MIPS/LD: Continue processing with refused relocations in PIC code
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* True if we use the special `__gnu_absolute_zero' symbol. */
459 bfd_boolean use_absolute_zero;
460
461 /* True if we have been configured for a GNU target. */
462 bfd_boolean gnu_target;
463
464 /* Shortcuts to some dynamic sections, or NULL if they are not
465 being used. */
466 asection *srelplt2;
467 asection *sstubs;
468
469 /* The master GOT information. */
470 struct mips_got_info *got_info;
471
472 /* The global symbol in the GOT with the lowest index in the dynamic
473 symbol table. */
474 struct elf_link_hash_entry *global_gotsym;
475
476 /* The size of the PLT header in bytes. */
477 bfd_vma plt_header_size;
478
479 /* The size of a standard PLT entry in bytes. */
480 bfd_vma plt_mips_entry_size;
481
482 /* The size of a compressed PLT entry in bytes. */
483 bfd_vma plt_comp_entry_size;
484
485 /* The offset of the next standard PLT entry to create. */
486 bfd_vma plt_mips_offset;
487
488 /* The offset of the next compressed PLT entry to create. */
489 bfd_vma plt_comp_offset;
490
491 /* The index of the next .got.plt entry to create. */
492 bfd_vma plt_got_index;
493
494 /* The number of functions that need a lazy-binding stub. */
495 bfd_vma lazy_stub_count;
496
497 /* The size of a function stub entry in bytes. */
498 bfd_vma function_stub_size;
499
500 /* The number of reserved entries at the beginning of the GOT. */
501 unsigned int reserved_gotno;
502
503 /* The section used for mips_elf_la25_stub trampolines.
504 See the comment above that structure for details. */
505 asection *strampoline;
506
507 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
508 pairs. */
509 htab_t la25_stubs;
510
511 /* A function FN (NAME, IS, OS) that creates a new input section
512 called NAME and links it to output section OS. If IS is nonnull,
513 the new section should go immediately before it, otherwise it
514 should go at the (current) beginning of OS.
515
516 The function returns the new section on success, otherwise it
517 returns null. */
518 asection *(*add_stub_section) (const char *, asection *, asection *);
519
520 /* Small local sym cache. */
521 struct sym_cache sym_cache;
522
523 /* Is the PLT header compressed? */
524 unsigned int plt_header_is_comp : 1;
525 };
526
527 /* Get the MIPS ELF linker hash table from a link_info structure. */
528
529 #define mips_elf_hash_table(p) \
530 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
531 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
532
533 /* A structure used to communicate with htab_traverse callbacks. */
534 struct mips_htab_traverse_info
535 {
536 /* The usual link-wide information. */
537 struct bfd_link_info *info;
538 bfd *output_bfd;
539
540 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
541 bfd_boolean error;
542 };
543
544 /* MIPS ELF private object data. */
545
546 struct mips_elf_obj_tdata
547 {
548 /* Generic ELF private object data. */
549 struct elf_obj_tdata root;
550
551 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
552 bfd *abi_fp_bfd;
553
554 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
555 bfd *abi_msa_bfd;
556
557 /* The abiflags for this object. */
558 Elf_Internal_ABIFlags_v0 abiflags;
559 bfd_boolean abiflags_valid;
560
561 /* The GOT requirements of input bfds. */
562 struct mips_got_info *got;
563
564 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
565 included directly in this one, but there's no point to wasting
566 the memory just for the infrequently called find_nearest_line. */
567 struct mips_elf_find_line *find_line_info;
568
569 /* An array of stub sections indexed by symbol number. */
570 asection **local_stubs;
571 asection **local_call_stubs;
572
573 /* The Irix 5 support uses two virtual sections, which represent
574 text/data symbols defined in dynamic objects. */
575 asymbol *elf_data_symbol;
576 asymbol *elf_text_symbol;
577 asection *elf_data_section;
578 asection *elf_text_section;
579 };
580
581 /* Get MIPS ELF private object data from BFD's tdata. */
582
583 #define mips_elf_tdata(bfd) \
584 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
585
586 #define TLS_RELOC_P(r_type) \
587 (r_type == R_MIPS_TLS_DTPMOD32 \
588 || r_type == R_MIPS_TLS_DTPMOD64 \
589 || r_type == R_MIPS_TLS_DTPREL32 \
590 || r_type == R_MIPS_TLS_DTPREL64 \
591 || r_type == R_MIPS_TLS_GD \
592 || r_type == R_MIPS_TLS_LDM \
593 || r_type == R_MIPS_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS_TLS_GOTTPREL \
596 || r_type == R_MIPS_TLS_TPREL32 \
597 || r_type == R_MIPS_TLS_TPREL64 \
598 || r_type == R_MIPS_TLS_TPREL_HI16 \
599 || r_type == R_MIPS_TLS_TPREL_LO16 \
600 || r_type == R_MIPS16_TLS_GD \
601 || r_type == R_MIPS16_TLS_LDM \
602 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
603 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GOTTPREL \
605 || r_type == R_MIPS16_TLS_TPREL_HI16 \
606 || r_type == R_MIPS16_TLS_TPREL_LO16 \
607 || r_type == R_MICROMIPS_TLS_GD \
608 || r_type == R_MICROMIPS_TLS_LDM \
609 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
610 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GOTTPREL \
612 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
613 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
614
615 /* Structure used to pass information to mips_elf_output_extsym. */
616
617 struct extsym_info
618 {
619 bfd *abfd;
620 struct bfd_link_info *info;
621 struct ecoff_debug_info *debug;
622 const struct ecoff_debug_swap *swap;
623 bfd_boolean failed;
624 };
625
626 /* The names of the runtime procedure table symbols used on IRIX5. */
627
628 static const char * const mips_elf_dynsym_rtproc_names[] =
629 {
630 "_procedure_table",
631 "_procedure_string_table",
632 "_procedure_table_size",
633 NULL
634 };
635
636 /* These structures are used to generate the .compact_rel section on
637 IRIX5. */
638
639 typedef struct
640 {
641 unsigned long id1; /* Always one? */
642 unsigned long num; /* Number of compact relocation entries. */
643 unsigned long id2; /* Always two? */
644 unsigned long offset; /* The file offset of the first relocation. */
645 unsigned long reserved0; /* Zero? */
646 unsigned long reserved1; /* Zero? */
647 } Elf32_compact_rel;
648
649 typedef struct
650 {
651 bfd_byte id1[4];
652 bfd_byte num[4];
653 bfd_byte id2[4];
654 bfd_byte offset[4];
655 bfd_byte reserved0[4];
656 bfd_byte reserved1[4];
657 } Elf32_External_compact_rel;
658
659 typedef struct
660 {
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
666 unsigned long vaddr; /* VADDR to be relocated. */
667 } Elf32_crinfo;
668
669 typedef struct
670 {
671 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
672 unsigned int rtype : 4; /* Relocation types. See below. */
673 unsigned int dist2to : 8;
674 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
675 unsigned long konst; /* KONST field. See below. */
676 } Elf32_crinfo2;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 bfd_byte vaddr[4];
683 } Elf32_External_crinfo;
684
685 typedef struct
686 {
687 bfd_byte info[4];
688 bfd_byte konst[4];
689 } Elf32_External_crinfo2;
690
691 /* These are the constants used to swap the bitfields in a crinfo. */
692
693 #define CRINFO_CTYPE (0x1)
694 #define CRINFO_CTYPE_SH (31)
695 #define CRINFO_RTYPE (0xf)
696 #define CRINFO_RTYPE_SH (27)
697 #define CRINFO_DIST2TO (0xff)
698 #define CRINFO_DIST2TO_SH (19)
699 #define CRINFO_RELVADDR (0x7ffff)
700 #define CRINFO_RELVADDR_SH (0)
701
702 /* A compact relocation info has long (3 words) or short (2 words)
703 formats. A short format doesn't have VADDR field and relvaddr
704 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
705 #define CRF_MIPS_LONG 1
706 #define CRF_MIPS_SHORT 0
707
708 /* There are 4 types of compact relocation at least. The value KONST
709 has different meaning for each type:
710
711 (type) (konst)
712 CT_MIPS_REL32 Address in data
713 CT_MIPS_WORD Address in word (XXX)
714 CT_MIPS_GPHI_LO GP - vaddr
715 CT_MIPS_JMPAD Address to jump
716 */
717
718 #define CRT_MIPS_REL32 0xa
719 #define CRT_MIPS_WORD 0xb
720 #define CRT_MIPS_GPHI_LO 0xc
721 #define CRT_MIPS_JMPAD 0xd
722
723 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
724 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
725 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
726 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
727 \f
728 /* The structure of the runtime procedure descriptor created by the
729 loader for use by the static exception system. */
730
731 typedef struct runtime_pdr {
732 bfd_vma adr; /* Memory address of start of procedure. */
733 long regmask; /* Save register mask. */
734 long regoffset; /* Save register offset. */
735 long fregmask; /* Save floating point register mask. */
736 long fregoffset; /* Save floating point register offset. */
737 long frameoffset; /* Frame size. */
738 short framereg; /* Frame pointer register. */
739 short pcreg; /* Offset or reg of return pc. */
740 long irpss; /* Index into the runtime string table. */
741 long reserved;
742 struct exception_info *exception_info;/* Pointer to exception array. */
743 } RPDR, *pRPDR;
744 #define cbRPDR sizeof (RPDR)
745 #define rpdNil ((pRPDR) 0)
746 \f
747 static struct mips_got_entry *mips_elf_create_local_got_entry
748 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
749 struct mips_elf_link_hash_entry *, int);
750 static bfd_boolean mips_elf_sort_hash_table_f
751 (struct mips_elf_link_hash_entry *, void *);
752 static bfd_vma mips_elf_high
753 (bfd_vma);
754 static bfd_boolean mips_elf_create_dynamic_relocation
755 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
756 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
757 bfd_vma *, asection *);
758 static bfd_vma mips_elf_adjust_gp
759 (bfd *, struct mips_got_info *, bfd *);
760
761 /* This will be used when we sort the dynamic relocation records. */
762 static bfd *reldyn_sorting_bfd;
763
764 /* True if ABFD is for CPUs with load interlocking that include
765 non-MIPS1 CPUs and R3900. */
766 #define LOAD_INTERLOCKS_P(abfd) \
767 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
768 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
769
770 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
771 This should be safe for all architectures. We enable this predicate
772 for RM9000 for now. */
773 #define JAL_TO_BAL_P(abfd) \
774 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
775
776 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
777 This should be safe for all architectures. We enable this predicate for
778 all CPUs. */
779 #define JALR_TO_BAL_P(abfd) 1
780
781 /* True if ABFD is for CPUs that are faster if JR is converted to B.
782 This should be safe for all architectures. We enable this predicate for
783 all CPUs. */
784 #define JR_TO_B_P(abfd) 1
785
786 /* True if ABFD is a PIC object. */
787 #define PIC_OBJECT_P(abfd) \
788 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
789
790 /* Nonzero if ABFD is using the O32 ABI. */
791 #define ABI_O32_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
793
794 /* Nonzero if ABFD is using the N32 ABI. */
795 #define ABI_N32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
797
798 /* Nonzero if ABFD is using the N64 ABI. */
799 #define ABI_64_P(abfd) \
800 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
801
802 /* Nonzero if ABFD is using NewABI conventions. */
803 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
804
805 /* Nonzero if ABFD has microMIPS code. */
806 #define MICROMIPS_P(abfd) \
807 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
808
809 /* Nonzero if ABFD is MIPS R6. */
810 #define MIPSR6_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
812 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
813
814 /* The IRIX compatibility level we are striving for. */
815 #define IRIX_COMPAT(abfd) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
817
818 /* Whether we are trying to be compatible with IRIX at all. */
819 #define SGI_COMPAT(abfd) \
820 (IRIX_COMPAT (abfd) != ict_none)
821
822 /* The name of the options section. */
823 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
824 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
825
826 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
827 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
828 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
829 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
830
831 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
832 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.abiflags") == 0)
834
835 /* Whether the section is readonly. */
836 #define MIPS_ELF_READONLY_SECTION(sec) \
837 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
838 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
839
840 /* The name of the stub section. */
841 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
842
843 /* The size of an external REL relocation. */
844 #define MIPS_ELF_REL_SIZE(abfd) \
845 (get_elf_backend_data (abfd)->s->sizeof_rel)
846
847 /* The size of an external RELA relocation. */
848 #define MIPS_ELF_RELA_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rela)
850
851 /* The size of an external dynamic table entry. */
852 #define MIPS_ELF_DYN_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_dyn)
854
855 /* The size of a GOT entry. */
856 #define MIPS_ELF_GOT_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->arch_size / 8)
858
859 /* The size of the .rld_map section. */
860 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
863 /* The size of a symbol-table entry. */
864 #define MIPS_ELF_SYM_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->sizeof_sym)
866
867 /* The default alignment for sections, as a power of two. */
868 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
869 (get_elf_backend_data (abfd)->s->log_file_align)
870
871 /* Get word-sized data. */
872 #define MIPS_ELF_GET_WORD(abfd, ptr) \
873 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
874
875 /* Put out word-sized data. */
876 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
877 (ABI_64_P (abfd) \
878 ? bfd_put_64 (abfd, val, ptr) \
879 : bfd_put_32 (abfd, val, ptr))
880
881 /* The opcode for word-sized loads (LW or LD). */
882 #define MIPS_ELF_LOAD_WORD(abfd) \
883 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
884
885 /* Add a dynamic symbol table-entry. */
886 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
887 _bfd_elf_add_dynamic_entry (info, tag, val)
888
889 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
890 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
891
892 /* The name of the dynamic relocation section. */
893 #define MIPS_ELF_REL_DYN_NAME(INFO) \
894 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
895
896 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
897 from smaller values. Start with zero, widen, *then* decrement. */
898 #define MINUS_ONE (((bfd_vma)0) - 1)
899 #define MINUS_TWO (((bfd_vma)0) - 2)
900
901 /* The value to write into got[1] for SVR4 targets, to identify it is
902 a GNU object. The dynamic linker can then use got[1] to store the
903 module pointer. */
904 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
905 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
906
907 /* The offset of $gp from the beginning of the .got section. */
908 #define ELF_MIPS_GP_OFFSET(INFO) \
909 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
910
911 /* The maximum size of the GOT for it to be addressable using 16-bit
912 offsets from $gp. */
913 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
914
915 /* Instructions which appear in a stub. */
916 #define STUB_LW(abfd) \
917 ((ABI_64_P (abfd) \
918 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
919 : 0x8f998010)) /* lw t9,0x8010(gp) */
920 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
921 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
922 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
923 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
924 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
925 #define STUB_LI16S(abfd, VAL) \
926 ((ABI_64_P (abfd) \
927 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
928 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
929
930 /* Likewise for the microMIPS ASE. */
931 #define STUB_LW_MICROMIPS(abfd) \
932 (ABI_64_P (abfd) \
933 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
934 : 0xff3c8010) /* lw t9,0x8010(gp) */
935 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
936 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
937 #define STUB_LUI_MICROMIPS(VAL) \
938 (0x41b80000 + (VAL)) /* lui t8,VAL */
939 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
940 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
941 #define STUB_ORI_MICROMIPS(VAL) \
942 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
943 #define STUB_LI16U_MICROMIPS(VAL) \
944 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
945 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
946 (ABI_64_P (abfd) \
947 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
948 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
949
950 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
951 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
952 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
953 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
955 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
956
957 /* The name of the dynamic interpreter. This is put in the .interp
958 section. */
959
960 #define ELF_DYNAMIC_INTERPRETER(abfd) \
961 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
962 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
963 : "/usr/lib/libc.so.1")
964
965 #ifdef BFD64
966 #define MNAME(bfd,pre,pos) \
967 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
968 #define ELF_R_SYM(bfd, i) \
969 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
970 #define ELF_R_TYPE(bfd, i) \
971 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
972 #define ELF_R_INFO(bfd, s, t) \
973 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
974 #else
975 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
976 #define ELF_R_SYM(bfd, i) \
977 (ELF32_R_SYM (i))
978 #define ELF_R_TYPE(bfd, i) \
979 (ELF32_R_TYPE (i))
980 #define ELF_R_INFO(bfd, s, t) \
981 (ELF32_R_INFO (s, t))
982 #endif
983 \f
984 /* The mips16 compiler uses a couple of special sections to handle
985 floating point arguments.
986
987 Section names that look like .mips16.fn.FNNAME contain stubs that
988 copy floating point arguments from the fp regs to the gp regs and
989 then jump to FNNAME. If any 32 bit function calls FNNAME, the
990 call should be redirected to the stub instead. If no 32 bit
991 function calls FNNAME, the stub should be discarded. We need to
992 consider any reference to the function, not just a call, because
993 if the address of the function is taken we will need the stub,
994 since the address might be passed to a 32 bit function.
995
996 Section names that look like .mips16.call.FNNAME contain stubs
997 that copy floating point arguments from the gp regs to the fp
998 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
999 then any 16 bit function that calls FNNAME should be redirected
1000 to the stub instead. If FNNAME is not a 32 bit function, the
1001 stub should be discarded.
1002
1003 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1004 which call FNNAME and then copy the return value from the fp regs
1005 to the gp regs. These stubs store the return value in $18 while
1006 calling FNNAME; any function which might call one of these stubs
1007 must arrange to save $18 around the call. (This case is not
1008 needed for 32 bit functions that call 16 bit functions, because
1009 16 bit functions always return floating point values in both
1010 $f0/$f1 and $2/$3.)
1011
1012 Note that in all cases FNNAME might be defined statically.
1013 Therefore, FNNAME is not used literally. Instead, the relocation
1014 information will indicate which symbol the section is for.
1015
1016 We record any stubs that we find in the symbol table. */
1017
1018 #define FN_STUB ".mips16.fn."
1019 #define CALL_STUB ".mips16.call."
1020 #define CALL_FP_STUB ".mips16.call.fp."
1021
1022 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1023 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1024 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1025 \f
1026 /* The format of the first PLT entry in an O32 executable. */
1027 static const bfd_vma mips_o32_exec_plt0_entry[] =
1028 {
1029 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1030 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1031 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1032 0x031cc023, /* subu $24, $24, $28 */
1033 0x03e07825, /* or t7, ra, zero */
1034 0x0018c082, /* srl $24, $24, 2 */
1035 0x0320f809, /* jalr $25 */
1036 0x2718fffe /* subu $24, $24, 2 */
1037 };
1038
1039 /* The format of the first PLT entry in an N32 executable. Different
1040 because gp ($28) is not available; we use t2 ($14) instead. */
1041 static const bfd_vma mips_n32_exec_plt0_entry[] =
1042 {
1043 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1044 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1045 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1046 0x030ec023, /* subu $24, $24, $14 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051 };
1052
1053 /* The format of the first PLT entry in an N64 executable. Different
1054 from N32 because of the increased size of GOT entries. */
1055 static const bfd_vma mips_n64_exec_plt0_entry[] =
1056 {
1057 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1058 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1059 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1060 0x030ec023, /* subu $24, $24, $14 */
1061 0x03e07825, /* or t7, ra, zero */
1062 0x0018c0c2, /* srl $24, $24, 3 */
1063 0x0320f809, /* jalr $25 */
1064 0x2718fffe /* subu $24, $24, 2 */
1065 };
1066
1067 /* The format of the microMIPS first PLT entry in an O32 executable.
1068 We rely on v0 ($2) rather than t8 ($24) to contain the address
1069 of the GOTPLT entry handled, so this stub may only be used when
1070 all the subsequent PLT entries are microMIPS code too.
1071
1072 The trailing NOP is for alignment and correct disassembly only. */
1073 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1074 {
1075 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1076 0xff23, 0x0000, /* lw $25, 0($3) */
1077 0x0535, /* subu $2, $2, $3 */
1078 0x2525, /* srl $2, $2, 2 */
1079 0x3302, 0xfffe, /* subu $24, $2, 2 */
1080 0x0dff, /* move $15, $31 */
1081 0x45f9, /* jalrs $25 */
1082 0x0f83, /* move $28, $3 */
1083 0x0c00 /* nop */
1084 };
1085
1086 /* The format of the microMIPS first PLT entry in an O32 executable
1087 in the insn32 mode. */
1088 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1089 {
1090 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1091 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1092 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1093 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1094 0x001f, 0x7a90, /* or $15, $31, zero */
1095 0x0318, 0x1040, /* srl $24, $24, 2 */
1096 0x03f9, 0x0f3c, /* jalr $25 */
1097 0x3318, 0xfffe /* subu $24, $24, 2 */
1098 };
1099
1100 /* The format of subsequent standard PLT entries. */
1101 static const bfd_vma mips_exec_plt_entry[] =
1102 {
1103 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1104 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1105 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1106 0x03200008 /* jr $25 */
1107 };
1108
1109 /* In the following PLT entry the JR and ADDIU instructions will
1110 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1111 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1112 static const bfd_vma mipsr6_exec_plt_entry[] =
1113 {
1114 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1115 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1116 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1117 0x03200009 /* jr $25 */
1118 };
1119
1120 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1121 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1122 directly addressable. */
1123 static const bfd_vma mips16_o32_exec_plt_entry[] =
1124 {
1125 0xb203, /* lw $2, 12($pc) */
1126 0x9a60, /* lw $3, 0($2) */
1127 0x651a, /* move $24, $2 */
1128 0xeb00, /* jr $3 */
1129 0x653b, /* move $25, $3 */
1130 0x6500, /* nop */
1131 0x0000, 0x0000 /* .word (.got.plt entry) */
1132 };
1133
1134 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1135 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1136 static const bfd_vma micromips_o32_exec_plt_entry[] =
1137 {
1138 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1139 0xff22, 0x0000, /* lw $25, 0($2) */
1140 0x4599, /* jr $25 */
1141 0x0f02 /* move $24, $2 */
1142 };
1143
1144 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1145 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1146 {
1147 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1148 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1149 0x0019, 0x0f3c, /* jr $25 */
1150 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1151 };
1152
1153 /* The format of the first PLT entry in a VxWorks executable. */
1154 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1155 {
1156 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1157 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1158 0x8f390008, /* lw t9, 8(t9) */
1159 0x00000000, /* nop */
1160 0x03200008, /* jr t9 */
1161 0x00000000 /* nop */
1162 };
1163
1164 /* The format of subsequent PLT entries. */
1165 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1166 {
1167 0x10000000, /* b .PLT_resolver */
1168 0x24180000, /* li t8, <pltindex> */
1169 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1170 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1171 0x8f390000, /* lw t9, 0(t9) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000 /* nop */
1175 };
1176
1177 /* The format of the first PLT entry in a VxWorks shared object. */
1178 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1179 {
1180 0x8f990008, /* lw t9, 8(gp) */
1181 0x00000000, /* nop */
1182 0x03200008, /* jr t9 */
1183 0x00000000, /* nop */
1184 0x00000000, /* nop */
1185 0x00000000 /* nop */
1186 };
1187
1188 /* The format of subsequent PLT entries. */
1189 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1190 {
1191 0x10000000, /* b .PLT_resolver */
1192 0x24180000 /* li t8, <pltindex> */
1193 };
1194 \f
1195 /* microMIPS 32-bit opcode helper installer. */
1196
1197 static void
1198 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1199 {
1200 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1201 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1202 }
1203
1204 /* microMIPS 32-bit opcode helper retriever. */
1205
1206 static bfd_vma
1207 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1208 {
1209 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1210 }
1211 \f
1212 /* Look up an entry in a MIPS ELF linker hash table. */
1213
1214 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1215 ((struct mips_elf_link_hash_entry *) \
1216 elf_link_hash_lookup (&(table)->root, (string), (create), \
1217 (copy), (follow)))
1218
1219 /* Traverse a MIPS ELF linker hash table. */
1220
1221 #define mips_elf_link_hash_traverse(table, func, info) \
1222 (elf_link_hash_traverse \
1223 (&(table)->root, \
1224 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1225 (info)))
1226
1227 /* Find the base offsets for thread-local storage in this object,
1228 for GD/LD and IE/LE respectively. */
1229
1230 #define TP_OFFSET 0x7000
1231 #define DTP_OFFSET 0x8000
1232
1233 static bfd_vma
1234 dtprel_base (struct bfd_link_info *info)
1235 {
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info)->tls_sec == NULL)
1238 return 0;
1239 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1240 }
1241
1242 static bfd_vma
1243 tprel_base (struct bfd_link_info *info)
1244 {
1245 /* If tls_sec is NULL, we should have signalled an error already. */
1246 if (elf_hash_table (info)->tls_sec == NULL)
1247 return 0;
1248 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1249 }
1250
1251 /* Create an entry in a MIPS ELF linker hash table. */
1252
1253 static struct bfd_hash_entry *
1254 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1255 struct bfd_hash_table *table, const char *string)
1256 {
1257 struct mips_elf_link_hash_entry *ret =
1258 (struct mips_elf_link_hash_entry *) entry;
1259
1260 /* Allocate the structure if it has not already been allocated by a
1261 subclass. */
1262 if (ret == NULL)
1263 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1264 if (ret == NULL)
1265 return (struct bfd_hash_entry *) ret;
1266
1267 /* Call the allocation method of the superclass. */
1268 ret = ((struct mips_elf_link_hash_entry *)
1269 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1270 table, string));
1271 if (ret != NULL)
1272 {
1273 /* Set local fields. */
1274 memset (&ret->esym, 0, sizeof (EXTR));
1275 /* We use -2 as a marker to indicate that the information has
1276 not been set. -1 means there is no associated ifd. */
1277 ret->esym.ifd = -2;
1278 ret->la25_stub = 0;
1279 ret->possibly_dynamic_relocs = 0;
1280 ret->fn_stub = NULL;
1281 ret->call_stub = NULL;
1282 ret->call_fp_stub = NULL;
1283 ret->global_got_area = GGA_NONE;
1284 ret->got_only_for_calls = TRUE;
1285 ret->readonly_reloc = FALSE;
1286 ret->has_static_relocs = FALSE;
1287 ret->no_fn_stub = FALSE;
1288 ret->need_fn_stub = FALSE;
1289 ret->has_nonpic_branches = FALSE;
1290 ret->needs_lazy_stub = FALSE;
1291 ret->use_plt_entry = FALSE;
1292 }
1293
1294 return (struct bfd_hash_entry *) ret;
1295 }
1296
1297 /* Allocate MIPS ELF private object data. */
1298
1299 bfd_boolean
1300 _bfd_mips_elf_mkobject (bfd *abfd)
1301 {
1302 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1303 MIPS_ELF_DATA);
1304 }
1305
1306 bfd_boolean
1307 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1308 {
1309 if (!sec->used_by_bfd)
1310 {
1311 struct _mips_elf_section_data *sdata;
1312 bfd_size_type amt = sizeof (*sdata);
1313
1314 sdata = bfd_zalloc (abfd, amt);
1315 if (sdata == NULL)
1316 return FALSE;
1317 sec->used_by_bfd = sdata;
1318 }
1319
1320 return _bfd_elf_new_section_hook (abfd, sec);
1321 }
1322 \f
1323 /* Read ECOFF debugging information from a .mdebug section into a
1324 ecoff_debug_info structure. */
1325
1326 bfd_boolean
1327 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1328 struct ecoff_debug_info *debug)
1329 {
1330 HDRR *symhdr;
1331 const struct ecoff_debug_swap *swap;
1332 char *ext_hdr;
1333
1334 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1335 memset (debug, 0, sizeof (*debug));
1336
1337 ext_hdr = bfd_malloc (swap->external_hdr_size);
1338 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1339 goto error_return;
1340
1341 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1342 swap->external_hdr_size))
1343 goto error_return;
1344
1345 symhdr = &debug->symbolic_header;
1346 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1347
1348 /* The symbolic header contains absolute file offsets and sizes to
1349 read. */
1350 #define READ(ptr, offset, count, size, type) \
1351 if (symhdr->count == 0) \
1352 debug->ptr = NULL; \
1353 else \
1354 { \
1355 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1356 debug->ptr = bfd_malloc (amt); \
1357 if (debug->ptr == NULL) \
1358 goto error_return; \
1359 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1360 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1361 goto error_return; \
1362 }
1363
1364 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1365 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1366 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1367 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1368 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1369 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1370 union aux_ext *);
1371 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1372 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1373 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1374 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1375 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1376 #undef READ
1377
1378 debug->fdr = NULL;
1379
1380 return TRUE;
1381
1382 error_return:
1383 if (ext_hdr != NULL)
1384 free (ext_hdr);
1385 if (debug->line != NULL)
1386 free (debug->line);
1387 if (debug->external_dnr != NULL)
1388 free (debug->external_dnr);
1389 if (debug->external_pdr != NULL)
1390 free (debug->external_pdr);
1391 if (debug->external_sym != NULL)
1392 free (debug->external_sym);
1393 if (debug->external_opt != NULL)
1394 free (debug->external_opt);
1395 if (debug->external_aux != NULL)
1396 free (debug->external_aux);
1397 if (debug->ss != NULL)
1398 free (debug->ss);
1399 if (debug->ssext != NULL)
1400 free (debug->ssext);
1401 if (debug->external_fdr != NULL)
1402 free (debug->external_fdr);
1403 if (debug->external_rfd != NULL)
1404 free (debug->external_rfd);
1405 if (debug->external_ext != NULL)
1406 free (debug->external_ext);
1407 return FALSE;
1408 }
1409 \f
1410 /* Swap RPDR (runtime procedure table entry) for output. */
1411
1412 static void
1413 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1414 {
1415 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1416 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1417 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1418 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1419 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1420 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1421
1422 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1423 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1424
1425 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1426 }
1427
1428 /* Create a runtime procedure table from the .mdebug section. */
1429
1430 static bfd_boolean
1431 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1432 struct bfd_link_info *info, asection *s,
1433 struct ecoff_debug_info *debug)
1434 {
1435 const struct ecoff_debug_swap *swap;
1436 HDRR *hdr = &debug->symbolic_header;
1437 RPDR *rpdr, *rp;
1438 struct rpdr_ext *erp;
1439 void *rtproc;
1440 struct pdr_ext *epdr;
1441 struct sym_ext *esym;
1442 char *ss, **sv;
1443 char *str;
1444 bfd_size_type size;
1445 bfd_size_type count;
1446 unsigned long sindex;
1447 unsigned long i;
1448 PDR pdr;
1449 SYMR sym;
1450 const char *no_name_func = _("static procedure (no name)");
1451
1452 epdr = NULL;
1453 rpdr = NULL;
1454 esym = NULL;
1455 ss = NULL;
1456 sv = NULL;
1457
1458 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1459
1460 sindex = strlen (no_name_func) + 1;
1461 count = hdr->ipdMax;
1462 if (count > 0)
1463 {
1464 size = swap->external_pdr_size;
1465
1466 epdr = bfd_malloc (size * count);
1467 if (epdr == NULL)
1468 goto error_return;
1469
1470 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1471 goto error_return;
1472
1473 size = sizeof (RPDR);
1474 rp = rpdr = bfd_malloc (size * count);
1475 if (rpdr == NULL)
1476 goto error_return;
1477
1478 size = sizeof (char *);
1479 sv = bfd_malloc (size * count);
1480 if (sv == NULL)
1481 goto error_return;
1482
1483 count = hdr->isymMax;
1484 size = swap->external_sym_size;
1485 esym = bfd_malloc (size * count);
1486 if (esym == NULL)
1487 goto error_return;
1488
1489 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1490 goto error_return;
1491
1492 count = hdr->issMax;
1493 ss = bfd_malloc (count);
1494 if (ss == NULL)
1495 goto error_return;
1496 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1497 goto error_return;
1498
1499 count = hdr->ipdMax;
1500 for (i = 0; i < (unsigned long) count; i++, rp++)
1501 {
1502 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1503 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1504 rp->adr = sym.value;
1505 rp->regmask = pdr.regmask;
1506 rp->regoffset = pdr.regoffset;
1507 rp->fregmask = pdr.fregmask;
1508 rp->fregoffset = pdr.fregoffset;
1509 rp->frameoffset = pdr.frameoffset;
1510 rp->framereg = pdr.framereg;
1511 rp->pcreg = pdr.pcreg;
1512 rp->irpss = sindex;
1513 sv[i] = ss + sym.iss;
1514 sindex += strlen (sv[i]) + 1;
1515 }
1516 }
1517
1518 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1519 size = BFD_ALIGN (size, 16);
1520 rtproc = bfd_alloc (abfd, size);
1521 if (rtproc == NULL)
1522 {
1523 mips_elf_hash_table (info)->procedure_count = 0;
1524 goto error_return;
1525 }
1526
1527 mips_elf_hash_table (info)->procedure_count = count + 2;
1528
1529 erp = rtproc;
1530 memset (erp, 0, sizeof (struct rpdr_ext));
1531 erp++;
1532 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1533 strcpy (str, no_name_func);
1534 str += strlen (no_name_func) + 1;
1535 for (i = 0; i < count; i++)
1536 {
1537 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1538 strcpy (str, sv[i]);
1539 str += strlen (sv[i]) + 1;
1540 }
1541 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1542
1543 /* Set the size and contents of .rtproc section. */
1544 s->size = size;
1545 s->contents = rtproc;
1546
1547 /* Skip this section later on (I don't think this currently
1548 matters, but someday it might). */
1549 s->map_head.link_order = NULL;
1550
1551 if (epdr != NULL)
1552 free (epdr);
1553 if (rpdr != NULL)
1554 free (rpdr);
1555 if (esym != NULL)
1556 free (esym);
1557 if (ss != NULL)
1558 free (ss);
1559 if (sv != NULL)
1560 free (sv);
1561
1562 return TRUE;
1563
1564 error_return:
1565 if (epdr != NULL)
1566 free (epdr);
1567 if (rpdr != NULL)
1568 free (rpdr);
1569 if (esym != NULL)
1570 free (esym);
1571 if (ss != NULL)
1572 free (ss);
1573 if (sv != NULL)
1574 free (sv);
1575 return FALSE;
1576 }
1577 \f
1578 /* We're going to create a stub for H. Create a symbol for the stub's
1579 value and size, to help make the disassembly easier to read. */
1580
1581 static bfd_boolean
1582 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1583 struct mips_elf_link_hash_entry *h,
1584 const char *prefix, asection *s, bfd_vma value,
1585 bfd_vma size)
1586 {
1587 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1588 struct bfd_link_hash_entry *bh;
1589 struct elf_link_hash_entry *elfh;
1590 char *name;
1591 bfd_boolean res;
1592
1593 if (micromips_p)
1594 value |= 1;
1595
1596 /* Create a new symbol. */
1597 name = concat (prefix, h->root.root.root.string, NULL);
1598 bh = NULL;
1599 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1600 BSF_LOCAL, s, value, NULL,
1601 TRUE, FALSE, &bh);
1602 free (name);
1603 if (! res)
1604 return FALSE;
1605
1606 /* Make it a local function. */
1607 elfh = (struct elf_link_hash_entry *) bh;
1608 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1609 elfh->size = size;
1610 elfh->forced_local = 1;
1611 if (micromips_p)
1612 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1613 return TRUE;
1614 }
1615
1616 /* We're about to redefine H. Create a symbol to represent H's
1617 current value and size, to help make the disassembly easier
1618 to read. */
1619
1620 static bfd_boolean
1621 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1622 struct mips_elf_link_hash_entry *h,
1623 const char *prefix)
1624 {
1625 struct bfd_link_hash_entry *bh;
1626 struct elf_link_hash_entry *elfh;
1627 char *name;
1628 asection *s;
1629 bfd_vma value;
1630 bfd_boolean res;
1631
1632 /* Read the symbol's value. */
1633 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1634 || h->root.root.type == bfd_link_hash_defweak);
1635 s = h->root.root.u.def.section;
1636 value = h->root.root.u.def.value;
1637
1638 /* Create a new symbol. */
1639 name = concat (prefix, h->root.root.root.string, NULL);
1640 bh = NULL;
1641 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1642 BSF_LOCAL, s, value, NULL,
1643 TRUE, FALSE, &bh);
1644 free (name);
1645 if (! res)
1646 return FALSE;
1647
1648 /* Make it local and copy the other attributes from H. */
1649 elfh = (struct elf_link_hash_entry *) bh;
1650 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1651 elfh->other = h->root.other;
1652 elfh->size = h->root.size;
1653 elfh->forced_local = 1;
1654 return TRUE;
1655 }
1656
1657 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1658 function rather than to a hard-float stub. */
1659
1660 static bfd_boolean
1661 section_allows_mips16_refs_p (asection *section)
1662 {
1663 const char *name;
1664
1665 name = bfd_get_section_name (section->owner, section);
1666 return (FN_STUB_P (name)
1667 || CALL_STUB_P (name)
1668 || CALL_FP_STUB_P (name)
1669 || strcmp (name, ".pdr") == 0);
1670 }
1671
1672 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1673 stub section of some kind. Return the R_SYMNDX of the target
1674 function, or 0 if we can't decide which function that is. */
1675
1676 static unsigned long
1677 mips16_stub_symndx (const struct elf_backend_data *bed,
1678 asection *sec ATTRIBUTE_UNUSED,
1679 const Elf_Internal_Rela *relocs,
1680 const Elf_Internal_Rela *relend)
1681 {
1682 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1683 const Elf_Internal_Rela *rel;
1684
1685 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1686 one in a compound relocation. */
1687 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1688 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1689 return ELF_R_SYM (sec->owner, rel->r_info);
1690
1691 /* Otherwise trust the first relocation, whatever its kind. This is
1692 the traditional behavior. */
1693 if (relocs < relend)
1694 return ELF_R_SYM (sec->owner, relocs->r_info);
1695
1696 return 0;
1697 }
1698
1699 /* Check the mips16 stubs for a particular symbol, and see if we can
1700 discard them. */
1701
1702 static void
1703 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1704 struct mips_elf_link_hash_entry *h)
1705 {
1706 /* Dynamic symbols must use the standard call interface, in case other
1707 objects try to call them. */
1708 if (h->fn_stub != NULL
1709 && h->root.dynindx != -1)
1710 {
1711 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1712 h->need_fn_stub = TRUE;
1713 }
1714
1715 if (h->fn_stub != NULL
1716 && ! h->need_fn_stub)
1717 {
1718 /* We don't need the fn_stub; the only references to this symbol
1719 are 16 bit calls. Clobber the size to 0 to prevent it from
1720 being included in the link. */
1721 h->fn_stub->size = 0;
1722 h->fn_stub->flags &= ~SEC_RELOC;
1723 h->fn_stub->reloc_count = 0;
1724 h->fn_stub->flags |= SEC_EXCLUDE;
1725 h->fn_stub->output_section = bfd_abs_section_ptr;
1726 }
1727
1728 if (h->call_stub != NULL
1729 && ELF_ST_IS_MIPS16 (h->root.other))
1730 {
1731 /* We don't need the call_stub; this is a 16 bit function, so
1732 calls from other 16 bit functions are OK. Clobber the size
1733 to 0 to prevent it from being included in the link. */
1734 h->call_stub->size = 0;
1735 h->call_stub->flags &= ~SEC_RELOC;
1736 h->call_stub->reloc_count = 0;
1737 h->call_stub->flags |= SEC_EXCLUDE;
1738 h->call_stub->output_section = bfd_abs_section_ptr;
1739 }
1740
1741 if (h->call_fp_stub != NULL
1742 && ELF_ST_IS_MIPS16 (h->root.other))
1743 {
1744 /* We don't need the call_stub; this is a 16 bit function, so
1745 calls from other 16 bit functions are OK. Clobber the size
1746 to 0 to prevent it from being included in the link. */
1747 h->call_fp_stub->size = 0;
1748 h->call_fp_stub->flags &= ~SEC_RELOC;
1749 h->call_fp_stub->reloc_count = 0;
1750 h->call_fp_stub->flags |= SEC_EXCLUDE;
1751 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1752 }
1753 }
1754
1755 /* Hashtable callbacks for mips_elf_la25_stubs. */
1756
1757 static hashval_t
1758 mips_elf_la25_stub_hash (const void *entry_)
1759 {
1760 const struct mips_elf_la25_stub *entry;
1761
1762 entry = (struct mips_elf_la25_stub *) entry_;
1763 return entry->h->root.root.u.def.section->id
1764 + entry->h->root.root.u.def.value;
1765 }
1766
1767 static int
1768 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1769 {
1770 const struct mips_elf_la25_stub *entry1, *entry2;
1771
1772 entry1 = (struct mips_elf_la25_stub *) entry1_;
1773 entry2 = (struct mips_elf_la25_stub *) entry2_;
1774 return ((entry1->h->root.root.u.def.section
1775 == entry2->h->root.root.u.def.section)
1776 && (entry1->h->root.root.u.def.value
1777 == entry2->h->root.root.u.def.value));
1778 }
1779
1780 /* Called by the linker to set up the la25 stub-creation code. FN is
1781 the linker's implementation of add_stub_function. Return true on
1782 success. */
1783
1784 bfd_boolean
1785 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1786 asection *(*fn) (const char *, asection *,
1787 asection *))
1788 {
1789 struct mips_elf_link_hash_table *htab;
1790
1791 htab = mips_elf_hash_table (info);
1792 if (htab == NULL)
1793 return FALSE;
1794
1795 htab->add_stub_section = fn;
1796 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1797 mips_elf_la25_stub_eq, NULL);
1798 if (htab->la25_stubs == NULL)
1799 return FALSE;
1800
1801 return TRUE;
1802 }
1803
1804 /* Return true if H is a locally-defined PIC function, in the sense
1805 that it or its fn_stub might need $25 to be valid on entry.
1806 Note that MIPS16 functions set up $gp using PC-relative instructions,
1807 so they themselves never need $25 to be valid. Only non-MIPS16
1808 entry points are of interest here. */
1809
1810 static bfd_boolean
1811 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1812 {
1813 return ((h->root.root.type == bfd_link_hash_defined
1814 || h->root.root.type == bfd_link_hash_defweak)
1815 && h->root.def_regular
1816 && !bfd_is_abs_section (h->root.root.u.def.section)
1817 && !bfd_is_und_section (h->root.root.u.def.section)
1818 && (!ELF_ST_IS_MIPS16 (h->root.other)
1819 || (h->fn_stub && h->need_fn_stub))
1820 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1821 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1822 }
1823
1824 /* Set *SEC to the input section that contains the target of STUB.
1825 Return the offset of the target from the start of that section. */
1826
1827 static bfd_vma
1828 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1829 asection **sec)
1830 {
1831 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1832 {
1833 BFD_ASSERT (stub->h->need_fn_stub);
1834 *sec = stub->h->fn_stub;
1835 return 0;
1836 }
1837 else
1838 {
1839 *sec = stub->h->root.root.u.def.section;
1840 return stub->h->root.root.u.def.value;
1841 }
1842 }
1843
1844 /* STUB describes an la25 stub that we have decided to implement
1845 by inserting an LUI/ADDIU pair before the target function.
1846 Create the section and redirect the function symbol to it. */
1847
1848 static bfd_boolean
1849 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1850 struct bfd_link_info *info)
1851 {
1852 struct mips_elf_link_hash_table *htab;
1853 char *name;
1854 asection *s, *input_section;
1855 unsigned int align;
1856
1857 htab = mips_elf_hash_table (info);
1858 if (htab == NULL)
1859 return FALSE;
1860
1861 /* Create a unique name for the new section. */
1862 name = bfd_malloc (11 + sizeof (".text.stub."));
1863 if (name == NULL)
1864 return FALSE;
1865 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1866
1867 /* Create the section. */
1868 mips_elf_get_la25_target (stub, &input_section);
1869 s = htab->add_stub_section (name, input_section,
1870 input_section->output_section);
1871 if (s == NULL)
1872 return FALSE;
1873
1874 /* Make sure that any padding goes before the stub. */
1875 align = input_section->alignment_power;
1876 if (!bfd_set_section_alignment (s->owner, s, align))
1877 return FALSE;
1878 if (align > 3)
1879 s->size = (1 << align) - 8;
1880
1881 /* Create a symbol for the stub. */
1882 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1883 stub->stub_section = s;
1884 stub->offset = s->size;
1885
1886 /* Allocate room for it. */
1887 s->size += 8;
1888 return TRUE;
1889 }
1890
1891 /* STUB describes an la25 stub that we have decided to implement
1892 with a separate trampoline. Allocate room for it and redirect
1893 the function symbol to it. */
1894
1895 static bfd_boolean
1896 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1897 struct bfd_link_info *info)
1898 {
1899 struct mips_elf_link_hash_table *htab;
1900 asection *s;
1901
1902 htab = mips_elf_hash_table (info);
1903 if (htab == NULL)
1904 return FALSE;
1905
1906 /* Create a trampoline section, if we haven't already. */
1907 s = htab->strampoline;
1908 if (s == NULL)
1909 {
1910 asection *input_section = stub->h->root.root.u.def.section;
1911 s = htab->add_stub_section (".text", NULL,
1912 input_section->output_section);
1913 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1914 return FALSE;
1915 htab->strampoline = s;
1916 }
1917
1918 /* Create a symbol for the stub. */
1919 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1920 stub->stub_section = s;
1921 stub->offset = s->size;
1922
1923 /* Allocate room for it. */
1924 s->size += 16;
1925 return TRUE;
1926 }
1927
1928 /* H describes a symbol that needs an la25 stub. Make sure that an
1929 appropriate stub exists and point H at it. */
1930
1931 static bfd_boolean
1932 mips_elf_add_la25_stub (struct bfd_link_info *info,
1933 struct mips_elf_link_hash_entry *h)
1934 {
1935 struct mips_elf_link_hash_table *htab;
1936 struct mips_elf_la25_stub search, *stub;
1937 bfd_boolean use_trampoline_p;
1938 asection *s;
1939 bfd_vma value;
1940 void **slot;
1941
1942 /* Describe the stub we want. */
1943 search.stub_section = NULL;
1944 search.offset = 0;
1945 search.h = h;
1946
1947 /* See if we've already created an equivalent stub. */
1948 htab = mips_elf_hash_table (info);
1949 if (htab == NULL)
1950 return FALSE;
1951
1952 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1953 if (slot == NULL)
1954 return FALSE;
1955
1956 stub = (struct mips_elf_la25_stub *) *slot;
1957 if (stub != NULL)
1958 {
1959 /* We can reuse the existing stub. */
1960 h->la25_stub = stub;
1961 return TRUE;
1962 }
1963
1964 /* Create a permanent copy of ENTRY and add it to the hash table. */
1965 stub = bfd_malloc (sizeof (search));
1966 if (stub == NULL)
1967 return FALSE;
1968 *stub = search;
1969 *slot = stub;
1970
1971 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1972 of the section and if we would need no more than 2 nops. */
1973 value = mips_elf_get_la25_target (stub, &s);
1974 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1975 value &= ~1;
1976 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1977
1978 h->la25_stub = stub;
1979 return (use_trampoline_p
1980 ? mips_elf_add_la25_trampoline (stub, info)
1981 : mips_elf_add_la25_intro (stub, info));
1982 }
1983
1984 /* A mips_elf_link_hash_traverse callback that is called before sizing
1985 sections. DATA points to a mips_htab_traverse_info structure. */
1986
1987 static bfd_boolean
1988 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1989 {
1990 struct mips_htab_traverse_info *hti;
1991
1992 hti = (struct mips_htab_traverse_info *) data;
1993 if (!bfd_link_relocatable (hti->info))
1994 mips_elf_check_mips16_stubs (hti->info, h);
1995
1996 if (mips_elf_local_pic_function_p (h))
1997 {
1998 /* PR 12845: If H is in a section that has been garbage
1999 collected it will have its output section set to *ABS*. */
2000 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2001 return TRUE;
2002
2003 /* H is a function that might need $25 to be valid on entry.
2004 If we're creating a non-PIC relocatable object, mark H as
2005 being PIC. If we're creating a non-relocatable object with
2006 non-PIC branches and jumps to H, make sure that H has an la25
2007 stub. */
2008 if (bfd_link_relocatable (hti->info))
2009 {
2010 if (!PIC_OBJECT_P (hti->output_bfd))
2011 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2012 }
2013 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2014 {
2015 hti->error = TRUE;
2016 return FALSE;
2017 }
2018 }
2019 return TRUE;
2020 }
2021 \f
2022 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2023 Most mips16 instructions are 16 bits, but these instructions
2024 are 32 bits.
2025
2026 The format of these instructions is:
2027
2028 +--------------+--------------------------------+
2029 | JALX | X| Imm 20:16 | Imm 25:21 |
2030 +--------------+--------------------------------+
2031 | Immediate 15:0 |
2032 +-----------------------------------------------+
2033
2034 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2035 Note that the immediate value in the first word is swapped.
2036
2037 When producing a relocatable object file, R_MIPS16_26 is
2038 handled mostly like R_MIPS_26. In particular, the addend is
2039 stored as a straight 26-bit value in a 32-bit instruction.
2040 (gas makes life simpler for itself by never adjusting a
2041 R_MIPS16_26 reloc to be against a section, so the addend is
2042 always zero). However, the 32 bit instruction is stored as 2
2043 16-bit values, rather than a single 32-bit value. In a
2044 big-endian file, the result is the same; in a little-endian
2045 file, the two 16-bit halves of the 32 bit value are swapped.
2046 This is so that a disassembler can recognize the jal
2047 instruction.
2048
2049 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2050 instruction stored as two 16-bit values. The addend A is the
2051 contents of the targ26 field. The calculation is the same as
2052 R_MIPS_26. When storing the calculated value, reorder the
2053 immediate value as shown above, and don't forget to store the
2054 value as two 16-bit values.
2055
2056 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2057 defined as
2058
2059 big-endian:
2060 +--------+----------------------+
2061 | | |
2062 | | targ26-16 |
2063 |31 26|25 0|
2064 +--------+----------------------+
2065
2066 little-endian:
2067 +----------+------+-------------+
2068 | | | |
2069 | sub1 | | sub2 |
2070 |0 9|10 15|16 31|
2071 +----------+--------------------+
2072 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2073 ((sub1 << 16) | sub2)).
2074
2075 When producing a relocatable object file, the calculation is
2076 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2077 When producing a fully linked file, the calculation is
2078 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2079 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2080
2081 The table below lists the other MIPS16 instruction relocations.
2082 Each one is calculated in the same way as the non-MIPS16 relocation
2083 given on the right, but using the extended MIPS16 layout of 16-bit
2084 immediate fields:
2085
2086 R_MIPS16_GPREL R_MIPS_GPREL16
2087 R_MIPS16_GOT16 R_MIPS_GOT16
2088 R_MIPS16_CALL16 R_MIPS_CALL16
2089 R_MIPS16_HI16 R_MIPS_HI16
2090 R_MIPS16_LO16 R_MIPS_LO16
2091
2092 A typical instruction will have a format like this:
2093
2094 +--------------+--------------------------------+
2095 | EXTEND | Imm 10:5 | Imm 15:11 |
2096 +--------------+--------------------------------+
2097 | Major | rx | ry | Imm 4:0 |
2098 +--------------+--------------------------------+
2099
2100 EXTEND is the five bit value 11110. Major is the instruction
2101 opcode.
2102
2103 All we need to do here is shuffle the bits appropriately.
2104 As above, the two 16-bit halves must be swapped on a
2105 little-endian system.
2106
2107 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2108 relocatable field is shifted by 1 rather than 2 and the same bit
2109 shuffling is done as with the relocations above. */
2110
2111 static inline bfd_boolean
2112 mips16_reloc_p (int r_type)
2113 {
2114 switch (r_type)
2115 {
2116 case R_MIPS16_26:
2117 case R_MIPS16_GPREL:
2118 case R_MIPS16_GOT16:
2119 case R_MIPS16_CALL16:
2120 case R_MIPS16_HI16:
2121 case R_MIPS16_LO16:
2122 case R_MIPS16_TLS_GD:
2123 case R_MIPS16_TLS_LDM:
2124 case R_MIPS16_TLS_DTPREL_HI16:
2125 case R_MIPS16_TLS_DTPREL_LO16:
2126 case R_MIPS16_TLS_GOTTPREL:
2127 case R_MIPS16_TLS_TPREL_HI16:
2128 case R_MIPS16_TLS_TPREL_LO16:
2129 case R_MIPS16_PC16_S1:
2130 return TRUE;
2131
2132 default:
2133 return FALSE;
2134 }
2135 }
2136
2137 /* Check if a microMIPS reloc. */
2138
2139 static inline bfd_boolean
2140 micromips_reloc_p (unsigned int r_type)
2141 {
2142 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2143 }
2144
2145 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2146 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2147 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2148
2149 static inline bfd_boolean
2150 micromips_reloc_shuffle_p (unsigned int r_type)
2151 {
2152 return (micromips_reloc_p (r_type)
2153 && r_type != R_MICROMIPS_PC7_S1
2154 && r_type != R_MICROMIPS_PC10_S1);
2155 }
2156
2157 static inline bfd_boolean
2158 got16_reloc_p (int r_type)
2159 {
2160 return (r_type == R_MIPS_GOT16
2161 || r_type == R_MIPS16_GOT16
2162 || r_type == R_MICROMIPS_GOT16);
2163 }
2164
2165 static inline bfd_boolean
2166 call16_reloc_p (int r_type)
2167 {
2168 return (r_type == R_MIPS_CALL16
2169 || r_type == R_MIPS16_CALL16
2170 || r_type == R_MICROMIPS_CALL16);
2171 }
2172
2173 static inline bfd_boolean
2174 got_disp_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2177 }
2178
2179 static inline bfd_boolean
2180 got_page_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2183 }
2184
2185 static inline bfd_boolean
2186 got_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_hi16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2195 }
2196
2197 static inline bfd_boolean
2198 call_lo16_reloc_p (unsigned int r_type)
2199 {
2200 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2201 }
2202
2203 static inline bfd_boolean
2204 hi16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_HI16
2207 || r_type == R_MIPS16_HI16
2208 || r_type == R_MICROMIPS_HI16
2209 || r_type == R_MIPS_PCHI16);
2210 }
2211
2212 static inline bfd_boolean
2213 lo16_reloc_p (int r_type)
2214 {
2215 return (r_type == R_MIPS_LO16
2216 || r_type == R_MIPS16_LO16
2217 || r_type == R_MICROMIPS_LO16
2218 || r_type == R_MIPS_PCLO16);
2219 }
2220
2221 static inline bfd_boolean
2222 mips16_call_reloc_p (int r_type)
2223 {
2224 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2225 }
2226
2227 static inline bfd_boolean
2228 jal_reloc_p (int r_type)
2229 {
2230 return (r_type == R_MIPS_26
2231 || r_type == R_MIPS16_26
2232 || r_type == R_MICROMIPS_26_S1);
2233 }
2234
2235 static inline bfd_boolean
2236 b_reloc_p (int r_type)
2237 {
2238 return (r_type == R_MIPS_PC26_S2
2239 || r_type == R_MIPS_PC21_S2
2240 || r_type == R_MIPS_PC16
2241 || r_type == R_MIPS_GNU_REL16_S2
2242 || r_type == R_MIPS16_PC16_S1
2243 || r_type == R_MICROMIPS_PC16_S1
2244 || r_type == R_MICROMIPS_PC10_S1
2245 || r_type == R_MICROMIPS_PC7_S1);
2246 }
2247
2248 static inline bfd_boolean
2249 aligned_pcrel_reloc_p (int r_type)
2250 {
2251 return (r_type == R_MIPS_PC18_S3
2252 || r_type == R_MIPS_PC19_S2);
2253 }
2254
2255 static inline bfd_boolean
2256 branch_reloc_p (int r_type)
2257 {
2258 return (r_type == R_MIPS_26
2259 || r_type == R_MIPS_PC26_S2
2260 || r_type == R_MIPS_PC21_S2
2261 || r_type == R_MIPS_PC16
2262 || r_type == R_MIPS_GNU_REL16_S2);
2263 }
2264
2265 static inline bfd_boolean
2266 mips16_branch_reloc_p (int r_type)
2267 {
2268 return (r_type == R_MIPS16_26
2269 || r_type == R_MIPS16_PC16_S1);
2270 }
2271
2272 static inline bfd_boolean
2273 micromips_branch_reloc_p (int r_type)
2274 {
2275 return (r_type == R_MICROMIPS_26_S1
2276 || r_type == R_MICROMIPS_PC16_S1
2277 || r_type == R_MICROMIPS_PC10_S1
2278 || r_type == R_MICROMIPS_PC7_S1);
2279 }
2280
2281 static inline bfd_boolean
2282 tls_gd_reloc_p (unsigned int r_type)
2283 {
2284 return (r_type == R_MIPS_TLS_GD
2285 || r_type == R_MIPS16_TLS_GD
2286 || r_type == R_MICROMIPS_TLS_GD);
2287 }
2288
2289 static inline bfd_boolean
2290 tls_ldm_reloc_p (unsigned int r_type)
2291 {
2292 return (r_type == R_MIPS_TLS_LDM
2293 || r_type == R_MIPS16_TLS_LDM
2294 || r_type == R_MICROMIPS_TLS_LDM);
2295 }
2296
2297 static inline bfd_boolean
2298 tls_gottprel_reloc_p (unsigned int r_type)
2299 {
2300 return (r_type == R_MIPS_TLS_GOTTPREL
2301 || r_type == R_MIPS16_TLS_GOTTPREL
2302 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2303 }
2304
2305 void
2306 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2307 bfd_boolean jal_shuffle, bfd_byte *data)
2308 {
2309 bfd_vma first, second, val;
2310
2311 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2312 return;
2313
2314 /* Pick up the first and second halfwords of the instruction. */
2315 first = bfd_get_16 (abfd, data);
2316 second = bfd_get_16 (abfd, data + 2);
2317 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2318 val = first << 16 | second;
2319 else if (r_type != R_MIPS16_26)
2320 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2321 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2322 else
2323 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2324 | ((first & 0x1f) << 21) | second);
2325 bfd_put_32 (abfd, val, data);
2326 }
2327
2328 void
2329 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2330 bfd_boolean jal_shuffle, bfd_byte *data)
2331 {
2332 bfd_vma first, second, val;
2333
2334 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2335 return;
2336
2337 val = bfd_get_32 (abfd, data);
2338 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2339 {
2340 second = val & 0xffff;
2341 first = val >> 16;
2342 }
2343 else if (r_type != R_MIPS16_26)
2344 {
2345 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2346 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2347 }
2348 else
2349 {
2350 second = val & 0xffff;
2351 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2352 | ((val >> 21) & 0x1f);
2353 }
2354 bfd_put_16 (abfd, second, data + 2);
2355 bfd_put_16 (abfd, first, data);
2356 }
2357
2358 bfd_reloc_status_type
2359 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2360 arelent *reloc_entry, asection *input_section,
2361 bfd_boolean relocatable, void *data, bfd_vma gp)
2362 {
2363 bfd_vma relocation;
2364 bfd_signed_vma val;
2365 bfd_reloc_status_type status;
2366
2367 if (bfd_is_com_section (symbol->section))
2368 relocation = 0;
2369 else
2370 relocation = symbol->value;
2371
2372 relocation += symbol->section->output_section->vma;
2373 relocation += symbol->section->output_offset;
2374
2375 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2376 return bfd_reloc_outofrange;
2377
2378 /* Set val to the offset into the section or symbol. */
2379 val = reloc_entry->addend;
2380
2381 _bfd_mips_elf_sign_extend (val, 16);
2382
2383 /* Adjust val for the final section location and GP value. If we
2384 are producing relocatable output, we don't want to do this for
2385 an external symbol. */
2386 if (! relocatable
2387 || (symbol->flags & BSF_SECTION_SYM) != 0)
2388 val += relocation - gp;
2389
2390 if (reloc_entry->howto->partial_inplace)
2391 {
2392 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2393 (bfd_byte *) data
2394 + reloc_entry->address);
2395 if (status != bfd_reloc_ok)
2396 return status;
2397 }
2398 else
2399 reloc_entry->addend = val;
2400
2401 if (relocatable)
2402 reloc_entry->address += input_section->output_offset;
2403
2404 return bfd_reloc_ok;
2405 }
2406
2407 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2408 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2409 that contains the relocation field and DATA points to the start of
2410 INPUT_SECTION. */
2411
2412 struct mips_hi16
2413 {
2414 struct mips_hi16 *next;
2415 bfd_byte *data;
2416 asection *input_section;
2417 arelent rel;
2418 };
2419
2420 /* FIXME: This should not be a static variable. */
2421
2422 static struct mips_hi16 *mips_hi16_list;
2423
2424 /* A howto special_function for REL *HI16 relocations. We can only
2425 calculate the correct value once we've seen the partnering
2426 *LO16 relocation, so just save the information for later.
