* elfxx-mips.c (_bfd_mips_elf_merge_private_bfd_data): Correct
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static long mips_elf_get_global_gotsym_index
404 (bfd *abfd);
405 static bfd_vma mips_elf_local_got_index
406 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
407 static bfd_vma mips_elf_global_got_index
408 (bfd *, bfd *, struct elf_link_hash_entry *);
409 static bfd_vma mips_elf_got_page
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
411 static bfd_vma mips_elf_got16_entry
412 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
413 static bfd_vma mips_elf_got_offset_from_index
414 (bfd *, bfd *, bfd *, bfd_vma);
415 static struct mips_got_entry *mips_elf_create_local_got_entry
416 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
417 static bfd_boolean mips_elf_sort_hash_table
418 (struct bfd_link_info *, unsigned long);
419 static bfd_boolean mips_elf_sort_hash_table_f
420 (struct mips_elf_link_hash_entry *, void *);
421 static bfd_boolean mips_elf_record_local_got_symbol
422 (bfd *, long, bfd_vma, struct mips_got_info *);
423 static bfd_boolean mips_elf_record_global_got_symbol
424 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
425 struct mips_got_info *);
426 static const Elf_Internal_Rela *mips_elf_next_relocation
427 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
428 static bfd_boolean mips_elf_local_relocation_p
429 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
430 static bfd_boolean mips_elf_overflow_p
431 (bfd_vma, int);
432 static bfd_vma mips_elf_high
433 (bfd_vma);
434 static bfd_vma mips_elf_higher
435 (bfd_vma);
436 static bfd_vma mips_elf_highest
437 (bfd_vma);
438 static bfd_boolean mips_elf_create_compact_rel_section
439 (bfd *, struct bfd_link_info *);
440 static bfd_boolean mips_elf_create_got_section
441 (bfd *, struct bfd_link_info *, bfd_boolean);
442 static bfd_reloc_status_type mips_elf_calculate_relocation
443 (bfd *, bfd *, asection *, struct bfd_link_info *,
444 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
445 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
446 bfd_boolean *, bfd_boolean);
447 static bfd_vma mips_elf_obtain_contents
448 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
449 static bfd_boolean mips_elf_perform_relocation
450 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
451 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
452 static bfd_boolean mips_elf_stub_section_p
453 (bfd *, asection *);
454 static void mips_elf_allocate_dynamic_relocations
455 (bfd *, unsigned int);
456 static bfd_boolean mips_elf_create_dynamic_relocation
457 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
458 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
459 bfd_vma *, asection *);
460 static void mips_set_isa_flags
461 (bfd *);
462 static INLINE char *elf_mips_abi_name
463 (bfd *);
464 static void mips_elf_irix6_finish_dynamic_symbol
465 (bfd *, const char *, Elf_Internal_Sym *);
466 static bfd_boolean mips_mach_extends_p
467 (unsigned long, unsigned long);
468 static bfd_boolean mips_32bit_flags_p
469 (flagword);
470 static INLINE hashval_t mips_elf_hash_bfd_vma
471 (bfd_vma);
472 static hashval_t mips_elf_got_entry_hash
473 (const void *);
474 static int mips_elf_got_entry_eq
475 (const void *, const void *);
476
477 static bfd_boolean mips_elf_multi_got
478 (bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type);
480 static hashval_t mips_elf_multi_got_entry_hash
481 (const void *);
482 static int mips_elf_multi_got_entry_eq
483 (const void *, const void *);
484 static hashval_t mips_elf_bfd2got_entry_hash
485 (const void *);
486 static int mips_elf_bfd2got_entry_eq
487 (const void *, const void *);
488 static int mips_elf_make_got_per_bfd
489 (void **, void *);
490 static int mips_elf_merge_gots
491 (void **, void *);
492 static int mips_elf_set_global_got_offset
493 (void **, void *);
494 static int mips_elf_set_no_stub
495 (void **, void *);
496 static int mips_elf_resolve_final_got_entry
497 (void **, void *);
498 static void mips_elf_resolve_final_got_entries
499 (struct mips_got_info *);
500 static bfd_vma mips_elf_adjust_gp
501 (bfd *, struct mips_got_info *, bfd *);
502 static struct mips_got_info *mips_elf_got_for_ibfd
503 (struct mips_got_info *, bfd *);
504
505 /* This will be used when we sort the dynamic relocation records. */
506 static bfd *reldyn_sorting_bfd;
507
508 /* Nonzero if ABFD is using the N32 ABI. */
509
510 #define ABI_N32_P(abfd) \
511 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
512
513 /* Nonzero if ABFD is using the N64 ABI. */
514 #define ABI_64_P(abfd) \
515 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
516
517 /* Nonzero if ABFD is using NewABI conventions. */
518 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
519
520 /* The IRIX compatibility level we are striving for. */
521 #define IRIX_COMPAT(abfd) \
522 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
523
524 /* Whether we are trying to be compatible with IRIX at all. */
525 #define SGI_COMPAT(abfd) \
526 (IRIX_COMPAT (abfd) != ict_none)
527
528 /* The name of the options section. */
529 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
530 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
531
532 /* The name of the stub section. */
533 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
534 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
535
536 /* The size of an external REL relocation. */
537 #define MIPS_ELF_REL_SIZE(abfd) \
538 (get_elf_backend_data (abfd)->s->sizeof_rel)
539
540 /* The size of an external dynamic table entry. */
541 #define MIPS_ELF_DYN_SIZE(abfd) \
542 (get_elf_backend_data (abfd)->s->sizeof_dyn)
543
544 /* The size of a GOT entry. */
545 #define MIPS_ELF_GOT_SIZE(abfd) \
546 (get_elf_backend_data (abfd)->s->arch_size / 8)
547
548 /* The size of a symbol-table entry. */
549 #define MIPS_ELF_SYM_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_sym)
551
552 /* The default alignment for sections, as a power of two. */
553 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
554 (get_elf_backend_data (abfd)->s->log_file_align)
555
556 /* Get word-sized data. */
557 #define MIPS_ELF_GET_WORD(abfd, ptr) \
558 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
559
560 /* Put out word-sized data. */
561 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
562 (ABI_64_P (abfd) \
563 ? bfd_put_64 (abfd, val, ptr) \
564 : bfd_put_32 (abfd, val, ptr))
565
566 /* Add a dynamic symbol table-entry. */
567 #ifdef BFD64
568 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
569 (ABI_64_P (elf_hash_table (info)->dynobj) \
570 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
571 : bfd_elf32_add_dynamic_entry (info, tag, val))
572 #else
573 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
574 (ABI_64_P (elf_hash_table (info)->dynobj) \
575 ? (abort (), FALSE) \
576 : bfd_elf32_add_dynamic_entry (info, tag, val))
577 #endif
578
579 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
580 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
581
582 /* Determine whether the internal relocation of index REL_IDX is REL
583 (zero) or RELA (non-zero). The assumption is that, if there are
584 two relocation sections for this section, one of them is REL and
585 the other is RELA. If the index of the relocation we're testing is
586 in range for the first relocation section, check that the external
587 relocation size is that for RELA. It is also assumed that, if
588 rel_idx is not in range for the first section, and this first
589 section contains REL relocs, then the relocation is in the second
590 section, that is RELA. */
591 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
592 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
593 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
594 > (bfd_vma)(rel_idx)) \
595 == (elf_section_data (sec)->rel_hdr.sh_entsize \
596 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
597 : sizeof (Elf32_External_Rela))))
598
599 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
600 from smaller values. Start with zero, widen, *then* decrement. */
601 #define MINUS_ONE (((bfd_vma)0) - 1)
602
603 /* The number of local .got entries we reserve. */
604 #define MIPS_RESERVED_GOTNO (2)
605
606 /* The offset of $gp from the beginning of the .got section. */
607 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
608
609 /* The maximum size of the GOT for it to be addressable using 16-bit
610 offsets from $gp. */
611 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
612
613 /* Instructions which appear in a stub. */
614 #define STUB_LW(abfd) \
615 ((ABI_64_P (abfd) \
616 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
617 : 0x8f998010)) /* lw t9,0x8010(gp) */
618 #define STUB_MOVE(abfd) \
619 ((ABI_64_P (abfd) \
620 ? 0x03e0782d /* daddu t7,ra */ \
621 : 0x03e07821)) /* addu t7,ra */
622 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
623 #define STUB_LI16(abfd) \
624 ((ABI_64_P (abfd) \
625 ? 0x64180000 /* daddiu t8,zero,0 */ \
626 : 0x24180000)) /* addiu t8,zero,0 */
627 #define MIPS_FUNCTION_STUB_SIZE (16)
628
629 /* The name of the dynamic interpreter. This is put in the .interp
630 section. */
631
632 #define ELF_DYNAMIC_INTERPRETER(abfd) \
633 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
634 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
635 : "/usr/lib/libc.so.1")
636
637 #ifdef BFD64
638 #define MNAME(bfd,pre,pos) \
639 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
640 #define ELF_R_SYM(bfd, i) \
641 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
642 #define ELF_R_TYPE(bfd, i) \
643 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
644 #define ELF_R_INFO(bfd, s, t) \
645 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
646 #else
647 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
648 #define ELF_R_SYM(bfd, i) \
649 (ELF32_R_SYM (i))
650 #define ELF_R_TYPE(bfd, i) \
651 (ELF32_R_TYPE (i))
652 #define ELF_R_INFO(bfd, s, t) \
653 (ELF32_R_INFO (s, t))
654 #endif
655 \f
656 /* The mips16 compiler uses a couple of special sections to handle
657 floating point arguments.
658
659 Section names that look like .mips16.fn.FNNAME contain stubs that
660 copy floating point arguments from the fp regs to the gp regs and
661 then jump to FNNAME. If any 32 bit function calls FNNAME, the
662 call should be redirected to the stub instead. If no 32 bit
663 function calls FNNAME, the stub should be discarded. We need to
664 consider any reference to the function, not just a call, because
665 if the address of the function is taken we will need the stub,
666 since the address might be passed to a 32 bit function.
667
668 Section names that look like .mips16.call.FNNAME contain stubs
669 that copy floating point arguments from the gp regs to the fp
670 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
671 then any 16 bit function that calls FNNAME should be redirected
672 to the stub instead. If FNNAME is not a 32 bit function, the
673 stub should be discarded.
674
675 .mips16.call.fp.FNNAME sections are similar, but contain stubs
676 which call FNNAME and then copy the return value from the fp regs
677 to the gp regs. These stubs store the return value in $18 while
678 calling FNNAME; any function which might call one of these stubs
679 must arrange to save $18 around the call. (This case is not
680 needed for 32 bit functions that call 16 bit functions, because
681 16 bit functions always return floating point values in both
682 $f0/$f1 and $2/$3.)
683
684 Note that in all cases FNNAME might be defined statically.
685 Therefore, FNNAME is not used literally. Instead, the relocation
686 information will indicate which symbol the section is for.
687
688 We record any stubs that we find in the symbol table. */
689
690 #define FN_STUB ".mips16.fn."
691 #define CALL_STUB ".mips16.call."
692 #define CALL_FP_STUB ".mips16.call.fp."
