* elfxx-mips.c (_bfd_mips_elf_modify_segment_map): Do not add
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure is used to hold .got information when linking. */
116
117 struct mips_got_info
118 {
119 /* The global symbol in the GOT with the lowest index in the dynamic
120 symbol table. */
121 struct elf_link_hash_entry *global_gotsym;
122 /* The number of global .got entries. */
123 unsigned int global_gotno;
124 /* The number of .got slots used for TLS. */
125 unsigned int tls_gotno;
126 /* The first unused TLS .got entry. Used only during
127 mips_elf_initialize_tls_index. */
128 unsigned int tls_assigned_gotno;
129 /* The number of local .got entries. */
130 unsigned int local_gotno;
131 /* The number of local .got entries we have used. */
132 unsigned int assigned_gotno;
133 /* A hash table holding members of the got. */
134 struct htab *got_entries;
135 /* A hash table mapping input bfds to other mips_got_info. NULL
136 unless multi-got was necessary. */
137 struct htab *bfd2got;
138 /* In multi-got links, a pointer to the next got (err, rather, most
139 of the time, it points to the previous got). */
140 struct mips_got_info *next;
141 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
142 for none, or MINUS_TWO for not yet assigned. This is needed
143 because a single-GOT link may have multiple hash table entries
144 for the LDM. It does not get initialized in multi-GOT mode. */
145 bfd_vma tls_ldm_offset;
146 };
147
148 /* Map an input bfd to a got in a multi-got link. */
149
150 struct mips_elf_bfd2got_hash {
151 bfd *bfd;
152 struct mips_got_info *g;
153 };
154
155 /* Structure passed when traversing the bfd2got hash table, used to
156 create and merge bfd's gots. */
157
158 struct mips_elf_got_per_bfd_arg
159 {
160 /* A hashtable that maps bfds to gots. */
161 htab_t bfd2got;
162 /* The output bfd. */
163 bfd *obfd;
164 /* The link information. */
165 struct bfd_link_info *info;
166 /* A pointer to the primary got, i.e., the one that's going to get
167 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
168 DT_MIPS_GOTSYM. */
169 struct mips_got_info *primary;
170 /* A non-primary got we're trying to merge with other input bfd's
171 gots. */
172 struct mips_got_info *current;
173 /* The maximum number of got entries that can be addressed with a
174 16-bit offset. */
175 unsigned int max_count;
176 /* The number of local and global entries in the primary got. */
177 unsigned int primary_count;
178 /* The number of local and global entries in the current got. */
179 unsigned int current_count;
180 /* The total number of global entries which will live in the
181 primary got and be automatically relocated. This includes
182 those not referenced by the primary GOT but included in
183 the "master" GOT. */
184 unsigned int global_count;
185 };
186
187 /* Another structure used to pass arguments for got entries traversal. */
188
189 struct mips_elf_set_global_got_offset_arg
190 {
191 struct mips_got_info *g;
192 int value;
193 unsigned int needed_relocs;
194 struct bfd_link_info *info;
195 };
196
197 /* A structure used to count TLS relocations or GOT entries, for GOT
198 entry or ELF symbol table traversal. */
199
200 struct mips_elf_count_tls_arg
201 {
202 struct bfd_link_info *info;
203 unsigned int needed;
204 };
205
206 struct _mips_elf_section_data
207 {
208 struct bfd_elf_section_data elf;
209 union
210 {
211 struct mips_got_info *got_info;
212 bfd_byte *tdata;
213 } u;
214 };
215
216 #define mips_elf_section_data(sec) \
217 ((struct _mips_elf_section_data *) elf_section_data (sec))
218
219 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
220 the dynamic symbols. */
221
222 struct mips_elf_hash_sort_data
223 {
224 /* The symbol in the global GOT with the lowest dynamic symbol table
225 index. */
226 struct elf_link_hash_entry *low;
227 /* The least dynamic symbol table index corresponding to a non-TLS
228 symbol with a GOT entry. */
229 long min_got_dynindx;
230 /* The greatest dynamic symbol table index corresponding to a symbol
231 with a GOT entry that is not referenced (e.g., a dynamic symbol
232 with dynamic relocations pointing to it from non-primary GOTs). */
233 long max_unref_got_dynindx;
234 /* The greatest dynamic symbol table index not corresponding to a
235 symbol without a GOT entry. */
236 long max_non_got_dynindx;
237 };
238
239 /* The MIPS ELF linker needs additional information for each symbol in
240 the global hash table. */
241
242 struct mips_elf_link_hash_entry
243 {
244 struct elf_link_hash_entry root;
245
246 /* External symbol information. */
247 EXTR esym;
248
249 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
250 this symbol. */
251 unsigned int possibly_dynamic_relocs;
252
253 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
254 a readonly section. */
255 bfd_boolean readonly_reloc;
256
257 /* We must not create a stub for a symbol that has relocations
258 related to taking the function's address, i.e. any but
259 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
260 p. 4-20. */
261 bfd_boolean no_fn_stub;
262
263 /* If there is a stub that 32 bit functions should use to call this
264 16 bit function, this points to the section containing the stub. */
265 asection *fn_stub;
266
267 /* Whether we need the fn_stub; this is set if this symbol appears
268 in any relocs other than a 16 bit call. */
269 bfd_boolean need_fn_stub;
270
271 /* If there is a stub that 16 bit functions should use to call this
272 32 bit function, this points to the section containing the stub. */
273 asection *call_stub;
274
275 /* This is like the call_stub field, but it is used if the function
276 being called returns a floating point value. */
277 asection *call_fp_stub;
278
279 /* Are we forced local? This will only be set if we have converted
280 the initial global GOT entry to a local GOT entry. */
281 bfd_boolean forced_local;
282
283 /* Are we referenced by some kind of relocation? */
284 bfd_boolean is_relocation_target;
285
286 /* Are we referenced by branch relocations? */
287 bfd_boolean is_branch_target;
288
289 #define GOT_NORMAL 0
290 #define GOT_TLS_GD 1
291 #define GOT_TLS_LDM 2
292 #define GOT_TLS_IE 4
293 #define GOT_TLS_OFFSET_DONE 0x40
294 #define GOT_TLS_DONE 0x80
295 unsigned char tls_type;
296 /* This is only used in single-GOT mode; in multi-GOT mode there
297 is one mips_got_entry per GOT entry, so the offset is stored
298 there. In single-GOT mode there may be many mips_got_entry
299 structures all referring to the same GOT slot. It might be
300 possible to use root.got.offset instead, but that field is
301 overloaded already. */
302 bfd_vma tls_got_offset;
303 };
304
305 /* MIPS ELF linker hash table. */
306
307 struct mips_elf_link_hash_table
308 {
309 struct elf_link_hash_table root;
310 #if 0
311 /* We no longer use this. */
312 /* String section indices for the dynamic section symbols. */
313 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
314 #endif
315 /* The number of .rtproc entries. */
316 bfd_size_type procedure_count;
317 /* The size of the .compact_rel section (if SGI_COMPAT). */
318 bfd_size_type compact_rel_size;
319 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
320 entry is set to the address of __rld_obj_head as in IRIX5. */
321 bfd_boolean use_rld_obj_head;
322 /* This is the value of the __rld_map or __rld_obj_head symbol. */
323 bfd_vma rld_value;
324 /* This is set if we see any mips16 stub sections. */
325 bfd_boolean mips16_stubs_seen;
326 /* True if we've computed the size of the GOT. */
327 bfd_boolean computed_got_sizes;
328 /* True if we're generating code for VxWorks. */
329 bfd_boolean is_vxworks;
330 /* True if we already reported the small-data section overflow. */
331 bfd_boolean small_data_overflow_reported;
332 /* Shortcuts to some dynamic sections, or NULL if they are not
333 being used. */
334 asection *srelbss;
335 asection *sdynbss;
336 asection *srelplt;
337 asection *srelplt2;
338 asection *sgotplt;
339 asection *splt;
340 /* The size of the PLT header in bytes (VxWorks only). */
341 bfd_vma plt_header_size;
342 /* The size of a PLT entry in bytes (VxWorks only). */
343 bfd_vma plt_entry_size;
344 /* The size of a function stub entry in bytes. */
345 bfd_vma function_stub_size;
346 };
347
348 #define TLS_RELOC_P(r_type) \
349 (r_type == R_MIPS_TLS_DTPMOD32 \
350 || r_type == R_MIPS_TLS_DTPMOD64 \
351 || r_type == R_MIPS_TLS_DTPREL32 \
352 || r_type == R_MIPS_TLS_DTPREL64 \
353 || r_type == R_MIPS_TLS_GD \
354 || r_type == R_MIPS_TLS_LDM \
355 || r_type == R_MIPS_TLS_DTPREL_HI16 \
356 || r_type == R_MIPS_TLS_DTPREL_LO16 \
357 || r_type == R_MIPS_TLS_GOTTPREL \
358 || r_type == R_MIPS_TLS_TPREL32 \
359 || r_type == R_MIPS_TLS_TPREL64 \
360 || r_type == R_MIPS_TLS_TPREL_HI16 \
361 || r_type == R_MIPS_TLS_TPREL_LO16)
362
363 /* Structure used to pass information to mips_elf_output_extsym. */
364
365 struct extsym_info
366 {
367 bfd *abfd;
368 struct bfd_link_info *info;
369 struct ecoff_debug_info *debug;
370 const struct ecoff_debug_swap *swap;
371 bfd_boolean failed;
372 };
373
374 /* The names of the runtime procedure table symbols used on IRIX5. */
375
376 static const char * const mips_elf_dynsym_rtproc_names[] =
377 {
378 "_procedure_table",
379 "_procedure_string_table",
380 "_procedure_table_size",
381 NULL
382 };
383
384 /* These structures are used to generate the .compact_rel section on
385 IRIX5. */
386
387 typedef struct
388 {
389 unsigned long id1; /* Always one? */
390 unsigned long num; /* Number of compact relocation entries. */
391 unsigned long id2; /* Always two? */
392 unsigned long offset; /* The file offset of the first relocation. */
393 unsigned long reserved0; /* Zero? */
394 unsigned long reserved1; /* Zero? */
395 } Elf32_compact_rel;
396
397 typedef struct
398 {
399 bfd_byte id1[4];
400 bfd_byte num[4];
401 bfd_byte id2[4];
402 bfd_byte offset[4];
403 bfd_byte reserved0[4];
404 bfd_byte reserved1[4];
405 } Elf32_External_compact_rel;
406
407 typedef struct
408 {
409 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
410 unsigned int rtype : 4; /* Relocation types. See below. */
411 unsigned int dist2to : 8;
412 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
413 unsigned long konst; /* KONST field. See below. */
414 unsigned long vaddr; /* VADDR to be relocated. */
415 } Elf32_crinfo;
416
417 typedef struct
418 {
419 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
420 unsigned int rtype : 4; /* Relocation types. See below. */
421 unsigned int dist2to : 8;
422 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
423 unsigned long konst; /* KONST field. See below. */
424 } Elf32_crinfo2;
425
426 typedef struct
427 {
428 bfd_byte info[4];
429 bfd_byte konst[4];
430 bfd_byte vaddr[4];
431 } Elf32_External_crinfo;
432
433 typedef struct
434 {
435 bfd_byte info[4];
436 bfd_byte konst[4];
437 } Elf32_External_crinfo2;
438
439 /* These are the constants used to swap the bitfields in a crinfo. */
440
441 #define CRINFO_CTYPE (0x1)
442 #define CRINFO_CTYPE_SH (31)
443 #define CRINFO_RTYPE (0xf)
444 #define CRINFO_RTYPE_SH (27)
445 #define CRINFO_DIST2TO (0xff)
446 #define CRINFO_DIST2TO_SH (19)
447 #define CRINFO_RELVADDR (0x7ffff)
448 #define CRINFO_RELVADDR_SH (0)
449
450 /* A compact relocation info has long (3 words) or short (2 words)
451 formats. A short format doesn't have VADDR field and relvaddr
452 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
453 #define CRF_MIPS_LONG 1
454 #define CRF_MIPS_SHORT 0
455
456 /* There are 4 types of compact relocation at least. The value KONST
457 has different meaning for each type:
458
459 (type) (konst)
460 CT_MIPS_REL32 Address in data
461 CT_MIPS_WORD Address in word (XXX)
462 CT_MIPS_GPHI_LO GP - vaddr
463 CT_MIPS_JMPAD Address to jump
464 */
465
466 #define CRT_MIPS_REL32 0xa
467 #define CRT_MIPS_WORD 0xb
468 #define CRT_MIPS_GPHI_LO 0xc
469 #define CRT_MIPS_JMPAD 0xd
470
471 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
472 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
473 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
474 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
475 \f
476 /* The structure of the runtime procedure descriptor created by the
477 loader for use by the static exception system. */
478
479 typedef struct runtime_pdr {
480 bfd_vma adr; /* Memory address of start of procedure. */
481 long regmask; /* Save register mask. */
482 long regoffset; /* Save register offset. */
483 long fregmask; /* Save floating point register mask. */
484 long fregoffset; /* Save floating point register offset. */
485 long frameoffset; /* Frame size. */
486 short framereg; /* Frame pointer register. */
487 short pcreg; /* Offset or reg of return pc. */
488 long irpss; /* Index into the runtime string table. */
489 long reserved;
490 struct exception_info *exception_info;/* Pointer to exception array. */
491 } RPDR, *pRPDR;
492 #define cbRPDR sizeof (RPDR)
493 #define rpdNil ((pRPDR) 0)
494 \f
495 static struct mips_got_entry *mips_elf_create_local_got_entry
496 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
497 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
498 static bfd_boolean mips_elf_sort_hash_table_f
499 (struct mips_elf_link_hash_entry *, void *);
500 static bfd_vma mips_elf_high
501 (bfd_vma);
502 static bfd_boolean mips16_stub_section_p
503 (bfd *, asection *);
504 static bfd_boolean mips_elf_create_dynamic_relocation
505 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
506 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
507 bfd_vma *, asection *);
508 static hashval_t mips_elf_got_entry_hash
509 (const void *);
510 static bfd_vma mips_elf_adjust_gp
511 (bfd *, struct mips_got_info *, bfd *);
512 static struct mips_got_info *mips_elf_got_for_ibfd
513 (struct mips_got_info *, bfd *);
514
515 /* This will be used when we sort the dynamic relocation records. */
516 static bfd *reldyn_sorting_bfd;
517
518 /* Nonzero if ABFD is using the N32 ABI. */
519 #define ABI_N32_P(abfd) \
520 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
521
522 /* Nonzero if ABFD is using the N64 ABI. */
523 #define ABI_64_P(abfd) \
524 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
525
526 /* Nonzero if ABFD is using NewABI conventions. */
527 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
528
529 /* The IRIX compatibility level we are striving for. */
530 #define IRIX_COMPAT(abfd) \
531 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
532
533 /* Whether we are trying to be compatible with IRIX at all. */
534 #define SGI_COMPAT(abfd) \
535 (IRIX_COMPAT (abfd) != ict_none)
536
537 /* The name of the options section. */
538 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
539 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
540
541 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
542 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
543 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
544 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
545
546 /* Whether the section is readonly. */
547 #define MIPS_ELF_READONLY_SECTION(sec) \
548 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
549 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
550
551 /* The name of the stub section. */
552 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
553
554 /* The size of an external REL relocation. */
555 #define MIPS_ELF_REL_SIZE(abfd) \
556 (get_elf_backend_data (abfd)->s->sizeof_rel)
557
558 /* The size of an external RELA relocation. */
559 #define MIPS_ELF_RELA_SIZE(abfd) \
560 (get_elf_backend_data (abfd)->s->sizeof_rela)
561
562 /* The size of an external dynamic table entry. */
563 #define MIPS_ELF_DYN_SIZE(abfd) \
564 (get_elf_backend_data (abfd)->s->sizeof_dyn)
565
566 /* The size of a GOT entry. */
567 #define MIPS_ELF_GOT_SIZE(abfd) \
568 (get_elf_backend_data (abfd)->s->arch_size / 8)
569
570 /* The size of a symbol-table entry. */
571 #define MIPS_ELF_SYM_SIZE(abfd) \
572 (get_elf_backend_data (abfd)->s->sizeof_sym)
573
574 /* The default alignment for sections, as a power of two. */
575 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
576 (get_elf_backend_data (abfd)->s->log_file_align)
577
578 /* Get word-sized data. */
579 #define MIPS_ELF_GET_WORD(abfd, ptr) \
580 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
581
582 /* Put out word-sized data. */
583 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
584 (ABI_64_P (abfd) \
585 ? bfd_put_64 (abfd, val, ptr) \
586 : bfd_put_32 (abfd, val, ptr))
587
588 /* Add a dynamic symbol table-entry. */
589 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
590 _bfd_elf_add_dynamic_entry (info, tag, val)
591
592 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
593 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
594
595 /* Determine whether the internal relocation of index REL_IDX is REL
596 (zero) or RELA (non-zero). The assumption is that, if there are
597 two relocation sections for this section, one of them is REL and
598 the other is RELA. If the index of the relocation we're testing is
599 in range for the first relocation section, check that the external
600 relocation size is that for RELA. It is also assumed that, if
601 rel_idx is not in range for the first section, and this first
602 section contains REL relocs, then the relocation is in the second
603 section, that is RELA. */
604 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
605 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
606 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
607 > (bfd_vma)(rel_idx)) \
608 == (elf_section_data (sec)->rel_hdr.sh_entsize \
609 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
610 : sizeof (Elf32_External_Rela))))
611
612 /* The name of the dynamic relocation section. */
613 #define MIPS_ELF_REL_DYN_NAME(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
615
616 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
617 from smaller values. Start with zero, widen, *then* decrement. */
618 #define MINUS_ONE (((bfd_vma)0) - 1)
619 #define MINUS_TWO (((bfd_vma)0) - 2)
620
621 /* The number of local .got entries we reserve. */
622 #define MIPS_RESERVED_GOTNO(INFO) \
623 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
624
625 /* The offset of $gp from the beginning of the .got section. */
626 #define ELF_MIPS_GP_OFFSET(INFO) \
627 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
628
629 /* The maximum size of the GOT for it to be addressable using 16-bit
630 offsets from $gp. */
631 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
632
633 /* Instructions which appear in a stub. */
634 #define STUB_LW(abfd) \
635 ((ABI_64_P (abfd) \
636 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
637 : 0x8f998010)) /* lw t9,0x8010(gp) */
638 #define STUB_MOVE(abfd) \
639 ((ABI_64_P (abfd) \
640 ? 0x03e0782d /* daddu t7,ra */ \
641 : 0x03e07821)) /* addu t7,ra */
642 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
643 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
644 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
645 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
646 #define STUB_LI16S(abfd, VAL) \
647 ((ABI_64_P (abfd) \
648 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
649 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
650
651 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
652 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
653
654 /* The name of the dynamic interpreter. This is put in the .interp
655 section. */
656
657 #define ELF_DYNAMIC_INTERPRETER(abfd) \
658 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
659 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
660 : "/usr/lib/libc.so.1")
661
662 #ifdef BFD64
663 #define MNAME(bfd,pre,pos) \
664 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
665 #define ELF_R_SYM(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
667 #define ELF_R_TYPE(bfd, i) \
668 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
669 #define ELF_R_INFO(bfd, s, t) \
670 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
671 #else
672 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
673 #define ELF_R_SYM(bfd, i) \
674 (ELF32_R_SYM (i))
675 #define ELF_R_TYPE(bfd, i) \
676 (ELF32_R_TYPE (i))
677 #define ELF_R_INFO(bfd, s, t) \
678 (ELF32_R_INFO (s, t))
679 #endif
680 \f
681 /* The mips16 compiler uses a couple of special sections to handle
682 floating point arguments.
683
684 Section names that look like .mips16.fn.FNNAME contain stubs that
685 copy floating point arguments from the fp regs to the gp regs and
686 then jump to FNNAME. If any 32 bit function calls FNNAME, the
687 call should be redirected to the stub instead. If no 32 bit
688 function calls FNNAME, the stub should be discarded. We need to
689 consider any reference to the function, not just a call, because
690 if the address of the function is taken we will need the stub,
691 since the address might be passed to a 32 bit function.
692
693 Section names that look like .mips16.call.FNNAME contain stubs
694 that copy floating point arguments from the gp regs to the fp
695 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
696 then any 16 bit function that calls FNNAME should be redirected
697 to the stub instead. If FNNAME is not a 32 bit function, the
698 stub should be discarded.
699
700 .mips16.call.fp.FNNAME sections are similar, but contain stubs
701 which call FNNAME and then copy the return value from the fp regs
702 to the gp regs. These stubs store the return value in $18 while
703 calling FNNAME; any function which might call one of these stubs
704 must arrange to save $18 around the call. (This case is not
705 needed for 32 bit functions that call 16 bit functions, because
706 16 bit functions always return floating point values in both
707 $f0/$f1 and $2/$3.)
708
709 Note that in all cases FNNAME might be defined statically.
710 Therefore, FNNAME is not used literally. Instead, the relocation
711 information will indicate which symbol the section is for.
712
713 We record any stubs that we find in the symbol table. */
714
715 #define FN_STUB ".mips16.fn."
716 #define CALL_STUB ".mips16.call."
717 #define CALL_FP_STUB ".mips16.call.fp."
718
719 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
720 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
721 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
722 \f
723 /* The format of the first PLT entry in a VxWorks executable. */
724 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
725 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
726 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
727 0x8f390008, /* lw t9, 8(t9) */
728 0x00000000, /* nop */
729 0x03200008, /* jr t9 */
730 0x00000000 /* nop */
731 };
732
733 /* The format of subsequent PLT entries. */
734 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000, /* li t8, <pltindex> */
737 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
738 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
739 0x8f390000, /* lw t9, 0(t9) */
740 0x00000000, /* nop */
741 0x03200008, /* jr t9 */
742 0x00000000 /* nop */
743 };
744
745 /* The format of the first PLT entry in a VxWorks shared object. */
746 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
747 0x8f990008, /* lw t9, 8(gp) */
748 0x00000000, /* nop */
749 0x03200008, /* jr t9 */
750 0x00000000, /* nop */
751 0x00000000, /* nop */
752 0x00000000 /* nop */
753 };
754
755 /* The format of subsequent PLT entries. */
756 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
757 0x10000000, /* b .PLT_resolver */
758 0x24180000 /* li t8, <pltindex> */
759 };
760 \f
761 /* Look up an entry in a MIPS ELF linker hash table. */
762
763 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
764 ((struct mips_elf_link_hash_entry *) \
765 elf_link_hash_lookup (&(table)->root, (string), (create), \
766 (copy), (follow)))
767
768 /* Traverse a MIPS ELF linker hash table. */
769
770 #define mips_elf_link_hash_traverse(table, func, info) \
771 (elf_link_hash_traverse \
772 (&(table)->root, \
773 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
774 (info)))
775
776 /* Get the MIPS ELF linker hash table from a link_info structure. */
777
778 #define mips_elf_hash_table(p) \
779 ((struct mips_elf_link_hash_table *) ((p)->hash))
780
781 /* Find the base offsets for thread-local storage in this object,
782 for GD/LD and IE/LE respectively. */
783
784 #define TP_OFFSET 0x7000
785 #define DTP_OFFSET 0x8000
786
787 static bfd_vma
788 dtprel_base (struct bfd_link_info *info)
789 {
790 /* If tls_sec is NULL, we should have signalled an error already. */
791 if (elf_hash_table (info)->tls_sec == NULL)
792 return 0;
793 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
794 }
795
796 static bfd_vma
797 tprel_base (struct bfd_link_info *info)
798 {
799 /* If tls_sec is NULL, we should have signalled an error already. */
800 if (elf_hash_table (info)->tls_sec == NULL)
801 return 0;
802 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
803 }
804
805 /* Create an entry in a MIPS ELF linker hash table. */
806
807 static struct bfd_hash_entry *
808 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
809 struct bfd_hash_table *table, const char *string)
810 {
811 struct mips_elf_link_hash_entry *ret =
812 (struct mips_elf_link_hash_entry *) entry;
813
814 /* Allocate the structure if it has not already been allocated by a
815 subclass. */
816 if (ret == NULL)
817 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
818 if (ret == NULL)
819 return (struct bfd_hash_entry *) ret;
820
821 /* Call the allocation method of the superclass. */
822 ret = ((struct mips_elf_link_hash_entry *)
823 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
824 table, string));
825 if (ret != NULL)
826 {
827 /* Set local fields. */
828 memset (&ret->esym, 0, sizeof (EXTR));
829 /* We use -2 as a marker to indicate that the information has
830 not been set. -1 means there is no associated ifd. */
831 ret->esym.ifd = -2;
832 ret->possibly_dynamic_relocs = 0;
833 ret->readonly_reloc = FALSE;
834 ret->no_fn_stub = FALSE;
835 ret->fn_stub = NULL;
836 ret->need_fn_stub = FALSE;
837 ret->call_stub = NULL;
838 ret->call_fp_stub = NULL;
839 ret->forced_local = FALSE;
840 ret->is_branch_target = FALSE;
841 ret->is_relocation_target = FALSE;
842 ret->tls_type = GOT_NORMAL;
843 }
844
845 return (struct bfd_hash_entry *) ret;
846 }
847
848 bfd_boolean
849 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
850 {
851 if (!sec->used_by_bfd)
852 {
853 struct _mips_elf_section_data *sdata;
854 bfd_size_type amt = sizeof (*sdata);
855
856 sdata = bfd_zalloc (abfd, amt);
857 if (sdata == NULL)
858 return FALSE;
859 sec->used_by_bfd = sdata;
860 }
861
862 return _bfd_elf_new_section_hook (abfd, sec);
863 }
864 \f
865 /* Read ECOFF debugging information from a .mdebug section into a
866 ecoff_debug_info structure. */
867
868 bfd_boolean
869 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
870 struct ecoff_debug_info *debug)
871 {
872 HDRR *symhdr;
873 const struct ecoff_debug_swap *swap;
874 char *ext_hdr;
875
876 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
877 memset (debug, 0, sizeof (*debug));
878
879 ext_hdr = bfd_malloc (swap->external_hdr_size);
880 if (ext_hdr == NULL && swap->external_hdr_size != 0)
881 goto error_return;
882
883 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
884 swap->external_hdr_size))
885 goto error_return;
886
887 symhdr = &debug->symbolic_header;
888 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
889
890 /* The symbolic header contains absolute file offsets and sizes to
891 read. */
892 #define READ(ptr, offset, count, size, type) \
893 if (symhdr->count == 0) \
894 debug->ptr = NULL; \
895 else \
896 { \
897 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
898 debug->ptr = bfd_malloc (amt); \
899 if (debug->ptr == NULL) \
900 goto error_return; \
901 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
902 || bfd_bread (debug->ptr, amt, abfd) != amt) \
903 goto error_return; \
904 }
905
906 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
907 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
908 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
909 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
910 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
911 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
912 union aux_ext *);
913 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
914 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
915 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
916 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
917 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
918 #undef READ
919
920 debug->fdr = NULL;
921
922 return TRUE;
923
924 error_return:
925 if (ext_hdr != NULL)
926 free (ext_hdr);
927 if (debug->line != NULL)
928 free (debug->line);
929 if (debug->external_dnr != NULL)
930 free (debug->external_dnr);
931 if (debug->external_pdr != NULL)
932 free (debug->external_pdr);
933 if (debug->external_sym != NULL)
934 free (debug->external_sym);
935 if (debug->external_opt != NULL)
936 free (debug->external_opt);
937 if (debug->external_aux != NULL)
938 free (debug->external_aux);
939 if (debug->ss != NULL)
940 free (debug->ss);
941 if (debug->ssext != NULL)
942 free (debug->ssext);
943 if (debug->external_fdr != NULL)
944 free (debug->external_fdr);
945 if (debug->external_rfd != NULL)
946 free (debug->external_rfd);
947 if (debug->external_ext != NULL)
948 free (debug->external_ext);
949 return FALSE;
950 }
951 \f
952 /* Swap RPDR (runtime procedure table entry) for output. */
953
954 static void
955 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
956 {
957 H_PUT_S32 (abfd, in->adr, ex->p_adr);
958 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
959 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
960 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
961 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
962 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
963
964 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
965 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
966
967 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
968 }
969
970 /* Create a runtime procedure table from the .mdebug section. */
971
972 static bfd_boolean
973 mips_elf_create_procedure_table (void *handle, bfd *abfd,
974 struct bfd_link_info *info, asection *s,
975 struct ecoff_debug_info *debug)
976 {
977 const struct ecoff_debug_swap *swap;
978 HDRR *hdr = &debug->symbolic_header;
979 RPDR *rpdr, *rp;
980 struct rpdr_ext *erp;
981 void *rtproc;
982 struct pdr_ext *epdr;
983 struct sym_ext *esym;
984 char *ss, **sv;
985 char *str;
986 bfd_size_type size;
987 bfd_size_type count;
988 unsigned long sindex;
989 unsigned long i;
990 PDR pdr;
991 SYMR sym;
992 const char *no_name_func = _("static procedure (no name)");
993
994 epdr = NULL;
995 rpdr = NULL;
996 esym = NULL;
997 ss = NULL;
998 sv = NULL;
999
1000 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1001
1002 sindex = strlen (no_name_func) + 1;
1003 count = hdr->ipdMax;
1004 if (count > 0)
1005 {
1006 size = swap->external_pdr_size;
1007
1008 epdr = bfd_malloc (size * count);
1009 if (epdr == NULL)
1010 goto error_return;
1011
1012 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1013 goto error_return;
1014
1015 size = sizeof (RPDR);
1016 rp = rpdr = bfd_malloc (size * count);
1017 if (rpdr == NULL)
1018 goto error_return;
1019
1020 size = sizeof (char *);
1021 sv = bfd_malloc (size * count);
1022 if (sv == NULL)
1023 goto error_return;
1024
1025 count = hdr->isymMax;
1026 size = swap->external_sym_size;
1027 esym = bfd_malloc (size * count);
1028 if (esym == NULL)
1029 goto error_return;
1030
1031 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1032 goto error_return;
1033
1034 count = hdr->issMax;
1035 ss = bfd_malloc (count);
1036 if (ss == NULL)
1037 goto error_return;
1038 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1039 goto error_return;
1040
1041 count = hdr->ipdMax;
1042 for (i = 0; i < (unsigned long) count; i++, rp++)
1043 {
1044 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1045 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1046 rp->adr = sym.value;
1047 rp->regmask = pdr.regmask;
1048 rp->regoffset = pdr.regoffset;
1049 rp->fregmask = pdr.fregmask;
1050 rp->fregoffset = pdr.fregoffset;
1051 rp->frameoffset = pdr.frameoffset;
1052 rp->framereg = pdr.framereg;
1053 rp->pcreg = pdr.pcreg;
1054 rp->irpss = sindex;
1055 sv[i] = ss + sym.iss;
1056 sindex += strlen (sv[i]) + 1;
1057 }
1058 }
1059
1060 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1061 size = BFD_ALIGN (size, 16);
1062 rtproc = bfd_alloc (abfd, size);
1063 if (rtproc == NULL)
1064 {
1065 mips_elf_hash_table (info)->procedure_count = 0;
1066 goto error_return;
1067 }
1068
1069 mips_elf_hash_table (info)->procedure_count = count + 2;
1070
1071 erp = rtproc;
1072 memset (erp, 0, sizeof (struct rpdr_ext));
1073 erp++;
1074 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1075 strcpy (str, no_name_func);
1076 str += strlen (no_name_func) + 1;
1077 for (i = 0; i < count; i++)
1078 {
1079 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1080 strcpy (str, sv[i]);
1081 str += strlen (sv[i]) + 1;
1082 }
1083 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1084
1085 /* Set the size and contents of .rtproc section. */
1086 s->size = size;
1087 s->contents = rtproc;
1088
1089 /* Skip this section later on (I don't think this currently
1090 matters, but someday it might). */
1091 s->map_head.link_order = NULL;
1092
1093 if (epdr != NULL)
1094 free (epdr);
1095 if (rpdr != NULL)
1096 free (rpdr);
1097 if (esym != NULL)
1098 free (esym);
1099 if (ss != NULL)
1100 free (ss);
1101 if (sv != NULL)
1102 free (sv);
1103
1104 return TRUE;
1105
1106 error_return:
1107 if (epdr != NULL)
1108 free (epdr);
1109 if (rpdr != NULL)
1110 free (rpdr);
1111 if (esym != NULL)
1112 free (esym);
1113 if (ss != NULL)
1114 free (ss);
1115 if (sv != NULL)
1116 free (sv);
1117 return FALSE;
1118 }
1119
1120 /* Check the mips16 stubs for a particular symbol, and see if we can
1121 discard them. */
1122
1123 static bfd_boolean
1124 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1125 void *data ATTRIBUTE_UNUSED)
1126 {
1127 if (h->root.root.type == bfd_link_hash_warning)
1128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1129
1130 if (h->fn_stub != NULL
1131 && ! h->need_fn_stub)
1132 {
1133 /* We don't need the fn_stub; the only references to this symbol
1134 are 16 bit calls. Clobber the size to 0 to prevent it from
1135 being included in the link. */
1136 h->fn_stub->size = 0;
1137 h->fn_stub->flags &= ~SEC_RELOC;
1138 h->fn_stub->reloc_count = 0;
1139 h->fn_stub->flags |= SEC_EXCLUDE;
1140 }
1141
1142 if (h->call_stub != NULL
1143 && h->root.other == STO_MIPS16)
1144 {
1145 /* We don't need the call_stub; this is a 16 bit function, so
1146 calls from other 16 bit functions are OK. Clobber the size
1147 to 0 to prevent it from being included in the link. */
1148 h->call_stub->size = 0;
1149 h->call_stub->flags &= ~SEC_RELOC;
1150 h->call_stub->reloc_count = 0;
1151 h->call_stub->flags |= SEC_EXCLUDE;
1152 }
1153
1154 if (h->call_fp_stub != NULL
1155 && h->root.other == STO_MIPS16)
1156 {
1157 /* We don't need the call_stub; this is a 16 bit function, so
1158 calls from other 16 bit functions are OK. Clobber the size
1159 to 0 to prevent it from being included in the link. */
1160 h->call_fp_stub->size = 0;
1161 h->call_fp_stub->flags &= ~SEC_RELOC;
1162 h->call_fp_stub->reloc_count = 0;
1163 h->call_fp_stub->flags |= SEC_EXCLUDE;
1164 }
1165
1166 return TRUE;
1167 }
1168 \f
1169 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1170 Most mips16 instructions are 16 bits, but these instructions
1171 are 32 bits.
1172
1173 The format of these instructions is:
1174
1175 +--------------+--------------------------------+
1176 | JALX | X| Imm 20:16 | Imm 25:21 |
1177 +--------------+--------------------------------+
1178 | Immediate 15:0 |
1179 +-----------------------------------------------+
1180
1181 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1182 Note that the immediate value in the first word is swapped.
1183
1184 When producing a relocatable object file, R_MIPS16_26 is
1185 handled mostly like R_MIPS_26. In particular, the addend is
1186 stored as a straight 26-bit value in a 32-bit instruction.
1187 (gas makes life simpler for itself by never adjusting a
1188 R_MIPS16_26 reloc to be against a section, so the addend is
1189 always zero). However, the 32 bit instruction is stored as 2
1190 16-bit values, rather than a single 32-bit value. In a
1191 big-endian file, the result is the same; in a little-endian
1192 file, the two 16-bit halves of the 32 bit value are swapped.
1193 This is so that a disassembler can recognize the jal
1194 instruction.
1195
1196 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1197 instruction stored as two 16-bit values. The addend A is the
1198 contents of the targ26 field. The calculation is the same as
1199 R_MIPS_26. When storing the calculated value, reorder the
1200 immediate value as shown above, and don't forget to store the
1201 value as two 16-bit values.
1202
1203 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1204 defined as
1205
1206 big-endian:
1207 +--------+----------------------+
1208 | | |
1209 | | targ26-16 |
1210 |31 26|25 0|
1211 +--------+----------------------+
1212
1213 little-endian:
1214 +----------+------+-------------+
1215 | | | |
1216 | sub1 | | sub2 |
1217 |0 9|10 15|16 31|
1218 +----------+--------------------+
1219 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1220 ((sub1 << 16) | sub2)).
1221
1222 When producing a relocatable object file, the calculation is
1223 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224 When producing a fully linked file, the calculation is
1225 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1226 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1227
1228 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1229 mode. A typical instruction will have a format like this:
1230
1231 +--------------+--------------------------------+
1232 | EXTEND | Imm 10:5 | Imm 15:11 |
1233 +--------------+--------------------------------+
1234 | Major | rx | ry | Imm 4:0 |
1235 +--------------+--------------------------------+
1236
1237 EXTEND is the five bit value 11110. Major is the instruction
1238 opcode.
1239
1240 This is handled exactly like R_MIPS_GPREL16, except that the
1241 addend is retrieved and stored as shown in this diagram; that
1242 is, the Imm fields above replace the V-rel16 field.
1243
1244 All we need to do here is shuffle the bits appropriately. As
1245 above, the two 16-bit halves must be swapped on a
1246 little-endian system.
1247
1248 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1249 access data when neither GP-relative nor PC-relative addressing
1250 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1251 except that the addend is retrieved and stored as shown above
1252 for R_MIPS16_GPREL.
1253 */
1254 void
1255 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1256 bfd_boolean jal_shuffle, bfd_byte *data)
1257 {
1258 bfd_vma extend, insn, val;
1259
1260 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1261 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1262 return;
1263
1264 /* Pick up the mips16 extend instruction and the real instruction. */
1265 extend = bfd_get_16 (abfd, data);
1266 insn = bfd_get_16 (abfd, data + 2);
1267 if (r_type == R_MIPS16_26)
1268 {
1269 if (jal_shuffle)
1270 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1271 | ((extend & 0x1f) << 21) | insn;
1272 else
1273 val = extend << 16 | insn;
1274 }
1275 else
1276 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1277 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1278 bfd_put_32 (abfd, val, data);
1279 }
1280
1281 void
1282 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1283 bfd_boolean jal_shuffle, bfd_byte *data)
1284 {
1285 bfd_vma extend, insn, val;
1286
1287 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1288 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1289 return;
1290
1291 val = bfd_get_32 (abfd, data);
1292 if (r_type == R_MIPS16_26)
1293 {
1294 if (jal_shuffle)
1295 {
1296 insn = val & 0xffff;
1297 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1298 | ((val >> 21) & 0x1f);
1299 }
1300 else
1301 {
1302 insn = val & 0xffff;
1303 extend = val >> 16;
1304 }
1305 }
1306 else
1307 {
1308 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1309 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1310 }
1311 bfd_put_16 (abfd, insn, data + 2);
1312 bfd_put_16 (abfd, extend, data);
1313 }
1314
1315 bfd_reloc_status_type
1316 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1317 arelent *reloc_entry, asection *input_section,
1318 bfd_boolean relocatable, void *data, bfd_vma gp)
1319 {
1320 bfd_vma relocation;
1321 bfd_signed_vma val;
1322 bfd_reloc_status_type status;
1323
1324 if (bfd_is_com_section (symbol->section))
1325 relocation = 0;
1326 else
1327 relocation = symbol->value;
1328
1329 relocation += symbol->section->output_section->vma;
1330 relocation += symbol->section->output_offset;
1331
1332 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1333 return bfd_reloc_outofrange;
1334
1335 /* Set val to the offset into the section or symbol. */
1336 val = reloc_entry->addend;
1337
1338 _bfd_mips_elf_sign_extend (val, 16);
1339
1340 /* Adjust val for the final section location and GP value. If we
1341 are producing relocatable output, we don't want to do this for
1342 an external symbol. */
1343 if (! relocatable
1344 || (symbol->flags & BSF_SECTION_SYM) != 0)
1345 val += relocation - gp;
1346
1347 if (reloc_entry->howto->partial_inplace)
1348 {
1349 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1350 (bfd_byte *) data
1351 + reloc_entry->address);
1352 if (status != bfd_reloc_ok)
1353 return status;
1354 }
1355 else
1356 reloc_entry->addend = val;
1357
1358 if (relocatable)
1359 reloc_entry->address += input_section->output_offset;
1360
1361 return bfd_reloc_ok;
1362 }
1363
1364 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1365 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1366 that contains the relocation field and DATA points to the start of
1367 INPUT_SECTION. */
1368
1369 struct mips_hi16
1370 {
1371 struct mips_hi16 *next;
1372 bfd_byte *data;
1373 asection *input_section;
1374 arelent rel;
1375 };
1376
1377 /* FIXME: This should not be a static variable. */
1378
1379 static struct mips_hi16 *mips_hi16_list;
1380
1381 /* A howto special_function for REL *HI16 relocations. We can only
1382 calculate the correct value once we've seen the partnering
1383 *LO16 relocation, so just save the information for later.
