MIPS: Verify the ISA mode and alignment of branch and jump targets
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system.
2094
2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2096 relocatable field is shifted by 1 rather than 2 and the same bit
2097 shuffling is done as with the relocations above. */
2098
2099 static inline bfd_boolean
2100 mips16_reloc_p (int r_type)
2101 {
2102 switch (r_type)
2103 {
2104 case R_MIPS16_26:
2105 case R_MIPS16_GPREL:
2106 case R_MIPS16_GOT16:
2107 case R_MIPS16_CALL16:
2108 case R_MIPS16_HI16:
2109 case R_MIPS16_LO16:
2110 case R_MIPS16_TLS_GD:
2111 case R_MIPS16_TLS_LDM:
2112 case R_MIPS16_TLS_DTPREL_HI16:
2113 case R_MIPS16_TLS_DTPREL_LO16:
2114 case R_MIPS16_TLS_GOTTPREL:
2115 case R_MIPS16_TLS_TPREL_HI16:
2116 case R_MIPS16_TLS_TPREL_LO16:
2117 case R_MIPS16_PC16_S1:
2118 return TRUE;
2119
2120 default:
2121 return FALSE;
2122 }
2123 }
2124
2125 /* Check if a microMIPS reloc. */
2126
2127 static inline bfd_boolean
2128 micromips_reloc_p (unsigned int r_type)
2129 {
2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2131 }
2132
2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2136
2137 static inline bfd_boolean
2138 micromips_reloc_shuffle_p (unsigned int r_type)
2139 {
2140 return (micromips_reloc_p (r_type)
2141 && r_type != R_MICROMIPS_PC7_S1
2142 && r_type != R_MICROMIPS_PC10_S1);
2143 }
2144
2145 static inline bfd_boolean
2146 got16_reloc_p (int r_type)
2147 {
2148 return (r_type == R_MIPS_GOT16
2149 || r_type == R_MIPS16_GOT16
2150 || r_type == R_MICROMIPS_GOT16);
2151 }
2152
2153 static inline bfd_boolean
2154 call16_reloc_p (int r_type)
2155 {
2156 return (r_type == R_MIPS_CALL16
2157 || r_type == R_MIPS16_CALL16
2158 || r_type == R_MICROMIPS_CALL16);
2159 }
2160
2161 static inline bfd_boolean
2162 got_disp_reloc_p (unsigned int r_type)
2163 {
2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2165 }
2166
2167 static inline bfd_boolean
2168 got_page_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2171 }
2172
2173 static inline bfd_boolean
2174 got_lo16_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2177 }
2178
2179 static inline bfd_boolean
2180 call_hi16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 hi16_reloc_p (int r_type)
2193 {
2194 return (r_type == R_MIPS_HI16
2195 || r_type == R_MIPS16_HI16
2196 || r_type == R_MICROMIPS_HI16
2197 || r_type == R_MIPS_PCHI16);
2198 }
2199
2200 static inline bfd_boolean
2201 lo16_reloc_p (int r_type)
2202 {
2203 return (r_type == R_MIPS_LO16
2204 || r_type == R_MIPS16_LO16
2205 || r_type == R_MICROMIPS_LO16
2206 || r_type == R_MIPS_PCLO16);
2207 }
2208
2209 static inline bfd_boolean
2210 mips16_call_reloc_p (int r_type)
2211 {
2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2213 }
2214
2215 static inline bfd_boolean
2216 jal_reloc_p (int r_type)
2217 {
2218 return (r_type == R_MIPS_26
2219 || r_type == R_MIPS16_26
2220 || r_type == R_MICROMIPS_26_S1);
2221 }
2222
2223 static inline bfd_boolean
2224 b_reloc_p (int r_type)
2225 {
2226 return (r_type == R_MIPS_PC26_S2
2227 || r_type == R_MIPS_PC21_S2
2228 || r_type == R_MIPS_PC16
2229 || r_type == R_MIPS_GNU_REL16_S2
2230 || r_type == R_MIPS16_PC16_S1
2231 || r_type == R_MICROMIPS_PC16_S1
2232 || r_type == R_MICROMIPS_PC10_S1
2233 || r_type == R_MICROMIPS_PC7_S1);
2234 }
2235
2236 static inline bfd_boolean
2237 aligned_pcrel_reloc_p (int r_type)
2238 {
2239 return (r_type == R_MIPS_PC18_S3
2240 || r_type == R_MIPS_PC19_S2);
2241 }
2242
2243 static inline bfd_boolean
2244 branch_reloc_p (int r_type)
2245 {
2246 return (r_type == R_MIPS_26
2247 || r_type == R_MIPS_PC26_S2
2248 || r_type == R_MIPS_PC21_S2
2249 || r_type == R_MIPS_PC16
2250 || r_type == R_MIPS_GNU_REL16_S2);
2251 }
2252
2253 static inline bfd_boolean
2254 mips16_branch_reloc_p (int r_type)
2255 {
2256 return (r_type == R_MIPS16_26
2257 || r_type == R_MIPS16_PC16_S1);
2258 }
2259
2260 static inline bfd_boolean
2261 micromips_branch_reloc_p (int r_type)
2262 {
2263 return (r_type == R_MICROMIPS_26_S1
2264 || r_type == R_MICROMIPS_PC16_S1
2265 || r_type == R_MICROMIPS_PC10_S1
2266 || r_type == R_MICROMIPS_PC7_S1);
2267 }
2268
2269 static inline bfd_boolean
2270 tls_gd_reloc_p (unsigned int r_type)
2271 {
2272 return (r_type == R_MIPS_TLS_GD
2273 || r_type == R_MIPS16_TLS_GD
2274 || r_type == R_MICROMIPS_TLS_GD);
2275 }
2276
2277 static inline bfd_boolean
2278 tls_ldm_reloc_p (unsigned int r_type)
2279 {
2280 return (r_type == R_MIPS_TLS_LDM
2281 || r_type == R_MIPS16_TLS_LDM
2282 || r_type == R_MICROMIPS_TLS_LDM);
2283 }
2284
2285 static inline bfd_boolean
2286 tls_gottprel_reloc_p (unsigned int r_type)
2287 {
2288 return (r_type == R_MIPS_TLS_GOTTPREL
2289 || r_type == R_MIPS16_TLS_GOTTPREL
2290 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2291 }
2292
2293 void
2294 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2295 bfd_boolean jal_shuffle, bfd_byte *data)
2296 {
2297 bfd_vma first, second, val;
2298
2299 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2300 return;
2301
2302 /* Pick up the first and second halfwords of the instruction. */
2303 first = bfd_get_16 (abfd, data);
2304 second = bfd_get_16 (abfd, data + 2);
2305 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2306 val = first << 16 | second;
2307 else if (r_type != R_MIPS16_26)
2308 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2309 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2310 else
2311 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2312 | ((first & 0x1f) << 21) | second);
2313 bfd_put_32 (abfd, val, data);
2314 }
2315
2316 void
2317 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2318 bfd_boolean jal_shuffle, bfd_byte *data)
2319 {
2320 bfd_vma first, second, val;
2321
2322 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2323 return;
2324
2325 val = bfd_get_32 (abfd, data);
2326 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2327 {
2328 second = val & 0xffff;
2329 first = val >> 16;
2330 }
2331 else if (r_type != R_MIPS16_26)
2332 {
2333 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2334 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2335 }
2336 else
2337 {
2338 second = val & 0xffff;
2339 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2340 | ((val >> 21) & 0x1f);
2341 }
2342 bfd_put_16 (abfd, second, data + 2);
2343 bfd_put_16 (abfd, first, data);
2344 }
2345
2346 bfd_reloc_status_type
2347 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2348 arelent *reloc_entry, asection *input_section,
2349 bfd_boolean relocatable, void *data, bfd_vma gp)
2350 {
2351 bfd_vma relocation;
2352 bfd_signed_vma val;
2353 bfd_reloc_status_type status;
2354
2355 if (bfd_is_com_section (symbol->section))
2356 relocation = 0;
2357 else
2358 relocation = symbol->value;
2359
2360 relocation += symbol->section->output_section->vma;
2361 relocation += symbol->section->output_offset;
2362
2363 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2364 return bfd_reloc_outofrange;
2365
2366 /* Set val to the offset into the section or symbol. */
2367 val = reloc_entry->addend;
2368
2369 _bfd_mips_elf_sign_extend (val, 16);
2370
2371 /* Adjust val for the final section location and GP value. If we
2372 are producing relocatable output, we don't want to do this for
2373 an external symbol. */
2374 if (! relocatable
2375 || (symbol->flags & BSF_SECTION_SYM) != 0)
2376 val += relocation - gp;
2377
2378 if (reloc_entry->howto->partial_inplace)
2379 {
2380 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2381 (bfd_byte *) data
2382 + reloc_entry->address);
2383 if (status != bfd_reloc_ok)
2384 return status;
2385 }
2386 else
2387 reloc_entry->addend = val;
2388
2389 if (relocatable)
2390 reloc_entry->address += input_section->output_offset;
2391
2392 return bfd_reloc_ok;
2393 }
2394
2395 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2396 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2397 that contains the relocation field and DATA points to the start of
2398 INPUT_SECTION. */
2399
2400 struct mips_hi16
2401 {
2402 struct mips_hi16 *next;
2403 bfd_byte *data;
2404 asection *input_section;
2405 arelent rel;
2406 };
2407
2408 /* FIXME: This should not be a static variable. */
2409
2410 static struct mips_hi16 *mips_hi16_list;
2411
2412 /* A howto special_function for REL *HI16 relocations. We can only
2413 calculate the correct value once we've seen the partnering
2414 *LO16 relocation, so just save the information for later.
2415
2416 The ABI requires that the *LO16 immediately follow the *HI16.
2417 However, as a GNU extension, we permit an arbitrary number of
2418 *HI16s to be associated with a single *LO16. This significantly
2419 simplies the relocation handling in gcc. */
2420
2421 bfd_reloc_status_type
2422 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2423 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2424 asection *input_section, bfd *output_bfd,
2425 char **error_message ATTRIBUTE_UNUSED)
2426 {
2427 struct mips_hi16 *n;
2428
2429 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2430 return bfd_reloc_outofrange;
2431
2432 n = bfd_malloc (sizeof *n);
2433 if (n == NULL)
2434 return bfd_reloc_outofrange;
2435
2436 n->next = mips_hi16_list;
2437 n->data = data;
2438 n->input_section = input_section;
2439 n->rel = *reloc_entry;
2440 mips_hi16_list = n;
2441
2442 if (output_bfd != NULL)
2443 reloc_entry->address += input_section->output_offset;
2444
2445 return bfd_reloc_ok;
2446 }
2447
2448 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2449 like any other 16-bit relocation when applied to global symbols, but is
2450 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2451
2452 bfd_reloc_status_type
2453 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2454 void *data, asection *input_section,
2455 bfd *output_bfd, char **error_message)
2456 {
2457 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2458 || bfd_is_und_section (bfd_get_section (symbol))
2459 || bfd_is_com_section (bfd_get_section (symbol)))
2460 /* The relocation is against a global symbol. */
2461 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2462 input_section, output_bfd,
2463 error_message);
2464
2465 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2466 input_section, output_bfd, error_message);
2467 }
2468
2469 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2470 is a straightforward 16 bit inplace relocation, but we must deal with
2471 any partnering high-part relocations as well. */
2472
2473 bfd_reloc_status_type
2474 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2475 void *data, asection *input_section,
2476 bfd *output_bfd, char **error_message)
2477 {
2478 bfd_vma vallo;
2479 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2480
2481 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2482 return bfd_reloc_outofrange;
2483
2484 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2485 location);
2486 vallo = bfd_get_32 (abfd, location);
2487 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2488 location);
2489
2490 while (mips_hi16_list != NULL)
2491 {
2492 bfd_reloc_status_type ret;
2493 struct mips_hi16 *hi;
2494
2495 hi = mips_hi16_list;
2496
2497 /* R_MIPS*_GOT16 relocations are something of a special case. We
2498 want to install the addend in the same way as for a R_MIPS*_HI16
2499 relocation (with a rightshift of 16). However, since GOT16
2500 relocations can also be used with global symbols, their howto
2501 has a rightshift of 0. */
2502 if (hi->rel.howto->type == R_MIPS_GOT16)
2503 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2504 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2508
2509 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2510 carry or borrow will induce a change of +1 or -1 in the high part. */
2511 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2512
2513 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2514 hi->input_section, output_bfd,
2515 error_message);
2516 if (ret != bfd_reloc_ok)
2517 return ret;
2518
2519 mips_hi16_list = hi->next;
2520 free (hi);
2521 }
2522
2523 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2524 input_section, output_bfd,
2525 error_message);
2526 }
2527
2528 /* A generic howto special_function. This calculates and installs the
2529 relocation itself, thus avoiding the oft-discussed problems in
2530 bfd_perform_relocation and bfd_install_relocation. */
2531
2532 bfd_reloc_status_type
2533 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2534 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2535 asection *input_section, bfd *output_bfd,
2536 char **error_message ATTRIBUTE_UNUSED)
2537 {
2538 bfd_signed_vma val;
2539 bfd_reloc_status_type status;
2540 bfd_boolean relocatable;
2541
2542 relocatable = (output_bfd != NULL);
2543
2544 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2545 return bfd_reloc_outofrange;
2546
2547 /* Build up the field adjustment in VAL. */
2548 val = 0;
2549 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2550 {
2551 /* Either we're calculating the final field value or we have a
2552 relocation against a section symbol. Add in the section's
2553 offset or address. */
2554 val += symbol->section->output_section->vma;
2555 val += symbol->section->output_offset;
2556 }
2557
2558 if (!relocatable)
2559 {
2560 /* We're calculating the final field value. Add in the symbol's value
2561 and, if pc-relative, subtract the address of the field itself. */
2562 val += symbol->value;
2563 if (reloc_entry->howto->pc_relative)
2564 {
2565 val -= input_section->output_section->vma;
2566 val -= input_section->output_offset;
2567 val -= reloc_entry->address;
2568 }
2569 }
2570
2571 /* VAL is now the final adjustment. If we're keeping this relocation
2572 in the output file, and if the relocation uses a separate addend,
2573 we just need to add VAL to that addend. Otherwise we need to add
2574 VAL to the relocation field itself. */
2575 if (relocatable && !reloc_entry->howto->partial_inplace)
2576 reloc_entry->addend += val;
2577 else
2578 {
2579 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2580
2581 /* Add in the separate addend, if any. */
2582 val += reloc_entry->addend;
2583
2584 /* Add VAL to the relocation field. */
2585 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2586 location);
2587 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2588 location);
2589 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2590 location);
2591
2592 if (status != bfd_reloc_ok)
2593 return status;
2594 }
2595
2596 if (relocatable)
2597 reloc_entry->address += input_section->output_offset;
2598
2599 return bfd_reloc_ok;
2600 }
2601 \f
2602 /* Swap an entry in a .gptab section. Note that these routines rely
2603 on the equivalence of the two elements of the union. */
2604
2605 static void
2606 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2607 Elf32_gptab *in)
2608 {
2609 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2610 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2611 }
2612
2613 static void
2614 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2615 Elf32_External_gptab *ex)
2616 {
2617 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2618 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2619 }
2620
2621 static void
2622 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2623 Elf32_External_compact_rel *ex)
2624 {
2625 H_PUT_32 (abfd, in->id1, ex->id1);
2626 H_PUT_32 (abfd, in->num, ex->num);
2627 H_PUT_32 (abfd, in->id2, ex->id2);
2628 H_PUT_32 (abfd, in->offset, ex->offset);
2629 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2630 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2631 }
2632
2633 static void
2634 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2635 Elf32_External_crinfo *ex)
2636 {
2637 unsigned long l;
2638
2639 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2640 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2641 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2642 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2643 H_PUT_32 (abfd, l, ex->info);
2644 H_PUT_32 (abfd, in->konst, ex->konst);
2645 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2646 }
2647 \f
2648 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2649 routines swap this structure in and out. They are used outside of
2650 BFD, so they are globally visible. */
2651
2652 void
2653 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2654 Elf32_RegInfo *in)
2655 {
2656 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2657 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2658 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2659 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2660 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2661 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2662 }
2663
2664 void
2665 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2666 Elf32_External_RegInfo *ex)
2667 {
2668 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2674 }
2675
2676 /* In the 64 bit ABI, the .MIPS.options section holds register
2677 information in an Elf64_Reginfo structure. These routines swap
2678 them in and out. They are globally visible because they are used
2679 outside of BFD. These routines are here so that gas can call them
2680 without worrying about whether the 64 bit ABI has been included. */
2681
2682 void
2683 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2684 Elf64_Internal_RegInfo *in)
2685 {
2686 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2687 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2688 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2689 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2690 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2691 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2692 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2693 }
2694
2695 void
2696 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2697 Elf64_External_RegInfo *ex)
2698 {
2699 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2700 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2701 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2702 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2703 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2704 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2705 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2706 }
2707
2708 /* Swap in an options header. */
2709
2710 void
2711 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2712 Elf_Internal_Options *in)
2713 {
2714 in->kind = H_GET_8 (abfd, ex->kind);
2715 in->size = H_GET_8 (abfd, ex->size);
2716 in->section = H_GET_16 (abfd, ex->section);
2717 in->info = H_GET_32 (abfd, ex->info);
2718 }
2719
2720 /* Swap out an options header. */
2721
2722 void
2723 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2724 Elf_External_Options *ex)
2725 {
2726 H_PUT_8 (abfd, in->kind, ex->kind);
2727 H_PUT_8 (abfd, in->size, ex->size);
2728 H_PUT_16 (abfd, in->section, ex->section);
2729 H_PUT_32 (abfd, in->info, ex->info);
2730 }
2731
2732 /* Swap in an abiflags structure. */
2733
2734 void
2735 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2736 const Elf_External_ABIFlags_v0 *ex,
2737 Elf_Internal_ABIFlags_v0 *in)
2738 {
2739 in->version = H_GET_16 (abfd, ex->version);
2740 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2741 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2742 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2743 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2744 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2745 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2746 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2747 in->ases = H_GET_32 (abfd, ex->ases);
2748 in->flags1 = H_GET_32 (abfd, ex->flags1);
2749 in->flags2 = H_GET_32 (abfd, ex->flags2);
2750 }
2751
2752 /* Swap out an abiflags structure. */
2753
2754 void
2755 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2756 const Elf_Internal_ABIFlags_v0 *in,
2757 Elf_External_ABIFlags_v0 *ex)
2758 {
2759 H_PUT_16 (abfd, in->version, ex->version);
2760 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2761 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2762 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2763 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2764 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2765 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2766 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2767 H_PUT_32 (abfd, in->ases, ex->ases);
2768 H_PUT_32 (abfd, in->flags1, ex->flags1);
2769 H_PUT_32 (abfd, in->flags2, ex->flags2);
2770 }
2771 \f
2772 /* This function is called via qsort() to sort the dynamic relocation
2773 entries by increasing r_symndx value. */
2774
2775 static int
2776 sort_dynamic_relocs (const void *arg1, const void *arg2)
2777 {
2778 Elf_Internal_Rela int_reloc1;
2779 Elf_Internal_Rela int_reloc2;
2780 int diff;
2781
2782 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2783 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2784
2785 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2786 if (diff != 0)
2787 return diff;
2788
2789 if (int_reloc1.r_offset < int_reloc2.r_offset)
2790 return -1;
2791 if (int_reloc1.r_offset > int_reloc2.r_offset)
2792 return 1;
2793 return 0;
2794 }
2795
2796 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2797
2798 static int
2799 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2800 const void *arg2 ATTRIBUTE_UNUSED)
2801 {
2802 #ifdef BFD64
2803 Elf_Internal_Rela int_reloc1[3];
2804 Elf_Internal_Rela int_reloc2[3];
2805
2806 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2807 (reldyn_sorting_bfd, arg1, int_reloc1);
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg2, int_reloc2);
2810
2811 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2812 return -1;
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2814 return 1;
2815
2816 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2817 return -1;
2818 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2819 return 1;
2820 return 0;
2821 #else
2822 abort ();
2823 #endif
2824 }
2825
2826
2827 /* This routine is used to write out ECOFF debugging external symbol
2828 information. It is called via mips_elf_link_hash_traverse. The
2829 ECOFF external symbol information must match the ELF external
2830 symbol information. Unfortunately, at this point we don't know
2831 whether a symbol is required by reloc information, so the two
2832 tables may wind up being different. We must sort out the external
2833 symbol information before we can set the final size of the .mdebug
2834 section, and we must set the size of the .mdebug section before we
2835 can relocate any sections, and we can't know which symbols are
2836 required by relocation until we relocate the sections.
2837 Fortunately, it is relatively unlikely that any symbol will be
2838 stripped but required by a reloc. In particular, it can not happen
2839 when generating a final executable. */
2840
2841 static bfd_boolean
2842 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2843 {
2844 struct extsym_info *einfo = data;
2845 bfd_boolean strip;
2846 asection *sec, *output_section;
2847
2848 if (h->root.indx == -2)
2849 strip = FALSE;
2850 else if ((h->root.def_dynamic
2851 || h->root.ref_dynamic
2852 || h->root.type == bfd_link_hash_new)
2853 && !h->root.def_regular
2854 && !h->root.ref_regular)
2855 strip = TRUE;
2856 else if (einfo->info->strip == strip_all
2857 || (einfo->info->strip == strip_some
2858 && bfd_hash_lookup (einfo->info->keep_hash,
2859 h->root.root.root.string,
2860 FALSE, FALSE) == NULL))
2861 strip = TRUE;
2862 else
2863 strip = FALSE;
2864
2865 if (strip)
2866 return TRUE;
2867
2868 if (h->esym.ifd == -2)
2869 {
2870 h->esym.jmptbl = 0;
2871 h->esym.cobol_main = 0;
2872 h->esym.weakext = 0;
2873 h->esym.reserved = 0;
2874 h->esym.ifd = ifdNil;
2875 h->esym.asym.value = 0;
2876 h->esym.asym.st = stGlobal;
2877
2878 if (h->root.root.type == bfd_link_hash_undefined
2879 || h->root.root.type == bfd_link_hash_undefweak)
2880 {
2881 const char *name;
2882
2883 /* Use undefined class. Also, set class and type for some
2884 special symbols. */
2885 name = h->root.root.root.string;
2886 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2887 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2888 {
2889 h->esym.asym.sc = scData;
2890 h->esym.asym.st = stLabel;
2891 h->esym.asym.value = 0;
2892 }
2893 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2894 {
2895 h->esym.asym.sc = scAbs;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value =
2898 mips_elf_hash_table (einfo->info)->procedure_count;
2899 }
2900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2901 {
2902 h->esym.asym.sc = scAbs;
2903 h->esym.asym.st = stLabel;
2904 h->esym.asym.value = elf_gp (einfo->abfd);
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->sgotplt->output_section->vma
3481 + htab->sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 (*_bfd_error_handler)
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->sgot->output_section->vma
3782 + htab->sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3817 ++count;
3818 }
3819 return count;
3820 }
3821
3822 /* Sort the dynamic symbol table so that symbols that need GOT entries
3823 appear towards the end. */
3824
3825 static bfd_boolean
3826 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3827 {
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
3831
3832 if (elf_hash_table (info)->dynsymcount == 0)
3833 return TRUE;
3834
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3837
3838 g = htab->got_info;
3839 if (g == NULL)
3840 return TRUE;
3841
3842 hsd.low = NULL;
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3846 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3847 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3848 elf_hash_table (info)),
3849 mips_elf_sort_hash_table_f,
3850 &hsd);
3851
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3856 == elf_hash_table (info)->dynsymcount);
3857 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3858 == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 h->root.dynindx = hsd->max_non_got_dynindx++;
3885 break;
3886
3887 case GGA_NORMAL:
3888 h->root.dynindx = --hsd->min_got_dynindx;
3889 hsd->low = (struct elf_link_hash_entry *) h;
3890 break;
3891
3892 case GGA_RELOC_ONLY:
3893 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3894 hsd->low = (struct elf_link_hash_entry *) h;
3895 h->root.dynindx = hsd->max_unref_got_dynindx++;
3896 break;
3897 }
3898
3899 return TRUE;
3900 }
3901
3902 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3903 (which is owned by the caller and shouldn't be added to the
3904 hash table directly). */
3905
3906 static bfd_boolean
3907 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3908 struct mips_got_entry *lookup)
3909 {
3910 struct mips_elf_link_hash_table *htab;
3911 struct mips_got_entry *entry;
3912 struct mips_got_info *g;
3913 void **loc, **bfd_loc;
3914
3915 /* Make sure there's a slot for this entry in the master GOT. */
3916 htab = mips_elf_hash_table (info);
3917 g = htab->got_info;
3918 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3919 if (!loc)
3920 return FALSE;
3921
3922 /* Populate the entry if it isn't already. */
3923 entry = (struct mips_got_entry *) *loc;
3924 if (!entry)
3925 {
3926 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3927 if (!entry)
3928 return FALSE;
3929
3930 lookup->tls_initialized = FALSE;
3931 lookup->gotidx = -1;
3932 *entry = *lookup;
3933 *loc = entry;
3934 }
3935
3936 /* Reuse the same GOT entry for the BFD's GOT. */
3937 g = mips_elf_bfd_got (abfd, TRUE);
3938 if (!g)
3939 return FALSE;
3940
3941 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3942 if (!bfd_loc)
3943 return FALSE;
3944
3945 if (!*bfd_loc)
3946 *bfd_loc = entry;
3947 return TRUE;
3948 }
3949
3950 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3951 entry for it. FOR_CALL is true if the caller is only interested in
3952 using the GOT entry for calls. */
3953
3954 static bfd_boolean
3955 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3956 bfd *abfd, struct bfd_link_info *info,
3957 bfd_boolean for_call, int r_type)
3958 {
3959 struct mips_elf_link_hash_table *htab;
3960 struct mips_elf_link_hash_entry *hmips;
3961 struct mips_got_entry entry;
3962 unsigned char tls_type;
3963
3964 htab = mips_elf_hash_table (info);
3965 BFD_ASSERT (htab != NULL);
3966
3967 hmips = (struct mips_elf_link_hash_entry *) h;
3968 if (!for_call)
3969 hmips->got_only_for_calls = FALSE;
3970
3971 /* A global symbol in the GOT must also be in the dynamic symbol
3972 table. */
3973 if (h->dynindx == -1)
3974 {
3975 switch (ELF_ST_VISIBILITY (h->other))
3976 {
3977 case STV_INTERNAL:
3978 case STV_HIDDEN:
3979 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3980 break;
3981 }
3982 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3983 return FALSE;
3984 }
3985
3986 tls_type = mips_elf_reloc_tls_type (r_type);
3987 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3988 hmips->global_got_area = GGA_NORMAL;
3989
3990 entry.abfd = abfd;
3991 entry.symndx = -1;
3992 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3993 entry.tls_type = tls_type;
3994 return mips_elf_record_got_entry (info, abfd, &entry);
3995 }
3996
3997 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3998 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3999
4000 static bfd_boolean
4001 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4002 struct bfd_link_info *info, int r_type)
4003 {
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g;
4006 struct mips_got_entry entry;
4007
4008 htab = mips_elf_hash_table (info);
4009 BFD_ASSERT (htab != NULL);
4010
4011 g = htab->got_info;
4012 BFD_ASSERT (g != NULL);
4013
4014 entry.abfd = abfd;
4015 entry.symndx = symndx;
4016 entry.d.addend = addend;
4017 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4018 return mips_elf_record_got_entry (info, abfd, &entry);
4019 }
4020
4021 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4022 H is the symbol's hash table entry, or null if SYMNDX is local
4023 to ABFD. */
4024
4025 static bfd_boolean
4026 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4027 long symndx, struct elf_link_hash_entry *h,
4028 bfd_signed_vma addend)
4029 {
4030 struct mips_elf_link_hash_table *htab;
4031 struct mips_got_info *g1, *g2;
4032 struct mips_got_page_ref lookup, *entry;
4033 void **loc, **bfd_loc;
4034
4035 htab = mips_elf_hash_table (info);
4036 BFD_ASSERT (htab != NULL);
4037
4038 g1 = htab->got_info;
4039 BFD_ASSERT (g1 != NULL);
4040
4041 if (h)
4042 {
4043 lookup.symndx = -1;
4044 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4045 }
4046 else
4047 {
4048 lookup.symndx = symndx;
4049 lookup.u.abfd = abfd;
4050 }
4051 lookup.addend = addend;
4052 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4053 if (loc == NULL)
4054 return FALSE;
4055
4056 entry = (struct mips_got_page_ref *) *loc;
4057 if (!entry)
4058 {
4059 entry = bfd_alloc (abfd, sizeof (*entry));
4060 if (!entry)
4061 return FALSE;
4062
4063 *entry = lookup;
4064 *loc = entry;
4065 }
4066
4067 /* Add the same entry to the BFD's GOT. */
4068 g2 = mips_elf_bfd_got (abfd, TRUE);
4069 if (!g2)
4070 return FALSE;
4071
4072 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4073 if (!bfd_loc)
4074 return FALSE;
4075
4076 if (!*bfd_loc)
4077 *bfd_loc = entry;
4078
4079 return TRUE;
4080 }
4081
4082 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4083
4084 static void
4085 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4086 unsigned int n)
4087 {
4088 asection *s;
4089 struct mips_elf_link_hash_table *htab;
4090
4091 htab = mips_elf_hash_table (info);
4092 BFD_ASSERT (htab != NULL);
4093
4094 s = mips_elf_rel_dyn_section (info, FALSE);
4095 BFD_ASSERT (s != NULL);
4096
4097 if (htab->is_vxworks)
4098 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4099 else
4100 {
4101 if (s->size == 0)
4102 {
4103 /* Make room for a null element. */
4104 s->size += MIPS_ELF_REL_SIZE (abfd);
4105 ++s->reloc_count;
4106 }
4107 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4108 }
4109 }
4110 \f
4111 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4112 mips_elf_traverse_got_arg structure. Count the number of GOT
4113 entries and TLS relocs. Set DATA->value to true if we need
4114 to resolve indirect or warning symbols and then recreate the GOT. */
4115
4116 static int
4117 mips_elf_check_recreate_got (void **entryp, void *data)
4118 {
4119 struct mips_got_entry *entry;
4120 struct mips_elf_traverse_got_arg *arg;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL && entry->symndx == -1)
4125 {
4126 struct mips_elf_link_hash_entry *h;
4127
4128 h = entry->d.h;
4129 if (h->root.root.type == bfd_link_hash_indirect
4130 || h->root.root.type == bfd_link_hash_warning)
4131 {
4132 arg->value = TRUE;
4133 return 0;
4134 }
4135 }
4136 mips_elf_count_got_entry (arg->info, arg->g, entry);
4137 return 1;
4138 }
4139
4140 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4141 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4142 converting entries for indirect and warning symbols into entries
4143 for the target symbol. Set DATA->g to null on error. */
4144
4145 static int
4146 mips_elf_recreate_got (void **entryp, void *data)
4147 {
4148 struct mips_got_entry new_entry, *entry;
4149 struct mips_elf_traverse_got_arg *arg;
4150 void **slot;
4151
4152 entry = (struct mips_got_entry *) *entryp;
4153 arg = (struct mips_elf_traverse_got_arg *) data;
4154 if (entry->abfd != NULL
4155 && entry->symndx == -1
4156 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4157 || entry->d.h->root.root.type == bfd_link_hash_warning))
4158 {
4159 struct mips_elf_link_hash_entry *h;
4160
4161 new_entry = *entry;
4162 entry = &new_entry;
4163 h = entry->d.h;
4164 do
4165 {
4166 BFD_ASSERT (h->global_got_area == GGA_NONE);
4167 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4168 }
4169 while (h->root.root.type == bfd_link_hash_indirect
4170 || h->root.root.type == bfd_link_hash_warning);
4171 entry->d.h = h;
4172 }
4173 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4174 if (slot == NULL)
4175 {
4176 arg->g = NULL;
4177 return 0;
4178 }
4179 if (*slot == NULL)
4180 {
4181 if (entry == &new_entry)
4182 {
4183 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4184 if (!entry)
4185 {
4186 arg->g = NULL;
4187 return 0;
4188 }
4189 *entry = new_entry;
4190 }
4191 *slot = entry;
4192 mips_elf_count_got_entry (arg->info, arg->g, entry);
4193 }
4194 return 1;
4195 }
4196
4197 /* Return the maximum number of GOT page entries required for RANGE. */
4198
4199 static bfd_vma
4200 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4201 {
4202 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4203 }
4204
4205 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4206
4207 static bfd_boolean
4208 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4209 asection *sec, bfd_signed_vma addend)
4210 {
4211 struct mips_got_info *g = arg->g;
4212 struct mips_got_page_entry lookup, *entry;
4213 struct mips_got_page_range **range_ptr, *range;
4214 bfd_vma old_pages, new_pages;
4215 void **loc;
4216
4217 /* Find the mips_got_page_entry hash table entry for this section. */
4218 lookup.sec = sec;
4219 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4220 if (loc == NULL)
4221 return FALSE;
4222
4223 /* Create a mips_got_page_entry if this is the first time we've
4224 seen the section. */
4225 entry = (struct mips_got_page_entry *) *loc;
4226 if (!entry)
4227 {
4228 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4229 if (!entry)
4230 return FALSE;
4231
4232 entry->sec = sec;
4233 *loc = entry;
4234 }
4235
4236 /* Skip over ranges whose maximum extent cannot share a page entry
4237 with ADDEND. */
4238 range_ptr = &entry->ranges;
4239 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4240 range_ptr = &(*range_ptr)->next;
4241
4242 /* If we scanned to the end of the list, or found a range whose
4243 minimum extent cannot share a page entry with ADDEND, create
4244 a new singleton range. */
4245 range = *range_ptr;
4246 if (!range || addend < range->min_addend - 0xffff)
4247 {
4248 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4249 if (!range)
4250 return FALSE;
4251
4252 range->next = *range_ptr;
4253 range->min_addend = addend;
4254 range->max_addend = addend;
4255
4256 *range_ptr = range;
4257 entry->num_pages++;
4258 g->page_gotno++;
4259 return TRUE;
4260 }
4261
4262 /* Remember how many pages the old range contributed. */
4263 old_pages = mips_elf_pages_for_range (range);
4264
4265 /* Update the ranges. */
4266 if (addend < range->min_addend)
4267 range->min_addend = addend;
4268 else if (addend > range->max_addend)
4269 {
4270 if (range->next && addend >= range->next->min_addend - 0xffff)
4271 {
4272 old_pages += mips_elf_pages_for_range (range->next);
4273 range->max_addend = range->next->max_addend;
4274 range->next = range->next->next;
4275 }
4276 else
4277 range->max_addend = addend;
4278 }
4279
4280 /* Record any change in the total estimate. */
4281 new_pages = mips_elf_pages_for_range (range);
4282 if (old_pages != new_pages)
4283 {
4284 entry->num_pages += new_pages - old_pages;
4285 g->page_gotno += new_pages - old_pages;
4286 }
4287
4288 return TRUE;
4289 }
4290
4291 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4292 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4293 whether the page reference described by *REFP needs a GOT page entry,
4294 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4295
4296 static bfd_boolean
4297 mips_elf_resolve_got_page_ref (void **refp, void *data)
4298 {
4299 struct mips_got_page_ref *ref;
4300 struct mips_elf_traverse_got_arg *arg;
4301 struct mips_elf_link_hash_table *htab;
4302 asection *sec;
4303 bfd_vma addend;
4304
4305 ref = (struct mips_got_page_ref *) *refp;
4306 arg = (struct mips_elf_traverse_got_arg *) data;
4307 htab = mips_elf_hash_table (arg->info);
4308
4309 if (ref->symndx < 0)
4310 {
4311 struct mips_elf_link_hash_entry *h;
4312
4313 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4314 h = ref->u.h;
4315 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4316 return 1;
4317
4318 /* Ignore undefined symbols; we'll issue an error later if
4319 appropriate. */
4320 if (!((h->root.root.type == bfd_link_hash_defined
4321 || h->root.root.type == bfd_link_hash_defweak)
4322 && h->root.root.u.def.section))
4323 return 1;
4324
4325 sec = h->root.root.u.def.section;
4326 addend = h->root.root.u.def.value + ref->addend;
4327 }
4328 else
4329 {
4330 Elf_Internal_Sym *isym;
4331
4332 /* Read in the symbol. */
4333 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4334 ref->symndx);
4335 if (isym == NULL)
4336 {
4337 arg->g = NULL;
4338 return 0;
4339 }
4340
4341 /* Get the associated input section. */
4342 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4343 if (sec == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* If this is a mergable section, work out the section and offset
4350 of the merged data. For section symbols, the addend specifies
4351 of the offset _of_ the first byte in the data, otherwise it
4352 specifies the offset _from_ the first byte. */
4353 if (sec->flags & SEC_MERGE)
4354 {
4355 void *secinfo;
4356
4357 secinfo = elf_section_data (sec)->sec_info;
4358 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4359 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4360 isym->st_value + ref->addend);
4361 else
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value) + ref->addend;
4364 }
4365 else
4366 addend = isym->st_value + ref->addend;
4367 }
4368 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4369 {
4370 arg->g = NULL;
4371 return 0;
4372 }
4373 return 1;
4374 }
4375
4376 /* If any entries in G->got_entries are for indirect or warning symbols,
4377 replace them with entries for the target symbol. Convert g->got_page_refs
4378 into got_page_entry structures and estimate the number of page entries
4379 that they require. */
4380
4381 static bfd_boolean
4382 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4383 struct mips_got_info *g)
4384 {
4385 struct mips_elf_traverse_got_arg tga;
4386 struct mips_got_info oldg;
4387
4388 oldg = *g;
4389
4390 tga.info = info;
4391 tga.g = g;
4392 tga.value = FALSE;
4393 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4394 if (tga.value)
4395 {
4396 *g = oldg;
4397 g->got_entries = htab_create (htab_size (oldg.got_entries),
4398 mips_elf_got_entry_hash,
4399 mips_elf_got_entry_eq, NULL);
4400 if (!g->got_entries)
4401 return FALSE;
4402
4403 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4404 if (!tga.g)
4405 return FALSE;
4406
4407 htab_delete (oldg.got_entries);
4408 }
4409
4410 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4411 mips_got_page_entry_eq, NULL);
4412 if (g->got_page_entries == NULL)
4413 return FALSE;
4414
4415 tga.info = info;
4416 tga.g = g;
4417 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4418
4419 return TRUE;
4420 }
4421
4422 /* Return true if a GOT entry for H should live in the local rather than
4423 global GOT area. */
4424
4425 static bfd_boolean
4426 mips_use_local_got_p (struct bfd_link_info *info,
4427 struct mips_elf_link_hash_entry *h)
4428 {
4429 /* Symbols that aren't in the dynamic symbol table must live in the
4430 local GOT. This includes symbols that are completely undefined
4431 and which therefore don't bind locally. We'll report undefined
4432 symbols later if appropriate. */
4433 if (h->root.dynindx == -1)
4434 return TRUE;
4435
4436 /* Symbols that bind locally can (and in the case of forced-local
4437 symbols, must) live in the local GOT. */
4438 if (h->got_only_for_calls
4439 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4440 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4441 return TRUE;
4442
4443 /* If this is an executable that must provide a definition of the symbol,
4444 either though PLTs or copy relocations, then that address should go in
4445 the local rather than global GOT. */
4446 if (bfd_link_executable (info) && h->has_static_relocs)
4447 return TRUE;
4448
4449 return FALSE;
4450 }
4451
4452 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4453 link_info structure. Decide whether the hash entry needs an entry in
4454 the global part of the primary GOT, setting global_got_area accordingly.
4455 Count the number of global symbols that are in the primary GOT only
4456 because they have relocations against them (reloc_only_gotno). */
4457
4458 static int
4459 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4460 {
4461 struct bfd_link_info *info;
4462 struct mips_elf_link_hash_table *htab;
4463 struct mips_got_info *g;
4464
4465 info = (struct bfd_link_info *) data;
4466 htab = mips_elf_hash_table (info);
4467 g = htab->got_info;
4468 if (h->global_got_area != GGA_NONE)
4469 {
4470 /* Make a final decision about whether the symbol belongs in the
4471 local or global GOT. */
4472 if (mips_use_local_got_p (info, h))
4473 /* The symbol belongs in the local GOT. We no longer need this
4474 entry if it was only used for relocations; those relocations
4475 will be against the null or section symbol instead of H. */
4476 h->global_got_area = GGA_NONE;
4477 else if (htab->is_vxworks
4478 && h->got_only_for_calls
4479 && h->root.plt.plist->mips_offset != MINUS_ONE)
4480 /* On VxWorks, calls can refer directly to the .got.plt entry;
4481 they don't need entries in the regular GOT. .got.plt entries
4482 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4483 h->global_got_area = GGA_NONE;
4484 else if (h->global_got_area == GGA_RELOC_ONLY)
4485 {
4486 g->reloc_only_gotno++;
4487 g->global_gotno++;
4488 }
4489 }
4490 return 1;
4491 }
4492 \f
4493 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4495
4496 static int
4497 mips_elf_add_got_entry (void **entryp, void *data)
4498 {
4499 struct mips_got_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4501 void **slot;
4502
4503 entry = (struct mips_got_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4506 if (!slot)
4507 {
4508 arg->g = NULL;
4509 return 0;
4510 }
4511 if (!*slot)
4512 {
4513 *slot = entry;
4514 mips_elf_count_got_entry (arg->info, arg->g, entry);
4515 }
4516 return 1;
4517 }
4518
4519 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4520 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4521
4522 static int
4523 mips_elf_add_got_page_entry (void **entryp, void *data)
4524 {
4525 struct mips_got_page_entry *entry;
4526 struct mips_elf_traverse_got_arg *arg;
4527 void **slot;
4528
4529 entry = (struct mips_got_page_entry *) *entryp;
4530 arg = (struct mips_elf_traverse_got_arg *) data;
4531 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4532 if (!slot)
4533 {
4534 arg->g = NULL;
4535 return 0;
4536 }
4537 if (!*slot)
4538 {
4539 *slot = entry;
4540 arg->g->page_gotno += entry->num_pages;
4541 }
4542 return 1;
4543 }
4544
4545 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4546 this would lead to overflow, 1 if they were merged successfully,
4547 and 0 if a merge failed due to lack of memory. (These values are chosen
4548 so that nonnegative return values can be returned by a htab_traverse
4549 callback.) */
4550
4551 static int
4552 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4553 struct mips_got_info *to,
4554 struct mips_elf_got_per_bfd_arg *arg)
4555 {
4556 struct mips_elf_traverse_got_arg tga;
4557 unsigned int estimate;
4558
4559 /* Work out how many page entries we would need for the combined GOT. */
4560 estimate = arg->max_pages;
4561 if (estimate >= from->page_gotno + to->page_gotno)
4562 estimate = from->page_gotno + to->page_gotno;
4563
4564 /* And conservatively estimate how many local and TLS entries
4565 would be needed. */
4566 estimate += from->local_gotno + to->local_gotno;
4567 estimate += from->tls_gotno + to->tls_gotno;
4568
4569 /* If we're merging with the primary got, any TLS relocations will
4570 come after the full set of global entries. Otherwise estimate those
4571 conservatively as well. */
4572 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4573 estimate += arg->global_count;
4574 else
4575 estimate += from->global_gotno + to->global_gotno;
4576
4577 /* Bail out if the combined GOT might be too big. */
4578 if (estimate > arg->max_count)
4579 return -1;
4580
4581 /* Transfer the bfd's got information from FROM to TO. */
4582 tga.info = arg->info;
4583 tga.g = to;
4584 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4585 if (!tga.g)
4586 return 0;
4587
4588 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4589 if (!tga.g)
4590 return 0;
4591
4592 mips_elf_replace_bfd_got (abfd, to);
4593 return 1;
4594 }
4595
4596 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4597 as possible of the primary got, since it doesn't require explicit
4598 dynamic relocations, but don't use bfds that would reference global
4599 symbols out of the addressable range. Failing the primary got,
4600 attempt to merge with the current got, or finish the current got
4601 and then make make the new got current. */
4602
4603 static bfd_boolean
4604 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4605 struct mips_elf_got_per_bfd_arg *arg)
4606 {
4607 unsigned int estimate;
4608 int result;
4609
4610 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4611 return FALSE;
4612
4613 /* Work out the number of page, local and TLS entries. */
4614 estimate = arg->max_pages;
4615 if (estimate > g->page_gotno)
4616 estimate = g->page_gotno;
4617 estimate += g->local_gotno + g->tls_gotno;
4618
4619 /* We place TLS GOT entries after both locals and globals. The globals
4620 for the primary GOT may overflow the normal GOT size limit, so be
4621 sure not to merge a GOT which requires TLS with the primary GOT in that
4622 case. This doesn't affect non-primary GOTs. */
4623 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4624
4625 if (estimate <= arg->max_count)
4626 {
4627 /* If we don't have a primary GOT, use it as
4628 a starting point for the primary GOT. */
4629 if (!arg->primary)
4630 {
4631 arg->primary = g;
4632 return TRUE;
4633 }
4634
4635 /* Try merging with the primary GOT. */
4636 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4637 if (result >= 0)
4638 return result;
4639 }
4640
4641 /* If we can merge with the last-created got, do it. */
4642 if (arg->current)
4643 {
4644 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4650 fits; if it turns out that it doesn't, we'll get relocation
4651 overflows anyway. */
4652 g->next = arg->current;
4653 arg->current = g;
4654
4655 return TRUE;
4656 }
4657
4658 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4659 to GOTIDX, duplicating the entry if it has already been assigned
4660 an index in a different GOT. */
4661
4662 static bfd_boolean
4663 mips_elf_set_gotidx (void **entryp, long gotidx)
4664 {
4665 struct mips_got_entry *entry;
4666
4667 entry = (struct mips_got_entry *) *entryp;
4668 if (entry->gotidx > 0)
4669 {
4670 struct mips_got_entry *new_entry;
4671
4672 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4673 if (!new_entry)
4674 return FALSE;
4675
4676 *new_entry = *entry;
4677 *entryp = new_entry;
4678 entry = new_entry;
4679 }
4680 entry->gotidx = gotidx;
4681 return TRUE;
4682 }
4683
4684 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4685 mips_elf_traverse_got_arg in which DATA->value is the size of one
4686 GOT entry. Set DATA->g to null on failure. */
4687
4688 static int
4689 mips_elf_initialize_tls_index (void **entryp, void *data)
4690 {
4691 struct mips_got_entry *entry;
4692 struct mips_elf_traverse_got_arg *arg;
4693
4694 /* We're only interested in TLS symbols. */
4695 entry = (struct mips_got_entry *) *entryp;
4696 if (entry->tls_type == GOT_TLS_NONE)
4697 return 1;
4698
4699 arg = (struct mips_elf_traverse_got_arg *) data;
4700 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4701 {
4702 arg->g = NULL;
4703 return 0;
4704 }
4705
4706 /* Account for the entries we've just allocated. */
4707 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4708 return 1;
4709 }
4710
4711 /* A htab_traverse callback for GOT entries, where DATA points to a
4712 mips_elf_traverse_got_arg. Set the global_got_area of each global
4713 symbol to DATA->value. */
4714
4715 static int
4716 mips_elf_set_global_got_area (void **entryp, void *data)
4717 {
4718 struct mips_got_entry *entry;
4719 struct mips_elf_traverse_got_arg *arg;
4720
4721 entry = (struct mips_got_entry *) *entryp;
4722 arg = (struct mips_elf_traverse_got_arg *) data;
4723 if (entry->abfd != NULL
4724 && entry->symndx == -1
4725 && entry->d.h->global_got_area != GGA_NONE)
4726 entry->d.h->global_got_area = arg->value;
4727 return 1;
4728 }
4729
4730 /* A htab_traverse callback for secondary GOT entries, where DATA points
4731 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4732 and record the number of relocations they require. DATA->value is
4733 the size of one GOT entry. Set DATA->g to null on failure. */
4734
4735 static int
4736 mips_elf_set_global_gotidx (void **entryp, void *data)
4737 {
4738 struct mips_got_entry *entry;
4739 struct mips_elf_traverse_got_arg *arg;
4740
4741 entry = (struct mips_got_entry *) *entryp;
4742 arg = (struct mips_elf_traverse_got_arg *) data;
4743 if (entry->abfd != NULL
4744 && entry->symndx == -1
4745 && entry->d.h->global_got_area != GGA_NONE)
4746 {
4747 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4748 {
4749 arg->g = NULL;
4750 return 0;
4751 }
4752 arg->g->assigned_low_gotno += 1;
4753
4754 if (bfd_link_pic (arg->info)
4755 || (elf_hash_table (arg->info)->dynamic_sections_created
4756 && entry->d.h->root.def_dynamic
4757 && !entry->d.h->root.def_regular))
4758 arg->g->relocs += 1;
4759 }
4760
4761 return 1;
4762 }
4763
4764 /* A htab_traverse callback for GOT entries for which DATA is the
4765 bfd_link_info. Forbid any global symbols from having traditional
4766 lazy-binding stubs. */
4767
4768 static int
4769 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4770 {
4771 struct bfd_link_info *info;
4772 struct mips_elf_link_hash_table *htab;
4773 struct mips_got_entry *entry;
4774
4775 entry = (struct mips_got_entry *) *entryp;
4776 info = (struct bfd_link_info *) data;
4777 htab = mips_elf_hash_table (info);
4778 BFD_ASSERT (htab != NULL);
4779
4780 if (entry->abfd != NULL
4781 && entry->symndx == -1
4782 && entry->d.h->needs_lazy_stub)
4783 {
4784 entry->d.h->needs_lazy_stub = FALSE;
4785 htab->lazy_stub_count--;
4786 }
4787
4788 return 1;
4789 }
4790
4791 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4792 the primary GOT. */
4793 static bfd_vma
4794 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4795 {
4796 if (!g->next)
4797 return 0;
4798
4799 g = mips_elf_bfd_got (ibfd, FALSE);
4800 if (! g)
4801 return 0;
4802
4803 BFD_ASSERT (g->next);
4804
4805 g = g->next;
4806
4807 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4808 * MIPS_ELF_GOT_SIZE (abfd);
4809 }
4810
4811 /* Turn a single GOT that is too big for 16-bit addressing into
4812 a sequence of GOTs, each one 16-bit addressable. */
4813
4814 static bfd_boolean
4815 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4816 asection *got, bfd_size_type pages)
4817 {
4818 struct mips_elf_link_hash_table *htab;
4819 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4820 struct mips_elf_traverse_got_arg tga;
4821 struct mips_got_info *g, *gg;
4822 unsigned int assign, needed_relocs;
4823 bfd *dynobj, *ibfd;
4824
4825 dynobj = elf_hash_table (info)->dynobj;
4826 htab = mips_elf_hash_table (info);
4827 BFD_ASSERT (htab != NULL);
4828
4829 g = htab->got_info;
4830
4831 got_per_bfd_arg.obfd = abfd;
4832 got_per_bfd_arg.info = info;
4833 got_per_bfd_arg.current = NULL;
4834 got_per_bfd_arg.primary = NULL;
4835 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4836 / MIPS_ELF_GOT_SIZE (abfd))
4837 - htab->reserved_gotno);
4838 got_per_bfd_arg.max_pages = pages;
4839 /* The number of globals that will be included in the primary GOT.