2427
2428 The ABI requires that the *LO16 immediately follow the *HI16.
2429 However, as a GNU extension, we permit an arbitrary number of
2430 *HI16s to be associated with a single *LO16. This significantly
2431 simplies the relocation handling in gcc. */
2432
2433 bfd_reloc_status_type
2434 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2435 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2436 asection *input_section, bfd *output_bfd,
2437 char **error_message ATTRIBUTE_UNUSED)
2438 {
2439 struct mips_hi16 *n;
2440
2441 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2442 return bfd_reloc_outofrange;
2443
2444 n = bfd_malloc (sizeof *n);
2445 if (n == NULL)
2446 return bfd_reloc_outofrange;
2447
2448 n->next = mips_hi16_list;
2449 n->data = data;
2450 n->input_section = input_section;
2451 n->rel = *reloc_entry;
2452 mips_hi16_list = n;
2453
2454 if (output_bfd != NULL)
2455 reloc_entry->address += input_section->output_offset;
2456
2457 return bfd_reloc_ok;
2458 }
2459
2460 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2461 like any other 16-bit relocation when applied to global symbols, but is
2462 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2463
2464 bfd_reloc_status_type
2465 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2470 || bfd_is_und_section (bfd_get_section (symbol))
2471 || bfd_is_com_section (bfd_get_section (symbol)))
2472 /* The relocation is against a global symbol. */
2473 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd,
2475 error_message);
2476
2477 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2478 input_section, output_bfd, error_message);
2479 }
2480
2481 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2482 is a straightforward 16 bit inplace relocation, but we must deal with
2483 any partnering high-part relocations as well. */
2484
2485 bfd_reloc_status_type
2486 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2487 void *data, asection *input_section,
2488 bfd *output_bfd, char **error_message)
2489 {
2490 bfd_vma vallo;
2491 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2492
2493 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2494 return bfd_reloc_outofrange;
2495
2496 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2497 location);
2498 vallo = bfd_get_32 (abfd, location);
2499 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2500 location);
2501
2502 while (mips_hi16_list != NULL)
2503 {
2504 bfd_reloc_status_type ret;
2505 struct mips_hi16 *hi;
2506
2507 hi = mips_hi16_list;
2508
2509 /* R_MIPS*_GOT16 relocations are something of a special case. We
2510 want to install the addend in the same way as for a R_MIPS*_HI16
2511 relocation (with a rightshift of 16). However, since GOT16
2512 relocations can also be used with global symbols, their howto
2513 has a rightshift of 0. */
2514 if (hi->rel.howto->type == R_MIPS_GOT16)
2515 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2516 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2517 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2518 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2519 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2520
2521 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2522 carry or borrow will induce a change of +1 or -1 in the high part. */
2523 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2524
2525 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2526 hi->input_section, output_bfd,
2527 error_message);
2528 if (ret != bfd_reloc_ok)
2529 return ret;
2530
2531 mips_hi16_list = hi->next;
2532 free (hi);
2533 }
2534
2535 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2536 input_section, output_bfd,
2537 error_message);
2538 }
2539
2540 /* A generic howto special_function. This calculates and installs the
2541 relocation itself, thus avoiding the oft-discussed problems in
2542 bfd_perform_relocation and bfd_install_relocation. */
2543
2544 bfd_reloc_status_type
2545 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2546 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2547 asection *input_section, bfd *output_bfd,
2548 char **error_message ATTRIBUTE_UNUSED)
2549 {
2550 bfd_signed_vma val;
2551 bfd_reloc_status_type status;
2552 bfd_boolean relocatable;
2553
2554 relocatable = (output_bfd != NULL);
2555
2556 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2557 return bfd_reloc_outofrange;
2558
2559 /* Build up the field adjustment in VAL. */
2560 val = 0;
2561 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2562 {
2563 /* Either we're calculating the final field value or we have a
2564 relocation against a section symbol. Add in the section's
2565 offset or address. */
2566 val += symbol->section->output_section->vma;
2567 val += symbol->section->output_offset;
2568 }
2569
2570 if (!relocatable)
2571 {
2572 /* We're calculating the final field value. Add in the symbol's value
2573 and, if pc-relative, subtract the address of the field itself. */
2574 val += symbol->value;
2575 if (reloc_entry->howto->pc_relative)
2576 {
2577 val -= input_section->output_section->vma;
2578 val -= input_section->output_offset;
2579 val -= reloc_entry->address;
2580 }
2581 }
2582
2583 /* VAL is now the final adjustment. If we're keeping this relocation
2584 in the output file, and if the relocation uses a separate addend,
2585 we just need to add VAL to that addend. Otherwise we need to add
2586 VAL to the relocation field itself. */
2587 if (relocatable && !reloc_entry->howto->partial_inplace)
2588 reloc_entry->addend += val;
2589 else
2590 {
2591 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2592
2593 /* Add in the separate addend, if any. */
2594 val += reloc_entry->addend;
2595
2596 /* Add VAL to the relocation field. */
2597 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2598 location);
2599 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2600 location);
2601 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2602 location);
2603
2604 if (status != bfd_reloc_ok)
2605 return status;
2606 }
2607
2608 if (relocatable)
2609 reloc_entry->address += input_section->output_offset;
2610
2611 return bfd_reloc_ok;
2612 }
2613 \f
2614 /* Swap an entry in a .gptab section. Note that these routines rely
2615 on the equivalence of the two elements of the union. */
2616
2617 static void
2618 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2619 Elf32_gptab *in)
2620 {
2621 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2622 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2623 }
2624
2625 static void
2626 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2627 Elf32_External_gptab *ex)
2628 {
2629 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2630 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2631 }
2632
2633 static void
2634 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2635 Elf32_External_compact_rel *ex)
2636 {
2637 H_PUT_32 (abfd, in->id1, ex->id1);
2638 H_PUT_32 (abfd, in->num, ex->num);
2639 H_PUT_32 (abfd, in->id2, ex->id2);
2640 H_PUT_32 (abfd, in->offset, ex->offset);
2641 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2642 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2643 }
2644
2645 static void
2646 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2647 Elf32_External_crinfo *ex)
2648 {
2649 unsigned long l;
2650
2651 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2652 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2653 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2654 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2655 H_PUT_32 (abfd, l, ex->info);
2656 H_PUT_32 (abfd, in->konst, ex->konst);
2657 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2658 }
2659 \f
2660 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2661 routines swap this structure in and out. They are used outside of
2662 BFD, so they are globally visible. */
2663
2664 void
2665 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2666 Elf32_RegInfo *in)
2667 {
2668 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2669 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2670 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2671 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2672 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2673 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2674 }
2675
2676 void
2677 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2678 Elf32_External_RegInfo *ex)
2679 {
2680 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2681 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2682 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2683 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2684 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2685 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2686 }
2687
2688 /* In the 64 bit ABI, the .MIPS.options section holds register
2689 information in an Elf64_Reginfo structure. These routines swap
2690 them in and out. They are globally visible because they are used
2691 outside of BFD. These routines are here so that gas can call them
2692 without worrying about whether the 64 bit ABI has been included. */
2693
2694 void
2695 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2696 Elf64_Internal_RegInfo *in)
2697 {
2698 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2699 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2700 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2701 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2702 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2703 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2704 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2705 }
2706
2707 void
2708 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2709 Elf64_External_RegInfo *ex)
2710 {
2711 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2712 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2713 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2714 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2715 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2716 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2717 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2718 }
2719
2720 /* Swap in an options header. */
2721
2722 void
2723 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2724 Elf_Internal_Options *in)
2725 {
2726 in->kind = H_GET_8 (abfd, ex->kind);
2727 in->size = H_GET_8 (abfd, ex->size);
2728 in->section = H_GET_16 (abfd, ex->section);
2729 in->info = H_GET_32 (abfd, ex->info);
2730 }
2731
2732 /* Swap out an options header. */
2733
2734 void
2735 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2736 Elf_External_Options *ex)
2737 {
2738 H_PUT_8 (abfd, in->kind, ex->kind);
2739 H_PUT_8 (abfd, in->size, ex->size);
2740 H_PUT_16 (abfd, in->section, ex->section);
2741 H_PUT_32 (abfd, in->info, ex->info);
2742 }
2743
2744 /* Swap in an abiflags structure. */
2745
2746 void
2747 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2748 const Elf_External_ABIFlags_v0 *ex,
2749 Elf_Internal_ABIFlags_v0 *in)
2750 {
2751 in->version = H_GET_16 (abfd, ex->version);
2752 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2753 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2754 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2755 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2756 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2757 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2758 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2759 in->ases = H_GET_32 (abfd, ex->ases);
2760 in->flags1 = H_GET_32 (abfd, ex->flags1);
2761 in->flags2 = H_GET_32 (abfd, ex->flags2);
2762 }
2763
2764 /* Swap out an abiflags structure. */
2765
2766 void
2767 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2768 const Elf_Internal_ABIFlags_v0 *in,
2769 Elf_External_ABIFlags_v0 *ex)
2770 {
2771 H_PUT_16 (abfd, in->version, ex->version);
2772 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2773 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2774 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2775 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2776 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2777 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2778 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2779 H_PUT_32 (abfd, in->ases, ex->ases);
2780 H_PUT_32 (abfd, in->flags1, ex->flags1);
2781 H_PUT_32 (abfd, in->flags2, ex->flags2);
2782 }
2783 \f
2784 /* This function is called via qsort() to sort the dynamic relocation
2785 entries by increasing r_symndx value. */
2786
2787 static int
2788 sort_dynamic_relocs (const void *arg1, const void *arg2)
2789 {
2790 Elf_Internal_Rela int_reloc1;
2791 Elf_Internal_Rela int_reloc2;
2792 int diff;
2793
2794 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2795 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2796
2797 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2798 if (diff != 0)
2799 return diff;
2800
2801 if (int_reloc1.r_offset < int_reloc2.r_offset)
2802 return -1;
2803 if (int_reloc1.r_offset > int_reloc2.r_offset)
2804 return 1;
2805 return 0;
2806 }
2807
2808 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2809
2810 static int
2811 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2812 const void *arg2 ATTRIBUTE_UNUSED)
2813 {
2814 #ifdef BFD64
2815 Elf_Internal_Rela int_reloc1[3];
2816 Elf_Internal_Rela int_reloc2[3];
2817
2818 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2819 (reldyn_sorting_bfd, arg1, int_reloc1);
2820 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2821 (reldyn_sorting_bfd, arg2, int_reloc2);
2822
2823 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2824 return -1;
2825 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2826 return 1;
2827
2828 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2829 return -1;
2830 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2831 return 1;
2832 return 0;
2833 #else
2834 abort ();
2835 #endif
2836 }
2837
2838
2839 /* This routine is used to write out ECOFF debugging external symbol
2840 information. It is called via mips_elf_link_hash_traverse. The
2841 ECOFF external symbol information must match the ELF external
2842 symbol information. Unfortunately, at this point we don't know
2843 whether a symbol is required by reloc information, so the two
2844 tables may wind up being different. We must sort out the external
2845 symbol information before we can set the final size of the .mdebug
2846 section, and we must set the size of the .mdebug section before we
2847 can relocate any sections, and we can't know which symbols are
2848 required by relocation until we relocate the sections.
2849 Fortunately, it is relatively unlikely that any symbol will be
2850 stripped but required by a reloc. In particular, it can not happen
2851 when generating a final executable. */
2852
2853 static bfd_boolean
2854 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2855 {
2856 struct extsym_info *einfo = data;
2857 bfd_boolean strip;
2858 asection *sec, *output_section;
2859
2860 if (h->root.indx == -2)
2861 strip = FALSE;
2862 else if ((h->root.def_dynamic
2863 || h->root.ref_dynamic
2864 || h->root.type == bfd_link_hash_new)
2865 && !h->root.def_regular
2866 && !h->root.ref_regular)
2867 strip = TRUE;
2868 else if (einfo->info->strip == strip_all
2869 || (einfo->info->strip == strip_some
2870 && bfd_hash_lookup (einfo->info->keep_hash,
2871 h->root.root.root.string,
2872 FALSE, FALSE) == NULL))
2873 strip = TRUE;
2874 else
2875 strip = FALSE;
2876
2877 if (strip)
2878 return TRUE;
2879
2880 if (h->esym.ifd == -2)
2881 {
2882 h->esym.jmptbl = 0;
2883 h->esym.cobol_main = 0;
2884 h->esym.weakext = 0;
2885 h->esym.reserved = 0;
2886 h->esym.ifd = ifdNil;
2887 h->esym.asym.value = 0;
2888 h->esym.asym.st = stGlobal;
2889
2890 if (h->root.root.type == bfd_link_hash_undefined
2891 || h->root.root.type == bfd_link_hash_undefweak)
2892 {
2893 const char *name;
2894
2895 /* Use undefined class. Also, set class and type for some
2896 special symbols. */
2897 name = h->root.root.root.string;
2898 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2899 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2900 {
2901 h->esym.asym.sc = scData;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value = 0;
2904 }
2905 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2906 {
2907 h->esym.asym.sc = scAbs;
2908 h->esym.asym.st = stLabel;
2909 h->esym.asym.value =
2910 mips_elf_hash_table (einfo->info)->procedure_count;
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h != NULL
3261 && h->dynindx != -1
3262 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3263 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3264 indx = h->dynindx;
3265
3266 if ((bfd_link_dll (info) || indx != 0)
3267 && (h == NULL
3268 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3269 || h->root.type != bfd_link_hash_undefweak))
3270 need_relocs = TRUE;
3271
3272 if (!need_relocs)
3273 return 0;
3274
3275 switch (tls_type)
3276 {
3277 case GOT_TLS_GD:
3278 return indx != 0 ? 2 : 1;
3279
3280 case GOT_TLS_IE:
3281 return 1;
3282
3283 case GOT_TLS_LDM:
3284 return bfd_link_dll (info) ? 1 : 0;
3285
3286 default:
3287 return 0;
3288 }
3289 }
3290
3291 /* Add the number of GOT entries and TLS relocations required by ENTRY
3292 to G. */
3293
3294 static void
3295 mips_elf_count_got_entry (struct bfd_link_info *info,
3296 struct mips_got_info *g,
3297 struct mips_got_entry *entry)
3298 {
3299 if (entry->tls_type)
3300 {
3301 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3302 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3303 entry->symndx < 0
3304 ? &entry->d.h->root : NULL);
3305 }
3306 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3307 g->local_gotno += 1;
3308 else
3309 g->global_gotno += 1;
3310 }
3311
3312 /* Output a simple dynamic relocation into SRELOC. */
3313
3314 static void
3315 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3316 asection *sreloc,
3317 unsigned long reloc_index,
3318 unsigned long indx,
3319 int r_type,
3320 bfd_vma offset)
3321 {
3322 Elf_Internal_Rela rel[3];
3323
3324 memset (rel, 0, sizeof (rel));
3325
3326 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3327 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3328
3329 if (ABI_64_P (output_bfd))
3330 {
3331 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3335 }
3336 else
3337 bfd_elf32_swap_reloc_out
3338 (output_bfd, &rel[0],
3339 (sreloc->contents
3340 + reloc_index * sizeof (Elf32_External_Rel)));
3341 }
3342
3343 /* Initialize a set of TLS GOT entries for one symbol. */
3344
3345 static void
3346 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3347 struct mips_got_entry *entry,
3348 struct mips_elf_link_hash_entry *h,
3349 bfd_vma value)
3350 {
3351 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3352 struct mips_elf_link_hash_table *htab;
3353 int indx;
3354 asection *sreloc, *sgot;
3355 bfd_vma got_offset, got_offset2;
3356 bfd_boolean need_relocs = FALSE;
3357
3358 htab = mips_elf_hash_table (info);
3359 if (htab == NULL)
3360 return;
3361
3362 sgot = htab->root.sgot;
3363
3364 indx = 0;
3365 if (h != NULL
3366 && h->root.dynindx != -1
3367 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3368 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3369 indx = h->root.dynindx;
3370
3371 if (entry->tls_initialized)
3372 return;
3373
3374 if ((bfd_link_dll (info) || indx != 0)
3375 && (h == NULL
3376 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3377 || h->root.type != bfd_link_hash_undefweak))
3378 need_relocs = TRUE;
3379
3380 /* MINUS_ONE means the symbol is not defined in this object. It may not
3381 be defined at all; assume that the value doesn't matter in that
3382 case. Otherwise complain if we would use the value. */
3383 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3384 || h->root.root.type == bfd_link_hash_undefweak);
3385
3386 /* Emit necessary relocations. */
3387 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3388 got_offset = entry->gotidx;
3389
3390 switch (entry->tls_type)
3391 {
3392 case GOT_TLS_GD:
3393 /* General Dynamic. */
3394 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3395
3396 if (need_relocs)
3397 {
3398 mips_elf_output_dynamic_relocation
3399 (abfd, sreloc, sreloc->reloc_count++, indx,
3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3401 sgot->output_offset + sgot->output_section->vma + got_offset);
3402
3403 if (indx)
3404 mips_elf_output_dynamic_relocation
3405 (abfd, sreloc, sreloc->reloc_count++, indx,
3406 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3407 sgot->output_offset + sgot->output_section->vma + got_offset2);
3408 else
3409 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3410 sgot->contents + got_offset2);
3411 }
3412 else
3413 {
3414 MIPS_ELF_PUT_WORD (abfd, 1,
3415 sgot->contents + got_offset);
3416 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3417 sgot->contents + got_offset2);
3418 }
3419 break;
3420
3421 case GOT_TLS_IE:
3422 /* Initial Exec model. */
3423 if (need_relocs)
3424 {
3425 if (indx == 0)
3426 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3427 sgot->contents + got_offset);
3428 else
3429 MIPS_ELF_PUT_WORD (abfd, 0,
3430 sgot->contents + got_offset);
3431
3432 mips_elf_output_dynamic_relocation
3433 (abfd, sreloc, sreloc->reloc_count++, indx,
3434 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3435 sgot->output_offset + sgot->output_section->vma + got_offset);
3436 }
3437 else
3438 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3439 sgot->contents + got_offset);
3440 break;
3441
3442 case GOT_TLS_LDM:
3443 /* The initial offset is zero, and the LD offsets will include the
3444 bias by DTP_OFFSET. */
3445 MIPS_ELF_PUT_WORD (abfd, 0,
3446 sgot->contents + got_offset
3447 + MIPS_ELF_GOT_SIZE (abfd));
3448
3449 if (!bfd_link_dll (info))
3450 MIPS_ELF_PUT_WORD (abfd, 1,
3451 sgot->contents + got_offset);
3452 else
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3457 break;
3458
3459 default:
3460 abort ();
3461 }
3462
3463 entry->tls_initialized = TRUE;
3464 }
3465
3466 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3467 for global symbol H. .got.plt comes before the GOT, so the offset
3468 will be negative. */
3469
3470 static bfd_vma
3471 mips_elf_gotplt_index (struct bfd_link_info *info,
3472 struct elf_link_hash_entry *h)
3473 {
3474 bfd_vma got_address, got_value;
3475 struct mips_elf_link_hash_table *htab;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 BFD_ASSERT (h->plt.plist != NULL);
3481 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3482
3483 /* Calculate the address of the associated .got.plt entry. */
3484 got_address = (htab->root.sgotplt->output_section->vma
3485 + htab->root.sgotplt->output_offset
3486 + (h->plt.plist->gotplt_index
3487 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3488
3489 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3490 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3491 + htab->root.hgot->root.u.def.section->output_offset
3492 + htab->root.hgot->root.u.def.value);
3493
3494 return got_address - got_value;
3495 }
3496
3497 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3498 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3499 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3500 offset can be found. */
3501
3502 static bfd_vma
3503 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3504 bfd_vma value, unsigned long r_symndx,
3505 struct mips_elf_link_hash_entry *h, int r_type)
3506 {
3507 struct mips_elf_link_hash_table *htab;
3508 struct mips_got_entry *entry;
3509
3510 htab = mips_elf_hash_table (info);
3511 BFD_ASSERT (htab != NULL);
3512
3513 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3514 r_symndx, h, r_type);
3515 if (!entry)
3516 return MINUS_ONE;
3517
3518 if (entry->tls_type)
3519 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3520 return entry->gotidx;
3521 }
3522
3523 /* Return the GOT index of global symbol H in the primary GOT. */
3524
3525 static bfd_vma
3526 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528 {
3529 struct mips_elf_link_hash_table *htab;
3530 long global_got_dynindx;
3531 struct mips_got_info *g;
3532 bfd_vma got_index;
3533
3534 htab = mips_elf_hash_table (info);
3535 BFD_ASSERT (htab != NULL);
3536
3537 global_got_dynindx = 0;
3538 if (htab->global_gotsym != NULL)
3539 global_got_dynindx = htab->global_gotsym->dynindx;
3540
3541 /* Once we determine the global GOT entry with the lowest dynamic
3542 symbol table index, we must put all dynamic symbols with greater
3543 indices into the primary GOT. That makes it easy to calculate the
3544 GOT offset. */
3545 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3546 g = mips_elf_bfd_got (obfd, FALSE);
3547 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3548 * MIPS_ELF_GOT_SIZE (obfd));
3549 BFD_ASSERT (got_index < htab->root.sgot->size);
3550
3551 return got_index;
3552 }
3553
3554 /* Return the GOT index for the global symbol indicated by H, which is
3555 referenced by a relocation of type R_TYPE in IBFD. */
3556
3557 static bfd_vma
3558 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3559 struct elf_link_hash_entry *h, int r_type)
3560 {
3561 struct mips_elf_link_hash_table *htab;
3562 struct mips_got_info *g;
3563 struct mips_got_entry lookup, *entry;
3564 bfd_vma gotidx;
3565
3566 htab = mips_elf_hash_table (info);
3567 BFD_ASSERT (htab != NULL);
3568
3569 g = mips_elf_bfd_got (ibfd, FALSE);
3570 BFD_ASSERT (g);
3571
3572 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3573 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3574 return mips_elf_primary_global_got_index (obfd, info, h);
3575
3576 lookup.abfd = ibfd;
3577 lookup.symndx = -1;
3578 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3579 entry = htab_find (g->got_entries, &lookup);
3580 BFD_ASSERT (entry);
3581
3582 gotidx = entry->gotidx;
3583 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3584
3585 if (lookup.tls_type)
3586 {
3587 bfd_vma value = MINUS_ONE;
3588
3589 if ((h->root.type == bfd_link_hash_defined
3590 || h->root.type == bfd_link_hash_defweak)
3591 && h->root.u.def.section->output_section)
3592 value = (h->root.u.def.value
3593 + h->root.u.def.section->output_offset
3594 + h->root.u.def.section->output_section->vma);
3595
3596 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3597 }
3598 return gotidx;
3599 }
3600
3601 /* Find a GOT page entry that points to within 32KB of VALUE. These
3602 entries are supposed to be placed at small offsets in the GOT, i.e.,
3603 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3604 entry could be created. If OFFSETP is nonnull, use it to return the
3605 offset of the GOT entry from VALUE. */
3606
3607 static bfd_vma
3608 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3609 bfd_vma value, bfd_vma *offsetp)
3610 {
3611 bfd_vma page, got_index;
3612 struct mips_got_entry *entry;
3613
3614 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3615 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3616 NULL, R_MIPS_GOT_PAGE);
3617
3618 if (!entry)
3619 return MINUS_ONE;
3620
3621 got_index = entry->gotidx;
3622
3623 if (offsetp)
3624 *offsetp = value - entry->d.address;
3625
3626 return got_index;
3627 }
3628
3629 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3630 EXTERNAL is true if the relocation was originally against a global
3631 symbol that binds locally. */
3632
3633 static bfd_vma
3634 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3635 bfd_vma value, bfd_boolean external)
3636 {
3637 struct mips_got_entry *entry;
3638
3639 /* GOT16 relocations against local symbols are followed by a LO16
3640 relocation; those against global symbols are not. Thus if the
3641 symbol was originally local, the GOT16 relocation should load the
3642 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3643 if (! external)
3644 value = mips_elf_high (value) << 16;
3645
3646 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3647 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3648 same in all cases. */
3649 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3650 NULL, R_MIPS_GOT16);
3651 if (entry)
3652 return entry->gotidx;
3653 else
3654 return MINUS_ONE;
3655 }
3656
3657 /* Returns the offset for the entry at the INDEXth position
3658 in the GOT. */
3659
3660 static bfd_vma
3661 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3662 bfd *input_bfd, bfd_vma got_index)
3663 {
3664 struct mips_elf_link_hash_table *htab;
3665 asection *sgot;
3666 bfd_vma gp;
3667
3668 htab = mips_elf_hash_table (info);
3669 BFD_ASSERT (htab != NULL);
3670
3671 sgot = htab->root.sgot;
3672 gp = _bfd_get_gp_value (output_bfd)
3673 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3674
3675 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3676 }
3677
3678 /* Create and return a local GOT entry for VALUE, which was calculated
3679 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3680 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3681 instead. */
3682
3683 static struct mips_got_entry *
3684 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3685 bfd *ibfd, bfd_vma value,
3686 unsigned long r_symndx,
3687 struct mips_elf_link_hash_entry *h,
3688 int r_type)
3689 {
3690 struct mips_got_entry lookup, *entry;
3691 void **loc;
3692 struct mips_got_info *g;
3693 struct mips_elf_link_hash_table *htab;
3694 bfd_vma gotidx;
3695
3696 htab = mips_elf_hash_table (info);
3697 BFD_ASSERT (htab != NULL);
3698
3699 g = mips_elf_bfd_got (ibfd, FALSE);
3700 if (g == NULL)
3701 {
3702 g = mips_elf_bfd_got (abfd, FALSE);
3703 BFD_ASSERT (g != NULL);
3704 }
3705
3706 /* This function shouldn't be called for symbols that live in the global
3707 area of the GOT. */
3708 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3709
3710 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3711 if (lookup.tls_type)
3712 {
3713 lookup.abfd = ibfd;
3714 if (tls_ldm_reloc_p (r_type))
3715 {
3716 lookup.symndx = 0;
3717 lookup.d.addend = 0;
3718 }
3719 else if (h == NULL)
3720 {
3721 lookup.symndx = r_symndx;
3722 lookup.d.addend = 0;
3723 }
3724 else
3725 {
3726 lookup.symndx = -1;
3727 lookup.d.h = h;
3728 }
3729
3730 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3731 BFD_ASSERT (entry);
3732
3733 gotidx = entry->gotidx;
3734 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3735
3736 return entry;
3737 }
3738
3739 lookup.abfd = NULL;
3740 lookup.symndx = -1;
3741 lookup.d.address = value;
3742 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3743 if (!loc)
3744 return NULL;
3745
3746 entry = (struct mips_got_entry *) *loc;
3747 if (entry)
3748 return entry;
3749
3750 if (g->assigned_low_gotno > g->assigned_high_gotno)
3751 {
3752 /* We didn't allocate enough space in the GOT. */
3753 _bfd_error_handler
3754 (_("not enough GOT space for local GOT entries"));
3755 bfd_set_error (bfd_error_bad_value);
3756 return NULL;
3757 }
3758
3759 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3760 if (!entry)
3761 return NULL;
3762
3763 if (got16_reloc_p (r_type)
3764 || call16_reloc_p (r_type)
3765 || got_page_reloc_p (r_type)
3766 || got_disp_reloc_p (r_type))
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3768 else
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3770
3771 *entry = lookup;
3772 *loc = entry;
3773
3774 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3775
3776 /* These GOT entries need a dynamic relocation on VxWorks. */
3777 if (htab->is_vxworks)
3778 {
3779 Elf_Internal_Rela outrel;
3780 asection *s;
3781 bfd_byte *rloc;
3782 bfd_vma got_address;
3783
3784 s = mips_elf_rel_dyn_section (info, FALSE);
3785 got_address = (htab->root.sgot->output_section->vma
3786 + htab->root.sgot->output_offset
3787 + entry->gotidx);
3788
3789 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3790 outrel.r_offset = got_address;
3791 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3792 outrel.r_addend = value;
3793 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3794 }
3795
3796 return entry;
3797 }
3798
3799 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3800 The number might be exact or a worst-case estimate, depending on how
3801 much information is available to elf_backend_omit_section_dynsym at
3802 the current linking stage. */
3803
3804 static bfd_size_type
3805 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3806 {
3807 bfd_size_type count;
3808
3809 count = 0;
3810 if (bfd_link_pic (info)
3811 || elf_hash_table (info)->is_relocatable_executable)
3812 {
3813 asection *p;
3814 const struct elf_backend_data *bed;
3815
3816 bed = get_elf_backend_data (output_bfd);
3817 for (p = output_bfd->sections; p ; p = p->next)
3818 if ((p->flags & SEC_EXCLUDE) == 0
3819 && (p->flags & SEC_ALLOC) != 0
3820 && elf_hash_table (info)->dynamic_relocs
3821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3822 ++count;
3823 }
3824 return count;
3825 }
3826
3827 /* Sort the dynamic symbol table so that symbols that need GOT entries
3828 appear towards the end. */
3829
3830 static bfd_boolean
3831 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3832 {
3833 struct mips_elf_link_hash_table *htab;
3834 struct mips_elf_hash_sort_data hsd;
3835 struct mips_got_info *g;
3836
3837 htab = mips_elf_hash_table (info);
3838 BFD_ASSERT (htab != NULL);
3839
3840 if (htab->root.dynsymcount == 0)
3841 return TRUE;
3842
3843 g = htab->got_info;
3844 if (g == NULL)
3845 return TRUE;
3846
3847 hsd.low = NULL;
3848 hsd.max_unref_got_dynindx
3849 = hsd.min_got_dynindx
3850 = (htab->root.dynsymcount - g->reloc_only_gotno);
3851 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3852 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3853 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3854 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3855 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3856
3857 /* There should have been enough room in the symbol table to
3858 accommodate both the GOT and non-GOT symbols. */
3859 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3860 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3861 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3862 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3863
3864 /* Now we know which dynamic symbol has the lowest dynamic symbol
3865 table index in the GOT. */
3866 htab->global_gotsym = hsd.low;
3867
3868 return TRUE;
3869 }
3870
3871 /* If H needs a GOT entry, assign it the highest available dynamic
3872 index. Otherwise, assign it the lowest available dynamic
3873 index. */
3874
3875 static bfd_boolean
3876 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3877 {
3878 struct mips_elf_hash_sort_data *hsd = data;
3879
3880 /* Symbols without dynamic symbol table entries aren't interesting
3881 at all. */
3882 if (h->root.dynindx == -1)
3883 return TRUE;
3884
3885 switch (h->global_got_area)
3886 {
3887 case GGA_NONE:
3888 if (h->root.forced_local)
3889 h->root.dynindx = hsd->max_local_dynindx++;
3890 else
3891 h->root.dynindx = hsd->max_non_got_dynindx++;
3892 break;
3893
3894 case GGA_NORMAL:
3895 h->root.dynindx = --hsd->min_got_dynindx;
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 break;
3898
3899 case GGA_RELOC_ONLY:
3900 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3901 hsd->low = (struct elf_link_hash_entry *) h;
3902 h->root.dynindx = hsd->max_unref_got_dynindx++;
3903 break;
3904 }
3905
3906 return TRUE;
3907 }
3908
3909 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3910 (which is owned by the caller and shouldn't be added to the
3911 hash table directly). */
3912
3913 static bfd_boolean
3914 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3915 struct mips_got_entry *lookup)
3916 {
3917 struct mips_elf_link_hash_table *htab;
3918 struct mips_got_entry *entry;
3919 struct mips_got_info *g;
3920 void **loc, **bfd_loc;
3921
3922 /* Make sure there's a slot for this entry in the master GOT. */
3923 htab = mips_elf_hash_table (info);
3924 g = htab->got_info;
3925 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3926 if (!loc)
3927 return FALSE;
3928
3929 /* Populate the entry if it isn't already. */
3930 entry = (struct mips_got_entry *) *loc;
3931 if (!entry)
3932 {
3933 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3934 if (!entry)
3935 return FALSE;
3936
3937 lookup->tls_initialized = FALSE;
3938 lookup->gotidx = -1;
3939 *entry = *lookup;
3940 *loc = entry;
3941 }
3942
3943 /* Reuse the same GOT entry for the BFD's GOT. */
3944 g = mips_elf_bfd_got (abfd, TRUE);
3945 if (!g)
3946 return FALSE;
3947
3948 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3949 if (!bfd_loc)
3950 return FALSE;
3951
3952 if (!*bfd_loc)
3953 *bfd_loc = entry;
3954 return TRUE;
3955 }
3956
3957 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3958 entry for it. FOR_CALL is true if the caller is only interested in
3959 using the GOT entry for calls. */
3960
3961 static bfd_boolean
3962 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3963 bfd *abfd, struct bfd_link_info *info,
3964 bfd_boolean for_call, int r_type)
3965 {
3966 struct mips_elf_link_hash_table *htab;
3967 struct mips_elf_link_hash_entry *hmips;
3968 struct mips_got_entry entry;
3969 unsigned char tls_type;
3970
3971 htab = mips_elf_hash_table (info);
3972 BFD_ASSERT (htab != NULL);
3973
3974 hmips = (struct mips_elf_link_hash_entry *) h;
3975 if (!for_call)
3976 hmips->got_only_for_calls = FALSE;
3977
3978 /* A global symbol in the GOT must also be in the dynamic symbol
3979 table. */
3980 if (h->dynindx == -1)
3981 {
3982 switch (ELF_ST_VISIBILITY (h->other))
3983 {
3984 case STV_INTERNAL:
3985 case STV_HIDDEN:
3986 _bfd_mips_elf_hide_symbol (info, h, TRUE);
3987 break;
3988 }
3989 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3990 return FALSE;
3991 }
3992
3993 tls_type = mips_elf_reloc_tls_type (r_type);
3994 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3995 hmips->global_got_area = GGA_NORMAL;
3996
3997 entry.abfd = abfd;
3998 entry.symndx = -1;
3999 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4000 entry.tls_type = tls_type;
4001 return mips_elf_record_got_entry (info, abfd, &entry);
4002 }
4003
4004 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4005 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4006
4007 static bfd_boolean
4008 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4009 struct bfd_link_info *info, int r_type)
4010 {
4011 struct mips_elf_link_hash_table *htab;
4012 struct mips_got_info *g;
4013 struct mips_got_entry entry;
4014
4015 htab = mips_elf_hash_table (info);
4016 BFD_ASSERT (htab != NULL);
4017
4018 g = htab->got_info;
4019 BFD_ASSERT (g != NULL);
4020
4021 entry.abfd = abfd;
4022 entry.symndx = symndx;
4023 entry.d.addend = addend;
4024 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4025 return mips_elf_record_got_entry (info, abfd, &entry);
4026 }
4027
4028 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4029 H is the symbol's hash table entry, or null if SYMNDX is local
4030 to ABFD. */
4031
4032 static bfd_boolean
4033 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4034 long symndx, struct elf_link_hash_entry *h,
4035 bfd_signed_vma addend)
4036 {
4037 struct mips_elf_link_hash_table *htab;
4038 struct mips_got_info *g1, *g2;
4039 struct mips_got_page_ref lookup, *entry;
4040 void **loc, **bfd_loc;
4041
4042 htab = mips_elf_hash_table (info);
4043 BFD_ASSERT (htab != NULL);
4044
4045 g1 = htab->got_info;
4046 BFD_ASSERT (g1 != NULL);
4047
4048 if (h)
4049 {
4050 lookup.symndx = -1;
4051 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4052 }
4053 else
4054 {
4055 lookup.symndx = symndx;
4056 lookup.u.abfd = abfd;
4057 }
4058 lookup.addend = addend;
4059 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4060 if (loc == NULL)
4061 return FALSE;
4062
4063 entry = (struct mips_got_page_ref *) *loc;
4064 if (!entry)
4065 {
4066 entry = bfd_alloc (abfd, sizeof (*entry));
4067 if (!entry)
4068 return FALSE;
4069
4070 *entry = lookup;
4071 *loc = entry;
4072 }
4073
4074 /* Add the same entry to the BFD's GOT. */
4075 g2 = mips_elf_bfd_got (abfd, TRUE);
4076 if (!g2)
4077 return FALSE;
4078
4079 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4080 if (!bfd_loc)
4081 return FALSE;
4082
4083 if (!*bfd_loc)
4084 *bfd_loc = entry;
4085
4086 return TRUE;
4087 }
4088
4089 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4090
4091 static void
4092 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4093 unsigned int n)
4094 {
4095 asection *s;
4096 struct mips_elf_link_hash_table *htab;
4097
4098 htab = mips_elf_hash_table (info);
4099 BFD_ASSERT (htab != NULL);
4100
4101 s = mips_elf_rel_dyn_section (info, FALSE);
4102 BFD_ASSERT (s != NULL);
4103
4104 if (htab->is_vxworks)
4105 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4106 else
4107 {
4108 if (s->size == 0)
4109 {
4110 /* Make room for a null element. */
4111 s->size += MIPS_ELF_REL_SIZE (abfd);
4112 ++s->reloc_count;
4113 }
4114 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4115 }
4116 }
4117 \f
4118 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4119 mips_elf_traverse_got_arg structure. Count the number of GOT
4120 entries and TLS relocs. Set DATA->value to true if we need
4121 to resolve indirect or warning symbols and then recreate the GOT. */
4122
4123 static int
4124 mips_elf_check_recreate_got (void **entryp, void *data)
4125 {
4126 struct mips_got_entry *entry;
4127 struct mips_elf_traverse_got_arg *arg;
4128
4129 entry = (struct mips_got_entry *) *entryp;
4130 arg = (struct mips_elf_traverse_got_arg *) data;
4131 if (entry->abfd != NULL && entry->symndx == -1)
4132 {
4133 struct mips_elf_link_hash_entry *h;
4134
4135 h = entry->d.h;
4136 if (h->root.root.type == bfd_link_hash_indirect
4137 || h->root.root.type == bfd_link_hash_warning)
4138 {
4139 arg->value = TRUE;
4140 return 0;
4141 }
4142 }
4143 mips_elf_count_got_entry (arg->info, arg->g, entry);
4144 return 1;
4145 }
4146
4147 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4148 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4149 converting entries for indirect and warning symbols into entries
4150 for the target symbol. Set DATA->g to null on error. */
4151
4152 static int
4153 mips_elf_recreate_got (void **entryp, void *data)
4154 {
4155 struct mips_got_entry new_entry, *entry;
4156 struct mips_elf_traverse_got_arg *arg;
4157 void **slot;
4158
4159 entry = (struct mips_got_entry *) *entryp;
4160 arg = (struct mips_elf_traverse_got_arg *) data;
4161 if (entry->abfd != NULL
4162 && entry->symndx == -1
4163 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4164 || entry->d.h->root.root.type == bfd_link_hash_warning))
4165 {
4166 struct mips_elf_link_hash_entry *h;
4167
4168 new_entry = *entry;
4169 entry = &new_entry;
4170 h = entry->d.h;
4171 do
4172 {
4173 BFD_ASSERT (h->global_got_area == GGA_NONE);
4174 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4175 }
4176 while (h->root.root.type == bfd_link_hash_indirect
4177 || h->root.root.type == bfd_link_hash_warning);
4178 entry->d.h = h;
4179 }
4180 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4181 if (slot == NULL)
4182 {
4183 arg->g = NULL;
4184 return 0;
4185 }
4186 if (*slot == NULL)
4187 {
4188 if (entry == &new_entry)
4189 {
4190 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4191 if (!entry)
4192 {
4193 arg->g = NULL;
4194 return 0;
4195 }
4196 *entry = new_entry;
4197 }
4198 *slot = entry;
4199 mips_elf_count_got_entry (arg->info, arg->g, entry);
4200 }
4201 return 1;
4202 }
4203
4204 /* Return the maximum number of GOT page entries required for RANGE. */
4205
4206 static bfd_vma
4207 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4208 {
4209 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4210 }
4211
4212 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4213
4214 static bfd_boolean
4215 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4216 asection *sec, bfd_signed_vma addend)
4217 {
4218 struct mips_got_info *g = arg->g;
4219 struct mips_got_page_entry lookup, *entry;
4220 struct mips_got_page_range **range_ptr, *range;
4221 bfd_vma old_pages, new_pages;
4222 void **loc;
4223
4224 /* Find the mips_got_page_entry hash table entry for this section. */
4225 lookup.sec = sec;
4226 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4227 if (loc == NULL)
4228 return FALSE;
4229
4230 /* Create a mips_got_page_entry if this is the first time we've
4231 seen the section. */
4232 entry = (struct mips_got_page_entry *) *loc;
4233 if (!entry)
4234 {
4235 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4236 if (!entry)
4237 return FALSE;
4238
4239 entry->sec = sec;
4240 *loc = entry;
4241 }
4242
4243 /* Skip over ranges whose maximum extent cannot share a page entry
4244 with ADDEND. */
4245 range_ptr = &entry->ranges;
4246 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4247 range_ptr = &(*range_ptr)->next;
4248
4249 /* If we scanned to the end of the list, or found a range whose
4250 minimum extent cannot share a page entry with ADDEND, create
4251 a new singleton range. */
4252 range = *range_ptr;
4253 if (!range || addend < range->min_addend - 0xffff)
4254 {
4255 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4256 if (!range)
4257 return FALSE;
4258
4259 range->next = *range_ptr;
4260 range->min_addend = addend;
4261 range->max_addend = addend;
4262
4263 *range_ptr = range;
4264 entry->num_pages++;
4265 g->page_gotno++;
4266 return TRUE;
4267 }
4268
4269 /* Remember how many pages the old range contributed. */
4270 old_pages = mips_elf_pages_for_range (range);
4271
4272 /* Update the ranges. */
4273 if (addend < range->min_addend)
4274 range->min_addend = addend;
4275 else if (addend > range->max_addend)
4276 {
4277 if (range->next && addend >= range->next->min_addend - 0xffff)
4278 {
4279 old_pages += mips_elf_pages_for_range (range->next);
4280 range->max_addend = range->next->max_addend;
4281 range->next = range->next->next;
4282 }
4283 else
4284 range->max_addend = addend;
4285 }
4286
4287 /* Record any change in the total estimate. */
4288 new_pages = mips_elf_pages_for_range (range);
4289 if (old_pages != new_pages)
4290 {
4291 entry->num_pages += new_pages - old_pages;
4292 g->page_gotno += new_pages - old_pages;
4293 }
4294
4295 return TRUE;
4296 }
4297
4298 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4299 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4300 whether the page reference described by *REFP needs a GOT page entry,
4301 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4302
4303 static bfd_boolean
4304 mips_elf_resolve_got_page_ref (void **refp, void *data)
4305 {
4306 struct mips_got_page_ref *ref;
4307 struct mips_elf_traverse_got_arg *arg;
4308 struct mips_elf_link_hash_table *htab;
4309 asection *sec;
4310 bfd_vma addend;
4311
4312 ref = (struct mips_got_page_ref *) *refp;
4313 arg = (struct mips_elf_traverse_got_arg *) data;
4314 htab = mips_elf_hash_table (arg->info);
4315
4316 if (ref->symndx < 0)
4317 {
4318 struct mips_elf_link_hash_entry *h;
4319
4320 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4321 h = ref->u.h;
4322 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4323 return 1;
4324
4325 /* Ignore undefined symbols; we'll issue an error later if
4326 appropriate. */
4327 if (!((h->root.root.type == bfd_link_hash_defined
4328 || h->root.root.type == bfd_link_hash_defweak)
4329 && h->root.root.u.def.section))
4330 return 1;
4331
4332 sec = h->root.root.u.def.section;
4333 addend = h->root.root.u.def.value + ref->addend;
4334 }
4335 else
4336 {
4337 Elf_Internal_Sym *isym;
4338
4339 /* Read in the symbol. */
4340 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4341 ref->symndx);
4342 if (isym == NULL)
4343 {
4344 arg->g = NULL;
4345 return 0;
4346 }
4347
4348 /* Get the associated input section. */
4349 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4350 if (sec == NULL)
4351 {
4352 arg->g = NULL;
4353 return 0;
4354 }
4355
4356 /* If this is a mergable section, work out the section and offset
4357 of the merged data. For section symbols, the addend specifies
4358 of the offset _of_ the first byte in the data, otherwise it
4359 specifies the offset _from_ the first byte. */
4360 if (sec->flags & SEC_MERGE)
4361 {
4362 void *secinfo;
4363
4364 secinfo = elf_section_data (sec)->sec_info;
4365 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4366 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4367 isym->st_value + ref->addend);
4368 else
4369 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4370 isym->st_value) + ref->addend;
4371 }
4372 else
4373 addend = isym->st_value + ref->addend;
4374 }
4375 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4376 {
4377 arg->g = NULL;
4378 return 0;
4379 }
4380 return 1;
4381 }
4382
4383 /* If any entries in G->got_entries are for indirect or warning symbols,
4384 replace them with entries for the target symbol. Convert g->got_page_refs
4385 into got_page_entry structures and estimate the number of page entries
4386 that they require. */
4387
4388 static bfd_boolean
4389 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4390 struct mips_got_info *g)
4391 {
4392 struct mips_elf_traverse_got_arg tga;
4393 struct mips_got_info oldg;
4394
4395 oldg = *g;
4396
4397 tga.info = info;
4398 tga.g = g;
4399 tga.value = FALSE;
4400 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4401 if (tga.value)
4402 {
4403 *g = oldg;
4404 g->got_entries = htab_create (htab_size (oldg.got_entries),
4405 mips_elf_got_entry_hash,
4406 mips_elf_got_entry_eq, NULL);
4407 if (!g->got_entries)
4408 return FALSE;
4409
4410 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4411 if (!tga.g)
4412 return FALSE;
4413
4414 htab_delete (oldg.got_entries);
4415 }
4416
4417 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4418 mips_got_page_entry_eq, NULL);
4419 if (g->got_page_entries == NULL)
4420 return FALSE;
4421
4422 tga.info = info;
4423 tga.g = g;
4424 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4425
4426 return TRUE;
4427 }
4428
4429 /* Return true if a GOT entry for H should live in the local rather than
4430 global GOT area. */
4431
4432 static bfd_boolean
4433 mips_use_local_got_p (struct bfd_link_info *info,
4434 struct mips_elf_link_hash_entry *h)
4435 {
4436 /* Symbols that aren't in the dynamic symbol table must live in the
4437 local GOT. This includes symbols that are completely undefined
4438 and which therefore don't bind locally. We'll report undefined
4439 symbols later if appropriate. */
4440 if (h->root.dynindx == -1)
4441 return TRUE;
4442
4443 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4444 to the local GOT, as they would be implicitly relocated by the
4445 base address by the dynamic loader. */
4446 if (bfd_is_abs_symbol (&h->root.root))
4447 return FALSE;
4448
4449 /* Symbols that bind locally can (and in the case of forced-local
4450 symbols, must) live in the local GOT. */
4451 if (h->got_only_for_calls
4452 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4453 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4454 return TRUE;
4455
4456 /* If this is an executable that must provide a definition of the symbol,
4457 either though PLTs or copy relocations, then that address should go in
4458 the local rather than global GOT. */
4459 if (bfd_link_executable (info) && h->has_static_relocs)
4460 return TRUE;
4461
4462 return FALSE;
4463 }
4464
4465 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4466 link_info structure. Decide whether the hash entry needs an entry in
4467 the global part of the primary GOT, setting global_got_area accordingly.
4468 Count the number of global symbols that are in the primary GOT only
4469 because they have relocations against them (reloc_only_gotno). */
4470
4471 static int
4472 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4473 {
4474 struct bfd_link_info *info;
4475 struct mips_elf_link_hash_table *htab;
4476 struct mips_got_info *g;
4477
4478 info = (struct bfd_link_info *) data;
4479 htab = mips_elf_hash_table (info);
4480 g = htab->got_info;
4481 if (h->global_got_area != GGA_NONE)
4482 {
4483 /* Make a final decision about whether the symbol belongs in the
4484 local or global GOT. */
4485 if (mips_use_local_got_p (info, h))
4486 /* The symbol belongs in the local GOT. We no longer need this
4487 entry if it was only used for relocations; those relocations
4488 will be against the null or section symbol instead of H. */
4489 h->global_got_area = GGA_NONE;
4490 else if (htab->is_vxworks
4491 && h->got_only_for_calls
4492 && h->root.plt.plist->mips_offset != MINUS_ONE)
4493 /* On VxWorks, calls can refer directly to the .got.plt entry;
4494 they don't need entries in the regular GOT. .got.plt entries
4495 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4496 h->global_got_area = GGA_NONE;
4497 else if (h->global_got_area == GGA_RELOC_ONLY)
4498 {
4499 g->reloc_only_gotno++;
4500 g->global_gotno++;
4501 }
4502 }
4503 return 1;
4504 }
4505 \f
4506 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4508
4509 static int
4510 mips_elf_add_got_entry (void **entryp, void *data)
4511 {
4512 struct mips_got_entry *entry;
4513 struct mips_elf_traverse_got_arg *arg;
4514 void **slot;
4515
4516 entry = (struct mips_got_entry *) *entryp;
4517 arg = (struct mips_elf_traverse_got_arg *) data;
4518 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4519 if (!slot)
4520 {
4521 arg->g = NULL;
4522 return 0;
4523 }
4524 if (!*slot)
4525 {
4526 *slot = entry;
4527 mips_elf_count_got_entry (arg->info, arg->g, entry);
4528 }
4529 return 1;
4530 }
4531
4532 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4533 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4534
4535 static int
4536 mips_elf_add_got_page_entry (void **entryp, void *data)
4537 {
4538 struct mips_got_page_entry *entry;
4539 struct mips_elf_traverse_got_arg *arg;
4540 void **slot;
4541
4542 entry = (struct mips_got_page_entry *) *entryp;
4543 arg = (struct mips_elf_traverse_got_arg *) data;
4544 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4545 if (!slot)
4546 {
4547 arg->g = NULL;
4548 return 0;
4549 }
4550 if (!*slot)
4551 {
4552 *slot = entry;
4553 arg->g->page_gotno += entry->num_pages;
4554 }
4555 return 1;
4556 }
4557
4558 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4559 this would lead to overflow, 1 if they were merged successfully,
4560 and 0 if a merge failed due to lack of memory. (These values are chosen
4561 so that nonnegative return values can be returned by a htab_traverse
4562 callback.) */
4563
4564 static int
4565 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4566 struct mips_got_info *to,
4567 struct mips_elf_got_per_bfd_arg *arg)
4568 {
4569 struct mips_elf_traverse_got_arg tga;
4570 unsigned int estimate;
4571
4572 /* Work out how many page entries we would need for the combined GOT. */
4573 estimate = arg->max_pages;
4574 if (estimate >= from->page_gotno + to->page_gotno)
4575 estimate = from->page_gotno + to->page_gotno;
4576
4577 /* And conservatively estimate how many local and TLS entries
4578 would be needed. */
4579 estimate += from->local_gotno + to->local_gotno;
4580 estimate += from->tls_gotno + to->tls_gotno;
4581
4582 /* If we're merging with the primary got, any TLS relocations will
4583 come after the full set of global entries. Otherwise estimate those
4584 conservatively as well. */
4585 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4586 estimate += arg->global_count;
4587 else
4588 estimate += from->global_gotno + to->global_gotno;
4589
4590 /* Bail out if the combined GOT might be too big. */
4591 if (estimate > arg->max_count)
4592 return -1;
4593
4594 /* Transfer the bfd's got information from FROM to TO. */
4595 tga.info = arg->info;
4596 tga.g = to;
4597 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4598 if (!tga.g)
4599 return 0;
4600
4601 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4602 if (!tga.g)
4603 return 0;
4604
4605 mips_elf_replace_bfd_got (abfd, to);
4606 return 1;
4607 }
4608
4609 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4610 as possible of the primary got, since it doesn't require explicit
4611 dynamic relocations, but don't use bfds that would reference global
4612 symbols out of the addressable range. Failing the primary got,
4613 attempt to merge with the current got, or finish the current got
4614 and then make make the new got current. */
4615
4616 static bfd_boolean
4617 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4618 struct mips_elf_got_per_bfd_arg *arg)
4619 {
4620 unsigned int estimate;
4621 int result;
4622
4623 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4624 return FALSE;
4625
4626 /* Work out the number of page, local and TLS entries. */
4627 estimate = arg->max_pages;
4628 if (estimate > g->page_gotno)
4629 estimate = g->page_gotno;
4630 estimate += g->local_gotno + g->tls_gotno;
4631
4632 /* We place TLS GOT entries after both locals and globals. The globals
4633 for the primary GOT may overflow the normal GOT size limit, so be
4634 sure not to merge a GOT which requires TLS with the primary GOT in that
4635 case. This doesn't affect non-primary GOTs. */
4636 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4637
4638 if (estimate <= arg->max_count)
4639 {
4640 /* If we don't have a primary GOT, use it as
4641 a starting point for the primary GOT. */
4642 if (!arg->primary)
4643 {
4644 arg->primary = g;
4645 return TRUE;
4646 }
4647
4648 /* Try merging with the primary GOT. */
4649 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4650 if (result >= 0)
4651 return result;
4652 }
4653
4654 /* If we can merge with the last-created got, do it. */
4655 if (arg->current)
4656 {
4657 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4658 if (result >= 0)
4659 return result;
4660 }
4661
4662 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4663 fits; if it turns out that it doesn't, we'll get relocation
4664 overflows anyway. */
4665 g->next = arg->current;
4666 arg->current = g;
4667
4668 return TRUE;
4669 }
4670
4671 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4672 to GOTIDX, duplicating the entry if it has already been assigned
4673 an index in a different GOT. */
4674
4675 static bfd_boolean
4676 mips_elf_set_gotidx (void **entryp, long gotidx)
4677 {
4678 struct mips_got_entry *entry;
4679
4680 entry = (struct mips_got_entry *) *entryp;
4681 if (entry->gotidx > 0)
4682 {
4683 struct mips_got_entry *new_entry;
4684
4685 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4686 if (!new_entry)
4687 return FALSE;
4688
4689 *new_entry = *entry;
4690 *entryp = new_entry;
4691 entry = new_entry;
4692 }
4693 entry->gotidx = gotidx;
4694 return TRUE;
4695 }
4696
4697 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4698 mips_elf_traverse_got_arg in which DATA->value is the size of one
4699 GOT entry. Set DATA->g to null on failure. */
4700
4701 static int
4702 mips_elf_initialize_tls_index (void **entryp, void *data)
4703 {
4704 struct mips_got_entry *entry;
4705 struct mips_elf_traverse_got_arg *arg;
4706
4707 /* We're only interested in TLS symbols. */
4708 entry = (struct mips_got_entry *) *entryp;
4709 if (entry->tls_type == GOT_TLS_NONE)
4710 return 1;
4711
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4714 {
4715 arg->g = NULL;
4716 return 0;
4717 }
4718
4719 /* Account for the entries we've just allocated. */
4720 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4721 return 1;
4722 }
4723
4724 /* A htab_traverse callback for GOT entries, where DATA points to a
4725 mips_elf_traverse_got_arg. Set the global_got_area of each global
4726 symbol to DATA->value. */
4727
4728 static int
4729 mips_elf_set_global_got_area (void **entryp, void *data)
4730 {
4731 struct mips_got_entry *entry;
4732 struct mips_elf_traverse_got_arg *arg;
4733
4734 entry = (struct mips_got_entry *) *entryp;
4735 arg = (struct mips_elf_traverse_got_arg *) data;
4736 if (entry->abfd != NULL
4737 && entry->symndx == -1
4738 && entry->d.h->global_got_area != GGA_NONE)
4739 entry->d.h->global_got_area = arg->value;
4740 return 1;
4741 }
4742
4743 /* A htab_traverse callback for secondary GOT entries, where DATA points
4744 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4745 and record the number of relocations they require. DATA->value is
4746 the size of one GOT entry. Set DATA->g to null on failure. */
4747
4748 static int
4749 mips_elf_set_global_gotidx (void **entryp, void *data)
4750 {
4751 struct mips_got_entry *entry;
4752 struct mips_elf_traverse_got_arg *arg;
4753
4754 entry = (struct mips_got_entry *) *entryp;
4755 arg = (struct mips_elf_traverse_got_arg *) data;
4756 if (entry->abfd != NULL
4757 && entry->symndx == -1
4758 && entry->d.h->global_got_area != GGA_NONE)
4759 {
4760 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4761 {
4762 arg->g = NULL;
4763 return 0;
4764 }
4765 arg->g->assigned_low_gotno += 1;
4766
4767 if (bfd_link_pic (arg->info)
4768 || (elf_hash_table (arg->info)->dynamic_sections_created
4769 && entry->d.h->root.def_dynamic
4770 && !entry->d.h->root.def_regular))
4771 arg->g->relocs += 1;
4772 }
4773
4774 return 1;
4775 }
4776
4777 /* A htab_traverse callback for GOT entries for which DATA is the
4778 bfd_link_info. Forbid any global symbols from having traditional
4779 lazy-binding stubs. */
4780
4781 static int
4782 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4783 {
4784 struct bfd_link_info *info;
4785 struct mips_elf_link_hash_table *htab;
4786 struct mips_got_entry *entry;
4787
4788 entry = (struct mips_got_entry *) *entryp;
4789 info = (struct bfd_link_info *) data;
4790 htab = mips_elf_hash_table (info);
4791 BFD_ASSERT (htab != NULL);
4792
4793 if (entry->abfd != NULL
4794 && entry->symndx == -1
4795 && entry->d.h->needs_lazy_stub)
4796 {
4797 entry->d.h->needs_lazy_stub = FALSE;
4798 htab->lazy_stub_count--;
4799 }
4800
4801 return 1;
4802 }
4803
4804 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4805 the primary GOT. */
4806 static bfd_vma
4807 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4808 {
4809 if (!g->next)
4810 return 0;
4811
4812 g = mips_elf_bfd_got (ibfd, FALSE);
4813 if (! g)
4814 return 0;
4815
4816 BFD_ASSERT (g->next);
4817
4818 g = g->next;
4819
4820 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4821 * MIPS_ELF_GOT_SIZE (abfd);
4822 }
4823
4824 /* Turn a single GOT that is too big for 16-bit addressing into
4825 a sequence of GOTs, each one 16-bit addressable. */
4826
4827 static bfd_boolean
4828 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4829 asection *got, bfd_size_type pages)
4830 {
4831 struct mips_elf_link_hash_table *htab;
4832 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4833 struct mips_elf_traverse_got_arg tga;
4834 struct mips_got_info *g, *gg;
4835 unsigned int assign, needed_relocs;
4836 bfd *dynobj, *ibfd;
4837
4838 dynobj = elf_hash_table (info)->dynobj;
4839 htab = mips_elf_hash_table (info);
4840 BFD_ASSERT (htab != NULL);
4841
4842 g = htab->got_info;
4843
4844 got_per_bfd_arg.obfd = abfd;
4845 got_per_bfd_arg.info = info;
4846 got_per_bfd_arg.current = NULL;
4847 got_per_bfd_arg.primary = NULL;
4848 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4849 / MIPS_ELF_GOT_SIZE (abfd))
4850 - htab->reserved_gotno);
4851 got_per_bfd_arg.max_pages = pages;
4852 /* The number of globals that will be included in the primary GOT.
