUE;
9751 }
9752 \f
9753 /* A function that iterates over each entry in la25_stubs and fills
9754 in the code for each one. DATA points to a mips_htab_traverse_info. */
9755
9756 static int
9757 mips_elf_create_la25_stub (void **slot, void *data)
9758 {
9759 struct mips_htab_traverse_info *hti;
9760 struct mips_elf_link_hash_table *htab;
9761 struct mips_elf_la25_stub *stub;
9762 asection *s;
9763 bfd_byte *loc;
9764 bfd_vma offset, target, target_high, target_low;
9765
9766 stub = (struct mips_elf_la25_stub *) *slot;
9767 hti = (struct mips_htab_traverse_info *) data;
9768 htab = mips_elf_hash_table (hti->info);
9769 BFD_ASSERT (htab != NULL);
9770
9771 /* Create the section contents, if we haven't already. */
9772 s = stub->stub_section;
9773 loc = s->contents;
9774 if (loc == NULL)
9775 {
9776 loc = bfd_malloc (s->size);
9777 if (loc == NULL)
9778 {
9779 hti->error = TRUE;
9780 return FALSE;
9781 }
9782 s->contents = loc;
9783 }
9784
9785 /* Work out where in the section this stub should go. */
9786 offset = stub->offset;
9787
9788 /* Work out the target address. */
9789 target = mips_elf_get_la25_target (stub, &s);
9790 target += s->output_section->vma + s->output_offset;
9791
9792 target_high = ((target + 0x8000) >> 16) & 0xffff;
9793 target_low = (target & 0xffff);
9794
9795 if (stub->stub_section != htab->strampoline)
9796 {
9797 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9798 of the section and write the two instructions at the end. */
9799 memset (loc, 0, offset);
9800 loc += offset;
9801 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9802 {
9803 bfd_put_micromips_32 (hti->output_bfd,
9804 LA25_LUI_MICROMIPS (target_high),
9805 loc);
9806 bfd_put_micromips_32 (hti->output_bfd,
9807 LA25_ADDIU_MICROMIPS (target_low),
9808 loc + 4);
9809 }
9810 else
9811 {
9812 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9813 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9814 }
9815 }
9816 else
9817 {
9818 /* This is trampoline. */
9819 loc += offset;
9820 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9821 {
9822 bfd_put_micromips_32 (hti->output_bfd,
9823 LA25_LUI_MICROMIPS (target_high), loc);
9824 bfd_put_micromips_32 (hti->output_bfd,
9825 LA25_J_MICROMIPS (target), loc + 4);
9826 bfd_put_micromips_32 (hti->output_bfd,
9827 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9828 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9829 }
9830 else
9831 {
9832 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9833 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9834 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9835 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9836 }
9837 }
9838 return TRUE;
9839 }
9840
9841 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9842 adjust it appropriately now. */
9843
9844 static void
9845 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9846 const char *name, Elf_Internal_Sym *sym)
9847 {
9848 /* The linker script takes care of providing names and values for
9849 these, but we must place them into the right sections. */
9850 static const char* const text_section_symbols[] = {
9851 "_ftext",
9852 "_etext",
9853 "__dso_displacement",
9854 "__elf_header",
9855 "__program_header_table",
9856 NULL
9857 };
9858
9859 static const char* const data_section_symbols[] = {
9860 "_fdata",
9861 "_edata",
9862 "_end",
9863 "_fbss",
9864 NULL
9865 };
9866
9867 const char* const *p;
9868 int i;
9869
9870 for (i = 0; i < 2; ++i)
9871 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9872 *p;
9873 ++p)
9874 if (strcmp (*p, name) == 0)
9875 {
9876 /* All of these symbols are given type STT_SECTION by the
9877 IRIX6 linker. */
9878 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9879 sym->st_other = STO_PROTECTED;
9880
9881 /* The IRIX linker puts these symbols in special sections. */
9882 if (i == 0)
9883 sym->st_shndx = SHN_MIPS_TEXT;
9884 else
9885 sym->st_shndx = SHN_MIPS_DATA;
9886
9887 break;
9888 }
9889 }
9890
9891 /* Finish up dynamic symbol handling. We set the contents of various
9892 dynamic sections here. */
9893
9894 bfd_boolean
9895 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9896 struct bfd_link_info *info,
9897 struct elf_link_hash_entry *h,
9898 Elf_Internal_Sym *sym)
9899 {
9900 bfd *dynobj;
9901 asection *sgot;
9902 struct mips_got_info *g, *gg;
9903 const char *name;
9904 int idx;
9905 struct mips_elf_link_hash_table *htab;
9906 struct mips_elf_link_hash_entry *hmips;
9907
9908 htab = mips_elf_hash_table (info);
9909 BFD_ASSERT (htab != NULL);
9910 dynobj = elf_hash_table (info)->dynobj;
9911 hmips = (struct mips_elf_link_hash_entry *) h;
9912
9913 BFD_ASSERT (!htab->is_vxworks);
9914
9915 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9916 {
9917 /* We've decided to create a PLT entry for this symbol. */
9918 bfd_byte *loc;
9919 bfd_vma header_address, plt_index, got_address;
9920 bfd_vma got_address_high, got_address_low, load;
9921 const bfd_vma *plt_entry;
9922
9923 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9924 BFD_ASSERT (h->dynindx != -1);
9925 BFD_ASSERT (htab->splt != NULL);
9926 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9927 BFD_ASSERT (!h->def_regular);
9928
9929 /* Calculate the address of the PLT header. */
9930 header_address = (htab->splt->output_section->vma
9931 + htab->splt->output_offset);
9932
9933 /* Calculate the index of the entry. */
9934 plt_index = ((h->plt.offset - htab->plt_header_size)
9935 / htab->plt_entry_size);
9936
9937 /* Calculate the address of the .got.plt entry. */
9938 got_address = (htab->sgotplt->output_section->vma
9939 + htab->sgotplt->output_offset
9940 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9941 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9942 got_address_low = got_address & 0xffff;
9943
9944 /* Initially point the .got.plt entry at the PLT header. */
9945 loc = (htab->sgotplt->contents
9946 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9947 if (ABI_64_P (output_bfd))
9948 bfd_put_64 (output_bfd, header_address, loc);
9949 else
9950 bfd_put_32 (output_bfd, header_address, loc);
9951
9952 /* Find out where the .plt entry should go. */
9953 loc = htab->splt->contents + h->plt.offset;
9954
9955 /* Pick the load opcode. */
9956 load = MIPS_ELF_LOAD_WORD (output_bfd);
9957
9958 /* Fill in the PLT entry itself. */
9959 plt_entry = mips_exec_plt_entry;
9960 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9961 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9962
9963 if (! LOAD_INTERLOCKS_P (output_bfd))
9964 {
9965 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9966 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9967 }
9968 else
9969 {
9970 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9971 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9972 }
9973
9974 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9975 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9976 plt_index, h->dynindx,
9977 R_MIPS_JUMP_SLOT, got_address);
9978
9979 /* We distinguish between PLT entries and lazy-binding stubs by
9980 giving the former an st_other value of STO_MIPS_PLT. Set the
9981 flag and leave the value if there are any relocations in the
9982 binary where pointer equality matters. */
9983 sym->st_shndx = SHN_UNDEF;
9984 if (h->pointer_equality_needed)
9985 sym->st_other = STO_MIPS_PLT;
9986 else
9987 sym->st_value = 0;
9988 }
9989 else if (h->plt.offset != MINUS_ONE)
9990 {
9991 /* We've decided to create a lazy-binding stub. */
9992 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9993
9994 /* This symbol has a stub. Set it up. */
9995
9996 BFD_ASSERT (h->dynindx != -1);
9997
9998 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9999 || (h->dynindx <= 0xffff));
10000
10001 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10002 sign extension at runtime in the stub, resulting in a negative
10003 index value. */
10004 if (h->dynindx & ~0x7fffffff)
10005 return FALSE;
10006
10007 /* Fill the stub. */
10008 idx = 0;
10009 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10010 idx += 4;
10011 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10012 idx += 4;
10013 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10014 {
10015 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10016 stub + idx);
10017 idx += 4;
10018 }
10019 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10020 idx += 4;
10021
10022 /* If a large stub is not required and sign extension is not a
10023 problem, then use legacy code in the stub. */
10024 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10025 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10026 else if (h->dynindx & ~0x7fff)
10027 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10028 else
10029 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10030 stub + idx);
10031
10032 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10033 memcpy (htab->sstubs->contents + h->plt.offset,
10034 stub, htab->function_stub_size);
10035
10036 /* Mark the symbol as undefined. plt.offset != -1 occurs
10037 only for the referenced symbol. */
10038 sym->st_shndx = SHN_UNDEF;
10039
10040 /* The run-time linker uses the st_value field of the symbol
10041 to reset the global offset table entry for this external
10042 to its stub address when unlinking a shared object. */
10043 sym->st_value = (htab->sstubs->output_section->vma
10044 + htab->sstubs->output_offset
10045 + h->plt.offset);
10046 }
10047
10048 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10049 refer to the stub, since only the stub uses the standard calling
10050 conventions. */
10051 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10052 {
10053 BFD_ASSERT (hmips->need_fn_stub);
10054 sym->st_value = (hmips->fn_stub->output_section->vma
10055 + hmips->fn_stub->output_offset);
10056 sym->st_size = hmips->fn_stub->size;
10057 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10058 }
10059
10060 BFD_ASSERT (h->dynindx != -1
10061 || h->forced_local);
10062
10063 sgot = htab->sgot;
10064 g = htab->got_info;
10065 BFD_ASSERT (g != NULL);
10066
10067 /* Run through the global symbol table, creating GOT entries for all
10068 the symbols that need them. */
10069 if (hmips->global_got_area != GGA_NONE)
10070 {
10071 bfd_vma offset;
10072 bfd_vma value;
10073
10074 value = sym->st_value;
10075 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10076 R_MIPS_GOT16, info);
10077 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10078 }
10079
10080 if (hmips->global_got_area != GGA_NONE && g->next)
10081 {
10082 struct mips_got_entry e, *p;
10083 bfd_vma entry;
10084 bfd_vma offset;
10085
10086 gg = g;
10087
10088 e.abfd = output_bfd;
10089 e.symndx = -1;
10090 e.d.h = hmips;
10091 e.tls_type = 0;
10092
10093 for (g = g->next; g->next != gg; g = g->next)
10094 {
10095 if (g->got_entries
10096 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10097 &e)))
10098 {
10099 offset = p->gotidx;
10100 if (info->shared
10101 || (elf_hash_table (info)->dynamic_sections_created
10102 && p->d.h != NULL
10103 && p->d.h->root.def_dynamic
10104 && !p->d.h->root.def_regular))
10105 {
10106 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10107 the various compatibility problems, it's easier to mock
10108 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10109 mips_elf_create_dynamic_relocation to calculate the
10110 appropriate addend. */
10111 Elf_Internal_Rela rel[3];
10112
10113 memset (rel, 0, sizeof (rel));
10114 if (ABI_64_P (output_bfd))
10115 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10116 else
10117 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10118 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10119
10120 entry = 0;
10121 if (! (mips_elf_create_dynamic_relocation
10122 (output_bfd, info, rel,
10123 e.d.h, NULL, sym->st_value, &entry, sgot)))
10124 return FALSE;
10125 }
10126 else
10127 entry = sym->st_value;
10128 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10129 }
10130 }
10131 }
10132
10133 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10134 name = h->root.root.string;
10135 if (h == elf_hash_table (info)->hdynamic
10136 || h == elf_hash_table (info)->hgot)
10137 sym->st_shndx = SHN_ABS;
10138 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10139 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10140 {
10141 sym->st_shndx = SHN_ABS;
10142 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10143 sym->st_value = 1;
10144 }
10145 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10146 {
10147 sym->st_shndx = SHN_ABS;
10148 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10149 sym->st_value = elf_gp (output_bfd);
10150 }
10151 else if (SGI_COMPAT (output_bfd))
10152 {
10153 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10154 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10155 {
10156 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10157 sym->st_other = STO_PROTECTED;
10158 sym->st_value = 0;
10159 sym->st_shndx = SHN_MIPS_DATA;
10160 }
10161 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10162 {
10163 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10164 sym->st_other = STO_PROTECTED;
10165 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10166 sym->st_shndx = SHN_ABS;
10167 }
10168 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10169 {
10170 if (h->type == STT_FUNC)
10171 sym->st_shndx = SHN_MIPS_TEXT;
10172 else if (h->type == STT_OBJECT)
10173 sym->st_shndx = SHN_MIPS_DATA;
10174 }
10175 }
10176
10177 /* Emit a copy reloc, if needed. */
10178 if (h->needs_copy)
10179 {
10180 asection *s;
10181 bfd_vma symval;
10182
10183 BFD_ASSERT (h->dynindx != -1);
10184 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10185
10186 s = mips_elf_rel_dyn_section (info, FALSE);
10187 symval = (h->root.u.def.section->output_section->vma
10188 + h->root.u.def.section->output_offset
10189 + h->root.u.def.value);
10190 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10191 h->dynindx, R_MIPS_COPY, symval);
10192 }
10193
10194 /* Handle the IRIX6-specific symbols. */
10195 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10196 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10197
10198 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10199 treat MIPS16 symbols like any other. */
10200 if (ELF_ST_IS_MIPS16 (sym->st_other))
10201 {
10202 BFD_ASSERT (sym->st_value & 1);
10203 sym->st_other -= STO_MIPS16;
10204 }
10205
10206 return TRUE;
10207 }
10208
10209 /* Likewise, for VxWorks. */
10210
10211 bfd_boolean
10212 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10213 struct bfd_link_info *info,
10214 struct elf_link_hash_entry *h,
10215 Elf_Internal_Sym *sym)
10216 {
10217 bfd *dynobj;
10218 asection *sgot;
10219 struct mips_got_info *g;
10220 struct mips_elf_link_hash_table *htab;
10221 struct mips_elf_link_hash_entry *hmips;
10222
10223 htab = mips_elf_hash_table (info);
10224 BFD_ASSERT (htab != NULL);
10225 dynobj = elf_hash_table (info)->dynobj;
10226 hmips = (struct mips_elf_link_hash_entry *) h;
10227
10228 if (h->plt.offset != (bfd_vma) -1)
10229 {
10230 bfd_byte *loc;
10231 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10232 Elf_Internal_Rela rel;
10233 static const bfd_vma *plt_entry;
10234
10235 BFD_ASSERT (h->dynindx != -1);
10236 BFD_ASSERT (htab->splt != NULL);
10237 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10238
10239 /* Calculate the address of the .plt entry. */
10240 plt_address = (htab->splt->output_section->vma
10241 + htab->splt->output_offset
10242 + h->plt.offset);
10243
10244 /* Calculate the index of the entry. */
10245 plt_index = ((h->plt.offset - htab->plt_header_size)
10246 / htab->plt_entry_size);
10247
10248 /* Calculate the address of the .got.plt entry. */
10249 got_address = (htab->sgotplt->output_section->vma
10250 + htab->sgotplt->output_offset
10251 + plt_index * 4);
10252
10253 /* Calculate the offset of the .got.plt entry from
10254 _GLOBAL_OFFSET_TABLE_. */
10255 got_offset = mips_elf_gotplt_index (info, h);
10256
10257 /* Calculate the offset for the branch at the start of the PLT
10258 entry. The branch jumps to the beginning of .plt. */
10259 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10260
10261 /* Fill in the initial value of the .got.plt entry. */
10262 bfd_put_32 (output_bfd, plt_address,