693 \f
694 /* Look up an entry in a MIPS ELF linker hash table. */
695
696 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
697 ((struct mips_elf_link_hash_entry *) \
698 elf_link_hash_lookup (&(table)->root, (string), (create), \
699 (copy), (follow)))
700
701 /* Traverse a MIPS ELF linker hash table. */
702
703 #define mips_elf_link_hash_traverse(table, func, info) \
704 (elf_link_hash_traverse \
705 (&(table)->root, \
706 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
707 (info)))
708
709 /* Get the MIPS ELF linker hash table from a link_info structure. */
710
711 #define mips_elf_hash_table(p) \
712 ((struct mips_elf_link_hash_table *) ((p)->hash))
713
714 /* Create an entry in a MIPS ELF linker hash table. */
715
716 static struct bfd_hash_entry *
717 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
718 struct bfd_hash_table *table, const char *string)
719 {
720 struct mips_elf_link_hash_entry *ret =
721 (struct mips_elf_link_hash_entry *) entry;
722
723 /* Allocate the structure if it has not already been allocated by a
724 subclass. */
725 if (ret == NULL)
726 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
727 if (ret == NULL)
728 return (struct bfd_hash_entry *) ret;
729
730 /* Call the allocation method of the superclass. */
731 ret = ((struct mips_elf_link_hash_entry *)
732 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
733 table, string));
734 if (ret != NULL)
735 {
736 /* Set local fields. */
737 memset (&ret->esym, 0, sizeof (EXTR));
738 /* We use -2 as a marker to indicate that the information has
739 not been set. -1 means there is no associated ifd. */
740 ret->esym.ifd = -2;
741 ret->possibly_dynamic_relocs = 0;
742 ret->readonly_reloc = FALSE;
743 ret->no_fn_stub = FALSE;
744 ret->fn_stub = NULL;
745 ret->need_fn_stub = FALSE;
746 ret->call_stub = NULL;
747 ret->call_fp_stub = NULL;
748 ret->forced_local = FALSE;
749 }
750
751 return (struct bfd_hash_entry *) ret;
752 }
753
754 bfd_boolean
755 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
756 {
757 struct _mips_elf_section_data *sdata;
758 bfd_size_type amt = sizeof (*sdata);
759
760 sdata = bfd_zalloc (abfd, amt);
761 if (sdata == NULL)
762 return FALSE;
763 sec->used_by_bfd = sdata;
764
765 return _bfd_elf_new_section_hook (abfd, sec);
766 }
767 \f
768 /* Read ECOFF debugging information from a .mdebug section into a
769 ecoff_debug_info structure. */
770
771 bfd_boolean
772 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
773 struct ecoff_debug_info *debug)
774 {
775 HDRR *symhdr;
776 const struct ecoff_debug_swap *swap;
777 char *ext_hdr;
778
779 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
780 memset (debug, 0, sizeof (*debug));
781
782 ext_hdr = bfd_malloc (swap->external_hdr_size);
783 if (ext_hdr == NULL && swap->external_hdr_size != 0)
784 goto error_return;
785
786 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
787 swap->external_hdr_size))
788 goto error_return;
789
790 symhdr = &debug->symbolic_header;
791 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
792
793 /* The symbolic header contains absolute file offsets and sizes to
794 read. */
795 #define READ(ptr, offset, count, size, type) \
796 if (symhdr->count == 0) \
797 debug->ptr = NULL; \
798 else \
799 { \
800 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
801 debug->ptr = bfd_malloc (amt); \
802 if (debug->ptr == NULL) \
803 goto error_return; \
804 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
805 || bfd_bread (debug->ptr, amt, abfd) != amt) \
806 goto error_return; \
807 }
808
809 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
810 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
811 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
812 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
813 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
814 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
815 union aux_ext *);
816 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
817 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
818 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
819 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
820 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
821 #undef READ
822
823 debug->fdr = NULL;
824 debug->adjust = NULL;
825
826 return TRUE;
827
828 error_return:
829 if (ext_hdr != NULL)
830 free (ext_hdr);
831 if (debug->line != NULL)
832 free (debug->line);
833 if (debug->external_dnr != NULL)
834 free (debug->external_dnr);
835 if (debug->external_pdr != NULL)
836 free (debug->external_pdr);
837 if (debug->external_sym != NULL)
838 free (debug->external_sym);
839 if (debug->external_opt != NULL)
840 free (debug->external_opt);
841 if (debug->external_aux != NULL)
842 free (debug->external_aux);
843 if (debug->ss != NULL)
844 free (debug->ss);
845 if (debug->ssext != NULL)
846 free (debug->ssext);
847 if (debug->external_fdr != NULL)
848 free (debug->external_fdr);
849 if (debug->external_rfd != NULL)
850 free (debug->external_rfd);
851 if (debug->external_ext != NULL)
852 free (debug->external_ext);
853 return FALSE;
854 }
855 \f
856 /* Swap RPDR (runtime procedure table entry) for output. */
857
858 static void
859 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
860 {
861 H_PUT_S32 (abfd, in->adr, ex->p_adr);
862 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
863 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
864 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
865 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
866 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
867
868 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
869 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
870
871 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
872 #if 0 /* FIXME */
873 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
874 #endif
875 }
876
877 /* Create a runtime procedure table from the .mdebug section. */
878
879 static bfd_boolean
880 mips_elf_create_procedure_table (void *handle, bfd *abfd,
881 struct bfd_link_info *info, asection *s,
882 struct ecoff_debug_info *debug)
883 {
884 const struct ecoff_debug_swap *swap;
885 HDRR *hdr = &debug->symbolic_header;
886 RPDR *rpdr, *rp;
887 struct rpdr_ext *erp;
888 void *rtproc;
889 struct pdr_ext *epdr;
890 struct sym_ext *esym;
891 char *ss, **sv;
892 char *str;
893 bfd_size_type size;
894 bfd_size_type count;
895 unsigned long sindex;
896 unsigned long i;
897 PDR pdr;
898 SYMR sym;
899 const char *no_name_func = _("static procedure (no name)");
900
901 epdr = NULL;
902 rpdr = NULL;
903 esym = NULL;
904 ss = NULL;
905 sv = NULL;
906
907 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
908
909 sindex = strlen (no_name_func) + 1;
910 count = hdr->ipdMax;
911 if (count > 0)
912 {
913 size = swap->external_pdr_size;
914
915 epdr = bfd_malloc (size * count);
916 if (epdr == NULL)
917 goto error_return;
918
919 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
920 goto error_return;
921
922 size = sizeof (RPDR);
923 rp = rpdr = bfd_malloc (size * count);
924 if (rpdr == NULL)
925 goto error_return;
926
927 size = sizeof (char *);
928 sv = bfd_malloc (size * count);
929 if (sv == NULL)
930 goto error_return;
931
932 count = hdr->isymMax;
933 size = swap->external_sym_size;
934 esym = bfd_malloc (size * count);
935 if (esym == NULL)
936 goto error_return;
937
938 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
939 goto error_return;
940
941 count = hdr->issMax;
942 ss = bfd_malloc (count);
943 if (ss == NULL)
944 goto error_return;
945 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
946 goto error_return;
947
948 count = hdr->ipdMax;
949 for (i = 0; i < (unsigned long) count; i++, rp++)
950 {
951 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
952 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
953 rp->adr = sym.value;
954 rp->regmask = pdr.regmask;
955 rp->regoffset = pdr.regoffset;
956 rp->fregmask = pdr.fregmask;
957 rp->fregoffset = pdr.fregoffset;
958 rp->frameoffset = pdr.frameoffset;
959 rp->framereg = pdr.framereg;
960 rp->pcreg = pdr.pcreg;
961 rp->irpss = sindex;
962 sv[i] = ss + sym.iss;
963 sindex += strlen (sv[i]) + 1;
964 }
965 }
966
967 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
968 size = BFD_ALIGN (size, 16);
969 rtproc = bfd_alloc (abfd, size);
970 if (rtproc == NULL)
971 {
972 mips_elf_hash_table (info)->procedure_count = 0;
973 goto error_return;
974 }
975
976 mips_elf_hash_table (info)->procedure_count = count + 2;
977
978 erp = rtproc;
979 memset (erp, 0, sizeof (struct rpdr_ext));
980 erp++;
981 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
982 strcpy (str, no_name_func);
983 str += strlen (no_name_func) + 1;
984 for (i = 0; i < count; i++)
985 {
986 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
987 strcpy (str, sv[i]);
988 str += strlen (sv[i]) + 1;
989 }
990 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
991
992 /* Set the size and contents of .rtproc section. */
993 s->_raw_size = size;
994 s->contents = rtproc;
995
996 /* Skip this section later on (I don't think this currently
997 matters, but someday it might). */
998 s->link_order_head = NULL;
999
1000 if (epdr != NULL)
1001 free (epdr);
1002 if (rpdr != NULL)
1003 free (rpdr);
1004 if (esym != NULL)
1005 free (esym);
1006 if (ss != NULL)
1007 free (ss);
1008 if (sv != NULL)
1009 free (sv);
1010
1011 return TRUE;
1012
1013 error_return:
1014 if (epdr != NULL)
1015 free (epdr);
1016 if (rpdr != NULL)
1017 free (rpdr);
1018 if (esym != NULL)
1019 free (esym);
1020 if (ss != NULL)
1021 free (ss);
1022 if (sv != NULL)
1023 free (sv);
1024 return FALSE;
1025 }
1026
1027 /* Check the mips16 stubs for a particular symbol, and see if we can
1028 discard them. */
1029
1030 static bfd_boolean
1031 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1032 void *data ATTRIBUTE_UNUSED)
1033 {
1034 if (h->root.root.type == bfd_link_hash_warning)
1035 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1036
1037 if (h->fn_stub != NULL
1038 && ! h->need_fn_stub)
1039 {
1040 /* We don't need the fn_stub; the only references to this symbol
1041 are 16 bit calls. Clobber the size to 0 to prevent it from
1042 being included in the link. */
1043 h->fn_stub->_raw_size = 0;
1044 h->fn_stub->_cooked_size = 0;
1045 h->fn_stub->flags &= ~SEC_RELOC;
1046 h->fn_stub->reloc_count = 0;
1047 h->fn_stub->flags |= SEC_EXCLUDE;
1048 }
1049
1050 if (h->call_stub != NULL
1051 && h->root.other == STO_MIPS16)
1052 {
1053 /* We don't need the call_stub; this is a 16 bit function, so
1054 calls from other 16 bit functions are OK. Clobber the size
1055 to 0 to prevent it from being included in the link. */
1056 h->call_stub->_raw_size = 0;
1057 h->call_stub->_cooked_size = 0;
1058 h->call_stub->flags &= ~SEC_RELOC;
1059 h->call_stub->reloc_count = 0;
1060 h->call_stub->flags |= SEC_EXCLUDE;
1061 }
1062
1063 if (h->call_fp_stub != NULL
1064 && h->root.other == STO_MIPS16)
1065 {
1066 /* We don't need the call_stub; this is a 16 bit function, so
1067 calls from other 16 bit functions are OK. Clobber the size
1068 to 0 to prevent it from being included in the link. */
1069 h->call_fp_stub->_raw_size = 0;
1070 h->call_fp_stub->_cooked_size = 0;
1071 h->call_fp_stub->flags &= ~SEC_RELOC;
1072 h->call_fp_stub->reloc_count = 0;
1073 h->call_fp_stub->flags |= SEC_EXCLUDE;
1074 }
1075
1076 return TRUE;
1077 }
1078 \f
1079 bfd_reloc_status_type
1080 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1081 arelent *reloc_entry, asection *input_section,
1082 bfd_boolean relocatable, void *data, bfd_vma gp)
1083 {
1084 bfd_vma relocation;
1085 bfd_signed_vma val;
1086 bfd_reloc_status_type status;
1087
1088 if (bfd_is_com_section (symbol->section))
1089 relocation = 0;
1090 else
1091 relocation = symbol->value;
1092
1093 relocation += symbol->section->output_section->vma;
1094 relocation += symbol->section->output_offset;
1095
1096 if (reloc_entry->address > input_section->_cooked_size)
1097 return bfd_reloc_outofrange;
1098
1099 /* Set val to the offset into the section or symbol. */
1100 val = reloc_entry->addend;
1101
1102 _bfd_mips_elf_sign_extend (val, 16);
1103
1104 /* Adjust val for the final section location and GP value. If we
1105 are producing relocatable output, we don't want to do this for
1106 an external symbol. */
1107 if (! relocatable
1108 || (symbol->flags & BSF_SECTION_SYM) != 0)
1109 val += relocation - gp;
1110
1111 if (reloc_entry->howto->partial_inplace)
1112 {
1113 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1114 (bfd_byte *) data
1115 + reloc_entry->address);
1116 if (status != bfd_reloc_ok)
1117 return status;
1118 }
1119 else
1120 reloc_entry->addend = val;
1121
1122 if (relocatable)
1123 reloc_entry->address += input_section->output_offset;
1124
1125 return bfd_reloc_ok;
1126 }
1127
1128 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1129 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1130 that contains the relocation field and DATA points to the start of
1131 INPUT_SECTION. */
1132
1133 struct mips_hi16
1134 {
1135 struct mips_hi16 *next;
1136 bfd_byte *data;
1137 asection *input_section;
1138 arelent rel;
1139 };
1140
1141 /* FIXME: This should not be a static variable. */
1142
1143 static struct mips_hi16 *mips_hi16_list;
1144
1145 /* A howto special_function for REL *HI16 relocations. We can only
1146 calculate the correct value once we've seen the partnering
1147 *LO16 relocation, so just save the information for later.
