MIPS/BFD: Enable local R_MIPS_26 overflow detection
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system. */
2094
2095 static inline bfd_boolean
2096 mips16_reloc_p (int r_type)
2097 {
2098 switch (r_type)
2099 {
2100 case R_MIPS16_26:
2101 case R_MIPS16_GPREL:
2102 case R_MIPS16_GOT16:
2103 case R_MIPS16_CALL16:
2104 case R_MIPS16_HI16:
2105 case R_MIPS16_LO16:
2106 case R_MIPS16_TLS_GD:
2107 case R_MIPS16_TLS_LDM:
2108 case R_MIPS16_TLS_DTPREL_HI16:
2109 case R_MIPS16_TLS_DTPREL_LO16:
2110 case R_MIPS16_TLS_GOTTPREL:
2111 case R_MIPS16_TLS_TPREL_HI16:
2112 case R_MIPS16_TLS_TPREL_LO16:
2113 return TRUE;
2114
2115 default:
2116 return FALSE;
2117 }
2118 }
2119
2120 /* Check if a microMIPS reloc. */
2121
2122 static inline bfd_boolean
2123 micromips_reloc_p (unsigned int r_type)
2124 {
2125 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2126 }
2127
2128 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2129 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2130 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2131
2132 static inline bfd_boolean
2133 micromips_reloc_shuffle_p (unsigned int r_type)
2134 {
2135 return (micromips_reloc_p (r_type)
2136 && r_type != R_MICROMIPS_PC7_S1
2137 && r_type != R_MICROMIPS_PC10_S1);
2138 }
2139
2140 static inline bfd_boolean
2141 got16_reloc_p (int r_type)
2142 {
2143 return (r_type == R_MIPS_GOT16
2144 || r_type == R_MIPS16_GOT16
2145 || r_type == R_MICROMIPS_GOT16);
2146 }
2147
2148 static inline bfd_boolean
2149 call16_reloc_p (int r_type)
2150 {
2151 return (r_type == R_MIPS_CALL16
2152 || r_type == R_MIPS16_CALL16
2153 || r_type == R_MICROMIPS_CALL16);
2154 }
2155
2156 static inline bfd_boolean
2157 got_disp_reloc_p (unsigned int r_type)
2158 {
2159 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2160 }
2161
2162 static inline bfd_boolean
2163 got_page_reloc_p (unsigned int r_type)
2164 {
2165 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2166 }
2167
2168 static inline bfd_boolean
2169 got_lo16_reloc_p (unsigned int r_type)
2170 {
2171 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2172 }
2173
2174 static inline bfd_boolean
2175 call_hi16_reloc_p (unsigned int r_type)
2176 {
2177 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2178 }
2179
2180 static inline bfd_boolean
2181 call_lo16_reloc_p (unsigned int r_type)
2182 {
2183 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2184 }
2185
2186 static inline bfd_boolean
2187 hi16_reloc_p (int r_type)
2188 {
2189 return (r_type == R_MIPS_HI16
2190 || r_type == R_MIPS16_HI16
2191 || r_type == R_MICROMIPS_HI16
2192 || r_type == R_MIPS_PCHI16);
2193 }
2194
2195 static inline bfd_boolean
2196 lo16_reloc_p (int r_type)
2197 {
2198 return (r_type == R_MIPS_LO16
2199 || r_type == R_MIPS16_LO16
2200 || r_type == R_MICROMIPS_LO16
2201 || r_type == R_MIPS_PCLO16);
2202 }
2203
2204 static inline bfd_boolean
2205 mips16_call_reloc_p (int r_type)
2206 {
2207 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2208 }
2209
2210 static inline bfd_boolean
2211 jal_reloc_p (int r_type)
2212 {
2213 return (r_type == R_MIPS_26
2214 || r_type == R_MIPS16_26
2215 || r_type == R_MICROMIPS_26_S1);
2216 }
2217
2218 static inline bfd_boolean
2219 aligned_pcrel_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_PC18_S3
2222 || r_type == R_MIPS_PC19_S2);
2223 }
2224
2225 static inline bfd_boolean
2226 micromips_branch_reloc_p (int r_type)
2227 {
2228 return (r_type == R_MICROMIPS_26_S1
2229 || r_type == R_MICROMIPS_PC16_S1
2230 || r_type == R_MICROMIPS_PC10_S1
2231 || r_type == R_MICROMIPS_PC7_S1);
2232 }
2233
2234 static inline bfd_boolean
2235 tls_gd_reloc_p (unsigned int r_type)
2236 {
2237 return (r_type == R_MIPS_TLS_GD
2238 || r_type == R_MIPS16_TLS_GD
2239 || r_type == R_MICROMIPS_TLS_GD);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_ldm_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_LDM
2246 || r_type == R_MIPS16_TLS_LDM
2247 || r_type == R_MICROMIPS_TLS_LDM);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_gottprel_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_GOTTPREL
2254 || r_type == R_MIPS16_TLS_GOTTPREL
2255 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2256 }
2257
2258 void
2259 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2260 bfd_boolean jal_shuffle, bfd_byte *data)
2261 {
2262 bfd_vma first, second, val;
2263
2264 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2265 return;
2266
2267 /* Pick up the first and second halfwords of the instruction. */
2268 first = bfd_get_16 (abfd, data);
2269 second = bfd_get_16 (abfd, data + 2);
2270 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2271 val = first << 16 | second;
2272 else if (r_type != R_MIPS16_26)
2273 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2274 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2275 else
2276 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2277 | ((first & 0x1f) << 21) | second);
2278 bfd_put_32 (abfd, val, data);
2279 }
2280
2281 void
2282 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2283 bfd_boolean jal_shuffle, bfd_byte *data)
2284 {
2285 bfd_vma first, second, val;
2286
2287 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2288 return;
2289
2290 val = bfd_get_32 (abfd, data);
2291 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2292 {
2293 second = val & 0xffff;
2294 first = val >> 16;
2295 }
2296 else if (r_type != R_MIPS16_26)
2297 {
2298 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2299 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2300 }
2301 else
2302 {
2303 second = val & 0xffff;
2304 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2305 | ((val >> 21) & 0x1f);
2306 }
2307 bfd_put_16 (abfd, second, data + 2);
2308 bfd_put_16 (abfd, first, data);
2309 }
2310
2311 bfd_reloc_status_type
2312 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2313 arelent *reloc_entry, asection *input_section,
2314 bfd_boolean relocatable, void *data, bfd_vma gp)
2315 {
2316 bfd_vma relocation;
2317 bfd_signed_vma val;
2318 bfd_reloc_status_type status;
2319
2320 if (bfd_is_com_section (symbol->section))
2321 relocation = 0;
2322 else
2323 relocation = symbol->value;
2324
2325 relocation += symbol->section->output_section->vma;
2326 relocation += symbol->section->output_offset;
2327
2328 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2329 return bfd_reloc_outofrange;
2330
2331 /* Set val to the offset into the section or symbol. */
2332 val = reloc_entry->addend;
2333
2334 _bfd_mips_elf_sign_extend (val, 16);
2335
2336 /* Adjust val for the final section location and GP value. If we
2337 are producing relocatable output, we don't want to do this for
2338 an external symbol. */
2339 if (! relocatable
2340 || (symbol->flags & BSF_SECTION_SYM) != 0)
2341 val += relocation - gp;
2342
2343 if (reloc_entry->howto->partial_inplace)
2344 {
2345 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2346 (bfd_byte *) data
2347 + reloc_entry->address);
2348 if (status != bfd_reloc_ok)
2349 return status;
2350 }
2351 else
2352 reloc_entry->addend = val;
2353
2354 if (relocatable)
2355 reloc_entry->address += input_section->output_offset;
2356
2357 return bfd_reloc_ok;
2358 }
2359
2360 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2361 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2362 that contains the relocation field and DATA points to the start of
2363 INPUT_SECTION. */
2364
2365 struct mips_hi16
2366 {
2367 struct mips_hi16 *next;
2368 bfd_byte *data;
2369 asection *input_section;
2370 arelent rel;
2371 };
2372
2373 /* FIXME: This should not be a static variable. */
2374
2375 static struct mips_hi16 *mips_hi16_list;
2376
2377 /* A howto special_function for REL *HI16 relocations. We can only
2378 calculate the correct value once we've seen the partnering
2379 *LO16 relocation, so just save the information for later.
2380
2381 The ABI requires that the *LO16 immediately follow the *HI16.
2382 However, as a GNU extension, we permit an arbitrary number of
2383 *HI16s to be associated with a single *LO16. This significantly
2384 simplies the relocation handling in gcc. */
2385
2386 bfd_reloc_status_type
2387 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2388 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2389 asection *input_section, bfd *output_bfd,
2390 char **error_message ATTRIBUTE_UNUSED)
2391 {
2392 struct mips_hi16 *n;
2393
2394 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2395 return bfd_reloc_outofrange;
2396
2397 n = bfd_malloc (sizeof *n);
2398 if (n == NULL)
2399 return bfd_reloc_outofrange;
2400
2401 n->next = mips_hi16_list;
2402 n->data = data;
2403 n->input_section = input_section;
2404 n->rel = *reloc_entry;
2405 mips_hi16_list = n;
2406
2407 if (output_bfd != NULL)
2408 reloc_entry->address += input_section->output_offset;
2409
2410 return bfd_reloc_ok;
2411 }
2412
2413 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2414 like any other 16-bit relocation when applied to global symbols, but is
2415 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2416
2417 bfd_reloc_status_type
2418 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2419 void *data, asection *input_section,
2420 bfd *output_bfd, char **error_message)
2421 {
2422 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2423 || bfd_is_und_section (bfd_get_section (symbol))
2424 || bfd_is_com_section (bfd_get_section (symbol)))
2425 /* The relocation is against a global symbol. */
2426 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2427 input_section, output_bfd,
2428 error_message);
2429
2430 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2431 input_section, output_bfd, error_message);
2432 }
2433
2434 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2435 is a straightforward 16 bit inplace relocation, but we must deal with
2436 any partnering high-part relocations as well. */
2437
2438 bfd_reloc_status_type
2439 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2440 void *data, asection *input_section,
2441 bfd *output_bfd, char **error_message)
2442 {
2443 bfd_vma vallo;
2444 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2445
2446 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2447 return bfd_reloc_outofrange;
2448
2449 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2450 location);
2451 vallo = bfd_get_32 (abfd, location);
2452 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2453 location);
2454
2455 while (mips_hi16_list != NULL)
2456 {
2457 bfd_reloc_status_type ret;
2458 struct mips_hi16 *hi;
2459
2460 hi = mips_hi16_list;
2461
2462 /* R_MIPS*_GOT16 relocations are something of a special case. We
2463 want to install the addend in the same way as for a R_MIPS*_HI16
2464 relocation (with a rightshift of 16). However, since GOT16
2465 relocations can also be used with global symbols, their howto
2466 has a rightshift of 0. */
2467 if (hi->rel.howto->type == R_MIPS_GOT16)
2468 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2469 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2470 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2471 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2473
2474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2475 carry or borrow will induce a change of +1 or -1 in the high part. */
2476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2477
2478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2479 hi->input_section, output_bfd,
2480 error_message);
2481 if (ret != bfd_reloc_ok)
2482 return ret;
2483
2484 mips_hi16_list = hi->next;
2485 free (hi);
2486 }
2487
2488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2489 input_section, output_bfd,
2490 error_message);
2491 }
2492
2493 /* A generic howto special_function. This calculates and installs the
2494 relocation itself, thus avoiding the oft-discussed problems in
2495 bfd_perform_relocation and bfd_install_relocation. */
2496
2497 bfd_reloc_status_type
2498 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2500 asection *input_section, bfd *output_bfd,
2501 char **error_message ATTRIBUTE_UNUSED)
2502 {
2503 bfd_signed_vma val;
2504 bfd_reloc_status_type status;
2505 bfd_boolean relocatable;
2506
2507 relocatable = (output_bfd != NULL);
2508
2509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2510 return bfd_reloc_outofrange;
2511
2512 /* Build up the field adjustment in VAL. */
2513 val = 0;
2514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2515 {
2516 /* Either we're calculating the final field value or we have a
2517 relocation against a section symbol. Add in the section's
2518 offset or address. */
2519 val += symbol->section->output_section->vma;
2520 val += symbol->section->output_offset;
2521 }
2522
2523 if (!relocatable)
2524 {
2525 /* We're calculating the final field value. Add in the symbol's value
2526 and, if pc-relative, subtract the address of the field itself. */
2527 val += symbol->value;
2528 if (reloc_entry->howto->pc_relative)
2529 {
2530 val -= input_section->output_section->vma;
2531 val -= input_section->output_offset;
2532 val -= reloc_entry->address;
2533 }
2534 }
2535
2536 /* VAL is now the final adjustment. If we're keeping this relocation
2537 in the output file, and if the relocation uses a separate addend,
2538 we just need to add VAL to that addend. Otherwise we need to add
2539 VAL to the relocation field itself. */
2540 if (relocatable && !reloc_entry->howto->partial_inplace)
2541 reloc_entry->addend += val;
2542 else
2543 {
2544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2545
2546 /* Add in the separate addend, if any. */
2547 val += reloc_entry->addend;
2548
2549 /* Add VAL to the relocation field. */
2550 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2551 location);
2552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2553 location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
2556
2557 if (status != bfd_reloc_ok)
2558 return status;
2559 }
2560
2561 if (relocatable)
2562 reloc_entry->address += input_section->output_offset;
2563
2564 return bfd_reloc_ok;
2565 }
2566 \f
2567 /* Swap an entry in a .gptab section. Note that these routines rely
2568 on the equivalence of the two elements of the union. */
2569
2570 static void
2571 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2572 Elf32_gptab *in)
2573 {
2574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2576 }
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2580 Elf32_External_gptab *ex)
2581 {
2582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2588 Elf32_External_compact_rel *ex)
2589 {
2590 H_PUT_32 (abfd, in->id1, ex->id1);
2591 H_PUT_32 (abfd, in->num, ex->num);
2592 H_PUT_32 (abfd, in->id2, ex->id2);
2593 H_PUT_32 (abfd, in->offset, ex->offset);
2594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2596 }
2597
2598 static void
2599 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2600 Elf32_External_crinfo *ex)
2601 {
2602 unsigned long l;
2603
2604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2608 H_PUT_32 (abfd, l, ex->info);
2609 H_PUT_32 (abfd, in->konst, ex->konst);
2610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2611 }
2612 \f
2613 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2614 routines swap this structure in and out. They are used outside of
2615 BFD, so they are globally visible. */
2616
2617 void
2618 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2619 Elf32_RegInfo *in)
2620 {
2621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2627 }
2628
2629 void
2630 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2631 Elf32_External_RegInfo *ex)
2632 {
2633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2639 }
2640
2641 /* In the 64 bit ABI, the .MIPS.options section holds register
2642 information in an Elf64_Reginfo structure. These routines swap
2643 them in and out. They are globally visible because they are used
2644 outside of BFD. These routines are here so that gas can call them
2645 without worrying about whether the 64 bit ABI has been included. */
2646
2647 void
2648 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2649 Elf64_Internal_RegInfo *in)
2650 {
2651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2658 }
2659
2660 void
2661 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2662 Elf64_External_RegInfo *ex)
2663 {
2664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2671 }
2672
2673 /* Swap in an options header. */
2674
2675 void
2676 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2677 Elf_Internal_Options *in)
2678 {
2679 in->kind = H_GET_8 (abfd, ex->kind);
2680 in->size = H_GET_8 (abfd, ex->size);
2681 in->section = H_GET_16 (abfd, ex->section);
2682 in->info = H_GET_32 (abfd, ex->info);
2683 }
2684
2685 /* Swap out an options header. */
2686
2687 void
2688 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2689 Elf_External_Options *ex)
2690 {
2691 H_PUT_8 (abfd, in->kind, ex->kind);
2692 H_PUT_8 (abfd, in->size, ex->size);
2693 H_PUT_16 (abfd, in->section, ex->section);
2694 H_PUT_32 (abfd, in->info, ex->info);
2695 }
2696
2697 /* Swap in an abiflags structure. */
2698
2699 void
2700 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2701 const Elf_External_ABIFlags_v0 *ex,
2702 Elf_Internal_ABIFlags_v0 *in)
2703 {
2704 in->version = H_GET_16 (abfd, ex->version);
2705 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2706 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2707 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2708 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2709 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2710 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2711 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2712 in->ases = H_GET_32 (abfd, ex->ases);
2713 in->flags1 = H_GET_32 (abfd, ex->flags1);
2714 in->flags2 = H_GET_32 (abfd, ex->flags2);
2715 }
2716
2717 /* Swap out an abiflags structure. */
2718
2719 void
2720 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2721 const Elf_Internal_ABIFlags_v0 *in,
2722 Elf_External_ABIFlags_v0 *ex)
2723 {
2724 H_PUT_16 (abfd, in->version, ex->version);
2725 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2726 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2727 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2728 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2729 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2730 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2731 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2732 H_PUT_32 (abfd, in->ases, ex->ases);
2733 H_PUT_32 (abfd, in->flags1, ex->flags1);
2734 H_PUT_32 (abfd, in->flags2, ex->flags2);
2735 }
2736 \f
2737 /* This function is called via qsort() to sort the dynamic relocation
2738 entries by increasing r_symndx value. */
2739
2740 static int
2741 sort_dynamic_relocs (const void *arg1, const void *arg2)
2742 {
2743 Elf_Internal_Rela int_reloc1;
2744 Elf_Internal_Rela int_reloc2;
2745 int diff;
2746
2747 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2748 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2749
2750 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2751 if (diff != 0)
2752 return diff;
2753
2754 if (int_reloc1.r_offset < int_reloc2.r_offset)
2755 return -1;
2756 if (int_reloc1.r_offset > int_reloc2.r_offset)
2757 return 1;
2758 return 0;
2759 }
2760
2761 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2762
2763 static int
2764 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2765 const void *arg2 ATTRIBUTE_UNUSED)
2766 {
2767 #ifdef BFD64
2768 Elf_Internal_Rela int_reloc1[3];
2769 Elf_Internal_Rela int_reloc2[3];
2770
2771 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2772 (reldyn_sorting_bfd, arg1, int_reloc1);
2773 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2774 (reldyn_sorting_bfd, arg2, int_reloc2);
2775
2776 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2777 return -1;
2778 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2779 return 1;
2780
2781 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2782 return -1;
2783 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2784 return 1;
2785 return 0;
2786 #else
2787 abort ();
2788 #endif
2789 }
2790
2791
2792 /* This routine is used to write out ECOFF debugging external symbol
2793 information. It is called via mips_elf_link_hash_traverse. The
2794 ECOFF external symbol information must match the ELF external
2795 symbol information. Unfortunately, at this point we don't know
2796 whether a symbol is required by reloc information, so the two
2797 tables may wind up being different. We must sort out the external
2798 symbol information before we can set the final size of the .mdebug
2799 section, and we must set the size of the .mdebug section before we
2800 can relocate any sections, and we can't know which symbols are
2801 required by relocation until we relocate the sections.
2802 Fortunately, it is relatively unlikely that any symbol will be
2803 stripped but required by a reloc. In particular, it can not happen
2804 when generating a final executable. */
2805
2806 static bfd_boolean
2807 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2808 {
2809 struct extsym_info *einfo = data;
2810 bfd_boolean strip;
2811 asection *sec, *output_section;
2812
2813 if (h->root.indx == -2)
2814 strip = FALSE;
2815 else if ((h->root.def_dynamic
2816 || h->root.ref_dynamic
2817 || h->root.type == bfd_link_hash_new)
2818 && !h->root.def_regular
2819 && !h->root.ref_regular)
2820 strip = TRUE;
2821 else if (einfo->info->strip == strip_all
2822 || (einfo->info->strip == strip_some
2823 && bfd_hash_lookup (einfo->info->keep_hash,
2824 h->root.root.root.string,
2825 FALSE, FALSE) == NULL))
2826 strip = TRUE;
2827 else
2828 strip = FALSE;
2829
2830 if (strip)
2831 return TRUE;
2832
2833 if (h->esym.ifd == -2)
2834 {
2835 h->esym.jmptbl = 0;
2836 h->esym.cobol_main = 0;
2837 h->esym.weakext = 0;
2838 h->esym.reserved = 0;
2839 h->esym.ifd = ifdNil;
2840 h->esym.asym.value = 0;
2841 h->esym.asym.st = stGlobal;
2842
2843 if (h->root.root.type == bfd_link_hash_undefined
2844 || h->root.root.type == bfd_link_hash_undefweak)
2845 {
2846 const char *name;
2847
2848 /* Use undefined class. Also, set class and type for some
2849 special symbols. */
2850 name = h->root.root.root.string;
2851 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2852 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2853 {
2854 h->esym.asym.sc = scData;
2855 h->esym.asym.st = stLabel;
2856 h->esym.asym.value = 0;
2857 }
2858 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2859 {
2860 h->esym.asym.sc = scAbs;
2861 h->esym.asym.st = stLabel;
2862 h->esym.asym.value =
2863 mips_elf_hash_table (einfo->info)->procedure_count;
2864 }
2865 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2866 {
2867 h->esym.asym.sc = scAbs;
2868 h->esym.asym.st = stLabel;
2869 h->esym.asym.value = elf_gp (einfo->abfd);
2870 }
2871 else
2872 h->esym.asym.sc = scUndefined;
2873 }
2874 else if (h->root.root.type != bfd_link_hash_defined
2875 && h->root.root.type != bfd_link_hash_defweak)
2876 h->esym.asym.sc = scAbs;
2877 else
2878 {
2879 const char *name;
2880
2881 sec = h->root.root.u.def.section;
2882 output_section = sec->output_section;
2883
2884 /* When making a shared library and symbol h is the one from
2885 the another shared library, OUTPUT_SECTION may be null. */
2886 if (output_section == NULL)
2887 h->esym.asym.sc = scUndefined;
2888 else
2889 {
2890 name = bfd_section_name (output_section->owner, output_section);
2891
2892 if (strcmp (name, ".text") == 0)
2893 h->esym.asym.sc = scText;
2894 else if (strcmp (name, ".data") == 0)
2895 h->esym.asym.sc = scData;
2896 else if (strcmp (name, ".sdata") == 0)
2897 h->esym.asym.sc = scSData;
2898 else if (strcmp (name, ".rodata") == 0
2899 || strcmp (name, ".rdata") == 0)
2900 h->esym.asym.sc = scRData;
2901 else if (strcmp (name, ".bss") == 0)
2902 h->esym.asym.sc = scBss;
2903 else if (strcmp (name, ".sbss") == 0)
2904 h->esym.asym.sc = scSBss;
2905 else if (strcmp (name, ".init") == 0)
2906 h->esym.asym.sc = scInit;
2907 else if (strcmp (name, ".fini") == 0)
2908 h->esym.asym.sc = scFini;
2909 else
2910 h->esym.asym.sc = scAbs;
2911 }
2912 }
2913
2914 h->esym.asym.reserved = 0;
2915 h->esym.asym.index = indexNil;
2916 }
2917
2918 if (h->root.root.type == bfd_link_hash_common)
2919 h->esym.asym.value = h->root.root.u.c.size;
2920 else if (h->root.root.type == bfd_link_hash_defined
2921 || h->root.root.type == bfd_link_hash_defweak)
2922 {
2923 if (h->esym.asym.sc == scCommon)
2924 h->esym.asym.sc = scBss;
2925 else if (h->esym.asym.sc == scSCommon)
2926 h->esym.asym.sc = scSBss;
2927
2928 sec = h->root.root.u.def.section;
2929 output_section = sec->output_section;
2930 if (output_section != NULL)
2931 h->esym.asym.value = (h->root.root.u.def.value
2932 + sec->output_offset
2933 + output_section->vma);
2934 else
2935 h->esym.asym.value = 0;
2936 }
2937 else
2938 {
2939 struct mips_elf_link_hash_entry *hd = h;
2940
2941 while (hd->root.root.type == bfd_link_hash_indirect)
2942 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2943
2944 if (hd->needs_lazy_stub)
2945 {
2946 BFD_ASSERT (hd->root.plt.plist != NULL);
2947 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2948 /* Set type and value for a symbol with a function stub. */
2949 h->esym.asym.st = stProc;
2950 sec = hd->root.root.u.def.section;
2951 if (sec == NULL)
2952 h->esym.asym.value = 0;
2953 else
2954 {
2955 output_section = sec->output_section;
2956 if (output_section != NULL)
2957 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2958 + sec->output_offset
2959 + output_section->vma);
2960 else
2961 h->esym.asym.value = 0;
2962 }
2963 }
2964 }
2965
2966 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2967 h->root.root.root.string,
2968 &h->esym))
2969 {
2970 einfo->failed = TRUE;
2971 return FALSE;
2972 }
2973
2974 return TRUE;
2975 }
2976
2977 /* A comparison routine used to sort .gptab entries. */
2978
2979 static int
2980 gptab_compare (const void *p1, const void *p2)
2981 {
2982 const Elf32_gptab *a1 = p1;
2983 const Elf32_gptab *a2 = p2;
2984
2985 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2986 }
2987 \f
2988 /* Functions to manage the got entry hash table. */
2989
2990 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2991 hash number. */
2992
2993 static INLINE hashval_t
2994 mips_elf_hash_bfd_vma (bfd_vma addr)
2995 {
2996 #ifdef BFD64
2997 return addr + (addr >> 32);
2998 #else
2999 return addr;
3000 #endif
3001 }
3002
3003 static hashval_t
3004 mips_elf_got_entry_hash (const void *entry_)
3005 {
3006 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3007
3008 return (entry->symndx
3009 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3010 + (entry->tls_type == GOT_TLS_LDM ? 0
3011 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3012 : entry->symndx >= 0 ? (entry->abfd->id
3013 + mips_elf_hash_bfd_vma (entry->d.addend))
3014 : entry->d.h->root.root.root.hash));
3015 }
3016
3017 static int
3018 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3019 {
3020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3022
3023 return (e1->symndx == e2->symndx
3024 && e1->tls_type == e2->tls_type
3025 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3026 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3027 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3028 && e1->d.addend == e2->d.addend)
3029 : e2->abfd && e1->d.h == e2->d.h));
3030 }
3031
3032 static hashval_t
3033 mips_got_page_ref_hash (const void *ref_)
3034 {
3035 const struct mips_got_page_ref *ref;
3036
3037 ref = (const struct mips_got_page_ref *) ref_;
3038 return ((ref->symndx >= 0
3039 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3040 : ref->u.h->root.root.root.hash)
3041 + mips_elf_hash_bfd_vma (ref->addend));
3042 }
3043
3044 static int
3045 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3046 {
3047 const struct mips_got_page_ref *ref1, *ref2;
3048
3049 ref1 = (const struct mips_got_page_ref *) ref1_;
3050 ref2 = (const struct mips_got_page_ref *) ref2_;
3051 return (ref1->symndx == ref2->symndx
3052 && (ref1->symndx < 0
3053 ? ref1->u.h == ref2->u.h
3054 : ref1->u.abfd == ref2->u.abfd)
3055 && ref1->addend == ref2->addend);
3056 }
3057
3058 static hashval_t
3059 mips_got_page_entry_hash (const void *entry_)
3060 {
3061 const struct mips_got_page_entry *entry;
3062
3063 entry = (const struct mips_got_page_entry *) entry_;
3064 return entry->sec->id;
3065 }
3066
3067 static int
3068 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3069 {
3070 const struct mips_got_page_entry *entry1, *entry2;
3071
3072 entry1 = (const struct mips_got_page_entry *) entry1_;
3073 entry2 = (const struct mips_got_page_entry *) entry2_;
3074 return entry1->sec == entry2->sec;
3075 }
3076 \f
3077 /* Create and return a new mips_got_info structure. */
3078
3079 static struct mips_got_info *
3080 mips_elf_create_got_info (bfd *abfd)
3081 {
3082 struct mips_got_info *g;
3083
3084 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3085 if (g == NULL)
3086 return NULL;
3087
3088 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3089 mips_elf_got_entry_eq, NULL);
3090 if (g->got_entries == NULL)
3091 return NULL;
3092
3093 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3094 mips_got_page_ref_eq, NULL);
3095 if (g->got_page_refs == NULL)
3096 return NULL;
3097
3098 return g;
3099 }
3100
3101 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3102 CREATE_P and if ABFD doesn't already have a GOT. */
3103
3104 static struct mips_got_info *
3105 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3106 {
3107 struct mips_elf_obj_tdata *tdata;
3108
3109 if (!is_mips_elf (abfd))
3110 return NULL;
3111
3112 tdata = mips_elf_tdata (abfd);
3113 if (!tdata->got && create_p)
3114 tdata->got = mips_elf_create_got_info (abfd);
3115 return tdata->got;
3116 }
3117
3118 /* Record that ABFD should use output GOT G. */
3119
3120 static void
3121 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3122 {
3123 struct mips_elf_obj_tdata *tdata;
3124
3125 BFD_ASSERT (is_mips_elf (abfd));
3126 tdata = mips_elf_tdata (abfd);
3127 if (tdata->got)
3128 {
3129 /* The GOT structure itself and the hash table entries are
3130 allocated to a bfd, but the hash tables aren't. */
3131 htab_delete (tdata->got->got_entries);
3132 htab_delete (tdata->got->got_page_refs);
3133 if (tdata->got->got_page_entries)
3134 htab_delete (tdata->got->got_page_entries);
3135 }
3136 tdata->got = g;
3137 }
3138
3139 /* Return the dynamic relocation section. If it doesn't exist, try to
3140 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3141 if creation fails. */
3142
3143 static asection *
3144 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3145 {
3146 const char *dname;
3147 asection *sreloc;
3148 bfd *dynobj;
3149
3150 dname = MIPS_ELF_REL_DYN_NAME (info);
3151 dynobj = elf_hash_table (info)->dynobj;
3152 sreloc = bfd_get_linker_section (dynobj, dname);
3153 if (sreloc == NULL && create_p)
3154 {
3155 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3156 (SEC_ALLOC
3157 | SEC_LOAD
3158 | SEC_HAS_CONTENTS
3159 | SEC_IN_MEMORY
3160 | SEC_LINKER_CREATED
3161 | SEC_READONLY));
3162 if (sreloc == NULL
3163 || ! bfd_set_section_alignment (dynobj, sreloc,
3164 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3165 return NULL;
3166 }
3167 return sreloc;
3168 }
3169
3170 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3171
3172 static int
3173 mips_elf_reloc_tls_type (unsigned int r_type)
3174 {
3175 if (tls_gd_reloc_p (r_type))
3176 return GOT_TLS_GD;
3177
3178 if (tls_ldm_reloc_p (r_type))
3179 return GOT_TLS_LDM;
3180
3181 if (tls_gottprel_reloc_p (r_type))
3182 return GOT_TLS_IE;
3183
3184 return GOT_TLS_NONE;
3185 }
3186
3187 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3188
3189 static int
3190 mips_tls_got_entries (unsigned int type)
3191 {
3192 switch (type)
3193 {
3194 case GOT_TLS_GD:
3195 case GOT_TLS_LDM:
3196 return 2;
3197
3198 case GOT_TLS_IE:
3199 return 1;
3200
3201 case GOT_TLS_NONE:
3202 return 0;
3203 }
3204 abort ();
3205 }
3206
3207 /* Count the number of relocations needed for a TLS GOT entry, with
3208 access types from TLS_TYPE, and symbol H (or a local symbol if H
3209 is NULL). */
3210
3211 static int
3212 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3213 struct elf_link_hash_entry *h)
3214 {
3215 int indx = 0;
3216 bfd_boolean need_relocs = FALSE;
3217 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3218
3219 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3220 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3221 indx = h->dynindx;
3222
3223 if ((bfd_link_pic (info) || indx != 0)
3224 && (h == NULL
3225 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3226 || h->root.type != bfd_link_hash_undefweak))
3227 need_relocs = TRUE;
3228
3229 if (!need_relocs)
3230 return 0;
3231
3232 switch (tls_type)
3233 {
3234 case GOT_TLS_GD:
3235 return indx != 0 ? 2 : 1;
3236
3237 case GOT_TLS_IE:
3238 return 1;
3239
3240 case GOT_TLS_LDM:
3241 return bfd_link_pic (info) ? 1 : 0;
3242
3243 default:
3244 return 0;
3245 }
3246 }
3247
3248 /* Add the number of GOT entries and TLS relocations required by ENTRY
3249 to G. */
3250
3251 static void
3252 mips_elf_count_got_entry (struct bfd_link_info *info,
3253 struct mips_got_info *g,
3254 struct mips_got_entry *entry)
3255 {
3256 if (entry->tls_type)
3257 {
3258 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3259 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3260 entry->symndx < 0
3261 ? &entry->d.h->root : NULL);
3262 }
3263 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3264 g->local_gotno += 1;
3265 else
3266 g->global_gotno += 1;
3267 }
3268
3269 /* Output a simple dynamic relocation into SRELOC. */
3270
3271 static void
3272 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3273 asection *sreloc,
3274 unsigned long reloc_index,
3275 unsigned long indx,
3276 int r_type,
3277 bfd_vma offset)
3278 {
3279 Elf_Internal_Rela rel[3];
3280
3281 memset (rel, 0, sizeof (rel));
3282
3283 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3284 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3285
3286 if (ABI_64_P (output_bfd))
3287 {
3288 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3289 (output_bfd, &rel[0],
3290 (sreloc->contents
3291 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3292 }
3293 else
3294 bfd_elf32_swap_reloc_out
3295 (output_bfd, &rel[0],
3296 (sreloc->contents
3297 + reloc_index * sizeof (Elf32_External_Rel)));
3298 }
3299
3300 /* Initialize a set of TLS GOT entries for one symbol. */
3301
3302 static void
3303 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3304 struct mips_got_entry *entry,
3305 struct mips_elf_link_hash_entry *h,
3306 bfd_vma value)
3307 {
3308 struct mips_elf_link_hash_table *htab;
3309 int indx;
3310 asection *sreloc, *sgot;
3311 bfd_vma got_offset, got_offset2;
3312 bfd_boolean need_relocs = FALSE;
3313
3314 htab = mips_elf_hash_table (info);
3315 if (htab == NULL)
3316 return;
3317
3318 sgot = htab->sgot;
3319
3320 indx = 0;
3321 if (h != NULL)
3322 {
3323 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3324
3325 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3326 &h->root)
3327 && (!bfd_link_pic (info)
3328 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3329 indx = h->root.dynindx;
3330 }
3331
3332 if (entry->tls_initialized)
3333 return;
3334
3335 if ((bfd_link_pic (info) || indx != 0)
3336 && (h == NULL
3337 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3338 || h->root.type != bfd_link_hash_undefweak))
3339 need_relocs = TRUE;
3340
3341 /* MINUS_ONE means the symbol is not defined in this object. It may not
3342 be defined at all; assume that the value doesn't matter in that
3343 case. Otherwise complain if we would use the value. */
3344 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3345 || h->root.root.type == bfd_link_hash_undefweak);
3346
3347 /* Emit necessary relocations. */
3348 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3349 got_offset = entry->gotidx;
3350
3351 switch (entry->tls_type)
3352 {
3353 case GOT_TLS_GD:
3354 /* General Dynamic. */
3355 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3356
3357 if (need_relocs)
3358 {
3359 mips_elf_output_dynamic_relocation
3360 (abfd, sreloc, sreloc->reloc_count++, indx,
3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3362 sgot->output_offset + sgot->output_section->vma + got_offset);
3363
3364 if (indx)
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset2);
3369 else
3370 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3371 sgot->contents + got_offset2);
3372 }
3373 else
3374 {
3375 MIPS_ELF_PUT_WORD (abfd, 1,
3376 sgot->contents + got_offset);
3377 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3378 sgot->contents + got_offset2);
3379 }
3380 break;
3381
3382 case GOT_TLS_IE:
3383 /* Initial Exec model. */
3384 if (need_relocs)
3385 {
3386 if (indx == 0)
3387 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3388 sgot->contents + got_offset);
3389 else
3390 MIPS_ELF_PUT_WORD (abfd, 0,
3391 sgot->contents + got_offset);
3392
3393 mips_elf_output_dynamic_relocation
3394 (abfd, sreloc, sreloc->reloc_count++, indx,
3395 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3396 sgot->output_offset + sgot->output_section->vma + got_offset);
3397 }
3398 else
3399 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3400 sgot->contents + got_offset);
3401 break;
3402
3403 case GOT_TLS_LDM:
3404 /* The initial offset is zero, and the LD offsets will include the
3405 bias by DTP_OFFSET. */
3406 MIPS_ELF_PUT_WORD (abfd, 0,
3407 sgot->contents + got_offset
3408 + MIPS_ELF_GOT_SIZE (abfd));
3409
3410 if (!bfd_link_pic (info))
3411 MIPS_ELF_PUT_WORD (abfd, 1,
3412 sgot->contents + got_offset);
3413 else
3414 mips_elf_output_dynamic_relocation
3415 (abfd, sreloc, sreloc->reloc_count++, indx,
3416 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3417 sgot->output_offset + sgot->output_section->vma + got_offset);
3418 break;
3419
3420 default:
3421 abort ();
3422 }
3423
3424 entry->tls_initialized = TRUE;
3425 }
3426
3427 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3428 for global symbol H. .got.plt comes before the GOT, so the offset
3429 will be negative. */
3430
3431 static bfd_vma
3432 mips_elf_gotplt_index (struct bfd_link_info *info,
3433 struct elf_link_hash_entry *h)
3434 {
3435 bfd_vma got_address, got_value;
3436 struct mips_elf_link_hash_table *htab;
3437
3438 htab = mips_elf_hash_table (info);
3439 BFD_ASSERT (htab != NULL);
3440
3441 BFD_ASSERT (h->plt.plist != NULL);
3442 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3443
3444 /* Calculate the address of the associated .got.plt entry. */
3445 got_address = (htab->sgotplt->output_section->vma
3446 + htab->sgotplt->output_offset
3447 + (h->plt.plist->gotplt_index
3448 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3449
3450 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3451 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3452 + htab->root.hgot->root.u.def.section->output_offset
3453 + htab->root.hgot->root.u.def.value);
3454
3455 return got_address - got_value;
3456 }
3457
3458 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3459 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3460 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3461 offset can be found. */
3462
3463 static bfd_vma
3464 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3465 bfd_vma value, unsigned long r_symndx,
3466 struct mips_elf_link_hash_entry *h, int r_type)
3467 {
3468 struct mips_elf_link_hash_table *htab;
3469 struct mips_got_entry *entry;
3470
3471 htab = mips_elf_hash_table (info);
3472 BFD_ASSERT (htab != NULL);
3473
3474 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3475 r_symndx, h, r_type);
3476 if (!entry)
3477 return MINUS_ONE;
3478
3479 if (entry->tls_type)
3480 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3481 return entry->gotidx;
3482 }
3483
3484 /* Return the GOT index of global symbol H in the primary GOT. */
3485
3486 static bfd_vma
3487 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3488 struct elf_link_hash_entry *h)
3489 {
3490 struct mips_elf_link_hash_table *htab;
3491 long global_got_dynindx;
3492 struct mips_got_info *g;
3493 bfd_vma got_index;
3494
3495 htab = mips_elf_hash_table (info);
3496 BFD_ASSERT (htab != NULL);
3497
3498 global_got_dynindx = 0;
3499 if (htab->global_gotsym != NULL)
3500 global_got_dynindx = htab->global_gotsym->dynindx;
3501
3502 /* Once we determine the global GOT entry with the lowest dynamic
3503 symbol table index, we must put all dynamic symbols with greater
3504 indices into the primary GOT. That makes it easy to calculate the
3505 GOT offset. */
3506 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3507 g = mips_elf_bfd_got (obfd, FALSE);
3508 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3509 * MIPS_ELF_GOT_SIZE (obfd));
3510 BFD_ASSERT (got_index < htab->sgot->size);
3511
3512 return got_index;
3513 }
3514
3515 /* Return the GOT index for the global symbol indicated by H, which is
3516 referenced by a relocation of type R_TYPE in IBFD. */
3517
3518 static bfd_vma
3519 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3520 struct elf_link_hash_entry *h, int r_type)
3521 {
3522 struct mips_elf_link_hash_table *htab;
3523 struct mips_got_info *g;
3524 struct mips_got_entry lookup, *entry;
3525 bfd_vma gotidx;
3526
3527 htab = mips_elf_hash_table (info);
3528 BFD_ASSERT (htab != NULL);
3529
3530 g = mips_elf_bfd_got (ibfd, FALSE);
3531 BFD_ASSERT (g);
3532
3533 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3534 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3535 return mips_elf_primary_global_got_index (obfd, info, h);
3536
3537 lookup.abfd = ibfd;
3538 lookup.symndx = -1;
3539 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3540 entry = htab_find (g->got_entries, &lookup);
3541 BFD_ASSERT (entry);
3542
3543 gotidx = entry->gotidx;
3544 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3545
3546 if (lookup.tls_type)
3547 {
3548 bfd_vma value = MINUS_ONE;
3549
3550 if ((h->root.type == bfd_link_hash_defined
3551 || h->root.type == bfd_link_hash_defweak)
3552 && h->root.u.def.section->output_section)
3553 value = (h->root.u.def.value
3554 + h->root.u.def.section->output_offset
3555 + h->root.u.def.section->output_section->vma);
3556
3557 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3558 }
3559 return gotidx;
3560 }
3561
3562 /* Find a GOT page entry that points to within 32KB of VALUE. These
3563 entries are supposed to be placed at small offsets in the GOT, i.e.,
3564 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3565 entry could be created. If OFFSETP is nonnull, use it to return the
3566 offset of the GOT entry from VALUE. */
3567
3568 static bfd_vma
3569 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3570 bfd_vma value, bfd_vma *offsetp)
3571 {
3572 bfd_vma page, got_index;
3573 struct mips_got_entry *entry;
3574
3575 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3576 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3577 NULL, R_MIPS_GOT_PAGE);
3578
3579 if (!entry)
3580 return MINUS_ONE;
3581
3582 got_index = entry->gotidx;
3583
3584 if (offsetp)
3585 *offsetp = value - entry->d.address;
3586
3587 return got_index;
3588 }
3589
3590 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3591 EXTERNAL is true if the relocation was originally against a global
3592 symbol that binds locally. */
3593
3594 static bfd_vma
3595 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3596 bfd_vma value, bfd_boolean external)
3597 {
3598 struct mips_got_entry *entry;
3599
3600 /* GOT16 relocations against local symbols are followed by a LO16
3601 relocation; those against global symbols are not. Thus if the
3602 symbol was originally local, the GOT16 relocation should load the
3603 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3604 if (! external)
3605 value = mips_elf_high (value) << 16;
3606
3607 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3608 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3609 same in all cases. */
3610 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3611 NULL, R_MIPS_GOT16);
3612 if (entry)
3613 return entry->gotidx;
3614 else
3615 return MINUS_ONE;
3616 }
3617
3618 /* Returns the offset for the entry at the INDEXth position
3619 in the GOT. */
3620
3621 static bfd_vma
3622 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3623 bfd *input_bfd, bfd_vma got_index)
3624 {
3625 struct mips_elf_link_hash_table *htab;
3626 asection *sgot;
3627 bfd_vma gp;
3628
3629 htab = mips_elf_hash_table (info);
3630 BFD_ASSERT (htab != NULL);
3631
3632 sgot = htab->sgot;
3633 gp = _bfd_get_gp_value (output_bfd)
3634 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3635
3636 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3637 }
3638
3639 /* Create and return a local GOT entry for VALUE, which was calculated
3640 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3641 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3642 instead. */
3643
3644 static struct mips_got_entry *
3645 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3646 bfd *ibfd, bfd_vma value,
3647 unsigned long r_symndx,
3648 struct mips_elf_link_hash_entry *h,
3649 int r_type)
3650 {
3651 struct mips_got_entry lookup, *entry;
3652 void **loc;
3653 struct mips_got_info *g;
3654 struct mips_elf_link_hash_table *htab;
3655 bfd_vma gotidx;
3656
3657 htab = mips_elf_hash_table (info);
3658 BFD_ASSERT (htab != NULL);
3659
3660 g = mips_elf_bfd_got (ibfd, FALSE);
3661 if (g == NULL)
3662 {
3663 g = mips_elf_bfd_got (abfd, FALSE);
3664 BFD_ASSERT (g != NULL);
3665 }
3666
3667 /* This function shouldn't be called for symbols that live in the global
3668 area of the GOT. */
3669 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3670
3671 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3672 if (lookup.tls_type)
3673 {
3674 lookup.abfd = ibfd;
3675 if (tls_ldm_reloc_p (r_type))
3676 {
3677 lookup.symndx = 0;
3678 lookup.d.addend = 0;
3679 }
3680 else if (h == NULL)
3681 {
3682 lookup.symndx = r_symndx;
3683 lookup.d.addend = 0;
3684 }
3685 else
3686 {
3687 lookup.symndx = -1;
3688 lookup.d.h = h;
3689 }
3690
3691 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3692 BFD_ASSERT (entry);
3693
3694 gotidx = entry->gotidx;
3695 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3696
3697 return entry;
3698 }
3699
3700 lookup.abfd = NULL;
3701 lookup.symndx = -1;
3702 lookup.d.address = value;
3703 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3704 if (!loc)
3705 return NULL;
3706
3707 entry = (struct mips_got_entry *) *loc;
3708 if (entry)
3709 return entry;
3710
3711 if (g->assigned_low_gotno > g->assigned_high_gotno)
3712 {
3713 /* We didn't allocate enough space in the GOT. */
3714 (*_bfd_error_handler)
3715 (_("not enough GOT space for local GOT entries"));
3716 bfd_set_error (bfd_error_bad_value);
3717 return NULL;
3718 }
3719
3720 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3721 if (!entry)
3722 return NULL;
3723
3724 if (got16_reloc_p (r_type)
3725 || call16_reloc_p (r_type)
3726 || got_page_reloc_p (r_type)
3727 || got_disp_reloc_p (r_type))
3728 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3729 else
3730 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3731
3732 *entry = lookup;
3733 *loc = entry;
3734
3735 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3736
3737 /* These GOT entries need a dynamic relocation on VxWorks. */
3738 if (htab->is_vxworks)
3739 {
3740 Elf_Internal_Rela outrel;
3741 asection *s;
3742 bfd_byte *rloc;
3743 bfd_vma got_address;
3744
3745 s = mips_elf_rel_dyn_section (info, FALSE);
3746 got_address = (htab->sgot->output_section->vma
3747 + htab->sgot->output_offset
3748 + entry->gotidx);
3749
3750 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3751 outrel.r_offset = got_address;
3752 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3753 outrel.r_addend = value;
3754 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3755 }
3756
3757 return entry;
3758 }
3759
3760 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3761 The number might be exact or a worst-case estimate, depending on how
3762 much information is available to elf_backend_omit_section_dynsym at
3763 the current linking stage. */
3764
3765 static bfd_size_type
3766 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3767 {
3768 bfd_size_type count;
3769
3770 count = 0;
3771 if (bfd_link_pic (info)
3772 || elf_hash_table (info)->is_relocatable_executable)
3773 {
3774 asection *p;
3775 const struct elf_backend_data *bed;
3776
3777 bed = get_elf_backend_data (output_bfd);
3778 for (p = output_bfd->sections; p ; p = p->next)
3779 if ((p->flags & SEC_EXCLUDE) == 0
3780 && (p->flags & SEC_ALLOC) != 0
3781 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3782 ++count;
3783 }
3784 return count;
3785 }
3786
3787 /* Sort the dynamic symbol table so that symbols that need GOT entries
3788 appear towards the end. */
3789
3790 static bfd_boolean
3791 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3792 {
3793 struct mips_elf_link_hash_table *htab;
3794 struct mips_elf_hash_sort_data hsd;
3795 struct mips_got_info *g;
3796
3797 if (elf_hash_table (info)->dynsymcount == 0)
3798 return TRUE;
3799
3800 htab = mips_elf_hash_table (info);
3801 BFD_ASSERT (htab != NULL);
3802
3803 g = htab->got_info;
3804 if (g == NULL)
3805 return TRUE;
3806
3807 hsd.low = NULL;
3808 hsd.max_unref_got_dynindx
3809 = hsd.min_got_dynindx
3810 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3811 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3812 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3813 elf_hash_table (info)),
3814 mips_elf_sort_hash_table_f,
3815 &hsd);
3816
3817 /* There should have been enough room in the symbol table to
3818 accommodate both the GOT and non-GOT symbols. */
3819 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3820 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3821 == elf_hash_table (info)->dynsymcount);
3822 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3823 == g->global_gotno);
3824
3825 /* Now we know which dynamic symbol has the lowest dynamic symbol
3826 table index in the GOT. */
3827 htab->global_gotsym = hsd.low;
3828
3829 return TRUE;
3830 }
3831
3832 /* If H needs a GOT entry, assign it the highest available dynamic
3833 index. Otherwise, assign it the lowest available dynamic
3834 index. */
3835
3836 static bfd_boolean
3837 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3838 {
3839 struct mips_elf_hash_sort_data *hsd = data;
3840
3841 /* Symbols without dynamic symbol table entries aren't interesting
3842 at all. */
3843 if (h->root.dynindx == -1)
3844 return TRUE;
3845
3846 switch (h->global_got_area)
3847 {
3848 case GGA_NONE:
3849 h->root.dynindx = hsd->max_non_got_dynindx++;
3850 break;
3851
3852 case GGA_NORMAL:
3853 h->root.dynindx = --hsd->min_got_dynindx;
3854 hsd->low = (struct elf_link_hash_entry *) h;
3855 break;
3856
3857 case GGA_RELOC_ONLY:
3858 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 h->root.dynindx = hsd->max_unref_got_dynindx++;
3861 break;
3862 }
3863
3864 return TRUE;
3865 }
3866
3867 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3868 (which is owned by the caller and shouldn't be added to the
3869 hash table directly). */
3870
3871 static bfd_boolean
3872 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3873 struct mips_got_entry *lookup)
3874 {
3875 struct mips_elf_link_hash_table *htab;
3876 struct mips_got_entry *entry;
3877 struct mips_got_info *g;
3878 void **loc, **bfd_loc;
3879
3880 /* Make sure there's a slot for this entry in the master GOT. */
3881 htab = mips_elf_hash_table (info);
3882 g = htab->got_info;
3883 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3884 if (!loc)
3885 return FALSE;
3886
3887 /* Populate the entry if it isn't already. */
3888 entry = (struct mips_got_entry *) *loc;
3889 if (!entry)
3890 {
3891 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3892 if (!entry)
3893 return FALSE;
3894
3895 lookup->tls_initialized = FALSE;
3896 lookup->gotidx = -1;
3897 *entry = *lookup;
3898 *loc = entry;
3899 }
3900
3901 /* Reuse the same GOT entry for the BFD's GOT. */
3902 g = mips_elf_bfd_got (abfd, TRUE);
3903 if (!g)
3904 return FALSE;
3905
3906 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3907 if (!bfd_loc)
3908 return FALSE;
3909
3910 if (!*bfd_loc)
3911 *bfd_loc = entry;
3912 return TRUE;
3913 }
3914
3915 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3916 entry for it. FOR_CALL is true if the caller is only interested in
3917 using the GOT entry for calls. */
3918
3919 static bfd_boolean
3920 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3921 bfd *abfd, struct bfd_link_info *info,
3922 bfd_boolean for_call, int r_type)
3923 {
3924 struct mips_elf_link_hash_table *htab;
3925 struct mips_elf_link_hash_entry *hmips;
3926 struct mips_got_entry entry;
3927 unsigned char tls_type;
3928
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3931
3932 hmips = (struct mips_elf_link_hash_entry *) h;
3933 if (!for_call)
3934 hmips->got_only_for_calls = FALSE;
3935
3936 /* A global symbol in the GOT must also be in the dynamic symbol
3937 table. */
3938 if (h->dynindx == -1)
3939 {
3940 switch (ELF_ST_VISIBILITY (h->other))
3941 {
3942 case STV_INTERNAL:
3943 case STV_HIDDEN:
3944 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3945 break;
3946 }
3947 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3948 return FALSE;
3949 }
3950
3951 tls_type = mips_elf_reloc_tls_type (r_type);
3952 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3953 hmips->global_got_area = GGA_NORMAL;
3954
3955 entry.abfd = abfd;
3956 entry.symndx = -1;
3957 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3958 entry.tls_type = tls_type;
3959 return mips_elf_record_got_entry (info, abfd, &entry);
3960 }
3961
3962 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3963 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3964
3965 static bfd_boolean
3966 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3967 struct bfd_link_info *info, int r_type)
3968 {
3969 struct mips_elf_link_hash_table *htab;
3970 struct mips_got_info *g;
3971 struct mips_got_entry entry;
3972
3973 htab = mips_elf_hash_table (info);
3974 BFD_ASSERT (htab != NULL);
3975
3976 g = htab->got_info;
3977 BFD_ASSERT (g != NULL);
3978
3979 entry.abfd = abfd;
3980 entry.symndx = symndx;
3981 entry.d.addend = addend;
3982 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3983 return mips_elf_record_got_entry (info, abfd, &entry);
3984 }
3985
3986 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3987 H is the symbol's hash table entry, or null if SYMNDX is local
3988 to ABFD. */
3989
3990 static bfd_boolean
3991 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3992 long symndx, struct elf_link_hash_entry *h,
3993 bfd_signed_vma addend)
3994 {
3995 struct mips_elf_link_hash_table *htab;
3996 struct mips_got_info *g1, *g2;
3997 struct mips_got_page_ref lookup, *entry;
3998 void **loc, **bfd_loc;
3999
4000 htab = mips_elf_hash_table (info);
4001 BFD_ASSERT (htab != NULL);
4002
4003 g1 = htab->got_info;
4004 BFD_ASSERT (g1 != NULL);
4005
4006 if (h)
4007 {
4008 lookup.symndx = -1;
4009 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4010 }
4011 else
4012 {
4013 lookup.symndx = symndx;
4014 lookup.u.abfd = abfd;
4015 }
4016 lookup.addend = addend;
4017 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4018 if (loc == NULL)
4019 return FALSE;
4020
4021 entry = (struct mips_got_page_ref *) *loc;
4022 if (!entry)
4023 {
4024 entry = bfd_alloc (abfd, sizeof (*entry));
4025 if (!entry)
4026 return FALSE;
4027
4028 *entry = lookup;
4029 *loc = entry;
4030 }
4031
4032 /* Add the same entry to the BFD's GOT. */
4033 g2 = mips_elf_bfd_got (abfd, TRUE);
4034 if (!g2)
4035 return FALSE;
4036
4037 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4038 if (!bfd_loc)
4039 return FALSE;
4040
4041 if (!*bfd_loc)
4042 *bfd_loc = entry;
4043
4044 return TRUE;
4045 }
4046
4047 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4048
4049 static void
4050 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4051 unsigned int n)
4052 {
4053 asection *s;
4054 struct mips_elf_link_hash_table *htab;
4055
4056 htab = mips_elf_hash_table (info);
4057 BFD_ASSERT (htab != NULL);
4058
4059 s = mips_elf_rel_dyn_section (info, FALSE);
4060 BFD_ASSERT (s != NULL);
4061
4062 if (htab->is_vxworks)
4063 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4064 else
4065 {
4066 if (s->size == 0)
4067 {
4068 /* Make room for a null element. */
4069 s->size += MIPS_ELF_REL_SIZE (abfd);
4070 ++s->reloc_count;
4071 }
4072 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4073 }
4074 }
4075 \f
4076 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4077 mips_elf_traverse_got_arg structure. Count the number of GOT
4078 entries and TLS relocs. Set DATA->value to true if we need
4079 to resolve indirect or warning symbols and then recreate the GOT. */
4080
4081 static int
4082 mips_elf_check_recreate_got (void **entryp, void *data)
4083 {
4084 struct mips_got_entry *entry;
4085 struct mips_elf_traverse_got_arg *arg;
4086
4087 entry = (struct mips_got_entry *) *entryp;
4088 arg = (struct mips_elf_traverse_got_arg *) data;
4089 if (entry->abfd != NULL && entry->symndx == -1)
4090 {
4091 struct mips_elf_link_hash_entry *h;
4092
4093 h = entry->d.h;
4094 if (h->root.root.type == bfd_link_hash_indirect
4095 || h->root.root.type == bfd_link_hash_warning)
4096 {
4097 arg->value = TRUE;
4098 return 0;
4099 }
4100 }
4101 mips_elf_count_got_entry (arg->info, arg->g, entry);
4102 return 1;
4103 }
4104
4105 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4106 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4107 converting entries for indirect and warning symbols into entries
4108 for the target symbol. Set DATA->g to null on error. */
4109
4110 static int
4111 mips_elf_recreate_got (void **entryp, void *data)
4112 {
4113 struct mips_got_entry new_entry, *entry;
4114 struct mips_elf_traverse_got_arg *arg;
4115 void **slot;
4116
4117 entry = (struct mips_got_entry *) *entryp;
4118 arg = (struct mips_elf_traverse_got_arg *) data;
4119 if (entry->abfd != NULL
4120 && entry->symndx == -1
4121 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4122 || entry->d.h->root.root.type == bfd_link_hash_warning))
4123 {
4124 struct mips_elf_link_hash_entry *h;
4125
4126 new_entry = *entry;
4127 entry = &new_entry;
4128 h = entry->d.h;
4129 do
4130 {
4131 BFD_ASSERT (h->global_got_area == GGA_NONE);
4132 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4133 }
4134 while (h->root.root.type == bfd_link_hash_indirect
4135 || h->root.root.type == bfd_link_hash_warning);
4136 entry->d.h = h;
4137 }
4138 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4139 if (slot == NULL)
4140 {
4141 arg->g = NULL;
4142 return 0;
4143 }
4144 if (*slot == NULL)
4145 {
4146 if (entry == &new_entry)
4147 {
4148 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4149 if (!entry)
4150 {
4151 arg->g = NULL;
4152 return 0;
4153 }
4154 *entry = new_entry;
4155 }
4156 *slot = entry;
4157 mips_elf_count_got_entry (arg->info, arg->g, entry);
4158 }
4159 return 1;
4160 }
4161
4162 /* Return the maximum number of GOT page entries required for RANGE. */
4163
4164 static bfd_vma
4165 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4166 {
4167 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4168 }
4169
4170 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4171
4172 static bfd_boolean
4173 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4174 asection *sec, bfd_signed_vma addend)
4175 {
4176 struct mips_got_info *g = arg->g;
4177 struct mips_got_page_entry lookup, *entry;
4178 struct mips_got_page_range **range_ptr, *range;
4179 bfd_vma old_pages, new_pages;
4180 void **loc;
4181
4182 /* Find the mips_got_page_entry hash table entry for this section. */
4183 lookup.sec = sec;
4184 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4185 if (loc == NULL)
4186 return FALSE;
4187
4188 /* Create a mips_got_page_entry if this is the first time we've
4189 seen the section. */
4190 entry = (struct mips_got_page_entry *) *loc;
4191 if (!entry)
4192 {
4193 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4194 if (!entry)
4195 return FALSE;
4196
4197 entry->sec = sec;
4198 *loc = entry;
4199 }
4200
4201 /* Skip over ranges whose maximum extent cannot share a page entry
4202 with ADDEND. */
4203 range_ptr = &entry->ranges;
4204 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4205 range_ptr = &(*range_ptr)->next;
4206
4207 /* If we scanned to the end of the list, or found a range whose
4208 minimum extent cannot share a page entry with ADDEND, create
4209 a new singleton range. */
4210 range = *range_ptr;
4211 if (!range || addend < range->min_addend - 0xffff)
4212 {
4213 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4214 if (!range)
4215 return FALSE;
4216
4217 range->next = *range_ptr;
4218 range->min_addend = addend;
4219 range->max_addend = addend;
4220
4221 *range_ptr = range;
4222 entry->num_pages++;
4223 g->page_gotno++;
4224 return TRUE;
4225 }
4226
4227 /* Remember how many pages the old range contributed. */
4228 old_pages = mips_elf_pages_for_range (range);
4229
4230 /* Update the ranges. */
4231 if (addend < range->min_addend)
4232 range->min_addend = addend;
4233 else if (addend > range->max_addend)
4234 {
4235 if (range->next && addend >= range->next->min_addend - 0xffff)
4236 {
4237 old_pages += mips_elf_pages_for_range (range->next);
4238 range->max_addend = range->next->max_addend;
4239 range->next = range->next->next;
4240 }
4241 else
4242 range->max_addend = addend;
4243 }
4244
4245 /* Record any change in the total estimate. */
4246 new_pages = mips_elf_pages_for_range (range);
4247 if (old_pages != new_pages)
4248 {
4249 entry->num_pages += new_pages - old_pages;
4250 g->page_gotno += new_pages - old_pages;
4251 }
4252
4253 return TRUE;
4254 }
4255
4256 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4257 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4258 whether the page reference described by *REFP needs a GOT page entry,
4259 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4260
4261 static bfd_boolean
4262 mips_elf_resolve_got_page_ref (void **refp, void *data)
4263 {
4264 struct mips_got_page_ref *ref;
4265 struct mips_elf_traverse_got_arg *arg;
4266 struct mips_elf_link_hash_table *htab;
4267 asection *sec;
4268 bfd_vma addend;
4269
4270 ref = (struct mips_got_page_ref *) *refp;
4271 arg = (struct mips_elf_traverse_got_arg *) data;
4272 htab = mips_elf_hash_table (arg->info);
4273
4274 if (ref->symndx < 0)
4275 {
4276 struct mips_elf_link_hash_entry *h;
4277
4278 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4279 h = ref->u.h;
4280 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4281 return 1;
4282
4283 /* Ignore undefined symbols; we'll issue an error later if
4284 appropriate. */
4285 if (!((h->root.root.type == bfd_link_hash_defined
4286 || h->root.root.type == bfd_link_hash_defweak)
4287 && h->root.root.u.def.section))
4288 return 1;
4289
4290 sec = h->root.root.u.def.section;
4291 addend = h->root.root.u.def.value + ref->addend;
4292 }
4293 else
4294 {
4295 Elf_Internal_Sym *isym;
4296
4297 /* Read in the symbol. */
4298 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4299 ref->symndx);
4300 if (isym == NULL)
4301 {
4302 arg->g = NULL;
4303 return 0;
4304 }
4305
4306 /* Get the associated input section. */
4307 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4308 if (sec == NULL)
4309 {
4310 arg->g = NULL;
4311 return 0;
4312 }
4313
4314 /* If this is a mergable section, work out the section and offset
4315 of the merged data. For section symbols, the addend specifies
4316 of the offset _of_ the first byte in the data, otherwise it
4317 specifies the offset _from_ the first byte. */
4318 if (sec->flags & SEC_MERGE)
4319 {
4320 void *secinfo;
4321
4322 secinfo = elf_section_data (sec)->sec_info;
4323 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4324 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4325 isym->st_value + ref->addend);
4326 else
4327 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4328 isym->st_value) + ref->addend;
4329 }
4330 else
4331 addend = isym->st_value + ref->addend;
4332 }
4333 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4334 {
4335 arg->g = NULL;
4336 return 0;
4337 }
4338 return 1;
4339 }
4340
4341 /* If any entries in G->got_entries are for indirect or warning symbols,
4342 replace them with entries for the target symbol. Convert g->got_page_refs
4343 into got_page_entry structures and estimate the number of page entries
4344 that they require. */
4345
4346 static bfd_boolean
4347 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4348 struct mips_got_info *g)
4349 {
4350 struct mips_elf_traverse_got_arg tga;
4351 struct mips_got_info oldg;
4352
4353 oldg = *g;
4354
4355 tga.info = info;
4356 tga.g = g;
4357 tga.value = FALSE;
4358 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4359 if (tga.value)
4360 {
4361 *g = oldg;
4362 g->got_entries = htab_create (htab_size (oldg.got_entries),
4363 mips_elf_got_entry_hash,
4364 mips_elf_got_entry_eq, NULL);
4365 if (!g->got_entries)
4366 return FALSE;
4367
4368 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4369 if (!tga.g)
4370 return FALSE;
4371
4372 htab_delete (oldg.got_entries);
4373 }
4374
4375 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4376 mips_got_page_entry_eq, NULL);
4377 if (g->got_page_entries == NULL)
4378 return FALSE;
4379
4380 tga.info = info;
4381 tga.g = g;
4382 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4383
4384 return TRUE;
4385 }
4386
4387 /* Return true if a GOT entry for H should live in the local rather than
4388 global GOT area. */
4389
4390 static bfd_boolean
4391 mips_use_local_got_p (struct bfd_link_info *info,
4392 struct mips_elf_link_hash_entry *h)
4393 {
4394 /* Symbols that aren't in the dynamic symbol table must live in the
4395 local GOT. This includes symbols that are completely undefined
4396 and which therefore don't bind locally. We'll report undefined
4397 symbols later if appropriate. */
4398 if (h->root.dynindx == -1)
4399 return TRUE;
4400
4401 /* Symbols that bind locally can (and in the case of forced-local
4402 symbols, must) live in the local GOT. */
4403 if (h->got_only_for_calls
4404 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4405 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4406 return TRUE;
4407
4408 /* If this is an executable that must provide a definition of the symbol,
4409 either though PLTs or copy relocations, then that address should go in
4410 the local rather than global GOT. */
4411 if (bfd_link_executable (info) && h->has_static_relocs)
4412 return TRUE;
4413
4414 return FALSE;
4415 }
4416
4417 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4418 link_info structure. Decide whether the hash entry needs an entry in
4419 the global part of the primary GOT, setting global_got_area accordingly.