10263 htab->sgotplt->contents + plt_index * 4);
10264
10265 /* Find out where the .plt entry should go. */
10266 loc = htab->splt->contents + h->plt.offset;
10267
10268 if (info->shared)
10269 {
10270 plt_entry = mips_vxworks_shared_plt_entry;
10271 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10272 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10273 }
10274 else
10275 {
10276 bfd_vma got_address_high, got_address_low;
10277
10278 plt_entry = mips_vxworks_exec_plt_entry;
10279 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10280 got_address_low = got_address & 0xffff;
10281
10282 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10283 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10284 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10285 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10286 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10287 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10288 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10289 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10290
10291 loc = (htab->srelplt2->contents
10292 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10293
10294 /* Emit a relocation for the .got.plt entry. */
10295 rel.r_offset = got_address;
10296 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10297 rel.r_addend = h->plt.offset;
10298 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10299
10300 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10301 loc += sizeof (Elf32_External_Rela);
10302 rel.r_offset = plt_address + 8;
10303 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10304 rel.r_addend = got_offset;
10305 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10306
10307 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10308 loc += sizeof (Elf32_External_Rela);
10309 rel.r_offset += 4;
10310 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10311 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10312 }
10313
10314 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10315 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10316 rel.r_offset = got_address;
10317 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10318 rel.r_addend = 0;
10319 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10320
10321 if (!h->def_regular)
10322 sym->st_shndx = SHN_UNDEF;
10323 }
10324
10325 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10326
10327 sgot = htab->sgot;
10328 g = htab->got_info;
10329 BFD_ASSERT (g != NULL);
10330
10331 /* See if this symbol has an entry in the GOT. */
10332 if (hmips->global_got_area != GGA_NONE)
10333 {
10334 bfd_vma offset;
10335 Elf_Internal_Rela outrel;
10336 bfd_byte *loc;
10337 asection *s;
10338
10339 /* Install the symbol value in the GOT. */
10340 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10341 R_MIPS_GOT16, info);
10342 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10343
10344 /* Add a dynamic relocation for it. */
10345 s = mips_elf_rel_dyn_section (info, FALSE);
10346 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10347 outrel.r_offset = (sgot->output_section->vma
10348 + sgot->output_offset
10349 + offset);
10350 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10351 outrel.r_addend = 0;
10352 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10353 }
10354
10355 /* Emit a copy reloc, if needed. */
10356 if (h->needs_copy)
10357 {
10358 Elf_Internal_Rela rel;
10359
10360 BFD_ASSERT (h->dynindx != -1);
10361
10362 rel.r_offset = (h->root.u.def.section->output_section->vma
10363 + h->root.u.def.section->output_offset
10364 + h->root.u.def.value);
10365 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10366 rel.r_addend = 0;
10367 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10368 htab->srelbss->contents
10369 + (htab->srelbss->reloc_count
10370 * sizeof (Elf32_External_Rela)));
10371 ++htab->srelbss->reloc_count;
10372 }
10373
10374 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10375 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10376 sym->st_value &= ~1;
10377
10378 return TRUE;
10379 }
10380
10381 /* Write out a plt0 entry to the beginning of .plt. */
10382
10383 static void
10384 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10385 {
10386 bfd_byte *loc;
10387 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10388 static const bfd_vma *plt_entry;
10389 struct mips_elf_link_hash_table *htab;
10390
10391 htab = mips_elf_hash_table (info);
10392 BFD_ASSERT (htab != NULL);
10393
10394 if (ABI_64_P (output_bfd))
10395 plt_entry = mips_n64_exec_plt0_entry;
10396 else if (ABI_N32_P (output_bfd))
10397 plt_entry = mips_n32_exec_plt0_entry;
10398 else
10399 plt_entry = mips_o32_exec_plt0_entry;
10400
10401 /* Calculate the value of .got.plt. */
10402 gotplt_value = (htab->sgotplt->output_section->vma
10403 + htab->sgotplt->output_offset);
10404 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10405 gotplt_value_low = gotplt_value & 0xffff;
10406
10407 /* The PLT sequence is not safe for N64 if .got.plt's address can
10408 not be loaded in two instructions. */
10409 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10410 || ~(gotplt_value | 0x7fffffff) == 0);
10411
10412 /* Install the PLT header. */
10413 loc = htab->splt->contents;
10414 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10415 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10416 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10417 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10418 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10419 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10420 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10421 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10422 }
10423
10424 /* Install the PLT header for a VxWorks executable and finalize the
10425 contents of .rela.plt.unloaded. */
10426
10427 static void
10428 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10429 {
10430 Elf_Internal_Rela rela;
10431 bfd_byte *loc;
10432 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10433 static const bfd_vma *plt_entry;
10434 struct mips_elf_link_hash_table *htab;
10435
10436 htab = mips_elf_hash_table (info);
10437 BFD_ASSERT (htab != NULL);
10438
10439 plt_entry = mips_vxworks_exec_plt0_entry;
10440
10441 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10442 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10443 + htab->root.hgot->root.u.def.section->output_offset
10444 + htab->root.hgot->root.u.def.value);
10445
10446 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10447 got_value_low = got_value & 0xffff;
10448
10449 /* Calculate the address of the PLT header. */
10450 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10451
10452 /* Install the PLT header. */
10453 loc = htab->splt->contents;
10454 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10455 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10456 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10457 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10458 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10459 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10460
10461 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10462 loc = htab->srelplt2->contents;
10463 rela.r_offset = plt_address;
10464 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10465 rela.r_addend = 0;
10466 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10467 loc += sizeof (Elf32_External_Rela);
10468
10469 /* Output the relocation for the following addiu of
10470 %lo(_GLOBAL_OFFSET_TABLE_). */
10471 rela.r_offset += 4;
10472 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10473 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10474 loc += sizeof (Elf32_External_Rela);
10475
10476 /* Fix up the remaining relocations. They may have the wrong
10477 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10478 in which symbols were output. */
10479 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10480 {
10481 Elf_Internal_Rela rel;
10482
10483 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10484 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10485 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10486 loc += sizeof (Elf32_External_Rela);
10487
10488 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10489 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10490 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10491 loc += sizeof (Elf32_External_Rela);
10492
10493 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10494 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10496 loc += sizeof (Elf32_External_Rela);
10497 }
10498 }
10499
10500 /* Install the PLT header for a VxWorks shared library. */
10501
10502 static void
10503 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10504 {
10505 unsigned int i;
10506 struct mips_elf_link_hash_table *htab;
10507
10508 htab = mips_elf_hash_table (info);
10509 BFD_ASSERT (htab != NULL);
10510
10511 /* We just need to copy the entry byte-by-byte. */
10512 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10513 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10514 htab->splt->contents + i * 4);
10515 }
10516
10517 /* Finish up the dynamic sections. */
10518
10519 bfd_boolean
10520 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10521 struct bfd_link_info *info)
10522 {
10523 bfd *dynobj;
10524 asection *sdyn;
10525 asection *sgot;
10526 struct mips_got_info *gg, *g;
10527 struct mips_elf_link_hash_table *htab;
10528
10529 htab = mips_elf_hash_table (info);
10530 BFD_ASSERT (htab != NULL);
10531
10532 dynobj = elf_hash_table (info)->dynobj;
10533
10534 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10535
10536 sgot = htab->sgot;
10537 gg = htab->got_info;
10538
10539 if (elf_hash_table (info)->dynamic_sections_created)
10540 {
10541 bfd_byte *b;
10542 int dyn_to_skip = 0, dyn_skipped = 0;
10543
10544 BFD_ASSERT (sdyn != NULL);
10545 BFD_ASSERT (gg != NULL);
10546
10547 g = mips_elf_got_for_ibfd (gg, output_bfd);
10548 BFD_ASSERT (g != NULL);
10549
10550 for (b = sdyn->contents;
10551 b < sdyn->contents + sdyn->size;
10552 b += MIPS_ELF_DYN_SIZE (dynobj))
10553 {
10554 Elf_Internal_Dyn dyn;
10555 const char *name;
10556 size_t elemsize;
10557 asection *s;
10558 bfd_boolean swap_out_p;
10559
10560 /* Read in the current dynamic entry. */
10561 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10562
10563 /* Assume that we're going to modify it and write it out. */
10564 swap_out_p = TRUE;
10565
10566 switch (dyn.d_tag)
10567 {
10568 case DT_RELENT:
10569 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10570 break;
10571
10572 case DT_RELAENT:
10573 BFD_ASSERT (htab->is_vxworks);
10574 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10575 break;
10576
10577 case DT_STRSZ:
10578 /* Rewrite DT_STRSZ. */
10579 dyn.d_un.d_val =
10580 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10581 break;
10582
10583 case DT_PLTGOT:
10584 s = htab->sgot;
10585 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10586 break;
10587
10588 case DT_MIPS_PLTGOT:
10589 s = htab->sgotplt;
10590 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10591 break;
10592
10593 case DT_MIPS_RLD_VERSION:
10594 dyn.d_un.d_val = 1; /* XXX */
10595 break;
10596
10597 case DT_MIPS_FLAGS:
10598 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10599 break;
10600
10601 case DT_MIPS_TIME_STAMP:
10602 {
10603 time_t t;
10604 time (&t);
10605 dyn.d_un.d_val = t;
10606 }
10607 break;
10608
10609 case DT_MIPS_ICHECKSUM:
10610 /* XXX FIXME: */
10611 swap_out_p = FALSE;
10612 break;
10613
10614 case DT_MIPS_IVERSION:
10615 /* XXX FIXME: */
10616 swap_out_p = FALSE;
10617 break;
10618
10619 case DT_MIPS_BASE_ADDRESS:
10620 s = output_bfd->sections;
10621 BFD_ASSERT (s != NULL);
10622 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10623 break;
10624
10625 case DT_MIPS_LOCAL_GOTNO:
10626 dyn.d_un.d_val = g->local_gotno;
10627 break;
10628
10629 case DT_MIPS_UNREFEXTNO:
10630 /* The index into the dynamic symbol table which is the
10631 entry of the first external symbol that is not
10632 referenced within the same object. */
10633 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10634 break;
10635
10636 case DT_MIPS_GOTSYM:
10637 if (htab->global_gotsym)
10638 {
10639 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10640 break;
10641 }
10642 /* In case if we don't have global got symbols we default
10643 to setting DT_MIPS_GOTSYM to the same value as
10644 DT_MIPS_SYMTABNO, so we just fall through. */
10645
10646 case DT_MIPS_SYMTABNO:
10647 name = ".dynsym";
10648 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10649 s = bfd_get_section_by_name (output_bfd, name);
10650 BFD_ASSERT (s != NULL);
10651
10652 dyn.d_un.d_val = s->size / elemsize;
10653 break;
10654
10655 case DT_MIPS_HIPAGENO:
10656 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10657 break;
10658
10659 case DT_MIPS_RLD_MAP:
10660 {
10661 struct elf_link_hash_entry *h;
10662 h = mips_elf_hash_table (info)->rld_symbol;
10663 if (!h)
10664 {
10665 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10666 swap_out_p = FALSE;
10667 break;
10668 }
10669 s = h->root.u.def.section;
10670 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10671 + h->root.u.def.value);
10672 }
10673 break;
10674
10675 case DT_MIPS_OPTIONS:
10676 s = (bfd_get_section_by_name
10677 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10678 dyn.d_un.d_ptr = s->vma;
10679 break;
10680
10681 case DT_RELASZ:
10682 BFD_ASSERT (htab->is_vxworks);
10683 /* The count does not include the JUMP_SLOT relocations. */
10684 if (htab->srelplt)
10685 dyn.d_un.d_val -= htab->srelplt->size;
10686 break;
10687
10688 case DT_PLTREL:
10689 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10690 if (htab->is_vxworks)
10691 dyn.d_un.d_val = DT_RELA;
10692 else
10693 dyn.d_un.d_val = DT_REL;
10694 break;
10695
10696 case DT_PLTRELSZ:
10697 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10698 dyn.d_un.d_val = htab->srelplt->size;
10699 break;
10700
10701 case DT_JMPREL:
10702 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10703 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10704 + htab->srelplt->output_offset);
10705 break;
10706
10707 case DT_TEXTREL:
10708 /* If we didn't need any text relocations after all, delete
10709 the dynamic tag. */
10710 if (!(info->flags & DF_TEXTREL))
10711 {
10712 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10713 swap_out_p = FALSE;
10714 }
10715 break;
10716
10717 case DT_FLAGS:
10718 /* If we didn't need any text relocations after all, clear
10719 DF_TEXTREL from DT_FLAGS. */
10720 if (!(info->flags & DF_TEXTREL))
10721 dyn.d_un.d_val &= ~DF_TEXTREL;
10722 else
10723 swap_out_p = FALSE;
10724 break;
10725
10726 default:
10727 swap_out_p = FALSE;
10728 if (htab->is_vxworks
10729 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10730 swap_out_p = TRUE;
10731 break;
10732 }
10733
10734 if (swap_out_p || dyn_skipped)
10735 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10736 (dynobj, &dyn, b - dyn_skipped);
10737
10738 if (dyn_to_skip)
10739 {
10740 dyn_skipped += dyn_to_skip;
10741 dyn_to_skip = 0;
10742 }
10743 }
10744
10745 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10746 if (dyn_skipped > 0)
10747 memset (b - dyn_skipped, 0, dyn_skipped);
10748 }
10749
10750 if (sgot != NULL && sgot->size > 0
10751 && !bfd_is_abs_section (sgot->output_section))
10752 {
10753 if (htab->is_vxworks)
10754 {
10755 /* The first entry of the global offset table points to the
10756 ".dynamic" section. The second is initialized by the
10757 loader and contains the shared library identifier.
10758 The third is also initialized by the loader and points
10759 to the lazy resolution stub. */
10760 MIPS_ELF_PUT_WORD (output_bfd,
10761 sdyn->output_offset + sdyn->output_section->vma,
10762 sgot->contents);
10763 MIPS_ELF_PUT_WORD (output_bfd, 0,
10764 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10765 MIPS_ELF_PUT_WORD (output_bfd, 0,
10766 sgot->contents
10767 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10768 }
10769 else
10770 {
10771 /* The first entry of the global offset table will be filled at
10772 runtime. The second entry will be used by some runtime loaders.