1384
1385 The ABI requires that the *LO16 immediately follow the *HI16.
1386 However, as a GNU extension, we permit an arbitrary number of
1387 *HI16s to be associated with a single *LO16. This significantly
1388 simplies the relocation handling in gcc. */
1389
1390 bfd_reloc_status_type
1391 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1392 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1393 asection *input_section, bfd *output_bfd,
1394 char **error_message ATTRIBUTE_UNUSED)
1395 {
1396 struct mips_hi16 *n;
1397
1398 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1399 return bfd_reloc_outofrange;
1400
1401 n = bfd_malloc (sizeof *n);
1402 if (n == NULL)
1403 return bfd_reloc_outofrange;
1404
1405 n->next = mips_hi16_list;
1406 n->data = data;
1407 n->input_section = input_section;
1408 n->rel = *reloc_entry;
1409 mips_hi16_list = n;
1410
1411 if (output_bfd != NULL)
1412 reloc_entry->address += input_section->output_offset;
1413
1414 return bfd_reloc_ok;
1415 }
1416
1417 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1418 like any other 16-bit relocation when applied to global symbols, but is
1419 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1420
1421 bfd_reloc_status_type
1422 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1423 void *data, asection *input_section,
1424 bfd *output_bfd, char **error_message)
1425 {
1426 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1427 || bfd_is_und_section (bfd_get_section (symbol))
1428 || bfd_is_com_section (bfd_get_section (symbol)))
1429 /* The relocation is against a global symbol. */
1430 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1431 input_section, output_bfd,
1432 error_message);
1433
1434 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1435 input_section, output_bfd, error_message);
1436 }
1437
1438 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1439 is a straightforward 16 bit inplace relocation, but we must deal with
1440 any partnering high-part relocations as well. */
1441
1442 bfd_reloc_status_type
1443 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1444 void *data, asection *input_section,
1445 bfd *output_bfd, char **error_message)
1446 {
1447 bfd_vma vallo;
1448 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1449
1450 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1451 return bfd_reloc_outofrange;
1452
1453 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1454 location);
1455 vallo = bfd_get_32 (abfd, location);
1456 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1457 location);
1458
1459 while (mips_hi16_list != NULL)
1460 {
1461 bfd_reloc_status_type ret;
1462 struct mips_hi16 *hi;
1463
1464 hi = mips_hi16_list;
1465
1466 /* R_MIPS_GOT16 relocations are something of a special case. We
1467 want to install the addend in the same way as for a R_MIPS_HI16
1468 relocation (with a rightshift of 16). However, since GOT16
1469 relocations can also be used with global symbols, their howto
1470 has a rightshift of 0. */
1471 if (hi->rel.howto->type == R_MIPS_GOT16)
1472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1473
1474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1475 carry or borrow will induce a change of +1 or -1 in the high part. */
1476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1477
1478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1479 hi->input_section, output_bfd,
1480 error_message);
1481 if (ret != bfd_reloc_ok)
1482 return ret;
1483
1484 mips_hi16_list = hi->next;
1485 free (hi);
1486 }
1487
1488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1489 input_section, output_bfd,
1490 error_message);
1491 }
1492
1493 /* A generic howto special_function. This calculates and installs the
1494 relocation itself, thus avoiding the oft-discussed problems in
1495 bfd_perform_relocation and bfd_install_relocation. */
1496
1497 bfd_reloc_status_type
1498 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1500 asection *input_section, bfd *output_bfd,
1501 char **error_message ATTRIBUTE_UNUSED)
1502 {
1503 bfd_signed_vma val;
1504 bfd_reloc_status_type status;
1505 bfd_boolean relocatable;
1506
1507 relocatable = (output_bfd != NULL);
1508
1509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1510 return bfd_reloc_outofrange;
1511
1512 /* Build up the field adjustment in VAL. */
1513 val = 0;
1514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1515 {
1516 /* Either we're calculating the final field value or we have a
1517 relocation against a section symbol. Add in the section's
1518 offset or address. */
1519 val += symbol->section->output_section->vma;
1520 val += symbol->section->output_offset;
1521 }
1522
1523 if (!relocatable)
1524 {
1525 /* We're calculating the final field value. Add in the symbol's value
1526 and, if pc-relative, subtract the address of the field itself. */
1527 val += symbol->value;
1528 if (reloc_entry->howto->pc_relative)
1529 {
1530 val -= input_section->output_section->vma;
1531 val -= input_section->output_offset;
1532 val -= reloc_entry->address;
1533 }
1534 }
1535
1536 /* VAL is now the final adjustment. If we're keeping this relocation
1537 in the output file, and if the relocation uses a separate addend,
1538 we just need to add VAL to that addend. Otherwise we need to add
1539 VAL to the relocation field itself. */
1540 if (relocatable && !reloc_entry->howto->partial_inplace)
1541 reloc_entry->addend += val;
1542 else
1543 {
1544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1545
1546 /* Add in the separate addend, if any. */
1547 val += reloc_entry->addend;
1548
1549 /* Add VAL to the relocation field. */
1550 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1551 location);
1552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1553 location);
1554 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1555 location);
1556
1557 if (status != bfd_reloc_ok)
1558 return status;
1559 }
1560
1561 if (relocatable)
1562 reloc_entry->address += input_section->output_offset;
1563
1564 return bfd_reloc_ok;
1565 }
1566 \f
1567 /* Swap an entry in a .gptab section. Note that these routines rely
1568 on the equivalence of the two elements of the union. */
1569
1570 static void
1571 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1572 Elf32_gptab *in)
1573 {
1574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1576 }
1577
1578 static void
1579 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1580 Elf32_External_gptab *ex)
1581 {
1582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1584 }
1585
1586 static void
1587 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1588 Elf32_External_compact_rel *ex)
1589 {
1590 H_PUT_32 (abfd, in->id1, ex->id1);
1591 H_PUT_32 (abfd, in->num, ex->num);
1592 H_PUT_32 (abfd, in->id2, ex->id2);
1593 H_PUT_32 (abfd, in->offset, ex->offset);
1594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1596 }
1597
1598 static void
1599 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1600 Elf32_External_crinfo *ex)
1601 {
1602 unsigned long l;
1603
1604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1608 H_PUT_32 (abfd, l, ex->info);
1609 H_PUT_32 (abfd, in->konst, ex->konst);
1610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1611 }
1612 \f
1613 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1614 routines swap this structure in and out. They are used outside of
1615 BFD, so they are globally visible. */
1616
1617 void
1618 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1619 Elf32_RegInfo *in)
1620 {
1621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1627 }
1628
1629 void
1630 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1631 Elf32_External_RegInfo *ex)
1632 {
1633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1639 }
1640
1641 /* In the 64 bit ABI, the .MIPS.options section holds register
1642 information in an Elf64_Reginfo structure. These routines swap
1643 them in and out. They are globally visible because they are used
1644 outside of BFD. These routines are here so that gas can call them
1645 without worrying about whether the 64 bit ABI has been included. */
1646
1647 void
1648 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1649 Elf64_Internal_RegInfo *in)
1650 {
1651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1658 }
1659
1660 void
1661 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1662 Elf64_External_RegInfo *ex)
1663 {
1664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1671 }
1672
1673 /* Swap in an options header. */
1674
1675 void
1676 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1677 Elf_Internal_Options *in)
1678 {
1679 in->kind = H_GET_8 (abfd, ex->kind);
1680 in->size = H_GET_8 (abfd, ex->size);
1681 in->section = H_GET_16 (abfd, ex->section);
1682 in->info = H_GET_32 (abfd, ex->info);
1683 }
1684
1685 /* Swap out an options header. */
1686
1687 void
1688 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1689 Elf_External_Options *ex)
1690 {
1691 H_PUT_8 (abfd, in->kind, ex->kind);
1692 H_PUT_8 (abfd, in->size, ex->size);
1693 H_PUT_16 (abfd, in->section, ex->section);
1694 H_PUT_32 (abfd, in->info, ex->info);
1695 }
1696 \f
1697 /* This function is called via qsort() to sort the dynamic relocation
1698 entries by increasing r_symndx value. */
1699
1700 static int
1701 sort_dynamic_relocs (const void *arg1, const void *arg2)
1702 {
1703 Elf_Internal_Rela int_reloc1;
1704 Elf_Internal_Rela int_reloc2;
1705 int diff;
1706
1707 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1708 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1709
1710 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1711 if (diff != 0)
1712 return diff;
1713
1714 if (int_reloc1.r_offset < int_reloc2.r_offset)
1715 return -1;
1716 if (int_reloc1.r_offset > int_reloc2.r_offset)
1717 return 1;
1718 return 0;
1719 }
1720
1721 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1722
1723 static int
1724 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1725 const void *arg2 ATTRIBUTE_UNUSED)
1726 {
1727 #ifdef BFD64
1728 Elf_Internal_Rela int_reloc1[3];
1729 Elf_Internal_Rela int_reloc2[3];
1730
1731 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1732 (reldyn_sorting_bfd, arg1, int_reloc1);
1733 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1734 (reldyn_sorting_bfd, arg2, int_reloc2);
1735
1736 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1737 return -1;
1738 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1739 return 1;
1740
1741 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1742 return -1;
1743 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1744 return 1;
1745 return 0;
1746 #else
1747 abort ();
1748 #endif
1749 }
1750
1751
1752 /* This routine is used to write out ECOFF debugging external symbol
1753 information. It is called via mips_elf_link_hash_traverse. The
1754 ECOFF external symbol information must match the ELF external
1755 symbol information. Unfortunately, at this point we don't know
1756 whether a symbol is required by reloc information, so the two
1757 tables may wind up being different. We must sort out the external
1758 symbol information before we can set the final size of the .mdebug
1759 section, and we must set the size of the .mdebug section before we
1760 can relocate any sections, and we can't know which symbols are
1761 required by relocation until we relocate the sections.
1762 Fortunately, it is relatively unlikely that any symbol will be
1763 stripped but required by a reloc. In particular, it can not happen
1764 when generating a final executable. */
1765
1766 static bfd_boolean
1767 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1768 {
1769 struct extsym_info *einfo = data;
1770 bfd_boolean strip;
1771 asection *sec, *output_section;
1772
1773 if (h->root.root.type == bfd_link_hash_warning)
1774 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1775
1776 if (h->root.indx == -2)
1777 strip = FALSE;
1778 else if ((h->root.def_dynamic
1779 || h->root.ref_dynamic
1780 || h->root.type == bfd_link_hash_new)
1781 && !h->root.def_regular
1782 && !h->root.ref_regular)
1783 strip = TRUE;
1784 else if (einfo->info->strip == strip_all
1785 || (einfo->info->strip == strip_some
1786 && bfd_hash_lookup (einfo->info->keep_hash,
1787 h->root.root.root.string,
1788 FALSE, FALSE) == NULL))
1789 strip = TRUE;
1790 else
1791 strip = FALSE;
1792
1793 if (strip)
1794 return TRUE;
1795
1796 if (h->esym.ifd == -2)
1797 {
1798 h->esym.jmptbl = 0;
1799 h->esym.cobol_main = 0;
1800 h->esym.weakext = 0;
1801 h->esym.reserved = 0;
1802 h->esym.ifd = ifdNil;
1803 h->esym.asym.value = 0;
1804 h->esym.asym.st = stGlobal;
1805
1806 if (h->root.root.type == bfd_link_hash_undefined
1807 || h->root.root.type == bfd_link_hash_undefweak)
1808 {
1809 const char *name;
1810
1811 /* Use undefined class. Also, set class and type for some
1812 special symbols. */
1813 name = h->root.root.root.string;
1814 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1815 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1816 {
1817 h->esym.asym.sc = scData;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value = 0;
1820 }
1821 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1822 {
1823 h->esym.asym.sc = scAbs;
1824 h->esym.asym.st = stLabel;
1825 h->esym.asym.value =
1826 mips_elf_hash_table (einfo->info)->procedure_count;
1827 }
1828 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1829 {
1830 h->esym.asym.sc = scAbs;
1831 h->esym.asym.st = stLabel;
1832 h->esym.asym.value = elf_gp (einfo->abfd);
1833 }
1834 else
1835 h->esym.asym.sc = scUndefined;
1836 }
1837 else if (h->root.root.type != bfd_link_hash_defined
1838 && h->root.root.type != bfd_link_hash_defweak)
1839 h->esym.asym.sc = scAbs;
1840 else
1841 {
1842 const char *name;
1843
1844 sec = h->root.root.u.def.section;
1845 output_section = sec->output_section;
1846
1847 /* When making a shared library and symbol h is the one from
1848 the another shared library, OUTPUT_SECTION may be null. */
1849 if (output_section == NULL)
1850 h->esym.asym.sc = scUndefined;
1851 else
1852 {
1853 name = bfd_section_name (output_section->owner, output_section);
1854
1855 if (strcmp (name, ".text") == 0)
1856 h->esym.asym.sc = scText;
1857 else if (strcmp (name, ".data") == 0)
1858 h->esym.asym.sc = scData;
1859 else if (strcmp (name, ".sdata") == 0)
1860 h->esym.asym.sc = scSData;
1861 else if (strcmp (name, ".rodata") == 0
1862 || strcmp (name, ".rdata") == 0)
1863 h->esym.asym.sc = scRData;
1864 else if (strcmp (name, ".bss") == 0)
1865 h->esym.asym.sc = scBss;
1866 else if (strcmp (name, ".sbss") == 0)
1867 h->esym.asym.sc = scSBss;
1868 else if (strcmp (name, ".init") == 0)
1869 h->esym.asym.sc = scInit;
1870 else if (strcmp (name, ".fini") == 0)
1871 h->esym.asym.sc = scFini;
1872 else
1873 h->esym.asym.sc = scAbs;
1874 }
1875 }
1876
1877 h->esym.asym.reserved = 0;
1878 h->esym.asym.index = indexNil;
1879 }
1880
1881 if (h->root.root.type == bfd_link_hash_common)
1882 h->esym.asym.value = h->root.root.u.c.size;
1883 else if (h->root.root.type == bfd_link_hash_defined
1884 || h->root.root.type == bfd_link_hash_defweak)
1885 {
1886 if (h->esym.asym.sc == scCommon)
1887 h->esym.asym.sc = scBss;
1888 else if (h->esym.asym.sc == scSCommon)
1889 h->esym.asym.sc = scSBss;
1890
1891 sec = h->root.root.u.def.section;
1892 output_section = sec->output_section;
1893 if (output_section != NULL)
1894 h->esym.asym.value = (h->root.root.u.def.value
1895 + sec->output_offset
1896 + output_section->vma);
1897 else
1898 h->esym.asym.value = 0;
1899 }
1900 else if (h->root.needs_plt)
1901 {
1902 struct mips_elf_link_hash_entry *hd = h;
1903 bfd_boolean no_fn_stub = h->no_fn_stub;
1904
1905 while (hd->root.root.type == bfd_link_hash_indirect)
1906 {
1907 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1908 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1909 }
1910
1911 if (!no_fn_stub)
1912 {
1913 /* Set type and value for a symbol with a function stub. */
1914 h->esym.asym.st = stProc;
1915 sec = hd->root.root.u.def.section;
1916 if (sec == NULL)
1917 h->esym.asym.value = 0;
1918 else
1919 {
1920 output_section = sec->output_section;
1921 if (output_section != NULL)
1922 h->esym.asym.value = (hd->root.plt.offset
1923 + sec->output_offset
1924 + output_section->vma);
1925 else
1926 h->esym.asym.value = 0;
1927 }
1928 }
1929 }
1930
1931 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1932 h->root.root.root.string,
1933 &h->esym))
1934 {
1935 einfo->failed = TRUE;
1936 return FALSE;
1937 }
1938
1939 return TRUE;
1940 }
1941
1942 /* A comparison routine used to sort .gptab entries. */
1943
1944 static int
1945 gptab_compare (const void *p1, const void *p2)
1946 {
1947 const Elf32_gptab *a1 = p1;
1948 const Elf32_gptab *a2 = p2;
1949
1950 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1951 }
1952 \f
1953 /* Functions to manage the got entry hash table. */
1954
1955 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1956 hash number. */
1957
1958 static INLINE hashval_t
1959 mips_elf_hash_bfd_vma (bfd_vma addr)
1960 {
1961 #ifdef BFD64
1962 return addr + (addr >> 32);
1963 #else
1964 return addr;
1965 #endif
1966 }
1967
1968 /* got_entries only match if they're identical, except for gotidx, so
1969 use all fields to compute the hash, and compare the appropriate
1970 union members. */
1971
1972 static hashval_t
1973 mips_elf_got_entry_hash (const void *entry_)
1974 {
1975 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1976
1977 return entry->symndx
1978 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1979 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1980 : entry->abfd->id
1981 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1982 : entry->d.h->root.root.root.hash));
1983 }
1984
1985 static int
1986 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1987 {
1988 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1989 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1990
1991 /* An LDM entry can only match another LDM entry. */
1992 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1993 return 0;
1994
1995 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1996 && (! e1->abfd ? e1->d.address == e2->d.address
1997 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1998 : e1->d.h == e2->d.h);
1999 }
2000
2001 /* multi_got_entries are still a match in the case of global objects,
2002 even if the input bfd in which they're referenced differs, so the
2003 hash computation and compare functions are adjusted
2004 accordingly. */
2005
2006 static hashval_t
2007 mips_elf_multi_got_entry_hash (const void *entry_)
2008 {
2009 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2010
2011 return entry->symndx
2012 + (! entry->abfd
2013 ? mips_elf_hash_bfd_vma (entry->d.address)
2014 : entry->symndx >= 0
2015 ? ((entry->tls_type & GOT_TLS_LDM)
2016 ? (GOT_TLS_LDM << 17)
2017 : (entry->abfd->id
2018 + mips_elf_hash_bfd_vma (entry->d.addend)))
2019 : entry->d.h->root.root.root.hash);
2020 }
2021
2022 static int
2023 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2024 {
2025 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2026 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2027
2028 /* Any two LDM entries match. */
2029 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2030 return 1;
2031
2032 /* Nothing else matches an LDM entry. */
2033 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2034 return 0;
2035
2036 return e1->symndx == e2->symndx
2037 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2038 : e1->abfd == NULL || e2->abfd == NULL
2039 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2040 : e1->d.h == e2->d.h);
2041 }
2042 \f
2043 /* Return the dynamic relocation section. If it doesn't exist, try to
2044 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2045 if creation fails. */
2046
2047 static asection *
2048 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2049 {
2050 const char *dname;
2051 asection *sreloc;
2052 bfd *dynobj;
2053
2054 dname = MIPS_ELF_REL_DYN_NAME (info);
2055 dynobj = elf_hash_table (info)->dynobj;
2056 sreloc = bfd_get_section_by_name (dynobj, dname);
2057 if (sreloc == NULL && create_p)
2058 {
2059 sreloc = bfd_make_section_with_flags (dynobj, dname,
2060 (SEC_ALLOC
2061 | SEC_LOAD
2062 | SEC_HAS_CONTENTS
2063 | SEC_IN_MEMORY
2064 | SEC_LINKER_CREATED
2065 | SEC_READONLY));
2066 if (sreloc == NULL
2067 || ! bfd_set_section_alignment (dynobj, sreloc,
2068 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2069 return NULL;
2070 }
2071 return sreloc;
2072 }
2073
2074 /* Returns the GOT section for ABFD. */
2075
2076 static asection *
2077 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2078 {
2079 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2080 if (sgot == NULL
2081 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2082 return NULL;
2083 return sgot;
2084 }
2085
2086 /* Returns the GOT information associated with the link indicated by
2087 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2088 section. */
2089
2090 static struct mips_got_info *
2091 mips_elf_got_info (bfd *abfd, asection **sgotp)
2092 {
2093 asection *sgot;
2094 struct mips_got_info *g;
2095
2096 sgot = mips_elf_got_section (abfd, TRUE);
2097 BFD_ASSERT (sgot != NULL);
2098 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2099 g = mips_elf_section_data (sgot)->u.got_info;
2100 BFD_ASSERT (g != NULL);
2101
2102 if (sgotp)
2103 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2104
2105 return g;
2106 }
2107
2108 /* Count the number of relocations needed for a TLS GOT entry, with
2109 access types from TLS_TYPE, and symbol H (or a local symbol if H
2110 is NULL). */
2111
2112 static int
2113 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2114 struct elf_link_hash_entry *h)
2115 {
2116 int indx = 0;
2117 int ret = 0;
2118 bfd_boolean need_relocs = FALSE;
2119 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2120
2121 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2122 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2123 indx = h->dynindx;
2124
2125 if ((info->shared || indx != 0)
2126 && (h == NULL
2127 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2128 || h->root.type != bfd_link_hash_undefweak))
2129 need_relocs = TRUE;
2130
2131 if (!need_relocs)
2132 return FALSE;
2133
2134 if (tls_type & GOT_TLS_GD)
2135 {
2136 ret++;
2137 if (indx != 0)
2138 ret++;
2139 }
2140
2141 if (tls_type & GOT_TLS_IE)
2142 ret++;
2143
2144 if ((tls_type & GOT_TLS_LDM) && info->shared)
2145 ret++;
2146
2147 return ret;
2148 }
2149
2150 /* Count the number of TLS relocations required for the GOT entry in
2151 ARG1, if it describes a local symbol. */
2152
2153 static int
2154 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2155 {
2156 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2157 struct mips_elf_count_tls_arg *arg = arg2;
2158
2159 if (entry->abfd != NULL && entry->symndx != -1)
2160 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2161
2162 return 1;
2163 }
2164
2165 /* Count the number of TLS GOT entries required for the global (or
2166 forced-local) symbol in ARG1. */
2167
2168 static int
2169 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2170 {
2171 struct mips_elf_link_hash_entry *hm
2172 = (struct mips_elf_link_hash_entry *) arg1;
2173 struct mips_elf_count_tls_arg *arg = arg2;
2174
2175 if (hm->tls_type & GOT_TLS_GD)
2176 arg->needed += 2;
2177 if (hm->tls_type & GOT_TLS_IE)
2178 arg->needed += 1;
2179
2180 return 1;
2181 }
2182
2183 /* Count the number of TLS relocations required for the global (or
2184 forced-local) symbol in ARG1. */
2185
2186 static int
2187 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2188 {
2189 struct mips_elf_link_hash_entry *hm
2190 = (struct mips_elf_link_hash_entry *) arg1;
2191 struct mips_elf_count_tls_arg *arg = arg2;
2192
2193 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2194
2195 return 1;
2196 }
2197
2198 /* Output a simple dynamic relocation into SRELOC. */
2199
2200 static void
2201 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2202 asection *sreloc,
2203 unsigned long indx,
2204 int r_type,
2205 bfd_vma offset)
2206 {
2207 Elf_Internal_Rela rel[3];
2208
2209 memset (rel, 0, sizeof (rel));
2210
2211 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2212 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2213
2214 if (ABI_64_P (output_bfd))
2215 {
2216 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2220 }
2221 else
2222 bfd_elf32_swap_reloc_out
2223 (output_bfd, &rel[0],
2224 (sreloc->contents
2225 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2226 ++sreloc->reloc_count;
2227 }
2228
2229 /* Initialize a set of TLS GOT entries for one symbol. */
2230
2231 static void
2232 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2233 unsigned char *tls_type_p,
2234 struct bfd_link_info *info,
2235 struct mips_elf_link_hash_entry *h,
2236 bfd_vma value)
2237 {
2238 int indx;
2239 asection *sreloc, *sgot;
2240 bfd_vma offset, offset2;
2241 bfd *dynobj;
2242 bfd_boolean need_relocs = FALSE;
2243
2244 dynobj = elf_hash_table (info)->dynobj;
2245 sgot = mips_elf_got_section (dynobj, FALSE);
2246
2247 indx = 0;
2248 if (h != NULL)
2249 {
2250 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2251
2252 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2253 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2254 indx = h->root.dynindx;
2255 }
2256
2257 if (*tls_type_p & GOT_TLS_DONE)
2258 return;
2259
2260 if ((info->shared || indx != 0)
2261 && (h == NULL
2262 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2263 || h->root.type != bfd_link_hash_undefweak))
2264 need_relocs = TRUE;
2265
2266 /* MINUS_ONE means the symbol is not defined in this object. It may not
2267 be defined at all; assume that the value doesn't matter in that
2268 case. Otherwise complain if we would use the value. */
2269 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2270 || h->root.root.type == bfd_link_hash_undefweak);
2271
2272 /* Emit necessary relocations. */
2273 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2274
2275 /* General Dynamic. */
2276 if (*tls_type_p & GOT_TLS_GD)
2277 {
2278 offset = got_offset;
2279 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2280
2281 if (need_relocs)
2282 {
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2286 sgot->output_offset + sgot->output_section->vma + offset);
2287
2288 if (indx)
2289 mips_elf_output_dynamic_relocation
2290 (abfd, sreloc, indx,
2291 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2292 sgot->output_offset + sgot->output_section->vma + offset2);
2293 else
2294 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2295 sgot->contents + offset2);
2296 }
2297 else
2298 {
2299 MIPS_ELF_PUT_WORD (abfd, 1,
2300 sgot->contents + offset);
2301 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2302 sgot->contents + offset2);
2303 }
2304
2305 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2306 }
2307
2308 /* Initial Exec model. */
2309 if (*tls_type_p & GOT_TLS_IE)
2310 {
2311 offset = got_offset;
2312
2313 if (need_relocs)
2314 {
2315 if (indx == 0)
2316 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2317 sgot->contents + offset);
2318 else
2319 MIPS_ELF_PUT_WORD (abfd, 0,
2320 sgot->contents + offset);
2321
2322 mips_elf_output_dynamic_relocation
2323 (abfd, sreloc, indx,
2324 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2325 sgot->output_offset + sgot->output_section->vma + offset);
2326 }
2327 else
2328 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2329 sgot->contents + offset);
2330 }
2331
2332 if (*tls_type_p & GOT_TLS_LDM)
2333 {
2334 /* The initial offset is zero, and the LD offsets will include the
2335 bias by DTP_OFFSET. */
2336 MIPS_ELF_PUT_WORD (abfd, 0,
2337 sgot->contents + got_offset
2338 + MIPS_ELF_GOT_SIZE (abfd));
2339
2340 if (!info->shared)
2341 MIPS_ELF_PUT_WORD (abfd, 1,
2342 sgot->contents + got_offset);
2343 else
2344 mips_elf_output_dynamic_relocation
2345 (abfd, sreloc, indx,
2346 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2347 sgot->output_offset + sgot->output_section->vma + got_offset);
2348 }
2349
2350 *tls_type_p |= GOT_TLS_DONE;
2351 }
2352
2353 /* Return the GOT index to use for a relocation of type R_TYPE against
2354 a symbol accessed using TLS_TYPE models. The GOT entries for this
2355 symbol in this GOT start at GOT_INDEX. This function initializes the
2356 GOT entries and corresponding relocations. */
2357
2358 static bfd_vma
2359 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2360 int r_type, struct bfd_link_info *info,
2361 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2362 {
2363 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2364 || r_type == R_MIPS_TLS_LDM);
2365
2366 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2367
2368 if (r_type == R_MIPS_TLS_GOTTPREL)
2369 {
2370 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2371 if (*tls_type & GOT_TLS_GD)
2372 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2373 else
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_GD)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2380 return got_index;
2381 }
2382
2383 if (r_type == R_MIPS_TLS_LDM)
2384 {
2385 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2386 return got_index;
2387 }
2388
2389 return got_index;
2390 }
2391
2392 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2393 for global symbol H. .got.plt comes before the GOT, so the offset
2394 will be negative. */
2395
2396 static bfd_vma
2397 mips_elf_gotplt_index (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *h)
2399 {
2400 bfd_vma plt_index, got_address, got_value;
2401 struct mips_elf_link_hash_table *htab;
2402
2403 htab = mips_elf_hash_table (info);
2404 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2405
2406 /* Calculate the index of the symbol's PLT entry. */
2407 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2408
2409 /* Calculate the address of the associated .got.plt entry. */
2410 got_address = (htab->sgotplt->output_section->vma
2411 + htab->sgotplt->output_offset
2412 + plt_index * 4);
2413
2414 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2415 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2416 + htab->root.hgot->root.u.def.section->output_offset
2417 + htab->root.hgot->root.u.def.value);
2418
2419 return got_address - got_value;
2420 }
2421
2422 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2423 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2424 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2425 offset can be found. */
2426
2427 static bfd_vma
2428 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2429 bfd_vma value, unsigned long r_symndx,
2430 struct mips_elf_link_hash_entry *h, int r_type)
2431 {
2432 asection *sgot;
2433 struct mips_got_info *g;
2434 struct mips_got_entry *entry;
2435
2436 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2437
2438 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2439 value, r_symndx, h, r_type);
2440 if (!entry)
2441 return MINUS_ONE;
2442
2443 if (TLS_RELOC_P (r_type))
2444 {
2445 if (entry->symndx == -1 && g->next == NULL)
2446 /* A type (3) entry in the single-GOT case. We use the symbol's
2447 hash table entry to track the index. */
2448 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2449 r_type, info, h, value);
2450 else
2451 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2452 r_type, info, h, value);
2453 }
2454 else
2455 return entry->gotidx;
2456 }
2457
2458 /* Returns the GOT index for the global symbol indicated by H. */
2459
2460 static bfd_vma
2461 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2462 int r_type, struct bfd_link_info *info)
2463 {
2464 bfd_vma index;
2465 asection *sgot;
2466 struct mips_got_info *g, *gg;
2467 long global_got_dynindx = 0;
2468
2469 gg = g = mips_elf_got_info (abfd, &sgot);
2470 if (g->bfd2got && ibfd)
2471 {
2472 struct mips_got_entry e, *p;
2473
2474 BFD_ASSERT (h->dynindx >= 0);
2475
2476 g = mips_elf_got_for_ibfd (g, ibfd);
2477 if (g->next != gg || TLS_RELOC_P (r_type))
2478 {
2479 e.abfd = ibfd;
2480 e.symndx = -1;
2481 e.d.h = (struct mips_elf_link_hash_entry *)h;
2482 e.tls_type = 0;
2483
2484 p = htab_find (g->got_entries, &e);
2485
2486 BFD_ASSERT (p->gotidx > 0);
2487
2488 if (TLS_RELOC_P (r_type))
2489 {
2490 bfd_vma value = MINUS_ONE;
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2499 info, e.d.h, value);
2500 }
2501 else
2502 return p->gotidx;
2503 }
2504 }
2505
2506 if (gg->global_gotsym != NULL)
2507 global_got_dynindx = gg->global_gotsym->dynindx;
2508
2509 if (TLS_RELOC_P (r_type))
2510 {
2511 struct mips_elf_link_hash_entry *hm
2512 = (struct mips_elf_link_hash_entry *) h;
2513 bfd_vma value = MINUS_ONE;
2514
2515 if ((h->root.type == bfd_link_hash_defined
2516 || h->root.type == bfd_link_hash_defweak)
2517 && h->root.u.def.section->output_section)
2518 value = (h->root.u.def.value
2519 + h->root.u.def.section->output_offset
2520 + h->root.u.def.section->output_section->vma);
2521
2522 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2523 r_type, info, hm, value);
2524 }
2525 else
2526 {
2527 /* Once we determine the global GOT entry with the lowest dynamic
2528 symbol table index, we must put all dynamic symbols with greater
2529 indices into the GOT. That makes it easy to calculate the GOT
2530 offset. */
2531 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2532 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2533 * MIPS_ELF_GOT_SIZE (abfd));
2534 }
2535 BFD_ASSERT (index < sgot->size);
2536
2537 return index;
2538 }
2539
2540 /* Find a GOT page entry that points to within 32KB of VALUE. These
2541 entries are supposed to be placed at small offsets in the GOT, i.e.,
2542 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2543 entry could be created. If OFFSETP is nonnull, use it to return the
2544 offset of the GOT entry from VALUE. */
2545
2546 static bfd_vma
2547 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2548 bfd_vma value, bfd_vma *offsetp)
2549 {
2550 asection *sgot;
2551 struct mips_got_info *g;
2552 bfd_vma page, index;
2553 struct mips_got_entry *entry;
2554
2555 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2556
2557 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2558 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2559 page, 0, NULL, R_MIPS_GOT_PAGE);
2560
2561 if (!entry)
2562 return MINUS_ONE;
2563
2564 index = entry->gotidx;
2565
2566 if (offsetp)
2567 *offsetp = value - entry->d.address;
2568
2569 return index;
2570 }
2571
2572 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2575
2576 static bfd_vma
2577 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2578 bfd_vma value, bfd_boolean external)
2579 {
2580 asection *sgot;
2581 struct mips_got_info *g;
2582 struct mips_got_entry *entry;
2583
2584 /* GOT16 relocations against local symbols are followed by a LO16
2585 relocation; those against global symbols are not. Thus if the
2586 symbol was originally local, the GOT16 relocation should load the
2587 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2588 if (! external)
2589 value = mips_elf_high (value) << 16;
2590
2591 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2592
2593 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2594 value, 0, NULL, R_MIPS_GOT16);
2595 if (entry)
2596 return entry->gotidx;
2597 else
2598 return MINUS_ONE;
2599 }
2600
2601 /* Returns the offset for the entry at the INDEXth position
2602 in the GOT. */
2603
2604 static bfd_vma
2605 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2606 bfd *input_bfd, bfd_vma index)
2607 {
2608 asection *sgot;
2609 bfd_vma gp;
2610 struct mips_got_info *g;
2611
2612 g = mips_elf_got_info (dynobj, &sgot);
2613 gp = _bfd_get_gp_value (output_bfd)
2614 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2615
2616 return sgot->output_section->vma + sgot->output_offset + index - gp;
2617 }
2618
2619 /* Create and return a local GOT entry for VALUE, which was calculated
2620 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2621 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2622 instead. */
2623
2624 static struct mips_got_entry *
2625 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2626 bfd *ibfd, struct mips_got_info *gg,
2627 asection *sgot, bfd_vma value,
2628 unsigned long r_symndx,
2629 struct mips_elf_link_hash_entry *h,
2630 int r_type)
2631 {
2632 struct mips_got_entry entry, **loc;
2633 struct mips_got_info *g;
2634 struct mips_elf_link_hash_table *htab;
2635
2636 htab = mips_elf_hash_table (info);
2637
2638 entry.abfd = NULL;
2639 entry.symndx = -1;
2640 entry.d.address = value;
2641 entry.tls_type = 0;
2642
2643 g = mips_elf_got_for_ibfd (gg, ibfd);
2644 if (g == NULL)
2645 {
2646 g = mips_elf_got_for_ibfd (gg, abfd);
2647 BFD_ASSERT (g != NULL);
2648 }
2649
2650 /* We might have a symbol, H, if it has been forced local. Use the
2651 global entry then. It doesn't matter whether an entry is local
2652 or global for TLS, since the dynamic linker does not
2653 automatically relocate TLS GOT entries. */
2654 BFD_ASSERT (h == NULL || h->root.forced_local);
2655 if (TLS_RELOC_P (r_type))
2656 {
2657 struct mips_got_entry *p;
2658
2659 entry.abfd = ibfd;
2660 if (r_type == R_MIPS_TLS_LDM)
2661 {
2662 entry.tls_type = GOT_TLS_LDM;
2663 entry.symndx = 0;
2664 entry.d.addend = 0;
2665 }
2666 else if (h == NULL)
2667 {
2668 entry.symndx = r_symndx;
2669 entry.d.addend = 0;
2670 }
2671 else
2672 entry.d.h = h;
2673
2674 p = (struct mips_got_entry *)
2675 htab_find (g->got_entries, &entry);
2676
2677 BFD_ASSERT (p);
2678 return p;
2679 }
2680
2681 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2682 INSERT);
2683 if (*loc)
2684 return *loc;
2685
2686 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2687 entry.tls_type = 0;
2688
2689 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2690
2691 if (! *loc)
2692 return NULL;
2693
2694 memcpy (*loc, &entry, sizeof entry);
2695
2696 if (g->assigned_gotno > g->local_gotno)
2697 {
2698 (*loc)->gotidx = -1;
2699 /* We didn't allocate enough space in the GOT. */
2700 (*_bfd_error_handler)
2701 (_("not enough GOT space for local GOT entries"));
2702 bfd_set_error (bfd_error_bad_value);
2703 return NULL;
2704 }
2705
2706 MIPS_ELF_PUT_WORD (abfd, value,
2707 (sgot->contents + entry.gotidx));
2708
2709 /* These GOT entries need a dynamic relocation on VxWorks. */
2710 if (htab->is_vxworks)
2711 {
2712 Elf_Internal_Rela outrel;
2713 asection *s;
2714 bfd_byte *loc;
2715 bfd_vma got_address;
2716
2717 s = mips_elf_rel_dyn_section (info, FALSE);
2718 got_address = (sgot->output_section->vma
2719 + sgot->output_offset
2720 + entry.gotidx);
2721
2722 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2723 outrel.r_offset = got_address;
2724 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2725 outrel.r_addend = value;
2726 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2727 }
2728
2729 return *loc;
2730 }
2731
2732 /* Sort the dynamic symbol table so that symbols that need GOT entries
2733 appear towards the end. This reduces the amount of GOT space
2734 required. MAX_LOCAL is used to set the number of local symbols
2735 known to be in the dynamic symbol table. During
2736 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2737 section symbols are added and the count is higher. */
2738
2739 static bfd_boolean
2740 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2741 {
2742 struct mips_elf_hash_sort_data hsd;
2743 struct mips_got_info *g;
2744 bfd *dynobj;
2745
2746 dynobj = elf_hash_table (info)->dynobj;
2747
2748 g = mips_elf_got_info (dynobj, NULL);
2749
2750 hsd.low = NULL;
2751 hsd.max_unref_got_dynindx =
2752 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2753 /* In the multi-got case, assigned_gotno of the master got_info
2754 indicate the number of entries that aren't referenced in the
2755 primary GOT, but that must have entries because there are
2756 dynamic relocations that reference it. Since they aren't
2757 referenced, we move them to the end of the GOT, so that they
2758 don't prevent other entries that are referenced from getting
2759 too large offsets. */
2760 - (g->next ? g->assigned_gotno : 0);
2761 hsd.max_non_got_dynindx = max_local;
2762 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2763 elf_hash_table (info)),
2764 mips_elf_sort_hash_table_f,
2765 &hsd);
2766
2767 /* There should have been enough room in the symbol table to
2768 accommodate both the GOT and non-GOT symbols. */
2769 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2770 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2771 <= elf_hash_table (info)->dynsymcount);
2772
2773 /* Now we know which dynamic symbol has the lowest dynamic symbol
2774 table index in the GOT. */
2775 g->global_gotsym = hsd.low;
2776
2777 return TRUE;
2778 }
2779
2780 /* If H needs a GOT entry, assign it the highest available dynamic
2781 index. Otherwise, assign it the lowest available dynamic
2782 index. */
2783
2784 static bfd_boolean
2785 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2786 {
2787 struct mips_elf_hash_sort_data *hsd = data;
2788
2789 if (h->root.root.type == bfd_link_hash_warning)
2790 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2791
2792 /* Symbols without dynamic symbol table entries aren't interesting
2793 at all. */
2794 if (h->root.dynindx == -1)
2795 return TRUE;
2796
2797 /* Global symbols that need GOT entries that are not explicitly
2798 referenced are marked with got offset 2. Those that are
2799 referenced get a 1, and those that don't need GOT entries get
2800 -1. Forced local symbols may also be marked with got offset 1,
2801 but are never given global GOT entries. */
2802 if (h->root.got.offset == 2)
2803 {
2804 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2805
2806 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2807 hsd->low = (struct elf_link_hash_entry *) h;
2808 h->root.dynindx = hsd->max_unref_got_dynindx++;
2809 }
2810 else if (h->root.got.offset != 1 || h->forced_local)
2811 h->root.dynindx = hsd->max_non_got_dynindx++;
2812 else
2813 {
2814 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2815
2816 h->root.dynindx = --hsd->min_got_dynindx;
2817 hsd->low = (struct elf_link_hash_entry *) h;
2818 }
2819
2820 return TRUE;
2821 }
2822
2823 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2824 symbol table index lower than any we've seen to date, record it for
2825 posterity. */
2826
2827 static bfd_boolean
2828 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2829 bfd *abfd, struct bfd_link_info *info,
2830 struct mips_got_info *g,
2831 unsigned char tls_flag)
2832 {
2833 struct mips_got_entry entry, **loc;
2834
2835 /* A global symbol in the GOT must also be in the dynamic symbol
2836 table. */
2837 if (h->dynindx == -1)
2838 {
2839 switch (ELF_ST_VISIBILITY (h->other))
2840 {
2841 case STV_INTERNAL:
2842 case STV_HIDDEN:
2843 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2844 break;
2845 }
2846 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2847 return FALSE;
2848 }
2849
2850 /* Make sure we have a GOT to put this entry into. */
2851 BFD_ASSERT (g != NULL);
2852
2853 entry.abfd = abfd;
2854 entry.symndx = -1;
2855 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2856 entry.tls_type = 0;
2857
2858 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2859 INSERT);
2860
2861 /* If we've already marked this entry as needing GOT space, we don't
2862 need to do it again. */
2863 if (*loc)
2864 {
2865 (*loc)->tls_type |= tls_flag;
2866 return TRUE;
2867 }
2868
2869 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2870
2871 if (! *loc)
2872 return FALSE;
2873
2874 entry.gotidx = -1;
2875 entry.tls_type = tls_flag;
2876
2877 memcpy (*loc, &entry, sizeof entry);
2878
2879 if (h->got.offset != MINUS_ONE)
2880 return TRUE;
2881
2882 if (tls_flag == 0)
2883 {
2884 /* By setting this to a value other than -1, we are indicating that
2885 there needs to be a GOT entry for H. Avoid using zero, as the
2886 generic ELF copy_indirect_symbol tests for <= 0. */
2887 h->got.offset = 1;
2888 if (h->forced_local)
2889 g->local_gotno++;
2890 }
2891
2892 return TRUE;
2893 }
2894
2895 /* Reserve space in G for a GOT entry containing the value of symbol
2896 SYMNDX in input bfd ABDF, plus ADDEND. */
2897
2898 static bfd_boolean
2899 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2900 struct mips_got_info *g,
2901 unsigned char tls_flag)
2902 {
2903 struct mips_got_entry entry, **loc;
2904
2905 entry.abfd = abfd;
2906 entry.symndx = symndx;
2907 entry.d.addend = addend;
2908 entry.tls_type = tls_flag;
2909 loc = (struct mips_got_entry **)
2910 htab_find_slot (g->got_entries, &entry, INSERT);
2911
2912 if (*loc)
2913 {
2914 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2915 {
2916 g->tls_gotno += 2;
2917 (*loc)->tls_type |= tls_flag;
2918 }
2919 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2920 {
2921 g->tls_gotno += 1;
2922 (*loc)->tls_type |= tls_flag;
2923 }
2924 return TRUE;
2925 }
2926
2927 if (tls_flag != 0)
2928 {
2929 entry.gotidx = -1;
2930 entry.tls_type = tls_flag;
2931 if (tls_flag == GOT_TLS_IE)
2932 g->tls_gotno += 1;
2933 else if (tls_flag == GOT_TLS_GD)
2934 g->tls_gotno += 2;
2935 else if (g->tls_ldm_offset == MINUS_ONE)
2936 {
2937 g->tls_ldm_offset = MINUS_TWO;
2938 g->tls_gotno += 2;
2939 }
2940 }
2941 else
2942 {
2943 entry.gotidx = g->local_gotno++;
2944 entry.tls_type = 0;
2945 }
2946
2947 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2948
2949 if (! *loc)
2950 return FALSE;
2951
2952 memcpy (*loc, &entry, sizeof entry);
2953
2954 return TRUE;
2955 }
2956 \f
2957 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2958
2959 static hashval_t
2960 mips_elf_bfd2got_entry_hash (const void *entry_)
2961 {
2962 const struct mips_elf_bfd2got_hash *entry
2963 = (struct mips_elf_bfd2got_hash *)entry_;
2964
2965 return entry->bfd->id;
2966 }
2967
2968 /* Check whether two hash entries have the same bfd. */
2969
2970 static int
2971 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2972 {
2973 const struct mips_elf_bfd2got_hash *e1
2974 = (const struct mips_elf_bfd2got_hash *)entry1;
2975 const struct mips_elf_bfd2got_hash *e2
2976 = (const struct mips_elf_bfd2got_hash *)entry2;
2977
2978 return e1->bfd == e2->bfd;
2979 }
2980
2981 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2982 be the master GOT data. */
2983
2984 static struct mips_got_info *
2985 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2986 {
2987 struct mips_elf_bfd2got_hash e, *p;
2988
2989 if (! g->bfd2got)
2990 return g;
2991
2992 e.bfd = ibfd;
2993 p = htab_find (g->bfd2got, &e);
2994 return p ? p->g : NULL;
2995 }
2996
2997 /* Create one separate got for each bfd that has entries in the global
2998 got, such that we can tell how many local and global entries each
2999 bfd requires. */
3000
3001 static int
3002 mips_elf_make_got_per_bfd (void **entryp, void *p)
3003 {
3004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3006 htab_t bfd2got = arg->bfd2got;
3007 struct mips_got_info *g;
3008 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3009 void **bfdgotp;
3010
3011 /* Find the got_info for this GOT entry's input bfd. Create one if
3012 none exists. */
3013 bfdgot_entry.bfd = entry->abfd;
3014 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3015 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3016
3017 if (bfdgot != NULL)
3018 g = bfdgot->g;
3019 else
3020 {
3021 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3022 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3023
3024 if (bfdgot == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 *bfdgotp = bfdgot;
3031
3032 bfdgot->bfd = entry->abfd;
3033 bfdgot->g = g = (struct mips_got_info *)
3034 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3035 if (g == NULL)
3036 {
3037 arg->obfd = 0;
3038 return 0;
3039 }
3040
3041 g->global_gotsym = NULL;
3042 g->global_gotno = 0;
3043 g->local_gotno = 0;
3044 g->assigned_gotno = -1;
3045 g->tls_gotno = 0;
3046 g->tls_assigned_gotno = 0;
3047 g->tls_ldm_offset = MINUS_ONE;
3048 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3049 mips_elf_multi_got_entry_eq, NULL);
3050 if (g->got_entries == NULL)
3051 {
3052 arg->obfd = 0;
3053 return 0;
3054 }
3055
3056 g->bfd2got = NULL;
3057 g->next = NULL;
3058 }
3059
3060 /* Insert the GOT entry in the bfd's got entry hash table. */
3061 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3062 if (*entryp != NULL)
3063 return 1;
3064
3065 *entryp = entry;
3066
3067 if (entry->tls_type)
3068 {
3069 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3070 g->tls_gotno += 2;
3071 if (entry->tls_type & GOT_TLS_IE)
3072 g->tls_gotno += 1;
3073 }
3074 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3075 ++g->local_gotno;
3076 else
3077 ++g->global_gotno;
3078
3079 return 1;
3080 }
3081
3082 /* Attempt to merge gots of different input bfds. Try to use as much
3083 as possible of the primary got, since it doesn't require explicit
3084 dynamic relocations, but don't use bfds that would reference global
3085 symbols out of the addressable range. Failing the primary got,
3086 attempt to merge with the current got, or finish the current got
3087 and then make make the new got current. */
3088
3089 static int
3090 mips_elf_merge_gots (void **bfd2got_, void *p)
3091 {
3092 struct mips_elf_bfd2got_hash *bfd2got
3093 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3094 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3095 unsigned int lcount = bfd2got->g->local_gotno;
3096 unsigned int gcount = bfd2got->g->global_gotno;
3097 unsigned int tcount = bfd2got->g->tls_gotno;
3098 unsigned int maxcnt = arg->max_count;
3099 bfd_boolean too_many_for_tls = FALSE;
3100
3101 /* We place TLS GOT entries after both locals and globals. The globals
3102 for the primary GOT may overflow the normal GOT size limit, so be
3103 sure not to merge a GOT which requires TLS with the primary GOT in that
3104 case. This doesn't affect non-primary GOTs. */
3105 if (tcount > 0)
3106 {
3107 unsigned int primary_total = lcount + tcount + arg->global_count;
3108 if (primary_total > maxcnt)
3109 too_many_for_tls = TRUE;
3110 }
3111
3112 /* If we don't have a primary GOT and this is not too big, use it as
3113 a starting point for the primary GOT. */
3114 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3115 && ! too_many_for_tls)
3116 {
3117 arg->primary = bfd2got->g;
3118 arg->primary_count = lcount + gcount;
3119 }
3120 /* If it looks like we can merge this bfd's entries with those of
3121 the primary, merge them. The heuristics is conservative, but we
3122 don't have to squeeze it too hard. */
3123 else if (arg->primary && ! too_many_for_tls
3124 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3125 {
3126 struct mips_got_info *g = bfd2got->g;
3127 int old_lcount = arg->primary->local_gotno;
3128 int old_gcount = arg->primary->global_gotno;
3129 int old_tcount = arg->primary->tls_gotno;
3130
3131 bfd2got->g = arg->primary;
3132
3133 htab_traverse (g->got_entries,
3134 mips_elf_make_got_per_bfd,
3135 arg);
3136 if (arg->obfd == NULL)
3137 return 0;
3138
3139 htab_delete (g->got_entries);
3140 /* We don't have to worry about releasing memory of the actual
3141 got entries, since they're all in the master got_entries hash
3142 table anyway. */
3143
3144 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3145 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3146 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3147
3148 arg->primary_count = arg->primary->local_gotno
3149 + arg->primary->global_gotno + arg->primary->tls_gotno;
3150 }
3151 /* If we can merge with the last-created got, do it. */
3152 else if (arg->current
3153 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3154 {
3155 struct mips_got_info *g = bfd2got->g;
3156 int old_lcount = arg->current->local_gotno;
3157 int old_gcount = arg->current->global_gotno;
3158 int old_tcount = arg->current->tls_gotno;
3159
3160 bfd2got->g = arg->current;
3161
3162 htab_traverse (g->got_entries,
3163 mips_elf_make_got_per_bfd,
3164 arg);
3165 if (arg->obfd == NULL)
3166 return 0;
3167
3168 htab_delete (g->got_entries);
3169
3170 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3171 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3172 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3173
3174 arg->current_count = arg->current->local_gotno
3175 + arg->current->global_gotno + arg->current->tls_gotno;
3176 }
3177 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3178 fits; if it turns out that it doesn't, we'll get relocation
3179 overflows anyway. */
3180 else
3181 {
3182 bfd2got->g->next = arg->current;
3183 arg->current = bfd2got->g;
3184
3185 arg->current_count = lcount + gcount + 2 * tcount;
3186 }
3187
3188 return 1;
3189 }
3190
3191 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3192 is null iff there is just a single GOT. */
3193
3194 static int
3195 mips_elf_initialize_tls_index (void **entryp, void *p)
3196 {
3197 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3198 struct mips_got_info *g = p;
3199 bfd_vma next_index;
3200 unsigned char tls_type;
3201
3202 /* We're only interested in TLS symbols. */
3203 if (entry->tls_type == 0)
3204 return 1;
3205
3206 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3207
3208 if (entry->symndx == -1 && g->next == NULL)
3209 {
3210 /* A type (3) got entry in the single-GOT case. We use the symbol's
3211 hash table entry to track its index. */
3212 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3213 return 1;
3214 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3215 entry->d.h->tls_got_offset = next_index;
3216 tls_type = entry->d.h->tls_type;
3217 }
3218 else
3219 {
3220 if (entry->tls_type & GOT_TLS_LDM)
3221 {
3222 /* There are separate mips_got_entry objects for each input bfd
3223 that requires an LDM entry. Make sure that all LDM entries in
3224 a GOT resolve to the same index. */
3225 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3226 {
3227 entry->gotidx = g->tls_ldm_offset;
3228 return 1;
3229 }
3230 g->tls_ldm_offset = next_index;
3231 }
3232 entry->gotidx = next_index;
3233 tls_type = entry->tls_type;
3234 }
3235
3236 /* Account for the entries we've just allocated. */
3237 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3238 g->tls_assigned_gotno += 2;
3239 if (tls_type & GOT_TLS_IE)
3240 g->tls_assigned_gotno += 1;
3241
3242 return 1;
3243 }
3244
3245 /* If passed a NULL mips_got_info in the argument, set the marker used
3246 to tell whether a global symbol needs a got entry (in the primary
3247 got) to the given VALUE.