4420 Count the number of global symbols that are in the primary GOT only
4421 because they have relocations against them (reloc_only_gotno). */
4422
4423 static int
4424 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4425 {
4426 struct bfd_link_info *info;
4427 struct mips_elf_link_hash_table *htab;
4428 struct mips_got_info *g;
4429
4430 info = (struct bfd_link_info *) data;
4431 htab = mips_elf_hash_table (info);
4432 g = htab->got_info;
4433 if (h->global_got_area != GGA_NONE)
4434 {
4435 /* Make a final decision about whether the symbol belongs in the
4436 local or global GOT. */
4437 if (mips_use_local_got_p (info, h))
4438 /* The symbol belongs in the local GOT. We no longer need this
4439 entry if it was only used for relocations; those relocations
4440 will be against the null or section symbol instead of H. */
4441 h->global_got_area = GGA_NONE;
4442 else if (htab->is_vxworks
4443 && h->got_only_for_calls
4444 && h->root.plt.plist->mips_offset != MINUS_ONE)
4445 /* On VxWorks, calls can refer directly to the .got.plt entry;
4446 they don't need entries in the regular GOT. .got.plt entries
4447 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4448 h->global_got_area = GGA_NONE;
4449 else if (h->global_got_area == GGA_RELOC_ONLY)
4450 {
4451 g->reloc_only_gotno++;
4452 g->global_gotno++;
4453 }
4454 }
4455 return 1;
4456 }
4457 \f
4458 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4459 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4460
4461 static int
4462 mips_elf_add_got_entry (void **entryp, void *data)
4463 {
4464 struct mips_got_entry *entry;
4465 struct mips_elf_traverse_got_arg *arg;
4466 void **slot;
4467
4468 entry = (struct mips_got_entry *) *entryp;
4469 arg = (struct mips_elf_traverse_got_arg *) data;
4470 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4471 if (!slot)
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 if (!*slot)
4477 {
4478 *slot = entry;
4479 mips_elf_count_got_entry (arg->info, arg->g, entry);
4480 }
4481 return 1;
4482 }
4483
4484 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4485 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4486
4487 static int
4488 mips_elf_add_got_page_entry (void **entryp, void *data)
4489 {
4490 struct mips_got_page_entry *entry;
4491 struct mips_elf_traverse_got_arg *arg;
4492 void **slot;
4493
4494 entry = (struct mips_got_page_entry *) *entryp;
4495 arg = (struct mips_elf_traverse_got_arg *) data;
4496 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4497 if (!slot)
4498 {
4499 arg->g = NULL;
4500 return 0;
4501 }
4502 if (!*slot)
4503 {
4504 *slot = entry;
4505 arg->g->page_gotno += entry->num_pages;
4506 }
4507 return 1;
4508 }
4509
4510 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4511 this would lead to overflow, 1 if they were merged successfully,
4512 and 0 if a merge failed due to lack of memory. (These values are chosen
4513 so that nonnegative return values can be returned by a htab_traverse
4514 callback.) */
4515
4516 static int
4517 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4518 struct mips_got_info *to,
4519 struct mips_elf_got_per_bfd_arg *arg)
4520 {
4521 struct mips_elf_traverse_got_arg tga;
4522 unsigned int estimate;
4523
4524 /* Work out how many page entries we would need for the combined GOT. */
4525 estimate = arg->max_pages;
4526 if (estimate >= from->page_gotno + to->page_gotno)
4527 estimate = from->page_gotno + to->page_gotno;
4528
4529 /* And conservatively estimate how many local and TLS entries
4530 would be needed. */
4531 estimate += from->local_gotno + to->local_gotno;
4532 estimate += from->tls_gotno + to->tls_gotno;
4533
4534 /* If we're merging with the primary got, any TLS relocations will
4535 come after the full set of global entries. Otherwise estimate those
4536 conservatively as well. */
4537 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4538 estimate += arg->global_count;
4539 else
4540 estimate += from->global_gotno + to->global_gotno;
4541
4542 /* Bail out if the combined GOT might be too big. */
4543 if (estimate > arg->max_count)
4544 return -1;
4545
4546 /* Transfer the bfd's got information from FROM to TO. */
4547 tga.info = arg->info;
4548 tga.g = to;
4549 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4550 if (!tga.g)
4551 return 0;
4552
4553 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4554 if (!tga.g)
4555 return 0;
4556
4557 mips_elf_replace_bfd_got (abfd, to);
4558 return 1;
4559 }
4560
4561 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4562 as possible of the primary got, since it doesn't require explicit
4563 dynamic relocations, but don't use bfds that would reference global
4564 symbols out of the addressable range. Failing the primary got,
4565 attempt to merge with the current got, or finish the current got
4566 and then make make the new got current. */
4567
4568 static bfd_boolean
4569 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4570 struct mips_elf_got_per_bfd_arg *arg)
4571 {
4572 unsigned int estimate;
4573 int result;
4574
4575 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4576 return FALSE;
4577
4578 /* Work out the number of page, local and TLS entries. */
4579 estimate = arg->max_pages;
4580 if (estimate > g->page_gotno)
4581 estimate = g->page_gotno;
4582 estimate += g->local_gotno + g->tls_gotno;
4583
4584 /* We place TLS GOT entries after both locals and globals. The globals
4585 for the primary GOT may overflow the normal GOT size limit, so be
4586 sure not to merge a GOT which requires TLS with the primary GOT in that
4587 case. This doesn't affect non-primary GOTs. */
4588 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4589
4590 if (estimate <= arg->max_count)
4591 {
4592 /* If we don't have a primary GOT, use it as
4593 a starting point for the primary GOT. */
4594 if (!arg->primary)
4595 {
4596 arg->primary = g;
4597 return TRUE;
4598 }
4599
4600 /* Try merging with the primary GOT. */
4601 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4602 if (result >= 0)
4603 return result;
4604 }
4605
4606 /* If we can merge with the last-created got, do it. */
4607 if (arg->current)
4608 {
4609 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4610 if (result >= 0)
4611 return result;
4612 }
4613
4614 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4615 fits; if it turns out that it doesn't, we'll get relocation
4616 overflows anyway. */
4617 g->next = arg->current;
4618 arg->current = g;
4619
4620 return TRUE;
4621 }
4622
4623 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4624 to GOTIDX, duplicating the entry if it has already been assigned
4625 an index in a different GOT. */
4626
4627 static bfd_boolean
4628 mips_elf_set_gotidx (void **entryp, long gotidx)
4629 {
4630 struct mips_got_entry *entry;
4631
4632 entry = (struct mips_got_entry *) *entryp;
4633 if (entry->gotidx > 0)
4634 {
4635 struct mips_got_entry *new_entry;
4636
4637 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4638 if (!new_entry)
4639 return FALSE;
4640
4641 *new_entry = *entry;
4642 *entryp = new_entry;
4643 entry = new_entry;
4644 }
4645 entry->gotidx = gotidx;
4646 return TRUE;
4647 }
4648
4649 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4650 mips_elf_traverse_got_arg in which DATA->value is the size of one
4651 GOT entry. Set DATA->g to null on failure. */
4652
4653 static int
4654 mips_elf_initialize_tls_index (void **entryp, void *data)
4655 {
4656 struct mips_got_entry *entry;
4657 struct mips_elf_traverse_got_arg *arg;
4658
4659 /* We're only interested in TLS symbols. */
4660 entry = (struct mips_got_entry *) *entryp;
4661 if (entry->tls_type == GOT_TLS_NONE)
4662 return 1;
4663
4664 arg = (struct mips_elf_traverse_got_arg *) data;
4665 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4666 {
4667 arg->g = NULL;
4668 return 0;
4669 }
4670
4671 /* Account for the entries we've just allocated. */
4672 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4673 return 1;
4674 }
4675
4676 /* A htab_traverse callback for GOT entries, where DATA points to a
4677 mips_elf_traverse_got_arg. Set the global_got_area of each global
4678 symbol to DATA->value. */
4679
4680 static int
4681 mips_elf_set_global_got_area (void **entryp, void *data)
4682 {
4683 struct mips_got_entry *entry;
4684 struct mips_elf_traverse_got_arg *arg;
4685
4686 entry = (struct mips_got_entry *) *entryp;
4687 arg = (struct mips_elf_traverse_got_arg *) data;
4688 if (entry->abfd != NULL
4689 && entry->symndx == -1
4690 && entry->d.h->global_got_area != GGA_NONE)
4691 entry->d.h->global_got_area = arg->value;
4692 return 1;
4693 }
4694
4695 /* A htab_traverse callback for secondary GOT entries, where DATA points
4696 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4697 and record the number of relocations they require. DATA->value is
4698 the size of one GOT entry. Set DATA->g to null on failure. */
4699
4700 static int
4701 mips_elf_set_global_gotidx (void **entryp, void *data)
4702 {
4703 struct mips_got_entry *entry;
4704 struct mips_elf_traverse_got_arg *arg;
4705
4706 entry = (struct mips_got_entry *) *entryp;
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (entry->abfd != NULL
4709 && entry->symndx == -1
4710 && entry->d.h->global_got_area != GGA_NONE)
4711 {
4712 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4713 {
4714 arg->g = NULL;
4715 return 0;
4716 }
4717 arg->g->assigned_low_gotno += 1;
4718
4719 if (bfd_link_pic (arg->info)
4720 || (elf_hash_table (arg->info)->dynamic_sections_created
4721 && entry->d.h->root.def_dynamic
4722 && !entry->d.h->root.def_regular))
4723 arg->g->relocs += 1;
4724 }
4725
4726 return 1;
4727 }
4728
4729 /* A htab_traverse callback for GOT entries for which DATA is the
4730 bfd_link_info. Forbid any global symbols from having traditional
4731 lazy-binding stubs. */
4732
4733 static int
4734 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4735 {
4736 struct bfd_link_info *info;
4737 struct mips_elf_link_hash_table *htab;
4738 struct mips_got_entry *entry;
4739
4740 entry = (struct mips_got_entry *) *entryp;
4741 info = (struct bfd_link_info *) data;
4742 htab = mips_elf_hash_table (info);
4743 BFD_ASSERT (htab != NULL);
4744
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->needs_lazy_stub)
4748 {
4749 entry->d.h->needs_lazy_stub = FALSE;
4750 htab->lazy_stub_count--;
4751 }
4752
4753 return 1;
4754 }
4755
4756 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4757 the primary GOT. */
4758 static bfd_vma
4759 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4760 {
4761 if (!g->next)
4762 return 0;
4763
4764 g = mips_elf_bfd_got (ibfd, FALSE);
4765 if (! g)
4766 return 0;
4767
4768 BFD_ASSERT (g->next);
4769
4770 g = g->next;
4771
4772 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4773 * MIPS_ELF_GOT_SIZE (abfd);
4774 }
4775
4776 /* Turn a single GOT that is too big for 16-bit addressing into
4777 a sequence of GOTs, each one 16-bit addressable. */
4778
4779 static bfd_boolean
4780 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4781 asection *got, bfd_size_type pages)
4782 {
4783 struct mips_elf_link_hash_table *htab;
4784 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4785 struct mips_elf_traverse_got_arg tga;
4786 struct mips_got_info *g, *gg;
4787 unsigned int assign, needed_relocs;
4788 bfd *dynobj, *ibfd;
4789
4790 dynobj = elf_hash_table (info)->dynobj;
4791 htab = mips_elf_hash_table (info);
4792 BFD_ASSERT (htab != NULL);
4793
4794 g = htab->got_info;
4795
4796 got_per_bfd_arg.obfd = abfd;
4797 got_per_bfd_arg.info = info;
4798 got_per_bfd_arg.current = NULL;
4799 got_per_bfd_arg.primary = NULL;
4800 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4801 / MIPS_ELF_GOT_SIZE (abfd))
4802 - htab->reserved_gotno);
4803 got_per_bfd_arg.max_pages = pages;
4804 /* The number of globals that will be included in the primary GOT.
4805 See the calls to mips_elf_set_global_got_area below for more
4806 information. */
4807 got_per_bfd_arg.global_count = g->global_gotno;
4808
4809 /* Try to merge the GOTs of input bfds together, as long as they
4810 don't seem to exceed the maximum GOT size, choosing one of them
4811 to be the primary GOT. */
4812 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4813 {
4814 gg = mips_elf_bfd_got (ibfd, FALSE);
4815 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4816 return FALSE;
4817 }
4818
4819 /* If we do not find any suitable primary GOT, create an empty one. */
4820 if (got_per_bfd_arg.primary == NULL)
4821 g->next = mips_elf_create_got_info (abfd);
4822 else
4823 g->next = got_per_bfd_arg.primary;
4824 g->next->next = got_per_bfd_arg.current;
4825
4826 /* GG is now the master GOT, and G is the primary GOT. */
4827 gg = g;
4828 g = g->next;
4829
4830 /* Map the output bfd to the primary got. That's what we're going
4831 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4832 didn't mark in check_relocs, and we want a quick way to find it.
4833 We can't just use gg->next because we're going to reverse the
4834 list. */
4835 mips_elf_replace_bfd_got (abfd, g);
4836
4837 /* Every symbol that is referenced in a dynamic relocation must be
4838 present in the primary GOT, so arrange for them to appear after
4839 those that are actually referenced. */
4840 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4841 g->global_gotno = gg->global_gotno;
4842
4843 tga.info = info;
4844 tga.value = GGA_RELOC_ONLY;
4845 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4846 tga.value = GGA_NORMAL;
4847 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4848
4849 /* Now go through the GOTs assigning them offset ranges.
4850 [assigned_low_gotno, local_gotno[ will be set to the range of local
4851 entries in each GOT. We can then compute the end of a GOT by
4852 adding local_gotno to global_gotno. We reverse the list and make
4853 it circular since then we'll be able to quickly compute the
4854 beginning of a GOT, by computing the end of its predecessor. To
4855 avoid special cases for the primary GOT, while still preserving
4856 assertions that are valid for both single- and multi-got links,
4857 we arrange for the main got struct to have the right number of
4858 global entries, but set its local_gotno such that the initial
4859 offset of the primary GOT is zero. Remember that the primary GOT
4860 will become the last item in the circular linked list, so it
4861 points back to the master GOT. */
4862 gg->local_gotno = -g->global_gotno;
4863 gg->global_gotno = g->global_gotno;
4864 gg->tls_gotno = 0;
4865 assign = 0;
4866 gg->next = gg;
4867
4868 do
4869 {
4870 struct mips_got_info *gn;
4871
4872 assign += htab->reserved_gotno;
4873 g->assigned_low_gotno = assign;
4874 g->local_gotno += assign;
4875 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4876 g->assigned_high_gotno = g->local_gotno - 1;
4877 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4878
4879 /* Take g out of the direct list, and push it onto the reversed
4880 list that gg points to. g->next is guaranteed to be nonnull after
4881 this operation, as required by mips_elf_initialize_tls_index. */
4882 gn = g->next;
4883 g->next = gg->next;
4884 gg->next = g;
4885
4886 /* Set up any TLS entries. We always place the TLS entries after
4887 all non-TLS entries. */
4888 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4889 tga.g = g;
4890 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4891 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4892 if (!tga.g)
4893 return FALSE;
4894 BFD_ASSERT (g->tls_assigned_gotno == assign);
4895
4896 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4897 g = gn;
4898
4899 /* Forbid global symbols in every non-primary GOT from having
4900 lazy-binding stubs. */
4901 if (g)
4902 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4903 }
4904 while (g);
4905
4906 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4907
4908 needed_relocs = 0;
4909 for (g = gg->next; g && g->next != gg; g = g->next)
4910 {
4911 unsigned int save_assign;
4912
4913 /* Assign offsets to global GOT entries and count how many
4914 relocations they need. */
4915 save_assign = g->assigned_low_gotno;
4916 g->assigned_low_gotno = g->local_gotno;
4917 tga.info = info;
4918 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4919 tga.g = g;
4920 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4921 if (!tga.g)
4922 return FALSE;
4923 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4924 g->assigned_low_gotno = save_assign;
4925
4926 if (bfd_link_pic (info))
4927 {
4928 g->relocs += g->local_gotno - g->assigned_low_gotno;
4929 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4930 + g->next->global_gotno
4931 + g->next->tls_gotno
4932 + htab->reserved_gotno);
4933 }
4934 needed_relocs += g->relocs;
4935 }
4936 needed_relocs += g->relocs;
4937
4938 if (needed_relocs)
4939 mips_elf_allocate_dynamic_relocations (dynobj, info,
4940 needed_relocs);
4941
4942 return TRUE;
4943 }
4944
4945 \f
4946 /* Returns the first relocation of type r_type found, beginning with
4947 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4948
4949 static const Elf_Internal_Rela *
4950 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4951 const Elf_Internal_Rela *relocation,
4952 const Elf_Internal_Rela *relend)
4953 {
4954 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4955
4956 while (relocation < relend)
4957 {
4958 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4959 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4960 return relocation;
4961
4962 ++relocation;
4963 }
4964
4965 /* We didn't find it. */
4966 return NULL;
4967 }
4968
4969 /* Return whether an input relocation is against a local symbol. */
4970
4971 static bfd_boolean
4972 mips_elf_local_relocation_p (bfd *input_bfd,
4973 const Elf_Internal_Rela *relocation,
4974 asection **local_sections)
4975 {
4976 unsigned long r_symndx;
4977 Elf_Internal_Shdr *symtab_hdr;
4978 size_t extsymoff;
4979
4980 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4982 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4983
4984 if (r_symndx < extsymoff)
4985 return TRUE;
4986 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4987 return TRUE;
4988
4989 return FALSE;
4990 }
4991 \f
4992 /* Sign-extend VALUE, which has the indicated number of BITS. */
4993
4994 bfd_vma
4995 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4996 {
4997 if (value & ((bfd_vma) 1 << (bits - 1)))
4998 /* VALUE is negative. */
4999 value |= ((bfd_vma) - 1) << bits;
5000
5001 return value;
5002 }
5003
5004 /* Return non-zero if the indicated VALUE has overflowed the maximum
5005 range expressible by a signed number with the indicated number of
5006 BITS. */
5007
5008 static bfd_boolean
5009 mips_elf_overflow_p (bfd_vma value, int bits)
5010 {
5011 bfd_signed_vma svalue = (bfd_signed_vma) value;
5012
5013 if (svalue > (1 << (bits - 1)) - 1)
5014 /* The value is too big. */
5015 return TRUE;
5016 else if (svalue < -(1 << (bits - 1)))
5017 /* The value is too small. */
5018 return TRUE;
5019
5020 /* All is well. */
5021 return FALSE;
5022 }
5023
5024 /* Calculate the %high function. */
5025
5026 static bfd_vma
5027 mips_elf_high (bfd_vma value)
5028 {
5029 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5030 }
5031
5032 /* Calculate the %higher function. */
5033
5034 static bfd_vma
5035 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5036 {
5037 #ifdef BFD64
5038 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5039 #else
5040 abort ();
5041 return MINUS_ONE;
5042 #endif
5043 }
5044
5045 /* Calculate the %highest function. */
5046
5047 static bfd_vma
5048 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5049 {
5050 #ifdef BFD64
5051 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5052 #else
5053 abort ();
5054 return MINUS_ONE;
5055 #endif
5056 }
5057 \f
5058 /* Create the .compact_rel section. */
5059
5060 static bfd_boolean
5061 mips_elf_create_compact_rel_section
5062 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5063 {
5064 flagword flags;
5065 register asection *s;
5066
5067 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5068 {
5069 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5070 | SEC_READONLY);
5071
5072 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5073 if (s == NULL
5074 || ! bfd_set_section_alignment (abfd, s,
5075 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5076 return FALSE;
5077
5078 s->size = sizeof (Elf32_External_compact_rel);
5079 }
5080
5081 return TRUE;
5082 }
5083
5084 /* Create the .got section to hold the global offset table. */
5085
5086 static bfd_boolean
5087 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5088 {
5089 flagword flags;
5090 register asection *s;
5091 struct elf_link_hash_entry *h;
5092 struct bfd_link_hash_entry *bh;
5093 struct mips_elf_link_hash_table *htab;
5094
5095 htab = mips_elf_hash_table (info);
5096 BFD_ASSERT (htab != NULL);
5097
5098 /* This function may be called more than once. */
5099 if (htab->sgot)
5100 return TRUE;
5101
5102 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5103 | SEC_LINKER_CREATED);
5104
5105 /* We have to use an alignment of 2**4 here because this is hardcoded
5106 in the function stub generation and in the linker script. */
5107 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s, 4))
5110 return FALSE;
5111 htab->sgot = s;
5112
5113 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5114 linker script because we don't want to define the symbol if we
5115 are not creating a global offset table. */
5116 bh = NULL;
5117 if (! (_bfd_generic_link_add_one_symbol
5118 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5119 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5120 return FALSE;
5121
5122 h = (struct elf_link_hash_entry *) bh;
5123 h->non_elf = 0;
5124 h->def_regular = 1;
5125 h->type = STT_OBJECT;
5126 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5127 elf_hash_table (info)->hgot = h;
5128
5129 if (bfd_link_pic (info)
5130 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5131 return FALSE;
5132
5133 htab->got_info = mips_elf_create_got_info (abfd);
5134 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5135 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5136
5137 /* We also need a .got.plt section when generating PLTs. */
5138 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5139 SEC_ALLOC | SEC_LOAD
5140 | SEC_HAS_CONTENTS
5141 | SEC_IN_MEMORY
5142 | SEC_LINKER_CREATED);
5143 if (s == NULL)
5144 return FALSE;
5145 htab->sgotplt = s;
5146
5147 return TRUE;
5148 }
5149 \f
5150 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5151 __GOTT_INDEX__ symbols. These symbols are only special for
5152 shared objects; they are not used in executables. */
5153
5154 static bfd_boolean
5155 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5156 {
5157 return (mips_elf_hash_table (info)->is_vxworks
5158 && bfd_link_pic (info)
5159 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5160 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5161 }
5162
5163 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5164 require an la25 stub. See also mips_elf_local_pic_function_p,
5165 which determines whether the destination function ever requires a
5166 stub. */
5167
5168 static bfd_boolean
5169 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5170 bfd_boolean target_is_16_bit_code_p)
5171 {
5172 /* We specifically ignore branches and jumps from EF_PIC objects,
5173 where the onus is on the compiler or programmer to perform any
5174 necessary initialization of $25. Sometimes such initialization
5175 is unnecessary; for example, -mno-shared functions do not use
5176 the incoming value of $25, and may therefore be called directly. */
5177 if (PIC_OBJECT_P (input_bfd))
5178 return FALSE;
5179
5180 switch (r_type)
5181 {
5182 case R_MIPS_26:
5183 case R_MIPS_PC16:
5184 case R_MIPS_PC21_S2:
5185 case R_MIPS_PC26_S2:
5186 case R_MICROMIPS_26_S1:
5187 case R_MICROMIPS_PC7_S1:
5188 case R_MICROMIPS_PC10_S1:
5189 case R_MICROMIPS_PC16_S1:
5190 case R_MICROMIPS_PC23_S2:
5191 return TRUE;
5192
5193 case R_MIPS16_26:
5194 return !target_is_16_bit_code_p;
5195
5196 default:
5197 return FALSE;
5198 }
5199 }
5200 \f
5201 /* Calculate the value produced by the RELOCATION (which comes from
5202 the INPUT_BFD). The ADDEND is the addend to use for this
5203 RELOCATION; RELOCATION->R_ADDEND is ignored.
5204
5205 The result of the relocation calculation is stored in VALUEP.
5206 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5207 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5208
5209 This function returns bfd_reloc_continue if the caller need take no
5210 further action regarding this relocation, bfd_reloc_notsupported if
5211 something goes dramatically wrong, bfd_reloc_overflow if an
5212 overflow occurs, and bfd_reloc_ok to indicate success. */
5213
5214 static bfd_reloc_status_type
5215 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5216 asection *input_section,
5217 struct bfd_link_info *info,
5218 const Elf_Internal_Rela *relocation,
5219 bfd_vma addend, reloc_howto_type *howto,
5220 Elf_Internal_Sym *local_syms,
5221 asection **local_sections, bfd_vma *valuep,
5222 const char **namep,
5223 bfd_boolean *cross_mode_jump_p,
5224 bfd_boolean save_addend)
5225 {
5226 /* The eventual value we will return. */
5227 bfd_vma value;
5228 /* The address of the symbol against which the relocation is
5229 occurring. */
5230 bfd_vma symbol = 0;
5231 /* The final GP value to be used for the relocatable, executable, or
5232 shared object file being produced. */
5233 bfd_vma gp;
5234 /* The place (section offset or address) of the storage unit being
5235 relocated. */
5236 bfd_vma p;
5237 /* The value of GP used to create the relocatable object. */
5238 bfd_vma gp0;
5239 /* The offset into the global offset table at which the address of
5240 the relocation entry symbol, adjusted by the addend, resides
5241 during execution. */
5242 bfd_vma g = MINUS_ONE;
5243 /* The section in which the symbol referenced by the relocation is
5244 located. */
5245 asection *sec = NULL;
5246 struct mips_elf_link_hash_entry *h = NULL;
5247 /* TRUE if the symbol referred to by this relocation is a local
5248 symbol. */
5249 bfd_boolean local_p, was_local_p;
5250 /* TRUE if the symbol referred to by this relocation is a section
5251 symbol. */
5252 bfd_boolean section_p = FALSE;
5253 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5254 bfd_boolean gp_disp_p = FALSE;
5255 /* TRUE if the symbol referred to by this relocation is
5256 "__gnu_local_gp". */
5257 bfd_boolean gnu_local_gp_p = FALSE;
5258 Elf_Internal_Shdr *symtab_hdr;
5259 size_t extsymoff;
5260 unsigned long r_symndx;
5261 int r_type;
5262 /* TRUE if overflow occurred during the calculation of the
5263 relocation value. */
5264 bfd_boolean overflowed_p;
5265 /* TRUE if this relocation refers to a MIPS16 function. */
5266 bfd_boolean target_is_16_bit_code_p = FALSE;
5267 bfd_boolean target_is_micromips_code_p = FALSE;
5268 struct mips_elf_link_hash_table *htab;
5269 bfd *dynobj;
5270
5271 dynobj = elf_hash_table (info)->dynobj;
5272 htab = mips_elf_hash_table (info);
5273 BFD_ASSERT (htab != NULL);
5274
5275 /* Parse the relocation. */
5276 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5277 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5278 p = (input_section->output_section->vma
5279 + input_section->output_offset
5280 + relocation->r_offset);
5281
5282 /* Assume that there will be no overflow. */
5283 overflowed_p = FALSE;
5284
5285 /* Figure out whether or not the symbol is local, and get the offset
5286 used in the array of hash table entries. */
5287 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5288 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5289 local_sections);
5290 was_local_p = local_p;
5291 if (! elf_bad_symtab (input_bfd))
5292 extsymoff = symtab_hdr->sh_info;
5293 else
5294 {
5295 /* The symbol table does not follow the rule that local symbols
5296 must come before globals. */
5297 extsymoff = 0;
5298 }
5299
5300 /* Figure out the value of the symbol. */
5301 if (local_p)
5302 {
5303 Elf_Internal_Sym *sym;
5304
5305 sym = local_syms + r_symndx;
5306 sec = local_sections[r_symndx];
5307
5308 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5309
5310 symbol = sec->output_section->vma + sec->output_offset;
5311 if (!section_p || (sec->flags & SEC_MERGE))
5312 symbol += sym->st_value;
5313 if ((sec->flags & SEC_MERGE) && section_p)
5314 {
5315 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5316 addend -= symbol;
5317 addend += sec->output_section->vma + sec->output_offset;
5318 }
5319
5320 /* MIPS16/microMIPS text labels should be treated as odd. */
5321 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5322 ++symbol;
5323
5324 /* Record the name of this symbol, for our caller. */
5325 *namep = bfd_elf_string_from_elf_section (input_bfd,
5326 symtab_hdr->sh_link,
5327 sym->st_name);
5328 if (*namep == NULL || **namep == '\0')
5329 *namep = bfd_section_name (input_bfd, sec);
5330
5331 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5332 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5333 }
5334 else
5335 {
5336 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5337
5338 /* For global symbols we look up the symbol in the hash-table. */
5339 h = ((struct mips_elf_link_hash_entry *)
5340 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5341 /* Find the real hash-table entry for this symbol. */
5342 while (h->root.root.type == bfd_link_hash_indirect
5343 || h->root.root.type == bfd_link_hash_warning)
5344 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5345
5346 /* Record the name of this symbol, for our caller. */
5347 *namep = h->root.root.root.string;
5348
5349 /* See if this is the special _gp_disp symbol. Note that such a
5350 symbol must always be a global symbol. */
5351 if (strcmp (*namep, "_gp_disp") == 0
5352 && ! NEWABI_P (input_bfd))
5353 {
5354 /* Relocations against _gp_disp are permitted only with
5355 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5356 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5357 return bfd_reloc_notsupported;
5358
5359 gp_disp_p = TRUE;
5360 }
5361 /* See if this is the special _gp symbol. Note that such a
5362 symbol must always be a global symbol. */
5363 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5364 gnu_local_gp_p = TRUE;
5365
5366
5367 /* If this symbol is defined, calculate its address. Note that
5368 _gp_disp is a magic symbol, always implicitly defined by the
5369 linker, so it's inappropriate to check to see whether or not
5370 its defined. */
5371 else if ((h->root.root.type == bfd_link_hash_defined
5372 || h->root.root.type == bfd_link_hash_defweak)
5373 && h->root.root.u.def.section)
5374 {
5375 sec = h->root.root.u.def.section;
5376 if (sec->output_section)
5377 symbol = (h->root.root.u.def.value
5378 + sec->output_section->vma
5379 + sec->output_offset);
5380 else
5381 symbol = h->root.root.u.def.value;
5382 }
5383 else if (h->root.root.type == bfd_link_hash_undefweak)
5384 /* We allow relocations against undefined weak symbols, giving
5385 it the value zero, so that you can undefined weak functions
5386 and check to see if they exist by looking at their
5387 addresses. */
5388 symbol = 0;
5389 else if (info->unresolved_syms_in_objects == RM_IGNORE
5390 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5391 symbol = 0;
5392 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5393 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5394 {
5395 /* If this is a dynamic link, we should have created a
5396 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5397 in in _bfd_mips_elf_create_dynamic_sections.
5398 Otherwise, we should define the symbol with a value of 0.
5399 FIXME: It should probably get into the symbol table
5400 somehow as well. */
5401 BFD_ASSERT (! bfd_link_pic (info));
5402 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5403 symbol = 0;
5404 }
5405 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5406 {
5407 /* This is an optional symbol - an Irix specific extension to the
5408 ELF spec. Ignore it for now.
5409 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5410 than simply ignoring them, but we do not handle this for now.
5411 For information see the "64-bit ELF Object File Specification"
5412 which is available from here:
5413 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5414 symbol = 0;
5415 }
5416 else
5417 {
5418 (*info->callbacks->undefined_symbol)
5419 (info, h->root.root.root.string, input_bfd,
5420 input_section, relocation->r_offset,
5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5422 || ELF_ST_VISIBILITY (h->root.other));
5423 return bfd_reloc_undefined;
5424 }
5425
5426 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5427 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5428 }
5429
5430 /* If this is a reference to a 16-bit function with a stub, we need
5431 to redirect the relocation to the stub unless:
5432
5433 (a) the relocation is for a MIPS16 JAL;
5434
5435 (b) the relocation is for a MIPS16 PIC call, and there are no
5436 non-MIPS16 uses of the GOT slot; or
5437
5438 (c) the section allows direct references to MIPS16 functions. */
5439 if (r_type != R_MIPS16_26
5440 && !bfd_link_relocatable (info)
5441 && ((h != NULL
5442 && h->fn_stub != NULL
5443 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5444 || (local_p
5445 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5446 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5447 && !section_allows_mips16_refs_p (input_section))
5448 {
5449 /* This is a 32- or 64-bit call to a 16-bit function. We should
5450 have already noticed that we were going to need the
5451 stub. */
5452 if (local_p)
5453 {
5454 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5455 value = 0;
5456 }
5457 else
5458 {
5459 BFD_ASSERT (h->need_fn_stub);
5460 if (h->la25_stub)
5461 {
5462 /* If a LA25 header for the stub itself exists, point to the
5463 prepended LUI/ADDIU sequence. */
5464 sec = h->la25_stub->stub_section;
5465 value = h->la25_stub->offset;
5466 }
5467 else
5468 {
5469 sec = h->fn_stub;
5470 value = 0;
5471 }
5472 }
5473
5474 symbol = sec->output_section->vma + sec->output_offset + value;
5475 /* The target is 16-bit, but the stub isn't. */
5476 target_is_16_bit_code_p = FALSE;
5477 }
5478 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5479 to a standard MIPS function, we need to redirect the call to the stub.
5480 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5481 indirect calls should use an indirect stub instead. */
5482 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5483 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5484 || (local_p
5485 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5486 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5487 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5488 {
5489 if (local_p)
5490 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5491 else
5492 {
5493 /* If both call_stub and call_fp_stub are defined, we can figure
5494 out which one to use by checking which one appears in the input
5495 file. */
5496 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5497 {
5498 asection *o;
5499
5500 sec = NULL;
5501 for (o = input_bfd->sections; o != NULL; o = o->next)
5502 {
5503 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5504 {
5505 sec = h->call_fp_stub;
5506 break;
5507 }
5508 }
5509 if (sec == NULL)
5510 sec = h->call_stub;
5511 }
5512 else if (h->call_stub != NULL)
5513 sec = h->call_stub;
5514 else
5515 sec = h->call_fp_stub;
5516 }
5517
5518 BFD_ASSERT (sec->size > 0);
5519 symbol = sec->output_section->vma + sec->output_offset;
5520 }
5521 /* If this is a direct call to a PIC function, redirect to the
5522 non-PIC stub. */
5523 else if (h != NULL && h->la25_stub
5524 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5525 target_is_16_bit_code_p))
5526 symbol = (h->la25_stub->stub_section->output_section->vma
5527 + h->la25_stub->stub_section->output_offset
5528 + h->la25_stub->offset);
5529 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5530 entry is used if a standard PLT entry has also been made. In this
5531 case the symbol will have been set by mips_elf_set_plt_sym_value
5532 to point to the standard PLT entry, so redirect to the compressed
5533 one. */
5534 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5535 && !bfd_link_relocatable (info)
5536 && h != NULL
5537 && h->use_plt_entry
5538 && h->root.plt.plist->comp_offset != MINUS_ONE
5539 && h->root.plt.plist->mips_offset != MINUS_ONE)
5540 {
5541 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5542
5543 sec = htab->splt;
5544 symbol = (sec->output_section->vma
5545 + sec->output_offset
5546 + htab->plt_header_size
5547 + htab->plt_mips_offset
5548 + h->root.plt.plist->comp_offset
5549 + 1);
5550
5551 target_is_16_bit_code_p = !micromips_p;
5552 target_is_micromips_code_p = micromips_p;
5553 }
5554
5555 /* Make sure MIPS16 and microMIPS are not used together. */
5556 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5557 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5558 {
5559 (*_bfd_error_handler)
5560 (_("MIPS16 and microMIPS functions cannot call each other"));
5561 return bfd_reloc_notsupported;
5562 }
5563
5564 /* Calls from 16-bit code to 32-bit code and vice versa require the
5565 mode change. However, we can ignore calls to undefined weak symbols,
5566 which should never be executed at runtime. This exception is important
5567 because the assembly writer may have "known" that any definition of the
5568 symbol would be 16-bit code, and that direct jumps were therefore
5569 acceptable. */
5570 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5571 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5572 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5573 || (r_type == R_MICROMIPS_26_S1
5574 && !target_is_micromips_code_p)
5575 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5576 && (target_is_16_bit_code_p
5577 || target_is_micromips_code_p))));
5578
5579 local_p = (h == NULL || mips_use_local_got_p (info, h));
5580
5581 gp0 = _bfd_get_gp_value (input_bfd);
5582 gp = _bfd_get_gp_value (abfd);
5583 if (htab->got_info)
5584 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5585
5586 if (gnu_local_gp_p)
5587 symbol = gp;
5588
5589 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5590 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5591 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5592 if (got_page_reloc_p (r_type) && !local_p)
5593 {
5594 r_type = (micromips_reloc_p (r_type)
5595 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5596 addend = 0;
5597 }
5598
5599 /* If we haven't already determined the GOT offset, and we're going
5600 to need it, get it now. */
5601 switch (r_type)
5602 {
5603 case R_MIPS16_CALL16:
5604 case R_MIPS16_GOT16:
5605 case R_MIPS_CALL16:
5606 case R_MIPS_GOT16:
5607 case R_MIPS_GOT_DISP:
5608 case R_MIPS_GOT_HI16:
5609 case R_MIPS_CALL_HI16:
5610 case R_MIPS_GOT_LO16:
5611 case R_MIPS_CALL_LO16:
5612 case R_MICROMIPS_CALL16:
5613 case R_MICROMIPS_GOT16:
5614 case R_MICROMIPS_GOT_DISP:
5615 case R_MICROMIPS_GOT_HI16:
5616 case R_MICROMIPS_CALL_HI16:
5617 case R_MICROMIPS_GOT_LO16:
5618 case R_MICROMIPS_CALL_LO16:
5619 case R_MIPS_TLS_GD:
5620 case R_MIPS_TLS_GOTTPREL:
5621 case R_MIPS_TLS_LDM:
5622 case R_MIPS16_TLS_GD:
5623 case R_MIPS16_TLS_GOTTPREL:
5624 case R_MIPS16_TLS_LDM:
5625 case R_MICROMIPS_TLS_GD:
5626 case R_MICROMIPS_TLS_GOTTPREL:
5627 case R_MICROMIPS_TLS_LDM:
5628 /* Find the index into the GOT where this value is located. */
5629 if (tls_ldm_reloc_p (r_type))
5630 {
5631 g = mips_elf_local_got_index (abfd, input_bfd, info,
5632 0, 0, NULL, r_type);
5633 if (g == MINUS_ONE)
5634 return bfd_reloc_outofrange;
5635 }
5636 else if (!local_p)
5637 {
5638 /* On VxWorks, CALL relocations should refer to the .got.plt
5639 entry, which is initialized to point at the PLT stub. */
5640 if (htab->is_vxworks
5641 && (call_hi16_reloc_p (r_type)
5642 || call_lo16_reloc_p (r_type)
5643 || call16_reloc_p (r_type)))
5644 {
5645 BFD_ASSERT (addend == 0);
5646 BFD_ASSERT (h->root.needs_plt);
5647 g = mips_elf_gotplt_index (info, &h->root);
5648 }
5649 else
5650 {
5651 BFD_ASSERT (addend == 0);
5652 g = mips_elf_global_got_index (abfd, info, input_bfd,
5653 &h->root, r_type);
5654 if (!TLS_RELOC_P (r_type)
5655 && !elf_hash_table (info)->dynamic_sections_created)
5656 /* This is a static link. We must initialize the GOT entry. */
5657 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5658 }
5659 }
5660 else if (!htab->is_vxworks
5661 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5662 /* The calculation below does not involve "g". */
5663 break;
5664 else
5665 {
5666 g = mips_elf_local_got_index (abfd, input_bfd, info,
5667 symbol + addend, r_symndx, h, r_type);
5668 if (g == MINUS_ONE)
5669 return bfd_reloc_outofrange;
5670 }
5671
5672 /* Convert GOT indices to actual offsets. */
5673 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5674 break;
5675 }
5676
5677 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5678 symbols are resolved by the loader. Add them to .rela.dyn. */
5679 if (h != NULL && is_gott_symbol (info, &h->root))
5680 {
5681 Elf_Internal_Rela outrel;
5682 bfd_byte *loc;
5683 asection *s;
5684
5685 s = mips_elf_rel_dyn_section (info, FALSE);
5686 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5687
5688 outrel.r_offset = (input_section->output_section->vma
5689 + input_section->output_offset
5690 + relocation->r_offset);
5691 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5692 outrel.r_addend = addend;
5693 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5694
5695 /* If we've written this relocation for a readonly section,
5696 we need to set DF_TEXTREL again, so that we do not delete the
5697 DT_TEXTREL tag. */
5698 if (MIPS_ELF_READONLY_SECTION (input_section))
5699 info->flags |= DF_TEXTREL;
5700
5701 *valuep = 0;
5702 return bfd_reloc_ok;
5703 }
5704
5705 /* Figure out what kind of relocation is being performed. */
5706 switch (r_type)
5707 {
5708 case R_MIPS_NONE:
5709 return bfd_reloc_continue;
5710
5711 case R_MIPS_16:
5712 if (howto->partial_inplace)
5713 addend = _bfd_mips_elf_sign_extend (addend, 16);
5714 value = symbol + addend;
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5717
5718 case R_MIPS_32:
5719 case R_MIPS_REL32:
5720 case R_MIPS_64:
5721 if ((bfd_link_pic (info)
5722 || (htab->root.dynamic_sections_created
5723 && h != NULL
5724 && h->root.def_dynamic
5725 && !h->root.def_regular
5726 && !h->has_static_relocs))
5727 && r_symndx != STN_UNDEF
5728 && (h == NULL
5729 || h->root.root.type != bfd_link_hash_undefweak
5730 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5731 && (input_section->flags & SEC_ALLOC) != 0)
5732 {
5733 /* If we're creating a shared library, then we can't know
5734 where the symbol will end up. So, we create a relocation
5735 record in the output, and leave the job up to the dynamic
5736 linker. We must do the same for executable references to
5737 shared library symbols, unless we've decided to use copy
5738 relocs or PLTs instead. */
5739 value = addend;
5740 if (!mips_elf_create_dynamic_relocation (abfd,
5741 info,
5742 relocation,
5743 h,
5744 sec,
5745 symbol,
5746 &value,
5747 input_section))
5748 return bfd_reloc_undefined;
5749 }
5750 else
5751 {
5752 if (r_type != R_MIPS_REL32)
5753 value = symbol + addend;
5754 else
5755 value = addend;
5756 }
5757 value &= howto->dst_mask;
5758 break;
5759
5760 case R_MIPS_PC32:
5761 value = symbol + addend - p;
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS16_26:
5766 /* The calculation for R_MIPS16_26 is just the same as for an
5767 R_MIPS_26. It's only the storage of the relocated field into
5768 the output file that's different. That's handled in
5769 mips_elf_perform_relocation. So, we just fall through to the
5770 R_MIPS_26 case here. */
5771 case R_MIPS_26:
5772 case R_MICROMIPS_26_S1:
5773 {
5774 unsigned int shift;
5775
5776 /* Shift is 2, unusually, for microMIPS JALX. */
5777 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5778
5779 if (howto->partial_inplace && !section_p)
5780 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5781 else
5782 value = addend;
5783 value += symbol;
5784
5785 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5786 the correct ISA mode selector and bit 1 must be 0. */
5787 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26))
5788 return bfd_reloc_outofrange;
5789
5790 value >>= shift;
5791 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5792 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5793 value &= howto->dst_mask;
5794 }
5795 break;
5796
5797 case R_MIPS_TLS_DTPREL_HI16:
5798 case R_MIPS16_TLS_DTPREL_HI16:
5799 case R_MICROMIPS_TLS_DTPREL_HI16:
5800 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5801 & howto->dst_mask);
5802 break;
5803
5804 case R_MIPS_TLS_DTPREL_LO16:
5805 case R_MIPS_TLS_DTPREL32:
5806 case R_MIPS_TLS_DTPREL64:
5807 case R_MIPS16_TLS_DTPREL_LO16:
5808 case R_MICROMIPS_TLS_DTPREL_LO16:
5809 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_TLS_TPREL_HI16:
5813 case R_MIPS16_TLS_TPREL_HI16:
5814 case R_MICROMIPS_TLS_TPREL_HI16:
5815 value = (mips_elf_high (addend + symbol - tprel_base (info))
5816 & howto->dst_mask);
5817 break;
5818
5819 case R_MIPS_TLS_TPREL_LO16:
5820 case R_MIPS_TLS_TPREL32:
5821 case R_MIPS_TLS_TPREL64:
5822 case R_MIPS16_TLS_TPREL_LO16:
5823 case R_MICROMIPS_TLS_TPREL_LO16:
5824 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5825 break;
5826
5827 case R_MIPS_HI16:
5828 case R_MIPS16_HI16:
5829 case R_MICROMIPS_HI16:
5830 if (!gp_disp_p)
5831 {
5832 value = mips_elf_high (addend + symbol);
5833 value &= howto->dst_mask;
5834 }
5835 else
5836 {
5837 /* For MIPS16 ABI code we generate this sequence
5838 0: li $v0,%hi(_gp_disp)
5839 4: addiupc $v1,%lo(_gp_disp)
5840 8: sll $v0,16
5841 12: addu $v0,$v1
5842 14: move $gp,$v0
5843 So the offsets of hi and lo relocs are the same, but the
5844 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5845 ADDIUPC clears the low two bits of the instruction address,
5846 so the base is ($t9 + 4) & ~3. */
5847 if (r_type == R_MIPS16_HI16)
5848 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5849 /* The microMIPS .cpload sequence uses the same assembly
5850 instructions as the traditional psABI version, but the
5851 incoming $t9 has the low bit set. */
5852 else if (r_type == R_MICROMIPS_HI16)
5853 value = mips_elf_high (addend + gp - p - 1);
5854 else
5855 value = mips_elf_high (addend + gp - p);
5856 overflowed_p = mips_elf_overflow_p (value, 16);
5857 }
5858 break;
5859
5860 case R_MIPS_LO16:
5861 case R_MIPS16_LO16:
5862 case R_MICROMIPS_LO16:
5863 case R_MICROMIPS_HI0_LO16:
5864 if (!gp_disp_p)
5865 value = (symbol + addend) & howto->dst_mask;
5866 else
5867 {
5868 /* See the comment for R_MIPS16_HI16 above for the reason
5869 for this conditional. */
5870 if (r_type == R_MIPS16_LO16)
5871 value = addend + gp - (p & ~(bfd_vma) 0x3);
5872 else if (r_type == R_MICROMIPS_LO16
5873 || r_type == R_MICROMIPS_HI0_LO16)
5874 value = addend + gp - p + 3;
5875 else
5876 value = addend + gp - p + 4;
5877 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5878 for overflow. But, on, say, IRIX5, relocations against
5879 _gp_disp are normally generated from the .cpload
5880 pseudo-op. It generates code that normally looks like
5881 this:
5882
5883 lui $gp,%hi(_gp_disp)
5884 addiu $gp,$gp,%lo(_gp_disp)