4853 See the calls to mips_elf_set_global_got_area below for more
4854 information. */
4855 got_per_bfd_arg.global_count = g->global_gotno;
4856
4857 /* Try to merge the GOTs of input bfds together, as long as they
4858 don't seem to exceed the maximum GOT size, choosing one of them
4859 to be the primary GOT. */
4860 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4861 {
4862 gg = mips_elf_bfd_got (ibfd, FALSE);
4863 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4864 return FALSE;
4865 }
4866
4867 /* If we do not find any suitable primary GOT, create an empty one. */
4868 if (got_per_bfd_arg.primary == NULL)
4869 g->next = mips_elf_create_got_info (abfd);
4870 else
4871 g->next = got_per_bfd_arg.primary;
4872 g->next->next = got_per_bfd_arg.current;
4873
4874 /* GG is now the master GOT, and G is the primary GOT. */
4875 gg = g;
4876 g = g->next;
4877
4878 /* Map the output bfd to the primary got. That's what we're going
4879 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4880 didn't mark in check_relocs, and we want a quick way to find it.
4881 We can't just use gg->next because we're going to reverse the
4882 list. */
4883 mips_elf_replace_bfd_got (abfd, g);
4884
4885 /* Every symbol that is referenced in a dynamic relocation must be
4886 present in the primary GOT, so arrange for them to appear after
4887 those that are actually referenced. */
4888 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4889 g->global_gotno = gg->global_gotno;
4890
4891 tga.info = info;
4892 tga.value = GGA_RELOC_ONLY;
4893 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4894 tga.value = GGA_NORMAL;
4895 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4896
4897 /* Now go through the GOTs assigning them offset ranges.
4898 [assigned_low_gotno, local_gotno[ will be set to the range of local
4899 entries in each GOT. We can then compute the end of a GOT by
4900 adding local_gotno to global_gotno. We reverse the list and make
4901 it circular since then we'll be able to quickly compute the
4902 beginning of a GOT, by computing the end of its predecessor. To
4903 avoid special cases for the primary GOT, while still preserving
4904 assertions that are valid for both single- and multi-got links,
4905 we arrange for the main got struct to have the right number of
4906 global entries, but set its local_gotno such that the initial
4907 offset of the primary GOT is zero. Remember that the primary GOT
4908 will become the last item in the circular linked list, so it
4909 points back to the master GOT. */
4910 gg->local_gotno = -g->global_gotno;
4911 gg->global_gotno = g->global_gotno;
4912 gg->tls_gotno = 0;
4913 assign = 0;
4914 gg->next = gg;
4915
4916 do
4917 {
4918 struct mips_got_info *gn;
4919
4920 assign += htab->reserved_gotno;
4921 g->assigned_low_gotno = assign;
4922 g->local_gotno += assign;
4923 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4924 g->assigned_high_gotno = g->local_gotno - 1;
4925 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4926
4927 /* Take g out of the direct list, and push it onto the reversed
4928 list that gg points to. g->next is guaranteed to be nonnull after
4929 this operation, as required by mips_elf_initialize_tls_index. */
4930 gn = g->next;
4931 g->next = gg->next;
4932 gg->next = g;
4933
4934 /* Set up any TLS entries. We always place the TLS entries after
4935 all non-TLS entries. */
4936 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4937 tga.g = g;
4938 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4939 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4940 if (!tga.g)
4941 return FALSE;
4942 BFD_ASSERT (g->tls_assigned_gotno == assign);
4943
4944 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4945 g = gn;
4946
4947 /* Forbid global symbols in every non-primary GOT from having
4948 lazy-binding stubs. */
4949 if (g)
4950 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4951 }
4952 while (g);
4953
4954 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4955
4956 needed_relocs = 0;
4957 for (g = gg->next; g && g->next != gg; g = g->next)
4958 {
4959 unsigned int save_assign;
4960
4961 /* Assign offsets to global GOT entries and count how many
4962 relocations they need. */
4963 save_assign = g->assigned_low_gotno;
4964 g->assigned_low_gotno = g->local_gotno;
4965 tga.info = info;
4966 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4967 tga.g = g;
4968 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4969 if (!tga.g)
4970 return FALSE;
4971 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4972 g->assigned_low_gotno = save_assign;
4973
4974 if (bfd_link_pic (info))
4975 {
4976 g->relocs += g->local_gotno - g->assigned_low_gotno;
4977 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4978 + g->next->global_gotno
4979 + g->next->tls_gotno
4980 + htab->reserved_gotno);
4981 }
4982 needed_relocs += g->relocs;
4983 }
4984 needed_relocs += g->relocs;
4985
4986 if (needed_relocs)
4987 mips_elf_allocate_dynamic_relocations (dynobj, info,
4988 needed_relocs);
4989
4990 return TRUE;
4991 }
4992
4993 \f
4994 /* Returns the first relocation of type r_type found, beginning with
4995 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4996
4997 static const Elf_Internal_Rela *
4998 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4999 const Elf_Internal_Rela *relocation,
5000 const Elf_Internal_Rela *relend)
5001 {
5002 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5003
5004 while (relocation < relend)
5005 {
5006 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5007 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5008 return relocation;
5009
5010 ++relocation;
5011 }
5012
5013 /* We didn't find it. */
5014 return NULL;
5015 }
5016
5017 /* Return whether an input relocation is against a local symbol. */
5018
5019 static bfd_boolean
5020 mips_elf_local_relocation_p (bfd *input_bfd,
5021 const Elf_Internal_Rela *relocation,
5022 asection **local_sections)
5023 {
5024 unsigned long r_symndx;
5025 Elf_Internal_Shdr *symtab_hdr;
5026 size_t extsymoff;
5027
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5030 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5031
5032 if (r_symndx < extsymoff)
5033 return TRUE;
5034 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5035 return TRUE;
5036
5037 return FALSE;
5038 }
5039 \f
5040 /* Sign-extend VALUE, which has the indicated number of BITS. */
5041
5042 bfd_vma
5043 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5044 {
5045 if (value & ((bfd_vma) 1 << (bits - 1)))
5046 /* VALUE is negative. */
5047 value |= ((bfd_vma) - 1) << bits;
5048
5049 return value;
5050 }
5051
5052 /* Return non-zero if the indicated VALUE has overflowed the maximum
5053 range expressible by a signed number with the indicated number of
5054 BITS. */
5055
5056 static bfd_boolean
5057 mips_elf_overflow_p (bfd_vma value, int bits)
5058 {
5059 bfd_signed_vma svalue = (bfd_signed_vma) value;
5060
5061 if (svalue > (1 << (bits - 1)) - 1)
5062 /* The value is too big. */
5063 return TRUE;
5064 else if (svalue < -(1 << (bits - 1)))
5065 /* The value is too small. */
5066 return TRUE;
5067
5068 /* All is well. */
5069 return FALSE;
5070 }
5071
5072 /* Calculate the %high function. */
5073
5074 static bfd_vma
5075 mips_elf_high (bfd_vma value)
5076 {
5077 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5078 }
5079
5080 /* Calculate the %higher function. */
5081
5082 static bfd_vma
5083 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5084 {
5085 #ifdef BFD64
5086 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5087 #else
5088 abort ();
5089 return MINUS_ONE;
5090 #endif
5091 }
5092
5093 /* Calculate the %highest function. */
5094
5095 static bfd_vma
5096 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5097 {
5098 #ifdef BFD64
5099 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5100 #else
5101 abort ();
5102 return MINUS_ONE;
5103 #endif
5104 }
5105 \f
5106 /* Create the .compact_rel section. */
5107
5108 static bfd_boolean
5109 mips_elf_create_compact_rel_section
5110 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5111 {
5112 flagword flags;
5113 register asection *s;
5114
5115 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5116 {
5117 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5118 | SEC_READONLY);
5119
5120 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5121 if (s == NULL
5122 || ! bfd_set_section_alignment (abfd, s,
5123 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5124 return FALSE;
5125
5126 s->size = sizeof (Elf32_External_compact_rel);
5127 }
5128
5129 return TRUE;
5130 }
5131
5132 /* Create the .got section to hold the global offset table. */
5133
5134 static bfd_boolean
5135 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5136 {
5137 flagword flags;
5138 register asection *s;
5139 struct elf_link_hash_entry *h;
5140 struct bfd_link_hash_entry *bh;
5141 struct mips_elf_link_hash_table *htab;
5142
5143 htab = mips_elf_hash_table (info);
5144 BFD_ASSERT (htab != NULL);
5145
5146 /* This function may be called more than once. */
5147 if (htab->root.sgot)
5148 return TRUE;
5149
5150 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5151 | SEC_LINKER_CREATED);
5152
5153 /* We have to use an alignment of 2**4 here because this is hardcoded
5154 in the function stub generation and in the linker script. */
5155 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5156 if (s == NULL
5157 || ! bfd_set_section_alignment (abfd, s, 4))
5158 return FALSE;
5159 htab->root.sgot = s;
5160
5161 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5162 linker script because we don't want to define the symbol if we
5163 are not creating a global offset table. */
5164 bh = NULL;
5165 if (! (_bfd_generic_link_add_one_symbol
5166 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5167 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5168 return FALSE;
5169
5170 h = (struct elf_link_hash_entry *) bh;
5171 h->non_elf = 0;
5172 h->def_regular = 1;
5173 h->type = STT_OBJECT;
5174 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5175 elf_hash_table (info)->hgot = h;
5176
5177 if (bfd_link_pic (info)
5178 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5179 return FALSE;
5180
5181 htab->got_info = mips_elf_create_got_info (abfd);
5182 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5183 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5184
5185 /* We also need a .got.plt section when generating PLTs. */
5186 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5187 SEC_ALLOC | SEC_LOAD
5188 | SEC_HAS_CONTENTS
5189 | SEC_IN_MEMORY
5190 | SEC_LINKER_CREATED);
5191 if (s == NULL)
5192 return FALSE;
5193 htab->root.sgotplt = s;
5194
5195 return TRUE;
5196 }
5197 \f
5198 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5199 __GOTT_INDEX__ symbols. These symbols are only special for
5200 shared objects; they are not used in executables. */
5201
5202 static bfd_boolean
5203 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5204 {
5205 return (mips_elf_hash_table (info)->is_vxworks
5206 && bfd_link_pic (info)
5207 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5208 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5209 }
5210
5211 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5212 require an la25 stub. See also mips_elf_local_pic_function_p,
5213 which determines whether the destination function ever requires a
5214 stub. */
5215
5216 static bfd_boolean
5217 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5218 bfd_boolean target_is_16_bit_code_p)
5219 {
5220 /* We specifically ignore branches and jumps from EF_PIC objects,
5221 where the onus is on the compiler or programmer to perform any
5222 necessary initialization of $25. Sometimes such initialization
5223 is unnecessary; for example, -mno-shared functions do not use
5224 the incoming value of $25, and may therefore be called directly. */
5225 if (PIC_OBJECT_P (input_bfd))
5226 return FALSE;
5227
5228 switch (r_type)
5229 {
5230 case R_MIPS_26:
5231 case R_MIPS_PC16:
5232 case R_MIPS_PC21_S2:
5233 case R_MIPS_PC26_S2:
5234 case R_MICROMIPS_26_S1:
5235 case R_MICROMIPS_PC7_S1:
5236 case R_MICROMIPS_PC10_S1:
5237 case R_MICROMIPS_PC16_S1:
5238 case R_MICROMIPS_PC23_S2:
5239 return TRUE;
5240
5241 case R_MIPS16_26:
5242 return !target_is_16_bit_code_p;
5243
5244 default:
5245 return FALSE;
5246 }
5247 }
5248 \f
5249 /* Obtain the field relocated by RELOCATION. */
5250
5251 static bfd_vma
5252 mips_elf_obtain_contents (reloc_howto_type *howto,
5253 const Elf_Internal_Rela *relocation,
5254 bfd *input_bfd, bfd_byte *contents)
5255 {
5256 bfd_vma x = 0;
5257 bfd_byte *location = contents + relocation->r_offset;
5258 unsigned int size = bfd_get_reloc_size (howto);
5259
5260 /* Obtain the bytes. */
5261 if (size != 0)
5262 x = bfd_get (8 * size, input_bfd, location);
5263
5264 return x;
5265 }
5266
5267 /* Store the field relocated by RELOCATION. */
5268
5269 static void
5270 mips_elf_store_contents (reloc_howto_type *howto,
5271 const Elf_Internal_Rela *relocation,
5272 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5273 {
5274 bfd_byte *location = contents + relocation->r_offset;
5275 unsigned int size = bfd_get_reloc_size (howto);
5276
5277 /* Put the value into the output. */
5278 if (size != 0)
5279 bfd_put (8 * size, input_bfd, x, location);
5280 }
5281
5282 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5283 RELOCATION described by HOWTO, with a move of 0 to the load target
5284 register, returning TRUE if that is successful and FALSE otherwise.
5285 If DOIT is FALSE, then only determine it patching is possible and
5286 return status without actually changing CONTENTS.
5287 */
5288
5289 static bfd_boolean
5290 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5291 const Elf_Internal_Rela *relocation,
5292 reloc_howto_type *howto, bfd_boolean doit)
5293 {
5294 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5295 bfd_byte *location = contents + relocation->r_offset;
5296 bfd_boolean nullified = TRUE;
5297 bfd_vma x;
5298
5299 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5300
5301 /* Obtain the current value. */
5302 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5303
5304 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5305 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5306 if (mips16_reloc_p (r_type)
5307 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5308 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5309 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5310 else if (micromips_reloc_p (r_type)
5311 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5312 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5313 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5314 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5315 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5316 else
5317 nullified = FALSE;
5318
5319 /* Put the value into the output. */
5320 if (doit && nullified)
5321 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5322
5323 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5324
5325 return nullified;
5326 }
5327
5328 /* Calculate the value produced by the RELOCATION (which comes from
5329 the INPUT_BFD). The ADDEND is the addend to use for this
5330 RELOCATION; RELOCATION->R_ADDEND is ignored.
5331
5332 The result of the relocation calculation is stored in VALUEP.
5333 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5335
5336 This function returns bfd_reloc_continue if the caller need take no
5337 further action regarding this relocation, bfd_reloc_notsupported if
5338 something goes dramatically wrong, bfd_reloc_overflow if an
5339 overflow occurs, and bfd_reloc_ok to indicate success. */
5340
5341 static bfd_reloc_status_type
5342 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5343 asection *input_section, bfd_byte *contents,
5344 struct bfd_link_info *info,
5345 const Elf_Internal_Rela *relocation,
5346 bfd_vma addend, reloc_howto_type *howto,
5347 Elf_Internal_Sym *local_syms,
5348 asection **local_sections, bfd_vma *valuep,
5349 const char **namep,
5350 bfd_boolean *cross_mode_jump_p,
5351 bfd_boolean save_addend)
5352 {
5353 /* The eventual value we will return. */
5354 bfd_vma value;
5355 /* The address of the symbol against which the relocation is
5356 occurring. */
5357 bfd_vma symbol = 0;
5358 /* The final GP value to be used for the relocatable, executable, or
5359 shared object file being produced. */
5360 bfd_vma gp;
5361 /* The place (section offset or address) of the storage unit being
5362 relocated. */
5363 bfd_vma p;
5364 /* The value of GP used to create the relocatable object. */
5365 bfd_vma gp0;
5366 /* The offset into the global offset table at which the address of
5367 the relocation entry symbol, adjusted by the addend, resides
5368 during execution. */
5369 bfd_vma g = MINUS_ONE;
5370 /* The section in which the symbol referenced by the relocation is
5371 located. */
5372 asection *sec = NULL;
5373 struct mips_elf_link_hash_entry *h = NULL;
5374 /* TRUE if the symbol referred to by this relocation is a local
5375 symbol. */
5376 bfd_boolean local_p, was_local_p;
5377 /* TRUE if the symbol referred to by this relocation is a section
5378 symbol. */
5379 bfd_boolean section_p = FALSE;
5380 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5381 bfd_boolean gp_disp_p = FALSE;
5382 /* TRUE if the symbol referred to by this relocation is
5383 "__gnu_local_gp". */
5384 bfd_boolean gnu_local_gp_p = FALSE;
5385 Elf_Internal_Shdr *symtab_hdr;
5386 size_t extsymoff;
5387 unsigned long r_symndx;
5388 int r_type;
5389 /* TRUE if overflow occurred during the calculation of the
5390 relocation value. */
5391 bfd_boolean overflowed_p;
5392 /* TRUE if this relocation refers to a MIPS16 function. */
5393 bfd_boolean target_is_16_bit_code_p = FALSE;
5394 bfd_boolean target_is_micromips_code_p = FALSE;
5395 struct mips_elf_link_hash_table *htab;
5396 bfd *dynobj;
5397 bfd_boolean resolved_to_zero;
5398
5399 dynobj = elf_hash_table (info)->dynobj;
5400 htab = mips_elf_hash_table (info);
5401 BFD_ASSERT (htab != NULL);
5402
5403 /* Parse the relocation. */
5404 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5405 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5406 p = (input_section->output_section->vma
5407 + input_section->output_offset
5408 + relocation->r_offset);
5409
5410 /* Assume that there will be no overflow. */
5411 overflowed_p = FALSE;
5412
5413 /* Figure out whether or not the symbol is local, and get the offset
5414 used in the array of hash table entries. */
5415 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5416 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5417 local_sections);
5418 was_local_p = local_p;
5419 if (! elf_bad_symtab (input_bfd))
5420 extsymoff = symtab_hdr->sh_info;
5421 else
5422 {
5423 /* The symbol table does not follow the rule that local symbols
5424 must come before globals. */
5425 extsymoff = 0;
5426 }
5427
5428 /* Figure out the value of the symbol. */
5429 if (local_p)
5430 {
5431 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5432 Elf_Internal_Sym *sym;
5433
5434 sym = local_syms + r_symndx;
5435 sec = local_sections[r_symndx];
5436
5437 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5438
5439 symbol = sec->output_section->vma + sec->output_offset;
5440 if (!section_p || (sec->flags & SEC_MERGE))
5441 symbol += sym->st_value;
5442 if ((sec->flags & SEC_MERGE) && section_p)
5443 {
5444 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5445 addend -= symbol;
5446 addend += sec->output_section->vma + sec->output_offset;
5447 }
5448
5449 /* MIPS16/microMIPS text labels should be treated as odd. */
5450 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5451 ++symbol;
5452
5453 /* Record the name of this symbol, for our caller. */
5454 *namep = bfd_elf_string_from_elf_section (input_bfd,
5455 symtab_hdr->sh_link,
5456 sym->st_name);
5457 if (*namep == NULL || **namep == '\0')
5458 *namep = bfd_section_name (input_bfd, sec);
5459
5460 /* For relocations against a section symbol and ones against no
5461 symbol (absolute relocations) infer the ISA mode from the addend. */
5462 if (section_p || r_symndx == STN_UNDEF)
5463 {
5464 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5465 target_is_micromips_code_p = (addend & 1) && micromips_p;
5466 }
5467 /* For relocations against an absolute symbol infer the ISA mode
5468 from the value of the symbol plus addend. */
5469 else if (bfd_is_abs_section (sec))
5470 {
5471 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5472 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5473 }
5474 /* Otherwise just use the regular symbol annotation available. */
5475 else
5476 {
5477 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5478 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5479 }
5480 }
5481 else
5482 {
5483 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5484
5485 /* For global symbols we look up the symbol in the hash-table. */
5486 h = ((struct mips_elf_link_hash_entry *)
5487 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5488 /* Find the real hash-table entry for this symbol. */
5489 while (h->root.root.type == bfd_link_hash_indirect
5490 || h->root.root.type == bfd_link_hash_warning)
5491 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5492
5493 /* Record the name of this symbol, for our caller. */
5494 *namep = h->root.root.root.string;
5495
5496 /* See if this is the special _gp_disp symbol. Note that such a
5497 symbol must always be a global symbol. */
5498 if (strcmp (*namep, "_gp_disp") == 0
5499 && ! NEWABI_P (input_bfd))
5500 {
5501 /* Relocations against _gp_disp are permitted only with
5502 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5503 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5504 return bfd_reloc_notsupported;
5505
5506 gp_disp_p = TRUE;
5507 }
5508 /* See if this is the special _gp symbol. Note that such a
5509 symbol must always be a global symbol. */
5510 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5511 gnu_local_gp_p = TRUE;
5512
5513
5514 /* If this symbol is defined, calculate its address. Note that
5515 _gp_disp is a magic symbol, always implicitly defined by the
5516 linker, so it's inappropriate to check to see whether or not
5517 its defined. */
5518 else if ((h->root.root.type == bfd_link_hash_defined
5519 || h->root.root.type == bfd_link_hash_defweak)
5520 && h->root.root.u.def.section)
5521 {
5522 sec = h->root.root.u.def.section;
5523 if (sec->output_section)
5524 symbol = (h->root.root.u.def.value
5525 + sec->output_section->vma
5526 + sec->output_offset);
5527 else
5528 symbol = h->root.root.u.def.value;
5529 }
5530 else if (h->root.root.type == bfd_link_hash_undefweak)
5531 /* We allow relocations against undefined weak symbols, giving
5532 it the value zero, so that you can undefined weak functions
5533 and check to see if they exist by looking at their
5534 addresses. */
5535 symbol = 0;
5536 else if (info->unresolved_syms_in_objects == RM_IGNORE
5537 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5538 symbol = 0;
5539 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5540 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5541 {
5542 /* If this is a dynamic link, we should have created a
5543 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5544 in _bfd_mips_elf_create_dynamic_sections.
5545 Otherwise, we should define the symbol with a value of 0.
5546 FIXME: It should probably get into the symbol table
5547 somehow as well. */
5548 BFD_ASSERT (! bfd_link_pic (info));
5549 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5550 symbol = 0;
5551 }
5552 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5553 {
5554 /* This is an optional symbol - an Irix specific extension to the
5555 ELF spec. Ignore it for now.
5556 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5557 than simply ignoring them, but we do not handle this for now.
5558 For information see the "64-bit ELF Object File Specification"
5559 which is available from here:
5560 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5561 symbol = 0;
5562 }
5563 else
5564 {
5565 bfd_boolean reject_undefined
5566 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5567 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5568
5569 (*info->callbacks->undefined_symbol)
5570 (info, h->root.root.root.string, input_bfd,
5571 input_section, relocation->r_offset, reject_undefined);
5572
5573 if (reject_undefined)
5574 return bfd_reloc_undefined;
5575
5576 symbol = 0;
5577 }
5578
5579 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5580 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5581 }
5582
5583 /* If this is a reference to a 16-bit function with a stub, we need
5584 to redirect the relocation to the stub unless:
5585
5586 (a) the relocation is for a MIPS16 JAL;
5587
5588 (b) the relocation is for a MIPS16 PIC call, and there are no
5589 non-MIPS16 uses of the GOT slot; or
5590
5591 (c) the section allows direct references to MIPS16 functions. */
5592 if (r_type != R_MIPS16_26
5593 && !bfd_link_relocatable (info)
5594 && ((h != NULL
5595 && h->fn_stub != NULL
5596 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5597 || (local_p
5598 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5599 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5600 && !section_allows_mips16_refs_p (input_section))
5601 {
5602 /* This is a 32- or 64-bit call to a 16-bit function. We should
5603 have already noticed that we were going to need the
5604 stub. */
5605 if (local_p)
5606 {
5607 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5608 value = 0;
5609 }
5610 else
5611 {
5612 BFD_ASSERT (h->need_fn_stub);
5613 if (h->la25_stub)
5614 {
5615 /* If a LA25 header for the stub itself exists, point to the
5616 prepended LUI/ADDIU sequence. */
5617 sec = h->la25_stub->stub_section;
5618 value = h->la25_stub->offset;
5619 }
5620 else
5621 {
5622 sec = h->fn_stub;
5623 value = 0;
5624 }
5625 }
5626
5627 symbol = sec->output_section->vma + sec->output_offset + value;
5628 /* The target is 16-bit, but the stub isn't. */
5629 target_is_16_bit_code_p = FALSE;
5630 }
5631 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5632 to a standard MIPS function, we need to redirect the call to the stub.
5633 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5634 indirect calls should use an indirect stub instead. */
5635 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5636 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5637 || (local_p
5638 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5639 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5640 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5641 {
5642 if (local_p)
5643 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5644 else
5645 {
5646 /* If both call_stub and call_fp_stub are defined, we can figure
5647 out which one to use by checking which one appears in the input
5648 file. */
5649 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5650 {
5651 asection *o;
5652
5653 sec = NULL;
5654 for (o = input_bfd->sections; o != NULL; o = o->next)
5655 {
5656 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5657 {
5658 sec = h->call_fp_stub;
5659 break;
5660 }
5661 }
5662 if (sec == NULL)
5663 sec = h->call_stub;
5664 }
5665 else if (h->call_stub != NULL)
5666 sec = h->call_stub;
5667 else
5668 sec = h->call_fp_stub;
5669 }
5670
5671 BFD_ASSERT (sec->size > 0);
5672 symbol = sec->output_section->vma + sec->output_offset;
5673 }
5674 /* If this is a direct call to a PIC function, redirect to the
5675 non-PIC stub. */
5676 else if (h != NULL && h->la25_stub
5677 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5678 target_is_16_bit_code_p))
5679 {
5680 symbol = (h->la25_stub->stub_section->output_section->vma
5681 + h->la25_stub->stub_section->output_offset
5682 + h->la25_stub->offset);
5683 if (ELF_ST_IS_MICROMIPS (h->root.other))
5684 symbol |= 1;
5685 }
5686 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5687 entry is used if a standard PLT entry has also been made. In this
5688 case the symbol will have been set by mips_elf_set_plt_sym_value
5689 to point to the standard PLT entry, so redirect to the compressed
5690 one. */
5691 else if ((mips16_branch_reloc_p (r_type)
5692 || micromips_branch_reloc_p (r_type))
5693 && !bfd_link_relocatable (info)
5694 && h != NULL
5695 && h->use_plt_entry
5696 && h->root.plt.plist->comp_offset != MINUS_ONE
5697 && h->root.plt.plist->mips_offset != MINUS_ONE)
5698 {
5699 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5700
5701 sec = htab->root.splt;
5702 symbol = (sec->output_section->vma
5703 + sec->output_offset
5704 + htab->plt_header_size
5705 + htab->plt_mips_offset
5706 + h->root.plt.plist->comp_offset
5707 + 1);
5708
5709 target_is_16_bit_code_p = !micromips_p;
5710 target_is_micromips_code_p = micromips_p;
5711 }
5712
5713 /* Make sure MIPS16 and microMIPS are not used together. */
5714 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5715 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5716 {
5717 _bfd_error_handler
5718 (_("MIPS16 and microMIPS functions cannot call each other"));
5719 return bfd_reloc_notsupported;
5720 }
5721
5722 /* Calls from 16-bit code to 32-bit code and vice versa require the
5723 mode change. However, we can ignore calls to undefined weak symbols,
5724 which should never be executed at runtime. This exception is important
5725 because the assembly writer may have "known" that any definition of the
5726 symbol would be 16-bit code, and that direct jumps were therefore
5727 acceptable. */
5728 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5729 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5730 && ((mips16_branch_reloc_p (r_type)
5731 && !target_is_16_bit_code_p)
5732 || (micromips_branch_reloc_p (r_type)
5733 && !target_is_micromips_code_p)
5734 || ((branch_reloc_p (r_type)
5735 || r_type == R_MIPS_JALR)
5736 && (target_is_16_bit_code_p
5737 || target_is_micromips_code_p))));
5738
5739 resolved_to_zero = (h != NULL
5740 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5741
5742 switch (r_type)
5743 {
5744 case R_MIPS16_CALL16:
5745 case R_MIPS16_GOT16:
5746 case R_MIPS_CALL16:
5747 case R_MIPS_GOT16:
5748 case R_MIPS_GOT_PAGE:
5749 case R_MIPS_GOT_DISP:
5750 case R_MIPS_GOT_LO16:
5751 case R_MIPS_CALL_LO16:
5752 case R_MICROMIPS_CALL16:
5753 case R_MICROMIPS_GOT16:
5754 case R_MICROMIPS_GOT_PAGE:
5755 case R_MICROMIPS_GOT_DISP:
5756 case R_MICROMIPS_GOT_LO16:
5757 case R_MICROMIPS_CALL_LO16:
5758 if (resolved_to_zero
5759 && !bfd_link_relocatable (info)
5760 && mips_elf_nullify_got_load (input_bfd, contents,
5761 relocation, howto, TRUE))
5762 return bfd_reloc_continue;
5763
5764 /* Fall through. */
5765 case R_MIPS_GOT_HI16:
5766 case R_MIPS_CALL_HI16:
5767 case R_MICROMIPS_GOT_HI16:
5768 case R_MICROMIPS_CALL_HI16:
5769 if (resolved_to_zero
5770 && htab->use_absolute_zero
5771 && bfd_link_pic (info))
5772 {
5773 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5774 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5775 FALSE, FALSE, FALSE);
5776 BFD_ASSERT (h != NULL);
5777 }
5778 break;
5779 }
5780
5781 local_p = (h == NULL || mips_use_local_got_p (info, h));
5782
5783 gp0 = _bfd_get_gp_value (input_bfd);
5784 gp = _bfd_get_gp_value (abfd);
5785 if (htab->got_info)
5786 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5787
5788 if (gnu_local_gp_p)
5789 symbol = gp;
5790
5791 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5792 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5793 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5794 if (got_page_reloc_p (r_type) && !local_p)
5795 {
5796 r_type = (micromips_reloc_p (r_type)
5797 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5798 addend = 0;
5799 }
5800
5801 /* If we haven't already determined the GOT offset, and we're going
5802 to need it, get it now. */
5803 switch (r_type)
5804 {
5805 case R_MIPS16_CALL16:
5806 case R_MIPS16_GOT16:
5807 case R_MIPS_CALL16:
5808 case R_MIPS_GOT16:
5809 case R_MIPS_GOT_DISP:
5810 case R_MIPS_GOT_HI16:
5811 case R_MIPS_CALL_HI16:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_DISP:
5817 case R_MICROMIPS_GOT_HI16:
5818 case R_MICROMIPS_CALL_HI16:
5819 case R_MICROMIPS_GOT_LO16:
5820 case R_MICROMIPS_CALL_LO16:
5821 case R_MIPS_TLS_GD:
5822 case R_MIPS_TLS_GOTTPREL:
5823 case R_MIPS_TLS_LDM:
5824 case R_MIPS16_TLS_GD:
5825 case R_MIPS16_TLS_GOTTPREL:
5826 case R_MIPS16_TLS_LDM:
5827 case R_MICROMIPS_TLS_GD:
5828 case R_MICROMIPS_TLS_GOTTPREL:
5829 case R_MICROMIPS_TLS_LDM:
5830 /* Find the index into the GOT where this value is located. */
5831 if (tls_ldm_reloc_p (r_type))
5832 {
5833 g = mips_elf_local_got_index (abfd, input_bfd, info,
5834 0, 0, NULL, r_type);
5835 if (g == MINUS_ONE)
5836 return bfd_reloc_outofrange;
5837 }
5838 else if (!local_p)
5839 {
5840 /* On VxWorks, CALL relocations should refer to the .got.plt
5841 entry, which is initialized to point at the PLT stub. */
5842 if (htab->is_vxworks
5843 && (call_hi16_reloc_p (r_type)
5844 || call_lo16_reloc_p (r_type)
5845 || call16_reloc_p (r_type)))
5846 {
5847 BFD_ASSERT (addend == 0);
5848 BFD_ASSERT (h->root.needs_plt);
5849 g = mips_elf_gotplt_index (info, &h->root);
5850 }
5851 else
5852 {
5853 BFD_ASSERT (addend == 0);
5854 g = mips_elf_global_got_index (abfd, info, input_bfd,
5855 &h->root, r_type);
5856 if (!TLS_RELOC_P (r_type)
5857 && !elf_hash_table (info)->dynamic_sections_created)
5858 /* This is a static link. We must initialize the GOT entry. */
5859 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5860 }
5861 }
5862 else if (!htab->is_vxworks
5863 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5864 /* The calculation below does not involve "g". */
5865 break;
5866 else
5867 {
5868 g = mips_elf_local_got_index (abfd, input_bfd, info,
5869 symbol + addend, r_symndx, h, r_type);
5870 if (g == MINUS_ONE)
5871 return bfd_reloc_outofrange;
5872 }
5873
5874 /* Convert GOT indices to actual offsets. */
5875 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5876 break;
5877 }
5878
5879 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5880 symbols are resolved by the loader. Add them to .rela.dyn. */
5881 if (h != NULL && is_gott_symbol (info, &h->root))
5882 {
5883 Elf_Internal_Rela outrel;
5884 bfd_byte *loc;
5885 asection *s;
5886
5887 s = mips_elf_rel_dyn_section (info, FALSE);
5888 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5889
5890 outrel.r_offset = (input_section->output_section->vma
5891 + input_section->output_offset
5892 + relocation->r_offset);
5893 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5894 outrel.r_addend = addend;
5895 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5896
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5902
5903 *valuep = 0;
5904 return bfd_reloc_ok;
5905 }
5906
5907 /* Figure out what kind of relocation is being performed. */
5908 switch (r_type)
5909 {
5910 case R_MIPS_NONE:
5911 return bfd_reloc_continue;
5912
5913 case R_MIPS_16:
5914 if (howto->partial_inplace)
5915 addend = _bfd_mips_elf_sign_extend (addend, 16);
5916 value = symbol + addend;
5917 overflowed_p = mips_elf_overflow_p (value, 16);
5918 break;
5919
5920 case R_MIPS_32:
5921 case R_MIPS_REL32:
5922 case R_MIPS_64:
5923 if ((bfd_link_pic (info)
5924 || (htab->root.dynamic_sections_created
5925 && h != NULL
5926 && h->root.def_dynamic
5927 && !h->root.def_regular
5928 && !h->has_static_relocs))
5929 && r_symndx != STN_UNDEF
5930 && (h == NULL
5931 || h->root.root.type != bfd_link_hash_undefweak
5932 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5933 && !resolved_to_zero))
5934 && (input_section->flags & SEC_ALLOC) != 0)
5935 {
5936 /* If we're creating a shared library, then we can't know
5937 where the symbol will end up. So, we create a relocation
5938 record in the output, and leave the job up to the dynamic
5939 linker. We must do the same for executable references to
5940 shared library symbols, unless we've decided to use copy
5941 relocs or PLTs instead. */
5942 value = addend;
5943 if (!mips_elf_create_dynamic_relocation (abfd,
5944 info,
5945 relocation,
5946 h,
5947 sec,
5948 symbol,
5949 &value,
5950 input_section))
5951 return bfd_reloc_undefined;
5952 }
5953 else
5954 {
5955 if (r_type != R_MIPS_REL32)
5956 value = symbol + addend;
5957 else
5958 value = addend;
5959 }
5960 value &= howto->dst_mask;
5961 break;
5962
5963 case R_MIPS_PC32:
5964 value = symbol + addend - p;
5965 value &= howto->dst_mask;
5966 break;
5967
5968 case R_MIPS16_26:
5969 /* The calculation for R_MIPS16_26 is just the same as for an
5970 R_MIPS_26. It's only the storage of the relocated field into
5971 the output file that's different. That's handled in
5972 mips_elf_perform_relocation. So, we just fall through to the
5973 R_MIPS_26 case here. */
5974 case R_MIPS_26:
5975 case R_MICROMIPS_26_S1:
5976 {
5977 unsigned int shift;
5978
5979 /* Shift is 2, unusually, for microMIPS JALX. */
5980 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5981
5982 if (howto->partial_inplace && !section_p)
5983 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5984 else
5985 value = addend;
5986 value += symbol;
5987
5988 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5989 be the correct ISA mode selector except for weak undefined
5990 symbols. */
5991 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5992 && (*cross_mode_jump_p
5993 ? (value & 3) != (r_type == R_MIPS_26)
5994 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5995 return bfd_reloc_outofrange;
5996
5997 value >>= shift;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6000 value &= howto->dst_mask;
6001 }
6002 break;
6003
6004 case R_MIPS_TLS_DTPREL_HI16:
6005 case R_MIPS16_TLS_DTPREL_HI16:
6006 case R_MICROMIPS_TLS_DTPREL_HI16:
6007 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6008 & howto->dst_mask);
6009 break;
6010
6011 case R_MIPS_TLS_DTPREL_LO16:
6012 case R_MIPS_TLS_DTPREL32:
6013 case R_MIPS_TLS_DTPREL64:
6014 case R_MIPS16_TLS_DTPREL_LO16:
6015 case R_MICROMIPS_TLS_DTPREL_LO16:
6016 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6017 break;
6018
6019 case R_MIPS_TLS_TPREL_HI16:
6020 case R_MIPS16_TLS_TPREL_HI16:
6021 case R_MICROMIPS_TLS_TPREL_HI16:
6022 value = (mips_elf_high (addend + symbol - tprel_base (info))
6023 & howto->dst_mask);
6024 break;
6025
6026 case R_MIPS_TLS_TPREL_LO16:
6027 case R_MIPS_TLS_TPREL32:
6028 case R_MIPS_TLS_TPREL64:
6029 case R_MIPS16_TLS_TPREL_LO16:
6030 case R_MICROMIPS_TLS_TPREL_LO16:
6031 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6032 break;
6033
6034 case R_MIPS_HI16:
6035 case R_MIPS16_HI16:
6036 case R_MICROMIPS_HI16:
6037 if (!gp_disp_p)
6038 {
6039 value = mips_elf_high (addend + symbol);
6040 value &= howto->dst_mask;
6041 }
6042 else
6043 {
6044 /* For MIPS16 ABI code we generate this sequence
6045 0: li $v0,%hi(_gp_disp)
6046 4: addiupc $v1,%lo(_gp_disp)
6047 8: sll $v0,16
6048 12: addu $v0,$v1
6049 14: move $gp,$v0
6050 So the offsets of hi and lo relocs are the same, but the
6051 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6052 ADDIUPC clears the low two bits of the instruction address,
6053 so the base is ($t9 + 4) & ~3. */
6054 if (r_type == R_MIPS16_HI16)
6055 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6056 /* The microMIPS .cpload sequence uses the same assembly
6057 instructions as the traditional psABI version, but the
6058 incoming $t9 has the low bit set. */
6059 else if (r_type == R_MICROMIPS_HI16)
6060 value = mips_elf_high (addend + gp - p - 1);
6061 else
6062 value = mips_elf_high (addend + gp - p);
6063 }
6064 break;
6065
6066 case R_MIPS_LO16:
6067 case R_MIPS16_LO16:
6068 case R_MICROMIPS_LO16:
6069 case R_MICROMIPS_HI0_LO16:
6070 if (!gp_disp_p)
6071 value = (symbol + addend) & howto->dst_mask;
6072 else
6073 {
6074 /* See the comment for R_MIPS16_HI16 above for the reason
6075 for this conditional. */
6076 if (r_type == R_MIPS16_LO16)
6077 value = addend + gp - (p & ~(bfd_vma) 0x3);
6078 else if (r_type == R_MICROMIPS_LO16
6079 || r_type == R_MICROMIPS_HI0_LO16)
6080 value = addend + gp - p + 3;
6081 else
6082 value = addend + gp - p + 4;
6083 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6084 for overflow. But, on, say, IRIX5, relocations against
6085 _gp_disp are normally generated from the .cpload
6086 pseudo-op. It generates code that normally looks like
6087 this:
6088
6089 lui $gp,%hi(_gp_disp)
6090 addiu $gp,$gp,%lo(_gp_disp)
6091 addu $gp,$gp,$t9
6092
6093 Here $t9 holds the address of the function being called,
6094 as required by the MIPS ELF ABI. The R_MIPS_LO16
6095 relocation can easily overflow in this situation, but the
6096 R_MIPS_HI16 relocation will handle the overflow.
6097 Therefore, we consider this a bug in the MIPS ABI, and do
6098 not check for overflow here. */
6099 }
6100 break;
6101
6102 case R_MIPS_LITERAL:
6103 case R_MICROMIPS_LITERAL:
6104 /* Because we don't merge literal sections, we can handle this
6105 just like R_MIPS_GPREL16. In the long run, we should merge
6106 shared literals, and then we will need to additional work
6107 here. */
6108
6109 /* Fall through. */
6110
6111 case R_MIPS16_GPREL:
6112 /* The R_MIPS16_GPREL performs the same calculation as
6113 R_MIPS_GPREL16, but stores the relocated bits in a different
6114 order. We don't need to do anything special here; the
6115 differences are handled in mips_elf_perform_relocation. */
6116 case R_MIPS_GPREL16:
6117 case R_MICROMIPS_GPREL7_S2:
6118 case R_MICROMIPS_GPREL16:
6119 /* Only sign-extend the addend if it was extracted from the
6120 instruction. If the addend was separate, leave it alone,
6121 otherwise we may lose significant bits. */
6122 if (howto->partial_inplace)
6123 addend = _bfd_mips_elf_sign_extend (addend, 16);
6124 value = symbol + addend - gp;
6125 /* If the symbol was local, any earlier relocatable links will
6126 have adjusted its addend with the gp offset, so compensate
6127 for that now. Don't do it for symbols forced local in this
6128 link, though, since they won't have had the gp offset applied
6129 to them before. */
6130 if (was_local_p)
6131 value += gp0;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 16);
6134 break;
6135
6136 case R_MIPS16_GOT16:
6137 case R_MIPS16_CALL16:
6138 case R_MIPS_GOT16:
6139 case R_MIPS_CALL16:
6140 case R_MICROMIPS_GOT16:
6141 case R_MICROMIPS_CALL16:
6142 /* VxWorks does not have separate local and global semantics for
6143 R_MIPS*_GOT16; every relocation evaluates to "G". */
6144 if (!htab->is_vxworks && local_p)
6145 {
6146 value = mips_elf_got16_entry (abfd, input_bfd, info,
6147 symbol + addend, !was_local_p);
6148 if (value == MINUS_ONE)
6149 return bfd_reloc_outofrange;
6150 value
6151 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6152 overflowed_p = mips_elf_overflow_p (value, 16);
6153 break;
6154 }
6155
6156 /* Fall through. */
6157
6158 case R_MIPS_TLS_GD:
6159 case R_MIPS_TLS_GOTTPREL:
6160 case R_MIPS_TLS_LDM:
6161 case R_MIPS_GOT_DISP:
6162 case R_MIPS16_TLS_GD:
6163 case R_MIPS16_TLS_GOTTPREL:
6164 case R_MIPS16_TLS_LDM:
6165 case R_MICROMIPS_TLS_GD:
6166 case R_MICROMIPS_TLS_GOTTPREL:
6167 case R_MICROMIPS_TLS_LDM:
6168 case R_MICROMIPS_GOT_DISP:
6169 value = g;
6170 overflowed_p = mips_elf_overflow_p (value, 16);
6171 break;
6172
6173 case R_MIPS_GPREL32:
6174 value = (addend + symbol + gp0 - gp);
6175 if (!save_addend)
6176 value &= howto->dst_mask;
6177 break;
6178
6179 case R_MIPS_PC16:
6180 case R_MIPS_GNU_REL16_S2:
6181 if (howto->partial_inplace)
6182 addend = _bfd_mips_elf_sign_extend (addend, 18);
6183
6184 /* No need to exclude weak undefined symbols here as they resolve
6185 to 0 and never set `*cross_mode_jump_p', so this alignment check
6186 will never trigger for them. */
6187 if (*cross_mode_jump_p
6188 ? ((symbol + addend) & 3) != 1
6189 : ((symbol + addend) & 3) != 0)
6190 return bfd_reloc_outofrange;
6191
6192 value = symbol + addend - p;
6193 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6194 overflowed_p = mips_elf_overflow_p (value, 18);
6195 value >>= howto->rightshift;
6196 value &= howto->dst_mask;
6197 break;
6198
6199 case R_MIPS16_PC16_S1:
6200 if (howto->partial_inplace)
6201 addend = _bfd_mips_elf_sign_extend (addend, 17);
6202
6203 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 && (*cross_mode_jump_p
6205 ? ((symbol + addend) & 3) != 0
6206 : ((symbol + addend) & 1) == 0))
6207 return bfd_reloc_outofrange;
6208
6209 value = symbol + addend - p;
6210 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6211 overflowed_p = mips_elf_overflow_p (value, 17);
6212 value >>= howto->rightshift;
6213 value &= howto->dst_mask;
6214 break;
6215
6216 case R_MIPS_PC21_S2:
6217 if (howto->partial_inplace)
6218 addend = _bfd_mips_elf_sign_extend (addend, 23);
6219
6220 if ((symbol + addend) & 3)
6221 return bfd_reloc_outofrange;
6222
6223 value = symbol + addend - p;
6224 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6225 overflowed_p = mips_elf_overflow_p (value, 23);
6226 value >>= howto->rightshift;
6227 value &= howto->dst_mask;
6228 break;
6229
6230 case R_MIPS_PC26_S2:
6231 if (howto->partial_inplace)
6232 addend = _bfd_mips_elf_sign_extend (addend, 28);
6233
6234 if ((symbol + addend) & 3)
6235 return bfd_reloc_outofrange;
6236
6237 value = symbol + addend - p;
6238 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6239 overflowed_p = mips_elf_overflow_p (value, 28);
6240 value >>= howto->rightshift;
6241 value &= howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_PC18_S3:
6245 if (howto->partial_inplace)
6246 addend = _bfd_mips_elf_sign_extend (addend, 21);
6247
6248 if ((symbol + addend) & 7)
6249 return bfd_reloc_outofrange;
6250
6251 value = symbol + addend - ((p | 7) ^ 7);
6252 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6253 overflowed_p = mips_elf_overflow_p (value, 21);
6254 value >>= howto->rightshift;
6255 value &= howto->dst_mask;
6256 break;
6257
6258 case R_MIPS_PC19_S2:
6259 if (howto->partial_inplace)
6260 addend = _bfd_mips_elf_sign_extend (addend, 21);
6261
6262 if ((symbol + addend) & 3)
6263 return bfd_reloc_outofrange;
6264
6265 value = symbol + addend - p;
6266 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6267 overflowed_p = mips_elf_overflow_p (value, 21);
6268 value >>= howto->rightshift;
6269 value &= howto->dst_mask;
6270 break;
6271
6272 case R_MIPS_PCHI16:
6273 value = mips_elf_high (symbol + addend - p);
6274 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6275 overflowed_p = mips_elf_overflow_p (value, 16);
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_PCLO16:
6280 if (howto->partial_inplace)
6281 addend = _bfd_mips_elf_sign_extend (addend, 16);
6282 value = symbol + addend - p;
6283 value &= howto->dst_mask;
6284 break;
6285
6286 case R_MICROMIPS_PC7_S1:
6287 if (howto->partial_inplace)
6288 addend = _bfd_mips_elf_sign_extend (addend, 8);
6289
6290 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6291 && (*cross_mode_jump_p
6292 ? ((symbol + addend + 2) & 3) != 0
6293 : ((symbol + addend + 2) & 1) == 0))
6294 return bfd_reloc_outofrange;
6295
6296 value = symbol + addend - p;
6297 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6298 overflowed_p = mips_elf_overflow_p (value, 8);
6299 value >>= howto->rightshift;
6300 value &= howto->dst_mask;
6301 break;
6302
6303 case R_MICROMIPS_PC10_S1:
6304 if (howto->partial_inplace)
6305 addend = _bfd_mips_elf_sign_extend (addend, 11);
6306
6307 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 && (*cross_mode_jump_p
6309 ? ((symbol + addend + 2) & 3) != 0
6310 : ((symbol + addend + 2) & 1) == 0))
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - p;
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 11);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MICROMIPS_PC16_S1:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 17);
6323
6324 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6325 && (*cross_mode_jump_p
6326 ? ((symbol + addend) & 3) != 0
6327 : ((symbol + addend) & 1) == 0))
6328 return bfd_reloc_outofrange;
6329
6330 value = symbol + addend - p;
6331 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6332 overflowed_p = mips_elf_overflow_p (value, 17);
6333 value >>= howto->rightshift;
6334 value &= howto->dst_mask;
6335 break;
6336
6337 case R_MICROMIPS_PC23_S2:
6338 if (howto->partial_inplace)
6339 addend = _bfd_mips_elf_sign_extend (addend, 25);
6340 value = symbol + addend - ((p | 3) ^ 3);
6341 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6342 overflowed_p = mips_elf_overflow_p (value, 25);
6343 value >>= howto->rightshift;
6344 value &= howto->dst_mask;
6345 break;
6346
6347 case R_MIPS_GOT_HI16:
6348 case R_MIPS_CALL_HI16:
6349 case R_MICROMIPS_GOT_HI16:
6350 case R_MICROMIPS_CALL_HI16:
6351 /* We're allowed to handle these two relocations identically.
6352 The dynamic linker is allowed to handle the CALL relocations
6353 differently by creating a lazy evaluation stub. */
6354 value = g;
6355 value = mips_elf_high (value);
6356 value &= howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_GOT_LO16:
6360 case R_MIPS_CALL_LO16:
6361 case R_MICROMIPS_GOT_LO16:
6362 case R_MICROMIPS_CALL_LO16:
6363 value = g & howto->dst_mask;
6364 break;
6365
6366 case R_MIPS_GOT_PAGE:
6367 case R_MICROMIPS_GOT_PAGE:
6368 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6369 if (value == MINUS_ONE)
6370 return bfd_reloc_outofrange;
6371 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6372 overflowed_p = mips_elf_overflow_p (value, 16);
6373 break;
6374
6375 case R_MIPS_GOT_OFST:
6376 case R_MICROMIPS_GOT_OFST:
6377 if (local_p)
6378 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6379 else
6380 value = addend;
6381 overflowed_p = mips_elf_overflow_p (value, 16);
6382 break;
6383
6384 case R_MIPS_SUB:
6385 case R_MICROMIPS_SUB:
6386 value = symbol - addend;
6387 value &= howto->dst_mask;
6388 break;
6389
6390 case R_MIPS_HIGHER:
6391 case R_MICROMIPS_HIGHER:
6392 value = mips_elf_higher (addend + symbol);
6393 value &= howto->dst_mask;
6394 break;
6395
6396 case R_MIPS_HIGHEST:
6397 case R_MICROMIPS_HIGHEST:
6398 value = mips_elf_highest (addend + symbol);
6399 value &= howto->dst_mask;
6400 break;
6401
6402 case R_MIPS_SCN_DISP:
6403 case R_MICROMIPS_SCN_DISP:
6404 value = symbol + addend - sec->output_offset;
6405 value &= howto->dst_mask;
6406 break;
6407
6408 case R_MIPS_JALR:
6409 case R_MICROMIPS_JALR:
6410 /* This relocation is only a hint. In some cases, we optimize
6411 it into a bal instruction. But we don't try to optimize
6412 when the symbol does not resolve locally. */
6413 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6414 return bfd_reloc_continue;
6415 /* We can't optimize cross-mode jumps either. */
6416 if (*cross_mode_jump_p)
6417 return bfd_reloc_continue;
6418 value = symbol + addend;
6419 /* Neither we can non-instruction-aligned targets. */
6420 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6421 return bfd_reloc_continue;
6422 break;
6423
6424 case R_MIPS_PJUMP:
6425 case R_MIPS_GNU_VTINHERIT:
6426 case R_MIPS_GNU_VTENTRY:
6427 /* We don't do anything with these at present. */
6428 return bfd_reloc_continue;
6429
6430 default:
6431 /* An unrecognized relocation type. */
6432 return bfd_reloc_notsupported;
6433 }
6434
6435 /* Store the VALUE for our caller. */
6436 *valuep = value;
6437 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6438 }
6439
6440 /* It has been determined that the result of the RELOCATION is the
6441 VALUE. Use HOWTO to place VALUE into the output file at the
6442 appropriate position. The SECTION is the section to which the
6443 relocation applies.
6444 CROSS_MODE_JUMP_P is true if the relocation field
6445 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6446
6447 Returns FALSE if anything goes wrong. */
6448
6449 static bfd_boolean
6450 mips_elf_perform_relocation (struct bfd_link_info *info,
6451 reloc_howto_type *howto,
6452 const Elf_Internal_Rela *relocation,
6453 bfd_vma value, bfd *input_bfd,
6454 asection *input_section, bfd_byte *contents,
6455 bfd_boolean cross_mode_jump_p)
6456 {
6457 bfd_vma x;
6458 bfd_byte *location;
6459 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6460
6461 /* Figure out where the relocation is occurring. */
6462 location = contents + relocation->r_offset;
6463
6464 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6465
6466 /* Obtain the current value. */
6467 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6468
6469 /* Clear the field we are setting. */
6470 x &= ~howto->dst_mask;
6471
6472 /* Set the field. */
6473 x |= (value & howto->dst_mask);
6474
6475 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6476 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6477 {
6478 bfd_vma opcode = x >> 26;
6479
6480 if (r_type == R_MIPS16_26 ? opcode == 0x7
6481 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6482 : opcode == 0x1d)
6483 {
6484 info->callbacks->einfo
6485 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6486 input_bfd, input_section, relocation->r_offset);
6487 return TRUE;
6488 }
6489 }
6490 if (cross_mode_jump_p && jal_reloc_p (r_type))
6491 {
6492 bfd_boolean ok;
6493 bfd_vma opcode = x >> 26;
6494 bfd_vma jalx_opcode;
6495
6496 /* Check to see if the opcode is already JAL or JALX. */
6497 if (r_type == R_MIPS16_26)
6498 {
6499 ok = ((opcode == 0x6) || (opcode == 0x7));
6500 jalx_opcode = 0x7;
6501 }
6502 else if (r_type == R_MICROMIPS_26_S1)
6503 {
6504 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6505 jalx_opcode = 0x3c;
6506 }
6507 else
6508 {
6509 ok = ((opcode == 0x3) || (opcode == 0x1d));
6510 jalx_opcode = 0x1d;
6511 }
6512
6513 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6514 convert J or JALS to JALX. */
6515 if (!ok)
6516 {
6517 info->callbacks->einfo
6518 (_("%X%H: unsupported jump between ISA modes; "
6519 "consider recompiling with interlinking enabled\n"),
6520 input_bfd, input_section, relocation->r_offset);
6521 return TRUE;
6522 }
6523
6524 /* Make this the JALX opcode. */
6525 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6526 }
6527 else if (cross_mode_jump_p && b_reloc_p (r_type))
6528 {
6529 bfd_boolean ok = FALSE;
6530 bfd_vma opcode = x >> 16;
6531 bfd_vma jalx_opcode = 0;
6532 bfd_vma sign_bit = 0;
6533 bfd_vma addr;
6534 bfd_vma dest;
6535
6536 if (r_type == R_MICROMIPS_PC16_S1)
6537 {
6538 ok = opcode == 0x4060;
6539 jalx_opcode = 0x3c;
6540 sign_bit = 0x10000;
6541 value <<= 1;
6542 }
6543 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6544 {
6545 ok = opcode == 0x411;
6546 jalx_opcode = 0x1d;
6547 sign_bit = 0x20000;
6548 value <<= 2;
6549 }
6550
6551 if (ok && !bfd_link_pic (info))
6552 {
6553 addr = (input_section->output_section->vma
6554 + input_section->output_offset
6555 + relocation->r_offset
6556 + 4);
6557 dest = (addr
6558 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6559
6560 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6561 {
6562 info->callbacks->einfo
6563 (_("%X%H: cannot convert branch between ISA modes "
6564 "to JALX: relocation out of range\n"),
6565 input_bfd, input_section, relocation->r_offset);
6566 return TRUE;
6567 }
6568
6569 /* Make this the JALX opcode. */
6570 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6571 }
6572 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6573 {
6574 info->callbacks->einfo
6575 (_("%X%H: unsupported branch between ISA modes\n"),
6576 input_bfd, input_section, relocation->r_offset);
6577 return TRUE;
6578 }
6579 }
6580
6581 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6582 range. */
6583 if (!bfd_link_relocatable (info)
6584 && !cross_mode_jump_p
6585 && ((JAL_TO_BAL_P (input_bfd)
6586 && r_type == R_MIPS_26
6587 && (x >> 26) == 0x3) /* jal addr */
6588 || (JALR_TO_BAL_P (input_bfd)
6589 && r_type == R_MIPS_JALR
6590 && x == 0x0320f809) /* jalr t9 */
6591 || (JR_TO_B_P (input_bfd)
6592 && r_type == R_MIPS_JALR
6593 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6594 {
6595 bfd_vma addr;
6596 bfd_vma dest;
6597 bfd_signed_vma off;
6598
6599 addr = (input_section->output_section->vma
6600 + input_section->output_offset
6601 + relocation->r_offset
6602 + 4);
6603 if (r_type == R_MIPS_26)
6604 dest = (value << 2) | ((addr >> 28) << 28);
6605 else
6606 dest = value;
6607 off = dest - addr;
6608 if (off <= 0x1ffff && off >= -0x20000)
6609 {
6610 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6611 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6612 else
6613 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6614 }
6615 }
6616
6617 /* Put the value into the output. */
6618 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6619
6620 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6621 location);
6622
6623 return TRUE;
6624 }
6625 \f
6626 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6627 is the original relocation, which is now being transformed into a
6628 dynamic relocation. The ADDENDP is adjusted if necessary; the
6629 caller should store the result in place of the original addend. */
6630
6631 static bfd_boolean
6632 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6633 struct bfd_link_info *info,
6634 const Elf_Internal_Rela *rel,
6635 struct mips_elf_link_hash_entry *h,
6636 asection *sec, bfd_vma symbol,
6637 bfd_vma *addendp, asection *input_section)
6638 {
6639 Elf_Internal_Rela outrel[3];
6640 asection *sreloc;
6641 bfd *dynobj;
6642 int r_type;
6643 long indx;
6644 bfd_boolean defined_p;
6645 struct mips_elf_link_hash_table *htab;
6646
6647 htab = mips_elf_hash_table (info);
6648 BFD_ASSERT (htab != NULL);
6649
6650 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6651 dynobj = elf_hash_table (info)->dynobj;
6652 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6653 BFD_ASSERT (sreloc != NULL);
6654 BFD_ASSERT (sreloc->contents != NULL);
6655 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6656 < sreloc->size);
6657
6658 outrel[0].r_offset =
6659 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6660 if (ABI_64_P (output_bfd))
6661 {
6662 outrel[1].r_offset =
6663 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6664 outrel[2].r_offset =
6665 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6666 }
6667
6668 if (outrel[0].r_offset == MINUS_ONE)
6669 /* The relocation field has been deleted. */
6670 return TRUE;
6671
6672 if (outrel[0].r_offset == MINUS_TWO)
6673 {
6674 /* The relocation field has been converted into a relative value of
6675 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6676 the field to be fully relocated, so add in the symbol's value. */
6677 *addendp += symbol;
6678 return TRUE;
6679 }
6680
6681 /* We must now calculate the dynamic symbol table index to use
6682 in the relocation. */
6683 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6684 {
6685 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6686 indx = h->root.dynindx;
6687 if (SGI_COMPAT (output_bfd))
6688 defined_p = h->root.def_regular;
6689 else
6690 /* ??? glibc's ld.so just adds the final GOT entry to the
6691 relocation field. It therefore treats relocs against
6692 defined symbols in the same way as relocs against
6693 undefined symbols. */
6694 defined_p = FALSE;
6695 }
6696 else
6697 {
6698 if (sec != NULL && bfd_is_abs_section (sec))
6699 indx = 0;
6700 else if (sec == NULL || sec->owner == NULL)
6701 {
6702 bfd_set_error (bfd_error_bad_value);
6703 return FALSE;
6704 }
6705 else
6706 {
6707 indx = elf_section_data (sec->output_section)->dynindx;
6708 if (indx == 0)
6709 {
6710 asection *osec = htab->root.text_index_section;
6711 indx = elf_section_data (osec)->dynindx;
6712 }
6713 if (indx == 0)
6714 abort ();
6715 }
6716
6717 /* Instead of generating a relocation using the section
6718 symbol, we may as well make it a fully relative
6719 relocation. We want to avoid generating relocations to
6720 local symbols because we used to generate them
6721 incorrectly, without adding the original symbol value,
6722 which is mandated by the ABI for section symbols. In
6723 order to give dynamic loaders and applications time to
6724 phase out the incorrect use, we refrain from emitting
6725 section-relative relocations. It's not like they're
6726 useful, after all. This should be a bit more efficient
6727 as well. */
6728 /* ??? Although this behavior is compatible with glibc's ld.so,
6729 the ABI says that relocations against STN_UNDEF should have
6730 a symbol value of 0. Irix rld honors this, so relocations
6731 against STN_UNDEF have no effect. */
6732 if (!SGI_COMPAT (output_bfd))
6733 indx = 0;
6734 defined_p = TRUE;
6735 }
6736
6737 /* If the relocation was previously an absolute relocation and
6738 this symbol will not be referred to by the relocation, we must
6739 adjust it by the value we give it in the dynamic symbol table.