3248
3249 If passed a pointer G to a mips_got_info in the argument (it must
3250 not be the primary GOT), compute the offset from the beginning of
3251 the (primary) GOT section to the entry in G corresponding to the
3252 global symbol. G's assigned_gotno must contain the index of the
3253 first available global GOT entry in G. VALUE must contain the size
3254 of a GOT entry in bytes. For each global GOT entry that requires a
3255 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3256 marked as not eligible for lazy resolution through a function
3257 stub. */
3258 static int
3259 mips_elf_set_global_got_offset (void **entryp, void *p)
3260 {
3261 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3262 struct mips_elf_set_global_got_offset_arg *arg
3263 = (struct mips_elf_set_global_got_offset_arg *)p;
3264 struct mips_got_info *g = arg->g;
3265
3266 if (g && entry->tls_type != GOT_NORMAL)
3267 arg->needed_relocs +=
3268 mips_tls_got_relocs (arg->info, entry->tls_type,
3269 entry->symndx == -1 ? &entry->d.h->root : NULL);
3270
3271 if (entry->abfd != NULL && entry->symndx == -1
3272 && entry->d.h->root.dynindx != -1
3273 && !entry->d.h->forced_local
3274 && entry->d.h->tls_type == GOT_NORMAL)
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292 }
3293
3294 /* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296 static int
3297 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3298 {
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307 }
3308
3309 /* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315 static int
3316 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3317 {
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
3331
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
3351
3352 return 1;
3353 }
3354
3355 /* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357 static void
3358 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3359 {
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371 }
3372
3373 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375 static bfd_vma
3376 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3377 {
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
3388
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
3391 }
3392
3393 /* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396 static bfd_boolean
3397 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
3400 {
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3407 mips_elf_bfd2got_entry_eq, NULL);
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3427 / MIPS_ELF_GOT_SIZE (abfd))
3428 - MIPS_RESERVED_GOTNO (info) - pages);
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
3441 /* If we do not find any suitable primary GOT, create an empty one. */
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
3452 g->next->tls_gotno = 0;
3453 g->next->assigned_gotno = 0;
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
3458 NULL);
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
3479
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
3505
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
3555 gg->tls_gotno = 0;
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
3563 assign += MIPS_RESERVED_GOTNO (info);
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3579
3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3581 g = gn;
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3587 }
3588 while (g);
3589
3590 got->size = (gg->next->local_gotno
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3593
3594 return TRUE;
3595 }
3596
3597 \f
3598 /* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601 static const Elf_Internal_Rela *
3602 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
3605 {
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
3608 while (relocation < relend)
3609 {
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
3618 return NULL;
3619 }
3620
3621 /* Return whether a relocation is against a local symbol. */
3622
3623 static bfd_boolean
3624 mips_elf_local_relocation_p (bfd *input_bfd,
3625 const Elf_Internal_Rela *relocation,
3626 asection **local_sections,
3627 bfd_boolean check_forced)
3628 {
3629 unsigned long r_symndx;
3630 Elf_Internal_Shdr *symtab_hdr;
3631 struct mips_elf_link_hash_entry *h;
3632 size_t extsymoff;
3633
3634 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3636 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3637
3638 if (r_symndx < extsymoff)
3639 return TRUE;
3640 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3641 return TRUE;
3642
3643 if (check_forced)
3644 {
3645 /* Look up the hash table to check whether the symbol
3646 was forced local. */
3647 h = (struct mips_elf_link_hash_entry *)
3648 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3649 /* Find the real hash-table entry for this symbol. */
3650 while (h->root.root.type == bfd_link_hash_indirect
3651 || h->root.root.type == bfd_link_hash_warning)
3652 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3653 if (h->root.forced_local)
3654 return TRUE;
3655 }
3656
3657 return FALSE;
3658 }
3659 \f
3660 /* Sign-extend VALUE, which has the indicated number of BITS. */
3661
3662 bfd_vma
3663 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3664 {
3665 if (value & ((bfd_vma) 1 << (bits - 1)))
3666 /* VALUE is negative. */
3667 value |= ((bfd_vma) - 1) << bits;
3668
3669 return value;
3670 }
3671
3672 /* Return non-zero if the indicated VALUE has overflowed the maximum
3673 range expressible by a signed number with the indicated number of
3674 BITS. */
3675
3676 static bfd_boolean
3677 mips_elf_overflow_p (bfd_vma value, int bits)
3678 {
3679 bfd_signed_vma svalue = (bfd_signed_vma) value;
3680
3681 if (svalue > (1 << (bits - 1)) - 1)
3682 /* The value is too big. */
3683 return TRUE;
3684 else if (svalue < -(1 << (bits - 1)))
3685 /* The value is too small. */
3686 return TRUE;
3687
3688 /* All is well. */
3689 return FALSE;
3690 }
3691
3692 /* Calculate the %high function. */
3693
3694 static bfd_vma
3695 mips_elf_high (bfd_vma value)
3696 {
3697 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3698 }
3699
3700 /* Calculate the %higher function. */
3701
3702 static bfd_vma
3703 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3704 {
3705 #ifdef BFD64
3706 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3707 #else
3708 abort ();
3709 return MINUS_ONE;
3710 #endif
3711 }
3712
3713 /* Calculate the %highest function. */
3714
3715 static bfd_vma
3716 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3717 {
3718 #ifdef BFD64
3719 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3720 #else
3721 abort ();
3722 return MINUS_ONE;
3723 #endif
3724 }
3725 \f
3726 /* Create the .compact_rel section. */
3727
3728 static bfd_boolean
3729 mips_elf_create_compact_rel_section
3730 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3731 {
3732 flagword flags;
3733 register asection *s;
3734
3735 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3736 {
3737 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3738 | SEC_READONLY);
3739
3740 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3741 if (s == NULL
3742 || ! bfd_set_section_alignment (abfd, s,
3743 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3744 return FALSE;
3745
3746 s->size = sizeof (Elf32_External_compact_rel);
3747 }
3748
3749 return TRUE;
3750 }
3751
3752 /* Create the .got section to hold the global offset table. */
3753
3754 static bfd_boolean
3755 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3756 bfd_boolean maybe_exclude)
3757 {
3758 flagword flags;
3759 register asection *s;
3760 struct elf_link_hash_entry *h;
3761 struct bfd_link_hash_entry *bh;
3762 struct mips_got_info *g;
3763 bfd_size_type amt;
3764 struct mips_elf_link_hash_table *htab;
3765
3766 htab = mips_elf_hash_table (info);
3767
3768 /* This function may be called more than once. */
3769 s = mips_elf_got_section (abfd, TRUE);
3770 if (s)
3771 {
3772 if (! maybe_exclude)
3773 s->flags &= ~SEC_EXCLUDE;
3774 return TRUE;
3775 }
3776
3777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3778 | SEC_LINKER_CREATED);
3779
3780 if (maybe_exclude)
3781 flags |= SEC_EXCLUDE;
3782
3783 /* We have to use an alignment of 2**4 here because this is hardcoded
3784 in the function stub generation and in the linker script. */
3785 s = bfd_make_section_with_flags (abfd, ".got", flags);
3786 if (s == NULL
3787 || ! bfd_set_section_alignment (abfd, s, 4))
3788 return FALSE;
3789
3790 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3791 linker script because we don't want to define the symbol if we
3792 are not creating a global offset table. */
3793 bh = NULL;
3794 if (! (_bfd_generic_link_add_one_symbol
3795 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3796 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3797 return FALSE;
3798
3799 h = (struct elf_link_hash_entry *) bh;
3800 h->non_elf = 0;
3801 h->def_regular = 1;
3802 h->type = STT_OBJECT;
3803 elf_hash_table (info)->hgot = h;
3804
3805 if (info->shared
3806 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3807 return FALSE;
3808
3809 amt = sizeof (struct mips_got_info);
3810 g = bfd_alloc (abfd, amt);
3811 if (g == NULL)
3812 return FALSE;
3813 g->global_gotsym = NULL;
3814 g->global_gotno = 0;
3815 g->tls_gotno = 0;
3816 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3817 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3818 g->bfd2got = NULL;
3819 g->next = NULL;
3820 g->tls_ldm_offset = MINUS_ONE;
3821 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3822 mips_elf_got_entry_eq, NULL);
3823 if (g->got_entries == NULL)
3824 return FALSE;
3825 mips_elf_section_data (s)->u.got_info = g;
3826 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3827 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3828
3829 /* VxWorks also needs a .got.plt section. */
3830 if (htab->is_vxworks)
3831 {
3832 s = bfd_make_section_with_flags (abfd, ".got.plt",
3833 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3835 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3836 return FALSE;
3837
3838 htab->sgotplt = s;
3839 }
3840 return TRUE;
3841 }
3842 \f
3843 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3844 __GOTT_INDEX__ symbols. These symbols are only special for
3845 shared objects; they are not used in executables. */
3846
3847 static bfd_boolean
3848 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3849 {
3850 return (mips_elf_hash_table (info)->is_vxworks
3851 && info->shared
3852 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3853 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3854 }
3855 \f
3856 /* Calculate the value produced by the RELOCATION (which comes from
3857 the INPUT_BFD). The ADDEND is the addend to use for this
3858 RELOCATION; RELOCATION->R_ADDEND is ignored.
3859
3860 The result of the relocation calculation is stored in VALUEP.
3861 REQUIRE_JALXP indicates whether or not the opcode used with this
3862 relocation must be JALX.
3863
3864 This function returns bfd_reloc_continue if the caller need take no
3865 further action regarding this relocation, bfd_reloc_notsupported if
3866 something goes dramatically wrong, bfd_reloc_overflow if an
3867 overflow occurs, and bfd_reloc_ok to indicate success. */
3868
3869 static bfd_reloc_status_type
3870 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3871 asection *input_section,
3872 struct bfd_link_info *info,
3873 const Elf_Internal_Rela *relocation,
3874 bfd_vma addend, reloc_howto_type *howto,
3875 Elf_Internal_Sym *local_syms,
3876 asection **local_sections, bfd_vma *valuep,
3877 const char **namep, bfd_boolean *require_jalxp,
3878 bfd_boolean save_addend)
3879 {
3880 /* The eventual value we will return. */
3881 bfd_vma value;
3882 /* The address of the symbol against which the relocation is
3883 occurring. */
3884 bfd_vma symbol = 0;
3885 /* The final GP value to be used for the relocatable, executable, or
3886 shared object file being produced. */
3887 bfd_vma gp = MINUS_ONE;
3888 /* The place (section offset or address) of the storage unit being
3889 relocated. */
3890 bfd_vma p;
3891 /* The value of GP used to create the relocatable object. */
3892 bfd_vma gp0 = MINUS_ONE;
3893 /* The offset into the global offset table at which the address of
3894 the relocation entry symbol, adjusted by the addend, resides
3895 during execution. */
3896 bfd_vma g = MINUS_ONE;
3897 /* The section in which the symbol referenced by the relocation is
3898 located. */
3899 asection *sec = NULL;
3900 struct mips_elf_link_hash_entry *h = NULL;
3901 /* TRUE if the symbol referred to by this relocation is a local
3902 symbol. */
3903 bfd_boolean local_p, was_local_p;
3904 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3905 bfd_boolean gp_disp_p = FALSE;
3906 /* TRUE if the symbol referred to by this relocation is
3907 "__gnu_local_gp". */
3908 bfd_boolean gnu_local_gp_p = FALSE;
3909 Elf_Internal_Shdr *symtab_hdr;
3910 size_t extsymoff;
3911 unsigned long r_symndx;
3912 int r_type;
3913 /* TRUE if overflow occurred during the calculation of the
3914 relocation value. */
3915 bfd_boolean overflowed_p;
3916 /* TRUE if this relocation refers to a MIPS16 function. */
3917 bfd_boolean target_is_16_bit_code_p = FALSE;
3918 struct mips_elf_link_hash_table *htab;
3919 bfd *dynobj;
3920
3921 dynobj = elf_hash_table (info)->dynobj;
3922 htab = mips_elf_hash_table (info);
3923
3924 /* Parse the relocation. */
3925 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3926 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3927 p = (input_section->output_section->vma
3928 + input_section->output_offset
3929 + relocation->r_offset);
3930
3931 /* Assume that there will be no overflow. */
3932 overflowed_p = FALSE;
3933
3934 /* Figure out whether or not the symbol is local, and get the offset
3935 used in the array of hash table entries. */
3936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3937 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3938 local_sections, FALSE);
3939 was_local_p = local_p;
3940 if (! elf_bad_symtab (input_bfd))
3941 extsymoff = symtab_hdr->sh_info;
3942 else
3943 {
3944 /* The symbol table does not follow the rule that local symbols
3945 must come before globals. */
3946 extsymoff = 0;
3947 }
3948
3949 /* Figure out the value of the symbol. */
3950 if (local_p)
3951 {
3952 Elf_Internal_Sym *sym;
3953
3954 sym = local_syms + r_symndx;
3955 sec = local_sections[r_symndx];
3956
3957 symbol = sec->output_section->vma + sec->output_offset;
3958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3959 || (sec->flags & SEC_MERGE))
3960 symbol += sym->st_value;
3961 if ((sec->flags & SEC_MERGE)
3962 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3963 {
3964 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3965 addend -= symbol;
3966 addend += sec->output_section->vma + sec->output_offset;
3967 }
3968
3969 /* MIPS16 text labels should be treated as odd. */
3970 if (sym->st_other == STO_MIPS16)
3971 ++symbol;
3972
3973 /* Record the name of this symbol, for our caller. */
3974 *namep = bfd_elf_string_from_elf_section (input_bfd,
3975 symtab_hdr->sh_link,
3976 sym->st_name);
3977 if (*namep == '\0')
3978 *namep = bfd_section_name (input_bfd, sec);
3979
3980 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3981 }
3982 else
3983 {
3984 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3985
3986 /* For global symbols we look up the symbol in the hash-table. */
3987 h = ((struct mips_elf_link_hash_entry *)
3988 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3989 /* Find the real hash-table entry for this symbol. */
3990 while (h->root.root.type == bfd_link_hash_indirect
3991 || h->root.root.type == bfd_link_hash_warning)
3992 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3993
3994 /* Record the name of this symbol, for our caller. */
3995 *namep = h->root.root.root.string;
3996
3997 /* See if this is the special _gp_disp symbol. Note that such a
3998 symbol must always be a global symbol. */
3999 if (strcmp (*namep, "_gp_disp") == 0
4000 && ! NEWABI_P (input_bfd))
4001 {
4002 /* Relocations against _gp_disp are permitted only with
4003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4005 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4006 return bfd_reloc_notsupported;
4007
4008 gp_disp_p = TRUE;
4009 }
4010 /* See if this is the special _gp symbol. Note that such a
4011 symbol must always be a global symbol. */
4012 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4013 gnu_local_gp_p = TRUE;
4014
4015
4016 /* If this symbol is defined, calculate its address. Note that
4017 _gp_disp is a magic symbol, always implicitly defined by the
4018 linker, so it's inappropriate to check to see whether or not
4019 its defined. */
4020 else if ((h->root.root.type == bfd_link_hash_defined
4021 || h->root.root.type == bfd_link_hash_defweak)
4022 && h->root.root.u.def.section)
4023 {
4024 sec = h->root.root.u.def.section;
4025 if (sec->output_section)
4026 symbol = (h->root.root.u.def.value
4027 + sec->output_section->vma
4028 + sec->output_offset);
4029 else
4030 symbol = h->root.root.u.def.value;
4031 }
4032 else if (h->root.root.type == bfd_link_hash_undefweak)
4033 /* We allow relocations against undefined weak symbols, giving
4034 it the value zero, so that you can undefined weak functions
4035 and check to see if they exist by looking at their
4036 addresses. */
4037 symbol = 0;
4038 else if (info->unresolved_syms_in_objects == RM_IGNORE
4039 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4040 symbol = 0;
4041 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4042 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4043 {
4044 /* If this is a dynamic link, we should have created a
4045 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4046 in in _bfd_mips_elf_create_dynamic_sections.
4047 Otherwise, we should define the symbol with a value of 0.
4048 FIXME: It should probably get into the symbol table
4049 somehow as well. */
4050 BFD_ASSERT (! info->shared);
4051 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4052 symbol = 0;
4053 }
4054 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4055 {
4056 /* This is an optional symbol - an Irix specific extension to the
4057 ELF spec. Ignore it for now.
4058 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4059 than simply ignoring them, but we do not handle this for now.
4060 For information see the "64-bit ELF Object File Specification"
4061 which is available from here:
4062 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4063 symbol = 0;
4064 }
4065 else
4066 {
4067 if (! ((*info->callbacks->undefined_symbol)
4068 (info, h->root.root.root.string, input_bfd,
4069 input_section, relocation->r_offset,
4070 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4071 || ELF_ST_VISIBILITY (h->root.other))))
4072 return bfd_reloc_undefined;
4073 symbol = 0;
4074 }
4075
4076 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4077 }
4078
4079 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4080 need to redirect the call to the stub, unless we're already *in*
4081 a stub. */
4082 if (r_type != R_MIPS16_26 && !info->relocatable
4083 && ((h != NULL && h->fn_stub != NULL)
4084 || (local_p
4085 && elf_tdata (input_bfd)->local_stubs != NULL
4086 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4087 && !mips16_stub_section_p (input_bfd, input_section))
4088 {
4089 /* This is a 32- or 64-bit call to a 16-bit function. We should
4090 have already noticed that we were going to need the
4091 stub. */
4092 if (local_p)
4093 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4094 else
4095 {
4096 BFD_ASSERT (h->need_fn_stub);
4097 sec = h->fn_stub;
4098 }
4099
4100 symbol = sec->output_section->vma + sec->output_offset;
4101 /* The target is 16-bit, but the stub isn't. */
4102 target_is_16_bit_code_p = FALSE;
4103 }
4104 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4105 need to redirect the call to the stub. */
4106 else if (r_type == R_MIPS16_26 && !info->relocatable
4107 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4108 || (local_p
4109 && elf_tdata (input_bfd)->local_call_stubs != NULL
4110 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4111 && !target_is_16_bit_code_p)
4112 {
4113 if (local_p)
4114 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4115 else
4116 {
4117 /* If both call_stub and call_fp_stub are defined, we can figure
4118 out which one to use by checking which one appears in the input
4119 file. */
4120 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4121 {
4122 asection *o;
4123
4124 sec = NULL;
4125 for (o = input_bfd->sections; o != NULL; o = o->next)
4126 {
4127 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4128 {
4129 sec = h->call_fp_stub;
4130 break;
4131 }
4132 }
4133 if (sec == NULL)
4134 sec = h->call_stub;
4135 }
4136 else if (h->call_stub != NULL)
4137 sec = h->call_stub;
4138 else
4139 sec = h->call_fp_stub;
4140 }
4141
4142 BFD_ASSERT (sec->size > 0);
4143 symbol = sec->output_section->vma + sec->output_offset;
4144 }
4145
4146 /* Calls from 16-bit code to 32-bit code and vice versa require the
4147 special jalx instruction. */
4148 *require_jalxp = (!info->relocatable
4149 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4150 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4151
4152 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4153 local_sections, TRUE);
4154
4155 /* If we haven't already determined the GOT offset, or the GP value,
4156 and we're going to need it, get it now. */
4157 switch (r_type)
4158 {
4159 case R_MIPS_GOT_PAGE:
4160 case R_MIPS_GOT_OFST:
4161 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4162 bind locally. */
4163 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4164 if (local_p || r_type == R_MIPS_GOT_OFST)
4165 break;
4166 /* Fall through. */
4167
4168 case R_MIPS_CALL16:
4169 case R_MIPS_GOT16:
4170 case R_MIPS_GOT_DISP:
4171 case R_MIPS_GOT_HI16:
4172 case R_MIPS_CALL_HI16:
4173 case R_MIPS_GOT_LO16:
4174 case R_MIPS_CALL_LO16:
4175 case R_MIPS_TLS_GD:
4176 case R_MIPS_TLS_GOTTPREL:
4177 case R_MIPS_TLS_LDM:
4178 /* Find the index into the GOT where this value is located. */
4179 if (r_type == R_MIPS_TLS_LDM)
4180 {
4181 g = mips_elf_local_got_index (abfd, input_bfd, info,
4182 0, 0, NULL, r_type);
4183 if (g == MINUS_ONE)
4184 return bfd_reloc_outofrange;
4185 }
4186 else if (!local_p)
4187 {
4188 /* On VxWorks, CALL relocations should refer to the .got.plt
4189 entry, which is initialized to point at the PLT stub. */
4190 if (htab->is_vxworks
4191 && (r_type == R_MIPS_CALL_HI16
4192 || r_type == R_MIPS_CALL_LO16
4193 || r_type == R_MIPS_CALL16))
4194 {
4195 BFD_ASSERT (addend == 0);
4196 BFD_ASSERT (h->root.needs_plt);
4197 g = mips_elf_gotplt_index (info, &h->root);
4198 }
4199 else
4200 {
4201 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4202 GOT_PAGE relocation that decays to GOT_DISP because the
4203 symbol turns out to be global. The addend is then added
4204 as GOT_OFST. */
4205 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4206 g = mips_elf_global_got_index (dynobj, input_bfd,
4207 &h->root, r_type, info);
4208 if (h->tls_type == GOT_NORMAL
4209 && (! elf_hash_table(info)->dynamic_sections_created
4210 || (info->shared
4211 && (info->symbolic || h->root.forced_local)
4212 && h->root.def_regular)))
4213 {
4214 /* This is a static link or a -Bsymbolic link. The
4215 symbol is defined locally, or was forced to be local.
4216 We must initialize this entry in the GOT. */
4217 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4218 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4219 }
4220 }
4221 }
4222 else if (!htab->is_vxworks
4223 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4224 /* The calculation below does not involve "g". */
4225 break;
4226 else
4227 {
4228 g = mips_elf_local_got_index (abfd, input_bfd, info,
4229 symbol + addend, r_symndx, h, r_type);
4230 if (g == MINUS_ONE)
4231 return bfd_reloc_outofrange;
4232 }
4233
4234 /* Convert GOT indices to actual offsets. */
4235 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4236 break;
4237
4238 case R_MIPS_HI16:
4239 case R_MIPS_LO16:
4240 case R_MIPS_GPREL16:
4241 case R_MIPS_GPREL32:
4242 case R_MIPS_LITERAL:
4243 case R_MIPS16_HI16:
4244 case R_MIPS16_LO16:
4245 case R_MIPS16_GPREL:
4246 gp0 = _bfd_get_gp_value (input_bfd);
4247 gp = _bfd_get_gp_value (abfd);
4248 if (dynobj)
4249 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4250 input_bfd);
4251 break;
4252
4253 default:
4254 break;
4255 }
4256
4257 if (gnu_local_gp_p)
4258 symbol = gp;
4259
4260 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4261 symbols are resolved by the loader. Add them to .rela.dyn. */
4262 if (h != NULL && is_gott_symbol (info, &h->root))
4263 {
4264 Elf_Internal_Rela outrel;
4265 bfd_byte *loc;
4266 asection *s;
4267
4268 s = mips_elf_rel_dyn_section (info, FALSE);
4269 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4270
4271 outrel.r_offset = (input_section->output_section->vma
4272 + input_section->output_offset
4273 + relocation->r_offset);
4274 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4275 outrel.r_addend = addend;
4276 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4277
4278 /* If we've written this relocation for a readonly section,
4279 we need to set DF_TEXTREL again, so that we do not delete the
4280 DT_TEXTREL tag. */
4281 if (MIPS_ELF_READONLY_SECTION (input_section))
4282 info->flags |= DF_TEXTREL;
4283
4284 *valuep = 0;
4285 return bfd_reloc_ok;
4286 }
4287
4288 /* Figure out what kind of relocation is being performed. */
4289 switch (r_type)
4290 {
4291 case R_MIPS_NONE:
4292 return bfd_reloc_continue;
4293
4294 case R_MIPS_16:
4295 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4296 overflowed_p = mips_elf_overflow_p (value, 16);
4297 break;
4298
4299 case R_MIPS_32:
4300 case R_MIPS_REL32:
4301 case R_MIPS_64:
4302 if ((info->shared
4303 || (!htab->is_vxworks
4304 && htab->root.dynamic_sections_created
4305 && h != NULL
4306 && h->root.def_dynamic
4307 && !h->root.def_regular))
4308 && r_symndx != 0
4309 && (input_section->flags & SEC_ALLOC) != 0)
4310 {
4311 /* If we're creating a shared library, or this relocation is
4312 against a symbol in a shared library, then we can't know
4313 where the symbol will end up. So, we create a relocation
4314 record in the output, and leave the job up to the dynamic
4315 linker.
4316
4317 In VxWorks executables, references to external symbols
4318 are handled using copy relocs or PLT stubs, so there's
4319 no need to add a dynamic relocation here. */
4320 value = addend;
4321 if (!mips_elf_create_dynamic_relocation (abfd,
4322 info,
4323 relocation,
4324 h,
4325 sec,
4326 symbol,
4327 &value,
4328 input_section))
4329 return bfd_reloc_undefined;
4330 }
4331 else
4332 {
4333 if (r_type != R_MIPS_REL32)
4334 value = symbol + addend;
4335 else
4336 value = addend;
4337 }
4338 value &= howto->dst_mask;
4339 break;
4340
4341 case R_MIPS_PC32:
4342 value = symbol + addend - p;
4343 value &= howto->dst_mask;
4344 break;
4345
4346 case R_MIPS16_26:
4347 /* The calculation for R_MIPS16_26 is just the same as for an
4348 R_MIPS_26. It's only the storage of the relocated field into
4349 the output file that's different. That's handled in
4350 mips_elf_perform_relocation. So, we just fall through to the
4351 R_MIPS_26 case here. */
4352 case R_MIPS_26:
4353 if (local_p)
4354 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4355 else
4356 {
4357 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4358 if (h->root.root.type != bfd_link_hash_undefweak)
4359 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4360 }
4361 value &= howto->dst_mask;
4362 break;
4363
4364 case R_MIPS_TLS_DTPREL_HI16:
4365 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4366 & howto->dst_mask);
4367 break;
4368
4369 case R_MIPS_TLS_DTPREL_LO16:
4370 case R_MIPS_TLS_DTPREL32:
4371 case R_MIPS_TLS_DTPREL64:
4372 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4373 break;
4374
4375 case R_MIPS_TLS_TPREL_HI16:
4376 value = (mips_elf_high (addend + symbol - tprel_base (info))
4377 & howto->dst_mask);
4378 break;
4379
4380 case R_MIPS_TLS_TPREL_LO16:
4381 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4382 break;
4383
4384 case R_MIPS_HI16:
4385 case R_MIPS16_HI16:
4386 if (!gp_disp_p)
4387 {
4388 value = mips_elf_high (addend + symbol);
4389 value &= howto->dst_mask;
4390 }
4391 else
4392 {
4393 /* For MIPS16 ABI code we generate this sequence
4394 0: li $v0,%hi(_gp_disp)
4395 4: addiupc $v1,%lo(_gp_disp)
4396 8: sll $v0,16
4397 12: addu $v0,$v1
4398 14: move $gp,$v0
4399 So the offsets of hi and lo relocs are the same, but the
4400 $pc is four higher than $t9 would be, so reduce
4401 both reloc addends by 4. */
4402 if (r_type == R_MIPS16_HI16)
4403 value = mips_elf_high (addend + gp - p - 4);
4404 else
4405 value = mips_elf_high (addend + gp - p);
4406 overflowed_p = mips_elf_overflow_p (value, 16);
4407 }
4408 break;
4409
4410 case R_MIPS_LO16:
4411 case R_MIPS16_LO16:
4412 if (!gp_disp_p)
4413 value = (symbol + addend) & howto->dst_mask;
4414 else
4415 {
4416 /* See the comment for R_MIPS16_HI16 above for the reason
4417 for this conditional. */
4418 if (r_type == R_MIPS16_LO16)
4419 value = addend + gp - p;
4420 else
4421 value = addend + gp - p + 4;
4422 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4423 for overflow. But, on, say, IRIX5, relocations against
4424 _gp_disp are normally generated from the .cpload
4425 pseudo-op. It generates code that normally looks like
4426 this:
4427
4428 lui $gp,%hi(_gp_disp)
4429 addiu $gp,$gp,%lo(_gp_disp)
4430 addu $gp,$gp,$t9
4431
4432 Here $t9 holds the address of the function being called,
4433 as required by the MIPS ELF ABI. The R_MIPS_LO16
4434 relocation can easily overflow in this situation, but the
4435 R_MIPS_HI16 relocation will handle the overflow.
4436 Therefore, we consider this a bug in the MIPS ABI, and do
4437 not check for overflow here. */
4438 }
4439 break;
4440
4441 case R_MIPS_LITERAL:
4442 /* Because we don't merge literal sections, we can handle this
4443 just like R_MIPS_GPREL16. In the long run, we should merge
4444 shared literals, and then we will need to additional work
4445 here. */
4446
4447 /* Fall through. */
4448
4449 case R_MIPS16_GPREL:
4450 /* The R_MIPS16_GPREL performs the same calculation as
4451 R_MIPS_GPREL16, but stores the relocated bits in a different
4452 order. We don't need to do anything special here; the
4453 differences are handled in mips_elf_perform_relocation. */
4454 case R_MIPS_GPREL16:
4455 /* Only sign-extend the addend if it was extracted from the
4456 instruction. If the addend was separate, leave it alone,
4457 otherwise we may lose significant bits. */
4458 if (howto->partial_inplace)
4459 addend = _bfd_mips_elf_sign_extend (addend, 16);
4460 value = symbol + addend - gp;
4461 /* If the symbol was local, any earlier relocatable links will
4462 have adjusted its addend with the gp offset, so compensate
4463 for that now. Don't do it for symbols forced local in this
4464 link, though, since they won't have had the gp offset applied
4465 to them before. */
4466 if (was_local_p)
4467 value += gp0;
4468 overflowed_p = mips_elf_overflow_p (value, 16);
4469 break;
4470
4471 case R_MIPS_GOT16:
4472 case R_MIPS_CALL16:
4473 /* VxWorks does not have separate local and global semantics for
4474 R_MIPS_GOT16; every relocation evaluates to "G". */
4475 if (!htab->is_vxworks && local_p)
4476 {
4477 bfd_boolean forced;
4478
4479 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4480 local_sections, FALSE);
4481 value = mips_elf_got16_entry (abfd, input_bfd, info,
4482 symbol + addend, forced);
4483 if (value == MINUS_ONE)
4484 return bfd_reloc_outofrange;
4485 value
4486 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4487 overflowed_p = mips_elf_overflow_p (value, 16);
4488 break;
4489 }
4490
4491 /* Fall through. */
4492
4493 case R_MIPS_TLS_GD:
4494 case R_MIPS_TLS_GOTTPREL:
4495 case R_MIPS_TLS_LDM:
4496 case R_MIPS_GOT_DISP:
4497 got_disp:
4498 value = g;
4499 overflowed_p = mips_elf_overflow_p (value, 16);
4500 break;
4501
4502 case R_MIPS_GPREL32:
4503 value = (addend + symbol + gp0 - gp);
4504 if (!save_addend)
4505 value &= howto->dst_mask;
4506 break;
4507
4508 case R_MIPS_PC16:
4509 case R_MIPS_GNU_REL16_S2:
4510 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4511 overflowed_p = mips_elf_overflow_p (value, 18);
4512 value >>= howto->rightshift;
4513 value &= howto->dst_mask;
4514 break;
4515
4516 case R_MIPS_GOT_HI16:
4517 case R_MIPS_CALL_HI16:
4518 /* We're allowed to handle these two relocations identically.