5885 addu $gp,$gp,$t9
5886
5887 Here $t9 holds the address of the function being called,
5888 as required by the MIPS ELF ABI. The R_MIPS_LO16
5889 relocation can easily overflow in this situation, but the
5890 R_MIPS_HI16 relocation will handle the overflow.
5891 Therefore, we consider this a bug in the MIPS ABI, and do
5892 not check for overflow here. */
5893 }
5894 break;
5895
5896 case R_MIPS_LITERAL:
5897 case R_MICROMIPS_LITERAL:
5898 /* Because we don't merge literal sections, we can handle this
5899 just like R_MIPS_GPREL16. In the long run, we should merge
5900 shared literals, and then we will need to additional work
5901 here. */
5902
5903 /* Fall through. */
5904
5905 case R_MIPS16_GPREL:
5906 /* The R_MIPS16_GPREL performs the same calculation as
5907 R_MIPS_GPREL16, but stores the relocated bits in a different
5908 order. We don't need to do anything special here; the
5909 differences are handled in mips_elf_perform_relocation. */
5910 case R_MIPS_GPREL16:
5911 case R_MICROMIPS_GPREL7_S2:
5912 case R_MICROMIPS_GPREL16:
5913 /* Only sign-extend the addend if it was extracted from the
5914 instruction. If the addend was separate, leave it alone,
5915 otherwise we may lose significant bits. */
5916 if (howto->partial_inplace)
5917 addend = _bfd_mips_elf_sign_extend (addend, 16);
5918 value = symbol + addend - gp;
5919 /* If the symbol was local, any earlier relocatable links will
5920 have adjusted its addend with the gp offset, so compensate
5921 for that now. Don't do it for symbols forced local in this
5922 link, though, since they won't have had the gp offset applied
5923 to them before. */
5924 if (was_local_p)
5925 value += gp0;
5926 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5927 overflowed_p = mips_elf_overflow_p (value, 16);
5928 break;
5929
5930 case R_MIPS16_GOT16:
5931 case R_MIPS16_CALL16:
5932 case R_MIPS_GOT16:
5933 case R_MIPS_CALL16:
5934 case R_MICROMIPS_GOT16:
5935 case R_MICROMIPS_CALL16:
5936 /* VxWorks does not have separate local and global semantics for
5937 R_MIPS*_GOT16; every relocation evaluates to "G". */
5938 if (!htab->is_vxworks && local_p)
5939 {
5940 value = mips_elf_got16_entry (abfd, input_bfd, info,
5941 symbol + addend, !was_local_p);
5942 if (value == MINUS_ONE)
5943 return bfd_reloc_outofrange;
5944 value
5945 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5946 overflowed_p = mips_elf_overflow_p (value, 16);
5947 break;
5948 }
5949
5950 /* Fall through. */
5951
5952 case R_MIPS_TLS_GD:
5953 case R_MIPS_TLS_GOTTPREL:
5954 case R_MIPS_TLS_LDM:
5955 case R_MIPS_GOT_DISP:
5956 case R_MIPS16_TLS_GD:
5957 case R_MIPS16_TLS_GOTTPREL:
5958 case R_MIPS16_TLS_LDM:
5959 case R_MICROMIPS_TLS_GD:
5960 case R_MICROMIPS_TLS_GOTTPREL:
5961 case R_MICROMIPS_TLS_LDM:
5962 case R_MICROMIPS_GOT_DISP:
5963 value = g;
5964 overflowed_p = mips_elf_overflow_p (value, 16);
5965 break;
5966
5967 case R_MIPS_GPREL32:
5968 value = (addend + symbol + gp0 - gp);
5969 if (!save_addend)
5970 value &= howto->dst_mask;
5971 break;
5972
5973 case R_MIPS_PC16:
5974 case R_MIPS_GNU_REL16_S2:
5975 if (howto->partial_inplace)
5976 addend = _bfd_mips_elf_sign_extend (addend, 18);
5977
5978 if ((symbol + addend) & 3)
5979 return bfd_reloc_outofrange;
5980
5981 value = symbol + addend - p;
5982 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5983 overflowed_p = mips_elf_overflow_p (value, 18);
5984 value >>= howto->rightshift;
5985 value &= howto->dst_mask;
5986 break;
5987
5988 case R_MIPS_PC21_S2:
5989 if (howto->partial_inplace)
5990 addend = _bfd_mips_elf_sign_extend (addend, 23);
5991
5992 if ((symbol + addend) & 3)
5993 return bfd_reloc_outofrange;
5994
5995 value = symbol + addend - p;
5996 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5997 overflowed_p = mips_elf_overflow_p (value, 23);
5998 value >>= howto->rightshift;
5999 value &= howto->dst_mask;
6000 break;
6001
6002 case R_MIPS_PC26_S2:
6003 if (howto->partial_inplace)
6004 addend = _bfd_mips_elf_sign_extend (addend, 28);
6005
6006 if ((symbol + addend) & 3)
6007 return bfd_reloc_outofrange;
6008
6009 value = symbol + addend - p;
6010 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6011 overflowed_p = mips_elf_overflow_p (value, 28);
6012 value >>= howto->rightshift;
6013 value &= howto->dst_mask;
6014 break;
6015
6016 case R_MIPS_PC18_S3:
6017 if (howto->partial_inplace)
6018 addend = _bfd_mips_elf_sign_extend (addend, 21);
6019
6020 if ((symbol + addend) & 7)
6021 return bfd_reloc_outofrange;
6022
6023 value = symbol + addend - ((p | 7) ^ 7);
6024 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6025 overflowed_p = mips_elf_overflow_p (value, 21);
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
6038 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6039 overflowed_p = mips_elf_overflow_p (value, 21);
6040 value >>= howto->rightshift;
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PCHI16:
6045 value = mips_elf_high (symbol + addend - p);
6046 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 overflowed_p = mips_elf_overflow_p (value, 16);
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PCLO16:
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 16);
6054 value = symbol + addend - p;
6055 value &= howto->dst_mask;
6056 break;
6057
6058 case R_MICROMIPS_PC7_S1:
6059 if (howto->partial_inplace)
6060 addend = _bfd_mips_elf_sign_extend (addend, 8);
6061 value = symbol + addend - p;
6062 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6063 overflowed_p = mips_elf_overflow_p (value, 8);
6064 value >>= howto->rightshift;
6065 value &= howto->dst_mask;
6066 break;
6067
6068 case R_MICROMIPS_PC10_S1:
6069 if (howto->partial_inplace)
6070 addend = _bfd_mips_elf_sign_extend (addend, 11);
6071 value = symbol + addend - p;
6072 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6073 overflowed_p = mips_elf_overflow_p (value, 11);
6074 value >>= howto->rightshift;
6075 value &= howto->dst_mask;
6076 break;
6077
6078 case R_MICROMIPS_PC16_S1:
6079 if (howto->partial_inplace)
6080 addend = _bfd_mips_elf_sign_extend (addend, 17);
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MICROMIPS_PC23_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 25);
6091 value = symbol + addend - ((p | 3) ^ 3);
6092 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6093 overflowed_p = mips_elf_overflow_p (value, 25);
6094 value >>= howto->rightshift;
6095 value &= howto->dst_mask;
6096 break;
6097
6098 case R_MIPS_GOT_HI16:
6099 case R_MIPS_CALL_HI16:
6100 case R_MICROMIPS_GOT_HI16:
6101 case R_MICROMIPS_CALL_HI16:
6102 /* We're allowed to handle these two relocations identically.
6103 The dynamic linker is allowed to handle the CALL relocations
6104 differently by creating a lazy evaluation stub. */
6105 value = g;
6106 value = mips_elf_high (value);
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_GOT_LO16:
6111 case R_MIPS_CALL_LO16:
6112 case R_MICROMIPS_GOT_LO16:
6113 case R_MICROMIPS_CALL_LO16:
6114 value = g & howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_GOT_PAGE:
6118 case R_MICROMIPS_GOT_PAGE:
6119 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6120 if (value == MINUS_ONE)
6121 return bfd_reloc_outofrange;
6122 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6123 overflowed_p = mips_elf_overflow_p (value, 16);
6124 break;
6125
6126 case R_MIPS_GOT_OFST:
6127 case R_MICROMIPS_GOT_OFST:
6128 if (local_p)
6129 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6130 else
6131 value = addend;
6132 overflowed_p = mips_elf_overflow_p (value, 16);
6133 break;
6134
6135 case R_MIPS_SUB:
6136 case R_MICROMIPS_SUB:
6137 value = symbol - addend;
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHER:
6142 case R_MICROMIPS_HIGHER:
6143 value = mips_elf_higher (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_HIGHEST:
6148 case R_MICROMIPS_HIGHEST:
6149 value = mips_elf_highest (addend + symbol);
6150 value &= howto->dst_mask;
6151 break;
6152
6153 case R_MIPS_SCN_DISP:
6154 case R_MICROMIPS_SCN_DISP:
6155 value = symbol + addend - sec->output_offset;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MIPS_JALR:
6160 case R_MICROMIPS_JALR:
6161 /* This relocation is only a hint. In some cases, we optimize
6162 it into a bal instruction. But we don't try to optimize
6163 when the symbol does not resolve locally. */
6164 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6165 return bfd_reloc_continue;
6166 value = symbol + addend;
6167 break;
6168
6169 case R_MIPS_PJUMP:
6170 case R_MIPS_GNU_VTINHERIT:
6171 case R_MIPS_GNU_VTENTRY:
6172 /* We don't do anything with these at present. */
6173 return bfd_reloc_continue;
6174
6175 default:
6176 /* An unrecognized relocation type. */
6177 return bfd_reloc_notsupported;
6178 }
6179
6180 /* Store the VALUE for our caller. */
6181 *valuep = value;
6182 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6183 }
6184
6185 /* Obtain the field relocated by RELOCATION. */
6186
6187 static bfd_vma
6188 mips_elf_obtain_contents (reloc_howto_type *howto,
6189 const Elf_Internal_Rela *relocation,
6190 bfd *input_bfd, bfd_byte *contents)
6191 {
6192 bfd_vma x = 0;
6193 bfd_byte *location = contents + relocation->r_offset;
6194 unsigned int size = bfd_get_reloc_size (howto);
6195
6196 /* Obtain the bytes. */
6197 if (size != 0)
6198 x = bfd_get (8 * size, input_bfd, location);
6199
6200 return x;
6201 }
6202
6203 /* It has been determined that the result of the RELOCATION is the
6204 VALUE. Use HOWTO to place VALUE into the output file at the
6205 appropriate position. The SECTION is the section to which the
6206 relocation applies.
6207 CROSS_MODE_JUMP_P is true if the relocation field
6208 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6209
6210 Returns FALSE if anything goes wrong. */
6211
6212 static bfd_boolean
6213 mips_elf_perform_relocation (struct bfd_link_info *info,
6214 reloc_howto_type *howto,
6215 const Elf_Internal_Rela *relocation,
6216 bfd_vma value, bfd *input_bfd,
6217 asection *input_section, bfd_byte *contents,
6218 bfd_boolean cross_mode_jump_p)
6219 {
6220 bfd_vma x;
6221 bfd_byte *location;
6222 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6223 unsigned int size;
6224
6225 /* Figure out where the relocation is occurring. */
6226 location = contents + relocation->r_offset;
6227
6228 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6229
6230 /* Obtain the current value. */
6231 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6232
6233 /* Clear the field we are setting. */
6234 x &= ~howto->dst_mask;
6235
6236 /* Set the field. */
6237 x |= (value & howto->dst_mask);
6238
6239 /* If required, turn JAL into JALX. */
6240 if (cross_mode_jump_p && jal_reloc_p (r_type))
6241 {
6242 bfd_boolean ok;
6243 bfd_vma opcode = x >> 26;
6244 bfd_vma jalx_opcode;
6245
6246 /* Check to see if the opcode is already JAL or JALX. */
6247 if (r_type == R_MIPS16_26)
6248 {
6249 ok = ((opcode == 0x6) || (opcode == 0x7));
6250 jalx_opcode = 0x7;
6251 }
6252 else if (r_type == R_MICROMIPS_26_S1)
6253 {
6254 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6255 jalx_opcode = 0x3c;
6256 }
6257 else
6258 {
6259 ok = ((opcode == 0x3) || (opcode == 0x1d));
6260 jalx_opcode = 0x1d;
6261 }
6262
6263 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6264 convert J or JALS to JALX. */
6265 if (!ok)
6266 {
6267 (*_bfd_error_handler)
6268 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6269 input_bfd,
6270 input_section,
6271 (unsigned long) relocation->r_offset);
6272 bfd_set_error (bfd_error_bad_value);
6273 return FALSE;
6274 }
6275
6276 /* Make this the JALX opcode. */
6277 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6278 }
6279
6280 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6281 range. */
6282 if (!bfd_link_relocatable (info)
6283 && !cross_mode_jump_p
6284 && ((JAL_TO_BAL_P (input_bfd)
6285 && r_type == R_MIPS_26
6286 && (x >> 26) == 0x3) /* jal addr */
6287 || (JALR_TO_BAL_P (input_bfd)
6288 && r_type == R_MIPS_JALR
6289 && x == 0x0320f809) /* jalr t9 */
6290 || (JR_TO_B_P (input_bfd)
6291 && r_type == R_MIPS_JALR
6292 && x == 0x03200008))) /* jr t9 */
6293 {
6294 bfd_vma addr;
6295 bfd_vma dest;
6296 bfd_signed_vma off;
6297
6298 addr = (input_section->output_section->vma
6299 + input_section->output_offset
6300 + relocation->r_offset
6301 + 4);
6302 if (r_type == R_MIPS_26)
6303 dest = (value << 2) | ((addr >> 28) << 28);
6304 else
6305 dest = value;
6306 off = dest - addr;
6307 if (off <= 0x1ffff && off >= -0x20000)
6308 {
6309 if (x == 0x03200008) /* jr t9 */
6310 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6311 else
6312 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6313 }
6314 }
6315
6316 /* Put the value into the output. */
6317 size = bfd_get_reloc_size (howto);
6318 if (size != 0)
6319 bfd_put (8 * size, input_bfd, x, location);
6320
6321 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6322 location);
6323
6324 return TRUE;
6325 }
6326 \f
6327 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
6332 static bfd_boolean
6333 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6334 struct bfd_link_info *info,
6335 const Elf_Internal_Rela *rel,
6336 struct mips_elf_link_hash_entry *h,
6337 asection *sec, bfd_vma symbol,
6338 bfd_vma *addendp, asection *input_section)
6339 {
6340 Elf_Internal_Rela outrel[3];
6341 asection *sreloc;
6342 bfd *dynobj;
6343 int r_type;
6344 long indx;
6345 bfd_boolean defined_p;
6346 struct mips_elf_link_hash_table *htab;
6347
6348 htab = mips_elf_hash_table (info);
6349 BFD_ASSERT (htab != NULL);
6350
6351 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6352 dynobj = elf_hash_table (info)->dynobj;
6353 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6354 BFD_ASSERT (sreloc != NULL);
6355 BFD_ASSERT (sreloc->contents != NULL);
6356 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6357 < sreloc->size);
6358
6359 outrel[0].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6361 if (ABI_64_P (output_bfd))
6362 {
6363 outrel[1].r_offset =
6364 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6365 outrel[2].r_offset =
6366 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6367 }
6368
6369 if (outrel[0].r_offset == MINUS_ONE)
6370 /* The relocation field has been deleted. */
6371 return TRUE;
6372
6373 if (outrel[0].r_offset == MINUS_TWO)
6374 {
6375 /* The relocation field has been converted into a relative value of
6376 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6377 the field to be fully relocated, so add in the symbol's value. */
6378 *addendp += symbol;
6379 return TRUE;
6380 }
6381
6382 /* We must now calculate the dynamic symbol table index to use
6383 in the relocation. */
6384 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6385 {
6386 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6387 indx = h->root.dynindx;
6388 if (SGI_COMPAT (output_bfd))
6389 defined_p = h->root.def_regular;
6390 else
6391 /* ??? glibc's ld.so just adds the final GOT entry to the
6392 relocation field. It therefore treats relocs against
6393 defined symbols in the same way as relocs against
6394 undefined symbols. */
6395 defined_p = FALSE;
6396 }
6397 else
6398 {
6399 if (sec != NULL && bfd_is_abs_section (sec))
6400 indx = 0;
6401 else if (sec == NULL || sec->owner == NULL)
6402 {
6403 bfd_set_error (bfd_error_bad_value);
6404 return FALSE;
6405 }
6406 else
6407 {
6408 indx = elf_section_data (sec->output_section)->dynindx;
6409 if (indx == 0)
6410 {
6411 asection *osec = htab->root.text_index_section;
6412 indx = elf_section_data (osec)->dynindx;
6413 }
6414 if (indx == 0)
6415 abort ();
6416 }
6417
6418 /* Instead of generating a relocation using the section
6419 symbol, we may as well make it a fully relative
6420 relocation. We want to avoid generating relocations to
6421 local symbols because we used to generate them
6422 incorrectly, without adding the original symbol value,
6423 which is mandated by the ABI for section symbols. In
6424 order to give dynamic loaders and applications time to
6425 phase out the incorrect use, we refrain from emitting
6426 section-relative relocations. It's not like they're
6427 useful, after all. This should be a bit more efficient
6428 as well. */
6429 /* ??? Although this behavior is compatible with glibc's ld.so,
6430 the ABI says that relocations against STN_UNDEF should have
6431 a symbol value of 0. Irix rld honors this, so relocations
6432 against STN_UNDEF have no effect. */
6433 if (!SGI_COMPAT (output_bfd))
6434 indx = 0;
6435 defined_p = TRUE;
6436 }
6437
6438 /* If the relocation was previously an absolute relocation and
6439 this symbol will not be referred to by the relocation, we must
6440 adjust it by the value we give it in the dynamic symbol table.
6441 Otherwise leave the job up to the dynamic linker. */
6442 if (defined_p && r_type != R_MIPS_REL32)
6443 *addendp += symbol;
6444
6445 if (htab->is_vxworks)
6446 /* VxWorks uses non-relative relocations for this. */
6447 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6448 else
6449 /* The relocation is always an REL32 relocation because we don't
6450 know where the shared library will wind up at load-time. */
6451 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6452 R_MIPS_REL32);
6453
6454 /* For strict adherence to the ABI specification, we should
6455 generate a R_MIPS_64 relocation record by itself before the
6456 _REL32/_64 record as well, such that the addend is read in as
6457 a 64-bit value (REL32 is a 32-bit relocation, after all).
6458 However, since none of the existing ELF64 MIPS dynamic
6459 loaders seems to care, we don't waste space with these
6460 artificial relocations. If this turns out to not be true,
6461 mips_elf_allocate_dynamic_relocation() should be tweaked so
6462 as to make room for a pair of dynamic relocations per
6463 invocation if ABI_64_P, and here we should generate an
6464 additional relocation record with R_MIPS_64 by itself for a
6465 NULL symbol before this relocation record. */
6466 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6467 ABI_64_P (output_bfd)
6468 ? R_MIPS_64
6469 : R_MIPS_NONE);
6470 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6471
6472 /* Adjust the output offset of the relocation to reference the
6473 correct location in the output file. */
6474 outrel[0].r_offset += (input_section->output_section->vma
6475 + input_section->output_offset);
6476 outrel[1].r_offset += (input_section->output_section->vma
6477 + input_section->output_offset);
6478 outrel[2].r_offset += (input_section->output_section->vma
6479 + input_section->output_offset);
6480
6481 /* Put the relocation back out. We have to use the special
6482 relocation outputter in the 64-bit case since the 64-bit
6483 relocation format is non-standard. */
6484 if (ABI_64_P (output_bfd))
6485 {
6486 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6487 (output_bfd, &outrel[0],
6488 (sreloc->contents
6489 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6490 }
6491 else if (htab->is_vxworks)
6492 {
6493 /* VxWorks uses RELA rather than REL dynamic relocations. */
6494 outrel[0].r_addend = *addendp;
6495 bfd_elf32_swap_reloca_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents
6498 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6499 }
6500 else
6501 bfd_elf32_swap_reloc_out
6502 (output_bfd, &outrel[0],
6503 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6504
6505 /* We've now added another relocation. */
6506 ++sreloc->reloc_count;
6507
6508 /* Make sure the output section is writable. The dynamic linker
6509 will be writing to it. */
6510 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6511 |= SHF_WRITE;
6512
6513 /* On IRIX5, make an entry of compact relocation info. */
6514 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6515 {
6516 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6517 bfd_byte *cr;
6518
6519 if (scpt)
6520 {
6521 Elf32_crinfo cptrel;
6522
6523 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6524 cptrel.vaddr = (rel->r_offset
6525 + input_section->output_section->vma
6526 + input_section->output_offset);
6527 if (r_type == R_MIPS_REL32)
6528 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6529 else
6530 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6531 mips_elf_set_cr_dist2to (cptrel, 0);
6532 cptrel.konst = *addendp;
6533
6534 cr = (scpt->contents
6535 + sizeof (Elf32_External_compact_rel));
6536 mips_elf_set_cr_relvaddr (cptrel, 0);
6537 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6538 ((Elf32_External_crinfo *) cr
6539 + scpt->reloc_count));
6540 ++scpt->reloc_count;
6541 }
6542 }
6543
6544 /* If we've written this relocation for a readonly section,
6545 we need to set DF_TEXTREL again, so that we do not delete the
6546 DT_TEXTREL tag. */
6547 if (MIPS_ELF_READONLY_SECTION (input_section))
6548 info->flags |= DF_TEXTREL;
6549
6550 return TRUE;
6551 }
6552 \f
6553 /* Return the MACH for a MIPS e_flags value. */
6554
6555 unsigned long
6556 _bfd_elf_mips_mach (flagword flags)
6557 {
6558 switch (flags & EF_MIPS_MACH)
6559 {
6560 case E_MIPS_MACH_3900:
6561 return bfd_mach_mips3900;
6562
6563 case E_MIPS_MACH_4010:
6564 return bfd_mach_mips4010;
6565
6566 case E_MIPS_MACH_4100:
6567 return bfd_mach_mips4100;
6568
6569 case E_MIPS_MACH_4111:
6570 return bfd_mach_mips4111;
6571
6572 case E_MIPS_MACH_4120:
6573 return bfd_mach_mips4120;
6574
6575 case E_MIPS_MACH_4650:
6576 return bfd_mach_mips4650;
6577
6578 case E_MIPS_MACH_5400:
6579 return bfd_mach_mips5400;
6580
6581 case E_MIPS_MACH_5500:
6582 return bfd_mach_mips5500;
6583
6584 case E_MIPS_MACH_5900:
6585 return bfd_mach_mips5900;
6586
6587 case E_MIPS_MACH_9000:
6588 return bfd_mach_mips9000;
6589
6590 case E_MIPS_MACH_SB1:
6591 return bfd_mach_mips_sb1;
6592
6593 case E_MIPS_MACH_LS2E:
6594 return bfd_mach_mips_loongson_2e;
6595
6596 case E_MIPS_MACH_LS2F:
6597 return bfd_mach_mips_loongson_2f;
6598
6599 case E_MIPS_MACH_LS3A:
6600 return bfd_mach_mips_loongson_3a;
6601
6602 case E_MIPS_MACH_OCTEON3:
6603 return bfd_mach_mips_octeon3;
6604
6605 case E_MIPS_MACH_OCTEON2:
6606 return bfd_mach_mips_octeon2;
6607
6608 case E_MIPS_MACH_OCTEON:
6609 return bfd_mach_mips_octeon;
6610
6611 case E_MIPS_MACH_XLR:
6612 return bfd_mach_mips_xlr;
6613
6614 default:
6615 switch (flags & EF_MIPS_ARCH)
6616 {
6617 default:
6618 case E_MIPS_ARCH_1:
6619 return bfd_mach_mips3000;
6620
6621 case E_MIPS_ARCH_2:
6622 return bfd_mach_mips6000;
6623
6624 case E_MIPS_ARCH_3:
6625 return bfd_mach_mips4000;
6626
6627 case E_MIPS_ARCH_4:
6628 return bfd_mach_mips8000;
6629
6630 case E_MIPS_ARCH_5:
6631 return bfd_mach_mips5;
6632
6633 case E_MIPS_ARCH_32:
6634 return bfd_mach_mipsisa32;
6635
6636 case E_MIPS_ARCH_64:
6637 return bfd_mach_mipsisa64;
6638
6639 case E_MIPS_ARCH_32R2:
6640 return bfd_mach_mipsisa32r2;
6641
6642 case E_MIPS_ARCH_64R2:
6643 return bfd_mach_mipsisa64r2;
6644
6645 case E_MIPS_ARCH_32R6:
6646 return bfd_mach_mipsisa32r6;
6647
6648 case E_MIPS_ARCH_64R6:
6649 return bfd_mach_mipsisa64r6;
6650 }
6651 }
6652
6653 return 0;
6654 }
6655
6656 /* Return printable name for ABI. */
6657
6658 static INLINE char *
6659 elf_mips_abi_name (bfd *abfd)
6660 {
6661 flagword flags;
6662
6663 flags = elf_elfheader (abfd)->e_flags;
6664 switch (flags & EF_MIPS_ABI)
6665 {
6666 case 0:
6667 if (ABI_N32_P (abfd))
6668 return "N32";
6669 else if (ABI_64_P (abfd))
6670 return "64";
6671 else
6672 return "none";
6673 case E_MIPS_ABI_O32:
6674 return "O32";
6675 case E_MIPS_ABI_O64:
6676 return "O64";
6677 case E_MIPS_ABI_EABI32:
6678 return "EABI32";
6679 case E_MIPS_ABI_EABI64:
6680 return "EABI64";
6681 default:
6682 return "unknown abi";
6683 }
6684 }
6685 \f
6686 /* MIPS ELF uses two common sections. One is the usual one, and the
6687 other is for small objects. All the small objects are kept
6688 together, and then referenced via the gp pointer, which yields
6689 faster assembler code. This is what we use for the small common
6690 section. This approach is copied from ecoff.c. */
6691 static asection mips_elf_scom_section;
6692 static asymbol mips_elf_scom_symbol;
6693 static asymbol *mips_elf_scom_symbol_ptr;
6694
6695 /* MIPS ELF also uses an acommon section, which represents an
6696 allocated common symbol which may be overridden by a
6697 definition in a shared library. */
6698 static asection mips_elf_acom_section;
6699 static asymbol mips_elf_acom_symbol;
6700 static asymbol *mips_elf_acom_symbol_ptr;
6701
6702 /* This is used for both the 32-bit and the 64-bit ABI. */
6703
6704 void
6705 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6706 {
6707 elf_symbol_type *elfsym;
6708
6709 /* Handle the special MIPS section numbers that a symbol may use. */
6710 elfsym = (elf_symbol_type *) asym;
6711 switch (elfsym->internal_elf_sym.st_shndx)
6712 {
6713 case SHN_MIPS_ACOMMON:
6714 /* This section is used in a dynamically linked executable file.
6715 It is an allocated common section. The dynamic linker can
6716 either resolve these symbols to something in a shared
6717 library, or it can just leave them here. For our purposes,
6718 we can consider these symbols to be in a new section. */
6719 if (mips_elf_acom_section.name == NULL)
6720 {
6721 /* Initialize the acommon section. */
6722 mips_elf_acom_section.name = ".acommon";
6723 mips_elf_acom_section.flags = SEC_ALLOC;
6724 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6725 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6726 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6727 mips_elf_acom_symbol.name = ".acommon";
6728 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6729 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6730 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6731 }
6732 asym->section = &mips_elf_acom_section;
6733 break;
6734
6735 case SHN_COMMON:
6736 /* Common symbols less than the GP size are automatically
6737 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6738 if (asym->value > elf_gp_size (abfd)
6739 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6740 || IRIX_COMPAT (abfd) == ict_irix6)
6741 break;
6742 /* Fall through. */
6743 case SHN_MIPS_SCOMMON:
6744 if (mips_elf_scom_section.name == NULL)
6745 {
6746 /* Initialize the small common section. */
6747 mips_elf_scom_section.name = ".scommon";
6748 mips_elf_scom_section.flags = SEC_IS_COMMON;
6749 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6750 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6751 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6752 mips_elf_scom_symbol.name = ".scommon";
6753 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6754 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6755 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6756 }
6757 asym->section = &mips_elf_scom_section;
6758 asym->value = elfsym->internal_elf_sym.st_size;
6759 break;
6760
6761 case SHN_MIPS_SUNDEFINED:
6762 asym->section = bfd_und_section_ptr;
6763 break;
6764
6765 case SHN_MIPS_TEXT:
6766 {
6767 asection *section = bfd_get_section_by_name (abfd, ".text");
6768
6769 if (section != NULL)
6770 {
6771 asym->section = section;
6772 /* MIPS_TEXT is a bit special, the address is not an offset
6773 to the base of the .text section. So substract the section
6774 base address to make it an offset. */
6775 asym->value -= section->vma;
6776 }
6777 }
6778 break;
6779
6780 case SHN_MIPS_DATA:
6781 {
6782 asection *section = bfd_get_section_by_name (abfd, ".data");
6783
6784 if (section != NULL)
6785 {
6786 asym->section = section;
6787 /* MIPS_DATA is a bit special, the address is not an offset
6788 to the base of the .data section. So substract the section
6789 base address to make it an offset. */
6790 asym->value -= section->vma;
6791 }
6792 }
6793 break;
6794 }
6795
6796 /* If this is an odd-valued function symbol, assume it's a MIPS16
6797 or microMIPS one. */
6798 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6799 && (asym->value & 1) != 0)
6800 {
6801 asym->value--;
6802 if (MICROMIPS_P (abfd))
6803 elfsym->internal_elf_sym.st_other
6804 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6805 else
6806 elfsym->internal_elf_sym.st_other
6807 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6808 }
6809 }
6810 \f
6811 /* Implement elf_backend_eh_frame_address_size. This differs from
6812 the default in the way it handles EABI64.
6813
6814 EABI64 was originally specified as an LP64 ABI, and that is what
6815 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6816 historically accepted the combination of -mabi=eabi and -mlong32,
6817 and this ILP32 variation has become semi-official over time.
6818 Both forms use elf32 and have pointer-sized FDE addresses.
6819
6820 If an EABI object was generated by GCC 4.0 or above, it will have
6821 an empty .gcc_compiled_longXX section, where XX is the size of longs
6822 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6823 have no special marking to distinguish them from LP64 objects.
6824
6825 We don't want users of the official LP64 ABI to be punished for the
6826 existence of the ILP32 variant, but at the same time, we don't want
6827 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6828 We therefore take the following approach:
6829
6830 - If ABFD contains a .gcc_compiled_longXX section, use it to
6831 determine the pointer size.
6832
6833 - Otherwise check the type of the first relocation. Assume that
6834 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6835
6836 - Otherwise punt.
6837
6838 The second check is enough to detect LP64 objects generated by pre-4.0
6839 compilers because, in the kind of output generated by those compilers,
6840 the first relocation will be associated with either a CIE personality
6841 routine or an FDE start address. Furthermore, the compilers never
6842 used a special (non-pointer) encoding for this ABI.
6843
6844 Checking the relocation type should also be safe because there is no
6845 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6846 did so. */
6847
6848 unsigned int
6849 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6850 {
6851 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6852 return 8;
6853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6854 {
6855 bfd_boolean long32_p, long64_p;
6856
6857 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6858 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6859 if (long32_p && long64_p)
6860 return 0;
6861 if (long32_p)
6862 return 4;
6863 if (long64_p)
6864 return 8;
6865
6866 if (sec->reloc_count > 0
6867 && elf_section_data (sec)->relocs != NULL
6868 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6869 == R_MIPS_64))
6870 return 8;
6871
6872 return 0;
6873 }
6874 return 4;
6875 }
6876 \f
6877 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6878 relocations against two unnamed section symbols to resolve to the
6879 same address. For example, if we have code like:
6880
6881 lw $4,%got_disp(.data)($gp)
6882 lw $25,%got_disp(.text)($gp)
6883 jalr $25
6884
6885 then the linker will resolve both relocations to .data and the program
6886 will jump there rather than to .text.
6887
6888 We can work around this problem by giving names to local section symbols.
6889 This is also what the MIPSpro tools do. */
6890
6891 bfd_boolean
6892 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6893 {
6894 return SGI_COMPAT (abfd);
6895 }
6896 \f
6897 /* Work over a section just before writing it out. This routine is
6898 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6899 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6900 a better way. */
6901
6902 bfd_boolean
6903 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6904 {
6905 if (hdr->sh_type == SHT_MIPS_REGINFO
6906 && hdr->sh_size > 0)
6907 {
6908 bfd_byte buf[4];
6909
6910 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6911 BFD_ASSERT (hdr->contents == NULL);
6912
6913 if (bfd_seek (abfd,
6914 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6915 SEEK_SET) != 0)
6916 return FALSE;
6917 H_PUT_32 (abfd, elf_gp (abfd), buf);
6918 if (bfd_bwrite (buf, 4, abfd) != 4)
6919 return FALSE;
6920 }
6921
6922 if (hdr->sh_type == SHT_MIPS_OPTIONS
6923 && hdr->bfd_section != NULL
6924 && mips_elf_section_data (hdr->bfd_section) != NULL
6925 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6926 {
6927 bfd_byte *contents, *l, *lend;
6928
6929 /* We stored the section contents in the tdata field in the
6930 set_section_contents routine. We save the section contents
6931 so that we don't have to read them again.
6932 At this point we know that elf_gp is set, so we can look
6933 through the section contents to see if there is an
6934 ODK_REGINFO structure. */
6935
6936 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6937 l = contents;
6938 lend = contents + hdr->sh_size;
6939 while (l + sizeof (Elf_External_Options) <= lend)
6940 {
6941 Elf_Internal_Options intopt;
6942
6943 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6944 &intopt);
6945 if (intopt.size < sizeof (Elf_External_Options))
6946 {
6947 (*_bfd_error_handler)
6948 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6949 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6950 break;
6951 }
6952 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6953 {
6954 bfd_byte buf[8];
6955
6956 if (bfd_seek (abfd,
6957 (hdr->sh_offset
6958 + (l - contents)
6959 + sizeof (Elf_External_Options)
6960 + (sizeof (Elf64_External_RegInfo) - 8)),
6961 SEEK_SET) != 0)
6962 return FALSE;
6963 H_PUT_64 (abfd, elf_gp (abfd), buf);
6964 if (bfd_bwrite (buf, 8, abfd) != 8)
6965 return FALSE;
6966 }
6967 else if (intopt.kind == ODK_REGINFO)
6968 {
6969 bfd_byte buf[4];
6970
6971 if (bfd_seek (abfd,
6972 (hdr->sh_offset
6973 + (l - contents)
6974 + sizeof (Elf_External_Options)
6975 + (sizeof (Elf32_External_RegInfo) - 4)),
6976 SEEK_SET) != 0)
6977 return FALSE;
6978 H_PUT_32 (abfd, elf_gp (abfd), buf);
6979 if (bfd_bwrite (buf, 4, abfd) != 4)
6980 return FALSE;
6981 }
6982 l += intopt.size;
6983 }
6984 }
6985
6986 if (hdr->bfd_section != NULL)
6987 {
6988 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6989
6990 /* .sbss is not handled specially here because the GNU/Linux
6991 prelinker can convert .sbss from NOBITS to PROGBITS and
6992 changing it back to NOBITS breaks the binary. The entry in
6993 _bfd_mips_elf_special_sections will ensure the correct flags
6994 are set on .sbss if BFD creates it without reading it from an
6995 input file, and without special handling here the flags set
6996 on it in an input file will be followed. */
6997 if (strcmp (name, ".sdata") == 0
6998 || strcmp (name, ".lit8") == 0
6999 || strcmp (name, ".lit4") == 0)
7000 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7001 else if (strcmp (name, ".srdata") == 0)
7002 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7003 else if (strcmp (name, ".compact_rel") == 0)
7004 hdr->sh_flags = 0;
7005 else if (strcmp (name, ".rtproc") == 0)
7006 {
7007 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7008 {
7009 unsigned int adjust;
7010
7011 adjust = hdr->sh_size % hdr->sh_addralign;
7012 if (adjust != 0)
7013 hdr->sh_size += hdr->sh_addralign - adjust;
7014 }
7015 }
7016 }
7017
7018 return TRUE;
7019 }
7020
7021 /* Handle a MIPS specific section when reading an object file. This
7022 is called when elfcode.h finds a section with an unknown type.
7023 This routine supports both the 32-bit and 64-bit ELF ABI.
7024
7025 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7026 how to. */
7027
7028 bfd_boolean
7029 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7030 Elf_Internal_Shdr *hdr,
7031 const char *name,
7032 int shindex)
7033 {
7034 flagword flags = 0;
7035
7036 /* There ought to be a place to keep ELF backend specific flags, but
7037 at the moment there isn't one. We just keep track of the
7038 sections by their name, instead. Fortunately, the ABI gives
7039 suggested names for all the MIPS specific sections, so we will
7040 probably get away with this. */
7041 switch (hdr->sh_type)
7042 {
7043 case SHT_MIPS_LIBLIST:
7044 if (strcmp (name, ".liblist") != 0)
7045 return FALSE;
7046 break;
7047 case SHT_MIPS_MSYM:
7048 if (strcmp (name, ".msym") != 0)
7049 return FALSE;
7050 break;
7051 case SHT_MIPS_CONFLICT:
7052 if (strcmp (name, ".conflict") != 0)
7053 return FALSE;
7054 break;
7055 case SHT_MIPS_GPTAB:
7056 if (! CONST_STRNEQ (name, ".gptab."))
7057 return FALSE;
7058 break;
7059 case SHT_MIPS_UCODE:
7060 if (strcmp (name, ".ucode") != 0)
7061 return FALSE;
7062 break;
7063 case SHT_MIPS_DEBUG:
7064 if (strcmp (name, ".mdebug") != 0)
7065 return FALSE;
7066 flags = SEC_DEBUGGING;
7067 break;
7068 case SHT_MIPS_REGINFO:
7069 if (strcmp (name, ".reginfo") != 0
7070 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7071 return FALSE;
7072 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7073 break;
7074 case SHT_MIPS_IFACE:
7075 if (strcmp (name, ".MIPS.interfaces") != 0)
7076 return FALSE;
7077 break;
7078 case SHT_MIPS_CONTENT:
7079 if (! CONST_STRNEQ (name, ".MIPS.content"))
7080 return FALSE;
7081 break;
7082 case SHT_MIPS_OPTIONS:
7083 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7084 return FALSE;
7085 break;
7086 case SHT_MIPS_ABIFLAGS:
7087 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7088 return FALSE;
7089 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7090 break;
7091 case SHT_MIPS_DWARF:
7092 if (! CONST_STRNEQ (name, ".debug_")
7093 && ! CONST_STRNEQ (name, ".zdebug_"))
7094 return FALSE;
7095 break;
7096 case SHT_MIPS_SYMBOL_LIB:
7097 if (strcmp (name, ".MIPS.symlib") != 0)
7098 return FALSE;
7099 break;
7100 case SHT_MIPS_EVENTS:
7101 if (! CONST_STRNEQ (name, ".MIPS.events")
7102 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7103 return FALSE;
7104 break;
7105 default:
7106 break;
7107 }
7108
7109 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7110 return FALSE;
7111
7112 if (flags)
7113 {
7114 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7115 (bfd_get_section_flags (abfd,
7116 hdr->bfd_section)
7117 | flags)))
7118 return FALSE;
7119 }
7120
7121 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7122 {
7123 Elf_External_ABIFlags_v0 ext;
7124
7125 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7126 &ext, 0, sizeof ext))
7127 return FALSE;
7128 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7129 &mips_elf_tdata (abfd)->abiflags);
7130 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7131 return FALSE;
7132 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7133 }
7134
7135 /* FIXME: We should record sh_info for a .gptab section. */
7136
7137 /* For a .reginfo section, set the gp value in the tdata information
7138 from the contents of this section. We need the gp value while
7139 processing relocs, so we just get it now. The .reginfo section
7140 is not used in the 64-bit MIPS ELF ABI. */
7141 if (hdr->sh_type == SHT_MIPS_REGINFO)
7142 {
7143 Elf32_External_RegInfo ext;
7144 Elf32_RegInfo s;
7145
7146 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7147 &ext, 0, sizeof ext))
7148 return FALSE;
7149 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7150 elf_gp (abfd) = s.ri_gp_value;
7151 }
7152
7153 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7154 set the gp value based on what we find. We may see both
7155 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7156 they should agree. */
7157 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7158 {
7159 bfd_byte *contents, *l, *lend;
7160
7161 contents = bfd_malloc (hdr->sh_size);
7162 if (contents == NULL)
7163 return FALSE;
7164 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7165 0, hdr->sh_size))
7166 {
7167 free (contents);
7168 return FALSE;
7169 }
7170 l = contents;
7171 lend = contents + hdr->sh_size;
7172 while (l + sizeof (Elf_External_Options) <= lend)
7173 {
7174 Elf_Internal_Options intopt;
7175
7176 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7177 &intopt);
7178 if (intopt.size < sizeof (Elf_External_Options))
7179 {
7180 (*_bfd_error_handler)
7181 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7182 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7183 break;
7184 }
7185 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7186 {
7187 Elf64_Internal_RegInfo intreg;
7188
7189 bfd_mips_elf64_swap_reginfo_in
7190 (abfd,
7191 ((Elf64_External_RegInfo *)
7192 (l + sizeof (Elf_External_Options))),
7193 &intreg);
7194 elf_gp (abfd) = intreg.ri_gp_value;
7195 }
7196 else if (intopt.kind == ODK_REGINFO)
7197 {
7198 Elf32_RegInfo intreg;
7199
7200 bfd_mips_elf32_swap_reginfo_in
7201 (abfd,
7202 ((Elf32_External_RegInfo *)
7203 (l + sizeof (Elf_External_Options))),
7204 &intreg);
7205 elf_gp (abfd) = intreg.ri_gp_value;
7206 }
7207 l += intopt.size;
7208 }
7209 free (contents);
7210 }
7211
7212 return TRUE;
7213 }
7214
7215 /* Set the correct type for a MIPS ELF section. We do this by the
7216 section name, which is a hack, but ought to work. This routine is
7217 used by both the 32-bit and the 64-bit ABI. */
7218
7219 bfd_boolean
7220 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7221 {
7222 const char *name = bfd_get_section_name (abfd, sec);
7223
7224 if (strcmp (name, ".liblist") == 0)
7225 {
7226 hdr->sh_type = SHT_MIPS_LIBLIST;
7227 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7228 /* The sh_link field is set in final_write_processing. */
7229 }
7230 else if (strcmp (name, ".conflict") == 0)
7231 hdr->sh_type = SHT_MIPS_CONFLICT;
7232 else if (CONST_STRNEQ (name, ".gptab."))
7233 {
7234 hdr->sh_type = SHT_MIPS_GPTAB;
7235 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7236 /* The sh_info field is set in final_write_processing. */
7237 }
7238 else if (strcmp (name, ".ucode") == 0)
7239 hdr->sh_type = SHT_MIPS_UCODE;
7240 else if (strcmp (name, ".mdebug") == 0)
7241 {
7242 hdr->sh_type = SHT_MIPS_DEBUG;
7243 /* In a shared object on IRIX 5.3, the .mdebug section has an
7244 entsize of 0. FIXME: Does this matter? */
7245 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7246 hdr->sh_entsize = 0;
7247 else
7248 hdr->sh_entsize = 1;
7249 }
7250 else if (strcmp (name, ".reginfo") == 0)
7251 {
7252 hdr->sh_type = SHT_MIPS_REGINFO;
7253 /* In a shared object on IRIX 5.3, the .reginfo section has an
7254 entsize of 0x18. FIXME: Does this matter? */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if ((abfd->flags & DYNAMIC) != 0)
7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 else
7260 hdr->sh_entsize = 1;
7261 }
7262 else
7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7264 }
7265 else if (SGI_COMPAT (abfd)
7266 && (strcmp (name, ".hash") == 0
7267 || strcmp (name, ".dynamic") == 0
7268 || strcmp (name, ".dynstr") == 0))
7269 {
7270 if (SGI_COMPAT (abfd))
7271 hdr->sh_entsize = 0;
7272 #if 0
7273 /* This isn't how the IRIX6 linker behaves. */
7274 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7275 #endif
7276 }
7277 else if (strcmp (name, ".got") == 0
7278 || strcmp (name, ".srdata") == 0
7279 || strcmp (name, ".sdata") == 0
7280 || strcmp (name, ".sbss") == 0
7281 || strcmp (name, ".lit4") == 0
7282 || strcmp (name, ".lit8") == 0)
7283 hdr->sh_flags |= SHF_MIPS_GPREL;
7284 else if (strcmp (name, ".MIPS.interfaces") == 0)
7285 {
7286 hdr->sh_type = SHT_MIPS_IFACE;
7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7288 }
7289 else if (CONST_STRNEQ (name, ".MIPS.content"))
7290 {
7291 hdr->sh_type = SHT_MIPS_CONTENT;
7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7293 /* The sh_info field is set in final_write_processing. */
7294 }
7295 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7296 {
7297 hdr->sh_type = SHT_MIPS_OPTIONS;
7298 hdr->sh_entsize = 1;
7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7300 }
7301 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7302 {
7303 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7304 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7305 }
7306 else if (CONST_STRNEQ (name, ".debug_")
7307 || CONST_STRNEQ (name, ".zdebug_"))
7308 {
7309 hdr->sh_type = SHT_MIPS_DWARF;
7310
7311 /* Irix facilities such as libexc expect a single .debug_frame
7312 per executable, the system ones have NOSTRIP set and the linker
7313 doesn't merge sections with different flags so ... */
7314 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7315 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7316 }
7317 else if (strcmp (name, ".MIPS.symlib") == 0)
7318 {
7319 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7320 /* The sh_link and sh_info fields are set in
7321 final_write_processing. */
7322 }
7323 else if (CONST_STRNEQ (name, ".MIPS.events")
7324 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7325 {
7326 hdr->sh_type = SHT_MIPS_EVENTS;
7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7328 /* The sh_link field is set in final_write_processing. */
7329 }
7330 else if (strcmp (name, ".msym") == 0)
7331 {
7332 hdr->sh_type = SHT_MIPS_MSYM;
7333 hdr->sh_flags |= SHF_ALLOC;
7334 hdr->sh_entsize = 8;
7335 }
7336
7337 /* The generic elf_fake_sections will set up REL_HDR using the default
7338 kind of relocations. We used to set up a second header for the
7339 non-default kind of relocations here, but only NewABI would use
7340 these, and the IRIX ld doesn't like resulting empty RELA sections.
7341 Thus we create those header only on demand now. */
7342
7343 return TRUE;
7344 }
7345
7346 /* Given a BFD section, try to locate the corresponding ELF section
7347 index. This is used by both the 32-bit and the 64-bit ABI.