4840 See the calls to mips_elf_set_global_got_area below for more
4841 information. */
4842 got_per_bfd_arg.global_count = g->global_gotno;
4843
4844 /* Try to merge the GOTs of input bfds together, as long as they
4845 don't seem to exceed the maximum GOT size, choosing one of them
4846 to be the primary GOT. */
4847 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4848 {
4849 gg = mips_elf_bfd_got (ibfd, FALSE);
4850 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4851 return FALSE;
4852 }
4853
4854 /* If we do not find any suitable primary GOT, create an empty one. */
4855 if (got_per_bfd_arg.primary == NULL)
4856 g->next = mips_elf_create_got_info (abfd);
4857 else
4858 g->next = got_per_bfd_arg.primary;
4859 g->next->next = got_per_bfd_arg.current;
4860
4861 /* GG is now the master GOT, and G is the primary GOT. */
4862 gg = g;
4863 g = g->next;
4864
4865 /* Map the output bfd to the primary got. That's what we're going
4866 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4867 didn't mark in check_relocs, and we want a quick way to find it.
4868 We can't just use gg->next because we're going to reverse the
4869 list. */
4870 mips_elf_replace_bfd_got (abfd, g);
4871
4872 /* Every symbol that is referenced in a dynamic relocation must be
4873 present in the primary GOT, so arrange for them to appear after
4874 those that are actually referenced. */
4875 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4876 g->global_gotno = gg->global_gotno;
4877
4878 tga.info = info;
4879 tga.value = GGA_RELOC_ONLY;
4880 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4881 tga.value = GGA_NORMAL;
4882 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4883
4884 /* Now go through the GOTs assigning them offset ranges.
4885 [assigned_low_gotno, local_gotno[ will be set to the range of local
4886 entries in each GOT. We can then compute the end of a GOT by
4887 adding local_gotno to global_gotno. We reverse the list and make
4888 it circular since then we'll be able to quickly compute the
4889 beginning of a GOT, by computing the end of its predecessor. To
4890 avoid special cases for the primary GOT, while still preserving
4891 assertions that are valid for both single- and multi-got links,
4892 we arrange for the main got struct to have the right number of
4893 global entries, but set its local_gotno such that the initial
4894 offset of the primary GOT is zero. Remember that the primary GOT
4895 will become the last item in the circular linked list, so it
4896 points back to the master GOT. */
4897 gg->local_gotno = -g->global_gotno;
4898 gg->global_gotno = g->global_gotno;
4899 gg->tls_gotno = 0;
4900 assign = 0;
4901 gg->next = gg;
4902
4903 do
4904 {
4905 struct mips_got_info *gn;
4906
4907 assign += htab->reserved_gotno;
4908 g->assigned_low_gotno = assign;
4909 g->local_gotno += assign;
4910 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4911 g->assigned_high_gotno = g->local_gotno - 1;
4912 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4913
4914 /* Take g out of the direct list, and push it onto the reversed
4915 list that gg points to. g->next is guaranteed to be nonnull after
4916 this operation, as required by mips_elf_initialize_tls_index. */
4917 gn = g->next;
4918 g->next = gg->next;
4919 gg->next = g;
4920
4921 /* Set up any TLS entries. We always place the TLS entries after
4922 all non-TLS entries. */
4923 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4924 tga.g = g;
4925 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4926 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4927 if (!tga.g)
4928 return FALSE;
4929 BFD_ASSERT (g->tls_assigned_gotno == assign);
4930
4931 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4932 g = gn;
4933
4934 /* Forbid global symbols in every non-primary GOT from having
4935 lazy-binding stubs. */
4936 if (g)
4937 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4938 }
4939 while (g);
4940
4941 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4942
4943 needed_relocs = 0;
4944 for (g = gg->next; g && g->next != gg; g = g->next)
4945 {
4946 unsigned int save_assign;
4947
4948 /* Assign offsets to global GOT entries and count how many
4949 relocations they need. */
4950 save_assign = g->assigned_low_gotno;
4951 g->assigned_low_gotno = g->local_gotno;
4952 tga.info = info;
4953 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4954 tga.g = g;
4955 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4956 if (!tga.g)
4957 return FALSE;
4958 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4959 g->assigned_low_gotno = save_assign;
4960
4961 if (bfd_link_pic (info))
4962 {
4963 g->relocs += g->local_gotno - g->assigned_low_gotno;
4964 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4965 + g->next->global_gotno
4966 + g->next->tls_gotno
4967 + htab->reserved_gotno);
4968 }
4969 needed_relocs += g->relocs;
4970 }
4971 needed_relocs += g->relocs;
4972
4973 if (needed_relocs)
4974 mips_elf_allocate_dynamic_relocations (dynobj, info,
4975 needed_relocs);
4976
4977 return TRUE;
4978 }
4979
4980 \f
4981 /* Returns the first relocation of type r_type found, beginning with
4982 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4983
4984 static const Elf_Internal_Rela *
4985 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4986 const Elf_Internal_Rela *relocation,
4987 const Elf_Internal_Rela *relend)
4988 {
4989 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4990
4991 while (relocation < relend)
4992 {
4993 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4994 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4995 return relocation;
4996
4997 ++relocation;
4998 }
4999
5000 /* We didn't find it. */
5001 return NULL;
5002 }
5003
5004 /* Return whether an input relocation is against a local symbol. */
5005
5006 static bfd_boolean
5007 mips_elf_local_relocation_p (bfd *input_bfd,
5008 const Elf_Internal_Rela *relocation,
5009 asection **local_sections)
5010 {
5011 unsigned long r_symndx;
5012 Elf_Internal_Shdr *symtab_hdr;
5013 size_t extsymoff;
5014
5015 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5017 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5018
5019 if (r_symndx < extsymoff)
5020 return TRUE;
5021 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5022 return TRUE;
5023
5024 return FALSE;
5025 }
5026 \f
5027 /* Sign-extend VALUE, which has the indicated number of BITS. */
5028
5029 bfd_vma
5030 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5031 {
5032 if (value & ((bfd_vma) 1 << (bits - 1)))
5033 /* VALUE is negative. */
5034 value |= ((bfd_vma) - 1) << bits;
5035
5036 return value;
5037 }
5038
5039 /* Return non-zero if the indicated VALUE has overflowed the maximum
5040 range expressible by a signed number with the indicated number of
5041 BITS. */
5042
5043 static bfd_boolean
5044 mips_elf_overflow_p (bfd_vma value, int bits)
5045 {
5046 bfd_signed_vma svalue = (bfd_signed_vma) value;
5047
5048 if (svalue > (1 << (bits - 1)) - 1)
5049 /* The value is too big. */
5050 return TRUE;
5051 else if (svalue < -(1 << (bits - 1)))
5052 /* The value is too small. */
5053 return TRUE;
5054
5055 /* All is well. */
5056 return FALSE;
5057 }
5058
5059 /* Calculate the %high function. */
5060
5061 static bfd_vma
5062 mips_elf_high (bfd_vma value)
5063 {
5064 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5065 }
5066
5067 /* Calculate the %higher function. */
5068
5069 static bfd_vma
5070 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5071 {
5072 #ifdef BFD64
5073 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5074 #else
5075 abort ();
5076 return MINUS_ONE;
5077 #endif
5078 }
5079
5080 /* Calculate the %highest function. */
5081
5082 static bfd_vma
5083 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5084 {
5085 #ifdef BFD64
5086 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5087 #else
5088 abort ();
5089 return MINUS_ONE;
5090 #endif
5091 }
5092 \f
5093 /* Create the .compact_rel section. */
5094
5095 static bfd_boolean
5096 mips_elf_create_compact_rel_section
5097 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5098 {
5099 flagword flags;
5100 register asection *s;
5101
5102 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5103 {
5104 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5105 | SEC_READONLY);
5106
5107 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s,
5110 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5111 return FALSE;
5112
5113 s->size = sizeof (Elf32_External_compact_rel);
5114 }
5115
5116 return TRUE;
5117 }
5118
5119 /* Create the .got section to hold the global offset table. */
5120
5121 static bfd_boolean
5122 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5123 {
5124 flagword flags;
5125 register asection *s;
5126 struct elf_link_hash_entry *h;
5127 struct bfd_link_hash_entry *bh;
5128 struct mips_elf_link_hash_table *htab;
5129
5130 htab = mips_elf_hash_table (info);
5131 BFD_ASSERT (htab != NULL);
5132
5133 /* This function may be called more than once. */
5134 if (htab->sgot)
5135 return TRUE;
5136
5137 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5138 | SEC_LINKER_CREATED);
5139
5140 /* We have to use an alignment of 2**4 here because this is hardcoded
5141 in the function stub generation and in the linker script. */
5142 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5143 if (s == NULL
5144 || ! bfd_set_section_alignment (abfd, s, 4))
5145 return FALSE;
5146 htab->sgot = s;
5147
5148 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5149 linker script because we don't want to define the symbol if we
5150 are not creating a global offset table. */
5151 bh = NULL;
5152 if (! (_bfd_generic_link_add_one_symbol
5153 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5154 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5155 return FALSE;
5156
5157 h = (struct elf_link_hash_entry *) bh;
5158 h->non_elf = 0;
5159 h->def_regular = 1;
5160 h->type = STT_OBJECT;
5161 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5162 elf_hash_table (info)->hgot = h;
5163
5164 if (bfd_link_pic (info)
5165 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5166 return FALSE;
5167
5168 htab->got_info = mips_elf_create_got_info (abfd);
5169 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5170 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5171
5172 /* We also need a .got.plt section when generating PLTs. */
5173 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5174 SEC_ALLOC | SEC_LOAD
5175 | SEC_HAS_CONTENTS
5176 | SEC_IN_MEMORY
5177 | SEC_LINKER_CREATED);
5178 if (s == NULL)
5179 return FALSE;
5180 htab->sgotplt = s;
5181
5182 return TRUE;
5183 }
5184 \f
5185 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5186 __GOTT_INDEX__ symbols. These symbols are only special for
5187 shared objects; they are not used in executables. */
5188
5189 static bfd_boolean
5190 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5191 {
5192 return (mips_elf_hash_table (info)->is_vxworks
5193 && bfd_link_pic (info)
5194 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5195 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5196 }
5197
5198 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5199 require an la25 stub. See also mips_elf_local_pic_function_p,
5200 which determines whether the destination function ever requires a
5201 stub. */
5202
5203 static bfd_boolean
5204 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5205 bfd_boolean target_is_16_bit_code_p)
5206 {
5207 /* We specifically ignore branches and jumps from EF_PIC objects,
5208 where the onus is on the compiler or programmer to perform any
5209 necessary initialization of $25. Sometimes such initialization
5210 is unnecessary; for example, -mno-shared functions do not use
5211 the incoming value of $25, and may therefore be called directly. */
5212 if (PIC_OBJECT_P (input_bfd))
5213 return FALSE;
5214
5215 switch (r_type)
5216 {
5217 case R_MIPS_26:
5218 case R_MIPS_PC16:
5219 case R_MIPS_PC21_S2:
5220 case R_MIPS_PC26_S2:
5221 case R_MICROMIPS_26_S1:
5222 case R_MICROMIPS_PC7_S1:
5223 case R_MICROMIPS_PC10_S1:
5224 case R_MICROMIPS_PC16_S1:
5225 case R_MICROMIPS_PC23_S2:
5226 return TRUE;
5227
5228 case R_MIPS16_26:
5229 return !target_is_16_bit_code_p;
5230
5231 default:
5232 return FALSE;
5233 }
5234 }
5235 \f
5236 /* Calculate the value produced by the RELOCATION (which comes from
5237 the INPUT_BFD). The ADDEND is the addend to use for this
5238 RELOCATION; RELOCATION->R_ADDEND is ignored.
5239
5240 The result of the relocation calculation is stored in VALUEP.
5241 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5242 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5243
5244 This function returns bfd_reloc_continue if the caller need take no
5245 further action regarding this relocation, bfd_reloc_notsupported if
5246 something goes dramatically wrong, bfd_reloc_overflow if an
5247 overflow occurs, and bfd_reloc_ok to indicate success. */
5248
5249 static bfd_reloc_status_type
5250 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5251 asection *input_section,
5252 struct bfd_link_info *info,
5253 const Elf_Internal_Rela *relocation,
5254 bfd_vma addend, reloc_howto_type *howto,
5255 Elf_Internal_Sym *local_syms,
5256 asection **local_sections, bfd_vma *valuep,
5257 const char **namep,
5258 bfd_boolean *cross_mode_jump_p,
5259 bfd_boolean save_addend)
5260 {
5261 /* The eventual value we will return. */
5262 bfd_vma value;
5263 /* The address of the symbol against which the relocation is
5264 occurring. */
5265 bfd_vma symbol = 0;
5266 /* The final GP value to be used for the relocatable, executable, or
5267 shared object file being produced. */
5268 bfd_vma gp;
5269 /* The place (section offset or address) of the storage unit being
5270 relocated. */
5271 bfd_vma p;
5272 /* The value of GP used to create the relocatable object. */
5273 bfd_vma gp0;
5274 /* The offset into the global offset table at which the address of
5275 the relocation entry symbol, adjusted by the addend, resides
5276 during execution. */
5277 bfd_vma g = MINUS_ONE;
5278 /* The section in which the symbol referenced by the relocation is
5279 located. */
5280 asection *sec = NULL;
5281 struct mips_elf_link_hash_entry *h = NULL;
5282 /* TRUE if the symbol referred to by this relocation is a local
5283 symbol. */
5284 bfd_boolean local_p, was_local_p;
5285 /* TRUE if the symbol referred to by this relocation is a section
5286 symbol. */
5287 bfd_boolean section_p = FALSE;
5288 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5289 bfd_boolean gp_disp_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is
5291 "__gnu_local_gp". */
5292 bfd_boolean gnu_local_gp_p = FALSE;
5293 Elf_Internal_Shdr *symtab_hdr;
5294 size_t extsymoff;
5295 unsigned long r_symndx;
5296 int r_type;
5297 /* TRUE if overflow occurred during the calculation of the
5298 relocation value. */
5299 bfd_boolean overflowed_p;
5300 /* TRUE if this relocation refers to a MIPS16 function. */
5301 bfd_boolean target_is_16_bit_code_p = FALSE;
5302 bfd_boolean target_is_micromips_code_p = FALSE;
5303 struct mips_elf_link_hash_table *htab;
5304 bfd *dynobj;
5305
5306 dynobj = elf_hash_table (info)->dynobj;
5307 htab = mips_elf_hash_table (info);
5308 BFD_ASSERT (htab != NULL);
5309
5310 /* Parse the relocation. */
5311 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5312 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5313 p = (input_section->output_section->vma
5314 + input_section->output_offset
5315 + relocation->r_offset);
5316
5317 /* Assume that there will be no overflow. */
5318 overflowed_p = FALSE;
5319
5320 /* Figure out whether or not the symbol is local, and get the offset
5321 used in the array of hash table entries. */
5322 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5323 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5324 local_sections);
5325 was_local_p = local_p;
5326 if (! elf_bad_symtab (input_bfd))
5327 extsymoff = symtab_hdr->sh_info;
5328 else
5329 {
5330 /* The symbol table does not follow the rule that local symbols
5331 must come before globals. */
5332 extsymoff = 0;
5333 }
5334
5335 /* Figure out the value of the symbol. */
5336 if (local_p)
5337 {
5338 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5339 Elf_Internal_Sym *sym;
5340
5341 sym = local_syms + r_symndx;
5342 sec = local_sections[r_symndx];
5343
5344 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5345
5346 symbol = sec->output_section->vma + sec->output_offset;
5347 if (!section_p || (sec->flags & SEC_MERGE))
5348 symbol += sym->st_value;
5349 if ((sec->flags & SEC_MERGE) && section_p)
5350 {
5351 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5352 addend -= symbol;
5353 addend += sec->output_section->vma + sec->output_offset;
5354 }
5355
5356 /* MIPS16/microMIPS text labels should be treated as odd. */
5357 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5358 ++symbol;
5359
5360 /* Record the name of this symbol, for our caller. */
5361 *namep = bfd_elf_string_from_elf_section (input_bfd,
5362 symtab_hdr->sh_link,
5363 sym->st_name);
5364 if (*namep == NULL || **namep == '\0')
5365 *namep = bfd_section_name (input_bfd, sec);
5366
5367 /* For relocations against a section symbol and ones against no
5368 symbol (absolute relocations) infer the ISA mode from the addend. */
5369 if (section_p || r_symndx == STN_UNDEF)
5370 {
5371 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5372 target_is_micromips_code_p = (addend & 1) && micromips_p;
5373 }
5374 /* For relocations against an absolute symbol infer the ISA mode
5375 from the value of the symbol plus addend. */
5376 else if (bfd_is_abs_section (sec))
5377 {
5378 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5379 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5380 }
5381 /* Otherwise just use the regular symbol annotation available. */
5382 else
5383 {
5384 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5385 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5386 }
5387 }
5388 else
5389 {
5390 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5391
5392 /* For global symbols we look up the symbol in the hash-table. */
5393 h = ((struct mips_elf_link_hash_entry *)
5394 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5395 /* Find the real hash-table entry for this symbol. */
5396 while (h->root.root.type == bfd_link_hash_indirect
5397 || h->root.root.type == bfd_link_hash_warning)
5398 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5399
5400 /* Record the name of this symbol, for our caller. */
5401 *namep = h->root.root.root.string;
5402
5403 /* See if this is the special _gp_disp symbol. Note that such a
5404 symbol must always be a global symbol. */
5405 if (strcmp (*namep, "_gp_disp") == 0
5406 && ! NEWABI_P (input_bfd))
5407 {
5408 /* Relocations against _gp_disp are permitted only with
5409 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5410 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5411 return bfd_reloc_notsupported;
5412
5413 gp_disp_p = TRUE;
5414 }
5415 /* See if this is the special _gp symbol. Note that such a
5416 symbol must always be a global symbol. */
5417 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5418 gnu_local_gp_p = TRUE;
5419
5420
5421 /* If this symbol is defined, calculate its address. Note that
5422 _gp_disp is a magic symbol, always implicitly defined by the
5423 linker, so it's inappropriate to check to see whether or not
5424 its defined. */
5425 else if ((h->root.root.type == bfd_link_hash_defined
5426 || h->root.root.type == bfd_link_hash_defweak)
5427 && h->root.root.u.def.section)
5428 {
5429 sec = h->root.root.u.def.section;
5430 if (sec->output_section)
5431 symbol = (h->root.root.u.def.value
5432 + sec->output_section->vma
5433 + sec->output_offset);
5434 else
5435 symbol = h->root.root.u.def.value;
5436 }
5437 else if (h->root.root.type == bfd_link_hash_undefweak)
5438 /* We allow relocations against undefined weak symbols, giving
5439 it the value zero, so that you can undefined weak functions
5440 and check to see if they exist by looking at their
5441 addresses. */
5442 symbol = 0;
5443 else if (info->unresolved_syms_in_objects == RM_IGNORE
5444 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5445 symbol = 0;
5446 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5447 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5448 {
5449 /* If this is a dynamic link, we should have created a
5450 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5451 in in _bfd_mips_elf_create_dynamic_sections.
5452 Otherwise, we should define the symbol with a value of 0.
5453 FIXME: It should probably get into the symbol table
5454 somehow as well. */
5455 BFD_ASSERT (! bfd_link_pic (info));
5456 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5457 symbol = 0;
5458 }
5459 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5460 {
5461 /* This is an optional symbol - an Irix specific extension to the
5462 ELF spec. Ignore it for now.
5463 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5464 than simply ignoring them, but we do not handle this for now.
5465 For information see the "64-bit ELF Object File Specification"
5466 which is available from here:
5467 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5468 symbol = 0;
5469 }
5470 else
5471 {
5472 (*info->callbacks->undefined_symbol)
5473 (info, h->root.root.root.string, input_bfd,
5474 input_section, relocation->r_offset,
5475 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5476 || ELF_ST_VISIBILITY (h->root.other));
5477 return bfd_reloc_undefined;
5478 }
5479
5480 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5481 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5482 }
5483
5484 /* If this is a reference to a 16-bit function with a stub, we need
5485 to redirect the relocation to the stub unless:
5486
5487 (a) the relocation is for a MIPS16 JAL;
5488
5489 (b) the relocation is for a MIPS16 PIC call, and there are no
5490 non-MIPS16 uses of the GOT slot; or
5491
5492 (c) the section allows direct references to MIPS16 functions. */
5493 if (r_type != R_MIPS16_26
5494 && !bfd_link_relocatable (info)
5495 && ((h != NULL
5496 && h->fn_stub != NULL
5497 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5498 || (local_p
5499 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5500 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5501 && !section_allows_mips16_refs_p (input_section))
5502 {
5503 /* This is a 32- or 64-bit call to a 16-bit function. We should
5504 have already noticed that we were going to need the
5505 stub. */
5506 if (local_p)
5507 {
5508 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5509 value = 0;
5510 }
5511 else
5512 {
5513 BFD_ASSERT (h->need_fn_stub);
5514 if (h->la25_stub)
5515 {
5516 /* If a LA25 header for the stub itself exists, point to the
5517 prepended LUI/ADDIU sequence. */
5518 sec = h->la25_stub->stub_section;
5519 value = h->la25_stub->offset;
5520 }
5521 else
5522 {
5523 sec = h->fn_stub;
5524 value = 0;
5525 }
5526 }
5527
5528 symbol = sec->output_section->vma + sec->output_offset + value;
5529 /* The target is 16-bit, but the stub isn't. */
5530 target_is_16_bit_code_p = FALSE;
5531 }
5532 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5533 to a standard MIPS function, we need to redirect the call to the stub.
5534 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5535 indirect calls should use an indirect stub instead. */
5536 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5537 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5538 || (local_p
5539 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5540 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5541 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5542 {
5543 if (local_p)
5544 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5545 else
5546 {
5547 /* If both call_stub and call_fp_stub are defined, we can figure
5548 out which one to use by checking which one appears in the input
5549 file. */
5550 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5551 {
5552 asection *o;
5553
5554 sec = NULL;
5555 for (o = input_bfd->sections; o != NULL; o = o->next)
5556 {
5557 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5558 {
5559 sec = h->call_fp_stub;
5560 break;
5561 }
5562 }
5563 if (sec == NULL)
5564 sec = h->call_stub;
5565 }
5566 else if (h->call_stub != NULL)
5567 sec = h->call_stub;
5568 else
5569 sec = h->call_fp_stub;
5570 }
5571
5572 BFD_ASSERT (sec->size > 0);
5573 symbol = sec->output_section->vma + sec->output_offset;
5574 }
5575 /* If this is a direct call to a PIC function, redirect to the
5576 non-PIC stub. */
5577 else if (h != NULL && h->la25_stub
5578 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5579 target_is_16_bit_code_p))
5580 symbol = (h->la25_stub->stub_section->output_section->vma
5581 + h->la25_stub->stub_section->output_offset
5582 + h->la25_stub->offset);
5583 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5584 entry is used if a standard PLT entry has also been made. In this
5585 case the symbol will have been set by mips_elf_set_plt_sym_value
5586 to point to the standard PLT entry, so redirect to the compressed
5587 one. */
5588 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5589 && !bfd_link_relocatable (info)
5590 && h != NULL
5591 && h->use_plt_entry
5592 && h->root.plt.plist->comp_offset != MINUS_ONE
5593 && h->root.plt.plist->mips_offset != MINUS_ONE)
5594 {
5595 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5596
5597 sec = htab->splt;
5598 symbol = (sec->output_section->vma
5599 + sec->output_offset
5600 + htab->plt_header_size
5601 + htab->plt_mips_offset
5602 + h->root.plt.plist->comp_offset
5603 + 1);
5604
5605 target_is_16_bit_code_p = !micromips_p;
5606 target_is_micromips_code_p = micromips_p;
5607 }
5608
5609 /* Make sure MIPS16 and microMIPS are not used together. */
5610 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5611 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5612 {
5613 (*_bfd_error_handler)
5614 (_("MIPS16 and microMIPS functions cannot call each other"));
5615 return bfd_reloc_notsupported;
5616 }
5617
5618 /* Calls from 16-bit code to 32-bit code and vice versa require the
5619 mode change. However, we can ignore calls to undefined weak symbols,
5620 which should never be executed at runtime. This exception is important
5621 because the assembly writer may have "known" that any definition of the
5622 symbol would be 16-bit code, and that direct jumps were therefore
5623 acceptable. */
5624 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5625 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5626 && ((mips16_branch_reloc_p (r_type)
5627 && !target_is_16_bit_code_p)
5628 || (micromips_branch_reloc_p (r_type)
5629 && !target_is_micromips_code_p)
5630 || ((branch_reloc_p (r_type)
5631 || r_type == R_MIPS_JALR)
5632 && (target_is_16_bit_code_p
5633 || target_is_micromips_code_p))));
5634
5635 local_p = (h == NULL || mips_use_local_got_p (info, h));
5636
5637 gp0 = _bfd_get_gp_value (input_bfd);
5638 gp = _bfd_get_gp_value (abfd);
5639 if (htab->got_info)
5640 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5641
5642 if (gnu_local_gp_p)
5643 symbol = gp;
5644
5645 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5646 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5647 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5648 if (got_page_reloc_p (r_type) && !local_p)
5649 {
5650 r_type = (micromips_reloc_p (r_type)
5651 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5652 addend = 0;
5653 }
5654
5655 /* If we haven't already determined the GOT offset, and we're going
5656 to need it, get it now. */
5657 switch (r_type)
5658 {
5659 case R_MIPS16_CALL16:
5660 case R_MIPS16_GOT16:
5661 case R_MIPS_CALL16:
5662 case R_MIPS_GOT16:
5663 case R_MIPS_GOT_DISP:
5664 case R_MIPS_GOT_HI16:
5665 case R_MIPS_CALL_HI16:
5666 case R_MIPS_GOT_LO16:
5667 case R_MIPS_CALL_LO16:
5668 case R_MICROMIPS_CALL16:
5669 case R_MICROMIPS_GOT16:
5670 case R_MICROMIPS_GOT_DISP:
5671 case R_MICROMIPS_GOT_HI16:
5672 case R_MICROMIPS_CALL_HI16:
5673 case R_MICROMIPS_GOT_LO16:
5674 case R_MICROMIPS_CALL_LO16:
5675 case R_MIPS_TLS_GD:
5676 case R_MIPS_TLS_GOTTPREL:
5677 case R_MIPS_TLS_LDM:
5678 case R_MIPS16_TLS_GD:
5679 case R_MIPS16_TLS_GOTTPREL:
5680 case R_MIPS16_TLS_LDM:
5681 case R_MICROMIPS_TLS_GD:
5682 case R_MICROMIPS_TLS_GOTTPREL:
5683 case R_MICROMIPS_TLS_LDM:
5684 /* Find the index into the GOT where this value is located. */
5685 if (tls_ldm_reloc_p (r_type))
5686 {
5687 g = mips_elf_local_got_index (abfd, input_bfd, info,
5688 0, 0, NULL, r_type);
5689 if (g == MINUS_ONE)
5690 return bfd_reloc_outofrange;
5691 }
5692 else if (!local_p)
5693 {
5694 /* On VxWorks, CALL relocations should refer to the .got.plt
5695 entry, which is initialized to point at the PLT stub. */
5696 if (htab->is_vxworks
5697 && (call_hi16_reloc_p (r_type)
5698 || call_lo16_reloc_p (r_type)
5699 || call16_reloc_p (r_type)))
5700 {
5701 BFD_ASSERT (addend == 0);
5702 BFD_ASSERT (h->root.needs_plt);
5703 g = mips_elf_gotplt_index (info, &h->root);
5704 }
5705 else
5706 {
5707 BFD_ASSERT (addend == 0);
5708 g = mips_elf_global_got_index (abfd, info, input_bfd,
5709 &h->root, r_type);
5710 if (!TLS_RELOC_P (r_type)
5711 && !elf_hash_table (info)->dynamic_sections_created)
5712 /* This is a static link. We must initialize the GOT entry. */
5713 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5714 }
5715 }
5716 else if (!htab->is_vxworks
5717 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5718 /* The calculation below does not involve "g". */
5719 break;
5720 else
5721 {
5722 g = mips_elf_local_got_index (abfd, input_bfd, info,
5723 symbol + addend, r_symndx, h, r_type);
5724 if (g == MINUS_ONE)
5725 return bfd_reloc_outofrange;
5726 }
5727
5728 /* Convert GOT indices to actual offsets. */
5729 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5730 break;
5731 }
5732
5733 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5734 symbols are resolved by the loader. Add them to .rela.dyn. */
5735 if (h != NULL && is_gott_symbol (info, &h->root))
5736 {
5737 Elf_Internal_Rela outrel;
5738 bfd_byte *loc;
5739 asection *s;
5740
5741 s = mips_elf_rel_dyn_section (info, FALSE);
5742 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5743
5744 outrel.r_offset = (input_section->output_section->vma
5745 + input_section->output_offset
5746 + relocation->r_offset);
5747 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5748 outrel.r_addend = addend;
5749 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5750
5751 /* If we've written this relocation for a readonly section,
5752 we need to set DF_TEXTREL again, so that we do not delete the
5753 DT_TEXTREL tag. */
5754 if (MIPS_ELF_READONLY_SECTION (input_section))
5755 info->flags |= DF_TEXTREL;
5756
5757 *valuep = 0;
5758 return bfd_reloc_ok;
5759 }
5760
5761 /* Figure out what kind of relocation is being performed. */
5762 switch (r_type)
5763 {
5764 case R_MIPS_NONE:
5765 return bfd_reloc_continue;
5766
5767 case R_MIPS_16:
5768 if (howto->partial_inplace)
5769 addend = _bfd_mips_elf_sign_extend (addend, 16);
5770 value = symbol + addend;
5771 overflowed_p = mips_elf_overflow_p (value, 16);
5772 break;
5773
5774 case R_MIPS_32:
5775 case R_MIPS_REL32:
5776 case R_MIPS_64:
5777 if ((bfd_link_pic (info)
5778 || (htab->root.dynamic_sections_created
5779 && h != NULL
5780 && h->root.def_dynamic
5781 && !h->root.def_regular
5782 && !h->has_static_relocs))
5783 && r_symndx != STN_UNDEF
5784 && (h == NULL
5785 || h->root.root.type != bfd_link_hash_undefweak
5786 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5787 && (input_section->flags & SEC_ALLOC) != 0)
5788 {
5789 /* If we're creating a shared library, then we can't know
5790 where the symbol will end up. So, we create a relocation
5791 record in the output, and leave the job up to the dynamic
5792 linker. We must do the same for executable references to
5793 shared library symbols, unless we've decided to use copy
5794 relocs or PLTs instead. */
5795 value = addend;
5796 if (!mips_elf_create_dynamic_relocation (abfd,
5797 info,
5798 relocation,
5799 h,
5800 sec,
5801 symbol,
5802 &value,
5803 input_section))
5804 return bfd_reloc_undefined;
5805 }
5806 else
5807 {
5808 if (r_type != R_MIPS_REL32)
5809 value = symbol + addend;
5810 else
5811 value = addend;
5812 }
5813 value &= howto->dst_mask;
5814 break;
5815
5816 case R_MIPS_PC32:
5817 value = symbol + addend - p;
5818 value &= howto->dst_mask;
5819 break;
5820
5821 case R_MIPS16_26:
5822 /* The calculation for R_MIPS16_26 is just the same as for an
5823 R_MIPS_26. It's only the storage of the relocated field into
5824 the output file that's different. That's handled in
5825 mips_elf_perform_relocation. So, we just fall through to the
5826 R_MIPS_26 case here. */
5827 case R_MIPS_26:
5828 case R_MICROMIPS_26_S1:
5829 {
5830 unsigned int shift;
5831
5832 /* Shift is 2, unusually, for microMIPS JALX. */
5833 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5834
5835 if (howto->partial_inplace && !section_p)
5836 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5837 else
5838 value = addend;
5839 value += symbol;
5840
5841 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5842 be the correct ISA mode selector except for weak undefined
5843 symbols. */
5844 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5845 && (*cross_mode_jump_p
5846 ? (value & 3) != (r_type == R_MIPS_26)
5847 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5848 return bfd_reloc_outofrange;
5849
5850 value >>= shift;
5851 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5852 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5853 value &= howto->dst_mask;
5854 }
5855 break;
5856
5857 case R_MIPS_TLS_DTPREL_HI16:
5858 case R_MIPS16_TLS_DTPREL_HI16:
5859 case R_MICROMIPS_TLS_DTPREL_HI16:
5860 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5861 & howto->dst_mask);
5862 break;
5863
5864 case R_MIPS_TLS_DTPREL_LO16:
5865 case R_MIPS_TLS_DTPREL32:
5866 case R_MIPS_TLS_DTPREL64:
5867 case R_MIPS16_TLS_DTPREL_LO16:
5868 case R_MICROMIPS_TLS_DTPREL_LO16:
5869 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5870 break;
5871
5872 case R_MIPS_TLS_TPREL_HI16:
5873 case R_MIPS16_TLS_TPREL_HI16:
5874 case R_MICROMIPS_TLS_TPREL_HI16:
5875 value = (mips_elf_high (addend + symbol - tprel_base (info))
5876 & howto->dst_mask);
5877 break;
5878
5879 case R_MIPS_TLS_TPREL_LO16:
5880 case R_MIPS_TLS_TPREL32:
5881 case R_MIPS_TLS_TPREL64:
5882 case R_MIPS16_TLS_TPREL_LO16:
5883 case R_MICROMIPS_TLS_TPREL_LO16:
5884 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5885 break;
5886
5887 case R_MIPS_HI16:
5888 case R_MIPS16_HI16:
5889 case R_MICROMIPS_HI16:
5890 if (!gp_disp_p)
5891 {
5892 value = mips_elf_high (addend + symbol);
5893 value &= howto->dst_mask;
5894 }
5895 else
5896 {
5897 /* For MIPS16 ABI code we generate this sequence
5898 0: li $v0,%hi(_gp_disp)
5899 4: addiupc $v1,%lo(_gp_disp)
5900 8: sll $v0,16
5901 12: addu $v0,$v1
5902 14: move $gp,$v0
5903 So the offsets of hi and lo relocs are the same, but the
5904 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5905 ADDIUPC clears the low two bits of the instruction address,
5906 so the base is ($t9 + 4) & ~3. */
5907 if (r_type == R_MIPS16_HI16)
5908 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5909 /* The microMIPS .cpload sequence uses the same assembly
5910 instructions as the traditional psABI version, but the
5911 incoming $t9 has the low bit set. */
5912 else if (r_type == R_MICROMIPS_HI16)
5913 value = mips_elf_high (addend + gp - p - 1);
5914 else
5915 value = mips_elf_high (addend + gp - p);
5916 overflowed_p = mips_elf_overflow_p (value, 16);
5917 }
5918 break;
5919
5920 case R_MIPS_LO16:
5921 case R_MIPS16_LO16:
5922 case R_MICROMIPS_LO16:
5923 case R_MICROMIPS_HI0_LO16:
5924 if (!gp_disp_p)
5925 value = (symbol + addend) & howto->dst_mask;
5926 else
5927 {
5928 /* See the comment for R_MIPS16_HI16 above for the reason
5929 for this conditional. */
5930 if (r_type == R_MIPS16_LO16)
5931 value = addend + gp - (p & ~(bfd_vma) 0x3);
5932 else if (r_type == R_MICROMIPS_LO16
5933 || r_type == R_MICROMIPS_HI0_LO16)
5934 value = addend + gp - p + 3;
5935 else
5936 value = addend + gp - p + 4;
5937 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5938 for overflow. But, on, say, IRIX5, relocations against
5939 _gp_disp are normally generated from the .cpload
5940 pseudo-op. It generates code that normally looks like
5941 this:
5942
5943 lui $gp,%hi(_gp_disp)
5944 addiu $gp,$gp,%lo(_gp_disp)
5945 addu $gp,$gp,$t9
5946
5947 Here $t9 holds the address of the function being called,
5948 as required by the MIPS ELF ABI. The R_MIPS_LO16
5949 relocation can easily overflow in this situation, but the
5950 R_MIPS_HI16 relocation will handle the overflow.
5951 Therefore, we consider this a bug in the MIPS ABI, and do
5952 not check for overflow here. */
5953 }
5954 break;
5955
5956 case R_MIPS_LITERAL:
5957 case R_MICROMIPS_LITERAL:
5958 /* Because we don't merge literal sections, we can handle this
5959 just like R_MIPS_GPREL16. In the long run, we should merge
5960 shared literals, and then we will need to additional work
5961 here. */
5962
5963 /* Fall through. */
5964
5965 case R_MIPS16_GPREL:
5966 /* The R_MIPS16_GPREL performs the same calculation as
5967 R_MIPS_GPREL16, but stores the relocated bits in a different
5968 order. We don't need to do anything special here; the
5969 differences are handled in mips_elf_perform_relocation. */
5970 case R_MIPS_GPREL16:
5971 case R_MICROMIPS_GPREL7_S2:
5972 case R_MICROMIPS_GPREL16:
5973 /* Only sign-extend the addend if it was extracted from the
5974 instruction. If the addend was separate, leave it alone,
5975 otherwise we may lose significant bits. */
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend - gp;
5979 /* If the symbol was local, any earlier relocatable links will
5980 have adjusted its addend with the gp offset, so compensate
5981 for that now. Don't do it for symbols forced local in this
5982 link, though, since they won't have had the gp offset applied
5983 to them before. */
5984 if (was_local_p)
5985 value += gp0;
5986 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5987 overflowed_p = mips_elf_overflow_p (value, 16);
5988 break;
5989
5990 case R_MIPS16_GOT16:
5991 case R_MIPS16_CALL16:
5992 case R_MIPS_GOT16:
5993 case R_MIPS_CALL16:
5994 case R_MICROMIPS_GOT16:
5995 case R_MICROMIPS_CALL16:
5996 /* VxWorks does not have separate local and global semantics for
5997 R_MIPS*_GOT16; every relocation evaluates to "G". */
5998 if (!htab->is_vxworks && local_p)
5999 {
6000 value = mips_elf_got16_entry (abfd, input_bfd, info,
6001 symbol + addend, !was_local_p);
6002 if (value == MINUS_ONE)
6003 return bfd_reloc_outofrange;
6004 value
6005 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6006 overflowed_p = mips_elf_overflow_p (value, 16);
6007 break;
6008 }
6009
6010 /* Fall through. */
6011
6012 case R_MIPS_TLS_GD:
6013 case R_MIPS_TLS_GOTTPREL:
6014 case R_MIPS_TLS_LDM:
6015 case R_MIPS_GOT_DISP:
6016 case R_MIPS16_TLS_GD:
6017 case R_MIPS16_TLS_GOTTPREL:
6018 case R_MIPS16_TLS_LDM:
6019 case R_MICROMIPS_TLS_GD:
6020 case R_MICROMIPS_TLS_GOTTPREL:
6021 case R_MICROMIPS_TLS_LDM:
6022 case R_MICROMIPS_GOT_DISP:
6023 value = g;
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026
6027 case R_MIPS_GPREL32:
6028 value = (addend + symbol + gp0 - gp);
6029 if (!save_addend)
6030 value &= howto->dst_mask;
6031 break;
6032
6033 case R_MIPS_PC16:
6034 case R_MIPS_GNU_REL16_S2:
6035 if (howto->partial_inplace)
6036 addend = _bfd_mips_elf_sign_extend (addend, 18);
6037
6038 /* No need to exclude weak undefined symbols here as they resolve
6039 to 0 and never set `*cross_mode_jump_p', so this alignment check
6040 will never trigger for them. */
6041 if (*cross_mode_jump_p
6042 ? ((symbol + addend) & 3) != 1
6043 : ((symbol + addend) & 3) != 0)
6044 return bfd_reloc_outofrange;
6045
6046 value = symbol + addend - p;
6047 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6048 overflowed_p = mips_elf_overflow_p (value, 18);
6049 value >>= howto->rightshift;
6050 value &= howto->dst_mask;
6051 break;
6052
6053 case R_MIPS16_PC16_S1:
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 17);
6056
6057 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6058 && (*cross_mode_jump_p
6059 ? ((symbol + addend) & 3) != 0
6060 : ((symbol + addend) & 1) == 0))
6061 return bfd_reloc_outofrange;
6062
6063 value = symbol + addend - p;
6064 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6065 overflowed_p = mips_elf_overflow_p (value, 17);
6066 value >>= howto->rightshift;
6067 value &= howto->dst_mask;
6068 break;
6069
6070 case R_MIPS_PC21_S2:
6071 if (howto->partial_inplace)
6072 addend = _bfd_mips_elf_sign_extend (addend, 23);
6073
6074 if ((symbol + addend) & 3)
6075 return bfd_reloc_outofrange;
6076
6077 value = symbol + addend - p;
6078 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6079 overflowed_p = mips_elf_overflow_p (value, 23);
6080 value >>= howto->rightshift;
6081 value &= howto->dst_mask;
6082 break;
6083
6084 case R_MIPS_PC26_S2:
6085 if (howto->partial_inplace)
6086 addend = _bfd_mips_elf_sign_extend (addend, 28);
6087
6088 if ((symbol + addend) & 3)
6089 return bfd_reloc_outofrange;
6090
6091 value = symbol + addend - p;
6092 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6093 overflowed_p = mips_elf_overflow_p (value, 28);
6094 value >>= howto->rightshift;
6095 value &= howto->dst_mask;
6096 break;
6097
6098 case R_MIPS_PC18_S3:
6099 if (howto->partial_inplace)
6100 addend = _bfd_mips_elf_sign_extend (addend, 21);
6101
6102 if ((symbol + addend) & 7)
6103 return bfd_reloc_outofrange;
6104
6105 value = symbol + addend - ((p | 7) ^ 7);
6106 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6107 overflowed_p = mips_elf_overflow_p (value, 21);
6108 value >>= howto->rightshift;
6109 value &= howto->dst_mask;
6110 break;
6111
6112 case R_MIPS_PC19_S2:
6113 if (howto->partial_inplace)
6114 addend = _bfd_mips_elf_sign_extend (addend, 21);
6115
6116 if ((symbol + addend) & 3)
6117 return bfd_reloc_outofrange;
6118
6119 value = symbol + addend - p;
6120 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6121 overflowed_p = mips_elf_overflow_p (value, 21);
6122 value >>= howto->rightshift;
6123 value &= howto->dst_mask;
6124 break;
6125
6126 case R_MIPS_PCHI16:
6127 value = mips_elf_high (symbol + addend - p);
6128 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6129 overflowed_p = mips_elf_overflow_p (value, 16);
6130 value &= howto->dst_mask;
6131 break;
6132
6133 case R_MIPS_PCLO16:
6134 if (howto->partial_inplace)
6135 addend = _bfd_mips_elf_sign_extend (addend, 16);
6136 value = symbol + addend - p;
6137 value &= howto->dst_mask;
6138 break;
6139
6140 case R_MICROMIPS_PC7_S1:
6141 if (howto->partial_inplace)
6142 addend = _bfd_mips_elf_sign_extend (addend, 8);
6143
6144 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6145 && (*cross_mode_jump_p
6146 ? ((symbol + addend + 2) & 3) != 0
6147 : ((symbol + addend + 2) & 1) == 0))
6148 return bfd_reloc_outofrange;
6149
6150 value = symbol + addend - p;
6151 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6152 overflowed_p = mips_elf_overflow_p (value, 8);
6153 value >>= howto->rightshift;
6154 value &= howto->dst_mask;
6155 break;
6156
6157 case R_MICROMIPS_PC10_S1:
6158 if (howto->partial_inplace)
6159 addend = _bfd_mips_elf_sign_extend (addend, 11);
6160
6161 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6162 && (*cross_mode_jump_p
6163 ? ((symbol + addend + 2) & 3) != 0
6164 : ((symbol + addend + 2) & 1) == 0))
6165 return bfd_reloc_outofrange;
6166
6167 value = symbol + addend - p;
6168 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 overflowed_p = mips_elf_overflow_p (value, 11);
6170 value >>= howto->rightshift;
6171 value &= howto->dst_mask;
6172 break;
6173
6174 case R_MICROMIPS_PC16_S1:
6175 if (howto->partial_inplace)
6176 addend = _bfd_mips_elf_sign_extend (addend, 17);
6177
6178 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6179 && (*cross_mode_jump_p
6180 ? ((symbol + addend) & 3) != 0
6181 : ((symbol + addend) & 1) == 0))
6182 return bfd_reloc_outofrange;
6183
6184 value = symbol + addend - p;
6185 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 overflowed_p = mips_elf_overflow_p (value, 17);
6187 value >>= howto->rightshift;
6188 value &= howto->dst_mask;
6189 break;
6190
6191 case R_MICROMIPS_PC23_S2:
6192 if (howto->partial_inplace)
6193 addend = _bfd_mips_elf_sign_extend (addend, 25);
6194 value = symbol + addend - ((p | 3) ^ 3);
6195 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6196 overflowed_p = mips_elf_overflow_p (value, 25);
6197 value >>= howto->rightshift;
6198 value &= howto->dst_mask;
6199 break;
6200
6201 case R_MIPS_GOT_HI16:
6202 case R_MIPS_CALL_HI16:
6203 case R_MICROMIPS_GOT_HI16:
6204 case R_MICROMIPS_CALL_HI16:
6205 /* We're allowed to handle these two relocations identically.
6206 The dynamic linker is allowed to handle the CALL relocations
6207 differently by creating a lazy evaluation stub. */
6208 value = g;
6209 value = mips_elf_high (value);
6210 value &= howto->dst_mask;
6211 break;
6212
6213 case R_MIPS_GOT_LO16:
6214 case R_MIPS_CALL_LO16:
6215 case R_MICROMIPS_GOT_LO16:
6216 case R_MICROMIPS_CALL_LO16:
6217 value = g & howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_PAGE:
6221 case R_MICROMIPS_GOT_PAGE:
6222 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6223 if (value == MINUS_ONE)
6224 return bfd_reloc_outofrange;
6225 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6226 overflowed_p = mips_elf_overflow_p (value, 16);
6227 break;
6228
6229 case R_MIPS_GOT_OFST:
6230 case R_MICROMIPS_GOT_OFST:
6231 if (local_p)
6232 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6233 else
6234 value = addend;
6235 overflowed_p = mips_elf_overflow_p (value, 16);
6236 break;
6237
6238 case R_MIPS_SUB:
6239 case R_MICROMIPS_SUB:
6240 value = symbol - addend;
6241 value &= howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_HIGHER:
6245 case R_MICROMIPS_HIGHER:
6246 value = mips_elf_higher (addend + symbol);
6247 value &= howto->dst_mask;
6248 break;
6249
6250 case R_MIPS_HIGHEST:
6251 case R_MICROMIPS_HIGHEST:
6252 value = mips_elf_highest (addend + symbol);
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_SCN_DISP:
6257 case R_MICROMIPS_SCN_DISP:
6258 value = symbol + addend - sec->output_offset;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_JALR:
6263 case R_MICROMIPS_JALR:
6264 /* This relocation is only a hint. In some cases, we optimize
6265 it into a bal instruction. But we don't try to optimize
6266 when the symbol does not resolve locally. */
6267 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6268 return bfd_reloc_continue;
6269 value = symbol + addend;
6270 break;
6271
6272 case R_MIPS_PJUMP:
6273 case R_MIPS_GNU_VTINHERIT:
6274 case R_MIPS_GNU_VTENTRY:
6275 /* We don't do anything with these at present. */
6276 return bfd_reloc_continue;
6277
6278 default:
6279 /* An unrecognized relocation type. */
6280 return bfd_reloc_notsupported;
6281 }
6282
6283 /* Store the VALUE for our caller. */
6284 *valuep = value;
6285 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6286 }
6287
6288 /* Obtain the field relocated by RELOCATION. */
6289
6290 static bfd_vma
6291 mips_elf_obtain_contents (reloc_howto_type *howto,
6292 const Elf_Internal_Rela *relocation,
6293 bfd *input_bfd, bfd_byte *contents)
6294 {
6295 bfd_vma x = 0;
6296 bfd_byte *location = contents + relocation->r_offset;
6297 unsigned int size = bfd_get_reloc_size (howto);
6298
6299 /* Obtain the bytes. */
6300 if (size != 0)
6301 x = bfd_get (8 * size, input_bfd, location);
6302
6303 return x;
6304 }
6305
6306 /* It has been determined that the result of the RELOCATION is the
6307 VALUE. Use HOWTO to place VALUE into the output file at the
6308 appropriate position. The SECTION is the section to which the
6309 relocation applies.