1148
1149 The ABI requires that the *LO16 immediately follow the *HI16.
1150 However, as a GNU extension, we permit an arbitrary number of
1151 *HI16s to be associated with a single *LO16. This significantly
1152 simplies the relocation handling in gcc. */
1153
1154 bfd_reloc_status_type
1155 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1156 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1157 asection *input_section, bfd *output_bfd,
1158 char **error_message ATTRIBUTE_UNUSED)
1159 {
1160 struct mips_hi16 *n;
1161
1162 if (reloc_entry->address > input_section->_cooked_size)
1163 return bfd_reloc_outofrange;
1164
1165 n = bfd_malloc (sizeof *n);
1166 if (n == NULL)
1167 return bfd_reloc_outofrange;
1168
1169 n->next = mips_hi16_list;
1170 n->data = data;
1171 n->input_section = input_section;
1172 n->rel = *reloc_entry;
1173 mips_hi16_list = n;
1174
1175 if (output_bfd != NULL)
1176 reloc_entry->address += input_section->output_offset;
1177
1178 return bfd_reloc_ok;
1179 }
1180
1181 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1182 like any other 16-bit relocation when applied to global symbols, but is
1183 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1184
1185 bfd_reloc_status_type
1186 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1187 void *data, asection *input_section,
1188 bfd *output_bfd, char **error_message)
1189 {
1190 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1191 || bfd_is_und_section (bfd_get_section (symbol))
1192 || bfd_is_com_section (bfd_get_section (symbol)))
1193 /* The relocation is against a global symbol. */
1194 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1195 input_section, output_bfd,
1196 error_message);
1197
1198 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1199 input_section, output_bfd, error_message);
1200 }
1201
1202 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1203 is a straightforward 16 bit inplace relocation, but we must deal with
1204 any partnering high-part relocations as well. */
1205
1206 bfd_reloc_status_type
1207 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1208 void *data, asection *input_section,
1209 bfd *output_bfd, char **error_message)
1210 {
1211 bfd_vma vallo;
1212
1213 if (reloc_entry->address > input_section->_cooked_size)
1214 return bfd_reloc_outofrange;
1215
1216 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1217 while (mips_hi16_list != NULL)
1218 {
1219 bfd_reloc_status_type ret;
1220 struct mips_hi16 *hi;
1221
1222 hi = mips_hi16_list;
1223
1224 /* R_MIPS_GOT16 relocations are something of a special case. We
1225 want to install the addend in the same way as for a R_MIPS_HI16
1226 relocation (with a rightshift of 16). However, since GOT16
1227 relocations can also be used with global symbols, their howto
1228 has a rightshift of 0. */
1229 if (hi->rel.howto->type == R_MIPS_GOT16)
1230 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1231
1232 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1233 carry or borrow will induce a change of +1 or -1 in the high part. */
1234 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1235
1236 /* R_MIPS_GNU_REL_HI16 relocations are relative to the address of the
1237 lo16 relocation, not their own address. If we're calculating the
1238 final value, and hence subtracting the "PC", subtract the offset
1239 of the lo16 relocation from here. */
1240 if (output_bfd == NULL && hi->rel.howto->type == R_MIPS_GNU_REL_HI16)
1241 hi->rel.addend -= reloc_entry->address - hi->rel.address;
1242
1243 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1244 hi->input_section, output_bfd,
1245 error_message);
1246 if (ret != bfd_reloc_ok)
1247 return ret;
1248
1249 mips_hi16_list = hi->next;
1250 free (hi);
1251 }
1252
1253 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1254 input_section, output_bfd,
1255 error_message);
1256 }
1257
1258 /* A generic howto special_function. This calculates and installs the
1259 relocation itself, thus avoiding the oft-discussed problems in
1260 bfd_perform_relocation and bfd_install_relocation. */
1261
1262 bfd_reloc_status_type
1263 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1264 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1265 asection *input_section, bfd *output_bfd,
1266 char **error_message ATTRIBUTE_UNUSED)
1267 {
1268 bfd_signed_vma val;
1269 bfd_reloc_status_type status;
1270 bfd_boolean relocatable;
1271
1272 relocatable = (output_bfd != NULL);
1273
1274 if (reloc_entry->address > input_section->_cooked_size)
1275 return bfd_reloc_outofrange;
1276
1277 /* Build up the field adjustment in VAL. */
1278 val = 0;
1279 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1280 {
1281 /* Either we're calculating the final field value or we have a
1282 relocation against a section symbol. Add in the section's
1283 offset or address. */
1284 val += symbol->section->output_section->vma;
1285 val += symbol->section->output_offset;
1286 }
1287
1288 if (!relocatable)
1289 {
1290 /* We're calculating the final field value. Add in the symbol's value
1291 and, if pc-relative, subtract the address of the field itself. */
1292 val += symbol->value;
1293 if (reloc_entry->howto->pc_relative)
1294 {
1295 val -= input_section->output_section->vma;
1296 val -= input_section->output_offset;
1297 val -= reloc_entry->address;
1298 }
1299 }
1300
1301 /* VAL is now the final adjustment. If we're keeping this relocation
1302 in the output file, and if the relocation uses a separate addend,
1303 we just need to add VAL to that addend. Otherwise we need to add
1304 VAL to the relocation field itself. */
1305 if (relocatable && !reloc_entry->howto->partial_inplace)
1306 reloc_entry->addend += val;
1307 else
1308 {
1309 /* Add in the separate addend, if any. */
1310 val += reloc_entry->addend;
1311
1312 /* Add VAL to the relocation field. */
1313 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1314 (bfd_byte *) data
1315 + reloc_entry->address);
1316 if (status != bfd_reloc_ok)
1317 return status;
1318 }
1319
1320 if (relocatable)
1321 reloc_entry->address += input_section->output_offset;
1322
1323 return bfd_reloc_ok;
1324 }
1325 \f
1326 /* Swap an entry in a .gptab section. Note that these routines rely
1327 on the equivalence of the two elements of the union. */
1328
1329 static void
1330 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1331 Elf32_gptab *in)
1332 {
1333 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1334 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1335 }
1336
1337 static void
1338 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1339 Elf32_External_gptab *ex)
1340 {
1341 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1342 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1343 }
1344
1345 static void
1346 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1347 Elf32_External_compact_rel *ex)
1348 {
1349 H_PUT_32 (abfd, in->id1, ex->id1);
1350 H_PUT_32 (abfd, in->num, ex->num);
1351 H_PUT_32 (abfd, in->id2, ex->id2);
1352 H_PUT_32 (abfd, in->offset, ex->offset);
1353 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1354 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1355 }
1356
1357 static void
1358 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1359 Elf32_External_crinfo *ex)
1360 {
1361 unsigned long l;
1362
1363 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1364 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1365 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1366 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1367 H_PUT_32 (abfd, l, ex->info);
1368 H_PUT_32 (abfd, in->konst, ex->konst);
1369 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1370 }
1371 \f
1372 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1373 routines swap this structure in and out. They are used outside of
1374 BFD, so they are globally visible. */
1375
1376 void
1377 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1378 Elf32_RegInfo *in)
1379 {
1380 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1381 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1382 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1383 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1384 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1385 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1386 }
1387
1388 void
1389 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1390 Elf32_External_RegInfo *ex)
1391 {
1392 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1393 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1394 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1395 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1396 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1397 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1398 }
1399
1400 /* In the 64 bit ABI, the .MIPS.options section holds register
1401 information in an Elf64_Reginfo structure. These routines swap
1402 them in and out. They are globally visible because they are used
1403 outside of BFD. These routines are here so that gas can call them
1404 without worrying about whether the 64 bit ABI has been included. */
1405
1406 void
1407 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1408 Elf64_Internal_RegInfo *in)
1409 {
1410 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1411 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1412 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1413 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1414 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1415 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1416 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1417 }
1418
1419 void
1420 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1421 Elf64_External_RegInfo *ex)
1422 {
1423 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1424 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1425 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1426 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1427 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1428 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1429 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1430 }
1431
1432 /* Swap in an options header. */
1433
1434 void
1435 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1436 Elf_Internal_Options *in)
1437 {
1438 in->kind = H_GET_8 (abfd, ex->kind);
1439 in->size = H_GET_8 (abfd, ex->size);
1440 in->section = H_GET_16 (abfd, ex->section);
1441 in->info = H_GET_32 (abfd, ex->info);
1442 }
1443
1444 /* Swap out an options header. */
1445
1446 void
1447 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1448 Elf_External_Options *ex)
1449 {
1450 H_PUT_8 (abfd, in->kind, ex->kind);
1451 H_PUT_8 (abfd, in->size, ex->size);
1452 H_PUT_16 (abfd, in->section, ex->section);
1453 H_PUT_32 (abfd, in->info, ex->info);
1454 }
1455 \f
1456 /* This function is called via qsort() to sort the dynamic relocation
1457 entries by increasing r_symndx value. */
1458
1459 static int
1460 sort_dynamic_relocs (const void *arg1, const void *arg2)
1461 {
1462 Elf_Internal_Rela int_reloc1;
1463 Elf_Internal_Rela int_reloc2;
1464
1465 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1466 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1467
1468 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1469 }
1470
1471 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1472
1473 static int
1474 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1475 {
1476 Elf_Internal_Rela int_reloc1[3];
1477 Elf_Internal_Rela int_reloc2[3];
1478
1479 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1480 (reldyn_sorting_bfd, arg1, int_reloc1);
1481 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1482 (reldyn_sorting_bfd, arg2, int_reloc2);
1483
1484 return (ELF64_R_SYM (int_reloc1[0].r_info)
1485 - ELF64_R_SYM (int_reloc2[0].r_info));
1486 }
1487
1488
1489 /* This routine is used to write out ECOFF debugging external symbol
1490 information. It is called via mips_elf_link_hash_traverse. The
1491 ECOFF external symbol information must match the ELF external
1492 symbol information. Unfortunately, at this point we don't know
1493 whether a symbol is required by reloc information, so the two
1494 tables may wind up being different. We must sort out the external
1495 symbol information before we can set the final size of the .mdebug
1496 section, and we must set the size of the .mdebug section before we
1497 can relocate any sections, and we can't know which symbols are
1498 required by relocation until we relocate the sections.