7348 Actually, it's not clear to me that the 64-bit ABI supports these,
7349 but for non-PIC objects we will certainly want support for at least
7350 the .scommon section. */
7351
7352 bfd_boolean
7353 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7354 asection *sec, int *retval)
7355 {
7356 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7357 {
7358 *retval = SHN_MIPS_SCOMMON;
7359 return TRUE;
7360 }
7361 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7362 {
7363 *retval = SHN_MIPS_ACOMMON;
7364 return TRUE;
7365 }
7366 return FALSE;
7367 }
7368 \f
7369 /* Hook called by the linker routine which adds symbols from an object
7370 file. We must handle the special MIPS section numbers here. */
7371
7372 bfd_boolean
7373 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7374 Elf_Internal_Sym *sym, const char **namep,
7375 flagword *flagsp ATTRIBUTE_UNUSED,
7376 asection **secp, bfd_vma *valp)
7377 {
7378 if (SGI_COMPAT (abfd)
7379 && (abfd->flags & DYNAMIC) != 0
7380 && strcmp (*namep, "_rld_new_interface") == 0)
7381 {
7382 /* Skip IRIX5 rld entry name. */
7383 *namep = NULL;
7384 return TRUE;
7385 }
7386
7387 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7388 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7389 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7390 a magic symbol resolved by the linker, we ignore this bogus definition
7391 of _gp_disp. New ABI objects do not suffer from this problem so this
7392 is not done for them. */
7393 if (!NEWABI_P(abfd)
7394 && (sym->st_shndx == SHN_ABS)
7395 && (strcmp (*namep, "_gp_disp") == 0))
7396 {
7397 *namep = NULL;
7398 return TRUE;
7399 }
7400
7401 switch (sym->st_shndx)
7402 {
7403 case SHN_COMMON:
7404 /* Common symbols less than the GP size are automatically
7405 treated as SHN_MIPS_SCOMMON symbols. */
7406 if (sym->st_size > elf_gp_size (abfd)
7407 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7408 || IRIX_COMPAT (abfd) == ict_irix6)
7409 break;
7410 /* Fall through. */
7411 case SHN_MIPS_SCOMMON:
7412 *secp = bfd_make_section_old_way (abfd, ".scommon");
7413 (*secp)->flags |= SEC_IS_COMMON;
7414 *valp = sym->st_size;
7415 break;
7416
7417 case SHN_MIPS_TEXT:
7418 /* This section is used in a shared object. */
7419 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7420 {
7421 asymbol *elf_text_symbol;
7422 asection *elf_text_section;
7423 bfd_size_type amt = sizeof (asection);
7424
7425 elf_text_section = bfd_zalloc (abfd, amt);
7426 if (elf_text_section == NULL)
7427 return FALSE;
7428
7429 amt = sizeof (asymbol);
7430 elf_text_symbol = bfd_zalloc (abfd, amt);
7431 if (elf_text_symbol == NULL)
7432 return FALSE;
7433
7434 /* Initialize the section. */
7435
7436 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7437 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7438
7439 elf_text_section->symbol = elf_text_symbol;
7440 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7441
7442 elf_text_section->name = ".text";
7443 elf_text_section->flags = SEC_NO_FLAGS;
7444 elf_text_section->output_section = NULL;
7445 elf_text_section->owner = abfd;
7446 elf_text_symbol->name = ".text";
7447 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7448 elf_text_symbol->section = elf_text_section;
7449 }
7450 /* This code used to do *secp = bfd_und_section_ptr if
7451 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7452 so I took it out. */
7453 *secp = mips_elf_tdata (abfd)->elf_text_section;
7454 break;
7455
7456 case SHN_MIPS_ACOMMON:
7457 /* Fall through. XXX Can we treat this as allocated data? */
7458 case SHN_MIPS_DATA:
7459 /* This section is used in a shared object. */
7460 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7461 {
7462 asymbol *elf_data_symbol;
7463 asection *elf_data_section;
7464 bfd_size_type amt = sizeof (asection);
7465
7466 elf_data_section = bfd_zalloc (abfd, amt);
7467 if (elf_data_section == NULL)
7468 return FALSE;
7469
7470 amt = sizeof (asymbol);
7471 elf_data_symbol = bfd_zalloc (abfd, amt);
7472 if (elf_data_symbol == NULL)
7473 return FALSE;
7474
7475 /* Initialize the section. */
7476
7477 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7478 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7479
7480 elf_data_section->symbol = elf_data_symbol;
7481 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7482
7483 elf_data_section->name = ".data";
7484 elf_data_section->flags = SEC_NO_FLAGS;
7485 elf_data_section->output_section = NULL;
7486 elf_data_section->owner = abfd;
7487 elf_data_symbol->name = ".data";
7488 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7489 elf_data_symbol->section = elf_data_section;
7490 }
7491 /* This code used to do *secp = bfd_und_section_ptr if
7492 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7493 so I took it out. */
7494 *secp = mips_elf_tdata (abfd)->elf_data_section;
7495 break;
7496
7497 case SHN_MIPS_SUNDEFINED:
7498 *secp = bfd_und_section_ptr;
7499 break;
7500 }
7501
7502 if (SGI_COMPAT (abfd)
7503 && ! bfd_link_pic (info)
7504 && info->output_bfd->xvec == abfd->xvec
7505 && strcmp (*namep, "__rld_obj_head") == 0)
7506 {
7507 struct elf_link_hash_entry *h;
7508 struct bfd_link_hash_entry *bh;
7509
7510 /* Mark __rld_obj_head as dynamic. */
7511 bh = NULL;
7512 if (! (_bfd_generic_link_add_one_symbol
7513 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7514 get_elf_backend_data (abfd)->collect, &bh)))
7515 return FALSE;
7516
7517 h = (struct elf_link_hash_entry *) bh;
7518 h->non_elf = 0;
7519 h->def_regular = 1;
7520 h->type = STT_OBJECT;
7521
7522 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7523 return FALSE;
7524
7525 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7526 mips_elf_hash_table (info)->rld_symbol = h;
7527 }
7528
7529 /* If this is a mips16 text symbol, add 1 to the value to make it
7530 odd. This will cause something like .word SYM to come up with
7531 the right value when it is loaded into the PC. */
7532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7533 ++*valp;
7534
7535 return TRUE;
7536 }
7537
7538 /* This hook function is called before the linker writes out a global
7539 symbol. We mark symbols as small common if appropriate. This is
7540 also where we undo the increment of the value for a mips16 symbol. */
7541
7542 int
7543 _bfd_mips_elf_link_output_symbol_hook
7544 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7545 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7546 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7547 {
7548 /* If we see a common symbol, which implies a relocatable link, then
7549 if a symbol was small common in an input file, mark it as small
7550 common in the output file. */
7551 if (sym->st_shndx == SHN_COMMON
7552 && strcmp (input_sec->name, ".scommon") == 0)
7553 sym->st_shndx = SHN_MIPS_SCOMMON;
7554
7555 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7556 sym->st_value &= ~1;
7557
7558 return 1;
7559 }
7560 \f
7561 /* Functions for the dynamic linker. */
7562
7563 /* Create dynamic sections when linking against a dynamic object. */
7564
7565 bfd_boolean
7566 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7567 {
7568 struct elf_link_hash_entry *h;
7569 struct bfd_link_hash_entry *bh;
7570 flagword flags;
7571 register asection *s;
7572 const char * const *namep;
7573 struct mips_elf_link_hash_table *htab;
7574
7575 htab = mips_elf_hash_table (info);
7576 BFD_ASSERT (htab != NULL);
7577
7578 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7579 | SEC_LINKER_CREATED | SEC_READONLY);
7580
7581 /* The psABI requires a read-only .dynamic section, but the VxWorks
7582 EABI doesn't. */
7583 if (!htab->is_vxworks)
7584 {
7585 s = bfd_get_linker_section (abfd, ".dynamic");
7586 if (s != NULL)
7587 {
7588 if (! bfd_set_section_flags (abfd, s, flags))
7589 return FALSE;
7590 }
7591 }
7592
7593 /* We need to create .got section. */
7594 if (!mips_elf_create_got_section (abfd, info))
7595 return FALSE;
7596
7597 if (! mips_elf_rel_dyn_section (info, TRUE))
7598 return FALSE;
7599
7600 /* Create .stub section. */
7601 s = bfd_make_section_anyway_with_flags (abfd,
7602 MIPS_ELF_STUB_SECTION_NAME (abfd),
7603 flags | SEC_CODE);
7604 if (s == NULL
7605 || ! bfd_set_section_alignment (abfd, s,
7606 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7607 return FALSE;
7608 htab->sstubs = s;
7609
7610 if (!mips_elf_hash_table (info)->use_rld_obj_head
7611 && bfd_link_executable (info)
7612 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7613 {
7614 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7615 flags &~ (flagword) SEC_READONLY);
7616 if (s == NULL
7617 || ! bfd_set_section_alignment (abfd, s,
7618 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7619 return FALSE;
7620 }
7621
7622 /* On IRIX5, we adjust add some additional symbols and change the
7623 alignments of several sections. There is no ABI documentation
7624 indicating that this is necessary on IRIX6, nor any evidence that
7625 the linker takes such action. */
7626 if (IRIX_COMPAT (abfd) == ict_irix5)
7627 {
7628 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7629 {
7630 bh = NULL;
7631 if (! (_bfd_generic_link_add_one_symbol
7632 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7633 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7634 return FALSE;
7635
7636 h = (struct elf_link_hash_entry *) bh;
7637 h->non_elf = 0;
7638 h->def_regular = 1;
7639 h->type = STT_SECTION;
7640
7641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7642 return FALSE;
7643 }
7644
7645 /* We need to create a .compact_rel section. */
7646 if (SGI_COMPAT (abfd))
7647 {
7648 if (!mips_elf_create_compact_rel_section (abfd, info))
7649 return FALSE;
7650 }
7651
7652 /* Change alignments of some sections. */
7653 s = bfd_get_linker_section (abfd, ".hash");
7654 if (s != NULL)
7655 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7656
7657 s = bfd_get_linker_section (abfd, ".dynsym");
7658 if (s != NULL)
7659 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7660
7661 s = bfd_get_linker_section (abfd, ".dynstr");
7662 if (s != NULL)
7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664
7665 /* ??? */
7666 s = bfd_get_section_by_name (abfd, ".reginfo");
7667 if (s != NULL)
7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669
7670 s = bfd_get_linker_section (abfd, ".dynamic");
7671 if (s != NULL)
7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7673 }
7674
7675 if (bfd_link_executable (info))
7676 {
7677 const char *name;
7678
7679 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7680 bh = NULL;
7681 if (!(_bfd_generic_link_add_one_symbol
7682 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7683 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7684 return FALSE;
7685
7686 h = (struct elf_link_hash_entry *) bh;
7687 h->non_elf = 0;
7688 h->def_regular = 1;
7689 h->type = STT_SECTION;
7690
7691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7692 return FALSE;
7693
7694 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7695 {
7696 /* __rld_map is a four byte word located in the .data section
7697 and is filled in by the rtld to contain a pointer to
7698 the _r_debug structure. Its symbol value will be set in
7699 _bfd_mips_elf_finish_dynamic_symbol. */
7700 s = bfd_get_linker_section (abfd, ".rld_map");
7701 BFD_ASSERT (s != NULL);
7702
7703 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7704 bh = NULL;
7705 if (!(_bfd_generic_link_add_one_symbol
7706 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7707 get_elf_backend_data (abfd)->collect, &bh)))
7708 return FALSE;
7709
7710 h = (struct elf_link_hash_entry *) bh;
7711 h->non_elf = 0;
7712 h->def_regular = 1;
7713 h->type = STT_OBJECT;
7714
7715 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7716 return FALSE;
7717 mips_elf_hash_table (info)->rld_symbol = h;
7718 }
7719 }
7720
7721 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7722 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7723 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7724 return FALSE;
7725
7726 /* Cache the sections created above. */
7727 htab->splt = bfd_get_linker_section (abfd, ".plt");
7728 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7729 if (htab->is_vxworks)
7730 {
7731 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7732 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7733 }
7734 else
7735 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7736 if (!htab->sdynbss
7737 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7738 || !htab->srelplt
7739 || !htab->splt)
7740 abort ();
7741
7742 /* Do the usual VxWorks handling. */
7743 if (htab->is_vxworks
7744 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7745 return FALSE;
7746
7747 return TRUE;
7748 }
7749 \f
7750 /* Return true if relocation REL against section SEC is a REL rather than
7751 RELA relocation. RELOCS is the first relocation in the section and
7752 ABFD is the bfd that contains SEC. */
7753
7754 static bfd_boolean
7755 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7756 const Elf_Internal_Rela *relocs,
7757 const Elf_Internal_Rela *rel)
7758 {
7759 Elf_Internal_Shdr *rel_hdr;
7760 const struct elf_backend_data *bed;
7761
7762 /* To determine which flavor of relocation this is, we depend on the
7763 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7764 rel_hdr = elf_section_data (sec)->rel.hdr;
7765 if (rel_hdr == NULL)
7766 return FALSE;
7767 bed = get_elf_backend_data (abfd);
7768 return ((size_t) (rel - relocs)
7769 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7770 }
7771
7772 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7773 HOWTO is the relocation's howto and CONTENTS points to the contents
7774 of the section that REL is against. */
7775
7776 static bfd_vma
7777 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7778 reloc_howto_type *howto, bfd_byte *contents)
7779 {
7780 bfd_byte *location;
7781 unsigned int r_type;
7782 bfd_vma addend;
7783 bfd_vma bytes;
7784
7785 r_type = ELF_R_TYPE (abfd, rel->r_info);
7786 location = contents + rel->r_offset;
7787
7788 /* Get the addend, which is stored in the input file. */
7789 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7790 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7791 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7792
7793 addend = bytes & howto->src_mask;
7794
7795 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7796 accordingly. */
7797 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7798 addend <<= 1;
7799
7800 return addend;
7801 }
7802
7803 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7804 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7805 and update *ADDEND with the final addend. Return true on success
7806 or false if the LO16 could not be found. RELEND is the exclusive
7807 upper bound on the relocations for REL's section. */
7808
7809 static bfd_boolean
7810 mips_elf_add_lo16_rel_addend (bfd *abfd,
7811 const Elf_Internal_Rela *rel,
7812 const Elf_Internal_Rela *relend,
7813 bfd_byte *contents, bfd_vma *addend)
7814 {
7815 unsigned int r_type, lo16_type;
7816 const Elf_Internal_Rela *lo16_relocation;
7817 reloc_howto_type *lo16_howto;
7818 bfd_vma l;
7819
7820 r_type = ELF_R_TYPE (abfd, rel->r_info);
7821 if (mips16_reloc_p (r_type))
7822 lo16_type = R_MIPS16_LO16;
7823 else if (micromips_reloc_p (r_type))
7824 lo16_type = R_MICROMIPS_LO16;
7825 else if (r_type == R_MIPS_PCHI16)
7826 lo16_type = R_MIPS_PCLO16;
7827 else
7828 lo16_type = R_MIPS_LO16;
7829
7830 /* The combined value is the sum of the HI16 addend, left-shifted by
7831 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7832 code does a `lui' of the HI16 value, and then an `addiu' of the
7833 LO16 value.)
7834
7835 Scan ahead to find a matching LO16 relocation.
7836
7837 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7838 be immediately following. However, for the IRIX6 ABI, the next
7839 relocation may be a composed relocation consisting of several
7840 relocations for the same address. In that case, the R_MIPS_LO16
7841 relocation may occur as one of these. We permit a similar
7842 extension in general, as that is useful for GCC.
7843
7844 In some cases GCC dead code elimination removes the LO16 but keeps
7845 the corresponding HI16. This is strictly speaking a violation of
7846 the ABI but not immediately harmful. */
7847 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7848 if (lo16_relocation == NULL)
7849 return FALSE;
7850
7851 /* Obtain the addend kept there. */
7852 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7853 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7854
7855 l <<= lo16_howto->rightshift;
7856 l = _bfd_mips_elf_sign_extend (l, 16);
7857
7858 *addend <<= 16;
7859 *addend += l;
7860 return TRUE;
7861 }
7862
7863 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7864 store the contents in *CONTENTS on success. Assume that *CONTENTS
7865 already holds the contents if it is nonull on entry. */
7866
7867 static bfd_boolean
7868 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7869 {
7870 if (*contents)
7871 return TRUE;
7872
7873 /* Get cached copy if it exists. */
7874 if (elf_section_data (sec)->this_hdr.contents != NULL)
7875 {
7876 *contents = elf_section_data (sec)->this_hdr.contents;
7877 return TRUE;
7878 }
7879
7880 return bfd_malloc_and_get_section (abfd, sec, contents);
7881 }
7882
7883 /* Make a new PLT record to keep internal data. */
7884
7885 static struct plt_entry *
7886 mips_elf_make_plt_record (bfd *abfd)
7887 {
7888 struct plt_entry *entry;
7889
7890 entry = bfd_zalloc (abfd, sizeof (*entry));
7891 if (entry == NULL)
7892 return NULL;
7893
7894 entry->stub_offset = MINUS_ONE;
7895 entry->mips_offset = MINUS_ONE;
7896 entry->comp_offset = MINUS_ONE;
7897 entry->gotplt_index = MINUS_ONE;
7898 return entry;
7899 }
7900
7901 /* Look through the relocs for a section during the first phase, and
7902 allocate space in the global offset table and record the need for
7903 standard MIPS and compressed procedure linkage table entries. */
7904
7905 bfd_boolean
7906 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7907 asection *sec, const Elf_Internal_Rela *relocs)
7908 {
7909 const char *name;
7910 bfd *dynobj;
7911 Elf_Internal_Shdr *symtab_hdr;
7912 struct elf_link_hash_entry **sym_hashes;
7913 size_t extsymoff;
7914 const Elf_Internal_Rela *rel;
7915 const Elf_Internal_Rela *rel_end;
7916 asection *sreloc;
7917 const struct elf_backend_data *bed;
7918 struct mips_elf_link_hash_table *htab;
7919 bfd_byte *contents;
7920 bfd_vma addend;
7921 reloc_howto_type *howto;
7922
7923 if (bfd_link_relocatable (info))
7924 return TRUE;
7925
7926 htab = mips_elf_hash_table (info);
7927 BFD_ASSERT (htab != NULL);
7928
7929 dynobj = elf_hash_table (info)->dynobj;
7930 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7931 sym_hashes = elf_sym_hashes (abfd);
7932 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7933
7934 bed = get_elf_backend_data (abfd);
7935 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7936
7937 /* Check for the mips16 stub sections. */
7938
7939 name = bfd_get_section_name (abfd, sec);
7940 if (FN_STUB_P (name))
7941 {
7942 unsigned long r_symndx;
7943
7944 /* Look at the relocation information to figure out which symbol
7945 this is for. */
7946
7947 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7948 if (r_symndx == 0)
7949 {
7950 (*_bfd_error_handler)
7951 (_("%B: Warning: cannot determine the target function for"
7952 " stub section `%s'"),
7953 abfd, name);
7954 bfd_set_error (bfd_error_bad_value);
7955 return FALSE;
7956 }
7957
7958 if (r_symndx < extsymoff
7959 || sym_hashes[r_symndx - extsymoff] == NULL)
7960 {
7961 asection *o;
7962
7963 /* This stub is for a local symbol. This stub will only be
7964 needed if there is some relocation in this BFD, other
7965 than a 16 bit function call, which refers to this symbol. */
7966 for (o = abfd->sections; o != NULL; o = o->next)
7967 {
7968 Elf_Internal_Rela *sec_relocs;
7969 const Elf_Internal_Rela *r, *rend;
7970
7971 /* We can ignore stub sections when looking for relocs. */
7972 if ((o->flags & SEC_RELOC) == 0
7973 || o->reloc_count == 0
7974 || section_allows_mips16_refs_p (o))
7975 continue;
7976
7977 sec_relocs
7978 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7979 info->keep_memory);
7980 if (sec_relocs == NULL)
7981 return FALSE;
7982
7983 rend = sec_relocs + o->reloc_count;
7984 for (r = sec_relocs; r < rend; r++)
7985 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7986 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7987 break;
7988
7989 if (elf_section_data (o)->relocs != sec_relocs)
7990 free (sec_relocs);
7991
7992 if (r < rend)
7993 break;
7994 }
7995
7996 if (o == NULL)
7997 {
7998 /* There is no non-call reloc for this stub, so we do
7999 not need it. Since this function is called before
8000 the linker maps input sections to output sections, we
8001 can easily discard it by setting the SEC_EXCLUDE
8002 flag. */
8003 sec->flags |= SEC_EXCLUDE;
8004 return TRUE;
8005 }
8006
8007 /* Record this stub in an array of local symbol stubs for
8008 this BFD. */
8009 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8010 {
8011 unsigned long symcount;
8012 asection **n;
8013 bfd_size_type amt;
8014
8015 if (elf_bad_symtab (abfd))
8016 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8017 else
8018 symcount = symtab_hdr->sh_info;
8019 amt = symcount * sizeof (asection *);
8020 n = bfd_zalloc (abfd, amt);
8021 if (n == NULL)
8022 return FALSE;
8023 mips_elf_tdata (abfd)->local_stubs = n;
8024 }
8025
8026 sec->flags |= SEC_KEEP;
8027 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8028
8029 /* We don't need to set mips16_stubs_seen in this case.
8030 That flag is used to see whether we need to look through
8031 the global symbol table for stubs. We don't need to set
8032 it here, because we just have a local stub. */
8033 }
8034 else
8035 {
8036 struct mips_elf_link_hash_entry *h;
8037
8038 h = ((struct mips_elf_link_hash_entry *)
8039 sym_hashes[r_symndx - extsymoff]);
8040
8041 while (h->root.root.type == bfd_link_hash_indirect
8042 || h->root.root.type == bfd_link_hash_warning)
8043 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8044
8045 /* H is the symbol this stub is for. */
8046
8047 /* If we already have an appropriate stub for this function, we
8048 don't need another one, so we can discard this one. Since
8049 this function is called before the linker maps input sections
8050 to output sections, we can easily discard it by setting the
8051 SEC_EXCLUDE flag. */
8052 if (h->fn_stub != NULL)
8053 {
8054 sec->flags |= SEC_EXCLUDE;
8055 return TRUE;
8056 }
8057
8058 sec->flags |= SEC_KEEP;
8059 h->fn_stub = sec;
8060 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8061 }
8062 }
8063 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8064 {
8065 unsigned long r_symndx;
8066 struct mips_elf_link_hash_entry *h;
8067 asection **loc;
8068
8069 /* Look at the relocation information to figure out which symbol
8070 this is for. */
8071
8072 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8073 if (r_symndx == 0)
8074 {
8075 (*_bfd_error_handler)
8076 (_("%B: Warning: cannot determine the target function for"
8077 " stub section `%s'"),
8078 abfd, name);
8079 bfd_set_error (bfd_error_bad_value);
8080 return FALSE;
8081 }
8082
8083 if (r_symndx < extsymoff
8084 || sym_hashes[r_symndx - extsymoff] == NULL)
8085 {
8086 asection *o;
8087
8088 /* This stub is for a local symbol. This stub will only be
8089 needed if there is some relocation (R_MIPS16_26) in this BFD
8090 that refers to this symbol. */
8091 for (o = abfd->sections; o != NULL; o = o->next)
8092 {
8093 Elf_Internal_Rela *sec_relocs;
8094 const Elf_Internal_Rela *r, *rend;
8095
8096 /* We can ignore stub sections when looking for relocs. */
8097 if ((o->flags & SEC_RELOC) == 0
8098 || o->reloc_count == 0
8099 || section_allows_mips16_refs_p (o))
8100 continue;
8101
8102 sec_relocs
8103 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8104 info->keep_memory);
8105 if (sec_relocs == NULL)
8106 return FALSE;
8107
8108 rend = sec_relocs + o->reloc_count;
8109 for (r = sec_relocs; r < rend; r++)
8110 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8111 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8112 break;
8113
8114 if (elf_section_data (o)->relocs != sec_relocs)
8115 free (sec_relocs);
8116
8117 if (r < rend)
8118 break;
8119 }
8120
8121 if (o == NULL)
8122 {
8123 /* There is no non-call reloc for this stub, so we do
8124 not need it. Since this function is called before
8125 the linker maps input sections to output sections, we
8126 can easily discard it by setting the SEC_EXCLUDE
8127 flag. */
8128 sec->flags |= SEC_EXCLUDE;
8129 return TRUE;
8130 }
8131
8132 /* Record this stub in an array of local symbol call_stubs for
8133 this BFD. */
8134 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8135 {
8136 unsigned long symcount;
8137 asection **n;
8138 bfd_size_type amt;
8139
8140 if (elf_bad_symtab (abfd))
8141 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8142 else
8143 symcount = symtab_hdr->sh_info;
8144 amt = symcount * sizeof (asection *);
8145 n = bfd_zalloc (abfd, amt);
8146 if (n == NULL)
8147 return FALSE;
8148 mips_elf_tdata (abfd)->local_call_stubs = n;
8149 }
8150
8151 sec->flags |= SEC_KEEP;
8152 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8153
8154 /* We don't need to set mips16_stubs_seen in this case.
8155 That flag is used to see whether we need to look through
8156 the global symbol table for stubs. We don't need to set
8157 it here, because we just have a local stub. */
8158 }
8159 else
8160 {
8161 h = ((struct mips_elf_link_hash_entry *)
8162 sym_hashes[r_symndx - extsymoff]);
8163
8164 /* H is the symbol this stub is for. */
8165
8166 if (CALL_FP_STUB_P (name))
8167 loc = &h->call_fp_stub;
8168 else
8169 loc = &h->call_stub;
8170
8171 /* If we already have an appropriate stub for this function, we
8172 don't need another one, so we can discard this one. Since
8173 this function is called before the linker maps input sections
8174 to output sections, we can easily discard it by setting the
8175 SEC_EXCLUDE flag. */
8176 if (*loc != NULL)
8177 {
8178 sec->flags |= SEC_EXCLUDE;
8179 return TRUE;
8180 }
8181
8182 sec->flags |= SEC_KEEP;
8183 *loc = sec;
8184 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8185 }
8186 }
8187
8188 sreloc = NULL;
8189 contents = NULL;
8190 for (rel = relocs; rel < rel_end; ++rel)
8191 {
8192 unsigned long r_symndx;
8193 unsigned int r_type;
8194 struct elf_link_hash_entry *h;
8195 bfd_boolean can_make_dynamic_p;
8196 bfd_boolean call_reloc_p;
8197 bfd_boolean constrain_symbol_p;
8198
8199 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8200 r_type = ELF_R_TYPE (abfd, rel->r_info);
8201
8202 if (r_symndx < extsymoff)
8203 h = NULL;
8204 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8205 {
8206 (*_bfd_error_handler)
8207 (_("%B: Malformed reloc detected for section %s"),
8208 abfd, name);
8209 bfd_set_error (bfd_error_bad_value);
8210 return FALSE;
8211 }
8212 else
8213 {
8214 h = sym_hashes[r_symndx - extsymoff];
8215 if (h != NULL)
8216 {
8217 while (h->root.type == bfd_link_hash_indirect
8218 || h->root.type == bfd_link_hash_warning)
8219 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8220
8221 /* PR15323, ref flags aren't set for references in the
8222 same object. */
8223 h->root.non_ir_ref = 1;
8224 }
8225 }
8226
8227 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8228 relocation into a dynamic one. */
8229 can_make_dynamic_p = FALSE;
8230
8231 /* Set CALL_RELOC_P to true if the relocation is for a call,
8232 and if pointer equality therefore doesn't matter. */
8233 call_reloc_p = FALSE;
8234
8235 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8236 into account when deciding how to define the symbol.
8237 Relocations in nonallocatable sections such as .pdr and
8238 .debug* should have no effect. */
8239 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8240
8241 switch (r_type)
8242 {
8243 case R_MIPS_CALL16:
8244 case R_MIPS_CALL_HI16:
8245 case R_MIPS_CALL_LO16:
8246 case R_MIPS16_CALL16:
8247 case R_MICROMIPS_CALL16:
8248 case R_MICROMIPS_CALL_HI16:
8249 case R_MICROMIPS_CALL_LO16:
8250 call_reloc_p = TRUE;
8251 /* Fall through. */
8252
8253 case R_MIPS_GOT16:
8254 case R_MIPS_GOT_HI16:
8255 case R_MIPS_GOT_LO16:
8256 case R_MIPS_GOT_PAGE:
8257 case R_MIPS_GOT_OFST:
8258 case R_MIPS_GOT_DISP:
8259 case R_MIPS_TLS_GOTTPREL:
8260 case R_MIPS_TLS_GD:
8261 case R_MIPS_TLS_LDM:
8262 case R_MIPS16_GOT16:
8263 case R_MIPS16_TLS_GOTTPREL:
8264 case R_MIPS16_TLS_GD:
8265 case R_MIPS16_TLS_LDM:
8266 case R_MICROMIPS_GOT16:
8267 case R_MICROMIPS_GOT_HI16:
8268 case R_MICROMIPS_GOT_LO16:
8269 case R_MICROMIPS_GOT_PAGE:
8270 case R_MICROMIPS_GOT_OFST:
8271 case R_MICROMIPS_GOT_DISP:
8272 case R_MICROMIPS_TLS_GOTTPREL:
8273 case R_MICROMIPS_TLS_GD:
8274 case R_MICROMIPS_TLS_LDM:
8275 if (dynobj == NULL)
8276 elf_hash_table (info)->dynobj = dynobj = abfd;
8277 if (!mips_elf_create_got_section (dynobj, info))
8278 return FALSE;
8279 if (htab->is_vxworks && !bfd_link_pic (info))
8280 {
8281 (*_bfd_error_handler)
8282 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8283 abfd, (unsigned long) rel->r_offset);
8284 bfd_set_error (bfd_error_bad_value);
8285 return FALSE;
8286 }
8287 can_make_dynamic_p = TRUE;
8288 break;
8289
8290 case R_MIPS_NONE:
8291 case R_MIPS_JALR:
8292 case R_MICROMIPS_JALR:
8293 /* These relocations have empty fields and are purely there to
8294 provide link information. The symbol value doesn't matter. */
8295 constrain_symbol_p = FALSE;
8296 break;
8297
8298 case R_MIPS_GPREL16:
8299 case R_MIPS_GPREL32:
8300 case R_MIPS16_GPREL:
8301 case R_MICROMIPS_GPREL16:
8302 /* GP-relative relocations always resolve to a definition in a
8303 regular input file, ignoring the one-definition rule. This is
8304 important for the GP setup sequence in NewABI code, which
8305 always resolves to a local function even if other relocations
8306 against the symbol wouldn't. */
8307 constrain_symbol_p = FALSE;
8308 break;
8309
8310 case R_MIPS_32:
8311 case R_MIPS_REL32:
8312 case R_MIPS_64:
8313 /* In VxWorks executables, references to external symbols
8314 must be handled using copy relocs or PLT entries; it is not
8315 possible to convert this relocation into a dynamic one.
8316
8317 For executables that use PLTs and copy-relocs, we have a
8318 choice between converting the relocation into a dynamic
8319 one or using copy relocations or PLT entries. It is
8320 usually better to do the former, unless the relocation is
8321 against a read-only section. */
8322 if ((bfd_link_pic (info)
8323 || (h != NULL
8324 && !htab->is_vxworks
8325 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8326 && !(!info->nocopyreloc
8327 && !PIC_OBJECT_P (abfd)
8328 && MIPS_ELF_READONLY_SECTION (sec))))
8329 && (sec->flags & SEC_ALLOC) != 0)
8330 {
8331 can_make_dynamic_p = TRUE;
8332 if (dynobj == NULL)
8333 elf_hash_table (info)->dynobj = dynobj = abfd;
8334 }
8335 break;
8336
8337 case R_MIPS_26:
8338 case R_MIPS_PC16:
8339 case R_MIPS_PC21_S2:
8340 case R_MIPS_PC26_S2:
8341 case R_MIPS16_26:
8342 case R_MICROMIPS_26_S1:
8343 case R_MICROMIPS_PC7_S1:
8344 case R_MICROMIPS_PC10_S1:
8345 case R_MICROMIPS_PC16_S1:
8346 case R_MICROMIPS_PC23_S2:
8347 call_reloc_p = TRUE;
8348 break;
8349 }
8350
8351 if (h)
8352 {
8353 if (constrain_symbol_p)
8354 {
8355 if (!can_make_dynamic_p)
8356 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8357
8358 if (!call_reloc_p)
8359 h->pointer_equality_needed = 1;
8360
8361 /* We must not create a stub for a symbol that has
8362 relocations related to taking the function's address.
8363 This doesn't apply to VxWorks, where CALL relocs refer
8364 to a .got.plt entry instead of a normal .got entry. */
8365 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8366 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8367 }
8368
8369 /* Relocations against the special VxWorks __GOTT_BASE__ and
8370 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8371 room for them in .rela.dyn. */
8372 if (is_gott_symbol (info, h))
8373 {
8374 if (sreloc == NULL)
8375 {
8376 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8377 if (sreloc == NULL)
8378 return FALSE;
8379 }
8380 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8381 if (MIPS_ELF_READONLY_SECTION (sec))
8382 /* We tell the dynamic linker that there are
8383 relocations against the text segment. */
8384 info->flags |= DF_TEXTREL;
8385 }
8386 }
8387 else if (call_lo16_reloc_p (r_type)
8388 || got_lo16_reloc_p (r_type)
8389 || got_disp_reloc_p (r_type)
8390 || (got16_reloc_p (r_type) && htab->is_vxworks))
8391 {
8392 /* We may need a local GOT entry for this relocation. We
8393 don't count R_MIPS_GOT_PAGE because we can estimate the
8394 maximum number of pages needed by looking at the size of
8395 the segment. Similar comments apply to R_MIPS*_GOT16 and
8396 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8397 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8398 R_MIPS_CALL_HI16 because these are always followed by an
8399 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8400 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8401 rel->r_addend, info, r_type))
8402 return FALSE;
8403 }
8404
8405 if (h != NULL
8406 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8407 ELF_ST_IS_MIPS16 (h->other)))
8408 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8409
8410 switch (r_type)
8411 {
8412 case R_MIPS_CALL16:
8413 case R_MIPS16_CALL16:
8414 case R_MICROMIPS_CALL16:
8415 if (h == NULL)
8416 {
8417 (*_bfd_error_handler)
8418 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8419 abfd, (unsigned long) rel->r_offset);
8420 bfd_set_error (bfd_error_bad_value);
8421 return FALSE;
8422 }
8423 /* Fall through. */
8424
8425 case R_MIPS_CALL_HI16:
8426 case R_MIPS_CALL_LO16:
8427 case R_MICROMIPS_CALL_HI16:
8428 case R_MICROMIPS_CALL_LO16:
8429 if (h != NULL)
8430 {
8431 /* Make sure there is room in the regular GOT to hold the
8432 function's address. We may eliminate it in favour of
8433 a .got.plt entry later; see mips_elf_count_got_symbols. */
8434 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8435 r_type))
8436 return FALSE;
8437
8438 /* We need a stub, not a plt entry for the undefined
8439 function. But we record it as if it needs plt. See
8440 _bfd_elf_adjust_dynamic_symbol. */
8441 h->needs_plt = 1;
8442 h->type = STT_FUNC;
8443 }
8444 break;
8445
8446 case R_MIPS_GOT_PAGE:
8447 case R_MICROMIPS_GOT_PAGE:
8448 case R_MIPS16_GOT16:
8449 case R_MIPS_GOT16:
8450 case R_MIPS_GOT_HI16:
8451 case R_MIPS_GOT_LO16:
8452 case R_MICROMIPS_GOT16:
8453 case R_MICROMIPS_GOT_HI16:
8454 case R_MICROMIPS_GOT_LO16:
8455 if (!h || got_page_reloc_p (r_type))
8456 {
8457 /* This relocation needs (or may need, if h != NULL) a
8458 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8459 know for sure until we know whether the symbol is
8460 preemptible. */
8461 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8462 {
8463 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8464 return FALSE;
8465 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8466 addend = mips_elf_read_rel_addend (abfd, rel,
8467 howto, contents);
8468 if (got16_reloc_p (r_type))
8469 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8470 contents, &addend);
8471 else
8472 addend <<= howto->rightshift;
8473 }
8474 else
8475 addend = rel->r_addend;
8476 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8477 h, addend))
8478 return FALSE;
8479
8480 if (h)
8481 {
8482 struct mips_elf_link_hash_entry *hmips =
8483 (struct mips_elf_link_hash_entry *) h;
8484
8485 /* This symbol is definitely not overridable. */
8486 if (hmips->root.def_regular
8487 && ! (bfd_link_pic (info) && ! info->symbolic
8488 && ! hmips->root.forced_local))
8489 h = NULL;
8490 }
8491 }
8492 /* If this is a global, overridable symbol, GOT_PAGE will
8493 decay to GOT_DISP, so we'll need a GOT entry for it. */
8494 /* Fall through. */
8495
8496 case R_MIPS_GOT_DISP:
8497 case R_MICROMIPS_GOT_DISP:
8498 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8499 FALSE, r_type))
8500 return FALSE;
8501 break;
8502
8503 case R_MIPS_TLS_GOTTPREL:
8504 case R_MIPS16_TLS_GOTTPREL:
8505 case R_MICROMIPS_TLS_GOTTPREL:
8506 if (bfd_link_pic (info))
8507 info->flags |= DF_STATIC_TLS;
8508 /* Fall through */
8509
8510 case R_MIPS_TLS_LDM:
8511 case R_MIPS16_TLS_LDM:
8512 case R_MICROMIPS_TLS_LDM:
8513 if (tls_ldm_reloc_p (r_type))
8514 {
8515 r_symndx = STN_UNDEF;
8516 h = NULL;
8517 }
8518 /* Fall through */
8519
8520 case R_MIPS_TLS_GD:
8521 case R_MIPS16_TLS_GD:
8522 case R_MICROMIPS_TLS_GD:
8523 /* This symbol requires a global offset table entry, or two
8524 for TLS GD relocations. */
8525 if (h != NULL)
8526 {
8527 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8528 FALSE, r_type))
8529 return FALSE;
8530 }
8531 else
8532 {
8533 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8534 rel->r_addend,
8535 info, r_type))
8536 return FALSE;
8537 }
8538 break;
8539
8540 case R_MIPS_32:
8541 case R_MIPS_REL32:
8542 case R_MIPS_64:
8543 /* In VxWorks executables, references to external symbols
8544 are handled using copy relocs or PLT stubs, so there's
8545 no need to add a .rela.dyn entry for this relocation. */
8546 if (can_make_dynamic_p)
8547 {
8548 if (sreloc == NULL)
8549 {
8550 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8551 if (sreloc == NULL)
8552 return FALSE;
8553 }
8554 if (bfd_link_pic (info) && h == NULL)
8555 {
8556 /* When creating a shared object, we must copy these
8557 reloc types into the output file as R_MIPS_REL32
8558 relocs. Make room for this reloc in .rel(a).dyn. */
8559 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8560 if (MIPS_ELF_READONLY_SECTION (sec))
8561 /* We tell the dynamic linker that there are
8562 relocations against the text segment. */
8563 info->flags |= DF_TEXTREL;
8564 }
8565 else
8566 {
8567 struct mips_elf_link_hash_entry *hmips;
8568
8569 /* For a shared object, we must copy this relocation
8570 unless the symbol turns out to be undefined and
8571 weak with non-default visibility, in which case
8572 it will be left as zero.
8573
8574 We could elide R_MIPS_REL32 for locally binding symbols
8575 in shared libraries, but do not yet do so.
8576
8577 For an executable, we only need to copy this
8578 reloc if the symbol is defined in a dynamic
8579 object. */
8580 hmips = (struct mips_elf_link_hash_entry *) h;
8581 ++hmips->possibly_dynamic_relocs;
8582 if (MIPS_ELF_READONLY_SECTION (sec))
8583 /* We need it to tell the dynamic linker if there
8584 are relocations against the text segment. */
8585 hmips->readonly_reloc = TRUE;
8586 }
8587 }
8588
8589 if (SGI_COMPAT (abfd))
8590 mips_elf_hash_table (info)->compact_rel_size +=
8591 sizeof (Elf32_External_crinfo);
8592 break;
8593
8594 case R_MIPS_26:
8595 case R_MIPS_GPREL16:
8596 case R_MIPS_LITERAL:
8597 case R_MIPS_GPREL32:
8598 case R_MICROMIPS_26_S1:
8599 case R_MICROMIPS_GPREL16:
8600 case R_MICROMIPS_LITERAL:
8601 case R_MICROMIPS_GPREL7_S2:
8602 if (SGI_COMPAT (abfd))
8603 mips_elf_hash_table (info)->compact_rel_size +=
8604 sizeof (Elf32_External_crinfo);
8605 break;
8606
8607 /* This relocation describes the C++ object vtable hierarchy.
8608 Reconstruct it for later use during GC. */
8609 case R_MIPS_GNU_VTINHERIT:
8610 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8611 return FALSE;
8612 break;
8613
8614 /* This relocation describes which C++ vtable entries are actually
8615 used. Record for later use during GC. */
8616 case R_MIPS_GNU_VTENTRY:
8617 BFD_ASSERT (h != NULL);
8618 if (h != NULL
8619 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8620 return FALSE;
8621 break;
8622
8623 default:
8624 break;
8625 }
8626
8627 /* Record the need for a PLT entry. At this point we don't know
8628 yet if we are going to create a PLT in the first place, but
8629 we only record whether the relocation requires a standard MIPS
8630 or a compressed code entry anyway. If we don't make a PLT after
8631 all, then we'll just ignore these arrangements. Likewise if
8632 a PLT entry is not created because the symbol is satisfied
8633 locally. */
8634 if (h != NULL
8635 && jal_reloc_p (r_type)
8636 && !SYMBOL_CALLS_LOCAL (info, h))
8637 {
8638 if (h->plt.plist == NULL)
8639 h->plt.plist = mips_elf_make_plt_record (abfd);
8640 if (h->plt.plist == NULL)
8641 return FALSE;
8642
8643 if (r_type == R_MIPS_26)
8644 h->plt.plist->need_mips = TRUE;
8645 else
8646 h->plt.plist->need_comp = TRUE;
8647 }
8648
8649 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8650 if there is one. We only need to handle global symbols here;
8651 we decide whether to keep or delete stubs for local symbols
8652 when processing the stub's relocations. */
8653 if (h != NULL
8654 && !mips16_call_reloc_p (r_type)
8655 && !section_allows_mips16_refs_p (sec))
8656 {
8657 struct mips_elf_link_hash_entry *mh;
8658
8659 mh = (struct mips_elf_link_hash_entry *) h;
8660 mh->need_fn_stub = TRUE;
8661 }
8662
8663 /* Refuse some position-dependent relocations when creating a
8664 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8665 not PIC, but we can create dynamic relocations and the result
8666 will be fine. Also do not refuse R_MIPS_LO16, which can be
8667 combined with R_MIPS_GOT16. */
8668 if (bfd_link_pic (info))
8669 {
8670 switch (r_type)
8671 {
8672 case R_MIPS16_HI16:
8673 case R_MIPS_HI16:
8674 case R_MIPS_HIGHER:
8675 case R_MIPS_HIGHEST:
8676 case R_MICROMIPS_HI16:
8677 case R_MICROMIPS_HIGHER:
8678 case R_MICROMIPS_HIGHEST:
8679 /* Don't refuse a high part relocation if it's against
8680 no symbol (e.g. part of a compound relocation). */
8681 if (r_symndx == STN_UNDEF)
8682 break;
8683
8684 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8685 and has a special meaning. */
8686 if (!NEWABI_P (abfd) && h != NULL
8687 && strcmp (h->root.root.string, "_gp_disp") == 0)
8688 break;
8689
8690 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8691 if (is_gott_symbol (info, h))
8692 break;
8693
8694 /* FALLTHROUGH */
8695
8696 case R_MIPS16_26:
8697 case R_MIPS_26:
8698 case R_MICROMIPS_26_S1:
8699 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8700 (*_bfd_error_handler)
8701 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8702 abfd, howto->name,
8703 (h) ? h->root.root.string : "a local symbol");
8704 bfd_set_error (bfd_error_bad_value);
8705 return FALSE;
8706 default:
8707 break;
8708 }
8709 }
8710 }
8711
8712 return TRUE;
8713 }
8714 \f
8715 bfd_boolean
8716 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8717 struct bfd_link_info *link_info,
8718 bfd_boolean *again)
8719 {
8720 Elf_Internal_Rela *internal_relocs;
8721 Elf_Internal_Rela *irel, *irelend;
8722 Elf_Internal_Shdr *symtab_hdr;
8723 bfd_byte *contents = NULL;
8724 size_t extsymoff;
8725 bfd_boolean changed_contents = FALSE;
8726 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8727 Elf_Internal_Sym *isymbuf = NULL;
8728
8729 /* We are not currently changing any sizes, so only one pass. */
8730 *again = FALSE;
8731
8732 if (bfd_link_relocatable (link_info))
8733 return TRUE;
8734
8735 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8736 link_info->keep_memory);
8737 if (internal_relocs == NULL)
8738 return TRUE;
8739
8740 irelend = internal_relocs + sec->reloc_count
8741 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8742 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8743 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8744
8745 for (irel = internal_relocs; irel < irelend; irel++)
8746 {
8747 bfd_vma symval;
8748 bfd_signed_vma sym_offset;
8749 unsigned int r_type;
8750 unsigned long r_symndx;
8751 asection *sym_sec;
8752 unsigned long instruction;
8753
8754 /* Turn jalr into bgezal, and jr into beq, if they're marked
8755 with a JALR relocation, that indicate where they jump to.
8756 This saves some pipeline bubbles. */
8757 r_type = ELF_R_TYPE (abfd, irel->r_info);
8758 if (r_type != R_MIPS_JALR)
8759 continue;
8760
8761 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8762 /* Compute the address of the jump target. */
8763 if (r_symndx >= extsymoff)
8764 {
8765 struct mips_elf_link_hash_entry *h
8766 = ((struct mips_elf_link_hash_entry *)
8767 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8768
8769 while (h->root.root.type == bfd_link_hash_indirect
8770 || h->root.root.type == bfd_link_hash_warning)
8771 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8772
8773 /* If a symbol is undefined, or if it may be overridden,
8774 skip it. */
8775 if (! ((h->root.root.type == bfd_link_hash_defined
8776 || h->root.root.type == bfd_link_hash_defweak)
8777 && h->root.root.u.def.section)
8778 || (bfd_link_pic (link_info) && ! link_info->symbolic
8779 && !h->root.forced_local))
8780 continue;
8781
8782 sym_sec = h->root.root.u.def.section;
8783 if (sym_sec->output_section)
8784 symval = (h->root.root.u.def.value
8785 + sym_sec->output_section->vma
8786 + sym_sec->output_offset);
8787 else
8788 symval = h->root.root.u.def.value;
8789 }
8790 else
8791 {
8792 Elf_Internal_Sym *isym;
8793
8794 /* Read this BFD's symbols if we haven't done so already. */
8795 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8796 {
8797 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8798 if (isymbuf == NULL)
8799 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8800 symtab_hdr->sh_info, 0,
8801 NULL, NULL, NULL);
8802 if (isymbuf == NULL)
8803 goto relax_return;
8804 }
8805
8806 isym = isymbuf + r_symndx;
8807 if (isym->st_shndx == SHN_UNDEF)
8808 continue;
8809 else if (isym->st_shndx == SHN_ABS)
8810 sym_sec = bfd_abs_section_ptr;
8811 else if (isym->st_shndx == SHN_COMMON)
8812 sym_sec = bfd_com_section_ptr;
8813 else
8814 sym_sec
8815 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8816 symval = isym->st_value
8817 + sym_sec->output_section->vma
8818 + sym_sec->output_offset;
8819 }
8820
8821 /* Compute branch offset, from delay slot of the jump to the
8822 branch target. */
8823 sym_offset = (symval + irel->r_addend)
8824 - (sec_start + irel->r_offset + 4);
8825
8826 /* Branch offset must be properly aligned. */
8827 if ((sym_offset & 3) != 0)
8828 continue;
8829
8830 sym_offset >>= 2;
8831
8832 /* Check that it's in range. */
8833 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8834 continue;
8835
8836 /* Get the section contents if we haven't done so already. */
8837 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8838 goto relax_return;
8839
8840 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8841
8842 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8843 if ((instruction & 0xfc1fffff) == 0x0000f809)
8844 instruction = 0x04110000;
8845 /* If it was jr <reg>, turn it into b <target>. */
8846 else if ((instruction & 0xfc1fffff) == 0x00000008)
8847 instruction = 0x10000000;
8848 else
8849 continue;
8850
8851 instruction |= (sym_offset & 0xffff);
8852 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8853 changed_contents = TRUE;
8854 }
8855
8856 if (contents != NULL
8857 && elf_section_data (sec)->this_hdr.contents != contents)
8858 {
8859 if (!changed_contents && !link_info->keep_memory)
8860 free (contents);
8861 else
8862 {
8863 /* Cache the section contents for elf_link_input_bfd. */
8864 elf_section_data (sec)->this_hdr.contents = contents;
8865 }
8866 }
8867 return TRUE;
8868
8869 relax_return:
8870 if (contents != NULL
8871 && elf_section_data (sec)->this_hdr.contents != contents)
8872 free (contents);
8873 return FALSE;
8874 }
8875 \f
8876 /* Allocate space for global sym dynamic relocs. */
8877
8878 static bfd_boolean
8879 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8880 {
8881 struct bfd_link_info *info = inf;
8882 bfd *dynobj;
8883 struct mips_elf_link_hash_entry *hmips;
8884 struct mips_elf_link_hash_table *htab;
8885
8886 htab = mips_elf_hash_table (info);
8887 BFD_ASSERT (htab != NULL);
8888
8889 dynobj = elf_hash_table (info)->dynobj;
8890 hmips = (struct mips_elf_link_hash_entry *) h;
8891
8892 /* VxWorks executables are handled elsewhere; we only need to
8893 allocate relocations in shared objects. */
8894 if (htab->is_vxworks && !bfd_link_pic (info))
8895 return TRUE;
8896
8897 /* Ignore indirect symbols. All relocations against such symbols
8898 will be redirected to the target symbol. */
8899 if (h->root.type == bfd_link_hash_indirect)
8900 return TRUE;
8901
8902 /* If this symbol is defined in a dynamic object, or we are creating
8903 a shared library, we will need to copy any R_MIPS_32 or
8904 R_MIPS_REL32 relocs against it into the output file. */
8905 if (! bfd_link_relocatable (info)
8906 && hmips->possibly_dynamic_relocs != 0
8907 && (h->root.type == bfd_link_hash_defweak
8908 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8909 || bfd_link_pic (info)))
8910 {
8911 bfd_boolean do_copy = TRUE;
8912
8913 if (h->root.type == bfd_link_hash_undefweak)
8914 {
8915 /* Do not copy relocations for undefined weak symbols with
8916 non-default visibility. */
8917 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8918 do_copy = FALSE;
8919
8920 /* Make sure undefined weak symbols are output as a dynamic
8921 symbol in PIEs. */
8922 else if (h->dynindx == -1 && !h->forced_local)
8923 {
8924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8925 return FALSE;
8926 }
8927 }
8928
8929 if (do_copy)
8930 {
8931 /* Even though we don't directly need a GOT entry for this symbol,
8932 the SVR4 psABI requires it to have a dynamic symbol table
8933 index greater that DT_MIPS_GOTSYM if there are dynamic
8934 relocations against it.
8935
8936 VxWorks does not enforce the same mapping between the GOT
8937 and the symbol table, so the same requirement does not
8938 apply there. */
8939 if (!htab->is_vxworks)
8940 {
8941 if (hmips->global_got_area > GGA_RELOC_ONLY)
8942 hmips->global_got_area = GGA_RELOC_ONLY;
8943 hmips->got_only_for_calls = FALSE;
8944 }
8945
8946 mips_elf_allocate_dynamic_relocations
8947 (dynobj, info, hmips->possibly_dynamic_relocs);
8948 if (hmips->readonly_reloc)
8949 /* We tell the dynamic linker that there are relocations
8950 against the text segment. */
8951 info->flags |= DF_TEXTREL;
8952 }
8953 }
8954
8955 return TRUE;
8956 }
8957
8958 /* Adjust a symbol defined by a dynamic object and referenced by a
8959 regular object. The current definition is in some section of the
8960 dynamic object, but we're not including those sections. We have to
8961 change the definition to something the rest of the link can
8962 understand. */
8963
8964 bfd_boolean
8965 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8966 struct elf_link_hash_entry *h)
8967 {
8968 bfd *dynobj;
8969 struct mips_elf_link_hash_entry *hmips;
8970 struct mips_elf_link_hash_table *htab;
8971
8972 htab = mips_elf_hash_table (info);
8973 BFD_ASSERT (htab != NULL);
8974
8975 dynobj = elf_hash_table (info)->dynobj;
8976 hmips = (struct mips_elf_link_hash_entry *) h;
8977
8978 /* Make sure we know what is going on here. */
8979 BFD_ASSERT (dynobj != NULL
8980 && (h->needs_plt
8981 || h->u.weakdef != NULL
8982 || (h->def_dynamic
8983 && h->ref_regular
8984 && !h->def_regular)));
8985
8986 hmips = (struct mips_elf_link_hash_entry *) h;
8987
8988 /* If there are call relocations against an externally-defined symbol,
8989 see whether we can create a MIPS lazy-binding stub for it. We can
8990 only do this if all references to the function are through call
8991 relocations, and in that case, the traditional lazy-binding stubs
8992 are much more efficient than PLT entries.