6310 CROSS_MODE_JUMP_P is true if the relocation field
6311 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6312
6313 Returns FALSE if anything goes wrong. */
6314
6315 static bfd_boolean
6316 mips_elf_perform_relocation (struct bfd_link_info *info,
6317 reloc_howto_type *howto,
6318 const Elf_Internal_Rela *relocation,
6319 bfd_vma value, bfd *input_bfd,
6320 asection *input_section, bfd_byte *contents,
6321 bfd_boolean cross_mode_jump_p)
6322 {
6323 bfd_vma x;
6324 bfd_byte *location;
6325 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6326 unsigned int size;
6327
6328 /* Figure out where the relocation is occurring. */
6329 location = contents + relocation->r_offset;
6330
6331 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6332
6333 /* Obtain the current value. */
6334 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6335
6336 /* Clear the field we are setting. */
6337 x &= ~howto->dst_mask;
6338
6339 /* Set the field. */
6340 x |= (value & howto->dst_mask);
6341
6342 /* Detect incorrect JALX usage. If required, turn JAL into JALX. */
6343 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6344 {
6345 bfd_vma opcode = x >> 26;
6346
6347 if (r_type == R_MIPS16_26 ? opcode == 0x7
6348 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6349 : opcode == 0x1d)
6350 {
6351 info->callbacks->einfo
6352 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6353 input_bfd, input_section, relocation->r_offset);
6354 return TRUE;
6355 }
6356 }
6357 if (cross_mode_jump_p && jal_reloc_p (r_type))
6358 {
6359 bfd_boolean ok;
6360 bfd_vma opcode = x >> 26;
6361 bfd_vma jalx_opcode;
6362
6363 /* Check to see if the opcode is already JAL or JALX. */
6364 if (r_type == R_MIPS16_26)
6365 {
6366 ok = ((opcode == 0x6) || (opcode == 0x7));
6367 jalx_opcode = 0x7;
6368 }
6369 else if (r_type == R_MICROMIPS_26_S1)
6370 {
6371 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6372 jalx_opcode = 0x3c;
6373 }
6374 else
6375 {
6376 ok = ((opcode == 0x3) || (opcode == 0x1d));
6377 jalx_opcode = 0x1d;
6378 }
6379
6380 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6381 convert J or JALS to JALX. */
6382 if (!ok)
6383 {
6384 info->callbacks->einfo
6385 (_("%X%H: Unsupported jump between ISA modes; "
6386 "consider recompiling with interlinking enabled\n"),
6387 input_bfd, input_section, relocation->r_offset);
6388 return TRUE;
6389 }
6390
6391 /* Make this the JALX opcode. */
6392 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6393 }
6394 else if (cross_mode_jump_p && b_reloc_p (r_type))
6395 {
6396 info->callbacks->einfo
6397 (_("%X%H: Unsupported branch between ISA modes\n"),
6398 input_bfd, input_section, relocation->r_offset);
6399 return TRUE;
6400 }
6401
6402 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6403 range. */
6404 if (!bfd_link_relocatable (info)
6405 && !cross_mode_jump_p
6406 && ((JAL_TO_BAL_P (input_bfd)
6407 && r_type == R_MIPS_26
6408 && (x >> 26) == 0x3) /* jal addr */
6409 || (JALR_TO_BAL_P (input_bfd)
6410 && r_type == R_MIPS_JALR
6411 && x == 0x0320f809) /* jalr t9 */
6412 || (JR_TO_B_P (input_bfd)
6413 && r_type == R_MIPS_JALR
6414 && x == 0x03200008))) /* jr t9 */
6415 {
6416 bfd_vma addr;
6417 bfd_vma dest;
6418 bfd_signed_vma off;
6419
6420 addr = (input_section->output_section->vma
6421 + input_section->output_offset
6422 + relocation->r_offset
6423 + 4);
6424 if (r_type == R_MIPS_26)
6425 dest = (value << 2) | ((addr >> 28) << 28);
6426 else
6427 dest = value;
6428 off = dest - addr;
6429 if (off <= 0x1ffff && off >= -0x20000)
6430 {
6431 if (x == 0x03200008) /* jr t9 */
6432 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6433 else
6434 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6435 }
6436 }
6437
6438 /* Put the value into the output. */
6439 size = bfd_get_reloc_size (howto);
6440 if (size != 0)
6441 bfd_put (8 * size, input_bfd, x, location);
6442
6443 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6444 location);
6445
6446 return TRUE;
6447 }
6448 \f
6449 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6450 is the original relocation, which is now being transformed into a
6451 dynamic relocation. The ADDENDP is adjusted if necessary; the
6452 caller should store the result in place of the original addend. */
6453
6454 static bfd_boolean
6455 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6456 struct bfd_link_info *info,
6457 const Elf_Internal_Rela *rel,
6458 struct mips_elf_link_hash_entry *h,
6459 asection *sec, bfd_vma symbol,
6460 bfd_vma *addendp, asection *input_section)
6461 {
6462 Elf_Internal_Rela outrel[3];
6463 asection *sreloc;
6464 bfd *dynobj;
6465 int r_type;
6466 long indx;
6467 bfd_boolean defined_p;
6468 struct mips_elf_link_hash_table *htab;
6469
6470 htab = mips_elf_hash_table (info);
6471 BFD_ASSERT (htab != NULL);
6472
6473 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6474 dynobj = elf_hash_table (info)->dynobj;
6475 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6476 BFD_ASSERT (sreloc != NULL);
6477 BFD_ASSERT (sreloc->contents != NULL);
6478 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6479 < sreloc->size);
6480
6481 outrel[0].r_offset =
6482 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6483 if (ABI_64_P (output_bfd))
6484 {
6485 outrel[1].r_offset =
6486 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6487 outrel[2].r_offset =
6488 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6489 }
6490
6491 if (outrel[0].r_offset == MINUS_ONE)
6492 /* The relocation field has been deleted. */
6493 return TRUE;
6494
6495 if (outrel[0].r_offset == MINUS_TWO)
6496 {
6497 /* The relocation field has been converted into a relative value of
6498 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6499 the field to be fully relocated, so add in the symbol's value. */
6500 *addendp += symbol;
6501 return TRUE;
6502 }
6503
6504 /* We must now calculate the dynamic symbol table index to use
6505 in the relocation. */
6506 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6507 {
6508 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6509 indx = h->root.dynindx;
6510 if (SGI_COMPAT (output_bfd))
6511 defined_p = h->root.def_regular;
6512 else
6513 /* ??? glibc's ld.so just adds the final GOT entry to the
6514 relocation field. It therefore treats relocs against
6515 defined symbols in the same way as relocs against
6516 undefined symbols. */
6517 defined_p = FALSE;
6518 }
6519 else
6520 {
6521 if (sec != NULL && bfd_is_abs_section (sec))
6522 indx = 0;
6523 else if (sec == NULL || sec->owner == NULL)
6524 {
6525 bfd_set_error (bfd_error_bad_value);
6526 return FALSE;
6527 }
6528 else
6529 {
6530 indx = elf_section_data (sec->output_section)->dynindx;
6531 if (indx == 0)
6532 {
6533 asection *osec = htab->root.text_index_section;
6534 indx = elf_section_data (osec)->dynindx;
6535 }
6536 if (indx == 0)
6537 abort ();
6538 }
6539
6540 /* Instead of generating a relocation using the section
6541 symbol, we may as well make it a fully relative
6542 relocation. We want to avoid generating relocations to
6543 local symbols because we used to generate them
6544 incorrectly, without adding the original symbol value,
6545 which is mandated by the ABI for section symbols. In
6546 order to give dynamic loaders and applications time to
6547 phase out the incorrect use, we refrain from emitting
6548 section-relative relocations. It's not like they're
6549 useful, after all. This should be a bit more efficient
6550 as well. */
6551 /* ??? Although this behavior is compatible with glibc's ld.so,
6552 the ABI says that relocations against STN_UNDEF should have
6553 a symbol value of 0. Irix rld honors this, so relocations
6554 against STN_UNDEF have no effect. */
6555 if (!SGI_COMPAT (output_bfd))
6556 indx = 0;
6557 defined_p = TRUE;
6558 }
6559
6560 /* If the relocation was previously an absolute relocation and
6561 this symbol will not be referred to by the relocation, we must
6562 adjust it by the value we give it in the dynamic symbol table.
6563 Otherwise leave the job up to the dynamic linker. */
6564 if (defined_p && r_type != R_MIPS_REL32)
6565 *addendp += symbol;
6566
6567 if (htab->is_vxworks)
6568 /* VxWorks uses non-relative relocations for this. */
6569 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6570 else
6571 /* The relocation is always an REL32 relocation because we don't
6572 know where the shared library will wind up at load-time. */
6573 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6574 R_MIPS_REL32);
6575
6576 /* For strict adherence to the ABI specification, we should
6577 generate a R_MIPS_64 relocation record by itself before the
6578 _REL32/_64 record as well, such that the addend is read in as
6579 a 64-bit value (REL32 is a 32-bit relocation, after all).
6580 However, since none of the existing ELF64 MIPS dynamic
6581 loaders seems to care, we don't waste space with these
6582 artificial relocations. If this turns out to not be true,
6583 mips_elf_allocate_dynamic_relocation() should be tweaked so
6584 as to make room for a pair of dynamic relocations per
6585 invocation if ABI_64_P, and here we should generate an
6586 additional relocation record with R_MIPS_64 by itself for a
6587 NULL symbol before this relocation record. */
6588 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6589 ABI_64_P (output_bfd)
6590 ? R_MIPS_64
6591 : R_MIPS_NONE);
6592 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6593
6594 /* Adjust the output offset of the relocation to reference the
6595 correct location in the output file. */
6596 outrel[0].r_offset += (input_section->output_section->vma
6597 + input_section->output_offset);
6598 outrel[1].r_offset += (input_section->output_section->vma
6599 + input_section->output_offset);
6600 outrel[2].r_offset += (input_section->output_section->vma
6601 + input_section->output_offset);
6602
6603 /* Put the relocation back out. We have to use the special
6604 relocation outputter in the 64-bit case since the 64-bit
6605 relocation format is non-standard. */
6606 if (ABI_64_P (output_bfd))
6607 {
6608 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6609 (output_bfd, &outrel[0],
6610 (sreloc->contents
6611 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6612 }
6613 else if (htab->is_vxworks)
6614 {
6615 /* VxWorks uses RELA rather than REL dynamic relocations. */
6616 outrel[0].r_addend = *addendp;
6617 bfd_elf32_swap_reloca_out
6618 (output_bfd, &outrel[0],
6619 (sreloc->contents
6620 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6621 }
6622 else
6623 bfd_elf32_swap_reloc_out
6624 (output_bfd, &outrel[0],
6625 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6626
6627 /* We've now added another relocation. */
6628 ++sreloc->reloc_count;
6629
6630 /* Make sure the output section is writable. The dynamic linker
6631 will be writing to it. */
6632 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6633 |= SHF_WRITE;
6634
6635 /* On IRIX5, make an entry of compact relocation info. */
6636 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6637 {
6638 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6639 bfd_byte *cr;
6640
6641 if (scpt)
6642 {
6643 Elf32_crinfo cptrel;
6644
6645 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6646 cptrel.vaddr = (rel->r_offset
6647 + input_section->output_section->vma
6648 + input_section->output_offset);
6649 if (r_type == R_MIPS_REL32)
6650 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6651 else
6652 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6653 mips_elf_set_cr_dist2to (cptrel, 0);
6654 cptrel.konst = *addendp;
6655
6656 cr = (scpt->contents
6657 + sizeof (Elf32_External_compact_rel));
6658 mips_elf_set_cr_relvaddr (cptrel, 0);
6659 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6660 ((Elf32_External_crinfo *) cr
6661 + scpt->reloc_count));
6662 ++scpt->reloc_count;
6663 }
6664 }
6665
6666 /* If we've written this relocation for a readonly section,
6667 we need to set DF_TEXTREL again, so that we do not delete the
6668 DT_TEXTREL tag. */
6669 if (MIPS_ELF_READONLY_SECTION (input_section))
6670 info->flags |= DF_TEXTREL;
6671
6672 return TRUE;
6673 }
6674 \f
6675 /* Return the MACH for a MIPS e_flags value. */
6676
6677 unsigned long
6678 _bfd_elf_mips_mach (flagword flags)
6679 {
6680 switch (flags & EF_MIPS_MACH)
6681 {
6682 case E_MIPS_MACH_3900:
6683 return bfd_mach_mips3900;
6684
6685 case E_MIPS_MACH_4010:
6686 return bfd_mach_mips4010;
6687
6688 case E_MIPS_MACH_4100:
6689 return bfd_mach_mips4100;
6690
6691 case E_MIPS_MACH_4111:
6692 return bfd_mach_mips4111;
6693
6694 case E_MIPS_MACH_4120:
6695 return bfd_mach_mips4120;
6696
6697 case E_MIPS_MACH_4650:
6698 return bfd_mach_mips4650;
6699
6700 case E_MIPS_MACH_5400:
6701 return bfd_mach_mips5400;
6702
6703 case E_MIPS_MACH_5500:
6704 return bfd_mach_mips5500;
6705
6706 case E_MIPS_MACH_5900:
6707 return bfd_mach_mips5900;
6708
6709 case E_MIPS_MACH_9000:
6710 return bfd_mach_mips9000;
6711
6712 case E_MIPS_MACH_SB1:
6713 return bfd_mach_mips_sb1;
6714
6715 case E_MIPS_MACH_LS2E:
6716 return bfd_mach_mips_loongson_2e;
6717
6718 case E_MIPS_MACH_LS2F:
6719 return bfd_mach_mips_loongson_2f;
6720
6721 case E_MIPS_MACH_LS3A:
6722 return bfd_mach_mips_loongson_3a;
6723
6724 case E_MIPS_MACH_OCTEON3:
6725 return bfd_mach_mips_octeon3;
6726
6727 case E_MIPS_MACH_OCTEON2:
6728 return bfd_mach_mips_octeon2;
6729
6730 case E_MIPS_MACH_OCTEON:
6731 return bfd_mach_mips_octeon;
6732
6733 case E_MIPS_MACH_XLR:
6734 return bfd_mach_mips_xlr;
6735
6736 default:
6737 switch (flags & EF_MIPS_ARCH)
6738 {
6739 default:
6740 case E_MIPS_ARCH_1:
6741 return bfd_mach_mips3000;
6742
6743 case E_MIPS_ARCH_2:
6744 return bfd_mach_mips6000;
6745
6746 case E_MIPS_ARCH_3:
6747 return bfd_mach_mips4000;
6748
6749 case E_MIPS_ARCH_4:
6750 return bfd_mach_mips8000;
6751
6752 case E_MIPS_ARCH_5:
6753 return bfd_mach_mips5;
6754
6755 case E_MIPS_ARCH_32:
6756 return bfd_mach_mipsisa32;
6757
6758 case E_MIPS_ARCH_64:
6759 return bfd_mach_mipsisa64;
6760
6761 case E_MIPS_ARCH_32R2:
6762 return bfd_mach_mipsisa32r2;
6763
6764 case E_MIPS_ARCH_64R2:
6765 return bfd_mach_mipsisa64r2;
6766
6767 case E_MIPS_ARCH_32R6:
6768 return bfd_mach_mipsisa32r6;
6769
6770 case E_MIPS_ARCH_64R6:
6771 return bfd_mach_mipsisa64r6;
6772 }
6773 }
6774
6775 return 0;
6776 }
6777
6778 /* Return printable name for ABI. */
6779
6780 static INLINE char *
6781 elf_mips_abi_name (bfd *abfd)
6782 {
6783 flagword flags;
6784
6785 flags = elf_elfheader (abfd)->e_flags;
6786 switch (flags & EF_MIPS_ABI)
6787 {
6788 case 0:
6789 if (ABI_N32_P (abfd))
6790 return "N32";
6791 else if (ABI_64_P (abfd))
6792 return "64";
6793 else
6794 return "none";
6795 case E_MIPS_ABI_O32:
6796 return "O32";
6797 case E_MIPS_ABI_O64:
6798 return "O64";
6799 case E_MIPS_ABI_EABI32:
6800 return "EABI32";
6801 case E_MIPS_ABI_EABI64:
6802 return "EABI64";
6803 default:
6804 return "unknown abi";
6805 }
6806 }
6807 \f
6808 /* MIPS ELF uses two common sections. One is the usual one, and the
6809 other is for small objects. All the small objects are kept
6810 together, and then referenced via the gp pointer, which yields
6811 faster assembler code. This is what we use for the small common
6812 section. This approach is copied from ecoff.c. */
6813 static asection mips_elf_scom_section;
6814 static asymbol mips_elf_scom_symbol;
6815 static asymbol *mips_elf_scom_symbol_ptr;
6816
6817 /* MIPS ELF also uses an acommon section, which represents an
6818 allocated common symbol which may be overridden by a
6819 definition in a shared library. */
6820 static asection mips_elf_acom_section;
6821 static asymbol mips_elf_acom_symbol;
6822 static asymbol *mips_elf_acom_symbol_ptr;
6823
6824 /* This is used for both the 32-bit and the 64-bit ABI. */
6825
6826 void
6827 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6828 {
6829 elf_symbol_type *elfsym;
6830
6831 /* Handle the special MIPS section numbers that a symbol may use. */
6832 elfsym = (elf_symbol_type *) asym;
6833 switch (elfsym->internal_elf_sym.st_shndx)
6834 {
6835 case SHN_MIPS_ACOMMON:
6836 /* This section is used in a dynamically linked executable file.
6837 It is an allocated common section. The dynamic linker can
6838 either resolve these symbols to something in a shared
6839 library, or it can just leave them here. For our purposes,
6840 we can consider these symbols to be in a new section. */
6841 if (mips_elf_acom_section.name == NULL)
6842 {
6843 /* Initialize the acommon section. */
6844 mips_elf_acom_section.name = ".acommon";
6845 mips_elf_acom_section.flags = SEC_ALLOC;
6846 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6847 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6848 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6849 mips_elf_acom_symbol.name = ".acommon";
6850 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6851 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6852 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6853 }
6854 asym->section = &mips_elf_acom_section;
6855 break;
6856
6857 case SHN_COMMON:
6858 /* Common symbols less than the GP size are automatically
6859 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6860 if (asym->value > elf_gp_size (abfd)
6861 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6862 || IRIX_COMPAT (abfd) == ict_irix6)
6863 break;
6864 /* Fall through. */
6865 case SHN_MIPS_SCOMMON:
6866 if (mips_elf_scom_section.name == NULL)
6867 {
6868 /* Initialize the small common section. */
6869 mips_elf_scom_section.name = ".scommon";
6870 mips_elf_scom_section.flags = SEC_IS_COMMON;
6871 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6872 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6873 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6874 mips_elf_scom_symbol.name = ".scommon";
6875 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6876 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6877 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6878 }
6879 asym->section = &mips_elf_scom_section;
6880 asym->value = elfsym->internal_elf_sym.st_size;
6881 break;
6882
6883 case SHN_MIPS_SUNDEFINED:
6884 asym->section = bfd_und_section_ptr;
6885 break;
6886
6887 case SHN_MIPS_TEXT:
6888 {
6889 asection *section = bfd_get_section_by_name (abfd, ".text");
6890
6891 if (section != NULL)
6892 {
6893 asym->section = section;
6894 /* MIPS_TEXT is a bit special, the address is not an offset
6895 to the base of the .text section. So substract the section
6896 base address to make it an offset. */
6897 asym->value -= section->vma;
6898 }
6899 }
6900 break;
6901
6902 case SHN_MIPS_DATA:
6903 {
6904 asection *section = bfd_get_section_by_name (abfd, ".data");
6905
6906 if (section != NULL)
6907 {
6908 asym->section = section;
6909 /* MIPS_DATA is a bit special, the address is not an offset
6910 to the base of the .data section. So substract the section
6911 base address to make it an offset. */
6912 asym->value -= section->vma;
6913 }
6914 }
6915 break;
6916 }
6917
6918 /* If this is an odd-valued function symbol, assume it's a MIPS16
6919 or microMIPS one. */
6920 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6921 && (asym->value & 1) != 0)
6922 {
6923 asym->value--;
6924 if (MICROMIPS_P (abfd))
6925 elfsym->internal_elf_sym.st_other
6926 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6927 else
6928 elfsym->internal_elf_sym.st_other
6929 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6930 }
6931 }
6932 \f
6933 /* Implement elf_backend_eh_frame_address_size. This differs from
6934 the default in the way it handles EABI64.
6935
6936 EABI64 was originally specified as an LP64 ABI, and that is what
6937 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6938 historically accepted the combination of -mabi=eabi and -mlong32,
6939 and this ILP32 variation has become semi-official over time.
6940 Both forms use elf32 and have pointer-sized FDE addresses.
6941
6942 If an EABI object was generated by GCC 4.0 or above, it will have
6943 an empty .gcc_compiled_longXX section, where XX is the size of longs
6944 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6945 have no special marking to distinguish them from LP64 objects.
6946
6947 We don't want users of the official LP64 ABI to be punished for the
6948 existence of the ILP32 variant, but at the same time, we don't want
6949 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6950 We therefore take the following approach:
6951
6952 - If ABFD contains a .gcc_compiled_longXX section, use it to
6953 determine the pointer size.
6954
6955 - Otherwise check the type of the first relocation. Assume that
6956 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6957
6958 - Otherwise punt.
6959
6960 The second check is enough to detect LP64 objects generated by pre-4.0
6961 compilers because, in the kind of output generated by those compilers,
6962 the first relocation will be associated with either a CIE personality
6963 routine or an FDE start address. Furthermore, the compilers never
6964 used a special (non-pointer) encoding for this ABI.
6965
6966 Checking the relocation type should also be safe because there is no
6967 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6968 did so. */
6969
6970 unsigned int
6971 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6972 {
6973 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6974 return 8;
6975 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6976 {
6977 bfd_boolean long32_p, long64_p;
6978
6979 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6980 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6981 if (long32_p && long64_p)
6982 return 0;
6983 if (long32_p)
6984 return 4;
6985 if (long64_p)
6986 return 8;
6987
6988 if (sec->reloc_count > 0
6989 && elf_section_data (sec)->relocs != NULL
6990 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6991 == R_MIPS_64))
6992 return 8;
6993
6994 return 0;
6995 }
6996 return 4;
6997 }
6998 \f
6999 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7000 relocations against two unnamed section symbols to resolve to the
7001 same address. For example, if we have code like:
7002
7003 lw $4,%got_disp(.data)($gp)
7004 lw $25,%got_disp(.text)($gp)
7005 jalr $25
7006
7007 then the linker will resolve both relocations to .data and the program
7008 will jump there rather than to .text.
7009
7010 We can work around this problem by giving names to local section symbols.
7011 This is also what the MIPSpro tools do. */
7012
7013 bfd_boolean
7014 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7015 {
7016 return SGI_COMPAT (abfd);
7017 }
7018 \f
7019 /* Work over a section just before writing it out. This routine is
7020 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7021 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7022 a better way. */
7023
7024 bfd_boolean
7025 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7026 {
7027 if (hdr->sh_type == SHT_MIPS_REGINFO
7028 && hdr->sh_size > 0)
7029 {
7030 bfd_byte buf[4];
7031
7032 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7033 BFD_ASSERT (hdr->contents == NULL);
7034
7035 if (bfd_seek (abfd,
7036 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7037 SEEK_SET) != 0)
7038 return FALSE;
7039 H_PUT_32 (abfd, elf_gp (abfd), buf);
7040 if (bfd_bwrite (buf, 4, abfd) != 4)
7041 return FALSE;
7042 }
7043
7044 if (hdr->sh_type == SHT_MIPS_OPTIONS
7045 && hdr->bfd_section != NULL
7046 && mips_elf_section_data (hdr->bfd_section) != NULL
7047 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7048 {
7049 bfd_byte *contents, *l, *lend;
7050
7051 /* We stored the section contents in the tdata field in the
7052 set_section_contents routine. We save the section contents
7053 so that we don't have to read them again.
7054 At this point we know that elf_gp is set, so we can look
7055 through the section contents to see if there is an
7056 ODK_REGINFO structure. */
7057
7058 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7059 l = contents;
7060 lend = contents + hdr->sh_size;
7061 while (l + sizeof (Elf_External_Options) <= lend)
7062 {
7063 Elf_Internal_Options intopt;
7064
7065 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7066 &intopt);
7067 if (intopt.size < sizeof (Elf_External_Options))
7068 {
7069 (*_bfd_error_handler)
7070 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7071 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7072 break;
7073 }
7074 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7075 {
7076 bfd_byte buf[8];
7077
7078 if (bfd_seek (abfd,
7079 (hdr->sh_offset
7080 + (l - contents)
7081 + sizeof (Elf_External_Options)
7082 + (sizeof (Elf64_External_RegInfo) - 8)),
7083 SEEK_SET) != 0)
7084 return FALSE;
7085 H_PUT_64 (abfd, elf_gp (abfd), buf);
7086 if (bfd_bwrite (buf, 8, abfd) != 8)
7087 return FALSE;
7088 }
7089 else if (intopt.kind == ODK_REGINFO)
7090 {
7091 bfd_byte buf[4];
7092
7093 if (bfd_seek (abfd,
7094 (hdr->sh_offset
7095 + (l - contents)
7096 + sizeof (Elf_External_Options)
7097 + (sizeof (Elf32_External_RegInfo) - 4)),
7098 SEEK_SET) != 0)
7099 return FALSE;
7100 H_PUT_32 (abfd, elf_gp (abfd), buf);
7101 if (bfd_bwrite (buf, 4, abfd) != 4)
7102 return FALSE;
7103 }
7104 l += intopt.size;
7105 }
7106 }
7107
7108 if (hdr->bfd_section != NULL)
7109 {
7110 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7111
7112 /* .sbss is not handled specially here because the GNU/Linux
7113 prelinker can convert .sbss from NOBITS to PROGBITS and
7114 changing it back to NOBITS breaks the binary. The entry in
7115 _bfd_mips_elf_special_sections will ensure the correct flags
7116 are set on .sbss if BFD creates it without reading it from an
7117 input file, and without special handling here the flags set
7118 on it in an input file will be followed. */
7119 if (strcmp (name, ".sdata") == 0
7120 || strcmp (name, ".lit8") == 0
7121 || strcmp (name, ".lit4") == 0)
7122 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7123 else if (strcmp (name, ".srdata") == 0)
7124 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7125 else if (strcmp (name, ".compact_rel") == 0)
7126 hdr->sh_flags = 0;
7127 else if (strcmp (name, ".rtproc") == 0)
7128 {
7129 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7130 {
7131 unsigned int adjust;
7132
7133 adjust = hdr->sh_size % hdr->sh_addralign;
7134 if (adjust != 0)
7135 hdr->sh_size += hdr->sh_addralign - adjust;
7136 }
7137 }
7138 }
7139
7140 return TRUE;
7141 }
7142
7143 /* Handle a MIPS specific section when reading an object file. This
7144 is called when elfcode.h finds a section with an unknown type.
7145 This routine supports both the 32-bit and 64-bit ELF ABI.
7146
7147 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7148 how to. */
7149
7150 bfd_boolean
7151 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7152 Elf_Internal_Shdr *hdr,
7153 const char *name,
7154 int shindex)
7155 {
7156 flagword flags = 0;
7157
7158 /* There ought to be a place to keep ELF backend specific flags, but
7159 at the moment there isn't one. We just keep track of the
7160 sections by their name, instead. Fortunately, the ABI gives
7161 suggested names for all the MIPS specific sections, so we will
7162 probably get away with this. */
7163 switch (hdr->sh_type)
7164 {
7165 case SHT_MIPS_LIBLIST:
7166 if (strcmp (name, ".liblist") != 0)
7167 return FALSE;
7168 break;
7169 case SHT_MIPS_MSYM:
7170 if (strcmp (name, ".msym") != 0)
7171 return FALSE;
7172 break;
7173 case SHT_MIPS_CONFLICT:
7174 if (strcmp (name, ".conflict") != 0)
7175 return FALSE;
7176 break;
7177 case SHT_MIPS_GPTAB:
7178 if (! CONST_STRNEQ (name, ".gptab."))
7179 return FALSE;
7180 break;
7181 case SHT_MIPS_UCODE:
7182 if (strcmp (name, ".ucode") != 0)
7183 return FALSE;
7184 break;
7185 case SHT_MIPS_DEBUG:
7186 if (strcmp (name, ".mdebug") != 0)
7187 return FALSE;
7188 flags = SEC_DEBUGGING;
7189 break;
7190 case SHT_MIPS_REGINFO:
7191 if (strcmp (name, ".reginfo") != 0
7192 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7193 return FALSE;
7194 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7195 break;
7196 case SHT_MIPS_IFACE:
7197 if (strcmp (name, ".MIPS.interfaces") != 0)
7198 return FALSE;
7199 break;
7200 case SHT_MIPS_CONTENT:
7201 if (! CONST_STRNEQ (name, ".MIPS.content"))
7202 return FALSE;
7203 break;
7204 case SHT_MIPS_OPTIONS:
7205 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7206 return FALSE;
7207 break;
7208 case SHT_MIPS_ABIFLAGS:
7209 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7210 return FALSE;
7211 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7212 break;
7213 case SHT_MIPS_DWARF:
7214 if (! CONST_STRNEQ (name, ".debug_")
7215 && ! CONST_STRNEQ (name, ".zdebug_"))
7216 return FALSE;
7217 break;
7218 case SHT_MIPS_SYMBOL_LIB:
7219 if (strcmp (name, ".MIPS.symlib") != 0)
7220 return FALSE;
7221 break;
7222 case SHT_MIPS_EVENTS:
7223 if (! CONST_STRNEQ (name, ".MIPS.events")
7224 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7225 return FALSE;
7226 break;
7227 default:
7228 break;
7229 }
7230
7231 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7232 return FALSE;
7233
7234 if (flags)
7235 {
7236 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7237 (bfd_get_section_flags (abfd,
7238 hdr->bfd_section)
7239 | flags)))
7240 return FALSE;
7241 }
7242
7243 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7244 {
7245 Elf_External_ABIFlags_v0 ext;
7246
7247 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7248 &ext, 0, sizeof ext))
7249 return FALSE;
7250 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7251 &mips_elf_tdata (abfd)->abiflags);
7252 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7253 return FALSE;
7254 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7255 }
7256
7257 /* FIXME: We should record sh_info for a .gptab section. */
7258
7259 /* For a .reginfo section, set the gp value in the tdata information
7260 from the contents of this section. We need the gp value while
7261 processing relocs, so we just get it now. The .reginfo section
7262 is not used in the 64-bit MIPS ELF ABI. */
7263 if (hdr->sh_type == SHT_MIPS_REGINFO)
7264 {
7265 Elf32_External_RegInfo ext;
7266 Elf32_RegInfo s;
7267
7268 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7269 &ext, 0, sizeof ext))
7270 return FALSE;
7271 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7272 elf_gp (abfd) = s.ri_gp_value;
7273 }
7274
7275 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7276 set the gp value based on what we find. We may see both
7277 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7278 they should agree. */
7279 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7280 {
7281 bfd_byte *contents, *l, *lend;
7282
7283 contents = bfd_malloc (hdr->sh_size);
7284 if (contents == NULL)
7285 return FALSE;
7286 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7287 0, hdr->sh_size))
7288 {
7289 free (contents);
7290 return FALSE;
7291 }
7292 l = contents;
7293 lend = contents + hdr->sh_size;
7294 while (l + sizeof (Elf_External_Options) <= lend)
7295 {
7296 Elf_Internal_Options intopt;
7297
7298 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7299 &intopt);
7300 if (intopt.size < sizeof (Elf_External_Options))
7301 {
7302 (*_bfd_error_handler)
7303 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7304 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7305 break;
7306 }
7307 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7308 {
7309 Elf64_Internal_RegInfo intreg;
7310
7311 bfd_mips_elf64_swap_reginfo_in
7312 (abfd,
7313 ((Elf64_External_RegInfo *)
7314 (l + sizeof (Elf_External_Options))),
7315 &intreg);
7316 elf_gp (abfd) = intreg.ri_gp_value;
7317 }
7318 else if (intopt.kind == ODK_REGINFO)
7319 {
7320 Elf32_RegInfo intreg;
7321
7322 bfd_mips_elf32_swap_reginfo_in
7323 (abfd,
7324 ((Elf32_External_RegInfo *)
7325 (l + sizeof (Elf_External_Options))),
7326 &intreg);
7327 elf_gp (abfd) = intreg.ri_gp_value;
7328 }
7329 l += intopt.size;
7330 }
7331 free (contents);
7332 }
7333
7334 return TRUE;
7335 }
7336
7337 /* Set the correct type for a MIPS ELF section. We do this by the
7338 section name, which is a hack, but ought to work. This routine is
7339 used by both the 32-bit and the 64-bit ABI. */
7340
7341 bfd_boolean
7342 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7343 {
7344 const char *name = bfd_get_section_name (abfd, sec);
7345
7346 if (strcmp (name, ".liblist") == 0)
7347 {
7348 hdr->sh_type = SHT_MIPS_LIBLIST;
7349 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7350 /* The sh_link field is set in final_write_processing. */
7351 }
7352 else if (strcmp (name, ".conflict") == 0)
7353 hdr->sh_type = SHT_MIPS_CONFLICT;
7354 else if (CONST_STRNEQ (name, ".gptab."))
7355 {
7356 hdr->sh_type = SHT_MIPS_GPTAB;
7357 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7358 /* The sh_info field is set in final_write_processing. */
7359 }
7360 else if (strcmp (name, ".ucode") == 0)
7361 hdr->sh_type = SHT_MIPS_UCODE;
7362 else if (strcmp (name, ".mdebug") == 0)
7363 {
7364 hdr->sh_type = SHT_MIPS_DEBUG;
7365 /* In a shared object on IRIX 5.3, the .mdebug section has an
7366 entsize of 0. FIXME: Does this matter? */
7367 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7368 hdr->sh_entsize = 0;
7369 else
7370 hdr->sh_entsize = 1;
7371 }
7372 else if (strcmp (name, ".reginfo") == 0)
7373 {
7374 hdr->sh_type = SHT_MIPS_REGINFO;
7375 /* In a shared object on IRIX 5.3, the .reginfo section has an
7376 entsize of 0x18. FIXME: Does this matter? */
7377 if (SGI_COMPAT (abfd))
7378 {
7379 if ((abfd->flags & DYNAMIC) != 0)
7380 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7381 else
7382 hdr->sh_entsize = 1;
7383 }
7384 else
7385 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7386 }
7387 else if (SGI_COMPAT (abfd)
7388 && (strcmp (name, ".hash") == 0
7389 || strcmp (name, ".dynamic") == 0
7390 || strcmp (name, ".dynstr") == 0))
7391 {
7392 if (SGI_COMPAT (abfd))
7393 hdr->sh_entsize = 0;
7394 #if 0
7395 /* This isn't how the IRIX6 linker behaves. */
7396 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7397 #endif
7398 }
7399 else if (strcmp (name, ".got") == 0
7400 || strcmp (name, ".srdata") == 0
7401 || strcmp (name, ".sdata") == 0
7402 || strcmp (name, ".sbss") == 0
7403 || strcmp (name, ".lit4") == 0
7404 || strcmp (name, ".lit8") == 0)
7405 hdr->sh_flags |= SHF_MIPS_GPREL;
7406 else if (strcmp (name, ".MIPS.interfaces") == 0)
7407 {
7408 hdr->sh_type = SHT_MIPS_IFACE;
7409 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7410 }
7411 else if (CONST_STRNEQ (name, ".MIPS.content"))
7412 {
7413 hdr->sh_type = SHT_MIPS_CONTENT;
7414 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7415 /* The sh_info field is set in final_write_processing. */
7416 }
7417 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7418 {
7419 hdr->sh_type = SHT_MIPS_OPTIONS;
7420 hdr->sh_entsize = 1;
7421 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7422 }
7423 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7424 {
7425 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7426 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7427 }
7428 else if (CONST_STRNEQ (name, ".debug_")
7429 || CONST_STRNEQ (name, ".zdebug_"))
7430 {
7431 hdr->sh_type = SHT_MIPS_DWARF;
7432
7433 /* Irix facilities such as libexc expect a single .debug_frame
7434 per executable, the system ones have NOSTRIP set and the linker
7435 doesn't merge sections with different flags so ... */
7436 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7437 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7438 }
7439 else if (strcmp (name, ".MIPS.symlib") == 0)
7440 {
7441 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7442 /* The sh_link and sh_info fields are set in
7443 final_write_processing. */
7444 }
7445 else if (CONST_STRNEQ (name, ".MIPS.events")
7446 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7447 {
7448 hdr->sh_type = SHT_MIPS_EVENTS;
7449 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7450 /* The sh_link field is set in final_write_processing. */
7451 }
7452 else if (strcmp (name, ".msym") == 0)
7453 {
7454 hdr->sh_type = SHT_MIPS_MSYM;
7455 hdr->sh_flags |= SHF_ALLOC;
7456 hdr->sh_entsize = 8;
7457 }
7458
7459 /* The generic elf_fake_sections will set up REL_HDR using the default
7460 kind of relocations. We used to set up a second header for the
7461 non-default kind of relocations here, but only NewABI would use
7462 these, and the IRIX ld doesn't like resulting empty RELA sections.
7463 Thus we create those header only on demand now. */
7464
7465 return TRUE;
7466 }
7467
7468 /* Given a BFD section, try to locate the corresponding ELF section
7469 index. This is used by both the 32-bit and the 64-bit ABI.
7470 Actually, it's not clear to me that the 64-bit ABI supports these,
7471 but for non-PIC objects we will certainly want support for at least
7472 the .scommon section. */
7473
7474 bfd_boolean
7475 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7476 asection *sec, int *retval)
7477 {
7478 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7479 {
7480 *retval = SHN_MIPS_SCOMMON;
7481 return TRUE;
7482 }
7483 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7484 {
7485 *retval = SHN_MIPS_ACOMMON;
7486 return TRUE;
7487 }
7488 return FALSE;
7489 }
7490 \f
7491 /* Hook called by the linker routine which adds symbols from an object
7492 file. We must handle the special MIPS section numbers here. */
7493
7494 bfd_boolean
7495 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7496 Elf_Internal_Sym *sym, const char **namep,
7497 flagword *flagsp ATTRIBUTE_UNUSED,
7498 asection **secp, bfd_vma *valp)
7499 {
7500 if (SGI_COMPAT (abfd)
7501 && (abfd->flags & DYNAMIC) != 0
7502 && strcmp (*namep, "_rld_new_interface") == 0)
7503 {
7504 /* Skip IRIX5 rld entry name. */
7505 *namep = NULL;
7506 return TRUE;
7507 }
7508
7509 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7510 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7511 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7512 a magic symbol resolved by the linker, we ignore this bogus definition
7513 of _gp_disp. New ABI objects do not suffer from this problem so this
7514 is not done for them. */
7515 if (!NEWABI_P(abfd)
7516 && (sym->st_shndx == SHN_ABS)
7517 && (strcmp (*namep, "_gp_disp") == 0))
7518 {
7519 *namep = NULL;
7520 return TRUE;
7521 }
7522
7523 switch (sym->st_shndx)
7524 {
7525 case SHN_COMMON:
7526 /* Common symbols less than the GP size are automatically
7527 treated as SHN_MIPS_SCOMMON symbols. */
7528 if (sym->st_size > elf_gp_size (abfd)
7529 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7530 || IRIX_COMPAT (abfd) == ict_irix6)
7531 break;
7532 /* Fall through. */
7533 case SHN_MIPS_SCOMMON:
7534 *secp = bfd_make_section_old_way (abfd, ".scommon");
7535 (*secp)->flags |= SEC_IS_COMMON;
7536 *valp = sym->st_size;
7537 break;
7538
7539 case SHN_MIPS_TEXT:
7540 /* This section is used in a shared object. */
7541 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7542 {
7543 asymbol *elf_text_symbol;
7544 asection *elf_text_section;
7545 bfd_size_type amt = sizeof (asection);
7546
7547 elf_text_section = bfd_zalloc (abfd, amt);
7548 if (elf_text_section == NULL)
7549 return FALSE;
7550
7551 amt = sizeof (asymbol);
7552 elf_text_symbol = bfd_zalloc (abfd, amt);
7553 if (elf_text_symbol == NULL)
7554 return FALSE;
7555
7556 /* Initialize the section. */
7557
7558 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7559 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7560
7561 elf_text_section->symbol = elf_text_symbol;
7562 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7563
7564 elf_text_section->name = ".text";
7565 elf_text_section->flags = SEC_NO_FLAGS;
7566 elf_text_section->output_section = NULL;
7567 elf_text_section->owner = abfd;
7568 elf_text_symbol->name = ".text";
7569 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7570 elf_text_symbol->section = elf_text_section;
7571 }
7572 /* This code used to do *secp = bfd_und_section_ptr if
7573 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7574 so I took it out. */
7575 *secp = mips_elf_tdata (abfd)->elf_text_section;
7576 break;
7577
7578 case SHN_MIPS_ACOMMON:
7579 /* Fall through. XXX Can we treat this as allocated data? */
7580 case SHN_MIPS_DATA:
7581 /* This section is used in a shared object. */
7582 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7583 {
7584 asymbol *elf_data_symbol;
7585 asection *elf_data_section;
7586 bfd_size_type amt = sizeof (asection);
7587
7588 elf_data_section = bfd_zalloc (abfd, amt);
7589 if (elf_data_section == NULL)
7590 return FALSE;
7591
7592 amt = sizeof (asymbol);
7593 elf_data_symbol = bfd_zalloc (abfd, amt);
7594 if (elf_data_symbol == NULL)
7595 return FALSE;
7596
7597 /* Initialize the section. */
7598
7599 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7600 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7601
7602 elf_data_section->symbol = elf_data_symbol;
7603 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7604
7605 elf_data_section->name = ".data";
7606 elf_data_section->flags = SEC_NO_FLAGS;
7607 elf_data_section->output_section = NULL;
7608 elf_data_section->owner = abfd;
7609 elf_data_symbol->name = ".data";
7610 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7611 elf_data_symbol->section = elf_data_section;
7612 }
7613 /* This code used to do *secp = bfd_und_section_ptr if
7614 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7615 so I took it out. */
7616 *secp = mips_elf_tdata (abfd)->elf_data_section;
7617 break;
7618
7619 case SHN_MIPS_SUNDEFINED:
7620 *secp = bfd_und_section_ptr;
7621 break;
7622 }
7623
7624 if (SGI_COMPAT (abfd)
7625 && ! bfd_link_pic (info)
7626 && info->output_bfd->xvec == abfd->xvec
7627 && strcmp (*namep, "__rld_obj_head") == 0)
7628 {
7629 struct elf_link_hash_entry *h;
7630 struct bfd_link_hash_entry *bh;
7631
7632 /* Mark __rld_obj_head as dynamic. */
7633 bh = NULL;
7634 if (! (_bfd_generic_link_add_one_symbol
7635 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7636 get_elf_backend_data (abfd)->collect, &bh)))
7637 return FALSE;
7638
7639 h = (struct elf_link_hash_entry *) bh;
7640 h->non_elf = 0;
7641 h->def_regular = 1;
7642 h->type = STT_OBJECT;
7643
7644 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7645 return FALSE;
7646
7647 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7648 mips_elf_hash_table (info)->rld_symbol = h;
7649 }
7650
7651 /* If this is a mips16 text symbol, add 1 to the value to make it
7652 odd. This will cause something like .word SYM to come up with
7653 the right value when it is loaded into the PC. */
7654 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7655 ++*valp;
7656
7657 return TRUE;
7658 }
7659
7660 /* This hook function is called before the linker writes out a global
7661 symbol. We mark symbols as small common if appropriate. This is
7662 also where we undo the increment of the value for a mips16 symbol. */
7663
7664 int
7665 _bfd_mips_elf_link_output_symbol_hook
7666 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7667 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7668 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7669 {
7670 /* If we see a common symbol, which implies a relocatable link, then
7671 if a symbol was small common in an input file, mark it as small
7672 common in the output file. */
7673 if (sym->st_shndx == SHN_COMMON
7674 && strcmp (input_sec->name, ".scommon") == 0)
7675 sym->st_shndx = SHN_MIPS_SCOMMON;
7676
7677 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7678 sym->st_value &= ~1;
7679
7680 return 1;
7681 }
7682 \f
7683 /* Functions for the dynamic linker. */
7684
7685 /* Create dynamic sections when linking against a dynamic object. */
7686
7687 bfd_boolean
7688 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7689 {
7690 struct elf_link_hash_entry *h;
7691 struct bfd_link_hash_entry *bh;
7692 flagword flags;
7693 register asection *s;
7694 const char * const *namep;
7695 struct mips_elf_link_hash_table *htab;
7696
7697 htab = mips_elf_hash_table (info);
7698 BFD_ASSERT (htab != NULL);
7699
7700 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7701 | SEC_LINKER_CREATED | SEC_READONLY);
7702
7703 /* The psABI requires a read-only .dynamic section, but the VxWorks
7704 EABI doesn't. */
7705 if (!htab->is_vxworks)
7706 {
7707 s = bfd_get_linker_section (abfd, ".dynamic");
7708 if (s != NULL)
7709 {
7710 if (! bfd_set_section_flags (abfd, s, flags))
7711 return FALSE;
7712 }
7713 }
7714
7715 /* We need to create .got section. */
7716 if (!mips_elf_create_got_section (abfd, info))
7717 return FALSE;
7718
7719 if (! mips_elf_rel_dyn_section (info, TRUE))
7720 return FALSE;
7721
7722 /* Create .stub section. */
7723 s = bfd_make_section_anyway_with_flags (abfd,
7724 MIPS_ELF_STUB_SECTION_NAME (abfd),
7725 flags | SEC_CODE);
7726 if (s == NULL
7727 || ! bfd_set_section_alignment (abfd, s,
7728 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7729 return FALSE;
7730 htab->sstubs = s;
7731
7732 if (!mips_elf_hash_table (info)->use_rld_obj_head
7733 && bfd_link_executable (info)
7734 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7735 {
7736 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7737 flags &~ (flagword) SEC_READONLY);
7738 if (s == NULL
7739 || ! bfd_set_section_alignment (abfd, s,
7740 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7741 return FALSE;
7742 }
7743
7744 /* On IRIX5, we adjust add some additional symbols and change the
7745 alignments of several sections. There is no ABI documentation
7746 indicating that this is necessary on IRIX6, nor any evidence that
7747 the linker takes such action. */
7748 if (IRIX_COMPAT (abfd) == ict_irix5)
7749 {
7750 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7751 {
7752 bh = NULL;
7753 if (! (_bfd_generic_link_add_one_symbol
7754 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7755 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7756 return FALSE;
7757
7758 h = (struct elf_link_hash_entry *) bh;
7759 h->non_elf = 0;
7760 h->def_regular = 1;
7761 h->type = STT_SECTION;
7762
7763 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7764 return FALSE;
7765 }
7766
7767 /* We need to create a .compact_rel section. */
7768 if (SGI_COMPAT (abfd))
7769 {
7770 if (!mips_elf_create_compact_rel_section (abfd, info))
7771 return FALSE;
7772 }
7773
7774 /* Change alignments of some sections. */
7775 s = bfd_get_linker_section (abfd, ".hash");
7776 if (s != NULL)
7777 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7778
7779 s = bfd_get_linker_section (abfd, ".dynsym");
7780 if (s != NULL)
7781 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7782
7783 s = bfd_get_linker_section (abfd, ".dynstr");
7784 if (s != NULL)
7785 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7786
7787 /* ??? */
7788 s = bfd_get_section_by_name (abfd, ".reginfo");
7789 if (s != NULL)
7790 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7791
7792 s = bfd_get_linker_section (abfd, ".dynamic");
7793 if (s != NULL)
7794 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7795 }
7796
7797 if (bfd_link_executable (info))
7798 {
7799 const char *name;
7800
7801 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7802 bh = NULL;
7803 if (!(_bfd_generic_link_add_one_symbol
7804 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7805 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7806 return FALSE;
7807
7808 h = (struct elf_link_hash_entry *) bh;
7809 h->non_elf = 0;
7810 h->def_regular = 1;
7811 h->type = STT_SECTION;
7812
7813 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7814 return FALSE;
7815
7816 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7817 {
7818 /* __rld_map is a four byte word located in the .data section
7819 and is filled in by the rtld to contain a pointer to
7820 the _r_debug structure. Its symbol value will be set in
7821 _bfd_mips_elf_finish_dynamic_symbol. */
7822 s = bfd_get_linker_section (abfd, ".rld_map");
7823 BFD_ASSERT (s != NULL);
7824
7825 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7826 bh = NULL;
7827 if (!(_bfd_generic_link_add_one_symbol
7828 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7829 get_elf_backend_data (abfd)->collect, &bh)))
7830 return FALSE;
7831
7832 h = (struct elf_link_hash_entry *) bh;
7833 h->non_elf = 0;
7834 h->def_regular = 1;
7835 h->type = STT_OBJECT;
7836
7837 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7838 return FALSE;
7839 mips_elf_hash_table (info)->rld_symbol = h;
7840 }
7841 }
7842
7843 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7844 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7845 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7846 return FALSE;
7847
7848 /* Cache the sections created above. */
7849 htab->splt = bfd_get_linker_section (abfd, ".plt");
7850 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7851 if (htab->is_vxworks)
7852 {
7853 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7854 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7855 }
7856 else
7857 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7858 if (!htab->sdynbss
7859 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7860 || !htab->srelplt
7861 || !htab->splt)
7862 abort ();
7863
7864 /* Do the usual VxWorks handling. */
7865 if (htab->is_vxworks
7866 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7867 return FALSE;
7868
7869 return TRUE;
7870 }
7871 \f
7872 /* Return true if relocation REL against section SEC is a REL rather than
7873 RELA relocation. RELOCS is the first relocation in the section and
7874 ABFD is the bfd that contains SEC. */
7875
7876 static bfd_boolean
7877 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7878 const Elf_Internal_Rela *relocs,
7879 const Elf_Internal_Rela *rel)
7880 {
7881 Elf_Internal_Shdr *rel_hdr;
7882 const struct elf_backend_data *bed;
7883
7884 /* To determine which flavor of relocation this is, we depend on the
7885 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7886 rel_hdr = elf_section_data (sec)->rel.hdr;
7887 if (rel_hdr == NULL)
7888 return FALSE;
7889 bed = get_elf_backend_data (abfd);
7890 return ((size_t) (rel - relocs)
7891 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7892 }
7893
7894 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7895 HOWTO is the relocation's howto and CONTENTS points to the contents
7896 of the section that REL is against. */
7897
7898 static bfd_vma
7899 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7900 reloc_howto_type *howto, bfd_byte *contents)
7901 {
7902 bfd_byte *location;
7903 unsigned int r_type;
7904 bfd_vma addend;
7905 bfd_vma bytes;
7906
7907 r_type = ELF_R_TYPE (abfd, rel->r_info);
7908 location = contents + rel->r_offset;
7909
7910 /* Get the addend, which is stored in the input file. */
7911 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7912 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7913 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7914
7915 addend = bytes & howto->src_mask;
7916
7917 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7918 accordingly. */
7919 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7920 addend <<= 1;
7921
7922 return addend;
7923 }
7924
7925 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7926 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7927 and update *ADDEND with the final addend. Return true on success
7928 or false if the LO16 could not be found. RELEND is the exclusive
7929 upper bound on the relocations for REL's section. */
7930
7931 static bfd_boolean
7932 mips_elf_add_lo16_rel_addend (bfd *abfd,
7933 const Elf_Internal_Rela *rel,
7934 const Elf_Internal_Rela *relend,
7935 bfd_byte *contents, bfd_vma *addend)
7936 {
7937 unsigned int r_type, lo16_type;
7938 const Elf_Internal_Rela *lo16_relocation;
7939 reloc_howto_type *lo16_howto;
7940 bfd_vma l;
7941
7942 r_type = ELF_R_TYPE (abfd, rel->r_info);
7943 if (mips16_reloc_p (r_type))
7944 lo16_type = R_MIPS16_LO16;
7945 else if (micromips_reloc_p (r_type))
7946 lo16_type = R_MICROMIPS_LO16;
7947 else if (r_type == R_MIPS_PCHI16)
7948 lo16_type = R_MIPS_PCLO16;
7949 else
7950 lo16_type = R_MIPS_LO16;
7951
7952 /* The combined value is the sum of the HI16 addend, left-shifted by
7953 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7954 code does a `lui' of the HI16 value, and then an `addiu' of the
7955 LO16 value.)
7956
7957 Scan ahead to find a matching LO16 relocation.
7958
7959 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7960 be immediately following. However, for the IRIX6 ABI, the next
7961 relocation may be a composed relocation consisting of several
7962 relocations for the same address. In that case, the R_MIPS_LO16
7963 relocation may occur as one of these. We permit a similar
7964 extension in general, as that is useful for GCC.