1499 Fortunately, it is relatively unlikely that any symbol will be
1500 stripped but required by a reloc. In particular, it can not happen
1501 when generating a final executable. */
1502
1503 static bfd_boolean
1504 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1505 {
1506 struct extsym_info *einfo = data;
1507 bfd_boolean strip;
1508 asection *sec, *output_section;
1509
1510 if (h->root.root.type == bfd_link_hash_warning)
1511 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1512
1513 if (h->root.indx == -2)
1514 strip = FALSE;
1515 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1516 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1517 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1518 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1519 strip = TRUE;
1520 else if (einfo->info->strip == strip_all
1521 || (einfo->info->strip == strip_some
1522 && bfd_hash_lookup (einfo->info->keep_hash,
1523 h->root.root.root.string,
1524 FALSE, FALSE) == NULL))
1525 strip = TRUE;
1526 else
1527 strip = FALSE;
1528
1529 if (strip)
1530 return TRUE;
1531
1532 if (h->esym.ifd == -2)
1533 {
1534 h->esym.jmptbl = 0;
1535 h->esym.cobol_main = 0;
1536 h->esym.weakext = 0;
1537 h->esym.reserved = 0;
1538 h->esym.ifd = ifdNil;
1539 h->esym.asym.value = 0;
1540 h->esym.asym.st = stGlobal;
1541
1542 if (h->root.root.type == bfd_link_hash_undefined
1543 || h->root.root.type == bfd_link_hash_undefweak)
1544 {
1545 const char *name;
1546
1547 /* Use undefined class. Also, set class and type for some
1548 special symbols. */
1549 name = h->root.root.root.string;
1550 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1551 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1552 {
1553 h->esym.asym.sc = scData;
1554 h->esym.asym.st = stLabel;
1555 h->esym.asym.value = 0;
1556 }
1557 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1558 {
1559 h->esym.asym.sc = scAbs;
1560 h->esym.asym.st = stLabel;
1561 h->esym.asym.value =
1562 mips_elf_hash_table (einfo->info)->procedure_count;
1563 }
1564 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1565 {
1566 h->esym.asym.sc = scAbs;
1567 h->esym.asym.st = stLabel;
1568 h->esym.asym.value = elf_gp (einfo->abfd);
1569 }
1570 else
1571 h->esym.asym.sc = scUndefined;
1572 }
1573 else if (h->root.root.type != bfd_link_hash_defined
1574 && h->root.root.type != bfd_link_hash_defweak)
1575 h->esym.asym.sc = scAbs;
1576 else
1577 {
1578 const char *name;
1579
1580 sec = h->root.root.u.def.section;
1581 output_section = sec->output_section;
1582
1583 /* When making a shared library and symbol h is the one from
1584 the another shared library, OUTPUT_SECTION may be null. */
1585 if (output_section == NULL)
1586 h->esym.asym.sc = scUndefined;
1587 else
1588 {
1589 name = bfd_section_name (output_section->owner, output_section);
1590
1591 if (strcmp (name, ".text") == 0)
1592 h->esym.asym.sc = scText;
1593 else if (strcmp (name, ".data") == 0)
1594 h->esym.asym.sc = scData;
1595 else if (strcmp (name, ".sdata") == 0)
1596 h->esym.asym.sc = scSData;
1597 else if (strcmp (name, ".rodata") == 0
1598 || strcmp (name, ".rdata") == 0)
1599 h->esym.asym.sc = scRData;
1600 else if (strcmp (name, ".bss") == 0)
1601 h->esym.asym.sc = scBss;
1602 else if (strcmp (name, ".sbss") == 0)
1603 h->esym.asym.sc = scSBss;
1604 else if (strcmp (name, ".init") == 0)
1605 h->esym.asym.sc = scInit;
1606 else if (strcmp (name, ".fini") == 0)
1607 h->esym.asym.sc = scFini;
1608 else
1609 h->esym.asym.sc = scAbs;
1610 }
1611 }
1612
1613 h->esym.asym.reserved = 0;
1614 h->esym.asym.index = indexNil;
1615 }
1616
1617 if (h->root.root.type == bfd_link_hash_common)
1618 h->esym.asym.value = h->root.root.u.c.size;
1619 else if (h->root.root.type == bfd_link_hash_defined
1620 || h->root.root.type == bfd_link_hash_defweak)
1621 {
1622 if (h->esym.asym.sc == scCommon)
1623 h->esym.asym.sc = scBss;
1624 else if (h->esym.asym.sc == scSCommon)
1625 h->esym.asym.sc = scSBss;
1626
1627 sec = h->root.root.u.def.section;
1628 output_section = sec->output_section;
1629 if (output_section != NULL)
1630 h->esym.asym.value = (h->root.root.u.def.value
1631 + sec->output_offset
1632 + output_section->vma);
1633 else
1634 h->esym.asym.value = 0;
1635 }
1636 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1637 {
1638 struct mips_elf_link_hash_entry *hd = h;
1639 bfd_boolean no_fn_stub = h->no_fn_stub;
1640
1641 while (hd->root.root.type == bfd_link_hash_indirect)
1642 {
1643 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1644 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1645 }
1646
1647 if (!no_fn_stub)
1648 {
1649 /* Set type and value for a symbol with a function stub. */
1650 h->esym.asym.st = stProc;
1651 sec = hd->root.root.u.def.section;
1652 if (sec == NULL)
1653 h->esym.asym.value = 0;
1654 else
1655 {
1656 output_section = sec->output_section;
1657 if (output_section != NULL)
1658 h->esym.asym.value = (hd->root.plt.offset
1659 + sec->output_offset
1660 + output_section->vma);
1661 else
1662 h->esym.asym.value = 0;
1663 }
1664 #if 0 /* FIXME? */
1665 h->esym.ifd = 0;
1666 #endif
1667 }
1668 }
1669
1670 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1671 h->root.root.root.string,
1672 &h->esym))
1673 {
1674 einfo->failed = TRUE;
1675 return FALSE;
1676 }
1677
1678 return TRUE;
1679 }
1680
1681 /* A comparison routine used to sort .gptab entries. */
1682
1683 static int
1684 gptab_compare (const void *p1, const void *p2)
1685 {
1686 const Elf32_gptab *a1 = p1;
1687 const Elf32_gptab *a2 = p2;
1688
1689 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1690 }
1691 \f
1692 /* Functions to manage the got entry hash table. */
1693
1694 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1695 hash number. */
1696
1697 static INLINE hashval_t
1698 mips_elf_hash_bfd_vma (bfd_vma addr)
1699 {
1700 #ifdef BFD64
1701 return addr + (addr >> 32);
1702 #else
1703 return addr;
1704 #endif
1705 }
1706
1707 /* got_entries only match if they're identical, except for gotidx, so
1708 use all fields to compute the hash, and compare the appropriate
1709 union members. */
1710
1711 static hashval_t
1712 mips_elf_got_entry_hash (const void *entry_)
1713 {
1714 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1715
1716 return entry->symndx
1717 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1718 : entry->abfd->id
1719 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1720 : entry->d.h->root.root.root.hash));
1721 }
1722
1723 static int
1724 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1725 {
1726 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1727 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1728
1729 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1730 && (! e1->abfd ? e1->d.address == e2->d.address
1731 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1732 : e1->d.h == e2->d.h);
1733 }
1734
1735 /* multi_got_entries are still a match in the case of global objects,
1736 even if the input bfd in which they're referenced differs, so the
1737 hash computation and compare functions are adjusted
1738 accordingly. */
1739
1740 static hashval_t
1741 mips_elf_multi_got_entry_hash (const void *entry_)
1742 {
1743 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1744
1745 return entry->symndx
1746 + (! entry->abfd
1747 ? mips_elf_hash_bfd_vma (entry->d.address)
1748 : entry->symndx >= 0
1749 ? (entry->abfd->id
1750 + mips_elf_hash_bfd_vma (entry->d.addend))
1751 : entry->d.h->root.root.root.hash);
1752 }
1753
1754 static int
1755 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1756 {
1757 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1758 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1759
1760 return e1->symndx == e2->symndx
1761 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1762 : e1->abfd == NULL || e2->abfd == NULL
1763 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1764 : e1->d.h == e2->d.h);
1765 }
1766 \f
1767 /* Returns the dynamic relocation section for DYNOBJ. */
1768
1769 static asection *
1770 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1771 {
1772 static const char dname[] = ".rel.dyn";
1773 asection *sreloc;
1774
1775 sreloc = bfd_get_section_by_name (dynobj, dname);
1776 if (sreloc == NULL && create_p)
1777 {
1778 sreloc = bfd_make_section (dynobj, dname);
1779 if (sreloc == NULL
1780 || ! bfd_set_section_flags (dynobj, sreloc,
1781 (SEC_ALLOC
1782 | SEC_LOAD
1783 | SEC_HAS_CONTENTS
1784 | SEC_IN_MEMORY
1785 | SEC_LINKER_CREATED
1786 | SEC_READONLY))
1787 || ! bfd_set_section_alignment (dynobj, sreloc,
1788 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1789 return NULL;
1790 }
1791 return sreloc;
1792 }
1793
1794 /* Returns the GOT section for ABFD. */
1795
1796 static asection *
1797 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1798 {
1799 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1800 if (sgot == NULL
1801 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1802 return NULL;
1803 return sgot;
1804 }
1805
1806 /* Returns the GOT information associated with the link indicated by
1807 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1808 section. */
1809
1810 static struct mips_got_info *
1811 mips_elf_got_info (bfd *abfd, asection **sgotp)
1812 {
1813 asection *sgot;
1814 struct mips_got_info *g;
1815
1816 sgot = mips_elf_got_section (abfd, TRUE);
1817 BFD_ASSERT (sgot != NULL);
1818 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1819 g = mips_elf_section_data (sgot)->u.got_info;
1820 BFD_ASSERT (g != NULL);
1821
1822 if (sgotp)
1823 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1824
1825 return g;
1826 }
1827
1828 /* Obtain the lowest dynamic index of a symbol that was assigned a
1829 global GOT entry. */
1830 static long
1831 mips_elf_get_global_gotsym_index (bfd *abfd)
1832 {
1833 asection *sgot;
1834 struct mips_got_info *g;
1835
1836 if (abfd == NULL)
1837 return 0;
1838
1839 sgot = mips_elf_got_section (abfd, TRUE);
1840 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1841 return 0;
1842
1843 g = mips_elf_section_data (sgot)->u.got_info;
1844 if (g == NULL || g->global_gotsym == NULL)
1845 return 0;
1846
1847 return g->global_gotsym->dynindx;
1848 }
1849
1850 /* Returns the GOT offset at which the indicated address can be found.