10773 This isn't the case of IRIX rld. */
10774 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10775 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10776 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10777 }
10778
10779 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10780 = MIPS_ELF_GOT_SIZE (output_bfd);
10781 }
10782
10783 /* Generate dynamic relocations for the non-primary gots. */
10784 if (gg != NULL && gg->next)
10785 {
10786 Elf_Internal_Rela rel[3];
10787 bfd_vma addend = 0;
10788
10789 memset (rel, 0, sizeof (rel));
10790 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10791
10792 for (g = gg->next; g->next != gg; g = g->next)
10793 {
10794 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10795 + g->next->tls_gotno;
10796
10797 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10798 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10799 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10800 sgot->contents
10801 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10802
10803 if (! info->shared)
10804 continue;
10805
10806 while (got_index < g->assigned_gotno)
10807 {
10808 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10809 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10810 if (!(mips_elf_create_dynamic_relocation
10811 (output_bfd, info, rel, NULL,
10812 bfd_abs_section_ptr,
10813 0, &addend, sgot)))
10814 return FALSE;
10815 BFD_ASSERT (addend == 0);
10816 }
10817 }
10818 }
10819
10820 /* The generation of dynamic relocations for the non-primary gots
10821 adds more dynamic relocations. We cannot count them until
10822 here. */
10823
10824 if (elf_hash_table (info)->dynamic_sections_created)
10825 {
10826 bfd_byte *b;
10827 bfd_boolean swap_out_p;
10828
10829 BFD_ASSERT (sdyn != NULL);
10830
10831 for (b = sdyn->contents;
10832 b < sdyn->contents + sdyn->size;
10833 b += MIPS_ELF_DYN_SIZE (dynobj))
10834 {
10835 Elf_Internal_Dyn dyn;
10836 asection *s;
10837
10838 /* Read in the current dynamic entry. */
10839 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10840
10841 /* Assume that we're going to modify it and write it out. */
10842 swap_out_p = TRUE;
10843
10844 switch (dyn.d_tag)
10845 {
10846 case DT_RELSZ:
10847 /* Reduce DT_RELSZ to account for any relocations we
10848 decided not to make. This is for the n64 irix rld,
10849 which doesn't seem to apply any relocations if there
10850 are trailing null entries. */
10851 s = mips_elf_rel_dyn_section (info, FALSE);
10852 dyn.d_un.d_val = (s->reloc_count
10853 * (ABI_64_P (output_bfd)
10854 ? sizeof (Elf64_Mips_External_Rel)
10855 : sizeof (Elf32_External_Rel)));
10856 /* Adjust the section size too. Tools like the prelinker
10857 can reasonably expect the values to the same. */
10858 elf_section_data (s->output_section)->this_hdr.sh_size
10859 = dyn.d_un.d_val;
10860 break;
10861
10862 default:
10863 swap_out_p = FALSE;
10864 break;
10865 }
10866
10867 if (swap_out_p)
10868 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10869 (dynobj, &dyn, b);
10870 }
10871 }
10872
10873 {
10874 asection *s;
10875 Elf32_compact_rel cpt;
10876
10877 if (SGI_COMPAT (output_bfd))
10878 {
10879 /* Write .compact_rel section out. */
10880 s = bfd_get_linker_section (dynobj, ".compact_rel");
10881 if (s != NULL)
10882 {
10883 cpt.id1 = 1;
10884 cpt.num = s->reloc_count;
10885 cpt.id2 = 2;
10886 cpt.offset = (s->output_section->filepos
10887 + sizeof (Elf32_External_compact_rel));
10888 cpt.reserved0 = 0;
10889 cpt.reserved1 = 0;
10890 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10891 ((Elf32_External_compact_rel *)
10892 s->contents));
10893
10894 /* Clean up a dummy stub function entry in .text. */
10895 if (htab->sstubs != NULL)
10896 {
10897 file_ptr dummy_offset;
10898
10899 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10900 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10901 memset (htab->sstubs->contents + dummy_offset, 0,
10902 htab->function_stub_size);
10903 }
10904 }
10905 }
10906
10907 /* The psABI says that the dynamic relocations must be sorted in
10908 increasing order of r_symndx. The VxWorks EABI doesn't require
10909 this, and because the code below handles REL rather than RELA
10910 relocations, using it for VxWorks would be outright harmful. */
10911 if (!htab->is_vxworks)
10912 {
10913 s = mips_elf_rel_dyn_section (info, FALSE);
10914 if (s != NULL
10915 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10916 {
10917 reldyn_sorting_bfd = output_bfd;
10918
10919 if (ABI_64_P (output_bfd))
10920 qsort ((Elf64_External_Rel *) s->contents + 1,
10921 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10922 sort_dynamic_relocs_64);
10923 else
10924 qsort ((Elf32_External_Rel *) s->contents + 1,
10925 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10926 sort_dynamic_relocs);
10927 }
10928 }
10929 }
10930
10931 if (htab->splt && htab->splt->size > 0)
10932 {
10933 if (htab->is_vxworks)
10934 {
10935 if (info->shared)
10936 mips_vxworks_finish_shared_plt (output_bfd, info);
10937 else
10938 mips_vxworks_finish_exec_plt (output_bfd, info);
10939 }
10940 else
10941 {
10942 BFD_ASSERT (!info->shared);
10943 mips_finish_exec_plt (output_bfd, info);
10944 }
10945 }
10946 return TRUE;
10947 }
10948
10949
10950 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10951
10952 static void
10953 mips_set_isa_flags (bfd *abfd)
10954 {
10955 flagword val;
10956
10957 switch (bfd_get_mach (abfd))
10958 {
10959 default:
10960 case bfd_mach_mips3000:
10961 val = E_MIPS_ARCH_1;
10962 break;
10963
10964 case bfd_mach_mips3900:
10965 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10966 break;
10967
10968 case bfd_mach_mips6000:
10969 val = E_MIPS_ARCH_2;
10970 break;
10971
10972 case bfd_mach_mips4000:
10973 case bfd_mach_mips4300:
10974 case bfd_mach_mips4400:
10975 case bfd_mach_mips4600:
10976 val = E_MIPS_ARCH_3;
10977 break;
10978
10979 case bfd_mach_mips4010:
10980 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10981 break;
10982
10983 case bfd_mach_mips4100:
10984 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10985 break;
10986
10987 case bfd_mach_mips4111:
10988 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10989 break;
10990
10991 case bfd_mach_mips4120:
10992 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10993 break;
10994
10995 case bfd_mach_mips4650:
10996 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10997 break;
10998
10999 case bfd_mach_mips5400:
11000 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11001 break;
11002
11003 case bfd_mach_mips5500:
11004 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11005 break;
11006
11007 case bfd_mach_mips5900:
11008 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11009 break;
11010
11011 case bfd_mach_mips9000:
11012 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11013 break;
11014
11015 case bfd_mach_mips5000:
11016 case bfd_mach_mips7000:
11017 case bfd_mach_mips8000:
11018 case bfd_mach_mips10000:
11019 case bfd_mach_mips12000:
11020 case bfd_mach_mips14000:
11021 case bfd_mach_mips16000:
11022 val = E_MIPS_ARCH_4;
11023 break;
11024
11025 case bfd_mach_mips5:
11026 val = E_MIPS_ARCH_5;
11027 break;
11028
11029 case bfd_mach_mips_loongson_2e:
11030 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11031 break;
11032
11033 case bfd_mach_mips_loongson_2f:
11034 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11035 break;
11036
11037 case bfd_mach_mips_sb1:
11038 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11039 break;
11040
11041 case bfd_mach_mips_loongson_3a:
11042 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11043 break;
11044
11045 case bfd_mach_mips_octeon:
11046 case bfd_mach_mips_octeonp:
11047 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11048 break;
11049
11050 case bfd_mach_mips_xlr:
11051 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11052 break;
11053
11054 case bfd_mach_mips_octeon2:
11055 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11056 break;
11057
11058 case bfd_mach_mipsisa32:
11059 val = E_MIPS_ARCH_32;
11060 break;
11061
11062 case bfd_mach_mipsisa64:
11063 val = E_MIPS_ARCH_64;
11064 break;
11065
11066 case bfd_mach_mipsisa32r2:
11067 val = E_MIPS_ARCH_32R2;
11068 break;
11069
11070 case bfd_mach_mipsisa64r2:
11071 val = E_MIPS_ARCH_64R2;
11072 break;
11073 }
11074 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11075 elf_elfheader (abfd)->e_flags |= val;
11076
11077 }
11078
11079
11080 /* The final processing done just before writing out a MIPS ELF object
11081 file. This gets the MIPS architecture right based on the machine
11082 number. This is used by both the 32-bit and the 64-bit ABI. */
11083
11084 void
11085 _bfd_mips_elf_final_write_processing (bfd *abfd,
11086 bfd_boolean linker ATTRIBUTE_UNUSED)
11087 {
11088 unsigned int i;
11089 Elf_Internal_Shdr **hdrpp;
11090 const char *name;
11091 asection *sec;
11092
11093 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11094 is nonzero. This is for compatibility with old objects, which used
11095 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11096 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11097 mips_set_isa_flags (abfd);
11098
11099 /* Set the sh_info field for .gptab sections and other appropriate
11100 info for each special section. */
11101 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11102 i < elf_numsections (abfd);
11103 i++, hdrpp++)
11104 {
11105 switch ((*hdrpp)->sh_type)
11106 {
11107 case SHT_MIPS_MSYM:
11108 case SHT_MIPS_LIBLIST:
11109 sec = bfd_get_section_by_name (abfd, ".dynstr");
11110 if (sec != NULL)
11111 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11112 break;
11113
11114 case SHT_MIPS_GPTAB:
11115 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11116 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11117 BFD_ASSERT (name != NULL
11118 && CONST_STRNEQ (name, ".gptab."));
11119 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11120 BFD_ASSERT (sec != NULL);
11121 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11122 break;
11123
11124 case SHT_MIPS_CONTENT:
11125 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11126 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11127 BFD_ASSERT (name != NULL
11128 && CONST_STRNEQ (name, ".MIPS.content"));
11129 sec = bfd_get_section_by_name (abfd,
11130 name + sizeof ".MIPS.content" - 1);
11131 BFD_ASSERT (sec != NULL);
11132 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11133 break;
11134
11135 case SHT_MIPS_SYMBOL_LIB:
11136 sec = bfd_get_section_by_name (abfd, ".dynsym");
11137 if (sec != NULL)
11138 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11139 sec = bfd_get_section_by_name (abfd, ".liblist");
11140 if (sec != NULL)
11141 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11142 break;
11143
11144 case SHT_MIPS_EVENTS:
11145 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11146 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11147 BFD_ASSERT (name != NULL);
11148 if (CONST_STRNEQ (name, ".MIPS.events"))
11149 sec = bfd_get_section_by_name (abfd,
11150 name + sizeof ".MIPS.events" - 1);
11151 else
11152 {
11153 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11154 sec = bfd_get_section_by_name (abfd,
11155 (name
11156 + sizeof ".MIPS.post_rel" - 1));
11157 }
11158 BFD_ASSERT (sec != NULL);
11159 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11160 break;
11161
11162 }
11163 }
11164 }
11165 \f
11166 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11167 segments. */
11168
11169 int
11170 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11171 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11172 {
11173 asection *s;
11174 int ret = 0;
11175
11176 /* See if we need a PT_MIPS_REGINFO segment. */
11177 s = bfd_get_section_by_name (abfd, ".reginfo");
11178 if (s && (s->flags & SEC_LOAD))
11179 ++ret;
11180
11181 /* See if we need a PT_MIPS_OPTIONS segment. */
11182 if (IRIX_COMPAT (abfd) == ict_irix6
11183 && bfd_get_section_by_name (abfd,
11184 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11185 ++ret;
11186
11187 /* See if we need a PT_MIPS_RTPROC segment. */
11188 if (IRIX_COMPAT (abfd) == ict_irix5
11189 && bfd_get_section_by_name (abfd, ".dynamic")
11190 && bfd_get_section_by_name (abfd, ".mdebug"))
11191 ++ret;
11192
11193 /* Allocate a PT_NULL header in dynamic objects. See
11194 _bfd_mips_elf_modify_segment_map for details. */
11195 if (!SGI_COMPAT (abfd)
11196 && bfd_get_section_by_name (abfd, ".dynamic"))
11197 ++ret;
11198
11199 return ret;
11200 }
11201
11202 /* Modify the segment map for an IRIX5 executable. */
11203
11204 bfd_boolean
11205 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11206 struct bfd_link_info *info)
11207 {
11208 asection *s;
11209 struct elf_segment_map *m, **pm;
11210 bfd_size_type amt;
11211
11212 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11213 segment. */
11214 s = bfd_get_section_by_name (abfd, ".reginfo");
11215 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11216 {
11217 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11218 if (m->p_type == PT_MIPS_REGINFO)
11219 break;
11220 if (m == NULL)
11221 {
11222 amt = sizeof *m;
11223 m = bfd_zalloc (abfd, amt);
11224 if (m == NULL)
11225 return FALSE;
11226
11227 m->p_type = PT_MIPS_REGINFO;
11228 m->count = 1;
11229 m->sections[0] = s;
11230
11231 /* We want to put it after the PHDR and INTERP segments. */
11232 pm = &elf_tdata (abfd)->segment_map;
11233 while (*pm != NULL
11234 && ((*pm)->p_type == PT_PHDR
11235 || (*pm)->p_type == PT_INTERP))
11236 pm = &(*pm)->next;
11237
11238 m->next = *pm;
11239 *pm = m;
11240 }
11241 }
11242
11243 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11244 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11245 PT_MIPS_OPTIONS segment immediately following the program header
11246 table. */
11247 if (NEWABI_P (abfd)
11248 /* On non-IRIX6 new abi, we'll have already created a segment
11249 for this section, so don't create another. I'm not sure this
11250 is not also the case for IRIX 6, but I can't test it right
11251 now. */
11252 && IRIX_COMPAT (abfd) == ict_irix6)
11253 {
11254 for (s = abfd->sections; s; s = s->next)
11255 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11256 break;
11257
11258 if (s)
11259 {
11260 struct elf_segment_map *options_segment;
11261
11262 pm = &elf_tdata (abfd)->segment_map;
11263 while (*pm != NULL
11264 && ((*pm)->p_type == PT_PHDR
11265 || (*pm)->p_type == PT_INTERP))
11266 pm = &(*pm)->next;
11267
11268 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11269 {
11270 amt = sizeof (struct elf_segment_map);
11271 options_segment = bfd_zalloc (abfd, amt);
11272 options_segment->next = *pm;
11273 options_segment->p_type = PT_MIPS_OPTIONS;
11274 options_segment->p_flags = PF_R;
11275 options_segment->p_flags_valid = TRUE;
11276 options_segment->count = 1;
11277 options_segment->sections[0] = s;
11278 *pm = options_segment;
11279 }
11280 }
11281 }
11282 else
11283 {
11284 if (IRIX_COMPAT (abfd) == ict_irix5)
11285 {
11286 /* If there are .dynamic and .mdebug sections, we make a room
11287 for the RTPROC header. FIXME: Rewrite without section names. */
11288 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11289 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11290 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11291 {
11292 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11293 if (m->p_type == PT_MIPS_RTPROC)
11294 break;
11295 if (m == NULL)
11296 {
11297 amt = sizeof *m;
11298 m = bfd_zalloc (abfd, amt);
11299 if (m == NULL)
11300 return FALSE;
11301
11302 m->p_type = PT_MIPS_RTPROC;
11303
11304 s = bfd_get_section_by_name (abfd, ".rtproc");
11305 if (s == NULL)
11306 {
11307 m->count = 0;
11308 m->p_flags = 0;
11309 m->p_flags_valid = 1;
11310 }
11311 else
11312 {
11313 m->count = 1;
11314 m->sections[0] = s;
11315 }
11316
11317 /* We want to put it after the DYNAMIC segment. */
11318 pm = &elf_tdata (abfd)->segment_map;
11319 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11320 pm = &(*pm)->next;
11321 if (*pm != NULL)
11322 pm = &(*pm)->next;
11323
11324 m->next = *pm;
11325 *pm = m;
11326 }
11327 }
11328 }
11329 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11330 .dynstr, .dynsym, and .hash sections, and everything in
11331 between. */
11332 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11333 pm = &(*pm)->next)
11334 if ((*pm)->p_type == PT_DYNAMIC)
11335 break;
11336 m = *pm;
11337 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11338 {
11339 /* For a normal mips executable the permissions for the PT_DYNAMIC
11340 segment are read, write and execute. We do that here since
11341 the code in elf.c sets only the read permission. This matters
11342 sometimes for the dynamic linker. */
11343 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11344 {
11345 m->p_flags = PF_R | PF_W | PF_X;
11346 m->p_flags_valid = 1;
11347 }
11348 }
11349 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11350 glibc's dynamic linker has traditionally derived the number of
11351 tags from the p_filesz field, and sometimes allocates stack
11352 arrays of that size. An overly-big PT_DYNAMIC segment can
11353 be actively harmful in such cases. Making PT_DYNAMIC contain
11354 other sections can also make life hard for the prelinker,
11355 which might move one of the other sections to a different
11356 PT_LOAD segment. */
11357 if (SGI_COMPAT (abfd)
11358 && m != NULL
11359 && m->count == 1
11360 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11361 {
11362 static const char *sec_names[] =
11363 {
11364 ".dynamic", ".dynstr", ".dynsym", ".hash"
11365 };
11366 bfd_vma low, high;
11367 unsigned int i, c;
11368 struct elf_segment_map *n;
11369
11370 low = ~(bfd_vma) 0;
11371 high = 0;
11372 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11373 {
11374 s = bfd_get_section_by_name (abfd, sec_names[i]);
11375 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11376 {
11377 bfd_size_type sz;
11378
11379 if (low > s->vma)
11380 low = s->vma;
11381 sz = s->size;
11382 if (high < s->vma + sz)
11383 high = s->vma + sz;
11384 }
11385 }
11386
11387 c = 0;
11388 for (s = abfd->sections; s != NULL; s = s->next)
11389 if ((s->flags & SEC_LOAD) != 0
11390 && s->vma >= low
11391 && s->vma + s->size <= high)
11392 ++c;
11393
11394 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11395 n = bfd_zalloc (abfd, amt);
11396 if (n == NULL)
11397 return FALSE;
11398 *n = *m;
11399 n->count = c;
11400
11401 i = 0;
11402 for (s = abfd->sections; s != NULL; s = s->next)
11403 {
11404 if ((s->flags & SEC_LOAD) != 0
11405 && s->vma >= low
11406 && s->vma + s->size <= high)
11407 {
11408 n->sections[i] = s;
11409 ++i;
11410 }
11411 }
11412
11413 *pm = n;
11414 }
11415 }
11416
11417 /* Allocate a spare program header in dynamic objects so that tools
11418 like the prelinker can add an extra PT_LOAD entry.
11419
11420 If the prelinker needs to make room for a new PT_LOAD entry, its
11421 standard procedure is to move the first (read-only) sections into
11422 the new (writable) segment. However, the MIPS ABI requires
11423 .dynamic to be in a read-only segment, and the section will often
11424 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11425
11426 Although the prelinker could in principle move .dynamic to a
11427 writable segment, it seems better to allocate a spare program
11428 header instead, and avoid the need to move any sections.
11429 There is a long tradition of allocating spare dynamic tags,
11430 so allocating a spare program header seems like a natural
11431 extension.