4519 The dynamic linker is allowed to handle the CALL relocations
4520 differently by creating a lazy evaluation stub. */
4521 value = g;
4522 value = mips_elf_high (value);
4523 value &= howto->dst_mask;
4524 break;
4525
4526 case R_MIPS_GOT_LO16:
4527 case R_MIPS_CALL_LO16:
4528 value = g & howto->dst_mask;
4529 break;
4530
4531 case R_MIPS_GOT_PAGE:
4532 /* GOT_PAGE relocations that reference non-local symbols decay
4533 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4534 0. */
4535 if (! local_p)
4536 goto got_disp;
4537 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4538 if (value == MINUS_ONE)
4539 return bfd_reloc_outofrange;
4540 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4542 break;
4543
4544 case R_MIPS_GOT_OFST:
4545 if (local_p)
4546 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4547 else
4548 value = addend;
4549 overflowed_p = mips_elf_overflow_p (value, 16);
4550 break;
4551
4552 case R_MIPS_SUB:
4553 value = symbol - addend;
4554 value &= howto->dst_mask;
4555 break;
4556
4557 case R_MIPS_HIGHER:
4558 value = mips_elf_higher (addend + symbol);
4559 value &= howto->dst_mask;
4560 break;
4561
4562 case R_MIPS_HIGHEST:
4563 value = mips_elf_highest (addend + symbol);
4564 value &= howto->dst_mask;
4565 break;
4566
4567 case R_MIPS_SCN_DISP:
4568 value = symbol + addend - sec->output_offset;
4569 value &= howto->dst_mask;
4570 break;
4571
4572 case R_MIPS_JALR:
4573 /* This relocation is only a hint. In some cases, we optimize
4574 it into a bal instruction. But we don't try to optimize
4575 branches to the PLT; that will wind up wasting time. */
4576 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4577 return bfd_reloc_continue;
4578 value = symbol + addend;
4579 break;
4580
4581 case R_MIPS_PJUMP:
4582 case R_MIPS_GNU_VTINHERIT:
4583 case R_MIPS_GNU_VTENTRY:
4584 /* We don't do anything with these at present. */
4585 return bfd_reloc_continue;
4586
4587 default:
4588 /* An unrecognized relocation type. */
4589 return bfd_reloc_notsupported;
4590 }
4591
4592 /* Store the VALUE for our caller. */
4593 *valuep = value;
4594 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4595 }
4596
4597 /* Obtain the field relocated by RELOCATION. */
4598
4599 static bfd_vma
4600 mips_elf_obtain_contents (reloc_howto_type *howto,
4601 const Elf_Internal_Rela *relocation,
4602 bfd *input_bfd, bfd_byte *contents)
4603 {
4604 bfd_vma x;
4605 bfd_byte *location = contents + relocation->r_offset;
4606
4607 /* Obtain the bytes. */
4608 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4609
4610 return x;
4611 }
4612
4613 /* It has been determined that the result of the RELOCATION is the
4614 VALUE. Use HOWTO to place VALUE into the output file at the
4615 appropriate position. The SECTION is the section to which the
4616 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4617 for the relocation must be either JAL or JALX, and it is
4618 unconditionally converted to JALX.
4619
4620 Returns FALSE if anything goes wrong. */
4621
4622 static bfd_boolean
4623 mips_elf_perform_relocation (struct bfd_link_info *info,
4624 reloc_howto_type *howto,
4625 const Elf_Internal_Rela *relocation,
4626 bfd_vma value, bfd *input_bfd,
4627 asection *input_section, bfd_byte *contents,
4628 bfd_boolean require_jalx)
4629 {
4630 bfd_vma x;
4631 bfd_byte *location;
4632 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4633
4634 /* Figure out where the relocation is occurring. */
4635 location = contents + relocation->r_offset;
4636
4637 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4638
4639 /* Obtain the current value. */
4640 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4641
4642 /* Clear the field we are setting. */
4643 x &= ~howto->dst_mask;
4644
4645 /* Set the field. */
4646 x |= (value & howto->dst_mask);
4647
4648 /* If required, turn JAL into JALX. */
4649 if (require_jalx)
4650 {
4651 bfd_boolean ok;
4652 bfd_vma opcode = x >> 26;
4653 bfd_vma jalx_opcode;
4654
4655 /* Check to see if the opcode is already JAL or JALX. */
4656 if (r_type == R_MIPS16_26)
4657 {
4658 ok = ((opcode == 0x6) || (opcode == 0x7));
4659 jalx_opcode = 0x7;
4660 }
4661 else
4662 {
4663 ok = ((opcode == 0x3) || (opcode == 0x1d));
4664 jalx_opcode = 0x1d;
4665 }
4666
4667 /* If the opcode is not JAL or JALX, there's a problem. */
4668 if (!ok)
4669 {
4670 (*_bfd_error_handler)
4671 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4672 input_bfd,
4673 input_section,
4674 (unsigned long) relocation->r_offset);
4675 bfd_set_error (bfd_error_bad_value);
4676 return FALSE;
4677 }
4678
4679 /* Make this the JALX opcode. */
4680 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4681 }
4682
4683 /* On the RM9000, bal is faster than jal, because bal uses branch
4684 prediction hardware. If we are linking for the RM9000, and we
4685 see jal, and bal fits, use it instead. Note that this
4686 transformation should be safe for all architectures. */
4687 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4688 && !info->relocatable
4689 && !require_jalx
4690 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4691 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4692 {
4693 bfd_vma addr;
4694 bfd_vma dest;
4695 bfd_signed_vma off;
4696
4697 addr = (input_section->output_section->vma
4698 + input_section->output_offset
4699 + relocation->r_offset
4700 + 4);
4701 if (r_type == R_MIPS_26)
4702 dest = (value << 2) | ((addr >> 28) << 28);
4703 else
4704 dest = value;
4705 off = dest - addr;
4706 if (off <= 0x1ffff && off >= -0x20000)
4707 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4708 }
4709
4710 /* Put the value into the output. */
4711 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4712
4713 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4714 location);
4715
4716 return TRUE;
4717 }
4718
4719 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4720
4721 static bfd_boolean
4722 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4723 {
4724 const char *name = bfd_get_section_name (abfd, section);
4725
4726 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4727 }
4728 \f
4729 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4730
4731 static void
4732 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4733 unsigned int n)
4734 {
4735 asection *s;
4736 struct mips_elf_link_hash_table *htab;
4737
4738 htab = mips_elf_hash_table (info);
4739 s = mips_elf_rel_dyn_section (info, FALSE);
4740 BFD_ASSERT (s != NULL);
4741
4742 if (htab->is_vxworks)
4743 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4744 else
4745 {
4746 if (s->size == 0)
4747 {
4748 /* Make room for a null element. */
4749 s->size += MIPS_ELF_REL_SIZE (abfd);
4750 ++s->reloc_count;
4751 }
4752 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4753 }
4754 }
4755
4756 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4757 is the original relocation, which is now being transformed into a
4758 dynamic relocation. The ADDENDP is adjusted if necessary; the
4759 caller should store the result in place of the original addend. */
4760
4761 static bfd_boolean
4762 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4763 struct bfd_link_info *info,
4764 const Elf_Internal_Rela *rel,
4765 struct mips_elf_link_hash_entry *h,
4766 asection *sec, bfd_vma symbol,
4767 bfd_vma *addendp, asection *input_section)
4768 {
4769 Elf_Internal_Rela outrel[3];
4770 asection *sreloc;
4771 bfd *dynobj;
4772 int r_type;
4773 long indx;
4774 bfd_boolean defined_p;
4775 struct mips_elf_link_hash_table *htab;
4776
4777 htab = mips_elf_hash_table (info);
4778 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4779 dynobj = elf_hash_table (info)->dynobj;
4780 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4781 BFD_ASSERT (sreloc != NULL);
4782 BFD_ASSERT (sreloc->contents != NULL);
4783 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4784 < sreloc->size);
4785
4786 outrel[0].r_offset =
4787 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4788 if (ABI_64_P (output_bfd))
4789 {
4790 outrel[1].r_offset =
4791 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4792 outrel[2].r_offset =
4793 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4794 }
4795
4796 if (outrel[0].r_offset == MINUS_ONE)
4797 /* The relocation field has been deleted. */
4798 return TRUE;
4799
4800 if (outrel[0].r_offset == MINUS_TWO)
4801 {
4802 /* The relocation field has been converted into a relative value of
4803 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4804 the field to be fully relocated, so add in the symbol's value. */
4805 *addendp += symbol;
4806 return TRUE;
4807 }
4808
4809 /* We must now calculate the dynamic symbol table index to use
4810 in the relocation. */
4811 if (h != NULL
4812 && (!h->root.def_regular
4813 || (info->shared && !info->symbolic && !h->root.forced_local)))
4814 {
4815 indx = h->root.dynindx;
4816 if (SGI_COMPAT (output_bfd))
4817 defined_p = h->root.def_regular;
4818 else
4819 /* ??? glibc's ld.so just adds the final GOT entry to the
4820 relocation field. It therefore treats relocs against
4821 defined symbols in the same way as relocs against
4822 undefined symbols. */
4823 defined_p = FALSE;
4824 }
4825 else
4826 {
4827 if (sec != NULL && bfd_is_abs_section (sec))
4828 indx = 0;
4829 else if (sec == NULL || sec->owner == NULL)
4830 {
4831 bfd_set_error (bfd_error_bad_value);
4832 return FALSE;
4833 }
4834 else
4835 {
4836 indx = elf_section_data (sec->output_section)->dynindx;
4837 if (indx == 0)
4838 {
4839 asection *osec = htab->root.text_index_section;
4840 indx = elf_section_data (osec)->dynindx;
4841 }
4842 if (indx == 0)
4843 abort ();
4844 }
4845
4846 /* Instead of generating a relocation using the section
4847 symbol, we may as well make it a fully relative
4848 relocation. We want to avoid generating relocations to
4849 local symbols because we used to generate them
4850 incorrectly, without adding the original symbol value,
4851 which is mandated by the ABI for section symbols. In
4852 order to give dynamic loaders and applications time to
4853 phase out the incorrect use, we refrain from emitting
4854 section-relative relocations. It's not like they're
4855 useful, after all. This should be a bit more efficient
4856 as well. */
4857 /* ??? Although this behavior is compatible with glibc's ld.so,
4858 the ABI says that relocations against STN_UNDEF should have
4859 a symbol value of 0. Irix rld honors this, so relocations
4860 against STN_UNDEF have no effect. */
4861 if (!SGI_COMPAT (output_bfd))
4862 indx = 0;
4863 defined_p = TRUE;
4864 }
4865
4866 /* If the relocation was previously an absolute relocation and
4867 this symbol will not be referred to by the relocation, we must
4868 adjust it by the value we give it in the dynamic symbol table.
4869 Otherwise leave the job up to the dynamic linker. */
4870 if (defined_p && r_type != R_MIPS_REL32)
4871 *addendp += symbol;
4872
4873 if (htab->is_vxworks)
4874 /* VxWorks uses non-relative relocations for this. */
4875 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4876 else
4877 /* The relocation is always an REL32 relocation because we don't
4878 know where the shared library will wind up at load-time. */
4879 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4880 R_MIPS_REL32);
4881
4882 /* For strict adherence to the ABI specification, we should
4883 generate a R_MIPS_64 relocation record by itself before the
4884 _REL32/_64 record as well, such that the addend is read in as
4885 a 64-bit value (REL32 is a 32-bit relocation, after all).
4886 However, since none of the existing ELF64 MIPS dynamic
4887 loaders seems to care, we don't waste space with these
4888 artificial relocations. If this turns out to not be true,
4889 mips_elf_allocate_dynamic_relocation() should be tweaked so
4890 as to make room for a pair of dynamic relocations per
4891 invocation if ABI_64_P, and here we should generate an
4892 additional relocation record with R_MIPS_64 by itself for a
4893 NULL symbol before this relocation record. */
4894 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4895 ABI_64_P (output_bfd)
4896 ? R_MIPS_64
4897 : R_MIPS_NONE);
4898 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4899
4900 /* Adjust the output offset of the relocation to reference the
4901 correct location in the output file. */
4902 outrel[0].r_offset += (input_section->output_section->vma
4903 + input_section->output_offset);
4904 outrel[1].r_offset += (input_section->output_section->vma
4905 + input_section->output_offset);
4906 outrel[2].r_offset += (input_section->output_section->vma
4907 + input_section->output_offset);
4908
4909 /* Put the relocation back out. We have to use the special
4910 relocation outputter in the 64-bit case since the 64-bit
4911 relocation format is non-standard. */
4912 if (ABI_64_P (output_bfd))
4913 {
4914 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4915 (output_bfd, &outrel[0],
4916 (sreloc->contents
4917 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4918 }
4919 else if (htab->is_vxworks)
4920 {
4921 /* VxWorks uses RELA rather than REL dynamic relocations. */
4922 outrel[0].r_addend = *addendp;
4923 bfd_elf32_swap_reloca_out
4924 (output_bfd, &outrel[0],
4925 (sreloc->contents
4926 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4927 }
4928 else
4929 bfd_elf32_swap_reloc_out
4930 (output_bfd, &outrel[0],
4931 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4932
4933 /* We've now added another relocation. */
4934 ++sreloc->reloc_count;
4935
4936 /* Make sure the output section is writable. The dynamic linker
4937 will be writing to it. */
4938 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4939 |= SHF_WRITE;
4940
4941 /* On IRIX5, make an entry of compact relocation info. */
4942 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4943 {
4944 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4945 bfd_byte *cr;
4946
4947 if (scpt)
4948 {
4949 Elf32_crinfo cptrel;
4950
4951 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4952 cptrel.vaddr = (rel->r_offset
4953 + input_section->output_section->vma
4954 + input_section->output_offset);
4955 if (r_type == R_MIPS_REL32)
4956 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4957 else
4958 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4959 mips_elf_set_cr_dist2to (cptrel, 0);
4960 cptrel.konst = *addendp;
4961
4962 cr = (scpt->contents
4963 + sizeof (Elf32_External_compact_rel));
4964 mips_elf_set_cr_relvaddr (cptrel, 0);
4965 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4966 ((Elf32_External_crinfo *) cr
4967 + scpt->reloc_count));
4968 ++scpt->reloc_count;
4969 }
4970 }
4971
4972 /* If we've written this relocation for a readonly section,
4973 we need to set DF_TEXTREL again, so that we do not delete the
4974 DT_TEXTREL tag. */
4975 if (MIPS_ELF_READONLY_SECTION (input_section))
4976 info->flags |= DF_TEXTREL;
4977
4978 return TRUE;
4979 }
4980 \f
4981 /* Return the MACH for a MIPS e_flags value. */
4982
4983 unsigned long
4984 _bfd_elf_mips_mach (flagword flags)
4985 {
4986 switch (flags & EF_MIPS_MACH)
4987 {
4988 case E_MIPS_MACH_3900:
4989 return bfd_mach_mips3900;
4990
4991 case E_MIPS_MACH_4010:
4992 return bfd_mach_mips4010;
4993
4994 case E_MIPS_MACH_4100:
4995 return bfd_mach_mips4100;
4996
4997 case E_MIPS_MACH_4111:
4998 return bfd_mach_mips4111;
4999
5000 case E_MIPS_MACH_4120:
5001 return bfd_mach_mips4120;
5002
5003 case E_MIPS_MACH_4650:
5004 return bfd_mach_mips4650;
5005
5006 case E_MIPS_MACH_5400:
5007 return bfd_mach_mips5400;
5008
5009 case E_MIPS_MACH_5500:
5010 return bfd_mach_mips5500;
5011
5012 case E_MIPS_MACH_9000:
5013 return bfd_mach_mips9000;
5014
5015 case E_MIPS_MACH_SB1:
5016 return bfd_mach_mips_sb1;
5017
5018 default:
5019 switch (flags & EF_MIPS_ARCH)
5020 {
5021 default:
5022 case E_MIPS_ARCH_1:
5023 return bfd_mach_mips3000;
5024
5025 case E_MIPS_ARCH_2:
5026 return bfd_mach_mips6000;
5027
5028 case E_MIPS_ARCH_3:
5029 return bfd_mach_mips4000;
5030
5031 case E_MIPS_ARCH_4:
5032 return bfd_mach_mips8000;
5033
5034 case E_MIPS_ARCH_5:
5035 return bfd_mach_mips5;
5036
5037 case E_MIPS_ARCH_32:
5038 return bfd_mach_mipsisa32;
5039
5040 case E_MIPS_ARCH_64:
5041 return bfd_mach_mipsisa64;
5042
5043 case E_MIPS_ARCH_32R2:
5044 return bfd_mach_mipsisa32r2;
5045
5046 case E_MIPS_ARCH_64R2:
5047 return bfd_mach_mipsisa64r2;
5048 }
5049 }
5050
5051 return 0;
5052 }
5053
5054 /* Return printable name for ABI. */
5055
5056 static INLINE char *
5057 elf_mips_abi_name (bfd *abfd)
5058 {
5059 flagword flags;
5060
5061 flags = elf_elfheader (abfd)->e_flags;
5062 switch (flags & EF_MIPS_ABI)
5063 {
5064 case 0:
5065 if (ABI_N32_P (abfd))
5066 return "N32";
5067 else if (ABI_64_P (abfd))
5068 return "64";
5069 else
5070 return "none";
5071 case E_MIPS_ABI_O32:
5072 return "O32";
5073 case E_MIPS_ABI_O64:
5074 return "O64";
5075 case E_MIPS_ABI_EABI32:
5076 return "EABI32";
5077 case E_MIPS_ABI_EABI64:
5078 return "EABI64";
5079 default:
5080 return "unknown abi";
5081 }
5082 }
5083 \f
5084 /* MIPS ELF uses two common sections. One is the usual one, and the
5085 other is for small objects. All the small objects are kept
5086 together, and then referenced via the gp pointer, which yields
5087 faster assembler code. This is what we use for the small common
5088 section. This approach is copied from ecoff.c. */
5089 static asection mips_elf_scom_section;
5090 static asymbol mips_elf_scom_symbol;
5091 static asymbol *mips_elf_scom_symbol_ptr;
5092
5093 /* MIPS ELF also uses an acommon section, which represents an
5094 allocated common symbol which may be overridden by a
5095 definition in a shared library. */
5096 static asection mips_elf_acom_section;
5097 static asymbol mips_elf_acom_symbol;
5098 static asymbol *mips_elf_acom_symbol_ptr;
5099
5100 /* Handle the special MIPS section numbers that a symbol may use.
5101 This is used for both the 32-bit and the 64-bit ABI. */
5102
5103 void
5104 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5105 {
5106 elf_symbol_type *elfsym;
5107
5108 elfsym = (elf_symbol_type *) asym;
5109 switch (elfsym->internal_elf_sym.st_shndx)
5110 {
5111 case SHN_MIPS_ACOMMON:
5112 /* This section is used in a dynamically linked executable file.
5113 It is an allocated common section. The dynamic linker can
5114 either resolve these symbols to something in a shared
5115 library, or it can just leave them here. For our purposes,
5116 we can consider these symbols to be in a new section. */
5117 if (mips_elf_acom_section.name == NULL)
5118 {
5119 /* Initialize the acommon section. */
5120 mips_elf_acom_section.name = ".acommon";
5121 mips_elf_acom_section.flags = SEC_ALLOC;
5122 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5123 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5124 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5125 mips_elf_acom_symbol.name = ".acommon";
5126 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5127 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5128 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5129 }
5130 asym->section = &mips_elf_acom_section;
5131 break;
5132
5133 case SHN_COMMON:
5134 /* Common symbols less than the GP size are automatically
5135 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5136 if (asym->value > elf_gp_size (abfd)
5137 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5138 || IRIX_COMPAT (abfd) == ict_irix6)
5139 break;
5140 /* Fall through. */
5141 case SHN_MIPS_SCOMMON:
5142 if (mips_elf_scom_section.name == NULL)
5143 {
5144 /* Initialize the small common section. */
5145 mips_elf_scom_section.name = ".scommon";
5146 mips_elf_scom_section.flags = SEC_IS_COMMON;
5147 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5148 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5149 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5150 mips_elf_scom_symbol.name = ".scommon";
5151 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5152 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5153 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5154 }
5155 asym->section = &mips_elf_scom_section;
5156 asym->value = elfsym->internal_elf_sym.st_size;
5157 break;
5158
5159 case SHN_MIPS_SUNDEFINED:
5160 asym->section = bfd_und_section_ptr;
5161 break;
5162
5163 case SHN_MIPS_TEXT:
5164 {
5165 asection *section = bfd_get_section_by_name (abfd, ".text");
5166
5167 BFD_ASSERT (SGI_COMPAT (abfd));
5168 if (section != NULL)
5169 {
5170 asym->section = section;
5171 /* MIPS_TEXT is a bit special, the address is not an offset
5172 to the base of the .text section. So substract the section
5173 base address to make it an offset. */
5174 asym->value -= section->vma;
5175 }
5176 }
5177 break;
5178
5179 case SHN_MIPS_DATA:
5180 {
5181 asection *section = bfd_get_section_by_name (abfd, ".data");
5182
5183 BFD_ASSERT (SGI_COMPAT (abfd));
5184 if (section != NULL)
5185 {
5186 asym->section = section;
5187 /* MIPS_DATA is a bit special, the address is not an offset
5188 to the base of the .data section. So substract the section
5189 base address to make it an offset. */
5190 asym->value -= section->vma;
5191 }
5192 }
5193 break;
5194 }
5195 }
5196 \f
5197 /* Implement elf_backend_eh_frame_address_size. This differs from
5198 the default in the way it handles EABI64.
5199
5200 EABI64 was originally specified as an LP64 ABI, and that is what
5201 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5202 historically accepted the combination of -mabi=eabi and -mlong32,
5203 and this ILP32 variation has become semi-official over time.
5204 Both forms use elf32 and have pointer-sized FDE addresses.
5205
5206 If an EABI object was generated by GCC 4.0 or above, it will have
5207 an empty .gcc_compiled_longXX section, where XX is the size of longs
5208 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5209 have no special marking to distinguish them from LP64 objects.
5210
5211 We don't want users of the official LP64 ABI to be punished for the
5212 existence of the ILP32 variant, but at the same time, we don't want
5213 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5214 We therefore take the following approach:
5215
5216 - If ABFD contains a .gcc_compiled_longXX section, use it to
5217 determine the pointer size.
5218
5219 - Otherwise check the type of the first relocation. Assume that
5220 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5221
5222 - Otherwise punt.
5223
5224 The second check is enough to detect LP64 objects generated by pre-4.0
5225 compilers because, in the kind of output generated by those compilers,
5226 the first relocation will be associated with either a CIE personality
5227 routine or an FDE start address. Furthermore, the compilers never
5228 used a special (non-pointer) encoding for this ABI.
5229
5230 Checking the relocation type should also be safe because there is no
5231 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5232 did so. */
5233
5234 unsigned int
5235 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5236 {
5237 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5238 return 8;
5239 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5240 {
5241 bfd_boolean long32_p, long64_p;
5242
5243 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5244 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5245 if (long32_p && long64_p)
5246 return 0;
5247 if (long32_p)
5248 return 4;
5249 if (long64_p)
5250 return 8;
5251
5252 if (sec->reloc_count > 0
5253 && elf_section_data (sec)->relocs != NULL
5254 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5255 == R_MIPS_64))
5256 return 8;
5257
5258 return 0;
5259 }
5260 return 4;
5261 }
5262 \f
5263 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5264 relocations against two unnamed section symbols to resolve to the
5265 same address. For example, if we have code like:
5266
5267 lw $4,%got_disp(.data)($gp)
5268 lw $25,%got_disp(.text)($gp)
5269 jalr $25
5270
5271 then the linker will resolve both relocations to .data and the program
5272 will jump there rather than to .text.
5273
5274 We can work around this problem by giving names to local section symbols.
5275 This is also what the MIPSpro tools do. */
5276
5277 bfd_boolean
5278 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5279 {
5280 return SGI_COMPAT (abfd);
5281 }
5282 \f
5283 /* Work over a section just before writing it out. This routine is
5284 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5285 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5286 a better way. */
5287
5288 bfd_boolean
5289 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5290 {
5291 if (hdr->sh_type == SHT_MIPS_REGINFO
5292 && hdr->sh_size > 0)
5293 {
5294 bfd_byte buf[4];
5295
5296 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5297 BFD_ASSERT (hdr->contents == NULL);
5298
5299 if (bfd_seek (abfd,
5300 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5301 SEEK_SET) != 0)
5302 return FALSE;
5303 H_PUT_32 (abfd, elf_gp (abfd), buf);
5304 if (bfd_bwrite (buf, 4, abfd) != 4)
5305 return FALSE;
5306 }
5307
5308 if (hdr->sh_type == SHT_MIPS_OPTIONS
5309 && hdr->bfd_section != NULL
5310 && mips_elf_section_data (hdr->bfd_section) != NULL
5311 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5312 {
5313 bfd_byte *contents, *l, *lend;
5314
5315 /* We stored the section contents in the tdata field in the
5316 set_section_contents routine. We save the section contents
5317 so that we don't have to read them again.
5318 At this point we know that elf_gp is set, so we can look
5319 through the section contents to see if there is an
5320 ODK_REGINFO structure. */
5321
5322 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5323 l = contents;
5324 lend = contents + hdr->sh_size;
5325 while (l + sizeof (Elf_External_Options) <= lend)
5326 {
5327 Elf_Internal_Options intopt;
5328
5329 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5330 &intopt);
5331 if (intopt.size < sizeof (Elf_External_Options))
5332 {
5333 (*_bfd_error_handler)
5334 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5335 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5336 break;
5337 }
5338 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5339 {
5340 bfd_byte buf[8];
5341
5342 if (bfd_seek (abfd,
5343 (hdr->sh_offset
5344 + (l - contents)
5345 + sizeof (Elf_External_Options)
5346 + (sizeof (Elf64_External_RegInfo) - 8)),
5347 SEEK_SET) != 0)
5348 return FALSE;
5349 H_PUT_64 (abfd, elf_gp (abfd), buf);
5350 if (bfd_bwrite (buf, 8, abfd) != 8)
5351 return FALSE;
5352 }
5353 else if (intopt.kind == ODK_REGINFO)
5354 {
5355 bfd_byte buf[4];
5356
5357 if (bfd_seek (abfd,
5358 (hdr->sh_offset
5359 + (l - contents)
5360 + sizeof (Elf_External_Options)
5361 + (sizeof (Elf32_External_RegInfo) - 4)),
5362 SEEK_SET) != 0)
5363 return FALSE;
5364 H_PUT_32 (abfd, elf_gp (abfd), buf);
5365 if (bfd_bwrite (buf, 4, abfd) != 4)
5366 return FALSE;
5367 }
5368 l += intopt.size;
5369 }
5370 }
5371
5372 if (hdr->bfd_section != NULL)
5373 {
5374 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5375
5376 if (strcmp (name, ".sdata") == 0
5377 || strcmp (name, ".lit8") == 0
5378 || strcmp (name, ".lit4") == 0)
5379 {
5380 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5381 hdr->sh_type = SHT_PROGBITS;
5382 }
5383 else if (strcmp (name, ".sbss") == 0)
5384 {
5385 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5386 hdr->sh_type = SHT_NOBITS;
5387 }
5388 else if (strcmp (name, ".srdata") == 0)
5389 {
5390 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5391 hdr->sh_type = SHT_PROGBITS;
5392 }
5393 else if (strcmp (name, ".compact_rel") == 0)
5394 {
5395 hdr->sh_flags = 0;
5396 hdr->sh_type = SHT_PROGBITS;
5397 }
5398 else if (strcmp (name, ".rtproc") == 0)
5399 {
5400 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5401 {
5402 unsigned int adjust;
5403
5404 adjust = hdr->sh_size % hdr->sh_addralign;
5405 if (adjust != 0)
5406 hdr->sh_size += hdr->sh_addralign - adjust;
5407 }
5408 }
5409 }
5410
5411 return TRUE;
5412 }
5413
5414 /* Handle a MIPS specific section when reading an object file. This
5415 is called when elfcode.h finds a section with an unknown type.
5416 This routine supports both the 32-bit and 64-bit ELF ABI.
5417
5418 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5419 how to. */
5420
5421 bfd_boolean
5422 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5423 Elf_Internal_Shdr *hdr,
5424 const char *name,
5425 int shindex)
5426 {
5427 flagword flags = 0;
5428
5429 /* There ought to be a place to keep ELF backend specific flags, but
5430 at the moment there isn't one. We just keep track of the
5431 sections by their name, instead. Fortunately, the ABI gives
5432 suggested names for all the MIPS specific sections, so we will
5433 probably get away with this. */
5434 switch (hdr->sh_type)
5435 {
5436 case SHT_MIPS_LIBLIST:
5437 if (strcmp (name, ".liblist") != 0)
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_MSYM:
5441 if (strcmp (name, ".msym") != 0)
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_CONFLICT:
5445 if (strcmp (name, ".conflict") != 0)
5446 return FALSE;
5447 break;
5448 case SHT_MIPS_GPTAB:
5449 if (! CONST_STRNEQ (name, ".gptab."))
5450 return FALSE;
5451 break;
5452 case SHT_MIPS_UCODE:
5453 if (strcmp (name, ".ucode") != 0)
5454 return FALSE;
5455 break;
5456 case SHT_MIPS_DEBUG:
5457 if (strcmp (name, ".mdebug") != 0)
5458 return FALSE;
5459 flags = SEC_DEBUGGING;
5460 break;
5461 case SHT_MIPS_REGINFO:
5462 if (strcmp (name, ".reginfo") != 0
5463 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5464 return FALSE;
5465 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5466 break;
5467 case SHT_MIPS_IFACE:
5468 if (strcmp (name, ".MIPS.interfaces") != 0)
5469 return FALSE;
5470 break;
5471 case SHT_MIPS_CONTENT:
5472 if (! CONST_STRNEQ (name, ".MIPS.content"))
5473 return FALSE;
5474 break;
5475 case SHT_MIPS_OPTIONS:
5476 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5477 return FALSE;
5478 break;
5479 case SHT_MIPS_DWARF:
5480 if (! CONST_STRNEQ (name, ".debug_"))
5481 return FALSE;
5482 break;
5483 case SHT_MIPS_SYMBOL_LIB:
5484 if (strcmp (name, ".MIPS.symlib") != 0)
5485 return FALSE;
5486 break;
5487 case SHT_MIPS_EVENTS:
5488 if (! CONST_STRNEQ (name, ".MIPS.events")
5489 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5490 return FALSE;
5491 break;
5492 default:
5493 break;
5494 }
5495
5496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5497 return FALSE;
5498
5499 if (flags)
5500 {
5501 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5502 (bfd_get_section_flags (abfd,
5503 hdr->bfd_section)
5504 | flags)))
5505 return FALSE;
5506 }
5507
5508 /* FIXME: We should record sh_info for a .gptab section. */
5509
5510 /* For a .reginfo section, set the gp value in the tdata information
5511 from the contents of this section. We need the gp value while
5512 processing relocs, so we just get it now. The .reginfo section
5513 is not used in the 64-bit MIPS ELF ABI. */
5514 if (hdr->sh_type == SHT_MIPS_REGINFO)
5515 {
5516 Elf32_External_RegInfo ext;
5517 Elf32_RegInfo s;
5518
5519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5520 &ext, 0, sizeof ext))
5521 return FALSE;
5522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5523 elf_gp (abfd) = s.ri_gp_value;
5524 }
5525
5526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5527 set the gp value based on what we find. We may see both
5528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5529 they should agree. */
5530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5531 {
5532 bfd_byte *contents, *l, *lend;
5533
5534 contents = bfd_malloc (hdr->sh_size);
5535 if (contents == NULL)
5536 return FALSE;
5537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5538 0, hdr->sh_size))
5539 {
5540 free (contents);
5541 return FALSE;
5542 }
5543 l = contents;
5544 lend = contents + hdr->sh_size;
5545 while (l + sizeof (Elf_External_Options) <= lend)
5546 {
5547 Elf_Internal_Options intopt;
5548
5549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5550 &intopt);
5551 if (intopt.size < sizeof (Elf_External_Options))
5552 {
5553 (*_bfd_error_handler)
5554 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5555 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5556 break;
5557 }
5558 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5559 {
5560 Elf64_Internal_RegInfo intreg;
5561
5562 bfd_mips_elf64_swap_reginfo_in
5563 (abfd,
5564 ((Elf64_External_RegInfo *)
5565 (l + sizeof (Elf_External_Options))),
5566 &intreg);
5567 elf_gp (abfd) = intreg.ri_gp_value;
5568 }
5569 else if (intopt.kind == ODK_REGINFO)
5570 {
5571 Elf32_RegInfo intreg;
5572
5573 bfd_mips_elf32_swap_reginfo_in
5574 (abfd,
5575 ((Elf32_External_RegInfo *)
5576 (l + sizeof (Elf_External_Options))),
5577 &intreg);
5578 elf_gp (abfd) = intreg.ri_gp_value;
5579 }
5580 l += intopt.size;
5581 }
5582 free (contents);
5583 }
5584
5585 return TRUE;
5586 }
5587
5588 /* Set the correct type for a MIPS ELF section. We do this by the
5589 section name, which is a hack, but ought to work. This routine is
5590 used by both the 32-bit and the 64-bit ABI. */
5591
5592 bfd_boolean
5593 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5594 {
5595 const char *name = bfd_get_section_name (abfd, sec);
5596
5597 if (strcmp (name, ".liblist") == 0)
5598 {
5599 hdr->sh_type = SHT_MIPS_LIBLIST;
5600 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5601 /* The sh_link field is set in final_write_processing. */
5602 }
5603 else if (strcmp (name, ".conflict") == 0)
5604 hdr->sh_type = SHT_MIPS_CONFLICT;
5605 else if (CONST_STRNEQ (name, ".gptab."))
5606 {
5607 hdr->sh_type = SHT_MIPS_GPTAB;
5608 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5609 /* The sh_info field is set in final_write_processing. */
5610 }
5611 else if (strcmp (name, ".ucode") == 0)
5612 hdr->sh_type = SHT_MIPS_UCODE;
5613 else if (strcmp (name, ".mdebug") == 0)
5614 {
5615 hdr->sh_type = SHT_MIPS_DEBUG;
5616 /* In a shared object on IRIX 5.3, the .mdebug section has an
5617 entsize of 0. FIXME: Does this matter? */
5618 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5619 hdr->sh_entsize = 0;
5620 else
5621 hdr->sh_entsize = 1;
5622 }
5623 else if (strcmp (name, ".reginfo") == 0)
5624 {
5625 hdr->sh_type = SHT_MIPS_REGINFO;
5626 /* In a shared object on IRIX 5.3, the .reginfo section has an
5627 entsize of 0x18. FIXME: Does this matter? */
5628 if (SGI_COMPAT (abfd))
5629 {
5630 if ((abfd->flags & DYNAMIC) != 0)
5631 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5632 else
5633 hdr->sh_entsize = 1;
5634 }
5635 else
5636 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5637 }
5638 else if (SGI_COMPAT (abfd)
5639 && (strcmp (name, ".hash") == 0
5640 || strcmp (name, ".dynamic") == 0
5641 || strcmp (name, ".dynstr") == 0))
5642 {
5643 if (SGI_COMPAT (abfd))
5644 hdr->sh_entsize = 0;
5645 #if 0
5646 /* This isn't how the IRIX6 linker behaves. */
5647 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5648 #endif
5649 }
5650 else if (strcmp (name, ".got") == 0
5651 || strcmp (name, ".srdata") == 0
5652 || strcmp (name, ".sdata") == 0
5653 || strcmp (name, ".sbss") == 0
5654 || strcmp (name, ".lit4") == 0
5655 || strcmp (name, ".lit8") == 0)
5656 hdr->sh_flags |= SHF_MIPS_GPREL;
5657 else if (strcmp (name, ".MIPS.interfaces") == 0)
5658 {
5659 hdr->sh_type = SHT_MIPS_IFACE;
5660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5661 }
5662 else if (CONST_STRNEQ (name, ".MIPS.content"))
5663 {
5664 hdr->sh_type = SHT_MIPS_CONTENT;
5665 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5666 /* The sh_info field is set in final_write_processing. */
5667 }
5668 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5669 {
5670 hdr->sh_type = SHT_MIPS_OPTIONS;
5671 hdr->sh_entsize = 1;
5672 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5673 }
5674 else if (CONST_STRNEQ (name, ".debug_"))
5675 hdr->sh_type = SHT_MIPS_DWARF;
5676 else if (strcmp (name, ".MIPS.symlib") == 0)
5677 {
5678 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5679 /* The sh_link and sh_info fields are set in
5680 final_write_processing. */
5681 }
5682 else if (CONST_STRNEQ (name, ".MIPS.events")
5683 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5684 {
5685 hdr->sh_type = SHT_MIPS_EVENTS;
5686 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5687 /* The sh_link field is set in final_write_processing. */
5688 }
5689 else if (strcmp (name, ".msym") == 0)
5690 {
5691 hdr->sh_type = SHT_MIPS_MSYM;
5692 hdr->sh_flags |= SHF_ALLOC;
5693 hdr->sh_entsize = 8;
5694 }
5695
5696 /* The generic elf_fake_sections will set up REL_HDR using the default
5697 kind of relocations. We used to set up a second header for the
5698 non-default kind of relocations here, but only NewABI would use
5699 these, and the IRIX ld doesn't like resulting empty RELA sections.
5700 Thus we create those header only on demand now. */
5701
5702 return TRUE;
5703 }
5704
5705 /* Given a BFD section, try to locate the corresponding ELF section
5706 index. This is used by both the 32-bit and the 64-bit ABI.