6740 Otherwise leave the job up to the dynamic linker. */
6741 if (defined_p && r_type != R_MIPS_REL32)
6742 *addendp += symbol;
6743
6744 if (htab->is_vxworks)
6745 /* VxWorks uses non-relative relocations for this. */
6746 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6747 else
6748 /* The relocation is always an REL32 relocation because we don't
6749 know where the shared library will wind up at load-time. */
6750 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6751 R_MIPS_REL32);
6752
6753 /* For strict adherence to the ABI specification, we should
6754 generate a R_MIPS_64 relocation record by itself before the
6755 _REL32/_64 record as well, such that the addend is read in as
6756 a 64-bit value (REL32 is a 32-bit relocation, after all).
6757 However, since none of the existing ELF64 MIPS dynamic
6758 loaders seems to care, we don't waste space with these
6759 artificial relocations. If this turns out to not be true,
6760 mips_elf_allocate_dynamic_relocation() should be tweaked so
6761 as to make room for a pair of dynamic relocations per
6762 invocation if ABI_64_P, and here we should generate an
6763 additional relocation record with R_MIPS_64 by itself for a
6764 NULL symbol before this relocation record. */
6765 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6766 ABI_64_P (output_bfd)
6767 ? R_MIPS_64
6768 : R_MIPS_NONE);
6769 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6770
6771 /* Adjust the output offset of the relocation to reference the
6772 correct location in the output file. */
6773 outrel[0].r_offset += (input_section->output_section->vma
6774 + input_section->output_offset);
6775 outrel[1].r_offset += (input_section->output_section->vma
6776 + input_section->output_offset);
6777 outrel[2].r_offset += (input_section->output_section->vma
6778 + input_section->output_offset);
6779
6780 /* Put the relocation back out. We have to use the special
6781 relocation outputter in the 64-bit case since the 64-bit
6782 relocation format is non-standard. */
6783 if (ABI_64_P (output_bfd))
6784 {
6785 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6786 (output_bfd, &outrel[0],
6787 (sreloc->contents
6788 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6789 }
6790 else if (htab->is_vxworks)
6791 {
6792 /* VxWorks uses RELA rather than REL dynamic relocations. */
6793 outrel[0].r_addend = *addendp;
6794 bfd_elf32_swap_reloca_out
6795 (output_bfd, &outrel[0],
6796 (sreloc->contents
6797 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6798 }
6799 else
6800 bfd_elf32_swap_reloc_out
6801 (output_bfd, &outrel[0],
6802 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6803
6804 /* We've now added another relocation. */
6805 ++sreloc->reloc_count;
6806
6807 /* Make sure the output section is writable. The dynamic linker
6808 will be writing to it. */
6809 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6810 |= SHF_WRITE;
6811
6812 /* On IRIX5, make an entry of compact relocation info. */
6813 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6814 {
6815 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6816 bfd_byte *cr;
6817
6818 if (scpt)
6819 {
6820 Elf32_crinfo cptrel;
6821
6822 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6823 cptrel.vaddr = (rel->r_offset
6824 + input_section->output_section->vma
6825 + input_section->output_offset);
6826 if (r_type == R_MIPS_REL32)
6827 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6828 else
6829 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6830 mips_elf_set_cr_dist2to (cptrel, 0);
6831 cptrel.konst = *addendp;
6832
6833 cr = (scpt->contents
6834 + sizeof (Elf32_External_compact_rel));
6835 mips_elf_set_cr_relvaddr (cptrel, 0);
6836 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6837 ((Elf32_External_crinfo *) cr
6838 + scpt->reloc_count));
6839 ++scpt->reloc_count;
6840 }
6841 }
6842
6843 /* If we've written this relocation for a readonly section,
6844 we need to set DF_TEXTREL again, so that we do not delete the
6845 DT_TEXTREL tag. */
6846 if (MIPS_ELF_READONLY_SECTION (input_section))
6847 info->flags |= DF_TEXTREL;
6848
6849 return TRUE;
6850 }
6851 \f
6852 /* Return the MACH for a MIPS e_flags value. */
6853
6854 unsigned long
6855 _bfd_elf_mips_mach (flagword flags)
6856 {
6857 switch (flags & EF_MIPS_MACH)
6858 {
6859 case E_MIPS_MACH_3900:
6860 return bfd_mach_mips3900;
6861
6862 case E_MIPS_MACH_4010:
6863 return bfd_mach_mips4010;
6864
6865 case E_MIPS_MACH_4100:
6866 return bfd_mach_mips4100;
6867
6868 case E_MIPS_MACH_4111:
6869 return bfd_mach_mips4111;
6870
6871 case E_MIPS_MACH_4120:
6872 return bfd_mach_mips4120;
6873
6874 case E_MIPS_MACH_4650:
6875 return bfd_mach_mips4650;
6876
6877 case E_MIPS_MACH_5400:
6878 return bfd_mach_mips5400;
6879
6880 case E_MIPS_MACH_5500:
6881 return bfd_mach_mips5500;
6882
6883 case E_MIPS_MACH_5900:
6884 return bfd_mach_mips5900;
6885
6886 case E_MIPS_MACH_9000:
6887 return bfd_mach_mips9000;
6888
6889 case E_MIPS_MACH_SB1:
6890 return bfd_mach_mips_sb1;
6891
6892 case E_MIPS_MACH_LS2E:
6893 return bfd_mach_mips_loongson_2e;
6894
6895 case E_MIPS_MACH_LS2F:
6896 return bfd_mach_mips_loongson_2f;
6897
6898 case E_MIPS_MACH_GS464:
6899 return bfd_mach_mips_gs464;
6900
6901 case E_MIPS_MACH_GS464E:
6902 return bfd_mach_mips_gs464e;
6903
6904 case E_MIPS_MACH_GS264E:
6905 return bfd_mach_mips_gs264e;
6906
6907 case E_MIPS_MACH_OCTEON3:
6908 return bfd_mach_mips_octeon3;
6909
6910 case E_MIPS_MACH_OCTEON2:
6911 return bfd_mach_mips_octeon2;
6912
6913 case E_MIPS_MACH_OCTEON:
6914 return bfd_mach_mips_octeon;
6915
6916 case E_MIPS_MACH_XLR:
6917 return bfd_mach_mips_xlr;
6918
6919 case E_MIPS_MACH_IAMR2:
6920 return bfd_mach_mips_interaptiv_mr2;
6921
6922 default:
6923 switch (flags & EF_MIPS_ARCH)
6924 {
6925 default:
6926 case E_MIPS_ARCH_1:
6927 return bfd_mach_mips3000;
6928
6929 case E_MIPS_ARCH_2:
6930 return bfd_mach_mips6000;
6931
6932 case E_MIPS_ARCH_3:
6933 return bfd_mach_mips4000;
6934
6935 case E_MIPS_ARCH_4:
6936 return bfd_mach_mips8000;
6937
6938 case E_MIPS_ARCH_5:
6939 return bfd_mach_mips5;
6940
6941 case E_MIPS_ARCH_32:
6942 return bfd_mach_mipsisa32;
6943
6944 case E_MIPS_ARCH_64:
6945 return bfd_mach_mipsisa64;
6946
6947 case E_MIPS_ARCH_32R2:
6948 return bfd_mach_mipsisa32r2;
6949
6950 case E_MIPS_ARCH_64R2:
6951 return bfd_mach_mipsisa64r2;
6952
6953 case E_MIPS_ARCH_32R6:
6954 return bfd_mach_mipsisa32r6;
6955
6956 case E_MIPS_ARCH_64R6:
6957 return bfd_mach_mipsisa64r6;
6958 }
6959 }
6960
6961 return 0;
6962 }
6963
6964 /* Return printable name for ABI. */
6965
6966 static INLINE char *
6967 elf_mips_abi_name (bfd *abfd)
6968 {
6969 flagword flags;
6970
6971 flags = elf_elfheader (abfd)->e_flags;
6972 switch (flags & EF_MIPS_ABI)
6973 {
6974 case 0:
6975 if (ABI_N32_P (abfd))
6976 return "N32";
6977 else if (ABI_64_P (abfd))
6978 return "64";
6979 else
6980 return "none";
6981 case E_MIPS_ABI_O32:
6982 return "O32";
6983 case E_MIPS_ABI_O64:
6984 return "O64";
6985 case E_MIPS_ABI_EABI32:
6986 return "EABI32";
6987 case E_MIPS_ABI_EABI64:
6988 return "EABI64";
6989 default:
6990 return "unknown abi";
6991 }
6992 }
6993 \f
6994 /* MIPS ELF uses two common sections. One is the usual one, and the
6995 other is for small objects. All the small objects are kept
6996 together, and then referenced via the gp pointer, which yields
6997 faster assembler code. This is what we use for the small common
6998 section. This approach is copied from ecoff.c. */
6999 static asection mips_elf_scom_section;
7000 static asymbol mips_elf_scom_symbol;
7001 static asymbol *mips_elf_scom_symbol_ptr;
7002
7003 /* MIPS ELF also uses an acommon section, which represents an
7004 allocated common symbol which may be overridden by a
7005 definition in a shared library. */
7006 static asection mips_elf_acom_section;
7007 static asymbol mips_elf_acom_symbol;
7008 static asymbol *mips_elf_acom_symbol_ptr;
7009
7010 /* This is used for both the 32-bit and the 64-bit ABI. */
7011
7012 void
7013 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7014 {
7015 elf_symbol_type *elfsym;
7016
7017 /* Handle the special MIPS section numbers that a symbol may use. */
7018 elfsym = (elf_symbol_type *) asym;
7019 switch (elfsym->internal_elf_sym.st_shndx)
7020 {
7021 case SHN_MIPS_ACOMMON:
7022 /* This section is used in a dynamically linked executable file.
7023 It is an allocated common section. The dynamic linker can
7024 either resolve these symbols to something in a shared
7025 library, or it can just leave them here. For our purposes,
7026 we can consider these symbols to be in a new section. */
7027 if (mips_elf_acom_section.name == NULL)
7028 {
7029 /* Initialize the acommon section. */
7030 mips_elf_acom_section.name = ".acommon";
7031 mips_elf_acom_section.flags = SEC_ALLOC;
7032 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7033 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7034 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7035 mips_elf_acom_symbol.name = ".acommon";
7036 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7037 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7038 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7039 }
7040 asym->section = &mips_elf_acom_section;
7041 break;
7042
7043 case SHN_COMMON:
7044 /* Common symbols less than the GP size are automatically
7045 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7046 if (asym->value > elf_gp_size (abfd)
7047 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7048 || IRIX_COMPAT (abfd) == ict_irix6)
7049 break;
7050 /* Fall through. */
7051 case SHN_MIPS_SCOMMON:
7052 if (mips_elf_scom_section.name == NULL)
7053 {
7054 /* Initialize the small common section. */
7055 mips_elf_scom_section.name = ".scommon";
7056 mips_elf_scom_section.flags = SEC_IS_COMMON;
7057 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7058 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7059 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7060 mips_elf_scom_symbol.name = ".scommon";
7061 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7062 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7063 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7064 }
7065 asym->section = &mips_elf_scom_section;
7066 asym->value = elfsym->internal_elf_sym.st_size;
7067 break;
7068
7069 case SHN_MIPS_SUNDEFINED:
7070 asym->section = bfd_und_section_ptr;
7071 break;
7072
7073 case SHN_MIPS_TEXT:
7074 {
7075 asection *section = bfd_get_section_by_name (abfd, ".text");
7076
7077 if (section != NULL)
7078 {
7079 asym->section = section;
7080 /* MIPS_TEXT is a bit special, the address is not an offset
7081 to the base of the .text section. So subtract the section
7082 base address to make it an offset. */
7083 asym->value -= section->vma;
7084 }
7085 }
7086 break;
7087
7088 case SHN_MIPS_DATA:
7089 {
7090 asection *section = bfd_get_section_by_name (abfd, ".data");
7091
7092 if (section != NULL)
7093 {
7094 asym->section = section;
7095 /* MIPS_DATA is a bit special, the address is not an offset
7096 to the base of the .data section. So subtract the section
7097 base address to make it an offset. */
7098 asym->value -= section->vma;
7099 }
7100 }
7101 break;
7102 }
7103
7104 /* If this is an odd-valued function symbol, assume it's a MIPS16
7105 or microMIPS one. */
7106 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7107 && (asym->value & 1) != 0)
7108 {
7109 asym->value--;
7110 if (MICROMIPS_P (abfd))
7111 elfsym->internal_elf_sym.st_other
7112 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7113 else
7114 elfsym->internal_elf_sym.st_other
7115 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7116 }
7117 }
7118 \f
7119 /* Implement elf_backend_eh_frame_address_size. This differs from
7120 the default in the way it handles EABI64.
7121
7122 EABI64 was originally specified as an LP64 ABI, and that is what
7123 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7124 historically accepted the combination of -mabi=eabi and -mlong32,
7125 and this ILP32 variation has become semi-official over time.
7126 Both forms use elf32 and have pointer-sized FDE addresses.
7127
7128 If an EABI object was generated by GCC 4.0 or above, it will have
7129 an empty .gcc_compiled_longXX section, where XX is the size of longs
7130 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7131 have no special marking to distinguish them from LP64 objects.
7132
7133 We don't want users of the official LP64 ABI to be punished for the
7134 existence of the ILP32 variant, but at the same time, we don't want
7135 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7136 We therefore take the following approach:
7137
7138 - If ABFD contains a .gcc_compiled_longXX section, use it to
7139 determine the pointer size.
7140
7141 - Otherwise check the type of the first relocation. Assume that
7142 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7143
7144 - Otherwise punt.
7145
7146 The second check is enough to detect LP64 objects generated by pre-4.0
7147 compilers because, in the kind of output generated by those compilers,
7148 the first relocation will be associated with either a CIE personality
7149 routine or an FDE start address. Furthermore, the compilers never
7150 used a special (non-pointer) encoding for this ABI.
7151
7152 Checking the relocation type should also be safe because there is no
7153 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7154 did so. */
7155
7156 unsigned int
7157 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7158 {
7159 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7160 return 8;
7161 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7162 {
7163 bfd_boolean long32_p, long64_p;
7164
7165 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7166 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7167 if (long32_p && long64_p)
7168 return 0;
7169 if (long32_p)
7170 return 4;
7171 if (long64_p)
7172 return 8;
7173
7174 if (sec->reloc_count > 0
7175 && elf_section_data (sec)->relocs != NULL
7176 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7177 == R_MIPS_64))
7178 return 8;
7179
7180 return 0;
7181 }
7182 return 4;
7183 }
7184 \f
7185 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7186 relocations against two unnamed section symbols to resolve to the
7187 same address. For example, if we have code like:
7188
7189 lw $4,%got_disp(.data)($gp)
7190 lw $25,%got_disp(.text)($gp)
7191 jalr $25
7192
7193 then the linker will resolve both relocations to .data and the program
7194 will jump there rather than to .text.
7195
7196 We can work around this problem by giving names to local section symbols.
7197 This is also what the MIPSpro tools do. */
7198
7199 bfd_boolean
7200 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7201 {
7202 return SGI_COMPAT (abfd);
7203 }
7204 \f
7205 /* Work over a section just before writing it out. This routine is
7206 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7207 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7208 a better way. */
7209
7210 bfd_boolean
7211 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7212 {
7213 if (hdr->sh_type == SHT_MIPS_REGINFO
7214 && hdr->sh_size > 0)
7215 {
7216 bfd_byte buf[4];
7217
7218 BFD_ASSERT (hdr->contents == NULL);
7219
7220 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7221 {
7222 _bfd_error_handler
7223 (_("%pB: incorrect `.reginfo' section size; "
7224 "expected %" PRIu64 ", got %" PRIu64),
7225 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7226 (uint64_t) hdr->sh_size);
7227 bfd_set_error (bfd_error_bad_value);
7228 return FALSE;
7229 }
7230
7231 if (bfd_seek (abfd,
7232 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7233 SEEK_SET) != 0)
7234 return FALSE;
7235 H_PUT_32 (abfd, elf_gp (abfd), buf);
7236 if (bfd_bwrite (buf, 4, abfd) != 4)
7237 return FALSE;
7238 }
7239
7240 if (hdr->sh_type == SHT_MIPS_OPTIONS
7241 && hdr->bfd_section != NULL
7242 && mips_elf_section_data (hdr->bfd_section) != NULL
7243 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7244 {
7245 bfd_byte *contents, *l, *lend;
7246
7247 /* We stored the section contents in the tdata field in the
7248 set_section_contents routine. We save the section contents
7249 so that we don't have to read them again.
7250 At this point we know that elf_gp is set, so we can look
7251 through the section contents to see if there is an
7252 ODK_REGINFO structure. */
7253
7254 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7255 l = contents;
7256 lend = contents + hdr->sh_size;
7257 while (l + sizeof (Elf_External_Options) <= lend)
7258 {
7259 Elf_Internal_Options intopt;
7260
7261 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7262 &intopt);
7263 if (intopt.size < sizeof (Elf_External_Options))
7264 {
7265 _bfd_error_handler
7266 /* xgettext:c-format */
7267 (_("%pB: warning: bad `%s' option size %u smaller than"
7268 " its header"),
7269 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7270 break;
7271 }
7272 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7273 {
7274 bfd_byte buf[8];
7275
7276 if (bfd_seek (abfd,
7277 (hdr->sh_offset
7278 + (l - contents)
7279 + sizeof (Elf_External_Options)
7280 + (sizeof (Elf64_External_RegInfo) - 8)),
7281 SEEK_SET) != 0)
7282 return FALSE;
7283 H_PUT_64 (abfd, elf_gp (abfd), buf);
7284 if (bfd_bwrite (buf, 8, abfd) != 8)
7285 return FALSE;
7286 }
7287 else if (intopt.kind == ODK_REGINFO)
7288 {
7289 bfd_byte buf[4];
7290
7291 if (bfd_seek (abfd,
7292 (hdr->sh_offset
7293 + (l - contents)
7294 + sizeof (Elf_External_Options)
7295 + (sizeof (Elf32_External_RegInfo) - 4)),
7296 SEEK_SET) != 0)
7297 return FALSE;
7298 H_PUT_32 (abfd, elf_gp (abfd), buf);
7299 if (bfd_bwrite (buf, 4, abfd) != 4)
7300 return FALSE;
7301 }
7302 l += intopt.size;
7303 }
7304 }
7305
7306 if (hdr->bfd_section != NULL)
7307 {
7308 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7309
7310 /* .sbss is not handled specially here because the GNU/Linux
7311 prelinker can convert .sbss from NOBITS to PROGBITS and
7312 changing it back to NOBITS breaks the binary. The entry in
7313 _bfd_mips_elf_special_sections will ensure the correct flags
7314 are set on .sbss if BFD creates it without reading it from an
7315 input file, and without special handling here the flags set
7316 on it in an input file will be followed. */
7317 if (strcmp (name, ".sdata") == 0
7318 || strcmp (name, ".lit8") == 0
7319 || strcmp (name, ".lit4") == 0)
7320 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7321 else if (strcmp (name, ".srdata") == 0)
7322 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7323 else if (strcmp (name, ".compact_rel") == 0)
7324 hdr->sh_flags = 0;
7325 else if (strcmp (name, ".rtproc") == 0)
7326 {
7327 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7328 {
7329 unsigned int adjust;
7330
7331 adjust = hdr->sh_size % hdr->sh_addralign;
7332 if (adjust != 0)
7333 hdr->sh_size += hdr->sh_addralign - adjust;
7334 }
7335 }
7336 }
7337
7338 return TRUE;
7339 }
7340
7341 /* Handle a MIPS specific section when reading an object file. This
7342 is called when elfcode.h finds a section with an unknown type.
7343 This routine supports both the 32-bit and 64-bit ELF ABI.
7344
7345 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7346 how to. */
7347
7348 bfd_boolean
7349 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7350 Elf_Internal_Shdr *hdr,
7351 const char *name,
7352 int shindex)
7353 {
7354 flagword flags = 0;
7355
7356 /* There ought to be a place to keep ELF backend specific flags, but
7357 at the moment there isn't one. We just keep track of the
7358 sections by their name, instead. Fortunately, the ABI gives
7359 suggested names for all the MIPS specific sections, so we will
7360 probably get away with this. */
7361 switch (hdr->sh_type)
7362 {
7363 case SHT_MIPS_LIBLIST:
7364 if (strcmp (name, ".liblist") != 0)
7365 return FALSE;
7366 break;
7367 case SHT_MIPS_MSYM:
7368 if (strcmp (name, ".msym") != 0)
7369 return FALSE;
7370 break;
7371 case SHT_MIPS_CONFLICT:
7372 if (strcmp (name, ".conflict") != 0)
7373 return FALSE;
7374 break;
7375 case SHT_MIPS_GPTAB:
7376 if (! CONST_STRNEQ (name, ".gptab."))
7377 return FALSE;
7378 break;
7379 case SHT_MIPS_UCODE:
7380 if (strcmp (name, ".ucode") != 0)
7381 return FALSE;
7382 break;
7383 case SHT_MIPS_DEBUG:
7384 if (strcmp (name, ".mdebug") != 0)
7385 return FALSE;
7386 flags = SEC_DEBUGGING;
7387 break;
7388 case SHT_MIPS_REGINFO:
7389 if (strcmp (name, ".reginfo") != 0
7390 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7391 return FALSE;
7392 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7393 break;
7394 case SHT_MIPS_IFACE:
7395 if (strcmp (name, ".MIPS.interfaces") != 0)
7396 return FALSE;
7397 break;
7398 case SHT_MIPS_CONTENT:
7399 if (! CONST_STRNEQ (name, ".MIPS.content"))
7400 return FALSE;
7401 break;
7402 case SHT_MIPS_OPTIONS:
7403 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7404 return FALSE;
7405 break;
7406 case SHT_MIPS_ABIFLAGS:
7407 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7408 return FALSE;
7409 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7410 break;
7411 case SHT_MIPS_DWARF:
7412 if (! CONST_STRNEQ (name, ".debug_")
7413 && ! CONST_STRNEQ (name, ".zdebug_"))
7414 return FALSE;
7415 break;
7416 case SHT_MIPS_SYMBOL_LIB:
7417 if (strcmp (name, ".MIPS.symlib") != 0)
7418 return FALSE;
7419 break;
7420 case SHT_MIPS_EVENTS:
7421 if (! CONST_STRNEQ (name, ".MIPS.events")
7422 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7423 return FALSE;
7424 break;
7425 default:
7426 break;
7427 }
7428
7429 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7430 return FALSE;
7431
7432 if (flags)
7433 {
7434 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7435 (bfd_get_section_flags (abfd,
7436 hdr->bfd_section)
7437 | flags)))
7438 return FALSE;
7439 }
7440
7441 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7442 {
7443 Elf_External_ABIFlags_v0 ext;
7444
7445 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7446 &ext, 0, sizeof ext))
7447 return FALSE;
7448 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7449 &mips_elf_tdata (abfd)->abiflags);
7450 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7451 return FALSE;
7452 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7453 }
7454
7455 /* FIXME: We should record sh_info for a .gptab section. */
7456
7457 /* For a .reginfo section, set the gp value in the tdata information
7458 from the contents of this section. We need the gp value while
7459 processing relocs, so we just get it now. The .reginfo section
7460 is not used in the 64-bit MIPS ELF ABI. */
7461 if (hdr->sh_type == SHT_MIPS_REGINFO)
7462 {
7463 Elf32_External_RegInfo ext;
7464 Elf32_RegInfo s;
7465
7466 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7467 &ext, 0, sizeof ext))
7468 return FALSE;
7469 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7470 elf_gp (abfd) = s.ri_gp_value;
7471 }
7472
7473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7474 set the gp value based on what we find. We may see both
7475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7476 they should agree. */
7477 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7478 {
7479 bfd_byte *contents, *l, *lend;
7480
7481 contents = bfd_malloc (hdr->sh_size);
7482 if (contents == NULL)
7483 return FALSE;
7484 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7485 0, hdr->sh_size))
7486 {
7487 free (contents);
7488 return FALSE;
7489 }
7490 l = contents;
7491 lend = contents + hdr->sh_size;
7492 while (l + sizeof (Elf_External_Options) <= lend)
7493 {
7494 Elf_Internal_Options intopt;
7495
7496 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7497 &intopt);
7498 if (intopt.size < sizeof (Elf_External_Options))
7499 {
7500 _bfd_error_handler
7501 /* xgettext:c-format */
7502 (_("%pB: warning: bad `%s' option size %u smaller than"
7503 " its header"),
7504 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7505 break;
7506 }
7507 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7508 {
7509 Elf64_Internal_RegInfo intreg;
7510
7511 bfd_mips_elf64_swap_reginfo_in
7512 (abfd,
7513 ((Elf64_External_RegInfo *)
7514 (l + sizeof (Elf_External_Options))),
7515 &intreg);
7516 elf_gp (abfd) = intreg.ri_gp_value;
7517 }
7518 else if (intopt.kind == ODK_REGINFO)
7519 {
7520 Elf32_RegInfo intreg;
7521
7522 bfd_mips_elf32_swap_reginfo_in
7523 (abfd,
7524 ((Elf32_External_RegInfo *)
7525 (l + sizeof (Elf_External_Options))),
7526 &intreg);
7527 elf_gp (abfd) = intreg.ri_gp_value;
7528 }
7529 l += intopt.size;
7530 }
7531 free (contents);
7532 }
7533
7534 return TRUE;
7535 }
7536
7537 /* Set the correct type for a MIPS ELF section. We do this by the
7538 section name, which is a hack, but ought to work. This routine is
7539 used by both the 32-bit and the 64-bit ABI. */
7540
7541 bfd_boolean
7542 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7543 {
7544 const char *name = bfd_get_section_name (abfd, sec);
7545
7546 if (strcmp (name, ".liblist") == 0)
7547 {
7548 hdr->sh_type = SHT_MIPS_LIBLIST;
7549 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7550 /* The sh_link field is set in final_write_processing. */
7551 }
7552 else if (strcmp (name, ".conflict") == 0)
7553 hdr->sh_type = SHT_MIPS_CONFLICT;
7554 else if (CONST_STRNEQ (name, ".gptab."))
7555 {
7556 hdr->sh_type = SHT_MIPS_GPTAB;
7557 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7558 /* The sh_info field is set in final_write_processing. */
7559 }
7560 else if (strcmp (name, ".ucode") == 0)
7561 hdr->sh_type = SHT_MIPS_UCODE;
7562 else if (strcmp (name, ".mdebug") == 0)
7563 {
7564 hdr->sh_type = SHT_MIPS_DEBUG;
7565 /* In a shared object on IRIX 5.3, the .mdebug section has an
7566 entsize of 0. FIXME: Does this matter? */
7567 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7568 hdr->sh_entsize = 0;
7569 else
7570 hdr->sh_entsize = 1;
7571 }
7572 else if (strcmp (name, ".reginfo") == 0)
7573 {
7574 hdr->sh_type = SHT_MIPS_REGINFO;
7575 /* In a shared object on IRIX 5.3, the .reginfo section has an
7576 entsize of 0x18. FIXME: Does this matter? */
7577 if (SGI_COMPAT (abfd))
7578 {
7579 if ((abfd->flags & DYNAMIC) != 0)
7580 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7581 else
7582 hdr->sh_entsize = 1;
7583 }
7584 else
7585 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7586 }
7587 else if (SGI_COMPAT (abfd)
7588 && (strcmp (name, ".hash") == 0
7589 || strcmp (name, ".dynamic") == 0
7590 || strcmp (name, ".dynstr") == 0))
7591 {
7592 if (SGI_COMPAT (abfd))
7593 hdr->sh_entsize = 0;
7594 #if 0
7595 /* This isn't how the IRIX6 linker behaves. */
7596 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7597 #endif
7598 }
7599 else if (strcmp (name, ".got") == 0
7600 || strcmp (name, ".srdata") == 0
7601 || strcmp (name, ".sdata") == 0
7602 || strcmp (name, ".sbss") == 0
7603 || strcmp (name, ".lit4") == 0
7604 || strcmp (name, ".lit8") == 0)
7605 hdr->sh_flags |= SHF_MIPS_GPREL;
7606 else if (strcmp (name, ".MIPS.interfaces") == 0)
7607 {
7608 hdr->sh_type = SHT_MIPS_IFACE;
7609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7610 }
7611 else if (CONST_STRNEQ (name, ".MIPS.content"))
7612 {
7613 hdr->sh_type = SHT_MIPS_CONTENT;
7614 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7615 /* The sh_info field is set in final_write_processing. */
7616 }
7617 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7618 {
7619 hdr->sh_type = SHT_MIPS_OPTIONS;
7620 hdr->sh_entsize = 1;
7621 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7622 }
7623 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7624 {
7625 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7626 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7627 }
7628 else if (CONST_STRNEQ (name, ".debug_")
7629 || CONST_STRNEQ (name, ".zdebug_"))
7630 {
7631 hdr->sh_type = SHT_MIPS_DWARF;
7632
7633 /* Irix facilities such as libexc expect a single .debug_frame
7634 per executable, the system ones have NOSTRIP set and the linker
7635 doesn't merge sections with different flags so ... */
7636 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7637 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7638 }
7639 else if (strcmp (name, ".MIPS.symlib") == 0)
7640 {
7641 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7642 /* The sh_link and sh_info fields are set in
7643 final_write_processing. */
7644 }
7645 else if (CONST_STRNEQ (name, ".MIPS.events")
7646 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7647 {
7648 hdr->sh_type = SHT_MIPS_EVENTS;
7649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7650 /* The sh_link field is set in final_write_processing. */
7651 }
7652 else if (strcmp (name, ".msym") == 0)
7653 {
7654 hdr->sh_type = SHT_MIPS_MSYM;
7655 hdr->sh_flags |= SHF_ALLOC;
7656 hdr->sh_entsize = 8;
7657 }
7658
7659 /* The generic elf_fake_sections will set up REL_HDR using the default
7660 kind of relocations. We used to set up a second header for the
7661 non-default kind of relocations here, but only NewABI would use
7662 these, and the IRIX ld doesn't like resulting empty RELA sections.
7663 Thus we create those header only on demand now. */
7664
7665 return TRUE;
7666 }
7667
7668 /* Given a BFD section, try to locate the corresponding ELF section
7669 index. This is used by both the 32-bit and the 64-bit ABI.
7670 Actually, it's not clear to me that the 64-bit ABI supports these,
7671 but for non-PIC objects we will certainly want support for at least
7672 the .scommon section. */
7673
7674 bfd_boolean
7675 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7676 asection *sec, int *retval)
7677 {
7678 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7679 {
7680 *retval = SHN_MIPS_SCOMMON;
7681 return TRUE;
7682 }
7683 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7684 {
7685 *retval = SHN_MIPS_ACOMMON;
7686 return TRUE;
7687 }
7688 return FALSE;
7689 }
7690 \f
7691 /* Hook called by the linker routine which adds symbols from an object
7692 file. We must handle the special MIPS section numbers here. */
7693
7694 bfd_boolean
7695 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7696 Elf_Internal_Sym *sym, const char **namep,
7697 flagword *flagsp ATTRIBUTE_UNUSED,
7698 asection **secp, bfd_vma *valp)
7699 {
7700 if (SGI_COMPAT (abfd)
7701 && (abfd->flags & DYNAMIC) != 0
7702 && strcmp (*namep, "_rld_new_interface") == 0)
7703 {
7704 /* Skip IRIX5 rld entry name. */
7705 *namep = NULL;
7706 return TRUE;
7707 }
7708
7709 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7710 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7711 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7712 a magic symbol resolved by the linker, we ignore this bogus definition
7713 of _gp_disp. New ABI objects do not suffer from this problem so this
7714 is not done for them. */
7715 if (!NEWABI_P(abfd)
7716 && (sym->st_shndx == SHN_ABS)
7717 && (strcmp (*namep, "_gp_disp") == 0))
7718 {
7719 *namep = NULL;
7720 return TRUE;
7721 }
7722
7723 switch (sym->st_shndx)
7724 {
7725 case SHN_COMMON:
7726 /* Common symbols less than the GP size are automatically
7727 treated as SHN_MIPS_SCOMMON symbols. */
7728 if (sym->st_size > elf_gp_size (abfd)
7729 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7730 || IRIX_COMPAT (abfd) == ict_irix6)
7731 break;
7732 /* Fall through. */
7733 case SHN_MIPS_SCOMMON:
7734 *secp = bfd_make_section_old_way (abfd, ".scommon");
7735 (*secp)->flags |= SEC_IS_COMMON;
7736 *valp = sym->st_size;
7737 break;
7738
7739 case SHN_MIPS_TEXT:
7740 /* This section is used in a shared object. */
7741 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7742 {
7743 asymbol *elf_text_symbol;
7744 asection *elf_text_section;
7745 bfd_size_type amt = sizeof (asection);
7746
7747 elf_text_section = bfd_zalloc (abfd, amt);
7748 if (elf_text_section == NULL)
7749 return FALSE;
7750
7751 amt = sizeof (asymbol);
7752 elf_text_symbol = bfd_zalloc (abfd, amt);
7753 if (elf_text_symbol == NULL)
7754 return FALSE;
7755
7756 /* Initialize the section. */
7757
7758 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7759 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7760
7761 elf_text_section->symbol = elf_text_symbol;
7762 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7763
7764 elf_text_section->name = ".text";
7765 elf_text_section->flags = SEC_NO_FLAGS;
7766 elf_text_section->output_section = NULL;
7767 elf_text_section->owner = abfd;
7768 elf_text_symbol->name = ".text";
7769 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7770 elf_text_symbol->section = elf_text_section;
7771 }
7772 /* This code used to do *secp = bfd_und_section_ptr if
7773 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7774 so I took it out. */
7775 *secp = mips_elf_tdata (abfd)->elf_text_section;
7776 break;
7777
7778 case SHN_MIPS_ACOMMON:
7779 /* Fall through. XXX Can we treat this as allocated data? */
7780 case SHN_MIPS_DATA:
7781 /* This section is used in a shared object. */
7782 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7783 {
7784 asymbol *elf_data_symbol;
7785 asection *elf_data_section;
7786 bfd_size_type amt = sizeof (asection);
7787
7788 elf_data_section = bfd_zalloc (abfd, amt);
7789 if (elf_data_section == NULL)
7790 return FALSE;
7791
7792 amt = sizeof (asymbol);
7793 elf_data_symbol = bfd_zalloc (abfd, amt);
7794 if (elf_data_symbol == NULL)
7795 return FALSE;
7796
7797 /* Initialize the section. */
7798
7799 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7800 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7801
7802 elf_data_section->symbol = elf_data_symbol;
7803 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7804
7805 elf_data_section->name = ".data";
7806 elf_data_section->flags = SEC_NO_FLAGS;
7807 elf_data_section->output_section = NULL;
7808 elf_data_section->owner = abfd;
7809 elf_data_symbol->name = ".data";
7810 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7811 elf_data_symbol->section = elf_data_section;
7812 }
7813 /* This code used to do *secp = bfd_und_section_ptr if
7814 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7815 so I took it out. */
7816 *secp = mips_elf_tdata (abfd)->elf_data_section;
7817 break;
7818
7819 case SHN_MIPS_SUNDEFINED:
7820 *secp = bfd_und_section_ptr;
7821 break;
7822 }
7823
7824 if (SGI_COMPAT (abfd)
7825 && ! bfd_link_pic (info)
7826 && info->output_bfd->xvec == abfd->xvec
7827 && strcmp (*namep, "__rld_obj_head") == 0)
7828 {
7829 struct elf_link_hash_entry *h;
7830 struct bfd_link_hash_entry *bh;
7831
7832 /* Mark __rld_obj_head as dynamic. */
7833 bh = NULL;
7834 if (! (_bfd_generic_link_add_one_symbol
7835 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7836 get_elf_backend_data (abfd)->collect, &bh)))
7837 return FALSE;
7838
7839 h = (struct elf_link_hash_entry *) bh;
7840 h->non_elf = 0;
7841 h->def_regular = 1;
7842 h->type = STT_OBJECT;
7843
7844 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7845 return FALSE;
7846
7847 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7848 mips_elf_hash_table (info)->rld_symbol = h;
7849 }
7850
7851 /* If this is a mips16 text symbol, add 1 to the value to make it
7852 odd. This will cause something like .word SYM to come up with
7853 the right value when it is loaded into the PC. */
7854 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7855 ++*valp;
7856
7857 return TRUE;
7858 }
7859
7860 /* This hook function is called before the linker writes out a global
7861 symbol. We mark symbols as small common if appropriate. This is
7862 also where we undo the increment of the value for a mips16 symbol. */
7863
7864 int
7865 _bfd_mips_elf_link_output_symbol_hook
7866 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7867 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7868 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7869 {
7870 /* If we see a common symbol, which implies a relocatable link, then
7871 if a symbol was small common in an input file, mark it as small
7872 common in the output file. */
7873 if (sym->st_shndx == SHN_COMMON
7874 && strcmp (input_sec->name, ".scommon") == 0)
7875 sym->st_shndx = SHN_MIPS_SCOMMON;
7876
7877 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7878 sym->st_value &= ~1;
7879
7880 return 1;
7881 }
7882 \f
7883 /* Functions for the dynamic linker. */
7884
7885 /* Create dynamic sections when linking against a dynamic object. */
7886
7887 bfd_boolean
7888 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7889 {
7890 struct elf_link_hash_entry *h;
7891 struct bfd_link_hash_entry *bh;
7892 flagword flags;
7893 register asection *s;
7894 const char * const *namep;
7895 struct mips_elf_link_hash_table *htab;
7896
7897 htab = mips_elf_hash_table (info);
7898 BFD_ASSERT (htab != NULL);
7899
7900 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7901 | SEC_LINKER_CREATED | SEC_READONLY);
7902
7903 /* The psABI requires a read-only .dynamic section, but the VxWorks
7904 EABI doesn't. */
7905 if (!htab->is_vxworks)
7906 {
7907 s = bfd_get_linker_section (abfd, ".dynamic");
7908 if (s != NULL)
7909 {
7910 if (! bfd_set_section_flags (abfd, s, flags))
7911 return FALSE;
7912 }
7913 }
7914
7915 /* We need to create .got section. */
7916 if (!mips_elf_create_got_section (abfd, info))
7917 return FALSE;
7918
7919 if (! mips_elf_rel_dyn_section (info, TRUE))
7920 return FALSE;
7921
7922 /* Create .stub section. */
7923 s = bfd_make_section_anyway_with_flags (abfd,
7924 MIPS_ELF_STUB_SECTION_NAME (abfd),
7925 flags | SEC_CODE);
7926 if (s == NULL
7927 || ! bfd_set_section_alignment (abfd, s,
7928 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7929 return FALSE;
7930 htab->sstubs = s;
7931
7932 if (!mips_elf_hash_table (info)->use_rld_obj_head
7933 && bfd_link_executable (info)
7934 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7935 {
7936 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7937 flags &~ (flagword) SEC_READONLY);
7938 if (s == NULL
7939 || ! bfd_set_section_alignment (abfd, s,
7940 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7941 return FALSE;
7942 }
7943
7944 /* On IRIX5, we adjust add some additional symbols and change the
7945 alignments of several sections. There is no ABI documentation
7946 indicating that this is necessary on IRIX6, nor any evidence that
7947 the linker takes such action. */
7948 if (IRIX_COMPAT (abfd) == ict_irix5)
7949 {
7950 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7951 {
7952 bh = NULL;
7953 if (! (_bfd_generic_link_add_one_symbol
7954 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7955 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7956 return FALSE;
7957
7958 h = (struct elf_link_hash_entry *) bh;
7959 h->mark = 1;
7960 h->non_elf = 0;
7961 h->def_regular = 1;
7962 h->type = STT_SECTION;
7963
7964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7965 return FALSE;
7966 }
7967
7968 /* We need to create a .compact_rel section. */
7969 if (SGI_COMPAT (abfd))
7970 {
7971 if (!mips_elf_create_compact_rel_section (abfd, info))
7972 return FALSE;
7973 }
7974
7975 /* Change alignments of some sections. */
7976 s = bfd_get_linker_section (abfd, ".hash");
7977 if (s != NULL)
7978 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7979
7980 s = bfd_get_linker_section (abfd, ".dynsym");
7981 if (s != NULL)
7982 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7983
7984 s = bfd_get_linker_section (abfd, ".dynstr");
7985 if (s != NULL)
7986 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7987
7988 /* ??? */
7989 s = bfd_get_section_by_name (abfd, ".reginfo");
7990 if (s != NULL)
7991 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7992
7993 s = bfd_get_linker_section (abfd, ".dynamic");
7994 if (s != NULL)
7995 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7996 }
7997
7998 if (bfd_link_executable (info))
7999 {
8000 const char *name;
8001
8002 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8003 bh = NULL;
8004 if (!(_bfd_generic_link_add_one_symbol
8005 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8006 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8007 return FALSE;
8008
8009 h = (struct elf_link_hash_entry *) bh;
8010 h->non_elf = 0;
8011 h->def_regular = 1;
8012 h->type = STT_SECTION;
8013
8014 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8015 return FALSE;
8016
8017 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8018 {
8019 /* __rld_map is a four byte word located in the .data section
8020 and is filled in by the rtld to contain a pointer to
8021 the _r_debug structure. Its symbol value will be set in
8022 _bfd_mips_elf_finish_dynamic_symbol. */
8023 s = bfd_get_linker_section (abfd, ".rld_map");
8024 BFD_ASSERT (s != NULL);
8025
8026 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8027 bh = NULL;
8028 if (!(_bfd_generic_link_add_one_symbol
8029 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8030 get_elf_backend_data (abfd)->collect, &bh)))
8031 return FALSE;
8032
8033 h = (struct elf_link_hash_entry *) bh;
8034 h->non_elf = 0;
8035 h->def_regular = 1;
8036 h->type = STT_OBJECT;
8037
8038 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8039 return FALSE;
8040 mips_elf_hash_table (info)->rld_symbol = h;
8041 }
8042 }
8043
8044 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8045 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8046 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8047 return FALSE;
8048
8049 /* Do the usual VxWorks handling. */
8050 if (htab->is_vxworks
8051 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8052 return FALSE;
8053
8054 return TRUE;
8055 }
8056 \f
8057 /* Return true if relocation REL against section SEC is a REL rather than
8058 RELA relocation. RELOCS is the first relocation in the section and
8059 ABFD is the bfd that contains SEC. */
8060
8061 static bfd_boolean
8062 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8063 const Elf_Internal_Rela *relocs,
8064 const Elf_Internal_Rela *rel)
8065 {
8066 Elf_Internal_Shdr *rel_hdr;
8067 const struct elf_backend_data *bed;
8068
8069 /* To determine which flavor of relocation this is, we depend on the
8070 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8071 rel_hdr = elf_section_data (sec)->rel.hdr;
8072 if (rel_hdr == NULL)
8073 return FALSE;
8074 bed = get_elf_backend_data (abfd);
8075 return ((size_t) (rel - relocs)
8076 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8077 }
8078
8079 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8080 HOWTO is the relocation's howto and CONTENTS points to the contents
8081 of the section that REL is against. */
8082
8083 static bfd_vma
8084 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8085 reloc_howto_type *howto, bfd_byte *contents)
8086 {
8087 bfd_byte *location;
8088 unsigned int r_type;
8089 bfd_vma addend;
8090 bfd_vma bytes;
8091
8092 r_type = ELF_R_TYPE (abfd, rel->r_info);
8093 location = contents + rel->r_offset;
8094
8095 /* Get the addend, which is stored in the input file. */
8096 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8097 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8098 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8099
8100 addend = bytes & howto->src_mask;
8101
8102 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8103 accordingly. */
8104 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8105 addend <<= 1;
8106
8107 return addend;
8108 }
8109
8110 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8111 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8112 and update *ADDEND with the final addend. Return true on success
8113 or false if the LO16 could not be found. RELEND is the exclusive
8114 upper bound on the relocations for REL's section. */
8115
8116 static bfd_boolean
8117 mips_elf_add_lo16_rel_addend (bfd *abfd,
8118 const Elf_Internal_Rela *rel,
8119 const Elf_Internal_Rela *relend,
8120 bfd_byte *contents, bfd_vma *addend)
8121 {
8122 unsigned int r_type, lo16_type;
8123 const Elf_Internal_Rela *lo16_relocation;
8124 reloc_howto_type *lo16_howto;
8125 bfd_vma l;
8126
8127 r_type = ELF_R_TYPE (abfd, rel->r_info);
8128 if (mips16_reloc_p (r_type))
8129 lo16_type = R_MIPS16_LO16;
8130 else if (micromips_reloc_p (r_type))
8131 lo16_type = R_MICROMIPS_LO16;
8132 else if (r_type == R_MIPS_PCHI16)
8133 lo16_type = R_MIPS_PCLO16;
8134 else
8135 lo16_type = R_MIPS_LO16;
8136
8137 /* The combined value is the sum of the HI16 addend, left-shifted by
8138 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8139 code does a `lui' of the HI16 value, and then an `addiu' of the
8140 LO16 value.)
8141
8142 Scan ahead to find a matching LO16 relocation.
8143
8144 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8145 be immediately following. However, for the IRIX6 ABI, the next
8146 relocation may be a composed relocation consisting of several
8147 relocations for the same address. In that case, the R_MIPS_LO16
8148 relocation may occur as one of these. We permit a similar
8149 extension in general, as that is useful for GCC.
8150
8151 In some cases GCC dead code elimination removes the LO16 but keeps
8152 the corresponding HI16. This is strictly speaking a violation of
8153 the ABI but not immediately harmful. */
8154 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8155 if (lo16_relocation == NULL)
8156 return FALSE;
8157
8158 /* Obtain the addend kept there. */
8159 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8160 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8161
8162 l <<= lo16_howto->rightshift;
8163 l = _bfd_mips_elf_sign_extend (l, 16);
8164
8165 *addend <<= 16;
8166 *addend += l;
8167 return TRUE;
8168 }
8169
8170 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8171 store the contents in *CONTENTS on success. Assume that *CONTENTS
8172 already holds the contents if it is nonull on entry. */
8173
8174 static bfd_boolean
8175 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8176 {
8177 if (*contents)
8178 return TRUE;
8179
8180 /* Get cached copy if it exists. */
8181 if (elf_section_data (sec)->this_hdr.contents != NULL)
8182 {
8183 *contents = elf_section_data (sec)->this_hdr.contents;
8184 return TRUE;
8185 }
8186
8187 return bfd_malloc_and_get_section (abfd, sec, contents);
8188 }
8189
8190 /* Make a new PLT record to keep internal data. */
8191
8192 static struct plt_entry *
8193 mips_elf_make_plt_record (bfd *abfd)
8194 {
8195 struct plt_entry *entry;
8196
8197 entry = bfd_zalloc (abfd, sizeof (*entry));
8198 if (entry == NULL)
8199 return NULL;
8200
8201 entry->stub_offset = MINUS_ONE;
8202 entry->mips_offset = MINUS_ONE;
8203 entry->comp_offset = MINUS_ONE;
8204 entry->gotplt_index = MINUS_ONE;
8205 return entry;
8206 }
8207
8208 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8209 for PIC code, as otherwise there is no load-time relocation involved
8210 and local GOT entries whose value is zero at static link time will
8211 retain their value at load time. */
8212
8213 static bfd_boolean
8214 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8215 struct mips_elf_link_hash_table *htab,
8216 unsigned int r_type)
8217 {
8218 union
8219 {
8220 struct elf_link_hash_entry *eh;
8221 struct bfd_link_hash_entry *bh;
8222 }
8223 hzero;
8224
8225 BFD_ASSERT (!htab->use_absolute_zero);
8226 BFD_ASSERT (bfd_link_pic (info));
8227
8228 hzero.bh = NULL;
8229 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8230 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8231 NULL, FALSE, FALSE, &hzero.bh))
8232 return FALSE;
8233
8234 BFD_ASSERT (hzero.bh != NULL);
8235 hzero.eh->size = 0;
8236 hzero.eh->type = STT_NOTYPE;
8237 hzero.eh->other = STV_PROTECTED;
8238 hzero.eh->def_regular = 1;
8239 hzero.eh->non_elf = 0;
8240
8241 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8242 return FALSE;
8243
8244 htab->use_absolute_zero = TRUE;
8245
8246 return TRUE;
8247 }
8248
8249 /* Look through the relocs for a section during the first phase, and
8250 allocate space in the global offset table and record the need for
8251 standard MIPS and compressed procedure linkage table entries. */
8252
8253 bfd_boolean
8254 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8255 asection *sec, const Elf_Internal_Rela *relocs)
8256 {
8257 const char *name;
8258 bfd *dynobj;
8259 Elf_Internal_Shdr *symtab_hdr;
8260 struct elf_link_hash_entry **sym_hashes;
8261 size_t extsymoff;
8262 const Elf_Internal_Rela *rel;
8263 const Elf_Internal_Rela *rel_end;
8264 asection *sreloc;
8265 const struct elf_backend_data *bed;
8266 struct mips_elf_link_hash_table *htab;
8267 bfd_byte *contents;
8268 bfd_vma addend;
8269 reloc_howto_type *howto;
8270
8271 if (bfd_link_relocatable (info))
8272 return TRUE;
8273
8274 htab = mips_elf_hash_table (info);
8275 BFD_ASSERT (htab != NULL);
8276
8277 dynobj = elf_hash_table (info)->dynobj;
8278 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8279 sym_hashes = elf_sym_hashes (abfd);
8280 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8281
8282 bed = get_elf_backend_data (abfd);
8283 rel_end = relocs + sec->reloc_count;
8284
8285 /* Check for the mips16 stub sections. */
8286
8287 name = bfd_get_section_name (abfd, sec);
8288 if (FN_STUB_P (name))
8289 {
8290 unsigned long r_symndx;
8291
8292 /* Look at the relocation information to figure out which symbol
8293 this is for. */
8294
8295 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8296 if (r_symndx == 0)
8297 {
8298 _bfd_error_handler
8299 /* xgettext:c-format */
8300 (_("%pB: warning: cannot determine the target function for"
8301 " stub section `%s'"),
8302 abfd, name);
8303 bfd_set_error (bfd_error_bad_value);
8304 return FALSE;
8305 }
8306
8307 if (r_symndx < extsymoff
8308 || sym_hashes[r_symndx - extsymoff] == NULL)
8309 {
8310 asection *o;
8311
8312 /* This stub is for a local symbol. This stub will only be
8313 needed if there is some relocation in this BFD, other
8314 than a 16 bit function call, which refers to this symbol. */
8315 for (o = abfd->sections; o != NULL; o = o->next)
8316 {
8317 Elf_Internal_Rela *sec_relocs;
8318 const Elf_Internal_Rela *r, *rend;
8319
8320 /* We can ignore stub sections when looking for relocs. */
8321 if ((o->flags & SEC_RELOC) == 0
8322 || o->reloc_count == 0
8323 || section_allows_mips16_refs_p (o))
8324 continue;
8325
8326 sec_relocs
8327 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8328 info->keep_memory);
8329 if (sec_relocs == NULL)
8330 return FALSE;
8331
8332 rend = sec_relocs + o->reloc_count;
8333 for (r = sec_relocs; r < rend; r++)
8334 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8335 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8336 break;
8337
8338 if (elf_section_data (o)->relocs != sec_relocs)
8339 free (sec_relocs);
8340
8341 if (r < rend)
8342 break;
8343 }
8344
8345 if (o == NULL)
8346 {
8347 /* There is no non-call reloc for this stub, so we do
8348 not need it. Since this function is called before
8349 the linker maps input sections to output sections, we
8350 can easily discard it by setting the SEC_EXCLUDE
8351 flag. */
8352 sec->flags |= SEC_EXCLUDE;
8353 return TRUE;
8354 }
8355
8356 /* Record this stub in an array of local symbol stubs for
8357 this BFD. */
8358 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8359 {
8360 unsigned long symcount;
8361 asection **n;
8362 bfd_size_type amt;
8363
8364 if (elf_bad_symtab (abfd))
8365 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8366 else
8367 symcount = symtab_hdr->sh_info;
8368 amt = symcount * sizeof (asection *);
8369 n = bfd_zalloc (abfd, amt);
8370 if (n == NULL)
8371 return FALSE;
8372 mips_elf_tdata (abfd)->local_stubs = n;
8373 }
8374
8375 sec->flags |= SEC_KEEP;
8376 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8377
8378 /* We don't need to set mips16_stubs_seen in this case.
8379 That flag is used to see whether we need to look through
8380 the global symbol table for stubs. We don't need to set
8381 it here, because we just have a local stub. */
8382 }
8383 else
8384 {
8385 struct mips_elf_link_hash_entry *h;
8386
8387 h = ((struct mips_elf_link_hash_entry *)
8388 sym_hashes[r_symndx - extsymoff]);
8389
8390 while (h->root.root.type == bfd_link_hash_indirect
8391 || h->root.root.type == bfd_link_hash_warning)
8392 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8393
8394 /* H is the symbol this stub is for. */
8395
8396 /* If we already have an appropriate stub for this function, we
8397 don't need another one, so we can discard this one. Since
8398 this function is called before the linker maps input sections
8399 to output sections, we can easily discard it by setting the
8400 SEC_EXCLUDE flag. */
8401 if (h->fn_stub != NULL)
8402 {
8403 sec->flags |= SEC_EXCLUDE;
8404 return TRUE;
8405 }
8406
8407 sec->flags |= SEC_KEEP;
8408 h->fn_stub = sec;
8409 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8410 }
8411 }
8412 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8413 {
8414 unsigned long r_symndx;
8415 struct mips_elf_link_hash_entry *h;
8416 asection **loc;
8417
8418 /* Look at the relocation information to figure out which symbol
8419 this is for. */
8420
8421 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8422 if (r_symndx == 0)
8423 {
8424 _bfd_error_handler
8425 /* xgettext:c-format */
8426 (_("%pB: warning: cannot determine the target function for"
8427 " stub section `%s'"),
8428 abfd, name);
8429 bfd_set_error (bfd_error_bad_value);
8430 return FALSE;
8431 }
8432
8433 if (r_symndx < extsymoff
8434 || sym_hashes[r_symndx - extsymoff] == NULL)
8435 {
8436 asection *o;
8437
8438 /* This stub is for a local symbol. This stub will only be
8439 needed if there is some relocation (R_MIPS16_26) in this BFD
8440 that refers to this symbol. */
8441 for (o = abfd->sections; o != NULL; o = o->next)
8442 {
8443 Elf_Internal_Rela *sec_relocs;
8444 const Elf_Internal_Rela *r, *rend;
8445
8446 /* We can ignore stub sections when looking for relocs. */
8447 if ((o->flags & SEC_RELOC) == 0
8448 || o->reloc_count == 0
8449 || section_allows_mips16_refs_p (o))
8450 continue;
8451
8452 sec_relocs
8453 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8454 info->keep_memory);
8455 if (sec_relocs == NULL)
8456 return FALSE;
8457
8458 rend = sec_relocs + o->reloc_count;
8459 for (r = sec_relocs; r < rend; r++)
8460 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8461 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8462 break;
8463
8464 if (elf_section_data (o)->relocs != sec_relocs)
8465 free (sec_relocs);
8466
8467 if (r < rend)
8468 break;
8469 }
8470
8471 if (o == NULL)
8472 {
8473 /* There is no non-call reloc for this stub, so we do
8474 not need it. Since this function is called before
8475 the linker maps input sections to output sections, we
8476 can easily discard it by setting the SEC_EXCLUDE
8477 flag. */
8478 sec->flags |= SEC_EXCLUDE;
8479 return TRUE;
8480 }
8481
8482 /* Record this stub in an array of local symbol call_stubs for
8483 this BFD. */
8484 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8485 {
8486 unsigned long symcount;
8487 asection **n;
8488 bfd_size_type amt;
8489
8490 if (elf_bad_symtab (abfd))
8491 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8492 else
8493 symcount = symtab_hdr->sh_info;
8494 amt = symcount * sizeof (asection *);
8495 n = bfd_zalloc (abfd, amt);
8496 if (n == NULL)
8497 return FALSE;
8498 mips_elf_tdata (abfd)->local_call_stubs = n;
8499 }
8500
8501 sec->flags |= SEC_KEEP;
8502 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8503
8504 /* We don't need to set mips16_stubs_seen in this case.
8505 That flag is used to see whether we need to look through
8506 the global symbol table for stubs. We don't need to set
8507 it here, because we just have a local stub. */
8508 }
8509 else
8510 {
8511 h = ((struct mips_elf_link_hash_entry *)
8512 sym_hashes[r_symndx - extsymoff]);
8513
8514 /* H is the symbol this stub is for. */
8515
8516 if (CALL_FP_STUB_P (name))
8517 loc = &h->call_fp_stub;
8518 else
8519 loc = &h->call_stub;
8520
8521 /* If we already have an appropriate stub for this function, we
8522 don't need another one, so we can discard this one. Since
8523 this function is called before the linker maps input sections
8524 to output sections, we can easily discard it by setting the
8525 SEC_EXCLUDE flag. */
8526 if (*loc != NULL)
8527 {
8528 sec->flags |= SEC_EXCLUDE;
8529 return TRUE;
8530 }
8531
8532 sec->flags |= SEC_KEEP;
8533 *loc = sec;
8534 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8535 }
8536 }
8537
8538 sreloc = NULL;
8539 contents = NULL;
8540 for (rel = relocs; rel < rel_end; ++rel)
8541 {
8542 unsigned long r_symndx;
8543 unsigned int r_type;
8544 struct elf_link_hash_entry *h;
8545 bfd_boolean can_make_dynamic_p;
8546 bfd_boolean call_reloc_p;
8547 bfd_boolean constrain_symbol_p;
8548
8549 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8550 r_type = ELF_R_TYPE (abfd, rel->r_info);
8551
8552 if (r_symndx < extsymoff)
8553 h = NULL;
8554 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8555 {
8556 _bfd_error_handler
8557 /* xgettext:c-format */
8558 (_("%pB: malformed reloc detected for section %s"),
8559 abfd, name);
8560 bfd_set_error (bfd_error_bad_value);
8561 return FALSE;
8562 }
8563 else
8564 {
8565 h = sym_hashes[r_symndx - extsymoff];
8566 if (h != NULL)
8567 {
8568 while (h->root.type == bfd_link_hash_indirect
8569 || h->root.type == bfd_link_hash_warning)
8570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8571 }
8572 }
8573
8574 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8575 relocation into a dynamic one. */
8576 can_make_dynamic_p = FALSE;
8577
8578 /* Set CALL_RELOC_P to true if the relocation is for a call,
8579 and if pointer equality therefore doesn't matter. */
8580 call_reloc_p = FALSE;
8581
8582 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8583 into account when deciding how to define the symbol.