11432
11433 If INFO is NULL, we may be copying an already prelinked binary
11434 with objcopy or strip, so do not add this header. */
11435 if (info != NULL
11436 && !SGI_COMPAT (abfd)
11437 && bfd_get_section_by_name (abfd, ".dynamic"))
11438 {
11439 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11440 if ((*pm)->p_type == PT_NULL)
11441 break;
11442 if (*pm == NULL)
11443 {
11444 m = bfd_zalloc (abfd, sizeof (*m));
11445 if (m == NULL)
11446 return FALSE;
11447
11448 m->p_type = PT_NULL;
11449 *pm = m;
11450 }
11451 }
11452
11453 return TRUE;
11454 }
11455 \f
11456 /* Return the section that should be marked against GC for a given
11457 relocation. */
11458
11459 asection *
11460 _bfd_mips_elf_gc_mark_hook (asection *sec,
11461 struct bfd_link_info *info,
11462 Elf_Internal_Rela *rel,
11463 struct elf_link_hash_entry *h,
11464 Elf_Internal_Sym *sym)
11465 {
11466 /* ??? Do mips16 stub sections need to be handled special? */
11467
11468 if (h != NULL)
11469 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11470 {
11471 case R_MIPS_GNU_VTINHERIT:
11472 case R_MIPS_GNU_VTENTRY:
11473 return NULL;
11474 }
11475
11476 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11477 }
11478
11479 /* Update the got entry reference counts for the section being removed. */
11480
11481 bfd_boolean
11482 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11483 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11484 asection *sec ATTRIBUTE_UNUSED,
11485 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11486 {
11487 #if 0
11488 Elf_Internal_Shdr *symtab_hdr;
11489 struct elf_link_hash_entry **sym_hashes;
11490 bfd_signed_vma *local_got_refcounts;
11491 const Elf_Internal_Rela *rel, *relend;
11492 unsigned long r_symndx;
11493 struct elf_link_hash_entry *h;
11494
11495 if (info->relocatable)
11496 return TRUE;
11497
11498 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11499 sym_hashes = elf_sym_hashes (abfd);
11500 local_got_refcounts = elf_local_got_refcounts (abfd);
11501
11502 relend = relocs + sec->reloc_count;
11503 for (rel = relocs; rel < relend; rel++)
11504 switch (ELF_R_TYPE (abfd, rel->r_info))
11505 {
11506 case R_MIPS16_GOT16:
11507 case R_MIPS16_CALL16:
11508 case R_MIPS_GOT16:
11509 case R_MIPS_CALL16:
11510 case R_MIPS_CALL_HI16:
11511 case R_MIPS_CALL_LO16:
11512 case R_MIPS_GOT_HI16:
11513 case R_MIPS_GOT_LO16:
11514 case R_MIPS_GOT_DISP:
11515 case R_MIPS_GOT_PAGE:
11516 case R_MIPS_GOT_OFST:
11517 case R_MICROMIPS_GOT16:
11518 case R_MICROMIPS_CALL16:
11519 case R_MICROMIPS_CALL_HI16:
11520 case R_MICROMIPS_CALL_LO16:
11521 case R_MICROMIPS_GOT_HI16:
11522 case R_MICROMIPS_GOT_LO16:
11523 case R_MICROMIPS_GOT_DISP:
11524 case R_MICROMIPS_GOT_PAGE:
11525 case R_MICROMIPS_GOT_OFST:
11526 /* ??? It would seem that the existing MIPS code does no sort
11527 of reference counting or whatnot on its GOT and PLT entries,
11528 so it is not possible to garbage collect them at this time. */
11529 break;
11530
11531 default:
11532 break;
11533 }
11534 #endif
11535
11536 return TRUE;
11537 }
11538 \f
11539 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11540 hiding the old indirect symbol. Process additional relocation
11541 information. Also called for weakdefs, in which case we just let
11542 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11543
11544 void
11545 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11546 struct elf_link_hash_entry *dir,
11547 struct elf_link_hash_entry *ind)
11548 {
11549 struct mips_elf_link_hash_entry *dirmips, *indmips;
11550
11551 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11552
11553 dirmips = (struct mips_elf_link_hash_entry *) dir;
11554 indmips = (struct mips_elf_link_hash_entry *) ind;
11555 /* Any absolute non-dynamic relocations against an indirect or weak
11556 definition will be against the target symbol. */
11557 if (indmips->has_static_relocs)
11558 dirmips->has_static_relocs = TRUE;
11559
11560 if (ind->root.type != bfd_link_hash_indirect)
11561 return;
11562
11563 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11564 if (indmips->readonly_reloc)
11565 dirmips->readonly_reloc = TRUE;
11566 if (indmips->no_fn_stub)
11567 dirmips->no_fn_stub = TRUE;
11568 if (indmips->fn_stub)
11569 {
11570 dirmips->fn_stub = indmips->fn_stub;
11571 indmips->fn_stub = NULL;
11572 }
11573 if (indmips->need_fn_stub)
11574 {
11575 dirmips->need_fn_stub = TRUE;
11576 indmips->need_fn_stub = FALSE;
11577 }
11578 if (indmips->call_stub)
11579 {
11580 dirmips->call_stub = indmips->call_stub;
11581 indmips->call_stub = NULL;
11582 }
11583 if (indmips->call_fp_stub)
11584 {
11585 dirmips->call_fp_stub = indmips->call_fp_stub;
11586 indmips->call_fp_stub = NULL;
11587 }
11588 if (indmips->global_got_area < dirmips->global_got_area)
11589 dirmips->global_got_area = indmips->global_got_area;
11590 if (indmips->global_got_area < GGA_NONE)
11591 indmips->global_got_area = GGA_NONE;
11592 if (indmips->has_nonpic_branches)
11593 dirmips->has_nonpic_branches = TRUE;
11594
11595 if (dirmips->tls_ie_type == 0)
11596 dirmips->tls_ie_type = indmips->tls_ie_type;
11597 if (dirmips->tls_gd_type == 0)
11598 dirmips->tls_gd_type = indmips->tls_gd_type;
11599 }
11600 \f
11601 #define PDR_SIZE 32
11602
11603 bfd_boolean
11604 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11605 struct bfd_link_info *info)
11606 {
11607 asection *o;
11608 bfd_boolean ret = FALSE;
11609 unsigned char *tdata;
11610 size_t i, skip;
11611
11612 o = bfd_get_section_by_name (abfd, ".pdr");
11613 if (! o)
11614 return FALSE;
11615 if (o->size == 0)
11616 return FALSE;
11617 if (o->size % PDR_SIZE != 0)
11618 return FALSE;
11619 if (o->output_section != NULL
11620 && bfd_is_abs_section (o->output_section))
11621 return FALSE;
11622
11623 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11624 if (! tdata)
11625 return FALSE;
11626
11627 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11628 info->keep_memory);
11629 if (!cookie->rels)
11630 {
11631 free (tdata);
11632 return FALSE;
11633 }
11634
11635 cookie->rel = cookie->rels;
11636 cookie->relend = cookie->rels + o->reloc_count;
11637
11638 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11639 {
11640 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11641 {
11642 tdata[i] = 1;
11643 skip ++;
11644 }
11645 }
11646
11647 if (skip != 0)
11648 {
11649 mips_elf_section_data (o)->u.tdata = tdata;
11650 o->size -= skip * PDR_SIZE;
11651 ret = TRUE;
11652 }
11653 else
11654 free (tdata);
11655
11656 if (! info->keep_memory)
11657 free (cookie->rels);
11658
11659 return ret;
11660 }
11661
11662 bfd_boolean
11663 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11664 {
11665 if (strcmp (sec->name, ".pdr") == 0)
11666 return TRUE;
11667 return FALSE;
11668 }
11669
11670 bfd_boolean
11671 _bfd_mips_elf_write_section (bfd *output_bfd,
11672 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11673 asection *sec, bfd_byte *contents)
11674 {
11675 bfd_byte *to, *from, *end;
11676 int i;
11677
11678 if (strcmp (sec->name, ".pdr") != 0)
11679 return FALSE;
11680
11681 if (mips_elf_section_data (sec)->u.tdata == NULL)
11682 return FALSE;
11683
11684 to = contents;
11685 end = contents + sec->size;
11686 for (from = contents, i = 0;
11687 from < end;
11688 from += PDR_SIZE, i++)
11689 {
11690 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11691 continue;
11692 if (to != from)
11693 memcpy (to, from, PDR_SIZE);
11694 to += PDR_SIZE;
11695 }
11696 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11697 sec->output_offset, sec->size);
11698 return TRUE;
11699 }
11700 \f
11701 /* microMIPS code retains local labels for linker relaxation. Omit them
11702 from output by default for clarity. */
11703
11704 bfd_boolean
11705 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11706 {
11707 return _bfd_elf_is_local_label_name (abfd, sym->name);
11708 }
11709
11710 /* MIPS ELF uses a special find_nearest_line routine in order the
11711 handle the ECOFF debugging information. */
11712
11713 struct mips_elf_find_line
11714 {
11715 struct ecoff_debug_info d;
11716 struct ecoff_find_line i;
11717 };
11718
11719 bfd_boolean
11720 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11721 asymbol **symbols, bfd_vma offset,
11722 const char **filename_ptr,
11723 const char **functionname_ptr,
11724 unsigned int *line_ptr)
11725 {
11726 asection *msec;
11727
11728 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11729 filename_ptr, functionname_ptr,
11730 line_ptr))
11731 return TRUE;
11732
11733 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11734 section, symbols, offset,
11735 filename_ptr, functionname_ptr,
11736 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11737 &elf_tdata (abfd)->dwarf2_find_line_info))
11738 return TRUE;
11739
11740 msec = bfd_get_section_by_name (abfd, ".mdebug");
11741 if (msec != NULL)
11742 {
11743 flagword origflags;
11744 struct mips_elf_find_line *fi;
11745 const struct ecoff_debug_swap * const swap =
11746 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11747
11748 /* If we are called during a link, mips_elf_final_link may have
11749 cleared the SEC_HAS_CONTENTS field. We force it back on here
11750 if appropriate (which it normally will be). */
11751 origflags = msec->flags;
11752 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11753 msec->flags |= SEC_HAS_CONTENTS;
11754
11755 fi = elf_tdata (abfd)->find_line_info;
11756 if (fi == NULL)
11757 {
11758 bfd_size_type external_fdr_size;
11759 char *fraw_src;
11760 char *fraw_end;
11761 struct fdr *fdr_ptr;
11762 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11763
11764 fi = bfd_zalloc (abfd, amt);
11765 if (fi == NULL)
11766 {
11767 msec->flags = origflags;
11768 return FALSE;
11769 }
11770
11771 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11772 {
11773 msec->flags = origflags;
11774 return FALSE;
11775 }
11776
11777 /* Swap in the FDR information. */
11778 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11779 fi->d.fdr = bfd_alloc (abfd, amt);
11780 if (fi->d.fdr == NULL)
11781 {
11782 msec->flags = origflags;
11783 return FALSE;
11784 }
11785 external_fdr_size = swap->external_fdr_size;
11786 fdr_ptr = fi->d.fdr;
11787 fraw_src = (char *) fi->d.external_fdr;
11788 fraw_end = (fraw_src
11789 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11790 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11791 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11792
11793 elf_tdata (abfd)->find_line_info = fi;
11794
11795 /* Note that we don't bother to ever free this information.
11796 find_nearest_line is either called all the time, as in
11797 objdump -l, so the information should be saved, or it is
11798 rarely called, as in ld error messages, so the memory
11799 wasted is unimportant. Still, it would probably be a
11800 good idea for free_cached_info to throw it away. */
11801 }
11802
11803 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11804 &fi->i, filename_ptr, functionname_ptr,
11805 line_ptr))
11806 {
11807 msec->flags = origflags;
11808 return TRUE;
11809 }
11810
11811 msec->flags = origflags;
11812 }
11813
11814 /* Fall back on the generic ELF find_nearest_line routine. */
11815
11816 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11817 filename_ptr, functionname_ptr,
11818 line_ptr);
11819 }
11820
11821 bfd_boolean
11822 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11823 const char **filename_ptr,
11824 const char **functionname_ptr,
11825 unsigned int *line_ptr)
11826 {
11827 bfd_boolean found;
11828 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11829 functionname_ptr, line_ptr,
11830 & elf_tdata (abfd)->dwarf2_find_line_info);
11831 return found;
11832 }
11833
11834 \f
11835 /* When are writing out the .options or .MIPS.options section,
11836 remember the bytes we are writing out, so that we can install the
11837 GP value in the section_processing routine. */
11838
11839 bfd_boolean
11840 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11841 const void *location,
11842 file_ptr offset, bfd_size_type count)
11843 {
11844 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11845 {
11846 bfd_byte *c;
11847
11848 if (elf_section_data (section) == NULL)
11849 {
11850 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11851 section->used_by_bfd = bfd_zalloc (abfd, amt);
11852 if (elf_section_data (section) == NULL)
11853 return FALSE;
11854 }
11855 c = mips_elf_section_data (section)->u.tdata;
11856 if (c == NULL)
11857 {
11858 c = bfd_zalloc (abfd, section->size);
11859 if (c == NULL)
11860 return FALSE;
11861 mips_elf_section_data (section)->u.tdata = c;
11862 }
11863
11864 memcpy (c + offset, location, count);
11865 }
11866
11867 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11868 count);
11869 }
11870
11871 /* This is almost identical to bfd_generic_get_... except that some
11872 MIPS relocations need to be handled specially. Sigh. */
11873
11874 bfd_byte *
11875 _bfd_elf_mips_get_relocated_section_contents
11876 (bfd *abfd,
11877 struct bfd_link_info *link_info,
11878 struct bfd_link_order *link_order,
11879 bfd_byte *data,
11880 bfd_boolean relocatable,
11881 asymbol **symbols)
11882 {
11883 /* Get enough memory to hold the stuff */
11884 bfd *input_bfd = link_order->u.indirect.section->owner;
11885 asection *input_section = link_order->u.indirect.section;
11886 bfd_size_type sz;
11887
11888 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11889 arelent **reloc_vector = NULL;
11890 long reloc_count;
11891
11892 if (reloc_size < 0)
11893 goto error_return;
11894
11895 reloc_vector = bfd_malloc (reloc_size);
11896 if (reloc_vector == NULL && reloc_size != 0)
11897 goto error_return;
11898
11899 /* read in the section */
11900 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11901 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11902 goto error_return;
11903
11904 reloc_count = bfd_canonicalize_reloc (input_bfd,
11905 input_section,
11906 reloc_vector,
11907 symbols);
11908 if (reloc_count < 0)
11909 goto error_return;
11910
11911 if (reloc_count > 0)
11912 {
11913 arelent **parent;
11914 /* for mips */
11915 int gp_found;
11916 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11917
11918 {
11919 struct bfd_hash_entry *h;
11920 struct bfd_link_hash_entry *lh;
11921 /* Skip all this stuff if we aren't mixing formats. */
11922 if (abfd && input_bfd
11923 && abfd->xvec == input_bfd->xvec)
11924 lh = 0;
11925 else
11926 {
11927 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11928 lh = (struct bfd_link_hash_entry *) h;
11929 }
11930 lookup:
11931 if (lh)
11932 {
11933 switch (lh->type)
11934 {
11935 case bfd_link_hash_undefined:
11936 case bfd_link_hash_undefweak:
11937 case bfd_link_hash_common:
11938 gp_found = 0;
11939 break;
11940 case bfd_link_hash_defined:
11941 case bfd_link_hash_defweak:
11942 gp_found = 1;
11943 gp = lh->u.def.value;
11944 break;
11945 case bfd_link_hash_indirect:
11946 case bfd_link_hash_warning:
11947 lh = lh->u.i.link;
11948 /* @@FIXME ignoring warning for now */
11949 goto lookup;
11950 case bfd_link_hash_new:
11951 default:
11952 abort ();
11953 }
11954 }
11955 else
11956 gp_found = 0;
11957 }
11958 /* end mips */
11959 for (parent = reloc_vector; *parent != NULL; parent++)
11960 {
11961 char *error_message = NULL;
11962 bfd_reloc_status_type r;
11963
11964 /* Specific to MIPS: Deal with relocation types that require
11965 knowing the gp of the output bfd. */
11966 asymbol *sym = *(*parent)->sym_ptr_ptr;
11967
11968 /* If we've managed to find the gp and have a special
11969 function for the relocation then go ahead, else default
11970 to the generic handling. */
11971 if (gp_found
11972 && (*parent)->howto->special_function
11973 == _bfd_mips_elf32_gprel16_reloc)
11974 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11975 input_section, relocatable,
11976 data, gp);
11977 else
11978 r = bfd_perform_relocation (input_bfd, *parent, data,
11979 input_section,
11980 relocatable ? abfd : NULL,
11981 &error_message);
11982
11983 if (relocatable)
11984 {
11985 asection *os = input_section->output_section;
11986
11987 /* A partial link, so keep the relocs */
11988 os->orelocation[os->reloc_count] = *parent;
11989 os->reloc_count++;
11990 }
11991
11992 if (r != bfd_reloc_ok)
11993 {
11994 switch (r)
11995 {
11996 case bfd_reloc_undefined:
11997 if (!((*link_info->callbacks->undefined_symbol)
11998 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11999 input_bfd, input_section, (*parent)->address, TRUE)))
12000 goto error_return;
12001 break;
12002 case bfd_reloc_dangerous:
12003 BFD_ASSERT (error_message != NULL);
12004 if (!((*link_info->callbacks->reloc_dangerous)
12005 (link_info, error_message, input_bfd, input_section,
12006 (*parent)->address)))
12007 goto error_return;
12008 break;
12009 case bfd_reloc_overflow:
12010 if (!((*link_info->callbacks->reloc_overflow)
12011 (link_info, NULL,
12012 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12013 (*parent)->howto->name, (*parent)->addend,
12014 input_bfd, input_section, (*parent)->address)))
12015 goto error_return;
12016 break;
12017 case bfd_reloc_outofrange:
12018 default:
12019 abort ();
12020 break;
12021 }
12022
12023 }
12024 }
12025 }
12026 if (reloc_vector != NULL)
12027 free (reloc_vector);
12028 return data;
12029
12030 error_return:
12031 if (reloc_vector != NULL)
12032 free (reloc_vector);
12033 return NULL;
12034 }
12035 \f
12036 static bfd_boolean
12037 mips_elf_relax_delete_bytes (bfd *abfd,
12038 asection *sec, bfd_vma addr, int count)
12039 {
12040 Elf_Internal_Shdr *symtab_hdr;
12041 unsigned int sec_shndx;
12042 bfd_byte *contents;
12043 Elf_Internal_Rela *irel, *irelend;
12044 Elf_Internal_Sym *isym;
12045 Elf_Internal_Sym *isymend;
12046 struct elf_link_hash_entry **sym_hashes;
12047 struct elf_link_hash_entry **end_hashes;
12048 struct elf_link_hash_entry **start_hashes;
12049 unsigned int symcount;
12050
12051 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12052 contents = elf_section_data (sec)->this_hdr.contents;
12053
12054 irel = elf_section_data (sec)->relocs;
12055 irelend = irel + sec->reloc_count;
12056
12057 /* Actually delete the bytes. */
12058 memmove (contents + addr, contents + addr + count,
12059 (size_t) (sec->size - addr - count));
12060 sec->size -= count;
12061
12062 /* Adjust all the relocs. */
12063 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12064 {
12065 /* Get the new reloc address. */
12066 if (irel->r_offset > addr)
12067 irel->r_offset -= count;
12068 }
12069
12070 BFD_ASSERT (addr % 2 == 0);
12071 BFD_ASSERT (count % 2 == 0);
12072
12073 /* Adjust the local symbols defined in this section. */
12074 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12075 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12076 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12077 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12078 isym->st_value -= count;
12079
12080 /* Now adjust the global symbols defined in this section. */
12081 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12082 - symtab_hdr->sh_info);
12083 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12084 end_hashes = sym_hashes + symcount;
12085
12086 for (; sym_hashes < end_hashes; sym_hashes++)
12087 {
12088 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12089
12090 if ((sym_hash->root.type == bfd_link_hash_defined
12091 || sym_hash->root.type == bfd_link_hash_defweak)
12092 && sym_hash->root.u.def.section == sec)
12093 {
12094 bfd_vma value = sym_hash->root.u.def.value;
12095
12096 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12097 value &= MINUS_TWO;
12098 if (value > addr)
12099 sym_hash->root.u.def.value -= count;
12100 }
12101 }
12102
12103 return TRUE;
12104 }
12105
12106
12107 /* Opcodes needed for microMIPS relaxation as found in
12108 opcodes/micromips-opc.c. */
12109
12110 struct opcode_descriptor {
12111 unsigned long match;
12112 unsigned long mask;
12113 };
12114
12115 /* The $ra register aka $31. */
12116
12117 #define RA 31
12118
12119 /* 32-bit instruction format register fields. */
12120
12121 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12122 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12123
12124 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12125
12126 #define OP16_VALID_REG(r) \
12127 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12128
12129
12130 /* 32-bit and 16-bit branches. */
12131
12132 static const struct opcode_descriptor b_insns_32[] = {
12133 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12134 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12135 { 0, 0 } /* End marker for find_match(). */
12136 };
12137
12138 static const struct opcode_descriptor bc_insn_32 =
12139 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12140
12141 static const struct opcode_descriptor bz_insn_32 =
12142 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12143
12144 static const struct opcode_descriptor bzal_insn_32 =
12145 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12146
12147 static const struct opcode_descriptor beq_insn_32 =
12148 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12149
12150 static const struct opcode_descriptor b_insn_16 =
12151 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12152
12153 static const struct opcode_descriptor bz_insn_16 =
12154 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12155
12156
12157 /* 32-bit and 16-bit branch EQ and NE zero. */
12158
12159 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12160 eq and second the ne. This convention is used when replacing a
12161 32-bit BEQ/BNE with the 16-bit version. */
12162
12163 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12164
12165 static const struct opcode_descriptor bz_rs_insns_32[] = {
12166 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12167 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12168 { 0, 0 } /* End marker for find_match(). */
12169 };
12170
12171 static const struct opcode_descriptor bz_rt_insns_32[] = {
12172 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12173 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12174 { 0, 0 } /* End marker for find_match(). */
12175 };
12176
12177 static const struct opcode_descriptor bzc_insns_32[] = {
12178 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12179 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12180 { 0, 0 } /* End marker for find_match(). */
12181 };
12182
12183 static const struct opcode_descriptor bz_insns_16[] = {
12184 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12185 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12186 { 0, 0 } /* End marker for find_match(). */
12187 };
12188
12189 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12190
12191 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12192 #define BZ16_REG_FIELD(r) \
12193 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12194
12195
12196 /* 32-bit instructions with a delay slot. */
12197
12198 static const struct opcode_descriptor jal_insn_32_bd16 =
12199 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12200
12201 static const struct opcode_descriptor jal_insn_32_bd32 =
12202 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12203
12204 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12205 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12206
12207 static const struct opcode_descriptor j_insn_32 =
12208 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12209
12210 static const struct opcode_descriptor jalr_insn_32 =
12211 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12212
12213 /* This table can be compacted, because no opcode replacement is made. */
12214
12215 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12216 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12217
12218 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12219 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12220
12221 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12222 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12223 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12224 { 0, 0 } /* End marker for find_match(). */
12225 };
12226
12227 /* This table can be compacted, because no opcode replacement is made. */
12228
12229 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12230 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12231
12232 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12233 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12234 { 0, 0 } /* End marker for find_match(). */
12235 };
12236
12237
12238 /* 16-bit instructions with a delay slot. */
12239
12240 static const struct opcode_descriptor jalr_insn_16_bd16 =
12241 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12242
12243 static const struct opcode_descriptor jalr_insn_16_bd32 =
12244 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12245
12246 static const struct opcode_descriptor jr_insn_16 =
12247 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12248
12249 #define JR16_REG(opcode) ((opcode) & 0x1f)
12250
12251 /* This table can be compacted, because no opcode replacement is made. */
12252
12253 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12254 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12255
12256 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12257 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12258 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12259 { 0, 0 } /* End marker for find_match(). */
12260 };
12261
12262
12263 /* LUI instruction. */
12264
12265 static const struct opcode_descriptor lui_insn =
12266 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12267
12268
12269 /* ADDIU instruction. */
12270
12271 static const struct opcode_descriptor addiu_insn =
12272 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12273
12274 static const struct opcode_descriptor addiupc_insn =
12275 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12276
12277 #define ADDIUPC_REG_FIELD(r) \
12278 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12279
12280
12281 /* Relaxable instructions in a JAL delay slot: MOVE. */
12282
12283 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12284 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12285 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12286 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12287
12288 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12289 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12290
12291 static const struct opcode_descriptor move_insns_32[] = {
12292 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12293 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12294 { 0, 0 } /* End marker for find_match(). */
12295 };
12296
12297 static const struct opcode_descriptor move_insn_16 =
12298 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12299
12300
12301 /* NOP instructions. */
12302
12303 static const struct opcode_descriptor nop_insn_32 =
12304 { /* "nop", "", */ 0x00000000, 0xffffffff };
12305
12306 static const struct opcode_descriptor nop_insn_16 =
12307 { /* "nop", "", */ 0x0c00, 0xffff };
12308
12309
12310 /* Instruction match support. */
12311
12312 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12313
12314 static int
12315 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12316 {
12317 unsigned long indx;
12318
12319 for (indx = 0; insn[indx].mask != 0; indx++)
12320 if (MATCH (opcode, insn[indx]))
12321 return indx;
12322
12323 return -1;
12324 }
12325
12326
12327 /* Branch and delay slot decoding support. */
12328
12329 /* If PTR points to what *might* be a 16-bit branch or jump, then
12330 return the minimum length of its delay slot, otherwise return 0.