1851 If there is not yet a GOT entry for this value, create one. Returns
1852 -1 if no satisfactory GOT offset can be found. */
1853
1854 static bfd_vma
1855 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1856 bfd_vma value)
1857 {
1858 asection *sgot;
1859 struct mips_got_info *g;
1860 struct mips_got_entry *entry;
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
1869 }
1870
1871 /* Returns the GOT index for the global symbol indicated by H. */
1872
1873 static bfd_vma
1874 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1875 {
1876 bfd_vma index;
1877 asection *sgot;
1878 struct mips_got_info *g, *gg;
1879 long global_got_dynindx = 0;
1880
1881 gg = g = mips_elf_got_info (abfd, &sgot);
1882 if (g->bfd2got && ibfd)
1883 {
1884 struct mips_got_entry e, *p;
1885
1886 BFD_ASSERT (h->dynindx >= 0);
1887
1888 g = mips_elf_got_for_ibfd (g, ibfd);
1889 if (g->next != gg)
1890 {
1891 e.abfd = ibfd;
1892 e.symndx = -1;
1893 e.d.h = (struct mips_elf_link_hash_entry *)h;
1894
1895 p = htab_find (g->got_entries, &e);
1896
1897 BFD_ASSERT (p->gotidx > 0);
1898 return p->gotidx;
1899 }
1900 }
1901
1902 if (gg->global_gotsym != NULL)
1903 global_got_dynindx = gg->global_gotsym->dynindx;
1904
1905 /* Once we determine the global GOT entry with the lowest dynamic
1906 symbol table index, we must put all dynamic symbols with greater
1907 indices into the GOT. That makes it easy to calculate the GOT
1908 offset. */
1909 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1910 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1911 * MIPS_ELF_GOT_SIZE (abfd));
1912 BFD_ASSERT (index < sgot->_raw_size);
1913
1914 return index;
1915 }
1916
1917 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1918 are supposed to be placed at small offsets in the GOT, i.e.,
1919 within 32KB of GP. Return the index into the GOT for this page,
1920 and store the offset from this entry to the desired address in
1921 OFFSETP, if it is non-NULL. */
1922
1923 static bfd_vma
1924 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1925 bfd_vma value, bfd_vma *offsetp)
1926 {
1927 asection *sgot;
1928 struct mips_got_info *g;
1929 bfd_vma index;
1930 struct mips_got_entry *entry;
1931
1932 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1933
1934 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1935 (value + 0x8000)
1936 & (~(bfd_vma)0xffff));
1937
1938 if (!entry)
1939 return MINUS_ONE;
1940
1941 index = entry->gotidx;
1942
1943 if (offsetp)
1944 *offsetp = value - entry->d.address;
1945
1946 return index;
1947 }
1948
1949 /* Find a GOT entry whose higher-order 16 bits are the same as those
1950 for value. Return the index into the GOT for this entry. */
1951
1952 static bfd_vma
1953 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1954 bfd_vma value, bfd_boolean external)
1955 {
1956 asection *sgot;
1957 struct mips_got_info *g;
1958 struct mips_got_entry *entry;
1959
1960 if (! external)
1961 {
1962 /* Although the ABI says that it is "the high-order 16 bits" that we
1963 want, it is really the %high value. The complete value is
1964 calculated with a `addiu' of a LO16 relocation, just as with a
1965 HI16/LO16 pair. */
1966 value = mips_elf_high (value) << 16;
1967 }
1968
1969 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1970
1971 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1972 if (entry)
1973 return entry->gotidx;
1974 else
1975 return MINUS_ONE;
1976 }
1977
1978 /* Returns the offset for the entry at the INDEXth position
1979 in the GOT. */
1980
1981 static bfd_vma
1982 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1983 bfd *input_bfd, bfd_vma index)
1984 {
1985 asection *sgot;
1986 bfd_vma gp;
1987 struct mips_got_info *g;
1988
1989 g = mips_elf_got_info (dynobj, &sgot);
1990 gp = _bfd_get_gp_value (output_bfd)
1991 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1992
1993 return sgot->output_section->vma + sgot->output_offset + index - gp;
1994 }
1995
1996 /* Create a local GOT entry for VALUE. Return the index of the entry,
1997 or -1 if it could not be created. */
1998
1999 static struct mips_got_entry *
2000 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2001 struct mips_got_info *gg,
2002 asection *sgot, bfd_vma value)
2003 {
2004 struct mips_got_entry entry, **loc;
2005 struct mips_got_info *g;
2006
2007 entry.abfd = NULL;
2008 entry.symndx = -1;
2009 entry.d.address = value;
2010
2011 g = mips_elf_got_for_ibfd (gg, ibfd);
2012 if (g == NULL)
2013 {
2014 g = mips_elf_got_for_ibfd (gg, abfd);
2015 BFD_ASSERT (g != NULL);
2016 }
2017
2018 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2019 INSERT);
2020 if (*loc)
2021 return *loc;
2022
2023 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2024
2025 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2026
2027 if (! *loc)
2028 return NULL;
2029
2030 memcpy (*loc, &entry, sizeof entry);
2031
2032 if (g->assigned_gotno >= g->local_gotno)
2033 {
2034 (*loc)->gotidx = -1;
2035 /* We didn't allocate enough space in the GOT. */
2036 (*_bfd_error_handler)
2037 (_("not enough GOT space for local GOT entries"));
2038 bfd_set_error (bfd_error_bad_value);
2039 return NULL;
2040 }
2041
2042 MIPS_ELF_PUT_WORD (abfd, value,
2043 (sgot->contents + entry.gotidx));
2044
2045 return *loc;
2046 }
2047
2048 /* Sort the dynamic symbol table so that symbols that need GOT entries
2049 appear towards the end. This reduces the amount of GOT space
2050 required. MAX_LOCAL is used to set the number of local symbols
2051 known to be in the dynamic symbol table. During
2052 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2053 section symbols are added and the count is higher. */
2054
2055 static bfd_boolean
2056 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2057 {
2058 struct mips_elf_hash_sort_data hsd;
2059 struct mips_got_info *g;
2060 bfd *dynobj;
2061
2062 dynobj = elf_hash_table (info)->dynobj;
2063
2064 g = mips_elf_got_info (dynobj, NULL);
2065
2066 hsd.low = NULL;
2067 hsd.max_unref_got_dynindx =
2068 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2069 /* In the multi-got case, assigned_gotno of the master got_info
2070 indicate the number of entries that aren't referenced in the
2071 primary GOT, but that must have entries because there are
2072 dynamic relocations that reference it. Since they aren't
2073 referenced, we move them to the end of the GOT, so that they
2074 don't prevent other entries that are referenced from getting
2075 too large offsets. */
2076 - (g->next ? g->assigned_gotno : 0);
2077 hsd.max_non_got_dynindx = max_local;
2078 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2079 elf_hash_table (info)),
2080 mips_elf_sort_hash_table_f,
2081 &hsd);
2082
2083 /* There should have been enough room in the symbol table to
2084 accommodate both the GOT and non-GOT symbols. */
2085 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2086 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2087 <= elf_hash_table (info)->dynsymcount);
2088
2089 /* Now we know which dynamic symbol has the lowest dynamic symbol
2090 table index in the GOT. */
2091 g->global_gotsym = hsd.low;
2092
2093 return TRUE;
2094 }
2095
2096 /* If H needs a GOT entry, assign it the highest available dynamic
2097 index. Otherwise, assign it the lowest available dynamic
2098 index. */
2099
2100 static bfd_boolean
2101 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2102 {
2103 struct mips_elf_hash_sort_data *hsd = data;
2104
2105 if (h->root.root.type == bfd_link_hash_warning)
2106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2107
2108 /* Symbols without dynamic symbol table entries aren't interesting
2109 at all. */
2110 if (h->root.dynindx == -1)
2111 return TRUE;
2112
2113 /* Global symbols that need GOT entries that are not explicitly
2114 referenced are marked with got offset 2. Those that are
2115 referenced get a 1, and those that don't need GOT entries get
2116 -1. */
2117 if (h->root.got.offset == 2)
2118 {
2119 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2120 hsd->low = (struct elf_link_hash_entry *) h;
2121 h->root.dynindx = hsd->max_unref_got_dynindx++;
2122 }
2123 else if (h->root.got.offset != 1)
2124 h->root.dynindx = hsd->max_non_got_dynindx++;
2125 else
2126 {
2127 h->root.dynindx = --hsd->min_got_dynindx;
2128 hsd->low = (struct elf_link_hash_entry *) h;
2129 }
2130
2131 return TRUE;
2132 }
2133
2134 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2135 symbol table index lower than any we've seen to date, record it for
2136 posterity. */
2137
2138 static bfd_boolean
2139 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2140 bfd *abfd, struct bfd_link_info *info,
2141 struct mips_got_info *g)
2142 {
2143 struct mips_got_entry entry, **loc;
2144
2145 /* A global symbol in the GOT must also be in the dynamic symbol
2146 table. */
2147 if (h->dynindx == -1)
2148 {
2149 switch (ELF_ST_VISIBILITY (h->other))
2150 {
2151 case STV_INTERNAL:
2152 case STV_HIDDEN:
2153 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2154 break;
2155 }
2156 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2157 return FALSE;
2158 }
2159
2160 entry.abfd = abfd;
2161 entry.symndx = -1;
2162 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2163
2164 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2165 INSERT);
2166
2167 /* If we've already marked this entry as needing GOT space, we don't
2168 need to do it again. */
2169 if (*loc)
2170 return TRUE;
2171
2172 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2173
2174 if (! *loc)
2175 return FALSE;
2176
2177 entry.gotidx = -1;
2178 memcpy (*loc, &entry, sizeof entry);
2179
2180 if (h->got.offset != MINUS_ONE)
2181 return TRUE;
2182
2183 /* By setting this to a value other than -1, we are indicating that
2184 there needs to be a GOT entry for H. Avoid using zero, as the
2185 generic ELF copy_indirect_symbol tests for <= 0. */
2186 h->got.offset = 1;
2187
2188 return TRUE;
2189 }
2190
2191 /* Reserve space in G for a GOT entry containing the value of symbol
2192 SYMNDX in input bfd ABDF, plus ADDEND. */
2193
2194 static bfd_boolean
2195 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2196 struct mips_got_info *g)
2197 {
2198 struct mips_got_entry entry, **loc;
2199
2200 entry.abfd = abfd;
2201 entry.symndx = symndx;
2202 entry.d.addend = addend;
2203 loc = (struct mips_got_entry **)
2204 htab_find_slot (g->got_entries, &entry, INSERT);
2205
2206 if (*loc)
2207 return TRUE;
2208
2209 entry.gotidx = g->local_gotno++;
2210
2211 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2212
2213 if (! *loc)
2214 return FALSE;
2215
2216 memcpy (*loc, &entry, sizeof entry);
2217
2218 return TRUE;
2219 }
2220 \f
2221 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2222
2223 static hashval_t
2224 mips_elf_bfd2got_entry_hash (const void *entry_)
2225 {
2226 const struct mips_elf_bfd2got_hash *entry
2227 = (struct mips_elf_bfd2got_hash *)entry_;
2228
2229 return entry->bfd->id;
2230 }
2231
2232 /* Check whether two hash entries have the same bfd. */
2233
2234 static int
2235 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2236 {
2237 const struct mips_elf_bfd2got_hash *e1
2238 = (const struct mips_elf_bfd2got_hash *)entry1;
2239 const struct mips_elf_bfd2got_hash *e2
2240 = (const struct mips_elf_bfd2got_hash *)entry2;
2241
2242 return e1->bfd == e2->bfd;
2243 }
2244
2245 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2246 be the master GOT data. */
2247
2248 static struct mips_got_info *
2249 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2250 {
2251 struct mips_elf_bfd2got_hash e, *p;
2252
2253 if (! g->bfd2got)
2254 return g;
2255
2256 e.bfd = ibfd;
2257 p = htab_find (g->bfd2got, &e);
2258 return p ? p->g : NULL;
2259 }
2260
2261 /* Create one separate got for each bfd that has entries in the global
2262 got, such that we can tell how many local and global entries each
2263 bfd requires. */
2264
2265 static int
2266 mips_elf_make_got_per_bfd (void **entryp, void *p)
2267 {