8584 Relocations in nonallocatable sections such as .pdr and
8585 .debug* should have no effect. */
8586 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8587
8588 switch (r_type)
8589 {
8590 case R_MIPS_CALL16:
8591 case R_MIPS_CALL_HI16:
8592 case R_MIPS_CALL_LO16:
8593 case R_MIPS16_CALL16:
8594 case R_MICROMIPS_CALL16:
8595 case R_MICROMIPS_CALL_HI16:
8596 case R_MICROMIPS_CALL_LO16:
8597 call_reloc_p = TRUE;
8598 /* Fall through. */
8599
8600 case R_MIPS_GOT16:
8601 case R_MIPS_GOT_LO16:
8602 case R_MIPS_GOT_PAGE:
8603 case R_MIPS_GOT_DISP:
8604 case R_MIPS16_GOT16:
8605 case R_MICROMIPS_GOT16:
8606 case R_MICROMIPS_GOT_LO16:
8607 case R_MICROMIPS_GOT_PAGE:
8608 case R_MICROMIPS_GOT_DISP:
8609 /* If we have a symbol that will resolve to zero at static link
8610 time and it is used by a GOT relocation applied to code we
8611 cannot relax to an immediate zero load, then we will be using
8612 the special `__gnu_absolute_zero' symbol whose value is zero
8613 at dynamic load time. We ignore HI16-type GOT relocations at
8614 this stage, because their handling will depend entirely on
8615 the corresponding LO16-type GOT relocation. */
8616 if (!call_hi16_reloc_p (r_type)
8617 && h != NULL
8618 && bfd_link_pic (info)
8619 && !htab->use_absolute_zero
8620 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8621 {
8622 bfd_boolean rel_reloc;
8623
8624 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8625 return FALSE;
8626
8627 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8629
8630 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8631 FALSE))
8632 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8633 return FALSE;
8634 }
8635
8636 /* Fall through. */
8637 case R_MIPS_GOT_HI16:
8638 case R_MIPS_GOT_OFST:
8639 case R_MIPS_TLS_GOTTPREL:
8640 case R_MIPS_TLS_GD:
8641 case R_MIPS_TLS_LDM:
8642 case R_MIPS16_TLS_GOTTPREL:
8643 case R_MIPS16_TLS_GD:
8644 case R_MIPS16_TLS_LDM:
8645 case R_MICROMIPS_GOT_HI16:
8646 case R_MICROMIPS_GOT_OFST:
8647 case R_MICROMIPS_TLS_GOTTPREL:
8648 case R_MICROMIPS_TLS_GD:
8649 case R_MICROMIPS_TLS_LDM:
8650 if (dynobj == NULL)
8651 elf_hash_table (info)->dynobj = dynobj = abfd;
8652 if (!mips_elf_create_got_section (dynobj, info))
8653 return FALSE;
8654 if (htab->is_vxworks && !bfd_link_pic (info))
8655 {
8656 _bfd_error_handler
8657 /* xgettext:c-format */
8658 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8659 abfd, (uint64_t) rel->r_offset);
8660 bfd_set_error (bfd_error_bad_value);
8661 return FALSE;
8662 }
8663 can_make_dynamic_p = TRUE;
8664 break;
8665
8666 case R_MIPS_NONE:
8667 case R_MIPS_JALR:
8668 case R_MICROMIPS_JALR:
8669 /* These relocations have empty fields and are purely there to
8670 provide link information. The symbol value doesn't matter. */
8671 constrain_symbol_p = FALSE;
8672 break;
8673
8674 case R_MIPS_GPREL16:
8675 case R_MIPS_GPREL32:
8676 case R_MIPS16_GPREL:
8677 case R_MICROMIPS_GPREL16:
8678 /* GP-relative relocations always resolve to a definition in a
8679 regular input file, ignoring the one-definition rule. This is
8680 important for the GP setup sequence in NewABI code, which
8681 always resolves to a local function even if other relocations
8682 against the symbol wouldn't. */
8683 constrain_symbol_p = FALSE;
8684 break;
8685
8686 case R_MIPS_32:
8687 case R_MIPS_REL32:
8688 case R_MIPS_64:
8689 /* In VxWorks executables, references to external symbols
8690 must be handled using copy relocs or PLT entries; it is not
8691 possible to convert this relocation into a dynamic one.
8692
8693 For executables that use PLTs and copy-relocs, we have a
8694 choice between converting the relocation into a dynamic
8695 one or using copy relocations or PLT entries. It is
8696 usually better to do the former, unless the relocation is
8697 against a read-only section. */
8698 if ((bfd_link_pic (info)
8699 || (h != NULL
8700 && !htab->is_vxworks
8701 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8702 && !(!info->nocopyreloc
8703 && !PIC_OBJECT_P (abfd)
8704 && MIPS_ELF_READONLY_SECTION (sec))))
8705 && (sec->flags & SEC_ALLOC) != 0)
8706 {
8707 can_make_dynamic_p = TRUE;
8708 if (dynobj == NULL)
8709 elf_hash_table (info)->dynobj = dynobj = abfd;
8710 }
8711 break;
8712
8713 case R_MIPS_26:
8714 case R_MIPS_PC16:
8715 case R_MIPS_PC21_S2:
8716 case R_MIPS_PC26_S2:
8717 case R_MIPS16_26:
8718 case R_MIPS16_PC16_S1:
8719 case R_MICROMIPS_26_S1:
8720 case R_MICROMIPS_PC7_S1:
8721 case R_MICROMIPS_PC10_S1:
8722 case R_MICROMIPS_PC16_S1:
8723 case R_MICROMIPS_PC23_S2:
8724 call_reloc_p = TRUE;
8725 break;
8726 }
8727
8728 if (h)
8729 {
8730 if (constrain_symbol_p)
8731 {
8732 if (!can_make_dynamic_p)
8733 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8734
8735 if (!call_reloc_p)
8736 h->pointer_equality_needed = 1;
8737
8738 /* We must not create a stub for a symbol that has
8739 relocations related to taking the function's address.
8740 This doesn't apply to VxWorks, where CALL relocs refer
8741 to a .got.plt entry instead of a normal .got entry. */
8742 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8743 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8744 }
8745
8746 /* Relocations against the special VxWorks __GOTT_BASE__ and
8747 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8748 room for them in .rela.dyn. */
8749 if (is_gott_symbol (info, h))
8750 {
8751 if (sreloc == NULL)
8752 {
8753 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8754 if (sreloc == NULL)
8755 return FALSE;
8756 }
8757 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8758 if (MIPS_ELF_READONLY_SECTION (sec))
8759 /* We tell the dynamic linker that there are
8760 relocations against the text segment. */
8761 info->flags |= DF_TEXTREL;
8762 }
8763 }
8764 else if (call_lo16_reloc_p (r_type)
8765 || got_lo16_reloc_p (r_type)
8766 || got_disp_reloc_p (r_type)
8767 || (got16_reloc_p (r_type) && htab->is_vxworks))
8768 {
8769 /* We may need a local GOT entry for this relocation. We
8770 don't count R_MIPS_GOT_PAGE because we can estimate the
8771 maximum number of pages needed by looking at the size of
8772 the segment. Similar comments apply to R_MIPS*_GOT16 and
8773 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8774 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8775 R_MIPS_CALL_HI16 because these are always followed by an
8776 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8777 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8778 rel->r_addend, info, r_type))
8779 return FALSE;
8780 }
8781
8782 if (h != NULL
8783 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8784 ELF_ST_IS_MIPS16 (h->other)))
8785 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8786
8787 switch (r_type)
8788 {
8789 case R_MIPS_CALL16:
8790 case R_MIPS16_CALL16:
8791 case R_MICROMIPS_CALL16:
8792 if (h == NULL)
8793 {
8794 _bfd_error_handler
8795 /* xgettext:c-format */
8796 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8797 abfd, (uint64_t) rel->r_offset);
8798 bfd_set_error (bfd_error_bad_value);
8799 return FALSE;
8800 }
8801 /* Fall through. */
8802
8803 case R_MIPS_CALL_HI16:
8804 case R_MIPS_CALL_LO16:
8805 case R_MICROMIPS_CALL_HI16:
8806 case R_MICROMIPS_CALL_LO16:
8807 if (h != NULL)
8808 {
8809 /* Make sure there is room in the regular GOT to hold the
8810 function's address. We may eliminate it in favour of
8811 a .got.plt entry later; see mips_elf_count_got_symbols. */
8812 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8813 r_type))
8814 return FALSE;
8815
8816 /* We need a stub, not a plt entry for the undefined
8817 function. But we record it as if it needs plt. See
8818 _bfd_elf_adjust_dynamic_symbol. */
8819 h->needs_plt = 1;
8820 h->type = STT_FUNC;
8821 }
8822 break;
8823
8824 case R_MIPS_GOT_PAGE:
8825 case R_MICROMIPS_GOT_PAGE:
8826 case R_MIPS16_GOT16:
8827 case R_MIPS_GOT16:
8828 case R_MIPS_GOT_HI16:
8829 case R_MIPS_GOT_LO16:
8830 case R_MICROMIPS_GOT16:
8831 case R_MICROMIPS_GOT_HI16:
8832 case R_MICROMIPS_GOT_LO16:
8833 if (!h || got_page_reloc_p (r_type))
8834 {
8835 /* This relocation needs (or may need, if h != NULL) a
8836 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8837 know for sure until we know whether the symbol is
8838 preemptible. */
8839 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8840 {
8841 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8842 return FALSE;
8843 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8844 addend = mips_elf_read_rel_addend (abfd, rel,
8845 howto, contents);
8846 if (got16_reloc_p (r_type))
8847 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8848 contents, &addend);
8849 else
8850 addend <<= howto->rightshift;
8851 }
8852 else
8853 addend = rel->r_addend;
8854 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8855 h, addend))
8856 return FALSE;
8857
8858 if (h)
8859 {
8860 struct mips_elf_link_hash_entry *hmips =
8861 (struct mips_elf_link_hash_entry *) h;
8862
8863 /* This symbol is definitely not overridable. */
8864 if (hmips->root.def_regular
8865 && ! (bfd_link_pic (info) && ! info->symbolic
8866 && ! hmips->root.forced_local))
8867 h = NULL;
8868 }
8869 }
8870 /* If this is a global, overridable symbol, GOT_PAGE will
8871 decay to GOT_DISP, so we'll need a GOT entry for it. */
8872 /* Fall through. */
8873
8874 case R_MIPS_GOT_DISP:
8875 case R_MICROMIPS_GOT_DISP:
8876 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8877 FALSE, r_type))
8878 return FALSE;
8879 break;
8880
8881 case R_MIPS_TLS_GOTTPREL:
8882 case R_MIPS16_TLS_GOTTPREL:
8883 case R_MICROMIPS_TLS_GOTTPREL:
8884 if (bfd_link_pic (info))
8885 info->flags |= DF_STATIC_TLS;
8886 /* Fall through */
8887
8888 case R_MIPS_TLS_LDM:
8889 case R_MIPS16_TLS_LDM:
8890 case R_MICROMIPS_TLS_LDM:
8891 if (tls_ldm_reloc_p (r_type))
8892 {
8893 r_symndx = STN_UNDEF;
8894 h = NULL;
8895 }
8896 /* Fall through */
8897
8898 case R_MIPS_TLS_GD:
8899 case R_MIPS16_TLS_GD:
8900 case R_MICROMIPS_TLS_GD:
8901 /* This symbol requires a global offset table entry, or two
8902 for TLS GD relocations. */
8903 if (h != NULL)
8904 {
8905 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8906 FALSE, r_type))
8907 return FALSE;
8908 }
8909 else
8910 {
8911 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8912 rel->r_addend,
8913 info, r_type))
8914 return FALSE;
8915 }
8916 break;
8917
8918 case R_MIPS_32:
8919 case R_MIPS_REL32:
8920 case R_MIPS_64:
8921 /* In VxWorks executables, references to external symbols
8922 are handled using copy relocs or PLT stubs, so there's
8923 no need to add a .rela.dyn entry for this relocation. */
8924 if (can_make_dynamic_p)
8925 {
8926 if (sreloc == NULL)
8927 {
8928 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8929 if (sreloc == NULL)
8930 return FALSE;
8931 }
8932 if (bfd_link_pic (info) && h == NULL)
8933 {
8934 /* When creating a shared object, we must copy these
8935 reloc types into the output file as R_MIPS_REL32
8936 relocs. Make room for this reloc in .rel(a).dyn. */
8937 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8938 if (MIPS_ELF_READONLY_SECTION (sec))
8939 /* We tell the dynamic linker that there are
8940 relocations against the text segment. */
8941 info->flags |= DF_TEXTREL;
8942 }
8943 else
8944 {
8945 struct mips_elf_link_hash_entry *hmips;
8946
8947 /* For a shared object, we must copy this relocation
8948 unless the symbol turns out to be undefined and
8949 weak with non-default visibility, in which case
8950 it will be left as zero.
8951
8952 We could elide R_MIPS_REL32 for locally binding symbols
8953 in shared libraries, but do not yet do so.
8954
8955 For an executable, we only need to copy this
8956 reloc if the symbol is defined in a dynamic
8957 object. */
8958 hmips = (struct mips_elf_link_hash_entry *) h;
8959 ++hmips->possibly_dynamic_relocs;
8960 if (MIPS_ELF_READONLY_SECTION (sec))
8961 /* We need it to tell the dynamic linker if there
8962 are relocations against the text segment. */
8963 hmips->readonly_reloc = TRUE;
8964 }
8965 }
8966
8967 if (SGI_COMPAT (abfd))
8968 mips_elf_hash_table (info)->compact_rel_size +=
8969 sizeof (Elf32_External_crinfo);
8970 break;
8971
8972 case R_MIPS_26:
8973 case R_MIPS_GPREL16:
8974 case R_MIPS_LITERAL:
8975 case R_MIPS_GPREL32:
8976 case R_MICROMIPS_26_S1:
8977 case R_MICROMIPS_GPREL16:
8978 case R_MICROMIPS_LITERAL:
8979 case R_MICROMIPS_GPREL7_S2:
8980 if (SGI_COMPAT (abfd))
8981 mips_elf_hash_table (info)->compact_rel_size +=
8982 sizeof (Elf32_External_crinfo);
8983 break;
8984
8985 /* This relocation describes the C++ object vtable hierarchy.
8986 Reconstruct it for later use during GC. */
8987 case R_MIPS_GNU_VTINHERIT:
8988 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8989 return FALSE;
8990 break;
8991
8992 /* This relocation describes which C++ vtable entries are actually
8993 used. Record for later use during GC. */
8994 case R_MIPS_GNU_VTENTRY:
8995 BFD_ASSERT (h != NULL);
8996 if (h != NULL
8997 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8998 return FALSE;
8999 break;
9000
9001 default:
9002 break;
9003 }
9004
9005 /* Record the need for a PLT entry. At this point we don't know
9006 yet if we are going to create a PLT in the first place, but
9007 we only record whether the relocation requires a standard MIPS
9008 or a compressed code entry anyway. If we don't make a PLT after
9009 all, then we'll just ignore these arrangements. Likewise if
9010 a PLT entry is not created because the symbol is satisfied
9011 locally. */
9012 if (h != NULL
9013 && (branch_reloc_p (r_type)
9014 || mips16_branch_reloc_p (r_type)
9015 || micromips_branch_reloc_p (r_type))
9016 && !SYMBOL_CALLS_LOCAL (info, h))
9017 {
9018 if (h->plt.plist == NULL)
9019 h->plt.plist = mips_elf_make_plt_record (abfd);
9020 if (h->plt.plist == NULL)
9021 return FALSE;
9022
9023 if (branch_reloc_p (r_type))
9024 h->plt.plist->need_mips = TRUE;
9025 else
9026 h->plt.plist->need_comp = TRUE;
9027 }
9028
9029 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9030 if there is one. We only need to handle global symbols here;
9031 we decide whether to keep or delete stubs for local symbols
9032 when processing the stub's relocations. */
9033 if (h != NULL
9034 && !mips16_call_reloc_p (r_type)
9035 && !section_allows_mips16_refs_p (sec))
9036 {
9037 struct mips_elf_link_hash_entry *mh;
9038
9039 mh = (struct mips_elf_link_hash_entry *) h;
9040 mh->need_fn_stub = TRUE;
9041 }
9042
9043 /* Refuse some position-dependent relocations when creating a
9044 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9045 not PIC, but we can create dynamic relocations and the result
9046 will be fine. Also do not refuse R_MIPS_LO16, which can be
9047 combined with R_MIPS_GOT16. */
9048 if (bfd_link_pic (info))
9049 {
9050 switch (r_type)
9051 {
9052 case R_MIPS16_HI16:
9053 case R_MIPS_HI16:
9054 case R_MIPS_HIGHER:
9055 case R_MIPS_HIGHEST:
9056 case R_MICROMIPS_HI16:
9057 case R_MICROMIPS_HIGHER:
9058 case R_MICROMIPS_HIGHEST:
9059 /* Don't refuse a high part relocation if it's against
9060 no symbol (e.g. part of a compound relocation). */
9061 if (r_symndx == STN_UNDEF)
9062 break;
9063
9064 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9065 and has a special meaning. */
9066 if (!NEWABI_P (abfd) && h != NULL
9067 && strcmp (h->root.root.string, "_gp_disp") == 0)
9068 break;
9069
9070 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9071 if (is_gott_symbol (info, h))
9072 break;
9073
9074 /* FALLTHROUGH */
9075
9076 case R_MIPS16_26:
9077 case R_MIPS_26:
9078 case R_MICROMIPS_26_S1:
9079 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
9080 info->callbacks->einfo
9081 /* xgettext:c-format */
9082 (_("%X%H: relocation %s against `%s' cannot be used"
9083 " when making a shared object; recompile with -fPIC\n"),
9084 abfd, sec, rel->r_offset, howto->name,
9085 (h) ? h->root.root.string : "a local symbol");
9086 break;
9087 default:
9088 break;
9089 }
9090 }
9091 }
9092
9093 return TRUE;
9094 }
9095 \f
9096 /* Allocate space for global sym dynamic relocs. */
9097
9098 static bfd_boolean
9099 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9100 {
9101 struct bfd_link_info *info = inf;
9102 bfd *dynobj;
9103 struct mips_elf_link_hash_entry *hmips;
9104 struct mips_elf_link_hash_table *htab;
9105
9106 htab = mips_elf_hash_table (info);
9107 BFD_ASSERT (htab != NULL);
9108
9109 dynobj = elf_hash_table (info)->dynobj;
9110 hmips = (struct mips_elf_link_hash_entry *) h;
9111
9112 /* VxWorks executables are handled elsewhere; we only need to
9113 allocate relocations in shared objects. */
9114 if (htab->is_vxworks && !bfd_link_pic (info))
9115 return TRUE;
9116
9117 /* Ignore indirect symbols. All relocations against such symbols
9118 will be redirected to the target symbol. */
9119 if (h->root.type == bfd_link_hash_indirect)
9120 return TRUE;
9121
9122 /* If this symbol is defined in a dynamic object, or we are creating
9123 a shared library, we will need to copy any R_MIPS_32 or
9124 R_MIPS_REL32 relocs against it into the output file. */
9125 if (! bfd_link_relocatable (info)
9126 && hmips->possibly_dynamic_relocs != 0
9127 && (h->root.type == bfd_link_hash_defweak
9128 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9129 || bfd_link_pic (info)))
9130 {
9131 bfd_boolean do_copy = TRUE;
9132
9133 if (h->root.type == bfd_link_hash_undefweak)
9134 {
9135 /* Do not copy relocations for undefined weak symbols that
9136 we are not going to export. */
9137 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9138 do_copy = FALSE;
9139
9140 /* Make sure undefined weak symbols are output as a dynamic
9141 symbol in PIEs. */
9142 else if (h->dynindx == -1 && !h->forced_local)
9143 {
9144 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9145 return FALSE;
9146 }
9147 }
9148
9149 if (do_copy)
9150 {
9151 /* Even though we don't directly need a GOT entry for this symbol,
9152 the SVR4 psABI requires it to have a dynamic symbol table
9153 index greater that DT_MIPS_GOTSYM if there are dynamic
9154 relocations against it.
9155
9156 VxWorks does not enforce the same mapping between the GOT
9157 and the symbol table, so the same requirement does not
9158 apply there. */
9159 if (!htab->is_vxworks)
9160 {
9161 if (hmips->global_got_area > GGA_RELOC_ONLY)
9162 hmips->global_got_area = GGA_RELOC_ONLY;
9163 hmips->got_only_for_calls = FALSE;
9164 }
9165
9166 mips_elf_allocate_dynamic_relocations
9167 (dynobj, info, hmips->possibly_dynamic_relocs);
9168 if (hmips->readonly_reloc)
9169 /* We tell the dynamic linker that there are relocations
9170 against the text segment. */
9171 info->flags |= DF_TEXTREL;
9172 }
9173 }
9174
9175 return TRUE;
9176 }
9177
9178 /* Adjust a symbol defined by a dynamic object and referenced by a
9179 regular object. The current definition is in some section of the
9180 dynamic object, but we're not including those sections. We have to
9181 change the definition to something the rest of the link can
9182 understand. */
9183
9184 bfd_boolean
9185 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9186 struct elf_link_hash_entry *h)
9187 {
9188 bfd *dynobj;
9189 struct mips_elf_link_hash_entry *hmips;
9190 struct mips_elf_link_hash_table *htab;
9191 asection *s, *srel;
9192
9193 htab = mips_elf_hash_table (info);
9194 BFD_ASSERT (htab != NULL);
9195
9196 dynobj = elf_hash_table (info)->dynobj;
9197 hmips = (struct mips_elf_link_hash_entry *) h;
9198
9199 /* Make sure we know what is going on here. */
9200 BFD_ASSERT (dynobj != NULL
9201 && (h->needs_plt
9202 || h->is_weakalias
9203 || (h->def_dynamic
9204 && h->ref_regular
9205 && !h->def_regular)));
9206
9207 hmips = (struct mips_elf_link_hash_entry *) h;
9208
9209 /* If there are call relocations against an externally-defined symbol,
9210 see whether we can create a MIPS lazy-binding stub for it. We can
9211 only do this if all references to the function are through call
9212 relocations, and in that case, the traditional lazy-binding stubs
9213 are much more efficient than PLT entries.
9214
9215 Traditional stubs are only available on SVR4 psABI-based systems;
9216 VxWorks always uses PLTs instead. */
9217 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9218 {
9219 if (! elf_hash_table (info)->dynamic_sections_created)
9220 return TRUE;
9221
9222 /* If this symbol is not defined in a regular file, then set
9223 the symbol to the stub location. This is required to make
9224 function pointers compare as equal between the normal
9225 executable and the shared library. */
9226 if (!h->def_regular
9227 && !bfd_is_abs_section (htab->sstubs->output_section))
9228 {
9229 hmips->needs_lazy_stub = TRUE;
9230 htab->lazy_stub_count++;
9231 return TRUE;
9232 }
9233 }
9234 /* As above, VxWorks requires PLT entries for externally-defined
9235 functions that are only accessed through call relocations.
9236
9237 Both VxWorks and non-VxWorks targets also need PLT entries if there
9238 are static-only relocations against an externally-defined function.
9239 This can technically occur for shared libraries if there are
9240 branches to the symbol, although it is unlikely that this will be
9241 used in practice due to the short ranges involved. It can occur
9242 for any relative or absolute relocation in executables; in that
9243 case, the PLT entry becomes the function's canonical address. */
9244 else if (((h->needs_plt && !hmips->no_fn_stub)
9245 || (h->type == STT_FUNC && hmips->has_static_relocs))
9246 && htab->use_plts_and_copy_relocs
9247 && !SYMBOL_CALLS_LOCAL (info, h)
9248 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9249 && h->root.type == bfd_link_hash_undefweak))
9250 {
9251 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9252 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9253
9254 /* If this is the first symbol to need a PLT entry, then make some
9255 basic setup. Also work out PLT entry sizes. We'll need them
9256 for PLT offset calculations. */
9257 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9258 {
9259 BFD_ASSERT (htab->root.sgotplt->size == 0);
9260 BFD_ASSERT (htab->plt_got_index == 0);
9261
9262 /* If we're using the PLT additions to the psABI, each PLT
9263 entry is 16 bytes and the PLT0 entry is 32 bytes.
9264 Encourage better cache usage by aligning. We do this
9265 lazily to avoid pessimizing traditional objects. */
9266 if (!htab->is_vxworks
9267 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9268 return FALSE;
9269
9270 /* Make sure that .got.plt is word-aligned. We do this lazily
9271 for the same reason as above. */
9272 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9273 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9274 return FALSE;
9275
9276 /* On non-VxWorks targets, the first two entries in .got.plt
9277 are reserved. */
9278 if (!htab->is_vxworks)
9279 htab->plt_got_index
9280 += (get_elf_backend_data (dynobj)->got_header_size
9281 / MIPS_ELF_GOT_SIZE (dynobj));
9282
9283 /* On VxWorks, also allocate room for the header's
9284 .rela.plt.unloaded entries. */
9285 if (htab->is_vxworks && !bfd_link_pic (info))
9286 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9287
9288 /* Now work out the sizes of individual PLT entries. */
9289 if (htab->is_vxworks && bfd_link_pic (info))
9290 htab->plt_mips_entry_size
9291 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9292 else if (htab->is_vxworks)
9293 htab->plt_mips_entry_size
9294 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9295 else if (newabi_p)
9296 htab->plt_mips_entry_size
9297 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9298 else if (!micromips_p)
9299 {
9300 htab->plt_mips_entry_size
9301 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9302 htab->plt_comp_entry_size
9303 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9304 }
9305 else if (htab->insn32)
9306 {
9307 htab->plt_mips_entry_size
9308 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9309 htab->plt_comp_entry_size
9310 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9311 }
9312 else
9313 {
9314 htab->plt_mips_entry_size
9315 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9316 htab->plt_comp_entry_size
9317 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9318 }
9319 }
9320
9321 if (h->plt.plist == NULL)
9322 h->plt.plist = mips_elf_make_plt_record (dynobj);
9323 if (h->plt.plist == NULL)
9324 return FALSE;
9325
9326 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9327 n32 or n64, so always use a standard entry there.
9328
9329 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9330 all MIPS16 calls will go via that stub, and there is no benefit
9331 to having a MIPS16 entry. And in the case of call_stub a
9332 standard entry actually has to be used as the stub ends with a J
9333 instruction. */
9334 if (newabi_p
9335 || htab->is_vxworks
9336 || hmips->call_stub
9337 || hmips->call_fp_stub)
9338 {
9339 h->plt.plist->need_mips = TRUE;
9340 h->plt.plist->need_comp = FALSE;
9341 }
9342
9343 /* Otherwise, if there are no direct calls to the function, we
9344 have a free choice of whether to use standard or compressed
9345 entries. Prefer microMIPS entries if the object is known to
9346 contain microMIPS code, so that it becomes possible to create
9347 pure microMIPS binaries. Prefer standard entries otherwise,
9348 because MIPS16 ones are no smaller and are usually slower. */
9349 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9350 {
9351 if (micromips_p)
9352 h->plt.plist->need_comp = TRUE;
9353 else
9354 h->plt.plist->need_mips = TRUE;
9355 }
9356
9357 if (h->plt.plist->need_mips)
9358 {
9359 h->plt.plist->mips_offset = htab->plt_mips_offset;
9360 htab->plt_mips_offset += htab->plt_mips_entry_size;
9361 }
9362 if (h->plt.plist->need_comp)
9363 {
9364 h->plt.plist->comp_offset = htab->plt_comp_offset;
9365 htab->plt_comp_offset += htab->plt_comp_entry_size;
9366 }
9367
9368 /* Reserve the corresponding .got.plt entry now too. */
9369 h->plt.plist->gotplt_index = htab->plt_got_index++;
9370
9371 /* If the output file has no definition of the symbol, set the
9372 symbol's value to the address of the stub. */
9373 if (!bfd_link_pic (info) && !h->def_regular)
9374 hmips->use_plt_entry = TRUE;
9375
9376 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9377 htab->root.srelplt->size += (htab->is_vxworks
9378 ? MIPS_ELF_RELA_SIZE (dynobj)
9379 : MIPS_ELF_REL_SIZE (dynobj));
9380
9381 /* Make room for the .rela.plt.unloaded relocations. */
9382 if (htab->is_vxworks && !bfd_link_pic (info))
9383 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9384
9385 /* All relocations against this symbol that could have been made
9386 dynamic will now refer to the PLT entry instead. */
9387 hmips->possibly_dynamic_relocs = 0;
9388
9389 return TRUE;
9390 }
9391
9392 /* If this is a weak symbol, and there is a real definition, the
9393 processor independent code will have arranged for us to see the
9394 real definition first, and we can just use the same value. */
9395 if (h->is_weakalias)
9396 {
9397 struct elf_link_hash_entry *def = weakdef (h);
9398 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9399 h->root.u.def.section = def->root.u.def.section;
9400 h->root.u.def.value = def->root.u.def.value;
9401 return TRUE;
9402 }
9403
9404 /* Otherwise, there is nothing further to do for symbols defined
9405 in regular objects. */
9406 if (h->def_regular)
9407 return TRUE;
9408
9409 /* There's also nothing more to do if we'll convert all relocations
9410 against this symbol into dynamic relocations. */
9411 if (!hmips->has_static_relocs)
9412 return TRUE;
9413
9414 /* We're now relying on copy relocations. Complain if we have
9415 some that we can't convert. */
9416 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9417 {
9418 _bfd_error_handler (_("non-dynamic relocations refer to "
9419 "dynamic symbol %s"),
9420 h->root.root.string);
9421 bfd_set_error (bfd_error_bad_value);
9422 return FALSE;
9423 }
9424
9425 /* We must allocate the symbol in our .dynbss section, which will
9426 become part of the .bss section of the executable. There will be
9427 an entry for this symbol in the .dynsym section. The dynamic
9428 object will contain position independent code, so all references
9429 from the dynamic object to this symbol will go through the global
9430 offset table. The dynamic linker will use the .dynsym entry to
9431 determine the address it must put in the global offset table, so
9432 both the dynamic object and the regular object will refer to the
9433 same memory location for the variable. */
9434
9435 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9436 {
9437 s = htab->root.sdynrelro;
9438 srel = htab->root.sreldynrelro;
9439 }
9440 else
9441 {
9442 s = htab->root.sdynbss;
9443 srel = htab->root.srelbss;
9444 }
9445 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9446 {
9447 if (htab->is_vxworks)
9448 srel->size += sizeof (Elf32_External_Rela);
9449 else
9450 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9451 h->needs_copy = 1;
9452 }
9453
9454 /* All relocations against this symbol that could have been made
9455 dynamic will now refer to the local copy instead. */
9456 hmips->possibly_dynamic_relocs = 0;
9457
9458 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9459 }
9460 \f
9461 /* This function is called after all the input files have been read,
9462 and the input sections have been assigned to output sections. We
9463 check for any mips16 stub sections that we can discard. */
9464
9465 bfd_boolean
9466 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9467 struct bfd_link_info *info)
9468 {
9469 asection *sect;
9470 struct mips_elf_link_hash_table *htab;
9471 struct mips_htab_traverse_info hti;
9472
9473 htab = mips_elf_hash_table (info);
9474 BFD_ASSERT (htab != NULL);
9475
9476 /* The .reginfo section has a fixed size. */
9477 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9478 if (sect != NULL)
9479 {
9480 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9481 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9482 }
9483
9484 /* The .MIPS.abiflags section has a fixed size. */
9485 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9486 if (sect != NULL)
9487 {
9488 bfd_set_section_size (output_bfd, sect,
9489 sizeof (Elf_External_ABIFlags_v0));
9490 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9491 }
9492
9493 hti.info = info;
9494 hti.output_bfd = output_bfd;
9495 hti.error = FALSE;
9496 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9497 mips_elf_check_symbols, &hti);
9498 if (hti.error)
9499 return FALSE;
9500
9501 return TRUE;
9502 }
9503
9504 /* If the link uses a GOT, lay it out and work out its size. */
9505
9506 static bfd_boolean
9507 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9508 {
9509 bfd *dynobj;
9510 asection *s;
9511 struct mips_got_info *g;
9512 bfd_size_type loadable_size = 0;
9513 bfd_size_type page_gotno;
9514 bfd *ibfd;
9515 struct mips_elf_traverse_got_arg tga;
9516 struct mips_elf_link_hash_table *htab;
9517
9518 htab = mips_elf_hash_table (info);
9519 BFD_ASSERT (htab != NULL);
9520
9521 s = htab->root.sgot;
9522 if (s == NULL)
9523 return TRUE;
9524
9525 dynobj = elf_hash_table (info)->dynobj;
9526 g = htab->got_info;
9527
9528 /* Allocate room for the reserved entries. VxWorks always reserves
9529 3 entries; other objects only reserve 2 entries. */
9530 BFD_ASSERT (g->assigned_low_gotno == 0);
9531 if (htab->is_vxworks)
9532 htab->reserved_gotno = 3;
9533 else
9534 htab->reserved_gotno = 2;
9535 g->local_gotno += htab->reserved_gotno;
9536 g->assigned_low_gotno = htab->reserved_gotno;
9537
9538 /* Decide which symbols need to go in the global part of the GOT and
9539 count the number of reloc-only GOT symbols. */
9540 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9541
9542 if (!mips_elf_resolve_final_got_entries (info, g))
9543 return FALSE;
9544
9545 /* Calculate the total loadable size of the output. That
9546 will give us the maximum number of GOT_PAGE entries
9547 required. */
9548 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9549 {
9550 asection *subsection;
9551
9552 for (subsection = ibfd->sections;
9553 subsection;
9554 subsection = subsection->next)
9555 {
9556 if ((subsection->flags & SEC_ALLOC) == 0)
9557 continue;
9558 loadable_size += ((subsection->size + 0xf)
9559 &~ (bfd_size_type) 0xf);
9560 }
9561 }
9562
9563 if (htab->is_vxworks)
9564 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9565 relocations against local symbols evaluate to "G", and the EABI does
9566 not include R_MIPS_GOT_PAGE. */
9567 page_gotno = 0;
9568 else
9569 /* Assume there are two loadable segments consisting of contiguous
9570 sections. Is 5 enough? */
9571 page_gotno = (loadable_size >> 16) + 5;
9572
9573 /* Choose the smaller of the two page estimates; both are intended to be
9574 conservative. */
9575 if (page_gotno > g->page_gotno)
9576 page_gotno = g->page_gotno;
9577
9578 g->local_gotno += page_gotno;
9579 g->assigned_high_gotno = g->local_gotno - 1;
9580
9581 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9582 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9583 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9584
9585 /* VxWorks does not support multiple GOTs. It initializes $gp to
9586 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9587 dynamic loader. */
9588 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9589 {
9590 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9591 return FALSE;
9592 }
9593 else
9594 {
9595 /* Record that all bfds use G. This also has the effect of freeing
9596 the per-bfd GOTs, which we no longer need. */
9597 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9598 if (mips_elf_bfd_got (ibfd, FALSE))
9599 mips_elf_replace_bfd_got (ibfd, g);
9600 mips_elf_replace_bfd_got (output_bfd, g);
9601
9602 /* Set up TLS entries. */
9603 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9604 tga.info = info;
9605 tga.g = g;
9606 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9607 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9608 if (!tga.g)
9609 return FALSE;
9610 BFD_ASSERT (g->tls_assigned_gotno
9611 == g->global_gotno + g->local_gotno + g->tls_gotno);
9612
9613 /* Each VxWorks GOT entry needs an explicit relocation. */
9614 if (htab->is_vxworks && bfd_link_pic (info))
9615 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9616
9617 /* Allocate room for the TLS relocations. */
9618 if (g->relocs)
9619 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9620 }
9621
9622 return TRUE;
9623 }
9624
9625 /* Estimate the size of the .MIPS.stubs section. */
9626
9627 static void
9628 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9629 {
9630 struct mips_elf_link_hash_table *htab;
9631 bfd_size_type dynsymcount;
9632
9633 htab = mips_elf_hash_table (info);
9634 BFD_ASSERT (htab != NULL);
9635
9636 if (htab->lazy_stub_count == 0)
9637 return;
9638
9639 /* IRIX rld assumes that a function stub isn't at the end of the .text
9640 section, so add a dummy entry to the end. */
9641 htab->lazy_stub_count++;
9642
9643 /* Get a worst-case estimate of the number of dynamic symbols needed.
9644 At this point, dynsymcount does not account for section symbols
9645 and count_section_dynsyms may overestimate the number that will
9646 be needed. */
9647 dynsymcount = (elf_hash_table (info)->dynsymcount
9648 + count_section_dynsyms (output_bfd, info));
9649
9650 /* Determine the size of one stub entry. There's no disadvantage
9651 from using microMIPS code here, so for the sake of pure-microMIPS
9652 binaries we prefer it whenever there's any microMIPS code in
9653 output produced at all. This has a benefit of stubs being
9654 shorter by 4 bytes each too, unless in the insn32 mode. */
9655 if (!MICROMIPS_P (output_bfd))
9656 htab->function_stub_size = (dynsymcount > 0x10000
9657 ? MIPS_FUNCTION_STUB_BIG_SIZE
9658 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9659 else if (htab->insn32)
9660 htab->function_stub_size = (dynsymcount > 0x10000
9661 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9662 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9663 else
9664 htab->function_stub_size = (dynsymcount > 0x10000
9665 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9666 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9667
9668 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9669 }
9670
9671 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9672 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9673 stub, allocate an entry in the stubs section. */
9674
9675 static bfd_boolean
9676 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9677 {
9678 struct mips_htab_traverse_info *hti = data;
9679 struct mips_elf_link_hash_table *htab;
9680 struct bfd_link_info *info;
9681 bfd *output_bfd;
9682
9683 info = hti->info;
9684 output_bfd = hti->output_bfd;
9685 htab = mips_elf_hash_table (info);
9686 BFD_ASSERT (htab != NULL);
9687
9688 if (h->needs_lazy_stub)
9689 {
9690 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9691 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9692 bfd_vma isa_bit = micromips_p;
9693
9694 BFD_ASSERT (htab->root.dynobj != NULL);
9695 if (h->root.plt.plist == NULL)
9696 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9697 if (h->root.plt.plist == NULL)
9698 {
9699 hti->error = TRUE;
9700 return FALSE;
9701 }
9702 h->root.root.u.def.section = htab->sstubs;
9703 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9704 h->root.plt.plist->stub_offset = htab->sstubs->size;
9705 h->root.other = other;
9706 htab->sstubs->size += htab->function_stub_size;
9707 }
9708 return TRUE;
9709 }
9710
9711 /* Allocate offsets in the stubs section to each symbol that needs one.
9712 Set the final size of the .MIPS.stub section. */
9713
9714 static bfd_boolean
9715 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9716 {
9717 bfd *output_bfd = info->output_bfd;
9718 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9719 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9720 bfd_vma isa_bit = micromips_p;
9721 struct mips_elf_link_hash_table *htab;
9722 struct mips_htab_traverse_info hti;
9723 struct elf_link_hash_entry *h;
9724 bfd *dynobj;
9725
9726 htab = mips_elf_hash_table (info);
9727 BFD_ASSERT (htab != NULL);
9728
9729 if (htab->lazy_stub_count == 0)
9730 return TRUE;
9731
9732 htab->sstubs->size = 0;
9733 hti.info = info;
9734 hti.output_bfd = output_bfd;
9735 hti.error = FALSE;
9736 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9737 if (hti.error)
9738 return FALSE;
9739 htab->sstubs->size += htab->function_stub_size;
9740 BFD_ASSERT (htab->sstubs->size
9741 == htab->lazy_stub_count * htab->function_stub_size);
9742
9743 dynobj = elf_hash_table (info)->dynobj;
9744 BFD_ASSERT (dynobj != NULL);
9745 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9746 if (h == NULL)
9747 return FALSE;
9748 h->root.u.def.value = isa_bit;
9749 h->other = other;
9750 h->type = STT_FUNC;
9751
9752 return TRUE;
9753 }
9754
9755 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9756 bfd_link_info. If H uses the address of a PLT entry as the value
9757 of the symbol, then set the entry in the symbol table now. Prefer
9758 a standard MIPS PLT entry. */
9759
9760 static bfd_boolean
9761 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9762 {
9763 struct bfd_link_info *info = data;
9764 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9765 struct mips_elf_link_hash_table *htab;
9766 unsigned int other;
9767 bfd_vma isa_bit;
9768 bfd_vma val;
9769
9770 htab = mips_elf_hash_table (info);
9771 BFD_ASSERT (htab != NULL);
9772
9773 if (h->use_plt_entry)
9774 {
9775 BFD_ASSERT (h->root.plt.plist != NULL);
9776 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9777 || h->root.plt.plist->comp_offset != MINUS_ONE);
9778
9779 val = htab->plt_header_size;
9780 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9781 {
9782 isa_bit = 0;
9783 val += h->root.plt.plist->mips_offset;
9784 other = 0;
9785 }
9786 else
9787 {
9788 isa_bit = 1;
9789 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9790 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9791 }
9792 val += isa_bit;
9793 /* For VxWorks, point at the PLT load stub rather than the lazy
9794 resolution stub; this stub will become the canonical function
9795 address. */
9796 if (htab->is_vxworks)
9797 val += 8;
9798
9799 h->root.root.u.def.section = htab->root.splt;
9800 h->root.root.u.def.value = val;
9801 h->root.other = other;
9802 }
9803
9804 return TRUE;
9805 }
9806
9807 /* Set the sizes of the dynamic sections. */
9808
9809 bfd_boolean
9810 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9811 struct bfd_link_info *info)
9812 {
9813 bfd *dynobj;
9814 asection *s, *sreldyn;
9815 bfd_boolean reltext;
9816 struct mips_elf_link_hash_table *htab;
9817
9818 htab = mips_elf_hash_table (info);
9819 BFD_ASSERT (htab != NULL);
9820 dynobj = elf_hash_table (info)->dynobj;
9821 BFD_ASSERT (dynobj != NULL);
9822
9823 if (elf_hash_table (info)->dynamic_sections_created)
9824 {
9825 /* Set the contents of the .interp section to the interpreter. */
9826 if (bfd_link_executable (info) && !info->nointerp)
9827 {
9828 s = bfd_get_linker_section (dynobj, ".interp");
9829 BFD_ASSERT (s != NULL);
9830 s->size
9831 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9832 s->contents
9833 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9834 }
9835
9836 /* Figure out the size of the PLT header if we know that we
9837 are using it. For the sake of cache alignment always use
9838 a standard header whenever any standard entries are present
9839 even if microMIPS entries are present as well. This also
9840 lets the microMIPS header rely on the value of $v0 only set
9841 by microMIPS entries, for a small size reduction.
9842
9843 Set symbol table entry values for symbols that use the
9844 address of their PLT entry now that we can calculate it.
9845
9846 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9847 haven't already in _bfd_elf_create_dynamic_sections. */
9848 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9849 {
9850 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9851 && !htab->plt_mips_offset);
9852 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9853 bfd_vma isa_bit = micromips_p;
9854 struct elf_link_hash_entry *h;
9855 bfd_vma size;
9856
9857 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9858 BFD_ASSERT (htab->root.sgotplt->size == 0);
9859 BFD_ASSERT (htab->root.splt->size == 0);
9860
9861 if (htab->is_vxworks && bfd_link_pic (info))
9862 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9863 else if (htab->is_vxworks)
9864 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9865 else if (ABI_64_P (output_bfd))
9866 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9867 else if (ABI_N32_P (output_bfd))
9868 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9869 else if (!micromips_p)
9870 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9871 else if (htab->insn32)
9872 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9873 else
9874 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9875
9876 htab->plt_header_is_comp = micromips_p;
9877 htab->plt_header_size = size;
9878 htab->root.splt->size = (size
9879 + htab->plt_mips_offset
9880 + htab->plt_comp_offset);
9881 htab->root.sgotplt->size = (htab->plt_got_index
9882 * MIPS_ELF_GOT_SIZE (dynobj));
9883
9884 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9885
9886 if (htab->root.hplt == NULL)
9887 {
9888 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9889 "_PROCEDURE_LINKAGE_TABLE_");
9890 htab->root.hplt = h;
9891 if (h == NULL)
9892 return FALSE;
9893 }
9894
9895 h = htab->root.hplt;
9896 h->root.u.def.value = isa_bit;
9897 h->other = other;
9898 h->type = STT_FUNC;
9899 }
9900 }
9901
9902 /* Allocate space for global sym dynamic relocs. */
9903 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9904
9905 mips_elf_estimate_stub_size (output_bfd, info);
9906
9907 if (!mips_elf_lay_out_got (output_bfd, info))
9908 return FALSE;
9909
9910 mips_elf_lay_out_lazy_stubs (info);
9911
9912 /* The check_relocs and adjust_dynamic_symbol entry points have
9913 determined the sizes of the various dynamic sections. Allocate
9914 memory for them. */
9915 reltext = FALSE;
9916 for (s = dynobj->sections; s != NULL; s = s->next)
9917 {
9918 const char *name;
9919
9920 /* It's OK to base decisions on the section name, because none
9921 of the dynobj section names depend upon the input files. */
9922 name = bfd_get_section_name (dynobj, s);
9923
9924 if ((s->flags & SEC_LINKER_CREATED) == 0)
9925 continue;
9926
9927 if (CONST_STRNEQ (name, ".rel"))
9928 {
9929 if (s->size != 0)
9930 {
9931 const char *outname;
9932 asection *target;
9933
9934 /* If this relocation section applies to a read only
9935 section, then we probably need a DT_TEXTREL entry.
9936 If the relocation section is .rel(a).dyn, we always
9937 assert a DT_TEXTREL entry rather than testing whether
9938 there exists a relocation to a read only section or
9939 not. */
9940 outname = bfd_get_section_name (output_bfd,
9941 s->output_section);
9942 target = bfd_get_section_by_name (output_bfd, outname + 4);
9943 if ((target != NULL
9944 && (target->flags & SEC_READONLY) != 0
9945 && (target->flags & SEC_ALLOC) != 0)
9946 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9947 reltext = TRUE;
9948
9949 /* We use the reloc_count field as a counter if we need
9950 to copy relocs into the output file. */
9951 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9952 s->reloc_count = 0;
9953
9954 /* If combreloc is enabled, elf_link_sort_relocs() will
9955 sort relocations, but in a different way than we do,
9956 and before we're done creating relocations. Also, it
9957 will move them around between input sections'
9958 relocation's contents, so our sorting would be
9959 broken, so don't let it run. */
9960 info->combreloc = 0;
9961 }
9962 }
9963 else if (bfd_link_executable (info)
9964 && ! mips_elf_hash_table (info)->use_rld_obj_head
9965 && CONST_STRNEQ (name, ".rld_map"))
9966 {
9967 /* We add a room for __rld_map. It will be filled in by the
9968 rtld to contain a pointer to the _r_debug structure. */
9969 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9970 }
9971 else if (SGI_COMPAT (output_bfd)
9972 && CONST_STRNEQ (name, ".compact_rel"))
9973 s->size += mips_elf_hash_table (info)->compact_rel_size;
9974 else if (s == htab->root.splt)
9975 {
9976 /* If the last PLT entry has a branch delay slot, allocate
9977 room for an extra nop to fill the delay slot. This is
9978 for CPUs without load interlocking. */
9979 if (! LOAD_INTERLOCKS_P (output_bfd)
9980 && ! htab->is_vxworks && s->size > 0)
9981 s->size += 4;
9982 }
9983 else if (! CONST_STRNEQ (name, ".init")
9984 && s != htab->root.sgot
9985 && s != htab->root.sgotplt
9986 && s != htab->sstubs
9987 && s != htab->root.sdynbss
9988 && s != htab->root.sdynrelro)
9989 {
9990 /* It's not one of our sections, so don't allocate space. */
9991 continue;
9992 }
9993
9994 if (s->size == 0)
9995 {
9996 s->flags |= SEC_EXCLUDE;
9997 continue;
9998 }
9999
10000 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10001 continue;
10002
10003 /* Allocate memory for the section contents. */
10004 s->contents = bfd_zalloc (dynobj, s->size);
10005 if (s->contents == NULL)
10006 {
10007 bfd_set_error (bfd_error_no_memory);
10008 return FALSE;
10009 }
10010 }
10011
10012 if (elf_hash_table (info)->dynamic_sections_created)
10013 {
10014 /* Add some entries to the .dynamic section. We fill in the
10015 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10016 must add the entries now so that we get the correct size for
10017 the .dynamic section. */
10018
10019 /* SGI object has the equivalence of DT_DEBUG in the
10020 DT_MIPS_RLD_MAP entry. This must come first because glibc
10021 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10022 may only look at the first one they see. */
10023 if (!bfd_link_pic (info)
10024 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10025 return FALSE;
10026
10027 if (bfd_link_executable (info)
10028 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10029 return FALSE;
10030
10031 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10032 used by the debugger. */
10033 if (bfd_link_executable (info)
10034 && !SGI_COMPAT (output_bfd)
10035 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10036 return FALSE;
10037
10038 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10039 info->flags |= DF_TEXTREL;
10040
10041 if ((info->flags & DF_TEXTREL) != 0)
10042 {
10043 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10044 return FALSE;
10045
10046 /* Clear the DF_TEXTREL flag. It will be set again if we
10047 write out an actual text relocation; we may not, because
10048 at this point we do not know whether e.g. any .eh_frame
10049 absolute relocations have been converted to PC-relative. */
10050 info->flags &= ~DF_TEXTREL;
10051 }
10052
10053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10054 return FALSE;
10055
10056 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10057 if (htab->is_vxworks)
10058 {
10059 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10060 use any of the DT_MIPS_* tags. */
10061 if (sreldyn && sreldyn->size > 0)
10062 {
10063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10064 return FALSE;
10065
10066 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10067 return FALSE;
10068
10069 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10070 return FALSE;
10071 }
10072 }
10073 else
10074 {
10075 if (sreldyn && sreldyn->size > 0
10076 && !bfd_is_abs_section (sreldyn->output_section))
10077 {
10078 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10079 return FALSE;
10080
10081 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10082 return FALSE;
10083
10084 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10085 return FALSE;
10086 }
10087
10088 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10089 return FALSE;
10090
10091 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10092 return FALSE;
10093
10094 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10095 return FALSE;
10096
10097 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10098 return FALSE;
10099
10100 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10101 return FALSE;
10102
10103 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10104 return FALSE;
10105
10106 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10107 return FALSE;
10108
10109 if (IRIX_COMPAT (dynobj) == ict_irix5
10110 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10111 return FALSE;
10112
10113 if (IRIX_COMPAT (dynobj) == ict_irix6
10114 && (bfd_get_section_by_name
10115 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10116 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10117 return FALSE;
10118 }
10119 if (htab->root.splt->size > 0)
10120 {
10121 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10122 return FALSE;
10123
10124 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10125 return FALSE;
10126
10127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10128 return FALSE;
10129
10130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10131 return FALSE;
10132 }
10133 if (htab->is_vxworks
10134 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10135 return FALSE;
10136 }
10137
10138 return TRUE;
10139 }
10140 \f
10141 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10142 Adjust its R_ADDEND field so that it is correct for the output file.