12331 Non-zero results are not definitive as we might be checking against
12332 the second half of another instruction. */
12333
12334 static int
12335 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12336 {
12337 unsigned long opcode;
12338 int bdsize;
12339
12340 opcode = bfd_get_16 (abfd, ptr);
12341 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12342 /* 16-bit branch/jump with a 32-bit delay slot. */
12343 bdsize = 4;
12344 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12345 || find_match (opcode, ds_insns_16_bd16) >= 0)
12346 /* 16-bit branch/jump with a 16-bit delay slot. */
12347 bdsize = 2;
12348 else
12349 /* No delay slot. */
12350 bdsize = 0;
12351
12352 return bdsize;
12353 }
12354
12355 /* If PTR points to what *might* be a 32-bit branch or jump, then
12356 return the minimum length of its delay slot, otherwise return 0.
12357 Non-zero results are not definitive as we might be checking against
12358 the second half of another instruction. */
12359
12360 static int
12361 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12362 {
12363 unsigned long opcode;
12364 int bdsize;
12365
12366 opcode = bfd_get_micromips_32 (abfd, ptr);
12367 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12368 /* 32-bit branch/jump with a 32-bit delay slot. */
12369 bdsize = 4;
12370 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12371 /* 32-bit branch/jump with a 16-bit delay slot. */
12372 bdsize = 2;
12373 else
12374 /* No delay slot. */
12375 bdsize = 0;
12376
12377 return bdsize;
12378 }
12379
12380 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12381 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12382
12383 static bfd_boolean
12384 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12385 {
12386 unsigned long opcode;
12387
12388 opcode = bfd_get_16 (abfd, ptr);
12389 if (MATCH (opcode, b_insn_16)
12390 /* B16 */
12391 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12392 /* JR16 */
12393 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12394 /* BEQZ16, BNEZ16 */
12395 || (MATCH (opcode, jalr_insn_16_bd32)
12396 /* JALR16 */
12397 && reg != JR16_REG (opcode) && reg != RA))
12398 return TRUE;
12399
12400 return FALSE;
12401 }
12402
12403 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12404 then return TRUE, otherwise FALSE. */
12405
12406 static bfd_boolean
12407 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12408 {
12409 unsigned long opcode;
12410
12411 opcode = bfd_get_micromips_32 (abfd, ptr);
12412 if (MATCH (opcode, j_insn_32)
12413 /* J */
12414 || MATCH (opcode, bc_insn_32)
12415 /* BC1F, BC1T, BC2F, BC2T */
12416 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12417 /* JAL, JALX */
12418 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12419 /* BGEZ, BGTZ, BLEZ, BLTZ */
12420 || (MATCH (opcode, bzal_insn_32)
12421 /* BGEZAL, BLTZAL */
12422 && reg != OP32_SREG (opcode) && reg != RA)
12423 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12424 /* JALR, JALR.HB, BEQ, BNE */
12425 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12426 return TRUE;
12427
12428 return FALSE;
12429 }
12430
12431 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12432 IRELEND) at OFFSET indicate that there must be a compact branch there,
12433 then return TRUE, otherwise FALSE. */
12434
12435 static bfd_boolean
12436 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12437 const Elf_Internal_Rela *internal_relocs,
12438 const Elf_Internal_Rela *irelend)
12439 {
12440 const Elf_Internal_Rela *irel;
12441 unsigned long opcode;
12442
12443 opcode = bfd_get_micromips_32 (abfd, ptr);
12444 if (find_match (opcode, bzc_insns_32) < 0)
12445 return FALSE;
12446
12447 for (irel = internal_relocs; irel < irelend; irel++)
12448 if (irel->r_offset == offset
12449 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12450 return TRUE;
12451
12452 return FALSE;
12453 }
12454
12455 /* Bitsize checking. */
12456 #define IS_BITSIZE(val, N) \
12457 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12458 - (1ULL << ((N) - 1))) == (val))
12459
12460 \f
12461 bfd_boolean
12462 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12463 struct bfd_link_info *link_info,
12464 bfd_boolean *again)
12465 {
12466 Elf_Internal_Shdr *symtab_hdr;
12467 Elf_Internal_Rela *internal_relocs;
12468 Elf_Internal_Rela *irel, *irelend;
12469 bfd_byte *contents = NULL;
12470 Elf_Internal_Sym *isymbuf = NULL;
12471
12472 /* Assume nothing changes. */
12473 *again = FALSE;
12474
12475 /* We don't have to do anything for a relocatable link, if
12476 this section does not have relocs, or if this is not a
12477 code section. */
12478
12479 if (link_info->relocatable
12480 || (sec->flags & SEC_RELOC) == 0
12481 || sec->reloc_count == 0
12482 || (sec->flags & SEC_CODE) == 0)
12483 return TRUE;
12484
12485 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12486
12487 /* Get a copy of the native relocations. */
12488 internal_relocs = (_bfd_elf_link_read_relocs
12489 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12490 link_info->keep_memory));
12491 if (internal_relocs == NULL)
12492 goto error_return;
12493
12494 /* Walk through them looking for relaxing opportunities. */
12495 irelend = internal_relocs + sec->reloc_count;
12496 for (irel = internal_relocs; irel < irelend; irel++)
12497 {
12498 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12499 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12500 bfd_boolean target_is_micromips_code_p;
12501 unsigned long opcode;
12502 bfd_vma symval;
12503 bfd_vma pcrval;
12504 bfd_byte *ptr;
12505 int fndopc;
12506
12507 /* The number of bytes to delete for relaxation and from where
12508 to delete these bytes starting at irel->r_offset. */
12509 int delcnt = 0;
12510 int deloff = 0;
12511
12512 /* If this isn't something that can be relaxed, then ignore
12513 this reloc. */
12514 if (r_type != R_MICROMIPS_HI16
12515 && r_type != R_MICROMIPS_PC16_S1
12516 && r_type != R_MICROMIPS_26_S1)
12517 continue;
12518
12519 /* Get the section contents if we haven't done so already. */
12520 if (contents == NULL)
12521 {
12522 /* Get cached copy if it exists. */
12523 if (elf_section_data (sec)->this_hdr.contents != NULL)
12524 contents = elf_section_data (sec)->this_hdr.contents;
12525 /* Go get them off disk. */
12526 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12527 goto error_return;
12528 }
12529 ptr = contents + irel->r_offset;
12530
12531 /* Read this BFD's local symbols if we haven't done so already. */
12532 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12533 {
12534 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12535 if (isymbuf == NULL)
12536 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12537 symtab_hdr->sh_info, 0,
12538 NULL, NULL, NULL);
12539 if (isymbuf == NULL)
12540 goto error_return;
12541 }
12542
12543 /* Get the value of the symbol referred to by the reloc. */
12544 if (r_symndx < symtab_hdr->sh_info)
12545 {
12546 /* A local symbol. */
12547 Elf_Internal_Sym *isym;
12548 asection *sym_sec;
12549
12550 isym = isymbuf + r_symndx;
12551 if (isym->st_shndx == SHN_UNDEF)
12552 sym_sec = bfd_und_section_ptr;
12553 else if (isym->st_shndx == SHN_ABS)
12554 sym_sec = bfd_abs_section_ptr;
12555 else if (isym->st_shndx == SHN_COMMON)
12556 sym_sec = bfd_com_section_ptr;
12557 else
12558 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12559 symval = (isym->st_value
12560 + sym_sec->output_section->vma
12561 + sym_sec->output_offset);
12562 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12563 }
12564 else
12565 {
12566 unsigned long indx;
12567 struct elf_link_hash_entry *h;
12568
12569 /* An external symbol. */
12570 indx = r_symndx - symtab_hdr->sh_info;
12571 h = elf_sym_hashes (abfd)[indx];
12572 BFD_ASSERT (h != NULL);
12573
12574 if (h->root.type != bfd_link_hash_defined
12575 && h->root.type != bfd_link_hash_defweak)
12576 /* This appears to be a reference to an undefined
12577 symbol. Just ignore it -- it will be caught by the
12578 regular reloc processing. */
12579 continue;
12580
12581 symval = (h->root.u.def.value
12582 + h->root.u.def.section->output_section->vma
12583 + h->root.u.def.section->output_offset);
12584 target_is_micromips_code_p = (!h->needs_plt
12585 && ELF_ST_IS_MICROMIPS (h->other));
12586 }
12587
12588
12589 /* For simplicity of coding, we are going to modify the
12590 section contents, the section relocs, and the BFD symbol
12591 table. We must tell the rest of the code not to free up this
12592 information. It would be possible to instead create a table
12593 of changes which have to be made, as is done in coff-mips.c;
12594 that would be more work, but would require less memory when
12595 the linker is run. */
12596
12597 /* Only 32-bit instructions relaxed. */
12598 if (irel->r_offset + 4 > sec->size)
12599 continue;
12600
12601 opcode = bfd_get_micromips_32 (abfd, ptr);
12602
12603 /* This is the pc-relative distance from the instruction the
12604 relocation is applied to, to the symbol referred. */
12605 pcrval = (symval
12606 - (sec->output_section->vma + sec->output_offset)
12607 - irel->r_offset);
12608
12609 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12610 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12611 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12612
12613 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12614
12615 where pcrval has first to be adjusted to apply against the LO16
12616 location (we make the adjustment later on, when we have figured
12617 out the offset). */
12618 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12619 {
12620 bfd_boolean bzc = FALSE;
12621 unsigned long nextopc;
12622 unsigned long reg;
12623 bfd_vma offset;
12624
12625 /* Give up if the previous reloc was a HI16 against this symbol
12626 too. */
12627 if (irel > internal_relocs
12628 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12629 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12630 continue;
12631
12632 /* Or if the next reloc is not a LO16 against this symbol. */
12633 if (irel + 1 >= irelend
12634 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12635 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12636 continue;
12637
12638 /* Or if the second next reloc is a LO16 against this symbol too. */
12639 if (irel + 2 >= irelend
12640 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12641 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12642 continue;
12643
12644 /* See if the LUI instruction *might* be in a branch delay slot.
12645 We check whether what looks like a 16-bit branch or jump is
12646 actually an immediate argument to a compact branch, and let
12647 it through if so. */
12648 if (irel->r_offset >= 2
12649 && check_br16_dslot (abfd, ptr - 2)
12650 && !(irel->r_offset >= 4
12651 && (bzc = check_relocated_bzc (abfd,
12652 ptr - 4, irel->r_offset - 4,
12653 internal_relocs, irelend))))
12654 continue;
12655 if (irel->r_offset >= 4
12656 && !bzc
12657 && check_br32_dslot (abfd, ptr - 4))
12658 continue;
12659
12660 reg = OP32_SREG (opcode);
12661
12662 /* We only relax adjacent instructions or ones separated with
12663 a branch or jump that has a delay slot. The branch or jump
12664 must not fiddle with the register used to hold the address.