2268 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2269 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2270 htab_t bfd2got = arg->bfd2got;
2271 struct mips_got_info *g;
2272 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2273 void **bfdgotp;
2274
2275 /* Find the got_info for this GOT entry's input bfd. Create one if
2276 none exists. */
2277 bfdgot_entry.bfd = entry->abfd;
2278 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2279 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2280
2281 if (bfdgot != NULL)
2282 g = bfdgot->g;
2283 else
2284 {
2285 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2286 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2287
2288 if (bfdgot == NULL)
2289 {
2290 arg->obfd = 0;
2291 return 0;
2292 }
2293
2294 *bfdgotp = bfdgot;
2295
2296 bfdgot->bfd = entry->abfd;
2297 bfdgot->g = g = (struct mips_got_info *)
2298 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2299 if (g == NULL)
2300 {
2301 arg->obfd = 0;
2302 return 0;
2303 }
2304
2305 g->global_gotsym = NULL;
2306 g->global_gotno = 0;
2307 g->local_gotno = 0;
2308 g->assigned_gotno = -1;
2309 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2310 mips_elf_multi_got_entry_eq, NULL);
2311 if (g->got_entries == NULL)
2312 {
2313 arg->obfd = 0;
2314 return 0;
2315 }
2316
2317 g->bfd2got = NULL;
2318 g->next = NULL;
2319 }
2320
2321 /* Insert the GOT entry in the bfd's got entry hash table. */
2322 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2323 if (*entryp != NULL)
2324 return 1;
2325
2326 *entryp = entry;
2327
2328 if (entry->symndx >= 0 || entry->d.h->forced_local)
2329 ++g->local_gotno;
2330 else
2331 ++g->global_gotno;
2332
2333 return 1;
2334 }
2335
2336 /* Attempt to merge gots of different input bfds. Try to use as much
2337 as possible of the primary got, since it doesn't require explicit
2338 dynamic relocations, but don't use bfds that would reference global
2339 symbols out of the addressable range. Failing the primary got,
2340 attempt to merge with the current got, or finish the current got
2341 and then make make the new got current. */
2342
2343 static int
2344 mips_elf_merge_gots (void **bfd2got_, void *p)
2345 {
2346 struct mips_elf_bfd2got_hash *bfd2got
2347 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2348 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2349 unsigned int lcount = bfd2got->g->local_gotno;
2350 unsigned int gcount = bfd2got->g->global_gotno;
2351 unsigned int maxcnt = arg->max_count;
2352
2353 /* If we don't have a primary GOT and this is not too big, use it as
2354 a starting point for the primary GOT. */
2355 if (! arg->primary && lcount + gcount <= maxcnt)
2356 {
2357 arg->primary = bfd2got->g;
2358 arg->primary_count = lcount + gcount;
2359 }
2360 /* If it looks like we can merge this bfd's entries with those of
2361 the primary, merge them. The heuristics is conservative, but we
2362 don't have to squeeze it too hard. */
2363 else if (arg->primary
2364 && (arg->primary_count + lcount + gcount) <= maxcnt)
2365 {
2366 struct mips_got_info *g = bfd2got->g;
2367 int old_lcount = arg->primary->local_gotno;
2368 int old_gcount = arg->primary->global_gotno;
2369
2370 bfd2got->g = arg->primary;
2371
2372 htab_traverse (g->got_entries,
2373 mips_elf_make_got_per_bfd,
2374 arg);
2375 if (arg->obfd == NULL)
2376 return 0;
2377
2378 htab_delete (g->got_entries);
2379 /* We don't have to worry about releasing memory of the actual
2380 got entries, since they're all in the master got_entries hash
2381 table anyway. */
2382
2383 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2384 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2385
2386 arg->primary_count = arg->primary->local_gotno
2387 + arg->primary->global_gotno;
2388 }
2389 /* If we can merge with the last-created got, do it. */
2390 else if (arg->current
2391 && arg->current_count + lcount + gcount <= maxcnt)
2392 {
2393 struct mips_got_info *g = bfd2got->g;
2394 int old_lcount = arg->current->local_gotno;
2395 int old_gcount = arg->current->global_gotno;
2396
2397 bfd2got->g = arg->current;
2398
2399 htab_traverse (g->got_entries,
2400 mips_elf_make_got_per_bfd,
2401 arg);
2402 if (arg->obfd == NULL)
2403 return 0;
2404
2405 htab_delete (g->got_entries);
2406
2407 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2408 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2409
2410 arg->current_count = arg->current->local_gotno
2411 + arg->current->global_gotno;
2412 }
2413 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2414 fits; if it turns out that it doesn't, we'll get relocation
2415 overflows anyway. */
2416 else
2417 {
2418 bfd2got->g->next = arg->current;
2419 arg->current = bfd2got->g;
2420
2421 arg->current_count = lcount + gcount;
2422 }
2423
2424 return 1;
2425 }
2426
2427 /* If passed a NULL mips_got_info in the argument, set the marker used
2428 to tell whether a global symbol needs a got entry (in the primary
2429 got) to the given VALUE.
2430
2431 If passed a pointer G to a mips_got_info in the argument (it must
2432 not be the primary GOT), compute the offset from the beginning of
2433 the (primary) GOT section to the entry in G corresponding to the
2434 global symbol. G's assigned_gotno must contain the index of the
2435 first available global GOT entry in G. VALUE must contain the size
2436 of a GOT entry in bytes. For each global GOT entry that requires a
2437 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2438 marked as not eligible for lazy resolution through a function
2439 stub. */
2440 static int
2441 mips_elf_set_global_got_offset (void **entryp, void *p)
2442 {
2443 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2444 struct mips_elf_set_global_got_offset_arg *arg
2445 = (struct mips_elf_set_global_got_offset_arg *)p;
2446 struct mips_got_info *g = arg->g;
2447
2448 if (entry->abfd != NULL && entry->symndx == -1
2449 && entry->d.h->root.dynindx != -1)
2450 {
2451 if (g)
2452 {
2453 BFD_ASSERT (g->global_gotsym == NULL);
2454
2455 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2456 if (arg->info->shared
2457 || (elf_hash_table (arg->info)->dynamic_sections_created
2458 && ((entry->d.h->root.elf_link_hash_flags
2459 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2460 && ((entry->d.h->root.elf_link_hash_flags
2461 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2462 ++arg->needed_relocs;
2463 }
2464 else
2465 entry->d.h->root.got.offset = arg->value;
2466 }
2467
2468 return 1;
2469 }
2470
2471 /* Mark any global symbols referenced in the GOT we are iterating over
2472 as inelligible for lazy resolution stubs. */
2473 static int
2474 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2475 {
2476 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2477
2478 if (entry->abfd != NULL
2479 && entry->symndx == -1
2480 && entry->d.h->root.dynindx != -1)
2481 entry->d.h->no_fn_stub = TRUE;
2482
2483 return 1;
2484 }
2485
2486 /* Follow indirect and warning hash entries so that each got entry
2487 points to the final symbol definition. P must point to a pointer
2488 to the hash table we're traversing. Since this traversal may
2489 modify the hash table, we set this pointer to NULL to indicate
2490 we've made a potentially-destructive change to the hash table, so
2491 the traversal must be restarted. */
2492 static int
2493 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2494 {
2495 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2496 htab_t got_entries = *(htab_t *)p;
2497
2498 if (entry->abfd != NULL && entry->symndx == -1)
2499 {
2500 struct mips_elf_link_hash_entry *h = entry->d.h;
2501
2502 while (h->root.root.type == bfd_link_hash_indirect
2503 || h->root.root.type == bfd_link_hash_warning)
2504 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2505
2506 if (entry->d.h == h)
2507 return 1;
2508
2509 entry->d.h = h;
2510
2511 /* If we can't find this entry with the new bfd hash, re-insert
2512 it, and get the traversal restarted. */
2513 if (! htab_find (got_entries, entry))
2514 {
2515 htab_clear_slot (got_entries, entryp);
2516 entryp = htab_find_slot (got_entries, entry, INSERT);
2517 if (! *entryp)
2518 *entryp = entry;
2519 /* Abort the traversal, since the whole table may have
2520 moved, and leave it up to the parent to restart the
2521 process. */
2522 *(htab_t *)p = NULL;
2523 return 0;
2524 }
2525 /* We might want to decrement the global_gotno count, but it's
2526 either too early or too late for that at this point. */
2527 }
2528
2529 return 1;
2530 }
2531
2532 /* Turn indirect got entries in a got_entries table into their final
2533 locations. */
2534 static void
2535 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2536 {
2537 htab_t got_entries;
2538
2539 do
2540 {
2541 got_entries = g->got_entries;
2542
2543 htab_traverse (got_entries,
2544 mips_elf_resolve_final_got_entry,
2545 &got_entries);
2546 }
2547 while (got_entries == NULL);
2548 }
2549
2550 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2551 the primary GOT. */
2552 static bfd_vma
2553 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2554 {
2555 if (g->bfd2got == NULL)
2556 return 0;
2557
2558 g = mips_elf_got_for_ibfd (g, ibfd);
2559 if (! g)
2560 return 0;
2561
2562 BFD_ASSERT (g->next);
2563
2564 g = g->next;
2565
2566 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2567 }
2568
2569 /* Turn a single GOT that is too big for 16-bit addressing into
2570 a sequence of GOTs, each one 16-bit addressable. */
2571
2572 static bfd_boolean
2573 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2574 struct mips_got_info *g, asection *got,
2575 bfd_size_type pages)
2576 {
2577 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2578 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2579 struct mips_got_info *gg;
2580 unsigned int assign;
2581
2582 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2583 mips_elf_bfd2got_entry_eq, NULL);
2584 if (g->bfd2got == NULL)
2585 return FALSE;
2586
2587 got_per_bfd_arg.bfd2got = g->bfd2got;
2588 got_per_bfd_arg.obfd = abfd;
2589 got_per_bfd_arg.info = info;
2590
2591 /* Count how many GOT entries each input bfd requires, creating a
2592 map from bfd to got info while at that. */
2593 mips_elf_resolve_final_got_entries (g);
2594 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2595 if (got_per_bfd_arg.obfd == NULL)
2596 return FALSE;
2597
2598 got_per_bfd_arg.current = NULL;
2599 got_per_bfd_arg.primary = NULL;
2600 /* Taking out PAGES entries is a worst-case estimate. We could
2601 compute the maximum number of pages that each separate input bfd
2602 uses, but it's probably not worth it. */
2603 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2604 / MIPS_ELF_GOT_SIZE (abfd))
2605 - MIPS_RESERVED_GOTNO - pages);
2606
2607 /* Try to merge the GOTs of input bfds together, as long as they
2608 don't seem to exceed the maximum GOT size, choosing one of them
2609 to be the primary GOT. */
2610 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2611 if (got_per_bfd_arg.obfd == NULL)
2612 return FALSE;
2613
2614 /* If we find any suitable primary GOT, create an empty one. */
2615 if (got_per_bfd_arg.primary == NULL)
2616 {
2617 g->next = (struct mips_got_info *)
2618 bfd_alloc (abfd, sizeof (struct mips_got_info));
2619 if (g->next == NULL)
2620 return FALSE;
2621
2622 g->next->global_gotsym = NULL;
2623 g->next->global_gotno = 0;
2624 g->next->local_gotno = 0;
2625 g->next->assigned_gotno = 0;
2626 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2627 mips_elf_multi_got_entry_eq,
2628 NULL);
2629 if (g->next->got_entries == NULL)
2630 return FALSE;
2631 g->next->bfd2got = NULL;
2632 }
2633 else
2634 g->next = got_per_bfd_arg.primary;
2635 g->next->next = got_per_bfd_arg.current;
2636
2637 /* GG is now the master GOT, and G is the primary GOT. */
2638 gg = g;
2639 g = g->next;
2640
2641 /* Map the output bfd to the primary got. That's what we're going
2642 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2643 didn't mark in check_relocs, and we want a quick way to find it.