5707 Actually, it's not clear to me that the 64-bit ABI supports these,
5708 but for non-PIC objects we will certainly want support for at least
5709 the .scommon section. */
5710
5711 bfd_boolean
5712 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5713 asection *sec, int *retval)
5714 {
5715 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5716 {
5717 *retval = SHN_MIPS_SCOMMON;
5718 return TRUE;
5719 }
5720 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5721 {
5722 *retval = SHN_MIPS_ACOMMON;
5723 return TRUE;
5724 }
5725 return FALSE;
5726 }
5727 \f
5728 /* Hook called by the linker routine which adds symbols from an object
5729 file. We must handle the special MIPS section numbers here. */
5730
5731 bfd_boolean
5732 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5733 Elf_Internal_Sym *sym, const char **namep,
5734 flagword *flagsp ATTRIBUTE_UNUSED,
5735 asection **secp, bfd_vma *valp)
5736 {
5737 if (SGI_COMPAT (abfd)
5738 && (abfd->flags & DYNAMIC) != 0
5739 && strcmp (*namep, "_rld_new_interface") == 0)
5740 {
5741 /* Skip IRIX5 rld entry name. */
5742 *namep = NULL;
5743 return TRUE;
5744 }
5745
5746 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5747 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5748 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5749 a magic symbol resolved by the linker, we ignore this bogus definition
5750 of _gp_disp. New ABI objects do not suffer from this problem so this
5751 is not done for them. */
5752 if (!NEWABI_P(abfd)
5753 && (sym->st_shndx == SHN_ABS)
5754 && (strcmp (*namep, "_gp_disp") == 0))
5755 {
5756 *namep = NULL;
5757 return TRUE;
5758 }
5759
5760 switch (sym->st_shndx)
5761 {
5762 case SHN_COMMON:
5763 /* Common symbols less than the GP size are automatically
5764 treated as SHN_MIPS_SCOMMON symbols. */
5765 if (sym->st_size > elf_gp_size (abfd)
5766 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5767 || IRIX_COMPAT (abfd) == ict_irix6)
5768 break;
5769 /* Fall through. */
5770 case SHN_MIPS_SCOMMON:
5771 *secp = bfd_make_section_old_way (abfd, ".scommon");
5772 (*secp)->flags |= SEC_IS_COMMON;
5773 *valp = sym->st_size;
5774 break;
5775
5776 case SHN_MIPS_TEXT:
5777 /* This section is used in a shared object. */
5778 if (elf_tdata (abfd)->elf_text_section == NULL)
5779 {
5780 asymbol *elf_text_symbol;
5781 asection *elf_text_section;
5782 bfd_size_type amt = sizeof (asection);
5783
5784 elf_text_section = bfd_zalloc (abfd, amt);
5785 if (elf_text_section == NULL)
5786 return FALSE;
5787
5788 amt = sizeof (asymbol);
5789 elf_text_symbol = bfd_zalloc (abfd, amt);
5790 if (elf_text_symbol == NULL)
5791 return FALSE;
5792
5793 /* Initialize the section. */
5794
5795 elf_tdata (abfd)->elf_text_section = elf_text_section;
5796 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5797
5798 elf_text_section->symbol = elf_text_symbol;
5799 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5800
5801 elf_text_section->name = ".text";
5802 elf_text_section->flags = SEC_NO_FLAGS;
5803 elf_text_section->output_section = NULL;
5804 elf_text_section->owner = abfd;
5805 elf_text_symbol->name = ".text";
5806 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5807 elf_text_symbol->section = elf_text_section;
5808 }
5809 /* This code used to do *secp = bfd_und_section_ptr if
5810 info->shared. I don't know why, and that doesn't make sense,
5811 so I took it out. */
5812 *secp = elf_tdata (abfd)->elf_text_section;
5813 break;
5814
5815 case SHN_MIPS_ACOMMON:
5816 /* Fall through. XXX Can we treat this as allocated data? */
5817 case SHN_MIPS_DATA:
5818 /* This section is used in a shared object. */
5819 if (elf_tdata (abfd)->elf_data_section == NULL)
5820 {
5821 asymbol *elf_data_symbol;
5822 asection *elf_data_section;
5823 bfd_size_type amt = sizeof (asection);
5824
5825 elf_data_section = bfd_zalloc (abfd, amt);
5826 if (elf_data_section == NULL)
5827 return FALSE;
5828
5829 amt = sizeof (asymbol);
5830 elf_data_symbol = bfd_zalloc (abfd, amt);
5831 if (elf_data_symbol == NULL)
5832 return FALSE;
5833
5834 /* Initialize the section. */
5835
5836 elf_tdata (abfd)->elf_data_section = elf_data_section;
5837 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5838
5839 elf_data_section->symbol = elf_data_symbol;
5840 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5841
5842 elf_data_section->name = ".data";
5843 elf_data_section->flags = SEC_NO_FLAGS;
5844 elf_data_section->output_section = NULL;
5845 elf_data_section->owner = abfd;
5846 elf_data_symbol->name = ".data";
5847 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5848 elf_data_symbol->section = elf_data_section;
5849 }
5850 /* This code used to do *secp = bfd_und_section_ptr if
5851 info->shared. I don't know why, and that doesn't make sense,
5852 so I took it out. */
5853 *secp = elf_tdata (abfd)->elf_data_section;
5854 break;
5855
5856 case SHN_MIPS_SUNDEFINED:
5857 *secp = bfd_und_section_ptr;
5858 break;
5859 }
5860
5861 if (SGI_COMPAT (abfd)
5862 && ! info->shared
5863 && info->hash->creator == abfd->xvec
5864 && strcmp (*namep, "__rld_obj_head") == 0)
5865 {
5866 struct elf_link_hash_entry *h;
5867 struct bfd_link_hash_entry *bh;
5868
5869 /* Mark __rld_obj_head as dynamic. */
5870 bh = NULL;
5871 if (! (_bfd_generic_link_add_one_symbol
5872 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5873 get_elf_backend_data (abfd)->collect, &bh)))
5874 return FALSE;
5875
5876 h = (struct elf_link_hash_entry *) bh;
5877 h->non_elf = 0;
5878 h->def_regular = 1;
5879 h->type = STT_OBJECT;
5880
5881 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5882 return FALSE;
5883
5884 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5885 }
5886
5887 /* If this is a mips16 text symbol, add 1 to the value to make it
5888 odd. This will cause something like .word SYM to come up with
5889 the right value when it is loaded into the PC. */
5890 if (sym->st_other == STO_MIPS16)
5891 ++*valp;
5892
5893 return TRUE;
5894 }
5895
5896 /* This hook function is called before the linker writes out a global
5897 symbol. We mark symbols as small common if appropriate. This is
5898 also where we undo the increment of the value for a mips16 symbol. */
5899
5900 bfd_boolean
5901 _bfd_mips_elf_link_output_symbol_hook
5902 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5903 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5904 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5905 {
5906 /* If we see a common symbol, which implies a relocatable link, then
5907 if a symbol was small common in an input file, mark it as small
5908 common in the output file. */
5909 if (sym->st_shndx == SHN_COMMON
5910 && strcmp (input_sec->name, ".scommon") == 0)
5911 sym->st_shndx = SHN_MIPS_SCOMMON;
5912
5913 if (sym->st_other == STO_MIPS16)
5914 sym->st_value &= ~1;
5915
5916 return TRUE;
5917 }
5918 \f
5919 /* Functions for the dynamic linker. */
5920
5921 /* Create dynamic sections when linking against a dynamic object. */
5922
5923 bfd_boolean
5924 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5925 {
5926 struct elf_link_hash_entry *h;
5927 struct bfd_link_hash_entry *bh;
5928 flagword flags;
5929 register asection *s;
5930 const char * const *namep;
5931 struct mips_elf_link_hash_table *htab;
5932
5933 htab = mips_elf_hash_table (info);
5934 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5935 | SEC_LINKER_CREATED | SEC_READONLY);
5936
5937 /* The psABI requires a read-only .dynamic section, but the VxWorks
5938 EABI doesn't. */
5939 if (!htab->is_vxworks)
5940 {
5941 s = bfd_get_section_by_name (abfd, ".dynamic");
5942 if (s != NULL)
5943 {
5944 if (! bfd_set_section_flags (abfd, s, flags))
5945 return FALSE;
5946 }
5947 }
5948
5949 /* We need to create .got section. */
5950 if (! mips_elf_create_got_section (abfd, info, FALSE))
5951 return FALSE;
5952
5953 if (! mips_elf_rel_dyn_section (info, TRUE))
5954 return FALSE;
5955
5956 /* Create .stub section. */
5957 if (bfd_get_section_by_name (abfd,
5958 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5959 {
5960 s = bfd_make_section_with_flags (abfd,
5961 MIPS_ELF_STUB_SECTION_NAME (abfd),
5962 flags | SEC_CODE);
5963 if (s == NULL
5964 || ! bfd_set_section_alignment (abfd, s,
5965 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5966 return FALSE;
5967 }
5968
5969 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5970 && !info->shared
5971 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5972 {
5973 s = bfd_make_section_with_flags (abfd, ".rld_map",
5974 flags &~ (flagword) SEC_READONLY);
5975 if (s == NULL
5976 || ! bfd_set_section_alignment (abfd, s,
5977 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5978 return FALSE;
5979 }
5980
5981 /* On IRIX5, we adjust add some additional symbols and change the
5982 alignments of several sections. There is no ABI documentation
5983 indicating that this is necessary on IRIX6, nor any evidence that
5984 the linker takes such action. */
5985 if (IRIX_COMPAT (abfd) == ict_irix5)
5986 {
5987 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5988 {
5989 bh = NULL;
5990 if (! (_bfd_generic_link_add_one_symbol
5991 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5992 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5993 return FALSE;
5994
5995 h = (struct elf_link_hash_entry *) bh;
5996 h->non_elf = 0;
5997 h->def_regular = 1;
5998 h->type = STT_SECTION;
5999
6000 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6001 return FALSE;
6002 }
6003
6004 /* We need to create a .compact_rel section. */
6005 if (SGI_COMPAT (abfd))
6006 {
6007 if (!mips_elf_create_compact_rel_section (abfd, info))
6008 return FALSE;
6009 }
6010
6011 /* Change alignments of some sections. */
6012 s = bfd_get_section_by_name (abfd, ".hash");
6013 if (s != NULL)
6014 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6015 s = bfd_get_section_by_name (abfd, ".dynsym");
6016 if (s != NULL)
6017 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6018 s = bfd_get_section_by_name (abfd, ".dynstr");
6019 if (s != NULL)
6020 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6021 s = bfd_get_section_by_name (abfd, ".reginfo");
6022 if (s != NULL)
6023 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6024 s = bfd_get_section_by_name (abfd, ".dynamic");
6025 if (s != NULL)
6026 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6027 }
6028
6029 if (!info->shared)
6030 {
6031 const char *name;
6032
6033 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6034 bh = NULL;
6035 if (!(_bfd_generic_link_add_one_symbol
6036 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6037 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6038 return FALSE;
6039
6040 h = (struct elf_link_hash_entry *) bh;
6041 h->non_elf = 0;
6042 h->def_regular = 1;
6043 h->type = STT_SECTION;
6044
6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6046 return FALSE;
6047
6048 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6049 {
6050 /* __rld_map is a four byte word located in the .data section
6051 and is filled in by the rtld to contain a pointer to
6052 the _r_debug structure. Its symbol value will be set in
6053 _bfd_mips_elf_finish_dynamic_symbol. */
6054 s = bfd_get_section_by_name (abfd, ".rld_map");
6055 BFD_ASSERT (s != NULL);
6056
6057 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6058 bh = NULL;
6059 if (!(_bfd_generic_link_add_one_symbol
6060 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6061 get_elf_backend_data (abfd)->collect, &bh)))
6062 return FALSE;
6063
6064 h = (struct elf_link_hash_entry *) bh;
6065 h->non_elf = 0;
6066 h->def_regular = 1;
6067 h->type = STT_OBJECT;
6068
6069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6070 return FALSE;
6071 }
6072 }
6073
6074 if (htab->is_vxworks)
6075 {
6076 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6077 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6078 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6079 return FALSE;
6080
6081 /* Cache the sections created above. */
6082 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6083 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6084 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6085 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6086 if (!htab->sdynbss
6087 || (!htab->srelbss && !info->shared)
6088 || !htab->srelplt
6089 || !htab->splt)
6090 abort ();
6091
6092 /* Do the usual VxWorks handling. */
6093 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6094 return FALSE;
6095
6096 /* Work out the PLT sizes. */
6097 if (info->shared)
6098 {
6099 htab->plt_header_size
6100 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6101 htab->plt_entry_size
6102 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6103 }
6104 else
6105 {
6106 htab->plt_header_size
6107 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6108 htab->plt_entry_size
6109 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6110 }
6111 }
6112
6113 return TRUE;
6114 }
6115 \f
6116 /* Look through the relocs for a section during the first phase, and
6117 allocate space in the global offset table. */
6118
6119 bfd_boolean
6120 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6121 asection *sec, const Elf_Internal_Rela *relocs)
6122 {
6123 const char *name;
6124 bfd *dynobj;
6125 Elf_Internal_Shdr *symtab_hdr;
6126 struct elf_link_hash_entry **sym_hashes;
6127 struct mips_got_info *g;
6128 size_t extsymoff;
6129 const Elf_Internal_Rela *rel;
6130 const Elf_Internal_Rela *rel_end;
6131 asection *sgot;
6132 asection *sreloc;
6133 const struct elf_backend_data *bed;
6134 struct mips_elf_link_hash_table *htab;
6135
6136 if (info->relocatable)
6137 return TRUE;
6138
6139 htab = mips_elf_hash_table (info);
6140 dynobj = elf_hash_table (info)->dynobj;
6141 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6142 sym_hashes = elf_sym_hashes (abfd);
6143 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6144
6145 /* Check for the mips16 stub sections. */
6146
6147 name = bfd_get_section_name (abfd, sec);
6148 if (FN_STUB_P (name))
6149 {
6150 unsigned long r_symndx;
6151
6152 /* Look at the relocation information to figure out which symbol
6153 this is for. */
6154
6155 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6156
6157 if (r_symndx < extsymoff
6158 || sym_hashes[r_symndx - extsymoff] == NULL)
6159 {
6160 asection *o;
6161
6162 /* This stub is for a local symbol. This stub will only be
6163 needed if there is some relocation in this BFD, other
6164 than a 16 bit function call, which refers to this symbol. */
6165 for (o = abfd->sections; o != NULL; o = o->next)
6166 {
6167 Elf_Internal_Rela *sec_relocs;
6168 const Elf_Internal_Rela *r, *rend;
6169
6170 /* We can ignore stub sections when looking for relocs. */
6171 if ((o->flags & SEC_RELOC) == 0
6172 || o->reloc_count == 0
6173 || mips16_stub_section_p (abfd, o))
6174 continue;
6175
6176 sec_relocs
6177 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6178 info->keep_memory);
6179 if (sec_relocs == NULL)
6180 return FALSE;
6181
6182 rend = sec_relocs + o->reloc_count;
6183 for (r = sec_relocs; r < rend; r++)
6184 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6185 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6186 break;
6187
6188 if (elf_section_data (o)->relocs != sec_relocs)
6189 free (sec_relocs);
6190
6191 if (r < rend)
6192 break;
6193 }
6194
6195 if (o == NULL)
6196 {
6197 /* There is no non-call reloc for this stub, so we do
6198 not need it. Since this function is called before
6199 the linker maps input sections to output sections, we
6200 can easily discard it by setting the SEC_EXCLUDE
6201 flag. */
6202 sec->flags |= SEC_EXCLUDE;
6203 return TRUE;
6204 }
6205
6206 /* Record this stub in an array of local symbol stubs for
6207 this BFD. */
6208 if (elf_tdata (abfd)->local_stubs == NULL)
6209 {
6210 unsigned long symcount;
6211 asection **n;
6212 bfd_size_type amt;
6213
6214 if (elf_bad_symtab (abfd))
6215 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6216 else
6217 symcount = symtab_hdr->sh_info;
6218 amt = symcount * sizeof (asection *);
6219 n = bfd_zalloc (abfd, amt);
6220 if (n == NULL)
6221 return FALSE;
6222 elf_tdata (abfd)->local_stubs = n;
6223 }
6224
6225 sec->flags |= SEC_KEEP;
6226 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6227
6228 /* We don't need to set mips16_stubs_seen in this case.
6229 That flag is used to see whether we need to look through
6230 the global symbol table for stubs. We don't need to set
6231 it here, because we just have a local stub. */
6232 }
6233 else
6234 {
6235 struct mips_elf_link_hash_entry *h;
6236
6237 h = ((struct mips_elf_link_hash_entry *)
6238 sym_hashes[r_symndx - extsymoff]);
6239
6240 while (h->root.root.type == bfd_link_hash_indirect
6241 || h->root.root.type == bfd_link_hash_warning)
6242 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6243
6244 /* H is the symbol this stub is for. */
6245
6246 /* If we already have an appropriate stub for this function, we
6247 don't need another one, so we can discard this one. Since
6248 this function is called before the linker maps input sections
6249 to output sections, we can easily discard it by setting the
6250 SEC_EXCLUDE flag. */
6251 if (h->fn_stub != NULL)
6252 {
6253 sec->flags |= SEC_EXCLUDE;
6254 return TRUE;
6255 }
6256
6257 sec->flags |= SEC_KEEP;
6258 h->fn_stub = sec;
6259 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6260 }
6261 }
6262 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6263 {
6264 unsigned long r_symndx;
6265 struct mips_elf_link_hash_entry *h;
6266 asection **loc;
6267
6268 /* Look at the relocation information to figure out which symbol
6269 this is for. */
6270
6271 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6272
6273 if (r_symndx < extsymoff
6274 || sym_hashes[r_symndx - extsymoff] == NULL)
6275 {
6276 asection *o;
6277
6278 /* This stub is for a local symbol. This stub will only be
6279 needed if there is some relocation (R_MIPS16_26) in this BFD
6280 that refers to this symbol. */
6281 for (o = abfd->sections; o != NULL; o = o->next)
6282 {
6283 Elf_Internal_Rela *sec_relocs;
6284 const Elf_Internal_Rela *r, *rend;
6285
6286 /* We can ignore stub sections when looking for relocs. */
6287 if ((o->flags & SEC_RELOC) == 0
6288 || o->reloc_count == 0
6289 || mips16_stub_section_p (abfd, o))
6290 continue;
6291
6292 sec_relocs
6293 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6294 info->keep_memory);
6295 if (sec_relocs == NULL)
6296 return FALSE;
6297
6298 rend = sec_relocs + o->reloc_count;
6299 for (r = sec_relocs; r < rend; r++)
6300 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6301 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6302 break;
6303
6304 if (elf_section_data (o)->relocs != sec_relocs)
6305 free (sec_relocs);
6306
6307 if (r < rend)
6308 break;
6309 }
6310
6311 if (o == NULL)
6312 {
6313 /* There is no non-call reloc for this stub, so we do
6314 not need it. Since this function is called before
6315 the linker maps input sections to output sections, we
6316 can easily discard it by setting the SEC_EXCLUDE
6317 flag. */
6318 sec->flags |= SEC_EXCLUDE;
6319 return TRUE;
6320 }
6321
6322 /* Record this stub in an array of local symbol call_stubs for
6323 this BFD. */
6324 if (elf_tdata (abfd)->local_call_stubs == NULL)
6325 {
6326 unsigned long symcount;
6327 asection **n;
6328 bfd_size_type amt;
6329
6330 if (elf_bad_symtab (abfd))
6331 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6332 else
6333 symcount = symtab_hdr->sh_info;
6334 amt = symcount * sizeof (asection *);
6335 n = bfd_zalloc (abfd, amt);
6336 if (n == NULL)
6337 return FALSE;
6338 elf_tdata (abfd)->local_call_stubs = n;
6339 }
6340
6341 sec->flags |= SEC_KEEP;
6342 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6343
6344 /* We don't need to set mips16_stubs_seen in this case.
6345 That flag is used to see whether we need to look through
6346 the global symbol table for stubs. We don't need to set
6347 it here, because we just have a local stub. */
6348 }
6349 else
6350 {
6351 h = ((struct mips_elf_link_hash_entry *)
6352 sym_hashes[r_symndx - extsymoff]);
6353
6354 /* H is the symbol this stub is for. */
6355
6356 if (CALL_FP_STUB_P (name))
6357 loc = &h->call_fp_stub;
6358 else
6359 loc = &h->call_stub;
6360
6361 /* If we already have an appropriate stub for this function, we
6362 don't need another one, so we can discard this one. Since
6363 this function is called before the linker maps input sections
6364 to output sections, we can easily discard it by setting the
6365 SEC_EXCLUDE flag. */
6366 if (*loc != NULL)
6367 {
6368 sec->flags |= SEC_EXCLUDE;
6369 return TRUE;
6370 }
6371
6372 sec->flags |= SEC_KEEP;
6373 *loc = sec;
6374 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6375 }
6376 }
6377
6378 if (dynobj == NULL)
6379 {
6380 sgot = NULL;
6381 g = NULL;
6382 }
6383 else
6384 {
6385 sgot = mips_elf_got_section (dynobj, FALSE);
6386 if (sgot == NULL)
6387 g = NULL;
6388 else
6389 {
6390 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6391 g = mips_elf_section_data (sgot)->u.got_info;
6392 BFD_ASSERT (g != NULL);
6393 }
6394 }
6395
6396 sreloc = NULL;
6397 bed = get_elf_backend_data (abfd);
6398 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6399 for (rel = relocs; rel < rel_end; ++rel)
6400 {
6401 unsigned long r_symndx;
6402 unsigned int r_type;
6403 struct elf_link_hash_entry *h;
6404
6405 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6406 r_type = ELF_R_TYPE (abfd, rel->r_info);
6407
6408 if (r_symndx < extsymoff)
6409 h = NULL;
6410 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6411 {
6412 (*_bfd_error_handler)
6413 (_("%B: Malformed reloc detected for section %s"),
6414 abfd, name);
6415 bfd_set_error (bfd_error_bad_value);
6416 return FALSE;
6417 }
6418 else
6419 {
6420 h = sym_hashes[r_symndx - extsymoff];
6421
6422 /* This may be an indirect symbol created because of a version. */
6423 if (h != NULL)
6424 {
6425 while (h->root.type == bfd_link_hash_indirect)
6426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6427 }
6428 }
6429
6430 /* Some relocs require a global offset table. */
6431 if (dynobj == NULL || sgot == NULL)
6432 {
6433 switch (r_type)
6434 {
6435 case R_MIPS_GOT16:
6436 case R_MIPS_CALL16:
6437 case R_MIPS_CALL_HI16:
6438 case R_MIPS_CALL_LO16:
6439 case R_MIPS_GOT_HI16:
6440 case R_MIPS_GOT_LO16:
6441 case R_MIPS_GOT_PAGE:
6442 case R_MIPS_GOT_OFST:
6443 case R_MIPS_GOT_DISP:
6444 case R_MIPS_TLS_GOTTPREL:
6445 case R_MIPS_TLS_GD:
6446 case R_MIPS_TLS_LDM:
6447 if (dynobj == NULL)
6448 elf_hash_table (info)->dynobj = dynobj = abfd;
6449 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6450 return FALSE;
6451 g = mips_elf_got_info (dynobj, &sgot);
6452 if (htab->is_vxworks && !info->shared)
6453 {
6454 (*_bfd_error_handler)
6455 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6456 abfd, (unsigned long) rel->r_offset);
6457 bfd_set_error (bfd_error_bad_value);
6458 return FALSE;
6459 }
6460 break;
6461
6462 case R_MIPS_32:
6463 case R_MIPS_REL32:
6464 case R_MIPS_64:
6465 /* In VxWorks executables, references to external symbols
6466 are handled using copy relocs or PLT stubs, so there's
6467 no need to add a dynamic relocation here. */
6468 if (dynobj == NULL
6469 && (info->shared || (h != NULL && !htab->is_vxworks))
6470 && (sec->flags & SEC_ALLOC) != 0)
6471 elf_hash_table (info)->dynobj = dynobj = abfd;
6472 break;
6473
6474 default:
6475 break;
6476 }
6477 }
6478
6479 if (h)
6480 {
6481 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6482
6483 /* Relocations against the special VxWorks __GOTT_BASE__ and
6484 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6485 room for them in .rela.dyn. */
6486 if (is_gott_symbol (info, h))
6487 {
6488 if (sreloc == NULL)
6489 {
6490 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6491 if (sreloc == NULL)
6492 return FALSE;
6493 }
6494 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6495 if (MIPS_ELF_READONLY_SECTION (sec))
6496 /* We tell the dynamic linker that there are
6497 relocations against the text segment. */
6498 info->flags |= DF_TEXTREL;
6499 }
6500 }
6501 else if (r_type == R_MIPS_CALL_LO16
6502 || r_type == R_MIPS_GOT_LO16
6503 || r_type == R_MIPS_GOT_DISP
6504 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6505 {
6506 /* We may need a local GOT entry for this relocation. We
6507 don't count R_MIPS_GOT_PAGE because we can estimate the
6508 maximum number of pages needed by looking at the size of
6509 the segment. Similar comments apply to R_MIPS_GOT16 and
6510 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6511 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6512 R_MIPS_CALL_HI16 because these are always followed by an
6513 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6514 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6515 rel->r_addend, g, 0))
6516 return FALSE;
6517 }
6518
6519 switch (r_type)
6520 {
6521 case R_MIPS_CALL16:
6522 if (h == NULL)
6523 {
6524 (*_bfd_error_handler)
6525 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6526 abfd, (unsigned long) rel->r_offset);
6527 bfd_set_error (bfd_error_bad_value);
6528 return FALSE;
6529 }
6530 /* Fall through. */
6531
6532 case R_MIPS_CALL_HI16:
6533 case R_MIPS_CALL_LO16:
6534 if (h != NULL)
6535 {
6536 /* VxWorks call relocations point the function's .got.plt
6537 entry, which will be allocated by adjust_dynamic_symbol.
6538 Otherwise, this symbol requires a global GOT entry. */
6539 if ((!htab->is_vxworks || h->forced_local)
6540 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6541 return FALSE;
6542
6543 /* We need a stub, not a plt entry for the undefined
6544 function. But we record it as if it needs plt. See
6545 _bfd_elf_adjust_dynamic_symbol. */
6546 h->needs_plt = 1;
6547 h->type = STT_FUNC;
6548 }
6549 break;
6550
6551 case R_MIPS_GOT_PAGE:
6552 /* If this is a global, overridable symbol, GOT_PAGE will
6553 decay to GOT_DISP, so we'll need a GOT entry for it. */
6554 if (h == NULL)
6555 break;
6556 else
6557 {
6558 struct mips_elf_link_hash_entry *hmips =
6559 (struct mips_elf_link_hash_entry *) h;
6560
6561 while (hmips->root.root.type == bfd_link_hash_indirect
6562 || hmips->root.root.type == bfd_link_hash_warning)
6563 hmips = (struct mips_elf_link_hash_entry *)
6564 hmips->root.root.u.i.link;
6565
6566 if (hmips->root.def_regular
6567 && ! (info->shared && ! info->symbolic
6568 && ! hmips->root.forced_local))
6569 break;
6570 }
6571 /* Fall through. */
6572
6573 case R_MIPS_GOT16:
6574 case R_MIPS_GOT_HI16:
6575 case R_MIPS_GOT_LO16:
6576 case R_MIPS_GOT_DISP:
6577 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6578 return FALSE;
6579 break;
6580
6581 case R_MIPS_TLS_GOTTPREL:
6582 if (info->shared)
6583 info->flags |= DF_STATIC_TLS;
6584 /* Fall through */
6585
6586 case R_MIPS_TLS_LDM:
6587 if (r_type == R_MIPS_TLS_LDM)
6588 {
6589 r_symndx = 0;
6590 h = NULL;
6591 }
6592 /* Fall through */
6593
6594 case R_MIPS_TLS_GD:
6595 /* This symbol requires a global offset table entry, or two
6596 for TLS GD relocations. */
6597 {
6598 unsigned char flag = (r_type == R_MIPS_TLS_GD
6599 ? GOT_TLS_GD
6600 : r_type == R_MIPS_TLS_LDM
6601 ? GOT_TLS_LDM
6602 : GOT_TLS_IE);
6603 if (h != NULL)
6604 {
6605 struct mips_elf_link_hash_entry *hmips =
6606 (struct mips_elf_link_hash_entry *) h;
6607 hmips->tls_type |= flag;
6608
6609 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6610 return FALSE;
6611 }
6612 else
6613 {
6614 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6615
6616 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6617 rel->r_addend, g, flag))
6618 return FALSE;
6619 }
6620 }
6621 break;
6622
6623 case R_MIPS_32:
6624 case R_MIPS_REL32:
6625 case R_MIPS_64:
6626 /* In VxWorks executables, references to external symbols
6627 are handled using copy relocs or PLT stubs, so there's
6628 no need to add a .rela.dyn entry for this relocation. */
6629 if ((info->shared || (h != NULL && !htab->is_vxworks))
6630 && (sec->flags & SEC_ALLOC) != 0)
6631 {
6632 if (sreloc == NULL)
6633 {
6634 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6635 if (sreloc == NULL)
6636 return FALSE;
6637 }
6638 if (info->shared)
6639 {
6640 /* When creating a shared object, we must copy these
6641 reloc types into the output file as R_MIPS_REL32
6642 relocs. Make room for this reloc in .rel(a).dyn. */
6643 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6644 if (MIPS_ELF_READONLY_SECTION (sec))
6645 /* We tell the dynamic linker that there are
6646 relocations against the text segment. */
6647 info->flags |= DF_TEXTREL;
6648 }
6649 else
6650 {
6651 struct mips_elf_link_hash_entry *hmips;
6652
6653 /* We only need to copy this reloc if the symbol is
6654 defined in a dynamic object. */
6655 hmips = (struct mips_elf_link_hash_entry *) h;
6656 ++hmips->possibly_dynamic_relocs;
6657 if (MIPS_ELF_READONLY_SECTION (sec))
6658 /* We need it to tell the dynamic linker if there
6659 are relocations against the text segment. */
6660 hmips->readonly_reloc = TRUE;
6661 }
6662
6663 /* Even though we don't directly need a GOT entry for
6664 this symbol, a symbol must have a dynamic symbol
6665 table index greater that DT_MIPS_GOTSYM if there are
6666 dynamic relocations against it. This does not apply
6667 to VxWorks, which does not have the usual coupling
6668 between global GOT entries and .dynsym entries. */
6669 if (h != NULL && !htab->is_vxworks)
6670 {
6671 if (dynobj == NULL)
6672 elf_hash_table (info)->dynobj = dynobj = abfd;
6673 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6674 return FALSE;
6675 g = mips_elf_got_info (dynobj, &sgot);
6676 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6677 return FALSE;
6678 }
6679 }
6680
6681 if (SGI_COMPAT (abfd))
6682 mips_elf_hash_table (info)->compact_rel_size +=
6683 sizeof (Elf32_External_crinfo);
6684 break;
6685
6686 case R_MIPS_PC16:
6687 if (h)
6688 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6689 break;
6690
6691 case R_MIPS_26:
6692 if (h)
6693 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6694 /* Fall through. */
6695
6696 case R_MIPS_GPREL16:
6697 case R_MIPS_LITERAL:
6698 case R_MIPS_GPREL32:
6699 if (SGI_COMPAT (abfd))
6700 mips_elf_hash_table (info)->compact_rel_size +=
6701 sizeof (Elf32_External_crinfo);
6702 break;
6703
6704 /* This relocation describes the C++ object vtable hierarchy.
6705 Reconstruct it for later use during GC. */
6706 case R_MIPS_GNU_VTINHERIT:
6707 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6708 return FALSE;
6709 break;
6710
6711 /* This relocation describes which C++ vtable entries are actually
6712 used. Record for later use during GC. */
6713 case R_MIPS_GNU_VTENTRY:
6714 BFD_ASSERT (h != NULL);
6715 if (h != NULL
6716 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6717 return FALSE;
6718 break;
6719
6720 default:
6721 break;
6722 }
6723
6724 /* We must not create a stub for a symbol that has relocations
6725 related to taking the function's address. This doesn't apply to
6726 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6727 a normal .got entry. */
6728 if (!htab->is_vxworks && h != NULL)
6729 switch (r_type)
6730 {
6731 default:
6732 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6733 break;
6734 case R_MIPS_CALL16:
6735 case R_MIPS_CALL_HI16:
6736 case R_MIPS_CALL_LO16:
6737 case R_MIPS_JALR:
6738 break;
6739 }
6740
6741 /* If this reloc is not a 16 bit call, and it has a global
6742 symbol, then we will need the fn_stub if there is one.
6743 References from a stub section do not count. */
6744 if (h != NULL
6745 && r_type != R_MIPS16_26
6746 && !mips16_stub_section_p (abfd, sec))
6747 {
6748 struct mips_elf_link_hash_entry *mh;
6749
6750 mh = (struct mips_elf_link_hash_entry *) h;
6751 mh->need_fn_stub = TRUE;
6752 }
6753 }
6754
6755 return TRUE;
6756 }
6757 \f
6758 bfd_boolean
6759 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6760 struct bfd_link_info *link_info,
6761 bfd_boolean *again)
6762 {
6763 Elf_Internal_Rela *internal_relocs;
6764 Elf_Internal_Rela *irel, *irelend;
6765 Elf_Internal_Shdr *symtab_hdr;
6766 bfd_byte *contents = NULL;
6767 size_t extsymoff;
6768 bfd_boolean changed_contents = FALSE;
6769 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6770 Elf_Internal_Sym *isymbuf = NULL;
6771
6772 /* We are not currently changing any sizes, so only one pass. */
6773 *again = FALSE;
6774
6775 if (link_info->relocatable)
6776 return TRUE;
6777
6778 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6779 link_info->keep_memory);
6780 if (internal_relocs == NULL)
6781 return TRUE;
6782
6783 irelend = internal_relocs + sec->reloc_count
6784 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6785 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6786 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6787
6788 for (irel = internal_relocs; irel < irelend; irel++)
6789 {
6790 bfd_vma symval;
6791 bfd_signed_vma sym_offset;
6792 unsigned int r_type;
6793 unsigned long r_symndx;
6794 asection *sym_sec;
6795 unsigned long instruction;
6796
6797 /* Turn jalr into bgezal, and jr into beq, if they're marked
6798 with a JALR relocation, that indicate where they jump to.
6799 This saves some pipeline bubbles. */
6800 r_type = ELF_R_TYPE (abfd, irel->r_info);
6801 if (r_type != R_MIPS_JALR)
6802 continue;
6803
6804 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6805 /* Compute the address of the jump target. */
6806 if (r_symndx >= extsymoff)
6807 {
6808 struct mips_elf_link_hash_entry *h
6809 = ((struct mips_elf_link_hash_entry *)
6810 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6811
6812 while (h->root.root.type == bfd_link_hash_indirect
6813 || h->root.root.type == bfd_link_hash_warning)
6814 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6815
6816 /* If a symbol is undefined, or if it may be overridden,
6817 skip it. */
6818 if (! ((h->root.root.type == bfd_link_hash_defined
6819 || h->root.root.type == bfd_link_hash_defweak)
6820 && h->root.root.u.def.section)
6821 || (link_info->shared && ! link_info->symbolic
6822 && !h->root.forced_local))
6823 continue;
6824
6825 sym_sec = h->root.root.u.def.section;
6826 if (sym_sec->output_section)
6827 symval = (h->root.root.u.def.value
6828 + sym_sec->output_section->vma
6829 + sym_sec->output_offset);
6830 else
6831 symval = h->root.root.u.def.value;
6832 }
6833 else
6834 {
6835 Elf_Internal_Sym *isym;
6836
6837 /* Read this BFD's symbols if we haven't done so already. */
6838 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6839 {
6840 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6841 if (isymbuf == NULL)
6842 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6843 symtab_hdr->sh_info, 0,
6844 NULL, NULL, NULL);
6845 if (isymbuf == NULL)
6846 goto relax_return;
6847 }
6848
6849 isym = isymbuf + r_symndx;
6850 if (isym->st_shndx == SHN_UNDEF)
6851 continue;
6852 else if (isym->st_shndx == SHN_ABS)
6853 sym_sec = bfd_abs_section_ptr;
6854 else if (isym->st_shndx == SHN_COMMON)
6855 sym_sec = bfd_com_section_ptr;
6856 else
6857 sym_sec
6858 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6859 symval = isym->st_value
6860 + sym_sec->output_section->vma
6861 + sym_sec->output_offset;
6862 }
6863
6864 /* Compute branch offset, from delay slot of the jump to the
6865 branch target. */
6866 sym_offset = (symval + irel->r_addend)
6867 - (sec_start + irel->r_offset + 4);
6868
6869 /* Branch offset must be properly aligned. */
6870 if ((sym_offset & 3) != 0)
6871 continue;
6872
6873 sym_offset >>= 2;
6874
6875 /* Check that it's in range. */
6876 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6877 continue;
6878
6879 /* Get the section contents if we haven't done so already. */
6880 if (contents == NULL)
6881 {
6882 /* Get cached copy if it exists. */
6883 if (elf_section_data (sec)->this_hdr.contents != NULL)
6884 contents = elf_section_data (sec)->this_hdr.contents;
6885 else
6886 {
6887 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6888 goto relax_return;
6889 }
6890 }
6891
6892 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6893
6894 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6895 if ((instruction & 0xfc1fffff) == 0x0000f809)
6896 instruction = 0x04110000;
6897 /* If it was jr <reg>, turn it into b <target>. */
6898 else if ((instruction & 0xfc1fffff) == 0x00000008)
6899 instruction = 0x10000000;
6900 else
6901 continue;
6902
6903 instruction |= (sym_offset & 0xffff);
6904 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6905 changed_contents = TRUE;
6906 }
6907
6908 if (contents != NULL
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6910 {
6911 if (!changed_contents && !link_info->keep_memory)
6912 free (contents);
6913 else
6914 {
6915 /* Cache the section contents for elf_link_input_bfd. */
6916 elf_section_data (sec)->this_hdr.contents = contents;
6917 }
6918 }
6919 return TRUE;
6920
6921 relax_return:
6922 if (contents != NULL
6923 && elf_section_data (sec)->this_hdr.contents != contents)
6924 free (contents);
6925 return FALSE;
6926 }
6927 \f
6928 /* Adjust a symbol defined by a dynamic object and referenced by a
6929 regular object. The current definition is in some section of the
6930 dynamic object, but we're not including those sections. We have to
6931 change the definition to something the rest of the link can
6932 understand. */
6933
6934 bfd_boolean
6935 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6936 struct elf_link_hash_entry *h)
6937 {
6938 bfd *dynobj;
6939 struct mips_elf_link_hash_entry *hmips;
6940 asection *s;
6941 struct mips_elf_link_hash_table *htab;
6942
6943 htab = mips_elf_hash_table (info);
6944 dynobj = elf_hash_table (info)->dynobj;
6945
6946 /* Make sure we know what is going on here. */
6947 BFD_ASSERT (dynobj != NULL
6948 && (h->needs_plt
6949 || h->u.weakdef != NULL
6950 || (h->def_dynamic
6951 && h->ref_regular
6952 && !h->def_regular)));
6953
6954 /* If this symbol is defined in a dynamic object, we need to copy
6955 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6956 file. */
6957 hmips = (struct mips_elf_link_hash_entry *) h;
6958 if (! info->relocatable
6959 && hmips->possibly_dynamic_relocs != 0
6960 && (h->root.type == bfd_link_hash_defweak
6961 || !h->def_regular))
6962 {
6963 mips_elf_allocate_dynamic_relocations
6964 (dynobj, info, hmips->possibly_dynamic_relocs);
6965 if (hmips->readonly_reloc)
6966 /* We tell the dynamic linker that there are relocations
6967 against the text segment. */
6968 info->flags |= DF_TEXTREL;
6969 }
6970
6971 /* For a function, create a stub, if allowed. */
6972 if (! hmips->no_fn_stub
6973 && h->needs_plt)
6974 {
6975 if (! elf_hash_table (info)->dynamic_sections_created)
6976 return TRUE;
6977
6978 /* If this symbol is not defined in a regular file, then set
6979 the symbol to the stub location. This is required to make
6980 function pointers compare as equal between the normal
6981 executable and the shared library. */
6982 if (!h->def_regular)
6983 {
6984 /* We need .stub section. */
6985 s = bfd_get_section_by_name (dynobj,
6986 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6987 BFD_ASSERT (s != NULL);
6988
6989 h->root.u.def.section = s;
6990 h->root.u.def.value = s->size;
6991
6992 /* XXX Write this stub address somewhere. */
6993 h->plt.offset = s->size;
6994
6995 /* Make room for this stub code. */
6996 s->size += htab->function_stub_size;
6997
6998 /* The last half word of the stub will be filled with the index
6999 of this symbol in .dynsym section. */
7000 return TRUE;
7001 }
7002 }
7003 else if ((h->type == STT_FUNC)
7004 && !h->needs_plt)
7005 {
7006 /* This will set the entry for this symbol in the GOT to 0, and
7007 the dynamic linker will take care of this. */
7008 h->root.u.def.value = 0;
7009 return TRUE;
7010 }
7011
7012 /* If this is a weak symbol, and there is a real definition, the
7013 processor independent code will have arranged for us to see the
7014 real definition first, and we can just use the same value. */
7015 if (h->u.weakdef != NULL)
7016 {
7017 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7018 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7019 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7020 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7021 return TRUE;
7022 }
7023
7024 /* This is a reference to a symbol defined by a dynamic object which
7025 is not a function. */
7026
7027 return TRUE;
7028 }
7029
7030 /* Likewise, for VxWorks. */
7031
7032 bfd_boolean
7033 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7034 struct elf_link_hash_entry *h)
7035 {
7036 bfd *dynobj;
7037 struct mips_elf_link_hash_entry *hmips;
7038 struct mips_elf_link_hash_table *htab;
7039
7040 htab = mips_elf_hash_table (info);
7041 dynobj = elf_hash_table (info)->dynobj;
7042 hmips = (struct mips_elf_link_hash_entry *) h;
7043
7044 /* Make sure we know what is going on here. */
7045 BFD_ASSERT (dynobj != NULL
7046 && (h->needs_plt
7047 || h->needs_copy
7048 || h->u.weakdef != NULL
7049 || (h->def_dynamic
7050 && h->ref_regular
7051 && !h->def_regular)));
7052
7053 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7054 either (a) we want to branch to the symbol or (b) we're linking an
7055 executable that needs a canonical function address. In the latter
7056 case, the canonical address will be the address of the executable's
7057 load stub. */
7058 if ((hmips->is_branch_target
7059 || (!info->shared
7060 && h->type == STT_FUNC
7061 && hmips->is_relocation_target))
7062 && h->def_dynamic
7063 && h->ref_regular
7064 && !h->def_regular
7065 && !h->forced_local)
7066 h->needs_plt = 1;
7067
7068 /* Locally-binding symbols do not need a PLT stub; we can refer to
7069 the functions directly. */
7070 else if (h->needs_plt
7071 && (SYMBOL_CALLS_LOCAL (info, h)
7072 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7073 && h->root.type == bfd_link_hash_undefweak)))
7074 {
7075 h->needs_plt = 0;
7076 return TRUE;
7077 }
7078
7079 if (h->needs_plt)
7080 {
7081 /* If this is the first symbol to need a PLT entry, allocate room
7082 for the header, and for the header's .rela.plt.unloaded entries. */
7083 if (htab->splt->size == 0)
7084 {
7085 htab->splt->size += htab->plt_header_size;
7086 if (!info->shared)
7087 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7088 }
7089
7090 /* Assign the next .plt entry to this symbol. */
7091 h->plt.offset = htab->splt->size;
7092 htab->splt->size += htab->plt_entry_size;
7093
7094 /* If the output file has no definition of the symbol, set the
7095 symbol's value to the address of the stub. For executables,
7096 point at the PLT load stub rather than the lazy resolution stub;
7097 this stub will become the canonical function address. */
7098 if (!h->def_regular)
7099 {
7100 h->root.u.def.section = htab->splt;
7101 h->root.u.def.value = h->plt.offset;
7102 if (!info->shared)
7103 h->root.u.def.value += 8;
7104 }
7105
7106 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7107 htab->sgotplt->size += 4;
7108 htab->srelplt->size += sizeof (Elf32_External_Rela);
7109
7110 /* Make room for the .rela.plt.unloaded relocations. */
7111 if (!info->shared)
7112 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7113
7114 return TRUE;
7115 }
7116
7117 /* If a function symbol is defined by a dynamic object, and we do not
7118 need a PLT stub for it, the symbol's value should be zero. */
7119 if (h->type == STT_FUNC
7120 && h->def_dynamic
7121 && h->ref_regular
7122 && !h->def_regular)
7123 {
7124 h->root.u.def.value = 0;
7125 return TRUE;
7126 }
7127
7128 /* If this is a weak symbol, and there is a real definition, the
7129 processor independent code will have arranged for us to see the
7130 real definition first, and we can just use the same value. */
7131 if (h->u.weakdef != NULL)
7132 {
7133 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7134 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7135 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7136 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7137 return TRUE;
7138 }
7139
7140 /* This is a reference to a symbol defined by a dynamic object which
7141 is not a function. */
7142 if (info->shared)
7143 return TRUE;
7144
7145 /* We must allocate the symbol in our .dynbss section, which will
7146 become part of the .bss section of the executable. There will be
7147 an entry for this symbol in the .dynsym section. The dynamic
7148 object will contain position independent code, so all references
7149 from the dynamic object to this symbol will go through the global
7150 offset table. The dynamic linker will use the .dynsym entry to
7151 determine the address it must put in the global offset table, so
7152 both the dynamic object and the regular object will refer to the
7153 same memory location for the variable. */
7154
7155 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7156 {
7157 htab->srelbss->size += sizeof (Elf32_External_Rela);
7158 h->needs_copy = 1;
7159 }
7160
7161 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7162 }
7163 \f
7164 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7165 The number might be exact or a worst-case estimate, depending on how
7166 much information is available to elf_backend_omit_section_dynsym at
7167 the current linking stage. */
7168
7169 static bfd_size_type
7170 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7171 {
7172 bfd_size_type count;
7173
7174 count = 0;
7175 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7176 {
7177 asection *p;
7178 const struct elf_backend_data *bed;
7179
7180 bed = get_elf_backend_data (output_bfd);
7181 for (p = output_bfd->sections; p ; p = p->next)
7182 if ((p->flags & SEC_EXCLUDE) == 0
7183 && (p->flags & SEC_ALLOC) != 0
7184 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7185 ++count;
7186 }
7187 return count;
7188 }
7189
7190 /* This function is called after all the input files have been read,
7191 and the input sections have been assigned to output sections. We
7192 check for any mips16 stub sections that we can discard. */
7193
7194 bfd_boolean
7195 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7196 struct bfd_link_info *info)
7197 {
7198 asection *ri;
7199
7200 bfd *dynobj;
7201 asection *s;
7202 struct mips_got_info *g;
7203 int i;
7204 bfd_size_type loadable_size = 0;
7205 bfd_size_type local_gotno;
7206 bfd_size_type dynsymcount;
7207 bfd *sub;
7208 struct mips_elf_count_tls_arg count_tls_arg;
7209 struct mips_elf_link_hash_table *htab;
7210
7211 htab = mips_elf_hash_table (info);
7212
7213 /* The .reginfo section has a fixed size. */
7214 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7215 if (ri != NULL)
7216 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7217
7218 if (! (info->relocatable
7219 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7220 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7221 mips_elf_check_mips16_stubs, NULL);
7222
7223 dynobj = elf_hash_table (info)->dynobj;
7224 if (dynobj == NULL)
7225 /* Relocatable links don't have it. */
7226 return TRUE;
7227
7228 g = mips_elf_got_info (dynobj, &s);
7229 if (s == NULL)
7230 return TRUE;
7231
7232 /* Calculate the total loadable size of the output. That
7233 will give us the maximum number of GOT_PAGE entries
7234 required. */
7235 for (sub = info->input_bfds; sub; sub = sub->link_next)
7236 {
7237 asection *subsection;
7238
7239 for (subsection = sub->sections;
7240 subsection;
7241 subsection = subsection->next)
7242 {
7243 if ((subsection->flags & SEC_ALLOC) == 0)
7244 continue;
7245 loadable_size += ((subsection->size + 0xf)
7246 &~ (bfd_size_type) 0xf);
7247 }
7248 }
7249
7250 /* There has to be a global GOT entry for every symbol with
7251 a dynamic symbol table index of DT_MIPS_GOTSYM or
7252 higher. Therefore, it make sense to put those symbols
7253 that need GOT entries at the end of the symbol table. We
7254 do that here. */
7255 if (! mips_elf_sort_hash_table (info, 1))
7256 return FALSE;
7257
7258 if (g->global_gotsym != NULL)
7259 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7260 else
7261 /* If there are no global symbols, or none requiring
7262 relocations, then GLOBAL_GOTSYM will be NULL. */
7263 i = 0;
7264
7265 /* Get a worst-case estimate of the number of dynamic symbols needed.