8993
8994 Traditional stubs are only available on SVR4 psABI-based systems;
8995 VxWorks always uses PLTs instead. */
8996 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8997 {
8998 if (! elf_hash_table (info)->dynamic_sections_created)
8999 return TRUE;
9000
9001 /* If this symbol is not defined in a regular file, then set
9002 the symbol to the stub location. This is required to make
9003 function pointers compare as equal between the normal
9004 executable and the shared library. */
9005 if (!h->def_regular)
9006 {
9007 hmips->needs_lazy_stub = TRUE;
9008 htab->lazy_stub_count++;
9009 return TRUE;
9010 }
9011 }
9012 /* As above, VxWorks requires PLT entries for externally-defined
9013 functions that are only accessed through call relocations.
9014
9015 Both VxWorks and non-VxWorks targets also need PLT entries if there
9016 are static-only relocations against an externally-defined function.
9017 This can technically occur for shared libraries if there are
9018 branches to the symbol, although it is unlikely that this will be
9019 used in practice due to the short ranges involved. It can occur
9020 for any relative or absolute relocation in executables; in that
9021 case, the PLT entry becomes the function's canonical address. */
9022 else if (((h->needs_plt && !hmips->no_fn_stub)
9023 || (h->type == STT_FUNC && hmips->has_static_relocs))
9024 && htab->use_plts_and_copy_relocs
9025 && !SYMBOL_CALLS_LOCAL (info, h)
9026 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9027 && h->root.type == bfd_link_hash_undefweak))
9028 {
9029 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9030 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9031
9032 /* If this is the first symbol to need a PLT entry, then make some
9033 basic setup. Also work out PLT entry sizes. We'll need them
9034 for PLT offset calculations. */
9035 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9036 {
9037 BFD_ASSERT (htab->sgotplt->size == 0);
9038 BFD_ASSERT (htab->plt_got_index == 0);
9039
9040 /* If we're using the PLT additions to the psABI, each PLT
9041 entry is 16 bytes and the PLT0 entry is 32 bytes.
9042 Encourage better cache usage by aligning. We do this
9043 lazily to avoid pessimizing traditional objects. */
9044 if (!htab->is_vxworks
9045 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9046 return FALSE;
9047
9048 /* Make sure that .got.plt is word-aligned. We do this lazily
9049 for the same reason as above. */
9050 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9051 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9052 return FALSE;
9053
9054 /* On non-VxWorks targets, the first two entries in .got.plt
9055 are reserved. */
9056 if (!htab->is_vxworks)
9057 htab->plt_got_index
9058 += (get_elf_backend_data (dynobj)->got_header_size
9059 / MIPS_ELF_GOT_SIZE (dynobj));
9060
9061 /* On VxWorks, also allocate room for the header's
9062 .rela.plt.unloaded entries. */
9063 if (htab->is_vxworks && !bfd_link_pic (info))
9064 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9065
9066 /* Now work out the sizes of individual PLT entries. */
9067 if (htab->is_vxworks && bfd_link_pic (info))
9068 htab->plt_mips_entry_size
9069 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9070 else if (htab->is_vxworks)
9071 htab->plt_mips_entry_size
9072 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9073 else if (newabi_p)
9074 htab->plt_mips_entry_size
9075 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9076 else if (!micromips_p)
9077 {
9078 htab->plt_mips_entry_size
9079 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9080 htab->plt_comp_entry_size
9081 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9082 }
9083 else if (htab->insn32)
9084 {
9085 htab->plt_mips_entry_size
9086 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9087 htab->plt_comp_entry_size
9088 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9089 }
9090 else
9091 {
9092 htab->plt_mips_entry_size
9093 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9094 htab->plt_comp_entry_size
9095 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9096 }
9097 }
9098
9099 if (h->plt.plist == NULL)
9100 h->plt.plist = mips_elf_make_plt_record (dynobj);
9101 if (h->plt.plist == NULL)
9102 return FALSE;
9103
9104 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9105 n32 or n64, so always use a standard entry there.
9106
9107 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9108 all MIPS16 calls will go via that stub, and there is no benefit
9109 to having a MIPS16 entry. And in the case of call_stub a
9110 standard entry actually has to be used as the stub ends with a J
9111 instruction. */
9112 if (newabi_p
9113 || htab->is_vxworks
9114 || hmips->call_stub
9115 || hmips->call_fp_stub)
9116 {
9117 h->plt.plist->need_mips = TRUE;
9118 h->plt.plist->need_comp = FALSE;
9119 }
9120
9121 /* Otherwise, if there are no direct calls to the function, we
9122 have a free choice of whether to use standard or compressed
9123 entries. Prefer microMIPS entries if the object is known to
9124 contain microMIPS code, so that it becomes possible to create
9125 pure microMIPS binaries. Prefer standard entries otherwise,
9126 because MIPS16 ones are no smaller and are usually slower. */
9127 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9128 {
9129 if (micromips_p)
9130 h->plt.plist->need_comp = TRUE;
9131 else
9132 h->plt.plist->need_mips = TRUE;
9133 }
9134
9135 if (h->plt.plist->need_mips)
9136 {
9137 h->plt.plist->mips_offset = htab->plt_mips_offset;
9138 htab->plt_mips_offset += htab->plt_mips_entry_size;
9139 }
9140 if (h->plt.plist->need_comp)
9141 {
9142 h->plt.plist->comp_offset = htab->plt_comp_offset;
9143 htab->plt_comp_offset += htab->plt_comp_entry_size;
9144 }
9145
9146 /* Reserve the corresponding .got.plt entry now too. */
9147 h->plt.plist->gotplt_index = htab->plt_got_index++;
9148
9149 /* If the output file has no definition of the symbol, set the
9150 symbol's value to the address of the stub. */
9151 if (!bfd_link_pic (info) && !h->def_regular)
9152 hmips->use_plt_entry = TRUE;
9153
9154 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9155 htab->srelplt->size += (htab->is_vxworks
9156 ? MIPS_ELF_RELA_SIZE (dynobj)
9157 : MIPS_ELF_REL_SIZE (dynobj));
9158
9159 /* Make room for the .rela.plt.unloaded relocations. */
9160 if (htab->is_vxworks && !bfd_link_pic (info))
9161 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9162
9163 /* All relocations against this symbol that could have been made
9164 dynamic will now refer to the PLT entry instead. */
9165 hmips->possibly_dynamic_relocs = 0;
9166
9167 return TRUE;
9168 }
9169
9170 /* If this is a weak symbol, and there is a real definition, the
9171 processor independent code will have arranged for us to see the
9172 real definition first, and we can just use the same value. */
9173 if (h->u.weakdef != NULL)
9174 {
9175 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9176 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9177 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9178 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9179 return TRUE;
9180 }
9181
9182 /* Otherwise, there is nothing further to do for symbols defined
9183 in regular objects. */
9184 if (h->def_regular)
9185 return TRUE;
9186
9187 /* There's also nothing more to do if we'll convert all relocations
9188 against this symbol into dynamic relocations. */
9189 if (!hmips->has_static_relocs)
9190 return TRUE;
9191
9192 /* We're now relying on copy relocations. Complain if we have
9193 some that we can't convert. */
9194 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9195 {
9196 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9197 "dynamic symbol %s"),
9198 h->root.root.string);
9199 bfd_set_error (bfd_error_bad_value);
9200 return FALSE;
9201 }
9202
9203 /* We must allocate the symbol in our .dynbss section, which will
9204 become part of the .bss section of the executable. There will be
9205 an entry for this symbol in the .dynsym section. The dynamic
9206 object will contain position independent code, so all references
9207 from the dynamic object to this symbol will go through the global
9208 offset table. The dynamic linker will use the .dynsym entry to
9209 determine the address it must put in the global offset table, so
9210 both the dynamic object and the regular object will refer to the
9211 same memory location for the variable. */
9212
9213 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9214 {
9215 if (htab->is_vxworks)
9216 htab->srelbss->size += sizeof (Elf32_External_Rela);
9217 else
9218 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9219 h->needs_copy = 1;
9220 }
9221
9222 /* All relocations against this symbol that could have been made
9223 dynamic will now refer to the local copy instead. */
9224 hmips->possibly_dynamic_relocs = 0;
9225
9226 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9227 }
9228 \f
9229 /* This function is called after all the input files have been read,
9230 and the input sections have been assigned to output sections. We
9231 check for any mips16 stub sections that we can discard. */
9232
9233 bfd_boolean
9234 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9235 struct bfd_link_info *info)
9236 {
9237 asection *sect;
9238 struct mips_elf_link_hash_table *htab;
9239 struct mips_htab_traverse_info hti;
9240
9241 htab = mips_elf_hash_table (info);
9242 BFD_ASSERT (htab != NULL);
9243
9244 /* The .reginfo section has a fixed size. */
9245 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9246 if (sect != NULL)
9247 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9248
9249 /* The .MIPS.abiflags section has a fixed size. */
9250 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9251 if (sect != NULL)
9252 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9253
9254 hti.info = info;
9255 hti.output_bfd = output_bfd;
9256 hti.error = FALSE;
9257 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9258 mips_elf_check_symbols, &hti);
9259 if (hti.error)
9260 return FALSE;
9261
9262 return TRUE;
9263 }
9264
9265 /* If the link uses a GOT, lay it out and work out its size. */
9266
9267 static bfd_boolean
9268 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9269 {
9270 bfd *dynobj;
9271 asection *s;
9272 struct mips_got_info *g;
9273 bfd_size_type loadable_size = 0;
9274 bfd_size_type page_gotno;
9275 bfd *ibfd;
9276 struct mips_elf_traverse_got_arg tga;
9277 struct mips_elf_link_hash_table *htab;
9278
9279 htab = mips_elf_hash_table (info);
9280 BFD_ASSERT (htab != NULL);
9281
9282 s = htab->sgot;
9283 if (s == NULL)
9284 return TRUE;
9285
9286 dynobj = elf_hash_table (info)->dynobj;
9287 g = htab->got_info;
9288
9289 /* Allocate room for the reserved entries. VxWorks always reserves
9290 3 entries; other objects only reserve 2 entries. */
9291 BFD_ASSERT (g->assigned_low_gotno == 0);
9292 if (htab->is_vxworks)
9293 htab->reserved_gotno = 3;
9294 else
9295 htab->reserved_gotno = 2;
9296 g->local_gotno += htab->reserved_gotno;
9297 g->assigned_low_gotno = htab->reserved_gotno;
9298
9299 /* Decide which symbols need to go in the global part of the GOT and
9300 count the number of reloc-only GOT symbols. */
9301 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9302
9303 if (!mips_elf_resolve_final_got_entries (info, g))
9304 return FALSE;
9305
9306 /* Calculate the total loadable size of the output. That
9307 will give us the maximum number of GOT_PAGE entries
9308 required. */
9309 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9310 {
9311 asection *subsection;
9312
9313 for (subsection = ibfd->sections;
9314 subsection;
9315 subsection = subsection->next)
9316 {
9317 if ((subsection->flags & SEC_ALLOC) == 0)
9318 continue;
9319 loadable_size += ((subsection->size + 0xf)
9320 &~ (bfd_size_type) 0xf);
9321 }
9322 }
9323
9324 if (htab->is_vxworks)
9325 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9326 relocations against local symbols evaluate to "G", and the EABI does
9327 not include R_MIPS_GOT_PAGE. */
9328 page_gotno = 0;
9329 else
9330 /* Assume there are two loadable segments consisting of contiguous
9331 sections. Is 5 enough? */
9332 page_gotno = (loadable_size >> 16) + 5;
9333
9334 /* Choose the smaller of the two page estimates; both are intended to be
9335 conservative. */
9336 if (page_gotno > g->page_gotno)
9337 page_gotno = g->page_gotno;
9338
9339 g->local_gotno += page_gotno;
9340 g->assigned_high_gotno = g->local_gotno - 1;
9341
9342 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9343 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9344 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9345
9346 /* VxWorks does not support multiple GOTs. It initializes $gp to
9347 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9348 dynamic loader. */
9349 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9350 {
9351 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9352 return FALSE;
9353 }
9354 else
9355 {
9356 /* Record that all bfds use G. This also has the effect of freeing
9357 the per-bfd GOTs, which we no longer need. */
9358 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9359 if (mips_elf_bfd_got (ibfd, FALSE))
9360 mips_elf_replace_bfd_got (ibfd, g);
9361 mips_elf_replace_bfd_got (output_bfd, g);
9362
9363 /* Set up TLS entries. */
9364 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9365 tga.info = info;
9366 tga.g = g;
9367 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9368 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9369 if (!tga.g)
9370 return FALSE;
9371 BFD_ASSERT (g->tls_assigned_gotno
9372 == g->global_gotno + g->local_gotno + g->tls_gotno);
9373
9374 /* Each VxWorks GOT entry needs an explicit relocation. */
9375 if (htab->is_vxworks && bfd_link_pic (info))
9376 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9377
9378 /* Allocate room for the TLS relocations. */
9379 if (g->relocs)
9380 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9381 }
9382
9383 return TRUE;
9384 }
9385
9386 /* Estimate the size of the .MIPS.stubs section. */
9387
9388 static void
9389 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9390 {
9391 struct mips_elf_link_hash_table *htab;
9392 bfd_size_type dynsymcount;
9393
9394 htab = mips_elf_hash_table (info);
9395 BFD_ASSERT (htab != NULL);
9396
9397 if (htab->lazy_stub_count == 0)
9398 return;
9399
9400 /* IRIX rld assumes that a function stub isn't at the end of the .text
9401 section, so add a dummy entry to the end. */
9402 htab->lazy_stub_count++;
9403
9404 /* Get a worst-case estimate of the number of dynamic symbols needed.
9405 At this point, dynsymcount does not account for section symbols
9406 and count_section_dynsyms may overestimate the number that will
9407 be needed. */
9408 dynsymcount = (elf_hash_table (info)->dynsymcount
9409 + count_section_dynsyms (output_bfd, info));
9410
9411 /* Determine the size of one stub entry. There's no disadvantage
9412 from using microMIPS code here, so for the sake of pure-microMIPS
9413 binaries we prefer it whenever there's any microMIPS code in
9414 output produced at all. This has a benefit of stubs being
9415 shorter by 4 bytes each too, unless in the insn32 mode. */
9416 if (!MICROMIPS_P (output_bfd))
9417 htab->function_stub_size = (dynsymcount > 0x10000
9418 ? MIPS_FUNCTION_STUB_BIG_SIZE
9419 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9420 else if (htab->insn32)
9421 htab->function_stub_size = (dynsymcount > 0x10000
9422 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9423 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9424 else
9425 htab->function_stub_size = (dynsymcount > 0x10000
9426 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9427 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9428
9429 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9430 }
9431
9432 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9433 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9434 stub, allocate an entry in the stubs section. */
9435
9436 static bfd_boolean
9437 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9438 {
9439 struct mips_htab_traverse_info *hti = data;
9440 struct mips_elf_link_hash_table *htab;
9441 struct bfd_link_info *info;
9442 bfd *output_bfd;
9443
9444 info = hti->info;
9445 output_bfd = hti->output_bfd;
9446 htab = mips_elf_hash_table (info);
9447 BFD_ASSERT (htab != NULL);
9448
9449 if (h->needs_lazy_stub)
9450 {
9451 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9452 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9453 bfd_vma isa_bit = micromips_p;
9454
9455 BFD_ASSERT (htab->root.dynobj != NULL);
9456 if (h->root.plt.plist == NULL)
9457 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9458 if (h->root.plt.plist == NULL)
9459 {
9460 hti->error = TRUE;
9461 return FALSE;
9462 }
9463 h->root.root.u.def.section = htab->sstubs;
9464 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9465 h->root.plt.plist->stub_offset = htab->sstubs->size;
9466 h->root.other = other;
9467 htab->sstubs->size += htab->function_stub_size;
9468 }
9469 return TRUE;
9470 }
9471
9472 /* Allocate offsets in the stubs section to each symbol that needs one.
9473 Set the final size of the .MIPS.stub section. */
9474
9475 static bfd_boolean
9476 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9477 {
9478 bfd *output_bfd = info->output_bfd;
9479 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9480 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9481 bfd_vma isa_bit = micromips_p;
9482 struct mips_elf_link_hash_table *htab;
9483 struct mips_htab_traverse_info hti;
9484 struct elf_link_hash_entry *h;
9485 bfd *dynobj;
9486
9487 htab = mips_elf_hash_table (info);
9488 BFD_ASSERT (htab != NULL);
9489
9490 if (htab->lazy_stub_count == 0)
9491 return TRUE;
9492
9493 htab->sstubs->size = 0;
9494 hti.info = info;
9495 hti.output_bfd = output_bfd;
9496 hti.error = FALSE;
9497 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9498 if (hti.error)
9499 return FALSE;
9500 htab->sstubs->size += htab->function_stub_size;
9501 BFD_ASSERT (htab->sstubs->size
9502 == htab->lazy_stub_count * htab->function_stub_size);
9503
9504 dynobj = elf_hash_table (info)->dynobj;
9505 BFD_ASSERT (dynobj != NULL);
9506 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9507 if (h == NULL)
9508 return FALSE;
9509 h->root.u.def.value = isa_bit;
9510 h->other = other;
9511 h->type = STT_FUNC;
9512
9513 return TRUE;
9514 }
9515
9516 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9517 bfd_link_info. If H uses the address of a PLT entry as the value
9518 of the symbol, then set the entry in the symbol table now. Prefer
9519 a standard MIPS PLT entry. */
9520
9521 static bfd_boolean
9522 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9523 {
9524 struct bfd_link_info *info = data;
9525 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9526 struct mips_elf_link_hash_table *htab;
9527 unsigned int other;
9528 bfd_vma isa_bit;
9529 bfd_vma val;
9530
9531 htab = mips_elf_hash_table (info);
9532 BFD_ASSERT (htab != NULL);
9533
9534 if (h->use_plt_entry)
9535 {
9536 BFD_ASSERT (h->root.plt.plist != NULL);
9537 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9538 || h->root.plt.plist->comp_offset != MINUS_ONE);
9539
9540 val = htab->plt_header_size;
9541 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9542 {
9543 isa_bit = 0;
9544 val += h->root.plt.plist->mips_offset;
9545 other = 0;
9546 }
9547 else
9548 {
9549 isa_bit = 1;
9550 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9551 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9552 }
9553 val += isa_bit;
9554 /* For VxWorks, point at the PLT load stub rather than the lazy
9555 resolution stub; this stub will become the canonical function
9556 address. */
9557 if (htab->is_vxworks)
9558 val += 8;
9559
9560 h->root.root.u.def.section = htab->splt;
9561 h->root.root.u.def.value = val;
9562 h->root.other = other;
9563 }
9564
9565 return TRUE;
9566 }
9567
9568 /* Set the sizes of the dynamic sections. */
9569
9570 bfd_boolean
9571 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9572 struct bfd_link_info *info)
9573 {
9574 bfd *dynobj;
9575 asection *s, *sreldyn;
9576 bfd_boolean reltext;
9577 struct mips_elf_link_hash_table *htab;
9578
9579 htab = mips_elf_hash_table (info);
9580 BFD_ASSERT (htab != NULL);
9581 dynobj = elf_hash_table (info)->dynobj;
9582 BFD_ASSERT (dynobj != NULL);
9583
9584 if (elf_hash_table (info)->dynamic_sections_created)
9585 {
9586 /* Set the contents of the .interp section to the interpreter. */
9587 if (bfd_link_executable (info) && !info->nointerp)
9588 {
9589 s = bfd_get_linker_section (dynobj, ".interp");
9590 BFD_ASSERT (s != NULL);
9591 s->size
9592 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9593 s->contents
9594 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9595 }
9596
9597 /* Figure out the size of the PLT header if we know that we
9598 are using it. For the sake of cache alignment always use
9599 a standard header whenever any standard entries are present
9600 even if microMIPS entries are present as well. This also
9601 lets the microMIPS header rely on the value of $v0 only set
9602 by microMIPS entries, for a small size reduction.
9603
9604 Set symbol table entry values for symbols that use the
9605 address of their PLT entry now that we can calculate it.
9606
9607 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9608 haven't already in _bfd_elf_create_dynamic_sections. */
9609 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9610 {
9611 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9612 && !htab->plt_mips_offset);
9613 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9614 bfd_vma isa_bit = micromips_p;
9615 struct elf_link_hash_entry *h;
9616 bfd_vma size;
9617
9618 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9619 BFD_ASSERT (htab->sgotplt->size == 0);
9620 BFD_ASSERT (htab->splt->size == 0);
9621
9622 if (htab->is_vxworks && bfd_link_pic (info))
9623 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9624 else if (htab->is_vxworks)
9625 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9626 else if (ABI_64_P (output_bfd))
9627 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9628 else if (ABI_N32_P (output_bfd))
9629 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9630 else if (!micromips_p)
9631 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9632 else if (htab->insn32)
9633 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9634 else
9635 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9636
9637 htab->plt_header_is_comp = micromips_p;
9638 htab->plt_header_size = size;
9639 htab->splt->size = (size
9640 + htab->plt_mips_offset
9641 + htab->plt_comp_offset);
9642 htab->sgotplt->size = (htab->plt_got_index
9643 * MIPS_ELF_GOT_SIZE (dynobj));
9644
9645 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9646
9647 if (htab->root.hplt == NULL)
9648 {
9649 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9650 "_PROCEDURE_LINKAGE_TABLE_");
9651 htab->root.hplt = h;
9652 if (h == NULL)
9653 return FALSE;
9654 }
9655
9656 h = htab->root.hplt;
9657 h->root.u.def.value = isa_bit;
9658 h->other = other;
9659 h->type = STT_FUNC;
9660 }
9661 }
9662
9663 /* Allocate space for global sym dynamic relocs. */
9664 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9665
9666 mips_elf_estimate_stub_size (output_bfd, info);
9667
9668 if (!mips_elf_lay_out_got (output_bfd, info))
9669 return FALSE;
9670
9671 mips_elf_lay_out_lazy_stubs (info);
9672
9673 /* The check_relocs and adjust_dynamic_symbol entry points have
9674 determined the sizes of the various dynamic sections. Allocate
9675 memory for them. */
9676 reltext = FALSE;
9677 for (s = dynobj->sections; s != NULL; s = s->next)
9678 {
9679 const char *name;
9680
9681 /* It's OK to base decisions on the section name, because none
9682 of the dynobj section names depend upon the input files. */
9683 name = bfd_get_section_name (dynobj, s);
9684
9685 if ((s->flags & SEC_LINKER_CREATED) == 0)
9686 continue;
9687
9688 if (CONST_STRNEQ (name, ".rel"))
9689 {
9690 if (s->size != 0)
9691 {
9692 const char *outname;
9693 asection *target;
9694
9695 /* If this relocation section applies to a read only
9696 section, then we probably need a DT_TEXTREL entry.
9697 If the relocation section is .rel(a).dyn, we always
9698 assert a DT_TEXTREL entry rather than testing whether
9699 there exists a relocation to a read only section or
9700 not. */
9701 outname = bfd_get_section_name (output_bfd,
9702 s->output_section);
9703 target = bfd_get_section_by_name (output_bfd, outname + 4);
9704 if ((target != NULL
9705 && (target->flags & SEC_READONLY) != 0
9706 && (target->flags & SEC_ALLOC) != 0)
9707 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9708 reltext = TRUE;
9709
9710 /* We use the reloc_count field as a counter if we need
9711 to copy relocs into the output file. */
9712 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9713 s->reloc_count = 0;
9714
9715 /* If combreloc is enabled, elf_link_sort_relocs() will
9716 sort relocations, but in a different way than we do,
9717 and before we're done creating relocations. Also, it
9718 will move them around between input sections'
9719 relocation's contents, so our sorting would be
9720 broken, so don't let it run. */
9721 info->combreloc = 0;
9722 }
9723 }
9724 else if (bfd_link_executable (info)
9725 && ! mips_elf_hash_table (info)->use_rld_obj_head
9726 && CONST_STRNEQ (name, ".rld_map"))
9727 {
9728 /* We add a room for __rld_map. It will be filled in by the
9729 rtld to contain a pointer to the _r_debug structure. */
9730 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9731 }
9732 else if (SGI_COMPAT (output_bfd)
9733 && CONST_STRNEQ (name, ".compact_rel"))
9734 s->size += mips_elf_hash_table (info)->compact_rel_size;
9735 else if (s == htab->splt)
9736 {
9737 /* If the last PLT entry has a branch delay slot, allocate
9738 room for an extra nop to fill the delay slot. This is
9739 for CPUs without load interlocking. */
9740 if (! LOAD_INTERLOCKS_P (output_bfd)
9741 && ! htab->is_vxworks && s->size > 0)
9742 s->size += 4;
9743 }
9744 else if (! CONST_STRNEQ (name, ".init")
9745 && s != htab->sgot
9746 && s != htab->sgotplt
9747 && s != htab->sstubs
9748 && s != htab->sdynbss)
9749 {
9750 /* It's not one of our sections, so don't allocate space. */
9751 continue;
9752 }
9753
9754 if (s->size == 0)
9755 {
9756 s->flags |= SEC_EXCLUDE;
9757 continue;
9758 }
9759
9760 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9761 continue;
9762
9763 /* Allocate memory for the section contents. */
9764 s->contents = bfd_zalloc (dynobj, s->size);
9765 if (s->contents == NULL)
9766 {
9767 bfd_set_error (bfd_error_no_memory);
9768 return FALSE;
9769 }
9770 }
9771
9772 if (elf_hash_table (info)->dynamic_sections_created)
9773 {
9774 /* Add some entries to the .dynamic section. We fill in the
9775 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9776 must add the entries now so that we get the correct size for
9777 the .dynamic section. */
9778
9779 /* SGI object has the equivalence of DT_DEBUG in the
9780 DT_MIPS_RLD_MAP entry. This must come first because glibc
9781 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9782 may only look at the first one they see. */
9783 if (!bfd_link_pic (info)
9784 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9785 return FALSE;
9786
9787 if (bfd_link_executable (info)
9788 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9789 return FALSE;
9790
9791 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9792 used by the debugger. */
9793 if (bfd_link_executable (info)
9794 && !SGI_COMPAT (output_bfd)
9795 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9796 return FALSE;
9797
9798 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9799 info->flags |= DF_TEXTREL;
9800
9801 if ((info->flags & DF_TEXTREL) != 0)
9802 {
9803 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9804 return FALSE;
9805
9806 /* Clear the DF_TEXTREL flag. It will be set again if we
9807 write out an actual text relocation; we may not, because
9808 at this point we do not know whether e.g. any .eh_frame
9809 absolute relocations have been converted to PC-relative. */
9810 info->flags &= ~DF_TEXTREL;
9811 }
9812
9813 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9814 return FALSE;
9815
9816 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9817 if (htab->is_vxworks)
9818 {
9819 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9820 use any of the DT_MIPS_* tags. */
9821 if (sreldyn && sreldyn->size > 0)
9822 {
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9824 return FALSE;
9825
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9827 return FALSE;
9828
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9830 return FALSE;
9831 }
9832 }
9833 else
9834 {
9835 if (sreldyn && sreldyn->size > 0)
9836 {
9837 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9838 return FALSE;
9839
9840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9841 return FALSE;
9842
9843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9844 return FALSE;
9845 }
9846
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9848 return FALSE;
9849
9850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9851 return FALSE;
9852
9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9854 return FALSE;
9855
9856 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9857 return FALSE;
9858
9859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9860 return FALSE;
9861
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9863 return FALSE;
9864
9865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9866 return FALSE;
9867
9868 if (IRIX_COMPAT (dynobj) == ict_irix5
9869 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9870 return FALSE;
9871
9872 if (IRIX_COMPAT (dynobj) == ict_irix6
9873 && (bfd_get_section_by_name
9874 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9875 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9876 return FALSE;
9877 }
9878 if (htab->splt->size > 0)
9879 {
9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9881 return FALSE;
9882
9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9884 return FALSE;
9885
9886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9887 return FALSE;
9888
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9890 return FALSE;
9891 }
9892 if (htab->is_vxworks
9893 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9894 return FALSE;
9895 }
9896
9897 return TRUE;
9898 }
9899 \f
9900 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9901 Adjust its R_ADDEND field so that it is correct for the output file.
9902 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9903 and sections respectively; both use symbol indexes. */
9904
9905 static void
9906 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9907 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9908 asection **local_sections, Elf_Internal_Rela *rel)
9909 {
9910 unsigned int r_type, r_symndx;
9911 Elf_Internal_Sym *sym;
9912 asection *sec;
9913
9914 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9915 {
9916 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9917 if (gprel16_reloc_p (r_type)
9918 || r_type == R_MIPS_GPREL32
9919 || literal_reloc_p (r_type))
9920 {
9921 rel->r_addend += _bfd_get_gp_value (input_bfd);
9922 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9923 }
9924
9925 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9926 sym = local_syms + r_symndx;
9927
9928 /* Adjust REL's addend to account for section merging. */
9929 if (!bfd_link_relocatable (info))
9930 {
9931 sec = local_sections[r_symndx];
9932 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9933 }
9934
9935 /* This would normally be done by the rela_normal code in elflink.c. */
9936 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9937 rel->r_addend += local_sections[r_symndx]->output_offset;
9938 }
9939 }
9940
9941 /* Handle relocations against symbols from removed linkonce sections,
9942 or sections discarded by a linker script. We use this wrapper around
9943 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9944 on 64-bit ELF targets. In this case for any relocation handled, which
9945 always be the first in a triplet, the remaining two have to be processed
9946 together with the first, even if they are R_MIPS_NONE. It is the symbol
9947 index referred by the first reloc that applies to all the three and the
9948 remaining two never refer to an object symbol. And it is the final
9949 relocation (the last non-null one) that determines the output field of
9950 the whole relocation so retrieve the corresponding howto structure for
9951 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9952
9953 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9954 and therefore requires to be pasted in a loop. It also defines a block
9955 and does not protect any of its arguments, hence the extra brackets. */
9956
9957 static void
9958 mips_reloc_against_discarded_section (bfd *output_bfd,
9959 struct bfd_link_info *info,
9960 bfd *input_bfd, asection *input_section,
9961 Elf_Internal_Rela **rel,
9962 const Elf_Internal_Rela **relend,
9963 bfd_boolean rel_reloc,
9964 reloc_howto_type *howto,
9965 bfd_byte *contents)
9966 {
9967 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9968 int count = bed->s->int_rels_per_ext_rel;
9969 unsigned int r_type;
9970 int i;
9971
9972 for (i = count - 1; i > 0; i--)
9973 {
9974 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9975 if (r_type != R_MIPS_NONE)
9976 {
9977 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9978 break;
9979 }
9980 }
9981 do
9982 {
9983 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9984 (*rel), count, (*relend),
9985 howto, i, contents);
9986 }
9987 while (0);
9988 }
9989
9990 /* Relocate a MIPS ELF section. */
9991
9992 bfd_boolean
9993 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9994 bfd *input_bfd, asection *input_section,
9995 bfd_byte *contents, Elf_Internal_Rela *relocs,
9996 Elf_Internal_Sym *local_syms,
9997 asection **local_sections)
9998 {
9999 Elf_Internal_Rela *rel;
10000 const Elf_Internal_Rela *relend;
10001 bfd_vma addend = 0;
10002 bfd_boolean use_saved_addend_p = FALSE;
10003 const struct elf_backend_data *bed;
10004
10005 bed = get_elf_backend_data (output_bfd);
10006 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10007 for (rel = relocs; rel < relend; ++rel)
10008 {
10009 const char *name;
10010 bfd_vma value = 0;
10011 reloc_howto_type *howto;
10012 bfd_boolean cross_mode_jump_p = FALSE;
10013 /* TRUE if the relocation is a RELA relocation, rather than a
10014 REL relocation. */
10015 bfd_boolean rela_relocation_p = TRUE;
10016 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10017 const char *msg;
10018 unsigned long r_symndx;
10019 asection *sec;
10020 Elf_Internal_Shdr *symtab_hdr;
10021 struct elf_link_hash_entry *h;
10022 bfd_boolean rel_reloc;
10023
10024 rel_reloc = (NEWABI_P (input_bfd)
10025 && mips_elf_rel_relocation_p (input_bfd, input_section,
10026 relocs, rel));
10027 /* Find the relocation howto for this relocation. */
10028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10029
10030 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10031 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10032 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10033 {
10034 sec = local_sections[r_symndx];
10035 h = NULL;
10036 }
10037 else
10038 {
10039 unsigned long extsymoff;
10040
10041 extsymoff = 0;
10042 if (!elf_bad_symtab (input_bfd))
10043 extsymoff = symtab_hdr->sh_info;
10044 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10045 while (h->root.type == bfd_link_hash_indirect
10046 || h->root.type == bfd_link_hash_warning)
10047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10048
10049 sec = NULL;
10050 if (h->root.type == bfd_link_hash_defined
10051 || h->root.type == bfd_link_hash_defweak)
10052 sec = h->root.u.def.section;
10053 }
10054
10055 if (sec != NULL && discarded_section (sec))
10056 {
10057 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10058 input_section, &rel, &relend,
10059 rel_reloc, howto, contents);
10060 continue;
10061 }
10062
10063 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10064 {
10065 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10066 64-bit code, but make sure all their addresses are in the
10067 lowermost or uppermost 32-bit section of the 64-bit address
10068 space. Thus, when they use an R_MIPS_64 they mean what is
10069 usually meant by R_MIPS_32, with the exception that the
10070 stored value is sign-extended to 64 bits. */
10071 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10072
10073 /* On big-endian systems, we need to lie about the position
10074 of the reloc. */
10075 if (bfd_big_endian (input_bfd))
10076 rel->r_offset += 4;
10077 }
10078
10079 if (!use_saved_addend_p)
10080 {
10081 /* If these relocations were originally of the REL variety,
10082 we must pull the addend out of the field that will be
10083 relocated. Otherwise, we simply use the contents of the
10084 RELA relocation. */
10085 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10086 relocs, rel))
10087 {
10088 rela_relocation_p = FALSE;
10089 addend = mips_elf_read_rel_addend (input_bfd, rel,
10090 howto, contents);
10091 if (hi16_reloc_p (r_type)
10092 || (got16_reloc_p (r_type)
10093 && mips_elf_local_relocation_p (input_bfd, rel,
10094 local_sections)))
10095 {
10096 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10097 contents, &addend))
10098 {
10099 if (h)
10100 name = h->root.root.string;
10101 else
10102 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10103 local_syms + r_symndx,
10104 sec);
10105 (*_bfd_error_handler)
10106 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10107 input_bfd, input_section, name, howto->name,
10108 rel->r_offset);
10109 }
10110 }
10111 else
10112 addend <<= howto->rightshift;
10113 }
10114 else
10115 addend = rel->r_addend;
10116 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10117 local_syms, local_sections, rel);
10118 }
10119
10120 if (bfd_link_relocatable (info))
10121 {
10122 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10123 && bfd_big_endian (input_bfd))
10124 rel->r_offset -= 4;
10125
10126 if (!rela_relocation_p && rel->r_addend)
10127 {
10128 addend += rel->r_addend;
10129 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10130 addend = mips_elf_high (addend);
10131 else if (r_type == R_MIPS_HIGHER)
10132 addend = mips_elf_higher (addend);
10133 else if (r_type == R_MIPS_HIGHEST)
10134 addend = mips_elf_highest (addend);
10135 else
10136 addend >>= howto->rightshift;
10137
10138 /* We use the source mask, rather than the destination
10139 mask because the place to which we are writing will be
10140 source of the addend in the final link. */
10141 addend &= howto->src_mask;
10142
10143 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10144 /* See the comment above about using R_MIPS_64 in the 32-bit
10145 ABI. Here, we need to update the addend. It would be
10146 possible to get away with just using the R_MIPS_32 reloc
10147 but for endianness. */
10148 {
10149 bfd_vma sign_bits;
10150 bfd_vma low_bits;
10151 bfd_vma high_bits;
10152
10153 if (addend & ((bfd_vma) 1 << 31))
10154 #ifdef BFD64
10155 sign_bits = ((bfd_vma) 1 << 32) - 1;
10156 #else
10157 sign_bits = -1;
10158 #endif
10159 else
10160 sign_bits = 0;
10161
10162 /* If we don't know that we have a 64-bit type,
10163 do two separate stores. */
10164 if (bfd_big_endian (input_bfd))
10165 {
10166 /* Store the sign-bits (which are most significant)
10167 first. */
10168 low_bits = sign_bits;
10169 high_bits = addend;
10170 }
10171 else
10172 {
10173 low_bits = addend;
10174 high_bits = sign_bits;
10175 }
10176 bfd_put_32 (input_bfd, low_bits,
10177 contents + rel->r_offset);
10178 bfd_put_32 (input_bfd, high_bits,
10179 contents + rel->r_offset + 4);
10180 continue;
10181 }
10182
10183 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10184 input_bfd, input_section,
10185 contents, FALSE))
10186 return FALSE;
10187 }
10188
10189 /* Go on to the next relocation. */
10190 continue;
10191 }
10192
10193 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10194 relocations for the same offset. In that case we are
10195 supposed to treat the output of each relocation as the addend
10196 for the next. */
10197 if (rel + 1 < relend
10198 && rel->r_offset == rel[1].r_offset
10199 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10200 use_saved_addend_p = TRUE;
10201 else
10202 use_saved_addend_p = FALSE;
10203
10204 /* Figure out what value we are supposed to relocate. */
10205 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10206 input_section, info, rel,
10207 addend, howto, local_syms,
10208 local_sections, &value,
10209 &name, &cross_mode_jump_p,
10210 use_saved_addend_p))
10211 {
10212 case bfd_reloc_continue:
10213 /* There's nothing to do. */
10214 continue;
10215
10216 case bfd_reloc_undefined:
10217 /* mips_elf_calculate_relocation already called the
10218 undefined_symbol callback. There's no real point in
10219 trying to perform the relocation at this point, so we
10220 just skip ahead to the next relocation. */
10221 continue;
10222
10223 case bfd_reloc_notsupported:
10224 msg = _("internal error: unsupported relocation error");
10225 info->callbacks->warning
10226 (info, msg, name, input_bfd, input_section, rel->r_offset);
10227 return FALSE;
10228
10229 case bfd_reloc_overflow:
10230 if (use_saved_addend_p)
10231 /* Ignore overflow until we reach the last relocation for
10232 a given location. */
10233 ;
10234 else
10235 {
10236 struct mips_elf_link_hash_table *htab;
10237
10238 htab = mips_elf_hash_table (info);
10239 BFD_ASSERT (htab != NULL);
10240 BFD_ASSERT (name != NULL);
10241 if (!htab->small_data_overflow_reported
10242 && (gprel16_reloc_p (howto->type)
10243 || literal_reloc_p (howto->type)))
10244 {
10245 msg = _("small-data section exceeds 64KB;"
10246 " lower small-data size limit (see option -G)");
10247
10248 htab->small_data_overflow_reported = TRUE;
10249 (*info->callbacks->einfo) ("%P: %s\n", msg);
10250 }
10251 (*info->callbacks->reloc_overflow)
10252 (info, NULL, name, howto->name, (bfd_vma) 0,
10253 input_bfd, input_section, rel->r_offset);
10254 }
10255 break;
10256
10257 case bfd_reloc_ok:
10258 break;
10259
10260 case bfd_reloc_outofrange:
10261 msg = NULL;
10262 if (jal_reloc_p (howto->type))
10263 msg = _("JALX to a non-word-aligned address");
10264 else if (aligned_pcrel_reloc_p (howto->type))
10265 msg = _("PC-relative load from unaligned address");
10266 if (msg)
10267 {
10268 info->callbacks->einfo
10269 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10270 break;
10271 }
10272 /* Fall through. */
10273
10274 default:
10275 abort ();
10276 break;
10277 }
10278
10279 /* If we've got another relocation for the address, keep going
10280 until we reach the last one. */
10281 if (use_saved_addend_p)
10282 {
10283 addend = value;
10284 continue;
10285 }
10286
10287 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10288 /* See the comment above about using R_MIPS_64 in the 32-bit
10289 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10290 that calculated the right value. Now, however, we
10291 sign-extend the 32-bit result to 64-bits, and store it as a
10292 64-bit value. We are especially generous here in that we
10293 go to extreme lengths to support this usage on systems with
10294 only a 32-bit VMA. */
10295 {
10296 bfd_vma sign_bits;
10297 bfd_vma low_bits;
10298 bfd_vma high_bits;
10299
10300 if (value & ((bfd_vma) 1 << 31))
10301 #ifdef BFD64
10302 sign_bits = ((bfd_vma) 1 << 32) - 1;
10303 #else
10304 sign_bits = -1;
10305 #endif
10306 else
10307 sign_bits = 0;
10308
10309 /* If we don't know that we have a 64-bit type,
10310 do two separate stores. */
10311 if (bfd_big_endian (input_bfd))
10312 {
10313 /* Undo what we did above. */
10314 rel->r_offset -= 4;
10315 /* Store the sign-bits (which are most significant)
10316 first. */
10317 low_bits = sign_bits;
10318 high_bits = value;
10319 }
10320 else
10321 {
10322 low_bits = value;
10323 high_bits = sign_bits;
10324 }
10325 bfd_put_32 (input_bfd, low_bits,
10326 contents + rel->r_offset);
10327 bfd_put_32 (input_bfd, high_bits,
10328 contents + rel->r_offset + 4);
10329 continue;
10330 }
10331
10332 /* Actually perform the relocation. */
10333 if (! mips_elf_perform_relocation (info, howto, rel, value,
10334 input_bfd, input_section,
10335 contents, cross_mode_jump_p))
10336 return FALSE;
10337 }
10338
10339 return TRUE;
10340 }
10341 \f
10342 /* A function that iterates over each entry in la25_stubs and fills
10343 in the code for each one. DATA points to a mips_htab_traverse_info. */
10344
10345 static int
10346 mips_elf_create_la25_stub (void **slot, void *data)
10347 {
10348 struct mips_htab_traverse_info *hti;
10349 struct mips_elf_link_hash_table *htab;
10350 struct mips_elf_la25_stub *stub;
10351 asection *s;
10352 bfd_byte *loc;
10353 bfd_vma offset, target, target_high, target_low;
10354
10355 stub = (struct mips_elf_la25_stub *) *slot;
10356 hti = (struct mips_htab_traverse_info *) data;
10357 htab = mips_elf_hash_table (hti->info);
10358 BFD_ASSERT (htab != NULL);
10359
10360 /* Create the section contents, if we haven't already. */
10361 s = stub->stub_section;
10362 loc = s->contents;
10363 if (loc == NULL)
10364 {
10365 loc = bfd_malloc (s->size);
10366 if (loc == NULL)
10367 {
10368 hti->error = TRUE;
10369 return FALSE;
10370 }
10371 s->contents = loc;
10372 }
10373
10374 /* Work out where in the section this stub should go. */
10375 offset = stub->offset;
10376
10377 /* Work out the target address. */
10378 target = mips_elf_get_la25_target (stub, &s);
10379 target += s->output_section->vma + s->output_offset;
10380
10381 target_high = ((target + 0x8000) >> 16) & 0xffff;
10382 target_low = (target & 0xffff);
10383
10384 if (stub->stub_section != htab->strampoline)
10385 {
10386 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10387 of the section and write the two instructions at the end. */
10388 memset (loc, 0, offset);
10389 loc += offset;
10390 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10391 {
10392 bfd_put_micromips_32 (hti->output_bfd,
10393 LA25_LUI_MICROMIPS (target_high),
10394 loc);
10395 bfd_put_micromips_32 (hti->output_bfd,
10396 LA25_ADDIU_MICROMIPS (target_low),
10397 loc + 4);
10398 }
10399 else
10400 {
10401 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10402 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10403 }
10404 }
10405 else
10406 {
10407 /* This is trampoline. */
10408 loc += offset;
10409 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10410 {
10411 bfd_put_micromips_32 (hti->output_bfd,
10412 LA25_LUI_MICROMIPS (target_high), loc);
10413 bfd_put_micromips_32 (hti->output_bfd,
10414 LA25_J_MICROMIPS (target), loc + 4);
10415 bfd_put_micromips_32 (hti->output_bfd,
10416 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10417 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10418 }
10419 else
10420 {
10421 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10422 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10423 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10424 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10425 }
10426 }
10427 return TRUE;
10428 }
10429
10430 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10431 adjust it appropriately now. */
10432
10433 static void
10434 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10435 const char *name, Elf_Internal_Sym *sym)
10436 {
10437 /* The linker script takes care of providing names and values for
10438 these, but we must place them into the right sections. */
10439 static const char* const text_section_symbols[] = {
10440 "_ftext",
10441 "_etext",
10442 "__dso_displacement",
10443 "__elf_header",
10444 "__program_header_table",
10445 NULL
10446 };
10447
10448 static const char* const data_section_symbols[] = {
10449 "_fdata",
10450 "_edata",
10451 "_end",
10452 "_fbss",
10453 NULL
10454 };
10455
10456 const char* const *p;
10457 int i;
10458
10459 for (i = 0; i < 2; ++i)
10460 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10461 *p;
10462 ++p)
10463 if (strcmp (*p, name) == 0)
10464 {
10465 /* All of these symbols are given type STT_SECTION by the
10466 IRIX6 linker. */
10467 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10468 sym->st_other = STO_PROTECTED;
10469
10470 /* The IRIX linker puts these symbols in special sections. */
10471 if (i == 0)
10472 sym->st_shndx = SHN_MIPS_TEXT;
10473 else
10474 sym->st_shndx = SHN_MIPS_DATA;
10475
10476 break;
10477 }
10478 }
10479
10480 /* Finish up dynamic symbol handling. We set the contents of various
10481 dynamic sections here. */
10482
10483 bfd_boolean
10484 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10485 struct bfd_link_info *info,
10486 struct elf_link_hash_entry *h,
10487 Elf_Internal_Sym *sym)
10488 {
10489 bfd *dynobj;
10490 asection *sgot;
10491 struct mips_got_info *g, *gg;
10492 const char *name;
10493 int idx;
10494 struct mips_elf_link_hash_table *htab;
10495 struct mips_elf_link_hash_entry *hmips;
10496
10497 htab = mips_elf_hash_table (info);
10498 BFD_ASSERT (htab != NULL);
10499 dynobj = elf_hash_table (info)->dynobj;
10500 hmips = (struct mips_elf_link_hash_entry *) h;
10501
10502 BFD_ASSERT (!htab->is_vxworks);
10503
10504 if (h->plt.plist != NULL
10505 && (h->plt.plist->mips_offset != MINUS_ONE
10506 || h->plt.plist->comp_offset != MINUS_ONE))
10507 {
10508 /* We've decided to create a PLT entry for this symbol. */
10509 bfd_byte *loc;
10510 bfd_vma header_address, got_address;
10511 bfd_vma got_address_high, got_address_low, load;
10512 bfd_vma got_index;
10513 bfd_vma isa_bit;
10514
10515 got_index = h->plt.plist->gotplt_index;
10516
10517 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10518 BFD_ASSERT (h->dynindx != -1);
10519 BFD_ASSERT (htab->splt != NULL);
10520 BFD_ASSERT (got_index != MINUS_ONE);
10521 BFD_ASSERT (!h->def_regular);
10522
10523 /* Calculate the address of the PLT header. */
10524 isa_bit = htab->plt_header_is_comp;
10525 header_address = (htab->splt->output_section->vma
10526 + htab->splt->output_offset + isa_bit);
10527
10528 /* Calculate the address of the .got.plt entry. */
10529 got_address = (htab->sgotplt->output_section->vma
10530 + htab->sgotplt->output_offset
10531 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10532
10533 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10534 got_address_low = got_address & 0xffff;
10535
10536 /* Initially point the .got.plt entry at the PLT header. */
10537 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10538 if (ABI_64_P (output_bfd))
10539 bfd_put_64 (output_bfd, header_address, loc);
10540 else
10541 bfd_put_32 (output_bfd, header_address, loc);
10542
10543 /* Now handle the PLT itself. First the standard entry (the order
10544 does not matter, we just have to pick one). */
10545 if (h->plt.plist->mips_offset != MINUS_ONE)
10546 {
10547 const bfd_vma *plt_entry;
10548 bfd_vma plt_offset;
10549
10550 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10551
10552 BFD_ASSERT (plt_offset <= htab->splt->size);
10553
10554 /* Find out where the .plt entry should go. */
10555 loc = htab->splt->contents + plt_offset;
10556
10557 /* Pick the load opcode. */
10558 load = MIPS_ELF_LOAD_WORD (output_bfd);
10559
10560 /* Fill in the PLT entry itself. */
10561
10562 if (MIPSR6_P (output_bfd))
10563 plt_entry = mipsr6_exec_plt_entry;
10564 else
10565 plt_entry = mips_exec_plt_entry;
10566 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10567 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10568 loc + 4);
10569
10570 if (! LOAD_INTERLOCKS_P (output_bfd))
10571 {
10572 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10573 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10574 }
10575 else
10576 {
10577 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10578 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10579 loc + 12);
10580 }
10581 }
10582
10583 /* Now the compressed entry. They come after any standard ones. */
10584 if (h->plt.plist->comp_offset != MINUS_ONE)
10585 {
10586 bfd_vma plt_offset;
10587
10588 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10589 + h->plt.plist->comp_offset);
10590
10591 BFD_ASSERT (plt_offset <= htab->splt->size);
10592
10593 /* Find out where the .plt entry should go. */
10594 loc = htab->splt->contents + plt_offset;
10595
10596 /* Fill in the PLT entry itself. */
10597 if (!MICROMIPS_P (output_bfd))
10598 {
10599 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10600
10601 bfd_put_16 (output_bfd, plt_entry[0], loc);
10602 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10603 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10604 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10605 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10606 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10607 bfd_put_32 (output_bfd, got_address, loc + 12);
10608 }
10609 else if (htab->insn32)
10610 {
10611 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10612
10613 bfd_put_16 (output_bfd, plt_entry[0], loc);
10614 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10615 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10616 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10617 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10618 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10619 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10620 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10621 }
10622 else
10623 {
10624 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10625 bfd_signed_vma gotpc_offset;
10626 bfd_vma loc_address;
10627
10628 BFD_ASSERT (got_address % 4 == 0);
10629
10630 loc_address = (htab->splt->output_section->vma
10631 + htab->splt->output_offset + plt_offset);
10632 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10633
10634 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10635 if (gotpc_offset + 0x1000000 >= 0x2000000)
10636 {
10637 (*_bfd_error_handler)
10638 (_("%B: `%A' offset of %ld from `%A' "
10639 "beyond the range of ADDIUPC"),
10640 output_bfd,
10641 htab->sgotplt->output_section,
10642 htab->splt->output_section,
10643 (long) gotpc_offset);
10644 bfd_set_error (bfd_error_no_error);
10645 return FALSE;
10646 }
10647 bfd_put_16 (output_bfd,
10648 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10649 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10650 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10651 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10652 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10653 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10654 }
10655 }
10656
10657 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10658 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10659 got_index - 2, h->dynindx,
10660 R_MIPS_JUMP_SLOT, got_address);
10661
10662 /* We distinguish between PLT entries and lazy-binding stubs by
10663 giving the former an st_other value of STO_MIPS_PLT. Set the
10664 flag and leave the value if there are any relocations in the
10665 binary where pointer equality matters. */
10666 sym->st_shndx = SHN_UNDEF;
10667 if (h->pointer_equality_needed)
10668 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10669 else
10670 {
10671 sym->st_value = 0;
10672 sym->st_other = 0;
10673 }
10674 }
10675
10676 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10677 {
10678 /* We've decided to create a lazy-binding stub. */
10679 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10680 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10681 bfd_vma stub_size = htab->function_stub_size;
10682 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10683 bfd_vma isa_bit = micromips_p;
10684 bfd_vma stub_big_size;
10685
10686 if (!micromips_p)
10687 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10688 else if (htab->insn32)
10689 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10690 else
10691 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10692
10693 /* This symbol has a stub. Set it up. */
10694
10695 BFD_ASSERT (h->dynindx != -1);
10696
10697 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10698
10699 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10700 sign extension at runtime in the stub, resulting in a negative
10701 index value. */
10702 if (h->dynindx & ~0x7fffffff)
10703 return FALSE;
10704
10705 /* Fill the stub. */
10706 if (micromips_p)
10707 {
10708 idx = 0;
10709 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10710 stub + idx);
10711 idx += 4;
10712 if (htab->insn32)
10713 {
10714 bfd_put_micromips_32 (output_bfd,
10715 STUB_MOVE32_MICROMIPS, stub + idx);
10716 idx += 4;
10717 }
10718 else
10719 {
10720 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10721 idx += 2;
10722 }
10723 if (stub_size == stub_big_size)
10724 {
10725 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10726
10727 bfd_put_micromips_32 (output_bfd,
10728 STUB_LUI_MICROMIPS (dynindx_hi),
10729 stub + idx);
10730 idx += 4;
10731 }
10732 if (htab->insn32)
10733 {
10734 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10735 stub + idx);
10736 idx += 4;
10737 }
10738 else
10739 {
10740 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10741 idx += 2;
10742 }
10743
10744 /* If a large stub is not required and sign extension is not a
10745 problem, then use legacy code in the stub. */
10746 if (stub_size == stub_big_size)
10747 bfd_put_micromips_32 (output_bfd,
10748 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10749 stub + idx);
10750 else if (h->dynindx & ~0x7fff)
10751 bfd_put_micromips_32 (output_bfd,
10752 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10753 stub + idx);
10754 else
10755 bfd_put_micromips_32 (output_bfd,
10756 STUB_LI16S_MICROMIPS (output_bfd,
10757 h->dynindx),
10758 stub + idx);
10759 }
10760 else
10761 {
10762 idx = 0;
10763 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10764 idx += 4;
10765 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10766 idx += 4;
10767 if (stub_size == stub_big_size)
10768 {
10769 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10770 stub + idx);
10771 idx += 4;
10772 }
10773 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10774 idx += 4;
10775
10776 /* If a large stub is not required and sign extension is not a
10777 problem, then use legacy code in the stub. */
10778 if (stub_size == stub_big_size)
10779 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10780 stub + idx);
10781 else if (h->dynindx & ~0x7fff)
10782 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10783 stub + idx);
10784 else
10785 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10786 stub + idx);
10787 }
10788