2644 We can't just use gg->next because we're going to reverse the
2645 list. */
2646 {
2647 struct mips_elf_bfd2got_hash *bfdgot;
2648 void **bfdgotp;
2649
2650 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2651 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2652
2653 if (bfdgot == NULL)
2654 return FALSE;
2655
2656 bfdgot->bfd = abfd;
2657 bfdgot->g = g;
2658 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2659
2660 BFD_ASSERT (*bfdgotp == NULL);
2661 *bfdgotp = bfdgot;
2662 }
2663
2664 /* The IRIX dynamic linker requires every symbol that is referenced
2665 in a dynamic relocation to be present in the primary GOT, so
2666 arrange for them to appear after those that are actually
2667 referenced.
2668
2669 GNU/Linux could very well do without it, but it would slow down
2670 the dynamic linker, since it would have to resolve every dynamic
2671 symbol referenced in other GOTs more than once, without help from
2672 the cache. Also, knowing that every external symbol has a GOT
2673 helps speed up the resolution of local symbols too, so GNU/Linux
2674 follows IRIX's practice.
2675
2676 The number 2 is used by mips_elf_sort_hash_table_f to count
2677 global GOT symbols that are unreferenced in the primary GOT, with
2678 an initial dynamic index computed from gg->assigned_gotno, where
2679 the number of unreferenced global entries in the primary GOT is
2680 preserved. */
2681 if (1)
2682 {
2683 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2684 g->global_gotno = gg->global_gotno;
2685 set_got_offset_arg.value = 2;
2686 }
2687 else
2688 {
2689 /* This could be used for dynamic linkers that don't optimize
2690 symbol resolution while applying relocations so as to use
2691 primary GOT entries or assuming the symbol is locally-defined.
2692 With this code, we assign lower dynamic indices to global
2693 symbols that are not referenced in the primary GOT, so that
2694 their entries can be omitted. */
2695 gg->assigned_gotno = 0;
2696 set_got_offset_arg.value = -1;
2697 }
2698
2699 /* Reorder dynamic symbols as described above (which behavior
2700 depends on the setting of VALUE). */
2701 set_got_offset_arg.g = NULL;
2702 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2703 &set_got_offset_arg);
2704 set_got_offset_arg.value = 1;
2705 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2706 &set_got_offset_arg);
2707 if (! mips_elf_sort_hash_table (info, 1))
2708 return FALSE;
2709
2710 /* Now go through the GOTs assigning them offset ranges.
2711 [assigned_gotno, local_gotno[ will be set to the range of local
2712 entries in each GOT. We can then compute the end of a GOT by
2713 adding local_gotno to global_gotno. We reverse the list and make
2714 it circular since then we'll be able to quickly compute the
2715 beginning of a GOT, by computing the end of its predecessor. To
2716 avoid special cases for the primary GOT, while still preserving
2717 assertions that are valid for both single- and multi-got links,
2718 we arrange for the main got struct to have the right number of
2719 global entries, but set its local_gotno such that the initial
2720 offset of the primary GOT is zero. Remember that the primary GOT
2721 will become the last item in the circular linked list, so it
2722 points back to the master GOT. */
2723 gg->local_gotno = -g->global_gotno;
2724 gg->global_gotno = g->global_gotno;
2725 assign = 0;
2726 gg->next = gg;
2727
2728 do
2729 {
2730 struct mips_got_info *gn;
2731
2732 assign += MIPS_RESERVED_GOTNO;
2733 g->assigned_gotno = assign;
2734 g->local_gotno += assign + pages;
2735 assign = g->local_gotno + g->global_gotno;
2736
2737 /* Take g out of the direct list, and push it onto the reversed
2738 list that gg points to. */
2739 gn = g->next;
2740 g->next = gg->next;
2741 gg->next = g;
2742 g = gn;
2743
2744 /* Mark global symbols in every non-primary GOT as ineligible for
2745 stubs. */
2746 if (g)
2747 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2748 }
2749 while (g);
2750
2751 got->_raw_size = (gg->next->local_gotno
2752 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2753
2754 return TRUE;
2755 }
2756
2757 \f
2758 /* Returns the first relocation of type r_type found, beginning with
2759 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2760
2761 static const Elf_Internal_Rela *
2762 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2763 const Elf_Internal_Rela *relocation,
2764 const Elf_Internal_Rela *relend)
2765 {
2766 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2767 immediately following. However, for the IRIX6 ABI, the next
2768 relocation may be a composed relocation consisting of several
2769 relocations for the same address. In that case, the R_MIPS_LO16
2770 relocation may occur as one of these. We permit a similar
2771 extension in general, as that is useful for GCC. */
2772 while (relocation < relend)
2773 {
2774 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2775 return relocation;
2776
2777 ++relocation;
2778 }
2779
2780 /* We didn't find it. */
2781 bfd_set_error (bfd_error_bad_value);
2782 return NULL;
2783 }
2784
2785 /* Return whether a relocation is against a local symbol. */
2786
2787 static bfd_boolean
2788 mips_elf_local_relocation_p (bfd *input_bfd,
2789 const Elf_Internal_Rela *relocation,
2790 asection **local_sections,
2791 bfd_boolean check_forced)
2792 {
2793 unsigned long r_symndx;
2794 Elf_Internal_Shdr *symtab_hdr;
2795 struct mips_elf_link_hash_entry *h;
2796 size_t extsymoff;
2797
2798 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2799 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2800 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2801
2802 if (r_symndx < extsymoff)
2803 return TRUE;
2804 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2805 return TRUE;
2806
2807 if (check_forced)
2808 {
2809 /* Look up the hash table to check whether the symbol
2810 was forced local. */
2811 h = (struct mips_elf_link_hash_entry *)
2812 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2813 /* Find the real hash-table entry for this symbol. */
2814 while (h->root.root.type == bfd_link_hash_indirect
2815 || h->root.root.type == bfd_link_hash_warning)
2816 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2817 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2818 return TRUE;
2819 }
2820
2821 return FALSE;
2822 }
2823 \f
2824 /* Sign-extend VALUE, which has the indicated number of BITS. */
2825
2826 bfd_vma
2827 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2828 {
2829 if (value & ((bfd_vma) 1 << (bits - 1)))
2830 /* VALUE is negative. */
2831 value |= ((bfd_vma) - 1) << bits;
2832
2833 return value;
2834 }
2835
2836 /* Return non-zero if the indicated VALUE has overflowed the maximum
2837 range expressible by a signed number with the indicated number of
2838 BITS. */
2839
2840 static bfd_boolean
2841 mips_elf_overflow_p (bfd_vma value, int bits)
2842 {
2843 bfd_signed_vma svalue = (bfd_signed_vma) value;
2844
2845 if (svalue > (1 << (bits - 1)) - 1)
2846 /* The value is too big. */
2847 return TRUE;
2848 else if (svalue < -(1 << (bits - 1)))
2849 /* The value is too small. */
2850 return TRUE;
2851
2852 /* All is well. */
2853 return FALSE;
2854 }
2855
2856 /* Calculate the %high function. */
2857
2858 static bfd_vma
2859 mips_elf_high (bfd_vma value)
2860 {
2861 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2862 }
2863
2864 /* Calculate the %higher function. */
2865
2866 static bfd_vma
2867 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2868 {
2869 #ifdef BFD64
2870 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2871 #else
2872 abort ();
2873 return (bfd_vma) -1;
2874 #endif
2875 }
2876
2877 /* Calculate the %highest function. */
2878
2879 static bfd_vma
2880 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2881 {
2882 #ifdef BFD64
2883 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2884 #else
2885 abort ();
2886 return (bfd_vma) -1;
2887 #endif
2888 }
2889 \f
2890 /* Create the .compact_rel section. */
2891
2892 static bfd_boolean
2893 mips_elf_create_compact_rel_section
2894 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2895 {
2896 flagword flags;
2897 register asection *s;
2898
2899 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2900 {
2901 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2902 | SEC_READONLY);
2903
2904 s = bfd_make_section (abfd, ".compact_rel");
2905 if (s == NULL
2906 || ! bfd_set_section_flags (abfd, s, flags)
2907 || ! bfd_set_section_alignment (abfd, s,
2908 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2909 return FALSE;
2910
2911 s->_raw_size = sizeof (Elf32_External_compact_rel);
2912 }
2913
2914 return TRUE;
2915 }
2916
2917 /* Create the .got section to hold the global offset table. */
2918
2919 static bfd_boolean
2920 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2921 bfd_boolean maybe_exclude)
2922 {
2923 flagword flags;
2924 register asection *s;
2925 struct elf_link_hash_entry *h;
2926 struct bfd_link_hash_entry *bh;
2927 struct mips_got_info *g;
2928 bfd_size_type amt;
2929
2930 /* This function may be called more than once. */
2931 s = mips_elf_got_section (abfd, TRUE);
2932 if (s)
2933 {
2934 if (! maybe_exclude)
2935 s->flags &= ~SEC_EXCLUDE;
2936 return TRUE;
2937 }
2938
2939 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2940 | SEC_LINKER_CREATED);
2941
2942 if (maybe_exclude)
2943 flags |= SEC_EXCLUDE;
2944
2945 /* We have to use an alignment of 2**4 here because this is hardcoded
2946 in the function stub generation and in the linker script. */
2947 s = bfd_make_section (abfd, ".got");
2948 if (s == NULL
2949 || ! bfd_set_section_flags (abfd, s, flags)
2950 || ! bfd_set_section_alignment (abfd, s, 4))
2951 return FALSE;
2952
2953 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2954 linker script because we don't want to define the symbol if we
2955 are not creating a global offset table. */
2956 bh = NULL;
2957 if (! (_bfd_generic_link_add_one_symbol
2958 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2959 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2960 return FALSE;
2961
2962 h = (struct elf_link_hash_entry *) bh;
2963 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2964 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2965 h->type = STT_OBJECT;
2966
2967 if (info->shared
2968 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2969 return FALSE;
2970
2971 amt = sizeof (struct mips_got_info);
2972 g = bfd_alloc (abfd, amt);
2973 if (g == NULL)
2974 return FALSE;
2975 g->global_gotsym = NULL;
2976 g->global_gotno = 0;
2977 g->local_gotno = MIPS_RESERVED_GOTNO;
2978 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2979 g->bfd2got = NULL;
2980 g->next = NULL;
2981 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2982 mips_elf_got_entry_eq, NULL);
2983 if (g->got_entries == NULL)
2984 return FALSE;
2985 mips_elf_section_data (s)->u.got_info = g;
2986 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2987 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2988
2989 return TRUE;