7965
7966 In some cases GCC dead code elimination removes the LO16 but keeps
7967 the corresponding HI16. This is strictly speaking a violation of
7968 the ABI but not immediately harmful. */
7969 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7970 if (lo16_relocation == NULL)
7971 return FALSE;
7972
7973 /* Obtain the addend kept there. */
7974 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7975 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7976
7977 l <<= lo16_howto->rightshift;
7978 l = _bfd_mips_elf_sign_extend (l, 16);
7979
7980 *addend <<= 16;
7981 *addend += l;
7982 return TRUE;
7983 }
7984
7985 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7986 store the contents in *CONTENTS on success. Assume that *CONTENTS
7987 already holds the contents if it is nonull on entry. */
7988
7989 static bfd_boolean
7990 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7991 {
7992 if (*contents)
7993 return TRUE;
7994
7995 /* Get cached copy if it exists. */
7996 if (elf_section_data (sec)->this_hdr.contents != NULL)
7997 {
7998 *contents = elf_section_data (sec)->this_hdr.contents;
7999 return TRUE;
8000 }
8001
8002 return bfd_malloc_and_get_section (abfd, sec, contents);
8003 }
8004
8005 /* Make a new PLT record to keep internal data. */
8006
8007 static struct plt_entry *
8008 mips_elf_make_plt_record (bfd *abfd)
8009 {
8010 struct plt_entry *entry;
8011
8012 entry = bfd_zalloc (abfd, sizeof (*entry));
8013 if (entry == NULL)
8014 return NULL;
8015
8016 entry->stub_offset = MINUS_ONE;
8017 entry->mips_offset = MINUS_ONE;
8018 entry->comp_offset = MINUS_ONE;
8019 entry->gotplt_index = MINUS_ONE;
8020 return entry;
8021 }
8022
8023 /* Look through the relocs for a section during the first phase, and
8024 allocate space in the global offset table and record the need for
8025 standard MIPS and compressed procedure linkage table entries. */
8026
8027 bfd_boolean
8028 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8029 asection *sec, const Elf_Internal_Rela *relocs)
8030 {
8031 const char *name;
8032 bfd *dynobj;
8033 Elf_Internal_Shdr *symtab_hdr;
8034 struct elf_link_hash_entry **sym_hashes;
8035 size_t extsymoff;
8036 const Elf_Internal_Rela *rel;
8037 const Elf_Internal_Rela *rel_end;
8038 asection *sreloc;
8039 const struct elf_backend_data *bed;
8040 struct mips_elf_link_hash_table *htab;
8041 bfd_byte *contents;
8042 bfd_vma addend;
8043 reloc_howto_type *howto;
8044
8045 if (bfd_link_relocatable (info))
8046 return TRUE;
8047
8048 htab = mips_elf_hash_table (info);
8049 BFD_ASSERT (htab != NULL);
8050
8051 dynobj = elf_hash_table (info)->dynobj;
8052 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8053 sym_hashes = elf_sym_hashes (abfd);
8054 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8055
8056 bed = get_elf_backend_data (abfd);
8057 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8058
8059 /* Check for the mips16 stub sections. */
8060
8061 name = bfd_get_section_name (abfd, sec);
8062 if (FN_STUB_P (name))
8063 {
8064 unsigned long r_symndx;
8065
8066 /* Look at the relocation information to figure out which symbol
8067 this is for. */
8068
8069 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8070 if (r_symndx == 0)
8071 {
8072 (*_bfd_error_handler)
8073 (_("%B: Warning: cannot determine the target function for"
8074 " stub section `%s'"),
8075 abfd, name);
8076 bfd_set_error (bfd_error_bad_value);
8077 return FALSE;
8078 }
8079
8080 if (r_symndx < extsymoff
8081 || sym_hashes[r_symndx - extsymoff] == NULL)
8082 {
8083 asection *o;
8084
8085 /* This stub is for a local symbol. This stub will only be
8086 needed if there is some relocation in this BFD, other
8087 than a 16 bit function call, which refers to this symbol. */
8088 for (o = abfd->sections; o != NULL; o = o->next)
8089 {
8090 Elf_Internal_Rela *sec_relocs;
8091 const Elf_Internal_Rela *r, *rend;
8092
8093 /* We can ignore stub sections when looking for relocs. */
8094 if ((o->flags & SEC_RELOC) == 0
8095 || o->reloc_count == 0
8096 || section_allows_mips16_refs_p (o))
8097 continue;
8098
8099 sec_relocs
8100 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8101 info->keep_memory);
8102 if (sec_relocs == NULL)
8103 return FALSE;
8104
8105 rend = sec_relocs + o->reloc_count;
8106 for (r = sec_relocs; r < rend; r++)
8107 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8108 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8109 break;
8110
8111 if (elf_section_data (o)->relocs != sec_relocs)
8112 free (sec_relocs);
8113
8114 if (r < rend)
8115 break;
8116 }
8117
8118 if (o == NULL)
8119 {
8120 /* There is no non-call reloc for this stub, so we do
8121 not need it. Since this function is called before
8122 the linker maps input sections to output sections, we
8123 can easily discard it by setting the SEC_EXCLUDE
8124 flag. */
8125 sec->flags |= SEC_EXCLUDE;
8126 return TRUE;
8127 }
8128
8129 /* Record this stub in an array of local symbol stubs for
8130 this BFD. */
8131 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8132 {
8133 unsigned long symcount;
8134 asection **n;
8135 bfd_size_type amt;
8136
8137 if (elf_bad_symtab (abfd))
8138 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8139 else
8140 symcount = symtab_hdr->sh_info;
8141 amt = symcount * sizeof (asection *);
8142 n = bfd_zalloc (abfd, amt);
8143 if (n == NULL)
8144 return FALSE;
8145 mips_elf_tdata (abfd)->local_stubs = n;
8146 }
8147
8148 sec->flags |= SEC_KEEP;
8149 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8150
8151 /* We don't need to set mips16_stubs_seen in this case.
8152 That flag is used to see whether we need to look through
8153 the global symbol table for stubs. We don't need to set
8154 it here, because we just have a local stub. */
8155 }
8156 else
8157 {
8158 struct mips_elf_link_hash_entry *h;
8159
8160 h = ((struct mips_elf_link_hash_entry *)
8161 sym_hashes[r_symndx - extsymoff]);
8162
8163 while (h->root.root.type == bfd_link_hash_indirect
8164 || h->root.root.type == bfd_link_hash_warning)
8165 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8166
8167 /* H is the symbol this stub is for. */
8168
8169 /* If we already have an appropriate stub for this function, we
8170 don't need another one, so we can discard this one. Since
8171 this function is called before the linker maps input sections
8172 to output sections, we can easily discard it by setting the
8173 SEC_EXCLUDE flag. */
8174 if (h->fn_stub != NULL)
8175 {
8176 sec->flags |= SEC_EXCLUDE;
8177 return TRUE;
8178 }
8179
8180 sec->flags |= SEC_KEEP;
8181 h->fn_stub = sec;
8182 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8183 }
8184 }
8185 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8186 {
8187 unsigned long r_symndx;
8188 struct mips_elf_link_hash_entry *h;
8189 asection **loc;
8190
8191 /* Look at the relocation information to figure out which symbol
8192 this is for. */
8193
8194 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8195 if (r_symndx == 0)
8196 {
8197 (*_bfd_error_handler)
8198 (_("%B: Warning: cannot determine the target function for"
8199 " stub section `%s'"),
8200 abfd, name);
8201 bfd_set_error (bfd_error_bad_value);
8202 return FALSE;
8203 }
8204
8205 if (r_symndx < extsymoff
8206 || sym_hashes[r_symndx - extsymoff] == NULL)
8207 {
8208 asection *o;
8209
8210 /* This stub is for a local symbol. This stub will only be
8211 needed if there is some relocation (R_MIPS16_26) in this BFD
8212 that refers to this symbol. */
8213 for (o = abfd->sections; o != NULL; o = o->next)
8214 {
8215 Elf_Internal_Rela *sec_relocs;
8216 const Elf_Internal_Rela *r, *rend;
8217
8218 /* We can ignore stub sections when looking for relocs. */
8219 if ((o->flags & SEC_RELOC) == 0
8220 || o->reloc_count == 0
8221 || section_allows_mips16_refs_p (o))
8222 continue;
8223
8224 sec_relocs
8225 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8226 info->keep_memory);
8227 if (sec_relocs == NULL)
8228 return FALSE;
8229
8230 rend = sec_relocs + o->reloc_count;
8231 for (r = sec_relocs; r < rend; r++)
8232 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8233 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8234 break;
8235
8236 if (elf_section_data (o)->relocs != sec_relocs)
8237 free (sec_relocs);
8238
8239 if (r < rend)
8240 break;
8241 }
8242
8243 if (o == NULL)
8244 {
8245 /* There is no non-call reloc for this stub, so we do
8246 not need it. Since this function is called before
8247 the linker maps input sections to output sections, we
8248 can easily discard it by setting the SEC_EXCLUDE
8249 flag. */
8250 sec->flags |= SEC_EXCLUDE;
8251 return TRUE;
8252 }
8253
8254 /* Record this stub in an array of local symbol call_stubs for
8255 this BFD. */
8256 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8257 {
8258 unsigned long symcount;
8259 asection **n;
8260 bfd_size_type amt;
8261
8262 if (elf_bad_symtab (abfd))
8263 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8264 else
8265 symcount = symtab_hdr->sh_info;
8266 amt = symcount * sizeof (asection *);
8267 n = bfd_zalloc (abfd, amt);
8268 if (n == NULL)
8269 return FALSE;
8270 mips_elf_tdata (abfd)->local_call_stubs = n;
8271 }
8272
8273 sec->flags |= SEC_KEEP;
8274 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8275
8276 /* We don't need to set mips16_stubs_seen in this case.
8277 That flag is used to see whether we need to look through
8278 the global symbol table for stubs. We don't need to set
8279 it here, because we just have a local stub. */
8280 }
8281 else
8282 {
8283 h = ((struct mips_elf_link_hash_entry *)
8284 sym_hashes[r_symndx - extsymoff]);
8285
8286 /* H is the symbol this stub is for. */
8287
8288 if (CALL_FP_STUB_P (name))
8289 loc = &h->call_fp_stub;
8290 else
8291 loc = &h->call_stub;
8292
8293 /* If we already have an appropriate stub for this function, we
8294 don't need another one, so we can discard this one. Since
8295 this function is called before the linker maps input sections
8296 to output sections, we can easily discard it by setting the
8297 SEC_EXCLUDE flag. */
8298 if (*loc != NULL)
8299 {
8300 sec->flags |= SEC_EXCLUDE;
8301 return TRUE;
8302 }
8303
8304 sec->flags |= SEC_KEEP;
8305 *loc = sec;
8306 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8307 }
8308 }
8309
8310 sreloc = NULL;
8311 contents = NULL;
8312 for (rel = relocs; rel < rel_end; ++rel)
8313 {
8314 unsigned long r_symndx;
8315 unsigned int r_type;
8316 struct elf_link_hash_entry *h;
8317 bfd_boolean can_make_dynamic_p;
8318 bfd_boolean call_reloc_p;
8319 bfd_boolean constrain_symbol_p;
8320
8321 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8322 r_type = ELF_R_TYPE (abfd, rel->r_info);
8323
8324 if (r_symndx < extsymoff)
8325 h = NULL;
8326 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8327 {
8328 (*_bfd_error_handler)
8329 (_("%B: Malformed reloc detected for section %s"),
8330 abfd, name);
8331 bfd_set_error (bfd_error_bad_value);
8332 return FALSE;
8333 }
8334 else
8335 {
8336 h = sym_hashes[r_symndx - extsymoff];
8337 if (h != NULL)
8338 {
8339 while (h->root.type == bfd_link_hash_indirect
8340 || h->root.type == bfd_link_hash_warning)
8341 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8342
8343 /* PR15323, ref flags aren't set for references in the
8344 same object. */
8345 h->root.non_ir_ref = 1;
8346 }
8347 }
8348
8349 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8350 relocation into a dynamic one. */
8351 can_make_dynamic_p = FALSE;
8352
8353 /* Set CALL_RELOC_P to true if the relocation is for a call,
8354 and if pointer equality therefore doesn't matter. */
8355 call_reloc_p = FALSE;
8356
8357 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8358 into account when deciding how to define the symbol.
8359 Relocations in nonallocatable sections such as .pdr and
8360 .debug* should have no effect. */
8361 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8362
8363 switch (r_type)
8364 {
8365 case R_MIPS_CALL16:
8366 case R_MIPS_CALL_HI16:
8367 case R_MIPS_CALL_LO16:
8368 case R_MIPS16_CALL16:
8369 case R_MICROMIPS_CALL16:
8370 case R_MICROMIPS_CALL_HI16:
8371 case R_MICROMIPS_CALL_LO16:
8372 call_reloc_p = TRUE;
8373 /* Fall through. */
8374
8375 case R_MIPS_GOT16:
8376 case R_MIPS_GOT_HI16:
8377 case R_MIPS_GOT_LO16:
8378 case R_MIPS_GOT_PAGE:
8379 case R_MIPS_GOT_OFST:
8380 case R_MIPS_GOT_DISP:
8381 case R_MIPS_TLS_GOTTPREL:
8382 case R_MIPS_TLS_GD:
8383 case R_MIPS_TLS_LDM:
8384 case R_MIPS16_GOT16:
8385 case R_MIPS16_TLS_GOTTPREL:
8386 case R_MIPS16_TLS_GD:
8387 case R_MIPS16_TLS_LDM:
8388 case R_MICROMIPS_GOT16:
8389 case R_MICROMIPS_GOT_HI16:
8390 case R_MICROMIPS_GOT_LO16:
8391 case R_MICROMIPS_GOT_PAGE:
8392 case R_MICROMIPS_GOT_OFST:
8393 case R_MICROMIPS_GOT_DISP:
8394 case R_MICROMIPS_TLS_GOTTPREL:
8395 case R_MICROMIPS_TLS_GD:
8396 case R_MICROMIPS_TLS_LDM:
8397 if (dynobj == NULL)
8398 elf_hash_table (info)->dynobj = dynobj = abfd;
8399 if (!mips_elf_create_got_section (dynobj, info))
8400 return FALSE;
8401 if (htab->is_vxworks && !bfd_link_pic (info))
8402 {
8403 (*_bfd_error_handler)
8404 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8405 abfd, (unsigned long) rel->r_offset);
8406 bfd_set_error (bfd_error_bad_value);
8407 return FALSE;
8408 }
8409 can_make_dynamic_p = TRUE;
8410 break;
8411
8412 case R_MIPS_NONE:
8413 case R_MIPS_JALR:
8414 case R_MICROMIPS_JALR:
8415 /* These relocations have empty fields and are purely there to
8416 provide link information. The symbol value doesn't matter. */
8417 constrain_symbol_p = FALSE;
8418 break;
8419
8420 case R_MIPS_GPREL16:
8421 case R_MIPS_GPREL32:
8422 case R_MIPS16_GPREL:
8423 case R_MICROMIPS_GPREL16:
8424 /* GP-relative relocations always resolve to a definition in a
8425 regular input file, ignoring the one-definition rule. This is
8426 important for the GP setup sequence in NewABI code, which
8427 always resolves to a local function even if other relocations
8428 against the symbol wouldn't. */
8429 constrain_symbol_p = FALSE;
8430 break;
8431
8432 case R_MIPS_32:
8433 case R_MIPS_REL32:
8434 case R_MIPS_64:
8435 /* In VxWorks executables, references to external symbols
8436 must be handled using copy relocs or PLT entries; it is not
8437 possible to convert this relocation into a dynamic one.
8438
8439 For executables that use PLTs and copy-relocs, we have a
8440 choice between converting the relocation into a dynamic
8441 one or using copy relocations or PLT entries. It is
8442 usually better to do the former, unless the relocation is
8443 against a read-only section. */
8444 if ((bfd_link_pic (info)
8445 || (h != NULL
8446 && !htab->is_vxworks
8447 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8448 && !(!info->nocopyreloc
8449 && !PIC_OBJECT_P (abfd)
8450 && MIPS_ELF_READONLY_SECTION (sec))))
8451 && (sec->flags & SEC_ALLOC) != 0)
8452 {
8453 can_make_dynamic_p = TRUE;
8454 if (dynobj == NULL)
8455 elf_hash_table (info)->dynobj = dynobj = abfd;
8456 }
8457 break;
8458
8459 case R_MIPS_26:
8460 case R_MIPS_PC16:
8461 case R_MIPS_PC21_S2:
8462 case R_MIPS_PC26_S2:
8463 case R_MIPS16_26:
8464 case R_MIPS16_PC16_S1:
8465 case R_MICROMIPS_26_S1:
8466 case R_MICROMIPS_PC7_S1:
8467 case R_MICROMIPS_PC10_S1:
8468 case R_MICROMIPS_PC16_S1:
8469 case R_MICROMIPS_PC23_S2:
8470 call_reloc_p = TRUE;
8471 break;
8472 }
8473
8474 if (h)
8475 {
8476 if (constrain_symbol_p)
8477 {
8478 if (!can_make_dynamic_p)
8479 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8480
8481 if (!call_reloc_p)
8482 h->pointer_equality_needed = 1;
8483
8484 /* We must not create a stub for a symbol that has
8485 relocations related to taking the function's address.
8486 This doesn't apply to VxWorks, where CALL relocs refer
8487 to a .got.plt entry instead of a normal .got entry. */
8488 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8489 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8490 }
8491
8492 /* Relocations against the special VxWorks __GOTT_BASE__ and
8493 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8494 room for them in .rela.dyn. */
8495 if (is_gott_symbol (info, h))
8496 {
8497 if (sreloc == NULL)
8498 {
8499 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8500 if (sreloc == NULL)
8501 return FALSE;
8502 }
8503 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8504 if (MIPS_ELF_READONLY_SECTION (sec))
8505 /* We tell the dynamic linker that there are
8506 relocations against the text segment. */
8507 info->flags |= DF_TEXTREL;
8508 }
8509 }
8510 else if (call_lo16_reloc_p (r_type)
8511 || got_lo16_reloc_p (r_type)
8512 || got_disp_reloc_p (r_type)
8513 || (got16_reloc_p (r_type) && htab->is_vxworks))
8514 {
8515 /* We may need a local GOT entry for this relocation. We
8516 don't count R_MIPS_GOT_PAGE because we can estimate the
8517 maximum number of pages needed by looking at the size of
8518 the segment. Similar comments apply to R_MIPS*_GOT16 and
8519 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8520 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8521 R_MIPS_CALL_HI16 because these are always followed by an
8522 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8523 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8524 rel->r_addend, info, r_type))
8525 return FALSE;
8526 }
8527
8528 if (h != NULL
8529 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8530 ELF_ST_IS_MIPS16 (h->other)))
8531 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8532
8533 switch (r_type)
8534 {
8535 case R_MIPS_CALL16:
8536 case R_MIPS16_CALL16:
8537 case R_MICROMIPS_CALL16:
8538 if (h == NULL)
8539 {
8540 (*_bfd_error_handler)
8541 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8542 abfd, (unsigned long) rel->r_offset);
8543 bfd_set_error (bfd_error_bad_value);
8544 return FALSE;
8545 }
8546 /* Fall through. */
8547
8548 case R_MIPS_CALL_HI16:
8549 case R_MIPS_CALL_LO16:
8550 case R_MICROMIPS_CALL_HI16:
8551 case R_MICROMIPS_CALL_LO16:
8552 if (h != NULL)
8553 {
8554 /* Make sure there is room in the regular GOT to hold the
8555 function's address. We may eliminate it in favour of
8556 a .got.plt entry later; see mips_elf_count_got_symbols. */
8557 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8558 r_type))
8559 return FALSE;
8560
8561 /* We need a stub, not a plt entry for the undefined
8562 function. But we record it as if it needs plt. See
8563 _bfd_elf_adjust_dynamic_symbol. */
8564 h->needs_plt = 1;
8565 h->type = STT_FUNC;
8566 }
8567 break;
8568
8569 case R_MIPS_GOT_PAGE:
8570 case R_MICROMIPS_GOT_PAGE:
8571 case R_MIPS16_GOT16:
8572 case R_MIPS_GOT16:
8573 case R_MIPS_GOT_HI16:
8574 case R_MIPS_GOT_LO16:
8575 case R_MICROMIPS_GOT16:
8576 case R_MICROMIPS_GOT_HI16:
8577 case R_MICROMIPS_GOT_LO16:
8578 if (!h || got_page_reloc_p (r_type))
8579 {
8580 /* This relocation needs (or may need, if h != NULL) a
8581 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8582 know for sure until we know whether the symbol is
8583 preemptible. */
8584 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8585 {
8586 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8587 return FALSE;
8588 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8589 addend = mips_elf_read_rel_addend (abfd, rel,
8590 howto, contents);
8591 if (got16_reloc_p (r_type))
8592 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8593 contents, &addend);
8594 else
8595 addend <<= howto->rightshift;
8596 }
8597 else
8598 addend = rel->r_addend;
8599 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8600 h, addend))
8601 return FALSE;
8602
8603 if (h)
8604 {
8605 struct mips_elf_link_hash_entry *hmips =
8606 (struct mips_elf_link_hash_entry *) h;
8607
8608 /* This symbol is definitely not overridable. */
8609 if (hmips->root.def_regular
8610 && ! (bfd_link_pic (info) && ! info->symbolic
8611 && ! hmips->root.forced_local))
8612 h = NULL;
8613 }
8614 }
8615 /* If this is a global, overridable symbol, GOT_PAGE will
8616 decay to GOT_DISP, so we'll need a GOT entry for it. */
8617 /* Fall through. */
8618
8619 case R_MIPS_GOT_DISP:
8620 case R_MICROMIPS_GOT_DISP:
8621 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8622 FALSE, r_type))
8623 return FALSE;
8624 break;
8625
8626 case R_MIPS_TLS_GOTTPREL:
8627 case R_MIPS16_TLS_GOTTPREL:
8628 case R_MICROMIPS_TLS_GOTTPREL:
8629 if (bfd_link_pic (info))
8630 info->flags |= DF_STATIC_TLS;
8631 /* Fall through */
8632
8633 case R_MIPS_TLS_LDM:
8634 case R_MIPS16_TLS_LDM:
8635 case R_MICROMIPS_TLS_LDM:
8636 if (tls_ldm_reloc_p (r_type))
8637 {
8638 r_symndx = STN_UNDEF;
8639 h = NULL;
8640 }
8641 /* Fall through */
8642
8643 case R_MIPS_TLS_GD:
8644 case R_MIPS16_TLS_GD:
8645 case R_MICROMIPS_TLS_GD:
8646 /* This symbol requires a global offset table entry, or two
8647 for TLS GD relocations. */
8648 if (h != NULL)
8649 {
8650 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8651 FALSE, r_type))
8652 return FALSE;
8653 }
8654 else
8655 {
8656 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8657 rel->r_addend,
8658 info, r_type))
8659 return FALSE;
8660 }
8661 break;
8662
8663 case R_MIPS_32:
8664 case R_MIPS_REL32:
8665 case R_MIPS_64:
8666 /* In VxWorks executables, references to external symbols
8667 are handled using copy relocs or PLT stubs, so there's
8668 no need to add a .rela.dyn entry for this relocation. */
8669 if (can_make_dynamic_p)
8670 {
8671 if (sreloc == NULL)
8672 {
8673 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8674 if (sreloc == NULL)
8675 return FALSE;
8676 }
8677 if (bfd_link_pic (info) && h == NULL)
8678 {
8679 /* When creating a shared object, we must copy these
8680 reloc types into the output file as R_MIPS_REL32
8681 relocs. Make room for this reloc in .rel(a).dyn. */
8682 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8683 if (MIPS_ELF_READONLY_SECTION (sec))
8684 /* We tell the dynamic linker that there are
8685 relocations against the text segment. */
8686 info->flags |= DF_TEXTREL;
8687 }
8688 else
8689 {
8690 struct mips_elf_link_hash_entry *hmips;
8691
8692 /* For a shared object, we must copy this relocation
8693 unless the symbol turns out to be undefined and
8694 weak with non-default visibility, in which case
8695 it will be left as zero.
8696
8697 We could elide R_MIPS_REL32 for locally binding symbols
8698 in shared libraries, but do not yet do so.
8699
8700 For an executable, we only need to copy this
8701 reloc if the symbol is defined in a dynamic
8702 object. */
8703 hmips = (struct mips_elf_link_hash_entry *) h;
8704 ++hmips->possibly_dynamic_relocs;
8705 if (MIPS_ELF_READONLY_SECTION (sec))
8706 /* We need it to tell the dynamic linker if there
8707 are relocations against the text segment. */
8708 hmips->readonly_reloc = TRUE;
8709 }
8710 }
8711
8712 if (SGI_COMPAT (abfd))
8713 mips_elf_hash_table (info)->compact_rel_size +=
8714 sizeof (Elf32_External_crinfo);
8715 break;
8716
8717 case R_MIPS_26:
8718 case R_MIPS_GPREL16:
8719 case R_MIPS_LITERAL:
8720 case R_MIPS_GPREL32:
8721 case R_MICROMIPS_26_S1:
8722 case R_MICROMIPS_GPREL16:
8723 case R_MICROMIPS_LITERAL:
8724 case R_MICROMIPS_GPREL7_S2:
8725 if (SGI_COMPAT (abfd))
8726 mips_elf_hash_table (info)->compact_rel_size +=
8727 sizeof (Elf32_External_crinfo);
8728 break;
8729
8730 /* This relocation describes the C++ object vtable hierarchy.
8731 Reconstruct it for later use during GC. */
8732 case R_MIPS_GNU_VTINHERIT:
8733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8734 return FALSE;
8735 break;
8736
8737 /* This relocation describes which C++ vtable entries are actually
8738 used. Record for later use during GC. */
8739 case R_MIPS_GNU_VTENTRY:
8740 BFD_ASSERT (h != NULL);
8741 if (h != NULL
8742 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8743 return FALSE;
8744 break;
8745
8746 default:
8747 break;
8748 }
8749
8750 /* Record the need for a PLT entry. At this point we don't know
8751 yet if we are going to create a PLT in the first place, but
8752 we only record whether the relocation requires a standard MIPS
8753 or a compressed code entry anyway. If we don't make a PLT after
8754 all, then we'll just ignore these arrangements. Likewise if
8755 a PLT entry is not created because the symbol is satisfied
8756 locally. */
8757 if (h != NULL
8758 && jal_reloc_p (r_type)
8759 && !SYMBOL_CALLS_LOCAL (info, h))
8760 {
8761 if (h->plt.plist == NULL)
8762 h->plt.plist = mips_elf_make_plt_record (abfd);
8763 if (h->plt.plist == NULL)
8764 return FALSE;
8765
8766 if (r_type == R_MIPS_26)
8767 h->plt.plist->need_mips = TRUE;
8768 else
8769 h->plt.plist->need_comp = TRUE;
8770 }
8771
8772 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8773 if there is one. We only need to handle global symbols here;
8774 we decide whether to keep or delete stubs for local symbols
8775 when processing the stub's relocations. */
8776 if (h != NULL
8777 && !mips16_call_reloc_p (r_type)
8778 && !section_allows_mips16_refs_p (sec))
8779 {
8780 struct mips_elf_link_hash_entry *mh;
8781
8782 mh = (struct mips_elf_link_hash_entry *) h;
8783 mh->need_fn_stub = TRUE;
8784 }
8785
8786 /* Refuse some position-dependent relocations when creating a
8787 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8788 not PIC, but we can create dynamic relocations and the result
8789 will be fine. Also do not refuse R_MIPS_LO16, which can be
8790 combined with R_MIPS_GOT16. */
8791 if (bfd_link_pic (info))
8792 {
8793 switch (r_type)
8794 {
8795 case R_MIPS16_HI16:
8796 case R_MIPS_HI16:
8797 case R_MIPS_HIGHER:
8798 case R_MIPS_HIGHEST:
8799 case R_MICROMIPS_HI16:
8800 case R_MICROMIPS_HIGHER:
8801 case R_MICROMIPS_HIGHEST:
8802 /* Don't refuse a high part relocation if it's against
8803 no symbol (e.g. part of a compound relocation). */
8804 if (r_symndx == STN_UNDEF)
8805 break;
8806
8807 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8808 and has a special meaning. */
8809 if (!NEWABI_P (abfd) && h != NULL
8810 && strcmp (h->root.root.string, "_gp_disp") == 0)
8811 break;
8812
8813 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8814 if (is_gott_symbol (info, h))
8815 break;
8816
8817 /* FALLTHROUGH */
8818
8819 case R_MIPS16_26:
8820 case R_MIPS_26:
8821 case R_MICROMIPS_26_S1:
8822 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8823 (*_bfd_error_handler)
8824 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8825 abfd, howto->name,
8826 (h) ? h->root.root.string : "a local symbol");
8827 bfd_set_error (bfd_error_bad_value);
8828 return FALSE;
8829 default:
8830 break;
8831 }
8832 }
8833 }
8834
8835 return TRUE;
8836 }
8837 \f
8838 bfd_boolean
8839 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8840 struct bfd_link_info *link_info,
8841 bfd_boolean *again)
8842 {
8843 Elf_Internal_Rela *internal_relocs;
8844 Elf_Internal_Rela *irel, *irelend;
8845 Elf_Internal_Shdr *symtab_hdr;
8846 bfd_byte *contents = NULL;
8847 size_t extsymoff;
8848 bfd_boolean changed_contents = FALSE;
8849 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8850 Elf_Internal_Sym *isymbuf = NULL;
8851
8852 /* We are not currently changing any sizes, so only one pass. */
8853 *again = FALSE;
8854
8855 if (bfd_link_relocatable (link_info))
8856 return TRUE;
8857
8858 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8859 link_info->keep_memory);
8860 if (internal_relocs == NULL)
8861 return TRUE;
8862
8863 irelend = internal_relocs + sec->reloc_count
8864 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8865 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8866 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8867
8868 for (irel = internal_relocs; irel < irelend; irel++)
8869 {
8870 bfd_vma symval;
8871 bfd_signed_vma sym_offset;
8872 unsigned int r_type;
8873 unsigned long r_symndx;
8874 asection *sym_sec;
8875 unsigned long instruction;
8876
8877 /* Turn jalr into bgezal, and jr into beq, if they're marked
8878 with a JALR relocation, that indicate where they jump to.
8879 This saves some pipeline bubbles. */
8880 r_type = ELF_R_TYPE (abfd, irel->r_info);
8881 if (r_type != R_MIPS_JALR)
8882 continue;
8883
8884 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8885 /* Compute the address of the jump target. */
8886 if (r_symndx >= extsymoff)
8887 {
8888 struct mips_elf_link_hash_entry *h
8889 = ((struct mips_elf_link_hash_entry *)
8890 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8891
8892 while (h->root.root.type == bfd_link_hash_indirect
8893 || h->root.root.type == bfd_link_hash_warning)
8894 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8895
8896 /* If a symbol is undefined, or if it may be overridden,
8897 skip it. */
8898 if (! ((h->root.root.type == bfd_link_hash_defined
8899 || h->root.root.type == bfd_link_hash_defweak)
8900 && h->root.root.u.def.section)
8901 || (bfd_link_pic (link_info) && ! link_info->symbolic
8902 && !h->root.forced_local))
8903 continue;
8904
8905 sym_sec = h->root.root.u.def.section;
8906 if (sym_sec->output_section)
8907 symval = (h->root.root.u.def.value
8908 + sym_sec->output_section->vma
8909 + sym_sec->output_offset);
8910 else
8911 symval = h->root.root.u.def.value;
8912 }
8913 else
8914 {
8915 Elf_Internal_Sym *isym;
8916
8917 /* Read this BFD's symbols if we haven't done so already. */
8918 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8919 {
8920 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8921 if (isymbuf == NULL)
8922 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8923 symtab_hdr->sh_info, 0,
8924 NULL, NULL, NULL);
8925 if (isymbuf == NULL)
8926 goto relax_return;
8927 }
8928
8929 isym = isymbuf + r_symndx;
8930 if (isym->st_shndx == SHN_UNDEF)
8931 continue;
8932 else if (isym->st_shndx == SHN_ABS)
8933 sym_sec = bfd_abs_section_ptr;
8934 else if (isym->st_shndx == SHN_COMMON)
8935 sym_sec = bfd_com_section_ptr;
8936 else
8937 sym_sec
8938 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8939 symval = isym->st_value
8940 + sym_sec->output_section->vma
8941 + sym_sec->output_offset;
8942 }
8943
8944 /* Compute branch offset, from delay slot of the jump to the
8945 branch target. */
8946 sym_offset = (symval + irel->r_addend)
8947 - (sec_start + irel->r_offset + 4);
8948
8949 /* Branch offset must be properly aligned. */
8950 if ((sym_offset & 3) != 0)
8951 continue;
8952
8953 sym_offset >>= 2;
8954
8955 /* Check that it's in range. */
8956 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8957 continue;
8958
8959 /* Get the section contents if we haven't done so already. */
8960 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8961 goto relax_return;
8962
8963 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8964
8965 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8966 if ((instruction & 0xfc1fffff) == 0x0000f809)
8967 instruction = 0x04110000;
8968 /* If it was jr <reg>, turn it into b <target>. */
8969 else if ((instruction & 0xfc1fffff) == 0x00000008)
8970 instruction = 0x10000000;
8971 else
8972 continue;
8973
8974 instruction |= (sym_offset & 0xffff);
8975 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8976 changed_contents = TRUE;
8977 }
8978
8979 if (contents != NULL
8980 && elf_section_data (sec)->this_hdr.contents != contents)
8981 {
8982 if (!changed_contents && !link_info->keep_memory)
8983 free (contents);
8984 else
8985 {
8986 /* Cache the section contents for elf_link_input_bfd. */
8987 elf_section_data (sec)->this_hdr.contents = contents;
8988 }
8989 }
8990 return TRUE;
8991
8992 relax_return:
8993 if (contents != NULL
8994 && elf_section_data (sec)->this_hdr.contents != contents)
8995 free (contents);
8996 return FALSE;
8997 }
8998 \f
8999 /* Allocate space for global sym dynamic relocs. */
9000
9001 static bfd_boolean
9002 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9003 {
9004 struct bfd_link_info *info = inf;
9005 bfd *dynobj;
9006 struct mips_elf_link_hash_entry *hmips;
9007 struct mips_elf_link_hash_table *htab;
9008
9009 htab = mips_elf_hash_table (info);
9010 BFD_ASSERT (htab != NULL);
9011
9012 dynobj = elf_hash_table (info)->dynobj;
9013 hmips = (struct mips_elf_link_hash_entry *) h;
9014
9015 /* VxWorks executables are handled elsewhere; we only need to
9016 allocate relocations in shared objects. */
9017 if (htab->is_vxworks && !bfd_link_pic (info))
9018 return TRUE;
9019
9020 /* Ignore indirect symbols. All relocations against such symbols
9021 will be redirected to the target symbol. */
9022 if (h->root.type == bfd_link_hash_indirect)
9023 return TRUE;
9024
9025 /* If this symbol is defined in a dynamic object, or we are creating
9026 a shared library, we will need to copy any R_MIPS_32 or
9027 R_MIPS_REL32 relocs against it into the output file. */
9028 if (! bfd_link_relocatable (info)
9029 && hmips->possibly_dynamic_relocs != 0
9030 && (h->root.type == bfd_link_hash_defweak
9031 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9032 || bfd_link_pic (info)))
9033 {
9034 bfd_boolean do_copy = TRUE;
9035
9036 if (h->root.type == bfd_link_hash_undefweak)
9037 {
9038 /* Do not copy relocations for undefined weak symbols with
9039 non-default visibility. */
9040 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9041 do_copy = FALSE;
9042
9043 /* Make sure undefined weak symbols are output as a dynamic
9044 symbol in PIEs. */
9045 else if (h->dynindx == -1 && !h->forced_local)
9046 {
9047 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9048 return FALSE;
9049 }
9050 }
9051
9052 if (do_copy)
9053 {
9054 /* Even though we don't directly need a GOT entry for this symbol,
9055 the SVR4 psABI requires it to have a dynamic symbol table
9056 index greater that DT_MIPS_GOTSYM if there are dynamic
9057 relocations against it.
9058
9059 VxWorks does not enforce the same mapping between the GOT
9060 and the symbol table, so the same requirement does not
9061 apply there. */
9062 if (!htab->is_vxworks)
9063 {
9064 if (hmips->global_got_area > GGA_RELOC_ONLY)
9065 hmips->global_got_area = GGA_RELOC_ONLY;
9066 hmips->got_only_for_calls = FALSE;
9067 }
9068
9069 mips_elf_allocate_dynamic_relocations
9070 (dynobj, info, hmips->possibly_dynamic_relocs);
9071 if (hmips->readonly_reloc)
9072 /* We tell the dynamic linker that there are relocations
9073 against the text segment. */
9074 info->flags |= DF_TEXTREL;
9075 }
9076 }
9077
9078 return TRUE;
9079 }
9080
9081 /* Adjust a symbol defined by a dynamic object and referenced by a
9082 regular object. The current definition is in some section of the
9083 dynamic object, but we're not including those sections. We have to
9084 change the definition to something the rest of the link can
9085 understand. */
9086
9087 bfd_boolean
9088 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9089 struct elf_link_hash_entry *h)
9090 {
9091 bfd *dynobj;
9092 struct mips_elf_link_hash_entry *hmips;
9093 struct mips_elf_link_hash_table *htab;
9094
9095 htab = mips_elf_hash_table (info);
9096 BFD_ASSERT (htab != NULL);
9097
9098 dynobj = elf_hash_table (info)->dynobj;
9099 hmips = (struct mips_elf_link_hash_entry *) h;
9100
9101 /* Make sure we know what is going on here. */
9102 BFD_ASSERT (dynobj != NULL
9103 && (h->needs_plt
9104 || h->u.weakdef != NULL
9105 || (h->def_dynamic
9106 && h->ref_regular
9107 && !h->def_regular)));
9108
9109 hmips = (struct mips_elf_link_hash_entry *) h;
9110
9111 /* If there are call relocations against an externally-defined symbol,
9112 see whether we can create a MIPS lazy-binding stub for it. We can
9113 only do this if all references to the function are through call
9114 relocations, and in that case, the traditional lazy-binding stubs
9115 are much more efficient than PLT entries.
9116
9117 Traditional stubs are only available on SVR4 psABI-based systems;
9118 VxWorks always uses PLTs instead. */
9119 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9120 {
9121 if (! elf_hash_table (info)->dynamic_sections_created)
9122 return TRUE;
9123
9124 /* If this symbol is not defined in a regular file, then set
9125 the symbol to the stub location. This is required to make
9126 function pointers compare as equal between the normal
9127 executable and the shared library. */
9128 if (!h->def_regular)
9129 {
9130 hmips->needs_lazy_stub = TRUE;
9131 htab->lazy_stub_count++;
9132 return TRUE;
9133 }
9134 }
9135 /* As above, VxWorks requires PLT entries for externally-defined
9136 functions that are only accessed through call relocations.
9137
9138 Both VxWorks and non-VxWorks targets also need PLT entries if there
9139 are static-only relocations against an externally-defined function.
9140 This can technically occur for shared libraries if there are
9141 branches to the symbol, although it is unlikely that this will be
9142 used in practice due to the short ranges involved. It can occur
9143 for any relative or absolute relocation in executables; in that
9144 case, the PLT entry becomes the function's canonical address. */
9145 else if (((h->needs_plt && !hmips->no_fn_stub)
9146 || (h->type == STT_FUNC && hmips->has_static_relocs))
9147 && htab->use_plts_and_copy_relocs
9148 && !SYMBOL_CALLS_LOCAL (info, h)
9149 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9150 && h->root.type == bfd_link_hash_undefweak))
9151 {
9152 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9153 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9154
9155 /* If this is the first symbol to need a PLT entry, then make some
9156 basic setup. Also work out PLT entry sizes. We'll need them
9157 for PLT offset calculations. */
9158 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9159 {
9160 BFD_ASSERT (htab->sgotplt->size == 0);
9161 BFD_ASSERT (htab->plt_got_index == 0);
9162
9163 /* If we're using the PLT additions to the psABI, each PLT
9164 entry is 16 bytes and the PLT0 entry is 32 bytes.
9165 Encourage better cache usage by aligning. We do this
9166 lazily to avoid pessimizing traditional objects. */
9167 if (!htab->is_vxworks
9168 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9169 return FALSE;
9170
9171 /* Make sure that .got.plt is word-aligned. We do this lazily
9172 for the same reason as above. */
9173 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9174 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9175 return FALSE;
9176
9177 /* On non-VxWorks targets, the first two entries in .got.plt
9178 are reserved. */
9179 if (!htab->is_vxworks)
9180 htab->plt_got_index
9181 += (get_elf_backend_data (dynobj)->got_header_size
9182 / MIPS_ELF_GOT_SIZE (dynobj));
9183
9184 /* On VxWorks, also allocate room for the header's
9185 .rela.plt.unloaded entries. */
9186 if (htab->is_vxworks && !bfd_link_pic (info))
9187 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9188
9189 /* Now work out the sizes of individual PLT entries. */
9190 if (htab->is_vxworks && bfd_link_pic (info))
9191 htab->plt_mips_entry_size
9192 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9193 else if (htab->is_vxworks)
9194 htab->plt_mips_entry_size
9195 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9196 else if (newabi_p)
9197 htab->plt_mips_entry_size
9198 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9199 else if (!micromips_p)
9200 {
9201 htab->plt_mips_entry_size
9202 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9203 htab->plt_comp_entry_size
9204 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9205 }
9206 else if (htab->insn32)
9207 {
9208 htab->plt_mips_entry_size
9209 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9210 htab->plt_comp_entry_size
9211 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9212 }
9213 else
9214 {
9215 htab->plt_mips_entry_size
9216 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9217 htab->plt_comp_entry_size
9218 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9219 }
9220 }
9221
9222 if (h->plt.plist == NULL)
9223 h->plt.plist = mips_elf_make_plt_record (dynobj);
9224 if (h->plt.plist == NULL)
9225 return FALSE;
9226
9227 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9228 n32 or n64, so always use a standard entry there.
9229
9230 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9231 all MIPS16 calls will go via that stub, and there is no benefit
9232 to having a MIPS16 entry. And in the case of call_stub a
9233 standard entry actually has to be used as the stub ends with a J
9234 instruction. */
9235 if (newabi_p
9236 || htab->is_vxworks
9237 || hmips->call_stub
9238 || hmips->call_fp_stub)
9239 {
9240 h->plt.plist->need_mips = TRUE;
9241 h->plt.plist->need_comp = FALSE;
9242 }
9243
9244 /* Otherwise, if there are no direct calls to the function, we
9245 have a free choice of whether to use standard or compressed
9246 entries. Prefer microMIPS entries if the object is known to
9247 contain microMIPS code, so that it becomes possible to create
9248 pure microMIPS binaries. Prefer standard entries otherwise,
9249 because MIPS16 ones are no smaller and are usually slower. */
9250 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9251 {
9252 if (micromips_p)
9253 h->plt.plist->need_comp = TRUE;
9254 else
9255 h->plt.plist->need_mips = TRUE;
9256 }
9257
9258 if (h->plt.plist->need_mips)
9259 {
9260 h->plt.plist->mips_offset = htab->plt_mips_offset;
9261 htab->plt_mips_offset += htab->plt_mips_entry_size;
9262 }
9263 if (h->plt.plist->need_comp)
9264 {
9265 h->plt.plist->comp_offset = htab->plt_comp_offset;
9266 htab->plt_comp_offset += htab->plt_comp_entry_size;
9267 }
9268
9269 /* Reserve the corresponding .got.plt entry now too. */
9270 h->plt.plist->gotplt_index = htab->plt_got_index++;
9271
9272 /* If the output file has no definition of the symbol, set the
9273 symbol's value to the address of the stub. */
9274 if (!bfd_link_pic (info) && !h->def_regular)
9275 hmips->use_plt_entry = TRUE;
9276
9277 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9278 htab->srelplt->size += (htab->is_vxworks
9279 ? MIPS_ELF_RELA_SIZE (dynobj)
9280 : MIPS_ELF_REL_SIZE (dynobj));
9281
9282 /* Make room for the .rela.plt.unloaded relocations. */
9283 if (htab->is_vxworks && !bfd_link_pic (info))
9284 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9285
9286 /* All relocations against this symbol that could have been made
9287 dynamic will now refer to the PLT entry instead. */
9288 hmips->possibly_dynamic_relocs = 0;
9289
9290 return TRUE;
9291 }
9292
9293 /* If this is a weak symbol, and there is a real definition, the
9294 processor independent code will have arranged for us to see the
9295 real definition first, and we can just use the same value. */
9296 if (h->u.weakdef != NULL)
9297 {
9298 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9299 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9300 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9301 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9302 return TRUE;
9303 }
9304
9305 /* Otherwise, there is nothing further to do for symbols defined
9306 in regular objects. */
9307 if (h->def_regular)
9308 return TRUE;
9309
9310 /* There's also nothing more to do if we'll convert all relocations
9311 against this symbol into dynamic relocations. */
9312 if (!hmips->has_static_relocs)
9313 return TRUE;
9314
9315 /* We're now relying on copy relocations. Complain if we have
9316 some that we can't convert. */
9317 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9318 {
9319 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9320 "dynamic symbol %s"),
9321 h->root.root.string);
9322 bfd_set_error (bfd_error_bad_value);
9323 return FALSE;
9324 }
9325
9326 /* We must allocate the symbol in our .dynbss section, which will
9327 become part of the .bss section of the executable. There will be
9328 an entry for this symbol in the .dynsym section. The dynamic
9329 object will contain position independent code, so all references
9330 from the dynamic object to this symbol will go through the global
9331 offset table. The dynamic linker will use the .dynsym entry to
9332 determine the address it must put in the global offset table, so
9333 both the dynamic object and the regular object will refer to the
9334 same memory location for the variable. */
9335
9336 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9337 {
9338 if (htab->is_vxworks)
9339 htab->srelbss->size += sizeof (Elf32_External_Rela);
9340 else
9341 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9342 h->needs_copy = 1;
9343 }
9344
9345 /* All relocations against this symbol that could have been made
9346 dynamic will now refer to the local copy instead. */
9347 hmips->possibly_dynamic_relocs = 0;
9348
9349 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9350 }
9351 \f
9352 /* This function is called after all the input files have been read,
9353 and the input sections have been assigned to output sections. We
9354 check for any mips16 stub sections that we can discard. */
9355
9356 bfd_boolean
9357 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9358 struct bfd_link_info *info)
9359 {
9360 asection *sect;
9361 struct mips_elf_link_hash_table *htab;
9362 struct mips_htab_traverse_info hti;
9363
9364 htab = mips_elf_hash_table (info);
9365 BFD_ASSERT (htab != NULL);
9366
9367 /* The .reginfo section has a fixed size. */
9368 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9369 if (sect != NULL)
9370 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9371
9372 /* The .MIPS.abiflags section has a fixed size. */
9373 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9374 if (sect != NULL)
9375 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9376
9377 hti.info = info;
9378 hti.output_bfd = output_bfd;
9379 hti.error = FALSE;
9380 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9381 mips_elf_check_symbols, &hti);
9382 if (hti.error)
9383 return FALSE;
9384
9385 return TRUE;
9386 }
9387
9388 /* If the link uses a GOT, lay it out and work out its size. */
9389
9390 static bfd_boolean
9391 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9392 {
9393 bfd *dynobj;
9394 asection *s;
9395 struct mips_got_info *g;
9396 bfd_size_type loadable_size = 0;
9397 bfd_size_type page_gotno;
9398 bfd *ibfd;
9399 struct mips_elf_traverse_got_arg tga;
9400 struct mips_elf_link_hash_table *htab;
9401
9402 htab = mips_elf_hash_table (info);
9403 BFD_ASSERT (htab != NULL);
9404
9405 s = htab->sgot;
9406 if (s == NULL)
9407 return TRUE;
9408
9409 dynobj = elf_hash_table (info)->dynobj;
9410 g = htab->got_info;
9411
9412 /* Allocate room for the reserved entries. VxWorks always reserves
9413 3 entries; other objects only reserve 2 entries. */
9414 BFD_ASSERT (g->assigned_low_gotno == 0);
9415 if (htab->is_vxworks)
9416 htab->reserved_gotno = 3;
9417 else
9418 htab->reserved_gotno = 2;
9419 g->local_gotno += htab->reserved_gotno;
9420 g->assigned_low_gotno = htab->reserved_gotno;
9421
9422 /* Decide which symbols need to go in the global part of the GOT and
9423 count the number of reloc-only GOT symbols. */
9424 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9425
9426 if (!mips_elf_resolve_final_got_entries (info, g))
9427 return FALSE;
9428
9429 /* Calculate the total loadable size of the output. That
9430 will give us the maximum number of GOT_PAGE entries
9431 required. */
9432 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9433 {
9434 asection *subsection;
9435
9436 for (subsection = ibfd->sections;
9437 subsection;
9438 subsection = subsection->next)
9439 {
9440 if ((subsection->flags & SEC_ALLOC) == 0)
9441 continue;
9442 loadable_size += ((subsection->size + 0xf)
9443 &~ (bfd_size_type) 0xf);
9444 }
9445 }
9446
9447 if (htab->is_vxworks)
9448 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9449 relocations against local symbols evaluate to "G", and the EABI does
9450 not include R_MIPS_GOT_PAGE. */
9451 page_gotno = 0;
9452 else
9453 /* Assume there are two loadable segments consisting of contiguous
9454 sections. Is 5 enough? */
9455 page_gotno = (loadable_size >> 16) + 5;
9456
9457 /* Choose the smaller of the two page estimates; both are intended to be
9458 conservative. */
9459 if (page_gotno > g->page_gotno)
9460 page_gotno = g->page_gotno;
9461
9462 g->local_gotno += page_gotno;
9463 g->assigned_high_gotno = g->local_gotno - 1;
9464
9465 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9466 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9467 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9468
9469 /* VxWorks does not support multiple GOTs. It initializes $gp to
9470 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9471 dynamic loader. */
9472 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9473 {
9474 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9475 return FALSE;
9476 }
9477 else
9478 {
9479 /* Record that all bfds use G. This also has the effect of freeing
9480 the per-bfd GOTs, which we no longer need. */
9481 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9482 if (mips_elf_bfd_got (ibfd, FALSE))
9483 mips_elf_replace_bfd_got (ibfd, g);
9484 mips_elf_replace_bfd_got (output_bfd, g);
9485
9486 /* Set up TLS entries. */
9487 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9488 tga.info = info;
9489 tga.g = g;
9490 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9491 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9492 if (!tga.g)
9493 return FALSE;
9494 BFD_ASSERT (g->tls_assigned_gotno
9495 == g->global_gotno + g->local_gotno + g->tls_gotno);
9496
9497 /* Each VxWorks GOT entry needs an explicit relocation. */
9498 if (htab->is_vxworks && bfd_link_pic (info))
9499 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9500
9501 /* Allocate room for the TLS relocations. */
9502 if (g->relocs)
9503 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9504 }
9505
9506 return TRUE;
9507 }
9508
9509 /* Estimate the size of the .MIPS.stubs section. */
9510
9511 static void
9512 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9513 {
9514 struct mips_elf_link_hash_table *htab;
9515 bfd_size_type dynsymcount;
9516
9517 htab = mips_elf_hash_table (info);
9518 BFD_ASSERT (htab != NULL);
9519
9520 if (htab->lazy_stub_count == 0)
9521 return;
9522
9523 /* IRIX rld assumes that a function stub isn't at the end of the .text
9524 section, so add a dummy entry to the end. */
9525 htab->lazy_stub_count++;
9526
9527 /* Get a worst-case estimate of the number of dynamic symbols needed.