10789 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10790 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10791 stub, stub_size);
10792
10793 /* Mark the symbol as undefined. stub_offset != -1 occurs
10794 only for the referenced symbol. */
10795 sym->st_shndx = SHN_UNDEF;
10796
10797 /* The run-time linker uses the st_value field of the symbol
10798 to reset the global offset table entry for this external
10799 to its stub address when unlinking a shared object. */
10800 sym->st_value = (htab->sstubs->output_section->vma
10801 + htab->sstubs->output_offset
10802 + h->plt.plist->stub_offset
10803 + isa_bit);
10804 sym->st_other = other;
10805 }
10806
10807 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10808 refer to the stub, since only the stub uses the standard calling
10809 conventions. */
10810 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10811 {
10812 BFD_ASSERT (hmips->need_fn_stub);
10813 sym->st_value = (hmips->fn_stub->output_section->vma
10814 + hmips->fn_stub->output_offset);
10815 sym->st_size = hmips->fn_stub->size;
10816 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10817 }
10818
10819 BFD_ASSERT (h->dynindx != -1
10820 || h->forced_local);
10821
10822 sgot = htab->sgot;
10823 g = htab->got_info;
10824 BFD_ASSERT (g != NULL);
10825
10826 /* Run through the global symbol table, creating GOT entries for all
10827 the symbols that need them. */
10828 if (hmips->global_got_area != GGA_NONE)
10829 {
10830 bfd_vma offset;
10831 bfd_vma value;
10832
10833 value = sym->st_value;
10834 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10835 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10836 }
10837
10838 if (hmips->global_got_area != GGA_NONE && g->next)
10839 {
10840 struct mips_got_entry e, *p;
10841 bfd_vma entry;
10842 bfd_vma offset;
10843
10844 gg = g;
10845
10846 e.abfd = output_bfd;
10847 e.symndx = -1;
10848 e.d.h = hmips;
10849 e.tls_type = GOT_TLS_NONE;
10850
10851 for (g = g->next; g->next != gg; g = g->next)
10852 {
10853 if (g->got_entries
10854 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10855 &e)))
10856 {
10857 offset = p->gotidx;
10858 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10859 if (bfd_link_pic (info)
10860 || (elf_hash_table (info)->dynamic_sections_created
10861 && p->d.h != NULL
10862 && p->d.h->root.def_dynamic
10863 && !p->d.h->root.def_regular))
10864 {
10865 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10866 the various compatibility problems, it's easier to mock
10867 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10868 mips_elf_create_dynamic_relocation to calculate the
10869 appropriate addend. */
10870 Elf_Internal_Rela rel[3];
10871
10872 memset (rel, 0, sizeof (rel));
10873 if (ABI_64_P (output_bfd))
10874 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10875 else
10876 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10877 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10878
10879 entry = 0;
10880 if (! (mips_elf_create_dynamic_relocation
10881 (output_bfd, info, rel,
10882 e.d.h, NULL, sym->st_value, &entry, sgot)))
10883 return FALSE;
10884 }
10885 else
10886 entry = sym->st_value;
10887 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10888 }
10889 }
10890 }
10891
10892 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10893 name = h->root.root.string;
10894 if (h == elf_hash_table (info)->hdynamic
10895 || h == elf_hash_table (info)->hgot)
10896 sym->st_shndx = SHN_ABS;
10897 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10898 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10899 {
10900 sym->st_shndx = SHN_ABS;
10901 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10902 sym->st_value = 1;
10903 }
10904 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10905 {
10906 sym->st_shndx = SHN_ABS;
10907 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10908 sym->st_value = elf_gp (output_bfd);
10909 }
10910 else if (SGI_COMPAT (output_bfd))
10911 {
10912 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10913 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10914 {
10915 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10916 sym->st_other = STO_PROTECTED;
10917 sym->st_value = 0;
10918 sym->st_shndx = SHN_MIPS_DATA;
10919 }
10920 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10921 {
10922 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10923 sym->st_other = STO_PROTECTED;
10924 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10925 sym->st_shndx = SHN_ABS;
10926 }
10927 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10928 {
10929 if (h->type == STT_FUNC)
10930 sym->st_shndx = SHN_MIPS_TEXT;
10931 else if (h->type == STT_OBJECT)
10932 sym->st_shndx = SHN_MIPS_DATA;
10933 }
10934 }
10935
10936 /* Emit a copy reloc, if needed. */
10937 if (h->needs_copy)
10938 {
10939 asection *s;
10940 bfd_vma symval;
10941
10942 BFD_ASSERT (h->dynindx != -1);
10943 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10944
10945 s = mips_elf_rel_dyn_section (info, FALSE);
10946 symval = (h->root.u.def.section->output_section->vma
10947 + h->root.u.def.section->output_offset
10948 + h->root.u.def.value);
10949 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10950 h->dynindx, R_MIPS_COPY, symval);
10951 }
10952
10953 /* Handle the IRIX6-specific symbols. */
10954 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10955 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10956
10957 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10958 to treat compressed symbols like any other. */
10959 if (ELF_ST_IS_MIPS16 (sym->st_other))
10960 {
10961 BFD_ASSERT (sym->st_value & 1);
10962 sym->st_other -= STO_MIPS16;
10963 }
10964 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10965 {
10966 BFD_ASSERT (sym->st_value & 1);
10967 sym->st_other -= STO_MICROMIPS;
10968 }
10969
10970 return TRUE;
10971 }
10972
10973 /* Likewise, for VxWorks. */
10974
10975 bfd_boolean
10976 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10977 struct bfd_link_info *info,
10978 struct elf_link_hash_entry *h,
10979 Elf_Internal_Sym *sym)
10980 {
10981 bfd *dynobj;
10982 asection *sgot;
10983 struct mips_got_info *g;
10984 struct mips_elf_link_hash_table *htab;
10985 struct mips_elf_link_hash_entry *hmips;
10986
10987 htab = mips_elf_hash_table (info);
10988 BFD_ASSERT (htab != NULL);
10989 dynobj = elf_hash_table (info)->dynobj;
10990 hmips = (struct mips_elf_link_hash_entry *) h;
10991
10992 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10993 {
10994 bfd_byte *loc;
10995 bfd_vma plt_address, got_address, got_offset, branch_offset;
10996 Elf_Internal_Rela rel;
10997 static const bfd_vma *plt_entry;
10998 bfd_vma gotplt_index;
10999 bfd_vma plt_offset;
11000
11001 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11002 gotplt_index = h->plt.plist->gotplt_index;
11003
11004 BFD_ASSERT (h->dynindx != -1);
11005 BFD_ASSERT (htab->splt != NULL);
11006 BFD_ASSERT (gotplt_index != MINUS_ONE);
11007 BFD_ASSERT (plt_offset <= htab->splt->size);
11008
11009 /* Calculate the address of the .plt entry. */
11010 plt_address = (htab->splt->output_section->vma
11011 + htab->splt->output_offset
11012 + plt_offset);
11013
11014 /* Calculate the address of the .got.plt entry. */
11015 got_address = (htab->sgotplt->output_section->vma
11016 + htab->sgotplt->output_offset
11017 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11018
11019 /* Calculate the offset of the .got.plt entry from
11020 _GLOBAL_OFFSET_TABLE_. */
11021 got_offset = mips_elf_gotplt_index (info, h);
11022
11023 /* Calculate the offset for the branch at the start of the PLT
11024 entry. The branch jumps to the beginning of .plt. */
11025 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11026
11027 /* Fill in the initial value of the .got.plt entry. */
11028 bfd_put_32 (output_bfd, plt_address,
11029 (htab->sgotplt->contents
11030 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11031
11032 /* Find out where the .plt entry should go. */
11033 loc = htab->splt->contents + plt_offset;
11034
11035 if (bfd_link_pic (info))
11036 {
11037 plt_entry = mips_vxworks_shared_plt_entry;
11038 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11039 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11040 }
11041 else
11042 {
11043 bfd_vma got_address_high, got_address_low;
11044
11045 plt_entry = mips_vxworks_exec_plt_entry;
11046 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11047 got_address_low = got_address & 0xffff;
11048
11049 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11050 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11051 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11052 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11053 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11054 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11055 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11056 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11057
11058 loc = (htab->srelplt2->contents
11059 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11060
11061 /* Emit a relocation for the .got.plt entry. */
11062 rel.r_offset = got_address;
11063 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11064 rel.r_addend = plt_offset;
11065 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11066
11067 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11068 loc += sizeof (Elf32_External_Rela);
11069 rel.r_offset = plt_address + 8;
11070 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11071 rel.r_addend = got_offset;
11072 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11073
11074 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11075 loc += sizeof (Elf32_External_Rela);
11076 rel.r_offset += 4;
11077 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11078 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11079 }
11080
11081 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11082 loc = (htab->srelplt->contents
11083 + gotplt_index * sizeof (Elf32_External_Rela));
11084 rel.r_offset = got_address;
11085 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11086 rel.r_addend = 0;
11087 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11088
11089 if (!h->def_regular)
11090 sym->st_shndx = SHN_UNDEF;
11091 }
11092
11093 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11094
11095 sgot = htab->sgot;
11096 g = htab->got_info;
11097 BFD_ASSERT (g != NULL);
11098
11099 /* See if this symbol has an entry in the GOT. */
11100 if (hmips->global_got_area != GGA_NONE)
11101 {
11102 bfd_vma offset;
11103 Elf_Internal_Rela outrel;
11104 bfd_byte *loc;
11105 asection *s;
11106
11107 /* Install the symbol value in the GOT. */
11108 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11109 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11110
11111 /* Add a dynamic relocation for it. */
11112 s = mips_elf_rel_dyn_section (info, FALSE);
11113 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11114 outrel.r_offset = (sgot->output_section->vma
11115 + sgot->output_offset
11116 + offset);
11117 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11118 outrel.r_addend = 0;
11119 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11120 }
11121
11122 /* Emit a copy reloc, if needed. */
11123 if (h->needs_copy)
11124 {
11125 Elf_Internal_Rela rel;
11126
11127 BFD_ASSERT (h->dynindx != -1);
11128
11129 rel.r_offset = (h->root.u.def.section->output_section->vma
11130 + h->root.u.def.section->output_offset
11131 + h->root.u.def.value);
11132 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11133 rel.r_addend = 0;
11134 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11135 htab->srelbss->contents
11136 + (htab->srelbss->reloc_count
11137 * sizeof (Elf32_External_Rela)));
11138 ++htab->srelbss->reloc_count;
11139 }
11140
11141 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11142 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11143 sym->st_value &= ~1;
11144
11145 return TRUE;
11146 }
11147
11148 /* Write out a plt0 entry to the beginning of .plt. */
11149
11150 static bfd_boolean
11151 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11152 {
11153 bfd_byte *loc;
11154 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11155 static const bfd_vma *plt_entry;
11156 struct mips_elf_link_hash_table *htab;
11157
11158 htab = mips_elf_hash_table (info);
11159 BFD_ASSERT (htab != NULL);
11160
11161 if (ABI_64_P (output_bfd))
11162 plt_entry = mips_n64_exec_plt0_entry;
11163 else if (ABI_N32_P (output_bfd))
11164 plt_entry = mips_n32_exec_plt0_entry;
11165 else if (!htab->plt_header_is_comp)
11166 plt_entry = mips_o32_exec_plt0_entry;
11167 else if (htab->insn32)
11168 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11169 else
11170 plt_entry = micromips_o32_exec_plt0_entry;
11171
11172 /* Calculate the value of .got.plt. */
11173 gotplt_value = (htab->sgotplt->output_section->vma
11174 + htab->sgotplt->output_offset);
11175 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11176 gotplt_value_low = gotplt_value & 0xffff;
11177
11178 /* The PLT sequence is not safe for N64 if .got.plt's address can
11179 not be loaded in two instructions. */
11180 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11181 || ~(gotplt_value | 0x7fffffff) == 0);
11182
11183 /* Install the PLT header. */
11184 loc = htab->splt->contents;
11185 if (plt_entry == micromips_o32_exec_plt0_entry)
11186 {
11187 bfd_vma gotpc_offset;
11188 bfd_vma loc_address;
11189 size_t i;
11190
11191 BFD_ASSERT (gotplt_value % 4 == 0);
11192
11193 loc_address = (htab->splt->output_section->vma
11194 + htab->splt->output_offset);
11195 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11196
11197 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11198 if (gotpc_offset + 0x1000000 >= 0x2000000)
11199 {
11200 (*_bfd_error_handler)
11201 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11202 output_bfd,
11203 htab->sgotplt->output_section,
11204 htab->splt->output_section,
11205 (long) gotpc_offset);
11206 bfd_set_error (bfd_error_no_error);
11207 return FALSE;
11208 }
11209 bfd_put_16 (output_bfd,
11210 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11211 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11212 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11213 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11214 }
11215 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11216 {
11217 size_t i;
11218
11219 bfd_put_16 (output_bfd, plt_entry[0], loc);
11220 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11221 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11222 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11223 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11224 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11225 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11226 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11227 }
11228 else
11229 {
11230 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11231 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11232 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11233 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11234 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11235 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11236 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11237 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11238 }
11239
11240 return TRUE;
11241 }
11242
11243 /* Install the PLT header for a VxWorks executable and finalize the
11244 contents of .rela.plt.unloaded. */
11245
11246 static void
11247 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11248 {
11249 Elf_Internal_Rela rela;
11250 bfd_byte *loc;
11251 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11252 static const bfd_vma *plt_entry;
11253 struct mips_elf_link_hash_table *htab;
11254
11255 htab = mips_elf_hash_table (info);
11256 BFD_ASSERT (htab != NULL);
11257
11258 plt_entry = mips_vxworks_exec_plt0_entry;
11259
11260 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11261 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11262 + htab->root.hgot->root.u.def.section->output_offset
11263 + htab->root.hgot->root.u.def.value);
11264
11265 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11266 got_value_low = got_value & 0xffff;
11267
11268 /* Calculate the address of the PLT header. */
11269 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11270
11271 /* Install the PLT header. */
11272 loc = htab->splt->contents;
11273 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11274 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11275 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11276 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11277 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11278 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11279
11280 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11281 loc = htab->srelplt2->contents;
11282 rela.r_offset = plt_address;
11283 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11284 rela.r_addend = 0;
11285 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11286 loc += sizeof (Elf32_External_Rela);
11287
11288 /* Output the relocation for the following addiu of
11289 %lo(_GLOBAL_OFFSET_TABLE_). */
11290 rela.r_offset += 4;
11291 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11292 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11293 loc += sizeof (Elf32_External_Rela);
11294
11295 /* Fix up the remaining relocations. They may have the wrong
11296 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11297 in which symbols were output. */
11298 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11299 {
11300 Elf_Internal_Rela rel;
11301
11302 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11303 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11304 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11305 loc += sizeof (Elf32_External_Rela);
11306
11307 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11308 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11309 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11310 loc += sizeof (Elf32_External_Rela);
11311
11312 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11313 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11314 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11315 loc += sizeof (Elf32_External_Rela);
11316 }
11317 }
11318
11319 /* Install the PLT header for a VxWorks shared library. */
11320
11321 static void
11322 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11323 {
11324 unsigned int i;
11325 struct mips_elf_link_hash_table *htab;
11326
11327 htab = mips_elf_hash_table (info);
11328 BFD_ASSERT (htab != NULL);
11329
11330 /* We just need to copy the entry byte-by-byte. */
11331 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11332 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11333 htab->splt->contents + i * 4);
11334 }
11335
11336 /* Finish up the dynamic sections. */
11337
11338 bfd_boolean
11339 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11340 struct bfd_link_info *info)
11341 {
11342 bfd *dynobj;
11343 asection *sdyn;
11344 asection *sgot;
11345 struct mips_got_info *gg, *g;
11346 struct mips_elf_link_hash_table *htab;
11347
11348 htab = mips_elf_hash_table (info);
11349 BFD_ASSERT (htab != NULL);
11350
11351 dynobj = elf_hash_table (info)->dynobj;
11352
11353 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11354
11355 sgot = htab->sgot;
11356 gg = htab->got_info;
11357
11358 if (elf_hash_table (info)->dynamic_sections_created)
11359 {
11360 bfd_byte *b;
11361 int dyn_to_skip = 0, dyn_skipped = 0;
11362
11363 BFD_ASSERT (sdyn != NULL);
11364 BFD_ASSERT (gg != NULL);
11365
11366 g = mips_elf_bfd_got (output_bfd, FALSE);
11367 BFD_ASSERT (g != NULL);
11368
11369 for (b = sdyn->contents;
11370 b < sdyn->contents + sdyn->size;
11371 b += MIPS_ELF_DYN_SIZE (dynobj))
11372 {
11373 Elf_Internal_Dyn dyn;
11374 const char *name;
11375 size_t elemsize;
11376 asection *s;
11377 bfd_boolean swap_out_p;
11378
11379 /* Read in the current dynamic entry. */
11380 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11381
11382 /* Assume that we're going to modify it and write it out. */
11383 swap_out_p = TRUE;
11384
11385 switch (dyn.d_tag)
11386 {
11387 case DT_RELENT:
11388 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11389 break;
11390
11391 case DT_RELAENT:
11392 BFD_ASSERT (htab->is_vxworks);
11393 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11394 break;
11395
11396 case DT_STRSZ:
11397 /* Rewrite DT_STRSZ. */
11398 dyn.d_un.d_val =
11399 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11400 break;
11401
11402 case DT_PLTGOT:
11403 s = htab->sgot;
11404 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11405 break;
11406
11407 case DT_MIPS_PLTGOT:
11408 s = htab->sgotplt;
11409 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11410 break;
11411
11412 case DT_MIPS_RLD_VERSION:
11413 dyn.d_un.d_val = 1; /* XXX */
11414 break;
11415
11416 case DT_MIPS_FLAGS:
11417 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11418 break;
11419
11420 case DT_MIPS_TIME_STAMP:
11421 {
11422 time_t t;
11423 time (&t);
11424 dyn.d_un.d_val = t;
11425 }
11426 break;
11427
11428 case DT_MIPS_ICHECKSUM:
11429 /* XXX FIXME: */
11430 swap_out_p = FALSE;
11431 break;
11432
11433 case DT_MIPS_IVERSION:
11434 /* XXX FIXME: */
11435 swap_out_p = FALSE;
11436 break;
11437
11438 case DT_MIPS_BASE_ADDRESS:
11439 s = output_bfd->sections;
11440 BFD_ASSERT (s != NULL);
11441 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11442 break;
11443
11444 case DT_MIPS_LOCAL_GOTNO:
11445 dyn.d_un.d_val = g->local_gotno;
11446 break;
11447
11448 case DT_MIPS_UNREFEXTNO:
11449 /* The index into the dynamic symbol table which is the
11450 entry of the first external symbol that is not
11451 referenced within the same object. */
11452 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11453 break;
11454
11455 case DT_MIPS_GOTSYM:
11456 if (htab->global_gotsym)
11457 {
11458 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11459 break;
11460 }
11461 /* In case if we don't have global got symbols we default
11462 to setting DT_MIPS_GOTSYM to the same value as
11463 DT_MIPS_SYMTABNO, so we just fall through. */
11464
11465 case DT_MIPS_SYMTABNO:
11466 name = ".dynsym";
11467 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11468 s = bfd_get_linker_section (dynobj, name);
11469
11470 if (s != NULL)
11471 dyn.d_un.d_val = s->size / elemsize;
11472 else
11473 dyn.d_un.d_val = 0;
11474 break;
11475
11476 case DT_MIPS_HIPAGENO:
11477 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11478 break;
11479
11480 case DT_MIPS_RLD_MAP:
11481 {
11482 struct elf_link_hash_entry *h;
11483 h = mips_elf_hash_table (info)->rld_symbol;
11484 if (!h)
11485 {
11486 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11487 swap_out_p = FALSE;
11488 break;
11489 }
11490 s = h->root.u.def.section;
11491
11492 /* The MIPS_RLD_MAP tag stores the absolute address of the
11493 debug pointer. */
11494 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11495 + h->root.u.def.value);
11496 }
11497 break;
11498
11499 case DT_MIPS_RLD_MAP_REL:
11500 {
11501 struct elf_link_hash_entry *h;
11502 bfd_vma dt_addr, rld_addr;
11503 h = mips_elf_hash_table (info)->rld_symbol;
11504 if (!h)
11505 {
11506 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11507 swap_out_p = FALSE;
11508 break;
11509 }
11510 s = h->root.u.def.section;
11511
11512 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11513 pointer, relative to the address of the tag. */
11514 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11515 + (b - sdyn->contents));
11516 rld_addr = (s->output_section->vma + s->output_offset
11517 + h->root.u.def.value);
11518 dyn.d_un.d_ptr = rld_addr - dt_addr;
11519 }
11520 break;
11521
11522 case DT_MIPS_OPTIONS:
11523 s = (bfd_get_section_by_name
11524 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11525 dyn.d_un.d_ptr = s->vma;
11526 break;
11527
11528 case DT_RELASZ:
11529 BFD_ASSERT (htab->is_vxworks);
11530 /* The count does not include the JUMP_SLOT relocations. */
11531 if (htab->srelplt)
11532 dyn.d_un.d_val -= htab->srelplt->size;
11533 break;
11534
11535 case DT_PLTREL:
11536 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11537 if (htab->is_vxworks)
11538 dyn.d_un.d_val = DT_RELA;
11539 else
11540 dyn.d_un.d_val = DT_REL;
11541 break;
11542
11543 case DT_PLTRELSZ:
11544 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11545 dyn.d_un.d_val = htab->srelplt->size;
11546 break;
11547
11548 case DT_JMPREL:
11549 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11550 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11551 + htab->srelplt->output_offset);
11552 break;
11553
11554 case DT_TEXTREL:
11555 /* If we didn't need any text relocations after all, delete
11556 the dynamic tag. */
11557 if (!(info->flags & DF_TEXTREL))
11558 {
11559 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11560 swap_out_p = FALSE;
11561 }
11562 break;
11563
11564 case DT_FLAGS:
11565 /* If we didn't need any text relocations after all, clear
11566 DF_TEXTREL from DT_FLAGS. */
11567 if (!(info->flags & DF_TEXTREL))
11568 dyn.d_un.d_val &= ~DF_TEXTREL;
11569 else
11570 swap_out_p = FALSE;
11571 break;
11572
11573 default:
11574 swap_out_p = FALSE;
11575 if (htab->is_vxworks
11576 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11577 swap_out_p = TRUE;
11578 break;
11579 }
11580
11581 if (swap_out_p || dyn_skipped)
11582 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11583 (dynobj, &dyn, b - dyn_skipped);
11584
11585 if (dyn_to_skip)
11586 {
11587 dyn_skipped += dyn_to_skip;
11588 dyn_to_skip = 0;
11589 }
11590 }
11591
11592 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11593 if (dyn_skipped > 0)
11594 memset (b - dyn_skipped, 0, dyn_skipped);
11595 }
11596
11597 if (sgot != NULL && sgot->size > 0
11598 && !bfd_is_abs_section (sgot->output_section))
11599 {
11600 if (htab->is_vxworks)
11601 {
11602 /* The first entry of the global offset table points to the
11603 ".dynamic" section. The second is initialized by the
11604 loader and contains the shared library identifier.
11605 The third is also initialized by the loader and points
11606 to the lazy resolution stub. */
11607 MIPS_ELF_PUT_WORD (output_bfd,
11608 sdyn->output_offset + sdyn->output_section->vma,
11609 sgot->contents);
11610 MIPS_ELF_PUT_WORD (output_bfd, 0,
11611 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11612 MIPS_ELF_PUT_WORD (output_bfd, 0,
11613 sgot->contents
11614 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11615 }
11616 else
11617 {
11618 /* The first entry of the global offset table will be filled at
11619 runtime. The second entry will be used by some runtime loaders.
11620 This isn't the case of IRIX rld. */
11621 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11622 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11623 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11624 }
11625
11626 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11627 = MIPS_ELF_GOT_SIZE (output_bfd);
11628 }
11629
11630 /* Generate dynamic relocations for the non-primary gots. */
11631 if (gg != NULL && gg->next)
11632 {
11633 Elf_Internal_Rela rel[3];
11634 bfd_vma addend = 0;
11635
11636 memset (rel, 0, sizeof (rel));
11637 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11638
11639 for (g = gg->next; g->next != gg; g = g->next)
11640 {
11641 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11642 + g->next->tls_gotno;
11643
11644 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11645 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11646 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11647 sgot->contents
11648 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11649
11650 if (! bfd_link_pic (info))
11651 continue;
11652
11653 for (; got_index < g->local_gotno; got_index++)
11654 {
11655 if (got_index >= g->assigned_low_gotno
11656 && got_index <= g->assigned_high_gotno)
11657 continue;
11658
11659 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11660 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11661 if (!(mips_elf_create_dynamic_relocation
11662 (output_bfd, info, rel, NULL,
11663 bfd_abs_section_ptr,
11664 0, &addend, sgot)))
11665 return FALSE;
11666 BFD_ASSERT (addend == 0);
11667 }
11668 }
11669 }
11670
11671 /* The generation of dynamic relocations for the non-primary gots
11672 adds more dynamic relocations. We cannot count them until
11673 here. */
11674
11675 if (elf_hash_table (info)->dynamic_sections_created)
11676 {
11677 bfd_byte *b;
11678 bfd_boolean swap_out_p;
11679
11680 BFD_ASSERT (sdyn != NULL);
11681
11682 for (b = sdyn->contents;
11683 b < sdyn->contents + sdyn->size;
11684 b += MIPS_ELF_DYN_SIZE (dynobj))
11685 {
11686 Elf_Internal_Dyn dyn;
11687 asection *s;
11688
11689 /* Read in the current dynamic entry. */
11690 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11691
11692 /* Assume that we're going to modify it and write it out. */
11693 swap_out_p = TRUE;
11694
11695 switch (dyn.d_tag)
11696 {
11697 case DT_RELSZ:
11698 /* Reduce DT_RELSZ to account for any relocations we
11699 decided not to make. This is for the n64 irix rld,
11700 which doesn't seem to apply any relocations if there
11701 are trailing null entries. */
11702 s = mips_elf_rel_dyn_section (info, FALSE);
11703 dyn.d_un.d_val = (s->reloc_count
11704 * (ABI_64_P (output_bfd)
11705 ? sizeof (Elf64_Mips_External_Rel)
11706 : sizeof (Elf32_External_Rel)));
11707 /* Adjust the section size too. Tools like the prelinker
11708 can reasonably expect the values to the same. */
11709 elf_section_data (s->output_section)->this_hdr.sh_size
11710 = dyn.d_un.d_val;
11711 break;
11712
11713 default:
11714 swap_out_p = FALSE;
11715 break;
11716 }
11717
11718 if (swap_out_p)
11719 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11720 (dynobj, &dyn, b);
11721 }
11722 }
11723
11724 {
11725 asection *s;
11726 Elf32_compact_rel cpt;
11727
11728 if (SGI_COMPAT (output_bfd))
11729 {
11730 /* Write .compact_rel section out. */
11731 s = bfd_get_linker_section (dynobj, ".compact_rel");
11732 if (s != NULL)
11733 {
11734 cpt.id1 = 1;
11735 cpt.num = s->reloc_count;
11736 cpt.id2 = 2;
11737 cpt.offset = (s->output_section->filepos
11738 + sizeof (Elf32_External_compact_rel));
11739 cpt.reserved0 = 0;
11740 cpt.reserved1 = 0;
11741 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11742 ((Elf32_External_compact_rel *)
11743 s->contents));
11744
11745 /* Clean up a dummy stub function entry in .text. */
11746 if (htab->sstubs != NULL)
11747 {
11748 file_ptr dummy_offset;
11749
11750 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11751 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11752 memset (htab->sstubs->contents + dummy_offset, 0,
11753 htab->function_stub_size);
11754 }
11755 }
11756 }
11757
11758 /* The psABI says that the dynamic relocations must be sorted in
11759 increasing order of r_symndx. The VxWorks EABI doesn't require
11760 this, and because the code below handles REL rather than RELA
11761 relocations, using it for VxWorks would be outright harmful. */
11762 if (!htab->is_vxworks)
11763 {
11764 s = mips_elf_rel_dyn_section (info, FALSE);
11765 if (s != NULL
11766 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11767 {
11768 reldyn_sorting_bfd = output_bfd;
11769
11770 if (ABI_64_P (output_bfd))
11771 qsort ((Elf64_External_Rel *) s->contents + 1,
11772 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11773 sort_dynamic_relocs_64);
11774 else
11775 qsort ((Elf32_External_Rel *) s->contents + 1,
11776 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11777 sort_dynamic_relocs);
11778 }
11779 }
11780 }
11781
11782 if (htab->splt && htab->splt->size > 0)
11783 {
11784 if (htab->is_vxworks)
11785 {
11786 if (bfd_link_pic (info))
11787 mips_vxworks_finish_shared_plt (output_bfd, info);
11788 else
11789 mips_vxworks_finish_exec_plt (output_bfd, info);
11790 }
11791 else
11792 {
11793 BFD_ASSERT (!bfd_link_pic (info));
11794 if (!mips_finish_exec_plt (output_bfd, info))
11795 return FALSE;
11796 }
11797 }
11798 return TRUE;
11799 }
11800
11801
11802 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11803
11804 static void
11805 mips_set_isa_flags (bfd *abfd)
11806 {
11807 flagword val;
11808
11809 switch (bfd_get_mach (abfd))
11810 {
11811 default:
11812 case bfd_mach_mips3000:
11813 val = E_MIPS_ARCH_1;
11814 break;
11815
11816 case bfd_mach_mips3900:
11817 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11818 break;
11819
11820 case bfd_mach_mips6000:
11821 val = E_MIPS_ARCH_2;
11822 break;
11823
11824 case bfd_mach_mips4000:
11825 case bfd_mach_mips4300:
11826 case bfd_mach_mips4400:
11827 case bfd_mach_mips4600:
11828 val = E_MIPS_ARCH_3;
11829 break;
11830
11831 case bfd_mach_mips4010:
11832 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11833 break;
11834
11835 case bfd_mach_mips4100:
11836 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11837 break;
11838
11839 case bfd_mach_mips4111:
11840 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11841 break;
11842
11843 case bfd_mach_mips4120:
11844 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11845 break;
11846
11847 case bfd_mach_mips4650:
11848 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11849 break;
11850
11851 case bfd_mach_mips5400:
11852 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11853 break;
11854
11855 case bfd_mach_mips5500:
11856 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11857 break;
11858
11859 case bfd_mach_mips5900:
11860 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11861 break;
11862
11863 case bfd_mach_mips9000:
11864 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11865 break;
11866
11867 case bfd_mach_mips5000:
11868 case bfd_mach_mips7000:
11869 case bfd_mach_mips8000:
11870 case bfd_mach_mips10000:
11871 case bfd_mach_mips12000:
11872 case bfd_mach_mips14000:
11873 case bfd_mach_mips16000:
11874 val = E_MIPS_ARCH_4;
11875 break;
11876
11877 case bfd_mach_mips5:
11878 val = E_MIPS_ARCH_5;
11879 break;
11880
11881 case bfd_mach_mips_loongson_2e:
11882 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11883 break;
11884
11885 case bfd_mach_mips_loongson_2f:
11886 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11887 break;
11888
11889 case bfd_mach_mips_sb1:
11890 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11891 break;
11892
11893 case bfd_mach_mips_loongson_3a:
11894 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11895 break;
11896
11897 case bfd_mach_mips_octeon:
11898 case bfd_mach_mips_octeonp:
11899 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11900 break;
11901
11902 case bfd_mach_mips_octeon3:
11903 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11904 break;
11905
11906 case bfd_mach_mips_xlr:
11907 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11908 break;
11909
11910 case bfd_mach_mips_octeon2:
11911 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11912 break;
11913
11914 case bfd_mach_mipsisa32:
11915 val = E_MIPS_ARCH_32;
11916 break;
11917
11918 case bfd_mach_mipsisa64:
11919 val = E_MIPS_ARCH_64;
11920 break;
11921
11922 case bfd_mach_mipsisa32r2:
11923 case bfd_mach_mipsisa32r3:
11924 case bfd_mach_mipsisa32r5:
11925 val = E_MIPS_ARCH_32R2;
11926 break;
11927
11928 case bfd_mach_mipsisa64r2:
11929 case bfd_mach_mipsisa64r3:
11930 case bfd_mach_mipsisa64r5:
11931 val = E_MIPS_ARCH_64R2;
11932 break;
11933
11934 case bfd_mach_mipsisa32r6:
11935 val = E_MIPS_ARCH_32R6;
11936 break;
11937
11938 case bfd_mach_mipsisa64r6:
11939 val = E_MIPS_ARCH_64R6;
11940 break;
11941 }
11942 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11943 elf_elfheader (abfd)->e_flags |= val;
11944
11945 }
11946
11947
11948 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11949 Don't do so for code sections. We want to keep ordering of HI16/LO16
11950 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11951 relocs to be sorted. */
11952
11953 bfd_boolean
11954 _bfd_mips_elf_sort_relocs_p (asection *sec)
11955 {
11956 return (sec->flags & SEC_CODE) == 0;
11957 }
11958
11959
11960 /* The final processing done just before writing out a MIPS ELF object
11961 file. This gets the MIPS architecture right based on the machine
11962 number. This is used by both the 32-bit and the 64-bit ABI. */
11963
11964 void
11965 _bfd_mips_elf_final_write_processing (bfd *abfd,
11966 bfd_boolean linker ATTRIBUTE_UNUSED)
11967 {
11968 unsigned int i;
11969 Elf_Internal_Shdr **hdrpp;
11970 const char *name;
11971 asection *sec;
11972
11973 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11974 is nonzero. This is for compatibility with old objects, which used
11975 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11976 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11977 mips_set_isa_flags (abfd);
11978
11979 /* Set the sh_info field for .gptab sections and other appropriate
11980 info for each special section. */
11981 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11982 i < elf_numsections (abfd);
11983 i++, hdrpp++)
11984 {
11985 switch ((*hdrpp)->sh_type)
11986 {
11987 case SHT_MIPS_MSYM:
11988 case SHT_MIPS_LIBLIST:
11989 sec = bfd_get_section_by_name (abfd, ".dynstr");
11990 if (sec != NULL)
11991 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11992 break;
11993
11994 case SHT_MIPS_GPTAB:
11995 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11996 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11997 BFD_ASSERT (name != NULL
11998 && CONST_STRNEQ (name, ".gptab."));
11999 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12000 BFD_ASSERT (sec != NULL);
12001 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12002 break;
12003
12004 case SHT_MIPS_CONTENT:
12005 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12006 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12007 BFD_ASSERT (name != NULL
12008 && CONST_STRNEQ (name, ".MIPS.content"));
12009 sec = bfd_get_section_by_name (abfd,
12010 name + sizeof ".MIPS.content" - 1);
12011 BFD_ASSERT (sec != NULL);
12012 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12013 break;
12014
12015 case SHT_MIPS_SYMBOL_LIB:
12016 sec = bfd_get_section_by_name (abfd, ".dynsym");
12017 if (sec != NULL)
12018 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12019 sec = bfd_get_section_by_name (abfd, ".liblist");
12020 if (sec != NULL)
12021 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12022 break;
12023
12024 case SHT_MIPS_EVENTS:
12025 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12026 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12027 BFD_ASSERT (name != NULL);
12028 if (CONST_STRNEQ (name, ".MIPS.events"))
12029 sec = bfd_get_section_by_name (abfd,
12030 name + sizeof ".MIPS.events" - 1);
12031 else
12032 {
12033 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12034 sec = bfd_get_section_by_name (abfd,
12035 (name
12036 + sizeof ".MIPS.post_rel" - 1));
12037 }
12038 BFD_ASSERT (sec != NULL);
12039 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12040 break;
12041
12042 }
12043 }
12044 }
12045 \f
12046 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12047 segments. */
12048
12049 int
12050 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12051 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12052 {
12053 asection *s;
12054 int ret = 0;
12055
12056 /* See if we need a PT_MIPS_REGINFO segment. */
12057 s = bfd_get_section_by_name (abfd, ".reginfo");
12058 if (s && (s->flags & SEC_LOAD))
12059 ++ret;
12060
12061 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12062 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12063 ++ret;
12064
12065 /* See if we need a PT_MIPS_OPTIONS segment. */
12066 if (IRIX_COMPAT (abfd) == ict_irix6
12067 && bfd_get_section_by_name (abfd,
12068 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12069 ++ret;
12070
12071 /* See if we need a PT_MIPS_RTPROC segment. */
12072 if (IRIX_COMPAT (abfd) == ict_irix5
12073 && bfd_get_section_by_name (abfd, ".dynamic")
12074 && bfd_get_section_by_name (abfd, ".mdebug"))
12075 ++ret;
12076
12077 /* Allocate a PT_NULL header in dynamic objects. See
12078 _bfd_mips_elf_modify_segment_map for details. */
12079 if (!SGI_COMPAT (abfd)
12080 && bfd_get_section_by_name (abfd, ".dynamic"))
12081 ++ret;
12082
12083 return ret;
12084 }
12085
12086 /* Modify the segment map for an IRIX5 executable. */
12087
12088 bfd_boolean
12089 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12090 struct bfd_link_info *info)
12091 {
12092 asection *s;
12093 struct elf_segment_map *m, **pm;
12094 bfd_size_type amt;
12095
12096 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12097 segment. */
12098 s = bfd_get_section_by_name (abfd, ".reginfo");
12099 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12100 {
12101 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12102 if (m->p_type == PT_MIPS_REGINFO)
12103 break;
12104 if (m == NULL)
12105 {
12106 amt = sizeof *m;
12107 m = bfd_zalloc (abfd, amt);
12108 if (m == NULL)
12109 return FALSE;
12110
12111 m->p_type = PT_MIPS_REGINFO;
12112 m->count = 1;
12113 m->sections[0] = s;
12114
12115 /* We want to put it after the PHDR and INTERP segments. */
12116 pm = &elf_seg_map (abfd);
12117 while (*pm != NULL
12118 && ((*pm)->p_type == PT_PHDR
12119 || (*pm)->p_type == PT_INTERP))
12120 pm = &(*pm)->next;
12121
12122 m->next = *pm;
12123 *pm = m;
12124 }
12125 }
12126
12127 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12128 segment. */
12129 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12130 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12131 {
12132 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12133 if (m->p_type == PT_MIPS_ABIFLAGS)
12134 break;
12135 if (m == NULL)
12136 {
12137 amt = sizeof *m;
12138 m = bfd_zalloc (abfd, amt);
12139 if (m == NULL)
12140 return FALSE;
12141
12142 m->p_type = PT_MIPS_ABIFLAGS;
12143 m->count = 1;
12144 m->sections[0] = s;
12145
12146 /* We want to put it after the PHDR and INTERP segments. */
12147 pm = &elf_seg_map (abfd);
12148 while (*pm != NULL
12149 && ((*pm)->p_type == PT_PHDR
12150 || (*pm)->p_type == PT_INTERP))
12151 pm = &(*pm)->next;
12152
12153 m->next = *pm;
12154 *pm = m;
12155 }
12156 }
12157
12158 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12159 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12160 PT_MIPS_OPTIONS segment immediately following the program header
12161 table. */
12162 if (NEWABI_P (abfd)
12163 /* On non-IRIX6 new abi, we'll have already created a segment
12164 for this section, so don't create another. I'm not sure this
12165 is not also the case for IRIX 6, but I can't test it right
12166 now. */
12167 && IRIX_COMPAT (abfd) == ict_irix6)
12168 {
12169 for (s = abfd->sections; s; s = s->next)
12170 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12171 break;
12172
12173 if (s)
12174 {
12175 struct elf_segment_map *options_segment;
12176
12177 pm = &elf_seg_map (abfd);
12178 while (*pm != NULL
12179 && ((*pm)->p_type == PT_PHDR
12180 || (*pm)->p_type == PT_INTERP))
12181 pm = &(*pm)->next;
12182
12183 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12184 {
12185 amt = sizeof (struct elf_segment_map);
12186 options_segment = bfd_zalloc (abfd, amt);
12187 options_segment->next = *pm;
12188 options_segment->p_type = PT_MIPS_OPTIONS;
12189 options_segment->p_flags = PF_R;
12190 options_segment->p_flags_valid = TRUE;
12191 options_segment->count = 1;
12192 options_segment->sections[0] = s;
12193 *pm = options_segment;
12194 }
12195 }
12196 }
12197 else
12198 {
12199 if (IRIX_COMPAT (abfd) == ict_irix5)
12200 {
12201 /* If there are .dynamic and .mdebug sections, we make a room
12202 for the RTPROC header. FIXME: Rewrite without section names. */
12203 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12204 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12205 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12206 {
12207 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12208 if (m->p_type == PT_MIPS_RTPROC)
12209 break;
12210 if (m == NULL)
12211 {
12212 amt = sizeof *m;
12213 m = bfd_zalloc (abfd, amt);
12214 if (m == NULL)
12215 return FALSE;
12216
12217 m->p_type = PT_MIPS_RTPROC;
12218
12219 s = bfd_get_section_by_name (abfd, ".rtproc");
12220 if (s == NULL)
12221 {
12222 m->count = 0;
12223 m->p_flags = 0;
12224 m->p_flags_valid = 1;
12225 }
12226 else
12227 {
12228 m->count = 1;
12229 m->sections[0] = s;
12230 }
12231
12232 /* We want to put it after the DYNAMIC segment. */
12233 pm = &elf_seg_map (abfd);
12234 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12235 pm = &(*pm)->next;
12236 if (*pm != NULL)
12237 pm = &(*pm)->next;
12238
12239 m->next = *pm;
12240 *pm = m;
12241 }
12242 }
12243 }
12244 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12245 .dynstr, .dynsym, and .hash sections, and everything in
12246 between. */
12247 for (pm = &elf_seg_map (abfd); *pm != NULL;
12248 pm = &(*pm)->next)
12249 if ((*pm)->p_type == PT_DYNAMIC)
12250 break;
12251 m = *pm;
12252 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12253 glibc's dynamic linker has traditionally derived the number of
12254 tags from the p_filesz field, and sometimes allocates stack
12255 arrays of that size. An overly-big PT_DYNAMIC segment can
12256 be actively harmful in such cases. Making PT_DYNAMIC contain
12257 other sections can also make life hard for the prelinker,
12258 which might move one of the other sections to a different
12259 PT_LOAD segment. */
12260 if (SGI_COMPAT (abfd)
12261 && m != NULL
12262 && m->count == 1
12263 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12264 {
12265 static const char *sec_names[] =
12266 {
12267 ".dynamic", ".dynstr", ".dynsym", ".hash"
12268 };
12269 bfd_vma low, high;
12270 unsigned int i, c;
12271 struct elf_segment_map *n;
12272
12273 low = ~(bfd_vma) 0;
12274 high = 0;
12275 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12276 {
12277 s = bfd_get_section_by_name (abfd, sec_names[i]);
12278 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12279 {
12280 bfd_size_type sz;
12281
12282 if (low > s->vma)
12283 low = s->vma;
12284 sz = s->size;
12285 if (high < s->vma + sz)
12286 high = s->vma + sz;
12287 }
12288 }
12289
12290 c = 0;
12291 for (s = abfd->sections; s != NULL; s = s->next)
12292 if ((s->flags & SEC_LOAD) != 0
12293 && s->vma >= low
12294 && s->vma + s->size <= high)
12295 ++c;
12296
12297 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12298 n = bfd_zalloc (abfd, amt);
12299 if (n == NULL)
12300 return FALSE;
12301 *n = *m;
12302 n->count = c;
12303
12304 i = 0;
12305 for (s = abfd->sections; s != NULL; s = s->next)
12306 {
12307 if ((s->flags & SEC_LOAD) != 0
12308 && s->vma >= low
12309 && s->vma + s->size <= high)
12310 {
12311 n->sections[i] = s;
12312 ++i;
12313 }
12314 }
12315
12316 *pm = n;
12317 }
12318 }
12319
12320 /* Allocate a spare program header in dynamic objects so that tools
12321 like the prelinker can add an extra PT_LOAD entry.
12322
12323 If the prelinker needs to make room for a new PT_LOAD entry, its
12324 standard procedure is to move the first (read-only) sections into
12325 the new (writable) segment. However, the MIPS ABI requires
12326 .dynamic to be in a read-only segment, and the section will often
12327 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12328
12329 Although the prelinker could in principle move .dynamic to a
12330 writable segment, it seems better to allocate a spare program
12331 header instead, and avoid the need to move any sections.
12332 There is a long tradition of allocating spare dynamic tags,
12333 so allocating a spare program header seems like a natural
12334 extension.
12335
12336 If INFO is NULL, we may be copying an already prelinked binary
12337 with objcopy or strip, so do not add this header. */
12338 if (info != NULL
12339 && !SGI_COMPAT (abfd)
12340 && bfd_get_section_by_name (abfd, ".dynamic"))
12341 {
12342 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12343 if ((*pm)->p_type == PT_NULL)
12344 break;
12345 if (*pm == NULL)
12346 {
12347 m = bfd_zalloc (abfd, sizeof (*m));
12348 if (m == NULL)
12349 return FALSE;
12350
12351 m->p_type = PT_NULL;
12352 *pm = m;
12353 }
12354 }
12355
12356 return TRUE;
12357 }
12358 \f
12359 /* Return the section that should be marked against GC for a given
12360 relocation. */
12361
12362 asection *
12363 _bfd_mips_elf_gc_mark_hook (asection *sec,
12364 struct bfd_link_info *info,
12365 Elf_Internal_Rela *rel,
12366 struct elf_link_hash_entry *h,
12367 Elf_Internal_Sym *sym)
12368 {
12369 /* ??? Do mips16 stub sections need to be handled special? */
12370
12371 if (h != NULL)
12372 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12373 {
12374 case R_MIPS_GNU_VTINHERIT:
12375 case R_MIPS_GNU_VTENTRY:
12376 return NULL;
12377 }
12378
12379 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12380 }
12381
12382 /* Update the got entry reference counts for the section being removed. */
12383
12384 bfd_boolean
12385 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12386 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12387 asection *sec ATTRIBUTE_UNUSED,
12388 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12389 {
12390 #if 0
12391 Elf_Internal_Shdr *symtab_hdr;
12392 struct elf_link_hash_entry **sym_hashes;
12393 bfd_signed_vma *local_got_refcounts;
12394 const Elf_Internal_Rela *rel, *relend;
12395 unsigned long r_symndx;
12396 struct elf_link_hash_entry *h;
12397
12398 if (bfd_link_relocatable (info))
12399 return TRUE;
12400
12401 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12402 sym_hashes = elf_sym_hashes (abfd);
12403 local_got_refcounts = elf_local_got_refcounts (abfd);
12404
12405 relend = relocs + sec->reloc_count;
12406 for (rel = relocs; rel < relend; rel++)
12407 switch (ELF_R_TYPE (abfd, rel->r_info))
12408 {
12409 case R_MIPS16_GOT16:
12410 case R_MIPS16_CALL16:
12411 case R_MIPS_GOT16:
12412 case R_MIPS_CALL16:
12413 case R_MIPS_CALL_HI16:
12414 case R_MIPS_CALL_LO16:
12415 case R_MIPS_GOT_HI16:
12416 case R_MIPS_GOT_LO16:
12417 case R_MIPS_GOT_DISP:
12418 case R_MIPS_GOT_PAGE:
12419 case R_MIPS_GOT_OFST:
12420 case R_MICROMIPS_GOT16:
12421 case R_MICROMIPS_CALL16:
12422 case R_MICROMIPS_CALL_HI16:
12423 case R_MICROMIPS_CALL_LO16:
12424 case R_MICROMIPS_GOT_HI16:
12425 case R_MICROMIPS_GOT_LO16:
12426 case R_MICROMIPS_GOT_DISP:
12427 case R_MICROMIPS_GOT_PAGE:
12428 case R_MICROMIPS_GOT_OFST:
12429 /* ??? It would seem that the existing MIPS code does no sort
12430 of reference counting or whatnot on its GOT and PLT entries,
12431 so it is not possible to garbage collect them at this time. */
12432 break;
12433
12434 default:
12435 break;
12436 }
12437 #endif
12438
12439 return TRUE;
12440 }
12441
12442 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12443
12444 bfd_boolean
12445 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12446 elf_gc_mark_hook_fn gc_mark_hook)
12447 {
12448 bfd *sub;
12449
12450 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12451
12452 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12453 {
12454 asection *o;
12455
12456 if (! is_mips_elf (sub))
12457 continue;
12458
12459 for (o = sub->sections; o != NULL; o = o->next)
12460 if (!o->gc_mark
12461 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12462 (bfd_get_section_name (sub, o)))
12463 {
12464 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12465 return FALSE;
12466 }
12467 }
12468
12469 return TRUE;
12470 }
12471 \f
12472 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12473 hiding the old indirect symbol. Process additional relocation
12474 information. Also called for weakdefs, in which case we just let
12475 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12476
12477 void
12478 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12479 struct elf_link_hash_entry *dir,
12480 struct elf_link_hash_entry *ind)
12481 {
12482 struct mips_elf_link_hash_entry *dirmips, *indmips;
12483
12484 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12485
12486 dirmips = (struct mips_elf_link_hash_entry *) dir;
12487 indmips = (struct mips_elf_link_hash_entry *) ind;
12488 /* Any absolute non-dynamic relocations against an indirect or weak
12489 definition will be against the target symbol. */
12490 if (indmips->has_static_relocs)
12491 dirmips->has_static_relocs = TRUE;
12492
12493 if (ind->root.type != bfd_link_hash_indirect)
12494 return;
12495
12496 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12497 if (indmips->readonly_reloc)
12498 dirmips->readonly_reloc = TRUE;
12499 if (indmips->no_fn_stub)
12500 dirmips->no_fn_stub = TRUE;
12501 if (indmips->fn_stub)
12502 {
12503 dirmips->fn_stub = indmips->fn_stub;
12504 indmips->fn_stub = NULL;
12505 }
12506 if (indmips->need_fn_stub)
12507 {
12508 dirmips->need_fn_stub = TRUE;
12509 indmips->need_fn_stub = FALSE;
12510 }
12511 if (indmips->call_stub)
12512 {
12513 dirmips->call_stub = indmips->call_stub;
12514 indmips->call_stub = NULL;
12515 }
12516 if (indmips->call_fp_stub)
12517 {
12518 dirmips->call_fp_stub = indmips->call_fp_stub;
12519 indmips->call_fp_stub = NULL;
12520 }
12521 if (indmips->global_got_area < dirmips->global_got_area)
12522 dirmips->global_got_area = indmips->global_got_area;
12523 if (indmips->global_got_area < GGA_NONE)
12524 indmips->global_got_area = GGA_NONE;
12525 if (indmips->has_nonpic_branches)
12526 dirmips->has_nonpic_branches = TRUE;
12527 }
12528 \f
12529 #define PDR_SIZE 32
12530
12531 bfd_boolean
12532 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12533 struct bfd_link_info *info)
12534 {
12535 asection *o;
12536 bfd_boolean ret = FALSE;
12537 unsigned char *tdata;
12538 size_t i, skip;
12539
12540 o = bfd_get_section_by_name (abfd, ".pdr");
12541 if (! o)
12542 return FALSE;
12543 if (o->size == 0)
12544 return FALSE;
12545 if (o->size % PDR_SIZE != 0)
12546 return FALSE;
12547 if (o->output_section != NULL
12548 && bfd_is_abs_section (o->output_section))
12549 return FALSE;
12550
12551 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12552 if (! tdata)
12553 return FALSE;
12554
12555 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12556 info->keep_memory);
12557 if (!cookie->rels)
12558 {
12559 free (tdata);
12560 return FALSE;
12561 }
12562
12563 cookie->rel = cookie->rels;
12564 cookie->relend = cookie->rels + o->reloc_count;
12565
12566 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12567 {
12568 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12569 {
12570 tdata[i] = 1;
12571 skip ++;
12572 }
12573 }
12574
12575 if (skip != 0)
12576 {
12577 mips_elf_section_data (o)->u.tdata = tdata;
12578 if (o->rawsize == 0)
12579 o->rawsize = o->size;
12580 o->size -= skip * PDR_SIZE;
12581 ret = TRUE;
12582 }
12583 else
12584 free (tdata);
12585
12586 if (! info->keep_memory)
12587 free (cookie->rels);
12588
12589 return ret;
12590 }
12591
12592 bfd_boolean
12593 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12594 {
12595 if (strcmp (sec->name, ".pdr") == 0)
12596 return TRUE;
12597 return FALSE;
12598 }
12599
12600 bfd_boolean
12601 _bfd_mips_elf_write_section (bfd *output_bfd,
12602 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12603 asection *sec, bfd_byte *contents)
12604 {
12605 bfd_byte *to, *from, *end;
12606 int i;
12607
12608 if (strcmp (sec->name, ".pdr") != 0)
12609 return FALSE;
12610
12611 if (mips_elf_section_data (sec)->u.tdata == NULL)
12612 return FALSE;
12613
12614 to = contents;
12615 end = contents + sec->size;
12616 for (from = contents, i = 0;
12617 from < end;
12618 from += PDR_SIZE, i++)
12619 {
12620 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12621 continue;
12622 if (to != from)
12623 memcpy (to, from, PDR_SIZE);
12624 to += PDR_SIZE;
12625 }
12626 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12627 sec->output_offset, sec->size);
12628 return TRUE;
12629 }
12630 \f
12631 /* microMIPS code retains local labels for linker relaxation. Omit them
12632 from output by default for clarity. */
12633
12634 bfd_boolean
12635 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12636 {
12637 return _bfd_elf_is_local_label_name (abfd, sym->name);
12638 }
12639
12640 /* MIPS ELF uses a special find_nearest_line routine in order the
12641 handle the ECOFF debugging information. */
12642
12643 struct mips_elf_find_line
12644 {
12645 struct ecoff_debug_info d;
12646 struct ecoff_find_line i;
12647 };
12648
12649 bfd_boolean
12650 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12651 asection *section, bfd_vma offset,
12652 const char **filename_ptr,
12653 const char **functionname_ptr,
12654 unsigned int *line_ptr,
12655 unsigned int *discriminator_ptr)
12656 {
12657 asection *msec;
12658
12659 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12660 filename_ptr, functionname_ptr,
12661 line_ptr, discriminator_ptr,
12662 dwarf_debug_sections,
12663 ABI_64_P (abfd) ? 8 : 0,
12664 &elf_tdata (abfd)->dwarf2_find_line_info))
12665 return TRUE;
12666
12667 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12668 filename_ptr, functionname_ptr,
12669 line_ptr))
12670 return TRUE;
12671
12672 msec = bfd_get_section_by_name (abfd, ".mdebug");
12673 if (msec != NULL)
12674 {
12675 flagword origflags;
12676 struct mips_elf_find_line *fi;
12677 const struct ecoff_debug_swap * const swap =
12678 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12679
12680 /* If we are called during a link, mips_elf_final_link may have
12681 cleared the SEC_HAS_CONTENTS field. We force it back on here
12682 if appropriate (which it normally will be). */
12683 origflags = msec->flags;
12684 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12685 msec->flags |= SEC_HAS_CONTENTS;
12686
12687 fi = mips_elf_tdata (abfd)->find_line_info;
12688 if (fi == NULL)
12689 {
12690 bfd_size_type external_fdr_size;
12691 char *fraw_src;
12692 char *fraw_end;
12693 struct fdr *fdr_ptr;
12694 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12695
12696 fi = bfd_zalloc (abfd, amt);
12697 if (fi == NULL)
12698 {
12699 msec->flags = origflags;
12700 return FALSE;
12701 }
12702
12703 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12704 {
12705 msec->flags = origflags;
12706 return FALSE;
12707 }
12708
12709 /* Swap in the FDR information. */
12710 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12711 fi->d.fdr = bfd_alloc (abfd, amt);
12712 if (fi->d.fdr == NULL)
12713 {
12714 msec->flags = origflags;
12715 return FALSE;
12716 }
12717 external_fdr_size = swap->external_fdr_size;
12718 fdr_ptr = fi->d.fdr;
12719 fraw_src = (char *) fi->d.external_fdr;
12720 fraw_end = (fraw_src
12721 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12722 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12723 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12724
12725 mips_elf_tdata (abfd)->find_line_info = fi;
12726
12727 /* Note that we don't bother to ever free this information.