12665 Subtract 4 for the LUI itself. */
12666 offset = irel[1].r_offset - irel[0].r_offset;
12667 switch (offset - 4)
12668 {
12669 case 0:
12670 break;
12671 case 2:
12672 if (check_br16 (abfd, ptr + 4, reg))
12673 break;
12674 continue;
12675 case 4:
12676 if (check_br32 (abfd, ptr + 4, reg))
12677 break;
12678 continue;
12679 default:
12680 continue;
12681 }
12682
12683 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12684
12685 /* Give up unless the same register is used with both
12686 relocations. */
12687 if (OP32_SREG (nextopc) != reg)
12688 continue;
12689
12690 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12691 and rounding up to take masking of the two LSBs into account. */
12692 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12693
12694 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12695 if (IS_BITSIZE (symval, 16))
12696 {
12697 /* Fix the relocation's type. */
12698 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12699
12700 /* Instructions using R_MICROMIPS_LO16 have the base or
12701 source register in bits 20:16. This register becomes $0
12702 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12703 nextopc &= ~0x001f0000;
12704 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12705 contents + irel[1].r_offset);
12706 }
12707
12708 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12709 We add 4 to take LUI deletion into account while checking
12710 the PC-relative distance. */
12711 else if (symval % 4 == 0
12712 && IS_BITSIZE (pcrval + 4, 25)
12713 && MATCH (nextopc, addiu_insn)
12714 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12715 && OP16_VALID_REG (OP32_TREG (nextopc)))
12716 {
12717 /* Fix the relocation's type. */
12718 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12719
12720 /* Replace ADDIU with the ADDIUPC version. */
12721 nextopc = (addiupc_insn.match
12722 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12723
12724 bfd_put_micromips_32 (abfd, nextopc,
12725 contents + irel[1].r_offset);
12726 }
12727
12728 /* Can't do anything, give up, sigh... */
12729 else
12730 continue;
12731
12732 /* Fix the relocation's type. */
12733 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12734
12735 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12736 delcnt = 4;
12737 deloff = 0;
12738 }
12739
12740 /* Compact branch relaxation -- due to the multitude of macros
12741 employed by the compiler/assembler, compact branches are not
12742 always generated. Obviously, this can/will be fixed elsewhere,
12743 but there is no drawback in double checking it here. */
12744 else if (r_type == R_MICROMIPS_PC16_S1
12745 && irel->r_offset + 5 < sec->size
12746 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12747 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12748 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12749 {
12750 unsigned long reg;
12751
12752 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12753
12754 /* Replace BEQZ/BNEZ with the compact version. */
12755 opcode = (bzc_insns_32[fndopc].match
12756 | BZC32_REG_FIELD (reg)
12757 | (opcode & 0xffff)); /* Addend value. */
12758
12759 bfd_put_micromips_32 (abfd, opcode, ptr);
12760
12761 /* Delete the 16-bit delay slot NOP: two bytes from
12762 irel->offset + 4. */
12763 delcnt = 2;
12764 deloff = 4;
12765 }
12766
12767 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12768 to check the distance from the next instruction, so subtract 2. */
12769 else if (r_type == R_MICROMIPS_PC16_S1
12770 && IS_BITSIZE (pcrval - 2, 11)
12771 && find_match (opcode, b_insns_32) >= 0)
12772 {
12773 /* Fix the relocation's type. */
12774 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12775
12776 /* Replace the 32-bit opcode with a 16-bit opcode. */
12777 bfd_put_16 (abfd,
12778 (b_insn_16.match
12779 | (opcode & 0x3ff)), /* Addend value. */
12780 ptr);
12781
12782 /* Delete 2 bytes from irel->r_offset + 2. */
12783 delcnt = 2;
12784 deloff = 2;
12785 }
12786
12787 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12788 to check the distance from the next instruction, so subtract 2. */
12789 else if (r_type == R_MICROMIPS_PC16_S1
12790 && IS_BITSIZE (pcrval - 2, 8)
12791 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12792 && OP16_VALID_REG (OP32_SREG (opcode)))
12793 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12794 && OP16_VALID_REG (OP32_TREG (opcode)))))
12795 {
12796 unsigned long reg;
12797
12798 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12799
12800 /* Fix the relocation's type. */
12801 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12802
12803 /* Replace the 32-bit opcode with a 16-bit opcode. */
12804 bfd_put_16 (abfd,
12805 (bz_insns_16[fndopc].match
12806 | BZ16_REG_FIELD (reg)
12807 | (opcode & 0x7f)), /* Addend value. */
12808 ptr);
12809
12810 /* Delete 2 bytes from irel->r_offset + 2. */
12811 delcnt = 2;
12812 deloff = 2;
12813 }
12814
12815 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12816 else if (r_type == R_MICROMIPS_26_S1
12817 && target_is_micromips_code_p
12818 && irel->r_offset + 7 < sec->size
12819 && MATCH (opcode, jal_insn_32_bd32))
12820 {
12821 unsigned long n32opc;
12822 bfd_boolean relaxed = FALSE;
12823
12824 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12825
12826 if (MATCH (n32opc, nop_insn_32))
12827 {
12828 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12829 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12830
12831 relaxed = TRUE;
12832 }
12833 else if (find_match (n32opc, move_insns_32) >= 0)
12834 {
12835 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12836 bfd_put_16 (abfd,
12837 (move_insn_16.match
12838 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12839 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12840 ptr + 4);
12841
12842 relaxed = TRUE;
12843 }
12844 /* Other 32-bit instructions relaxable to 16-bit
12845 instructions will be handled here later. */
12846
12847 if (relaxed)
12848 {
12849 /* JAL with 32-bit delay slot that is changed to a JALS
12850 with 16-bit delay slot. */
12851 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12852
12853 /* Delete 2 bytes from irel->r_offset + 6. */
12854 delcnt = 2;
12855 deloff = 6;
12856 }
12857 }
12858
12859 if (delcnt != 0)
12860 {
12861 /* Note that we've changed the relocs, section contents, etc. */
12862 elf_section_data (sec)->relocs = internal_relocs;
12863 elf_section_data (sec)->this_hdr.contents = contents;
12864 symtab_hdr->contents = (unsigned char *) isymbuf;
12865
12866 /* Delete bytes depending on the delcnt and deloff. */
12867 if (!mips_elf_relax_delete_bytes (abfd, sec,
12868 irel->r_offset + deloff, delcnt))
12869 goto error_return;
12870
12871 /* That will change things, so we should relax again.
12872 Note that this is not required, and it may be slow. */
12873 *again = TRUE;
12874 }
12875 }
12876
12877 if (isymbuf != NULL
12878 && symtab_hdr->contents != (unsigned char *) isymbuf)
12879 {
12880 if (! link_info->keep_memory)
12881 free (isymbuf);
12882 else
12883 {
12884 /* Cache the symbols for elf_link_input_bfd. */
12885 symtab_hdr->contents = (unsigned char *) isymbuf;
12886 }
12887 }
12888
12889 if (contents != NULL
12890 && elf_section_data (sec)->this_hdr.contents != contents)
12891 {
12892 if (! link_info->keep_memory)
12893 free (contents);
12894 else
12895 {
12896 /* Cache the section contents for elf_link_input_bfd. */
12897 elf_section_data (sec)->this_hdr.contents = contents;
12898 }
12899 }
12900
12901 if (internal_relocs != NULL
12902 && elf_section_data (sec)->relocs != internal_relocs)
12903 free (internal_relocs);
12904
12905 return TRUE;
12906
12907 error_return:
12908 if (isymbuf != NULL
12909 && symtab_hdr->contents != (unsigned char *) isymbuf)
12910 free (isymbuf);
12911 if (contents != NULL
12912 && elf_section_data (sec)->this_hdr.contents != contents)
12913 free (contents);
12914 if (internal_relocs != NULL
12915 && elf_section_data (sec)->relocs != internal_relocs)
12916 free (internal_relocs);
12917
12918 return FALSE;
12919 }
12920 \f
12921 /* Create a MIPS ELF linker hash table. */
12922
12923 struct bfd_link_hash_table *
12924 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12925 {
12926 struct mips_elf_link_hash_table *ret;
12927 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12928
12929 ret = bfd_zmalloc (amt);
12930 if (ret == NULL)
12931 return NULL;
12932
12933 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12934 mips_elf_link_hash_newfunc,
12935 sizeof (struct mips_elf_link_hash_entry),
12936 MIPS_ELF_DATA))
12937 {
12938 free (ret);
12939 return NULL;
12940 }
12941
12942 return &ret->root.root;
12943 }
12944
12945 /* Likewise, but indicate that the target is VxWorks. */
12946
12947 struct bfd_link_hash_table *
12948 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12949 {
12950 struct bfd_link_hash_table *ret;
12951
12952 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12953 if (ret)
12954 {
12955 struct mips_elf_link_hash_table *htab;
12956
12957 htab = (struct mips_elf_link_hash_table *) ret;
12958 htab->use_plts_and_copy_relocs = TRUE;
12959 htab->is_vxworks = TRUE;
12960 }
12961 return ret;
12962 }
12963
12964 /* A function that the linker calls if we are allowed to use PLTs
12965 and copy relocs. */
12966
12967 void
12968 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12969 {
12970 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12971 }
12972 \f
12973 /* We need to use a special link routine to handle the .reginfo and
12974 the .mdebug sections. We need to merge all instances of these
12975 sections together, not write them all out sequentially. */
12976
12977 bfd_boolean
12978 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12979 {
12980 asection *o;
12981 struct bfd_link_order *p;
12982 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12983 asection *rtproc_sec;
12984 Elf32_RegInfo reginfo;
12985 struct ecoff_debug_info debug;
12986 struct mips_htab_traverse_info hti;
12987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12988 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12989 HDRR *symhdr = &debug.symbolic_header;
12990 void *mdebug_handle = NULL;
12991 asection *s;
12992 EXTR esym;
12993 unsigned int i;
12994 bfd_size_type amt;
12995 struct mips_elf_link_hash_table *htab;
12996
12997 static const char * const secname[] =
12998 {
12999 ".text", ".init", ".fini", ".data",
13000 ".rodata", ".sdata", ".sbss", ".bss"
13001 };
13002 static const int sc[] =
13003 {
13004 scText, scInit, scFini, scData,
13005 scRData, scSData, scSBss, scBss
13006 };
13007
13008 /* Sort the dynamic symbols so that those with GOT entries come after
13009 those without. */
13010 htab = mips_elf_hash_table (info);
13011 BFD_ASSERT (htab != NULL);
13012
13013 if (!mips_elf_sort_hash_table (abfd, info))
13014 return FALSE;
13015
13016 /* Create any scheduled LA25 stubs. */
13017 hti.info = info;
13018 hti.output_bfd = abfd;
13019 hti.error = FALSE;
13020 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13021 if (hti.error)
13022 return FALSE;
13023
13024 /* Get a value for the GP register. */
13025 if (elf_gp (abfd) == 0)
13026 {
13027 struct bfd_link_hash_entry *h;
13028
13029 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13030 if (h != NULL && h->type == bfd_link_hash_defined)
13031 elf_gp (abfd) = (h->u.def.value
13032 + h->u.def.section->output_section->vma
13033 + h->u.def.section->output_offset);
13034 else if (htab->is_vxworks
13035 && (h = bfd_link_hash_lookup (info->hash,
13036 "_GLOBAL_OFFSET_TABLE_",
13037 FALSE, FALSE, TRUE))
13038 && h->type == bfd_link_hash_defined)
13039 elf_gp (abfd) = (h->u.def.section->output_section->vma
13040 + h->u.def.section->output_offset
13041 + h->u.def.value);
13042 else if (info->relocatable)
13043 {
13044 bfd_vma lo = MINUS_ONE;
13045
13046 /* Find the GP-relative section with the lowest offset. */
13047 for (o = abfd->sections; o != NULL; o = o->next)
13048 if (o->vma < lo
13049 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13050 lo = o->vma;
13051
13052 /* And calculate GP relative to that. */
13053 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13054 }
13055 else
13056 {
13057 /* If the relocate_section function needs to do a reloc
13058 involving the GP value, it should make a reloc_dangerous
13059 callback to warn that GP is not defined. */
13060 }
13061 }
13062
13063 /* Go through the sections and collect the .reginfo and .mdebug
13064 information. */
13065 reginfo_sec = NULL;
13066 mdebug_sec = NULL;
13067 gptab_data_sec = NULL;
13068 gptab_bss_sec = NULL;
13069 for (o = abfd->sections; o != NULL; o = o->next)
13070 {
13071 if (strcmp (o->name, ".reginfo") == 0)
13072 {
13073 memset (&reginfo, 0, sizeof reginfo);
13074
13075 /* We have found the .reginfo section in the output file.
13076 Look through all the link_orders comprising it and merge
13077 the information together. */
13078 for (p = o->map_head.link_order; p != NULL; p = p->next)
13079 {
13080 asection *input_section;
13081 bfd *input_bfd;
13082 Elf32_External_RegInfo ext;
13083 Elf32_RegInfo sub;
13084
13085 if (p->type != bfd_indirect_link_order)
13086 {
13087 if (p->type == bfd_data_link_order)
13088 continue;
13089 abort ();
13090 }
13091
13092 input_section = p->u.indirect.section;
13093 input_bfd = input_section->owner;
13094
13095 if (! bfd_get_section_contents (input_bfd, input_section,
13096 &ext, 0, sizeof ext))
13097 return FALSE;
13098
13099 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13100
13101 reginfo.ri_gprmask |= sub.ri_gprmask;
13102 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13103 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13104 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13105 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13106
13107 /* ri_gp_value is set by the function
13108 mips_elf32_section_processing when the section is
13109 finally written out. */
13110
13111 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13112 elf_link_input_bfd ignores this section. */
13113 input_section->flags &= ~SEC_HAS_CONTENTS;
13114 }
13115
13116 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13117 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13118
13119 /* Skip this section later on (I don't think this currently
13120 matters, but someday it might). */
13121 o->map_head.link_order = NULL;
13122
13123 reginfo_sec = o;
13124 }
13125
13126 if (strcmp (o->name, ".mdebug") == 0)
13127 {
13128 struct extsym_info einfo;
13129 bfd_vma last;
13130
13131 /* We have found the .mdebug section in the output file.
13132 Look through all the link_orders comprising it and merge
13133 the information together. */
13134 symhdr->magic = swap->sym_magic;
13135 /* FIXME: What should the version stamp be? */
13136 symhdr->vstamp = 0;
13137 symhdr->ilineMax = 0;
13138 symhdr->cbLine = 0;
13139 symhdr->idnMax = 0;
13140 symhdr->ipdMax = 0;
13141 symhdr->isymMax = 0;
13142 symhdr->ioptMax = 0;
13143 symhdr->iauxMax = 0;
13144 symhdr->issMax = 0;
13145 symhdr->issExtMax = 0;
13146 symhdr->ifdMax = 0;
13147 symhdr->crfd = 0;
13148 symhdr->iextMax = 0;
13149
13150 /* We accumulate the debugging information itself in the
13151 debug_info structure. */
13152 debug.line = NULL;
13153 debug.external_dnr = NULL;
13154 debug.external_pdr = NULL;
13155 debug.external_sym = NULL;
13156 debug.external_opt = NULL;
13157 debug.external_aux = NULL;
13158 debug.ss = NULL;
13159 debug.ssext = debug.ssext_end = NULL;
13160 debug.external_fdr = NULL;
13161 debug.external_rfd = NULL;
13162 debug.external_ext = debug.external_ext_end = NULL;
13163
13164 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13165 if (mdebug_handle == NULL)
13166 return FALSE;
13167
13168 esym.jmptbl = 0;
13169 esym.cobol_main = 0;
13170 esym.weakext = 0;
13171 esym.reserved = 0;
13172 esym.ifd = ifdNil;
13173 esym.asym.iss = issNil;
13174 esym.asym.st = stLocal;
13175 esym.asym.reserved = 0;
13176 esym.asym.index = indexNil;
13177 last = 0;
13178 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13179 {
13180 esym.asym.sc = sc[i];
13181 s = bfd_get_section_by_name (abfd, secname[i]);
13182 if (s != NULL)
13183 {
13184 esym.asym.value = s->vma;
13185 last = s->vma + s->size;
13186 }
13187 else
13188 esym.asym.value = last;
13189 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13190 secname[i], &esym))
13191 return FALSE;
13192 }
13193
13194 for (p = o->map_head.link_order; p != NULL; p = p->next)
13195 {
13196 asection *input_section;
13197 bfd *input_bfd;
13198 const struct ecoff_debug_swap *input_swap;
13199 struct ecoff_debug_info input_debug;
13200 char *eraw_src;
13201 char *eraw_end;
13202
13203 if (p->type != bfd_indirect_link_order)
13204 {
13205 if (p->type == bfd_data_link_order)
13206 continue;
13207 abort ();
13208 }
13209
13210 input_section = p->u.indirect.section;
13211 input_bfd = input_section->owner;
13212
13213 if (!is_mips_elf (input_bfd))
13214 {
13215 /* I don't know what a non MIPS ELF bfd would be
13216 doing with a .mdebug section, but I don't really
13217 want to deal with it. */
13218 continue;
13219 }
13220
13221 input_swap = (get_elf_backend_data (input_bfd)
13222 ->elf_backend_ecoff_debug_swap);
13223
13224 BFD_ASSERT (p->size == input_section->size);
13225
13226 /* The ECOFF linking code expects that we have already
13227 read in the debugging information and set up an
13228 ecoff_debug_info structure, so we do that now. */
13229 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13230 &input_debug))
13231 return FALSE;
13232
13233 if (! (bfd_ecoff_debug_accumulate
13234 (mdebug_handle, abfd, &debug, swap, input_bfd,
13235 &input_debug, input_swap, info)))
13236 return FALSE;
13237
13238 /* Loop through the external symbols. For each one with
13239 interesting information, try to find the symbol in
13240 the linker global hash table and save the information
13241 for the output external symbols. */
13242 eraw_src = input_debug.external_ext;
13243 eraw_end = (eraw_src
13244 + (input_debug.symbolic_header.iextMax
13245 * input_swap->external_ext_size));
13246 for (;
13247 eraw_src < eraw_end;
13248 eraw_src += input_swap->external_ext_size)
13249 {
13250 EXTR ext;
13251 const char *name;
13252 struct mips_elf_link_hash_entry *h;
13253
13254 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13255 if (ext.asym.sc == scNil
13256 || ext.asym.sc == scUndefined
13257 || ext.asym.sc == scSUndefined)
13258 continue;
13259
13260 name = input_debug.ssext + ext.asym.iss;
13261 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13262 name, FALSE, FALSE, TRUE);
13263 if (h == NULL || h->esym.ifd != -2)
13264 continue;
13265
13266 if (ext.ifd != -1)
13267 {
13268 BFD_ASSERT (ext.ifd
13269 < input_debug.symbolic_header.ifdMax);
13270 ext.ifd = input_debug.ifdmap[ext.ifd];
13271 }
13272
13273 h->esym = ext;
13274 }
13275
13276 /* Free up the information we just read. */
13277 free (input_debug.line);
13278 free (input_debug.external_dnr);
13279 free (input_debug.external_pdr);
13280 free (input_debug.external_sym);
13281 free (input_debug.external_opt);
13282 free (input_debug.external_aux);
13283 free (input_debug.ss);
13284 free (input_debug.ssext);
13285 free (input_debug.external_fdr);
13286 free (input_debug.external_rfd);
13287 free (input_debug.external_ext);
13288
13289 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13290 elf_link_input_bfd ignores this section. */
13291 input_section->flags &= ~SEC_HAS_CONTENTS;
13292 }
13293
13294 if (SGI_COMPAT (abfd) && info->shared)
13295 {
13296 /* Create .rtproc section. */
13297 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13298 if (rtproc_sec == NULL)
13299 {
13300 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13301 | SEC_LINKER_CREATED | SEC_READONLY);
13302
13303 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13304 ".rtproc",
13305 flags);
13306 if (rtproc_sec == NULL
13307 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13308 return FALSE;
13309 }
13310
13311 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13312 info, rtproc_sec,
13313 &debug))
13314 return FALSE;
13315 }
13316
13317 /* Build the external symbol information. */
13318 einfo.abfd = abfd;
13319 einfo.info = info;
13320 einfo.debug = &debug;
13321 einfo.swap = swap;
13322 einfo.failed = FALSE;
13323 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13324 mips_elf_output_extsym, &einfo);
13325 if (einfo.failed)
13326 return FALSE;
13327
13328 /* Set the size of the .mdebug section. */
13329 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13330
13331 /* Skip this section later on (I don't think this currently
13332 matters, but someday it might). */
13333 o->map_head.link_order = NULL;
13334
13335 mdebug_sec = o;
13336 }
13337
13338 if (CONST_STRNEQ (o->name, ".gptab."))