10143 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10144 and sections respectively; both use symbol indexes. */
10145
10146 static void
10147 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10148 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10149 asection **local_sections, Elf_Internal_Rela *rel)
10150 {
10151 unsigned int r_type, r_symndx;
10152 Elf_Internal_Sym *sym;
10153 asection *sec;
10154
10155 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10156 {
10157 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10158 if (gprel16_reloc_p (r_type)
10159 || r_type == R_MIPS_GPREL32
10160 || literal_reloc_p (r_type))
10161 {
10162 rel->r_addend += _bfd_get_gp_value (input_bfd);
10163 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10164 }
10165
10166 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10167 sym = local_syms + r_symndx;
10168
10169 /* Adjust REL's addend to account for section merging. */
10170 if (!bfd_link_relocatable (info))
10171 {
10172 sec = local_sections[r_symndx];
10173 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10174 }
10175
10176 /* This would normally be done by the rela_normal code in elflink.c. */
10177 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10178 rel->r_addend += local_sections[r_symndx]->output_offset;
10179 }
10180 }
10181
10182 /* Handle relocations against symbols from removed linkonce sections,
10183 or sections discarded by a linker script. We use this wrapper around
10184 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10185 on 64-bit ELF targets. In this case for any relocation handled, which
10186 always be the first in a triplet, the remaining two have to be processed
10187 together with the first, even if they are R_MIPS_NONE. It is the symbol
10188 index referred by the first reloc that applies to all the three and the
10189 remaining two never refer to an object symbol. And it is the final
10190 relocation (the last non-null one) that determines the output field of
10191 the whole relocation so retrieve the corresponding howto structure for
10192 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10193
10194 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10195 and therefore requires to be pasted in a loop. It also defines a block
10196 and does not protect any of its arguments, hence the extra brackets. */
10197
10198 static void
10199 mips_reloc_against_discarded_section (bfd *output_bfd,
10200 struct bfd_link_info *info,
10201 bfd *input_bfd, asection *input_section,
10202 Elf_Internal_Rela **rel,
10203 const Elf_Internal_Rela **relend,
10204 bfd_boolean rel_reloc,
10205 reloc_howto_type *howto,
10206 bfd_byte *contents)
10207 {
10208 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10209 int count = bed->s->int_rels_per_ext_rel;
10210 unsigned int r_type;
10211 int i;
10212
10213 for (i = count - 1; i > 0; i--)
10214 {
10215 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10216 if (r_type != R_MIPS_NONE)
10217 {
10218 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10219 break;
10220 }
10221 }
10222 do
10223 {
10224 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10225 (*rel), count, (*relend),
10226 howto, i, contents);
10227 }
10228 while (0);
10229 }
10230
10231 /* Relocate a MIPS ELF section. */
10232
10233 bfd_boolean
10234 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10235 bfd *input_bfd, asection *input_section,
10236 bfd_byte *contents, Elf_Internal_Rela *relocs,
10237 Elf_Internal_Sym *local_syms,
10238 asection **local_sections)
10239 {
10240 Elf_Internal_Rela *rel;
10241 const Elf_Internal_Rela *relend;
10242 bfd_vma addend = 0;
10243 bfd_boolean use_saved_addend_p = FALSE;
10244
10245 relend = relocs + input_section->reloc_count;
10246 for (rel = relocs; rel < relend; ++rel)
10247 {
10248 const char *name;
10249 bfd_vma value = 0;
10250 reloc_howto_type *howto;
10251 bfd_boolean cross_mode_jump_p = FALSE;
10252 /* TRUE if the relocation is a RELA relocation, rather than a
10253 REL relocation. */
10254 bfd_boolean rela_relocation_p = TRUE;
10255 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10256 const char *msg;
10257 unsigned long r_symndx;
10258 asection *sec;
10259 Elf_Internal_Shdr *symtab_hdr;
10260 struct elf_link_hash_entry *h;
10261 bfd_boolean rel_reloc;
10262
10263 rel_reloc = (NEWABI_P (input_bfd)
10264 && mips_elf_rel_relocation_p (input_bfd, input_section,
10265 relocs, rel));
10266 /* Find the relocation howto for this relocation. */
10267 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10268
10269 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10270 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10271 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10272 {
10273 sec = local_sections[r_symndx];
10274 h = NULL;
10275 }
10276 else
10277 {
10278 unsigned long extsymoff;
10279
10280 extsymoff = 0;
10281 if (!elf_bad_symtab (input_bfd))
10282 extsymoff = symtab_hdr->sh_info;
10283 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10284 while (h->root.type == bfd_link_hash_indirect
10285 || h->root.type == bfd_link_hash_warning)
10286 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10287
10288 sec = NULL;
10289 if (h->root.type == bfd_link_hash_defined
10290 || h->root.type == bfd_link_hash_defweak)
10291 sec = h->root.u.def.section;
10292 }
10293
10294 if (sec != NULL && discarded_section (sec))
10295 {
10296 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10297 input_section, &rel, &relend,
10298 rel_reloc, howto, contents);
10299 continue;
10300 }
10301
10302 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10303 {
10304 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10305 64-bit code, but make sure all their addresses are in the
10306 lowermost or uppermost 32-bit section of the 64-bit address
10307 space. Thus, when they use an R_MIPS_64 they mean what is
10308 usually meant by R_MIPS_32, with the exception that the
10309 stored value is sign-extended to 64 bits. */
10310 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10311
10312 /* On big-endian systems, we need to lie about the position
10313 of the reloc. */
10314 if (bfd_big_endian (input_bfd))
10315 rel->r_offset += 4;
10316 }
10317
10318 if (!use_saved_addend_p)
10319 {
10320 /* If these relocations were originally of the REL variety,
10321 we must pull the addend out of the field that will be
10322 relocated. Otherwise, we simply use the contents of the
10323 RELA relocation. */
10324 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10325 relocs, rel))
10326 {
10327 rela_relocation_p = FALSE;
10328 addend = mips_elf_read_rel_addend (input_bfd, rel,
10329 howto, contents);
10330 if (hi16_reloc_p (r_type)
10331 || (got16_reloc_p (r_type)
10332 && mips_elf_local_relocation_p (input_bfd, rel,
10333 local_sections)))
10334 {
10335 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10336 contents, &addend))
10337 {
10338 if (h)
10339 name = h->root.root.string;
10340 else
10341 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10342 local_syms + r_symndx,
10343 sec);
10344 _bfd_error_handler
10345 /* xgettext:c-format */
10346 (_("%pB: can't find matching LO16 reloc against `%s'"
10347 " for %s at %#" PRIx64 " in section `%pA'"),
10348 input_bfd, name,
10349 howto->name, (uint64_t) rel->r_offset, input_section);
10350 }
10351 }
10352 else
10353 addend <<= howto->rightshift;
10354 }
10355 else
10356 addend = rel->r_addend;
10357 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10358 local_syms, local_sections, rel);
10359 }
10360
10361 if (bfd_link_relocatable (info))
10362 {
10363 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10364 && bfd_big_endian (input_bfd))
10365 rel->r_offset -= 4;
10366
10367 if (!rela_relocation_p && rel->r_addend)
10368 {
10369 addend += rel->r_addend;
10370 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10371 addend = mips_elf_high (addend);
10372 else if (r_type == R_MIPS_HIGHER)
10373 addend = mips_elf_higher (addend);
10374 else if (r_type == R_MIPS_HIGHEST)
10375 addend = mips_elf_highest (addend);
10376 else
10377 addend >>= howto->rightshift;
10378
10379 /* We use the source mask, rather than the destination
10380 mask because the place to which we are writing will be
10381 source of the addend in the final link. */
10382 addend &= howto->src_mask;
10383
10384 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10385 /* See the comment above about using R_MIPS_64 in the 32-bit
10386 ABI. Here, we need to update the addend. It would be
10387 possible to get away with just using the R_MIPS_32 reloc
10388 but for endianness. */
10389 {
10390 bfd_vma sign_bits;
10391 bfd_vma low_bits;
10392 bfd_vma high_bits;
10393
10394 if (addend & ((bfd_vma) 1 << 31))
10395 #ifdef BFD64
10396 sign_bits = ((bfd_vma) 1 << 32) - 1;
10397 #else
10398 sign_bits = -1;
10399 #endif
10400 else
10401 sign_bits = 0;
10402
10403 /* If we don't know that we have a 64-bit type,
10404 do two separate stores. */
10405 if (bfd_big_endian (input_bfd))
10406 {
10407 /* Store the sign-bits (which are most significant)
10408 first. */
10409 low_bits = sign_bits;
10410 high_bits = addend;
10411 }
10412 else
10413 {
10414 low_bits = addend;
10415 high_bits = sign_bits;
10416 }
10417 bfd_put_32 (input_bfd, low_bits,
10418 contents + rel->r_offset);
10419 bfd_put_32 (input_bfd, high_bits,
10420 contents + rel->r_offset + 4);
10421 continue;
10422 }
10423
10424 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10425 input_bfd, input_section,
10426 contents, FALSE))
10427 return FALSE;
10428 }
10429
10430 /* Go on to the next relocation. */
10431 continue;
10432 }
10433
10434 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10435 relocations for the same offset. In that case we are
10436 supposed to treat the output of each relocation as the addend
10437 for the next. */
10438 if (rel + 1 < relend
10439 && rel->r_offset == rel[1].r_offset
10440 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10441 use_saved_addend_p = TRUE;
10442 else
10443 use_saved_addend_p = FALSE;
10444
10445 /* Figure out what value we are supposed to relocate. */
10446 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10447 input_section, contents,
10448 info, rel, addend, howto,
10449 local_syms, local_sections,
10450 &value, &name, &cross_mode_jump_p,
10451 use_saved_addend_p))
10452 {
10453 case bfd_reloc_continue:
10454 /* There's nothing to do. */
10455 continue;
10456
10457 case bfd_reloc_undefined:
10458 /* mips_elf_calculate_relocation already called the
10459 undefined_symbol callback. There's no real point in
10460 trying to perform the relocation at this point, so we
10461 just skip ahead to the next relocation. */
10462 continue;
10463
10464 case bfd_reloc_notsupported:
10465 msg = _("internal error: unsupported relocation error");
10466 info->callbacks->warning
10467 (info, msg, name, input_bfd, input_section, rel->r_offset);
10468 return FALSE;
10469
10470 case bfd_reloc_overflow:
10471 if (use_saved_addend_p)
10472 /* Ignore overflow until we reach the last relocation for
10473 a given location. */
10474 ;
10475 else
10476 {
10477 struct mips_elf_link_hash_table *htab;
10478
10479 htab = mips_elf_hash_table (info);
10480 BFD_ASSERT (htab != NULL);
10481 BFD_ASSERT (name != NULL);
10482 if (!htab->small_data_overflow_reported
10483 && (gprel16_reloc_p (howto->type)
10484 || literal_reloc_p (howto->type)))
10485 {
10486 msg = _("small-data section exceeds 64KB;"
10487 " lower small-data size limit (see option -G)");
10488
10489 htab->small_data_overflow_reported = TRUE;
10490 (*info->callbacks->einfo) ("%P: %s\n", msg);
10491 }
10492 (*info->callbacks->reloc_overflow)
10493 (info, NULL, name, howto->name, (bfd_vma) 0,
10494 input_bfd, input_section, rel->r_offset);
10495 }
10496 break;
10497
10498 case bfd_reloc_ok:
10499 break;
10500
10501 case bfd_reloc_outofrange:
10502 msg = NULL;
10503 if (jal_reloc_p (howto->type))
10504 msg = (cross_mode_jump_p
10505 ? _("cannot convert a jump to JALX "
10506 "for a non-word-aligned address")
10507 : (howto->type == R_MIPS16_26
10508 ? _("jump to a non-word-aligned address")
10509 : _("jump to a non-instruction-aligned address")));
10510 else if (b_reloc_p (howto->type))
10511 msg = (cross_mode_jump_p
10512 ? _("cannot convert a branch to JALX "
10513 "for a non-word-aligned address")
10514 : _("branch to a non-instruction-aligned address"));
10515 else if (aligned_pcrel_reloc_p (howto->type))
10516 msg = _("PC-relative load from unaligned address");
10517 if (msg)
10518 {
10519 info->callbacks->einfo
10520 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10521 break;
10522 }
10523 /* Fall through. */
10524
10525 default:
10526 abort ();
10527 break;
10528 }
10529
10530 /* If we've got another relocation for the address, keep going
10531 until we reach the last one. */
10532 if (use_saved_addend_p)
10533 {
10534 addend = value;
10535 continue;
10536 }
10537
10538 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10539 /* See the comment above about using R_MIPS_64 in the 32-bit
10540 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10541 that calculated the right value. Now, however, we
10542 sign-extend the 32-bit result to 64-bits, and store it as a
10543 64-bit value. We are especially generous here in that we
10544 go to extreme lengths to support this usage on systems with
10545 only a 32-bit VMA. */
10546 {
10547 bfd_vma sign_bits;
10548 bfd_vma low_bits;
10549 bfd_vma high_bits;
10550
10551 if (value & ((bfd_vma) 1 << 31))
10552 #ifdef BFD64
10553 sign_bits = ((bfd_vma) 1 << 32) - 1;
10554 #else
10555 sign_bits = -1;
10556 #endif
10557 else
10558 sign_bits = 0;
10559
10560 /* If we don't know that we have a 64-bit type,
10561 do two separate stores. */
10562 if (bfd_big_endian (input_bfd))
10563 {
10564 /* Undo what we did above. */
10565 rel->r_offset -= 4;
10566 /* Store the sign-bits (which are most significant)
10567 first. */
10568 low_bits = sign_bits;
10569 high_bits = value;
10570 }
10571 else
10572 {
10573 low_bits = value;
10574 high_bits = sign_bits;
10575 }
10576 bfd_put_32 (input_bfd, low_bits,
10577 contents + rel->r_offset);
10578 bfd_put_32 (input_bfd, high_bits,
10579 contents + rel->r_offset + 4);
10580 continue;
10581 }
10582
10583 /* Actually perform the relocation. */
10584 if (! mips_elf_perform_relocation (info, howto, rel, value,
10585 input_bfd, input_section,
10586 contents, cross_mode_jump_p))
10587 return FALSE;
10588 }
10589
10590 return TRUE;
10591 }
10592 \f
10593 /* A function that iterates over each entry in la25_stubs and fills
10594 in the code for each one. DATA points to a mips_htab_traverse_info. */
10595
10596 static int
10597 mips_elf_create_la25_stub (void **slot, void *data)
10598 {
10599 struct mips_htab_traverse_info *hti;
10600 struct mips_elf_link_hash_table *htab;
10601 struct mips_elf_la25_stub *stub;
10602 asection *s;
10603 bfd_byte *loc;
10604 bfd_vma offset, target, target_high, target_low;
10605
10606 stub = (struct mips_elf_la25_stub *) *slot;
10607 hti = (struct mips_htab_traverse_info *) data;
10608 htab = mips_elf_hash_table (hti->info);
10609 BFD_ASSERT (htab != NULL);
10610
10611 /* Create the section contents, if we haven't already. */
10612 s = stub->stub_section;
10613 loc = s->contents;
10614 if (loc == NULL)
10615 {
10616 loc = bfd_malloc (s->size);
10617 if (loc == NULL)
10618 {
10619 hti->error = TRUE;
10620 return FALSE;
10621 }
10622 s->contents = loc;
10623 }
10624
10625 /* Work out where in the section this stub should go. */
10626 offset = stub->offset;
10627
10628 /* Work out the target address. */
10629 target = mips_elf_get_la25_target (stub, &s);
10630 target += s->output_section->vma + s->output_offset;
10631
10632 target_high = ((target + 0x8000) >> 16) & 0xffff;
10633 target_low = (target & 0xffff);
10634
10635 if (stub->stub_section != htab->strampoline)
10636 {
10637 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10638 of the section and write the two instructions at the end. */
10639 memset (loc, 0, offset);
10640 loc += offset;
10641 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10642 {
10643 bfd_put_micromips_32 (hti->output_bfd,
10644 LA25_LUI_MICROMIPS (target_high),
10645 loc);
10646 bfd_put_micromips_32 (hti->output_bfd,
10647 LA25_ADDIU_MICROMIPS (target_low),
10648 loc + 4);
10649 }
10650 else
10651 {
10652 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10653 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10654 }
10655 }
10656 else
10657 {
10658 /* This is trampoline. */
10659 loc += offset;
10660 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10661 {
10662 bfd_put_micromips_32 (hti->output_bfd,
10663 LA25_LUI_MICROMIPS (target_high), loc);
10664 bfd_put_micromips_32 (hti->output_bfd,
10665 LA25_J_MICROMIPS (target), loc + 4);
10666 bfd_put_micromips_32 (hti->output_bfd,
10667 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10668 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10669 }
10670 else
10671 {
10672 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10673 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10674 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10675 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10676 }
10677 }
10678 return TRUE;
10679 }
10680
10681 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10682 adjust it appropriately now. */
10683
10684 static void
10685 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10686 const char *name, Elf_Internal_Sym *sym)
10687 {
10688 /* The linker script takes care of providing names and values for
10689 these, but we must place them into the right sections. */
10690 static const char* const text_section_symbols[] = {
10691 "_ftext",
10692 "_etext",
10693 "__dso_displacement",
10694 "__elf_header",
10695 "__program_header_table",
10696 NULL
10697 };
10698
10699 static const char* const data_section_symbols[] = {
10700 "_fdata",
10701 "_edata",
10702 "_end",
10703 "_fbss",
10704 NULL
10705 };
10706
10707 const char* const *p;
10708 int i;
10709
10710 for (i = 0; i < 2; ++i)
10711 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10712 *p;
10713 ++p)
10714 if (strcmp (*p, name) == 0)
10715 {
10716 /* All of these symbols are given type STT_SECTION by the
10717 IRIX6 linker. */
10718 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10719 sym->st_other = STO_PROTECTED;
10720
10721 /* The IRIX linker puts these symbols in special sections. */
10722 if (i == 0)
10723 sym->st_shndx = SHN_MIPS_TEXT;
10724 else
10725 sym->st_shndx = SHN_MIPS_DATA;
10726
10727 break;
10728 }
10729 }
10730
10731 /* Finish up dynamic symbol handling. We set the contents of various
10732 dynamic sections here. */
10733
10734 bfd_boolean
10735 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10736 struct bfd_link_info *info,
10737 struct elf_link_hash_entry *h,
10738 Elf_Internal_Sym *sym)
10739 {
10740 bfd *dynobj;
10741 asection *sgot;
10742 struct mips_got_info *g, *gg;
10743 const char *name;
10744 int idx;
10745 struct mips_elf_link_hash_table *htab;
10746 struct mips_elf_link_hash_entry *hmips;
10747
10748 htab = mips_elf_hash_table (info);
10749 BFD_ASSERT (htab != NULL);
10750 dynobj = elf_hash_table (info)->dynobj;
10751 hmips = (struct mips_elf_link_hash_entry *) h;
10752
10753 BFD_ASSERT (!htab->is_vxworks);
10754
10755 if (h->plt.plist != NULL
10756 && (h->plt.plist->mips_offset != MINUS_ONE
10757 || h->plt.plist->comp_offset != MINUS_ONE))
10758 {
10759 /* We've decided to create a PLT entry for this symbol. */
10760 bfd_byte *loc;
10761 bfd_vma header_address, got_address;
10762 bfd_vma got_address_high, got_address_low, load;
10763 bfd_vma got_index;
10764 bfd_vma isa_bit;
10765
10766 got_index = h->plt.plist->gotplt_index;
10767
10768 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10769 BFD_ASSERT (h->dynindx != -1);
10770 BFD_ASSERT (htab->root.splt != NULL);
10771 BFD_ASSERT (got_index != MINUS_ONE);
10772 BFD_ASSERT (!h->def_regular);
10773
10774 /* Calculate the address of the PLT header. */
10775 isa_bit = htab->plt_header_is_comp;
10776 header_address = (htab->root.splt->output_section->vma
10777 + htab->root.splt->output_offset + isa_bit);
10778
10779 /* Calculate the address of the .got.plt entry. */
10780 got_address = (htab->root.sgotplt->output_section->vma
10781 + htab->root.sgotplt->output_offset
10782 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10783
10784 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10785 got_address_low = got_address & 0xffff;
10786
10787 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10788 cannot be loaded in two instructions. */
10789 if (ABI_64_P (output_bfd)
10790 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10791 {
10792 _bfd_error_handler
10793 /* xgettext:c-format */
10794 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10795 "supported; consider using `-Ttext-segment=...'"),
10796 output_bfd,
10797 htab->root.sgotplt->output_section,
10798 (int64_t) got_address);
10799 bfd_set_error (bfd_error_no_error);
10800 return FALSE;
10801 }
10802
10803 /* Initially point the .got.plt entry at the PLT header. */
10804 loc = (htab->root.sgotplt->contents
10805 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10806 if (ABI_64_P (output_bfd))
10807 bfd_put_64 (output_bfd, header_address, loc);
10808 else
10809 bfd_put_32 (output_bfd, header_address, loc);
10810
10811 /* Now handle the PLT itself. First the standard entry (the order
10812 does not matter, we just have to pick one). */
10813 if (h->plt.plist->mips_offset != MINUS_ONE)
10814 {
10815 const bfd_vma *plt_entry;
10816 bfd_vma plt_offset;
10817
10818 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10819
10820 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10821
10822 /* Find out where the .plt entry should go. */
10823 loc = htab->root.splt->contents + plt_offset;
10824
10825 /* Pick the load opcode. */
10826 load = MIPS_ELF_LOAD_WORD (output_bfd);
10827
10828 /* Fill in the PLT entry itself. */
10829
10830 if (MIPSR6_P (output_bfd))
10831 plt_entry = mipsr6_exec_plt_entry;
10832 else
10833 plt_entry = mips_exec_plt_entry;
10834 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10835 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10836 loc + 4);
10837
10838 if (! LOAD_INTERLOCKS_P (output_bfd))
10839 {
10840 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10841 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10842 }
10843 else
10844 {
10845 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10846 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10847 loc + 12);
10848 }
10849 }
10850
10851 /* Now the compressed entry. They come after any standard ones. */
10852 if (h->plt.plist->comp_offset != MINUS_ONE)
10853 {
10854 bfd_vma plt_offset;
10855
10856 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10857 + h->plt.plist->comp_offset);
10858
10859 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10860
10861 /* Find out where the .plt entry should go. */
10862 loc = htab->root.splt->contents + plt_offset;
10863
10864 /* Fill in the PLT entry itself. */
10865 if (!MICROMIPS_P (output_bfd))
10866 {
10867 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10868
10869 bfd_put_16 (output_bfd, plt_entry[0], loc);
10870 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10871 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10872 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10873 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10874 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10875 bfd_put_32 (output_bfd, got_address, loc + 12);
10876 }
10877 else if (htab->insn32)
10878 {
10879 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10880
10881 bfd_put_16 (output_bfd, plt_entry[0], loc);
10882 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10883 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10884 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10885 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10886 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10887 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10888 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10889 }
10890 else
10891 {
10892 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10893 bfd_signed_vma gotpc_offset;
10894 bfd_vma loc_address;
10895
10896 BFD_ASSERT (got_address % 4 == 0);
10897
10898 loc_address = (htab->root.splt->output_section->vma
10899 + htab->root.splt->output_offset + plt_offset);
10900 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10901
10902 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10903 if (gotpc_offset + 0x1000000 >= 0x2000000)
10904 {
10905 _bfd_error_handler
10906 /* xgettext:c-format */
10907 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10908 "beyond the range of ADDIUPC"),
10909 output_bfd,
10910 htab->root.sgotplt->output_section,
10911 (int64_t) gotpc_offset,
10912 htab->root.splt->output_section);
10913 bfd_set_error (bfd_error_no_error);
10914 return FALSE;
10915 }
10916 bfd_put_16 (output_bfd,
10917 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10918 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10919 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10920 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10921 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10922 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10923 }
10924 }
10925
10926 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10927 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10928 got_index - 2, h->dynindx,
10929 R_MIPS_JUMP_SLOT, got_address);
10930
10931 /* We distinguish between PLT entries and lazy-binding stubs by
10932 giving the former an st_other value of STO_MIPS_PLT. Set the
10933 flag and leave the value if there are any relocations in the
10934 binary where pointer equality matters. */
10935 sym->st_shndx = SHN_UNDEF;
10936 if (h->pointer_equality_needed)
10937 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10938 else
10939 {
10940 sym->st_value = 0;
10941 sym->st_other = 0;
10942 }
10943 }
10944
10945 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10946 {
10947 /* We've decided to create a lazy-binding stub. */
10948 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10949 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10950 bfd_vma stub_size = htab->function_stub_size;
10951 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10952 bfd_vma isa_bit = micromips_p;
10953 bfd_vma stub_big_size;
10954
10955 if (!micromips_p)
10956 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10957 else if (htab->insn32)
10958 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10959 else
10960 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10961
10962 /* This symbol has a stub. Set it up. */
10963
10964 BFD_ASSERT (h->dynindx != -1);
10965
10966 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10967
10968 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10969 sign extension at runtime in the stub, resulting in a negative
10970 index value. */
10971 if (h->dynindx & ~0x7fffffff)
10972 return FALSE;
10973
10974 /* Fill the stub. */
10975 if (micromips_p)
10976 {
10977 idx = 0;
10978 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10979 stub + idx);
10980 idx += 4;
10981 if (htab->insn32)
10982 {
10983 bfd_put_micromips_32 (output_bfd,
10984 STUB_MOVE32_MICROMIPS, stub + idx);
10985 idx += 4;
10986 }
10987 else
10988 {
10989 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10990 idx += 2;
10991 }
10992 if (stub_size == stub_big_size)
10993 {
10994 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10995
10996 bfd_put_micromips_32 (output_bfd,
10997 STUB_LUI_MICROMIPS (dynindx_hi),
10998 stub + idx);
10999 idx += 4;
11000 }
11001 if (htab->insn32)
11002 {
11003 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11004 stub + idx);
11005 idx += 4;
11006 }
11007 else
11008 {
11009 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11010 idx += 2;
11011 }
11012
11013 /* If a large stub is not required and sign extension is not a
11014 problem, then use legacy code in the stub. */
11015 if (stub_size == stub_big_size)
11016 bfd_put_micromips_32 (output_bfd,
11017 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11018 stub + idx);
11019 else if (h->dynindx & ~0x7fff)
11020 bfd_put_micromips_32 (output_bfd,
11021 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11022 stub + idx);
11023 else
11024 bfd_put_micromips_32 (output_bfd,
11025 STUB_LI16S_MICROMIPS (output_bfd,
11026 h->dynindx),
11027 stub + idx);
11028 }
11029 else
11030 {
11031 idx = 0;
11032 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11033 idx += 4;
11034 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11035 idx += 4;
11036 if (stub_size == stub_big_size)
11037 {
11038 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11039 stub + idx);
11040 idx += 4;
11041 }
11042 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11043 idx += 4;
11044
11045 /* If a large stub is not required and sign extension is not a
11046 problem, then use legacy code in the stub. */
11047 if (stub_size == stub_big_size)
11048 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11049 stub + idx);
11050 else if (h->dynindx & ~0x7fff)
11051 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11052 stub + idx);
11053 else
11054 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11055 stub + idx);
11056 }
11057
11058 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11059 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11060 stub, stub_size);
11061
11062 /* Mark the symbol as undefined. stub_offset != -1 occurs
11063 only for the referenced symbol. */
11064 sym->st_shndx = SHN_UNDEF;
11065
11066 /* The run-time linker uses the st_value field of the symbol
11067 to reset the global offset table entry for this external
11068 to its stub address when unlinking a shared object. */
11069 sym->st_value = (htab->sstubs->output_section->vma
11070 + htab->sstubs->output_offset
11071 + h->plt.plist->stub_offset
11072 + isa_bit);
11073 sym->st_other = other;
11074 }
11075
11076 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11077 refer to the stub, since only the stub uses the standard calling
11078 conventions. */
11079 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11080 {
11081 BFD_ASSERT (hmips->need_fn_stub);
11082 sym->st_value = (hmips->fn_stub->output_section->vma
11083 + hmips->fn_stub->output_offset);
11084 sym->st_size = hmips->fn_stub->size;
11085 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11086 }
11087
11088 BFD_ASSERT (h->dynindx != -1
11089 || h->forced_local);
11090
11091 sgot = htab->root.sgot;
11092 g = htab->got_info;
11093 BFD_ASSERT (g != NULL);
11094
11095 /* Run through the global symbol table, creating GOT entries for all
11096 the symbols that need them. */
11097 if (hmips->global_got_area != GGA_NONE)
11098 {
11099 bfd_vma offset;
11100 bfd_vma value;
11101
11102 value = sym->st_value;
11103 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11104 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11105 }
11106
11107 if (hmips->global_got_area != GGA_NONE && g->next)
11108 {
11109 struct mips_got_entry e, *p;
11110 bfd_vma entry;
11111 bfd_vma offset;
11112
11113 gg = g;
11114
11115 e.abfd = output_bfd;
11116 e.symndx = -1;
11117 e.d.h = hmips;
11118 e.tls_type = GOT_TLS_NONE;
11119
11120 for (g = g->next; g->next != gg; g = g->next)
11121 {
11122 if (g->got_entries
11123 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11124 &e)))
11125 {
11126 offset = p->gotidx;
11127 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11128 if (bfd_link_pic (info)
11129 || (elf_hash_table (info)->dynamic_sections_created
11130 && p->d.h != NULL
11131 && p->d.h->root.def_dynamic
11132 && !p->d.h->root.def_regular))
11133 {
11134 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11135 the various compatibility problems, it's easier to mock
11136 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11137 mips_elf_create_dynamic_relocation to calculate the
11138 appropriate addend. */
11139 Elf_Internal_Rela rel[3];
11140
11141 memset (rel, 0, sizeof (rel));
11142 if (ABI_64_P (output_bfd))
11143 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11144 else
11145 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11146 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11147
11148 entry = 0;
11149 if (! (mips_elf_create_dynamic_relocation
11150 (output_bfd, info, rel,
11151 e.d.h, NULL, sym->st_value, &entry, sgot)))
11152 return FALSE;
11153 }
11154 else
11155 entry = sym->st_value;
11156 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11157 }
11158 }
11159 }
11160
11161 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11162 name = h->root.root.string;
11163 if (h == elf_hash_table (info)->hdynamic
11164 || h == elf_hash_table (info)->hgot)
11165 sym->st_shndx = SHN_ABS;
11166 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11167 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11168 {
11169 sym->st_shndx = SHN_ABS;
11170 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11171 sym->st_value = 1;
11172 }
11173 else if (SGI_COMPAT (output_bfd))
11174 {
11175 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11176 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11177 {
11178 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11179 sym->st_other = STO_PROTECTED;
11180 sym->st_value = 0;
11181 sym->st_shndx = SHN_MIPS_DATA;
11182 }
11183 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11184 {
11185 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11186 sym->st_other = STO_PROTECTED;
11187 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11188 sym->st_shndx = SHN_ABS;
11189 }
11190 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11191 {
11192 if (h->type == STT_FUNC)
11193 sym->st_shndx = SHN_MIPS_TEXT;
11194 else if (h->type == STT_OBJECT)
11195 sym->st_shndx = SHN_MIPS_DATA;
11196 }
11197 }
11198
11199 /* Emit a copy reloc, if needed. */
11200 if (h->needs_copy)
11201 {
11202 asection *s;
11203 bfd_vma symval;
11204
11205 BFD_ASSERT (h->dynindx != -1);
11206 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11207
11208 s = mips_elf_rel_dyn_section (info, FALSE);
11209 symval = (h->root.u.def.section->output_section->vma
11210 + h->root.u.def.section->output_offset
11211 + h->root.u.def.value);
11212 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11213 h->dynindx, R_MIPS_COPY, symval);
11214 }
11215
11216 /* Handle the IRIX6-specific symbols. */
11217 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11218 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11219
11220 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11221 to treat compressed symbols like any other. */
11222 if (ELF_ST_IS_MIPS16 (sym->st_other))
11223 {
11224 BFD_ASSERT (sym->st_value & 1);
11225 sym->st_other -= STO_MIPS16;
11226 }
11227 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11228 {
11229 BFD_ASSERT (sym->st_value & 1);
11230 sym->st_other -= STO_MICROMIPS;
11231 }
11232
11233 return TRUE;
11234 }
11235
11236 /* Likewise, for VxWorks. */
11237
11238 bfd_boolean
11239 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11240 struct bfd_link_info *info,
11241 struct elf_link_hash_entry *h,
11242 Elf_Internal_Sym *sym)
11243 {
11244 bfd *dynobj;
11245 asection *sgot;
11246 struct mips_got_info *g;
11247 struct mips_elf_link_hash_table *htab;
11248 struct mips_elf_link_hash_entry *hmips;
11249
11250 htab = mips_elf_hash_table (info);
11251 BFD_ASSERT (htab != NULL);
11252 dynobj = elf_hash_table (info)->dynobj;
11253 hmips = (struct mips_elf_link_hash_entry *) h;
11254
11255 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11256 {
11257 bfd_byte *loc;
11258 bfd_vma plt_address, got_address, got_offset, branch_offset;
11259 Elf_Internal_Rela rel;
11260 static const bfd_vma *plt_entry;
11261 bfd_vma gotplt_index;
11262 bfd_vma plt_offset;
11263
11264 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11265 gotplt_index = h->plt.plist->gotplt_index;
11266
11267 BFD_ASSERT (h->dynindx != -1);
11268 BFD_ASSERT (htab->root.splt != NULL);
11269 BFD_ASSERT (gotplt_index != MINUS_ONE);
11270 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11271
11272 /* Calculate the address of the .plt entry. */
11273 plt_address = (htab->root.splt->output_section->vma
11274 + htab->root.splt->output_offset
11275 + plt_offset);
11276
11277 /* Calculate the address of the .got.plt entry. */
11278 got_address = (htab->root.sgotplt->output_section->vma
11279 + htab->root.sgotplt->output_offset
11280 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11281
11282 /* Calculate the offset of the .got.plt entry from
11283 _GLOBAL_OFFSET_TABLE_. */
11284 got_offset = mips_elf_gotplt_index (info, h);
11285
11286 /* Calculate the offset for the branch at the start of the PLT
11287 entry. The branch jumps to the beginning of .plt. */
11288 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11289
11290 /* Fill in the initial value of the .got.plt entry. */
11291 bfd_put_32 (output_bfd, plt_address,
11292 (htab->root.sgotplt->contents
11293 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11294
11295 /* Find out where the .plt entry should go. */
11296 loc = htab->root.splt->contents + plt_offset;
11297
11298 if (bfd_link_pic (info))
11299 {
11300 plt_entry = mips_vxworks_shared_plt_entry;
11301 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11302 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11303 }
11304 else
11305 {
11306 bfd_vma got_address_high, got_address_low;
11307
11308 plt_entry = mips_vxworks_exec_plt_entry;
11309 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11310 got_address_low = got_address & 0xffff;
11311
11312 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11313 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11314 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11315 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11316 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11317 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11318 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11319 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11320
11321 loc = (htab->srelplt2->contents
11322 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11323
11324 /* Emit a relocation for the .got.plt entry. */
11325 rel.r_offset = got_address;
11326 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11327 rel.r_addend = plt_offset;
11328 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11329
11330 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11331 loc += sizeof (Elf32_External_Rela);
11332 rel.r_offset = plt_address + 8;
11333 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11334 rel.r_addend = got_offset;
11335 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11336
11337 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11338 loc += sizeof (Elf32_External_Rela);
11339 rel.r_offset += 4;
11340 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11341 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11342 }
11343
11344 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11345 loc = (htab->root.srelplt->contents
11346 + gotplt_index * sizeof (Elf32_External_Rela));
11347 rel.r_offset = got_address;
11348 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11349 rel.r_addend = 0;
11350 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11351
11352 if (!h->def_regular)
11353 sym->st_shndx = SHN_UNDEF;
11354 }
11355
11356 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11357
11358 sgot = htab->root.sgot;
11359 g = htab->got_info;
11360 BFD_ASSERT (g != NULL);
11361
11362 /* See if this symbol has an entry in the GOT. */
11363 if (hmips->global_got_area != GGA_NONE)
11364 {
11365 bfd_vma offset;
11366 Elf_Internal_Rela outrel;
11367 bfd_byte *loc;
11368 asection *s;
11369
11370 /* Install the symbol value in the GOT. */
11371 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11372 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11373
11374 /* Add a dynamic relocation for it. */
11375 s = mips_elf_rel_dyn_section (info, FALSE);
11376 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11377 outrel.r_offset = (sgot->output_section->vma
11378 + sgot->output_offset
11379 + offset);
11380 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11381 outrel.r_addend = 0;
11382 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11383 }
11384
11385 /* Emit a copy reloc, if needed. */
11386 if (h->needs_copy)
11387 {
11388 Elf_Internal_Rela rel;
11389 asection *srel;
11390 bfd_byte *loc;
11391
11392 BFD_ASSERT (h->dynindx != -1);
11393
11394 rel.r_offset = (h->root.u.def.section->output_section->vma
11395 + h->root.u.def.section->output_offset
11396 + h->root.u.def.value);
11397 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11398 rel.r_addend = 0;
11399 if (h->root.u.def.section == htab->root.sdynrelro)
11400 srel = htab->root.sreldynrelro;
11401 else
11402 srel = htab->root.srelbss;
11403 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11404 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11405 ++srel->reloc_count;
11406 }
11407
11408 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11409 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11410 sym->st_value &= ~1;
11411
11412 return TRUE;
11413 }
11414
11415 /* Write out a plt0 entry to the beginning of .plt. */
11416
11417 static bfd_boolean
11418 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11419 {
11420 bfd_byte *loc;
11421 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11422 static const bfd_vma *plt_entry;
11423 struct mips_elf_link_hash_table *htab;
11424
11425 htab = mips_elf_hash_table (info);
11426 BFD_ASSERT (htab != NULL);
11427
11428 if (ABI_64_P (output_bfd))
11429 plt_entry = mips_n64_exec_plt0_entry;
11430 else if (ABI_N32_P (output_bfd))
11431 plt_entry = mips_n32_exec_plt0_entry;
11432 else if (!htab->plt_header_is_comp)
11433 plt_entry = mips_o32_exec_plt0_entry;
11434 else if (htab->insn32)
11435 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11436 else
11437 plt_entry = micromips_o32_exec_plt0_entry;
11438
11439 /* Calculate the value of .got.plt. */
11440 gotplt_value = (htab->root.sgotplt->output_section->vma
11441 + htab->root.sgotplt->output_offset);
11442 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11443 gotplt_value_low = gotplt_value & 0xffff;
11444
11445 /* The PLT sequence is not safe for N64 if .got.plt's address can
11446 not be loaded in two instructions. */
11447 if (ABI_64_P (output_bfd)
11448 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11449 {
11450 _bfd_error_handler
11451 /* xgettext:c-format */
11452 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11453 "supported; consider using `-Ttext-segment=...'"),
11454 output_bfd,
11455 htab->root.sgotplt->output_section,
11456 (int64_t) gotplt_value);
11457 bfd_set_error (bfd_error_no_error);
11458 return FALSE;
11459 }
11460
11461 /* Install the PLT header. */
11462 loc = htab->root.splt->contents;
11463 if (plt_entry == micromips_o32_exec_plt0_entry)
11464 {
11465 bfd_vma gotpc_offset;
11466 bfd_vma loc_address;
11467 size_t i;
11468
11469 BFD_ASSERT (gotplt_value % 4 == 0);
11470
11471 loc_address = (htab->root.splt->output_section->vma
11472 + htab->root.splt->output_offset);
11473 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11474
11475 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11476 if (gotpc_offset + 0x1000000 >= 0x2000000)
11477 {
11478 _bfd_error_handler
11479 /* xgettext:c-format */
11480 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11481 "beyond the range of ADDIUPC"),
11482 output_bfd,
11483 htab->root.sgotplt->output_section,
11484 (int64_t) gotpc_offset,
11485 htab->root.splt->output_section);
11486 bfd_set_error (bfd_error_no_error);
11487 return FALSE;
11488 }
11489 bfd_put_16 (output_bfd,
11490 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11491 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11492 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11493 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11494 }
11495 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11496 {
11497 size_t i;
11498
11499 bfd_put_16 (output_bfd, plt_entry[0], loc);
11500 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11501 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11502 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11503 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11504 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11505 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11506 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11507 }
11508 else
11509 {
11510 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11511 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11512 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11513 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11514 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11515 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11516 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11517 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11518 }
11519
11520 return TRUE;
11521 }
11522
11523 /* Install the PLT header for a VxWorks executable and finalize the
11524 contents of .rela.plt.unloaded. */
11525
11526 static void
11527 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11528 {
11529 Elf_Internal_Rela rela;
11530 bfd_byte *loc;
11531 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11532 static const bfd_vma *plt_entry;
11533 struct mips_elf_link_hash_table *htab;
11534
11535 htab = mips_elf_hash_table (info);
11536 BFD_ASSERT (htab != NULL);
11537
11538 plt_entry = mips_vxworks_exec_plt0_entry;
11539
11540 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11541 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11542 + htab->root.hgot->root.u.def.section->output_offset
11543 + htab->root.hgot->root.u.def.value);
11544
11545 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11546 got_value_low = got_value & 0xffff;
11547
11548 /* Calculate the address of the PLT header. */
11549 plt_address = (htab->root.splt->output_section->vma
11550 + htab->root.splt->output_offset);
11551
11552 /* Install the PLT header. */
11553 loc = htab->root.splt->contents;
11554 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11555 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11556 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11557 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11558 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11559 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11560
11561 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11562 loc = htab->srelplt2->contents;
11563 rela.r_offset = plt_address;
11564 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11565 rela.r_addend = 0;
11566 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11567 loc += sizeof (Elf32_External_Rela);
11568
11569 /* Output the relocation for the following addiu of
11570 %lo(_GLOBAL_OFFSET_TABLE_). */
11571 rela.r_offset += 4;
11572 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11573 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11574 loc += sizeof (Elf32_External_Rela);
11575
11576 /* Fix up the remaining relocations. They may have the wrong
11577 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11578 in which symbols were output. */
11579 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11580 {
11581 Elf_Internal_Rela rel;
11582
11583 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11584 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11585 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11586 loc += sizeof (Elf32_External_Rela);
11587
11588 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11589 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11590 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11591 loc += sizeof (Elf32_External_Rela);
11592
11593 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11594 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11595 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11596 loc += sizeof (Elf32_External_Rela);
11597 }
11598 }
11599
11600 /* Install the PLT header for a VxWorks shared library. */
11601
11602 static void
11603 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11604 {
11605 unsigned int i;
11606 struct mips_elf_link_hash_table *htab;
11607
11608 htab = mips_elf_hash_table (info);
11609 BFD_ASSERT (htab != NULL);
11610
11611 /* We just need to copy the entry byte-by-byte. */
11612 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11613 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11614 htab->root.splt->contents + i * 4);
11615 }
11616
11617 /* Finish up the dynamic sections. */
11618
11619 bfd_boolean
11620 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11621 struct bfd_link_info *info)
11622 {
11623 bfd *dynobj;
11624 asection *sdyn;
11625 asection *sgot;
11626 struct mips_got_info *gg, *g;
11627 struct mips_elf_link_hash_table *htab;
11628
11629 htab = mips_elf_hash_table (info);
11630 BFD_ASSERT (htab != NULL);
11631
11632 dynobj = elf_hash_table (info)->dynobj;
11633
11634 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11635
11636 sgot = htab->root.sgot;
11637 gg = htab->got_info;
11638
11639 if (elf_hash_table (info)->dynamic_sections_created)
11640 {
11641 bfd_byte *b;
11642 int dyn_to_skip = 0, dyn_skipped = 0;
11643
11644 BFD_ASSERT (sdyn != NULL);
11645 BFD_ASSERT (gg != NULL);
11646
11647 g = mips_elf_bfd_got (output_bfd, FALSE);
11648 BFD_ASSERT (g != NULL);
11649
11650 for (b = sdyn->contents;
11651 b < sdyn->contents + sdyn->size;
11652 b += MIPS_ELF_DYN_SIZE (dynobj))
11653 {
11654 Elf_Internal_Dyn dyn;
11655 const char *name;
11656 size_t elemsize;
11657 asection *s;
11658 bfd_boolean swap_out_p;
11659
11660 /* Read in the current dynamic entry. */
11661 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11662
11663 /* Assume that we're going to modify it and write it out. */
11664 swap_out_p = TRUE;
11665
11666 switch (dyn.d_tag)
11667 {
11668 case DT_RELENT:
11669 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11670 break;
11671
11672 case DT_RELAENT:
11673 BFD_ASSERT (htab->is_vxworks);
11674 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11675 break;
11676
11677 case DT_STRSZ:
11678 /* Rewrite DT_STRSZ. */
11679 dyn.d_un.d_val =
11680 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11681 break;
11682
11683 case DT_PLTGOT:
11684 s = htab->root.sgot;
11685 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11686 break;
11687
11688 case DT_MIPS_PLTGOT:
11689 s = htab->root.sgotplt;
11690 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11691 break;
11692
11693 case DT_MIPS_RLD_VERSION:
11694 dyn.d_un.d_val = 1; /* XXX */
11695 break;
11696
11697 case DT_MIPS_FLAGS:
11698 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11699 break;
11700
11701 case DT_MIPS_TIME_STAMP:
11702 {
11703 time_t t;
11704 time (&t);
11705 dyn.d_un.d_val = t;
11706 }
11707 break;
11708
11709 case DT_MIPS_ICHECKSUM:
11710 /* XXX FIXME: */
11711 swap_out_p = FALSE;
11712 break;
11713
11714 case DT_MIPS_IVERSION:
11715 /* XXX FIXME: */
11716 swap_out_p = FALSE;
11717 break;
11718
11719 case DT_MIPS_BASE_ADDRESS:
11720 s = output_bfd->sections;
11721 BFD_ASSERT (s != NULL);
11722 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11723 break;
11724
11725 case DT_MIPS_LOCAL_GOTNO:
11726 dyn.d_un.d_val = g->local_gotno;
11727 break;
11728
11729 case DT_MIPS_UNREFEXTNO:
11730 /* The index into the dynamic symbol table which is the
11731 entry of the first external symbol that is not
11732 referenced within the same object. */
11733 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11734 break;
11735
11736 case DT_MIPS_GOTSYM:
11737 if (htab->global_gotsym)
11738 {
11739 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11740 break;
11741 }
11742 /* In case if we don't have global got symbols we default
11743 to setting DT_MIPS_GOTSYM to the same value as
11744 DT_MIPS_SYMTABNO. */
11745 /* Fall through. */
11746
11747 case DT_MIPS_SYMTABNO:
11748 name = ".dynsym";
11749 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11750 s = bfd_get_linker_section (dynobj, name);
11751
11752 if (s != NULL)
11753 dyn.d_un.d_val = s->size / elemsize;
11754 else
11755 dyn.d_un.d_val = 0;
11756 break;
11757
11758 case DT_MIPS_HIPAGENO:
11759 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11760 break;
11761
11762 case DT_MIPS_RLD_MAP:
11763 {
11764 struct elf_link_hash_entry *h;
11765 h = mips_elf_hash_table (info)->rld_symbol;
11766 if (!h)
11767 {
11768 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11769 swap_out_p = FALSE;
11770 break;
11771 }
11772 s = h->root.u.def.section;
11773
11774 /* The MIPS_RLD_MAP tag stores the absolute address of the
11775 debug pointer. */
11776 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11777 + h->root.u.def.value);
11778 }
11779 break;
11780
11781 case DT_MIPS_RLD_MAP_REL:
11782 {
11783 struct elf_link_hash_entry *h;
11784 bfd_vma dt_addr, rld_addr;
11785 h = mips_elf_hash_table (info)->rld_symbol;
11786 if (!h)
11787 {
11788 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11789 swap_out_p = FALSE;
11790 break;
11791 }
11792 s = h->root.u.def.section;
11793
11794 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11795 pointer, relative to the address of the tag. */
11796 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11797 + (b - sdyn->contents));
11798 rld_addr = (s->output_section->vma + s->output_offset
11799 + h->root.u.def.value);
11800 dyn.d_un.d_ptr = rld_addr - dt_addr;
11801 }
11802 break;
11803
11804 case DT_MIPS_OPTIONS:
11805 s = (bfd_get_section_by_name
11806 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11807 dyn.d_un.d_ptr = s->vma;
11808 break;
11809
11810 case DT_PLTREL:
11811 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11812 if (htab->is_vxworks)
11813 dyn.d_un.d_val = DT_RELA;
11814 else
11815 dyn.d_un.d_val = DT_REL;
11816 break;
11817
11818 case DT_PLTRELSZ:
11819 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11820 dyn.d_un.d_val = htab->root.srelplt->size;
11821 break;
11822
11823 case DT_JMPREL:
11824 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11825 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11826 + htab->root.srelplt->output_offset);
11827 break;
11828
11829 case DT_TEXTREL:
11830 /* If we didn't need any text relocations after all, delete
11831 the dynamic tag. */
11832 if (!(info->flags & DF_TEXTREL))
11833 {
11834 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11835 swap_out_p = FALSE;
11836 }
11837 break;
11838
11839 case DT_FLAGS:
11840 /* If we didn't need any text relocations after all, clear
11841 DF_TEXTREL from DT_FLAGS. */
11842 if (!(info->flags & DF_TEXTREL))
11843 dyn.d_un.d_val &= ~DF_TEXTREL;
11844 else
11845 swap_out_p = FALSE;
11846 break;
11847
11848 default:
11849 swap_out_p = FALSE;
11850 if (htab->is_vxworks
11851 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11852 swap_out_p = TRUE;
11853 break;
11854 }
11855
11856 if (swap_out_p || dyn_skipped)
11857 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11858 (dynobj, &dyn, b - dyn_skipped);
11859
11860 if (dyn_to_skip)
11861 {
11862 dyn_skipped += dyn_to_skip;
11863 dyn_to_skip = 0;
11864 }
11865 }
11866
11867 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11868 if (dyn_skipped > 0)
11869 memset (b - dyn_skipped, 0, dyn_skipped);
11870 }
11871
11872 if (sgot != NULL && sgot->size > 0
11873 && !bfd_is_abs_section (sgot->output_section))
11874 {
11875 if (htab->is_vxworks)
11876 {
11877 /* The first entry of the global offset table points to the
11878 ".dynamic" section. The second is initialized by the
11879 loader and contains the shared library identifier.
11880 The third is also initialized by the loader and points
11881 to the lazy resolution stub. */
11882 MIPS_ELF_PUT_WORD (output_bfd,
11883 sdyn->output_offset + sdyn->output_section->vma,
11884 sgot->contents);
11885 MIPS_ELF_PUT_WORD (output_bfd, 0,
11886 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11887 MIPS_ELF_PUT_WORD (output_bfd, 0,
11888 sgot->contents
11889 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11890 }
11891 else
11892 {
11893 /* The first entry of the global offset table will be filled at
11894 runtime. The second entry will be used by some runtime loaders.
11895 This isn't the case of IRIX rld. */
11896 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11897 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11898 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11899 }
11900
11901 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11902 = MIPS_ELF_GOT_SIZE (output_bfd);
11903 }
11904
11905 /* Generate dynamic relocations for the non-primary gots. */
11906 if (gg != NULL && gg->next)
11907 {
11908 Elf_Internal_Rela rel[3];
11909 bfd_vma addend = 0;
11910
11911 memset (rel, 0, sizeof (rel));
11912 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11913
11914 for (g = gg->next; g->next != gg; g = g->next)
11915 {
11916 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11917 + g->next->tls_gotno;
11918
11919 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11920 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11921 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11922 sgot->contents
11923 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11924
11925 if (! bfd_link_pic (info))
11926 continue;
11927
11928 for (; got_index < g->local_gotno; got_index++)
11929 {
11930 if (got_index >= g->assigned_low_gotno
11931 && got_index <= g->assigned_high_gotno)
11932 continue;
11933
11934 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11935 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11936 if (!(mips_elf_create_dynamic_relocation
11937 (output_bfd, info, rel, NULL,
11938 bfd_abs_section_ptr,
11939 0, &addend, sgot)))
11940 return FALSE;
11941 BFD_ASSERT (addend == 0);
11942 }
11943 }
11944 }
11945
11946 /* The generation of dynamic relocations for the non-primary gots
11947 adds more dynamic relocations. We cannot count them until
11948 here. */
11949
11950 if (elf_hash_table (info)->dynamic_sections_created)
11951 {
11952 bfd_byte *b;
11953 bfd_boolean swap_out_p;
11954
11955 BFD_ASSERT (sdyn != NULL);
11956
11957 for (b = sdyn->contents;
11958 b < sdyn->contents + sdyn->size;
11959 b += MIPS_ELF_DYN_SIZE (dynobj))
11960 {
11961 Elf_Internal_Dyn dyn;
11962 asection *s;
11963
11964 /* Read in the current dynamic entry. */
11965 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11966
11967 /* Assume that we're going to modify it and write it out. */
11968 swap_out_p = TRUE;
11969
11970 switch (dyn.d_tag)
11971 {
11972 case DT_RELSZ:
11973 /* Reduce DT_RELSZ to account for any relocations we
11974 decided not to make. This is for the n64 irix rld,
11975 which doesn't seem to apply any relocations if there
11976 are trailing null entries. */
11977 s = mips_elf_rel_dyn_section (info, FALSE);
11978 dyn.d_un.d_val = (s->reloc_count
11979 * (ABI_64_P (output_bfd)
11980 ? sizeof (Elf64_Mips_External_Rel)
11981 : sizeof (Elf32_External_Rel)));
11982 /* Adjust the section size too. Tools like the prelinker
11983 can reasonably expect the values to the same. */
11984 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
11985 elf_section_data (s->output_section)->this_hdr.sh_size
11986 = dyn.d_un.d_val;
11987 break;
11988
11989 default:
11990 swap_out_p = FALSE;
11991 break;
11992 }
11993
11994 if (swap_out_p)
11995 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11996 (dynobj, &dyn, b);
11997 }
11998 }
11999
12000 {
12001 asection *s;
12002 Elf32_compact_rel cpt;
12003
12004 if (SGI_COMPAT (output_bfd))
12005 {
12006 /* Write .compact_rel section out. */
12007 s = bfd_get_linker_section (dynobj, ".compact_rel");
12008 if (s != NULL)
12009 {
12010 cpt.id1 = 1;
12011 cpt.num = s->reloc_count;
12012 cpt.id2 = 2;
12013 cpt.offset = (s->output_section->filepos
12014 + sizeof (Elf32_External_compact_rel));
12015 cpt.reserved0 = 0;
12016 cpt.reserved1 = 0;
12017 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12018 ((Elf32_External_compact_rel *)
12019 s->contents));
12020
12021 /* Clean up a dummy stub function entry in .text. */
12022 if (htab->sstubs != NULL)
12023 {
12024 file_ptr dummy_offset;
12025
12026 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12027 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12028 memset (htab->sstubs->contents + dummy_offset, 0,
12029 htab->function_stub_size);
12030 }
12031 }
12032 }
12033
12034 /* The psABI says that the dynamic relocations must be sorted in
12035 increasing order of r_symndx. The VxWorks EABI doesn't require
12036 this, and because the code below handles REL rather than RELA
12037 relocations, using it for VxWorks would be outright harmful. */
12038 if (!htab->is_vxworks)
12039 {
12040 s = mips_elf_rel_dyn_section (info, FALSE);
12041 if (s != NULL
12042 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12043 {
12044 reldyn_sorting_bfd = output_bfd;
12045
12046 if (ABI_64_P (output_bfd))
12047 qsort ((Elf64_External_Rel *) s->contents + 1,
12048 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12049 sort_dynamic_relocs_64);
12050 else
12051 qsort ((Elf32_External_Rel *) s->contents + 1,
12052 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12053 sort_dynamic_relocs);
12054 }
12055 }
12056 }
12057
12058 if (htab->root.splt && htab->root.splt->size > 0)
12059 {
12060 if (htab->is_vxworks)
12061 {
12062 if (bfd_link_pic (info))
12063 mips_vxworks_finish_shared_plt (output_bfd, info);
12064 else
12065 mips_vxworks_finish_exec_plt (output_bfd, info);
12066 }
12067 else
12068 {
12069 BFD_ASSERT (!bfd_link_pic (info));
12070 if (!mips_finish_exec_plt (output_bfd, info))
12071 return FALSE;
12072 }
12073 }
12074 return TRUE;
12075 }
12076
12077
12078 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12079
12080 static void
12081 mips_set_isa_flags (bfd *abfd)
12082 {
12083 flagword val;
12084
12085 switch (bfd_get_mach (abfd))
12086 {
12087 default:
12088 case bfd_mach_mips3000:
12089 val = E_MIPS_ARCH_1;
12090 break;
12091
12092 case bfd_mach_mips3900:
12093 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12094 break;
12095
12096 case bfd_mach_mips6000:
12097 val = E_MIPS_ARCH_2;
12098 break;
12099
12100 case bfd_mach_mips4010:
12101 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12102 break;
12103
12104 case bfd_mach_mips4000:
12105 case bfd_mach_mips4300:
12106 case bfd_mach_mips4400:
12107 case bfd_mach_mips4600:
12108 val = E_MIPS_ARCH_3;
12109 break;
12110
12111 case bfd_mach_mips4100:
12112 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12113 break;
12114
12115 case bfd_mach_mips4111:
12116 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12117 break;
12118
12119 case bfd_mach_mips4120:
12120 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12121 break;
12122
12123 case bfd_mach_mips4650:
12124 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12125 break;
12126
12127 case bfd_mach_mips5400:
12128 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12129 break;
12130
12131 case bfd_mach_mips5500:
12132 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12133 break;
12134
12135 case bfd_mach_mips5900:
12136 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12137 break;
12138
12139 case bfd_mach_mips9000:
12140 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12141 break;
12142
12143 case bfd_mach_mips5000:
12144 case bfd_mach_mips7000:
12145 case bfd_mach_mips8000:
12146 case bfd_mach_mips10000:
12147 case bfd_mach_mips12000:
12148 case bfd_mach_mips14000:
12149 case bfd_mach_mips16000:
12150 val = E_MIPS_ARCH_4;
12151 break;
12152
12153 case bfd_mach_mips5:
12154 val = E_MIPS_ARCH_5;
12155 break;
12156
12157 case bfd_mach_mips_loongson_2e:
12158 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12159 break;
12160
12161 case bfd_mach_mips_loongson_2f:
12162 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12163 break;
12164
12165 case bfd_mach_mips_sb1:
12166 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12167 break;
12168
12169 case bfd_mach_mips_gs464:
12170 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12171 break;
12172
12173 case bfd_mach_mips_gs464e:
12174 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12175 break;
12176
12177 case bfd_mach_mips_gs264e:
12178 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12179 break;
12180
12181 case bfd_mach_mips_octeon:
12182 case bfd_mach_mips_octeonp:
12183 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12184 break;
12185
12186 case bfd_mach_mips_octeon3:
12187 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12188 break;
12189
12190 case bfd_mach_mips_xlr:
12191 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12192 break;
12193
12194 case bfd_mach_mips_octeon2:
12195 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12196 break;
12197
12198 case bfd_mach_mipsisa32:
12199 val = E_MIPS_ARCH_32;
12200 break;
12201
12202 case bfd_mach_mipsisa64:
12203 val = E_MIPS_ARCH_64;
12204 break;
12205
12206 case bfd_mach_mipsisa32r2:
12207 case bfd_mach_mipsisa32r3:
12208 case bfd_mach_mipsisa32r5:
12209 val = E_MIPS_ARCH_32R2;
12210 break;
12211
12212 case bfd_mach_mips_interaptiv_mr2:
12213 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12214 break;
12215
12216 case bfd_mach_mipsisa64r2:
12217 case bfd_mach_mipsisa64r3:
12218 case bfd_mach_mipsisa64r5:
12219 val = E_MIPS_ARCH_64R2;
12220 break;
12221
12222 case bfd_mach_mipsisa32r6:
12223 val = E_MIPS_ARCH_32R6;
12224 break;
12225
12226 case bfd_mach_mipsisa64r6:
12227 val = E_MIPS_ARCH_64R6;
12228 break;
12229 }
12230 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12231 elf_elfheader (abfd)->e_flags |= val;
12232
12233 }
12234
12235
12236 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12237 Don't do so for code sections. We want to keep ordering of HI16/LO16
12238 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12239 relocs to be sorted. */
12240
12241 bfd_boolean
12242 _bfd_mips_elf_sort_relocs_p (asection *sec)
12243 {
12244 return (sec->flags & SEC_CODE) == 0;
12245 }
12246
12247
12248 /* The final processing done just before writing out a MIPS ELF object
12249 file. This gets the MIPS architecture right based on the machine
12250 number. This is used by both the 32-bit and the 64-bit ABI. */
12251
12252 void
12253 _bfd_mips_elf_final_write_processing (bfd *abfd,
12254 bfd_boolean linker ATTRIBUTE_UNUSED)
12255 {
12256 unsigned int i;
12257 Elf_Internal_Shdr **hdrpp;
12258 const char *name;
12259 asection *sec;
12260
12261 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12262 is nonzero. This is for compatibility with old objects, which used
12263 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12264 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12265 mips_set_isa_flags (abfd);
12266
12267 /* Set the sh_info field for .gptab sections and other appropriate
12268 info for each special section. */
12269 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12270 i < elf_numsections (abfd);
12271 i++, hdrpp++)
12272 {
12273 switch ((*hdrpp)->sh_type)
12274 {
12275 case SHT_MIPS_MSYM:
12276 case SHT_MIPS_LIBLIST:
12277 sec = bfd_get_section_by_name (abfd, ".dynstr");
12278 if (sec != NULL)
12279 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12280 break;
12281
12282 case SHT_MIPS_GPTAB:
12283 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12284 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12285 BFD_ASSERT (name != NULL
12286 && CONST_STRNEQ (name, ".gptab."));
12287 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12288 BFD_ASSERT (sec != NULL);
12289 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12290 break;
12291
12292 case SHT_MIPS_CONTENT:
12293 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12294 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12295 BFD_ASSERT (name != NULL
12296 && CONST_STRNEQ (name, ".MIPS.content"));
12297 sec = bfd_get_section_by_name (abfd,
12298 name + sizeof ".MIPS.content" - 1);
12299 BFD_ASSERT (sec != NULL);
12300 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12301 break;
12302
12303 case SHT_MIPS_SYMBOL_LIB:
12304 sec = bfd_get_section_by_name (abfd, ".dynsym");
12305 if (sec != NULL)
12306 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12307 sec = bfd_get_section_by_name (abfd, ".liblist");
12308 if (sec != NULL)
12309 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12310 break;
12311
12312 case SHT_MIPS_EVENTS:
12313 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12314 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12315 BFD_ASSERT (name != NULL);
12316 if (CONST_STRNEQ (name, ".MIPS.events"))
12317 sec = bfd_get_section_by_name (abfd,
12318 name + sizeof ".MIPS.events" - 1);
12319 else
12320 {
12321 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12322 sec = bfd_get_section_by_name (abfd,
12323 (name
12324 + sizeof ".MIPS.post_rel" - 1));
12325 }
12326 BFD_ASSERT (sec != NULL);
12327 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12328 break;
12329
12330 }
12331 }
12332 }
12333 \f
12334 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12335 segments. */
12336
12337 int
12338 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12339 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12340 {
12341 asection *s;
12342 int ret = 0;
12343
12344 /* See if we need a PT_MIPS_REGINFO segment. */
12345 s = bfd_get_section_by_name (abfd, ".reginfo");
12346 if (s && (s->flags & SEC_LOAD))
12347 ++ret;
12348
12349 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12350 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12351 ++ret;
12352
12353 /* See if we need a PT_MIPS_OPTIONS segment. */
12354 if (IRIX_COMPAT (abfd) == ict_irix6
12355 && bfd_get_section_by_name (abfd,
12356 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12357 ++ret;
12358
12359 /* See if we need a PT_MIPS_RTPROC segment. */
12360 if (IRIX_COMPAT (abfd) == ict_irix5
12361 && bfd_get_section_by_name (abfd, ".dynamic")
12362 && bfd_get_section_by_name (abfd, ".mdebug"))
12363 ++ret;
12364
12365 /* Allocate a PT_NULL header in dynamic objects. See
12366 _bfd_mips_elf_modify_segment_map for details. */
12367 if (!SGI_COMPAT (abfd)
12368 && bfd_get_section_by_name (abfd, ".dynamic"))
12369 ++ret;
12370
12371 return ret;
12372 }
12373
12374 /* Modify the segment map for an IRIX5 executable. */
12375
12376 bfd_boolean
12377 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12378 struct bfd_link_info *info)
12379 {
12380 asection *s;
12381 struct elf_segment_map *m, **pm;
12382 bfd_size_type amt;
12383
12384 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12385 segment. */
12386 s = bfd_get_section_by_name (abfd, ".reginfo");
12387 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12388 {
12389 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12390 if (m->p_type == PT_MIPS_REGINFO)
12391 break;
12392 if (m == NULL)
12393 {
12394 amt = sizeof *m;
12395 m = bfd_zalloc (abfd, amt);
12396 if (m == NULL)
12397 return FALSE;
12398
12399 m->p_type = PT_MIPS_REGINFO;
12400 m->count = 1;
12401 m->sections[0] = s;
12402
12403 /* We want to put it after the PHDR and INTERP segments. */
12404 pm = &elf_seg_map (abfd);
12405 while (*pm != NULL
12406 && ((*pm)->p_type == PT_PHDR
12407 || (*pm)->p_type == PT_INTERP))
12408 pm = &(*pm)->next;
12409
12410 m->next = *pm;
12411 *pm = m;
12412 }
12413 }
12414
12415 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12416 segment. */
12417 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12418 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12419 {
12420 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12421 if (m->p_type == PT_MIPS_ABIFLAGS)
12422 break;
12423 if (m == NULL)
12424 {
12425 amt = sizeof *m;
12426 m = bfd_zalloc (abfd, amt);
12427 if (m == NULL)
12428 return FALSE;
12429
12430 m->p_type = PT_MIPS_ABIFLAGS;
12431 m->count = 1;
12432 m->sections[0] = s;
12433
12434 /* We want to put it after the PHDR and INTERP segments. */
12435 pm = &elf_seg_map (abfd);
12436 while (*pm != NULL
12437 && ((*pm)->p_type == PT_PHDR
12438 || (*pm)->p_type == PT_INTERP))
12439 pm = &(*pm)->next;
12440
12441 m->next = *pm;
12442 *pm = m;
12443 }
12444 }
12445
12446 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12447 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12448 PT_MIPS_OPTIONS segment immediately following the program header
12449 table. */
12450 if (NEWABI_P (abfd)
12451 /* On non-IRIX6 new abi, we'll have already created a segment
12452 for this section, so don't create another. I'm not sure this
12453 is not also the case for IRIX 6, but I can't test it right
12454 now. */
12455 && IRIX_COMPAT (abfd) == ict_irix6)
12456 {
12457 for (s = abfd->sections; s; s = s->next)
12458 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12459 break;
12460
12461 if (s)
12462 {
12463 struct elf_segment_map *options_segment;
12464
12465 pm = &elf_seg_map (abfd);
12466 while (*pm != NULL
12467 && ((*pm)->p_type == PT_PHDR
12468 || (*pm)->p_type == PT_INTERP))
12469 pm = &(*pm)->next;
12470
12471 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12472 {
12473 amt = sizeof (struct elf_segment_map);
12474 options_segment = bfd_zalloc (abfd, amt);
12475 options_segment->next = *pm;
12476 options_segment->p_type = PT_MIPS_OPTIONS;
12477 options_segment->p_flags = PF_R;
12478 options_segment->p_flags_valid = TRUE;
12479 options_segment->count = 1;
12480 options_segment->sections[0] = s;
12481 *pm = options_segment;
12482 }
12483 }
12484 }
12485 else
12486 {
12487 if (IRIX_COMPAT (abfd) == ict_irix5)
12488 {
12489 /* If there are .dynamic and .mdebug sections, we make a room
12490 for the RTPROC header. FIXME: Rewrite without section names. */
12491 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12492 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12493 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12494 {
12495 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12496 if (m->p_type == PT_MIPS_RTPROC)
12497 break;
12498 if (m == NULL)
12499 {
12500 amt = sizeof *m;
12501 m = bfd_zalloc (abfd, amt);
12502 if (m == NULL)
12503 return FALSE;
12504
12505 m->p_type = PT_MIPS_RTPROC;
12506
12507 s = bfd_get_section_by_name (abfd, ".rtproc");
12508 if (s == NULL)
12509 {
12510 m->count = 0;
12511 m->p_flags = 0;
12512 m->p_flags_valid = 1;
12513 }
12514 else
12515 {
12516 m->count = 1;
12517 m->sections[0] = s;
12518 }
12519
12520 /* We want to put it after the DYNAMIC segment. */
12521 pm = &elf_seg_map (abfd);
12522 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12523 pm = &(*pm)->next;
12524 if (*pm != NULL)
12525 pm = &(*pm)->next;
12526
12527 m->next = *pm;
12528 *pm = m;
12529 }
12530 }
12531 }
12532 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12533 .dynstr, .dynsym, and .hash sections, and everything in
12534 between. */
12535 for (pm = &elf_seg_map (abfd); *pm != NULL;
12536 pm = &(*pm)->next)
12537 if ((*pm)->p_type == PT_DYNAMIC)
12538 break;
12539 m = *pm;
12540 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12541 glibc's dynamic linker has traditionally derived the number of
12542 tags from the p_filesz field, and sometimes allocates stack
12543 arrays of that size. An overly-big PT_DYNAMIC segment can
12544 be actively harmful in such cases. Making PT_DYNAMIC contain
12545 other sections can also make life hard for the prelinker,
12546 which might move one of the other sections to a different
12547 PT_LOAD segment. */
12548 if (SGI_COMPAT (abfd)
12549 && m != NULL
12550 && m->count == 1
12551 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12552 {
12553 static const char *sec_names[] =
12554 {
12555 ".dynamic", ".dynstr", ".dynsym", ".hash"
12556 };
12557 bfd_vma low, high;
12558 unsigned int i, c;
12559 struct elf_segment_map *n;
12560
12561 low = ~(bfd_vma) 0;
12562 high = 0;
12563 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12564 {
12565 s = bfd_get_section_by_name (abfd, sec_names[i]);
12566 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12567 {
12568 bfd_size_type sz;
12569
12570 if (low > s->vma)
12571 low = s->vma;
12572 sz = s->size;
12573 if (high < s->vma + sz)
12574 high = s->vma + sz;
12575 }
12576 }
12577
12578 c = 0;
12579 for (s = abfd->sections; s != NULL; s = s->next)
12580 if ((s->flags & SEC_LOAD) != 0
12581 && s->vma >= low
12582 && s->vma + s->size <= high)
12583 ++c;
12584
12585 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12586 n = bfd_zalloc (abfd, amt);
12587 if (n == NULL)
12588 return FALSE;
12589 *n = *m;
12590 n->count = c;
12591
12592 i = 0;
12593 for (s = abfd->sections; s != NULL; s = s->next)
12594 {
12595 if ((s->flags & SEC_LOAD) != 0
12596 && s->vma >= low
12597 && s->vma + s->size <= high)
12598 {
12599 n->sections[i] = s;
12600 ++i;
12601 }
12602 }
12603
12604 *pm = n;
12605 }
12606 }
12607
12608 /* Allocate a spare program header in dynamic objects so that tools
12609 like the prelinker can add an extra PT_LOAD entry.