12728 find_nearest_line is either called all the time, as in
12729 objdump -l, so the information should be saved, or it is
12730 rarely called, as in ld error messages, so the memory
12731 wasted is unimportant. Still, it would probably be a
12732 good idea for free_cached_info to throw it away. */
12733 }
12734
12735 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12736 &fi->i, filename_ptr, functionname_ptr,
12737 line_ptr))
12738 {
12739 msec->flags = origflags;
12740 return TRUE;
12741 }
12742
12743 msec->flags = origflags;
12744 }
12745
12746 /* Fall back on the generic ELF find_nearest_line routine. */
12747
12748 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12749 filename_ptr, functionname_ptr,
12750 line_ptr, discriminator_ptr);
12751 }
12752
12753 bfd_boolean
12754 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12755 const char **filename_ptr,
12756 const char **functionname_ptr,
12757 unsigned int *line_ptr)
12758 {
12759 bfd_boolean found;
12760 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12761 functionname_ptr, line_ptr,
12762 & elf_tdata (abfd)->dwarf2_find_line_info);
12763 return found;
12764 }
12765
12766 \f
12767 /* When are writing out the .options or .MIPS.options section,
12768 remember the bytes we are writing out, so that we can install the
12769 GP value in the section_processing routine. */
12770
12771 bfd_boolean
12772 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12773 const void *location,
12774 file_ptr offset, bfd_size_type count)
12775 {
12776 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12777 {
12778 bfd_byte *c;
12779
12780 if (elf_section_data (section) == NULL)
12781 {
12782 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12783 section->used_by_bfd = bfd_zalloc (abfd, amt);
12784 if (elf_section_data (section) == NULL)
12785 return FALSE;
12786 }
12787 c = mips_elf_section_data (section)->u.tdata;
12788 if (c == NULL)
12789 {
12790 c = bfd_zalloc (abfd, section->size);
12791 if (c == NULL)
12792 return FALSE;
12793 mips_elf_section_data (section)->u.tdata = c;
12794 }
12795
12796 memcpy (c + offset, location, count);
12797 }
12798
12799 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12800 count);
12801 }
12802
12803 /* This is almost identical to bfd_generic_get_... except that some
12804 MIPS relocations need to be handled specially. Sigh. */
12805
12806 bfd_byte *
12807 _bfd_elf_mips_get_relocated_section_contents
12808 (bfd *abfd,
12809 struct bfd_link_info *link_info,
12810 struct bfd_link_order *link_order,
12811 bfd_byte *data,
12812 bfd_boolean relocatable,
12813 asymbol **symbols)
12814 {
12815 /* Get enough memory to hold the stuff */
12816 bfd *input_bfd = link_order->u.indirect.section->owner;
12817 asection *input_section = link_order->u.indirect.section;
12818 bfd_size_type sz;
12819
12820 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12821 arelent **reloc_vector = NULL;
12822 long reloc_count;
12823
12824 if (reloc_size < 0)
12825 goto error_return;
12826
12827 reloc_vector = bfd_malloc (reloc_size);
12828 if (reloc_vector == NULL && reloc_size != 0)
12829 goto error_return;
12830
12831 /* read in the section */
12832 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12833 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12834 goto error_return;
12835
12836 reloc_count = bfd_canonicalize_reloc (input_bfd,
12837 input_section,
12838 reloc_vector,
12839 symbols);
12840 if (reloc_count < 0)
12841 goto error_return;
12842
12843 if (reloc_count > 0)
12844 {
12845 arelent **parent;
12846 /* for mips */
12847 int gp_found;
12848 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12849
12850 {
12851 struct bfd_hash_entry *h;
12852 struct bfd_link_hash_entry *lh;
12853 /* Skip all this stuff if we aren't mixing formats. */
12854 if (abfd && input_bfd
12855 && abfd->xvec == input_bfd->xvec)
12856 lh = 0;
12857 else
12858 {
12859 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12860 lh = (struct bfd_link_hash_entry *) h;
12861 }
12862 lookup:
12863 if (lh)
12864 {
12865 switch (lh->type)
12866 {
12867 case bfd_link_hash_undefined:
12868 case bfd_link_hash_undefweak:
12869 case bfd_link_hash_common:
12870 gp_found = 0;
12871 break;
12872 case bfd_link_hash_defined:
12873 case bfd_link_hash_defweak:
12874 gp_found = 1;
12875 gp = lh->u.def.value;
12876 break;
12877 case bfd_link_hash_indirect:
12878 case bfd_link_hash_warning:
12879 lh = lh->u.i.link;
12880 /* @@FIXME ignoring warning for now */
12881 goto lookup;
12882 case bfd_link_hash_new:
12883 default:
12884 abort ();
12885 }
12886 }
12887 else
12888 gp_found = 0;
12889 }
12890 /* end mips */
12891 for (parent = reloc_vector; *parent != NULL; parent++)
12892 {
12893 char *error_message = NULL;
12894 bfd_reloc_status_type r;
12895
12896 /* Specific to MIPS: Deal with relocation types that require
12897 knowing the gp of the output bfd. */
12898 asymbol *sym = *(*parent)->sym_ptr_ptr;
12899
12900 /* If we've managed to find the gp and have a special
12901 function for the relocation then go ahead, else default
12902 to the generic handling. */
12903 if (gp_found
12904 && (*parent)->howto->special_function
12905 == _bfd_mips_elf32_gprel16_reloc)
12906 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12907 input_section, relocatable,
12908 data, gp);
12909 else
12910 r = bfd_perform_relocation (input_bfd, *parent, data,
12911 input_section,
12912 relocatable ? abfd : NULL,
12913 &error_message);
12914
12915 if (relocatable)
12916 {
12917 asection *os = input_section->output_section;
12918
12919 /* A partial link, so keep the relocs */
12920 os->orelocation[os->reloc_count] = *parent;
12921 os->reloc_count++;
12922 }
12923
12924 if (r != bfd_reloc_ok)
12925 {
12926 switch (r)
12927 {
12928 case bfd_reloc_undefined:
12929 (*link_info->callbacks->undefined_symbol)
12930 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12931 input_bfd, input_section, (*parent)->address, TRUE);
12932 break;
12933 case bfd_reloc_dangerous:
12934 BFD_ASSERT (error_message != NULL);
12935 (*link_info->callbacks->reloc_dangerous)
12936 (link_info, error_message,
12937 input_bfd, input_section, (*parent)->address);
12938 break;
12939 case bfd_reloc_overflow:
12940 (*link_info->callbacks->reloc_overflow)
12941 (link_info, NULL,
12942 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12943 (*parent)->howto->name, (*parent)->addend,
12944 input_bfd, input_section, (*parent)->address);
12945 break;
12946 case bfd_reloc_outofrange:
12947 default:
12948 abort ();
12949 break;
12950 }
12951
12952 }
12953 }
12954 }
12955 if (reloc_vector != NULL)
12956 free (reloc_vector);
12957 return data;
12958
12959 error_return:
12960 if (reloc_vector != NULL)
12961 free (reloc_vector);
12962 return NULL;
12963 }
12964 \f
12965 static bfd_boolean
12966 mips_elf_relax_delete_bytes (bfd *abfd,
12967 asection *sec, bfd_vma addr, int count)
12968 {
12969 Elf_Internal_Shdr *symtab_hdr;
12970 unsigned int sec_shndx;
12971 bfd_byte *contents;
12972 Elf_Internal_Rela *irel, *irelend;
12973 Elf_Internal_Sym *isym;
12974 Elf_Internal_Sym *isymend;
12975 struct elf_link_hash_entry **sym_hashes;
12976 struct elf_link_hash_entry **end_hashes;
12977 struct elf_link_hash_entry **start_hashes;
12978 unsigned int symcount;
12979
12980 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12981 contents = elf_section_data (sec)->this_hdr.contents;
12982
12983 irel = elf_section_data (sec)->relocs;
12984 irelend = irel + sec->reloc_count;
12985
12986 /* Actually delete the bytes. */
12987 memmove (contents + addr, contents + addr + count,
12988 (size_t) (sec->size - addr - count));
12989 sec->size -= count;
12990
12991 /* Adjust all the relocs. */
12992 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12993 {
12994 /* Get the new reloc address. */
12995 if (irel->r_offset > addr)
12996 irel->r_offset -= count;
12997 }
12998
12999 BFD_ASSERT (addr % 2 == 0);
13000 BFD_ASSERT (count % 2 == 0);
13001
13002 /* Adjust the local symbols defined in this section. */
13003 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13004 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13005 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13006 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13007 isym->st_value -= count;
13008
13009 /* Now adjust the global symbols defined in this section. */
13010 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13011 - symtab_hdr->sh_info);
13012 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13013 end_hashes = sym_hashes + symcount;
13014
13015 for (; sym_hashes < end_hashes; sym_hashes++)
13016 {
13017 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13018
13019 if ((sym_hash->root.type == bfd_link_hash_defined
13020 || sym_hash->root.type == bfd_link_hash_defweak)
13021 && sym_hash->root.u.def.section == sec)
13022 {
13023 bfd_vma value = sym_hash->root.u.def.value;
13024
13025 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13026 value &= MINUS_TWO;
13027 if (value > addr)
13028 sym_hash->root.u.def.value -= count;
13029 }
13030 }
13031
13032 return TRUE;
13033 }
13034
13035
13036 /* Opcodes needed for microMIPS relaxation as found in
13037 opcodes/micromips-opc.c. */
13038
13039 struct opcode_descriptor {
13040 unsigned long match;
13041 unsigned long mask;
13042 };
13043
13044 /* The $ra register aka $31. */
13045
13046 #define RA 31
13047
13048 /* 32-bit instruction format register fields. */
13049
13050 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13051 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13052
13053 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13054
13055 #define OP16_VALID_REG(r) \
13056 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13057
13058
13059 /* 32-bit and 16-bit branches. */
13060
13061 static const struct opcode_descriptor b_insns_32[] = {
13062 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13063 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13064 { 0, 0 } /* End marker for find_match(). */
13065 };
13066
13067 static const struct opcode_descriptor bc_insn_32 =
13068 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13069
13070 static const struct opcode_descriptor bz_insn_32 =
13071 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13072
13073 static const struct opcode_descriptor bzal_insn_32 =
13074 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13075
13076 static const struct opcode_descriptor beq_insn_32 =
13077 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13078
13079 static const struct opcode_descriptor b_insn_16 =
13080 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13081
13082 static const struct opcode_descriptor bz_insn_16 =
13083 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13084
13085
13086 /* 32-bit and 16-bit branch EQ and NE zero. */
13087
13088 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13089 eq and second the ne. This convention is used when replacing a
13090 32-bit BEQ/BNE with the 16-bit version. */
13091
13092 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13093
13094 static const struct opcode_descriptor bz_rs_insns_32[] = {
13095 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13096 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13097 { 0, 0 } /* End marker for find_match(). */
13098 };
13099
13100 static const struct opcode_descriptor bz_rt_insns_32[] = {
13101 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13102 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13103 { 0, 0 } /* End marker for find_match(). */
13104 };
13105
13106 static const struct opcode_descriptor bzc_insns_32[] = {
13107 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13108 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13109 { 0, 0 } /* End marker for find_match(). */
13110 };
13111
13112 static const struct opcode_descriptor bz_insns_16[] = {
13113 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13114 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13115 { 0, 0 } /* End marker for find_match(). */
13116 };
13117
13118 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13119
13120 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13121 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13122
13123
13124 /* 32-bit instructions with a delay slot. */
13125
13126 static const struct opcode_descriptor jal_insn_32_bd16 =
13127 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13128
13129 static const struct opcode_descriptor jal_insn_32_bd32 =
13130 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13131
13132 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13133 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13134
13135 static const struct opcode_descriptor j_insn_32 =
13136 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13137
13138 static const struct opcode_descriptor jalr_insn_32 =
13139 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13140
13141 /* This table can be compacted, because no opcode replacement is made. */
13142
13143 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13144 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13145
13146 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13147 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13148
13149 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13150 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13151 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13152 { 0, 0 } /* End marker for find_match(). */
13153 };
13154
13155 /* This table can be compacted, because no opcode replacement is made. */
13156
13157 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13158 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13159
13160 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13161 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13162 { 0, 0 } /* End marker for find_match(). */
13163 };
13164
13165
13166 /* 16-bit instructions with a delay slot. */
13167
13168 static const struct opcode_descriptor jalr_insn_16_bd16 =
13169 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13170
13171 static const struct opcode_descriptor jalr_insn_16_bd32 =
13172 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13173
13174 static const struct opcode_descriptor jr_insn_16 =
13175 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13176
13177 #define JR16_REG(opcode) ((opcode) & 0x1f)
13178
13179 /* This table can be compacted, because no opcode replacement is made. */
13180
13181 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13182 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13183
13184 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13185 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13186 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13187 { 0, 0 } /* End marker for find_match(). */
13188 };
13189
13190
13191 /* LUI instruction. */
13192
13193 static const struct opcode_descriptor lui_insn =
13194 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13195
13196
13197 /* ADDIU instruction. */
13198
13199 static const struct opcode_descriptor addiu_insn =
13200 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13201
13202 static const struct opcode_descriptor addiupc_insn =
13203 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13204
13205 #define ADDIUPC_REG_FIELD(r) \
13206 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13207
13208
13209 /* Relaxable instructions in a JAL delay slot: MOVE. */
13210
13211 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13212 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13213 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13214 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13215
13216 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13217 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13218
13219 static const struct opcode_descriptor move_insns_32[] = {
13220 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13221 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13222 { 0, 0 } /* End marker for find_match(). */
13223 };
13224
13225 static const struct opcode_descriptor move_insn_16 =
13226 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13227
13228
13229 /* NOP instructions. */
13230
13231 static const struct opcode_descriptor nop_insn_32 =
13232 { /* "nop", "", */ 0x00000000, 0xffffffff };
13233
13234 static const struct opcode_descriptor nop_insn_16 =
13235 { /* "nop", "", */ 0x0c00, 0xffff };
13236
13237
13238 /* Instruction match support. */
13239
13240 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13241
13242 static int
13243 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13244 {
13245 unsigned long indx;
13246
13247 for (indx = 0; insn[indx].mask != 0; indx++)
13248 if (MATCH (opcode, insn[indx]))
13249 return indx;
13250
13251 return -1;
13252 }
13253
13254
13255 /* Branch and delay slot decoding support. */
13256
13257 /* If PTR points to what *might* be a 16-bit branch or jump, then
13258 return the minimum length of its delay slot, otherwise return 0.
13259 Non-zero results are not definitive as we might be checking against
13260 the second half of another instruction. */
13261
13262 static int
13263 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13264 {
13265 unsigned long opcode;
13266 int bdsize;
13267
13268 opcode = bfd_get_16 (abfd, ptr);
13269 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13270 /* 16-bit branch/jump with a 32-bit delay slot. */
13271 bdsize = 4;
13272 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13273 || find_match (opcode, ds_insns_16_bd16) >= 0)
13274 /* 16-bit branch/jump with a 16-bit delay slot. */
13275 bdsize = 2;
13276 else
13277 /* No delay slot. */
13278 bdsize = 0;
13279
13280 return bdsize;
13281 }
13282
13283 /* If PTR points to what *might* be a 32-bit branch or jump, then
13284 return the minimum length of its delay slot, otherwise return 0.
13285 Non-zero results are not definitive as we might be checking against
13286 the second half of another instruction. */
13287
13288 static int
13289 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13290 {
13291 unsigned long opcode;
13292 int bdsize;
13293
13294 opcode = bfd_get_micromips_32 (abfd, ptr);
13295 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13296 /* 32-bit branch/jump with a 32-bit delay slot. */
13297 bdsize = 4;
13298 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13299 /* 32-bit branch/jump with a 16-bit delay slot. */
13300 bdsize = 2;
13301 else
13302 /* No delay slot. */
13303 bdsize = 0;
13304
13305 return bdsize;
13306 }
13307
13308 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13309 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13310
13311 static bfd_boolean
13312 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13313 {
13314 unsigned long opcode;
13315
13316 opcode = bfd_get_16 (abfd, ptr);
13317 if (MATCH (opcode, b_insn_16)
13318 /* B16 */
13319 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13320 /* JR16 */
13321 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13322 /* BEQZ16, BNEZ16 */
13323 || (MATCH (opcode, jalr_insn_16_bd32)
13324 /* JALR16 */
13325 && reg != JR16_REG (opcode) && reg != RA))
13326 return TRUE;
13327
13328 return FALSE;
13329 }
13330
13331 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13332 then return TRUE, otherwise FALSE. */
13333
13334 static bfd_boolean
13335 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13336 {
13337 unsigned long opcode;
13338
13339 opcode = bfd_get_micromips_32 (abfd, ptr);
13340 if (MATCH (opcode, j_insn_32)
13341 /* J */
13342 || MATCH (opcode, bc_insn_32)
13343 /* BC1F, BC1T, BC2F, BC2T */
13344 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13345 /* JAL, JALX */
13346 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13347 /* BGEZ, BGTZ, BLEZ, BLTZ */
13348 || (MATCH (opcode, bzal_insn_32)
13349 /* BGEZAL, BLTZAL */
13350 && reg != OP32_SREG (opcode) && reg != RA)
13351 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13352 /* JALR, JALR.HB, BEQ, BNE */
13353 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13354 return TRUE;
13355
13356 return FALSE;
13357 }
13358
13359 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13360 IRELEND) at OFFSET indicate that there must be a compact branch there,
13361 then return TRUE, otherwise FALSE. */
13362
13363 static bfd_boolean
13364 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13365 const Elf_Internal_Rela *internal_relocs,
13366 const Elf_Internal_Rela *irelend)
13367 {
13368 const Elf_Internal_Rela *irel;
13369 unsigned long opcode;
13370
13371 opcode = bfd_get_micromips_32 (abfd, ptr);
13372 if (find_match (opcode, bzc_insns_32) < 0)
13373 return FALSE;
13374
13375 for (irel = internal_relocs; irel < irelend; irel++)
13376 if (irel->r_offset == offset
13377 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13378 return TRUE;
13379
13380 return FALSE;
13381 }
13382
13383 /* Bitsize checking. */
13384 #define IS_BITSIZE(val, N) \
13385 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13386 - (1ULL << ((N) - 1))) == (val))
13387
13388 \f
13389 bfd_boolean
13390 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13391 struct bfd_link_info *link_info,
13392 bfd_boolean *again)
13393 {
13394 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13395 Elf_Internal_Shdr *symtab_hdr;
13396 Elf_Internal_Rela *internal_relocs;
13397 Elf_Internal_Rela *irel, *irelend;
13398 bfd_byte *contents = NULL;
13399 Elf_Internal_Sym *isymbuf = NULL;
13400
13401 /* Assume nothing changes. */
13402 *again = FALSE;
13403
13404 /* We don't have to do anything for a relocatable link, if
13405 this section does not have relocs, or if this is not a
13406 code section. */
13407
13408 if (bfd_link_relocatable (link_info)
13409 || (sec->flags & SEC_RELOC) == 0
13410 || sec->reloc_count == 0
13411 || (sec->flags & SEC_CODE) == 0)
13412 return TRUE;
13413
13414 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13415
13416 /* Get a copy of the native relocations. */
13417 internal_relocs = (_bfd_elf_link_read_relocs
13418 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13419 link_info->keep_memory));
13420 if (internal_relocs == NULL)
13421 goto error_return;
13422
13423 /* Walk through them looking for relaxing opportunities. */
13424 irelend = internal_relocs + sec->reloc_count;
13425 for (irel = internal_relocs; irel < irelend; irel++)
13426 {
13427 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13428 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13429 bfd_boolean target_is_micromips_code_p;
13430 unsigned long opcode;
13431 bfd_vma symval;
13432 bfd_vma pcrval;
13433 bfd_byte *ptr;
13434 int fndopc;
13435
13436 /* The number of bytes to delete for relaxation and from where
13437 to delete these bytes starting at irel->r_offset. */
13438 int delcnt = 0;
13439 int deloff = 0;
13440
13441 /* If this isn't something that can be relaxed, then ignore
13442 this reloc. */
13443 if (r_type != R_MICROMIPS_HI16
13444 && r_type != R_MICROMIPS_PC16_S1
13445 && r_type != R_MICROMIPS_26_S1)
13446 continue;
13447
13448 /* Get the section contents if we haven't done so already. */
13449 if (contents == NULL)
13450 {
13451 /* Get cached copy if it exists. */
13452 if (elf_section_data (sec)->this_hdr.contents != NULL)
13453 contents = elf_section_data (sec)->this_hdr.contents;
13454 /* Go get them off disk. */
13455 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13456 goto error_return;
13457 }
13458 ptr = contents + irel->r_offset;
13459
13460 /* Read this BFD's local symbols if we haven't done so already. */
13461 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13462 {
13463 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13464 if (isymbuf == NULL)
13465 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13466 symtab_hdr->sh_info, 0,
13467 NULL, NULL, NULL);
13468 if (isymbuf == NULL)
13469 goto error_return;
13470 }
13471
13472 /* Get the value of the symbol referred to by the reloc. */
13473 if (r_symndx < symtab_hdr->sh_info)
13474 {
13475 /* A local symbol. */
13476 Elf_Internal_Sym *isym;
13477 asection *sym_sec;
13478
13479 isym = isymbuf + r_symndx;
13480 if (isym->st_shndx == SHN_UNDEF)
13481 sym_sec = bfd_und_section_ptr;
13482 else if (isym->st_shndx == SHN_ABS)
13483 sym_sec = bfd_abs_section_ptr;
13484 else if (isym->st_shndx == SHN_COMMON)
13485 sym_sec = bfd_com_section_ptr;
13486 else
13487 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13488 symval = (isym->st_value
13489 + sym_sec->output_section->vma
13490 + sym_sec->output_offset);
13491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13492 }
13493 else
13494 {
13495 unsigned long indx;
13496 struct elf_link_hash_entry *h;
13497
13498 /* An external symbol. */
13499 indx = r_symndx - symtab_hdr->sh_info;
13500 h = elf_sym_hashes (abfd)[indx];
13501 BFD_ASSERT (h != NULL);
13502
13503 if (h->root.type != bfd_link_hash_defined
13504 && h->root.type != bfd_link_hash_defweak)
13505 /* This appears to be a reference to an undefined
13506 symbol. Just ignore it -- it will be caught by the
13507 regular reloc processing. */
13508 continue;
13509
13510 symval = (h->root.u.def.value
13511 + h->root.u.def.section->output_section->vma
13512 + h->root.u.def.section->output_offset);
13513 target_is_micromips_code_p = (!h->needs_plt
13514 && ELF_ST_IS_MICROMIPS (h->other));
13515 }
13516
13517
13518 /* For simplicity of coding, we are going to modify the
13519 section contents, the section relocs, and the BFD symbol
13520 table. We must tell the rest of the code not to free up this
13521 information. It would be possible to instead create a table
13522 of changes which have to be made, as is done in coff-mips.c;
13523 that would be more work, but would require less memory when
13524 the linker is run. */
13525
13526 /* Only 32-bit instructions relaxed. */
13527 if (irel->r_offset + 4 > sec->size)
13528 continue;
13529
13530 opcode = bfd_get_micromips_32 (abfd, ptr);
13531
13532 /* This is the pc-relative distance from the instruction the
13533 relocation is applied to, to the symbol referred. */
13534 pcrval = (symval
13535 - (sec->output_section->vma + sec->output_offset)
13536 - irel->r_offset);
13537
13538 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13539 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13540 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13541
13542 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13543
13544 where pcrval has first to be adjusted to apply against the LO16
13545 location (we make the adjustment later on, when we have figured
13546 out the offset). */
13547 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13548 {
13549 bfd_boolean bzc = FALSE;
13550 unsigned long nextopc;
13551 unsigned long reg;
13552 bfd_vma offset;
13553
13554 /* Give up if the previous reloc was a HI16 against this symbol
13555 too. */
13556 if (irel > internal_relocs
13557 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13558 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13559 continue;
13560
13561 /* Or if the next reloc is not a LO16 against this symbol. */
13562 if (irel + 1 >= irelend
13563 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13564 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13565 continue;
13566
13567 /* Or if the second next reloc is a LO16 against this symbol too. */
13568 if (irel + 2 >= irelend
13569 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13570 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13571 continue;
13572
13573 /* See if the LUI instruction *might* be in a branch delay slot.
13574 We check whether what looks like a 16-bit branch or jump is
13575 actually an immediate argument to a compact branch, and let
13576 it through if so. */
13577 if (irel->r_offset >= 2
13578 && check_br16_dslot (abfd, ptr - 2)
13579 && !(irel->r_offset >= 4
13580 && (bzc = check_relocated_bzc (abfd,
13581 ptr - 4, irel->r_offset - 4,
13582 internal_relocs, irelend))))
13583 continue;
13584 if (irel->r_offset >= 4
13585 && !bzc
13586 && check_br32_dslot (abfd, ptr - 4))
13587 continue;
13588
13589 reg = OP32_SREG (opcode);
13590
13591 /* We only relax adjacent instructions or ones separated with
13592 a branch or jump that has a delay slot. The branch or jump
13593 must not fiddle with the register used to hold the address.
13594 Subtract 4 for the LUI itself. */
13595 offset = irel[1].r_offset - irel[0].r_offset;
13596 switch (offset - 4)
13597 {
13598 case 0:
13599 break;
13600 case 2:
13601 if (check_br16 (abfd, ptr + 4, reg))
13602 break;
13603 continue;
13604 case 4:
13605 if (check_br32 (abfd, ptr + 4, reg))
13606 break;
13607 continue;
13608 default:
13609 continue;
13610 }
13611
13612 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13613
13614 /* Give up unless the same register is used with both
13615 relocations. */
13616 if (OP32_SREG (nextopc) != reg)
13617 continue;
13618
13619 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13620 and rounding up to take masking of the two LSBs into account. */
13621 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13622
13623 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13624 if (IS_BITSIZE (symval, 16))
13625 {
13626 /* Fix the relocation's type. */
13627 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13628
13629 /* Instructions using R_MICROMIPS_LO16 have the base or
13630 source register in bits 20:16. This register becomes $0
13631 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13632 nextopc &= ~0x001f0000;
13633 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13634 contents + irel[1].r_offset);
13635 }
13636
13637 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13638 We add 4 to take LUI deletion into account while checking
13639 the PC-relative distance. */
13640 else if (symval % 4 == 0
13641 && IS_BITSIZE (pcrval + 4, 25)
13642 && MATCH (nextopc, addiu_insn)
13643 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13644 && OP16_VALID_REG (OP32_TREG (nextopc)))
13645 {
13646 /* Fix the relocation's type. */
13647 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13648
13649 /* Replace ADDIU with the ADDIUPC version. */
13650 nextopc = (addiupc_insn.match
13651 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13652
13653 bfd_put_micromips_32 (abfd, nextopc,
13654 contents + irel[1].r_offset);
13655 }
13656
13657 /* Can't do anything, give up, sigh... */
13658 else
13659 continue;
13660
13661 /* Fix the relocation's type. */
13662 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13663
13664 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13665 delcnt = 4;
13666 deloff = 0;
13667 }
13668
13669 /* Compact branch relaxation -- due to the multitude of macros
13670 employed by the compiler/assembler, compact branches are not
13671 always generated. Obviously, this can/will be fixed elsewhere,
13672 but there is no drawback in double checking it here. */
13673 else if (r_type == R_MICROMIPS_PC16_S1
13674 && irel->r_offset + 5 < sec->size
13675 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13676 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13677 && ((!insn32
13678 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13679 nop_insn_16) ? 2 : 0))
13680 || (irel->r_offset + 7 < sec->size
13681 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13682 ptr + 4),
13683 nop_insn_32) ? 4 : 0))))
13684 {
13685 unsigned long reg;
13686
13687 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13688
13689 /* Replace BEQZ/BNEZ with the compact version. */
13690 opcode = (bzc_insns_32[fndopc].match
13691 | BZC32_REG_FIELD (reg)
13692 | (opcode & 0xffff)); /* Addend value. */
13693
13694 bfd_put_micromips_32 (abfd, opcode, ptr);
13695
13696 /* Delete the delay slot NOP: two or four bytes from
13697 irel->offset + 4; delcnt has already been set above. */
13698 deloff = 4;
13699 }
13700
13701 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13702 to check the distance from the next instruction, so subtract 2. */
13703 else if (!insn32
13704 && r_type == R_MICROMIPS_PC16_S1
13705 && IS_BITSIZE (pcrval - 2, 11)
13706 && find_match (opcode, b_insns_32) >= 0)
13707 {
13708 /* Fix the relocation's type. */
13709 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13710
13711 /* Replace the 32-bit opcode with a 16-bit opcode. */
13712 bfd_put_16 (abfd,
13713 (b_insn_16.match
13714 | (opcode & 0x3ff)), /* Addend value. */
13715 ptr);
13716
13717 /* Delete 2 bytes from irel->r_offset + 2. */
13718 delcnt = 2;
13719 deloff = 2;
13720 }
13721
13722 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13723 to check the distance from the next instruction, so subtract 2. */
13724 else if (!insn32
13725 && r_type == R_MICROMIPS_PC16_S1
13726 && IS_BITSIZE (pcrval - 2, 8)
13727 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13728 && OP16_VALID_REG (OP32_SREG (opcode)))
13729 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13730 && OP16_VALID_REG (OP32_TREG (opcode)))))
13731 {
13732 unsigned long reg;
13733
13734 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13735
13736 /* Fix the relocation's type. */
13737 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13738
13739 /* Replace the 32-bit opcode with a 16-bit opcode. */
13740 bfd_put_16 (abfd,
13741 (bz_insns_16[fndopc].match
13742 | BZ16_REG_FIELD (reg)
13743 | (opcode & 0x7f)), /* Addend value. */
13744 ptr);
13745
13746 /* Delete 2 bytes from irel->r_offset + 2. */
13747 delcnt = 2;
13748 deloff = 2;
13749 }
13750
13751 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13752 else if (!insn32
13753 && r_type == R_MICROMIPS_26_S1
13754 && target_is_micromips_code_p
13755 && irel->r_offset + 7 < sec->size
13756 && MATCH (opcode, jal_insn_32_bd32))
13757 {
13758 unsigned long n32opc;
13759 bfd_boolean relaxed = FALSE;
13760
13761 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13762
13763 if (MATCH (n32opc, nop_insn_32))
13764 {
13765 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13766 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13767
13768 relaxed = TRUE;
13769 }
13770 else if (find_match (n32opc, move_insns_32) >= 0)
13771 {
13772 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13773 bfd_put_16 (abfd,
13774 (move_insn_16.match
13775 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13776 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13777 ptr + 4);
13778
13779 relaxed = TRUE;
13780 }
13781 /* Other 32-bit instructions relaxable to 16-bit
13782 instructions will be handled here later. */
13783
13784 if (relaxed)
13785 {
13786 /* JAL with 32-bit delay slot that is changed to a JALS
13787 with 16-bit delay slot. */
13788 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13789
13790 /* Delete 2 bytes from irel->r_offset + 6. */
13791 delcnt = 2;
13792 deloff = 6;
13793 }
13794 }
13795
13796 if (delcnt != 0)
13797 {
13798 /* Note that we've changed the relocs, section contents, etc. */
13799 elf_section_data (sec)->relocs = internal_relocs;
13800 elf_section_data (sec)->this_hdr.contents = contents;
13801 symtab_hdr->contents = (unsigned char *) isymbuf;
13802
13803 /* Delete bytes depending on the delcnt and deloff. */
13804 if (!mips_elf_relax_delete_bytes (abfd, sec,
13805 irel->r_offset + deloff, delcnt))
13806 goto error_return;
13807
13808 /* That will change things, so we should relax again.
13809 Note that this is not required, and it may be slow. */
13810 *again = TRUE;
13811 }
13812 }
13813
13814 if (isymbuf != NULL
13815 && symtab_hdr->contents != (unsigned char *) isymbuf)
13816 {
13817 if (! link_info->keep_memory)
13818 free (isymbuf);
13819 else
13820 {
13821 /* Cache the symbols for elf_link_input_bfd. */
13822 symtab_hdr->contents = (unsigned char *) isymbuf;
13823 }
13824 }
13825
13826 if (contents != NULL
13827 && elf_section_data (sec)->this_hdr.contents != contents)
13828 {
13829 if (! link_info->keep_memory)
13830 free (contents);
13831 else
13832 {
13833 /* Cache the section contents for elf_link_input_bfd. */
13834 elf_section_data (sec)->this_hdr.contents = contents;
13835 }
13836 }
13837
13838 if (internal_relocs != NULL
13839 && elf_section_data (sec)->relocs != internal_relocs)
13840 free (internal_relocs);
13841
13842 return TRUE;
13843
13844 error_return:
13845 if (isymbuf != NULL
13846 && symtab_hdr->contents != (unsigned char *) isymbuf)
13847 free (isymbuf);
13848 if (contents != NULL
13849 && elf_section_data (sec)->this_hdr.contents != contents)
13850 free (contents);
13851 if (internal_relocs != NULL
13852 && elf_section_data (sec)->relocs != internal_relocs)
13853 free (internal_relocs);
13854
13855 return FALSE;
13856 }
13857 \f
13858 /* Create a MIPS ELF linker hash table. */
13859
13860 struct bfd_link_hash_table *
13861 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13862 {
13863 struct mips_elf_link_hash_table *ret;
13864 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13865
13866 ret = bfd_zmalloc (amt);
13867 if (ret == NULL)
13868 return NULL;
13869
13870 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13871 mips_elf_link_hash_newfunc,
13872 sizeof (struct mips_elf_link_hash_entry),
13873 MIPS_ELF_DATA))
13874 {
13875 free (ret);
13876 return NULL;
13877 }
13878 ret->root.init_plt_refcount.plist = NULL;
13879 ret->root.init_plt_offset.plist = NULL;
13880
13881 return &ret->root.root;
13882 }
13883
13884 /* Likewise, but indicate that the target is VxWorks. */
13885
13886 struct bfd_link_hash_table *
13887 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13888 {
13889 struct bfd_link_hash_table *ret;
13890
13891 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13892 if (ret)
13893 {
13894 struct mips_elf_link_hash_table *htab;
13895
13896 htab = (struct mips_elf_link_hash_table *) ret;
13897 htab->use_plts_and_copy_relocs = TRUE;
13898 htab->is_vxworks = TRUE;
13899 }
13900 return ret;
13901 }
13902
13903 /* A function that the linker calls if we are allowed to use PLTs
13904 and copy relocs. */
13905
13906 void
13907 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13908 {
13909 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13910 }
13911
13912 /* A function that the linker calls to select between all or only
13913 32-bit microMIPS instructions. */
13914
13915 void
13916 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13917 {
13918 mips_elf_hash_table (info)->insn32 = on;
13919 }
13920 \f
13921 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13922
13923 struct mips_mach_extension
13924 {
13925 unsigned long extension, base;
13926 };
13927
13928
13929 /* An array describing how BFD machines relate to one another. The entries
13930 are ordered topologically with MIPS I extensions listed last. */
13931
13932 static const struct mips_mach_extension mips_mach_extensions[] =
13933 {
13934 /* MIPS64r2 extensions. */
13935 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13936 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13937 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13938 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13939 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13940
13941 /* MIPS64 extensions. */
13942 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13943 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13944 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13945
13946 /* MIPS V extensions. */
13947 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13948
13949 /* R10000 extensions. */
13950 { bfd_mach_mips12000, bfd_mach_mips10000 },
13951 { bfd_mach_mips14000, bfd_mach_mips10000 },
13952 { bfd_mach_mips16000, bfd_mach_mips10000 },
13953
13954 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13955 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13956 better to allow vr5400 and vr5500 code to be merged anyway, since
13957 many libraries will just use the core ISA. Perhaps we could add
13958 some sort of ASE flag if this ever proves a problem. */
13959 { bfd_mach_mips5500, bfd_mach_mips5400 },
13960 { bfd_mach_mips5400, bfd_mach_mips5000 },
13961
13962 /* MIPS IV extensions. */
13963 { bfd_mach_mips5, bfd_mach_mips8000 },
13964 { bfd_mach_mips10000, bfd_mach_mips8000 },
13965 { bfd_mach_mips5000, bfd_mach_mips8000 },
13966 { bfd_mach_mips7000, bfd_mach_mips8000 },
13967 { bfd_mach_mips9000, bfd_mach_mips8000 },
13968
13969 /* VR4100 extensions. */
13970 { bfd_mach_mips4120, bfd_mach_mips4100 },
13971 { bfd_mach_mips4111, bfd_mach_mips4100 },
13972
13973 /* MIPS III extensions. */
13974 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13975 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13976 { bfd_mach_mips8000, bfd_mach_mips4000 },
13977 { bfd_mach_mips4650, bfd_mach_mips4000 },
13978 { bfd_mach_mips4600, bfd_mach_mips4000 },
13979 { bfd_mach_mips4400, bfd_mach_mips4000 },
13980 { bfd_mach_mips4300, bfd_mach_mips4000 },
13981 { bfd_mach_mips4100, bfd_mach_mips4000 },
13982 { bfd_mach_mips4010, bfd_mach_mips4000 },
13983 { bfd_mach_mips5900, bfd_mach_mips4000 },
13984
13985 /* MIPS32 extensions. */
13986 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13987
13988 /* MIPS II extensions. */
13989 { bfd_mach_mips4000, bfd_mach_mips6000 },
13990 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13991
13992 /* MIPS I extensions. */
13993 { bfd_mach_mips6000, bfd_mach_mips3000 },
13994 { bfd_mach_mips3900, bfd_mach_mips3000 }
13995 };
13996
13997 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13998
13999 static bfd_boolean
14000 mips_mach_extends_p (unsigned long base, unsigned long extension)
14001 {
14002 size_t i;
14003
14004 if (extension == base)
14005 return TRUE;
14006
14007 if (base == bfd_mach_mipsisa32
14008 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14009 return TRUE;
14010
14011 if (base == bfd_mach_mipsisa32r2
14012 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14013 return TRUE;
14014
14015 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14016 if (extension == mips_mach_extensions[i].extension)
14017 {
14018 extension = mips_mach_extensions[i].base;
14019 if (extension == base)
14020 return TRUE;
14021 }
14022
14023 return FALSE;
14024 }
14025
14026 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14027
14028 static unsigned long
14029 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14030 {
14031 switch (isa_ext)
14032 {
14033 case AFL_EXT_3900: return bfd_mach_mips3900;
14034 case AFL_EXT_4010: return bfd_mach_mips4010;
14035 case AFL_EXT_4100: return bfd_mach_mips4100;
14036 case AFL_EXT_4111: return bfd_mach_mips4111;
14037 case AFL_EXT_4120: return bfd_mach_mips4120;
14038 case AFL_EXT_4650: return bfd_mach_mips4650;
14039 case AFL_EXT_5400: return bfd_mach_mips5400;
14040 case AFL_EXT_5500: return bfd_mach_mips5500;
14041 case AFL_EXT_5900: return bfd_mach_mips5900;
14042 case AFL_EXT_10000: return bfd_mach_mips10000;
14043 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14044 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14045 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14046 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14047 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14048 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14049 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14050 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14051 default: return bfd_mach_mips3000;
14052 }
14053 }
14054
14055 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14056
14057 unsigned int
14058 bfd_mips_isa_ext (bfd *abfd)
14059 {
14060 switch (bfd_get_mach (abfd))
14061 {
14062 case bfd_mach_mips3900: return AFL_EXT_3900;
14063 case bfd_mach_mips4010: return AFL_EXT_4010;
14064 case bfd_mach_mips4100: return AFL_EXT_4100;
14065 case bfd_mach_mips4111: return AFL_EXT_4111;
14066 case bfd_mach_mips4120: return AFL_EXT_4120;
14067 case bfd_mach_mips4650: return AFL_EXT_4650;
14068 case bfd_mach_mips5400: return AFL_EXT_5400;
14069 case bfd_mach_mips5500: return AFL_EXT_5500;
14070 case bfd_mach_mips5900: return AFL_EXT_5900;
14071 case bfd_mach_mips10000: return AFL_EXT_10000;
14072 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14073 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14074 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14075 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14076 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14077 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14078 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14079 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14080 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14081 default: return 0;
14082 }
14083 }
14084
14085 /* Encode ISA level and revision as a single value. */
14086 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14087
14088 /* Decode a single value into level and revision. */
14089 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14090 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14091
14092 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14093
14094 static void
14095 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14096 {
14097 int new_isa = 0;
14098 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14099 {
14100 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14101 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14102 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14103 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14104 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14105 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14106 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14107 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14108 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14109 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14110 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14111 default:
14112 (*_bfd_error_handler)
14113 (_("%B: Unknown architecture %s"),
14114 abfd, bfd_printable_name (abfd));
14115 }
14116
14117 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14118 {
14119 abiflags->isa_level = ISA_LEVEL (new_isa);
14120 abiflags->isa_rev = ISA_REV (new_isa);
14121 }
14122
14123 /* Update the isa_ext if ABFD describes a further extension. */
14124 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14125 bfd_get_mach (abfd)))
14126 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14127 }
14128
14129 /* Return true if the given ELF header flags describe a 32-bit binary. */
14130
14131 static bfd_boolean
14132 mips_32bit_flags_p (flagword flags)
14133 {
14134 return ((flags & EF_MIPS_32BITMODE) != 0
14135 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14136 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14137 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14138 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14139 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14140 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14141 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14142 }
14143
14144 /* Infer the content of the ABI flags based on the elf header. */
14145
14146 static void
14147 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14148 {
14149 obj_attribute *in_attr;
14150
14151 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14152 update_mips_abiflags_isa (abfd, abiflags);
14153
14154 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14155 abiflags->gpr_size = AFL_REG_32;
14156 else
14157 abiflags->gpr_size = AFL_REG_64;
14158
14159 abiflags->cpr1_size = AFL_REG_NONE;
14160
14161 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14162 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14163
14164 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14165 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14166 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14167 && abiflags->gpr_size == AFL_REG_32))
14168 abiflags->cpr1_size = AFL_REG_32;
14169 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14170 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14171 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14172 abiflags->cpr1_size = AFL_REG_64;
14173
14174 abiflags->cpr2_size = AFL_REG_NONE;
14175
14176 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14177 abiflags->ases |= AFL_ASE_MDMX;
14178 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14179 abiflags->ases |= AFL_ASE_MIPS16;
14180 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14181 abiflags->ases |= AFL_ASE_MICROMIPS;
14182
14183 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14184 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14185 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14186 && abiflags->isa_level >= 32
14187 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14188 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14189 }
14190
14191 /* We need to use a special link routine to handle the .reginfo and
14192 the .mdebug sections. We need to merge all instances of these
14193 sections together, not write them all out sequentially. */
14194
14195 bfd_boolean
14196 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14197 {
14198 asection *o;
14199 struct bfd_link_order *p;
14200 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14201 asection *rtproc_sec, *abiflags_sec;
14202 Elf32_RegInfo reginfo;
14203 struct ecoff_debug_info debug;
14204 struct mips_htab_traverse_info hti;
14205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14206 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14207 HDRR *symhdr = &debug.symbolic_header;
14208 void *mdebug_handle = NULL;
14209 asection *s;
14210 EXTR esym;
14211 unsigned int i;
14212 bfd_size_type amt;
14213 struct mips_elf_link_hash_table *htab;
14214
14215 static const char * const secname[] =
14216 {
14217 ".text", ".init", ".fini", ".data",
14218 ".rodata", ".sdata", ".sbss", ".bss"
14219 };
14220 static const int sc[] =
14221 {
14222 scText, scInit, scFini, scData,
14223 scRData, scSData, scSBss, scBss
14224 };
14225
14226 /* Sort the dynamic symbols so that those with GOT entries come after
14227 those without. */
14228 htab = mips_elf_hash_table (info);
14229 BFD_ASSERT (htab != NULL);
14230
14231 if (!mips_elf_sort_hash_table (abfd, info))
14232 return FALSE;
14233
14234 /* Create any scheduled LA25 stubs. */
14235 hti.info = info;
14236 hti.output_bfd = abfd;
14237 hti.error = FALSE;
14238 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14239 if (hti.error)
14240 return FALSE;
14241
14242 /* Get a value for the GP register. */
14243 if (elf_gp (abfd) == 0)
14244 {
14245 struct bfd_link_hash_entry *h;
14246
14247 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14248 if (h != NULL && h->type == bfd_link_hash_defined)
14249 elf_gp (abfd) = (h->u.def.value
14250 + h->u.def.section->output_section->vma
14251 + h->u.def.section->output_offset);
14252 else if (htab->is_vxworks
14253 && (h = bfd_link_hash_lookup (info->hash,
14254 "_GLOBAL_OFFSET_TABLE_",
14255 FALSE, FALSE, TRUE))
14256 && h->type == bfd_link_hash_defined)
14257 elf_gp (abfd) = (h->u.def.section->output_section->vma
14258 + h->u.def.section->output_offset
14259 + h->u.def.value);
14260 else if (bfd_link_relocatable (info))
14261 {
14262 bfd_vma lo = MINUS_ONE;
14263
14264 /* Find the GP-relative section with the lowest offset. */
14265 for (o = abfd->sections; o != NULL; o = o->next)
14266 if (o->vma < lo
14267 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14268 lo = o->vma;
14269
14270 /* And calculate GP relative to that. */
14271 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14272 }
14273 else
14274 {
14275 /* If the relocate_section function needs to do a reloc
14276 involving the GP value, it should make a reloc_dangerous
14277 callback to warn that GP is not defined. */
14278 }
14279 }
14280
14281 /* Go through the sections and collect the .reginfo and .mdebug
14282 information. */
14283 abiflags_sec = NULL;
14284 reginfo_sec = NULL;
14285 mdebug_sec = NULL;
14286 gptab_data_sec = NULL;
14287 gptab_bss_sec = NULL;
14288 for (o = abfd->sections; o != NULL; o = o->next)
14289 {
14290 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14291 {
14292 /* We have found the .MIPS.abiflags section in the output file.
14293 Look through all the link_orders comprising it and remove them.
14294 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14295 for (p = o->map_head.link_order; p != NULL; p = p->next)
14296 {
14297 asection *input_section;
14298
14299 if (p->type != bfd_indirect_link_order)
14300 {
14301 if (p->type == bfd_data_link_order)
14302 continue;
14303 abort ();
14304 }
14305
14306 input_section = p->u.indirect.section;
14307
14308 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14309 elf_link_input_bfd ignores this section. */
14310 input_section->flags &= ~SEC_HAS_CONTENTS;
14311 }
14312
14313 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14314 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14315
14316 /* Skip this section later on (I don't think this currently
14317 matters, but someday it might). */
14318 o->map_head.link_order = NULL;
14319
14320 abiflags_sec = o;
14321 }
14322
14323 if (strcmp (o->name, ".reginfo") == 0)
14324 {
14325 memset (&reginfo, 0, sizeof reginfo);
14326
14327 /* We have found the .reginfo section in the output file.
14328 Look through all the link_orders comprising it and merge
14329 the information together. */
14330 for (p = o->map_head.link_order; p != NULL; p = p->next)
14331 {
14332 asection *input_section;
14333 bfd *input_bfd;
14334 Elf32_External_RegInfo ext;
14335 Elf32_RegInfo sub;
14336
14337 if (p->type != bfd_indirect_link_order)
14338 {
14339 if (p->type == bfd_data_link_order)
14340 continue;
14341 abort ();
14342 }
14343
14344 input_section = p->u.indirect.section;
14345 input_bfd = input_section->owner;
14346
14347 if (! bfd_get_section_contents (input_bfd, input_section,
14348 &ext, 0, sizeof ext))
14349 return FALSE;
14350
14351 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14352
14353 reginfo.ri_gprmask |= sub.ri_gprmask;
14354 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14355 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14356 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14357 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14358
14359 /* ri_gp_value is set by the function
14360 mips_elf32_section_processing when the section is
14361 finally written out. */
14362
14363 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14364 elf_link_input_bfd ignores this section. */
14365 input_section->flags &= ~SEC_HAS_CONTENTS;
14366 }
14367
14368 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14369 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14370
14371 /* Skip this section later on (I don't think this currently
14372 matters, but someday it might). */
14373 o->map_head.link_order = NULL;
14374
14375 reginfo_sec = o;
14376 }
14377
14378 if (strcmp (o->name, ".mdebug") == 0)
14379 {
14380 struct extsym_info einfo;
14381 bfd_vma last;
14382
14383 /* We have found the .mdebug section in the output file.