9528 At this point, dynsymcount does not account for section symbols
9529 and count_section_dynsyms may overestimate the number that will
9530 be needed. */
9531 dynsymcount = (elf_hash_table (info)->dynsymcount
9532 + count_section_dynsyms (output_bfd, info));
9533
9534 /* Determine the size of one stub entry. There's no disadvantage
9535 from using microMIPS code here, so for the sake of pure-microMIPS
9536 binaries we prefer it whenever there's any microMIPS code in
9537 output produced at all. This has a benefit of stubs being
9538 shorter by 4 bytes each too, unless in the insn32 mode. */
9539 if (!MICROMIPS_P (output_bfd))
9540 htab->function_stub_size = (dynsymcount > 0x10000
9541 ? MIPS_FUNCTION_STUB_BIG_SIZE
9542 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9543 else if (htab->insn32)
9544 htab->function_stub_size = (dynsymcount > 0x10000
9545 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9546 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9547 else
9548 htab->function_stub_size = (dynsymcount > 0x10000
9549 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9550 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9551
9552 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9553 }
9554
9555 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9556 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9557 stub, allocate an entry in the stubs section. */
9558
9559 static bfd_boolean
9560 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9561 {
9562 struct mips_htab_traverse_info *hti = data;
9563 struct mips_elf_link_hash_table *htab;
9564 struct bfd_link_info *info;
9565 bfd *output_bfd;
9566
9567 info = hti->info;
9568 output_bfd = hti->output_bfd;
9569 htab = mips_elf_hash_table (info);
9570 BFD_ASSERT (htab != NULL);
9571
9572 if (h->needs_lazy_stub)
9573 {
9574 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9575 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9576 bfd_vma isa_bit = micromips_p;
9577
9578 BFD_ASSERT (htab->root.dynobj != NULL);
9579 if (h->root.plt.plist == NULL)
9580 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9581 if (h->root.plt.plist == NULL)
9582 {
9583 hti->error = TRUE;
9584 return FALSE;
9585 }
9586 h->root.root.u.def.section = htab->sstubs;
9587 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9588 h->root.plt.plist->stub_offset = htab->sstubs->size;
9589 h->root.other = other;
9590 htab->sstubs->size += htab->function_stub_size;
9591 }
9592 return TRUE;
9593 }
9594
9595 /* Allocate offsets in the stubs section to each symbol that needs one.
9596 Set the final size of the .MIPS.stub section. */
9597
9598 static bfd_boolean
9599 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9600 {
9601 bfd *output_bfd = info->output_bfd;
9602 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9603 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9604 bfd_vma isa_bit = micromips_p;
9605 struct mips_elf_link_hash_table *htab;
9606 struct mips_htab_traverse_info hti;
9607 struct elf_link_hash_entry *h;
9608 bfd *dynobj;
9609
9610 htab = mips_elf_hash_table (info);
9611 BFD_ASSERT (htab != NULL);
9612
9613 if (htab->lazy_stub_count == 0)
9614 return TRUE;
9615
9616 htab->sstubs->size = 0;
9617 hti.info = info;
9618 hti.output_bfd = output_bfd;
9619 hti.error = FALSE;
9620 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9621 if (hti.error)
9622 return FALSE;
9623 htab->sstubs->size += htab->function_stub_size;
9624 BFD_ASSERT (htab->sstubs->size
9625 == htab->lazy_stub_count * htab->function_stub_size);
9626
9627 dynobj = elf_hash_table (info)->dynobj;
9628 BFD_ASSERT (dynobj != NULL);
9629 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9630 if (h == NULL)
9631 return FALSE;
9632 h->root.u.def.value = isa_bit;
9633 h->other = other;
9634 h->type = STT_FUNC;
9635
9636 return TRUE;
9637 }
9638
9639 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9640 bfd_link_info. If H uses the address of a PLT entry as the value
9641 of the symbol, then set the entry in the symbol table now. Prefer
9642 a standard MIPS PLT entry. */
9643
9644 static bfd_boolean
9645 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9646 {
9647 struct bfd_link_info *info = data;
9648 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9649 struct mips_elf_link_hash_table *htab;
9650 unsigned int other;
9651 bfd_vma isa_bit;
9652 bfd_vma val;
9653
9654 htab = mips_elf_hash_table (info);
9655 BFD_ASSERT (htab != NULL);
9656
9657 if (h->use_plt_entry)
9658 {
9659 BFD_ASSERT (h->root.plt.plist != NULL);
9660 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9661 || h->root.plt.plist->comp_offset != MINUS_ONE);
9662
9663 val = htab->plt_header_size;
9664 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9665 {
9666 isa_bit = 0;
9667 val += h->root.plt.plist->mips_offset;
9668 other = 0;
9669 }
9670 else
9671 {
9672 isa_bit = 1;
9673 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9674 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9675 }
9676 val += isa_bit;
9677 /* For VxWorks, point at the PLT load stub rather than the lazy
9678 resolution stub; this stub will become the canonical function
9679 address. */
9680 if (htab->is_vxworks)
9681 val += 8;
9682
9683 h->root.root.u.def.section = htab->splt;
9684 h->root.root.u.def.value = val;
9685 h->root.other = other;
9686 }
9687
9688 return TRUE;
9689 }
9690
9691 /* Set the sizes of the dynamic sections. */
9692
9693 bfd_boolean
9694 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9695 struct bfd_link_info *info)
9696 {
9697 bfd *dynobj;
9698 asection *s, *sreldyn;
9699 bfd_boolean reltext;
9700 struct mips_elf_link_hash_table *htab;
9701
9702 htab = mips_elf_hash_table (info);
9703 BFD_ASSERT (htab != NULL);
9704 dynobj = elf_hash_table (info)->dynobj;
9705 BFD_ASSERT (dynobj != NULL);
9706
9707 if (elf_hash_table (info)->dynamic_sections_created)
9708 {
9709 /* Set the contents of the .interp section to the interpreter. */
9710 if (bfd_link_executable (info) && !info->nointerp)
9711 {
9712 s = bfd_get_linker_section (dynobj, ".interp");
9713 BFD_ASSERT (s != NULL);
9714 s->size
9715 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9716 s->contents
9717 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9718 }
9719
9720 /* Figure out the size of the PLT header if we know that we
9721 are using it. For the sake of cache alignment always use
9722 a standard header whenever any standard entries are present
9723 even if microMIPS entries are present as well. This also
9724 lets the microMIPS header rely on the value of $v0 only set
9725 by microMIPS entries, for a small size reduction.
9726
9727 Set symbol table entry values for symbols that use the
9728 address of their PLT entry now that we can calculate it.
9729
9730 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9731 haven't already in _bfd_elf_create_dynamic_sections. */
9732 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9733 {
9734 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9735 && !htab->plt_mips_offset);
9736 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9737 bfd_vma isa_bit = micromips_p;
9738 struct elf_link_hash_entry *h;
9739 bfd_vma size;
9740
9741 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9742 BFD_ASSERT (htab->sgotplt->size == 0);
9743 BFD_ASSERT (htab->splt->size == 0);
9744
9745 if (htab->is_vxworks && bfd_link_pic (info))
9746 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9747 else if (htab->is_vxworks)
9748 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9749 else if (ABI_64_P (output_bfd))
9750 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9751 else if (ABI_N32_P (output_bfd))
9752 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9753 else if (!micromips_p)
9754 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9755 else if (htab->insn32)
9756 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9757 else
9758 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9759
9760 htab->plt_header_is_comp = micromips_p;
9761 htab->plt_header_size = size;
9762 htab->splt->size = (size
9763 + htab->plt_mips_offset
9764 + htab->plt_comp_offset);
9765 htab->sgotplt->size = (htab->plt_got_index
9766 * MIPS_ELF_GOT_SIZE (dynobj));
9767
9768 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9769
9770 if (htab->root.hplt == NULL)
9771 {
9772 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9773 "_PROCEDURE_LINKAGE_TABLE_");
9774 htab->root.hplt = h;
9775 if (h == NULL)
9776 return FALSE;
9777 }
9778
9779 h = htab->root.hplt;
9780 h->root.u.def.value = isa_bit;
9781 h->other = other;
9782 h->type = STT_FUNC;
9783 }
9784 }
9785
9786 /* Allocate space for global sym dynamic relocs. */
9787 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9788
9789 mips_elf_estimate_stub_size (output_bfd, info);
9790
9791 if (!mips_elf_lay_out_got (output_bfd, info))
9792 return FALSE;
9793
9794 mips_elf_lay_out_lazy_stubs (info);
9795
9796 /* The check_relocs and adjust_dynamic_symbol entry points have
9797 determined the sizes of the various dynamic sections. Allocate
9798 memory for them. */
9799 reltext = FALSE;
9800 for (s = dynobj->sections; s != NULL; s = s->next)
9801 {
9802 const char *name;
9803
9804 /* It's OK to base decisions on the section name, because none
9805 of the dynobj section names depend upon the input files. */
9806 name = bfd_get_section_name (dynobj, s);
9807
9808 if ((s->flags & SEC_LINKER_CREATED) == 0)
9809 continue;
9810
9811 if (CONST_STRNEQ (name, ".rel"))
9812 {
9813 if (s->size != 0)
9814 {
9815 const char *outname;
9816 asection *target;
9817
9818 /* If this relocation section applies to a read only
9819 section, then we probably need a DT_TEXTREL entry.
9820 If the relocation section is .rel(a).dyn, we always
9821 assert a DT_TEXTREL entry rather than testing whether
9822 there exists a relocation to a read only section or
9823 not. */
9824 outname = bfd_get_section_name (output_bfd,
9825 s->output_section);
9826 target = bfd_get_section_by_name (output_bfd, outname + 4);
9827 if ((target != NULL
9828 && (target->flags & SEC_READONLY) != 0
9829 && (target->flags & SEC_ALLOC) != 0)
9830 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9831 reltext = TRUE;
9832
9833 /* We use the reloc_count field as a counter if we need
9834 to copy relocs into the output file. */
9835 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9836 s->reloc_count = 0;
9837
9838 /* If combreloc is enabled, elf_link_sort_relocs() will
9839 sort relocations, but in a different way than we do,
9840 and before we're done creating relocations. Also, it
9841 will move them around between input sections'
9842 relocation's contents, so our sorting would be
9843 broken, so don't let it run. */
9844 info->combreloc = 0;
9845 }
9846 }
9847 else if (bfd_link_executable (info)
9848 && ! mips_elf_hash_table (info)->use_rld_obj_head
9849 && CONST_STRNEQ (name, ".rld_map"))
9850 {
9851 /* We add a room for __rld_map. It will be filled in by the
9852 rtld to contain a pointer to the _r_debug structure. */
9853 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9854 }
9855 else if (SGI_COMPAT (output_bfd)
9856 && CONST_STRNEQ (name, ".compact_rel"))
9857 s->size += mips_elf_hash_table (info)->compact_rel_size;
9858 else if (s == htab->splt)
9859 {
9860 /* If the last PLT entry has a branch delay slot, allocate
9861 room for an extra nop to fill the delay slot. This is
9862 for CPUs without load interlocking. */
9863 if (! LOAD_INTERLOCKS_P (output_bfd)
9864 && ! htab->is_vxworks && s->size > 0)
9865 s->size += 4;
9866 }
9867 else if (! CONST_STRNEQ (name, ".init")
9868 && s != htab->sgot
9869 && s != htab->sgotplt
9870 && s != htab->sstubs
9871 && s != htab->sdynbss)
9872 {
9873 /* It's not one of our sections, so don't allocate space. */
9874 continue;
9875 }
9876
9877 if (s->size == 0)
9878 {
9879 s->flags |= SEC_EXCLUDE;
9880 continue;
9881 }
9882
9883 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9884 continue;
9885
9886 /* Allocate memory for the section contents. */
9887 s->contents = bfd_zalloc (dynobj, s->size);
9888 if (s->contents == NULL)
9889 {
9890 bfd_set_error (bfd_error_no_memory);
9891 return FALSE;
9892 }
9893 }
9894
9895 if (elf_hash_table (info)->dynamic_sections_created)
9896 {
9897 /* Add some entries to the .dynamic section. We fill in the
9898 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9899 must add the entries now so that we get the correct size for
9900 the .dynamic section. */
9901
9902 /* SGI object has the equivalence of DT_DEBUG in the
9903 DT_MIPS_RLD_MAP entry. This must come first because glibc
9904 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9905 may only look at the first one they see. */
9906 if (!bfd_link_pic (info)
9907 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9908 return FALSE;
9909
9910 if (bfd_link_executable (info)
9911 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9912 return FALSE;
9913
9914 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9915 used by the debugger. */
9916 if (bfd_link_executable (info)
9917 && !SGI_COMPAT (output_bfd)
9918 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9919 return FALSE;
9920
9921 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9922 info->flags |= DF_TEXTREL;
9923
9924 if ((info->flags & DF_TEXTREL) != 0)
9925 {
9926 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9927 return FALSE;
9928
9929 /* Clear the DF_TEXTREL flag. It will be set again if we
9930 write out an actual text relocation; we may not, because
9931 at this point we do not know whether e.g. any .eh_frame
9932 absolute relocations have been converted to PC-relative. */
9933 info->flags &= ~DF_TEXTREL;
9934 }
9935
9936 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9937 return FALSE;
9938
9939 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9940 if (htab->is_vxworks)
9941 {
9942 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9943 use any of the DT_MIPS_* tags. */
9944 if (sreldyn && sreldyn->size > 0)
9945 {
9946 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9947 return FALSE;
9948
9949 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9950 return FALSE;
9951
9952 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9953 return FALSE;
9954 }
9955 }
9956 else
9957 {
9958 if (sreldyn && sreldyn->size > 0)
9959 {
9960 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9961 return FALSE;
9962
9963 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9964 return FALSE;
9965
9966 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9967 return FALSE;
9968 }
9969
9970 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9971 return FALSE;
9972
9973 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9974 return FALSE;
9975
9976 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9977 return FALSE;
9978
9979 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9980 return FALSE;
9981
9982 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9983 return FALSE;
9984
9985 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9986 return FALSE;
9987
9988 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9989 return FALSE;
9990
9991 if (IRIX_COMPAT (dynobj) == ict_irix5
9992 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9993 return FALSE;
9994
9995 if (IRIX_COMPAT (dynobj) == ict_irix6
9996 && (bfd_get_section_by_name
9997 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9998 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9999 return FALSE;
10000 }
10001 if (htab->splt->size > 0)
10002 {
10003 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10004 return FALSE;
10005
10006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10007 return FALSE;
10008
10009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10010 return FALSE;
10011
10012 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10013 return FALSE;
10014 }
10015 if (htab->is_vxworks
10016 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10017 return FALSE;
10018 }
10019
10020 return TRUE;
10021 }
10022 \f
10023 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10024 Adjust its R_ADDEND field so that it is correct for the output file.
10025 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10026 and sections respectively; both use symbol indexes. */
10027
10028 static void
10029 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10030 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10031 asection **local_sections, Elf_Internal_Rela *rel)
10032 {
10033 unsigned int r_type, r_symndx;
10034 Elf_Internal_Sym *sym;
10035 asection *sec;
10036
10037 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10038 {
10039 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10040 if (gprel16_reloc_p (r_type)
10041 || r_type == R_MIPS_GPREL32
10042 || literal_reloc_p (r_type))
10043 {
10044 rel->r_addend += _bfd_get_gp_value (input_bfd);
10045 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10046 }
10047
10048 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10049 sym = local_syms + r_symndx;
10050
10051 /* Adjust REL's addend to account for section merging. */
10052 if (!bfd_link_relocatable (info))
10053 {
10054 sec = local_sections[r_symndx];
10055 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10056 }
10057
10058 /* This would normally be done by the rela_normal code in elflink.c. */
10059 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10060 rel->r_addend += local_sections[r_symndx]->output_offset;
10061 }
10062 }
10063
10064 /* Handle relocations against symbols from removed linkonce sections,
10065 or sections discarded by a linker script. We use this wrapper around
10066 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10067 on 64-bit ELF targets. In this case for any relocation handled, which
10068 always be the first in a triplet, the remaining two have to be processed
10069 together with the first, even if they are R_MIPS_NONE. It is the symbol
10070 index referred by the first reloc that applies to all the three and the
10071 remaining two never refer to an object symbol. And it is the final
10072 relocation (the last non-null one) that determines the output field of
10073 the whole relocation so retrieve the corresponding howto structure for
10074 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10075
10076 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10077 and therefore requires to be pasted in a loop. It also defines a block
10078 and does not protect any of its arguments, hence the extra brackets. */
10079
10080 static void
10081 mips_reloc_against_discarded_section (bfd *output_bfd,
10082 struct bfd_link_info *info,
10083 bfd *input_bfd, asection *input_section,
10084 Elf_Internal_Rela **rel,
10085 const Elf_Internal_Rela **relend,
10086 bfd_boolean rel_reloc,
10087 reloc_howto_type *howto,
10088 bfd_byte *contents)
10089 {
10090 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10091 int count = bed->s->int_rels_per_ext_rel;
10092 unsigned int r_type;
10093 int i;
10094
10095 for (i = count - 1; i > 0; i--)
10096 {
10097 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10098 if (r_type != R_MIPS_NONE)
10099 {
10100 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10101 break;
10102 }
10103 }
10104 do
10105 {
10106 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10107 (*rel), count, (*relend),
10108 howto, i, contents);
10109 }
10110 while (0);
10111 }
10112
10113 /* Relocate a MIPS ELF section. */
10114
10115 bfd_boolean
10116 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10117 bfd *input_bfd, asection *input_section,
10118 bfd_byte *contents, Elf_Internal_Rela *relocs,
10119 Elf_Internal_Sym *local_syms,
10120 asection **local_sections)
10121 {
10122 Elf_Internal_Rela *rel;
10123 const Elf_Internal_Rela *relend;
10124 bfd_vma addend = 0;
10125 bfd_boolean use_saved_addend_p = FALSE;
10126 const struct elf_backend_data *bed;
10127
10128 bed = get_elf_backend_data (output_bfd);
10129 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10130 for (rel = relocs; rel < relend; ++rel)
10131 {
10132 const char *name;
10133 bfd_vma value = 0;
10134 reloc_howto_type *howto;
10135 bfd_boolean cross_mode_jump_p = FALSE;
10136 /* TRUE if the relocation is a RELA relocation, rather than a
10137 REL relocation. */
10138 bfd_boolean rela_relocation_p = TRUE;
10139 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10140 const char *msg;
10141 unsigned long r_symndx;
10142 asection *sec;
10143 Elf_Internal_Shdr *symtab_hdr;
10144 struct elf_link_hash_entry *h;
10145 bfd_boolean rel_reloc;
10146
10147 rel_reloc = (NEWABI_P (input_bfd)
10148 && mips_elf_rel_relocation_p (input_bfd, input_section,
10149 relocs, rel));
10150 /* Find the relocation howto for this relocation. */
10151 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10152
10153 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10154 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10155 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10156 {
10157 sec = local_sections[r_symndx];
10158 h = NULL;
10159 }
10160 else
10161 {
10162 unsigned long extsymoff;
10163
10164 extsymoff = 0;
10165 if (!elf_bad_symtab (input_bfd))
10166 extsymoff = symtab_hdr->sh_info;
10167 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10168 while (h->root.type == bfd_link_hash_indirect
10169 || h->root.type == bfd_link_hash_warning)
10170 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10171
10172 sec = NULL;
10173 if (h->root.type == bfd_link_hash_defined
10174 || h->root.type == bfd_link_hash_defweak)
10175 sec = h->root.u.def.section;
10176 }
10177
10178 if (sec != NULL && discarded_section (sec))
10179 {
10180 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10181 input_section, &rel, &relend,
10182 rel_reloc, howto, contents);
10183 continue;
10184 }
10185
10186 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10187 {
10188 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10189 64-bit code, but make sure all their addresses are in the
10190 lowermost or uppermost 32-bit section of the 64-bit address
10191 space. Thus, when they use an R_MIPS_64 they mean what is
10192 usually meant by R_MIPS_32, with the exception that the
10193 stored value is sign-extended to 64 bits. */
10194 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10195
10196 /* On big-endian systems, we need to lie about the position
10197 of the reloc. */
10198 if (bfd_big_endian (input_bfd))
10199 rel->r_offset += 4;
10200 }
10201
10202 if (!use_saved_addend_p)
10203 {
10204 /* If these relocations were originally of the REL variety,
10205 we must pull the addend out of the field that will be
10206 relocated. Otherwise, we simply use the contents of the
10207 RELA relocation. */
10208 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10209 relocs, rel))
10210 {
10211 rela_relocation_p = FALSE;
10212 addend = mips_elf_read_rel_addend (input_bfd, rel,
10213 howto, contents);
10214 if (hi16_reloc_p (r_type)
10215 || (got16_reloc_p (r_type)
10216 && mips_elf_local_relocation_p (input_bfd, rel,
10217 local_sections)))
10218 {
10219 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10220 contents, &addend))
10221 {
10222 if (h)
10223 name = h->root.root.string;
10224 else
10225 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10226 local_syms + r_symndx,
10227 sec);
10228 (*_bfd_error_handler)
10229 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10230 input_bfd, input_section, name, howto->name,
10231 rel->r_offset);
10232 }
10233 }
10234 else
10235 addend <<= howto->rightshift;
10236 }
10237 else
10238 addend = rel->r_addend;
10239 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10240 local_syms, local_sections, rel);
10241 }
10242
10243 if (bfd_link_relocatable (info))
10244 {
10245 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10246 && bfd_big_endian (input_bfd))
10247 rel->r_offset -= 4;
10248
10249 if (!rela_relocation_p && rel->r_addend)
10250 {
10251 addend += rel->r_addend;
10252 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10253 addend = mips_elf_high (addend);
10254 else if (r_type == R_MIPS_HIGHER)
10255 addend = mips_elf_higher (addend);
10256 else if (r_type == R_MIPS_HIGHEST)
10257 addend = mips_elf_highest (addend);
10258 else
10259 addend >>= howto->rightshift;
10260
10261 /* We use the source mask, rather than the destination
10262 mask because the place to which we are writing will be
10263 source of the addend in the final link. */
10264 addend &= howto->src_mask;
10265
10266 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10267 /* See the comment above about using R_MIPS_64 in the 32-bit
10268 ABI. Here, we need to update the addend. It would be
10269 possible to get away with just using the R_MIPS_32 reloc
10270 but for endianness. */
10271 {
10272 bfd_vma sign_bits;
10273 bfd_vma low_bits;
10274 bfd_vma high_bits;
10275
10276 if (addend & ((bfd_vma) 1 << 31))
10277 #ifdef BFD64
10278 sign_bits = ((bfd_vma) 1 << 32) - 1;
10279 #else
10280 sign_bits = -1;
10281 #endif
10282 else
10283 sign_bits = 0;
10284
10285 /* If we don't know that we have a 64-bit type,
10286 do two separate stores. */
10287 if (bfd_big_endian (input_bfd))
10288 {
10289 /* Store the sign-bits (which are most significant)
10290 first. */
10291 low_bits = sign_bits;
10292 high_bits = addend;
10293 }
10294 else
10295 {
10296 low_bits = addend;
10297 high_bits = sign_bits;
10298 }
10299 bfd_put_32 (input_bfd, low_bits,
10300 contents + rel->r_offset);
10301 bfd_put_32 (input_bfd, high_bits,
10302 contents + rel->r_offset + 4);
10303 continue;
10304 }
10305
10306 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10307 input_bfd, input_section,
10308 contents, FALSE))
10309 return FALSE;
10310 }
10311
10312 /* Go on to the next relocation. */
10313 continue;
10314 }
10315
10316 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10317 relocations for the same offset. In that case we are
10318 supposed to treat the output of each relocation as the addend
10319 for the next. */
10320 if (rel + 1 < relend
10321 && rel->r_offset == rel[1].r_offset
10322 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10323 use_saved_addend_p = TRUE;
10324 else
10325 use_saved_addend_p = FALSE;
10326
10327 /* Figure out what value we are supposed to relocate. */
10328 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10329 input_section, info, rel,
10330 addend, howto, local_syms,
10331 local_sections, &value,
10332 &name, &cross_mode_jump_p,
10333 use_saved_addend_p))
10334 {
10335 case bfd_reloc_continue:
10336 /* There's nothing to do. */
10337 continue;
10338
10339 case bfd_reloc_undefined:
10340 /* mips_elf_calculate_relocation already called the
10341 undefined_symbol callback. There's no real point in
10342 trying to perform the relocation at this point, so we
10343 just skip ahead to the next relocation. */
10344 continue;
10345
10346 case bfd_reloc_notsupported:
10347 msg = _("internal error: unsupported relocation error");
10348 info->callbacks->warning
10349 (info, msg, name, input_bfd, input_section, rel->r_offset);
10350 return FALSE;
10351
10352 case bfd_reloc_overflow:
10353 if (use_saved_addend_p)
10354 /* Ignore overflow until we reach the last relocation for
10355 a given location. */
10356 ;
10357 else
10358 {
10359 struct mips_elf_link_hash_table *htab;
10360
10361 htab = mips_elf_hash_table (info);
10362 BFD_ASSERT (htab != NULL);
10363 BFD_ASSERT (name != NULL);
10364 if (!htab->small_data_overflow_reported
10365 && (gprel16_reloc_p (howto->type)
10366 || literal_reloc_p (howto->type)))
10367 {
10368 msg = _("small-data section exceeds 64KB;"
10369 " lower small-data size limit (see option -G)");
10370
10371 htab->small_data_overflow_reported = TRUE;
10372 (*info->callbacks->einfo) ("%P: %s\n", msg);
10373 }
10374 (*info->callbacks->reloc_overflow)
10375 (info, NULL, name, howto->name, (bfd_vma) 0,
10376 input_bfd, input_section, rel->r_offset);
10377 }
10378 break;
10379
10380 case bfd_reloc_ok:
10381 break;
10382
10383 case bfd_reloc_outofrange:
10384 msg = NULL;
10385 if (jal_reloc_p (howto->type))
10386 msg = (cross_mode_jump_p
10387 ? _("Cannot convert a jump to JALX "
10388 "for a non-word-aligned address")
10389 : (howto->type == R_MIPS16_26
10390 ? _("Jump to a non-word-aligned address")
10391 : _("Jump to a non-instruction-aligned address")));
10392 else if (b_reloc_p (howto->type))
10393 msg = _("Branch to a non-instruction-aligned address");
10394 else if (aligned_pcrel_reloc_p (howto->type))
10395 msg = _("PC-relative load from unaligned address");
10396 if (msg)
10397 {
10398 info->callbacks->einfo
10399 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10400 break;
10401 }
10402 /* Fall through. */
10403
10404 default:
10405 abort ();
10406 break;
10407 }
10408
10409 /* If we've got another relocation for the address, keep going
10410 until we reach the last one. */
10411 if (use_saved_addend_p)
10412 {
10413 addend = value;
10414 continue;
10415 }
10416
10417 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10418 /* See the comment above about using R_MIPS_64 in the 32-bit
10419 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10420 that calculated the right value. Now, however, we
10421 sign-extend the 32-bit result to 64-bits, and store it as a
10422 64-bit value. We are especially generous here in that we
10423 go to extreme lengths to support this usage on systems with
10424 only a 32-bit VMA. */
10425 {
10426 bfd_vma sign_bits;
10427 bfd_vma low_bits;
10428 bfd_vma high_bits;
10429
10430 if (value & ((bfd_vma) 1 << 31))
10431 #ifdef BFD64
10432 sign_bits = ((bfd_vma) 1 << 32) - 1;
10433 #else
10434 sign_bits = -1;
10435 #endif
10436 else
10437 sign_bits = 0;
10438
10439 /* If we don't know that we have a 64-bit type,
10440 do two separate stores. */
10441 if (bfd_big_endian (input_bfd))
10442 {
10443 /* Undo what we did above. */
10444 rel->r_offset -= 4;
10445 /* Store the sign-bits (which are most significant)
10446 first. */
10447 low_bits = sign_bits;
10448 high_bits = value;
10449 }
10450 else
10451 {
10452 low_bits = value;
10453 high_bits = sign_bits;
10454 }
10455 bfd_put_32 (input_bfd, low_bits,
10456 contents + rel->r_offset);
10457 bfd_put_32 (input_bfd, high_bits,
10458 contents + rel->r_offset + 4);
10459 continue;
10460 }
10461
10462 /* Actually perform the relocation. */
10463 if (! mips_elf_perform_relocation (info, howto, rel, value,
10464 input_bfd, input_section,
10465 contents, cross_mode_jump_p))
10466 return FALSE;
10467 }
10468
10469 return TRUE;
10470 }
10471 \f
10472 /* A function that iterates over each entry in la25_stubs and fills
10473 in the code for each one. DATA points to a mips_htab_traverse_info. */
10474
10475 static int
10476 mips_elf_create_la25_stub (void **slot, void *data)
10477 {
10478 struct mips_htab_traverse_info *hti;
10479 struct mips_elf_link_hash_table *htab;
10480 struct mips_elf_la25_stub *stub;
10481 asection *s;
10482 bfd_byte *loc;
10483 bfd_vma offset, target, target_high, target_low;
10484
10485 stub = (struct mips_elf_la25_stub *) *slot;
10486 hti = (struct mips_htab_traverse_info *) data;
10487 htab = mips_elf_hash_table (hti->info);
10488 BFD_ASSERT (htab != NULL);
10489
10490 /* Create the section contents, if we haven't already. */
10491 s = stub->stub_section;
10492 loc = s->contents;
10493 if (loc == NULL)
10494 {
10495 loc = bfd_malloc (s->size);
10496 if (loc == NULL)
10497 {
10498 hti->error = TRUE;
10499 return FALSE;
10500 }
10501 s->contents = loc;
10502 }
10503
10504 /* Work out where in the section this stub should go. */
10505 offset = stub->offset;
10506
10507 /* Work out the target address. */
10508 target = mips_elf_get_la25_target (stub, &s);
10509 target += s->output_section->vma + s->output_offset;
10510
10511 target_high = ((target + 0x8000) >> 16) & 0xffff;
10512 target_low = (target & 0xffff);
10513
10514 if (stub->stub_section != htab->strampoline)
10515 {
10516 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10517 of the section and write the two instructions at the end. */
10518 memset (loc, 0, offset);
10519 loc += offset;
10520 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10521 {
10522 bfd_put_micromips_32 (hti->output_bfd,
10523 LA25_LUI_MICROMIPS (target_high),
10524 loc);
10525 bfd_put_micromips_32 (hti->output_bfd,
10526 LA25_ADDIU_MICROMIPS (target_low),
10527 loc + 4);
10528 }
10529 else
10530 {
10531 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10532 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10533 }
10534 }
10535 else
10536 {
10537 /* This is trampoline. */
10538 loc += offset;
10539 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10540 {
10541 bfd_put_micromips_32 (hti->output_bfd,
10542 LA25_LUI_MICROMIPS (target_high), loc);
10543 bfd_put_micromips_32 (hti->output_bfd,
10544 LA25_J_MICROMIPS (target), loc + 4);
10545 bfd_put_micromips_32 (hti->output_bfd,
10546 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10547 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10548 }
10549 else
10550 {
10551 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10552 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10553 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10554 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10555 }
10556 }
10557 return TRUE;
10558 }
10559
10560 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10561 adjust it appropriately now. */
10562
10563 static void
10564 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10565 const char *name, Elf_Internal_Sym *sym)
10566 {
10567 /* The linker script takes care of providing names and values for
10568 these, but we must place them into the right sections. */
10569 static const char* const text_section_symbols[] = {
10570 "_ftext",
10571 "_etext",
10572 "__dso_displacement",
10573 "__elf_header",
10574 "__program_header_table",
10575 NULL
10576 };
10577
10578 static const char* const data_section_symbols[] = {
10579 "_fdata",
10580 "_edata",
10581 "_end",
10582 "_fbss",
10583 NULL
10584 };
10585
10586 const char* const *p;
10587 int i;
10588
10589 for (i = 0; i < 2; ++i)
10590 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10591 *p;
10592 ++p)
10593 if (strcmp (*p, name) == 0)
10594 {
10595 /* All of these symbols are given type STT_SECTION by the
10596 IRIX6 linker. */
10597 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10598 sym->st_other = STO_PROTECTED;
10599
10600 /* The IRIX linker puts these symbols in special sections. */
10601 if (i == 0)
10602 sym->st_shndx = SHN_MIPS_TEXT;
10603 else
10604 sym->st_shndx = SHN_MIPS_DATA;
10605
10606 break;
10607 }
10608 }
10609
10610 /* Finish up dynamic symbol handling. We set the contents of various
10611 dynamic sections here. */
10612
10613 bfd_boolean
10614 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10615 struct bfd_link_info *info,
10616 struct elf_link_hash_entry *h,
10617 Elf_Internal_Sym *sym)
10618 {
10619 bfd *dynobj;
10620 asection *sgot;
10621 struct mips_got_info *g, *gg;
10622 const char *name;
10623 int idx;
10624 struct mips_elf_link_hash_table *htab;
10625 struct mips_elf_link_hash_entry *hmips;
10626
10627 htab = mips_elf_hash_table (info);
10628 BFD_ASSERT (htab != NULL);
10629 dynobj = elf_hash_table (info)->dynobj;
10630 hmips = (struct mips_elf_link_hash_entry *) h;
10631
10632 BFD_ASSERT (!htab->is_vxworks);
10633
10634 if (h->plt.plist != NULL
10635 && (h->plt.plist->mips_offset != MINUS_ONE
10636 || h->plt.plist->comp_offset != MINUS_ONE))
10637 {
10638 /* We've decided to create a PLT entry for this symbol. */
10639 bfd_byte *loc;
10640 bfd_vma header_address, got_address;
10641 bfd_vma got_address_high, got_address_low, load;
10642 bfd_vma got_index;
10643 bfd_vma isa_bit;
10644
10645 got_index = h->plt.plist->gotplt_index;
10646
10647 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10648 BFD_ASSERT (h->dynindx != -1);
10649 BFD_ASSERT (htab->splt != NULL);
10650 BFD_ASSERT (got_index != MINUS_ONE);
10651 BFD_ASSERT (!h->def_regular);
10652
10653 /* Calculate the address of the PLT header. */
10654 isa_bit = htab->plt_header_is_comp;
10655 header_address = (htab->splt->output_section->vma
10656 + htab->splt->output_offset + isa_bit);
10657
10658 /* Calculate the address of the .got.plt entry. */
10659 got_address = (htab->sgotplt->output_section->vma
10660 + htab->sgotplt->output_offset
10661 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10662
10663 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10664 got_address_low = got_address & 0xffff;
10665
10666 /* Initially point the .got.plt entry at the PLT header. */
10667 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10668 if (ABI_64_P (output_bfd))
10669 bfd_put_64 (output_bfd, header_address, loc);
10670 else
10671 bfd_put_32 (output_bfd, header_address, loc);
10672
10673 /* Now handle the PLT itself. First the standard entry (the order
10674 does not matter, we just have to pick one). */
10675 if (h->plt.plist->mips_offset != MINUS_ONE)
10676 {
10677 const bfd_vma *plt_entry;
10678 bfd_vma plt_offset;
10679
10680 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10681
10682 BFD_ASSERT (plt_offset <= htab->splt->size);
10683
10684 /* Find out where the .plt entry should go. */
10685 loc = htab->splt->contents + plt_offset;
10686
10687 /* Pick the load opcode. */
10688 load = MIPS_ELF_LOAD_WORD (output_bfd);
10689
10690 /* Fill in the PLT entry itself. */
10691
10692 if (MIPSR6_P (output_bfd))
10693 plt_entry = mipsr6_exec_plt_entry;
10694 else
10695 plt_entry = mips_exec_plt_entry;
10696 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10697 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10698 loc + 4);
10699
10700 if (! LOAD_INTERLOCKS_P (output_bfd))
10701 {
10702 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10703 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10704 }
10705 else
10706 {
10707 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10708 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10709 loc + 12);
10710 }
10711 }
10712
10713 /* Now the compressed entry. They come after any standard ones. */
10714 if (h->plt.plist->comp_offset != MINUS_ONE)
10715 {
10716 bfd_vma plt_offset;
10717
10718 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10719 + h->plt.plist->comp_offset);
10720
10721 BFD_ASSERT (plt_offset <= htab->splt->size);
10722
10723 /* Find out where the .plt entry should go. */
10724 loc = htab->splt->contents + plt_offset;
10725
10726 /* Fill in the PLT entry itself. */
10727 if (!MICROMIPS_P (output_bfd))
10728 {
10729 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10730
10731 bfd_put_16 (output_bfd, plt_entry[0], loc);
10732 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10733 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10734 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10735 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10736 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10737 bfd_put_32 (output_bfd, got_address, loc + 12);
10738 }
10739 else if (htab->insn32)
10740 {
10741 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10742
10743 bfd_put_16 (output_bfd, plt_entry[0], loc);
10744 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10745 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10746 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10747 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10748 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10749 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10750 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10751 }
10752 else
10753 {
10754 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10755 bfd_signed_vma gotpc_offset;
10756 bfd_vma loc_address;
10757
10758 BFD_ASSERT (got_address % 4 == 0);
10759
10760 loc_address = (htab->splt->output_section->vma
10761 + htab->splt->output_offset + plt_offset);
10762 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10763
10764 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10765 if (gotpc_offset + 0x1000000 >= 0x2000000)
10766 {
10767 (*_bfd_error_handler)
10768 (_("%B: `%A' offset of %ld from `%A' "
10769 "beyond the range of ADDIUPC"),
10770 output_bfd,
10771 htab->sgotplt->output_section,
10772 htab->splt->output_section,
10773 (long) gotpc_offset);
10774 bfd_set_error (bfd_error_no_error);
10775 return FALSE;
10776 }
10777 bfd_put_16 (output_bfd,
10778 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10779 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10780 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10781 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10782 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10783 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10784 }
10785 }
10786
10787 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10788 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10789 got_index - 2, h->dynindx,
10790 R_MIPS_JUMP_SLOT, got_address);
10791
10792 /* We distinguish between PLT entries and lazy-binding stubs by
10793 giving the former an st_other value of STO_MIPS_PLT. Set the
10794 flag and leave the value if there are any relocations in the
10795 binary where pointer equality matters. */
10796 sym->st_shndx = SHN_UNDEF;
10797 if (h->pointer_equality_needed)
10798 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10799 else
10800 {
10801 sym->st_value = 0;
10802 sym->st_other = 0;
10803 }
10804 }
10805
10806 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10807 {
10808 /* We've decided to create a lazy-binding stub. */
10809 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10810 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10811 bfd_vma stub_size = htab->function_stub_size;
10812 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10813 bfd_vma isa_bit = micromips_p;
10814 bfd_vma stub_big_size;
10815
10816 if (!micromips_p)
10817 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10818 else if (htab->insn32)
10819 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10820 else
10821 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10822
10823 /* This symbol has a stub. Set it up. */
10824
10825 BFD_ASSERT (h->dynindx != -1);
10826
10827 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10828
10829 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10830 sign extension at runtime in the stub, resulting in a negative
10831 index value. */
10832 if (h->dynindx & ~0x7fffffff)
10833 return FALSE;
10834
10835 /* Fill the stub. */
10836 if (micromips_p)
10837 {
10838 idx = 0;
10839 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10840 stub + idx);
10841 idx += 4;
10842 if (htab->insn32)
10843 {
10844 bfd_put_micromips_32 (output_bfd,
10845 STUB_MOVE32_MICROMIPS, stub + idx);
10846 idx += 4;
10847 }
10848 else
10849 {
10850 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10851 idx += 2;
10852 }
10853 if (stub_size == stub_big_size)
10854 {
10855 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10856
10857 bfd_put_micromips_32 (output_bfd,
10858 STUB_LUI_MICROMIPS (dynindx_hi),
10859 stub + idx);
10860 idx += 4;
10861 }
10862 if (htab->insn32)
10863 {
10864 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10865 stub + idx);
10866 idx += 4;
10867 }
10868 else
10869 {
10870 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10871 idx += 2;
10872 }
10873
10874 /* If a large stub is not required and sign extension is not a
10875 problem, then use legacy code in the stub. */
10876 if (stub_size == stub_big_size)
10877 bfd_put_micromips_32 (output_bfd,
10878 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10879 stub + idx);
10880 else if (h->dynindx & ~0x7fff)
10881 bfd_put_micromips_32 (output_bfd,
10882 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10883 stub + idx);
10884 else
10885 bfd_put_micromips_32 (output_bfd,
10886 STUB_LI16S_MICROMIPS (output_bfd,
10887 h->dynindx),
10888 stub + idx);
10889 }
10890 else
10891 {
10892 idx = 0;
10893 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10894 idx += 4;
10895 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10896 idx += 4;
10897 if (stub_size == stub_big_size)
10898 {
10899 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10900 stub + idx);
10901 idx += 4;
10902 }
10903 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10904 idx += 4;
10905
10906 /* If a large stub is not required and sign extension is not a
10907 problem, then use legacy code in the stub. */
10908 if (stub_size == stub_big_size)
10909 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10910 stub + idx);
10911 else if (h->dynindx & ~0x7fff)
10912 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10913 stub + idx);
10914 else
10915 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10916 stub + idx);
10917 }
10918
10919 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10920 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10921 stub, stub_size);
10922
10923 /* Mark the symbol as undefined. stub_offset != -1 occurs
10924 only for the referenced symbol. */
10925 sym->st_shndx = SHN_UNDEF;
10926
10927 /* The run-time linker uses the st_value field of the symbol
10928 to reset the global offset table entry for this external
10929 to its stub address when unlinking a shared object. */
10930 sym->st_value = (htab->sstubs->output_section->vma
10931 + htab->sstubs->output_offset
10932 + h->plt.plist->stub_offset
10933 + isa_bit);
10934 sym->st_other = other;
10935 }
10936
10937 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10938 refer to the stub, since only the stub uses the standard calling
10939 conventions. */
10940 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10941 {
10942 BFD_ASSERT (hmips->need_fn_stub);
10943 sym->st_value = (hmips->fn_stub->output_section->vma
10944 + hmips->fn_stub->output_offset);
10945 sym->st_size = hmips->fn_stub->size;
10946 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10947 }
10948
10949 BFD_ASSERT (h->dynindx != -1
10950 || h->forced_local);
10951
10952 sgot = htab->sgot;
10953 g = htab->got_info;
10954 BFD_ASSERT (g != NULL);
10955
10956 /* Run through the global symbol table, creating GOT entries for all
10957 the symbols that need them. */
10958 if (hmips->global_got_area != GGA_NONE)
10959 {
10960 bfd_vma offset;
10961 bfd_vma value;
10962
10963 value = sym->st_value;
10964 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10965 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10966 }
10967
10968 if (hmips->global_got_area != GGA_NONE && g->next)
10969 {
10970 struct mips_got_entry e, *p;
10971 bfd_vma entry;
10972 bfd_vma offset;
10973
10974 gg = g;
10975
10976 e.abfd = output_bfd;
10977 e.symndx = -1;
10978 e.d.h = hmips;
10979 e.tls_type = GOT_TLS_NONE;
10980
10981 for (g = g->next; g->next != gg; g = g->next)
10982 {
10983 if (g->got_entries
10984 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10985 &e)))
10986 {
10987 offset = p->gotidx;
10988 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10989 if (bfd_link_pic (info)
10990 || (elf_hash_table (info)->dynamic_sections_created
10991 && p->d.h != NULL
10992 && p->d.h->root.def_dynamic
10993 && !p->d.h->root.def_regular))
10994 {
10995 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10996 the various compatibility problems, it's easier to mock
10997 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10998 mips_elf_create_dynamic_relocation to calculate the
10999 appropriate addend. */
11000 Elf_Internal_Rela rel[3];
11001
11002 memset (rel, 0, sizeof (rel));
11003 if (ABI_64_P (output_bfd))
11004 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11005 else
11006 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11007 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11008
11009 entry = 0;
11010 if (! (mips_elf_create_dynamic_relocation
11011 (output_bfd, info, rel,
11012 e.d.h, NULL, sym->st_value, &entry, sgot)))
11013 return FALSE;
11014 }
11015 else
11016 entry = sym->st_value;
11017 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11018 }
11019 }
11020 }
11021
11022 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11023 name = h->root.root.string;
11024 if (h == elf_hash_table (info)->hdynamic
11025 || h == elf_hash_table (info)->hgot)
11026 sym->st_shndx = SHN_ABS;
11027 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11028 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11029 {
11030 sym->st_shndx = SHN_ABS;
11031 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11032 sym->st_value = 1;
11033 }
11034 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11035 {
11036 sym->st_shndx = SHN_ABS;
11037 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11038 sym->st_value = elf_gp (output_bfd);
11039 }
11040 else if (SGI_COMPAT (output_bfd))
11041 {
11042 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11043 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11044 {
11045 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11046 sym->st_other = STO_PROTECTED;
11047 sym->st_value = 0;
11048 sym->st_shndx = SHN_MIPS_DATA;
11049 }
11050 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11051 {
11052 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11053 sym->st_other = STO_PROTECTED;
11054 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11055 sym->st_shndx = SHN_ABS;
11056 }
11057 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11058 {
11059 if (h->type == STT_FUNC)
11060 sym->st_shndx = SHN_MIPS_TEXT;
11061 else if (h->type == STT_OBJECT)
11062 sym->st_shndx = SHN_MIPS_DATA;
11063 }
11064 }
11065
11066 /* Emit a copy reloc, if needed. */
11067 if (h->needs_copy)
11068 {
11069 asection *s;
11070 bfd_vma symval;
11071
11072 BFD_ASSERT (h->dynindx != -1);
11073 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11074
11075 s = mips_elf_rel_dyn_section (info, FALSE);
11076 symval = (h->root.u.def.section->output_section->vma
11077 + h->root.u.def.section->output_offset
11078 + h->root.u.def.value);
11079 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11080 h->dynindx, R_MIPS_COPY, symval);
11081 }
11082
11083 /* Handle the IRIX6-specific symbols. */
11084 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11085 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11086
11087 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11088 to treat compressed symbols like any other. */
11089 if (ELF_ST_IS_MIPS16 (sym->st_other))
11090 {
11091 BFD_ASSERT (sym->st_value & 1);
11092 sym->st_other -= STO_MIPS16;
11093 }
11094 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11095 {
11096 BFD_ASSERT (sym->st_value & 1);
11097 sym->st_other -= STO_MICROMIPS;
11098 }
11099
11100 return TRUE;
11101 }
11102
11103 /* Likewise, for VxWorks. */
11104
11105 bfd_boolean
11106 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11107 struct bfd_link_info *info,
11108 struct elf_link_hash_entry *h,
11109 Elf_Internal_Sym *sym)
11110 {
11111 bfd *dynobj;
11112 asection *sgot;
11113 struct mips_got_info *g;
11114 struct mips_elf_link_hash_table *htab;
11115 struct mips_elf_link_hash_entry *hmips;
11116
11117 htab = mips_elf_hash_table (info);
11118 BFD_ASSERT (htab != NULL);
11119 dynobj = elf_hash_table (info)->dynobj;
11120 hmips = (struct mips_elf_link_hash_entry *) h;
11121
11122 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11123 {
11124 bfd_byte *loc;
11125 bfd_vma plt_address, got_address, got_offset, branch_offset;
11126 Elf_Internal_Rela rel;
11127 static const bfd_vma *plt_entry;
11128 bfd_vma gotplt_index;
11129 bfd_vma plt_offset;
11130
11131 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11132 gotplt_index = h->plt.plist->gotplt_index;
11133
11134 BFD_ASSERT (h->dynindx != -1);
11135 BFD_ASSERT (htab->splt != NULL);
11136 BFD_ASSERT (gotplt_index != MINUS_ONE);
11137 BFD_ASSERT (plt_offset <= htab->splt->size);
11138
11139 /* Calculate the address of the .plt entry. */
11140 plt_address = (htab->splt->output_section->vma