7266 At this point, dynsymcount does not account for section symbols
7267 and count_section_dynsyms may overestimate the number that will
7268 be needed. */
7269 dynsymcount = (elf_hash_table (info)->dynsymcount
7270 + count_section_dynsyms (output_bfd, info));
7271
7272 /* Determine the size of one stub entry. */
7273 htab->function_stub_size = (dynsymcount > 0x10000
7274 ? MIPS_FUNCTION_STUB_BIG_SIZE
7275 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7276
7277 /* In the worst case, we'll get one stub per dynamic symbol, plus
7278 one to account for the dummy entry at the end required by IRIX
7279 rld. */
7280 loadable_size += htab->function_stub_size * (i + 1);
7281
7282 if (htab->is_vxworks)
7283 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7284 relocations against local symbols evaluate to "G", and the EABI does
7285 not include R_MIPS_GOT_PAGE. */
7286 local_gotno = 0;
7287 else
7288 /* Assume there are two loadable segments consisting of contiguous
7289 sections. Is 5 enough? */
7290 local_gotno = (loadable_size >> 16) + 5;
7291
7292 g->local_gotno += local_gotno;
7293 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7294
7295 g->global_gotno = i;
7296 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7297
7298 /* We need to calculate tls_gotno for global symbols at this point
7299 instead of building it up earlier, to avoid doublecounting
7300 entries for one global symbol from multiple input files. */
7301 count_tls_arg.info = info;
7302 count_tls_arg.needed = 0;
7303 elf_link_hash_traverse (elf_hash_table (info),
7304 mips_elf_count_global_tls_entries,
7305 &count_tls_arg);
7306 g->tls_gotno += count_tls_arg.needed;
7307 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7308
7309 mips_elf_resolve_final_got_entries (g);
7310
7311 /* VxWorks does not support multiple GOTs. It initializes $gp to
7312 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7313 dynamic loader. */
7314 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7315 {
7316 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7317 return FALSE;
7318 }
7319 else
7320 {
7321 /* Set up TLS entries for the first GOT. */
7322 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7323 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7324 }
7325 htab->computed_got_sizes = TRUE;
7326
7327 return TRUE;
7328 }
7329
7330 /* Set the sizes of the dynamic sections. */
7331
7332 bfd_boolean
7333 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7334 struct bfd_link_info *info)
7335 {
7336 bfd *dynobj;
7337 asection *s, *sreldyn;
7338 bfd_boolean reltext;
7339 struct mips_elf_link_hash_table *htab;
7340
7341 htab = mips_elf_hash_table (info);
7342 dynobj = elf_hash_table (info)->dynobj;
7343 BFD_ASSERT (dynobj != NULL);
7344
7345 if (elf_hash_table (info)->dynamic_sections_created)
7346 {
7347 /* Set the contents of the .interp section to the interpreter. */
7348 if (info->executable)
7349 {
7350 s = bfd_get_section_by_name (dynobj, ".interp");
7351 BFD_ASSERT (s != NULL);
7352 s->size
7353 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7354 s->contents
7355 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7356 }
7357 }
7358
7359 /* The check_relocs and adjust_dynamic_symbol entry points have
7360 determined the sizes of the various dynamic sections. Allocate
7361 memory for them. */
7362 reltext = FALSE;
7363 sreldyn = NULL;
7364 for (s = dynobj->sections; s != NULL; s = s->next)
7365 {
7366 const char *name;
7367
7368 /* It's OK to base decisions on the section name, because none
7369 of the dynobj section names depend upon the input files. */
7370 name = bfd_get_section_name (dynobj, s);
7371
7372 if ((s->flags & SEC_LINKER_CREATED) == 0)
7373 continue;
7374
7375 if (CONST_STRNEQ (name, ".rel"))
7376 {
7377 if (s->size != 0)
7378 {
7379 const char *outname;
7380 asection *target;
7381
7382 /* If this relocation section applies to a read only
7383 section, then we probably need a DT_TEXTREL entry.
7384 If the relocation section is .rel(a).dyn, we always
7385 assert a DT_TEXTREL entry rather than testing whether
7386 there exists a relocation to a read only section or
7387 not. */
7388 outname = bfd_get_section_name (output_bfd,
7389 s->output_section);
7390 target = bfd_get_section_by_name (output_bfd, outname + 4);
7391 if ((target != NULL
7392 && (target->flags & SEC_READONLY) != 0
7393 && (target->flags & SEC_ALLOC) != 0)
7394 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7395 reltext = TRUE;
7396
7397 /* We use the reloc_count field as a counter if we need
7398 to copy relocs into the output file. */
7399 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7400 s->reloc_count = 0;
7401
7402 /* If combreloc is enabled, elf_link_sort_relocs() will
7403 sort relocations, but in a different way than we do,
7404 and before we're done creating relocations. Also, it
7405 will move them around between input sections'
7406 relocation's contents, so our sorting would be
7407 broken, so don't let it run. */
7408 info->combreloc = 0;
7409 }
7410 }
7411 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7412 {
7413 /* Executables do not need a GOT. */
7414 if (info->shared)
7415 {
7416 /* Allocate relocations for all but the reserved entries. */
7417 struct mips_got_info *g;
7418 unsigned int count;
7419
7420 g = mips_elf_got_info (dynobj, NULL);
7421 count = (g->global_gotno
7422 + g->local_gotno
7423 - MIPS_RESERVED_GOTNO (info));
7424 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7425 }
7426 }
7427 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7428 {
7429 /* _bfd_mips_elf_always_size_sections() has already done
7430 most of the work, but some symbols may have been mapped
7431 to versions that we must now resolve in the got_entries
7432 hash tables. */
7433 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7434 struct mips_got_info *g = gg;
7435 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7436 unsigned int needed_relocs = 0;
7437
7438 if (gg->next)
7439 {
7440 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7441 set_got_offset_arg.info = info;
7442
7443 /* NOTE 2005-02-03: How can this call, or the next, ever
7444 find any indirect entries to resolve? They were all
7445 resolved in mips_elf_multi_got. */
7446 mips_elf_resolve_final_got_entries (gg);
7447 for (g = gg->next; g && g->next != gg; g = g->next)
7448 {
7449 unsigned int save_assign;
7450
7451 mips_elf_resolve_final_got_entries (g);
7452
7453 /* Assign offsets to global GOT entries. */
7454 save_assign = g->assigned_gotno;
7455 g->assigned_gotno = g->local_gotno;
7456 set_got_offset_arg.g = g;
7457 set_got_offset_arg.needed_relocs = 0;
7458 htab_traverse (g->got_entries,
7459 mips_elf_set_global_got_offset,
7460 &set_got_offset_arg);
7461 needed_relocs += set_got_offset_arg.needed_relocs;
7462 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7463 <= g->global_gotno);
7464
7465 g->assigned_gotno = save_assign;
7466 if (info->shared)
7467 {
7468 needed_relocs += g->local_gotno - g->assigned_gotno;
7469 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7470 + g->next->global_gotno
7471 + g->next->tls_gotno
7472 + MIPS_RESERVED_GOTNO (info));
7473 }
7474 }
7475 }
7476 else
7477 {
7478 struct mips_elf_count_tls_arg arg;
7479 arg.info = info;
7480 arg.needed = 0;
7481
7482 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7483 &arg);
7484 elf_link_hash_traverse (elf_hash_table (info),
7485 mips_elf_count_global_tls_relocs,
7486 &arg);
7487
7488 needed_relocs += arg.needed;
7489 }
7490
7491 if (needed_relocs)
7492 mips_elf_allocate_dynamic_relocations (dynobj, info,
7493 needed_relocs);
7494 }
7495 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7496 {
7497 /* IRIX rld assumes that the function stub isn't at the end
7498 of .text section. So put a dummy. XXX */
7499 s->size += htab->function_stub_size;
7500 }
7501 else if (! info->shared
7502 && ! mips_elf_hash_table (info)->use_rld_obj_head
7503 && CONST_STRNEQ (name, ".rld_map"))
7504 {
7505 /* We add a room for __rld_map. It will be filled in by the
7506 rtld to contain a pointer to the _r_debug structure. */
7507 s->size += 4;
7508 }
7509 else if (SGI_COMPAT (output_bfd)
7510 && CONST_STRNEQ (name, ".compact_rel"))
7511 s->size += mips_elf_hash_table (info)->compact_rel_size;
7512 else if (! CONST_STRNEQ (name, ".init")
7513 && s != htab->sgotplt
7514 && s != htab->splt)
7515 {
7516 /* It's not one of our sections, so don't allocate space. */
7517 continue;
7518 }
7519
7520 if (s->size == 0)
7521 {
7522 s->flags |= SEC_EXCLUDE;
7523 continue;
7524 }
7525
7526 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7527 continue;
7528
7529 /* Allocate memory for this section last, since we may increase its
7530 size above. */
7531 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7532 {
7533 sreldyn = s;
7534 continue;
7535 }
7536
7537 /* Allocate memory for the section contents. */
7538 s->contents = bfd_zalloc (dynobj, s->size);
7539 if (s->contents == NULL)
7540 {
7541 bfd_set_error (bfd_error_no_memory);
7542 return FALSE;
7543 }
7544 }
7545
7546 /* Allocate memory for the .rel(a).dyn section. */
7547 if (sreldyn != NULL)
7548 {
7549 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7550 if (sreldyn->contents == NULL)
7551 {
7552 bfd_set_error (bfd_error_no_memory);
7553 return FALSE;
7554 }
7555 }
7556
7557 if (elf_hash_table (info)->dynamic_sections_created)
7558 {
7559 /* Add some entries to the .dynamic section. We fill in the
7560 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7561 must add the entries now so that we get the correct size for
7562 the .dynamic section. */
7563
7564 /* SGI object has the equivalence of DT_DEBUG in the
7565 DT_MIPS_RLD_MAP entry. This must come first because glibc
7566 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7567 looks at the first one it sees. */
7568 if (!info->shared
7569 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7570 return FALSE;
7571
7572 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7573 used by the debugger. */
7574 if (info->executable
7575 && !SGI_COMPAT (output_bfd)
7576 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7577 return FALSE;
7578
7579 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7580 info->flags |= DF_TEXTREL;
7581
7582 if ((info->flags & DF_TEXTREL) != 0)
7583 {
7584 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7585 return FALSE;
7586
7587 /* Clear the DF_TEXTREL flag. It will be set again if we
7588 write out an actual text relocation; we may not, because
7589 at this point we do not know whether e.g. any .eh_frame
7590 absolute relocations have been converted to PC-relative. */
7591 info->flags &= ~DF_TEXTREL;
7592 }
7593
7594 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7595 return FALSE;
7596
7597 if (htab->is_vxworks)
7598 {
7599 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7600 use any of the DT_MIPS_* tags. */
7601 if (mips_elf_rel_dyn_section (info, FALSE))
7602 {
7603 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7604 return FALSE;
7605
7606 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7607 return FALSE;
7608
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7610 return FALSE;
7611 }
7612 if (htab->splt->size > 0)
7613 {
7614 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7615 return FALSE;
7616
7617 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7618 return FALSE;
7619
7620 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7621 return FALSE;
7622 }
7623 }
7624 else
7625 {
7626 if (mips_elf_rel_dyn_section (info, FALSE))
7627 {
7628 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7629 return FALSE;
7630
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7632 return FALSE;
7633
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7635 return FALSE;
7636 }
7637
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7639 return FALSE;
7640
7641 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7642 return FALSE;
7643
7644 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7645 return FALSE;
7646
7647 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7648 return FALSE;
7649
7650 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7651 return FALSE;
7652
7653 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7654 return FALSE;
7655
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7657 return FALSE;
7658
7659 if (IRIX_COMPAT (dynobj) == ict_irix5
7660 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7661 return FALSE;
7662
7663 if (IRIX_COMPAT (dynobj) == ict_irix6
7664 && (bfd_get_section_by_name
7665 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7666 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7667 return FALSE;
7668 }
7669 }
7670
7671 return TRUE;
7672 }
7673 \f
7674 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7675 Adjust its R_ADDEND field so that it is correct for the output file.
7676 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7677 and sections respectively; both use symbol indexes. */
7678
7679 static void
7680 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7681 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7682 asection **local_sections, Elf_Internal_Rela *rel)
7683 {
7684 unsigned int r_type, r_symndx;
7685 Elf_Internal_Sym *sym;
7686 asection *sec;
7687
7688 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7689 {
7690 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7691 if (r_type == R_MIPS16_GPREL
7692 || r_type == R_MIPS_GPREL16
7693 || r_type == R_MIPS_GPREL32
7694 || r_type == R_MIPS_LITERAL)
7695 {
7696 rel->r_addend += _bfd_get_gp_value (input_bfd);
7697 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7698 }
7699
7700 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7701 sym = local_syms + r_symndx;
7702
7703 /* Adjust REL's addend to account for section merging. */
7704 if (!info->relocatable)
7705 {
7706 sec = local_sections[r_symndx];
7707 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7708 }
7709
7710 /* This would normally be done by the rela_normal code in elflink.c. */
7711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7712 rel->r_addend += local_sections[r_symndx]->output_offset;
7713 }
7714 }
7715
7716 /* Relocate a MIPS ELF section. */
7717
7718 bfd_boolean
7719 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7720 bfd *input_bfd, asection *input_section,
7721 bfd_byte *contents, Elf_Internal_Rela *relocs,
7722 Elf_Internal_Sym *local_syms,
7723 asection **local_sections)
7724 {
7725 Elf_Internal_Rela *rel;
7726 const Elf_Internal_Rela *relend;
7727 bfd_vma addend = 0;
7728 bfd_boolean use_saved_addend_p = FALSE;
7729 const struct elf_backend_data *bed;
7730
7731 bed = get_elf_backend_data (output_bfd);
7732 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7733 for (rel = relocs; rel < relend; ++rel)
7734 {
7735 const char *name;
7736 bfd_vma value = 0;
7737 reloc_howto_type *howto;
7738 bfd_boolean require_jalx;
7739 /* TRUE if the relocation is a RELA relocation, rather than a
7740 REL relocation. */
7741 bfd_boolean rela_relocation_p = TRUE;
7742 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7743 const char *msg;
7744 unsigned long r_symndx;
7745 asection *sec;
7746 Elf_Internal_Shdr *symtab_hdr;
7747 struct elf_link_hash_entry *h;
7748
7749 /* Find the relocation howto for this relocation. */
7750 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7751 NEWABI_P (input_bfd)
7752 && (MIPS_RELOC_RELA_P
7753 (input_bfd, input_section,
7754 rel - relocs)));
7755
7756 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7757 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7758 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7759 {
7760 sec = local_sections[r_symndx];
7761 h = NULL;
7762 }
7763 else
7764 {
7765 unsigned long extsymoff;
7766
7767 extsymoff = 0;
7768 if (!elf_bad_symtab (input_bfd))
7769 extsymoff = symtab_hdr->sh_info;
7770 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7771 while (h->root.type == bfd_link_hash_indirect
7772 || h->root.type == bfd_link_hash_warning)
7773 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7774
7775 sec = NULL;
7776 if (h->root.type == bfd_link_hash_defined
7777 || h->root.type == bfd_link_hash_defweak)
7778 sec = h->root.u.def.section;
7779 }
7780
7781 if (sec != NULL && elf_discarded_section (sec))
7782 {
7783 /* For relocs against symbols from removed linkonce sections,
7784 or sections discarded by a linker script, we just want the
7785 section contents zeroed. Avoid any special processing. */
7786 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7787 rel->r_info = 0;
7788 rel->r_addend = 0;
7789 continue;
7790 }
7791
7792 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7793 {
7794 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7795 64-bit code, but make sure all their addresses are in the
7796 lowermost or uppermost 32-bit section of the 64-bit address
7797 space. Thus, when they use an R_MIPS_64 they mean what is
7798 usually meant by R_MIPS_32, with the exception that the
7799 stored value is sign-extended to 64 bits. */
7800 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7801
7802 /* On big-endian systems, we need to lie about the position
7803 of the reloc. */
7804 if (bfd_big_endian (input_bfd))
7805 rel->r_offset += 4;
7806 }
7807
7808 if (!use_saved_addend_p)
7809 {
7810 Elf_Internal_Shdr *rel_hdr;
7811
7812 /* If these relocations were originally of the REL variety,
7813 we must pull the addend out of the field that will be
7814 relocated. Otherwise, we simply use the contents of the
7815 RELA relocation. To determine which flavor or relocation
7816 this is, we depend on the fact that the INPUT_SECTION's
7817 REL_HDR is read before its REL_HDR2. */
7818 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7819 if ((size_t) (rel - relocs)
7820 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7821 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7822 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7823 {
7824 bfd_byte *location = contents + rel->r_offset;
7825
7826 /* Note that this is a REL relocation. */
7827 rela_relocation_p = FALSE;
7828
7829 /* Get the addend, which is stored in the input file. */
7830 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7831 location);
7832 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7833 contents);
7834 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7835 location);
7836
7837 addend &= howto->src_mask;
7838
7839 /* For some kinds of relocations, the ADDEND is a
7840 combination of the addend stored in two different
7841 relocations. */
7842 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7843 || (r_type == R_MIPS_GOT16
7844 && mips_elf_local_relocation_p (input_bfd, rel,
7845 local_sections, FALSE)))
7846 {
7847 const Elf_Internal_Rela *lo16_relocation;
7848 reloc_howto_type *lo16_howto;
7849 int lo16_type;
7850
7851 if (r_type == R_MIPS16_HI16)
7852 lo16_type = R_MIPS16_LO16;
7853 else
7854 lo16_type = R_MIPS_LO16;
7855
7856 /* The combined value is the sum of the HI16 addend,
7857 left-shifted by sixteen bits, and the LO16
7858 addend, sign extended. (Usually, the code does
7859 a `lui' of the HI16 value, and then an `addiu' of
7860 the LO16 value.)
7861
7862 Scan ahead to find a matching LO16 relocation.
7863
7864 According to the MIPS ELF ABI, the R_MIPS_LO16
7865 relocation must be immediately following.
7866 However, for the IRIX6 ABI, the next relocation
7867 may be a composed relocation consisting of
7868 several relocations for the same address. In
7869 that case, the R_MIPS_LO16 relocation may occur
7870 as one of these. We permit a similar extension
7871 in general, as that is useful for GCC.
7872
7873 In some cases GCC dead code elimination removes
7874 the LO16 but keeps the corresponding HI16. This
7875 is strictly speaking a violation of the ABI but
7876 not immediately harmful. */
7877 lo16_relocation = mips_elf_next_relocation (input_bfd,
7878 lo16_type,
7879 rel, relend);
7880 if (lo16_relocation == NULL)
7881 {
7882 const char *name;
7883
7884 if (h)
7885 name = h->root.root.string;
7886 else
7887 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7888 local_syms + r_symndx,
7889 sec);
7890 (*_bfd_error_handler)
7891 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7892 input_bfd, input_section, name, howto->name,
7893 rel->r_offset);
7894 }
7895 else
7896 {
7897 bfd_byte *lo16_location;
7898 bfd_vma l;
7899
7900 lo16_location = contents + lo16_relocation->r_offset;
7901
7902 /* Obtain the addend kept there. */
7903 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7904 lo16_type, FALSE);
7905 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7906 FALSE, lo16_location);
7907 l = mips_elf_obtain_contents (lo16_howto,
7908 lo16_relocation,
7909 input_bfd, contents);
7910 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7911 FALSE, lo16_location);
7912 l &= lo16_howto->src_mask;
7913 l <<= lo16_howto->rightshift;
7914 l = _bfd_mips_elf_sign_extend (l, 16);
7915
7916 addend <<= 16;
7917
7918 /* Compute the combined addend. */
7919 addend += l;
7920 }
7921 }
7922 else
7923 addend <<= howto->rightshift;
7924 }
7925 else
7926 addend = rel->r_addend;
7927 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7928 local_syms, local_sections, rel);
7929 }
7930
7931 if (info->relocatable)
7932 {
7933 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7934 && bfd_big_endian (input_bfd))
7935 rel->r_offset -= 4;
7936
7937 if (!rela_relocation_p && rel->r_addend)
7938 {
7939 addend += rel->r_addend;
7940 if (r_type == R_MIPS_HI16
7941 || r_type == R_MIPS_GOT16)
7942 addend = mips_elf_high (addend);
7943 else if (r_type == R_MIPS_HIGHER)
7944 addend = mips_elf_higher (addend);
7945 else if (r_type == R_MIPS_HIGHEST)
7946 addend = mips_elf_highest (addend);
7947 else
7948 addend >>= howto->rightshift;
7949
7950 /* We use the source mask, rather than the destination
7951 mask because the place to which we are writing will be
7952 source of the addend in the final link. */
7953 addend &= howto->src_mask;
7954
7955 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7956 /* See the comment above about using R_MIPS_64 in the 32-bit
7957 ABI. Here, we need to update the addend. It would be
7958 possible to get away with just using the R_MIPS_32 reloc
7959 but for endianness. */
7960 {
7961 bfd_vma sign_bits;
7962 bfd_vma low_bits;
7963 bfd_vma high_bits;
7964
7965 if (addend & ((bfd_vma) 1 << 31))
7966 #ifdef BFD64
7967 sign_bits = ((bfd_vma) 1 << 32) - 1;
7968 #else
7969 sign_bits = -1;
7970 #endif
7971 else
7972 sign_bits = 0;
7973
7974 /* If we don't know that we have a 64-bit type,
7975 do two separate stores. */
7976 if (bfd_big_endian (input_bfd))
7977 {
7978 /* Store the sign-bits (which are most significant)
7979 first. */
7980 low_bits = sign_bits;
7981 high_bits = addend;
7982 }
7983 else
7984 {
7985 low_bits = addend;
7986 high_bits = sign_bits;
7987 }
7988 bfd_put_32 (input_bfd, low_bits,
7989 contents + rel->r_offset);
7990 bfd_put_32 (input_bfd, high_bits,
7991 contents + rel->r_offset + 4);
7992 continue;
7993 }
7994
7995 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7996 input_bfd, input_section,
7997 contents, FALSE))
7998 return FALSE;
7999 }
8000
8001 /* Go on to the next relocation. */
8002 continue;
8003 }
8004
8005 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8006 relocations for the same offset. In that case we are
8007 supposed to treat the output of each relocation as the addend
8008 for the next. */
8009 if (rel + 1 < relend
8010 && rel->r_offset == rel[1].r_offset
8011 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8012 use_saved_addend_p = TRUE;
8013 else
8014 use_saved_addend_p = FALSE;
8015
8016 /* Figure out what value we are supposed to relocate. */
8017 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8018 input_section, info, rel,
8019 addend, howto, local_syms,
8020 local_sections, &value,
8021 &name, &require_jalx,
8022 use_saved_addend_p))
8023 {
8024 case bfd_reloc_continue:
8025 /* There's nothing to do. */
8026 continue;
8027
8028 case bfd_reloc_undefined:
8029 /* mips_elf_calculate_relocation already called the
8030 undefined_symbol callback. There's no real point in
8031 trying to perform the relocation at this point, so we
8032 just skip ahead to the next relocation. */
8033 continue;
8034
8035 case bfd_reloc_notsupported:
8036 msg = _("internal error: unsupported relocation error");
8037 info->callbacks->warning
8038 (info, msg, name, input_bfd, input_section, rel->r_offset);
8039 return FALSE;
8040
8041 case bfd_reloc_overflow:
8042 if (use_saved_addend_p)
8043 /* Ignore overflow until we reach the last relocation for
8044 a given location. */
8045 ;
8046 else
8047 {
8048 struct mips_elf_link_hash_table *htab;
8049
8050 htab = mips_elf_hash_table (info);
8051 BFD_ASSERT (name != NULL);
8052 if (!htab->small_data_overflow_reported
8053 && (howto->type == R_MIPS_GPREL16
8054 || howto->type == R_MIPS_LITERAL))
8055 {
8056 const char *msg =
8057 _("small-data section exceeds 64KB;"
8058 " lower small-data size limit (see option -G)");
8059
8060 htab->small_data_overflow_reported = TRUE;
8061 (*info->callbacks->einfo) ("%P: %s\n", msg);
8062 }
8063 if (! ((*info->callbacks->reloc_overflow)
8064 (info, NULL, name, howto->name, (bfd_vma) 0,
8065 input_bfd, input_section, rel->r_offset)))
8066 return FALSE;
8067 }
8068 break;
8069
8070 case bfd_reloc_ok:
8071 break;
8072
8073 default:
8074 abort ();
8075 break;
8076 }
8077
8078 /* If we've got another relocation for the address, keep going
8079 until we reach the last one. */
8080 if (use_saved_addend_p)
8081 {
8082 addend = value;
8083 continue;
8084 }
8085
8086 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8087 /* See the comment above about using R_MIPS_64 in the 32-bit
8088 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8089 that calculated the right value. Now, however, we
8090 sign-extend the 32-bit result to 64-bits, and store it as a
8091 64-bit value. We are especially generous here in that we
8092 go to extreme lengths to support this usage on systems with
8093 only a 32-bit VMA. */
8094 {
8095 bfd_vma sign_bits;
8096 bfd_vma low_bits;
8097 bfd_vma high_bits;
8098
8099 if (value & ((bfd_vma) 1 << 31))
8100 #ifdef BFD64
8101 sign_bits = ((bfd_vma) 1 << 32) - 1;
8102 #else
8103 sign_bits = -1;
8104 #endif
8105 else
8106 sign_bits = 0;
8107
8108 /* If we don't know that we have a 64-bit type,
8109 do two separate stores. */
8110 if (bfd_big_endian (input_bfd))
8111 {
8112 /* Undo what we did above. */
8113 rel->r_offset -= 4;
8114 /* Store the sign-bits (which are most significant)
8115 first. */
8116 low_bits = sign_bits;
8117 high_bits = value;
8118 }
8119 else
8120 {
8121 low_bits = value;
8122 high_bits = sign_bits;
8123 }
8124 bfd_put_32 (input_bfd, low_bits,
8125 contents + rel->r_offset);
8126 bfd_put_32 (input_bfd, high_bits,
8127 contents + rel->r_offset + 4);
8128 continue;
8129 }
8130
8131 /* Actually perform the relocation. */
8132 if (! mips_elf_perform_relocation (info, howto, rel, value,
8133 input_bfd, input_section,
8134 contents, require_jalx))
8135 return FALSE;
8136 }
8137
8138 return TRUE;
8139 }
8140 \f
8141 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8142 adjust it appropriately now. */
8143
8144 static void
8145 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8146 const char *name, Elf_Internal_Sym *sym)
8147 {
8148 /* The linker script takes care of providing names and values for
8149 these, but we must place them into the right sections. */
8150 static const char* const text_section_symbols[] = {
8151 "_ftext",
8152 "_etext",
8153 "__dso_displacement",
8154 "__elf_header",
8155 "__program_header_table",
8156 NULL
8157 };
8158
8159 static const char* const data_section_symbols[] = {
8160 "_fdata",
8161 "_edata",
8162 "_end",
8163 "_fbss",
8164 NULL
8165 };
8166
8167 const char* const *p;
8168 int i;
8169
8170 for (i = 0; i < 2; ++i)
8171 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8172 *p;
8173 ++p)
8174 if (strcmp (*p, name) == 0)
8175 {
8176 /* All of these symbols are given type STT_SECTION by the
8177 IRIX6 linker. */
8178 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8179 sym->st_other = STO_PROTECTED;
8180
8181 /* The IRIX linker puts these symbols in special sections. */
8182 if (i == 0)
8183 sym->st_shndx = SHN_MIPS_TEXT;
8184 else
8185 sym->st_shndx = SHN_MIPS_DATA;
8186
8187 break;
8188 }
8189 }
8190
8191 /* Finish up dynamic symbol handling. We set the contents of various
8192 dynamic sections here. */
8193
8194 bfd_boolean
8195 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8196 struct bfd_link_info *info,
8197 struct elf_link_hash_entry *h,
8198 Elf_Internal_Sym *sym)
8199 {
8200 bfd *dynobj;
8201 asection *sgot;
8202 struct mips_got_info *g, *gg;
8203 const char *name;
8204 int idx;
8205 struct mips_elf_link_hash_table *htab;
8206
8207 htab = mips_elf_hash_table (info);
8208 dynobj = elf_hash_table (info)->dynobj;
8209
8210 if (h->plt.offset != MINUS_ONE)
8211 {
8212 asection *s;
8213 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8214
8215 /* This symbol has a stub. Set it up. */
8216
8217 BFD_ASSERT (h->dynindx != -1);
8218
8219 s = bfd_get_section_by_name (dynobj,
8220 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8221 BFD_ASSERT (s != NULL);
8222
8223 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8224 || (h->dynindx <= 0xffff));
8225
8226 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8227 sign extension at runtime in the stub, resulting in a negative
8228 index value. */
8229 if (h->dynindx & ~0x7fffffff)
8230 return FALSE;
8231
8232 /* Fill the stub. */
8233 idx = 0;
8234 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8235 idx += 4;
8236 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8237 idx += 4;
8238 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8239 {
8240 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8241 stub + idx);
8242 idx += 4;
8243 }
8244 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8245 idx += 4;
8246
8247 /* If a large stub is not required and sign extension is not a
8248 problem, then use legacy code in the stub. */
8249 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8250 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8251 else if (h->dynindx & ~0x7fff)
8252 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8253 else
8254 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8255 stub + idx);
8256
8257 BFD_ASSERT (h->plt.offset <= s->size);
8258 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8259
8260 /* Mark the symbol as undefined. plt.offset != -1 occurs
8261 only for the referenced symbol. */
8262 sym->st_shndx = SHN_UNDEF;
8263
8264 /* The run-time linker uses the st_value field of the symbol
8265 to reset the global offset table entry for this external
8266 to its stub address when unlinking a shared object. */
8267 sym->st_value = (s->output_section->vma + s->output_offset
8268 + h->plt.offset);
8269 }
8270
8271 BFD_ASSERT (h->dynindx != -1
8272 || h->forced_local);
8273
8274 sgot = mips_elf_got_section (dynobj, FALSE);
8275 BFD_ASSERT (sgot != NULL);
8276 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8277 g = mips_elf_section_data (sgot)->u.got_info;
8278 BFD_ASSERT (g != NULL);
8279
8280 /* Run through the global symbol table, creating GOT entries for all
8281 the symbols that need them. */
8282 if (g->global_gotsym != NULL
8283 && h->dynindx >= g->global_gotsym->dynindx)
8284 {
8285 bfd_vma offset;
8286 bfd_vma value;
8287
8288 value = sym->st_value;
8289 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8290 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8291 }
8292
8293 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8294 {
8295 struct mips_got_entry e, *p;
8296 bfd_vma entry;
8297 bfd_vma offset;
8298
8299 gg = g;
8300
8301 e.abfd = output_bfd;
8302 e.symndx = -1;
8303 e.d.h = (struct mips_elf_link_hash_entry *)h;
8304 e.tls_type = 0;
8305
8306 for (g = g->next; g->next != gg; g = g->next)
8307 {
8308 if (g->got_entries
8309 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8310 &e)))
8311 {
8312 offset = p->gotidx;
8313 if (info->shared
8314 || (elf_hash_table (info)->dynamic_sections_created
8315 && p->d.h != NULL
8316 && p->d.h->root.def_dynamic
8317 && !p->d.h->root.def_regular))
8318 {
8319 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8320 the various compatibility problems, it's easier to mock
8321 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8322 mips_elf_create_dynamic_relocation to calculate the
8323 appropriate addend. */
8324 Elf_Internal_Rela rel[3];
8325
8326 memset (rel, 0, sizeof (rel));
8327 if (ABI_64_P (output_bfd))
8328 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8329 else
8330 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8331 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8332
8333 entry = 0;
8334 if (! (mips_elf_create_dynamic_relocation
8335 (output_bfd, info, rel,
8336 e.d.h, NULL, sym->st_value, &entry, sgot)))
8337 return FALSE;
8338 }
8339 else
8340 entry = sym->st_value;
8341 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8342 }
8343 }
8344 }
8345
8346 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8347 name = h->root.root.string;
8348 if (strcmp (name, "_DYNAMIC") == 0
8349 || h == elf_hash_table (info)->hgot)
8350 sym->st_shndx = SHN_ABS;
8351 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8352 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8353 {
8354 sym->st_shndx = SHN_ABS;
8355 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8356 sym->st_value = 1;
8357 }
8358 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8359 {
8360 sym->st_shndx = SHN_ABS;
8361 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8362 sym->st_value = elf_gp (output_bfd);
8363 }
8364 else if (SGI_COMPAT (output_bfd))
8365 {
8366 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8367 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8368 {
8369 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8370 sym->st_other = STO_PROTECTED;
8371 sym->st_value = 0;
8372 sym->st_shndx = SHN_MIPS_DATA;
8373 }
8374 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8375 {
8376 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8377 sym->st_other = STO_PROTECTED;
8378 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8379 sym->st_shndx = SHN_ABS;
8380 }
8381 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8382 {
8383 if (h->type == STT_FUNC)
8384 sym->st_shndx = SHN_MIPS_TEXT;
8385 else if (h->type == STT_OBJECT)
8386 sym->st_shndx = SHN_MIPS_DATA;
8387 }
8388 }
8389
8390 /* Handle the IRIX6-specific symbols. */
8391 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8392 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8393
8394 if (! info->shared)
8395 {
8396 if (! mips_elf_hash_table (info)->use_rld_obj_head
8397 && (strcmp (name, "__rld_map") == 0
8398 || strcmp (name, "__RLD_MAP") == 0))
8399 {
8400 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8401 BFD_ASSERT (s != NULL);
8402 sym->st_value = s->output_section->vma + s->output_offset;
8403 bfd_put_32 (output_bfd, 0, s->contents);
8404 if (mips_elf_hash_table (info)->rld_value == 0)
8405 mips_elf_hash_table (info)->rld_value = sym->st_value;
8406 }
8407 else if (mips_elf_hash_table (info)->use_rld_obj_head
8408 && strcmp (name, "__rld_obj_head") == 0)
8409 {
8410 /* IRIX6 does not use a .rld_map section. */
8411 if (IRIX_COMPAT (output_bfd) == ict_irix5
8412 || IRIX_COMPAT (output_bfd) == ict_none)
8413 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8414 != NULL);
8415 mips_elf_hash_table (info)->rld_value = sym->st_value;
8416 }
8417 }
8418
8419 /* If this is a mips16 symbol, force the value to be even. */
8420 if (sym->st_other == STO_MIPS16)
8421 sym->st_value &= ~1;
8422
8423 return TRUE;
8424 }
8425
8426 /* Likewise, for VxWorks. */
8427
8428 bfd_boolean
8429 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8430 struct bfd_link_info *info,
8431 struct elf_link_hash_entry *h,
8432 Elf_Internal_Sym *sym)
8433 {
8434 bfd *dynobj;
8435 asection *sgot;
8436 struct mips_got_info *g;
8437 struct mips_elf_link_hash_table *htab;
8438
8439 htab = mips_elf_hash_table (info);
8440 dynobj = elf_hash_table (info)->dynobj;
8441
8442 if (h->plt.offset != (bfd_vma) -1)
8443 {
8444 bfd_byte *loc;
8445 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8446 Elf_Internal_Rela rel;
8447 static const bfd_vma *plt_entry;
8448
8449 BFD_ASSERT (h->dynindx != -1);
8450 BFD_ASSERT (htab->splt != NULL);
8451 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8452
8453 /* Calculate the address of the .plt entry. */
8454 plt_address = (htab->splt->output_section->vma
8455 + htab->splt->output_offset
8456 + h->plt.offset);
8457
8458 /* Calculate the index of the entry. */
8459 plt_index = ((h->plt.offset - htab->plt_header_size)
8460 / htab->plt_entry_size);
8461
8462 /* Calculate the address of the .got.plt entry. */
8463 got_address = (htab->sgotplt->output_section->vma
8464 + htab->sgotplt->output_offset
8465 + plt_index * 4);
8466
8467 /* Calculate the offset of the .got.plt entry from
8468 _GLOBAL_OFFSET_TABLE_. */
8469 got_offset = mips_elf_gotplt_index (info, h);
8470
8471 /* Calculate the offset for the branch at the start of the PLT
8472 entry. The branch jumps to the beginning of .plt. */
8473 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8474
8475 /* Fill in the initial value of the .got.plt entry. */
8476 bfd_put_32 (output_bfd, plt_address,
8477 htab->sgotplt->contents + plt_index * 4);
8478
8479 /* Find out where the .plt entry should go. */
8480 loc = htab->splt->contents + h->plt.offset;
8481
8482 if (info->shared)
8483 {
8484 plt_entry = mips_vxworks_shared_plt_entry;
8485 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8486 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8487 }
8488 else
8489 {
8490 bfd_vma got_address_high, got_address_low;
8491
8492 plt_entry = mips_vxworks_exec_plt_entry;
8493 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8494 got_address_low = got_address & 0xffff;
8495
8496 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8497 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8498 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8499 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8500 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8501 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8502 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8503 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8504
8505 loc = (htab->srelplt2->contents
8506 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8507
8508 /* Emit a relocation for the .got.plt entry. */
8509 rel.r_offset = got_address;
8510 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8511 rel.r_addend = h->plt.offset;
8512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8513
8514 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8515 loc += sizeof (Elf32_External_Rela);
8516 rel.r_offset = plt_address + 8;
8517 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8518 rel.r_addend = got_offset;
8519 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8520
8521 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8522 loc += sizeof (Elf32_External_Rela);
8523 rel.r_offset += 4;
8524 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8525 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8526 }
8527
8528 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8529 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8530 rel.r_offset = got_address;
8531 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8532 rel.r_addend = 0;
8533 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8534
8535 if (!h->def_regular)
8536 sym->st_shndx = SHN_UNDEF;
8537 }
8538
8539 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8540
8541 sgot = mips_elf_got_section (dynobj, FALSE);
8542 BFD_ASSERT (sgot != NULL);
8543 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8544 g = mips_elf_section_data (sgot)->u.got_info;
8545 BFD_ASSERT (g != NULL);
8546
8547 /* See if this symbol has an entry in the GOT. */
8548 if (g->global_gotsym != NULL
8549 && h->dynindx >= g->global_gotsym->dynindx)
8550 {
8551 bfd_vma offset;
8552 Elf_Internal_Rela outrel;
8553 bfd_byte *loc;
8554 asection *s;
8555
8556 /* Install the symbol value in the GOT. */
8557 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8558 R_MIPS_GOT16, info);
8559 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8560
8561 /* Add a dynamic relocation for it. */
8562 s = mips_elf_rel_dyn_section (info, FALSE);
8563 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8564 outrel.r_offset = (sgot->output_section->vma
8565 + sgot->output_offset
8566 + offset);
8567 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8568 outrel.r_addend = 0;
8569 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8570 }
8571
8572 /* Emit a copy reloc, if needed. */
8573 if (h->needs_copy)
8574 {
8575 Elf_Internal_Rela rel;
8576
8577 BFD_ASSERT (h->dynindx != -1);
8578
8579 rel.r_offset = (h->root.u.def.section->output_section->vma
8580 + h->root.u.def.section->output_offset
8581 + h->root.u.def.value);
8582 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8583 rel.r_addend = 0;
8584 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8585 htab->srelbss->contents
8586 + (htab->srelbss->reloc_count
8587 * sizeof (Elf32_External_Rela)));
8588 ++htab->srelbss->reloc_count;
8589 }
8590
8591 /* If this is a mips16 symbol, force the value to be even. */
8592 if (sym->st_other == STO_MIPS16)
8593 sym->st_value &= ~1;
8594
8595 return TRUE;
8596 }
8597
8598 /* Install the PLT header for a VxWorks executable and finalize the
8599 contents of .rela.plt.unloaded. */
8600
8601 static void
8602 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8603 {
8604 Elf_Internal_Rela rela;
8605 bfd_byte *loc;
8606 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8607 static const bfd_vma *plt_entry;
8608 struct mips_elf_link_hash_table *htab;
8609
8610 htab = mips_elf_hash_table (info);
8611 plt_entry = mips_vxworks_exec_plt0_entry;
8612
8613 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8614 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8615 + htab->root.hgot->root.u.def.section->output_offset
8616 + htab->root.hgot->root.u.def.value);
8617
8618 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8619 got_value_low = got_value & 0xffff;
8620
8621 /* Calculate the address of the PLT header. */
8622 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8623
8624 /* Install the PLT header. */
8625 loc = htab->splt->contents;
8626 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8627 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8628 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8629 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8630 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8631 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8632
8633 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8634 loc = htab->srelplt2->contents;
8635 rela.r_offset = plt_address;
8636 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8637 rela.r_addend = 0;
8638 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8639 loc += sizeof (Elf32_External_Rela);
8640
8641 /* Output the relocation for the following addiu of
8642 %lo(_GLOBAL_OFFSET_TABLE_). */
8643 rela.r_offset += 4;
8644 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8645 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8646 loc += sizeof (Elf32_External_Rela);
8647
8648 /* Fix up the remaining relocations. They may have the wrong
8649 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8650 in which symbols were output. */
8651 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8652 {
8653 Elf_Internal_Rela rel;
8654
8655 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8656 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8657 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8658 loc += sizeof (Elf32_External_Rela);
8659
8660 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8661 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8662 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8663 loc += sizeof (Elf32_External_Rela);
8664
8665 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8666 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8667 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8668 loc += sizeof (Elf32_External_Rela);
8669 }
8670 }
8671
8672 /* Install the PLT header for a VxWorks shared library. */
8673
8674 static void
8675 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8676 {
8677 unsigned int i;
8678 struct mips_elf_link_hash_table *htab;
8679
8680 htab = mips_elf_hash_table (info);
8681
8682 /* We just need to copy the entry byte-by-byte. */
8683 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8684 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8685 htab->splt->contents + i * 4);
8686 }
8687
8688 /* Finish up the dynamic sections. */
8689
8690 bfd_boolean
8691 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8692 struct bfd_link_info *info)
8693 {
8694 bfd *dynobj;
8695 asection *sdyn;
8696 asection *sgot;
8697 struct mips_got_info *gg, *g;
8698 struct mips_elf_link_hash_table *htab;
8699
8700 htab = mips_elf_hash_table (info);
8701 dynobj = elf_hash_table (info)->dynobj;
8702
8703 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8704
8705 sgot = mips_elf_got_section (dynobj, FALSE);
8706 if (sgot == NULL)
8707 gg = g = NULL;
8708 else
8709 {
8710 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8711 gg = mips_elf_section_data (sgot)->u.got_info;
8712 BFD_ASSERT (gg != NULL);
8713 g = mips_elf_got_for_ibfd (gg, output_bfd);
8714 BFD_ASSERT (g != NULL);
8715 }
8716
8717 if (elf_hash_table (info)->dynamic_sections_created)
8718 {
8719 bfd_byte *b;
8720 int dyn_to_skip = 0, dyn_skipped = 0;
8721
8722 BFD_ASSERT (sdyn != NULL);
8723 BFD_ASSERT (g != NULL);
8724
8725 for (b = sdyn->contents;
8726 b < sdyn->contents + sdyn->size;
8727 b += MIPS_ELF_DYN_SIZE (dynobj))
8728 {
8729 Elf_Internal_Dyn dyn;
8730 const char *name;
8731 size_t elemsize;
8732 asection *s;
8733 bfd_boolean swap_out_p;
8734
8735 /* Read in the current dynamic entry. */
8736 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8737
8738 /* Assume that we're going to modify it and write it out. */
8739 swap_out_p = TRUE;
8740
8741 switch (dyn.d_tag)
8742 {
8743 case DT_RELENT:
8744 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8745 break;
8746
8747 case DT_RELAENT:
8748 BFD_ASSERT (htab->is_vxworks);
8749 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8750 break;
8751
8752 case DT_STRSZ:
8753 /* Rewrite DT_STRSZ. */
8754 dyn.d_un.d_val =
8755 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8756 break;
8757
8758 case DT_PLTGOT:
8759 name = ".got";
8760 if (htab->is_vxworks)
8761 {
8762 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8763 of the ".got" section in DYNOBJ. */
8764 s = bfd_get_section_by_name (dynobj, name);
8765 BFD_ASSERT (s != NULL);
8766 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8767 }
8768 else
8769 {
8770 s = bfd_get_section_by_name (output_bfd, name);
8771 BFD_ASSERT (s != NULL);
8772 dyn.d_un.d_ptr = s->vma;
8773 }
8774 break;
8775
8776 case DT_MIPS_RLD_VERSION:
8777 dyn.d_un.d_val = 1; /* XXX */
8778 break;
8779
8780 case DT_MIPS_FLAGS:
8781 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8782 break;
8783
8784 case DT_MIPS_TIME_STAMP:
8785 {
8786 time_t t;
8787 time (&t);
8788 dyn.d_un.d_val = t;
8789 }
8790 break;
8791
8792 case DT_MIPS_ICHECKSUM:
8793 /* XXX FIXME: */
8794 swap_out_p = FALSE;
8795 break;
8796
8797 case DT_MIPS_IVERSION:
8798 /* XXX FIXME: */
8799 swap_out_p = FALSE;
8800 break;
8801
8802 case DT_MIPS_BASE_ADDRESS:
8803 s = output_bfd->sections;
8804 BFD_ASSERT (s != NULL);
8805 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8806 break;
8807
8808 case DT_MIPS_LOCAL_GOTNO:
8809 dyn.d_un.d_val = g->local_gotno;
8810 break;
8811
8812 case DT_MIPS_UNREFEXTNO:
8813 /* The index into the dynamic symbol table which is the
8814 entry of the first external symbol that is not
8815 referenced within the same object. */
8816 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8817 break;
8818
8819 case DT_MIPS_GOTSYM:
8820 if (gg->global_gotsym)
8821 {
8822 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8823 break;
8824 }
8825 /* In case if we don't have global got symbols we default
8826 to setting DT_MIPS_GOTSYM to the same value as
8827 DT_MIPS_SYMTABNO, so we just fall through. */
8828
8829 case DT_MIPS_SYMTABNO:
8830 name = ".dynsym";
8831 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8832 s = bfd_get_section_by_name (output_bfd, name);
8833 BFD_ASSERT (s != NULL);
8834
8835 dyn.d_un.d_val = s->size / elemsize;
8836 break;
8837
8838 case DT_MIPS_HIPAGENO:
8839 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8840 break;
8841
8842 case DT_MIPS_RLD_MAP:
8843 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8844 break;
8845
8846 case DT_MIPS_OPTIONS:
8847 s = (bfd_get_section_by_name
8848 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8849 dyn.d_un.d_ptr = s->vma;
8850 break;
8851
8852 case DT_RELASZ:
8853 BFD_ASSERT (htab->is_vxworks);
8854 /* The count does not include the JUMP_SLOT relocations. */
8855 if (htab->srelplt)
8856 dyn.d_un.d_val -= htab->srelplt->size;
8857 break;
8858
8859 case DT_PLTREL:
8860 BFD_ASSERT (htab->is_vxworks);
8861 dyn.d_un.d_val = DT_RELA;
8862 break;
8863
8864 case DT_PLTRELSZ:
8865 BFD_ASSERT (htab->is_vxworks);
8866 dyn.d_un.d_val = htab->srelplt->size;
8867 break;
8868
8869 case DT_JMPREL:
8870 BFD_ASSERT (htab->is_vxworks);
8871 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8872 + htab->srelplt->output_offset);
8873 break;
8874
8875 case DT_TEXTREL:
8876 /* If we didn't need any text relocations after all, delete
8877 the dynamic tag. */
8878 if (!(info->flags & DF_TEXTREL))
8879 {
8880 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8881 swap_out_p = FALSE;
8882 }
8883 break;
8884
8885 case DT_FLAGS:
8886 /* If we didn't need any text relocations after all, clear
8887 DF_TEXTREL from DT_FLAGS. */
8888 if (!(info->flags & DF_TEXTREL))
8889 dyn.d_un.d_val &= ~DF_TEXTREL;
8890 else
8891 swap_out_p = FALSE;
8892 break;
8893
8894 default:
8895 swap_out_p = FALSE;
8896 break;
8897 }
8898
8899 if (swap_out_p || dyn_skipped)
8900 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8901 (dynobj, &dyn, b - dyn_skipped);
8902
8903 if (dyn_to_skip)
8904 {
8905 dyn_skipped += dyn_to_skip;
8906 dyn_to_skip = 0;
8907 }
8908 }
8909
8910 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8911 if (dyn_skipped > 0)
8912 memset (b - dyn_skipped, 0, dyn_skipped);
8913 }
8914
8915 if (sgot != NULL && sgot->size > 0
8916 && !bfd_is_abs_section (sgot->output_section))
8917 {
8918 if (htab->is_vxworks)
8919 {
8920 /* The first entry of the global offset table points to the
8921 ".dynamic" section. The second is initialized by the
8922 loader and contains the shared library identifier.