14384 Look through all the link_orders comprising it and merge
14385 the information together. */
14386 symhdr->magic = swap->sym_magic;
14387 /* FIXME: What should the version stamp be? */
14388 symhdr->vstamp = 0;
14389 symhdr->ilineMax = 0;
14390 symhdr->cbLine = 0;
14391 symhdr->idnMax = 0;
14392 symhdr->ipdMax = 0;
14393 symhdr->isymMax = 0;
14394 symhdr->ioptMax = 0;
14395 symhdr->iauxMax = 0;
14396 symhdr->issMax = 0;
14397 symhdr->issExtMax = 0;
14398 symhdr->ifdMax = 0;
14399 symhdr->crfd = 0;
14400 symhdr->iextMax = 0;
14401
14402 /* We accumulate the debugging information itself in the
14403 debug_info structure. */
14404 debug.line = NULL;
14405 debug.external_dnr = NULL;
14406 debug.external_pdr = NULL;
14407 debug.external_sym = NULL;
14408 debug.external_opt = NULL;
14409 debug.external_aux = NULL;
14410 debug.ss = NULL;
14411 debug.ssext = debug.ssext_end = NULL;
14412 debug.external_fdr = NULL;
14413 debug.external_rfd = NULL;
14414 debug.external_ext = debug.external_ext_end = NULL;
14415
14416 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14417 if (mdebug_handle == NULL)
14418 return FALSE;
14419
14420 esym.jmptbl = 0;
14421 esym.cobol_main = 0;
14422 esym.weakext = 0;
14423 esym.reserved = 0;
14424 esym.ifd = ifdNil;
14425 esym.asym.iss = issNil;
14426 esym.asym.st = stLocal;
14427 esym.asym.reserved = 0;
14428 esym.asym.index = indexNil;
14429 last = 0;
14430 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14431 {
14432 esym.asym.sc = sc[i];
14433 s = bfd_get_section_by_name (abfd, secname[i]);
14434 if (s != NULL)
14435 {
14436 esym.asym.value = s->vma;
14437 last = s->vma + s->size;
14438 }
14439 else
14440 esym.asym.value = last;
14441 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14442 secname[i], &esym))
14443 return FALSE;
14444 }
14445
14446 for (p = o->map_head.link_order; p != NULL; p = p->next)
14447 {
14448 asection *input_section;
14449 bfd *input_bfd;
14450 const struct ecoff_debug_swap *input_swap;
14451 struct ecoff_debug_info input_debug;
14452 char *eraw_src;
14453 char *eraw_end;
14454
14455 if (p->type != bfd_indirect_link_order)
14456 {
14457 if (p->type == bfd_data_link_order)
14458 continue;
14459 abort ();
14460 }
14461
14462 input_section = p->u.indirect.section;
14463 input_bfd = input_section->owner;
14464
14465 if (!is_mips_elf (input_bfd))
14466 {
14467 /* I don't know what a non MIPS ELF bfd would be
14468 doing with a .mdebug section, but I don't really
14469 want to deal with it. */
14470 continue;
14471 }
14472
14473 input_swap = (get_elf_backend_data (input_bfd)
14474 ->elf_backend_ecoff_debug_swap);
14475
14476 BFD_ASSERT (p->size == input_section->size);
14477
14478 /* The ECOFF linking code expects that we have already
14479 read in the debugging information and set up an
14480 ecoff_debug_info structure, so we do that now. */
14481 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14482 &input_debug))
14483 return FALSE;
14484
14485 if (! (bfd_ecoff_debug_accumulate
14486 (mdebug_handle, abfd, &debug, swap, input_bfd,
14487 &input_debug, input_swap, info)))
14488 return FALSE;
14489
14490 /* Loop through the external symbols. For each one with
14491 interesting information, try to find the symbol in
14492 the linker global hash table and save the information
14493 for the output external symbols. */
14494 eraw_src = input_debug.external_ext;
14495 eraw_end = (eraw_src
14496 + (input_debug.symbolic_header.iextMax
14497 * input_swap->external_ext_size));
14498 for (;
14499 eraw_src < eraw_end;
14500 eraw_src += input_swap->external_ext_size)
14501 {
14502 EXTR ext;
14503 const char *name;
14504 struct mips_elf_link_hash_entry *h;
14505
14506 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14507 if (ext.asym.sc == scNil
14508 || ext.asym.sc == scUndefined
14509 || ext.asym.sc == scSUndefined)
14510 continue;
14511
14512 name = input_debug.ssext + ext.asym.iss;
14513 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14514 name, FALSE, FALSE, TRUE);
14515 if (h == NULL || h->esym.ifd != -2)
14516 continue;
14517
14518 if (ext.ifd != -1)
14519 {
14520 BFD_ASSERT (ext.ifd
14521 < input_debug.symbolic_header.ifdMax);
14522 ext.ifd = input_debug.ifdmap[ext.ifd];
14523 }
14524
14525 h->esym = ext;
14526 }
14527
14528 /* Free up the information we just read. */
14529 free (input_debug.line);
14530 free (input_debug.external_dnr);
14531 free (input_debug.external_pdr);
14532 free (input_debug.external_sym);
14533 free (input_debug.external_opt);
14534 free (input_debug.external_aux);
14535 free (input_debug.ss);
14536 free (input_debug.ssext);
14537 free (input_debug.external_fdr);
14538 free (input_debug.external_rfd);
14539 free (input_debug.external_ext);
14540
14541 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14542 elf_link_input_bfd ignores this section. */
14543 input_section->flags &= ~SEC_HAS_CONTENTS;
14544 }
14545
14546 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14547 {
14548 /* Create .rtproc section. */
14549 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14550 if (rtproc_sec == NULL)
14551 {
14552 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14553 | SEC_LINKER_CREATED | SEC_READONLY);
14554
14555 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14556 ".rtproc",
14557 flags);
14558 if (rtproc_sec == NULL
14559 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14560 return FALSE;
14561 }
14562
14563 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14564 info, rtproc_sec,
14565 &debug))
14566 return FALSE;
14567 }
14568
14569 /* Build the external symbol information. */
14570 einfo.abfd = abfd;
14571 einfo.info = info;
14572 einfo.debug = &debug;
14573 einfo.swap = swap;
14574 einfo.failed = FALSE;
14575 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14576 mips_elf_output_extsym, &einfo);
14577 if (einfo.failed)
14578 return FALSE;
14579
14580 /* Set the size of the .mdebug section. */
14581 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14582
14583 /* Skip this section later on (I don't think this currently
14584 matters, but someday it might). */
14585 o->map_head.link_order = NULL;
14586
14587 mdebug_sec = o;
14588 }
14589
14590 if (CONST_STRNEQ (o->name, ".gptab."))
14591 {
14592 const char *subname;
14593 unsigned int c;
14594 Elf32_gptab *tab;
14595 Elf32_External_gptab *ext_tab;
14596 unsigned int j;
14597
14598 /* The .gptab.sdata and .gptab.sbss sections hold
14599 information describing how the small data area would
14600 change depending upon the -G switch. These sections
14601 not used in executables files. */
14602 if (! bfd_link_relocatable (info))
14603 {
14604 for (p = o->map_head.link_order; p != NULL; p = p->next)
14605 {
14606 asection *input_section;
14607
14608 if (p->type != bfd_indirect_link_order)
14609 {
14610 if (p->type == bfd_data_link_order)
14611 continue;
14612 abort ();
14613 }
14614
14615 input_section = p->u.indirect.section;
14616
14617 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14618 elf_link_input_bfd ignores this section. */
14619 input_section->flags &= ~SEC_HAS_CONTENTS;
14620 }
14621
14622 /* Skip this section later on (I don't think this
14623 currently matters, but someday it might). */
14624 o->map_head.link_order = NULL;
14625
14626 /* Really remove the section. */
14627 bfd_section_list_remove (abfd, o);
14628 --abfd->section_count;
14629
14630 continue;
14631 }
14632
14633 /* There is one gptab for initialized data, and one for
14634 uninitialized data. */
14635 if (strcmp (o->name, ".gptab.sdata") == 0)
14636 gptab_data_sec = o;
14637 else if (strcmp (o->name, ".gptab.sbss") == 0)
14638 gptab_bss_sec = o;
14639 else
14640 {
14641 (*_bfd_error_handler)
14642 (_("%s: illegal section name `%s'"),
14643 bfd_get_filename (abfd), o->name);
14644 bfd_set_error (bfd_error_nonrepresentable_section);
14645 return FALSE;
14646 }
14647
14648 /* The linker script always combines .gptab.data and
14649 .gptab.sdata into .gptab.sdata, and likewise for
14650 .gptab.bss and .gptab.sbss. It is possible that there is
14651 no .sdata or .sbss section in the output file, in which
14652 case we must change the name of the output section. */
14653 subname = o->name + sizeof ".gptab" - 1;
14654 if (bfd_get_section_by_name (abfd, subname) == NULL)
14655 {
14656 if (o == gptab_data_sec)
14657 o->name = ".gptab.data";
14658 else
14659 o->name = ".gptab.bss";
14660 subname = o->name + sizeof ".gptab" - 1;
14661 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14662 }
14663
14664 /* Set up the first entry. */
14665 c = 1;
14666 amt = c * sizeof (Elf32_gptab);
14667 tab = bfd_malloc (amt);
14668 if (tab == NULL)
14669 return FALSE;
14670 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14671 tab[0].gt_header.gt_unused = 0;
14672
14673 /* Combine the input sections. */
14674 for (p = o->map_head.link_order; p != NULL; p = p->next)
14675 {
14676 asection *input_section;
14677 bfd *input_bfd;
14678 bfd_size_type size;
14679 unsigned long last;
14680 bfd_size_type gpentry;
14681
14682 if (p->type != bfd_indirect_link_order)
14683 {
14684 if (p->type == bfd_data_link_order)
14685 continue;
14686 abort ();
14687 }
14688
14689 input_section = p->u.indirect.section;
14690 input_bfd = input_section->owner;
14691
14692 /* Combine the gptab entries for this input section one
14693 by one. We know that the input gptab entries are
14694 sorted by ascending -G value. */
14695 size = input_section->size;
14696 last = 0;
14697 for (gpentry = sizeof (Elf32_External_gptab);
14698 gpentry < size;
14699 gpentry += sizeof (Elf32_External_gptab))
14700 {
14701 Elf32_External_gptab ext_gptab;
14702 Elf32_gptab int_gptab;
14703 unsigned long val;
14704 unsigned long add;
14705 bfd_boolean exact;
14706 unsigned int look;
14707
14708 if (! (bfd_get_section_contents
14709 (input_bfd, input_section, &ext_gptab, gpentry,
14710 sizeof (Elf32_External_gptab))))
14711 {
14712 free (tab);
14713 return FALSE;
14714 }
14715
14716 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14717 &int_gptab);
14718 val = int_gptab.gt_entry.gt_g_value;
14719 add = int_gptab.gt_entry.gt_bytes - last;
14720
14721 exact = FALSE;
14722 for (look = 1; look < c; look++)
14723 {
14724 if (tab[look].gt_entry.gt_g_value >= val)
14725 tab[look].gt_entry.gt_bytes += add;
14726
14727 if (tab[look].gt_entry.gt_g_value == val)
14728 exact = TRUE;
14729 }
14730
14731 if (! exact)
14732 {
14733 Elf32_gptab *new_tab;
14734 unsigned int max;
14735
14736 /* We need a new table entry. */
14737 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14738 new_tab = bfd_realloc (tab, amt);
14739 if (new_tab == NULL)
14740 {
14741 free (tab);
14742 return FALSE;
14743 }
14744 tab = new_tab;
14745 tab[c].gt_entry.gt_g_value = val;
14746 tab[c].gt_entry.gt_bytes = add;
14747
14748 /* Merge in the size for the next smallest -G
14749 value, since that will be implied by this new
14750 value. */
14751 max = 0;
14752 for (look = 1; look < c; look++)
14753 {
14754 if (tab[look].gt_entry.gt_g_value < val
14755 && (max == 0
14756 || (tab[look].gt_entry.gt_g_value
14757 > tab[max].gt_entry.gt_g_value)))
14758 max = look;
14759 }
14760 if (max != 0)
14761 tab[c].gt_entry.gt_bytes +=
14762 tab[max].gt_entry.gt_bytes;
14763
14764 ++c;
14765 }
14766
14767 last = int_gptab.gt_entry.gt_bytes;
14768 }
14769
14770 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14771 elf_link_input_bfd ignores this section. */
14772 input_section->flags &= ~SEC_HAS_CONTENTS;
14773 }
14774
14775 /* The table must be sorted by -G value. */
14776 if (c > 2)
14777 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14778
14779 /* Swap out the table. */
14780 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14781 ext_tab = bfd_alloc (abfd, amt);
14782 if (ext_tab == NULL)
14783 {
14784 free (tab);
14785 return FALSE;
14786 }
14787
14788 for (j = 0; j < c; j++)
14789 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14790 free (tab);
14791
14792 o->size = c * sizeof (Elf32_External_gptab);
14793 o->contents = (bfd_byte *) ext_tab;
14794
14795 /* Skip this section later on (I don't think this currently
14796 matters, but someday it might). */
14797 o->map_head.link_order = NULL;
14798 }
14799 }
14800
14801 /* Invoke the regular ELF backend linker to do all the work. */
14802 if (!bfd_elf_final_link (abfd, info))
14803 return FALSE;
14804
14805 /* Now write out the computed sections. */
14806
14807 if (abiflags_sec != NULL)
14808 {
14809 Elf_External_ABIFlags_v0 ext;
14810 Elf_Internal_ABIFlags_v0 *abiflags;
14811
14812 abiflags = &mips_elf_tdata (abfd)->abiflags;
14813
14814 /* Set up the abiflags if no valid input sections were found. */
14815 if (!mips_elf_tdata (abfd)->abiflags_valid)
14816 {
14817 infer_mips_abiflags (abfd, abiflags);
14818 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14819 }
14820 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14821 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14822 return FALSE;
14823 }
14824
14825 if (reginfo_sec != NULL)
14826 {
14827 Elf32_External_RegInfo ext;
14828
14829 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14830 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14831 return FALSE;
14832 }
14833
14834 if (mdebug_sec != NULL)
14835 {
14836 BFD_ASSERT (abfd->output_has_begun);
14837 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14838 swap, info,
14839 mdebug_sec->filepos))
14840 return FALSE;
14841
14842 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14843 }
14844
14845 if (gptab_data_sec != NULL)
14846 {
14847 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14848 gptab_data_sec->contents,
14849 0, gptab_data_sec->size))
14850 return FALSE;
14851 }
14852
14853 if (gptab_bss_sec != NULL)
14854 {
14855 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14856 gptab_bss_sec->contents,
14857 0, gptab_bss_sec->size))
14858 return FALSE;
14859 }
14860
14861 if (SGI_COMPAT (abfd))
14862 {
14863 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14864 if (rtproc_sec != NULL)
14865 {
14866 if (! bfd_set_section_contents (abfd, rtproc_sec,
14867 rtproc_sec->contents,
14868 0, rtproc_sec->size))
14869 return FALSE;
14870 }
14871 }
14872
14873 return TRUE;
14874 }
14875 \f
14876 /* Merge object file header flags from IBFD into OBFD. Raise an error
14877 if there are conflicting settings. */
14878
14879 static bfd_boolean
14880 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14881 {
14882 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14883 flagword old_flags;
14884 flagword new_flags;
14885 bfd_boolean ok;
14886
14887 new_flags = elf_elfheader (ibfd)->e_flags;
14888 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14889 old_flags = elf_elfheader (obfd)->e_flags;
14890
14891 /* Check flag compatibility. */
14892
14893 new_flags &= ~EF_MIPS_NOREORDER;
14894 old_flags &= ~EF_MIPS_NOREORDER;
14895
14896 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14897 doesn't seem to matter. */
14898 new_flags &= ~EF_MIPS_XGOT;
14899 old_flags &= ~EF_MIPS_XGOT;
14900
14901 /* MIPSpro generates ucode info in n64 objects. Again, we should
14902 just be able to ignore this. */
14903 new_flags &= ~EF_MIPS_UCODE;
14904 old_flags &= ~EF_MIPS_UCODE;
14905
14906 /* DSOs should only be linked with CPIC code. */
14907 if ((ibfd->flags & DYNAMIC) != 0)
14908 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14909
14910 if (new_flags == old_flags)
14911 return TRUE;
14912
14913 ok = TRUE;
14914
14915 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14916 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14917 {
14918 (*_bfd_error_handler)
14919 (_("%B: warning: linking abicalls files with non-abicalls files"),
14920 ibfd);
14921 ok = TRUE;
14922 }
14923
14924 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14925 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14926 if (! (new_flags & EF_MIPS_PIC))
14927 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14928
14929 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14930 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14931
14932 /* Compare the ISAs. */
14933 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14934 {
14935 (*_bfd_error_handler)
14936 (_("%B: linking 32-bit code with 64-bit code"),
14937 ibfd);
14938 ok = FALSE;
14939 }
14940 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14941 {
14942 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14943 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14944 {
14945 /* Copy the architecture info from IBFD to OBFD. Also copy
14946 the 32-bit flag (if set) so that we continue to recognise
14947 OBFD as a 32-bit binary. */
14948 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14949 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14950 elf_elfheader (obfd)->e_flags
14951 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14952
14953 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14954 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14955
14956 /* Copy across the ABI flags if OBFD doesn't use them
14957 and if that was what caused us to treat IBFD as 32-bit. */
14958 if ((old_flags & EF_MIPS_ABI) == 0
14959 && mips_32bit_flags_p (new_flags)
14960 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14961 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14962 }
14963 else
14964 {
14965 /* The ISAs aren't compatible. */
14966 (*_bfd_error_handler)
14967 (_("%B: linking %s module with previous %s modules"),
14968 ibfd,
14969 bfd_printable_name (ibfd),
14970 bfd_printable_name (obfd));
14971 ok = FALSE;
14972 }
14973 }
14974
14975 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14976 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14977
14978 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14979 does set EI_CLASS differently from any 32-bit ABI. */
14980 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14981 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14982 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14983 {
14984 /* Only error if both are set (to different values). */
14985 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14986 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14987 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14988 {
14989 (*_bfd_error_handler)
14990 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14991 ibfd,
14992 elf_mips_abi_name (ibfd),
14993 elf_mips_abi_name (obfd));
14994 ok = FALSE;
14995 }
14996 new_flags &= ~EF_MIPS_ABI;
14997 old_flags &= ~EF_MIPS_ABI;
14998 }
14999
15000 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15001 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15002 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15003 {
15004 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15005 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15006 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15007 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15008 int micro_mis = old_m16 && new_micro;
15009 int m16_mis = old_micro && new_m16;
15010
15011 if (m16_mis || micro_mis)
15012 {
15013 (*_bfd_error_handler)
15014 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15015 ibfd,
15016 m16_mis ? "MIPS16" : "microMIPS",
15017 m16_mis ? "microMIPS" : "MIPS16");
15018 ok = FALSE;
15019 }
15020
15021 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15022
15023 new_flags &= ~ EF_MIPS_ARCH_ASE;
15024 old_flags &= ~ EF_MIPS_ARCH_ASE;
15025 }
15026
15027 /* Compare NaN encodings. */
15028 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15029 {
15030 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15031 ibfd,
15032 (new_flags & EF_MIPS_NAN2008
15033 ? "-mnan=2008" : "-mnan=legacy"),
15034 (old_flags & EF_MIPS_NAN2008
15035 ? "-mnan=2008" : "-mnan=legacy"));
15036 ok = FALSE;
15037 new_flags &= ~EF_MIPS_NAN2008;
15038 old_flags &= ~EF_MIPS_NAN2008;
15039 }
15040
15041 /* Compare FP64 state. */
15042 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15043 {
15044 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15045 ibfd,
15046 (new_flags & EF_MIPS_FP64
15047 ? "-mfp64" : "-mfp32"),
15048 (old_flags & EF_MIPS_FP64
15049 ? "-mfp64" : "-mfp32"));
15050 ok = FALSE;
15051 new_flags &= ~EF_MIPS_FP64;
15052 old_flags &= ~EF_MIPS_FP64;
15053 }
15054
15055 /* Warn about any other mismatches */
15056 if (new_flags != old_flags)
15057 {
15058 (*_bfd_error_handler)
15059 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15060 "(0x%lx)"),
15061 ibfd, (unsigned long) new_flags,
15062 (unsigned long) old_flags);
15063 ok = FALSE;
15064 }
15065
15066 return ok;
15067 }
15068
15069 /* Merge object attributes from IBFD into OBFD. Raise an error if
15070 there are conflicting attributes. */
15071 static bfd_boolean
15072 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15073 {
15074 obj_attribute *in_attr;
15075 obj_attribute *out_attr;
15076 bfd *abi_fp_bfd;
15077 bfd *abi_msa_bfd;
15078
15079 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15080 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15081 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15082 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15083
15084 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15085 if (!abi_msa_bfd
15086 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15087 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15088
15089 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15090 {
15091 /* This is the first object. Copy the attributes. */
15092 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15093
15094 /* Use the Tag_null value to indicate the attributes have been
15095 initialized. */
15096 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15097
15098 return TRUE;
15099 }
15100
15101 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15102 non-conflicting ones. */
15103 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15104 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15105 {
15106 int out_fp, in_fp;
15107
15108 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15109 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15110 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15111 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15112 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15113 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15114 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15115 || in_fp == Val_GNU_MIPS_ABI_FP_64
15116 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15117 {
15118 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15119 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15120 }
15121 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15122 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15123 || out_fp == Val_GNU_MIPS_ABI_FP_64
15124 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15125 /* Keep the current setting. */;
15126 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15127 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15128 {
15129 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15130 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15131 }
15132 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15133 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15134 /* Keep the current setting. */;
15135 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15136 {
15137 const char *out_string, *in_string;
15138
15139 out_string = _bfd_mips_fp_abi_string (out_fp);
15140 in_string = _bfd_mips_fp_abi_string (in_fp);
15141 /* First warn about cases involving unrecognised ABIs. */
15142 if (!out_string && !in_string)
15143 _bfd_error_handler
15144 (_("Warning: %B uses unknown floating point ABI %d "
15145 "(set by %B), %B uses unknown floating point ABI %d"),
15146 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15147 else if (!out_string)
15148 _bfd_error_handler
15149 (_("Warning: %B uses unknown floating point ABI %d "
15150 "(set by %B), %B uses %s"),
15151 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15152 else if (!in_string)
15153 _bfd_error_handler
15154 (_("Warning: %B uses %s (set by %B), "
15155 "%B uses unknown floating point ABI %d"),
15156 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15157 else
15158 {
15159 /* If one of the bfds is soft-float, the other must be
15160 hard-float. The exact choice of hard-float ABI isn't
15161 really relevant to the error message. */
15162 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15163 out_string = "-mhard-float";
15164 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15165 in_string = "-mhard-float";
15166 _bfd_error_handler
15167 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15168 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15169 }
15170 }
15171 }
15172
15173 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15174 non-conflicting ones. */
15175 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15176 {
15177 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15178 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15179 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15180 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15181 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15182 {
15183 case Val_GNU_MIPS_ABI_MSA_128:
15184 _bfd_error_handler
15185 (_("Warning: %B uses %s (set by %B), "
15186 "%B uses unknown MSA ABI %d"),
15187 obfd, abi_msa_bfd, ibfd,
15188 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15189 break;
15190
15191 default:
15192 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15193 {
15194 case Val_GNU_MIPS_ABI_MSA_128:
15195 _bfd_error_handler
15196 (_("Warning: %B uses unknown MSA ABI %d "
15197 "(set by %B), %B uses %s"),
15198 obfd, abi_msa_bfd, ibfd,
15199 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15200 break;
15201
15202 default:
15203 _bfd_error_handler
15204 (_("Warning: %B uses unknown MSA ABI %d "
15205 "(set by %B), %B uses unknown MSA ABI %d"),
15206 obfd, abi_msa_bfd, ibfd,
15207 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15208 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15209 break;
15210 }
15211 }
15212 }
15213
15214 /* Merge Tag_compatibility attributes and any common GNU ones. */
15215 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15216 }
15217
15218 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15219 there are conflicting settings. */
15220
15221 static bfd_boolean
15222 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15223 {
15224 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15225 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15226 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15227
15228 /* Update the output abiflags fp_abi using the computed fp_abi. */
15229 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15230
15231 #define max(a, b) ((a) > (b) ? (a) : (b))
15232 /* Merge abiflags. */
15233 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15234 in_tdata->abiflags.isa_level);
15235 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15236 in_tdata->abiflags.isa_rev);
15237 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15238 in_tdata->abiflags.gpr_size);
15239 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15240 in_tdata->abiflags.cpr1_size);
15241 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15242 in_tdata->abiflags.cpr2_size);
15243 #undef max
15244 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15245 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15246
15247 return TRUE;
15248 }
15249
15250 /* Merge backend specific data from an object file to the output
15251 object file when linking. */
15252
15253 bfd_boolean
15254 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15255 {
15256 struct mips_elf_obj_tdata *out_tdata;
15257 struct mips_elf_obj_tdata *in_tdata;
15258 bfd_boolean null_input_bfd = TRUE;
15259 asection *sec;
15260 bfd_boolean ok;
15261
15262 /* Check if we have the same endianness. */
15263 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15264 {
15265 (*_bfd_error_handler)
15266 (_("%B: endianness incompatible with that of the selected emulation"),
15267 ibfd);
15268 return FALSE;
15269 }
15270
15271 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15272 return TRUE;
15273
15274 in_tdata = mips_elf_tdata (ibfd);
15275 out_tdata = mips_elf_tdata (obfd);
15276
15277 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15278 {
15279 (*_bfd_error_handler)
15280 (_("%B: ABI is incompatible with that of the selected emulation"),
15281 ibfd);
15282 return FALSE;
15283 }
15284
15285 /* Check to see if the input BFD actually contains any sections. If not,
15286 then it has no attributes, and its flags may not have been initialized
15287 either, but it cannot actually cause any incompatibility. */
15288 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15289 {
15290 /* Ignore synthetic sections and empty .text, .data and .bss sections
15291 which are automatically generated by gas. Also ignore fake
15292 (s)common sections, since merely defining a common symbol does
15293 not affect compatibility. */
15294 if ((sec->flags & SEC_IS_COMMON) == 0
15295 && strcmp (sec->name, ".reginfo")
15296 && strcmp (sec->name, ".mdebug")
15297 && (sec->size != 0
15298 || (strcmp (sec->name, ".text")
15299 && strcmp (sec->name, ".data")
15300 && strcmp (sec->name, ".bss"))))
15301 {
15302 null_input_bfd = FALSE;
15303 break;
15304 }
15305 }
15306 if (null_input_bfd)
15307 return TRUE;
15308
15309 /* Populate abiflags using existing information. */
15310 if (in_tdata->abiflags_valid)
15311 {
15312 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15313 Elf_Internal_ABIFlags_v0 in_abiflags;
15314 Elf_Internal_ABIFlags_v0 abiflags;
15315
15316 /* Set up the FP ABI attribute from the abiflags if it is not already
15317 set. */
15318 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15319 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15320
15321 infer_mips_abiflags (ibfd, &abiflags);
15322 in_abiflags = in_tdata->abiflags;
15323
15324 /* It is not possible to infer the correct ISA revision
15325 for R3 or R5 so drop down to R2 for the checks. */
15326 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15327 in_abiflags.isa_rev = 2;
15328
15329 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15330 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15331 (*_bfd_error_handler)
15332 (_("%B: warning: Inconsistent ISA between e_flags and "
15333 ".MIPS.abiflags"), ibfd);
15334 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15335 && in_abiflags.fp_abi != abiflags.fp_abi)
15336 (*_bfd_error_handler)
15337 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15338 ".MIPS.abiflags"), ibfd);
15339 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15340 (*_bfd_error_handler)
15341 (_("%B: warning: Inconsistent ASEs between e_flags and "
15342 ".MIPS.abiflags"), ibfd);
15343 /* The isa_ext is allowed to be an extension of what can be inferred
15344 from e_flags. */
15345 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15346 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15347 (*_bfd_error_handler)
15348 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15349 ".MIPS.abiflags"), ibfd);
15350 if (in_abiflags.flags2 != 0)
15351 (*_bfd_error_handler)
15352 (_("%B: warning: Unexpected flag in the flags2 field of "
15353 ".MIPS.abiflags (0x%lx)"), ibfd,
15354 (unsigned long) in_abiflags.flags2);
15355 }
15356 else
15357 {
15358 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15359 in_tdata->abiflags_valid = TRUE;
15360 }
15361
15362 if (!out_tdata->abiflags_valid)
15363 {
15364 /* Copy input abiflags if output abiflags are not already valid. */
15365 out_tdata->abiflags = in_tdata->abiflags;
15366 out_tdata->abiflags_valid = TRUE;
15367 }
15368
15369 if (! elf_flags_init (obfd))
15370 {
15371 elf_flags_init (obfd) = TRUE;
15372 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15373 elf_elfheader (obfd)->e_ident[EI_CLASS]
15374 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15375
15376 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15377 && (bfd_get_arch_info (obfd)->the_default
15378 || mips_mach_extends_p (bfd_get_mach (obfd),
15379 bfd_get_mach (ibfd))))
15380 {
15381 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15382 bfd_get_mach (ibfd)))
15383 return FALSE;
15384
15385 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15386 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15387 }
15388
15389 ok = TRUE;
15390 }
15391 else
15392 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15393
15394 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15395
15396 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15397
15398 if (!ok)
15399 {
15400 bfd_set_error (bfd_error_bad_value);
15401 return FALSE;
15402 }
15403
15404 return TRUE;
15405 }
15406
15407 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15408
15409 bfd_boolean
15410 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15411 {
15412 BFD_ASSERT (!elf_flags_init (abfd)
15413 || elf_elfheader (abfd)->e_flags == flags);
15414
15415 elf_elfheader (abfd)->e_flags = flags;
15416 elf_flags_init (abfd) = TRUE;
15417 return TRUE;
15418 }
15419
15420 char *
15421 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15422 {
15423 switch (dtag)
15424 {
15425 default: return "";
15426 case DT_MIPS_RLD_VERSION:
15427 return "MIPS_RLD_VERSION";
15428 case DT_MIPS_TIME_STAMP:
15429 return "MIPS_TIME_STAMP";
15430 case DT_MIPS_ICHECKSUM:
15431 return "MIPS_ICHECKSUM";
15432 case DT_MIPS_IVERSION:
15433 return "MIPS_IVERSION";
15434 case DT_MIPS_FLAGS:
15435 return "MIPS_FLAGS";
15436 case DT_MIPS_BASE_ADDRESS:
15437 return "MIPS_BASE_ADDRESS";
15438 case DT_MIPS_MSYM:
15439 return "MIPS_MSYM";
15440 case DT_MIPS_CONFLICT:
15441 return "MIPS_CONFLICT";
15442 case DT_MIPS_LIBLIST:
15443 return "MIPS_LIBLIST";
15444 case DT_MIPS_LOCAL_GOTNO:
15445 return "MIPS_LOCAL_GOTNO";
15446 case DT_MIPS_CONFLICTNO:
15447 return "MIPS_CONFLICTNO";
15448 case DT_MIPS_LIBLISTNO:
15449 return "MIPS_LIBLISTNO";
15450 case DT_MIPS_SYMTABNO:
15451 return "MIPS_SYMTABNO";
15452 case DT_MIPS_UNREFEXTNO:
15453 return "MIPS_UNREFEXTNO";
15454 case DT_MIPS_GOTSYM:
15455 return "MIPS_GOTSYM";
15456 case DT_MIPS_HIPAGENO:
15457 return "MIPS_HIPAGENO";
15458 case DT_MIPS_RLD_MAP:
15459 return "MIPS_RLD_MAP";
15460 case DT_MIPS_RLD_MAP_REL:
15461 return "MIPS_RLD_MAP_REL";
15462 case DT_MIPS_DELTA_CLASS:
15463 return "MIPS_DELTA_CLASS";
15464 case DT_MIPS_DELTA_CLASS_NO:
15465 return "MIPS_DELTA_CLASS_NO";
15466 case DT_MIPS_DELTA_INSTANCE:
15467 return "MIPS_DELTA_INSTANCE";
15468 case DT_MIPS_DELTA_INSTANCE_NO:
15469 return "MIPS_DELTA_INSTANCE_NO";
15470 case DT_MIPS_DELTA_RELOC:
15471 return "MIPS_DELTA_RELOC";
15472 case DT_MIPS_DELTA_RELOC_NO:
15473 return "MIPS_DELTA_RELOC_NO";
15474 case DT_MIPS_DELTA_SYM:
15475 return "MIPS_DELTA_SYM";
15476 case DT_MIPS_DELTA_SYM_NO:
15477 return "MIPS_DELTA_SYM_NO";
15478 case DT_MIPS_DELTA_CLASSSYM:
15479 return "MIPS_DELTA_CLASSSYM";
15480 case DT_MIPS_DELTA_CLASSSYM_NO:
15481 return "MIPS_DELTA_CLASSSYM_NO";
15482 case DT_MIPS_CXX_FLAGS:
15483 return "MIPS_CXX_FLAGS";
15484 case DT_MIPS_PIXIE_INIT:
15485 return "MIPS_PIXIE_INIT";
15486 case DT_MIPS_SYMBOL_LIB:
15487 return "MIPS_SYMBOL_LIB";
15488 case DT_MIPS_LOCALPAGE_GOTIDX:
15489 return "MIPS_LOCALPAGE_GOTIDX";
15490 case DT_MIPS_LOCAL_GOTIDX:
15491 return "MIPS_LOCAL_GOTIDX";
15492 case DT_MIPS_HIDDEN_GOTIDX:
15493 return "MIPS_HIDDEN_GOTIDX";
15494 case DT_MIPS_PROTECTED_GOTIDX:
15495 return "MIPS_PROTECTED_GOT_IDX";
15496 case DT_MIPS_OPTIONS:
15497 return "MIPS_OPTIONS";
15498 case DT_MIPS_INTERFACE:
15499 return "MIPS_INTERFACE";
15500 case DT_MIPS_DYNSTR_ALIGN:
15501 return "DT_MIPS_DYNSTR_ALIGN";
15502 case DT_MIPS_INTERFACE_SIZE:
15503 return "DT_MIPS_INTERFACE_SIZE";
15504 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15505 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15506 case DT_MIPS_PERF_SUFFIX:
15507 return "DT_MIPS_PERF_SUFFIX";
15508 case DT_MIPS_COMPACT_SIZE:
15509 return "DT_MIPS_COMPACT_SIZE";
15510 case DT_MIPS_GP_VALUE:
15511 return "DT_MIPS_GP_VALUE";
15512 case DT_MIPS_AUX_DYNAMIC:
15513 return "DT_MIPS_AUX_DYNAMIC";
15514 case DT_MIPS_PLTGOT:
15515 return "DT_MIPS_PLTGOT";
15516 case DT_MIPS_RWPLT:
15517 return "DT_MIPS_RWPLT";
15518 }
15519 }
15520
15521 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15522 not known. */
15523
15524 const char *
15525 _bfd_mips_fp_abi_string (int fp)
15526 {
15527 switch (fp)
15528 {
15529 /* These strings aren't translated because they're simply
15530 option lists. */
15531 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15532 return "-mdouble-float";
15533
15534 case Val_GNU_MIPS_ABI_FP_SINGLE:
15535 return "-msingle-float";
15536
15537 case Val_GNU_MIPS_ABI_FP_SOFT:
15538 return "-msoft-float";
15539
15540 case Val_GNU_MIPS_ABI_FP_OLD_64:
15541 return _("-mips32r2 -mfp64 (12 callee-saved)");
15542
15543 case Val_GNU_MIPS_ABI_FP_XX:
15544 return "-mfpxx";
15545
15546 case Val_GNU_MIPS_ABI_FP_64:
15547 return "-mgp32 -mfp64";
15548
15549 case Val_GNU_MIPS_ABI_FP_64A:
15550 return "-mgp32 -mfp64 -mno-odd-spreg";
15551
15552 default:
15553 return 0;
15554 }
15555 }
15556
15557 static void
15558 print_mips_ases (FILE *file, unsigned int mask)
15559 {
15560 if (mask & AFL_ASE_DSP)
15561 fputs ("\n\tDSP ASE", file);
15562 if (mask & AFL_ASE_DSPR2)
15563 fputs ("\n\tDSP R2 ASE", file);
15564 if (mask & AFL_ASE_DSPR3)
15565 fputs ("\n\tDSP R3 ASE", file);
15566 if (mask & AFL_ASE_EVA)
15567 fputs ("\n\tEnhanced VA Scheme", file);
15568 if (mask & AFL_ASE_MCU)
15569 fputs ("\n\tMCU (MicroController) ASE", file);
15570 if (mask & AFL_ASE_MDMX)
15571 fputs ("\n\tMDMX ASE", file);
15572 if (mask & AFL_ASE_MIPS3D)
15573 fputs ("\n\tMIPS-3D ASE", file);
15574 if (mask & AFL_ASE_MT)
15575 fputs ("\n\tMT ASE", file);
15576 if (mask & AFL_ASE_SMARTMIPS)
15577 fputs ("\n\tSmartMIPS ASE", file);
15578 if (mask & AFL_ASE_VIRT)
15579 fputs ("\n\tVZ ASE", file);
15580 if (mask & AFL_ASE_MSA)
15581 fputs ("\n\tMSA ASE", file);
15582 if (mask & AFL_ASE_MIPS16)
15583 fputs ("\n\tMIPS16 ASE", file);
15584 if (mask & AFL_ASE_MICROMIPS)
15585 fputs ("\n\tMICROMIPS ASE", file);
15586 if (mask & AFL_ASE_XPA)
15587 fputs ("\n\tXPA ASE", file);
15588 if (mask == 0)
15589 fprintf (file, "\n\t%s", _("None"));
15590 else if ((mask & ~AFL_ASE_MASK) != 0)
15591 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15592 }
15593
15594 static void
15595 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15596 {
15597 switch (isa_ext)
15598 {
15599 case 0:
15600 fputs (_("None"), file);
15601 break;
15602 case AFL_EXT_XLR:
15603 fputs ("RMI XLR", file);
15604 break;
15605 case AFL_EXT_OCTEON3:
15606 fputs ("Cavium Networks Octeon3", file);
15607 break;
15608 case AFL_EXT_OCTEON2:
15609 fputs ("Cavium Networks Octeon2", file);
15610 break;
15611 case AFL_EXT_OCTEONP:
15612 fputs ("Cavium Networks OcteonP", file);
15613 break;
15614 case AFL_EXT_LOONGSON_3A:
15615 fputs ("Loongson 3A", file);
15616 break;
15617 case AFL_EXT_OCTEON:
15618 fputs ("Cavium Networks Octeon", file);
15619 break;
15620 case AFL_EXT_5900:
15621 fputs ("Toshiba R5900", file);
15622 break;
15623 case AFL_EXT_4650:
15624 fputs ("MIPS R4650", file);
15625 break;
15626 case AFL_EXT_4010:
15627 fputs ("LSI R4010", file);
15628 break;
15629 case AFL_EXT_4100:
15630 fputs ("NEC VR4100", file);
15631 break;
15632 case AFL_EXT_3900:
15633 fputs ("Toshiba R3900", file);
15634 break;
15635 case AFL_EXT_10000:
15636 fputs ("MIPS R10000", file);
15637 break;
15638 case AFL_EXT_SB1:
15639 fputs ("Broadcom SB-1", file);
15640 break;
15641 case AFL_EXT_4111:
15642 fputs ("NEC VR4111/VR4181", file);
15643 break;
15644 case AFL_EXT_4120:
15645 fputs ("NEC VR4120", file);
15646 break;
15647 case AFL_EXT_5400:
15648 fputs ("NEC VR5400", file);
15649 break;
15650 case AFL_EXT_5500:
15651 fputs ("NEC VR5500", file);
15652 break;
15653 case AFL_EXT_LOONGSON_2E:
15654 fputs ("ST Microelectronics Loongson 2E", file);
15655 break;
15656 case AFL_EXT_LOONGSON_2F:
15657 fputs ("ST Microelectronics Loongson 2F", file);
15658 break;
15659 default:
15660 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15661 break;
15662 }
15663 }
15664
15665 static void
15666 print_mips_fp_abi_value (FILE *file, int val)
15667 {
15668 switch (val)
15669 {
15670 case Val_GNU_MIPS_ABI_FP_ANY:
15671 fprintf (file, _("Hard or soft float\n"));
15672 break;
15673 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15674 fprintf (file, _("Hard float (double precision)\n"));
15675 break;
15676 case Val_GNU_MIPS_ABI_FP_SINGLE:
15677 fprintf (file, _("Hard float (single precision)\n"));
15678 break;
15679 case Val_GNU_MIPS_ABI_FP_SOFT:
15680 fprintf (file, _("Soft float\n"));
15681 break;
15682 case Val_GNU_MIPS_ABI_FP_OLD_64:
15683 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15684 break;
15685 case Val_GNU_MIPS_ABI_FP_XX:
15686 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15687 break;
15688 case Val_GNU_MIPS_ABI_FP_64:
15689 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15690 break;
15691 case Val_GNU_MIPS_ABI_FP_64A:
15692 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15693 break;
15694 default:
15695 fprintf (file, "??? (%d)\n", val);
15696 break;
15697 }
15698 }
15699
15700 static int
15701 get_mips_reg_size (int reg_size)
15702 {
15703 return (reg_size == AFL_REG_NONE) ? 0
15704 : (reg_size == AFL_REG_32) ? 32
15705 : (reg_size == AFL_REG_64) ? 64
15706 : (reg_size == AFL_REG_128) ? 128
15707 : -1;
15708 }
15709
15710 bfd_boolean
15711 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15712 {
15713 FILE *file = ptr;
15714
15715 BFD_ASSERT (abfd != NULL && ptr != NULL);
15716
15717 /* Print normal ELF private data. */
15718 _bfd_elf_print_private_bfd_data (abfd, ptr);
15719
15720 /* xgettext:c-format */
15721 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15722
15723 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15724 fprintf (file, _(" [abi=O32]"));
15725 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15726 fprintf (file, _(" [abi=O64]"));
15727 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15728 fprintf (file, _(" [abi=EABI32]"));
15729 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15730 fprintf (file, _(" [abi=EABI64]"));
15731 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15732 fprintf (file, _(" [abi unknown]"));
15733 else if (ABI_N32_P (abfd))
15734 fprintf (file, _(" [abi=N32]"));
15735 else if (ABI_64_P (abfd))
15736 fprintf (file, _(" [abi=64]"));
15737 else
15738 fprintf (file, _(" [no abi set]"));
15739
15740 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15741 fprintf (file, " [mips1]");
15742 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15743 fprintf (file, " [mips2]");
15744 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15745 fprintf (file, " [mips3]");
15746 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15747 fprintf (file, " [mips4]");
15748 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15749 fprintf (file, " [mips5]");
15750 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15751 fprintf (file, " [mips32]");
15752 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15753 fprintf (file, " [mips64]");
15754 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15755 fprintf (file, " [mips32r2]");
15756 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15757 fprintf (file, " [mips64r2]");
15758 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15759 fprintf (file, " [mips32r6]");
15760 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15761 fprintf (file, " [mips64r6]");
15762 else
15763 fprintf (file, _(" [unknown ISA]"));
15764
15765 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15766 fprintf (file, " [mdmx]");
15767
15768 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15769 fprintf (file, " [mips16]");
15770
15771 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15772 fprintf (file, " [micromips]");
15773
15774 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15775 fprintf (file, " [nan2008]");
15776
15777 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15778 fprintf (file, " [old fp64]");
15779
15780 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15781 fprintf (file, " [32bitmode]");
15782 else
15783 fprintf (file, _(" [not 32bitmode]"));
15784
15785 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15786 fprintf (file, " [noreorder]");
15787
15788 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15789 fprintf (file, " [PIC]");
15790
15791 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15792 fprintf (file, " [CPIC]");
15793
15794 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15795 fprintf (file, " [XGOT]");
15796
15797 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15798 fprintf (file, " [UCODE]");
15799
15800 fputc ('\n', file);
15801
15802 if (mips_elf_tdata (abfd)->abiflags_valid)
15803 {
15804 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15805 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15806 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15807 if (abiflags->isa_rev > 1)
15808 fprintf (file, "r%d", abiflags->isa_rev);
15809 fprintf (file, "\nGPR size: %d",
15810 get_mips_reg_size (abiflags->gpr_size));
15811 fprintf (file, "\nCPR1 size: %d",
15812 get_mips_reg_size (abiflags->cpr1_size));
15813 fprintf (file, "\nCPR2 size: %d",
15814 get_mips_reg_size (abiflags->cpr2_size));
15815 fputs ("\nFP ABI: ", file);
15816 print_mips_fp_abi_value (file, abiflags->fp_abi);
15817 fputs ("ISA Extension: ", file);
15818 print_mips_isa_ext (file, abiflags->isa_ext);
15819 fputs ("\nASEs:", file);
15820 print_mips_ases (file, abiflags->ases);
15821 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15822 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15823 fputc ('\n', file);
15824 }
15825
15826 return TRUE;
15827 }
15828
15829 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15830 {
15831 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15832 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15833 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15834 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15835 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15836 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15837 { NULL, 0, 0, 0, 0 }
15838 };
15839
15840 /* Merge non visibility st_other attributes. Ensure that the
15841 STO_OPTIONAL flag is copied into h->other, even if this is not a
15842 definiton of the symbol. */
15843 void
15844 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15845 const Elf_Internal_Sym *isym,
15846 bfd_boolean definition,
15847 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15848 {
15849 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15850 {
15851 unsigned char other;
15852
15853 other = (definition ? isym->st_other : h->other);
15854 other &= ~ELF_ST_VISIBILITY (-1);
15855 h->other = other | ELF_ST_VISIBILITY (h->other);
15856 }
15857
15858 if (!definition
15859 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15860 h->other |= STO_OPTIONAL;
15861 }
15862
15863 /* Decide whether an undefined symbol is special and can be ignored.
15864 This is the case for OPTIONAL symbols on IRIX. */
15865 bfd_boolean
15866 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15867 {
15868 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15869 }
15870
15871 bfd_boolean
15872 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15873 {
15874 return (sym->st_shndx == SHN_COMMON
15875 || sym->st_shndx == SHN_MIPS_ACOMMON
15876 || sym->st_shndx == SHN_MIPS_SCOMMON);
15877 }
15878
15879 /* Return address for Ith PLT stub in section PLT, for relocation REL
15880 or (bfd_vma) -1 if it should not be included. */
15881
15882 bfd_vma
15883 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15884 const arelent *rel ATTRIBUTE_UNUSED)
15885 {
15886 return (plt->vma
15887 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15888 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15889 }
15890
15891 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15892 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15893 and .got.plt and also the slots may be of a different size each we walk
15894 the PLT manually fetching instructions and matching them against known
15895 patterns. To make things easier standard MIPS slots, if any, always come
15896 first. As we don't create proper ELF symbols we use the UDATA.I member
15897 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15898 with the ST_OTHER member of the ELF symbol. */
15899
15900 long
15901 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15902 long symcount ATTRIBUTE_UNUSED,
15903 asymbol **syms ATTRIBUTE_UNUSED,
15904 long dynsymcount, asymbol **dynsyms,
15905 asymbol **ret)
15906 {
15907 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15908 static const char microsuffix[] = "@micromipsplt";
15909 static const char m16suffix[] = "@mips16plt";
15910 static const char mipssuffix[] = "@plt";
15911
15912 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15913 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15914 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15915 Elf_Internal_Shdr *hdr;
15916 bfd_byte *plt_data;
15917 bfd_vma plt_offset;
15918 unsigned int other;
15919 bfd_vma entry_size;
15920 bfd_vma plt0_size;
15921 asection *relplt;
15922 bfd_vma opcode;
15923 asection *plt;
15924 asymbol *send;
15925 size_t size;
15926 char *names;
15927 long counti;
15928 arelent *p;
15929 asymbol *s;
15930 char *nend;
15931 long count;
15932 long pi;
15933 long i;
15934 long n;
15935
15936 *ret = NULL;
15937
15938 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15939 return 0;
15940
15941 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15942 if (relplt == NULL)
15943 return 0;
15944
15945 hdr = &elf_section_data (relplt)->this_hdr;
15946 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15947 return 0;
15948
15949 plt = bfd_get_section_by_name (abfd, ".plt");
15950 if (plt == NULL)
15951 return 0;
15952
15953 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15954 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15955 return -1;
15956 p = relplt->relocation;
15957
15958 /* Calculating the exact amount of space required for symbols would
15959 require two passes over the PLT, so just pessimise assuming two
15960 PLT slots per relocation. */
15961 count = relplt->size / hdr->sh_entsize;
15962 counti = count * bed->s->int_rels_per_ext_rel;
15963 size = 2 * count * sizeof (asymbol);
15964 size += count * (sizeof (mipssuffix) +
15965 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15966 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15967 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15968
15969 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15970 size += sizeof (asymbol) + sizeof (pltname);
15971
15972 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15973 return -1;
15974
15975 if (plt->size < 16)
15976 return -1;
15977
15978 s = *ret = bfd_malloc (size);
15979 if (s == NULL)
15980 return -1;
15981 send = s + 2 * count + 1;
15982
15983 names = (char *) send;
15984 nend = (char *) s + size;
15985 n = 0;
15986
15987 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15988 if (opcode == 0x3302fffe)
15989 {
15990 if (!micromips_p)
15991 return -1;
15992 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15993 other = STO_MICROMIPS;
15994 }
15995 else if (opcode == 0x0398c1d0)
15996 {
15997 if (!micromips_p)
15998 return -1;
15999 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16000 other = STO_MICROMIPS;
16001 }
16002 else
16003 {
16004 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16005 other = 0;
16006 }
16007
16008 s->the_bfd = abfd;
16009 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16010 s->section = plt;
16011 s->value = 0;
16012 s->name = names;
16013 s->udata.i = other;
16014 memcpy (names, pltname, sizeof (pltname));
16015 names += sizeof (pltname);
16016 ++s, ++n;
16017
16018 pi = 0;
16019 for (plt_offset = plt0_size;
16020 plt_offset + 8 <= plt->size && s < send;
16021 plt_offset += entry_size)
16022 {
16023 bfd_vma gotplt_addr;
16024 const char *suffix;
16025 bfd_vma gotplt_hi;
16026 bfd_vma gotplt_lo;
16027 size_t suffixlen;
16028
16029 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16030
16031 /* Check if the second word matches the expected MIPS16 instruction. */
16032 if (opcode == 0x651aeb00)
16033 {
16034 if (micromips_p)
16035 return -1;
16036 /* Truncated table??? */
16037 if (plt_offset + 16 > plt->size)
16038 break;
16039 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16040 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16041 suffixlen = sizeof (m16suffix);
16042 suffix = m16suffix;
16043 other = STO_MIPS16;
16044 }
16045 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16046 else if (opcode == 0xff220000)
16047 {
16048 if (!micromips_p)
16049 return -1;
16050 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16051 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16052 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16053 gotplt_lo <<= 2;
16054 gotplt_addr = gotplt_hi + gotplt_lo;
16055 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16056 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16057 suffixlen = sizeof (microsuffix);
16058 suffix = microsuffix;
16059 other = STO_MICROMIPS;
16060 }
16061 /* Likewise the expected microMIPS instruction (insn32 mode). */
16062 else if ((opcode & 0xffff0000) == 0xff2f0000)
16063 {
16064 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16065 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16066 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16067 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16068 gotplt_addr = gotplt_hi + gotplt_lo;
16069 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16070 suffixlen = sizeof (microsuffix);
16071 suffix = microsuffix;
16072 other = STO_MICROMIPS;
16073 }
16074 /* Otherwise assume standard MIPS code. */
16075 else
16076 {
16077 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16078 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16079 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16080 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16081 gotplt_addr = gotplt_hi + gotplt_lo;
16082 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16083 suffixlen = sizeof (mipssuffix);
16084 suffix = mipssuffix;
16085 other = 0;
16086 }
16087 /* Truncated table??? */
16088 if (plt_offset + entry_size > plt->size)
16089 break;
16090
16091 for (i = 0;
16092 i < count && p[pi].address != gotplt_addr;
16093 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16094
16095 if (i < count)
16096 {
16097 size_t namelen;
16098 size_t len;
16099
16100 *s = **p[pi].sym_ptr_ptr;
16101 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16102 we are defining a symbol, ensure one of them is set. */
16103 if ((s->flags & BSF_LOCAL) == 0)
16104 s->flags |= BSF_GLOBAL;
16105 s->flags |= BSF_SYNTHETIC;
16106 s->section = plt;
16107 s->value = plt_offset;
16108 s->name = names;
16109 s->udata.i = other;
16110
16111 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16112 namelen = len + suffixlen;
16113 if (names + namelen > nend)
16114 break;
16115
16116 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16117 names += len;
16118 memcpy (names, suffix, suffixlen);
16119 names += suffixlen;
16120
16121 ++s, ++n;
16122 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16123 }
16124 }
16125
16126 free (plt_data);
16127
16128 return n;
16129 }
16130
16131 void
16132 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16133 {
16134 struct mips_elf_link_hash_table *htab;
16135 Elf_Internal_Ehdr *i_ehdrp;
16136
16137 i_ehdrp = elf_elfheader (abfd);
16138 if (link_info)
16139 {
16140 htab = mips_elf_hash_table (link_info);
16141 BFD_ASSERT (htab != NULL);
16142
16143 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16144 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16145 }
16146
16147 _bfd_elf_post_process_headers (abfd, link_info);
16148
16149 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16150 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16151 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16152
16153 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16154 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16155 }
16156
16157 int
16158 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16159 {
16160 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16161 }
16162
16163 /* Return the opcode for can't unwind. */
16164
16165 int
16166 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16167 {
16168 return COMPACT_EH_CANT_UNWIND_OPCODE;
16169 }