11141 + htab->splt->output_offset
11142 + plt_offset);
11143
11144 /* Calculate the address of the .got.plt entry. */
11145 got_address = (htab->sgotplt->output_section->vma
11146 + htab->sgotplt->output_offset
11147 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11148
11149 /* Calculate the offset of the .got.plt entry from
11150 _GLOBAL_OFFSET_TABLE_. */
11151 got_offset = mips_elf_gotplt_index (info, h);
11152
11153 /* Calculate the offset for the branch at the start of the PLT
11154 entry. The branch jumps to the beginning of .plt. */
11155 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11156
11157 /* Fill in the initial value of the .got.plt entry. */
11158 bfd_put_32 (output_bfd, plt_address,
11159 (htab->sgotplt->contents
11160 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11161
11162 /* Find out where the .plt entry should go. */
11163 loc = htab->splt->contents + plt_offset;
11164
11165 if (bfd_link_pic (info))
11166 {
11167 plt_entry = mips_vxworks_shared_plt_entry;
11168 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11169 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11170 }
11171 else
11172 {
11173 bfd_vma got_address_high, got_address_low;
11174
11175 plt_entry = mips_vxworks_exec_plt_entry;
11176 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11177 got_address_low = got_address & 0xffff;
11178
11179 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11180 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11181 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11182 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11183 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11184 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11185 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11186 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11187
11188 loc = (htab->srelplt2->contents
11189 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11190
11191 /* Emit a relocation for the .got.plt entry. */
11192 rel.r_offset = got_address;
11193 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11194 rel.r_addend = plt_offset;
11195 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11196
11197 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11198 loc += sizeof (Elf32_External_Rela);
11199 rel.r_offset = plt_address + 8;
11200 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11201 rel.r_addend = got_offset;
11202 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11203
11204 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11205 loc += sizeof (Elf32_External_Rela);
11206 rel.r_offset += 4;
11207 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11208 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11209 }
11210
11211 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11212 loc = (htab->srelplt->contents
11213 + gotplt_index * sizeof (Elf32_External_Rela));
11214 rel.r_offset = got_address;
11215 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11216 rel.r_addend = 0;
11217 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11218
11219 if (!h->def_regular)
11220 sym->st_shndx = SHN_UNDEF;
11221 }
11222
11223 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11224
11225 sgot = htab->sgot;
11226 g = htab->got_info;
11227 BFD_ASSERT (g != NULL);
11228
11229 /* See if this symbol has an entry in the GOT. */
11230 if (hmips->global_got_area != GGA_NONE)
11231 {
11232 bfd_vma offset;
11233 Elf_Internal_Rela outrel;
11234 bfd_byte *loc;
11235 asection *s;
11236
11237 /* Install the symbol value in the GOT. */
11238 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11239 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11240
11241 /* Add a dynamic relocation for it. */
11242 s = mips_elf_rel_dyn_section (info, FALSE);
11243 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11244 outrel.r_offset = (sgot->output_section->vma
11245 + sgot->output_offset
11246 + offset);
11247 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11248 outrel.r_addend = 0;
11249 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11250 }
11251
11252 /* Emit a copy reloc, if needed. */
11253 if (h->needs_copy)
11254 {
11255 Elf_Internal_Rela rel;
11256
11257 BFD_ASSERT (h->dynindx != -1);
11258
11259 rel.r_offset = (h->root.u.def.section->output_section->vma
11260 + h->root.u.def.section->output_offset
11261 + h->root.u.def.value);
11262 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11263 rel.r_addend = 0;
11264 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11265 htab->srelbss->contents
11266 + (htab->srelbss->reloc_count
11267 * sizeof (Elf32_External_Rela)));
11268 ++htab->srelbss->reloc_count;
11269 }
11270
11271 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11272 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11273 sym->st_value &= ~1;
11274
11275 return TRUE;
11276 }
11277
11278 /* Write out a plt0 entry to the beginning of .plt. */
11279
11280 static bfd_boolean
11281 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11282 {
11283 bfd_byte *loc;
11284 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11285 static const bfd_vma *plt_entry;
11286 struct mips_elf_link_hash_table *htab;
11287
11288 htab = mips_elf_hash_table (info);
11289 BFD_ASSERT (htab != NULL);
11290
11291 if (ABI_64_P (output_bfd))
11292 plt_entry = mips_n64_exec_plt0_entry;
11293 else if (ABI_N32_P (output_bfd))
11294 plt_entry = mips_n32_exec_plt0_entry;
11295 else if (!htab->plt_header_is_comp)
11296 plt_entry = mips_o32_exec_plt0_entry;
11297 else if (htab->insn32)
11298 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11299 else
11300 plt_entry = micromips_o32_exec_plt0_entry;
11301
11302 /* Calculate the value of .got.plt. */
11303 gotplt_value = (htab->sgotplt->output_section->vma
11304 + htab->sgotplt->output_offset);
11305 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11306 gotplt_value_low = gotplt_value & 0xffff;
11307
11308 /* The PLT sequence is not safe for N64 if .got.plt's address can
11309 not be loaded in two instructions. */
11310 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11311 || ~(gotplt_value | 0x7fffffff) == 0);
11312
11313 /* Install the PLT header. */
11314 loc = htab->splt->contents;
11315 if (plt_entry == micromips_o32_exec_plt0_entry)
11316 {
11317 bfd_vma gotpc_offset;
11318 bfd_vma loc_address;
11319 size_t i;
11320
11321 BFD_ASSERT (gotplt_value % 4 == 0);
11322
11323 loc_address = (htab->splt->output_section->vma
11324 + htab->splt->output_offset);
11325 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11326
11327 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11328 if (gotpc_offset + 0x1000000 >= 0x2000000)
11329 {
11330 (*_bfd_error_handler)
11331 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11332 output_bfd,
11333 htab->sgotplt->output_section,
11334 htab->splt->output_section,
11335 (long) gotpc_offset);
11336 bfd_set_error (bfd_error_no_error);
11337 return FALSE;
11338 }
11339 bfd_put_16 (output_bfd,
11340 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11341 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11342 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11343 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11344 }
11345 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11346 {
11347 size_t i;
11348
11349 bfd_put_16 (output_bfd, plt_entry[0], loc);
11350 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11351 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11352 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11353 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11354 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11355 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11356 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11357 }
11358 else
11359 {
11360 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11361 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11362 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11363 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11364 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11365 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11366 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11367 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11368 }
11369
11370 return TRUE;
11371 }
11372
11373 /* Install the PLT header for a VxWorks executable and finalize the
11374 contents of .rela.plt.unloaded. */
11375
11376 static void
11377 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11378 {
11379 Elf_Internal_Rela rela;
11380 bfd_byte *loc;
11381 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11382 static const bfd_vma *plt_entry;
11383 struct mips_elf_link_hash_table *htab;
11384
11385 htab = mips_elf_hash_table (info);
11386 BFD_ASSERT (htab != NULL);
11387
11388 plt_entry = mips_vxworks_exec_plt0_entry;
11389
11390 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11391 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11392 + htab->root.hgot->root.u.def.section->output_offset
11393 + htab->root.hgot->root.u.def.value);
11394
11395 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11396 got_value_low = got_value & 0xffff;
11397
11398 /* Calculate the address of the PLT header. */
11399 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11400
11401 /* Install the PLT header. */
11402 loc = htab->splt->contents;
11403 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11404 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11405 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11406 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11407 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11408 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11409
11410 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11411 loc = htab->srelplt2->contents;
11412 rela.r_offset = plt_address;
11413 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11414 rela.r_addend = 0;
11415 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11416 loc += sizeof (Elf32_External_Rela);
11417
11418 /* Output the relocation for the following addiu of
11419 %lo(_GLOBAL_OFFSET_TABLE_). */
11420 rela.r_offset += 4;
11421 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11422 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11423 loc += sizeof (Elf32_External_Rela);
11424
11425 /* Fix up the remaining relocations. They may have the wrong
11426 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11427 in which symbols were output. */
11428 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11429 {
11430 Elf_Internal_Rela rel;
11431
11432 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11433 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11434 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11435 loc += sizeof (Elf32_External_Rela);
11436
11437 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11438 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11439 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11440 loc += sizeof (Elf32_External_Rela);
11441
11442 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11443 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11444 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11445 loc += sizeof (Elf32_External_Rela);
11446 }
11447 }
11448
11449 /* Install the PLT header for a VxWorks shared library. */
11450
11451 static void
11452 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11453 {
11454 unsigned int i;
11455 struct mips_elf_link_hash_table *htab;
11456
11457 htab = mips_elf_hash_table (info);
11458 BFD_ASSERT (htab != NULL);
11459
11460 /* We just need to copy the entry byte-by-byte. */
11461 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11462 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11463 htab->splt->contents + i * 4);
11464 }
11465
11466 /* Finish up the dynamic sections. */
11467
11468 bfd_boolean
11469 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11470 struct bfd_link_info *info)
11471 {
11472 bfd *dynobj;
11473 asection *sdyn;
11474 asection *sgot;
11475 struct mips_got_info *gg, *g;
11476 struct mips_elf_link_hash_table *htab;
11477
11478 htab = mips_elf_hash_table (info);
11479 BFD_ASSERT (htab != NULL);
11480
11481 dynobj = elf_hash_table (info)->dynobj;
11482
11483 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11484
11485 sgot = htab->sgot;
11486 gg = htab->got_info;
11487
11488 if (elf_hash_table (info)->dynamic_sections_created)
11489 {
11490 bfd_byte *b;
11491 int dyn_to_skip = 0, dyn_skipped = 0;
11492
11493 BFD_ASSERT (sdyn != NULL);
11494 BFD_ASSERT (gg != NULL);
11495
11496 g = mips_elf_bfd_got (output_bfd, FALSE);
11497 BFD_ASSERT (g != NULL);
11498
11499 for (b = sdyn->contents;
11500 b < sdyn->contents + sdyn->size;
11501 b += MIPS_ELF_DYN_SIZE (dynobj))
11502 {
11503 Elf_Internal_Dyn dyn;
11504 const char *name;
11505 size_t elemsize;
11506 asection *s;
11507 bfd_boolean swap_out_p;
11508
11509 /* Read in the current dynamic entry. */
11510 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11511
11512 /* Assume that we're going to modify it and write it out. */
11513 swap_out_p = TRUE;
11514
11515 switch (dyn.d_tag)
11516 {
11517 case DT_RELENT:
11518 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11519 break;
11520
11521 case DT_RELAENT:
11522 BFD_ASSERT (htab->is_vxworks);
11523 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11524 break;
11525
11526 case DT_STRSZ:
11527 /* Rewrite DT_STRSZ. */
11528 dyn.d_un.d_val =
11529 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11530 break;
11531
11532 case DT_PLTGOT:
11533 s = htab->sgot;
11534 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11535 break;
11536
11537 case DT_MIPS_PLTGOT:
11538 s = htab->sgotplt;
11539 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11540 break;
11541
11542 case DT_MIPS_RLD_VERSION:
11543 dyn.d_un.d_val = 1; /* XXX */
11544 break;
11545
11546 case DT_MIPS_FLAGS:
11547 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11548 break;
11549
11550 case DT_MIPS_TIME_STAMP:
11551 {
11552 time_t t;
11553 time (&t);
11554 dyn.d_un.d_val = t;
11555 }
11556 break;
11557
11558 case DT_MIPS_ICHECKSUM:
11559 /* XXX FIXME: */
11560 swap_out_p = FALSE;
11561 break;
11562
11563 case DT_MIPS_IVERSION:
11564 /* XXX FIXME: */
11565 swap_out_p = FALSE;
11566 break;
11567
11568 case DT_MIPS_BASE_ADDRESS:
11569 s = output_bfd->sections;
11570 BFD_ASSERT (s != NULL);
11571 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11572 break;
11573
11574 case DT_MIPS_LOCAL_GOTNO:
11575 dyn.d_un.d_val = g->local_gotno;
11576 break;
11577
11578 case DT_MIPS_UNREFEXTNO:
11579 /* The index into the dynamic symbol table which is the
11580 entry of the first external symbol that is not
11581 referenced within the same object. */
11582 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11583 break;
11584
11585 case DT_MIPS_GOTSYM:
11586 if (htab->global_gotsym)
11587 {
11588 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11589 break;
11590 }
11591 /* In case if we don't have global got symbols we default
11592 to setting DT_MIPS_GOTSYM to the same value as
11593 DT_MIPS_SYMTABNO, so we just fall through. */
11594
11595 case DT_MIPS_SYMTABNO:
11596 name = ".dynsym";
11597 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11598 s = bfd_get_linker_section (dynobj, name);
11599
11600 if (s != NULL)
11601 dyn.d_un.d_val = s->size / elemsize;
11602 else
11603 dyn.d_un.d_val = 0;
11604 break;
11605
11606 case DT_MIPS_HIPAGENO:
11607 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11608 break;
11609
11610 case DT_MIPS_RLD_MAP:
11611 {
11612 struct elf_link_hash_entry *h;
11613 h = mips_elf_hash_table (info)->rld_symbol;
11614 if (!h)
11615 {
11616 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11617 swap_out_p = FALSE;
11618 break;
11619 }
11620 s = h->root.u.def.section;
11621
11622 /* The MIPS_RLD_MAP tag stores the absolute address of the
11623 debug pointer. */
11624 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11625 + h->root.u.def.value);
11626 }
11627 break;
11628
11629 case DT_MIPS_RLD_MAP_REL:
11630 {
11631 struct elf_link_hash_entry *h;
11632 bfd_vma dt_addr, rld_addr;
11633 h = mips_elf_hash_table (info)->rld_symbol;
11634 if (!h)
11635 {
11636 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11637 swap_out_p = FALSE;
11638 break;
11639 }
11640 s = h->root.u.def.section;
11641
11642 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11643 pointer, relative to the address of the tag. */
11644 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11645 + (b - sdyn->contents));
11646 rld_addr = (s->output_section->vma + s->output_offset
11647 + h->root.u.def.value);
11648 dyn.d_un.d_ptr = rld_addr - dt_addr;
11649 }
11650 break;
11651
11652 case DT_MIPS_OPTIONS:
11653 s = (bfd_get_section_by_name
11654 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11655 dyn.d_un.d_ptr = s->vma;
11656 break;
11657
11658 case DT_RELASZ:
11659 BFD_ASSERT (htab->is_vxworks);
11660 /* The count does not include the JUMP_SLOT relocations. */
11661 if (htab->srelplt)
11662 dyn.d_un.d_val -= htab->srelplt->size;
11663 break;
11664
11665 case DT_PLTREL:
11666 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11667 if (htab->is_vxworks)
11668 dyn.d_un.d_val = DT_RELA;
11669 else
11670 dyn.d_un.d_val = DT_REL;
11671 break;
11672
11673 case DT_PLTRELSZ:
11674 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11675 dyn.d_un.d_val = htab->srelplt->size;
11676 break;
11677
11678 case DT_JMPREL:
11679 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11680 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11681 + htab->srelplt->output_offset);
11682 break;
11683
11684 case DT_TEXTREL:
11685 /* If we didn't need any text relocations after all, delete
11686 the dynamic tag. */
11687 if (!(info->flags & DF_TEXTREL))
11688 {
11689 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11690 swap_out_p = FALSE;
11691 }
11692 break;
11693
11694 case DT_FLAGS:
11695 /* If we didn't need any text relocations after all, clear
11696 DF_TEXTREL from DT_FLAGS. */
11697 if (!(info->flags & DF_TEXTREL))
11698 dyn.d_un.d_val &= ~DF_TEXTREL;
11699 else
11700 swap_out_p = FALSE;
11701 break;
11702
11703 default:
11704 swap_out_p = FALSE;
11705 if (htab->is_vxworks
11706 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11707 swap_out_p = TRUE;
11708 break;
11709 }
11710
11711 if (swap_out_p || dyn_skipped)
11712 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11713 (dynobj, &dyn, b - dyn_skipped);
11714
11715 if (dyn_to_skip)
11716 {
11717 dyn_skipped += dyn_to_skip;
11718 dyn_to_skip = 0;
11719 }
11720 }
11721
11722 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11723 if (dyn_skipped > 0)
11724 memset (b - dyn_skipped, 0, dyn_skipped);
11725 }
11726
11727 if (sgot != NULL && sgot->size > 0
11728 && !bfd_is_abs_section (sgot->output_section))
11729 {
11730 if (htab->is_vxworks)
11731 {
11732 /* The first entry of the global offset table points to the
11733 ".dynamic" section. The second is initialized by the
11734 loader and contains the shared library identifier.
11735 The third is also initialized by the loader and points
11736 to the lazy resolution stub. */
11737 MIPS_ELF_PUT_WORD (output_bfd,
11738 sdyn->output_offset + sdyn->output_section->vma,
11739 sgot->contents);
11740 MIPS_ELF_PUT_WORD (output_bfd, 0,
11741 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11742 MIPS_ELF_PUT_WORD (output_bfd, 0,
11743 sgot->contents
11744 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11745 }
11746 else
11747 {
11748 /* The first entry of the global offset table will be filled at
11749 runtime. The second entry will be used by some runtime loaders.
11750 This isn't the case of IRIX rld. */
11751 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11752 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11753 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11754 }
11755
11756 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11757 = MIPS_ELF_GOT_SIZE (output_bfd);
11758 }
11759
11760 /* Generate dynamic relocations for the non-primary gots. */
11761 if (gg != NULL && gg->next)
11762 {
11763 Elf_Internal_Rela rel[3];
11764 bfd_vma addend = 0;
11765
11766 memset (rel, 0, sizeof (rel));
11767 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11768
11769 for (g = gg->next; g->next != gg; g = g->next)
11770 {
11771 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11772 + g->next->tls_gotno;
11773
11774 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11775 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11776 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11777 sgot->contents
11778 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11779
11780 if (! bfd_link_pic (info))
11781 continue;
11782
11783 for (; got_index < g->local_gotno; got_index++)
11784 {
11785 if (got_index >= g->assigned_low_gotno
11786 && got_index <= g->assigned_high_gotno)
11787 continue;
11788
11789 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11790 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11791 if (!(mips_elf_create_dynamic_relocation
11792 (output_bfd, info, rel, NULL,
11793 bfd_abs_section_ptr,
11794 0, &addend, sgot)))
11795 return FALSE;
11796 BFD_ASSERT (addend == 0);
11797 }
11798 }
11799 }
11800
11801 /* The generation of dynamic relocations for the non-primary gots
11802 adds more dynamic relocations. We cannot count them until
11803 here. */
11804
11805 if (elf_hash_table (info)->dynamic_sections_created)
11806 {
11807 bfd_byte *b;
11808 bfd_boolean swap_out_p;
11809
11810 BFD_ASSERT (sdyn != NULL);
11811
11812 for (b = sdyn->contents;
11813 b < sdyn->contents + sdyn->size;
11814 b += MIPS_ELF_DYN_SIZE (dynobj))
11815 {
11816 Elf_Internal_Dyn dyn;
11817 asection *s;
11818
11819 /* Read in the current dynamic entry. */
11820 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11821
11822 /* Assume that we're going to modify it and write it out. */
11823 swap_out_p = TRUE;
11824
11825 switch (dyn.d_tag)
11826 {
11827 case DT_RELSZ:
11828 /* Reduce DT_RELSZ to account for any relocations we
11829 decided not to make. This is for the n64 irix rld,
11830 which doesn't seem to apply any relocations if there
11831 are trailing null entries. */
11832 s = mips_elf_rel_dyn_section (info, FALSE);
11833 dyn.d_un.d_val = (s->reloc_count
11834 * (ABI_64_P (output_bfd)
11835 ? sizeof (Elf64_Mips_External_Rel)
11836 : sizeof (Elf32_External_Rel)));
11837 /* Adjust the section size too. Tools like the prelinker
11838 can reasonably expect the values to the same. */
11839 elf_section_data (s->output_section)->this_hdr.sh_size
11840 = dyn.d_un.d_val;
11841 break;
11842
11843 default:
11844 swap_out_p = FALSE;
11845 break;
11846 }
11847
11848 if (swap_out_p)
11849 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11850 (dynobj, &dyn, b);
11851 }
11852 }
11853
11854 {
11855 asection *s;
11856 Elf32_compact_rel cpt;
11857
11858 if (SGI_COMPAT (output_bfd))
11859 {
11860 /* Write .compact_rel section out. */
11861 s = bfd_get_linker_section (dynobj, ".compact_rel");
11862 if (s != NULL)
11863 {
11864 cpt.id1 = 1;
11865 cpt.num = s->reloc_count;
11866 cpt.id2 = 2;
11867 cpt.offset = (s->output_section->filepos
11868 + sizeof (Elf32_External_compact_rel));
11869 cpt.reserved0 = 0;
11870 cpt.reserved1 = 0;
11871 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11872 ((Elf32_External_compact_rel *)
11873 s->contents));
11874
11875 /* Clean up a dummy stub function entry in .text. */
11876 if (htab->sstubs != NULL)
11877 {
11878 file_ptr dummy_offset;
11879
11880 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11881 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11882 memset (htab->sstubs->contents + dummy_offset, 0,
11883 htab->function_stub_size);
11884 }
11885 }
11886 }
11887
11888 /* The psABI says that the dynamic relocations must be sorted in
11889 increasing order of r_symndx. The VxWorks EABI doesn't require
11890 this, and because the code below handles REL rather than RELA
11891 relocations, using it for VxWorks would be outright harmful. */
11892 if (!htab->is_vxworks)
11893 {
11894 s = mips_elf_rel_dyn_section (info, FALSE);
11895 if (s != NULL
11896 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11897 {
11898 reldyn_sorting_bfd = output_bfd;
11899
11900 if (ABI_64_P (output_bfd))
11901 qsort ((Elf64_External_Rel *) s->contents + 1,
11902 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11903 sort_dynamic_relocs_64);
11904 else
11905 qsort ((Elf32_External_Rel *) s->contents + 1,
11906 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11907 sort_dynamic_relocs);
11908 }
11909 }
11910 }
11911
11912 if (htab->splt && htab->splt->size > 0)
11913 {
11914 if (htab->is_vxworks)
11915 {
11916 if (bfd_link_pic (info))
11917 mips_vxworks_finish_shared_plt (output_bfd, info);
11918 else
11919 mips_vxworks_finish_exec_plt (output_bfd, info);
11920 }
11921 else
11922 {
11923 BFD_ASSERT (!bfd_link_pic (info));
11924 if (!mips_finish_exec_plt (output_bfd, info))
11925 return FALSE;
11926 }
11927 }
11928 return TRUE;
11929 }
11930
11931
11932 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11933
11934 static void
11935 mips_set_isa_flags (bfd *abfd)
11936 {
11937 flagword val;
11938
11939 switch (bfd_get_mach (abfd))
11940 {
11941 default:
11942 case bfd_mach_mips3000:
11943 val = E_MIPS_ARCH_1;
11944 break;
11945
11946 case bfd_mach_mips3900:
11947 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11948 break;
11949
11950 case bfd_mach_mips6000:
11951 val = E_MIPS_ARCH_2;
11952 break;
11953
11954 case bfd_mach_mips4000:
11955 case bfd_mach_mips4300:
11956 case bfd_mach_mips4400:
11957 case bfd_mach_mips4600:
11958 val = E_MIPS_ARCH_3;
11959 break;
11960
11961 case bfd_mach_mips4010:
11962 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11963 break;
11964
11965 case bfd_mach_mips4100:
11966 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11967 break;
11968
11969 case bfd_mach_mips4111:
11970 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11971 break;
11972
11973 case bfd_mach_mips4120:
11974 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11975 break;
11976
11977 case bfd_mach_mips4650:
11978 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11979 break;
11980
11981 case bfd_mach_mips5400:
11982 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11983 break;
11984
11985 case bfd_mach_mips5500:
11986 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11987 break;
11988
11989 case bfd_mach_mips5900:
11990 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11991 break;
11992
11993 case bfd_mach_mips9000:
11994 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11995 break;
11996
11997 case bfd_mach_mips5000:
11998 case bfd_mach_mips7000:
11999 case bfd_mach_mips8000:
12000 case bfd_mach_mips10000:
12001 case bfd_mach_mips12000:
12002 case bfd_mach_mips14000:
12003 case bfd_mach_mips16000:
12004 val = E_MIPS_ARCH_4;
12005 break;
12006
12007 case bfd_mach_mips5:
12008 val = E_MIPS_ARCH_5;
12009 break;
12010
12011 case bfd_mach_mips_loongson_2e:
12012 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12013 break;
12014
12015 case bfd_mach_mips_loongson_2f:
12016 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12017 break;
12018
12019 case bfd_mach_mips_sb1:
12020 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12021 break;
12022
12023 case bfd_mach_mips_loongson_3a:
12024 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12025 break;
12026
12027 case bfd_mach_mips_octeon:
12028 case bfd_mach_mips_octeonp:
12029 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12030 break;
12031
12032 case bfd_mach_mips_octeon3:
12033 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12034 break;
12035
12036 case bfd_mach_mips_xlr:
12037 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12038 break;
12039
12040 case bfd_mach_mips_octeon2:
12041 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12042 break;
12043
12044 case bfd_mach_mipsisa32:
12045 val = E_MIPS_ARCH_32;
12046 break;
12047
12048 case bfd_mach_mipsisa64:
12049 val = E_MIPS_ARCH_64;
12050 break;
12051
12052 case bfd_mach_mipsisa32r2:
12053 case bfd_mach_mipsisa32r3:
12054 case bfd_mach_mipsisa32r5:
12055 val = E_MIPS_ARCH_32R2;
12056 break;
12057
12058 case bfd_mach_mipsisa64r2:
12059 case bfd_mach_mipsisa64r3:
12060 case bfd_mach_mipsisa64r5:
12061 val = E_MIPS_ARCH_64R2;
12062 break;
12063
12064 case bfd_mach_mipsisa32r6:
12065 val = E_MIPS_ARCH_32R6;
12066 break;
12067
12068 case bfd_mach_mipsisa64r6:
12069 val = E_MIPS_ARCH_64R6;
12070 break;
12071 }
12072 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12073 elf_elfheader (abfd)->e_flags |= val;
12074
12075 }
12076
12077
12078 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12079 Don't do so for code sections. We want to keep ordering of HI16/LO16
12080 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12081 relocs to be sorted. */
12082
12083 bfd_boolean
12084 _bfd_mips_elf_sort_relocs_p (asection *sec)
12085 {
12086 return (sec->flags & SEC_CODE) == 0;
12087 }
12088
12089
12090 /* The final processing done just before writing out a MIPS ELF object
12091 file. This gets the MIPS architecture right based on the machine
12092 number. This is used by both the 32-bit and the 64-bit ABI. */
12093
12094 void
12095 _bfd_mips_elf_final_write_processing (bfd *abfd,
12096 bfd_boolean linker ATTRIBUTE_UNUSED)
12097 {
12098 unsigned int i;
12099 Elf_Internal_Shdr **hdrpp;
12100 const char *name;
12101 asection *sec;
12102
12103 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12104 is nonzero. This is for compatibility with old objects, which used
12105 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12106 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12107 mips_set_isa_flags (abfd);
12108
12109 /* Set the sh_info field for .gptab sections and other appropriate
12110 info for each special section. */
12111 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12112 i < elf_numsections (abfd);
12113 i++, hdrpp++)
12114 {
12115 switch ((*hdrpp)->sh_type)
12116 {
12117 case SHT_MIPS_MSYM:
12118 case SHT_MIPS_LIBLIST:
12119 sec = bfd_get_section_by_name (abfd, ".dynstr");
12120 if (sec != NULL)
12121 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12122 break;
12123
12124 case SHT_MIPS_GPTAB:
12125 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12126 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12127 BFD_ASSERT (name != NULL
12128 && CONST_STRNEQ (name, ".gptab."));
12129 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12130 BFD_ASSERT (sec != NULL);
12131 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12132 break;
12133
12134 case SHT_MIPS_CONTENT:
12135 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12136 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12137 BFD_ASSERT (name != NULL
12138 && CONST_STRNEQ (name, ".MIPS.content"));
12139 sec = bfd_get_section_by_name (abfd,
12140 name + sizeof ".MIPS.content" - 1);
12141 BFD_ASSERT (sec != NULL);
12142 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12143 break;
12144
12145 case SHT_MIPS_SYMBOL_LIB:
12146 sec = bfd_get_section_by_name (abfd, ".dynsym");
12147 if (sec != NULL)
12148 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12149 sec = bfd_get_section_by_name (abfd, ".liblist");
12150 if (sec != NULL)
12151 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12152 break;
12153
12154 case SHT_MIPS_EVENTS:
12155 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12156 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12157 BFD_ASSERT (name != NULL);
12158 if (CONST_STRNEQ (name, ".MIPS.events"))
12159 sec = bfd_get_section_by_name (abfd,
12160 name + sizeof ".MIPS.events" - 1);
12161 else
12162 {
12163 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12164 sec = bfd_get_section_by_name (abfd,
12165 (name
12166 + sizeof ".MIPS.post_rel" - 1));
12167 }
12168 BFD_ASSERT (sec != NULL);
12169 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12170 break;
12171
12172 }
12173 }
12174 }
12175 \f
12176 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12177 segments. */
12178
12179 int
12180 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12181 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12182 {
12183 asection *s;
12184 int ret = 0;
12185
12186 /* See if we need a PT_MIPS_REGINFO segment. */
12187 s = bfd_get_section_by_name (abfd, ".reginfo");
12188 if (s && (s->flags & SEC_LOAD))
12189 ++ret;
12190
12191 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12192 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12193 ++ret;
12194
12195 /* See if we need a PT_MIPS_OPTIONS segment. */
12196 if (IRIX_COMPAT (abfd) == ict_irix6
12197 && bfd_get_section_by_name (abfd,
12198 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12199 ++ret;
12200
12201 /* See if we need a PT_MIPS_RTPROC segment. */
12202 if (IRIX_COMPAT (abfd) == ict_irix5
12203 && bfd_get_section_by_name (abfd, ".dynamic")
12204 && bfd_get_section_by_name (abfd, ".mdebug"))
12205 ++ret;
12206
12207 /* Allocate a PT_NULL header in dynamic objects. See
12208 _bfd_mips_elf_modify_segment_map for details. */
12209 if (!SGI_COMPAT (abfd)
12210 && bfd_get_section_by_name (abfd, ".dynamic"))
12211 ++ret;
12212
12213 return ret;
12214 }
12215
12216 /* Modify the segment map for an IRIX5 executable. */
12217
12218 bfd_boolean
12219 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12220 struct bfd_link_info *info)
12221 {
12222 asection *s;
12223 struct elf_segment_map *m, **pm;
12224 bfd_size_type amt;
12225
12226 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12227 segment. */
12228 s = bfd_get_section_by_name (abfd, ".reginfo");
12229 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12230 {
12231 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12232 if (m->p_type == PT_MIPS_REGINFO)
12233 break;
12234 if (m == NULL)
12235 {
12236 amt = sizeof *m;
12237 m = bfd_zalloc (abfd, amt);
12238 if (m == NULL)
12239 return FALSE;
12240
12241 m->p_type = PT_MIPS_REGINFO;
12242 m->count = 1;
12243 m->sections[0] = s;
12244
12245 /* We want to put it after the PHDR and INTERP segments. */
12246 pm = &elf_seg_map (abfd);
12247 while (*pm != NULL
12248 && ((*pm)->p_type == PT_PHDR
12249 || (*pm)->p_type == PT_INTERP))
12250 pm = &(*pm)->next;
12251
12252 m->next = *pm;
12253 *pm = m;
12254 }
12255 }
12256
12257 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12258 segment. */
12259 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12260 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12261 {
12262 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12263 if (m->p_type == PT_MIPS_ABIFLAGS)
12264 break;
12265 if (m == NULL)
12266 {
12267 amt = sizeof *m;
12268 m = bfd_zalloc (abfd, amt);
12269 if (m == NULL)
12270 return FALSE;
12271
12272 m->p_type = PT_MIPS_ABIFLAGS;
12273 m->count = 1;
12274 m->sections[0] = s;
12275
12276 /* We want to put it after the PHDR and INTERP segments. */
12277 pm = &elf_seg_map (abfd);
12278 while (*pm != NULL
12279 && ((*pm)->p_type == PT_PHDR
12280 || (*pm)->p_type == PT_INTERP))
12281 pm = &(*pm)->next;
12282
12283 m->next = *pm;
12284 *pm = m;
12285 }
12286 }
12287
12288 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12289 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12290 PT_MIPS_OPTIONS segment immediately following the program header
12291 table. */
12292 if (NEWABI_P (abfd)
12293 /* On non-IRIX6 new abi, we'll have already created a segment
12294 for this section, so don't create another. I'm not sure this
12295 is not also the case for IRIX 6, but I can't test it right
12296 now. */
12297 && IRIX_COMPAT (abfd) == ict_irix6)
12298 {
12299 for (s = abfd->sections; s; s = s->next)
12300 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12301 break;
12302
12303 if (s)
12304 {
12305 struct elf_segment_map *options_segment;
12306
12307 pm = &elf_seg_map (abfd);
12308 while (*pm != NULL
12309 && ((*pm)->p_type == PT_PHDR
12310 || (*pm)->p_type == PT_INTERP))
12311 pm = &(*pm)->next;
12312
12313 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12314 {
12315 amt = sizeof (struct elf_segment_map);
12316 options_segment = bfd_zalloc (abfd, amt);
12317 options_segment->next = *pm;
12318 options_segment->p_type = PT_MIPS_OPTIONS;
12319 options_segment->p_flags = PF_R;
12320 options_segment->p_flags_valid = TRUE;
12321 options_segment->count = 1;
12322 options_segment->sections[0] = s;
12323 *pm = options_segment;
12324 }
12325 }
12326 }
12327 else
12328 {
12329 if (IRIX_COMPAT (abfd) == ict_irix5)
12330 {
12331 /* If there are .dynamic and .mdebug sections, we make a room
12332 for the RTPROC header. FIXME: Rewrite without section names. */
12333 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12334 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12335 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12336 {
12337 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12338 if (m->p_type == PT_MIPS_RTPROC)
12339 break;
12340 if (m == NULL)
12341 {
12342 amt = sizeof *m;
12343 m = bfd_zalloc (abfd, amt);
12344 if (m == NULL)
12345 return FALSE;
12346
12347 m->p_type = PT_MIPS_RTPROC;
12348
12349 s = bfd_get_section_by_name (abfd, ".rtproc");
12350 if (s == NULL)
12351 {
12352 m->count = 0;
12353 m->p_flags = 0;
12354 m->p_flags_valid = 1;
12355 }
12356 else
12357 {
12358 m->count = 1;
12359 m->sections[0] = s;
12360 }
12361
12362 /* We want to put it after the DYNAMIC segment. */
12363 pm = &elf_seg_map (abfd);
12364 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12365 pm = &(*pm)->next;
12366 if (*pm != NULL)
12367 pm = &(*pm)->next;
12368
12369 m->next = *pm;
12370 *pm = m;
12371 }
12372 }
12373 }
12374 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12375 .dynstr, .dynsym, and .hash sections, and everything in
12376 between. */
12377 for (pm = &elf_seg_map (abfd); *pm != NULL;
12378 pm = &(*pm)->next)
12379 if ((*pm)->p_type == PT_DYNAMIC)
12380 break;
12381 m = *pm;
12382 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12383 glibc's dynamic linker has traditionally derived the number of
12384 tags from the p_filesz field, and sometimes allocates stack
12385 arrays of that size. An overly-big PT_DYNAMIC segment can
12386 be actively harmful in such cases. Making PT_DYNAMIC contain
12387 other sections can also make life hard for the prelinker,
12388 which might move one of the other sections to a different
12389 PT_LOAD segment. */
12390 if (SGI_COMPAT (abfd)
12391 && m != NULL
12392 && m->count == 1
12393 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12394 {
12395 static const char *sec_names[] =
12396 {
12397 ".dynamic", ".dynstr", ".dynsym", ".hash"
12398 };
12399 bfd_vma low, high;
12400 unsigned int i, c;
12401 struct elf_segment_map *n;
12402
12403 low = ~(bfd_vma) 0;
12404 high = 0;
12405 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12406 {
12407 s = bfd_get_section_by_name (abfd, sec_names[i]);
12408 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12409 {
12410 bfd_size_type sz;
12411
12412 if (low > s->vma)
12413 low = s->vma;
12414 sz = s->size;
12415 if (high < s->vma + sz)
12416 high = s->vma + sz;
12417 }
12418 }
12419
12420 c = 0;
12421 for (s = abfd->sections; s != NULL; s = s->next)
12422 if ((s->flags & SEC_LOAD) != 0
12423 && s->vma >= low
12424 && s->vma + s->size <= high)
12425 ++c;
12426
12427 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12428 n = bfd_zalloc (abfd, amt);
12429 if (n == NULL)
12430 return FALSE;
12431 *n = *m;
12432 n->count = c;
12433
12434 i = 0;
12435 for (s = abfd->sections; s != NULL; s = s->next)
12436 {
12437 if ((s->flags & SEC_LOAD) != 0
12438 && s->vma >= low
12439 && s->vma + s->size <= high)
12440 {
12441 n->sections[i] = s;
12442 ++i;
12443 }
12444 }
12445
12446 *pm = n;
12447 }
12448 }
12449
12450 /* Allocate a spare program header in dynamic objects so that tools
12451 like the prelinker can add an extra PT_LOAD entry.
12452
12453 If the prelinker needs to make room for a new PT_LOAD entry, its
12454 standard procedure is to move the first (read-only) sections into
12455 the new (writable) segment. However, the MIPS ABI requires
12456 .dynamic to be in a read-only segment, and the section will often
12457 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12458
12459 Although the prelinker could in principle move .dynamic to a
12460 writable segment, it seems better to allocate a spare program
12461 header instead, and avoid the need to move any sections.
12462 There is a long tradition of allocating spare dynamic tags,
12463 so allocating a spare program header seems like a natural
12464 extension.
12465
12466 If INFO is NULL, we may be copying an already prelinked binary
12467 with objcopy or strip, so do not add this header. */
12468 if (info != NULL
12469 && !SGI_COMPAT (abfd)
12470 && bfd_get_section_by_name (abfd, ".dynamic"))
12471 {
12472 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12473 if ((*pm)->p_type == PT_NULL)
12474 break;
12475 if (*pm == NULL)
12476 {
12477 m = bfd_zalloc (abfd, sizeof (*m));
12478 if (m == NULL)
12479 return FALSE;
12480
12481 m->p_type = PT_NULL;
12482 *pm = m;
12483 }
12484 }
12485
12486 return TRUE;
12487 }
12488 \f
12489 /* Return the section that should be marked against GC for a given
12490 relocation. */
12491
12492 asection *
12493 _bfd_mips_elf_gc_mark_hook (asection *sec,
12494 struct bfd_link_info *info,
12495 Elf_Internal_Rela *rel,
12496 struct elf_link_hash_entry *h,
12497 Elf_Internal_Sym *sym)
12498 {
12499 /* ??? Do mips16 stub sections need to be handled special? */
12500
12501 if (h != NULL)
12502 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12503 {
12504 case R_MIPS_GNU_VTINHERIT:
12505 case R_MIPS_GNU_VTENTRY:
12506 return NULL;
12507 }
12508
12509 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12510 }
12511
12512 /* Update the got entry reference counts for the section being removed. */
12513
12514 bfd_boolean
12515 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12516 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12517 asection *sec ATTRIBUTE_UNUSED,
12518 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12519 {
12520 #if 0
12521 Elf_Internal_Shdr *symtab_hdr;
12522 struct elf_link_hash_entry **sym_hashes;
12523 bfd_signed_vma *local_got_refcounts;
12524 const Elf_Internal_Rela *rel, *relend;
12525 unsigned long r_symndx;
12526 struct elf_link_hash_entry *h;
12527
12528 if (bfd_link_relocatable (info))
12529 return TRUE;
12530
12531 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12532 sym_hashes = elf_sym_hashes (abfd);
12533 local_got_refcounts = elf_local_got_refcounts (abfd);
12534
12535 relend = relocs + sec->reloc_count;
12536 for (rel = relocs; rel < relend; rel++)
12537 switch (ELF_R_TYPE (abfd, rel->r_info))
12538 {
12539 case R_MIPS16_GOT16:
12540 case R_MIPS16_CALL16:
12541 case R_MIPS_GOT16:
12542 case R_MIPS_CALL16:
12543 case R_MIPS_CALL_HI16:
12544 case R_MIPS_CALL_LO16:
12545 case R_MIPS_GOT_HI16:
12546 case R_MIPS_GOT_LO16:
12547 case R_MIPS_GOT_DISP:
12548 case R_MIPS_GOT_PAGE:
12549 case R_MIPS_GOT_OFST:
12550 case R_MICROMIPS_GOT16:
12551 case R_MICROMIPS_CALL16:
12552 case R_MICROMIPS_CALL_HI16:
12553 case R_MICROMIPS_CALL_LO16:
12554 case R_MICROMIPS_GOT_HI16:
12555 case R_MICROMIPS_GOT_LO16:
12556 case R_MICROMIPS_GOT_DISP:
12557 case R_MICROMIPS_GOT_PAGE:
12558 case R_MICROMIPS_GOT_OFST:
12559 /* ??? It would seem that the existing MIPS code does no sort
12560 of reference counting or whatnot on its GOT and PLT entries,
12561 so it is not possible to garbage collect them at this time. */
12562 break;
12563
12564 default:
12565 break;
12566 }
12567 #endif
12568
12569 return TRUE;
12570 }
12571
12572 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12573
12574 bfd_boolean
12575 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12576 elf_gc_mark_hook_fn gc_mark_hook)
12577 {
12578 bfd *sub;
12579
12580 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12581
12582 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12583 {
12584 asection *o;
12585
12586 if (! is_mips_elf (sub))
12587 continue;
12588
12589 for (o = sub->sections; o != NULL; o = o->next)
12590 if (!o->gc_mark
12591 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12592 (bfd_get_section_name (sub, o)))
12593 {
12594 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12595 return FALSE;
12596 }
12597 }
12598
12599 return TRUE;
12600 }
12601 \f
12602 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12603 hiding the old indirect symbol. Process additional relocation
12604 information. Also called for weakdefs, in which case we just let
12605 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12606
12607 void
12608 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12609 struct elf_link_hash_entry *dir,
12610 struct elf_link_hash_entry *ind)
12611 {
12612 struct mips_elf_link_hash_entry *dirmips, *indmips;
12613
12614 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12615
12616 dirmips = (struct mips_elf_link_hash_entry *) dir;
12617 indmips = (struct mips_elf_link_hash_entry *) ind;
12618 /* Any absolute non-dynamic relocations against an indirect or weak
12619 definition will be against the target symbol. */
12620 if (indmips->has_static_relocs)
12621 dirmips->has_static_relocs = TRUE;
12622
12623 if (ind->root.type != bfd_link_hash_indirect)
12624 return;
12625
12626 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12627 if (indmips->readonly_reloc)
12628 dirmips->readonly_reloc = TRUE;
12629 if (indmips->no_fn_stub)
12630 dirmips->no_fn_stub = TRUE;
12631 if (indmips->fn_stub)
12632 {
12633 dirmips->fn_stub = indmips->fn_stub;
12634 indmips->fn_stub = NULL;
12635 }
12636 if (indmips->need_fn_stub)
12637 {
12638 dirmips->need_fn_stub = TRUE;
12639 indmips->need_fn_stub = FALSE;
12640 }
12641 if (indmips->call_stub)
12642 {
12643 dirmips->call_stub = indmips->call_stub;
12644 indmips->call_stub = NULL;
12645 }
12646 if (indmips->call_fp_stub)
12647 {
12648 dirmips->call_fp_stub = indmips->call_fp_stub;
12649 indmips->call_fp_stub = NULL;
12650 }
12651 if (indmips->global_got_area < dirmips->global_got_area)
12652 dirmips->global_got_area = indmips->global_got_area;
12653 if (indmips->global_got_area < GGA_NONE)
12654 indmips->global_got_area = GGA_NONE;
12655 if (indmips->has_nonpic_branches)
12656 dirmips->has_nonpic_branches = TRUE;
12657 }
12658 \f
12659 #define PDR_SIZE 32
12660
12661 bfd_boolean
12662 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12663 struct bfd_link_info *info)
12664 {
12665 asection *o;
12666 bfd_boolean ret = FALSE;
12667 unsigned char *tdata;
12668 size_t i, skip;
12669
12670 o = bfd_get_section_by_name (abfd, ".pdr");
12671 if (! o)
12672 return FALSE;
12673 if (o->size == 0)
12674 return FALSE;
12675 if (o->size % PDR_SIZE != 0)
12676 return FALSE;
12677 if (o->output_section != NULL
12678 && bfd_is_abs_section (o->output_section))
12679 return FALSE;
12680
12681 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12682 if (! tdata)
12683 return FALSE;
12684
12685 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12686 info->keep_memory);
12687 if (!cookie->rels)
12688 {
12689 free (tdata);
12690 return FALSE;
12691 }
12692
12693 cookie->rel = cookie->rels;
12694 cookie->relend = cookie->rels + o->reloc_count;
12695
12696 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12697 {
12698 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12699 {
12700 tdata[i] = 1;
12701 skip ++;
12702 }
12703 }
12704
12705 if (skip != 0)
12706 {
12707 mips_elf_section_data (o)->u.tdata = tdata;
12708 if (o->rawsize == 0)
12709 o->rawsize = o->size;
12710 o->size -= skip * PDR_SIZE;
12711 ret = TRUE;
12712 }
12713 else
12714 free (tdata);
12715
12716 if (! info->keep_memory)
12717 free (cookie->rels);
12718
12719 return ret;
12720 }
12721
12722 bfd_boolean
12723 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12724 {
12725 if (strcmp (sec->name, ".pdr") == 0)
12726 return TRUE;
12727 return FALSE;
12728 }
12729
12730 bfd_boolean
12731 _bfd_mips_elf_write_section (bfd *output_bfd,
12732 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12733 asection *sec, bfd_byte *contents)
12734 {
12735 bfd_byte *to, *from, *end;
12736 int i;
12737
12738 if (strcmp (sec->name, ".pdr") != 0)
12739 return FALSE;
12740
12741 if (mips_elf_section_data (sec)->u.tdata == NULL)
12742 return FALSE;
12743
12744 to = contents;
12745 end = contents + sec->size;
12746 for (from = contents, i = 0;
12747 from < end;
12748 from += PDR_SIZE, i++)
12749 {
12750 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12751 continue;
12752 if (to != from)
12753 memcpy (to, from, PDR_SIZE);
12754 to += PDR_SIZE;
12755 }
12756 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12757 sec->output_offset, sec->size);
12758 return TRUE;
12759 }
12760 \f
12761 /* microMIPS code retains local labels for linker relaxation. Omit them
12762 from output by default for clarity. */
12763
12764 bfd_boolean
12765 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12766 {
12767 return _bfd_elf_is_local_label_name (abfd, sym->name);
12768 }
12769
12770 /* MIPS ELF uses a special find_nearest_line routine in order the
12771 handle the ECOFF debugging information. */
12772
12773 struct mips_elf_find_line
12774 {
12775 struct ecoff_debug_info d;
12776 struct ecoff_find_line i;
12777 };
12778
12779 bfd_boolean
12780 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12781 asection *section, bfd_vma offset,
12782 const char **filename_ptr,
12783 const char **functionname_ptr,
12784 unsigned int *line_ptr,
12785 unsigned int *discriminator_ptr)
12786 {
12787 asection *msec;
12788
12789 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12790 filename_ptr, functionname_ptr,
12791 line_ptr, discriminator_ptr,
12792 dwarf_debug_sections,
12793 ABI_64_P (abfd) ? 8 : 0,
12794 &elf_tdata (abfd)->dwarf2_find_line_info))
12795 return TRUE;
12796
12797 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12798 filename_ptr, functionname_ptr,
12799 line_ptr))
12800 return TRUE;
12801
12802 msec = bfd_get_section_by_name (abfd, ".mdebug");
12803 if (msec != NULL)
12804 {
12805 flagword origflags;
12806 struct mips_elf_find_line *fi;
12807 const struct ecoff_debug_swap * const swap =
12808 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12809
12810 /* If we are called during a link, mips_elf_final_link may have
12811 cleared the SEC_HAS_CONTENTS field. We force it back on here
12812 if appropriate (which it normally will be). */
12813 origflags = msec->flags;
12814 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12815 msec->flags |= SEC_HAS_CONTENTS;
12816
12817 fi = mips_elf_tdata (abfd)->find_line_info;
12818 if (fi == NULL)
12819 {
12820 bfd_size_type external_fdr_size;
12821 char *fraw_src;
12822 char *fraw_end;
12823 struct fdr *fdr_ptr;
12824 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12825
12826 fi = bfd_zalloc (abfd, amt);
12827 if (fi == NULL)
12828 {
12829 msec->flags = origflags;
12830 return FALSE;
12831 }
12832
12833 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12834 {
12835 msec->flags = origflags;
12836 return FALSE;
12837 }
12838
12839 /* Swap in the FDR information. */
12840 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12841 fi->d.fdr = bfd_alloc (abfd, amt);
12842 if (fi->d.fdr == NULL)
12843 {
12844 msec->flags = origflags;
12845 return FALSE;
12846 }
12847 external_fdr_size = swap->external_fdr_size;
12848 fdr_ptr = fi->d.fdr;
12849 fraw_src = (char *) fi->d.external_fdr;
12850 fraw_end = (fraw_src
12851 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12852 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12853 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12854
12855 mips_elf_tdata (abfd)->find_line_info = fi;
12856
12857 /* Note that we don't bother to ever free this information.