8923 The third is also initialized by the loader and points
8924 to the lazy resolution stub. */
8925 MIPS_ELF_PUT_WORD (output_bfd,
8926 sdyn->output_offset + sdyn->output_section->vma,
8927 sgot->contents);
8928 MIPS_ELF_PUT_WORD (output_bfd, 0,
8929 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8930 MIPS_ELF_PUT_WORD (output_bfd, 0,
8931 sgot->contents
8932 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8933 }
8934 else
8935 {
8936 /* The first entry of the global offset table will be filled at
8937 runtime. The second entry will be used by some runtime loaders.
8938 This isn't the case of IRIX rld. */
8939 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8940 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8941 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8942 }
8943
8944 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8945 = MIPS_ELF_GOT_SIZE (output_bfd);
8946 }
8947
8948 /* Generate dynamic relocations for the non-primary gots. */
8949 if (gg != NULL && gg->next)
8950 {
8951 Elf_Internal_Rela rel[3];
8952 bfd_vma addend = 0;
8953
8954 memset (rel, 0, sizeof (rel));
8955 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8956
8957 for (g = gg->next; g->next != gg; g = g->next)
8958 {
8959 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8960 + g->next->tls_gotno;
8961
8962 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8963 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8964 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8965 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8966
8967 if (! info->shared)
8968 continue;
8969
8970 while (index < g->assigned_gotno)
8971 {
8972 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8973 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8974 if (!(mips_elf_create_dynamic_relocation
8975 (output_bfd, info, rel, NULL,
8976 bfd_abs_section_ptr,
8977 0, &addend, sgot)))
8978 return FALSE;
8979 BFD_ASSERT (addend == 0);
8980 }
8981 }
8982 }
8983
8984 /* The generation of dynamic relocations for the non-primary gots
8985 adds more dynamic relocations. We cannot count them until
8986 here. */
8987
8988 if (elf_hash_table (info)->dynamic_sections_created)
8989 {
8990 bfd_byte *b;
8991 bfd_boolean swap_out_p;
8992
8993 BFD_ASSERT (sdyn != NULL);
8994
8995 for (b = sdyn->contents;
8996 b < sdyn->contents + sdyn->size;
8997 b += MIPS_ELF_DYN_SIZE (dynobj))
8998 {
8999 Elf_Internal_Dyn dyn;
9000 asection *s;
9001
9002 /* Read in the current dynamic entry. */
9003 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9004
9005 /* Assume that we're going to modify it and write it out. */
9006 swap_out_p = TRUE;
9007
9008 switch (dyn.d_tag)
9009 {
9010 case DT_RELSZ:
9011 /* Reduce DT_RELSZ to account for any relocations we
9012 decided not to make. This is for the n64 irix rld,
9013 which doesn't seem to apply any relocations if there
9014 are trailing null entries. */
9015 s = mips_elf_rel_dyn_section (info, FALSE);
9016 dyn.d_un.d_val = (s->reloc_count
9017 * (ABI_64_P (output_bfd)
9018 ? sizeof (Elf64_Mips_External_Rel)
9019 : sizeof (Elf32_External_Rel)));
9020 /* Adjust the section size too. Tools like the prelinker
9021 can reasonably expect the values to the same. */
9022 elf_section_data (s->output_section)->this_hdr.sh_size
9023 = dyn.d_un.d_val;
9024 break;
9025
9026 default:
9027 swap_out_p = FALSE;
9028 break;
9029 }
9030
9031 if (swap_out_p)
9032 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9033 (dynobj, &dyn, b);
9034 }
9035 }
9036
9037 {
9038 asection *s;
9039 Elf32_compact_rel cpt;
9040
9041 if (SGI_COMPAT (output_bfd))
9042 {
9043 /* Write .compact_rel section out. */
9044 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9045 if (s != NULL)
9046 {
9047 cpt.id1 = 1;
9048 cpt.num = s->reloc_count;
9049 cpt.id2 = 2;
9050 cpt.offset = (s->output_section->filepos
9051 + sizeof (Elf32_External_compact_rel));
9052 cpt.reserved0 = 0;
9053 cpt.reserved1 = 0;
9054 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9055 ((Elf32_External_compact_rel *)
9056 s->contents));
9057
9058 /* Clean up a dummy stub function entry in .text. */
9059 s = bfd_get_section_by_name (dynobj,
9060 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9061 if (s != NULL)
9062 {
9063 file_ptr dummy_offset;
9064
9065 BFD_ASSERT (s->size >= htab->function_stub_size);
9066 dummy_offset = s->size - htab->function_stub_size;
9067 memset (s->contents + dummy_offset, 0,
9068 htab->function_stub_size);
9069 }
9070 }
9071 }
9072
9073 /* The psABI says that the dynamic relocations must be sorted in
9074 increasing order of r_symndx. The VxWorks EABI doesn't require
9075 this, and because the code below handles REL rather than RELA
9076 relocations, using it for VxWorks would be outright harmful. */
9077 if (!htab->is_vxworks)
9078 {
9079 s = mips_elf_rel_dyn_section (info, FALSE);
9080 if (s != NULL
9081 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9082 {
9083 reldyn_sorting_bfd = output_bfd;
9084
9085 if (ABI_64_P (output_bfd))
9086 qsort ((Elf64_External_Rel *) s->contents + 1,
9087 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9088 sort_dynamic_relocs_64);
9089 else
9090 qsort ((Elf32_External_Rel *) s->contents + 1,
9091 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9092 sort_dynamic_relocs);
9093 }
9094 }
9095 }
9096
9097 if (htab->is_vxworks && htab->splt->size > 0)
9098 {
9099 if (info->shared)
9100 mips_vxworks_finish_shared_plt (output_bfd, info);
9101 else
9102 mips_vxworks_finish_exec_plt (output_bfd, info);
9103 }
9104 return TRUE;
9105 }
9106
9107
9108 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9109
9110 static void
9111 mips_set_isa_flags (bfd *abfd)
9112 {
9113 flagword val;
9114
9115 switch (bfd_get_mach (abfd))
9116 {
9117 default:
9118 case bfd_mach_mips3000:
9119 val = E_MIPS_ARCH_1;
9120 break;
9121
9122 case bfd_mach_mips3900:
9123 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9124 break;
9125
9126 case bfd_mach_mips6000:
9127 val = E_MIPS_ARCH_2;
9128 break;
9129
9130 case bfd_mach_mips4000:
9131 case bfd_mach_mips4300:
9132 case bfd_mach_mips4400:
9133 case bfd_mach_mips4600:
9134 val = E_MIPS_ARCH_3;
9135 break;
9136
9137 case bfd_mach_mips4010:
9138 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9139 break;
9140
9141 case bfd_mach_mips4100:
9142 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9143 break;
9144
9145 case bfd_mach_mips4111:
9146 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9147 break;
9148
9149 case bfd_mach_mips4120:
9150 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9151 break;
9152
9153 case bfd_mach_mips4650:
9154 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9155 break;
9156
9157 case bfd_mach_mips5400:
9158 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9159 break;
9160
9161 case bfd_mach_mips5500:
9162 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9163 break;
9164
9165 case bfd_mach_mips9000:
9166 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9167 break;
9168
9169 case bfd_mach_mips5000:
9170 case bfd_mach_mips7000:
9171 case bfd_mach_mips8000:
9172 case bfd_mach_mips10000:
9173 case bfd_mach_mips12000:
9174 val = E_MIPS_ARCH_4;
9175 break;
9176
9177 case bfd_mach_mips5:
9178 val = E_MIPS_ARCH_5;
9179 break;
9180
9181 case bfd_mach_mips_sb1:
9182 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9183 break;
9184
9185 case bfd_mach_mipsisa32:
9186 val = E_MIPS_ARCH_32;
9187 break;
9188
9189 case bfd_mach_mipsisa64:
9190 val = E_MIPS_ARCH_64;
9191 break;
9192
9193 case bfd_mach_mipsisa32r2:
9194 val = E_MIPS_ARCH_32R2;
9195 break;
9196
9197 case bfd_mach_mipsisa64r2:
9198 val = E_MIPS_ARCH_64R2;
9199 break;
9200 }
9201 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9202 elf_elfheader (abfd)->e_flags |= val;
9203
9204 }
9205
9206
9207 /* The final processing done just before writing out a MIPS ELF object
9208 file. This gets the MIPS architecture right based on the machine
9209 number. This is used by both the 32-bit and the 64-bit ABI. */
9210
9211 void
9212 _bfd_mips_elf_final_write_processing (bfd *abfd,
9213 bfd_boolean linker ATTRIBUTE_UNUSED)
9214 {
9215 unsigned int i;
9216 Elf_Internal_Shdr **hdrpp;
9217 const char *name;
9218 asection *sec;
9219
9220 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9221 is nonzero. This is for compatibility with old objects, which used
9222 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9223 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9224 mips_set_isa_flags (abfd);
9225
9226 /* Set the sh_info field for .gptab sections and other appropriate
9227 info for each special section. */
9228 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9229 i < elf_numsections (abfd);
9230 i++, hdrpp++)
9231 {
9232 switch ((*hdrpp)->sh_type)
9233 {
9234 case SHT_MIPS_MSYM:
9235 case SHT_MIPS_LIBLIST:
9236 sec = bfd_get_section_by_name (abfd, ".dynstr");
9237 if (sec != NULL)
9238 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9239 break;
9240
9241 case SHT_MIPS_GPTAB:
9242 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9243 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9244 BFD_ASSERT (name != NULL
9245 && CONST_STRNEQ (name, ".gptab."));
9246 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9247 BFD_ASSERT (sec != NULL);
9248 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9249 break;
9250
9251 case SHT_MIPS_CONTENT:
9252 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9253 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9254 BFD_ASSERT (name != NULL
9255 && CONST_STRNEQ (name, ".MIPS.content"));
9256 sec = bfd_get_section_by_name (abfd,
9257 name + sizeof ".MIPS.content" - 1);
9258 BFD_ASSERT (sec != NULL);
9259 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9260 break;
9261
9262 case SHT_MIPS_SYMBOL_LIB:
9263 sec = bfd_get_section_by_name (abfd, ".dynsym");
9264 if (sec != NULL)
9265 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9266 sec = bfd_get_section_by_name (abfd, ".liblist");
9267 if (sec != NULL)
9268 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9269 break;
9270
9271 case SHT_MIPS_EVENTS:
9272 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9273 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9274 BFD_ASSERT (name != NULL);
9275 if (CONST_STRNEQ (name, ".MIPS.events"))
9276 sec = bfd_get_section_by_name (abfd,
9277 name + sizeof ".MIPS.events" - 1);
9278 else
9279 {
9280 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9281 sec = bfd_get_section_by_name (abfd,
9282 (name
9283 + sizeof ".MIPS.post_rel" - 1));
9284 }
9285 BFD_ASSERT (sec != NULL);
9286 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9287 break;
9288
9289 }
9290 }
9291 }
9292 \f
9293 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9294 segments. */
9295
9296 int
9297 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9298 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9299 {
9300 asection *s;
9301 int ret = 0;
9302
9303 /* See if we need a PT_MIPS_REGINFO segment. */
9304 s = bfd_get_section_by_name (abfd, ".reginfo");
9305 if (s && (s->flags & SEC_LOAD))
9306 ++ret;
9307
9308 /* See if we need a PT_MIPS_OPTIONS segment. */
9309 if (IRIX_COMPAT (abfd) == ict_irix6
9310 && bfd_get_section_by_name (abfd,
9311 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9312 ++ret;
9313
9314 /* See if we need a PT_MIPS_RTPROC segment. */
9315 if (IRIX_COMPAT (abfd) == ict_irix5
9316 && bfd_get_section_by_name (abfd, ".dynamic")
9317 && bfd_get_section_by_name (abfd, ".mdebug"))
9318 ++ret;
9319
9320 /* Allocate a PT_NULL header in dynamic objects. See
9321 _bfd_mips_elf_modify_segment_map for details. */
9322 if (!SGI_COMPAT (abfd)
9323 && bfd_get_section_by_name (abfd, ".dynamic"))
9324 ++ret;
9325
9326 return ret;
9327 }
9328
9329 /* Modify the segment map for an IRIX5 executable. */
9330
9331 bfd_boolean
9332 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9333 struct bfd_link_info *info)
9334 {
9335 asection *s;
9336 struct elf_segment_map *m, **pm;
9337 bfd_size_type amt;
9338
9339 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9340 segment. */
9341 s = bfd_get_section_by_name (abfd, ".reginfo");
9342 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9343 {
9344 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9345 if (m->p_type == PT_MIPS_REGINFO)
9346 break;
9347 if (m == NULL)
9348 {
9349 amt = sizeof *m;
9350 m = bfd_zalloc (abfd, amt);
9351 if (m == NULL)
9352 return FALSE;
9353
9354 m->p_type = PT_MIPS_REGINFO;
9355 m->count = 1;
9356 m->sections[0] = s;
9357
9358 /* We want to put it after the PHDR and INTERP segments. */
9359 pm = &elf_tdata (abfd)->segment_map;
9360 while (*pm != NULL
9361 && ((*pm)->p_type == PT_PHDR
9362 || (*pm)->p_type == PT_INTERP))
9363 pm = &(*pm)->next;
9364
9365 m->next = *pm;
9366 *pm = m;
9367 }
9368 }
9369
9370 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9371 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9372 PT_MIPS_OPTIONS segment immediately following the program header
9373 table. */
9374 if (NEWABI_P (abfd)
9375 /* On non-IRIX6 new abi, we'll have already created a segment
9376 for this section, so don't create another. I'm not sure this
9377 is not also the case for IRIX 6, but I can't test it right
9378 now. */
9379 && IRIX_COMPAT (abfd) == ict_irix6)
9380 {
9381 for (s = abfd->sections; s; s = s->next)
9382 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9383 break;
9384
9385 if (s)
9386 {
9387 struct elf_segment_map *options_segment;
9388
9389 pm = &elf_tdata (abfd)->segment_map;
9390 while (*pm != NULL
9391 && ((*pm)->p_type == PT_PHDR
9392 || (*pm)->p_type == PT_INTERP))
9393 pm = &(*pm)->next;
9394
9395 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9396 {
9397 amt = sizeof (struct elf_segment_map);
9398 options_segment = bfd_zalloc (abfd, amt);
9399 options_segment->next = *pm;
9400 options_segment->p_type = PT_MIPS_OPTIONS;
9401 options_segment->p_flags = PF_R;
9402 options_segment->p_flags_valid = TRUE;
9403 options_segment->count = 1;
9404 options_segment->sections[0] = s;
9405 *pm = options_segment;
9406 }
9407 }
9408 }
9409 else
9410 {
9411 if (IRIX_COMPAT (abfd) == ict_irix5)
9412 {
9413 /* If there are .dynamic and .mdebug sections, we make a room
9414 for the RTPROC header. FIXME: Rewrite without section names. */
9415 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9416 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9417 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9418 {
9419 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9420 if (m->p_type == PT_MIPS_RTPROC)
9421 break;
9422 if (m == NULL)
9423 {
9424 amt = sizeof *m;
9425 m = bfd_zalloc (abfd, amt);
9426 if (m == NULL)
9427 return FALSE;
9428
9429 m->p_type = PT_MIPS_RTPROC;
9430
9431 s = bfd_get_section_by_name (abfd, ".rtproc");
9432 if (s == NULL)
9433 {
9434 m->count = 0;
9435 m->p_flags = 0;
9436 m->p_flags_valid = 1;
9437 }
9438 else
9439 {
9440 m->count = 1;
9441 m->sections[0] = s;
9442 }
9443
9444 /* We want to put it after the DYNAMIC segment. */
9445 pm = &elf_tdata (abfd)->segment_map;
9446 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9447 pm = &(*pm)->next;
9448 if (*pm != NULL)
9449 pm = &(*pm)->next;
9450
9451 m->next = *pm;
9452 *pm = m;
9453 }
9454 }
9455 }
9456 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9457 .dynstr, .dynsym, and .hash sections, and everything in
9458 between. */
9459 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9460 pm = &(*pm)->next)
9461 if ((*pm)->p_type == PT_DYNAMIC)
9462 break;
9463 m = *pm;
9464 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9465 {
9466 /* For a normal mips executable the permissions for the PT_DYNAMIC
9467 segment are read, write and execute. We do that here since
9468 the code in elf.c sets only the read permission. This matters
9469 sometimes for the dynamic linker. */
9470 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9471 {
9472 m->p_flags = PF_R | PF_W | PF_X;
9473 m->p_flags_valid = 1;
9474 }
9475 }
9476 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9477 glibc's dynamic linker has traditionally derived the number of
9478 tags from the p_filesz field, and sometimes allocates stack
9479 arrays of that size. An overly-big PT_DYNAMIC segment can
9480 be actively harmful in such cases. Making PT_DYNAMIC contain
9481 other sections can also make life hard for the prelinker,
9482 which might move one of the other sections to a different
9483 PT_LOAD segment. */
9484 if (SGI_COMPAT (abfd)
9485 && m != NULL
9486 && m->count == 1
9487 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9488 {
9489 static const char *sec_names[] =
9490 {
9491 ".dynamic", ".dynstr", ".dynsym", ".hash"
9492 };
9493 bfd_vma low, high;
9494 unsigned int i, c;
9495 struct elf_segment_map *n;
9496
9497 low = ~(bfd_vma) 0;
9498 high = 0;
9499 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9500 {
9501 s = bfd_get_section_by_name (abfd, sec_names[i]);
9502 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9503 {
9504 bfd_size_type sz;
9505
9506 if (low > s->vma)
9507 low = s->vma;
9508 sz = s->size;
9509 if (high < s->vma + sz)
9510 high = s->vma + sz;
9511 }
9512 }
9513
9514 c = 0;
9515 for (s = abfd->sections; s != NULL; s = s->next)
9516 if ((s->flags & SEC_LOAD) != 0
9517 && s->vma >= low
9518 && s->vma + s->size <= high)
9519 ++c;
9520
9521 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9522 n = bfd_zalloc (abfd, amt);
9523 if (n == NULL)
9524 return FALSE;
9525 *n = *m;
9526 n->count = c;
9527
9528 i = 0;
9529 for (s = abfd->sections; s != NULL; s = s->next)
9530 {
9531 if ((s->flags & SEC_LOAD) != 0
9532 && s->vma >= low
9533 && s->vma + s->size <= high)
9534 {
9535 n->sections[i] = s;
9536 ++i;
9537 }
9538 }
9539
9540 *pm = n;
9541 }
9542 }
9543
9544 /* Allocate a spare program header in dynamic objects so that tools
9545 like the prelinker can add an extra PT_LOAD entry.
9546
9547 If the prelinker needs to make room for a new PT_LOAD entry, its
9548 standard procedure is to move the first (read-only) sections into
9549 the new (writable) segment. However, the MIPS ABI requires
9550 .dynamic to be in a read-only segment, and the section will often
9551 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9552
9553 Although the prelinker could in principle move .dynamic to a
9554 writable segment, it seems better to allocate a spare program
9555 header instead, and avoid the need to move any sections.
9556 There is a long tradition of allocating spare dynamic tags,
9557 so allocating a spare program header seems like a natural
9558 extension.
9559
9560 If INFO is NULL, we may be copying an already prelinked binary
9561 with objcopy or strip, so do not add this header. */
9562 if (info != NULL
9563 && !SGI_COMPAT (abfd)
9564 && bfd_get_section_by_name (abfd, ".dynamic"))
9565 {
9566 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9567 if ((*pm)->p_type == PT_NULL)
9568 break;
9569 if (*pm == NULL)
9570 {
9571 m = bfd_zalloc (abfd, sizeof (*m));
9572 if (m == NULL)
9573 return FALSE;
9574
9575 m->p_type = PT_NULL;
9576 *pm = m;
9577 }
9578 }
9579
9580 return TRUE;
9581 }
9582 \f
9583 /* Return the section that should be marked against GC for a given
9584 relocation. */
9585
9586 asection *
9587 _bfd_mips_elf_gc_mark_hook (asection *sec,
9588 struct bfd_link_info *info,
9589 Elf_Internal_Rela *rel,
9590 struct elf_link_hash_entry *h,
9591 Elf_Internal_Sym *sym)
9592 {
9593 /* ??? Do mips16 stub sections need to be handled special? */
9594
9595 if (h != NULL)
9596 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9597 {
9598 case R_MIPS_GNU_VTINHERIT:
9599 case R_MIPS_GNU_VTENTRY:
9600 return NULL;
9601 }
9602
9603 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9604 }
9605
9606 /* Update the got entry reference counts for the section being removed. */
9607
9608 bfd_boolean
9609 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9610 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9611 asection *sec ATTRIBUTE_UNUSED,
9612 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9613 {
9614 #if 0
9615 Elf_Internal_Shdr *symtab_hdr;
9616 struct elf_link_hash_entry **sym_hashes;
9617 bfd_signed_vma *local_got_refcounts;
9618 const Elf_Internal_Rela *rel, *relend;
9619 unsigned long r_symndx;
9620 struct elf_link_hash_entry *h;
9621
9622 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9623 sym_hashes = elf_sym_hashes (abfd);
9624 local_got_refcounts = elf_local_got_refcounts (abfd);
9625
9626 relend = relocs + sec->reloc_count;
9627 for (rel = relocs; rel < relend; rel++)
9628 switch (ELF_R_TYPE (abfd, rel->r_info))
9629 {
9630 case R_MIPS_GOT16:
9631 case R_MIPS_CALL16:
9632 case R_MIPS_CALL_HI16:
9633 case R_MIPS_CALL_LO16:
9634 case R_MIPS_GOT_HI16:
9635 case R_MIPS_GOT_LO16:
9636 case R_MIPS_GOT_DISP:
9637 case R_MIPS_GOT_PAGE:
9638 case R_MIPS_GOT_OFST:
9639 /* ??? It would seem that the existing MIPS code does no sort
9640 of reference counting or whatnot on its GOT and PLT entries,
9641 so it is not possible to garbage collect them at this time. */
9642 break;
9643
9644 default:
9645 break;
9646 }
9647 #endif
9648
9649 return TRUE;
9650 }
9651 \f
9652 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9653 hiding the old indirect symbol. Process additional relocation
9654 information. Also called for weakdefs, in which case we just let
9655 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9656
9657 void
9658 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9659 struct elf_link_hash_entry *dir,
9660 struct elf_link_hash_entry *ind)
9661 {
9662 struct mips_elf_link_hash_entry *dirmips, *indmips;
9663
9664 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9665
9666 if (ind->root.type != bfd_link_hash_indirect)
9667 return;
9668
9669 dirmips = (struct mips_elf_link_hash_entry *) dir;
9670 indmips = (struct mips_elf_link_hash_entry *) ind;
9671 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9672 if (indmips->readonly_reloc)
9673 dirmips->readonly_reloc = TRUE;
9674 if (indmips->no_fn_stub)
9675 dirmips->no_fn_stub = TRUE;
9676
9677 if (dirmips->tls_type == 0)
9678 dirmips->tls_type = indmips->tls_type;
9679 }
9680
9681 void
9682 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9683 struct elf_link_hash_entry *entry,
9684 bfd_boolean force_local)
9685 {
9686 bfd *dynobj;
9687 asection *got;
9688 struct mips_got_info *g;
9689 struct mips_elf_link_hash_entry *h;
9690 struct mips_elf_link_hash_table *htab;
9691
9692 h = (struct mips_elf_link_hash_entry *) entry;
9693 if (h->forced_local)
9694 return;
9695 h->forced_local = force_local;
9696
9697 dynobj = elf_hash_table (info)->dynobj;
9698 htab = mips_elf_hash_table (info);
9699 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9700 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9701 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9702 {
9703 if (g->next)
9704 {
9705 struct mips_got_entry e;
9706 struct mips_got_info *gg = g;
9707
9708 /* Since we're turning what used to be a global symbol into a
9709 local one, bump up the number of local entries of each GOT
9710 that had an entry for it. This will automatically decrease
9711 the number of global entries, since global_gotno is actually
9712 the upper limit of global entries. */
9713 e.abfd = dynobj;
9714 e.symndx = -1;
9715 e.d.h = h;
9716 e.tls_type = 0;
9717
9718 for (g = g->next; g != gg; g = g->next)
9719 if (htab_find (g->got_entries, &e))
9720 {
9721 BFD_ASSERT (g->global_gotno > 0);
9722 g->local_gotno++;
9723 g->global_gotno--;
9724 }
9725
9726 /* If this was a global symbol forced into the primary GOT, we
9727 no longer need an entry for it. We can't release the entry
9728 at this point, but we must at least stop counting it as one
9729 of the symbols that required a forced got entry. */
9730 if (h->root.got.offset == 2)
9731 {
9732 BFD_ASSERT (gg->assigned_gotno > 0);
9733 gg->assigned_gotno--;
9734 }
9735 }
9736 else if (h->root.got.offset == 1)
9737 {
9738 /* check_relocs didn't know that this symbol would be
9739 forced-local, so add an extra local got entry. */
9740 g->local_gotno++;
9741 if (htab->computed_got_sizes)
9742 {
9743 /* We'll have treated this symbol as global rather
9744 than local. */
9745 BFD_ASSERT (g->global_gotno > 0);
9746 g->global_gotno--;
9747 }
9748 }
9749 else if (htab->is_vxworks && h->root.needs_plt)
9750 {
9751 /* check_relocs didn't know that this symbol would be
9752 forced-local, so add an extra local got entry. */
9753 g->local_gotno++;
9754 if (htab->computed_got_sizes)
9755 /* The symbol is only used in call relocations, so we'll
9756 have assumed it only needs a .got.plt entry. Increase
9757 the size of .got accordingly. */
9758 got->size += MIPS_ELF_GOT_SIZE (dynobj);
9759 }
9760 }
9761
9762 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9763 }
9764 \f
9765 #define PDR_SIZE 32
9766
9767 bfd_boolean
9768 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9769 struct bfd_link_info *info)
9770 {
9771 asection *o;
9772 bfd_boolean ret = FALSE;
9773 unsigned char *tdata;
9774 size_t i, skip;
9775
9776 o = bfd_get_section_by_name (abfd, ".pdr");
9777 if (! o)
9778 return FALSE;
9779 if (o->size == 0)
9780 return FALSE;
9781 if (o->size % PDR_SIZE != 0)
9782 return FALSE;
9783 if (o->output_section != NULL
9784 && bfd_is_abs_section (o->output_section))
9785 return FALSE;
9786
9787 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9788 if (! tdata)
9789 return FALSE;
9790
9791 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9792 info->keep_memory);
9793 if (!cookie->rels)
9794 {
9795 free (tdata);
9796 return FALSE;
9797 }
9798
9799 cookie->rel = cookie->rels;
9800 cookie->relend = cookie->rels + o->reloc_count;
9801
9802 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9803 {
9804 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9805 {
9806 tdata[i] = 1;
9807 skip ++;
9808 }
9809 }
9810
9811 if (skip != 0)
9812 {
9813 mips_elf_section_data (o)->u.tdata = tdata;
9814 o->size -= skip * PDR_SIZE;
9815 ret = TRUE;
9816 }
9817 else
9818 free (tdata);
9819
9820 if (! info->keep_memory)
9821 free (cookie->rels);
9822
9823 return ret;
9824 }
9825
9826 bfd_boolean
9827 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9828 {
9829 if (strcmp (sec->name, ".pdr") == 0)
9830 return TRUE;
9831 return FALSE;
9832 }
9833
9834 bfd_boolean
9835 _bfd_mips_elf_write_section (bfd *output_bfd,
9836 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9837 asection *sec, bfd_byte *contents)
9838 {
9839 bfd_byte *to, *from, *end;
9840 int i;
9841
9842 if (strcmp (sec->name, ".pdr") != 0)
9843 return FALSE;
9844
9845 if (mips_elf_section_data (sec)->u.tdata == NULL)
9846 return FALSE;
9847
9848 to = contents;
9849 end = contents + sec->size;
9850 for (from = contents, i = 0;
9851 from < end;
9852 from += PDR_SIZE, i++)
9853 {
9854 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9855 continue;
9856 if (to != from)
9857 memcpy (to, from, PDR_SIZE);
9858 to += PDR_SIZE;
9859 }
9860 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9861 sec->output_offset, sec->size);
9862 return TRUE;
9863 }
9864 \f
9865 /* MIPS ELF uses a special find_nearest_line routine in order the
9866 handle the ECOFF debugging information. */
9867
9868 struct mips_elf_find_line
9869 {
9870 struct ecoff_debug_info d;
9871 struct ecoff_find_line i;
9872 };
9873
9874 bfd_boolean
9875 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9876 asymbol **symbols, bfd_vma offset,
9877 const char **filename_ptr,
9878 const char **functionname_ptr,
9879 unsigned int *line_ptr)
9880 {
9881 asection *msec;
9882
9883 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9884 filename_ptr, functionname_ptr,
9885 line_ptr))
9886 return TRUE;
9887
9888 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9889 filename_ptr, functionname_ptr,
9890 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9891 &elf_tdata (abfd)->dwarf2_find_line_info))
9892 return TRUE;
9893
9894 msec = bfd_get_section_by_name (abfd, ".mdebug");
9895 if (msec != NULL)
9896 {
9897 flagword origflags;
9898 struct mips_elf_find_line *fi;
9899 const struct ecoff_debug_swap * const swap =
9900 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9901
9902 /* If we are called during a link, mips_elf_final_link may have
9903 cleared the SEC_HAS_CONTENTS field. We force it back on here
9904 if appropriate (which it normally will be). */
9905 origflags = msec->flags;
9906 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9907 msec->flags |= SEC_HAS_CONTENTS;
9908
9909 fi = elf_tdata (abfd)->find_line_info;
9910 if (fi == NULL)
9911 {
9912 bfd_size_type external_fdr_size;
9913 char *fraw_src;
9914 char *fraw_end;
9915 struct fdr *fdr_ptr;
9916 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9917
9918 fi = bfd_zalloc (abfd, amt);
9919 if (fi == NULL)
9920 {
9921 msec->flags = origflags;
9922 return FALSE;
9923 }
9924
9925 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9926 {
9927 msec->flags = origflags;
9928 return FALSE;
9929 }
9930
9931 /* Swap in the FDR information. */
9932 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9933 fi->d.fdr = bfd_alloc (abfd, amt);
9934 if (fi->d.fdr == NULL)
9935 {
9936 msec->flags = origflags;
9937 return FALSE;
9938 }
9939 external_fdr_size = swap->external_fdr_size;
9940 fdr_ptr = fi->d.fdr;
9941 fraw_src = (char *) fi->d.external_fdr;
9942 fraw_end = (fraw_src
9943 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9944 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9945 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9946
9947 elf_tdata (abfd)->find_line_info = fi;
9948
9949 /* Note that we don't bother to ever free this information.