12610
12611 If the prelinker needs to make room for a new PT_LOAD entry, its
12612 standard procedure is to move the first (read-only) sections into
12613 the new (writable) segment. However, the MIPS ABI requires
12614 .dynamic to be in a read-only segment, and the section will often
12615 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12616
12617 Although the prelinker could in principle move .dynamic to a
12618 writable segment, it seems better to allocate a spare program
12619 header instead, and avoid the need to move any sections.
12620 There is a long tradition of allocating spare dynamic tags,
12621 so allocating a spare program header seems like a natural
12622 extension.
12623
12624 If INFO is NULL, we may be copying an already prelinked binary
12625 with objcopy or strip, so do not add this header. */
12626 if (info != NULL
12627 && !SGI_COMPAT (abfd)
12628 && bfd_get_section_by_name (abfd, ".dynamic"))
12629 {
12630 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12631 if ((*pm)->p_type == PT_NULL)
12632 break;
12633 if (*pm == NULL)
12634 {
12635 m = bfd_zalloc (abfd, sizeof (*m));
12636 if (m == NULL)
12637 return FALSE;
12638
12639 m->p_type = PT_NULL;
12640 *pm = m;
12641 }
12642 }
12643
12644 return TRUE;
12645 }
12646 \f
12647 /* Return the section that should be marked against GC for a given
12648 relocation. */
12649
12650 asection *
12651 _bfd_mips_elf_gc_mark_hook (asection *sec,
12652 struct bfd_link_info *info,
12653 Elf_Internal_Rela *rel,
12654 struct elf_link_hash_entry *h,
12655 Elf_Internal_Sym *sym)
12656 {
12657 /* ??? Do mips16 stub sections need to be handled special? */
12658
12659 if (h != NULL)
12660 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12661 {
12662 case R_MIPS_GNU_VTINHERIT:
12663 case R_MIPS_GNU_VTENTRY:
12664 return NULL;
12665 }
12666
12667 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12668 }
12669
12670 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12671
12672 bfd_boolean
12673 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12674 elf_gc_mark_hook_fn gc_mark_hook)
12675 {
12676 bfd *sub;
12677
12678 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12679
12680 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12681 {
12682 asection *o;
12683
12684 if (! is_mips_elf (sub))
12685 continue;
12686
12687 for (o = sub->sections; o != NULL; o = o->next)
12688 if (!o->gc_mark
12689 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12690 (bfd_get_section_name (sub, o)))
12691 {
12692 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12693 return FALSE;
12694 }
12695 }
12696
12697 return TRUE;
12698 }
12699 \f
12700 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12701 hiding the old indirect symbol. Process additional relocation
12702 information. Also called for weakdefs, in which case we just let
12703 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12704
12705 void
12706 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12707 struct elf_link_hash_entry *dir,
12708 struct elf_link_hash_entry *ind)
12709 {
12710 struct mips_elf_link_hash_entry *dirmips, *indmips;
12711
12712 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12713
12714 dirmips = (struct mips_elf_link_hash_entry *) dir;
12715 indmips = (struct mips_elf_link_hash_entry *) ind;
12716 /* Any absolute non-dynamic relocations against an indirect or weak
12717 definition will be against the target symbol. */
12718 if (indmips->has_static_relocs)
12719 dirmips->has_static_relocs = TRUE;
12720
12721 if (ind->root.type != bfd_link_hash_indirect)
12722 return;
12723
12724 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12725 if (indmips->readonly_reloc)
12726 dirmips->readonly_reloc = TRUE;
12727 if (indmips->no_fn_stub)
12728 dirmips->no_fn_stub = TRUE;
12729 if (indmips->fn_stub)
12730 {
12731 dirmips->fn_stub = indmips->fn_stub;
12732 indmips->fn_stub = NULL;
12733 }
12734 if (indmips->need_fn_stub)
12735 {
12736 dirmips->need_fn_stub = TRUE;
12737 indmips->need_fn_stub = FALSE;
12738 }
12739 if (indmips->call_stub)
12740 {
12741 dirmips->call_stub = indmips->call_stub;
12742 indmips->call_stub = NULL;
12743 }
12744 if (indmips->call_fp_stub)
12745 {
12746 dirmips->call_fp_stub = indmips->call_fp_stub;
12747 indmips->call_fp_stub = NULL;
12748 }
12749 if (indmips->global_got_area < dirmips->global_got_area)
12750 dirmips->global_got_area = indmips->global_got_area;
12751 if (indmips->global_got_area < GGA_NONE)
12752 indmips->global_got_area = GGA_NONE;
12753 if (indmips->has_nonpic_branches)
12754 dirmips->has_nonpic_branches = TRUE;
12755 }
12756
12757 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12758 to hide it. It has to remain global (it will also be protected) so as to
12759 be assigned a global GOT entry, which will then remain unchanged at load
12760 time. */
12761
12762 void
12763 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12764 struct elf_link_hash_entry *entry,
12765 bfd_boolean force_local)
12766 {
12767 struct mips_elf_link_hash_table *htab;
12768
12769 htab = mips_elf_hash_table (info);
12770 BFD_ASSERT (htab != NULL);
12771 if (htab->use_absolute_zero
12772 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12773 return;
12774
12775 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12776 }
12777 \f
12778 #define PDR_SIZE 32
12779
12780 bfd_boolean
12781 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12782 struct bfd_link_info *info)
12783 {
12784 asection *o;
12785 bfd_boolean ret = FALSE;
12786 unsigned char *tdata;
12787 size_t i, skip;
12788
12789 o = bfd_get_section_by_name (abfd, ".pdr");
12790 if (! o)
12791 return FALSE;
12792 if (o->size == 0)
12793 return FALSE;
12794 if (o->size % PDR_SIZE != 0)
12795 return FALSE;
12796 if (o->output_section != NULL
12797 && bfd_is_abs_section (o->output_section))
12798 return FALSE;
12799
12800 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12801 if (! tdata)
12802 return FALSE;
12803
12804 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12805 info->keep_memory);
12806 if (!cookie->rels)
12807 {
12808 free (tdata);
12809 return FALSE;
12810 }
12811
12812 cookie->rel = cookie->rels;
12813 cookie->relend = cookie->rels + o->reloc_count;
12814
12815 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12816 {
12817 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12818 {
12819 tdata[i] = 1;
12820 skip ++;
12821 }
12822 }
12823
12824 if (skip != 0)
12825 {
12826 mips_elf_section_data (o)->u.tdata = tdata;
12827 if (o->rawsize == 0)
12828 o->rawsize = o->size;
12829 o->size -= skip * PDR_SIZE;
12830 ret = TRUE;
12831 }
12832 else
12833 free (tdata);
12834
12835 if (! info->keep_memory)
12836 free (cookie->rels);
12837
12838 return ret;
12839 }
12840
12841 bfd_boolean
12842 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12843 {
12844 if (strcmp (sec->name, ".pdr") == 0)
12845 return TRUE;
12846 return FALSE;
12847 }
12848
12849 bfd_boolean
12850 _bfd_mips_elf_write_section (bfd *output_bfd,
12851 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12852 asection *sec, bfd_byte *contents)
12853 {
12854 bfd_byte *to, *from, *end;
12855 int i;
12856
12857 if (strcmp (sec->name, ".pdr") != 0)
12858 return FALSE;
12859
12860 if (mips_elf_section_data (sec)->u.tdata == NULL)
12861 return FALSE;
12862
12863 to = contents;
12864 end = contents + sec->size;
12865 for (from = contents, i = 0;
12866 from < end;
12867 from += PDR_SIZE, i++)
12868 {
12869 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12870 continue;
12871 if (to != from)
12872 memcpy (to, from, PDR_SIZE);
12873 to += PDR_SIZE;
12874 }
12875 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12876 sec->output_offset, sec->size);
12877 return TRUE;
12878 }
12879 \f
12880 /* microMIPS code retains local labels for linker relaxation. Omit them
12881 from output by default for clarity. */
12882
12883 bfd_boolean
12884 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12885 {
12886 return _bfd_elf_is_local_label_name (abfd, sym->name);
12887 }
12888
12889 /* MIPS ELF uses a special find_nearest_line routine in order the
12890 handle the ECOFF debugging information. */
12891
12892 struct mips_elf_find_line
12893 {
12894 struct ecoff_debug_info d;
12895 struct ecoff_find_line i;
12896 };
12897
12898 bfd_boolean
12899 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12900 asection *section, bfd_vma offset,
12901 const char **filename_ptr,
12902 const char **functionname_ptr,
12903 unsigned int *line_ptr,
12904 unsigned int *discriminator_ptr)
12905 {
12906 asection *msec;
12907
12908 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12909 filename_ptr, functionname_ptr,
12910 line_ptr, discriminator_ptr,
12911 dwarf_debug_sections,
12912 ABI_64_P (abfd) ? 8 : 0,
12913 &elf_tdata (abfd)->dwarf2_find_line_info)
12914 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12915 filename_ptr, functionname_ptr,
12916 line_ptr))
12917 {
12918 /* PR 22789: If the function name or filename was not found through
12919 the debug information, then try an ordinary lookup instead. */
12920 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12921 || (filename_ptr != NULL && *filename_ptr == NULL))
12922 {
12923 /* Do not override already discovered names. */
12924 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12925 functionname_ptr = NULL;
12926
12927 if (filename_ptr != NULL && *filename_ptr != NULL)
12928 filename_ptr = NULL;
12929
12930 _bfd_elf_find_function (abfd, symbols, section, offset,
12931 filename_ptr, functionname_ptr);
12932 }
12933
12934 return TRUE;
12935 }
12936
12937 msec = bfd_get_section_by_name (abfd, ".mdebug");
12938 if (msec != NULL)
12939 {
12940 flagword origflags;
12941 struct mips_elf_find_line *fi;
12942 const struct ecoff_debug_swap * const swap =
12943 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12944
12945 /* If we are called during a link, mips_elf_final_link may have
12946 cleared the SEC_HAS_CONTENTS field. We force it back on here
12947 if appropriate (which it normally will be). */
12948 origflags = msec->flags;
12949 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12950 msec->flags |= SEC_HAS_CONTENTS;
12951
12952 fi = mips_elf_tdata (abfd)->find_line_info;
12953 if (fi == NULL)
12954 {
12955 bfd_size_type external_fdr_size;
12956 char *fraw_src;
12957 char *fraw_end;
12958 struct fdr *fdr_ptr;
12959 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12960
12961 fi = bfd_zalloc (abfd, amt);
12962 if (fi == NULL)
12963 {
12964 msec->flags = origflags;
12965 return FALSE;
12966 }
12967
12968 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12969 {
12970 msec->flags = origflags;
12971 return FALSE;
12972 }
12973
12974 /* Swap in the FDR information. */
12975 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12976 fi->d.fdr = bfd_alloc (abfd, amt);
12977 if (fi->d.fdr == NULL)
12978 {
12979 msec->flags = origflags;
12980 return FALSE;
12981 }
12982 external_fdr_size = swap->external_fdr_size;
12983 fdr_ptr = fi->d.fdr;
12984 fraw_src = (char *) fi->d.external_fdr;
12985 fraw_end = (fraw_src
12986 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12987 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12988 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12989
12990 mips_elf_tdata (abfd)->find_line_info = fi;
12991
12992 /* Note that we don't bother to ever free this information.
12993 find_nearest_line is either called all the time, as in
12994 objdump -l, so the information should be saved, or it is
12995 rarely called, as in ld error messages, so the memory
12996 wasted is unimportant. Still, it would probably be a
12997 good idea for free_cached_info to throw it away. */
12998 }
12999
13000 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13001 &fi->i, filename_ptr, functionname_ptr,
13002 line_ptr))
13003 {
13004 msec->flags = origflags;
13005 return TRUE;
13006 }
13007
13008 msec->flags = origflags;
13009 }
13010
13011 /* Fall back on the generic ELF find_nearest_line routine. */
13012
13013 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13014 filename_ptr, functionname_ptr,
13015 line_ptr, discriminator_ptr);
13016 }
13017
13018 bfd_boolean
13019 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13020 const char **filename_ptr,
13021 const char **functionname_ptr,
13022 unsigned int *line_ptr)
13023 {
13024 bfd_boolean found;
13025 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13026 functionname_ptr, line_ptr,
13027 & elf_tdata (abfd)->dwarf2_find_line_info);
13028 return found;
13029 }
13030
13031 \f
13032 /* When are writing out the .options or .MIPS.options section,
13033 remember the bytes we are writing out, so that we can install the
13034 GP value in the section_processing routine. */
13035
13036 bfd_boolean
13037 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13038 const void *location,
13039 file_ptr offset, bfd_size_type count)
13040 {
13041 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13042 {
13043 bfd_byte *c;
13044
13045 if (elf_section_data (section) == NULL)
13046 {
13047 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13048 section->used_by_bfd = bfd_zalloc (abfd, amt);
13049 if (elf_section_data (section) == NULL)
13050 return FALSE;
13051 }
13052 c = mips_elf_section_data (section)->u.tdata;
13053 if (c == NULL)
13054 {
13055 c = bfd_zalloc (abfd, section->size);
13056 if (c == NULL)
13057 return FALSE;
13058 mips_elf_section_data (section)->u.tdata = c;
13059 }
13060
13061 memcpy (c + offset, location, count);
13062 }
13063
13064 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13065 count);
13066 }
13067
13068 /* This is almost identical to bfd_generic_get_... except that some
13069 MIPS relocations need to be handled specially. Sigh. */
13070
13071 bfd_byte *
13072 _bfd_elf_mips_get_relocated_section_contents
13073 (bfd *abfd,
13074 struct bfd_link_info *link_info,
13075 struct bfd_link_order *link_order,
13076 bfd_byte *data,
13077 bfd_boolean relocatable,
13078 asymbol **symbols)
13079 {
13080 /* Get enough memory to hold the stuff */
13081 bfd *input_bfd = link_order->u.indirect.section->owner;
13082 asection *input_section = link_order->u.indirect.section;
13083 bfd_size_type sz;
13084
13085 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13086 arelent **reloc_vector = NULL;
13087 long reloc_count;
13088
13089 if (reloc_size < 0)
13090 goto error_return;
13091
13092 reloc_vector = bfd_malloc (reloc_size);
13093 if (reloc_vector == NULL && reloc_size != 0)
13094 goto error_return;
13095
13096 /* read in the section */
13097 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13098 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13099 goto error_return;
13100
13101 reloc_count = bfd_canonicalize_reloc (input_bfd,
13102 input_section,
13103 reloc_vector,
13104 symbols);
13105 if (reloc_count < 0)
13106 goto error_return;
13107
13108 if (reloc_count > 0)
13109 {
13110 arelent **parent;
13111 /* for mips */
13112 int gp_found;
13113 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13114
13115 {
13116 struct bfd_hash_entry *h;
13117 struct bfd_link_hash_entry *lh;
13118 /* Skip all this stuff if we aren't mixing formats. */
13119 if (abfd && input_bfd
13120 && abfd->xvec == input_bfd->xvec)
13121 lh = 0;
13122 else
13123 {
13124 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13125 lh = (struct bfd_link_hash_entry *) h;
13126 }
13127 lookup:
13128 if (lh)
13129 {
13130 switch (lh->type)
13131 {
13132 case bfd_link_hash_undefined:
13133 case bfd_link_hash_undefweak:
13134 case bfd_link_hash_common:
13135 gp_found = 0;
13136 break;
13137 case bfd_link_hash_defined:
13138 case bfd_link_hash_defweak:
13139 gp_found = 1;
13140 gp = lh->u.def.value;
13141 break;
13142 case bfd_link_hash_indirect:
13143 case bfd_link_hash_warning:
13144 lh = lh->u.i.link;
13145 /* @@FIXME ignoring warning for now */
13146 goto lookup;
13147 case bfd_link_hash_new:
13148 default:
13149 abort ();
13150 }
13151 }
13152 else
13153 gp_found = 0;
13154 }
13155 /* end mips */
13156 for (parent = reloc_vector; *parent != NULL; parent++)
13157 {
13158 char *error_message = NULL;
13159 bfd_reloc_status_type r;
13160
13161 /* Specific to MIPS: Deal with relocation types that require
13162 knowing the gp of the output bfd. */
13163 asymbol *sym = *(*parent)->sym_ptr_ptr;
13164
13165 /* If we've managed to find the gp and have a special
13166 function for the relocation then go ahead, else default
13167 to the generic handling. */
13168 if (gp_found
13169 && (*parent)->howto->special_function
13170 == _bfd_mips_elf32_gprel16_reloc)
13171 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13172 input_section, relocatable,
13173 data, gp);
13174 else
13175 r = bfd_perform_relocation (input_bfd, *parent, data,
13176 input_section,
13177 relocatable ? abfd : NULL,
13178 &error_message);
13179
13180 if (relocatable)
13181 {
13182 asection *os = input_section->output_section;
13183
13184 /* A partial link, so keep the relocs */
13185 os->orelocation[os->reloc_count] = *parent;
13186 os->reloc_count++;
13187 }
13188
13189 if (r != bfd_reloc_ok)
13190 {
13191 switch (r)
13192 {
13193 case bfd_reloc_undefined:
13194 (*link_info->callbacks->undefined_symbol)
13195 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13196 input_bfd, input_section, (*parent)->address, TRUE);
13197 break;
13198 case bfd_reloc_dangerous:
13199 BFD_ASSERT (error_message != NULL);
13200 (*link_info->callbacks->reloc_dangerous)
13201 (link_info, error_message,
13202 input_bfd, input_section, (*parent)->address);
13203 break;
13204 case bfd_reloc_overflow:
13205 (*link_info->callbacks->reloc_overflow)
13206 (link_info, NULL,
13207 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13208 (*parent)->howto->name, (*parent)->addend,
13209 input_bfd, input_section, (*parent)->address);
13210 break;
13211 case bfd_reloc_outofrange:
13212 default:
13213 abort ();
13214 break;
13215 }
13216
13217 }
13218 }
13219 }
13220 if (reloc_vector != NULL)
13221 free (reloc_vector);
13222 return data;
13223
13224 error_return:
13225 if (reloc_vector != NULL)
13226 free (reloc_vector);
13227 return NULL;
13228 }
13229 \f
13230 static bfd_boolean
13231 mips_elf_relax_delete_bytes (bfd *abfd,
13232 asection *sec, bfd_vma addr, int count)
13233 {
13234 Elf_Internal_Shdr *symtab_hdr;
13235 unsigned int sec_shndx;
13236 bfd_byte *contents;
13237 Elf_Internal_Rela *irel, *irelend;
13238 Elf_Internal_Sym *isym;
13239 Elf_Internal_Sym *isymend;
13240 struct elf_link_hash_entry **sym_hashes;
13241 struct elf_link_hash_entry **end_hashes;
13242 struct elf_link_hash_entry **start_hashes;
13243 unsigned int symcount;
13244
13245 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13246 contents = elf_section_data (sec)->this_hdr.contents;
13247
13248 irel = elf_section_data (sec)->relocs;
13249 irelend = irel + sec->reloc_count;
13250
13251 /* Actually delete the bytes. */
13252 memmove (contents + addr, contents + addr + count,
13253 (size_t) (sec->size - addr - count));
13254 sec->size -= count;
13255
13256 /* Adjust all the relocs. */
13257 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13258 {
13259 /* Get the new reloc address. */
13260 if (irel->r_offset > addr)
13261 irel->r_offset -= count;
13262 }
13263
13264 BFD_ASSERT (addr % 2 == 0);
13265 BFD_ASSERT (count % 2 == 0);
13266
13267 /* Adjust the local symbols defined in this section. */
13268 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13269 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13270 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13271 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13272 isym->st_value -= count;
13273
13274 /* Now adjust the global symbols defined in this section. */
13275 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13276 - symtab_hdr->sh_info);
13277 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13278 end_hashes = sym_hashes + symcount;
13279
13280 for (; sym_hashes < end_hashes; sym_hashes++)
13281 {
13282 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13283
13284 if ((sym_hash->root.type == bfd_link_hash_defined
13285 || sym_hash->root.type == bfd_link_hash_defweak)
13286 && sym_hash->root.u.def.section == sec)
13287 {
13288 bfd_vma value = sym_hash->root.u.def.value;
13289
13290 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13291 value &= MINUS_TWO;
13292 if (value > addr)
13293 sym_hash->root.u.def.value -= count;
13294 }
13295 }
13296
13297 return TRUE;
13298 }
13299
13300
13301 /* Opcodes needed for microMIPS relaxation as found in
13302 opcodes/micromips-opc.c. */
13303
13304 struct opcode_descriptor {
13305 unsigned long match;
13306 unsigned long mask;
13307 };
13308
13309 /* The $ra register aka $31. */
13310
13311 #define RA 31
13312
13313 /* 32-bit instruction format register fields. */
13314
13315 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13316 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13317
13318 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13319
13320 #define OP16_VALID_REG(r) \
13321 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13322
13323
13324 /* 32-bit and 16-bit branches. */
13325
13326 static const struct opcode_descriptor b_insns_32[] = {
13327 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13328 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13329 { 0, 0 } /* End marker for find_match(). */
13330 };
13331
13332 static const struct opcode_descriptor bc_insn_32 =
13333 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13334
13335 static const struct opcode_descriptor bz_insn_32 =
13336 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13337
13338 static const struct opcode_descriptor bzal_insn_32 =
13339 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13340
13341 static const struct opcode_descriptor beq_insn_32 =
13342 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13343
13344 static const struct opcode_descriptor b_insn_16 =
13345 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13346
13347 static const struct opcode_descriptor bz_insn_16 =
13348 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13349
13350
13351 /* 32-bit and 16-bit branch EQ and NE zero. */
13352
13353 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13354 eq and second the ne. This convention is used when replacing a
13355 32-bit BEQ/BNE with the 16-bit version. */
13356
13357 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13358
13359 static const struct opcode_descriptor bz_rs_insns_32[] = {
13360 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13361 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13362 { 0, 0 } /* End marker for find_match(). */
13363 };
13364
13365 static const struct opcode_descriptor bz_rt_insns_32[] = {
13366 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13367 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13368 { 0, 0 } /* End marker for find_match(). */
13369 };
13370
13371 static const struct opcode_descriptor bzc_insns_32[] = {
13372 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13373 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13374 { 0, 0 } /* End marker for find_match(). */
13375 };
13376
13377 static const struct opcode_descriptor bz_insns_16[] = {
13378 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13379 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13380 { 0, 0 } /* End marker for find_match(). */
13381 };
13382
13383 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13384
13385 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13386 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13387
13388
13389 /* 32-bit instructions with a delay slot. */
13390
13391 static const struct opcode_descriptor jal_insn_32_bd16 =
13392 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13393
13394 static const struct opcode_descriptor jal_insn_32_bd32 =
13395 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13396
13397 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13398 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13399
13400 static const struct opcode_descriptor j_insn_32 =
13401 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13402
13403 static const struct opcode_descriptor jalr_insn_32 =
13404 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13405
13406 /* This table can be compacted, because no opcode replacement is made. */
13407
13408 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13409 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13410
13411 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13412 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13413
13414 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13415 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13416 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13417 { 0, 0 } /* End marker for find_match(). */
13418 };
13419
13420 /* This table can be compacted, because no opcode replacement is made. */
13421
13422 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13423 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13424
13425 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13426 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13427 { 0, 0 } /* End marker for find_match(). */
13428 };
13429
13430
13431 /* 16-bit instructions with a delay slot. */
13432
13433 static const struct opcode_descriptor jalr_insn_16_bd16 =
13434 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13435
13436 static const struct opcode_descriptor jalr_insn_16_bd32 =
13437 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13438
13439 static const struct opcode_descriptor jr_insn_16 =
13440 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13441
13442 #define JR16_REG(opcode) ((opcode) & 0x1f)
13443
13444 /* This table can be compacted, because no opcode replacement is made. */
13445
13446 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13447 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13448
13449 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13450 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13451 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13452 { 0, 0 } /* End marker for find_match(). */
13453 };
13454
13455
13456 /* LUI instruction. */
13457
13458 static const struct opcode_descriptor lui_insn =
13459 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13460
13461
13462 /* ADDIU instruction. */
13463
13464 static const struct opcode_descriptor addiu_insn =
13465 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13466
13467 static const struct opcode_descriptor addiupc_insn =
13468 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13469
13470 #define ADDIUPC_REG_FIELD(r) \
13471 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13472
13473
13474 /* Relaxable instructions in a JAL delay slot: MOVE. */
13475
13476 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13477 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13478 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13479 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13480
13481 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13482 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13483
13484 static const struct opcode_descriptor move_insns_32[] = {
13485 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13486 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13487 { 0, 0 } /* End marker for find_match(). */
13488 };
13489
13490 static const struct opcode_descriptor move_insn_16 =
13491 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13492
13493
13494 /* NOP instructions. */
13495
13496 static const struct opcode_descriptor nop_insn_32 =
13497 { /* "nop", "", */ 0x00000000, 0xffffffff };
13498
13499 static const struct opcode_descriptor nop_insn_16 =
13500 { /* "nop", "", */ 0x0c00, 0xffff };
13501
13502
13503 /* Instruction match support. */
13504
13505 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13506
13507 static int
13508 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13509 {
13510 unsigned long indx;
13511
13512 for (indx = 0; insn[indx].mask != 0; indx++)
13513 if (MATCH (opcode, insn[indx]))
13514 return indx;
13515
13516 return -1;
13517 }
13518
13519
13520 /* Branch and delay slot decoding support. */
13521
13522 /* If PTR points to what *might* be a 16-bit branch or jump, then
13523 return the minimum length of its delay slot, otherwise return 0.
13524 Non-zero results are not definitive as we might be checking against
13525 the second half of another instruction. */
13526
13527 static int
13528 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13529 {
13530 unsigned long opcode;
13531 int bdsize;
13532
13533 opcode = bfd_get_16 (abfd, ptr);
13534 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13535 /* 16-bit branch/jump with a 32-bit delay slot. */
13536 bdsize = 4;
13537 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13538 || find_match (opcode, ds_insns_16_bd16) >= 0)
13539 /* 16-bit branch/jump with a 16-bit delay slot. */
13540 bdsize = 2;
13541 else
13542 /* No delay slot. */
13543 bdsize = 0;
13544
13545 return bdsize;
13546 }
13547
13548 /* If PTR points to what *might* be a 32-bit branch or jump, then
13549 return the minimum length of its delay slot, otherwise return 0.
13550 Non-zero results are not definitive as we might be checking against
13551 the second half of another instruction. */
13552
13553 static int
13554 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13555 {
13556 unsigned long opcode;
13557 int bdsize;
13558
13559 opcode = bfd_get_micromips_32 (abfd, ptr);
13560 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13561 /* 32-bit branch/jump with a 32-bit delay slot. */
13562 bdsize = 4;
13563 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13564 /* 32-bit branch/jump with a 16-bit delay slot. */
13565 bdsize = 2;
13566 else
13567 /* No delay slot. */
13568 bdsize = 0;
13569
13570 return bdsize;
13571 }
13572
13573 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13574 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13575
13576 static bfd_boolean
13577 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13578 {
13579 unsigned long opcode;
13580
13581 opcode = bfd_get_16 (abfd, ptr);
13582 if (MATCH (opcode, b_insn_16)
13583 /* B16 */
13584 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13585 /* JR16 */
13586 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13587 /* BEQZ16, BNEZ16 */
13588 || (MATCH (opcode, jalr_insn_16_bd32)
13589 /* JALR16 */
13590 && reg != JR16_REG (opcode) && reg != RA))
13591 return TRUE;
13592
13593 return FALSE;
13594 }
13595
13596 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13597 then return TRUE, otherwise FALSE. */
13598
13599 static bfd_boolean
13600 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13601 {
13602 unsigned long opcode;
13603
13604 opcode = bfd_get_micromips_32 (abfd, ptr);
13605 if (MATCH (opcode, j_insn_32)
13606 /* J */
13607 || MATCH (opcode, bc_insn_32)
13608 /* BC1F, BC1T, BC2F, BC2T */
13609 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13610 /* JAL, JALX */
13611 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13612 /* BGEZ, BGTZ, BLEZ, BLTZ */
13613 || (MATCH (opcode, bzal_insn_32)
13614 /* BGEZAL, BLTZAL */
13615 && reg != OP32_SREG (opcode) && reg != RA)
13616 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13617 /* JALR, JALR.HB, BEQ, BNE */
13618 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13619 return TRUE;
13620
13621 return FALSE;
13622 }
13623
13624 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13625 IRELEND) at OFFSET indicate that there must be a compact branch there,
13626 then return TRUE, otherwise FALSE. */
13627
13628 static bfd_boolean
13629 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13630 const Elf_Internal_Rela *internal_relocs,
13631 const Elf_Internal_Rela *irelend)
13632 {
13633 const Elf_Internal_Rela *irel;
13634 unsigned long opcode;
13635
13636 opcode = bfd_get_micromips_32 (abfd, ptr);
13637 if (find_match (opcode, bzc_insns_32) < 0)
13638 return FALSE;
13639
13640 for (irel = internal_relocs; irel < irelend; irel++)
13641 if (irel->r_offset == offset
13642 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13643 return TRUE;
13644
13645 return FALSE;
13646 }
13647
13648 /* Bitsize checking. */
13649 #define IS_BITSIZE(val, N) \
13650 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13651 - (1ULL << ((N) - 1))) == (val))
13652
13653 \f
13654 bfd_boolean
13655 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13656 struct bfd_link_info *link_info,
13657 bfd_boolean *again)
13658 {
13659 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13660 Elf_Internal_Shdr *symtab_hdr;
13661 Elf_Internal_Rela *internal_relocs;
13662 Elf_Internal_Rela *irel, *irelend;
13663 bfd_byte *contents = NULL;
13664 Elf_Internal_Sym *isymbuf = NULL;
13665
13666 /* Assume nothing changes. */
13667 *again = FALSE;
13668
13669 /* We don't have to do anything for a relocatable link, if
13670 this section does not have relocs, or if this is not a
13671 code section. */
13672
13673 if (bfd_link_relocatable (link_info)
13674 || (sec->flags & SEC_RELOC) == 0
13675 || sec->reloc_count == 0
13676 || (sec->flags & SEC_CODE) == 0)
13677 return TRUE;
13678
13679 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13680
13681 /* Get a copy of the native relocations. */
13682 internal_relocs = (_bfd_elf_link_read_relocs
13683 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13684 link_info->keep_memory));
13685 if (internal_relocs == NULL)
13686 goto error_return;
13687
13688 /* Walk through them looking for relaxing opportunities. */
13689 irelend = internal_relocs + sec->reloc_count;
13690 for (irel = internal_relocs; irel < irelend; irel++)
13691 {
13692 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13693 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13694 bfd_boolean target_is_micromips_code_p;
13695 unsigned long opcode;
13696 bfd_vma symval;
13697 bfd_vma pcrval;
13698 bfd_byte *ptr;
13699 int fndopc;
13700
13701 /* The number of bytes to delete for relaxation and from where
13702 to delete these bytes starting at irel->r_offset. */
13703 int delcnt = 0;
13704 int deloff = 0;
13705
13706 /* If this isn't something that can be relaxed, then ignore
13707 this reloc. */
13708 if (r_type != R_MICROMIPS_HI16
13709 && r_type != R_MICROMIPS_PC16_S1
13710 && r_type != R_MICROMIPS_26_S1)
13711 continue;
13712
13713 /* Get the section contents if we haven't done so already. */
13714 if (contents == NULL)
13715 {
13716 /* Get cached copy if it exists. */
13717 if (elf_section_data (sec)->this_hdr.contents != NULL)
13718 contents = elf_section_data (sec)->this_hdr.contents;
13719 /* Go get them off disk. */
13720 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13721 goto error_return;
13722 }
13723 ptr = contents + irel->r_offset;
13724
13725 /* Read this BFD's local symbols if we haven't done so already. */
13726 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13727 {
13728 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13729 if (isymbuf == NULL)
13730 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13731 symtab_hdr->sh_info, 0,
13732 NULL, NULL, NULL);
13733 if (isymbuf == NULL)
13734 goto error_return;
13735 }
13736
13737 /* Get the value of the symbol referred to by the reloc. */
13738 if (r_symndx < symtab_hdr->sh_info)
13739 {
13740 /* A local symbol. */
13741 Elf_Internal_Sym *isym;
13742 asection *sym_sec;
13743
13744 isym = isymbuf + r_symndx;
13745 if (isym->st_shndx == SHN_UNDEF)
13746 sym_sec = bfd_und_section_ptr;
13747 else if (isym->st_shndx == SHN_ABS)
13748 sym_sec = bfd_abs_section_ptr;
13749 else if (isym->st_shndx == SHN_COMMON)
13750 sym_sec = bfd_com_section_ptr;
13751 else
13752 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13753 symval = (isym->st_value
13754 + sym_sec->output_section->vma
13755 + sym_sec->output_offset);
13756 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13757 }
13758 else
13759 {
13760 unsigned long indx;
13761 struct elf_link_hash_entry *h;
13762
13763 /* An external symbol. */
13764 indx = r_symndx - symtab_hdr->sh_info;
13765 h = elf_sym_hashes (abfd)[indx];
13766 BFD_ASSERT (h != NULL);
13767
13768 if (h->root.type != bfd_link_hash_defined
13769 && h->root.type != bfd_link_hash_defweak)
13770 /* This appears to be a reference to an undefined
13771 symbol. Just ignore it -- it will be caught by the
13772 regular reloc processing. */
13773 continue;
13774
13775 symval = (h->root.u.def.value
13776 + h->root.u.def.section->output_section->vma
13777 + h->root.u.def.section->output_offset);
13778 target_is_micromips_code_p = (!h->needs_plt
13779 && ELF_ST_IS_MICROMIPS (h->other));
13780 }
13781
13782
13783 /* For simplicity of coding, we are going to modify the
13784 section contents, the section relocs, and the BFD symbol
13785 table. We must tell the rest of the code not to free up this
13786 information. It would be possible to instead create a table
13787 of changes which have to be made, as is done in coff-mips.c;
13788 that would be more work, but would require less memory when
13789 the linker is run. */
13790
13791 /* Only 32-bit instructions relaxed. */
13792 if (irel->r_offset + 4 > sec->size)
13793 continue;
13794
13795 opcode = bfd_get_micromips_32 (abfd, ptr);
13796
13797 /* This is the pc-relative distance from the instruction the
13798 relocation is applied to, to the symbol referred. */
13799 pcrval = (symval
13800 - (sec->output_section->vma + sec->output_offset)
13801 - irel->r_offset);
13802
13803 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13804 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13805 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13806
13807 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13808
13809 where pcrval has first to be adjusted to apply against the LO16
13810 location (we make the adjustment later on, when we have figured
13811 out the offset). */
13812 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13813 {
13814 bfd_boolean bzc = FALSE;
13815 unsigned long nextopc;
13816 unsigned long reg;
13817 bfd_vma offset;
13818
13819 /* Give up if the previous reloc was a HI16 against this symbol
13820 too. */
13821 if (irel > internal_relocs
13822 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13823 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13824 continue;
13825
13826 /* Or if the next reloc is not a LO16 against this symbol. */
13827 if (irel + 1 >= irelend
13828 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13829 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13830 continue;
13831
13832 /* Or if the second next reloc is a LO16 against this symbol too. */
13833 if (irel + 2 >= irelend
13834 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13835 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13836 continue;
13837
13838 /* See if the LUI instruction *might* be in a branch delay slot.
13839 We check whether what looks like a 16-bit branch or jump is
13840 actually an immediate argument to a compact branch, and let
13841 it through if so. */
13842 if (irel->r_offset >= 2
13843 && check_br16_dslot (abfd, ptr - 2)
13844 && !(irel->r_offset >= 4
13845 && (bzc = check_relocated_bzc (abfd,
13846 ptr - 4, irel->r_offset - 4,
13847 internal_relocs, irelend))))
13848 continue;
13849 if (irel->r_offset >= 4
13850 && !bzc
13851 && check_br32_dslot (abfd, ptr - 4))
13852 continue;
13853
13854 reg = OP32_SREG (opcode);
13855
13856 /* We only relax adjacent instructions or ones separated with
13857 a branch or jump that has a delay slot. The branch or jump
13858 must not fiddle with the register used to hold the address.
13859 Subtract 4 for the LUI itself. */
13860 offset = irel[1].r_offset - irel[0].r_offset;
13861 switch (offset - 4)
13862 {
13863 case 0:
13864 break;
13865 case 2:
13866 if (check_br16 (abfd, ptr + 4, reg))
13867 break;
13868 continue;
13869 case 4:
13870 if (check_br32 (abfd, ptr + 4, reg))
13871 break;
13872 continue;
13873 default:
13874 continue;
13875 }
13876
13877 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13878
13879 /* Give up unless the same register is used with both
13880 relocations. */
13881 if (OP32_SREG (nextopc) != reg)
13882 continue;
13883
13884 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13885 and rounding up to take masking of the two LSBs into account. */
13886 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13887
13888 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13889 if (IS_BITSIZE (symval, 16))
13890 {
13891 /* Fix the relocation's type. */
13892 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13893
13894 /* Instructions using R_MICROMIPS_LO16 have the base or
13895 source register in bits 20:16. This register becomes $0
13896 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13897 nextopc &= ~0x001f0000;
13898 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13899 contents + irel[1].r_offset);
13900 }
13901
13902 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13903 We add 4 to take LUI deletion into account while checking
13904 the PC-relative distance. */
13905 else if (symval % 4 == 0
13906 && IS_BITSIZE (pcrval + 4, 25)
13907 && MATCH (nextopc, addiu_insn)
13908 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13909 && OP16_VALID_REG (OP32_TREG (nextopc)))
13910 {
13911 /* Fix the relocation's type. */
13912 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13913
13914 /* Replace ADDIU with the ADDIUPC version. */
13915 nextopc = (addiupc_insn.match
13916 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13917
13918 bfd_put_micromips_32 (abfd, nextopc,
13919 contents + irel[1].r_offset);
13920 }
13921
13922 /* Can't do anything, give up, sigh... */
13923 else
13924 continue;
13925
13926 /* Fix the relocation's type. */
13927 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13928
13929 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13930 delcnt = 4;
13931 deloff = 0;
13932 }
13933
13934 /* Compact branch relaxation -- due to the multitude of macros
13935 employed by the compiler/assembler, compact branches are not
13936 always generated. Obviously, this can/will be fixed elsewhere,
13937 but there is no drawback in double checking it here. */
13938 else if (r_type == R_MICROMIPS_PC16_S1
13939 && irel->r_offset + 5 < sec->size
13940 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13941 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13942 && ((!insn32
13943 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13944 nop_insn_16) ? 2 : 0))
13945 || (irel->r_offset + 7 < sec->size
13946 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13947 ptr + 4),
13948 nop_insn_32) ? 4 : 0))))
13949 {
13950 unsigned long reg;
13951
13952 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13953
13954 /* Replace BEQZ/BNEZ with the compact version. */
13955 opcode = (bzc_insns_32[fndopc].match
13956 | BZC32_REG_FIELD (reg)
13957 | (opcode & 0xffff)); /* Addend value. */
13958
13959 bfd_put_micromips_32 (abfd, opcode, ptr);
13960
13961 /* Delete the delay slot NOP: two or four bytes from
13962 irel->offset + 4; delcnt has already been set above. */
13963 deloff = 4;
13964 }
13965
13966 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13967 to check the distance from the next instruction, so subtract 2. */
13968 else if (!insn32
13969 && r_type == R_MICROMIPS_PC16_S1
13970 && IS_BITSIZE (pcrval - 2, 11)
13971 && find_match (opcode, b_insns_32) >= 0)
13972 {
13973 /* Fix the relocation's type. */
13974 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13975
13976 /* Replace the 32-bit opcode with a 16-bit opcode. */
13977 bfd_put_16 (abfd,
13978 (b_insn_16.match
13979 | (opcode & 0x3ff)), /* Addend value. */
13980 ptr);
13981
13982 /* Delete 2 bytes from irel->r_offset + 2. */
13983 delcnt = 2;
13984 deloff = 2;
13985 }
13986
13987 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13988 to check the distance from the next instruction, so subtract 2. */
13989 else if (!insn32
13990 && r_type == R_MICROMIPS_PC16_S1
13991 && IS_BITSIZE (pcrval - 2, 8)
13992 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13993 && OP16_VALID_REG (OP32_SREG (opcode)))
13994 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13995 && OP16_VALID_REG (OP32_TREG (opcode)))))
13996 {
13997 unsigned long reg;
13998
13999 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14000
14001 /* Fix the relocation's type. */
14002 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14003
14004 /* Replace the 32-bit opcode with a 16-bit opcode. */
14005 bfd_put_16 (abfd,
14006 (bz_insns_16[fndopc].match
14007 | BZ16_REG_FIELD (reg)
14008 | (opcode & 0x7f)), /* Addend value. */
14009 ptr);
14010
14011 /* Delete 2 bytes from irel->r_offset + 2. */
14012 delcnt = 2;
14013 deloff = 2;
14014 }
14015
14016 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14017 else if (!insn32
14018 && r_type == R_MICROMIPS_26_S1
14019 && target_is_micromips_code_p
14020 && irel->r_offset + 7 < sec->size
14021 && MATCH (opcode, jal_insn_32_bd32))
14022 {
14023 unsigned long n32opc;
14024 bfd_boolean relaxed = FALSE;
14025
14026 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14027
14028 if (MATCH (n32opc, nop_insn_32))
14029 {
14030 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14031 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14032
14033 relaxed = TRUE;
14034 }
14035 else if (find_match (n32opc, move_insns_32) >= 0)
14036 {
14037 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14038 bfd_put_16 (abfd,
14039 (move_insn_16.match
14040 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14041 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14042 ptr + 4);
14043
14044 relaxed = TRUE;
14045 }
14046 /* Other 32-bit instructions relaxable to 16-bit
14047 instructions will be handled here later. */
14048
14049 if (relaxed)
14050 {
14051 /* JAL with 32-bit delay slot that is changed to a JALS
14052 with 16-bit delay slot. */
14053 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14054
14055 /* Delete 2 bytes from irel->r_offset + 6. */
14056 delcnt = 2;
14057 deloff = 6;
14058 }
14059 }
14060
14061 if (delcnt != 0)
14062 {
14063 /* Note that we've changed the relocs, section contents, etc. */
14064 elf_section_data (sec)->relocs = internal_relocs;
14065 elf_section_data (sec)->this_hdr.contents = contents;
14066 symtab_hdr->contents = (unsigned char *) isymbuf;
14067
14068 /* Delete bytes depending on the delcnt and deloff. */
14069 if (!mips_elf_relax_delete_bytes (abfd, sec,
14070 irel->r_offset + deloff, delcnt))
14071 goto error_return;
14072
14073 /* That will change things, so we should relax again.
14074 Note that this is not required, and it may be slow. */
14075 *again = TRUE;
14076 }
14077 }
14078
14079 if (isymbuf != NULL
14080 && symtab_hdr->contents != (unsigned char *) isymbuf)
14081 {
14082 if (! link_info->keep_memory)
14083 free (isymbuf);
14084 else
14085 {
14086 /* Cache the symbols for elf_link_input_bfd. */
14087 symtab_hdr->contents = (unsigned char *) isymbuf;
14088 }
14089 }
14090
14091 if (contents != NULL
14092 && elf_section_data (sec)->this_hdr.contents != contents)
14093 {
14094 if (! link_info->keep_memory)
14095 free (contents);
14096 else
14097 {
14098 /* Cache the section contents for elf_link_input_bfd. */
14099 elf_section_data (sec)->this_hdr.contents = contents;
14100 }
14101 }
14102
14103 if (internal_relocs != NULL
14104 && elf_section_data (sec)->relocs != internal_relocs)
14105 free (internal_relocs);
14106
14107 return TRUE;
14108
14109 error_return:
14110 if (isymbuf != NULL
14111 && symtab_hdr->contents != (unsigned char *) isymbuf)
14112 free (isymbuf);
14113 if (contents != NULL
14114 && elf_section_data (sec)->this_hdr.contents != contents)
14115 free (contents);
14116 if (internal_relocs != NULL
14117 && elf_section_data (sec)->relocs != internal_relocs)
14118 free (internal_relocs);
14119
14120 return FALSE;
14121 }
14122 \f
14123 /* Create a MIPS ELF linker hash table. */
14124
14125 struct bfd_link_hash_table *
14126 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14127 {
14128 struct mips_elf_link_hash_table *ret;
14129 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14130
14131 ret = bfd_zmalloc (amt);
14132 if (ret == NULL)
14133 return NULL;
14134
14135 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14136 mips_elf_link_hash_newfunc,
14137 sizeof (struct mips_elf_link_hash_entry),
14138 MIPS_ELF_DATA))
14139 {
14140 free (ret);
14141 return NULL;
14142 }
14143 ret->root.init_plt_refcount.plist = NULL;
14144 ret->root.init_plt_offset.plist = NULL;
14145
14146 return &ret->root.root;
14147 }
14148
14149 /* Likewise, but indicate that the target is VxWorks. */
14150
14151 struct bfd_link_hash_table *
14152 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14153 {
14154 struct bfd_link_hash_table *ret;
14155
14156 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14157 if (ret)
14158 {
14159 struct mips_elf_link_hash_table *htab;
14160
14161 htab = (struct mips_elf_link_hash_table *) ret;
14162 htab->use_plts_and_copy_relocs = TRUE;
14163 htab->is_vxworks = TRUE;
14164 }
14165 return ret;
14166 }
14167
14168 /* A function that the linker calls if we are allowed to use PLTs
14169 and copy relocs. */
14170
14171 void
14172 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14173 {
14174 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14175 }
14176
14177 /* A function that the linker calls to select between all or only
14178 32-bit microMIPS instructions, and between making or ignoring
14179 branch relocation checks for invalid transitions between ISA modes.
14180 Also record whether we have been configured for a GNU target. */
14181
14182 void
14183 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14184 bfd_boolean ignore_branch_isa,
14185 bfd_boolean gnu_target)
14186 {
14187 mips_elf_hash_table (info)->insn32 = insn32;
14188 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14189 mips_elf_hash_table (info)->gnu_target = gnu_target;
14190 }
14191 \f
14192 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14193
14194 struct mips_mach_extension
14195 {
14196 unsigned long extension, base;
14197 };
14198
14199
14200 /* An array describing how BFD machines relate to one another. The entries
14201 are ordered topologically with MIPS I extensions listed last. */
14202
14203 static const struct mips_mach_extension mips_mach_extensions[] =
14204 {
14205 /* MIPS64r2 extensions. */
14206 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14207 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14208 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14209 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14210 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14211 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14212 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14213
14214 /* MIPS64 extensions. */
14215 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14216 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14217 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14218
14219 /* MIPS V extensions. */
14220 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14221
14222 /* R10000 extensions. */
14223 { bfd_mach_mips12000, bfd_mach_mips10000 },
14224 { bfd_mach_mips14000, bfd_mach_mips10000 },
14225 { bfd_mach_mips16000, bfd_mach_mips10000 },
14226
14227 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14228 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14229 better to allow vr5400 and vr5500 code to be merged anyway, since
14230 many libraries will just use the core ISA. Perhaps we could add
14231 some sort of ASE flag if this ever proves a problem. */
14232 { bfd_mach_mips5500, bfd_mach_mips5400 },
14233 { bfd_mach_mips5400, bfd_mach_mips5000 },
14234
14235 /* MIPS IV extensions. */
14236 { bfd_mach_mips5, bfd_mach_mips8000 },
14237 { bfd_mach_mips10000, bfd_mach_mips8000 },
14238 { bfd_mach_mips5000, bfd_mach_mips8000 },
14239 { bfd_mach_mips7000, bfd_mach_mips8000 },
14240 { bfd_mach_mips9000, bfd_mach_mips8000 },
14241
14242 /* VR4100 extensions. */
14243 { bfd_mach_mips4120, bfd_mach_mips4100 },
14244 { bfd_mach_mips4111, bfd_mach_mips4100 },
14245
14246 /* MIPS III extensions. */
14247 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14248 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14249 { bfd_mach_mips8000, bfd_mach_mips4000 },
14250 { bfd_mach_mips4650, bfd_mach_mips4000 },
14251 { bfd_mach_mips4600, bfd_mach_mips4000 },
14252 { bfd_mach_mips4400, bfd_mach_mips4000 },
14253 { bfd_mach_mips4300, bfd_mach_mips4000 },
14254 { bfd_mach_mips4100, bfd_mach_mips4000 },
14255 { bfd_mach_mips5900, bfd_mach_mips4000 },
14256
14257 /* MIPS32r3 extensions. */
14258 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14259
14260 /* MIPS32r2 extensions. */
14261 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14262
14263 /* MIPS32 extensions. */
14264 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14265
14266 /* MIPS II extensions. */
14267 { bfd_mach_mips4000, bfd_mach_mips6000 },
14268 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14269 { bfd_mach_mips4010, bfd_mach_mips6000 },
14270
14271 /* MIPS I extensions. */
14272 { bfd_mach_mips6000, bfd_mach_mips3000 },
14273 { bfd_mach_mips3900, bfd_mach_mips3000 }
14274 };
14275
14276 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14277
14278 static bfd_boolean
14279 mips_mach_extends_p (unsigned long base, unsigned long extension)
14280 {
14281 size_t i;
14282
14283 if (extension == base)
14284 return TRUE;
14285
14286 if (base == bfd_mach_mipsisa32
14287 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14288 return TRUE;
14289
14290 if (base == bfd_mach_mipsisa32r2
14291 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14292 return TRUE;
14293
14294 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14295 if (extension == mips_mach_extensions[i].extension)
14296 {
14297 extension = mips_mach_extensions[i].base;
14298 if (extension == base)
14299 return TRUE;
14300 }
14301
14302 return FALSE;
14303 }
14304
14305 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14306
14307 static unsigned long
14308 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14309 {
14310 switch (isa_ext)
14311 {
14312 case AFL_EXT_3900: return bfd_mach_mips3900;
14313 case AFL_EXT_4010: return bfd_mach_mips4010;
14314 case AFL_EXT_4100: return bfd_mach_mips4100;
14315 case AFL_EXT_4111: return bfd_mach_mips4111;
14316 case AFL_EXT_4120: return bfd_mach_mips4120;
14317 case AFL_EXT_4650: return bfd_mach_mips4650;
14318 case AFL_EXT_5400: return bfd_mach_mips5400;
14319 case AFL_EXT_5500: return bfd_mach_mips5500;
14320 case AFL_EXT_5900: return bfd_mach_mips5900;
14321 case AFL_EXT_10000: return bfd_mach_mips10000;
14322 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14323 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14324 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14325 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14326 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14327 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14328 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14329 default: return bfd_mach_mips3000;
14330 }
14331 }
14332
14333 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14334
14335 unsigned int
14336 bfd_mips_isa_ext (bfd *abfd)
14337 {
14338 switch (bfd_get_mach (abfd))
14339 {
14340 case bfd_mach_mips3900: return AFL_EXT_3900;
14341 case bfd_mach_mips4010: return AFL_EXT_4010;
14342 case bfd_mach_mips4100: return AFL_EXT_4100;
14343 case bfd_mach_mips4111: return AFL_EXT_4111;
14344 case bfd_mach_mips4120: return AFL_EXT_4120;
14345 case bfd_mach_mips4650: return AFL_EXT_4650;
14346 case bfd_mach_mips5400: return AFL_EXT_5400;
14347 case bfd_mach_mips5500: return AFL_EXT_5500;
14348 case bfd_mach_mips5900: return AFL_EXT_5900;
14349 case bfd_mach_mips10000: return AFL_EXT_10000;
14350 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14351 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14352 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14353 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14354 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14355 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14356 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14357 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14358 case bfd_mach_mips_interaptiv_mr2:
14359 return AFL_EXT_INTERAPTIV_MR2;
14360 default: return 0;
14361 }
14362 }
14363
14364 /* Encode ISA level and revision as a single value. */
14365 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14366
14367 /* Decode a single value into level and revision. */
14368 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14369 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14370
14371 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14372
14373 static void
14374 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14375 {
14376 int new_isa = 0;
14377 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14378 {
14379 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14380 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14381 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14382 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14383 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14384 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14385 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14386 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14387 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14388 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14389 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14390 default:
14391 _bfd_error_handler
14392 /* xgettext:c-format */
14393 (_("%pB: unknown architecture %s"),
14394 abfd, bfd_printable_name (abfd));
14395 }
14396
14397 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14398 {
14399 abiflags->isa_level = ISA_LEVEL (new_isa);
14400 abiflags->isa_rev = ISA_REV (new_isa);
14401 }
14402
14403 /* Update the isa_ext if ABFD describes a further extension. */
14404 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14405 bfd_get_mach (abfd)))
14406 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14407 }
14408
14409 /* Return true if the given ELF header flags describe a 32-bit binary. */
14410
14411 static bfd_boolean
14412 mips_32bit_flags_p (flagword flags)
14413 {
14414 return ((flags & EF_MIPS_32BITMODE) != 0
14415 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14416 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14417 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14418 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14419 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14420 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14421 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14422 }
14423
14424 /* Infer the content of the ABI flags based on the elf header. */
14425
14426 static void
14427 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14428 {
14429 obj_attribute *in_attr;
14430
14431 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14432 update_mips_abiflags_isa (abfd, abiflags);
14433
14434 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14435 abiflags->gpr_size = AFL_REG_32;
14436 else
14437 abiflags->gpr_size = AFL_REG_64;
14438
14439 abiflags->cpr1_size = AFL_REG_NONE;
14440
14441 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14442 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14443
14444 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14445 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14446 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14447 && abiflags->gpr_size == AFL_REG_32))
14448 abiflags->cpr1_size = AFL_REG_32;
14449 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14450 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14451 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14452 abiflags->cpr1_size = AFL_REG_64;
14453
14454 abiflags->cpr2_size = AFL_REG_NONE;
14455
14456 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14457 abiflags->ases |= AFL_ASE_MDMX;
14458 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14459 abiflags->ases |= AFL_ASE_MIPS16;
14460 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14461 abiflags->ases |= AFL_ASE_MICROMIPS;
14462
14463 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14464 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14465 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14466 && abiflags->isa_level >= 32
14467 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14468 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14469 }
14470
14471 /* We need to use a special link routine to handle the .reginfo and
14472 the .mdebug sections. We need to merge all instances of these
14473 sections together, not write them all out sequentially. */
14474
14475 bfd_boolean
14476 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14477 {
14478 asection *o;
14479 struct bfd_link_order *p;
14480 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14481 asection *rtproc_sec, *abiflags_sec;
14482 Elf32_RegInfo reginfo;
14483 struct ecoff_debug_info debug;
14484 struct mips_htab_traverse_info hti;
14485 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14486 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14487 HDRR *symhdr = &debug.symbolic_header;
14488 void *mdebug_handle = NULL;
14489 asection *s;
14490 EXTR esym;
14491 unsigned int i;
14492 bfd_size_type amt;
14493 struct mips_elf_link_hash_table *htab;
14494
14495 static const char * const secname[] =
14496 {
14497 ".text", ".init", ".fini", ".data",
14498 ".rodata", ".sdata", ".sbss", ".bss"
14499 };
14500 static const int sc[] =
14501 {
14502 scText, scInit, scFini, scData,
14503 scRData, scSData, scSBss, scBss
14504 };
14505
14506 htab = mips_elf_hash_table (info);
14507 BFD_ASSERT (htab != NULL);
14508
14509 /* Sort the dynamic symbols so that those with GOT entries come after
14510 those without. */
14511 if (!mips_elf_sort_hash_table (abfd, info))
14512 return FALSE;
14513
14514 /* Create any scheduled LA25 stubs. */
14515 hti.info = info;
14516 hti.output_bfd = abfd;
14517 hti.error = FALSE;
14518 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14519 if (hti.error)
14520 return FALSE;
14521
14522 /* Get a value for the GP register. */
14523 if (elf_gp (abfd) == 0)
14524 {
14525 struct bfd_link_hash_entry *h;
14526
14527 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14528 if (h != NULL && h->type == bfd_link_hash_defined)
14529 elf_gp (abfd) = (h->u.def.value
14530 + h->u.def.section->output_section->vma
14531 + h->u.def.section->output_offset);
14532 else if (htab->is_vxworks
14533 && (h = bfd_link_hash_lookup (info->hash,
14534 "_GLOBAL_OFFSET_TABLE_",
14535 FALSE, FALSE, TRUE))
14536 && h->type == bfd_link_hash_defined)
14537 elf_gp (abfd) = (h->u.def.section->output_section->vma
14538 + h->u.def.section->output_offset
14539 + h->u.def.value);
14540 else if (bfd_link_relocatable (info))
14541 {
14542 bfd_vma lo = MINUS_ONE;
14543
14544 /* Find the GP-relative section with the lowest offset. */
14545 for (o = abfd->sections; o != NULL; o = o->next)
14546 if (o->vma < lo
14547 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14548 lo = o->vma;
14549
14550 /* And calculate GP relative to that. */
14551 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14552 }
14553 else
14554 {
14555 /* If the relocate_section function needs to do a reloc
14556 involving the GP value, it should make a reloc_dangerous
14557 callback to warn that GP is not defined. */
14558 }
14559 }
14560
14561 /* Go through the sections and collect the .reginfo and .mdebug
14562 information. */
14563 abiflags_sec = NULL;
14564 reginfo_sec = NULL;
14565 mdebug_sec = NULL;
14566 gptab_data_sec = NULL;
14567 gptab_bss_sec = NULL;
14568 for (o = abfd->sections; o != NULL; o = o->next)
14569 {
14570 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14571 {
14572 /* We have found the .MIPS.abiflags section in the output file.