12858 find_nearest_line is either called all the time, as in
12859 objdump -l, so the information should be saved, or it is
12860 rarely called, as in ld error messages, so the memory
12861 wasted is unimportant. Still, it would probably be a
12862 good idea for free_cached_info to throw it away. */
12863 }
12864
12865 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12866 &fi->i, filename_ptr, functionname_ptr,
12867 line_ptr))
12868 {
12869 msec->flags = origflags;
12870 return TRUE;
12871 }
12872
12873 msec->flags = origflags;
12874 }
12875
12876 /* Fall back on the generic ELF find_nearest_line routine. */
12877
12878 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12879 filename_ptr, functionname_ptr,
12880 line_ptr, discriminator_ptr);
12881 }
12882
12883 bfd_boolean
12884 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12885 const char **filename_ptr,
12886 const char **functionname_ptr,
12887 unsigned int *line_ptr)
12888 {
12889 bfd_boolean found;
12890 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12891 functionname_ptr, line_ptr,
12892 & elf_tdata (abfd)->dwarf2_find_line_info);
12893 return found;
12894 }
12895
12896 \f
12897 /* When are writing out the .options or .MIPS.options section,
12898 remember the bytes we are writing out, so that we can install the
12899 GP value in the section_processing routine. */
12900
12901 bfd_boolean
12902 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12903 const void *location,
12904 file_ptr offset, bfd_size_type count)
12905 {
12906 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12907 {
12908 bfd_byte *c;
12909
12910 if (elf_section_data (section) == NULL)
12911 {
12912 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12913 section->used_by_bfd = bfd_zalloc (abfd, amt);
12914 if (elf_section_data (section) == NULL)
12915 return FALSE;
12916 }
12917 c = mips_elf_section_data (section)->u.tdata;
12918 if (c == NULL)
12919 {
12920 c = bfd_zalloc (abfd, section->size);
12921 if (c == NULL)
12922 return FALSE;
12923 mips_elf_section_data (section)->u.tdata = c;
12924 }
12925
12926 memcpy (c + offset, location, count);
12927 }
12928
12929 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12930 count);
12931 }
12932
12933 /* This is almost identical to bfd_generic_get_... except that some
12934 MIPS relocations need to be handled specially. Sigh. */
12935
12936 bfd_byte *
12937 _bfd_elf_mips_get_relocated_section_contents
12938 (bfd *abfd,
12939 struct bfd_link_info *link_info,
12940 struct bfd_link_order *link_order,
12941 bfd_byte *data,
12942 bfd_boolean relocatable,
12943 asymbol **symbols)
12944 {
12945 /* Get enough memory to hold the stuff */
12946 bfd *input_bfd = link_order->u.indirect.section->owner;
12947 asection *input_section = link_order->u.indirect.section;
12948 bfd_size_type sz;
12949
12950 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12951 arelent **reloc_vector = NULL;
12952 long reloc_count;
12953
12954 if (reloc_size < 0)
12955 goto error_return;
12956
12957 reloc_vector = bfd_malloc (reloc_size);
12958 if (reloc_vector == NULL && reloc_size != 0)
12959 goto error_return;
12960
12961 /* read in the section */
12962 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12963 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12964 goto error_return;
12965
12966 reloc_count = bfd_canonicalize_reloc (input_bfd,
12967 input_section,
12968 reloc_vector,
12969 symbols);
12970 if (reloc_count < 0)
12971 goto error_return;
12972
12973 if (reloc_count > 0)
12974 {
12975 arelent **parent;
12976 /* for mips */
12977 int gp_found;
12978 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12979
12980 {
12981 struct bfd_hash_entry *h;
12982 struct bfd_link_hash_entry *lh;
12983 /* Skip all this stuff if we aren't mixing formats. */
12984 if (abfd && input_bfd
12985 && abfd->xvec == input_bfd->xvec)
12986 lh = 0;
12987 else
12988 {
12989 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12990 lh = (struct bfd_link_hash_entry *) h;
12991 }
12992 lookup:
12993 if (lh)
12994 {
12995 switch (lh->type)
12996 {
12997 case bfd_link_hash_undefined:
12998 case bfd_link_hash_undefweak:
12999 case bfd_link_hash_common:
13000 gp_found = 0;
13001 break;
13002 case bfd_link_hash_defined:
13003 case bfd_link_hash_defweak:
13004 gp_found = 1;
13005 gp = lh->u.def.value;
13006 break;
13007 case bfd_link_hash_indirect:
13008 case bfd_link_hash_warning:
13009 lh = lh->u.i.link;
13010 /* @@FIXME ignoring warning for now */
13011 goto lookup;
13012 case bfd_link_hash_new:
13013 default:
13014 abort ();
13015 }
13016 }
13017 else
13018 gp_found = 0;
13019 }
13020 /* end mips */
13021 for (parent = reloc_vector; *parent != NULL; parent++)
13022 {
13023 char *error_message = NULL;
13024 bfd_reloc_status_type r;
13025
13026 /* Specific to MIPS: Deal with relocation types that require
13027 knowing the gp of the output bfd. */
13028 asymbol *sym = *(*parent)->sym_ptr_ptr;
13029
13030 /* If we've managed to find the gp and have a special
13031 function for the relocation then go ahead, else default
13032 to the generic handling. */
13033 if (gp_found
13034 && (*parent)->howto->special_function
13035 == _bfd_mips_elf32_gprel16_reloc)
13036 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13037 input_section, relocatable,
13038 data, gp);
13039 else
13040 r = bfd_perform_relocation (input_bfd, *parent, data,
13041 input_section,
13042 relocatable ? abfd : NULL,
13043 &error_message);
13044
13045 if (relocatable)
13046 {
13047 asection *os = input_section->output_section;
13048
13049 /* A partial link, so keep the relocs */
13050 os->orelocation[os->reloc_count] = *parent;
13051 os->reloc_count++;
13052 }
13053
13054 if (r != bfd_reloc_ok)
13055 {
13056 switch (r)
13057 {
13058 case bfd_reloc_undefined:
13059 (*link_info->callbacks->undefined_symbol)
13060 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13061 input_bfd, input_section, (*parent)->address, TRUE);
13062 break;
13063 case bfd_reloc_dangerous:
13064 BFD_ASSERT (error_message != NULL);
13065 (*link_info->callbacks->reloc_dangerous)
13066 (link_info, error_message,
13067 input_bfd, input_section, (*parent)->address);
13068 break;
13069 case bfd_reloc_overflow:
13070 (*link_info->callbacks->reloc_overflow)
13071 (link_info, NULL,
13072 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13073 (*parent)->howto->name, (*parent)->addend,
13074 input_bfd, input_section, (*parent)->address);
13075 break;
13076 case bfd_reloc_outofrange:
13077 default:
13078 abort ();
13079 break;
13080 }
13081
13082 }
13083 }
13084 }
13085 if (reloc_vector != NULL)
13086 free (reloc_vector);
13087 return data;
13088
13089 error_return:
13090 if (reloc_vector != NULL)
13091 free (reloc_vector);
13092 return NULL;
13093 }
13094 \f
13095 static bfd_boolean
13096 mips_elf_relax_delete_bytes (bfd *abfd,
13097 asection *sec, bfd_vma addr, int count)
13098 {
13099 Elf_Internal_Shdr *symtab_hdr;
13100 unsigned int sec_shndx;
13101 bfd_byte *contents;
13102 Elf_Internal_Rela *irel, *irelend;
13103 Elf_Internal_Sym *isym;
13104 Elf_Internal_Sym *isymend;
13105 struct elf_link_hash_entry **sym_hashes;
13106 struct elf_link_hash_entry **end_hashes;
13107 struct elf_link_hash_entry **start_hashes;
13108 unsigned int symcount;
13109
13110 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13111 contents = elf_section_data (sec)->this_hdr.contents;
13112
13113 irel = elf_section_data (sec)->relocs;
13114 irelend = irel + sec->reloc_count;
13115
13116 /* Actually delete the bytes. */
13117 memmove (contents + addr, contents + addr + count,
13118 (size_t) (sec->size - addr - count));
13119 sec->size -= count;
13120
13121 /* Adjust all the relocs. */
13122 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13123 {
13124 /* Get the new reloc address. */
13125 if (irel->r_offset > addr)
13126 irel->r_offset -= count;
13127 }
13128
13129 BFD_ASSERT (addr % 2 == 0);
13130 BFD_ASSERT (count % 2 == 0);
13131
13132 /* Adjust the local symbols defined in this section. */
13133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13134 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13135 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13136 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13137 isym->st_value -= count;
13138
13139 /* Now adjust the global symbols defined in this section. */
13140 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13141 - symtab_hdr->sh_info);
13142 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13143 end_hashes = sym_hashes + symcount;
13144
13145 for (; sym_hashes < end_hashes; sym_hashes++)
13146 {
13147 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13148
13149 if ((sym_hash->root.type == bfd_link_hash_defined
13150 || sym_hash->root.type == bfd_link_hash_defweak)
13151 && sym_hash->root.u.def.section == sec)
13152 {
13153 bfd_vma value = sym_hash->root.u.def.value;
13154
13155 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13156 value &= MINUS_TWO;
13157 if (value > addr)
13158 sym_hash->root.u.def.value -= count;
13159 }
13160 }
13161
13162 return TRUE;
13163 }
13164
13165
13166 /* Opcodes needed for microMIPS relaxation as found in
13167 opcodes/micromips-opc.c. */
13168
13169 struct opcode_descriptor {
13170 unsigned long match;
13171 unsigned long mask;
13172 };
13173
13174 /* The $ra register aka $31. */
13175
13176 #define RA 31
13177
13178 /* 32-bit instruction format register fields. */
13179
13180 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13181 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13182
13183 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13184
13185 #define OP16_VALID_REG(r) \
13186 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13187
13188
13189 /* 32-bit and 16-bit branches. */
13190
13191 static const struct opcode_descriptor b_insns_32[] = {
13192 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13193 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13194 { 0, 0 } /* End marker for find_match(). */
13195 };
13196
13197 static const struct opcode_descriptor bc_insn_32 =
13198 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13199
13200 static const struct opcode_descriptor bz_insn_32 =
13201 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13202
13203 static const struct opcode_descriptor bzal_insn_32 =
13204 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13205
13206 static const struct opcode_descriptor beq_insn_32 =
13207 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13208
13209 static const struct opcode_descriptor b_insn_16 =
13210 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13211
13212 static const struct opcode_descriptor bz_insn_16 =
13213 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13214
13215
13216 /* 32-bit and 16-bit branch EQ and NE zero. */
13217
13218 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13219 eq and second the ne. This convention is used when replacing a
13220 32-bit BEQ/BNE with the 16-bit version. */
13221
13222 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13223
13224 static const struct opcode_descriptor bz_rs_insns_32[] = {
13225 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13226 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13227 { 0, 0 } /* End marker for find_match(). */
13228 };
13229
13230 static const struct opcode_descriptor bz_rt_insns_32[] = {
13231 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13232 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13233 { 0, 0 } /* End marker for find_match(). */
13234 };
13235
13236 static const struct opcode_descriptor bzc_insns_32[] = {
13237 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13238 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13239 { 0, 0 } /* End marker for find_match(). */
13240 };
13241
13242 static const struct opcode_descriptor bz_insns_16[] = {
13243 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13244 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13245 { 0, 0 } /* End marker for find_match(). */
13246 };
13247
13248 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13249
13250 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13251 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13252
13253
13254 /* 32-bit instructions with a delay slot. */
13255
13256 static const struct opcode_descriptor jal_insn_32_bd16 =
13257 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13258
13259 static const struct opcode_descriptor jal_insn_32_bd32 =
13260 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13261
13262 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13263 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13264
13265 static const struct opcode_descriptor j_insn_32 =
13266 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13267
13268 static const struct opcode_descriptor jalr_insn_32 =
13269 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13270
13271 /* This table can be compacted, because no opcode replacement is made. */
13272
13273 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13274 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13275
13276 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13277 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13278
13279 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13280 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13281 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13282 { 0, 0 } /* End marker for find_match(). */
13283 };
13284
13285 /* This table can be compacted, because no opcode replacement is made. */
13286
13287 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13288 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13289
13290 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13291 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13292 { 0, 0 } /* End marker for find_match(). */
13293 };
13294
13295
13296 /* 16-bit instructions with a delay slot. */
13297
13298 static const struct opcode_descriptor jalr_insn_16_bd16 =
13299 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13300
13301 static const struct opcode_descriptor jalr_insn_16_bd32 =
13302 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13303
13304 static const struct opcode_descriptor jr_insn_16 =
13305 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13306
13307 #define JR16_REG(opcode) ((opcode) & 0x1f)
13308
13309 /* This table can be compacted, because no opcode replacement is made. */
13310
13311 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13312 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13313
13314 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13315 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13316 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13317 { 0, 0 } /* End marker for find_match(). */
13318 };
13319
13320
13321 /* LUI instruction. */
13322
13323 static const struct opcode_descriptor lui_insn =
13324 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13325
13326
13327 /* ADDIU instruction. */
13328
13329 static const struct opcode_descriptor addiu_insn =
13330 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13331
13332 static const struct opcode_descriptor addiupc_insn =
13333 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13334
13335 #define ADDIUPC_REG_FIELD(r) \
13336 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13337
13338
13339 /* Relaxable instructions in a JAL delay slot: MOVE. */
13340
13341 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13342 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13343 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13344 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13345
13346 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13347 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13348
13349 static const struct opcode_descriptor move_insns_32[] = {
13350 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13351 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13352 { 0, 0 } /* End marker for find_match(). */
13353 };
13354
13355 static const struct opcode_descriptor move_insn_16 =
13356 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13357
13358
13359 /* NOP instructions. */
13360
13361 static const struct opcode_descriptor nop_insn_32 =
13362 { /* "nop", "", */ 0x00000000, 0xffffffff };
13363
13364 static const struct opcode_descriptor nop_insn_16 =
13365 { /* "nop", "", */ 0x0c00, 0xffff };
13366
13367
13368 /* Instruction match support. */
13369
13370 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13371
13372 static int
13373 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13374 {
13375 unsigned long indx;
13376
13377 for (indx = 0; insn[indx].mask != 0; indx++)
13378 if (MATCH (opcode, insn[indx]))
13379 return indx;
13380
13381 return -1;
13382 }
13383
13384
13385 /* Branch and delay slot decoding support. */
13386
13387 /* If PTR points to what *might* be a 16-bit branch or jump, then
13388 return the minimum length of its delay slot, otherwise return 0.
13389 Non-zero results are not definitive as we might be checking against
13390 the second half of another instruction. */
13391
13392 static int
13393 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13394 {
13395 unsigned long opcode;
13396 int bdsize;
13397
13398 opcode = bfd_get_16 (abfd, ptr);
13399 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13400 /* 16-bit branch/jump with a 32-bit delay slot. */
13401 bdsize = 4;
13402 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13403 || find_match (opcode, ds_insns_16_bd16) >= 0)
13404 /* 16-bit branch/jump with a 16-bit delay slot. */
13405 bdsize = 2;
13406 else
13407 /* No delay slot. */
13408 bdsize = 0;
13409
13410 return bdsize;
13411 }
13412
13413 /* If PTR points to what *might* be a 32-bit branch or jump, then
13414 return the minimum length of its delay slot, otherwise return 0.
13415 Non-zero results are not definitive as we might be checking against
13416 the second half of another instruction. */
13417
13418 static int
13419 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13420 {
13421 unsigned long opcode;
13422 int bdsize;
13423
13424 opcode = bfd_get_micromips_32 (abfd, ptr);
13425 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13426 /* 32-bit branch/jump with a 32-bit delay slot. */
13427 bdsize = 4;
13428 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13429 /* 32-bit branch/jump with a 16-bit delay slot. */
13430 bdsize = 2;
13431 else
13432 /* No delay slot. */
13433 bdsize = 0;
13434
13435 return bdsize;
13436 }
13437
13438 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13439 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13440
13441 static bfd_boolean
13442 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13443 {
13444 unsigned long opcode;
13445
13446 opcode = bfd_get_16 (abfd, ptr);
13447 if (MATCH (opcode, b_insn_16)
13448 /* B16 */
13449 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13450 /* JR16 */
13451 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13452 /* BEQZ16, BNEZ16 */
13453 || (MATCH (opcode, jalr_insn_16_bd32)
13454 /* JALR16 */
13455 && reg != JR16_REG (opcode) && reg != RA))
13456 return TRUE;
13457
13458 return FALSE;
13459 }
13460
13461 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13462 then return TRUE, otherwise FALSE. */
13463
13464 static bfd_boolean
13465 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13466 {
13467 unsigned long opcode;
13468
13469 opcode = bfd_get_micromips_32 (abfd, ptr);
13470 if (MATCH (opcode, j_insn_32)
13471 /* J */
13472 || MATCH (opcode, bc_insn_32)
13473 /* BC1F, BC1T, BC2F, BC2T */
13474 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13475 /* JAL, JALX */
13476 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13477 /* BGEZ, BGTZ, BLEZ, BLTZ */
13478 || (MATCH (opcode, bzal_insn_32)
13479 /* BGEZAL, BLTZAL */
13480 && reg != OP32_SREG (opcode) && reg != RA)
13481 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13482 /* JALR, JALR.HB, BEQ, BNE */
13483 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13484 return TRUE;
13485
13486 return FALSE;
13487 }
13488
13489 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13490 IRELEND) at OFFSET indicate that there must be a compact branch there,
13491 then return TRUE, otherwise FALSE. */
13492
13493 static bfd_boolean
13494 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13495 const Elf_Internal_Rela *internal_relocs,
13496 const Elf_Internal_Rela *irelend)
13497 {
13498 const Elf_Internal_Rela *irel;
13499 unsigned long opcode;
13500
13501 opcode = bfd_get_micromips_32 (abfd, ptr);
13502 if (find_match (opcode, bzc_insns_32) < 0)
13503 return FALSE;
13504
13505 for (irel = internal_relocs; irel < irelend; irel++)
13506 if (irel->r_offset == offset
13507 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13508 return TRUE;
13509
13510 return FALSE;
13511 }
13512
13513 /* Bitsize checking. */
13514 #define IS_BITSIZE(val, N) \
13515 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13516 - (1ULL << ((N) - 1))) == (val))
13517
13518 \f
13519 bfd_boolean
13520 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13521 struct bfd_link_info *link_info,
13522 bfd_boolean *again)
13523 {
13524 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13525 Elf_Internal_Shdr *symtab_hdr;
13526 Elf_Internal_Rela *internal_relocs;
13527 Elf_Internal_Rela *irel, *irelend;
13528 bfd_byte *contents = NULL;
13529 Elf_Internal_Sym *isymbuf = NULL;
13530
13531 /* Assume nothing changes. */
13532 *again = FALSE;
13533
13534 /* We don't have to do anything for a relocatable link, if
13535 this section does not have relocs, or if this is not a
13536 code section. */
13537
13538 if (bfd_link_relocatable (link_info)
13539 || (sec->flags & SEC_RELOC) == 0
13540 || sec->reloc_count == 0
13541 || (sec->flags & SEC_CODE) == 0)
13542 return TRUE;
13543
13544 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13545
13546 /* Get a copy of the native relocations. */
13547 internal_relocs = (_bfd_elf_link_read_relocs
13548 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13549 link_info->keep_memory));
13550 if (internal_relocs == NULL)
13551 goto error_return;
13552
13553 /* Walk through them looking for relaxing opportunities. */
13554 irelend = internal_relocs + sec->reloc_count;
13555 for (irel = internal_relocs; irel < irelend; irel++)
13556 {
13557 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13558 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13559 bfd_boolean target_is_micromips_code_p;
13560 unsigned long opcode;
13561 bfd_vma symval;
13562 bfd_vma pcrval;
13563 bfd_byte *ptr;
13564 int fndopc;
13565
13566 /* The number of bytes to delete for relaxation and from where
13567 to delete these bytes starting at irel->r_offset. */
13568 int delcnt = 0;
13569 int deloff = 0;
13570
13571 /* If this isn't something that can be relaxed, then ignore
13572 this reloc. */
13573 if (r_type != R_MICROMIPS_HI16
13574 && r_type != R_MICROMIPS_PC16_S1
13575 && r_type != R_MICROMIPS_26_S1)
13576 continue;
13577
13578 /* Get the section contents if we haven't done so already. */
13579 if (contents == NULL)
13580 {
13581 /* Get cached copy if it exists. */
13582 if (elf_section_data (sec)->this_hdr.contents != NULL)
13583 contents = elf_section_data (sec)->this_hdr.contents;
13584 /* Go get them off disk. */
13585 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13586 goto error_return;
13587 }
13588 ptr = contents + irel->r_offset;
13589
13590 /* Read this BFD's local symbols if we haven't done so already. */
13591 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13592 {
13593 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13594 if (isymbuf == NULL)
13595 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13596 symtab_hdr->sh_info, 0,
13597 NULL, NULL, NULL);
13598 if (isymbuf == NULL)
13599 goto error_return;
13600 }
13601
13602 /* Get the value of the symbol referred to by the reloc. */
13603 if (r_symndx < symtab_hdr->sh_info)
13604 {
13605 /* A local symbol. */
13606 Elf_Internal_Sym *isym;
13607 asection *sym_sec;
13608
13609 isym = isymbuf + r_symndx;
13610 if (isym->st_shndx == SHN_UNDEF)
13611 sym_sec = bfd_und_section_ptr;
13612 else if (isym->st_shndx == SHN_ABS)
13613 sym_sec = bfd_abs_section_ptr;
13614 else if (isym->st_shndx == SHN_COMMON)
13615 sym_sec = bfd_com_section_ptr;
13616 else
13617 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13618 symval = (isym->st_value
13619 + sym_sec->output_section->vma
13620 + sym_sec->output_offset);
13621 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13622 }
13623 else
13624 {
13625 unsigned long indx;
13626 struct elf_link_hash_entry *h;
13627
13628 /* An external symbol. */
13629 indx = r_symndx - symtab_hdr->sh_info;
13630 h = elf_sym_hashes (abfd)[indx];
13631 BFD_ASSERT (h != NULL);
13632
13633 if (h->root.type != bfd_link_hash_defined
13634 && h->root.type != bfd_link_hash_defweak)
13635 /* This appears to be a reference to an undefined
13636 symbol. Just ignore it -- it will be caught by the
13637 regular reloc processing. */
13638 continue;
13639
13640 symval = (h->root.u.def.value
13641 + h->root.u.def.section->output_section->vma
13642 + h->root.u.def.section->output_offset);
13643 target_is_micromips_code_p = (!h->needs_plt
13644 && ELF_ST_IS_MICROMIPS (h->other));
13645 }
13646
13647
13648 /* For simplicity of coding, we are going to modify the
13649 section contents, the section relocs, and the BFD symbol
13650 table. We must tell the rest of the code not to free up this
13651 information. It would be possible to instead create a table
13652 of changes which have to be made, as is done in coff-mips.c;
13653 that would be more work, but would require less memory when
13654 the linker is run. */
13655
13656 /* Only 32-bit instructions relaxed. */
13657 if (irel->r_offset + 4 > sec->size)
13658 continue;
13659
13660 opcode = bfd_get_micromips_32 (abfd, ptr);
13661
13662 /* This is the pc-relative distance from the instruction the
13663 relocation is applied to, to the symbol referred. */
13664 pcrval = (symval
13665 - (sec->output_section->vma + sec->output_offset)
13666 - irel->r_offset);
13667
13668 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13669 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13670 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13671
13672 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13673
13674 where pcrval has first to be adjusted to apply against the LO16
13675 location (we make the adjustment later on, when we have figured
13676 out the offset). */
13677 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13678 {
13679 bfd_boolean bzc = FALSE;
13680 unsigned long nextopc;
13681 unsigned long reg;
13682 bfd_vma offset;
13683
13684 /* Give up if the previous reloc was a HI16 against this symbol
13685 too. */
13686 if (irel > internal_relocs
13687 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13688 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13689 continue;
13690
13691 /* Or if the next reloc is not a LO16 against this symbol. */
13692 if (irel + 1 >= irelend
13693 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13694 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13695 continue;
13696
13697 /* Or if the second next reloc is a LO16 against this symbol too. */
13698 if (irel + 2 >= irelend
13699 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13700 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13701 continue;
13702
13703 /* See if the LUI instruction *might* be in a branch delay slot.
13704 We check whether what looks like a 16-bit branch or jump is
13705 actually an immediate argument to a compact branch, and let
13706 it through if so. */
13707 if (irel->r_offset >= 2
13708 && check_br16_dslot (abfd, ptr - 2)
13709 && !(irel->r_offset >= 4
13710 && (bzc = check_relocated_bzc (abfd,
13711 ptr - 4, irel->r_offset - 4,
13712 internal_relocs, irelend))))
13713 continue;
13714 if (irel->r_offset >= 4
13715 && !bzc
13716 && check_br32_dslot (abfd, ptr - 4))
13717 continue;
13718
13719 reg = OP32_SREG (opcode);
13720
13721 /* We only relax adjacent instructions or ones separated with
13722 a branch or jump that has a delay slot. The branch or jump
13723 must not fiddle with the register used to hold the address.
13724 Subtract 4 for the LUI itself. */
13725 offset = irel[1].r_offset - irel[0].r_offset;
13726 switch (offset - 4)
13727 {
13728 case 0:
13729 break;
13730 case 2:
13731 if (check_br16 (abfd, ptr + 4, reg))
13732 break;
13733 continue;
13734 case 4:
13735 if (check_br32 (abfd, ptr + 4, reg))
13736 break;
13737 continue;
13738 default:
13739 continue;
13740 }
13741
13742 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13743
13744 /* Give up unless the same register is used with both
13745 relocations. */
13746 if (OP32_SREG (nextopc) != reg)
13747 continue;
13748
13749 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13750 and rounding up to take masking of the two LSBs into account. */
13751 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13752
13753 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13754 if (IS_BITSIZE (symval, 16))
13755 {
13756 /* Fix the relocation's type. */
13757 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13758
13759 /* Instructions using R_MICROMIPS_LO16 have the base or
13760 source register in bits 20:16. This register becomes $0
13761 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13762 nextopc &= ~0x001f0000;
13763 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13764 contents + irel[1].r_offset);
13765 }
13766
13767 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13768 We add 4 to take LUI deletion into account while checking
13769 the PC-relative distance. */
13770 else if (symval % 4 == 0
13771 && IS_BITSIZE (pcrval + 4, 25)
13772 && MATCH (nextopc, addiu_insn)
13773 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13774 && OP16_VALID_REG (OP32_TREG (nextopc)))
13775 {
13776 /* Fix the relocation's type. */
13777 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13778
13779 /* Replace ADDIU with the ADDIUPC version. */
13780 nextopc = (addiupc_insn.match
13781 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13782
13783 bfd_put_micromips_32 (abfd, nextopc,
13784 contents + irel[1].r_offset);
13785 }
13786
13787 /* Can't do anything, give up, sigh... */
13788 else
13789 continue;
13790
13791 /* Fix the relocation's type. */
13792 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13793
13794 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13795 delcnt = 4;
13796 deloff = 0;
13797 }
13798
13799 /* Compact branch relaxation -- due to the multitude of macros
13800 employed by the compiler/assembler, compact branches are not
13801 always generated. Obviously, this can/will be fixed elsewhere,
13802 but there is no drawback in double checking it here. */
13803 else if (r_type == R_MICROMIPS_PC16_S1
13804 && irel->r_offset + 5 < sec->size
13805 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13806 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13807 && ((!insn32
13808 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13809 nop_insn_16) ? 2 : 0))
13810 || (irel->r_offset + 7 < sec->size
13811 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13812 ptr + 4),
13813 nop_insn_32) ? 4 : 0))))
13814 {
13815 unsigned long reg;
13816
13817 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13818
13819 /* Replace BEQZ/BNEZ with the compact version. */
13820 opcode = (bzc_insns_32[fndopc].match
13821 | BZC32_REG_FIELD (reg)
13822 | (opcode & 0xffff)); /* Addend value. */
13823
13824 bfd_put_micromips_32 (abfd, opcode, ptr);
13825
13826 /* Delete the delay slot NOP: two or four bytes from
13827 irel->offset + 4; delcnt has already been set above. */
13828 deloff = 4;
13829 }
13830
13831 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13832 to check the distance from the next instruction, so subtract 2. */
13833 else if (!insn32
13834 && r_type == R_MICROMIPS_PC16_S1
13835 && IS_BITSIZE (pcrval - 2, 11)
13836 && find_match (opcode, b_insns_32) >= 0)
13837 {
13838 /* Fix the relocation's type. */
13839 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13840
13841 /* Replace the 32-bit opcode with a 16-bit opcode. */
13842 bfd_put_16 (abfd,
13843 (b_insn_16.match
13844 | (opcode & 0x3ff)), /* Addend value. */
13845 ptr);
13846
13847 /* Delete 2 bytes from irel->r_offset + 2. */
13848 delcnt = 2;
13849 deloff = 2;
13850 }
13851
13852 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13853 to check the distance from the next instruction, so subtract 2. */
13854 else if (!insn32
13855 && r_type == R_MICROMIPS_PC16_S1
13856 && IS_BITSIZE (pcrval - 2, 8)
13857 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13858 && OP16_VALID_REG (OP32_SREG (opcode)))
13859 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13860 && OP16_VALID_REG (OP32_TREG (opcode)))))
13861 {
13862 unsigned long reg;
13863
13864 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13865
13866 /* Fix the relocation's type. */
13867 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13868
13869 /* Replace the 32-bit opcode with a 16-bit opcode. */
13870 bfd_put_16 (abfd,
13871 (bz_insns_16[fndopc].match
13872 | BZ16_REG_FIELD (reg)
13873 | (opcode & 0x7f)), /* Addend value. */
13874 ptr);
13875
13876 /* Delete 2 bytes from irel->r_offset + 2. */
13877 delcnt = 2;
13878 deloff = 2;
13879 }
13880
13881 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13882 else if (!insn32
13883 && r_type == R_MICROMIPS_26_S1
13884 && target_is_micromips_code_p
13885 && irel->r_offset + 7 < sec->size
13886 && MATCH (opcode, jal_insn_32_bd32))
13887 {
13888 unsigned long n32opc;
13889 bfd_boolean relaxed = FALSE;
13890
13891 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13892
13893 if (MATCH (n32opc, nop_insn_32))
13894 {
13895 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13896 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13897
13898 relaxed = TRUE;
13899 }
13900 else if (find_match (n32opc, move_insns_32) >= 0)
13901 {
13902 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13903 bfd_put_16 (abfd,
13904 (move_insn_16.match
13905 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13906 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13907 ptr + 4);
13908
13909 relaxed = TRUE;
13910 }
13911 /* Other 32-bit instructions relaxable to 16-bit
13912 instructions will be handled here later. */
13913
13914 if (relaxed)
13915 {
13916 /* JAL with 32-bit delay slot that is changed to a JALS
13917 with 16-bit delay slot. */
13918 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13919
13920 /* Delete 2 bytes from irel->r_offset + 6. */
13921 delcnt = 2;
13922 deloff = 6;
13923 }
13924 }
13925
13926 if (delcnt != 0)
13927 {
13928 /* Note that we've changed the relocs, section contents, etc. */
13929 elf_section_data (sec)->relocs = internal_relocs;
13930 elf_section_data (sec)->this_hdr.contents = contents;
13931 symtab_hdr->contents = (unsigned char *) isymbuf;
13932
13933 /* Delete bytes depending on the delcnt and deloff. */
13934 if (!mips_elf_relax_delete_bytes (abfd, sec,
13935 irel->r_offset + deloff, delcnt))
13936 goto error_return;
13937
13938 /* That will change things, so we should relax again.
13939 Note that this is not required, and it may be slow. */
13940 *again = TRUE;
13941 }
13942 }
13943
13944 if (isymbuf != NULL
13945 && symtab_hdr->contents != (unsigned char *) isymbuf)
13946 {
13947 if (! link_info->keep_memory)
13948 free (isymbuf);
13949 else
13950 {
13951 /* Cache the symbols for elf_link_input_bfd. */
13952 symtab_hdr->contents = (unsigned char *) isymbuf;
13953 }
13954 }
13955
13956 if (contents != NULL
13957 && elf_section_data (sec)->this_hdr.contents != contents)
13958 {
13959 if (! link_info->keep_memory)
13960 free (contents);
13961 else
13962 {
13963 /* Cache the section contents for elf_link_input_bfd. */
13964 elf_section_data (sec)->this_hdr.contents = contents;
13965 }
13966 }
13967
13968 if (internal_relocs != NULL
13969 && elf_section_data (sec)->relocs != internal_relocs)
13970 free (internal_relocs);
13971
13972 return TRUE;
13973
13974 error_return:
13975 if (isymbuf != NULL
13976 && symtab_hdr->contents != (unsigned char *) isymbuf)
13977 free (isymbuf);
13978 if (contents != NULL
13979 && elf_section_data (sec)->this_hdr.contents != contents)
13980 free (contents);
13981 if (internal_relocs != NULL
13982 && elf_section_data (sec)->relocs != internal_relocs)
13983 free (internal_relocs);
13984
13985 return FALSE;
13986 }
13987 \f
13988 /* Create a MIPS ELF linker hash table. */
13989
13990 struct bfd_link_hash_table *
13991 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13992 {
13993 struct mips_elf_link_hash_table *ret;
13994 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13995
13996 ret = bfd_zmalloc (amt);
13997 if (ret == NULL)
13998 return NULL;
13999
14000 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14001 mips_elf_link_hash_newfunc,
14002 sizeof (struct mips_elf_link_hash_entry),
14003 MIPS_ELF_DATA))
14004 {
14005 free (ret);
14006 return NULL;
14007 }
14008 ret->root.init_plt_refcount.plist = NULL;
14009 ret->root.init_plt_offset.plist = NULL;
14010
14011 return &ret->root.root;
14012 }
14013
14014 /* Likewise, but indicate that the target is VxWorks. */
14015
14016 struct bfd_link_hash_table *
14017 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14018 {
14019 struct bfd_link_hash_table *ret;
14020
14021 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14022 if (ret)
14023 {
14024 struct mips_elf_link_hash_table *htab;
14025
14026 htab = (struct mips_elf_link_hash_table *) ret;
14027 htab->use_plts_and_copy_relocs = TRUE;
14028 htab->is_vxworks = TRUE;
14029 }
14030 return ret;
14031 }
14032
14033 /* A function that the linker calls if we are allowed to use PLTs
14034 and copy relocs. */
14035
14036 void
14037 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14038 {
14039 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14040 }
14041
14042 /* A function that the linker calls to select between all or only
14043 32-bit microMIPS instructions. */
14044
14045 void
14046 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14047 {
14048 mips_elf_hash_table (info)->insn32 = on;
14049 }
14050 \f
14051 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14052
14053 struct mips_mach_extension
14054 {
14055 unsigned long extension, base;
14056 };
14057
14058
14059 /* An array describing how BFD machines relate to one another. The entries
14060 are ordered topologically with MIPS I extensions listed last. */
14061
14062 static const struct mips_mach_extension mips_mach_extensions[] =
14063 {
14064 /* MIPS64r2 extensions. */
14065 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14066 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14067 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14068 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14069 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14070
14071 /* MIPS64 extensions. */
14072 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14073 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14074 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14075
14076 /* MIPS V extensions. */
14077 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14078
14079 /* R10000 extensions. */
14080 { bfd_mach_mips12000, bfd_mach_mips10000 },
14081 { bfd_mach_mips14000, bfd_mach_mips10000 },
14082 { bfd_mach_mips16000, bfd_mach_mips10000 },
14083
14084 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14085 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14086 better to allow vr5400 and vr5500 code to be merged anyway, since
14087 many libraries will just use the core ISA. Perhaps we could add
14088 some sort of ASE flag if this ever proves a problem. */
14089 { bfd_mach_mips5500, bfd_mach_mips5400 },
14090 { bfd_mach_mips5400, bfd_mach_mips5000 },
14091
14092 /* MIPS IV extensions. */
14093 { bfd_mach_mips5, bfd_mach_mips8000 },
14094 { bfd_mach_mips10000, bfd_mach_mips8000 },
14095 { bfd_mach_mips5000, bfd_mach_mips8000 },
14096 { bfd_mach_mips7000, bfd_mach_mips8000 },
14097 { bfd_mach_mips9000, bfd_mach_mips8000 },
14098
14099 /* VR4100 extensions. */
14100 { bfd_mach_mips4120, bfd_mach_mips4100 },
14101 { bfd_mach_mips4111, bfd_mach_mips4100 },
14102
14103 /* MIPS III extensions. */
14104 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14105 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14106 { bfd_mach_mips8000, bfd_mach_mips4000 },
14107 { bfd_mach_mips4650, bfd_mach_mips4000 },
14108 { bfd_mach_mips4600, bfd_mach_mips4000 },
14109 { bfd_mach_mips4400, bfd_mach_mips4000 },
14110 { bfd_mach_mips4300, bfd_mach_mips4000 },
14111 { bfd_mach_mips4100, bfd_mach_mips4000 },
14112 { bfd_mach_mips4010, bfd_mach_mips4000 },
14113 { bfd_mach_mips5900, bfd_mach_mips4000 },
14114
14115 /* MIPS32 extensions. */
14116 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14117
14118 /* MIPS II extensions. */
14119 { bfd_mach_mips4000, bfd_mach_mips6000 },
14120 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14121
14122 /* MIPS I extensions. */
14123 { bfd_mach_mips6000, bfd_mach_mips3000 },
14124 { bfd_mach_mips3900, bfd_mach_mips3000 }
14125 };
14126
14127 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14128
14129 static bfd_boolean
14130 mips_mach_extends_p (unsigned long base, unsigned long extension)
14131 {
14132 size_t i;
14133
14134 if (extension == base)
14135 return TRUE;
14136
14137 if (base == bfd_mach_mipsisa32
14138 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14139 return TRUE;
14140
14141 if (base == bfd_mach_mipsisa32r2
14142 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14143 return TRUE;
14144
14145 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14146 if (extension == mips_mach_extensions[i].extension)
14147 {
14148 extension = mips_mach_extensions[i].base;
14149 if (extension == base)
14150 return TRUE;
14151 }
14152
14153 return FALSE;
14154 }
14155
14156 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14157
14158 static unsigned long
14159 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14160 {
14161 switch (isa_ext)
14162 {
14163 case AFL_EXT_3900: return bfd_mach_mips3900;
14164 case AFL_EXT_4010: return bfd_mach_mips4010;
14165 case AFL_EXT_4100: return bfd_mach_mips4100;
14166 case AFL_EXT_4111: return bfd_mach_mips4111;
14167 case AFL_EXT_4120: return bfd_mach_mips4120;
14168 case AFL_EXT_4650: return bfd_mach_mips4650;
14169 case AFL_EXT_5400: return bfd_mach_mips5400;
14170 case AFL_EXT_5500: return bfd_mach_mips5500;
14171 case AFL_EXT_5900: return bfd_mach_mips5900;
14172 case AFL_EXT_10000: return bfd_mach_mips10000;
14173 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14174 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14175 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14176 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14177 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14178 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14179 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14180 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14181 default: return bfd_mach_mips3000;
14182 }
14183 }
14184
14185 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14186
14187 unsigned int
14188 bfd_mips_isa_ext (bfd *abfd)
14189 {
14190 switch (bfd_get_mach (abfd))
14191 {
14192 case bfd_mach_mips3900: return AFL_EXT_3900;
14193 case bfd_mach_mips4010: return AFL_EXT_4010;
14194 case bfd_mach_mips4100: return AFL_EXT_4100;
14195 case bfd_mach_mips4111: return AFL_EXT_4111;
14196 case bfd_mach_mips4120: return AFL_EXT_4120;
14197 case bfd_mach_mips4650: return AFL_EXT_4650;
14198 case bfd_mach_mips5400: return AFL_EXT_5400;
14199 case bfd_mach_mips5500: return AFL_EXT_5500;
14200 case bfd_mach_mips5900: return AFL_EXT_5900;
14201 case bfd_mach_mips10000: return AFL_EXT_10000;
14202 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14203 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14204 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14205 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14206 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14207 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14208 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14209 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14210 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14211 default: return 0;
14212 }
14213 }
14214
14215 /* Encode ISA level and revision as a single value. */
14216 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14217
14218 /* Decode a single value into level and revision. */
14219 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14220 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14221
14222 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14223
14224 static void
14225 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14226 {
14227 int new_isa = 0;
14228 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14229 {
14230 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14231 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14232 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14233 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14234 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14235 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14236 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14237 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14238 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14239 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14240 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14241 default:
14242 (*_bfd_error_handler)
14243 (_("%B: Unknown architecture %s"),
14244 abfd, bfd_printable_name (abfd));
14245 }
14246
14247 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14248 {
14249 abiflags->isa_level = ISA_LEVEL (new_isa);
14250 abiflags->isa_rev = ISA_REV (new_isa);
14251 }
14252
14253 /* Update the isa_ext if ABFD describes a further extension. */
14254 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14255 bfd_get_mach (abfd)))
14256 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14257 }
14258
14259 /* Return true if the given ELF header flags describe a 32-bit binary. */
14260
14261 static bfd_boolean
14262 mips_32bit_flags_p (flagword flags)
14263 {
14264 return ((flags & EF_MIPS_32BITMODE) != 0
14265 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14266 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14267 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14268 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14269 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14270 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14271 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14272 }
14273
14274 /* Infer the content of the ABI flags based on the elf header. */
14275
14276 static void
14277 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14278 {
14279 obj_attribute *in_attr;
14280
14281 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14282 update_mips_abiflags_isa (abfd, abiflags);
14283
14284 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14285 abiflags->gpr_size = AFL_REG_32;
14286 else
14287 abiflags->gpr_size = AFL_REG_64;
14288
14289 abiflags->cpr1_size = AFL_REG_NONE;
14290
14291 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14292 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14293
14294 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14295 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14296 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14297 && abiflags->gpr_size == AFL_REG_32))
14298 abiflags->cpr1_size = AFL_REG_32;
14299 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14300 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14301 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14302 abiflags->cpr1_size = AFL_REG_64;
14303
14304 abiflags->cpr2_size = AFL_REG_NONE;
14305
14306 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14307 abiflags->ases |= AFL_ASE_MDMX;
14308 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14309 abiflags->ases |= AFL_ASE_MIPS16;
14310 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14311 abiflags->ases |= AFL_ASE_MICROMIPS;
14312
14313 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14314 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14315 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14316 && abiflags->isa_level >= 32
14317 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14318 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14319 }
14320
14321 /* We need to use a special link routine to handle the .reginfo and
14322 the .mdebug sections. We need to merge all instances of these
14323 sections together, not write them all out sequentially. */
14324
14325 bfd_boolean
14326 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14327 {
14328 asection *o;
14329 struct bfd_link_order *p;
14330 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14331 asection *rtproc_sec, *abiflags_sec;
14332 Elf32_RegInfo reginfo;
14333 struct ecoff_debug_info debug;
14334 struct mips_htab_traverse_info hti;
14335 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14336 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14337 HDRR *symhdr = &debug.symbolic_header;
14338 void *mdebug_handle = NULL;
14339 asection *s;
14340 EXTR esym;
14341 unsigned int i;
14342 bfd_size_type amt;
14343 struct mips_elf_link_hash_table *htab;
14344
14345 static const char * const secname[] =
14346 {
14347 ".text", ".init", ".fini", ".data",
14348 ".rodata", ".sdata", ".sbss", ".bss"
14349 };
14350 static const int sc[] =
14351 {
14352 scText, scInit, scFini, scData,
14353 scRData, scSData, scSBss, scBss
14354 };
14355
14356 /* Sort the dynamic symbols so that those with GOT entries come after
14357 those without. */
14358 htab = mips_elf_hash_table (info);
14359 BFD_ASSERT (htab != NULL);
14360
14361 if (!mips_elf_sort_hash_table (abfd, info))
14362 return FALSE;
14363
14364 /* Create any scheduled LA25 stubs. */
14365 hti.info = info;
14366 hti.output_bfd = abfd;
14367 hti.error = FALSE;
14368 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14369 if (hti.error)
14370 return FALSE;
14371
14372 /* Get a value for the GP register. */
14373 if (elf_gp (abfd) == 0)
14374 {
14375 struct bfd_link_hash_entry *h;
14376
14377 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14378 if (h != NULL && h->type == bfd_link_hash_defined)
14379 elf_gp (abfd) = (h->u.def.value
14380 + h->u.def.section->output_section->vma
14381 + h->u.def.section->output_offset);
14382 else if (htab->is_vxworks
14383 && (h = bfd_link_hash_lookup (info->hash,
14384 "_GLOBAL_OFFSET_TABLE_",
14385 FALSE, FALSE, TRUE))
14386 && h->type == bfd_link_hash_defined)
14387 elf_gp (abfd) = (h->u.def.section->output_section->vma
14388 + h->u.def.section->output_offset
14389 + h->u.def.value);
14390 else if (bfd_link_relocatable (info))
14391 {
14392 bfd_vma lo = MINUS_ONE;
14393
14394 /* Find the GP-relative section with the lowest offset. */
14395 for (o = abfd->sections; o != NULL; o = o->next)
14396 if (o->vma < lo
14397 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14398 lo = o->vma;
14399
14400 /* And calculate GP relative to that. */
14401 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14402 }
14403 else
14404 {
14405 /* If the relocate_section function needs to do a reloc
14406 involving the GP value, it should make a reloc_dangerous
14407 callback to warn that GP is not defined. */
14408 }
14409 }
14410
14411 /* Go through the sections and collect the .reginfo and .mdebug
14412 information. */
14413 abiflags_sec = NULL;
14414 reginfo_sec = NULL;
14415 mdebug_sec = NULL;
14416 gptab_data_sec = NULL;
14417 gptab_bss_sec = NULL;
14418 for (o = abfd->sections; o != NULL; o = o->next)
14419 {
14420 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14421 {
14422 /* We have found the .MIPS.abiflags section in the output file.
14423 Look through all the link_orders comprising it and remove them.
14424 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14425 for (p = o->map_head.link_order; p != NULL; p = p->next)
14426 {
14427 asection *input_section;
14428
14429 if (p->type != bfd_indirect_link_order)
14430 {
14431 if (p->type == bfd_data_link_order)
14432 continue;
14433 abort ();
14434 }
14435
14436 input_section = p->u.indirect.section;
14437
14438 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14439 elf_link_input_bfd ignores this section. */
14440 input_section->flags &= ~SEC_HAS_CONTENTS;
14441 }
14442
14443 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14444 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14445
14446 /* Skip this section later on (I don't think this currently
14447 matters, but someday it might). */
14448 o->map_head.link_order = NULL;
14449
14450 abiflags_sec = o;
14451 }
14452
14453 if (strcmp (o->name, ".reginfo") == 0)
14454 {
14455 memset (&reginfo, 0, sizeof reginfo);
14456
14457 /* We have found the .reginfo section in the output file.
14458 Look through all the link_orders comprising it and merge
14459 the information together. */
14460 for (p = o->map_head.link_order; p != NULL; p = p->next)
14461 {
14462 asection *input_section;
14463 bfd *input_bfd;
14464 Elf32_External_RegInfo ext;
14465 Elf32_RegInfo sub;
14466
14467 if (p->type != bfd_indirect_link_order)
14468 {
14469 if (p->type == bfd_data_link_order)
14470 continue;
14471 abort ();
14472 }
14473
14474 input_section = p->u.indirect.section;
14475 input_bfd = input_section->owner;
14476
14477 if (! bfd_get_section_contents (input_bfd, input_section,
14478 &ext, 0, sizeof ext))
14479 return FALSE;
14480
14481 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14482
14483 reginfo.ri_gprmask |= sub.ri_gprmask;
14484 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14485 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14486 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14487 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14488
14489 /* ri_gp_value is set by the function
14490 mips_elf32_section_processing when the section is
14491 finally written out. */
14492
14493 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14494 elf_link_input_bfd ignores this section. */
14495 input_section->flags &= ~SEC_HAS_CONTENTS;
14496 }
14497
14498 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14499 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14500
14501 /* Skip this section later on (I don't think this currently
14502 matters, but someday it might). */
14503 o->map_head.link_order = NULL;
14504
14505 reginfo_sec = o;
14506 }
14507
14508 if (strcmp (o->name, ".mdebug") == 0)
14509 {
14510 struct extsym_info einfo;
14511 bfd_vma last;
14512
14513 /* We have found the .mdebug section in the output file.
14514 Look through all the link_orders comprising it and merge
14515 the information together. */
14516 symhdr->magic = swap->sym_magic;
14517 /* FIXME: What should the version stamp be? */
14518 symhdr->vstamp = 0;
14519 symhdr->ilineMax = 0;
14520 symhdr->cbLine = 0;
14521 symhdr->idnMax = 0;
14522 symhdr->ipdMax = 0;
14523 symhdr->isymMax = 0;
14524 symhdr->ioptMax = 0;
14525 symhdr->iauxMax = 0;
14526 symhdr->issMax = 0;
14527 symhdr->issExtMax = 0;
14528 symhdr->ifdMax = 0;
14529 symhdr->crfd = 0;
14530 symhdr->iextMax = 0;
14531
14532 /* We accumulate the debugging information itself in the
14533 debug_info structure. */
14534 debug.line = NULL;
14535 debug.external_dnr = NULL;
14536 debug.external_pdr = NULL;
14537 debug.external_sym = NULL;
14538 debug.external_opt = NULL;
14539 debug.external_aux = NULL;
14540 debug.ss = NULL;
14541 debug.ssext = debug.ssext_end = NULL;
14542 debug.external_fdr = NULL;
14543 debug.external_rfd = NULL;
14544 debug.external_ext = debug.external_ext_end = NULL;
14545
14546 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14547 if (mdebug_handle == NULL)
14548 return FALSE;
14549
14550 esym.jmptbl = 0;
14551 esym.cobol_main = 0;
14552 esym.weakext = 0;
14553 esym.reserved = 0;
14554 esym.ifd = ifdNil;
14555 esym.asym.iss = issNil;
14556 esym.asym.st = stLocal;
14557 esym.asym.reserved = 0;
14558 esym.asym.index = indexNil;
14559 last = 0;
14560 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14561 {
14562 esym.asym.sc = sc[i];
14563 s = bfd_get_section_by_name (abfd, secname[i]);
14564 if (s != NULL)
14565 {
14566 esym.asym.value = s->vma;
14567 last = s->vma + s->size;
14568 }
14569 else
14570 esym.asym.value = last;
14571 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14572 secname[i], &esym))
14573 return FALSE;
14574 }
14575
14576 for (p = o->map_head.link_order; p != NULL; p = p->next)
14577 {
14578 asection *input_section;
14579 bfd *input_bfd;
14580 const struct ecoff_debug_swap *input_swap;
14581 struct ecoff_debug_info input_debug;
14582 char *eraw_src;
14583 char *eraw_end;
14584
14585 if (p->type != bfd_indirect_link_order)
14586 {
14587 if (p->type == bfd_data_link_order)
14588 continue;
14589 abort ();
14590 }
14591
14592 input_section = p->u.indirect.section;
14593 input_bfd = input_section->owner;
14594
14595 if (!is_mips_elf (input_bfd))
14596 {
14597 /* I don't know what a non MIPS ELF bfd would be
14598 doing with a .mdebug section, but I don't really
14599 want to deal with it. */
14600 continue;
14601 }
14602
14603 input_swap = (get_elf_backend_data (input_bfd)
14604 ->elf_backend_ecoff_debug_swap);
14605
14606 BFD_ASSERT (p->size == input_section->size);
14607
14608 /* The ECOFF linking code expects that we have already
14609 read in the debugging information and set up an
14610 ecoff_debug_info structure, so we do that now. */
14611 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14612 &input_debug))
14613 return FALSE;
14614
14615 if (! (bfd_ecoff_debug_accumulate
14616 (mdebug_handle, abfd, &debug, swap, input_bfd,
14617 &input_debug, input_swap, info)))
14618 return FALSE;
14619
14620 /* Loop through the external symbols. For each one with
14621 interesting information, try to find the symbol in
14622 the linker global hash table and save the information
14623 for the output external symbols. */
14624 eraw_src = input_debug.external_ext;
14625 eraw_end = (eraw_src
14626 + (input_debug.symbolic_header.iextMax
14627 * input_swap->external_ext_size));
14628 for (;
14629 eraw_src < eraw_end;
14630 eraw_src += input_swap->external_ext_size)
14631 {
14632 EXTR ext;
14633 const char *name;
14634 struct mips_elf_link_hash_entry *h;
14635
14636 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14637 if (ext.asym.sc == scNil
14638 || ext.asym.sc == scUndefined
14639 || ext.asym.sc == scSUndefined)
14640 continue;
14641
14642 name = input_debug.ssext + ext.asym.iss;
14643 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14644 name, FALSE, FALSE, TRUE);
14645 if (h == NULL || h->esym.ifd != -2)
14646 continue;
14647
14648 if (ext.ifd != -1)
14649 {
14650 BFD_ASSERT (ext.ifd
14651 < input_debug.symbolic_header.ifdMax);
14652 ext.ifd = input_debug.ifdmap[ext.ifd];
14653 }
14654
14655 h->esym = ext;
14656 }
14657
14658 /* Free up the information we just read. */
14659 free (input_debug.line);
14660 free (input_debug.external_dnr);
14661 free (input_debug.external_pdr);
14662 free (input_debug.external_sym);
14663 free (input_debug.external_opt);
14664 free (input_debug.external_aux);
14665 free (input_debug.ss);
14666 free (input_debug.ssext);
14667 free (input_debug.external_fdr);
14668 free (input_debug.external_rfd);
14669 free (input_debug.external_ext);
14670
14671 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14672 elf_link_input_bfd ignores this section. */
14673 input_section->flags &= ~SEC_HAS_CONTENTS;
14674 }
14675
14676 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14677 {
14678 /* Create .rtproc section. */
14679 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14680 if (rtproc_sec == NULL)
14681 {
14682 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14683 | SEC_LINKER_CREATED | SEC_READONLY);
14684
14685 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14686 ".rtproc",
14687 flags);
14688 if (rtproc_sec == NULL
14689 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14690 return FALSE;
14691 }
14692
14693 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14694 info, rtproc_sec,
14695 &debug))
14696 return FALSE;
14697 }
14698
14699 /* Build the external symbol information. */
14700 einfo.abfd = abfd;
14701 einfo.info = info;
14702 einfo.debug = &debug;
14703 einfo.swap = swap;
14704 einfo.failed = FALSE;
14705 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14706 mips_elf_output_extsym, &einfo);
14707 if (einfo.failed)
14708 return FALSE;
14709
14710 /* Set the size of the .mdebug section. */
14711 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14712
14713 /* Skip this section later on (I don't think this currently
14714 matters, but someday it might). */
14715 o->map_head.link_order = NULL;
14716
14717 mdebug_sec = o;
14718 }
14719
14720 if (CONST_STRNEQ (o->name, ".gptab."))