9950 find_nearest_line is either called all the time, as in
9951 objdump -l, so the information should be saved, or it is
9952 rarely called, as in ld error messages, so the memory
9953 wasted is unimportant. Still, it would probably be a
9954 good idea for free_cached_info to throw it away. */
9955 }
9956
9957 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9958 &fi->i, filename_ptr, functionname_ptr,
9959 line_ptr))
9960 {
9961 msec->flags = origflags;
9962 return TRUE;
9963 }
9964
9965 msec->flags = origflags;
9966 }
9967
9968 /* Fall back on the generic ELF find_nearest_line routine. */
9969
9970 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9971 filename_ptr, functionname_ptr,
9972 line_ptr);
9973 }
9974
9975 bfd_boolean
9976 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9977 const char **filename_ptr,
9978 const char **functionname_ptr,
9979 unsigned int *line_ptr)
9980 {
9981 bfd_boolean found;
9982 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9983 functionname_ptr, line_ptr,
9984 & elf_tdata (abfd)->dwarf2_find_line_info);
9985 return found;
9986 }
9987
9988 \f
9989 /* When are writing out the .options or .MIPS.options section,
9990 remember the bytes we are writing out, so that we can install the
9991 GP value in the section_processing routine. */
9992
9993 bfd_boolean
9994 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9995 const void *location,
9996 file_ptr offset, bfd_size_type count)
9997 {
9998 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9999 {
10000 bfd_byte *c;
10001
10002 if (elf_section_data (section) == NULL)
10003 {
10004 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10005 section->used_by_bfd = bfd_zalloc (abfd, amt);
10006 if (elf_section_data (section) == NULL)
10007 return FALSE;
10008 }
10009 c = mips_elf_section_data (section)->u.tdata;
10010 if (c == NULL)
10011 {
10012 c = bfd_zalloc (abfd, section->size);
10013 if (c == NULL)
10014 return FALSE;
10015 mips_elf_section_data (section)->u.tdata = c;
10016 }
10017
10018 memcpy (c + offset, location, count);
10019 }
10020
10021 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10022 count);
10023 }
10024
10025 /* This is almost identical to bfd_generic_get_... except that some
10026 MIPS relocations need to be handled specially. Sigh. */
10027
10028 bfd_byte *
10029 _bfd_elf_mips_get_relocated_section_contents
10030 (bfd *abfd,
10031 struct bfd_link_info *link_info,
10032 struct bfd_link_order *link_order,
10033 bfd_byte *data,
10034 bfd_boolean relocatable,
10035 asymbol **symbols)
10036 {
10037 /* Get enough memory to hold the stuff */
10038 bfd *input_bfd = link_order->u.indirect.section->owner;
10039 asection *input_section = link_order->u.indirect.section;
10040 bfd_size_type sz;
10041
10042 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10043 arelent **reloc_vector = NULL;
10044 long reloc_count;
10045
10046 if (reloc_size < 0)
10047 goto error_return;
10048
10049 reloc_vector = bfd_malloc (reloc_size);
10050 if (reloc_vector == NULL && reloc_size != 0)
10051 goto error_return;
10052
10053 /* read in the section */
10054 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10055 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10056 goto error_return;
10057
10058 reloc_count = bfd_canonicalize_reloc (input_bfd,
10059 input_section,
10060 reloc_vector,
10061 symbols);
10062 if (reloc_count < 0)
10063 goto error_return;
10064
10065 if (reloc_count > 0)
10066 {
10067 arelent **parent;
10068 /* for mips */
10069 int gp_found;
10070 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10071
10072 {
10073 struct bfd_hash_entry *h;
10074 struct bfd_link_hash_entry *lh;
10075 /* Skip all this stuff if we aren't mixing formats. */
10076 if (abfd && input_bfd
10077 && abfd->xvec == input_bfd->xvec)
10078 lh = 0;
10079 else
10080 {
10081 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10082 lh = (struct bfd_link_hash_entry *) h;
10083 }
10084 lookup:
10085 if (lh)
10086 {
10087 switch (lh->type)
10088 {
10089 case bfd_link_hash_undefined:
10090 case bfd_link_hash_undefweak:
10091 case bfd_link_hash_common:
10092 gp_found = 0;
10093 break;
10094 case bfd_link_hash_defined:
10095 case bfd_link_hash_defweak:
10096 gp_found = 1;
10097 gp = lh->u.def.value;
10098 break;
10099 case bfd_link_hash_indirect:
10100 case bfd_link_hash_warning:
10101 lh = lh->u.i.link;
10102 /* @@FIXME ignoring warning for now */
10103 goto lookup;
10104 case bfd_link_hash_new:
10105 default:
10106 abort ();
10107 }
10108 }
10109 else
10110 gp_found = 0;
10111 }
10112 /* end mips */
10113 for (parent = reloc_vector; *parent != NULL; parent++)
10114 {
10115 char *error_message = NULL;
10116 bfd_reloc_status_type r;
10117
10118 /* Specific to MIPS: Deal with relocation types that require
10119 knowing the gp of the output bfd. */
10120 asymbol *sym = *(*parent)->sym_ptr_ptr;
10121
10122 /* If we've managed to find the gp and have a special
10123 function for the relocation then go ahead, else default
10124 to the generic handling. */
10125 if (gp_found
10126 && (*parent)->howto->special_function
10127 == _bfd_mips_elf32_gprel16_reloc)
10128 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10129 input_section, relocatable,
10130 data, gp);
10131 else
10132 r = bfd_perform_relocation (input_bfd, *parent, data,
10133 input_section,
10134 relocatable ? abfd : NULL,
10135 &error_message);
10136
10137 if (relocatable)
10138 {
10139 asection *os = input_section->output_section;
10140
10141 /* A partial link, so keep the relocs */
10142 os->orelocation[os->reloc_count] = *parent;
10143 os->reloc_count++;
10144 }
10145
10146 if (r != bfd_reloc_ok)
10147 {
10148 switch (r)
10149 {
10150 case bfd_reloc_undefined:
10151 if (!((*link_info->callbacks->undefined_symbol)
10152 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10153 input_bfd, input_section, (*parent)->address, TRUE)))
10154 goto error_return;
10155 break;
10156 case bfd_reloc_dangerous:
10157 BFD_ASSERT (error_message != NULL);
10158 if (!((*link_info->callbacks->reloc_dangerous)
10159 (link_info, error_message, input_bfd, input_section,
10160 (*parent)->address)))
10161 goto error_return;
10162 break;
10163 case bfd_reloc_overflow:
10164 if (!((*link_info->callbacks->reloc_overflow)
10165 (link_info, NULL,
10166 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10167 (*parent)->howto->name, (*parent)->addend,
10168 input_bfd, input_section, (*parent)->address)))
10169 goto error_return;
10170 break;
10171 case bfd_reloc_outofrange:
10172 default:
10173 abort ();
10174 break;
10175 }
10176
10177 }
10178 }
10179 }
10180 if (reloc_vector != NULL)
10181 free (reloc_vector);
10182 return data;
10183
10184 error_return:
10185 if (reloc_vector != NULL)
10186 free (reloc_vector);
10187 return NULL;
10188 }
10189 \f
10190 /* Create a MIPS ELF linker hash table. */
10191
10192 struct bfd_link_hash_table *
10193 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10194 {
10195 struct mips_elf_link_hash_table *ret;
10196 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10197
10198 ret = bfd_malloc (amt);
10199 if (ret == NULL)
10200 return NULL;
10201
10202 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10203 mips_elf_link_hash_newfunc,
10204 sizeof (struct mips_elf_link_hash_entry)))
10205 {
10206 free (ret);
10207 return NULL;
10208 }
10209
10210 #if 0
10211 /* We no longer use this. */
10212 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10213 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10214 #endif
10215 ret->procedure_count = 0;
10216 ret->compact_rel_size = 0;
10217 ret->use_rld_obj_head = FALSE;
10218 ret->rld_value = 0;
10219 ret->mips16_stubs_seen = FALSE;
10220 ret->computed_got_sizes = FALSE;
10221 ret->is_vxworks = FALSE;
10222 ret->small_data_overflow_reported = FALSE;
10223 ret->srelbss = NULL;
10224 ret->sdynbss = NULL;
10225 ret->srelplt = NULL;
10226 ret->srelplt2 = NULL;
10227 ret->sgotplt = NULL;
10228 ret->splt = NULL;
10229 ret->plt_header_size = 0;
10230 ret->plt_entry_size = 0;
10231 ret->function_stub_size = 0;
10232
10233 return &ret->root.root;
10234 }
10235
10236 /* Likewise, but indicate that the target is VxWorks. */
10237
10238 struct bfd_link_hash_table *
10239 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10240 {
10241 struct bfd_link_hash_table *ret;
10242
10243 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10244 if (ret)
10245 {
10246 struct mips_elf_link_hash_table *htab;
10247
10248 htab = (struct mips_elf_link_hash_table *) ret;
10249 htab->is_vxworks = 1;
10250 }
10251 return ret;
10252 }
10253 \f
10254 /* We need to use a special link routine to handle the .reginfo and
10255 the .mdebug sections. We need to merge all instances of these
10256 sections together, not write them all out sequentially. */
10257
10258 bfd_boolean
10259 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10260 {
10261 asection *o;
10262 struct bfd_link_order *p;
10263 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10264 asection *rtproc_sec;
10265 Elf32_RegInfo reginfo;
10266 struct ecoff_debug_info debug;
10267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10268 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10269 HDRR *symhdr = &debug.symbolic_header;
10270 void *mdebug_handle = NULL;
10271 asection *s;
10272 EXTR esym;
10273 unsigned int i;
10274 bfd_size_type amt;
10275 struct mips_elf_link_hash_table *htab;
10276
10277 static const char * const secname[] =
10278 {
10279 ".text", ".init", ".fini", ".data",
10280 ".rodata", ".sdata", ".sbss", ".bss"
10281 };
10282 static const int sc[] =
10283 {
10284 scText, scInit, scFini, scData,
10285 scRData, scSData, scSBss, scBss
10286 };
10287
10288 /* We'd carefully arranged the dynamic symbol indices, and then the
10289 generic size_dynamic_sections renumbered them out from under us.
10290 Rather than trying somehow to prevent the renumbering, just do
10291 the sort again. */
10292 htab = mips_elf_hash_table (info);
10293 if (elf_hash_table (info)->dynamic_sections_created)
10294 {
10295 bfd *dynobj;
10296 asection *got;
10297 struct mips_got_info *g;
10298 bfd_size_type dynsecsymcount;
10299
10300 /* When we resort, we must tell mips_elf_sort_hash_table what
10301 the lowest index it may use is. That's the number of section
10302 symbols we're going to add. The generic ELF linker only
10303 adds these symbols when building a shared object. Note that
10304 we count the sections after (possibly) removing the .options
10305 section above. */
10306
10307 dynsecsymcount = count_section_dynsyms (abfd, info);
10308 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10309 return FALSE;
10310
10311 /* Make sure we didn't grow the global .got region. */
10312 dynobj = elf_hash_table (info)->dynobj;
10313 got = mips_elf_got_section (dynobj, FALSE);
10314 g = mips_elf_section_data (got)->u.got_info;
10315
10316 if (g->global_gotsym != NULL)
10317 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10318 - g->global_gotsym->dynindx)
10319 <= g->global_gotno);
10320 }
10321
10322 /* Get a value for the GP register. */
10323 if (elf_gp (abfd) == 0)
10324 {
10325 struct bfd_link_hash_entry *h;
10326
10327 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10328 if (h != NULL && h->type == bfd_link_hash_defined)
10329 elf_gp (abfd) = (h->u.def.value
10330 + h->u.def.section->output_section->vma
10331 + h->u.def.section->output_offset);
10332 else if (htab->is_vxworks
10333 && (h = bfd_link_hash_lookup (info->hash,
10334 "_GLOBAL_OFFSET_TABLE_",
10335 FALSE, FALSE, TRUE))
10336 && h->type == bfd_link_hash_defined)
10337 elf_gp (abfd) = (h->u.def.section->output_section->vma
10338 + h->u.def.section->output_offset
10339 + h->u.def.value);
10340 else if (info->relocatable)
10341 {
10342 bfd_vma lo = MINUS_ONE;
10343
10344 /* Find the GP-relative section with the lowest offset. */
10345 for (o = abfd->sections; o != NULL; o = o->next)
10346 if (o->vma < lo
10347 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10348 lo = o->vma;
10349
10350 /* And calculate GP relative to that. */
10351 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10352 }
10353 else
10354 {
10355 /* If the relocate_section function needs to do a reloc
10356 involving the GP value, it should make a reloc_dangerous
10357 callback to warn that GP is not defined. */
10358 }
10359 }
10360
10361 /* Go through the sections and collect the .reginfo and .mdebug
10362 information. */
10363 reginfo_sec = NULL;
10364 mdebug_sec = NULL;
10365 gptab_data_sec = NULL;
10366 gptab_bss_sec = NULL;
10367 for (o = abfd->sections; o != NULL; o = o->next)
10368 {
10369 if (strcmp (o->name, ".reginfo") == 0)
10370 {
10371 memset (&reginfo, 0, sizeof reginfo);
10372
10373 /* We have found the .reginfo section in the output file.
10374 Look through all the link_orders comprising it and merge
10375 the information together. */
10376 for (p = o->map_head.link_order; p != NULL; p = p->next)
10377 {
10378 asection *input_section;
10379 bfd *input_bfd;
10380 Elf32_External_RegInfo ext;
10381 Elf32_RegInfo sub;
10382
10383 if (p->type != bfd_indirect_link_order)
10384 {
10385 if (p->type == bfd_data_link_order)
10386 continue;
10387 abort ();
10388 }
10389
10390 input_section = p->u.indirect.section;
10391 input_bfd = input_section->owner;
10392
10393 if (! bfd_get_section_contents (input_bfd, input_section,
10394 &ext, 0, sizeof ext))
10395 return FALSE;
10396
10397 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10398
10399 reginfo.ri_gprmask |= sub.ri_gprmask;
10400 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10401 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10402 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10403 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10404
10405 /* ri_gp_value is set by the function
10406 mips_elf32_section_processing when the section is
10407 finally written out. */
10408
10409 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10410 elf_link_input_bfd ignores this section. */
10411 input_section->flags &= ~SEC_HAS_CONTENTS;
10412 }
10413
10414 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10415 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10416
10417 /* Skip this section later on (I don't think this currently
10418 matters, but someday it might). */
10419 o->map_head.link_order = NULL;
10420
10421 reginfo_sec = o;
10422 }
10423
10424 if (strcmp (o->name, ".mdebug") == 0)
10425 {
10426 struct extsym_info einfo;
10427 bfd_vma last;
10428
10429 /* We have found the .mdebug section in the output file.
10430 Look through all the link_orders comprising it and merge
10431 the information together. */
10432 symhdr->magic = swap->sym_magic;
10433 /* FIXME: What should the version stamp be? */
10434 symhdr->vstamp = 0;
10435 symhdr->ilineMax = 0;
10436 symhdr->cbLine = 0;
10437 symhdr->idnMax = 0;
10438 symhdr->ipdMax = 0;
10439 symhdr->isymMax = 0;
10440 symhdr->ioptMax = 0;
10441 symhdr->iauxMax = 0;
10442 symhdr->issMax = 0;
10443 symhdr->issExtMax = 0;
10444 symhdr->ifdMax = 0;
10445 symhdr->crfd = 0;
10446 symhdr->iextMax = 0;
10447
10448 /* We accumulate the debugging information itself in the
10449 debug_info structure. */
10450 debug.line = NULL;
10451 debug.external_dnr = NULL;
10452 debug.external_pdr = NULL;
10453 debug.external_sym = NULL;
10454 debug.external_opt = NULL;
10455 debug.external_aux = NULL;
10456 debug.ss = NULL;
10457 debug.ssext = debug.ssext_end = NULL;
10458 debug.external_fdr = NULL;
10459 debug.external_rfd = NULL;
10460 debug.external_ext = debug.external_ext_end = NULL;
10461
10462 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10463 if (mdebug_handle == NULL)
10464 return FALSE;
10465
10466 esym.jmptbl = 0;
10467 esym.cobol_main = 0;
10468 esym.weakext = 0;
10469 esym.reserved = 0;
10470 esym.ifd = ifdNil;
10471 esym.asym.iss = issNil;
10472 esym.asym.st = stLocal;
10473 esym.asym.reserved = 0;
10474 esym.asym.index = indexNil;
10475 last = 0;
10476 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10477 {
10478 esym.asym.sc = sc[i];
10479 s = bfd_get_section_by_name (abfd, secname[i]);
10480 if (s != NULL)
10481 {
10482 esym.asym.value = s->vma;
10483 last = s->vma + s->size;
10484 }
10485 else
10486 esym.asym.value = last;
10487 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10488 secname[i], &esym))
10489 return FALSE;
10490 }
10491
10492 for (p = o->map_head.link_order; p != NULL; p = p->next)
10493 {
10494 asection *input_section;
10495 bfd *input_bfd;
10496 const struct ecoff_debug_swap *input_swap;
10497 struct ecoff_debug_info input_debug;
10498 char *eraw_src;
10499 char *eraw_end;
10500
10501 if (p->type != bfd_indirect_link_order)
10502 {
10503 if (p->type == bfd_data_link_order)
10504 continue;
10505 abort ();
10506 }
10507
10508 input_section = p->u.indirect.section;
10509 input_bfd = input_section->owner;
10510
10511 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10512 || (get_elf_backend_data (input_bfd)
10513 ->elf_backend_ecoff_debug_swap) == NULL)
10514 {
10515 /* I don't know what a non MIPS ELF bfd would be
10516 doing with a .mdebug section, but I don't really
10517 want to deal with it. */
10518 continue;
10519 }
10520
10521 input_swap = (get_elf_backend_data (input_bfd)
10522 ->elf_backend_ecoff_debug_swap);
10523
10524 BFD_ASSERT (p->size == input_section->size);
10525
10526 /* The ECOFF linking code expects that we have already
10527 read in the debugging information and set up an
10528 ecoff_debug_info structure, so we do that now. */
10529 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10530 &input_debug))
10531 return FALSE;
10532
10533 if (! (bfd_ecoff_debug_accumulate
10534 (mdebug_handle, abfd, &debug, swap, input_bfd,
10535 &input_debug, input_swap, info)))
10536 return FALSE;
10537
10538 /* Loop through the external symbols. For each one with
10539 interesting information, try to find the symbol in
10540 the linker global hash table and save the information
10541 for the output external symbols. */
10542 eraw_src = input_debug.external_ext;
10543 eraw_end = (eraw_src
10544 + (input_debug.symbolic_header.iextMax
10545 * input_swap->external_ext_size));
10546 for (;
10547 eraw_src < eraw_end;
10548 eraw_src += input_swap->external_ext_size)
10549 {
10550 EXTR ext;
10551 const char *name;
10552 struct mips_elf_link_hash_entry *h;
10553
10554 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10555 if (ext.asym.sc == scNil
10556 || ext.asym.sc == scUndefined
10557 || ext.asym.sc == scSUndefined)
10558 continue;
10559
10560 name = input_debug.ssext + ext.asym.iss;
10561 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10562 name, FALSE, FALSE, TRUE);
10563 if (h == NULL || h->esym.ifd != -2)
10564 continue;
10565
10566 if (ext.ifd != -1)
10567 {
10568 BFD_ASSERT (ext.ifd
10569 < input_debug.symbolic_header.ifdMax);
10570 ext.ifd = input_debug.ifdmap[ext.ifd];
10571 }
10572
10573 h->esym = ext;
10574 }
10575
10576 /* Free up the information we just read. */
10577 free (input_debug.line);
10578 free (input_debug.external_dnr);
10579 free (input_debug.external_pdr);
10580 free (input_debug.external_sym);
10581 free (input_debug.external_opt);
10582 free (input_debug.external_aux);
10583 free (input_debug.ss);
10584 free (input_debug.ssext);
10585 free (input_debug.external_fdr);
10586 free (input_debug.external_rfd);
10587 free (input_debug.external_ext);
10588
10589 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10590 elf_link_input_bfd ignores this section. */
10591 input_section->flags &= ~SEC_HAS_CONTENTS;
10592 }
10593
10594 if (SGI_COMPAT (abfd) && info->shared)
10595 {
10596 /* Create .rtproc section. */
10597 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10598 if (rtproc_sec == NULL)
10599 {
10600 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10601 | SEC_LINKER_CREATED | SEC_READONLY);
10602
10603 rtproc_sec = bfd_make_section_with_flags (abfd,
10604 ".rtproc",
10605 flags);
10606 if (rtproc_sec == NULL
10607 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10608 return FALSE;
10609 }
10610
10611 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10612 info, rtproc_sec,
10613 &debug))
10614 return FALSE;
10615 }
10616
10617 /* Build the external symbol information. */
10618 einfo.abfd = abfd;
10619 einfo.info = info;
10620 einfo.debug = &debug;
10621 einfo.swap = swap;
10622 einfo.failed = FALSE;
10623 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10624 mips_elf_output_extsym, &einfo);
10625 if (einfo.failed)
10626 return FALSE;
10627
10628 /* Set the size of the .mdebug section. */
10629 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10630
10631 /* Skip this section later on (I don't think this currently
10632 matters, but someday it might). */
10633 o->map_head.link_order = NULL;
10634
10635 mdebug_sec = o;
10636 }
10637
10638 if (CONST_STRNEQ (o->name, ".gptab."))
10639 {
10640 const char *subname;
10641 unsigned int c;
10642 Elf32_gptab *tab;
10643 Elf32_External_gptab *ext_tab;
10644 unsigned int j;
10645
10646 /* The .gptab.sdata and .gptab.sbss sections hold
10647 information describing how the small data area would
10648 change depending upon the -G switch. These sections
10649 not used in executables files. */
10650 if (! info->relocatable)
10651 {
10652 for (p = o->map_head.link_order; p != NULL; p = p->next)
10653 {
10654 asection *input_section;
10655
10656 if (p->type != bfd_indirect_link_order)
10657 {
10658 if (p->type == bfd_data_link_order)
10659 continue;
10660 abort ();
10661 }
10662
10663 input_section = p->u.indirect.section;
10664
10665 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10666 elf_link_input_bfd ignores this section. */
10667 input_section->flags &= ~SEC_HAS_CONTENTS;
10668 }
10669
10670 /* Skip this section later on (I don't think this
10671 currently matters, but someday it might). */
10672 o->map_head.link_order = NULL;
10673
10674 /* Really remove the section. */
10675 bfd_section_list_remove (abfd, o);
10676 --abfd->section_count;
10677
10678 continue;
10679 }
10680
10681 /* There is one gptab for initialized data, and one for
10682 uninitialized data. */
10683 if (strcmp (o->name, ".gptab.sdata") == 0)
10684 gptab_data_sec = o;
10685 else if (strcmp (o->name, ".gptab.sbss") == 0)
10686 gptab_bss_sec = o;
10687 else
10688 {
10689 (*_bfd_error_handler)
10690 (_("%s: illegal section name `%s'"),
10691 bfd_get_filename (abfd), o->name);
10692 bfd_set_error (bfd_error_nonrepresentable_section);
10693 return FALSE;
10694 }
10695
10696 /* The linker script always combines .gptab.data and
10697 .gptab.sdata into .gptab.sdata, and likewise for
10698 .gptab.bss and .gptab.sbss. It is possible that there is
10699 no .sdata or .sbss section in the output file, in which
10700 case we must change the name of the output section. */
10701 subname = o->name + sizeof ".gptab" - 1;
10702 if (bfd_get_section_by_name (abfd, subname) == NULL)
10703 {
10704 if (o == gptab_data_sec)
10705 o->name = ".gptab.data";
10706 else
10707 o->name = ".gptab.bss";
10708 subname = o->name + sizeof ".gptab" - 1;
10709 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10710 }
10711
10712 /* Set up the first entry. */
10713 c = 1;
10714 amt = c * sizeof (Elf32_gptab);
10715 tab = bfd_malloc (amt);
10716 if (tab == NULL)
10717 return FALSE;
10718 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10719 tab[0].gt_header.gt_unused = 0;
10720
10721 /* Combine the input sections. */
10722 for (p = o->map_head.link_order; p != NULL; p = p->next)
10723 {
10724 asection *input_section;
10725 bfd *input_bfd;
10726 bfd_size_type size;
10727 unsigned long last;
10728 bfd_size_type gpentry;
10729
10730 if (p->type != bfd_indirect_link_order)
10731 {
10732 if (p->type == bfd_data_link_order)
10733 continue;
10734 abort ();
10735 }
10736
10737 input_section = p->u.indirect.section;
10738 input_bfd = input_section->owner;
10739
10740 /* Combine the gptab entries for this input section one
10741 by one. We know that the input gptab entries are
10742 sorted by ascending -G value. */
10743 size = input_section->size;
10744 last = 0;
10745 for (gpentry = sizeof (Elf32_External_gptab);
10746 gpentry < size;
10747 gpentry += sizeof (Elf32_External_gptab))
10748 {
10749 Elf32_External_gptab ext_gptab;
10750 Elf32_gptab int_gptab;
10751 unsigned long val;
10752 unsigned long add;
10753 bfd_boolean exact;
10754 unsigned int look;
10755
10756 if (! (bfd_get_section_contents
10757 (input_bfd, input_section, &ext_gptab, gpentry,
10758 sizeof (Elf32_External_gptab))))
10759 {
10760 free (tab);
10761 return FALSE;
10762 }
10763
10764 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10765 &int_gptab);
10766 val = int_gptab.gt_entry.gt_g_value;
10767 add = int_gptab.gt_entry.gt_bytes - last;
10768
10769 exact = FALSE;
10770 for (look = 1; look < c; look++)
10771 {
10772 if (tab[look].gt_entry.gt_g_value >= val)
10773 tab[look].gt_entry.gt_bytes += add;
10774
10775 if (tab[look].gt_entry.gt_g_value == val)
10776 exact = TRUE;
10777 }
10778
10779 if (! exact)
10780 {
10781 Elf32_gptab *new_tab;
10782 unsigned int max;
10783
10784 /* We need a new table entry. */
10785 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10786 new_tab = bfd_realloc (tab, amt);
10787 if (new_tab == NULL)
10788 {
10789 free (tab);
10790 return FALSE;
10791 }
10792 tab = new_tab;
10793 tab[c].gt_entry.gt_g_value = val;
10794 tab[c].gt_entry.gt_bytes = add;
10795
10796 /* Merge in the size for the next smallest -G
10797 value, since that will be implied by this new
10798 value. */
10799 max = 0;
10800 for (look = 1; look < c; look++)
10801 {
10802 if (tab[look].gt_entry.gt_g_value < val
10803 && (max == 0
10804 || (tab[look].gt_entry.gt_g_value
10805 > tab[max].gt_entry.gt_g_value)))
10806 max = look;
10807 }
10808 if (max != 0)
10809 tab[c].gt_entry.gt_bytes +=
10810 tab[max].gt_entry.gt_bytes;
10811
10812 ++c;
10813 }
10814
10815 last = int_gptab.gt_entry.gt_bytes;
10816 }
10817
10818 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10819 elf_link_input_bfd ignores this section. */
10820 input_section->flags &= ~SEC_HAS_CONTENTS;
10821 }
10822
10823 /* The table must be sorted by -G value. */
10824 if (c > 2)
10825 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10826
10827 /* Swap out the table. */
10828 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10829 ext_tab = bfd_alloc (abfd, amt);
10830 if (ext_tab == NULL)
10831 {
10832 free (tab);
10833 return FALSE;
10834 }
10835
10836 for (j = 0; j < c; j++)
10837 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10838 free (tab);
10839
10840 o->size = c * sizeof (Elf32_External_gptab);
10841 o->contents = (bfd_byte *) ext_tab;
10842
10843 /* Skip this section later on (I don't think this currently
10844 matters, but someday it might). */
10845 o->map_head.link_order = NULL;
10846 }
10847 }
10848
10849 /* Invoke the regular ELF backend linker to do all the work. */
10850 if (!bfd_elf_final_link (abfd, info))
10851 return FALSE;
10852
10853 /* Now write out the computed sections. */
10854
10855 if (reginfo_sec != NULL)
10856 {
10857 Elf32_External_RegInfo ext;
10858
10859 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10860 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10861 return FALSE;
10862 }
10863
10864 if (mdebug_sec != NULL)
10865 {
10866 BFD_ASSERT (abfd->output_has_begun);
10867 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10868 swap, info,
10869 mdebug_sec->filepos))
10870 return FALSE;
10871
10872 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10873 }
10874
10875 if (gptab_data_sec != NULL)
10876 {
10877 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10878 gptab_data_sec->contents,
10879 0, gptab_data_sec->size))
10880 return FALSE;
10881 }
10882
10883 if (gptab_bss_sec != NULL)
10884 {
10885 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10886 gptab_bss_sec->contents,
10887 0, gptab_bss_sec->size))
10888 return FALSE;
10889 }
10890
10891 if (SGI_COMPAT (abfd))
10892 {
10893 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10894 if (rtproc_sec != NULL)
10895 {
10896 if (! bfd_set_section_contents (abfd, rtproc_sec,
10897 rtproc_sec->contents,
10898 0, rtproc_sec->size))
10899 return FALSE;
10900 }
10901 }
10902
10903 return TRUE;
10904 }
10905 \f
10906 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10907
10908 struct mips_mach_extension {
10909 unsigned long extension, base;
10910 };
10911
10912
10913 /* An array describing how BFD machines relate to one another. The entries
10914 are ordered topologically with MIPS I extensions listed last. */
10915
10916 static const struct mips_mach_extension mips_mach_extensions[] = {
10917 /* MIPS64 extensions. */
10918 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10919 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10920
10921 /* MIPS V extensions. */
10922 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10923
10924 /* R10000 extensions. */
10925 { bfd_mach_mips12000, bfd_mach_mips10000 },
10926
10927 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10928 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10929 better to allow vr5400 and vr5500 code to be merged anyway, since
10930 many libraries will just use the core ISA. Perhaps we could add
10931 some sort of ASE flag if this ever proves a problem. */
10932 { bfd_mach_mips5500, bfd_mach_mips5400 },
10933 { bfd_mach_mips5400, bfd_mach_mips5000 },
10934
10935 /* MIPS IV extensions. */
10936 { bfd_mach_mips5, bfd_mach_mips8000 },
10937 { bfd_mach_mips10000, bfd_mach_mips8000 },
10938 { bfd_mach_mips5000, bfd_mach_mips8000 },
10939 { bfd_mach_mips7000, bfd_mach_mips8000 },
10940 { bfd_mach_mips9000, bfd_mach_mips8000 },
10941
10942 /* VR4100 extensions. */
10943 { bfd_mach_mips4120, bfd_mach_mips4100 },
10944 { bfd_mach_mips4111, bfd_mach_mips4100 },
10945
10946 /* MIPS III extensions. */
10947 { bfd_mach_mips8000, bfd_mach_mips4000 },
10948 { bfd_mach_mips4650, bfd_mach_mips4000 },
10949 { bfd_mach_mips4600, bfd_mach_mips4000 },
10950 { bfd_mach_mips4400, bfd_mach_mips4000 },
10951 { bfd_mach_mips4300, bfd_mach_mips4000 },
10952 { bfd_mach_mips4100, bfd_mach_mips4000 },
10953 { bfd_mach_mips4010, bfd_mach_mips4000 },
10954
10955 /* MIPS32 extensions. */
10956 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10957
10958 /* MIPS II extensions. */
10959 { bfd_mach_mips4000, bfd_mach_mips6000 },
10960 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10961
10962 /* MIPS I extensions. */
10963 { bfd_mach_mips6000, bfd_mach_mips3000 },
10964 { bfd_mach_mips3900, bfd_mach_mips3000 }
10965 };
10966
10967
10968 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10969
10970 static bfd_boolean
10971 mips_mach_extends_p (unsigned long base, unsigned long extension)
10972 {
10973 size_t i;
10974
10975 if (extension == base)
10976 return TRUE;
10977
10978 if (base == bfd_mach_mipsisa32
10979 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10980 return TRUE;
10981
10982 if (base == bfd_mach_mipsisa32r2
10983 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10984 return TRUE;
10985
10986 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10987 if (extension == mips_mach_extensions[i].extension)
10988 {
10989 extension = mips_mach_extensions[i].base;
10990 if (extension == base)
10991 return TRUE;
10992 }
10993
10994 return FALSE;
10995 }
10996
10997
10998 /* Return true if the given ELF header flags describe a 32-bit binary. */
10999
11000 static bfd_boolean
11001 mips_32bit_flags_p (flagword flags)
11002 {
11003 return ((flags & EF_MIPS_32BITMODE) != 0
11004 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11005 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11006 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11007 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11008 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11009 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11010 }
11011
11012
11013 /* Merge object attributes from IBFD into OBFD. Raise an error if
11014 there are conflicting attributes. */
11015 static bfd_boolean
11016 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11017 {
11018 obj_attribute *in_attr;
11019 obj_attribute *out_attr;
11020
11021 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11022 {
11023 /* This is the first object. Copy the attributes. */
11024 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11025
11026 /* Use the Tag_null value to indicate the attributes have been
11027 initialized. */
11028 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11029
11030 return TRUE;
11031 }
11032
11033 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11034 non-conflicting ones. */
11035 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11036 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11037 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11038 {
11039 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11040 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11041 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11042 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11043 ;
11044 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11045 _bfd_error_handler
11046 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11047 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11048 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11049 _bfd_error_handler
11050 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11051 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11052 else
11053 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11054 {
11055 case 1:
11056 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11057 {
11058 case 2:
11059 _bfd_error_handler
11060 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11061 obfd, ibfd);
11062
11063 case 3:
11064 _bfd_error_handler
11065 (_("Warning: %B uses hard float, %B uses soft float"),
11066 obfd, ibfd);
11067 break;
11068
11069 default:
11070 abort ();
11071 }
11072 break;
11073
11074 case 2:
11075 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11076 {
11077 case 1:
11078 _bfd_error_handler
11079 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11080 ibfd, obfd);
11081
11082 case 3:
11083 _bfd_error_handler
11084 (_("Warning: %B uses hard float, %B uses soft float"),
11085 obfd, ibfd);
11086 break;
11087
11088 default:
11089 abort ();
11090 }
11091 break;
11092
11093 case 3:
11094 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11095 {
11096 case 1:
11097 case 2:
11098 _bfd_error_handler
11099 (_("Warning: %B uses hard float, %B uses soft float"),
11100 ibfd, obfd);
11101 break;
11102
11103 default:
11104 abort ();
11105 }
11106 break;
11107
11108 default:
11109 abort ();
11110 }
11111 }
11112
11113 /* Merge Tag_compatibility attributes and any common GNU ones. */
11114 _bfd_elf_merge_object_attributes (ibfd, obfd);
11115
11116 return TRUE;
11117 }
11118
11119 /* Merge backend specific data from an object file to the output
11120 object file when linking. */
11121
11122 bfd_boolean
11123 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11124 {
11125 flagword old_flags;
11126 flagword new_flags;
11127 bfd_boolean ok;
11128 bfd_boolean null_input_bfd = TRUE;
11129 asection *sec;
11130
11131 /* Check if we have the same endianess */
11132 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11133 {
11134 (*_bfd_error_handler)
11135 (_("%B: endianness incompatible with that of the selected emulation"),
11136 ibfd);
11137 return FALSE;
11138 }
11139
11140 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11141 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11142 return TRUE;
11143
11144 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11145 {
11146 (*_bfd_error_handler)
11147 (_("%B: ABI is incompatible with that of the selected emulation"),
11148 ibfd);
11149 return FALSE;
11150 }
11151
11152 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11153 return FALSE;
11154
11155 new_flags = elf_elfheader (ibfd)->e_flags;
11156 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11157 old_flags = elf_elfheader (obfd)->e_flags;
11158
11159 if (! elf_flags_init (obfd))
11160 {
11161 elf_flags_init (obfd) = TRUE;
11162 elf_elfheader (obfd)->e_flags = new_flags;
11163 elf_elfheader (obfd)->e_ident[EI_CLASS]
11164 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11165
11166 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11167 && (bfd_get_arch_info (obfd)->the_default
11168 || mips_mach_extends_p (bfd_get_mach (obfd),
11169 bfd_get_mach (ibfd))))
11170 {
11171 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11172 bfd_get_mach (ibfd)))
11173 return FALSE;
11174 }
11175
11176 return TRUE;
11177 }
11178
11179 /* Check flag compatibility. */
11180
11181 new_flags &= ~EF_MIPS_NOREORDER;
11182 old_flags &= ~EF_MIPS_NOREORDER;
11183
11184 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11185 doesn't seem to matter. */
11186 new_flags &= ~EF_MIPS_XGOT;
11187 old_flags &= ~EF_MIPS_XGOT;
11188
11189 /* MIPSpro generates ucode info in n64 objects. Again, we should
11190 just be able to ignore this. */
11191 new_flags &= ~EF_MIPS_UCODE;
11192 old_flags &= ~EF_MIPS_UCODE;
11193
11194 /* Don't care about the PIC flags from dynamic objects; they are
11195 PIC by design. */
11196 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11197 && (ibfd->flags & DYNAMIC) != 0)
11198 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11199
11200 if (new_flags == old_flags)
11201 return TRUE;
11202
11203 /* Check to see if the input BFD actually contains any sections.
11204 If not, its flags may not have been initialised either, but it cannot
11205 actually cause any incompatibility. */
11206 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11207 {
11208 /* Ignore synthetic sections and empty .text, .data and .bss sections
11209 which are automatically generated by gas. */
11210 if (strcmp (sec->name, ".reginfo")
11211 && strcmp (sec->name, ".mdebug")
11212 && (sec->size != 0
11213 || (strcmp (sec->name, ".text")
11214 && strcmp (sec->name, ".data")
11215 && strcmp (sec->name, ".bss"))))
11216 {
11217 null_input_bfd = FALSE;
11218 break;
11219 }
11220 }
11221 if (null_input_bfd)
11222 return TRUE;
11223
11224 ok = TRUE;
11225
11226 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11227 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11228 {
11229 (*_bfd_error_handler)
11230 (_("%B: warning: linking PIC files with non-PIC files"),
11231 ibfd);
11232 ok = TRUE;
11233 }
11234
11235 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11236 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11237 if (! (new_flags & EF_MIPS_PIC))
11238 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11239
11240 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11241 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11242
11243 /* Compare the ISAs. */
11244 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11245 {
11246 (*_bfd_error_handler)
11247 (_("%B: linking 32-bit code with 64-bit code"),
11248 ibfd);
11249 ok = FALSE;
11250 }
11251 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11252 {
11253 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11254 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11255 {
11256 /* Copy the architecture info from IBFD to OBFD. Also copy
11257 the 32-bit flag (if set) so that we continue to recognise
11258 OBFD as a 32-bit binary. */
11259 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11260 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11261 elf_elfheader (obfd)->e_flags
11262 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11263
11264 /* Copy across the ABI flags if OBFD doesn't use them
11265 and if that was what caused us to treat IBFD as 32-bit. */
11266 if ((old_flags & EF_MIPS_ABI) == 0
11267 && mips_32bit_flags_p (new_flags)
11268 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11269 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11270 }
11271 else
11272 {
11273 /* The ISAs aren't compatible. */
11274 (*_bfd_error_handler)
11275 (_("%B: linking %s module with previous %s modules"),
11276 ibfd,
11277 bfd_printable_name (ibfd),
11278 bfd_printable_name (obfd));
11279 ok = FALSE;
11280 }
11281 }
11282
11283 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11284 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11285
11286 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11287 does set EI_CLASS differently from any 32-bit ABI. */
11288 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11289 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11290 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11291 {
11292 /* Only error if both are set (to different values). */
11293 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11294 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11295 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11296 {
11297 (*_bfd_error_handler)
11298 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11299 ibfd,
11300 elf_mips_abi_name (ibfd),
11301 elf_mips_abi_name (obfd));
11302 ok = FALSE;
11303 }
11304 new_flags &= ~EF_MIPS_ABI;
11305 old_flags &= ~EF_MIPS_ABI;
11306 }
11307
11308 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11309 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11310 {
11311 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11312
11313 new_flags &= ~ EF_MIPS_ARCH_ASE;
11314 old_flags &= ~ EF_MIPS_ARCH_ASE;
11315 }
11316
11317 /* Warn about any other mismatches */
11318 if (new_flags != old_flags)
11319 {
11320 (*_bfd_error_handler)
11321 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11322 ibfd, (unsigned long) new_flags,
11323 (unsigned long) old_flags);
11324 ok = FALSE;
11325 }
11326
11327 if (! ok)
11328 {
11329 bfd_set_error (bfd_error_bad_value);
11330 return FALSE;
11331 }
11332
11333 return TRUE;
11334 }
11335
11336 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11337
11338 bfd_boolean
11339 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11340 {
11341 BFD_ASSERT (!elf_flags_init (abfd)
11342 || elf_elfheader (abfd)->e_flags == flags);
11343
11344 elf_elfheader (abfd)->e_flags = flags;
11345 elf_flags_init (abfd) = TRUE;
11346 return TRUE;
11347 }
11348
11349 bfd_boolean
11350 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11351 {
11352 FILE *file = ptr;
11353
11354 BFD_ASSERT (abfd != NULL && ptr != NULL);
11355
11356 /* Print normal ELF private data. */
11357 _bfd_elf_print_private_bfd_data (abfd, ptr);
11358
11359 /* xgettext:c-format */
11360 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11361
11362 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11363 fprintf (file, _(" [abi=O32]"));
11364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11365 fprintf (file, _(" [abi=O64]"));
11366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11367 fprintf (file, _(" [abi=EABI32]"));
11368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11369 fprintf (file, _(" [abi=EABI64]"));
11370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11371 fprintf (file, _(" [abi unknown]"));
11372 else if (ABI_N32_P (abfd))
11373 fprintf (file, _(" [abi=N32]"));
11374 else if (ABI_64_P (abfd))
11375 fprintf (file, _(" [abi=64]"));
11376 else
11377 fprintf (file, _(" [no abi set]"));
11378
11379 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11380 fprintf (file, " [mips1]");
11381 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11382 fprintf (file, " [mips2]");
11383 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11384 fprintf (file, " [mips3]");
11385 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11386 fprintf (file, " [mips4]");
11387 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11388 fprintf (file, " [mips5]");
11389 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11390 fprintf (file, " [mips32]");
11391 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11392 fprintf (file, " [mips64]");
11393 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11394 fprintf (file, " [mips32r2]");
11395 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11396 fprintf (file, " [mips64r2]");
11397 else
11398 fprintf (file, _(" [unknown ISA]"));
11399
11400 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11401 fprintf (file, " [mdmx]");
11402
11403 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11404 fprintf (file, " [mips16]");
11405
11406 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11407 fprintf (file, " [32bitmode]");
11408 else
11409 fprintf (file, _(" [not 32bitmode]"));
11410
11411 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11412 fprintf (file, " [noreorder]");
11413
11414 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11415 fprintf (file, " [PIC]");
11416
11417 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11418 fprintf (file, " [CPIC]");
11419
11420 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11421 fprintf (file, " [XGOT]");
11422
11423 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11424 fprintf (file, " [UCODE]");
11425
11426 fputc ('\n', file);
11427
11428 return TRUE;
11429 }
11430
11431 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11432 {
11433 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11434 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11435 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11436 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11437 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11438 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11439 { NULL, 0, 0, 0, 0 }
11440 };
11441
11442 /* Merge non visibility st_other attributes. Ensure that the
11443 STO_OPTIONAL flag is copied into h->other, even if this is not a
11444 definiton of the symbol. */
11445 void
11446 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11447 const Elf_Internal_Sym *isym,
11448 bfd_boolean definition,
11449 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11450 {
11451 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11452 {
11453 unsigned char other;
11454
11455 other = (definition ? isym->st_other : h->other);
11456 other &= ~ELF_ST_VISIBILITY (-1);
11457 h->other = other | ELF_ST_VISIBILITY (h->other);
11458 }
11459
11460 if (!definition
11461 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11462 h->other |= STO_OPTIONAL;
11463 }
11464
11465 /* Decide whether an undefined symbol is special and can be ignored.
11466 This is the case for OPTIONAL symbols on IRIX. */
11467 bfd_boolean
11468 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11469 {
11470 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11471 }
11472
11473 bfd_boolean
11474 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11475 {
11476 return (sym->st_shndx == SHN_COMMON
11477 || sym->st_shndx == SHN_MIPS_ACOMMON
11478 || sym->st_shndx == SHN_MIPS_SCOMMON);
11479 }