13339 {
13340 const char *subname;
13341 unsigned int c;
13342 Elf32_gptab *tab;
13343 Elf32_External_gptab *ext_tab;
13344 unsigned int j;
13345
13346 /* The .gptab.sdata and .gptab.sbss sections hold
13347 information describing how the small data area would
13348 change depending upon the -G switch. These sections
13349 not used in executables files. */
13350 if (! info->relocatable)
13351 {
13352 for (p = o->map_head.link_order; p != NULL; p = p->next)
13353 {
13354 asection *input_section;
13355
13356 if (p->type != bfd_indirect_link_order)
13357 {
13358 if (p->type == bfd_data_link_order)
13359 continue;
13360 abort ();
13361 }
13362
13363 input_section = p->u.indirect.section;
13364
13365 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13366 elf_link_input_bfd ignores this section. */
13367 input_section->flags &= ~SEC_HAS_CONTENTS;
13368 }
13369
13370 /* Skip this section later on (I don't think this
13371 currently matters, but someday it might). */
13372 o->map_head.link_order = NULL;
13373
13374 /* Really remove the section. */
13375 bfd_section_list_remove (abfd, o);
13376 --abfd->section_count;
13377
13378 continue;
13379 }
13380
13381 /* There is one gptab for initialized data, and one for
13382 uninitialized data. */
13383 if (strcmp (o->name, ".gptab.sdata") == 0)
13384 gptab_data_sec = o;
13385 else if (strcmp (o->name, ".gptab.sbss") == 0)
13386 gptab_bss_sec = o;
13387 else
13388 {
13389 (*_bfd_error_handler)
13390 (_("%s: illegal section name `%s'"),
13391 bfd_get_filename (abfd), o->name);
13392 bfd_set_error (bfd_error_nonrepresentable_section);
13393 return FALSE;
13394 }
13395
13396 /* The linker script always combines .gptab.data and
13397 .gptab.sdata into .gptab.sdata, and likewise for
13398 .gptab.bss and .gptab.sbss. It is possible that there is
13399 no .sdata or .sbss section in the output file, in which
13400 case we must change the name of the output section. */
13401 subname = o->name + sizeof ".gptab" - 1;
13402 if (bfd_get_section_by_name (abfd, subname) == NULL)
13403 {
13404 if (o == gptab_data_sec)
13405 o->name = ".gptab.data";
13406 else
13407 o->name = ".gptab.bss";
13408 subname = o->name + sizeof ".gptab" - 1;
13409 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13410 }
13411
13412 /* Set up the first entry. */
13413 c = 1;
13414 amt = c * sizeof (Elf32_gptab);
13415 tab = bfd_malloc (amt);
13416 if (tab == NULL)
13417 return FALSE;
13418 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13419 tab[0].gt_header.gt_unused = 0;
13420
13421 /* Combine the input sections. */
13422 for (p = o->map_head.link_order; p != NULL; p = p->next)
13423 {
13424 asection *input_section;
13425 bfd *input_bfd;
13426 bfd_size_type size;
13427 unsigned long last;
13428 bfd_size_type gpentry;
13429
13430 if (p->type != bfd_indirect_link_order)
13431 {
13432 if (p->type == bfd_data_link_order)
13433 continue;
13434 abort ();
13435 }
13436
13437 input_section = p->u.indirect.section;
13438 input_bfd = input_section->owner;
13439
13440 /* Combine the gptab entries for this input section one
13441 by one. We know that the input gptab entries are
13442 sorted by ascending -G value. */
13443 size = input_section->size;
13444 last = 0;
13445 for (gpentry = sizeof (Elf32_External_gptab);
13446 gpentry < size;
13447 gpentry += sizeof (Elf32_External_gptab))
13448 {
13449 Elf32_External_gptab ext_gptab;
13450 Elf32_gptab int_gptab;
13451 unsigned long val;
13452 unsigned long add;
13453 bfd_boolean exact;
13454 unsigned int look;
13455
13456 if (! (bfd_get_section_contents
13457 (input_bfd, input_section, &ext_gptab, gpentry,
13458 sizeof (Elf32_External_gptab))))
13459 {
13460 free (tab);
13461 return FALSE;
13462 }
13463
13464 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13465 &int_gptab);
13466 val = int_gptab.gt_entry.gt_g_value;
13467 add = int_gptab.gt_entry.gt_bytes - last;
13468
13469 exact = FALSE;
13470 for (look = 1; look < c; look++)
13471 {
13472 if (tab[look].gt_entry.gt_g_value >= val)
13473 tab[look].gt_entry.gt_bytes += add;
13474
13475 if (tab[look].gt_entry.gt_g_value == val)
13476 exact = TRUE;
13477 }
13478
13479 if (! exact)
13480 {
13481 Elf32_gptab *new_tab;
13482 unsigned int max;
13483
13484 /* We need a new table entry. */
13485 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13486 new_tab = bfd_realloc (tab, amt);
13487 if (new_tab == NULL)
13488 {
13489 free (tab);
13490 return FALSE;
13491 }
13492 tab = new_tab;
13493 tab[c].gt_entry.gt_g_value = val;
13494 tab[c].gt_entry.gt_bytes = add;
13495
13496 /* Merge in the size for the next smallest -G
13497 value, since that will be implied by this new
13498 value. */
13499 max = 0;
13500 for (look = 1; look < c; look++)
13501 {
13502 if (tab[look].gt_entry.gt_g_value < val
13503 && (max == 0
13504 || (tab[look].gt_entry.gt_g_value
13505 > tab[max].gt_entry.gt_g_value)))
13506 max = look;
13507 }
13508 if (max != 0)
13509 tab[c].gt_entry.gt_bytes +=
13510 tab[max].gt_entry.gt_bytes;
13511
13512 ++c;
13513 }
13514
13515 last = int_gptab.gt_entry.gt_bytes;
13516 }
13517
13518 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13519 elf_link_input_bfd ignores this section. */
13520 input_section->flags &= ~SEC_HAS_CONTENTS;
13521 }
13522
13523 /* The table must be sorted by -G value. */
13524 if (c > 2)
13525 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13526
13527 /* Swap out the table. */
13528 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13529 ext_tab = bfd_alloc (abfd, amt);
13530 if (ext_tab == NULL)
13531 {
13532 free (tab);
13533 return FALSE;
13534 }
13535
13536 for (j = 0; j < c; j++)
13537 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13538 free (tab);
13539
13540 o->size = c * sizeof (Elf32_External_gptab);
13541 o->contents = (bfd_byte *) ext_tab;
13542
13543 /* Skip this section later on (I don't think this currently
13544 matters, but someday it might). */
13545 o->map_head.link_order = NULL;
13546 }
13547 }
13548
13549 /* Invoke the regular ELF backend linker to do all the work. */
13550 if (!bfd_elf_final_link (abfd, info))
13551 return FALSE;
13552
13553 /* Now write out the computed sections. */
13554
13555 if (reginfo_sec != NULL)
13556 {
13557 Elf32_External_RegInfo ext;
13558
13559 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13560 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13561 return FALSE;
13562 }
13563
13564 if (mdebug_sec != NULL)
13565 {
13566 BFD_ASSERT (abfd->output_has_begun);
13567 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13568 swap, info,
13569 mdebug_sec->filepos))
13570 return FALSE;
13571
13572 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13573 }
13574
13575 if (gptab_data_sec != NULL)
13576 {
13577 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13578 gptab_data_sec->contents,
13579 0, gptab_data_sec->size))
13580 return FALSE;
13581 }
13582
13583 if (gptab_bss_sec != NULL)
13584 {
13585 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13586 gptab_bss_sec->contents,
13587 0, gptab_bss_sec->size))
13588 return FALSE;
13589 }
13590
13591 if (SGI_COMPAT (abfd))
13592 {
13593 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13594 if (rtproc_sec != NULL)
13595 {
13596 if (! bfd_set_section_contents (abfd, rtproc_sec,
13597 rtproc_sec->contents,
13598 0, rtproc_sec->size))
13599 return FALSE;
13600 }
13601 }
13602
13603 return TRUE;
13604 }
13605 \f
13606 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13607
13608 struct mips_mach_extension {
13609 unsigned long extension, base;
13610 };
13611
13612
13613 /* An array describing how BFD machines relate to one another. The entries
13614 are ordered topologically with MIPS I extensions listed last. */
13615
13616 static const struct mips_mach_extension mips_mach_extensions[] = {
13617 /* MIPS64r2 extensions. */
13618 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13619 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13620 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13621
13622 /* MIPS64 extensions. */
13623 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13624 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13625 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13626 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13627
13628 /* MIPS V extensions. */
13629 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13630
13631 /* R10000 extensions. */
13632 { bfd_mach_mips12000, bfd_mach_mips10000 },
13633 { bfd_mach_mips14000, bfd_mach_mips10000 },
13634 { bfd_mach_mips16000, bfd_mach_mips10000 },
13635
13636 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13637 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13638 better to allow vr5400 and vr5500 code to be merged anyway, since
13639 many libraries will just use the core ISA. Perhaps we could add
13640 some sort of ASE flag if this ever proves a problem. */
13641 { bfd_mach_mips5500, bfd_mach_mips5400 },
13642 { bfd_mach_mips5400, bfd_mach_mips5000 },
13643
13644 /* MIPS IV extensions. */
13645 { bfd_mach_mips5, bfd_mach_mips8000 },
13646 { bfd_mach_mips10000, bfd_mach_mips8000 },
13647 { bfd_mach_mips5000, bfd_mach_mips8000 },
13648 { bfd_mach_mips7000, bfd_mach_mips8000 },
13649 { bfd_mach_mips9000, bfd_mach_mips8000 },
13650
13651 /* VR4100 extensions. */
13652 { bfd_mach_mips4120, bfd_mach_mips4100 },
13653 { bfd_mach_mips4111, bfd_mach_mips4100 },
13654
13655 /* MIPS III extensions. */
13656 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13657 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13658 { bfd_mach_mips8000, bfd_mach_mips4000 },
13659 { bfd_mach_mips4650, bfd_mach_mips4000 },
13660 { bfd_mach_mips4600, bfd_mach_mips4000 },
13661 { bfd_mach_mips4400, bfd_mach_mips4000 },
13662 { bfd_mach_mips4300, bfd_mach_mips4000 },
13663 { bfd_mach_mips4100, bfd_mach_mips4000 },
13664 { bfd_mach_mips4010, bfd_mach_mips4000 },
13665 { bfd_mach_mips5900, bfd_mach_mips4000 },
13666
13667 /* MIPS32 extensions. */
13668 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13669
13670 /* MIPS II extensions. */
13671 { bfd_mach_mips4000, bfd_mach_mips6000 },
13672 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13673
13674 /* MIPS I extensions. */
13675 { bfd_mach_mips6000, bfd_mach_mips3000 },
13676 { bfd_mach_mips3900, bfd_mach_mips3000 }
13677 };
13678
13679
13680 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13681
13682 static bfd_boolean
13683 mips_mach_extends_p (unsigned long base, unsigned long extension)
13684 {
13685 size_t i;
13686
13687 if (extension == base)
13688 return TRUE;
13689
13690 if (base == bfd_mach_mipsisa32
13691 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13692 return TRUE;
13693
13694 if (base == bfd_mach_mipsisa32r2
13695 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13696 return TRUE;
13697
13698 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13699 if (extension == mips_mach_extensions[i].extension)
13700 {
13701 extension = mips_mach_extensions[i].base;
13702 if (extension == base)
13703 return TRUE;
13704 }
13705
13706 return FALSE;
13707 }
13708
13709
13710 /* Return true if the given ELF header flags describe a 32-bit binary. */
13711
13712 static bfd_boolean
13713 mips_32bit_flags_p (flagword flags)
13714 {
13715 return ((flags & EF_MIPS_32BITMODE) != 0
13716 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13717 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13718 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13719 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13720 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13721 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13722 }
13723
13724
13725 /* Merge object attributes from IBFD into OBFD. Raise an error if
13726 there are conflicting attributes. */
13727 static bfd_boolean
13728 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13729 {
13730 obj_attribute *in_attr;
13731 obj_attribute *out_attr;
13732 bfd *abi_fp_bfd;
13733
13734 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13735 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13736 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13737 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13738
13739 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13740 {
13741 /* This is the first object. Copy the attributes. */
13742 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13743
13744 /* Use the Tag_null value to indicate the attributes have been
13745 initialized. */
13746 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13747
13748 return TRUE;
13749 }
13750
13751 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13752 non-conflicting ones. */
13753 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13754 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13755 {
13756 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13757 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13758 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13759 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13760 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13761 {
13762 case 1:
13763 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13764 {
13765 case 2:
13766 _bfd_error_handler
13767 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13768 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13769 break;
13770
13771 case 3:
13772 _bfd_error_handler
13773 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13774 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13775 break;
13776
13777 case 4:
13778 _bfd_error_handler
13779 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13780 obfd, abi_fp_bfd, ibfd,
13781 "-mdouble-float", "-mips32r2 -mfp64");
13782 break;
13783
13784 default:
13785 _bfd_error_handler
13786 (_("Warning: %B uses %s (set by %B), "
13787 "%B uses unknown floating point ABI %d"),
13788 obfd, abi_fp_bfd, ibfd,
13789 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13790 break;
13791 }
13792 break;
13793
13794 case 2:
13795 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13796 {
13797 case 1:
13798 _bfd_error_handler
13799 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13800 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13801 break;
13802
13803 case 3:
13804 _bfd_error_handler
13805 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13806 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13807 break;
13808
13809 case 4:
13810 _bfd_error_handler
13811 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13812 obfd, abi_fp_bfd, ibfd,
13813 "-msingle-float", "-mips32r2 -mfp64");
13814 break;
13815
13816 default:
13817 _bfd_error_handler
13818 (_("Warning: %B uses %s (set by %B), "
13819 "%B uses unknown floating point ABI %d"),
13820 obfd, abi_fp_bfd, ibfd,
13821 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13822 break;
13823 }
13824 break;
13825
13826 case 3:
13827 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13828 {
13829 case 1:
13830 case 2:
13831 case 4:
13832 _bfd_error_handler
13833 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13834 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13835 break;
13836
13837 default:
13838 _bfd_error_handler
13839 (_("Warning: %B uses %s (set by %B), "
13840 "%B uses unknown floating point ABI %d"),
13841 obfd, abi_fp_bfd, ibfd,
13842 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13843 break;
13844 }
13845 break;
13846
13847 case 4:
13848 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13849 {
13850 case 1:
13851 _bfd_error_handler
13852 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13853 obfd, abi_fp_bfd, ibfd,
13854 "-mips32r2 -mfp64", "-mdouble-float");
13855 break;
13856
13857 case 2:
13858 _bfd_error_handler
13859 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13860 obfd, abi_fp_bfd, ibfd,
13861 "-mips32r2 -mfp64", "-msingle-float");
13862 break;
13863
13864 case 3:
13865 _bfd_error_handler
13866 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13867 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13868 break;
13869
13870 default:
13871 _bfd_error_handler
13872 (_("Warning: %B uses %s (set by %B), "
13873 "%B uses unknown floating point ABI %d"),
13874 obfd, abi_fp_bfd, ibfd,
13875 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13876 break;
13877 }
13878 break;
13879
13880 default:
13881 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13882 {
13883 case 1:
13884 _bfd_error_handler
13885 (_("Warning: %B uses unknown floating point ABI %d "
13886 "(set by %B), %B uses %s"),
13887 obfd, abi_fp_bfd, ibfd,
13888 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13889 break;
13890
13891 case 2:
13892 _bfd_error_handler
13893 (_("Warning: %B uses unknown floating point ABI %d "
13894 "(set by %B), %B uses %s"),
13895 obfd, abi_fp_bfd, ibfd,
13896 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13897 break;
13898
13899 case 3:
13900 _bfd_error_handler
13901 (_("Warning: %B uses unknown floating point ABI %d "
13902 "(set by %B), %B uses %s"),
13903 obfd, abi_fp_bfd, ibfd,
13904 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13905 break;
13906
13907 case 4:
13908 _bfd_error_handler
13909 (_("Warning: %B uses unknown floating point ABI %d "
13910 "(set by %B), %B uses %s"),
13911 obfd, abi_fp_bfd, ibfd,
13912 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13913 break;
13914
13915 default:
13916 _bfd_error_handler
13917 (_("Warning: %B uses unknown floating point ABI %d "
13918 "(set by %B), %B uses unknown floating point ABI %d"),
13919 obfd, abi_fp_bfd, ibfd,
13920 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13921 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13922 break;
13923 }
13924 break;
13925 }
13926 }
13927
13928 /* Merge Tag_compatibility attributes and any common GNU ones. */
13929 _bfd_elf_merge_object_attributes (ibfd, obfd);
13930
13931 return TRUE;
13932 }
13933
13934 /* Merge backend specific data from an object file to the output
13935 object file when linking. */
13936
13937 bfd_boolean
13938 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13939 {
13940 flagword old_flags;
13941 flagword new_flags;
13942 bfd_boolean ok;
13943 bfd_boolean null_input_bfd = TRUE;
13944 asection *sec;
13945
13946 /* Check if we have the same endianness. */
13947 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13948 {
13949 (*_bfd_error_handler)
13950 (_("%B: endianness incompatible with that of the selected emulation"),
13951 ibfd);
13952 return FALSE;
13953 }
13954
13955 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13956 return TRUE;
13957
13958 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13959 {
13960 (*_bfd_error_handler)
13961 (_("%B: ABI is incompatible with that of the selected emulation"),
13962 ibfd);
13963 return FALSE;
13964 }
13965
13966 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13967 return FALSE;
13968
13969 new_flags = elf_elfheader (ibfd)->e_flags;
13970 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13971 old_flags = elf_elfheader (obfd)->e_flags;
13972
13973 if (! elf_flags_init (obfd))
13974 {
13975 elf_flags_init (obfd) = TRUE;
13976 elf_elfheader (obfd)->e_flags = new_flags;
13977 elf_elfheader (obfd)->e_ident[EI_CLASS]
13978 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13979
13980 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13981 && (bfd_get_arch_info (obfd)->the_default
13982 || mips_mach_extends_p (bfd_get_mach (obfd),
13983 bfd_get_mach (ibfd))))
13984 {
13985 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13986 bfd_get_mach (ibfd)))
13987 return FALSE;
13988 }
13989
13990 return TRUE;
13991 }
13992
13993 /* Check flag compatibility. */
13994
13995 new_flags &= ~EF_MIPS_NOREORDER;
13996 old_flags &= ~EF_MIPS_NOREORDER;
13997
13998 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13999 doesn't seem to matter. */
14000 new_flags &= ~EF_MIPS_XGOT;
14001 old_flags &= ~EF_MIPS_XGOT;
14002
14003 /* MIPSpro generates ucode info in n64 objects. Again, we should
14004 just be able to ignore this. */
14005 new_flags &= ~EF_MIPS_UCODE;
14006 old_flags &= ~EF_MIPS_UCODE;
14007
14008 /* DSOs should only be linked with CPIC code. */
14009 if ((ibfd->flags & DYNAMIC) != 0)
14010 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14011
14012 if (new_flags == old_flags)
14013 return TRUE;
14014
14015 /* Check to see if the input BFD actually contains any sections.