14721 {
14722 const char *subname;
14723 unsigned int c;
14724 Elf32_gptab *tab;
14725 Elf32_External_gptab *ext_tab;
14726 unsigned int j;
14727
14728 /* The .gptab.sdata and .gptab.sbss sections hold
14729 information describing how the small data area would
14730 change depending upon the -G switch. These sections
14731 not used in executables files. */
14732 if (! bfd_link_relocatable (info))
14733 {
14734 for (p = o->map_head.link_order; p != NULL; p = p->next)
14735 {
14736 asection *input_section;
14737
14738 if (p->type != bfd_indirect_link_order)
14739 {
14740 if (p->type == bfd_data_link_order)
14741 continue;
14742 abort ();
14743 }
14744
14745 input_section = p->u.indirect.section;
14746
14747 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14748 elf_link_input_bfd ignores this section. */
14749 input_section->flags &= ~SEC_HAS_CONTENTS;
14750 }
14751
14752 /* Skip this section later on (I don't think this
14753 currently matters, but someday it might). */
14754 o->map_head.link_order = NULL;
14755
14756 /* Really remove the section. */
14757 bfd_section_list_remove (abfd, o);
14758 --abfd->section_count;
14759
14760 continue;
14761 }
14762
14763 /* There is one gptab for initialized data, and one for
14764 uninitialized data. */
14765 if (strcmp (o->name, ".gptab.sdata") == 0)
14766 gptab_data_sec = o;
14767 else if (strcmp (o->name, ".gptab.sbss") == 0)
14768 gptab_bss_sec = o;
14769 else
14770 {
14771 (*_bfd_error_handler)
14772 (_("%s: illegal section name `%s'"),
14773 bfd_get_filename (abfd), o->name);
14774 bfd_set_error (bfd_error_nonrepresentable_section);
14775 return FALSE;
14776 }
14777
14778 /* The linker script always combines .gptab.data and
14779 .gptab.sdata into .gptab.sdata, and likewise for
14780 .gptab.bss and .gptab.sbss. It is possible that there is
14781 no .sdata or .sbss section in the output file, in which
14782 case we must change the name of the output section. */
14783 subname = o->name + sizeof ".gptab" - 1;
14784 if (bfd_get_section_by_name (abfd, subname) == NULL)
14785 {
14786 if (o == gptab_data_sec)
14787 o->name = ".gptab.data";
14788 else
14789 o->name = ".gptab.bss";
14790 subname = o->name + sizeof ".gptab" - 1;
14791 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14792 }
14793
14794 /* Set up the first entry. */
14795 c = 1;
14796 amt = c * sizeof (Elf32_gptab);
14797 tab = bfd_malloc (amt);
14798 if (tab == NULL)
14799 return FALSE;
14800 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14801 tab[0].gt_header.gt_unused = 0;
14802
14803 /* Combine the input sections. */
14804 for (p = o->map_head.link_order; p != NULL; p = p->next)
14805 {
14806 asection *input_section;
14807 bfd *input_bfd;
14808 bfd_size_type size;
14809 unsigned long last;
14810 bfd_size_type gpentry;
14811
14812 if (p->type != bfd_indirect_link_order)
14813 {
14814 if (p->type == bfd_data_link_order)
14815 continue;
14816 abort ();
14817 }
14818
14819 input_section = p->u.indirect.section;
14820 input_bfd = input_section->owner;
14821
14822 /* Combine the gptab entries for this input section one
14823 by one. We know that the input gptab entries are
14824 sorted by ascending -G value. */
14825 size = input_section->size;
14826 last = 0;
14827 for (gpentry = sizeof (Elf32_External_gptab);
14828 gpentry < size;
14829 gpentry += sizeof (Elf32_External_gptab))
14830 {
14831 Elf32_External_gptab ext_gptab;
14832 Elf32_gptab int_gptab;
14833 unsigned long val;
14834 unsigned long add;
14835 bfd_boolean exact;
14836 unsigned int look;
14837
14838 if (! (bfd_get_section_contents
14839 (input_bfd, input_section, &ext_gptab, gpentry,
14840 sizeof (Elf32_External_gptab))))
14841 {
14842 free (tab);
14843 return FALSE;
14844 }
14845
14846 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14847 &int_gptab);
14848 val = int_gptab.gt_entry.gt_g_value;
14849 add = int_gptab.gt_entry.gt_bytes - last;
14850
14851 exact = FALSE;
14852 for (look = 1; look < c; look++)
14853 {
14854 if (tab[look].gt_entry.gt_g_value >= val)
14855 tab[look].gt_entry.gt_bytes += add;
14856
14857 if (tab[look].gt_entry.gt_g_value == val)
14858 exact = TRUE;
14859 }
14860
14861 if (! exact)
14862 {
14863 Elf32_gptab *new_tab;
14864 unsigned int max;
14865
14866 /* We need a new table entry. */
14867 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14868 new_tab = bfd_realloc (tab, amt);
14869 if (new_tab == NULL)
14870 {
14871 free (tab);
14872 return FALSE;
14873 }
14874 tab = new_tab;
14875 tab[c].gt_entry.gt_g_value = val;
14876 tab[c].gt_entry.gt_bytes = add;
14877
14878 /* Merge in the size for the next smallest -G
14879 value, since that will be implied by this new
14880 value. */
14881 max = 0;
14882 for (look = 1; look < c; look++)
14883 {
14884 if (tab[look].gt_entry.gt_g_value < val
14885 && (max == 0
14886 || (tab[look].gt_entry.gt_g_value
14887 > tab[max].gt_entry.gt_g_value)))
14888 max = look;
14889 }
14890 if (max != 0)
14891 tab[c].gt_entry.gt_bytes +=
14892 tab[max].gt_entry.gt_bytes;
14893
14894 ++c;
14895 }
14896
14897 last = int_gptab.gt_entry.gt_bytes;
14898 }
14899
14900 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14901 elf_link_input_bfd ignores this section. */
14902 input_section->flags &= ~SEC_HAS_CONTENTS;
14903 }
14904
14905 /* The table must be sorted by -G value. */
14906 if (c > 2)
14907 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14908
14909 /* Swap out the table. */
14910 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14911 ext_tab = bfd_alloc (abfd, amt);
14912 if (ext_tab == NULL)
14913 {
14914 free (tab);
14915 return FALSE;
14916 }
14917
14918 for (j = 0; j < c; j++)
14919 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14920 free (tab);
14921
14922 o->size = c * sizeof (Elf32_External_gptab);
14923 o->contents = (bfd_byte *) ext_tab;
14924
14925 /* Skip this section later on (I don't think this currently
14926 matters, but someday it might). */
14927 o->map_head.link_order = NULL;
14928 }
14929 }
14930
14931 /* Invoke the regular ELF backend linker to do all the work. */
14932 if (!bfd_elf_final_link (abfd, info))
14933 return FALSE;
14934
14935 /* Now write out the computed sections. */
14936
14937 if (abiflags_sec != NULL)
14938 {
14939 Elf_External_ABIFlags_v0 ext;
14940 Elf_Internal_ABIFlags_v0 *abiflags;
14941
14942 abiflags = &mips_elf_tdata (abfd)->abiflags;
14943
14944 /* Set up the abiflags if no valid input sections were found. */
14945 if (!mips_elf_tdata (abfd)->abiflags_valid)
14946 {
14947 infer_mips_abiflags (abfd, abiflags);
14948 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14949 }
14950 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14951 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14952 return FALSE;
14953 }
14954
14955 if (reginfo_sec != NULL)
14956 {
14957 Elf32_External_RegInfo ext;
14958
14959 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14960 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14961 return FALSE;
14962 }
14963
14964 if (mdebug_sec != NULL)
14965 {
14966 BFD_ASSERT (abfd->output_has_begun);
14967 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14968 swap, info,
14969 mdebug_sec->filepos))
14970 return FALSE;
14971
14972 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14973 }
14974
14975 if (gptab_data_sec != NULL)
14976 {
14977 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14978 gptab_data_sec->contents,
14979 0, gptab_data_sec->size))
14980 return FALSE;
14981 }
14982
14983 if (gptab_bss_sec != NULL)
14984 {
14985 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14986 gptab_bss_sec->contents,
14987 0, gptab_bss_sec->size))
14988 return FALSE;
14989 }
14990
14991 if (SGI_COMPAT (abfd))
14992 {
14993 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14994 if (rtproc_sec != NULL)
14995 {
14996 if (! bfd_set_section_contents (abfd, rtproc_sec,
14997 rtproc_sec->contents,
14998 0, rtproc_sec->size))
14999 return FALSE;
15000 }
15001 }
15002
15003 return TRUE;
15004 }
15005 \f
15006 /* Merge object file header flags from IBFD into OBFD. Raise an error
15007 if there are conflicting settings. */
15008
15009 static bfd_boolean
15010 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
15011 {
15012 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15013 flagword old_flags;
15014 flagword new_flags;
15015 bfd_boolean ok;
15016
15017 new_flags = elf_elfheader (ibfd)->e_flags;
15018 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15019 old_flags = elf_elfheader (obfd)->e_flags;
15020
15021 /* Check flag compatibility. */
15022
15023 new_flags &= ~EF_MIPS_NOREORDER;
15024 old_flags &= ~EF_MIPS_NOREORDER;
15025
15026 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15027 doesn't seem to matter. */
15028 new_flags &= ~EF_MIPS_XGOT;
15029 old_flags &= ~EF_MIPS_XGOT;
15030
15031 /* MIPSpro generates ucode info in n64 objects. Again, we should
15032 just be able to ignore this. */
15033 new_flags &= ~EF_MIPS_UCODE;
15034 old_flags &= ~EF_MIPS_UCODE;
15035
15036 /* DSOs should only be linked with CPIC code. */
15037 if ((ibfd->flags & DYNAMIC) != 0)
15038 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15039
15040 if (new_flags == old_flags)
15041 return TRUE;
15042
15043 ok = TRUE;
15044
15045 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15046 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15047 {
15048 (*_bfd_error_handler)
15049 (_("%B: warning: linking abicalls files with non-abicalls files"),
15050 ibfd);
15051 ok = TRUE;
15052 }
15053
15054 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15055 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15056 if (! (new_flags & EF_MIPS_PIC))
15057 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15058
15059 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15060 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15061
15062 /* Compare the ISAs. */
15063 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15064 {
15065 (*_bfd_error_handler)
15066 (_("%B: linking 32-bit code with 64-bit code"),
15067 ibfd);
15068 ok = FALSE;
15069 }
15070 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15071 {
15072 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15073 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15074 {
15075 /* Copy the architecture info from IBFD to OBFD. Also copy
15076 the 32-bit flag (if set) so that we continue to recognise
15077 OBFD as a 32-bit binary. */
15078 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15079 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15080 elf_elfheader (obfd)->e_flags
15081 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15082
15083 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15084 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15085
15086 /* Copy across the ABI flags if OBFD doesn't use them
15087 and if that was what caused us to treat IBFD as 32-bit. */
15088 if ((old_flags & EF_MIPS_ABI) == 0
15089 && mips_32bit_flags_p (new_flags)
15090 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15091 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15092 }
15093 else
15094 {
15095 /* The ISAs aren't compatible. */
15096 (*_bfd_error_handler)
15097 (_("%B: linking %s module with previous %s modules"),
15098 ibfd,
15099 bfd_printable_name (ibfd),
15100 bfd_printable_name (obfd));
15101 ok = FALSE;
15102 }
15103 }
15104
15105 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15106 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15107
15108 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15109 does set EI_CLASS differently from any 32-bit ABI. */
15110 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15111 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15112 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15113 {
15114 /* Only error if both are set (to different values). */
15115 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15116 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15117 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15118 {
15119 (*_bfd_error_handler)
15120 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15121 ibfd,
15122 elf_mips_abi_name (ibfd),
15123 elf_mips_abi_name (obfd));
15124 ok = FALSE;
15125 }
15126 new_flags &= ~EF_MIPS_ABI;
15127 old_flags &= ~EF_MIPS_ABI;
15128 }
15129
15130 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15131 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15132 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15133 {
15134 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15135 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15136 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15137 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15138 int micro_mis = old_m16 && new_micro;
15139 int m16_mis = old_micro && new_m16;
15140
15141 if (m16_mis || micro_mis)
15142 {
15143 (*_bfd_error_handler)
15144 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15145 ibfd,
15146 m16_mis ? "MIPS16" : "microMIPS",
15147 m16_mis ? "microMIPS" : "MIPS16");
15148 ok = FALSE;
15149 }
15150
15151 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15152
15153 new_flags &= ~ EF_MIPS_ARCH_ASE;
15154 old_flags &= ~ EF_MIPS_ARCH_ASE;
15155 }
15156
15157 /* Compare NaN encodings. */
15158 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15159 {
15160 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15161 ibfd,
15162 (new_flags & EF_MIPS_NAN2008
15163 ? "-mnan=2008" : "-mnan=legacy"),
15164 (old_flags & EF_MIPS_NAN2008
15165 ? "-mnan=2008" : "-mnan=legacy"));
15166 ok = FALSE;
15167 new_flags &= ~EF_MIPS_NAN2008;
15168 old_flags &= ~EF_MIPS_NAN2008;
15169 }
15170
15171 /* Compare FP64 state. */
15172 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15173 {
15174 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15175 ibfd,
15176 (new_flags & EF_MIPS_FP64
15177 ? "-mfp64" : "-mfp32"),
15178 (old_flags & EF_MIPS_FP64
15179 ? "-mfp64" : "-mfp32"));
15180 ok = FALSE;
15181 new_flags &= ~EF_MIPS_FP64;
15182 old_flags &= ~EF_MIPS_FP64;
15183 }
15184
15185 /* Warn about any other mismatches */
15186 if (new_flags != old_flags)
15187 {
15188 (*_bfd_error_handler)
15189 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15190 "(0x%lx)"),
15191 ibfd, (unsigned long) new_flags,
15192 (unsigned long) old_flags);
15193 ok = FALSE;
15194 }
15195
15196 return ok;
15197 }
15198
15199 /* Merge object attributes from IBFD into OBFD. Raise an error if
15200 there are conflicting attributes. */
15201 static bfd_boolean
15202 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15203 {
15204 obj_attribute *in_attr;
15205 obj_attribute *out_attr;
15206 bfd *abi_fp_bfd;
15207 bfd *abi_msa_bfd;
15208
15209 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15210 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15211 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15212 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15213
15214 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15215 if (!abi_msa_bfd
15216 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15217 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15218
15219 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15220 {
15221 /* This is the first object. Copy the attributes. */
15222 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15223
15224 /* Use the Tag_null value to indicate the attributes have been
15225 initialized. */
15226 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15227
15228 return TRUE;
15229 }
15230
15231 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15232 non-conflicting ones. */
15233 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15234 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15235 {
15236 int out_fp, in_fp;
15237
15238 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15239 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15240 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15241 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15242 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15243 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15244 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15245 || in_fp == Val_GNU_MIPS_ABI_FP_64
15246 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15247 {
15248 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15249 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15250 }
15251 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15252 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15253 || out_fp == Val_GNU_MIPS_ABI_FP_64
15254 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15255 /* Keep the current setting. */;
15256 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15257 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15258 {
15259 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15260 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15261 }
15262 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15263 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15264 /* Keep the current setting. */;
15265 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15266 {
15267 const char *out_string, *in_string;
15268
15269 out_string = _bfd_mips_fp_abi_string (out_fp);
15270 in_string = _bfd_mips_fp_abi_string (in_fp);
15271 /* First warn about cases involving unrecognised ABIs. */
15272 if (!out_string && !in_string)
15273 _bfd_error_handler
15274 (_("Warning: %B uses unknown floating point ABI %d "
15275 "(set by %B), %B uses unknown floating point ABI %d"),
15276 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15277 else if (!out_string)
15278 _bfd_error_handler
15279 (_("Warning: %B uses unknown floating point ABI %d "
15280 "(set by %B), %B uses %s"),
15281 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15282 else if (!in_string)
15283 _bfd_error_handler
15284 (_("Warning: %B uses %s (set by %B), "
15285 "%B uses unknown floating point ABI %d"),
15286 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15287 else
15288 {
15289 /* If one of the bfds is soft-float, the other must be
15290 hard-float. The exact choice of hard-float ABI isn't
15291 really relevant to the error message. */
15292 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15293 out_string = "-mhard-float";
15294 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15295 in_string = "-mhard-float";
15296 _bfd_error_handler
15297 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15298 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15299 }
15300 }
15301 }
15302
15303 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15304 non-conflicting ones. */
15305 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15306 {
15307 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15308 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15309 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15310 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15311 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15312 {
15313 case Val_GNU_MIPS_ABI_MSA_128:
15314 _bfd_error_handler
15315 (_("Warning: %B uses %s (set by %B), "
15316 "%B uses unknown MSA ABI %d"),
15317 obfd, abi_msa_bfd, ibfd,
15318 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15319 break;
15320
15321 default:
15322 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15323 {
15324 case Val_GNU_MIPS_ABI_MSA_128:
15325 _bfd_error_handler
15326 (_("Warning: %B uses unknown MSA ABI %d "
15327 "(set by %B), %B uses %s"),
15328 obfd, abi_msa_bfd, ibfd,
15329 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15330 break;
15331
15332 default:
15333 _bfd_error_handler
15334 (_("Warning: %B uses unknown MSA ABI %d "
15335 "(set by %B), %B uses unknown MSA ABI %d"),
15336 obfd, abi_msa_bfd, ibfd,
15337 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15338 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15339 break;
15340 }
15341 }
15342 }
15343
15344 /* Merge Tag_compatibility attributes and any common GNU ones. */
15345 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15346 }
15347
15348 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15349 there are conflicting settings. */
15350
15351 static bfd_boolean
15352 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15353 {
15354 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15355 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15356 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15357
15358 /* Update the output abiflags fp_abi using the computed fp_abi. */
15359 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15360
15361 #define max(a, b) ((a) > (b) ? (a) : (b))
15362 /* Merge abiflags. */
15363 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15364 in_tdata->abiflags.isa_level);
15365 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15366 in_tdata->abiflags.isa_rev);
15367 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15368 in_tdata->abiflags.gpr_size);
15369 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15370 in_tdata->abiflags.cpr1_size);
15371 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15372 in_tdata->abiflags.cpr2_size);
15373 #undef max
15374 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15375 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15376
15377 return TRUE;
15378 }
15379
15380 /* Merge backend specific data from an object file to the output
15381 object file when linking. */
15382
15383 bfd_boolean
15384 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15385 {
15386 struct mips_elf_obj_tdata *out_tdata;
15387 struct mips_elf_obj_tdata *in_tdata;
15388 bfd_boolean null_input_bfd = TRUE;
15389 asection *sec;
15390 bfd_boolean ok;
15391
15392 /* Check if we have the same endianness. */
15393 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15394 {
15395 (*_bfd_error_handler)
15396 (_("%B: endianness incompatible with that of the selected emulation"),
15397 ibfd);
15398 return FALSE;
15399 }
15400
15401 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15402 return TRUE;
15403
15404 in_tdata = mips_elf_tdata (ibfd);
15405 out_tdata = mips_elf_tdata (obfd);
15406
15407 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15408 {
15409 (*_bfd_error_handler)
15410 (_("%B: ABI is incompatible with that of the selected emulation"),
15411 ibfd);
15412 return FALSE;
15413 }
15414
15415 /* Check to see if the input BFD actually contains any sections. If not,
15416 then it has no attributes, and its flags may not have been initialized
15417 either, but it cannot actually cause any incompatibility. */
15418 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15419 {
15420 /* Ignore synthetic sections and empty .text, .data and .bss sections
15421 which are automatically generated by gas. Also ignore fake
15422 (s)common sections, since merely defining a common symbol does
15423 not affect compatibility. */
15424 if ((sec->flags & SEC_IS_COMMON) == 0
15425 && strcmp (sec->name, ".reginfo")
15426 && strcmp (sec->name, ".mdebug")
15427 && (sec->size != 0
15428 || (strcmp (sec->name, ".text")
15429 && strcmp (sec->name, ".data")
15430 && strcmp (sec->name, ".bss"))))
15431 {
15432 null_input_bfd = FALSE;
15433 break;
15434 }
15435 }
15436 if (null_input_bfd)
15437 return TRUE;
15438
15439 /* Populate abiflags using existing information. */
15440 if (in_tdata->abiflags_valid)
15441 {
15442 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15443 Elf_Internal_ABIFlags_v0 in_abiflags;
15444 Elf_Internal_ABIFlags_v0 abiflags;
15445
15446 /* Set up the FP ABI attribute from the abiflags if it is not already
15447 set. */
15448 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15449 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15450
15451 infer_mips_abiflags (ibfd, &abiflags);
15452 in_abiflags = in_tdata->abiflags;
15453
15454 /* It is not possible to infer the correct ISA revision
15455 for R3 or R5 so drop down to R2 for the checks. */
15456 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15457 in_abiflags.isa_rev = 2;
15458
15459 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15460 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15461 (*_bfd_error_handler)
15462 (_("%B: warning: Inconsistent ISA between e_flags and "
15463 ".MIPS.abiflags"), ibfd);
15464 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15465 && in_abiflags.fp_abi != abiflags.fp_abi)
15466 (*_bfd_error_handler)
15467 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15468 ".MIPS.abiflags"), ibfd);
15469 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15470 (*_bfd_error_handler)
15471 (_("%B: warning: Inconsistent ASEs between e_flags and "
15472 ".MIPS.abiflags"), ibfd);
15473 /* The isa_ext is allowed to be an extension of what can be inferred
15474 from e_flags. */
15475 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15476 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15477 (*_bfd_error_handler)
15478 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15479 ".MIPS.abiflags"), ibfd);
15480 if (in_abiflags.flags2 != 0)
15481 (*_bfd_error_handler)
15482 (_("%B: warning: Unexpected flag in the flags2 field of "
15483 ".MIPS.abiflags (0x%lx)"), ibfd,
15484 (unsigned long) in_abiflags.flags2);
15485 }
15486 else
15487 {
15488 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15489 in_tdata->abiflags_valid = TRUE;
15490 }
15491
15492 if (!out_tdata->abiflags_valid)
15493 {
15494 /* Copy input abiflags if output abiflags are not already valid. */
15495 out_tdata->abiflags = in_tdata->abiflags;
15496 out_tdata->abiflags_valid = TRUE;
15497 }
15498
15499 if (! elf_flags_init (obfd))
15500 {
15501 elf_flags_init (obfd) = TRUE;
15502 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15503 elf_elfheader (obfd)->e_ident[EI_CLASS]
15504 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15505
15506 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15507 && (bfd_get_arch_info (obfd)->the_default
15508 || mips_mach_extends_p (bfd_get_mach (obfd),
15509 bfd_get_mach (ibfd))))
15510 {
15511 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15512 bfd_get_mach (ibfd)))
15513 return FALSE;
15514
15515 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15516 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15517 }
15518
15519 ok = TRUE;
15520 }
15521 else
15522 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15523
15524 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15525
15526 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15527
15528 if (!ok)
15529 {
15530 bfd_set_error (bfd_error_bad_value);
15531 return FALSE;
15532 }
15533
15534 return TRUE;
15535 }
15536
15537 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15538
15539 bfd_boolean
15540 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15541 {
15542 BFD_ASSERT (!elf_flags_init (abfd)
15543 || elf_elfheader (abfd)->e_flags == flags);
15544
15545 elf_elfheader (abfd)->e_flags = flags;
15546 elf_flags_init (abfd) = TRUE;
15547 return TRUE;
15548 }
15549
15550 char *
15551 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15552 {
15553 switch (dtag)
15554 {
15555 default: return "";
15556 case DT_MIPS_RLD_VERSION:
15557 return "MIPS_RLD_VERSION";
15558 case DT_MIPS_TIME_STAMP:
15559 return "MIPS_TIME_STAMP";
15560 case DT_MIPS_ICHECKSUM:
15561 return "MIPS_ICHECKSUM";
15562 case DT_MIPS_IVERSION:
15563 return "MIPS_IVERSION";
15564 case DT_MIPS_FLAGS:
15565 return "MIPS_FLAGS";
15566 case DT_MIPS_BASE_ADDRESS:
15567 return "MIPS_BASE_ADDRESS";
15568 case DT_MIPS_MSYM:
15569 return "MIPS_MSYM";
15570 case DT_MIPS_CONFLICT:
15571 return "MIPS_CONFLICT";
15572 case DT_MIPS_LIBLIST:
15573 return "MIPS_LIBLIST";
15574 case DT_MIPS_LOCAL_GOTNO:
15575 return "MIPS_LOCAL_GOTNO";
15576 case DT_MIPS_CONFLICTNO:
15577 return "MIPS_CONFLICTNO";
15578 case DT_MIPS_LIBLISTNO:
15579 return "MIPS_LIBLISTNO";
15580 case DT_MIPS_SYMTABNO:
15581 return "MIPS_SYMTABNO";
15582 case DT_MIPS_UNREFEXTNO:
15583 return "MIPS_UNREFEXTNO";
15584 case DT_MIPS_GOTSYM:
15585 return "MIPS_GOTSYM";
15586 case DT_MIPS_HIPAGENO:
15587 return "MIPS_HIPAGENO";
15588 case DT_MIPS_RLD_MAP:
15589 return "MIPS_RLD_MAP";
15590 case DT_MIPS_RLD_MAP_REL:
15591 return "MIPS_RLD_MAP_REL";
15592 case DT_MIPS_DELTA_CLASS:
15593 return "MIPS_DELTA_CLASS";
15594 case DT_MIPS_DELTA_CLASS_NO:
15595 return "MIPS_DELTA_CLASS_NO";
15596 case DT_MIPS_DELTA_INSTANCE:
15597 return "MIPS_DELTA_INSTANCE";
15598 case DT_MIPS_DELTA_INSTANCE_NO:
15599 return "MIPS_DELTA_INSTANCE_NO";
15600 case DT_MIPS_DELTA_RELOC:
15601 return "MIPS_DELTA_RELOC";
15602 case DT_MIPS_DELTA_RELOC_NO:
15603 return "MIPS_DELTA_RELOC_NO";
15604 case DT_MIPS_DELTA_SYM:
15605 return "MIPS_DELTA_SYM";
15606 case DT_MIPS_DELTA_SYM_NO:
15607 return "MIPS_DELTA_SYM_NO";
15608 case DT_MIPS_DELTA_CLASSSYM:
15609 return "MIPS_DELTA_CLASSSYM";
15610 case DT_MIPS_DELTA_CLASSSYM_NO:
15611 return "MIPS_DELTA_CLASSSYM_NO";
15612 case DT_MIPS_CXX_FLAGS:
15613 return "MIPS_CXX_FLAGS";
15614 case DT_MIPS_PIXIE_INIT:
15615 return "MIPS_PIXIE_INIT";
15616 case DT_MIPS_SYMBOL_LIB:
15617 return "MIPS_SYMBOL_LIB";
15618 case DT_MIPS_LOCALPAGE_GOTIDX:
15619 return "MIPS_LOCALPAGE_GOTIDX";
15620 case DT_MIPS_LOCAL_GOTIDX:
15621 return "MIPS_LOCAL_GOTIDX";
15622 case DT_MIPS_HIDDEN_GOTIDX:
15623 return "MIPS_HIDDEN_GOTIDX";
15624 case DT_MIPS_PROTECTED_GOTIDX:
15625 return "MIPS_PROTECTED_GOT_IDX";
15626 case DT_MIPS_OPTIONS:
15627 return "MIPS_OPTIONS";
15628 case DT_MIPS_INTERFACE:
15629 return "MIPS_INTERFACE";
15630 case DT_MIPS_DYNSTR_ALIGN:
15631 return "DT_MIPS_DYNSTR_ALIGN";
15632 case DT_MIPS_INTERFACE_SIZE:
15633 return "DT_MIPS_INTERFACE_SIZE";
15634 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15635 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15636 case DT_MIPS_PERF_SUFFIX:
15637 return "DT_MIPS_PERF_SUFFIX";
15638 case DT_MIPS_COMPACT_SIZE:
15639 return "DT_MIPS_COMPACT_SIZE";
15640 case DT_MIPS_GP_VALUE:
15641 return "DT_MIPS_GP_VALUE";
15642 case DT_MIPS_AUX_DYNAMIC:
15643 return "DT_MIPS_AUX_DYNAMIC";
15644 case DT_MIPS_PLTGOT:
15645 return "DT_MIPS_PLTGOT";
15646 case DT_MIPS_RWPLT:
15647 return "DT_MIPS_RWPLT";
15648 }
15649 }
15650
15651 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15652 not known. */
15653
15654 const char *
15655 _bfd_mips_fp_abi_string (int fp)
15656 {
15657 switch (fp)
15658 {
15659 /* These strings aren't translated because they're simply
15660 option lists. */
15661 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15662 return "-mdouble-float";
15663
15664 case Val_GNU_MIPS_ABI_FP_SINGLE:
15665 return "-msingle-float";
15666
15667 case Val_GNU_MIPS_ABI_FP_SOFT:
15668 return "-msoft-float";
15669
15670 case Val_GNU_MIPS_ABI_FP_OLD_64:
15671 return _("-mips32r2 -mfp64 (12 callee-saved)");
15672
15673 case Val_GNU_MIPS_ABI_FP_XX:
15674 return "-mfpxx";
15675
15676 case Val_GNU_MIPS_ABI_FP_64:
15677 return "-mgp32 -mfp64";
15678
15679 case Val_GNU_MIPS_ABI_FP_64A:
15680 return "-mgp32 -mfp64 -mno-odd-spreg";
15681
15682 default:
15683 return 0;
15684 }
15685 }
15686
15687 static void
15688 print_mips_ases (FILE *file, unsigned int mask)
15689 {
15690 if (mask & AFL_ASE_DSP)
15691 fputs ("\n\tDSP ASE", file);
15692 if (mask & AFL_ASE_DSPR2)
15693 fputs ("\n\tDSP R2 ASE", file);
15694 if (mask & AFL_ASE_DSPR3)
15695 fputs ("\n\tDSP R3 ASE", file);
15696 if (mask & AFL_ASE_EVA)
15697 fputs ("\n\tEnhanced VA Scheme", file);
15698 if (mask & AFL_ASE_MCU)
15699 fputs ("\n\tMCU (MicroController) ASE", file);
15700 if (mask & AFL_ASE_MDMX)
15701 fputs ("\n\tMDMX ASE", file);
15702 if (mask & AFL_ASE_MIPS3D)
15703 fputs ("\n\tMIPS-3D ASE", file);
15704 if (mask & AFL_ASE_MT)
15705 fputs ("\n\tMT ASE", file);
15706 if (mask & AFL_ASE_SMARTMIPS)
15707 fputs ("\n\tSmartMIPS ASE", file);
15708 if (mask & AFL_ASE_VIRT)
15709 fputs ("\n\tVZ ASE", file);
15710 if (mask & AFL_ASE_MSA)
15711 fputs ("\n\tMSA ASE", file);
15712 if (mask & AFL_ASE_MIPS16)
15713 fputs ("\n\tMIPS16 ASE", file);
15714 if (mask & AFL_ASE_MICROMIPS)
15715 fputs ("\n\tMICROMIPS ASE", file);
15716 if (mask & AFL_ASE_XPA)
15717 fputs ("\n\tXPA ASE", file);
15718 if (mask == 0)
15719 fprintf (file, "\n\t%s", _("None"));
15720 else if ((mask & ~AFL_ASE_MASK) != 0)
15721 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15722 }
15723
15724 static void
15725 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15726 {
15727 switch (isa_ext)
15728 {
15729 case 0:
15730 fputs (_("None"), file);
15731 break;
15732 case AFL_EXT_XLR:
15733 fputs ("RMI XLR", file);
15734 break;
15735 case AFL_EXT_OCTEON3:
15736 fputs ("Cavium Networks Octeon3", file);
15737 break;
15738 case AFL_EXT_OCTEON2:
15739 fputs ("Cavium Networks Octeon2", file);
15740 break;
15741 case AFL_EXT_OCTEONP:
15742 fputs ("Cavium Networks OcteonP", file);
15743 break;
15744 case AFL_EXT_LOONGSON_3A:
15745 fputs ("Loongson 3A", file);
15746 break;
15747 case AFL_EXT_OCTEON:
15748 fputs ("Cavium Networks Octeon", file);
15749 break;
15750 case AFL_EXT_5900:
15751 fputs ("Toshiba R5900", file);
15752 break;
15753 case AFL_EXT_4650:
15754 fputs ("MIPS R4650", file);
15755 break;
15756 case AFL_EXT_4010:
15757 fputs ("LSI R4010", file);
15758 break;
15759 case AFL_EXT_4100:
15760 fputs ("NEC VR4100", file);
15761 break;
15762 case AFL_EXT_3900:
15763 fputs ("Toshiba R3900", file);
15764 break;
15765 case AFL_EXT_10000:
15766 fputs ("MIPS R10000", file);
15767 break;
15768 case AFL_EXT_SB1:
15769 fputs ("Broadcom SB-1", file);
15770 break;
15771 case AFL_EXT_4111:
15772 fputs ("NEC VR4111/VR4181", file);
15773 break;
15774 case AFL_EXT_4120:
15775 fputs ("NEC VR4120", file);
15776 break;
15777 case AFL_EXT_5400:
15778 fputs ("NEC VR5400", file);
15779 break;
15780 case AFL_EXT_5500:
15781 fputs ("NEC VR5500", file);
15782 break;
15783 case AFL_EXT_LOONGSON_2E:
15784 fputs ("ST Microelectronics Loongson 2E", file);
15785 break;
15786 case AFL_EXT_LOONGSON_2F:
15787 fputs ("ST Microelectronics Loongson 2F", file);
15788 break;
15789 default:
15790 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15791 break;
15792 }
15793 }
15794
15795 static void
15796 print_mips_fp_abi_value (FILE *file, int val)
15797 {
15798 switch (val)
15799 {
15800 case Val_GNU_MIPS_ABI_FP_ANY:
15801 fprintf (file, _("Hard or soft float\n"));
15802 break;
15803 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15804 fprintf (file, _("Hard float (double precision)\n"));
15805 break;
15806 case Val_GNU_MIPS_ABI_FP_SINGLE:
15807 fprintf (file, _("Hard float (single precision)\n"));
15808 break;
15809 case Val_GNU_MIPS_ABI_FP_SOFT:
15810 fprintf (file, _("Soft float\n"));
15811 break;
15812 case Val_GNU_MIPS_ABI_FP_OLD_64:
15813 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15814 break;
15815 case Val_GNU_MIPS_ABI_FP_XX:
15816 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15817 break;
15818 case Val_GNU_MIPS_ABI_FP_64:
15819 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15820 break;
15821 case Val_GNU_MIPS_ABI_FP_64A:
15822 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15823 break;
15824 default:
15825 fprintf (file, "??? (%d)\n", val);
15826 break;
15827 }
15828 }
15829
15830 static int
15831 get_mips_reg_size (int reg_size)
15832 {
15833 return (reg_size == AFL_REG_NONE) ? 0
15834 : (reg_size == AFL_REG_32) ? 32
15835 : (reg_size == AFL_REG_64) ? 64
15836 : (reg_size == AFL_REG_128) ? 128
15837 : -1;
15838 }
15839
15840 bfd_boolean
15841 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15842 {
15843 FILE *file = ptr;
15844
15845 BFD_ASSERT (abfd != NULL && ptr != NULL);
15846
15847 /* Print normal ELF private data. */
15848 _bfd_elf_print_private_bfd_data (abfd, ptr);
15849
15850 /* xgettext:c-format */
15851 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15852
15853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15854 fprintf (file, _(" [abi=O32]"));
15855 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15856 fprintf (file, _(" [abi=O64]"));
15857 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15858 fprintf (file, _(" [abi=EABI32]"));
15859 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15860 fprintf (file, _(" [abi=EABI64]"));
15861 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15862 fprintf (file, _(" [abi unknown]"));
15863 else if (ABI_N32_P (abfd))
15864 fprintf (file, _(" [abi=N32]"));
15865 else if (ABI_64_P (abfd))
15866 fprintf (file, _(" [abi=64]"));
15867 else
15868 fprintf (file, _(" [no abi set]"));
15869
15870 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15871 fprintf (file, " [mips1]");
15872 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15873 fprintf (file, " [mips2]");
15874 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15875 fprintf (file, " [mips3]");
15876 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15877 fprintf (file, " [mips4]");
15878 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15879 fprintf (file, " [mips5]");
15880 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15881 fprintf (file, " [mips32]");
15882 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15883 fprintf (file, " [mips64]");
15884 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15885 fprintf (file, " [mips32r2]");
15886 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15887 fprintf (file, " [mips64r2]");
15888 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15889 fprintf (file, " [mips32r6]");
15890 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15891 fprintf (file, " [mips64r6]");
15892 else
15893 fprintf (file, _(" [unknown ISA]"));
15894
15895 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15896 fprintf (file, " [mdmx]");
15897
15898 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15899 fprintf (file, " [mips16]");
15900
15901 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15902 fprintf (file, " [micromips]");
15903
15904 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15905 fprintf (file, " [nan2008]");
15906
15907 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15908 fprintf (file, " [old fp64]");
15909
15910 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15911 fprintf (file, " [32bitmode]");
15912 else
15913 fprintf (file, _(" [not 32bitmode]"));
15914
15915 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15916 fprintf (file, " [noreorder]");
15917
15918 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15919 fprintf (file, " [PIC]");
15920
15921 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15922 fprintf (file, " [CPIC]");
15923
15924 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15925 fprintf (file, " [XGOT]");
15926
15927 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15928 fprintf (file, " [UCODE]");
15929
15930 fputc ('\n', file);
15931
15932 if (mips_elf_tdata (abfd)->abiflags_valid)
15933 {
15934 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15935 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15936 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15937 if (abiflags->isa_rev > 1)
15938 fprintf (file, "r%d", abiflags->isa_rev);
15939 fprintf (file, "\nGPR size: %d",
15940 get_mips_reg_size (abiflags->gpr_size));
15941 fprintf (file, "\nCPR1 size: %d",
15942 get_mips_reg_size (abiflags->cpr1_size));
15943 fprintf (file, "\nCPR2 size: %d",
15944 get_mips_reg_size (abiflags->cpr2_size));
15945 fputs ("\nFP ABI: ", file);
15946 print_mips_fp_abi_value (file, abiflags->fp_abi);
15947 fputs ("ISA Extension: ", file);
15948 print_mips_isa_ext (file, abiflags->isa_ext);
15949 fputs ("\nASEs:", file);
15950 print_mips_ases (file, abiflags->ases);
15951 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15952 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15953 fputc ('\n', file);
15954 }
15955
15956 return TRUE;
15957 }
15958
15959 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15960 {
15961 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15962 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15963 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15964 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15965 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15966 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15967 { NULL, 0, 0, 0, 0 }
15968 };
15969
15970 /* Merge non visibility st_other attributes. Ensure that the
15971 STO_OPTIONAL flag is copied into h->other, even if this is not a
15972 definiton of the symbol. */
15973 void
15974 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15975 const Elf_Internal_Sym *isym,
15976 bfd_boolean definition,
15977 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15978 {
15979 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15980 {
15981 unsigned char other;
15982
15983 other = (definition ? isym->st_other : h->other);
15984 other &= ~ELF_ST_VISIBILITY (-1);
15985 h->other = other | ELF_ST_VISIBILITY (h->other);
15986 }
15987
15988 if (!definition
15989 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15990 h->other |= STO_OPTIONAL;
15991 }
15992
15993 /* Decide whether an undefined symbol is special and can be ignored.
15994 This is the case for OPTIONAL symbols on IRIX. */
15995 bfd_boolean
15996 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15997 {
15998 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15999 }
16000
16001 bfd_boolean
16002 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16003 {
16004 return (sym->st_shndx == SHN_COMMON
16005 || sym->st_shndx == SHN_MIPS_ACOMMON
16006 || sym->st_shndx == SHN_MIPS_SCOMMON);
16007 }
16008
16009 /* Return address for Ith PLT stub in section PLT, for relocation REL
16010 or (bfd_vma) -1 if it should not be included. */
16011
16012 bfd_vma
16013 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16014 const arelent *rel ATTRIBUTE_UNUSED)
16015 {
16016 return (plt->vma
16017 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16018 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16019 }
16020
16021 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16022 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16023 and .got.plt and also the slots may be of a different size each we walk
16024 the PLT manually fetching instructions and matching them against known
16025 patterns. To make things easier standard MIPS slots, if any, always come
16026 first. As we don't create proper ELF symbols we use the UDATA.I member
16027 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16028 with the ST_OTHER member of the ELF symbol. */
16029
16030 long
16031 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16032 long symcount ATTRIBUTE_UNUSED,
16033 asymbol **syms ATTRIBUTE_UNUSED,
16034 long dynsymcount, asymbol **dynsyms,
16035 asymbol **ret)
16036 {
16037 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16038 static const char microsuffix[] = "@micromipsplt";
16039 static const char m16suffix[] = "@mips16plt";
16040 static const char mipssuffix[] = "@plt";
16041
16042 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16044 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16045 Elf_Internal_Shdr *hdr;
16046 bfd_byte *plt_data;
16047 bfd_vma plt_offset;
16048 unsigned int other;
16049 bfd_vma entry_size;
16050 bfd_vma plt0_size;
16051 asection *relplt;
16052 bfd_vma opcode;
16053 asection *plt;
16054 asymbol *send;
16055 size_t size;
16056 char *names;
16057 long counti;
16058 arelent *p;
16059 asymbol *s;
16060 char *nend;
16061 long count;
16062 long pi;
16063 long i;
16064 long n;
16065
16066 *ret = NULL;
16067
16068 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16069 return 0;
16070
16071 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16072 if (relplt == NULL)
16073 return 0;
16074
16075 hdr = &elf_section_data (relplt)->this_hdr;
16076 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16077 return 0;
16078
16079 plt = bfd_get_section_by_name (abfd, ".plt");
16080 if (plt == NULL)
16081 return 0;
16082
16083 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16084 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16085 return -1;
16086 p = relplt->relocation;
16087
16088 /* Calculating the exact amount of space required for symbols would
16089 require two passes over the PLT, so just pessimise assuming two
16090 PLT slots per relocation. */
16091 count = relplt->size / hdr->sh_entsize;
16092 counti = count * bed->s->int_rels_per_ext_rel;
16093 size = 2 * count * sizeof (asymbol);
16094 size += count * (sizeof (mipssuffix) +
16095 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16096 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16097 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16098
16099 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16100 size += sizeof (asymbol) + sizeof (pltname);
16101
16102 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16103 return -1;
16104
16105 if (plt->size < 16)
16106 return -1;
16107
16108 s = *ret = bfd_malloc (size);
16109 if (s == NULL)
16110 return -1;
16111 send = s + 2 * count + 1;
16112
16113 names = (char *) send;
16114 nend = (char *) s + size;
16115 n = 0;
16116
16117 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16118 if (opcode == 0x3302fffe)
16119 {
16120 if (!micromips_p)
16121 return -1;
16122 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16123 other = STO_MICROMIPS;
16124 }
16125 else if (opcode == 0x0398c1d0)
16126 {
16127 if (!micromips_p)
16128 return -1;
16129 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16130 other = STO_MICROMIPS;
16131 }
16132 else
16133 {
16134 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16135 other = 0;
16136 }
16137
16138 s->the_bfd = abfd;
16139 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16140 s->section = plt;
16141 s->value = 0;
16142 s->name = names;
16143 s->udata.i = other;
16144 memcpy (names, pltname, sizeof (pltname));
16145 names += sizeof (pltname);
16146 ++s, ++n;
16147
16148 pi = 0;
16149 for (plt_offset = plt0_size;
16150 plt_offset + 8 <= plt->size && s < send;
16151 plt_offset += entry_size)
16152 {
16153 bfd_vma gotplt_addr;
16154 const char *suffix;
16155 bfd_vma gotplt_hi;
16156 bfd_vma gotplt_lo;
16157 size_t suffixlen;
16158
16159 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16160
16161 /* Check if the second word matches the expected MIPS16 instruction. */
16162 if (opcode == 0x651aeb00)
16163 {
16164 if (micromips_p)
16165 return -1;
16166 /* Truncated table??? */
16167 if (plt_offset + 16 > plt->size)
16168 break;
16169 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16170 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16171 suffixlen = sizeof (m16suffix);
16172 suffix = m16suffix;
16173 other = STO_MIPS16;
16174 }
16175 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16176 else if (opcode == 0xff220000)
16177 {
16178 if (!micromips_p)
16179 return -1;
16180 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16181 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16182 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16183 gotplt_lo <<= 2;
16184 gotplt_addr = gotplt_hi + gotplt_lo;
16185 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16186 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16187 suffixlen = sizeof (microsuffix);
16188 suffix = microsuffix;
16189 other = STO_MICROMIPS;
16190 }
16191 /* Likewise the expected microMIPS instruction (insn32 mode). */
16192 else if ((opcode & 0xffff0000) == 0xff2f0000)
16193 {
16194 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16195 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16196 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16197 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16198 gotplt_addr = gotplt_hi + gotplt_lo;
16199 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16200 suffixlen = sizeof (microsuffix);
16201 suffix = microsuffix;
16202 other = STO_MICROMIPS;
16203 }
16204 /* Otherwise assume standard MIPS code. */
16205 else
16206 {
16207 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16208 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16209 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16210 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16211 gotplt_addr = gotplt_hi + gotplt_lo;
16212 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16213 suffixlen = sizeof (mipssuffix);
16214 suffix = mipssuffix;
16215 other = 0;
16216 }
16217 /* Truncated table??? */
16218 if (plt_offset + entry_size > plt->size)
16219 break;
16220
16221 for (i = 0;
16222 i < count && p[pi].address != gotplt_addr;
16223 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16224
16225 if (i < count)
16226 {
16227 size_t namelen;
16228 size_t len;
16229
16230 *s = **p[pi].sym_ptr_ptr;
16231 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16232 we are defining a symbol, ensure one of them is set. */
16233 if ((s->flags & BSF_LOCAL) == 0)
16234 s->flags |= BSF_GLOBAL;
16235 s->flags |= BSF_SYNTHETIC;
16236 s->section = plt;
16237 s->value = plt_offset;
16238 s->name = names;
16239 s->udata.i = other;
16240
16241 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16242 namelen = len + suffixlen;
16243 if (names + namelen > nend)
16244 break;
16245
16246 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16247 names += len;
16248 memcpy (names, suffix, suffixlen);
16249 names += suffixlen;
16250
16251 ++s, ++n;
16252 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16253 }
16254 }
16255
16256 free (plt_data);
16257
16258 return n;
16259 }
16260
16261 void
16262 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16263 {
16264 struct mips_elf_link_hash_table *htab;
16265 Elf_Internal_Ehdr *i_ehdrp;
16266
16267 i_ehdrp = elf_elfheader (abfd);
16268 if (link_info)
16269 {
16270 htab = mips_elf_hash_table (link_info);
16271 BFD_ASSERT (htab != NULL);
16272
16273 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16274 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16275 }
16276
16277 _bfd_elf_post_process_headers (abfd, link_info);
16278
16279 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16280 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16281 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16282
16283 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16284 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16285 }
16286
16287 int
16288 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16289 {
16290 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16291 }
16292
16293 /* Return the opcode for can't unwind. */
16294
16295 int
16296 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16297 {
16298 return COMPACT_EH_CANT_UNWIND_OPCODE;
16299 }