14573 Look through all the link_orders comprising it and remove them.
14574 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14575 for (p = o->map_head.link_order; p != NULL; p = p->next)
14576 {
14577 asection *input_section;
14578
14579 if (p->type != bfd_indirect_link_order)
14580 {
14581 if (p->type == bfd_data_link_order)
14582 continue;
14583 abort ();
14584 }
14585
14586 input_section = p->u.indirect.section;
14587
14588 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14589 elf_link_input_bfd ignores this section. */
14590 input_section->flags &= ~SEC_HAS_CONTENTS;
14591 }
14592
14593 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14594 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14595
14596 /* Skip this section later on (I don't think this currently
14597 matters, but someday it might). */
14598 o->map_head.link_order = NULL;
14599
14600 abiflags_sec = o;
14601 }
14602
14603 if (strcmp (o->name, ".reginfo") == 0)
14604 {
14605 memset (&reginfo, 0, sizeof reginfo);
14606
14607 /* We have found the .reginfo section in the output file.
14608 Look through all the link_orders comprising it and merge
14609 the information together. */
14610 for (p = o->map_head.link_order; p != NULL; p = p->next)
14611 {
14612 asection *input_section;
14613 bfd *input_bfd;
14614 Elf32_External_RegInfo ext;
14615 Elf32_RegInfo sub;
14616 bfd_size_type sz;
14617
14618 if (p->type != bfd_indirect_link_order)
14619 {
14620 if (p->type == bfd_data_link_order)
14621 continue;
14622 abort ();
14623 }
14624
14625 input_section = p->u.indirect.section;
14626 input_bfd = input_section->owner;
14627
14628 sz = (input_section->size < sizeof (ext)
14629 ? input_section->size : sizeof (ext));
14630 memset (&ext, 0, sizeof (ext));
14631 if (! bfd_get_section_contents (input_bfd, input_section,
14632 &ext, 0, sz))
14633 return FALSE;
14634
14635 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14636
14637 reginfo.ri_gprmask |= sub.ri_gprmask;
14638 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14639 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14640 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14641 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14642
14643 /* ri_gp_value is set by the function
14644 `_bfd_mips_elf_section_processing' when the section is
14645 finally written out. */
14646
14647 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14648 elf_link_input_bfd ignores this section. */
14649 input_section->flags &= ~SEC_HAS_CONTENTS;
14650 }
14651
14652 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14653 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14654
14655 /* Skip this section later on (I don't think this currently
14656 matters, but someday it might). */
14657 o->map_head.link_order = NULL;
14658
14659 reginfo_sec = o;
14660 }
14661
14662 if (strcmp (o->name, ".mdebug") == 0)
14663 {
14664 struct extsym_info einfo;
14665 bfd_vma last;
14666
14667 /* We have found the .mdebug section in the output file.
14668 Look through all the link_orders comprising it and merge
14669 the information together. */
14670 symhdr->magic = swap->sym_magic;
14671 /* FIXME: What should the version stamp be? */
14672 symhdr->vstamp = 0;
14673 symhdr->ilineMax = 0;
14674 symhdr->cbLine = 0;
14675 symhdr->idnMax = 0;
14676 symhdr->ipdMax = 0;
14677 symhdr->isymMax = 0;
14678 symhdr->ioptMax = 0;
14679 symhdr->iauxMax = 0;
14680 symhdr->issMax = 0;
14681 symhdr->issExtMax = 0;
14682 symhdr->ifdMax = 0;
14683 symhdr->crfd = 0;
14684 symhdr->iextMax = 0;
14685
14686 /* We accumulate the debugging information itself in the
14687 debug_info structure. */
14688 debug.line = NULL;
14689 debug.external_dnr = NULL;
14690 debug.external_pdr = NULL;
14691 debug.external_sym = NULL;
14692 debug.external_opt = NULL;
14693 debug.external_aux = NULL;
14694 debug.ss = NULL;
14695 debug.ssext = debug.ssext_end = NULL;
14696 debug.external_fdr = NULL;
14697 debug.external_rfd = NULL;
14698 debug.external_ext = debug.external_ext_end = NULL;
14699
14700 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14701 if (mdebug_handle == NULL)
14702 return FALSE;
14703
14704 esym.jmptbl = 0;
14705 esym.cobol_main = 0;
14706 esym.weakext = 0;
14707 esym.reserved = 0;
14708 esym.ifd = ifdNil;
14709 esym.asym.iss = issNil;
14710 esym.asym.st = stLocal;
14711 esym.asym.reserved = 0;
14712 esym.asym.index = indexNil;
14713 last = 0;
14714 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14715 {
14716 esym.asym.sc = sc[i];
14717 s = bfd_get_section_by_name (abfd, secname[i]);
14718 if (s != NULL)
14719 {
14720 esym.asym.value = s->vma;
14721 last = s->vma + s->size;
14722 }
14723 else
14724 esym.asym.value = last;
14725 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14726 secname[i], &esym))
14727 return FALSE;
14728 }
14729
14730 for (p = o->map_head.link_order; p != NULL; p = p->next)
14731 {
14732 asection *input_section;
14733 bfd *input_bfd;
14734 const struct ecoff_debug_swap *input_swap;
14735 struct ecoff_debug_info input_debug;
14736 char *eraw_src;
14737 char *eraw_end;
14738
14739 if (p->type != bfd_indirect_link_order)
14740 {
14741 if (p->type == bfd_data_link_order)
14742 continue;
14743 abort ();
14744 }
14745
14746 input_section = p->u.indirect.section;
14747 input_bfd = input_section->owner;
14748
14749 if (!is_mips_elf (input_bfd))
14750 {
14751 /* I don't know what a non MIPS ELF bfd would be
14752 doing with a .mdebug section, but I don't really
14753 want to deal with it. */
14754 continue;
14755 }
14756
14757 input_swap = (get_elf_backend_data (input_bfd)
14758 ->elf_backend_ecoff_debug_swap);
14759
14760 BFD_ASSERT (p->size == input_section->size);
14761
14762 /* The ECOFF linking code expects that we have already
14763 read in the debugging information and set up an
14764 ecoff_debug_info structure, so we do that now. */
14765 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14766 &input_debug))
14767 return FALSE;
14768
14769 if (! (bfd_ecoff_debug_accumulate
14770 (mdebug_handle, abfd, &debug, swap, input_bfd,
14771 &input_debug, input_swap, info)))
14772 return FALSE;
14773
14774 /* Loop through the external symbols. For each one with
14775 interesting information, try to find the symbol in
14776 the linker global hash table and save the information
14777 for the output external symbols. */
14778 eraw_src = input_debug.external_ext;
14779 eraw_end = (eraw_src
14780 + (input_debug.symbolic_header.iextMax
14781 * input_swap->external_ext_size));
14782 for (;
14783 eraw_src < eraw_end;
14784 eraw_src += input_swap->external_ext_size)
14785 {
14786 EXTR ext;
14787 const char *name;
14788 struct mips_elf_link_hash_entry *h;
14789
14790 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14791 if (ext.asym.sc == scNil
14792 || ext.asym.sc == scUndefined
14793 || ext.asym.sc == scSUndefined)
14794 continue;
14795
14796 name = input_debug.ssext + ext.asym.iss;
14797 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14798 name, FALSE, FALSE, TRUE);
14799 if (h == NULL || h->esym.ifd != -2)
14800 continue;
14801
14802 if (ext.ifd != -1)
14803 {
14804 BFD_ASSERT (ext.ifd
14805 < input_debug.symbolic_header.ifdMax);
14806 ext.ifd = input_debug.ifdmap[ext.ifd];
14807 }
14808
14809 h->esym = ext;
14810 }
14811
14812 /* Free up the information we just read. */
14813 free (input_debug.line);
14814 free (input_debug.external_dnr);
14815 free (input_debug.external_pdr);
14816 free (input_debug.external_sym);
14817 free (input_debug.external_opt);
14818 free (input_debug.external_aux);
14819 free (input_debug.ss);
14820 free (input_debug.ssext);
14821 free (input_debug.external_fdr);
14822 free (input_debug.external_rfd);
14823 free (input_debug.external_ext);
14824
14825 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14826 elf_link_input_bfd ignores this section. */
14827 input_section->flags &= ~SEC_HAS_CONTENTS;
14828 }
14829
14830 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14831 {
14832 /* Create .rtproc section. */
14833 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14834 if (rtproc_sec == NULL)
14835 {
14836 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14837 | SEC_LINKER_CREATED | SEC_READONLY);
14838
14839 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14840 ".rtproc",
14841 flags);
14842 if (rtproc_sec == NULL
14843 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14844 return FALSE;
14845 }
14846
14847 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14848 info, rtproc_sec,
14849 &debug))
14850 return FALSE;
14851 }
14852
14853 /* Build the external symbol information. */
14854 einfo.abfd = abfd;
14855 einfo.info = info;
14856 einfo.debug = &debug;
14857 einfo.swap = swap;
14858 einfo.failed = FALSE;
14859 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14860 mips_elf_output_extsym, &einfo);
14861 if (einfo.failed)
14862 return FALSE;
14863
14864 /* Set the size of the .mdebug section. */
14865 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14866
14867 /* Skip this section later on (I don't think this currently
14868 matters, but someday it might). */
14869 o->map_head.link_order = NULL;
14870
14871 mdebug_sec = o;
14872 }
14873
14874 if (CONST_STRNEQ (o->name, ".gptab."))
14875 {
14876 const char *subname;
14877 unsigned int c;
14878 Elf32_gptab *tab;
14879 Elf32_External_gptab *ext_tab;
14880 unsigned int j;
14881
14882 /* The .gptab.sdata and .gptab.sbss sections hold
14883 information describing how the small data area would
14884 change depending upon the -G switch. These sections
14885 not used in executables files. */
14886 if (! bfd_link_relocatable (info))
14887 {
14888 for (p = o->map_head.link_order; p != NULL; p = p->next)
14889 {
14890 asection *input_section;
14891
14892 if (p->type != bfd_indirect_link_order)
14893 {
14894 if (p->type == bfd_data_link_order)
14895 continue;
14896 abort ();
14897 }
14898
14899 input_section = p->u.indirect.section;
14900
14901 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14902 elf_link_input_bfd ignores this section. */
14903 input_section->flags &= ~SEC_HAS_CONTENTS;
14904 }
14905
14906 /* Skip this section later on (I don't think this
14907 currently matters, but someday it might). */
14908 o->map_head.link_order = NULL;
14909
14910 /* Really remove the section. */
14911 bfd_section_list_remove (abfd, o);
14912 --abfd->section_count;
14913
14914 continue;
14915 }
14916
14917 /* There is one gptab for initialized data, and one for
14918 uninitialized data. */
14919 if (strcmp (o->name, ".gptab.sdata") == 0)
14920 gptab_data_sec = o;
14921 else if (strcmp (o->name, ".gptab.sbss") == 0)
14922 gptab_bss_sec = o;
14923 else
14924 {
14925 _bfd_error_handler
14926 /* xgettext:c-format */
14927 (_("%pB: illegal section name `%pA'"), abfd, o);
14928 bfd_set_error (bfd_error_nonrepresentable_section);
14929 return FALSE;
14930 }
14931
14932 /* The linker script always combines .gptab.data and
14933 .gptab.sdata into .gptab.sdata, and likewise for
14934 .gptab.bss and .gptab.sbss. It is possible that there is
14935 no .sdata or .sbss section in the output file, in which
14936 case we must change the name of the output section. */
14937 subname = o->name + sizeof ".gptab" - 1;
14938 if (bfd_get_section_by_name (abfd, subname) == NULL)
14939 {
14940 if (o == gptab_data_sec)
14941 o->name = ".gptab.data";
14942 else
14943 o->name = ".gptab.bss";
14944 subname = o->name + sizeof ".gptab" - 1;
14945 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14946 }
14947
14948 /* Set up the first entry. */
14949 c = 1;
14950 amt = c * sizeof (Elf32_gptab);
14951 tab = bfd_malloc (amt);
14952 if (tab == NULL)
14953 return FALSE;
14954 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14955 tab[0].gt_header.gt_unused = 0;
14956
14957 /* Combine the input sections. */
14958 for (p = o->map_head.link_order; p != NULL; p = p->next)
14959 {
14960 asection *input_section;
14961 bfd *input_bfd;
14962 bfd_size_type size;
14963 unsigned long last;
14964 bfd_size_type gpentry;
14965
14966 if (p->type != bfd_indirect_link_order)
14967 {
14968 if (p->type == bfd_data_link_order)
14969 continue;
14970 abort ();
14971 }
14972
14973 input_section = p->u.indirect.section;
14974 input_bfd = input_section->owner;
14975
14976 /* Combine the gptab entries for this input section one
14977 by one. We know that the input gptab entries are
14978 sorted by ascending -G value. */
14979 size = input_section->size;
14980 last = 0;
14981 for (gpentry = sizeof (Elf32_External_gptab);
14982 gpentry < size;
14983 gpentry += sizeof (Elf32_External_gptab))
14984 {
14985 Elf32_External_gptab ext_gptab;
14986 Elf32_gptab int_gptab;
14987 unsigned long val;
14988 unsigned long add;
14989 bfd_boolean exact;
14990 unsigned int look;
14991
14992 if (! (bfd_get_section_contents
14993 (input_bfd, input_section, &ext_gptab, gpentry,
14994 sizeof (Elf32_External_gptab))))
14995 {
14996 free (tab);
14997 return FALSE;
14998 }
14999
15000 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15001 &int_gptab);
15002 val = int_gptab.gt_entry.gt_g_value;
15003 add = int_gptab.gt_entry.gt_bytes - last;
15004
15005 exact = FALSE;
15006 for (look = 1; look < c; look++)
15007 {
15008 if (tab[look].gt_entry.gt_g_value >= val)
15009 tab[look].gt_entry.gt_bytes += add;
15010
15011 if (tab[look].gt_entry.gt_g_value == val)
15012 exact = TRUE;
15013 }
15014
15015 if (! exact)
15016 {
15017 Elf32_gptab *new_tab;
15018 unsigned int max;
15019
15020 /* We need a new table entry. */
15021 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15022 new_tab = bfd_realloc (tab, amt);
15023 if (new_tab == NULL)
15024 {
15025 free (tab);
15026 return FALSE;
15027 }
15028 tab = new_tab;
15029 tab[c].gt_entry.gt_g_value = val;
15030 tab[c].gt_entry.gt_bytes = add;
15031
15032 /* Merge in the size for the next smallest -G
15033 value, since that will be implied by this new
15034 value. */
15035 max = 0;
15036 for (look = 1; look < c; look++)
15037 {
15038 if (tab[look].gt_entry.gt_g_value < val
15039 && (max == 0
15040 || (tab[look].gt_entry.gt_g_value
15041 > tab[max].gt_entry.gt_g_value)))
15042 max = look;
15043 }
15044 if (max != 0)
15045 tab[c].gt_entry.gt_bytes +=
15046 tab[max].gt_entry.gt_bytes;
15047
15048 ++c;
15049 }
15050
15051 last = int_gptab.gt_entry.gt_bytes;
15052 }
15053
15054 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15055 elf_link_input_bfd ignores this section. */
15056 input_section->flags &= ~SEC_HAS_CONTENTS;
15057 }
15058
15059 /* The table must be sorted by -G value. */
15060 if (c > 2)
15061 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15062
15063 /* Swap out the table. */
15064 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15065 ext_tab = bfd_alloc (abfd, amt);
15066 if (ext_tab == NULL)
15067 {
15068 free (tab);
15069 return FALSE;
15070 }
15071
15072 for (j = 0; j < c; j++)
15073 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15074 free (tab);
15075
15076 o->size = c * sizeof (Elf32_External_gptab);
15077 o->contents = (bfd_byte *) ext_tab;
15078
15079 /* Skip this section later on (I don't think this currently
15080 matters, but someday it might). */
15081 o->map_head.link_order = NULL;
15082 }
15083 }
15084
15085 /* Invoke the regular ELF backend linker to do all the work. */
15086 if (!bfd_elf_final_link (abfd, info))
15087 return FALSE;
15088
15089 /* Now write out the computed sections. */
15090
15091 if (abiflags_sec != NULL)
15092 {
15093 Elf_External_ABIFlags_v0 ext;
15094 Elf_Internal_ABIFlags_v0 *abiflags;
15095
15096 abiflags = &mips_elf_tdata (abfd)->abiflags;
15097
15098 /* Set up the abiflags if no valid input sections were found. */
15099 if (!mips_elf_tdata (abfd)->abiflags_valid)
15100 {
15101 infer_mips_abiflags (abfd, abiflags);
15102 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15103 }
15104 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15105 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15106 return FALSE;
15107 }
15108
15109 if (reginfo_sec != NULL)
15110 {
15111 Elf32_External_RegInfo ext;
15112
15113 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15114 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15115 return FALSE;
15116 }
15117
15118 if (mdebug_sec != NULL)
15119 {
15120 BFD_ASSERT (abfd->output_has_begun);
15121 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15122 swap, info,
15123 mdebug_sec->filepos))
15124 return FALSE;
15125
15126 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15127 }
15128
15129 if (gptab_data_sec != NULL)
15130 {
15131 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15132 gptab_data_sec->contents,
15133 0, gptab_data_sec->size))
15134 return FALSE;
15135 }
15136
15137 if (gptab_bss_sec != NULL)
15138 {
15139 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15140 gptab_bss_sec->contents,
15141 0, gptab_bss_sec->size))
15142 return FALSE;
15143 }
15144
15145 if (SGI_COMPAT (abfd))
15146 {
15147 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15148 if (rtproc_sec != NULL)
15149 {
15150 if (! bfd_set_section_contents (abfd, rtproc_sec,
15151 rtproc_sec->contents,
15152 0, rtproc_sec->size))
15153 return FALSE;
15154 }
15155 }
15156
15157 return TRUE;
15158 }
15159 \f
15160 /* Merge object file header flags from IBFD into OBFD. Raise an error
15161 if there are conflicting settings. */
15162
15163 static bfd_boolean
15164 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15165 {
15166 bfd *obfd = info->output_bfd;
15167 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15168 flagword old_flags;
15169 flagword new_flags;
15170 bfd_boolean ok;
15171
15172 new_flags = elf_elfheader (ibfd)->e_flags;
15173 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15174 old_flags = elf_elfheader (obfd)->e_flags;
15175
15176 /* Check flag compatibility. */
15177
15178 new_flags &= ~EF_MIPS_NOREORDER;
15179 old_flags &= ~EF_MIPS_NOREORDER;
15180
15181 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15182 doesn't seem to matter. */
15183 new_flags &= ~EF_MIPS_XGOT;
15184 old_flags &= ~EF_MIPS_XGOT;
15185
15186 /* MIPSpro generates ucode info in n64 objects. Again, we should
15187 just be able to ignore this. */
15188 new_flags &= ~EF_MIPS_UCODE;
15189 old_flags &= ~EF_MIPS_UCODE;
15190
15191 /* DSOs should only be linked with CPIC code. */
15192 if ((ibfd->flags & DYNAMIC) != 0)
15193 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15194
15195 if (new_flags == old_flags)
15196 return TRUE;
15197
15198 ok = TRUE;
15199
15200 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15201 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15202 {
15203 _bfd_error_handler
15204 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15205 ibfd);
15206 ok = TRUE;
15207 }
15208
15209 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15210 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15211 if (! (new_flags & EF_MIPS_PIC))
15212 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15213
15214 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15215 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15216
15217 /* Compare the ISAs. */
15218 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15219 {
15220 _bfd_error_handler
15221 (_("%pB: linking 32-bit code with 64-bit code"),
15222 ibfd);
15223 ok = FALSE;
15224 }
15225 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15226 {
15227 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15228 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15229 {
15230 /* Copy the architecture info from IBFD to OBFD. Also copy
15231 the 32-bit flag (if set) so that we continue to recognise
15232 OBFD as a 32-bit binary. */
15233 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15234 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15235 elf_elfheader (obfd)->e_flags
15236 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15237
15238 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15239 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15240
15241 /* Copy across the ABI flags if OBFD doesn't use them
15242 and if that was what caused us to treat IBFD as 32-bit. */
15243 if ((old_flags & EF_MIPS_ABI) == 0
15244 && mips_32bit_flags_p (new_flags)
15245 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15246 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15247 }
15248 else
15249 {
15250 /* The ISAs aren't compatible. */
15251 _bfd_error_handler
15252 /* xgettext:c-format */
15253 (_("%pB: linking %s module with previous %s modules"),
15254 ibfd,
15255 bfd_printable_name (ibfd),
15256 bfd_printable_name (obfd));
15257 ok = FALSE;
15258 }
15259 }
15260
15261 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15262 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15263
15264 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15265 does set EI_CLASS differently from any 32-bit ABI. */
15266 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15267 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15268 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15269 {
15270 /* Only error if both are set (to different values). */
15271 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15272 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15273 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15274 {
15275 _bfd_error_handler
15276 /* xgettext:c-format */
15277 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15278 ibfd,
15279 elf_mips_abi_name (ibfd),
15280 elf_mips_abi_name (obfd));
15281 ok = FALSE;
15282 }
15283 new_flags &= ~EF_MIPS_ABI;
15284 old_flags &= ~EF_MIPS_ABI;
15285 }
15286
15287 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15288 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15289 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15290 {
15291 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15292 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15293 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15294 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15295 int micro_mis = old_m16 && new_micro;
15296 int m16_mis = old_micro && new_m16;
15297
15298 if (m16_mis || micro_mis)
15299 {
15300 _bfd_error_handler
15301 /* xgettext:c-format */
15302 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15303 ibfd,
15304 m16_mis ? "MIPS16" : "microMIPS",
15305 m16_mis ? "microMIPS" : "MIPS16");
15306 ok = FALSE;
15307 }
15308
15309 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15310
15311 new_flags &= ~ EF_MIPS_ARCH_ASE;
15312 old_flags &= ~ EF_MIPS_ARCH_ASE;
15313 }
15314
15315 /* Compare NaN encodings. */
15316 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15317 {
15318 /* xgettext:c-format */
15319 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15320 ibfd,
15321 (new_flags & EF_MIPS_NAN2008
15322 ? "-mnan=2008" : "-mnan=legacy"),
15323 (old_flags & EF_MIPS_NAN2008
15324 ? "-mnan=2008" : "-mnan=legacy"));
15325 ok = FALSE;
15326 new_flags &= ~EF_MIPS_NAN2008;
15327 old_flags &= ~EF_MIPS_NAN2008;
15328 }
15329
15330 /* Compare FP64 state. */
15331 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15332 {
15333 /* xgettext:c-format */
15334 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15335 ibfd,
15336 (new_flags & EF_MIPS_FP64
15337 ? "-mfp64" : "-mfp32"),
15338 (old_flags & EF_MIPS_FP64
15339 ? "-mfp64" : "-mfp32"));
15340 ok = FALSE;
15341 new_flags &= ~EF_MIPS_FP64;
15342 old_flags &= ~EF_MIPS_FP64;
15343 }
15344
15345 /* Warn about any other mismatches */
15346 if (new_flags != old_flags)
15347 {
15348 /* xgettext:c-format */
15349 _bfd_error_handler
15350 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15351 "(%#x)"),
15352 ibfd, new_flags, old_flags);
15353 ok = FALSE;
15354 }
15355
15356 return ok;
15357 }
15358
15359 /* Merge object attributes from IBFD into OBFD. Raise an error if
15360 there are conflicting attributes. */
15361 static bfd_boolean
15362 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15363 {
15364 bfd *obfd = info->output_bfd;
15365 obj_attribute *in_attr;
15366 obj_attribute *out_attr;
15367 bfd *abi_fp_bfd;
15368 bfd *abi_msa_bfd;
15369
15370 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15371 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15372 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15373 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15374
15375 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15376 if (!abi_msa_bfd
15377 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15378 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15379
15380 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15381 {
15382 /* This is the first object. Copy the attributes. */
15383 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15384
15385 /* Use the Tag_null value to indicate the attributes have been
15386 initialized. */
15387 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15388
15389 return TRUE;
15390 }
15391
15392 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15393 non-conflicting ones. */
15394 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15395 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15396 {
15397 int out_fp, in_fp;
15398
15399 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15400 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15401 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15402 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15403 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15404 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15405 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15406 || in_fp == Val_GNU_MIPS_ABI_FP_64
15407 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15408 {
15409 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15410 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15411 }
15412 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15413 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15414 || out_fp == Val_GNU_MIPS_ABI_FP_64
15415 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15416 /* Keep the current setting. */;
15417 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15418 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15419 {
15420 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15421 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15422 }
15423 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15424 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15425 /* Keep the current setting. */;
15426 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15427 {
15428 const char *out_string, *in_string;
15429
15430 out_string = _bfd_mips_fp_abi_string (out_fp);
15431 in_string = _bfd_mips_fp_abi_string (in_fp);
15432 /* First warn about cases involving unrecognised ABIs. */
15433 if (!out_string && !in_string)
15434 /* xgettext:c-format */
15435 _bfd_error_handler
15436 (_("warning: %pB uses unknown floating point ABI %d "
15437 "(set by %pB), %pB uses unknown floating point ABI %d"),
15438 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15439 else if (!out_string)
15440 _bfd_error_handler
15441 /* xgettext:c-format */
15442 (_("warning: %pB uses unknown floating point ABI %d "
15443 "(set by %pB), %pB uses %s"),
15444 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15445 else if (!in_string)
15446 _bfd_error_handler
15447 /* xgettext:c-format */
15448 (_("warning: %pB uses %s (set by %pB), "
15449 "%pB uses unknown floating point ABI %d"),
15450 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15451 else
15452 {
15453 /* If one of the bfds is soft-float, the other must be
15454 hard-float. The exact choice of hard-float ABI isn't
15455 really relevant to the error message. */
15456 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15457 out_string = "-mhard-float";
15458 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15459 in_string = "-mhard-float";
15460 _bfd_error_handler
15461 /* xgettext:c-format */
15462 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15463 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15464 }
15465 }
15466 }
15467
15468 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15469 non-conflicting ones. */
15470 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15471 {
15472 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15473 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15474 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15475 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15476 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15477 {
15478 case Val_GNU_MIPS_ABI_MSA_128:
15479 _bfd_error_handler
15480 /* xgettext:c-format */
15481 (_("warning: %pB uses %s (set by %pB), "
15482 "%pB uses unknown MSA ABI %d"),
15483 obfd, "-mmsa", abi_msa_bfd,
15484 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15485 break;
15486
15487 default:
15488 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15489 {
15490 case Val_GNU_MIPS_ABI_MSA_128:
15491 _bfd_error_handler
15492 /* xgettext:c-format */
15493 (_("warning: %pB uses unknown MSA ABI %d "
15494 "(set by %pB), %pB uses %s"),
15495 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15496 abi_msa_bfd, ibfd, "-mmsa");
15497 break;
15498
15499 default:
15500 _bfd_error_handler
15501 /* xgettext:c-format */
15502 (_("warning: %pB uses unknown MSA ABI %d "
15503 "(set by %pB), %pB uses unknown MSA ABI %d"),
15504 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15505 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15506 break;
15507 }
15508 }
15509 }
15510
15511 /* Merge Tag_compatibility attributes and any common GNU ones. */
15512 return _bfd_elf_merge_object_attributes (ibfd, info);
15513 }
15514
15515 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15516 there are conflicting settings. */
15517
15518 static bfd_boolean
15519 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15520 {
15521 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15522 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15523 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15524
15525 /* Update the output abiflags fp_abi using the computed fp_abi. */
15526 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15527
15528 #define max(a, b) ((a) > (b) ? (a) : (b))
15529 /* Merge abiflags. */
15530 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15531 in_tdata->abiflags.isa_level);
15532 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15533 in_tdata->abiflags.isa_rev);
15534 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15535 in_tdata->abiflags.gpr_size);
15536 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15537 in_tdata->abiflags.cpr1_size);
15538 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15539 in_tdata->abiflags.cpr2_size);
15540 #undef max
15541 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15542 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15543
15544 return TRUE;
15545 }
15546
15547 /* Merge backend specific data from an object file to the output
15548 object file when linking. */
15549
15550 bfd_boolean
15551 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15552 {
15553 bfd *obfd = info->output_bfd;
15554 struct mips_elf_obj_tdata *out_tdata;
15555 struct mips_elf_obj_tdata *in_tdata;
15556 bfd_boolean null_input_bfd = TRUE;
15557 asection *sec;
15558 bfd_boolean ok;
15559
15560 /* Check if we have the same endianness. */
15561 if (! _bfd_generic_verify_endian_match (ibfd, info))
15562 {
15563 _bfd_error_handler
15564 (_("%pB: endianness incompatible with that of the selected emulation"),
15565 ibfd);
15566 return FALSE;
15567 }
15568
15569 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15570 return TRUE;
15571
15572 in_tdata = mips_elf_tdata (ibfd);
15573 out_tdata = mips_elf_tdata (obfd);
15574
15575 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15576 {
15577 _bfd_error_handler
15578 (_("%pB: ABI is incompatible with that of the selected emulation"),
15579 ibfd);
15580 return FALSE;
15581 }
15582
15583 /* Check to see if the input BFD actually contains any sections. If not,
15584 then it has no attributes, and its flags may not have been initialized
15585 either, but it cannot actually cause any incompatibility. */
15586 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15587 {
15588 /* Ignore synthetic sections and empty .text, .data and .bss sections
15589 which are automatically generated by gas. Also ignore fake
15590 (s)common sections, since merely defining a common symbol does
15591 not affect compatibility. */
15592 if ((sec->flags & SEC_IS_COMMON) == 0
15593 && strcmp (sec->name, ".reginfo")
15594 && strcmp (sec->name, ".mdebug")
15595 && (sec->size != 0
15596 || (strcmp (sec->name, ".text")
15597 && strcmp (sec->name, ".data")
15598 && strcmp (sec->name, ".bss"))))
15599 {
15600 null_input_bfd = FALSE;
15601 break;
15602 }
15603 }
15604 if (null_input_bfd)
15605 return TRUE;
15606
15607 /* Populate abiflags using existing information. */
15608 if (in_tdata->abiflags_valid)
15609 {
15610 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15611 Elf_Internal_ABIFlags_v0 in_abiflags;
15612 Elf_Internal_ABIFlags_v0 abiflags;
15613
15614 /* Set up the FP ABI attribute from the abiflags if it is not already
15615 set. */
15616 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15617 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15618
15619 infer_mips_abiflags (ibfd, &abiflags);
15620 in_abiflags = in_tdata->abiflags;
15621
15622 /* It is not possible to infer the correct ISA revision
15623 for R3 or R5 so drop down to R2 for the checks. */
15624 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15625 in_abiflags.isa_rev = 2;
15626
15627 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15628 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15629 _bfd_error_handler
15630 (_("%pB: warning: inconsistent ISA between e_flags and "
15631 ".MIPS.abiflags"), ibfd);
15632 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15633 && in_abiflags.fp_abi != abiflags.fp_abi)
15634 _bfd_error_handler
15635 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15636 ".MIPS.abiflags"), ibfd);
15637 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15638 _bfd_error_handler
15639 (_("%pB: warning: inconsistent ASEs between e_flags and "
15640 ".MIPS.abiflags"), ibfd);
15641 /* The isa_ext is allowed to be an extension of what can be inferred
15642 from e_flags. */
15643 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15644 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15645 _bfd_error_handler
15646 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15647 ".MIPS.abiflags"), ibfd);
15648 if (in_abiflags.flags2 != 0)
15649 _bfd_error_handler
15650 (_("%pB: warning: unexpected flag in the flags2 field of "
15651 ".MIPS.abiflags (0x%lx)"), ibfd,
15652 in_abiflags.flags2);
15653 }
15654 else
15655 {
15656 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15657 in_tdata->abiflags_valid = TRUE;
15658 }
15659
15660 if (!out_tdata->abiflags_valid)
15661 {
15662 /* Copy input abiflags if output abiflags are not already valid. */
15663 out_tdata->abiflags = in_tdata->abiflags;
15664 out_tdata->abiflags_valid = TRUE;
15665 }
15666
15667 if (! elf_flags_init (obfd))
15668 {
15669 elf_flags_init (obfd) = TRUE;
15670 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15671 elf_elfheader (obfd)->e_ident[EI_CLASS]
15672 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15673
15674 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15675 && (bfd_get_arch_info (obfd)->the_default
15676 || mips_mach_extends_p (bfd_get_mach (obfd),
15677 bfd_get_mach (ibfd))))
15678 {
15679 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15680 bfd_get_mach (ibfd)))
15681 return FALSE;
15682
15683 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15684 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15685 }
15686
15687 ok = TRUE;
15688 }
15689 else
15690 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15691
15692 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15693
15694 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15695
15696 if (!ok)
15697 {
15698 bfd_set_error (bfd_error_bad_value);
15699 return FALSE;
15700 }
15701
15702 return TRUE;
15703 }
15704
15705 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15706
15707 bfd_boolean
15708 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15709 {
15710 BFD_ASSERT (!elf_flags_init (abfd)
15711 || elf_elfheader (abfd)->e_flags == flags);
15712
15713 elf_elfheader (abfd)->e_flags = flags;
15714 elf_flags_init (abfd) = TRUE;
15715 return TRUE;
15716 }
15717
15718 char *
15719 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15720 {
15721 switch (dtag)
15722 {
15723 default: return "";
15724 case DT_MIPS_RLD_VERSION:
15725 return "MIPS_RLD_VERSION";
15726 case DT_MIPS_TIME_STAMP:
15727 return "MIPS_TIME_STAMP";
15728 case DT_MIPS_ICHECKSUM:
15729 return "MIPS_ICHECKSUM";
15730 case DT_MIPS_IVERSION:
15731 return "MIPS_IVERSION";
15732 case DT_MIPS_FLAGS:
15733 return "MIPS_FLAGS";
15734 case DT_MIPS_BASE_ADDRESS:
15735 return "MIPS_BASE_ADDRESS";
15736 case DT_MIPS_MSYM:
15737 return "MIPS_MSYM";
15738 case DT_MIPS_CONFLICT:
15739 return "MIPS_CONFLICT";
15740 case DT_MIPS_LIBLIST:
15741 return "MIPS_LIBLIST";
15742 case DT_MIPS_LOCAL_GOTNO:
15743 return "MIPS_LOCAL_GOTNO";
15744 case DT_MIPS_CONFLICTNO:
15745 return "MIPS_CONFLICTNO";
15746 case DT_MIPS_LIBLISTNO:
15747 return "MIPS_LIBLISTNO";
15748 case DT_MIPS_SYMTABNO:
15749 return "MIPS_SYMTABNO";
15750 case DT_MIPS_UNREFEXTNO:
15751 return "MIPS_UNREFEXTNO";
15752 case DT_MIPS_GOTSYM:
15753 return "MIPS_GOTSYM";
15754 case DT_MIPS_HIPAGENO:
15755 return "MIPS_HIPAGENO";
15756 case DT_MIPS_RLD_MAP:
15757 return "MIPS_RLD_MAP";
15758 case DT_MIPS_RLD_MAP_REL:
15759 return "MIPS_RLD_MAP_REL";
15760 case DT_MIPS_DELTA_CLASS:
15761 return "MIPS_DELTA_CLASS";
15762 case DT_MIPS_DELTA_CLASS_NO:
15763 return "MIPS_DELTA_CLASS_NO";
15764 case DT_MIPS_DELTA_INSTANCE:
15765 return "MIPS_DELTA_INSTANCE";
15766 case DT_MIPS_DELTA_INSTANCE_NO:
15767 return "MIPS_DELTA_INSTANCE_NO";
15768 case DT_MIPS_DELTA_RELOC:
15769 return "MIPS_DELTA_RELOC";
15770 case DT_MIPS_DELTA_RELOC_NO:
15771 return "MIPS_DELTA_RELOC_NO";
15772 case DT_MIPS_DELTA_SYM:
15773 return "MIPS_DELTA_SYM";
15774 case DT_MIPS_DELTA_SYM_NO:
15775 return "MIPS_DELTA_SYM_NO";
15776 case DT_MIPS_DELTA_CLASSSYM:
15777 return "MIPS_DELTA_CLASSSYM";
15778 case DT_MIPS_DELTA_CLASSSYM_NO:
15779 return "MIPS_DELTA_CLASSSYM_NO";
15780 case DT_MIPS_CXX_FLAGS:
15781 return "MIPS_CXX_FLAGS";
15782 case DT_MIPS_PIXIE_INIT:
15783 return "MIPS_PIXIE_INIT";
15784 case DT_MIPS_SYMBOL_LIB:
15785 return "MIPS_SYMBOL_LIB";
15786 case DT_MIPS_LOCALPAGE_GOTIDX:
15787 return "MIPS_LOCALPAGE_GOTIDX";
15788 case DT_MIPS_LOCAL_GOTIDX:
15789 return "MIPS_LOCAL_GOTIDX";
15790 case DT_MIPS_HIDDEN_GOTIDX:
15791 return "MIPS_HIDDEN_GOTIDX";
15792 case DT_MIPS_PROTECTED_GOTIDX:
15793 return "MIPS_PROTECTED_GOT_IDX";
15794 case DT_MIPS_OPTIONS:
15795 return "MIPS_OPTIONS";
15796 case DT_MIPS_INTERFACE:
15797 return "MIPS_INTERFACE";
15798 case DT_MIPS_DYNSTR_ALIGN:
15799 return "DT_MIPS_DYNSTR_ALIGN";
15800 case DT_MIPS_INTERFACE_SIZE:
15801 return "DT_MIPS_INTERFACE_SIZE";
15802 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15803 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15804 case DT_MIPS_PERF_SUFFIX:
15805 return "DT_MIPS_PERF_SUFFIX";
15806 case DT_MIPS_COMPACT_SIZE:
15807 return "DT_MIPS_COMPACT_SIZE";
15808 case DT_MIPS_GP_VALUE:
15809 return "DT_MIPS_GP_VALUE";
15810 case DT_MIPS_AUX_DYNAMIC:
15811 return "DT_MIPS_AUX_DYNAMIC";
15812 case DT_MIPS_PLTGOT:
15813 return "DT_MIPS_PLTGOT";
15814 case DT_MIPS_RWPLT:
15815 return "DT_MIPS_RWPLT";
15816 }
15817 }
15818
15819 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15820 not known. */
15821
15822 const char *
15823 _bfd_mips_fp_abi_string (int fp)
15824 {
15825 switch (fp)
15826 {
15827 /* These strings aren't translated because they're simply
15828 option lists. */
15829 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15830 return "-mdouble-float";
15831
15832 case Val_GNU_MIPS_ABI_FP_SINGLE:
15833 return "-msingle-float";
15834
15835 case Val_GNU_MIPS_ABI_FP_SOFT:
15836 return "-msoft-float";
15837
15838 case Val_GNU_MIPS_ABI_FP_OLD_64:
15839 return _("-mips32r2 -mfp64 (12 callee-saved)");
15840
15841 case Val_GNU_MIPS_ABI_FP_XX:
15842 return "-mfpxx";
15843
15844 case Val_GNU_MIPS_ABI_FP_64:
15845 return "-mgp32 -mfp64";
15846
15847 case Val_GNU_MIPS_ABI_FP_64A:
15848 return "-mgp32 -mfp64 -mno-odd-spreg";
15849
15850 default:
15851 return 0;
15852 }
15853 }
15854
15855 static void
15856 print_mips_ases (FILE *file, unsigned int mask)
15857 {
15858 if (mask & AFL_ASE_DSP)
15859 fputs ("\n\tDSP ASE", file);
15860 if (mask & AFL_ASE_DSPR2)
15861 fputs ("\n\tDSP R2 ASE", file);
15862 if (mask & AFL_ASE_DSPR3)
15863 fputs ("\n\tDSP R3 ASE", file);
15864 if (mask & AFL_ASE_EVA)
15865 fputs ("\n\tEnhanced VA Scheme", file);
15866 if (mask & AFL_ASE_MCU)
15867 fputs ("\n\tMCU (MicroController) ASE", file);
15868 if (mask & AFL_ASE_MDMX)
15869 fputs ("\n\tMDMX ASE", file);
15870 if (mask & AFL_ASE_MIPS3D)
15871 fputs ("\n\tMIPS-3D ASE", file);
15872 if (mask & AFL_ASE_MT)
15873 fputs ("\n\tMT ASE", file);
15874 if (mask & AFL_ASE_SMARTMIPS)
15875 fputs ("\n\tSmartMIPS ASE", file);
15876 if (mask & AFL_ASE_VIRT)
15877 fputs ("\n\tVZ ASE", file);
15878 if (mask & AFL_ASE_MSA)
15879 fputs ("\n\tMSA ASE", file);
15880 if (mask & AFL_ASE_MIPS16)
15881 fputs ("\n\tMIPS16 ASE", file);
15882 if (mask & AFL_ASE_MICROMIPS)
15883 fputs ("\n\tMICROMIPS ASE", file);
15884 if (mask & AFL_ASE_XPA)
15885 fputs ("\n\tXPA ASE", file);
15886 if (mask & AFL_ASE_MIPS16E2)
15887 fputs ("\n\tMIPS16e2 ASE", file);
15888 if (mask & AFL_ASE_CRC)
15889 fputs ("\n\tCRC ASE", file);
15890 if (mask & AFL_ASE_GINV)
15891 fputs ("\n\tGINV ASE", file);
15892 if (mask & AFL_ASE_LOONGSON_MMI)
15893 fputs ("\n\tLoongson MMI ASE", file);
15894 if (mask & AFL_ASE_LOONGSON_CAM)
15895 fputs ("\n\tLoongson CAM ASE", file);
15896 if (mask & AFL_ASE_LOONGSON_EXT)
15897 fputs ("\n\tLoongson EXT ASE", file);
15898 if (mask & AFL_ASE_LOONGSON_EXT2)
15899 fputs ("\n\tLoongson EXT2 ASE", file);
15900 if (mask == 0)
15901 fprintf (file, "\n\t%s", _("None"));
15902 else if ((mask & ~AFL_ASE_MASK) != 0)
15903 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15904 }
15905
15906 static void
15907 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15908 {
15909 switch (isa_ext)
15910 {
15911 case 0:
15912 fputs (_("None"), file);
15913 break;
15914 case AFL_EXT_XLR:
15915 fputs ("RMI XLR", file);
15916 break;
15917 case AFL_EXT_OCTEON3:
15918 fputs ("Cavium Networks Octeon3", file);
15919 break;
15920 case AFL_EXT_OCTEON2:
15921 fputs ("Cavium Networks Octeon2", file);
15922 break;
15923 case AFL_EXT_OCTEONP:
15924 fputs ("Cavium Networks OcteonP", file);
15925 break;
15926 case AFL_EXT_OCTEON:
15927 fputs ("Cavium Networks Octeon", file);
15928 break;
15929 case AFL_EXT_5900:
15930 fputs ("Toshiba R5900", file);
15931 break;
15932 case AFL_EXT_4650:
15933 fputs ("MIPS R4650", file);
15934 break;
15935 case AFL_EXT_4010:
15936 fputs ("LSI R4010", file);
15937 break;
15938 case AFL_EXT_4100:
15939 fputs ("NEC VR4100", file);
15940 break;
15941 case AFL_EXT_3900:
15942 fputs ("Toshiba R3900", file);
15943 break;
15944 case AFL_EXT_10000:
15945 fputs ("MIPS R10000", file);
15946 break;
15947 case AFL_EXT_SB1:
15948 fputs ("Broadcom SB-1", file);
15949 break;
15950 case AFL_EXT_4111:
15951 fputs ("NEC VR4111/VR4181", file);
15952 break;
15953 case AFL_EXT_4120:
15954 fputs ("NEC VR4120", file);
15955 break;
15956 case AFL_EXT_5400:
15957 fputs ("NEC VR5400", file);
15958 break;
15959 case AFL_EXT_5500:
15960 fputs ("NEC VR5500", file);
15961 break;
15962 case AFL_EXT_LOONGSON_2E:
15963 fputs ("ST Microelectronics Loongson 2E", file);
15964 break;
15965 case AFL_EXT_LOONGSON_2F:
15966 fputs ("ST Microelectronics Loongson 2F", file);
15967 break;
15968 case AFL_EXT_INTERAPTIV_MR2:
15969 fputs ("Imagination interAptiv MR2", file);
15970 break;
15971 default:
15972 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15973 break;
15974 }
15975 }
15976
15977 static void
15978 print_mips_fp_abi_value (FILE *file, int val)
15979 {
15980 switch (val)
15981 {
15982 case Val_GNU_MIPS_ABI_FP_ANY:
15983 fprintf (file, _("Hard or soft float\n"));
15984 break;
15985 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15986 fprintf (file, _("Hard float (double precision)\n"));
15987 break;
15988 case Val_GNU_MIPS_ABI_FP_SINGLE:
15989 fprintf (file, _("Hard float (single precision)\n"));
15990 break;
15991 case Val_GNU_MIPS_ABI_FP_SOFT:
15992 fprintf (file, _("Soft float\n"));
15993 break;
15994 case Val_GNU_MIPS_ABI_FP_OLD_64:
15995 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15996 break;
15997 case Val_GNU_MIPS_ABI_FP_XX:
15998 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15999 break;
16000 case Val_GNU_MIPS_ABI_FP_64:
16001 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16002 break;
16003 case Val_GNU_MIPS_ABI_FP_64A:
16004 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16005 break;
16006 default:
16007 fprintf (file, "??? (%d)\n", val);
16008 break;
16009 }
16010 }
16011
16012 static int
16013 get_mips_reg_size (int reg_size)
16014 {
16015 return (reg_size == AFL_REG_NONE) ? 0
16016 : (reg_size == AFL_REG_32) ? 32
16017 : (reg_size == AFL_REG_64) ? 64
16018 : (reg_size == AFL_REG_128) ? 128
16019 : -1;
16020 }
16021
16022 bfd_boolean
16023 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16024 {
16025 FILE *file = ptr;
16026
16027 BFD_ASSERT (abfd != NULL && ptr != NULL);
16028
16029 /* Print normal ELF private data. */
16030 _bfd_elf_print_private_bfd_data (abfd, ptr);
16031
16032 /* xgettext:c-format */
16033 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16034
16035 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16036 fprintf (file, _(" [abi=O32]"));
16037 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16038 fprintf (file, _(" [abi=O64]"));
16039 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16040 fprintf (file, _(" [abi=EABI32]"));
16041 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16042 fprintf (file, _(" [abi=EABI64]"));
16043 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16044 fprintf (file, _(" [abi unknown]"));
16045 else if (ABI_N32_P (abfd))
16046 fprintf (file, _(" [abi=N32]"));
16047 else if (ABI_64_P (abfd))
16048 fprintf (file, _(" [abi=64]"));
16049 else
16050 fprintf (file, _(" [no abi set]"));
16051
16052 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16053 fprintf (file, " [mips1]");
16054 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16055 fprintf (file, " [mips2]");
16056 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16057 fprintf (file, " [mips3]");
16058 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16059 fprintf (file, " [mips4]");
16060 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16061 fprintf (file, " [mips5]");
16062 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16063 fprintf (file, " [mips32]");
16064 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16065 fprintf (file, " [mips64]");
16066 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16067 fprintf (file, " [mips32r2]");
16068 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16069 fprintf (file, " [mips64r2]");
16070 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16071 fprintf (file, " [mips32r6]");
16072 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16073 fprintf (file, " [mips64r6]");
16074 else
16075 fprintf (file, _(" [unknown ISA]"));
16076
16077 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16078 fprintf (file, " [mdmx]");
16079
16080 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16081 fprintf (file, " [mips16]");
16082
16083 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16084 fprintf (file, " [micromips]");
16085
16086 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16087 fprintf (file, " [nan2008]");
16088
16089 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16090 fprintf (file, " [old fp64]");
16091
16092 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16093 fprintf (file, " [32bitmode]");
16094 else
16095 fprintf (file, _(" [not 32bitmode]"));
16096
16097 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16098 fprintf (file, " [noreorder]");
16099
16100 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16101 fprintf (file, " [PIC]");
16102
16103 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16104 fprintf (file, " [CPIC]");
16105
16106 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16107 fprintf (file, " [XGOT]");
16108
16109 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16110 fprintf (file, " [UCODE]");
16111
16112 fputc ('\n', file);
16113
16114 if (mips_elf_tdata (abfd)->abiflags_valid)
16115 {
16116 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16117 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16118 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16119 if (abiflags->isa_rev > 1)
16120 fprintf (file, "r%d", abiflags->isa_rev);
16121 fprintf (file, "\nGPR size: %d",
16122 get_mips_reg_size (abiflags->gpr_size));
16123 fprintf (file, "\nCPR1 size: %d",
16124 get_mips_reg_size (abiflags->cpr1_size));
16125 fprintf (file, "\nCPR2 size: %d",
16126 get_mips_reg_size (abiflags->cpr2_size));
16127 fputs ("\nFP ABI: ", file);
16128 print_mips_fp_abi_value (file, abiflags->fp_abi);
16129 fputs ("ISA Extension: ", file);
16130 print_mips_isa_ext (file, abiflags->isa_ext);
16131 fputs ("\nASEs:", file);
16132 print_mips_ases (file, abiflags->ases);
16133 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16134 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16135 fputc ('\n', file);
16136 }
16137
16138 return TRUE;
16139 }
16140
16141 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16142 {
16143 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16144 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16145 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16146 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16147 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16148 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16149 { NULL, 0, 0, 0, 0 }
16150 };
16151
16152 /* Merge non visibility st_other attributes. Ensure that the
16153 STO_OPTIONAL flag is copied into h->other, even if this is not a
16154 definiton of the symbol. */
16155 void
16156 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16157 const Elf_Internal_Sym *isym,
16158 bfd_boolean definition,
16159 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16160 {
16161 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16162 {
16163 unsigned char other;
16164
16165 other = (definition ? isym->st_other : h->other);
16166 other &= ~ELF_ST_VISIBILITY (-1);
16167 h->other = other | ELF_ST_VISIBILITY (h->other);
16168 }
16169
16170 if (!definition
16171 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16172 h->other |= STO_OPTIONAL;
16173 }
16174
16175 /* Decide whether an undefined symbol is special and can be ignored.
16176 This is the case for OPTIONAL symbols on IRIX. */
16177 bfd_boolean
16178 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16179 {
16180 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16181 }
16182
16183 bfd_boolean
16184 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16185 {
16186 return (sym->st_shndx == SHN_COMMON
16187 || sym->st_shndx == SHN_MIPS_ACOMMON
16188 || sym->st_shndx == SHN_MIPS_SCOMMON);
16189 }
16190
16191 /* Return address for Ith PLT stub in section PLT, for relocation REL
16192 or (bfd_vma) -1 if it should not be included. */
16193
16194 bfd_vma
16195 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16196 const arelent *rel ATTRIBUTE_UNUSED)
16197 {
16198 return (plt->vma
16199 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16200 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16201 }
16202
16203 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16204 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16205 and .got.plt and also the slots may be of a different size each we walk
16206 the PLT manually fetching instructions and matching them against known
16207 patterns. To make things easier standard MIPS slots, if any, always come
16208 first. As we don't create proper ELF symbols we use the UDATA.I member
16209 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16210 with the ST_OTHER member of the ELF symbol. */
16211
16212 long
16213 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16214 long symcount ATTRIBUTE_UNUSED,
16215 asymbol **syms ATTRIBUTE_UNUSED,
16216 long dynsymcount, asymbol **dynsyms,
16217 asymbol **ret)
16218 {
16219 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16220 static const char microsuffix[] = "@micromipsplt";
16221 static const char m16suffix[] = "@mips16plt";
16222 static const char mipssuffix[] = "@plt";
16223
16224 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16225 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16226 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16227 Elf_Internal_Shdr *hdr;
16228 bfd_byte *plt_data;
16229 bfd_vma plt_offset;
16230 unsigned int other;
16231 bfd_vma entry_size;
16232 bfd_vma plt0_size;
16233 asection *relplt;
16234 bfd_vma opcode;
16235 asection *plt;
16236 asymbol *send;
16237 size_t size;
16238 char *names;
16239 long counti;
16240 arelent *p;
16241 asymbol *s;
16242 char *nend;
16243 long count;
16244 long pi;
16245 long i;
16246 long n;
16247
16248 *ret = NULL;
16249
16250 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16251 return 0;
16252
16253 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16254 if (relplt == NULL)
16255 return 0;
16256
16257 hdr = &elf_section_data (relplt)->this_hdr;
16258 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16259 return 0;
16260
16261 plt = bfd_get_section_by_name (abfd, ".plt");
16262 if (plt == NULL)
16263 return 0;
16264
16265 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16266 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16267 return -1;
16268 p = relplt->relocation;
16269
16270 /* Calculating the exact amount of space required for symbols would
16271 require two passes over the PLT, so just pessimise assuming two
16272 PLT slots per relocation. */
16273 count = relplt->size / hdr->sh_entsize;
16274 counti = count * bed->s->int_rels_per_ext_rel;
16275 size = 2 * count * sizeof (asymbol);
16276 size += count * (sizeof (mipssuffix) +
16277 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16278 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16279 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16280
16281 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16282 size += sizeof (asymbol) + sizeof (pltname);
16283
16284 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16285 return -1;
16286
16287 if (plt->size < 16)
16288 return -1;
16289
16290 s = *ret = bfd_malloc (size);
16291 if (s == NULL)
16292 return -1;
16293 send = s + 2 * count + 1;
16294
16295 names = (char *) send;
16296 nend = (char *) s + size;
16297 n = 0;
16298
16299 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16300 if (opcode == 0x3302fffe)
16301 {
16302 if (!micromips_p)
16303 return -1;
16304 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16305 other = STO_MICROMIPS;
16306 }
16307 else if (opcode == 0x0398c1d0)
16308 {
16309 if (!micromips_p)
16310 return -1;
16311 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16312 other = STO_MICROMIPS;
16313 }
16314 else
16315 {
16316 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16317 other = 0;
16318 }
16319
16320 s->the_bfd = abfd;
16321 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16322 s->section = plt;
16323 s->value = 0;
16324 s->name = names;
16325 s->udata.i = other;
16326 memcpy (names, pltname, sizeof (pltname));
16327 names += sizeof (pltname);
16328 ++s, ++n;
16329
16330 pi = 0;
16331 for (plt_offset = plt0_size;
16332 plt_offset + 8 <= plt->size && s < send;
16333 plt_offset += entry_size)
16334 {
16335 bfd_vma gotplt_addr;
16336 const char *suffix;
16337 bfd_vma gotplt_hi;
16338 bfd_vma gotplt_lo;
16339 size_t suffixlen;
16340
16341 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16342
16343 /* Check if the second word matches the expected MIPS16 instruction. */
16344 if (opcode == 0x651aeb00)
16345 {
16346 if (micromips_p)
16347 return -1;
16348 /* Truncated table??? */
16349 if (plt_offset + 16 > plt->size)
16350 break;
16351 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16352 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16353 suffixlen = sizeof (m16suffix);
16354 suffix = m16suffix;
16355 other = STO_MIPS16;
16356 }
16357 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16358 else if (opcode == 0xff220000)
16359 {
16360 if (!micromips_p)
16361 return -1;
16362 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16363 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16364 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16365 gotplt_lo <<= 2;
16366 gotplt_addr = gotplt_hi + gotplt_lo;
16367 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16368 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16369 suffixlen = sizeof (microsuffix);
16370 suffix = microsuffix;
16371 other = STO_MICROMIPS;
16372 }
16373 /* Likewise the expected microMIPS instruction (insn32 mode). */
16374 else if ((opcode & 0xffff0000) == 0xff2f0000)
16375 {
16376 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16377 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16378 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16379 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16380 gotplt_addr = gotplt_hi + gotplt_lo;
16381 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16382 suffixlen = sizeof (microsuffix);
16383 suffix = microsuffix;
16384 other = STO_MICROMIPS;
16385 }
16386 /* Otherwise assume standard MIPS code. */
16387 else
16388 {
16389 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16390 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16391 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16392 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16393 gotplt_addr = gotplt_hi + gotplt_lo;
16394 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16395 suffixlen = sizeof (mipssuffix);
16396 suffix = mipssuffix;
16397 other = 0;
16398 }
16399 /* Truncated table??? */
16400 if (plt_offset + entry_size > plt->size)
16401 break;
16402
16403 for (i = 0;
16404 i < count && p[pi].address != gotplt_addr;
16405 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16406
16407 if (i < count)
16408 {
16409 size_t namelen;
16410 size_t len;
16411
16412 *s = **p[pi].sym_ptr_ptr;
16413 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16414 we are defining a symbol, ensure one of them is set. */
16415 if ((s->flags & BSF_LOCAL) == 0)
16416 s->flags |= BSF_GLOBAL;
16417 s->flags |= BSF_SYNTHETIC;
16418 s->section = plt;
16419 s->value = plt_offset;
16420 s->name = names;
16421 s->udata.i = other;
16422
16423 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16424 namelen = len + suffixlen;
16425 if (names + namelen > nend)
16426 break;
16427
16428 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16429 names += len;
16430 memcpy (names, suffix, suffixlen);
16431 names += suffixlen;
16432
16433 ++s, ++n;
16434 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16435 }
16436 }
16437
16438 free (plt_data);
16439
16440 return n;
16441 }
16442
16443 /* Return the ABI flags associated with ABFD if available. */
16444
16445 Elf_Internal_ABIFlags_v0 *
16446 bfd_mips_elf_get_abiflags (bfd *abfd)
16447 {
16448 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16449
16450 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16451 }
16452
16453 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16454 field. Taken from `libc-abis.h' generated at GNU libc build time.
16455 Using a MIPS_ prefix as other libc targets use different values. */
16456 enum
16457 {
16458 MIPS_LIBC_ABI_DEFAULT = 0,
16459 MIPS_LIBC_ABI_MIPS_PLT,
16460 MIPS_LIBC_ABI_UNIQUE,
16461 MIPS_LIBC_ABI_MIPS_O32_FP64,
16462 MIPS_LIBC_ABI_ABSOLUTE,
16463 MIPS_LIBC_ABI_MAX
16464 };
16465
16466 void
16467 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16468 {
16469 struct mips_elf_link_hash_table *htab = NULL;
16470 Elf_Internal_Ehdr *i_ehdrp;
16471
16472 i_ehdrp = elf_elfheader (abfd);
16473 if (link_info)
16474 {
16475 htab = mips_elf_hash_table (link_info);
16476 BFD_ASSERT (htab != NULL);
16477 }
16478
16479 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16480 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16481
16482 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16483 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16484 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16485
16486 /* Mark that we need support for absolute symbols in the dynamic loader. */
16487 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16488 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16489
16490 _bfd_elf_post_process_headers (abfd, link_info);
16491 }
16492
16493 int
16494 _bfd_mips_elf_compact_eh_encoding
16495 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16496 {
16497 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16498 }
16499
16500 /* Return the opcode for can't unwind. */
16501
16502 int
16503 _bfd_mips_elf_cant_unwind_opcode
16504 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16505 {
16506 return COMPACT_EH_CANT_UNWIND_OPCODE;
16507 }