14016 If not, its flags may not have been initialised either, but it cannot
14017 actually cause any incompatibility. */
14018 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14019 {
14020 /* Ignore synthetic sections and empty .text, .data and .bss sections
14021 which are automatically generated by gas. Also ignore fake
14022 (s)common sections, since merely defining a common symbol does
14023 not affect compatibility. */
14024 if ((sec->flags & SEC_IS_COMMON) == 0
14025 && strcmp (sec->name, ".reginfo")
14026 && strcmp (sec->name, ".mdebug")
14027 && (sec->size != 0
14028 || (strcmp (sec->name, ".text")
14029 && strcmp (sec->name, ".data")
14030 && strcmp (sec->name, ".bss"))))
14031 {
14032 null_input_bfd = FALSE;
14033 break;
14034 }
14035 }
14036 if (null_input_bfd)
14037 return TRUE;
14038
14039 ok = TRUE;
14040
14041 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14042 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14043 {
14044 (*_bfd_error_handler)
14045 (_("%B: warning: linking abicalls files with non-abicalls files"),
14046 ibfd);
14047 ok = TRUE;
14048 }
14049
14050 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14051 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14052 if (! (new_flags & EF_MIPS_PIC))
14053 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14054
14055 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14056 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14057
14058 /* Compare the ISAs. */
14059 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14060 {
14061 (*_bfd_error_handler)
14062 (_("%B: linking 32-bit code with 64-bit code"),
14063 ibfd);
14064 ok = FALSE;
14065 }
14066 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14067 {
14068 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14069 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14070 {
14071 /* Copy the architecture info from IBFD to OBFD. Also copy
14072 the 32-bit flag (if set) so that we continue to recognise
14073 OBFD as a 32-bit binary. */
14074 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14075 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14076 elf_elfheader (obfd)->e_flags
14077 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14078
14079 /* Copy across the ABI flags if OBFD doesn't use them
14080 and if that was what caused us to treat IBFD as 32-bit. */
14081 if ((old_flags & EF_MIPS_ABI) == 0
14082 && mips_32bit_flags_p (new_flags)
14083 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14084 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14085 }
14086 else
14087 {
14088 /* The ISAs aren't compatible. */
14089 (*_bfd_error_handler)
14090 (_("%B: linking %s module with previous %s modules"),
14091 ibfd,
14092 bfd_printable_name (ibfd),
14093 bfd_printable_name (obfd));
14094 ok = FALSE;
14095 }
14096 }
14097
14098 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14099 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14100
14101 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14102 does set EI_CLASS differently from any 32-bit ABI. */
14103 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14104 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14105 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14106 {
14107 /* Only error if both are set (to different values). */
14108 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14109 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14110 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14111 {
14112 (*_bfd_error_handler)
14113 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14114 ibfd,
14115 elf_mips_abi_name (ibfd),
14116 elf_mips_abi_name (obfd));
14117 ok = FALSE;
14118 }
14119 new_flags &= ~EF_MIPS_ABI;
14120 old_flags &= ~EF_MIPS_ABI;
14121 }
14122
14123 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14124 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14125 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14126 {
14127 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14128 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14129 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14130 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14131 int micro_mis = old_m16 && new_micro;
14132 int m16_mis = old_micro && new_m16;
14133
14134 if (m16_mis || micro_mis)
14135 {
14136 (*_bfd_error_handler)
14137 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14138 ibfd,
14139 m16_mis ? "MIPS16" : "microMIPS",
14140 m16_mis ? "microMIPS" : "MIPS16");
14141 ok = FALSE;
14142 }
14143
14144 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14145
14146 new_flags &= ~ EF_MIPS_ARCH_ASE;
14147 old_flags &= ~ EF_MIPS_ARCH_ASE;
14148 }
14149
14150 /* Warn about any other mismatches */
14151 if (new_flags != old_flags)
14152 {
14153 (*_bfd_error_handler)
14154 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14155 ibfd, (unsigned long) new_flags,
14156 (unsigned long) old_flags);
14157 ok = FALSE;
14158 }
14159
14160 if (! ok)
14161 {
14162 bfd_set_error (bfd_error_bad_value);
14163 return FALSE;
14164 }
14165
14166 return TRUE;
14167 }
14168
14169 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14170
14171 bfd_boolean
14172 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14173 {
14174 BFD_ASSERT (!elf_flags_init (abfd)
14175 || elf_elfheader (abfd)->e_flags == flags);
14176
14177 elf_elfheader (abfd)->e_flags = flags;
14178 elf_flags_init (abfd) = TRUE;
14179 return TRUE;
14180 }
14181
14182 char *
14183 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14184 {
14185 switch (dtag)
14186 {
14187 default: return "";
14188 case DT_MIPS_RLD_VERSION:
14189 return "MIPS_RLD_VERSION";
14190 case DT_MIPS_TIME_STAMP:
14191 return "MIPS_TIME_STAMP";
14192 case DT_MIPS_ICHECKSUM:
14193 return "MIPS_ICHECKSUM";
14194 case DT_MIPS_IVERSION:
14195 return "MIPS_IVERSION";
14196 case DT_MIPS_FLAGS:
14197 return "MIPS_FLAGS";
14198 case DT_MIPS_BASE_ADDRESS:
14199 return "MIPS_BASE_ADDRESS";
14200 case DT_MIPS_MSYM:
14201 return "MIPS_MSYM";
14202 case DT_MIPS_CONFLICT:
14203 return "MIPS_CONFLICT";
14204 case DT_MIPS_LIBLIST:
14205 return "MIPS_LIBLIST";
14206 case DT_MIPS_LOCAL_GOTNO:
14207 return "MIPS_LOCAL_GOTNO";
14208 case DT_MIPS_CONFLICTNO:
14209 return "MIPS_CONFLICTNO";
14210 case DT_MIPS_LIBLISTNO:
14211 return "MIPS_LIBLISTNO";
14212 case DT_MIPS_SYMTABNO:
14213 return "MIPS_SYMTABNO";
14214 case DT_MIPS_UNREFEXTNO:
14215 return "MIPS_UNREFEXTNO";
14216 case DT_MIPS_GOTSYM:
14217 return "MIPS_GOTSYM";
14218 case DT_MIPS_HIPAGENO:
14219 return "MIPS_HIPAGENO";
14220 case DT_MIPS_RLD_MAP:
14221 return "MIPS_RLD_MAP";
14222 case DT_MIPS_DELTA_CLASS:
14223 return "MIPS_DELTA_CLASS";
14224 case DT_MIPS_DELTA_CLASS_NO:
14225 return "MIPS_DELTA_CLASS_NO";
14226 case DT_MIPS_DELTA_INSTANCE:
14227 return "MIPS_DELTA_INSTANCE";
14228 case DT_MIPS_DELTA_INSTANCE_NO:
14229 return "MIPS_DELTA_INSTANCE_NO";
14230 case DT_MIPS_DELTA_RELOC:
14231 return "MIPS_DELTA_RELOC";
14232 case DT_MIPS_DELTA_RELOC_NO:
14233 return "MIPS_DELTA_RELOC_NO";
14234 case DT_MIPS_DELTA_SYM:
14235 return "MIPS_DELTA_SYM";
14236 case DT_MIPS_DELTA_SYM_NO:
14237 return "MIPS_DELTA_SYM_NO";
14238 case DT_MIPS_DELTA_CLASSSYM:
14239 return "MIPS_DELTA_CLASSSYM";
14240 case DT_MIPS_DELTA_CLASSSYM_NO:
14241 return "MIPS_DELTA_CLASSSYM_NO";
14242 case DT_MIPS_CXX_FLAGS:
14243 return "MIPS_CXX_FLAGS";
14244 case DT_MIPS_PIXIE_INIT:
14245 return "MIPS_PIXIE_INIT";
14246 case DT_MIPS_SYMBOL_LIB:
14247 return "MIPS_SYMBOL_LIB";
14248 case DT_MIPS_LOCALPAGE_GOTIDX:
14249 return "MIPS_LOCALPAGE_GOTIDX";
14250 case DT_MIPS_LOCAL_GOTIDX:
14251 return "MIPS_LOCAL_GOTIDX";
14252 case DT_MIPS_HIDDEN_GOTIDX:
14253 return "MIPS_HIDDEN_GOTIDX";
14254 case DT_MIPS_PROTECTED_GOTIDX:
14255 return "MIPS_PROTECTED_GOT_IDX";
14256 case DT_MIPS_OPTIONS:
14257 return "MIPS_OPTIONS";
14258 case DT_MIPS_INTERFACE:
14259 return "MIPS_INTERFACE";
14260 case DT_MIPS_DYNSTR_ALIGN:
14261 return "DT_MIPS_DYNSTR_ALIGN";
14262 case DT_MIPS_INTERFACE_SIZE:
14263 return "DT_MIPS_INTERFACE_SIZE";
14264 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14265 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14266 case DT_MIPS_PERF_SUFFIX:
14267 return "DT_MIPS_PERF_SUFFIX";
14268 case DT_MIPS_COMPACT_SIZE:
14269 return "DT_MIPS_COMPACT_SIZE";
14270 case DT_MIPS_GP_VALUE:
14271 return "DT_MIPS_GP_VALUE";
14272 case DT_MIPS_AUX_DYNAMIC:
14273 return "DT_MIPS_AUX_DYNAMIC";
14274 case DT_MIPS_PLTGOT:
14275 return "DT_MIPS_PLTGOT";
14276 case DT_MIPS_RWPLT:
14277 return "DT_MIPS_RWPLT";
14278 }
14279 }
14280
14281 bfd_boolean
14282 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14283 {
14284 FILE *file = ptr;
14285
14286 BFD_ASSERT (abfd != NULL && ptr != NULL);
14287
14288 /* Print normal ELF private data. */
14289 _bfd_elf_print_private_bfd_data (abfd, ptr);
14290
14291 /* xgettext:c-format */
14292 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14293
14294 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14295 fprintf (file, _(" [abi=O32]"));
14296 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14297 fprintf (file, _(" [abi=O64]"));
14298 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14299 fprintf (file, _(" [abi=EABI32]"));
14300 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14301 fprintf (file, _(" [abi=EABI64]"));
14302 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14303 fprintf (file, _(" [abi unknown]"));
14304 else if (ABI_N32_P (abfd))
14305 fprintf (file, _(" [abi=N32]"));
14306 else if (ABI_64_P (abfd))
14307 fprintf (file, _(" [abi=64]"));
14308 else
14309 fprintf (file, _(" [no abi set]"));
14310
14311 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14312 fprintf (file, " [mips1]");
14313 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14314 fprintf (file, " [mips2]");
14315 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14316 fprintf (file, " [mips3]");
14317 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14318 fprintf (file, " [mips4]");
14319 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14320 fprintf (file, " [mips5]");
14321 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14322 fprintf (file, " [mips32]");
14323 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14324 fprintf (file, " [mips64]");
14325 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14326 fprintf (file, " [mips32r2]");
14327 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14328 fprintf (file, " [mips64r2]");
14329 else
14330 fprintf (file, _(" [unknown ISA]"));
14331
14332 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14333 fprintf (file, " [mdmx]");
14334
14335 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14336 fprintf (file, " [mips16]");
14337
14338 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14339 fprintf (file, " [micromips]");
14340
14341 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14342 fprintf (file, " [32bitmode]");
14343 else
14344 fprintf (file, _(" [not 32bitmode]"));
14345
14346 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14347 fprintf (file, " [noreorder]");
14348
14349 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14350 fprintf (file, " [PIC]");
14351
14352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14353 fprintf (file, " [CPIC]");
14354
14355 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14356 fprintf (file, " [XGOT]");
14357
14358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14359 fprintf (file, " [UCODE]");
14360
14361 fputc ('\n', file);
14362
14363 return TRUE;
14364 }
14365
14366 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14367 {
14368 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14369 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14370 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14371 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14372 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14373 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14374 { NULL, 0, 0, 0, 0 }
14375 };
14376
14377 /* Merge non visibility st_other attributes. Ensure that the
14378 STO_OPTIONAL flag is copied into h->other, even if this is not a
14379 definiton of the symbol. */
14380 void
14381 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14382 const Elf_Internal_Sym *isym,
14383 bfd_boolean definition,
14384 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14385 {
14386 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14387 {
14388 unsigned char other;
14389
14390 other = (definition ? isym->st_other : h->other);
14391 other &= ~ELF_ST_VISIBILITY (-1);
14392 h->other = other | ELF_ST_VISIBILITY (h->other);
14393 }
14394
14395 if (!definition
14396 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14397 h->other |= STO_OPTIONAL;
14398 }
14399
14400 /* Decide whether an undefined symbol is special and can be ignored.
14401 This is the case for OPTIONAL symbols on IRIX. */
14402 bfd_boolean
14403 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14404 {
14405 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14406 }
14407
14408 bfd_boolean
14409 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14410 {
14411 return (sym->st_shndx == SHN_COMMON
14412 || sym->st_shndx == SHN_MIPS_ACOMMON
14413 || sym->st_shndx == SHN_MIPS_SCOMMON);
14414 }
14415
14416 /* Return address for Ith PLT stub in section PLT, for relocation REL
14417 or (bfd_vma) -1 if it should not be included. */
14418
14419 bfd_vma
14420 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14421 const arelent *rel ATTRIBUTE_UNUSED)
14422 {
14423 return (plt->vma
14424 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14425 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14426 }
14427
14428 void
14429 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14430 {
14431 struct mips_elf_link_hash_table *htab;
14432 Elf_Internal_Ehdr *i_ehdrp;
14433
14434 i_ehdrp = elf_elfheader (abfd);
14435 if (link_info)
14436 {
14437 htab = mips_elf_hash_table (link_info);
14438 BFD_ASSERT (htab != NULL);
14439
14440 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14441 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14442 }
14443 }