2990 }
2991 \f
2992 /* Calculate the value produced by the RELOCATION (which comes from
2993 the INPUT_BFD). The ADDEND is the addend to use for this
2994 RELOCATION; RELOCATION->R_ADDEND is ignored.
2995
2996 The result of the relocation calculation is stored in VALUEP.
2997 REQUIRE_JALXP indicates whether or not the opcode used with this
2998 relocation must be JALX.
2999
3000 This function returns bfd_reloc_continue if the caller need take no
3001 further action regarding this relocation, bfd_reloc_notsupported if
3002 something goes dramatically wrong, bfd_reloc_overflow if an
3003 overflow occurs, and bfd_reloc_ok to indicate success. */
3004
3005 static bfd_reloc_status_type
3006 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3007 asection *input_section,
3008 struct bfd_link_info *info,
3009 const Elf_Internal_Rela *relocation,
3010 bfd_vma addend, reloc_howto_type *howto,
3011 Elf_Internal_Sym *local_syms,
3012 asection **local_sections, bfd_vma *valuep,
3013 const char **namep, bfd_boolean *require_jalxp,
3014 bfd_boolean save_addend)
3015 {
3016 /* The eventual value we will return. */
3017 bfd_vma value;
3018 /* The address of the symbol against which the relocation is
3019 occurring. */
3020 bfd_vma symbol = 0;
3021 /* The final GP value to be used for the relocatable, executable, or
3022 shared object file being produced. */
3023 bfd_vma gp = MINUS_ONE;
3024 /* The place (section offset or address) of the storage unit being
3025 relocated. */
3026 bfd_vma p;
3027 /* The value of GP used to create the relocatable object. */
3028 bfd_vma gp0 = MINUS_ONE;
3029 /* The offset into the global offset table at which the address of
3030 the relocation entry symbol, adjusted by the addend, resides
3031 during execution. */
3032 bfd_vma g = MINUS_ONE;
3033 /* The section in which the symbol referenced by the relocation is
3034 located. */
3035 asection *sec = NULL;
3036 struct mips_elf_link_hash_entry *h = NULL;
3037 /* TRUE if the symbol referred to by this relocation is a local
3038 symbol. */
3039 bfd_boolean local_p, was_local_p;
3040 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3041 bfd_boolean gp_disp_p = FALSE;
3042 Elf_Internal_Shdr *symtab_hdr;
3043 size_t extsymoff;
3044 unsigned long r_symndx;
3045 int r_type;
3046 /* TRUE if overflow occurred during the calculation of the
3047 relocation value. */
3048 bfd_boolean overflowed_p;
3049 /* TRUE if this relocation refers to a MIPS16 function. */
3050 bfd_boolean target_is_16_bit_code_p = FALSE;
3051
3052 /* Parse the relocation. */
3053 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3054 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3055 p = (input_section->output_section->vma
3056 + input_section->output_offset
3057 + relocation->r_offset);
3058
3059 /* Assume that there will be no overflow. */
3060 overflowed_p = FALSE;
3061
3062 /* Figure out whether or not the symbol is local, and get the offset
3063 used in the array of hash table entries. */
3064 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3065 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3066 local_sections, FALSE);
3067 was_local_p = local_p;
3068 if (! elf_bad_symtab (input_bfd))
3069 extsymoff = symtab_hdr->sh_info;
3070 else
3071 {
3072 /* The symbol table does not follow the rule that local symbols
3073 must come before globals. */
3074 extsymoff = 0;
3075 }
3076
3077 /* Figure out the value of the symbol. */
3078 if (local_p)
3079 {
3080 Elf_Internal_Sym *sym;
3081
3082 sym = local_syms + r_symndx;
3083 sec = local_sections[r_symndx];
3084
3085 symbol = sec->output_section->vma + sec->output_offset;
3086 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3087 || (sec->flags & SEC_MERGE))
3088 symbol += sym->st_value;
3089 if ((sec->flags & SEC_MERGE)
3090 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3091 {
3092 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3093 addend -= symbol;
3094 addend += sec->output_section->vma + sec->output_offset;
3095 }
3096
3097 /* MIPS16 text labels should be treated as odd. */
3098 if (sym->st_other == STO_MIPS16)
3099 ++symbol;
3100
3101 /* Record the name of this symbol, for our caller. */
3102 *namep = bfd_elf_string_from_elf_section (input_bfd,
3103 symtab_hdr->sh_link,
3104 sym->st_name);
3105 if (*namep == '\0')
3106 *namep = bfd_section_name (input_bfd, sec);
3107
3108 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3109 }
3110 else
3111 {
3112 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3113
3114 /* For global symbols we look up the symbol in the hash-table. */
3115 h = ((struct mips_elf_link_hash_entry *)
3116 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3117 /* Find the real hash-table entry for this symbol. */
3118 while (h->root.root.type == bfd_link_hash_indirect
3119 || h->root.root.type == bfd_link_hash_warning)
3120 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3121
3122 /* Record the name of this symbol, for our caller. */
3123 *namep = h->root.root.root.string;
3124
3125 /* See if this is the special _gp_disp symbol. Note that such a
3126 symbol must always be a global symbol. */
3127 if (strcmp (*namep, "_gp_disp") == 0
3128 && ! NEWABI_P (input_bfd))
3129 {
3130 /* Relocations against _gp_disp are permitted only with
3131 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3132 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3133 return bfd_reloc_notsupported;
3134
3135 gp_disp_p = TRUE;
3136 }
3137 /* If this symbol is defined, calculate its address. Note that
3138 _gp_disp is a magic symbol, always implicitly defined by the
3139 linker, so it's inappropriate to check to see whether or not
3140 its defined. */
3141 else if ((h->root.root.type == bfd_link_hash_defined
3142 || h->root.root.type == bfd_link_hash_defweak)
3143 && h->root.root.u.def.section)
3144 {
3145 sec = h->root.root.u.def.section;
3146 if (sec->output_section)
3147 symbol = (h->root.root.u.def.value
3148 + sec->output_section->vma
3149 + sec->output_offset);
3150 else
3151 symbol = h->root.root.u.def.value;
3152 }
3153 else if (h->root.root.type == bfd_link_hash_undefweak)
3154 /* We allow relocations against undefined weak symbols, giving
3155 it the value zero, so that you can undefined weak functions
3156 and check to see if they exist by looking at their
3157 addresses. */
3158 symbol = 0;
3159 else if (info->shared
3160 && info->unresolved_syms_in_objects == RM_IGNORE
3161 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3162 symbol = 0;
3163 else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 ||
3164 strcmp (*namep, "_DYNAMIC_LINKING") == 0)
3165 {
3166 /* If this is a dynamic link, we should have created a
3167 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3168 in in _bfd_mips_elf_create_dynamic_sections.
3169 Otherwise, we should define the symbol with a value of 0.
3170 FIXME: It should probably get into the symbol table
3171 somehow as well. */
3172 BFD_ASSERT (! info->shared);
3173 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3174 symbol = 0;
3175 }
3176 else
3177 {
3178 if (! ((*info->callbacks->undefined_symbol)
3179 (info, h->root.root.root.string, input_bfd,
3180 input_section, relocation->r_offset,
3181 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3182 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3183 || ELF_ST_VISIBILITY (h->root.other)))))
3184 return bfd_reloc_undefined;
3185 symbol = 0;
3186 }
3187
3188 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3189 }
3190
3191 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3192 need to redirect the call to the stub, unless we're already *in*
3193 a stub. */
3194 if (r_type != R_MIPS16_26 && !info->relocatable
3195 && ((h != NULL && h->fn_stub != NULL)
3196 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3197 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3198 && !mips_elf_stub_section_p (input_bfd, input_section))
3199 {
3200 /* This is a 32- or 64-bit call to a 16-bit function. We should
3201 have already noticed that we were going to need the
3202 stub. */
3203 if (local_p)
3204 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3205 else
3206 {
3207 BFD_ASSERT (h->need_fn_stub);
3208 sec = h->fn_stub;
3209 }
3210
3211 symbol = sec->output_section->vma + sec->output_offset;
3212 }
3213 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3214 need to redirect the call to the stub. */
3215 else if (r_type == R_MIPS16_26 && !info->relocatable
3216 && h != NULL
3217 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3218 && !target_is_16_bit_code_p)
3219 {
3220 /* If both call_stub and call_fp_stub are defined, we can figure
3221 out which one to use by seeing which one appears in the input
3222 file. */
3223 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3224 {
3225 asection *o;
3226
3227 sec = NULL;
3228 for (o = input_bfd->sections; o != NULL; o = o->next)
3229 {
3230 if (strncmp (bfd_get_section_name (input_bfd, o),
3231 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3232 {
3233 sec = h->call_fp_stub;
3234 break;
3235 }
3236 }
3237 if (sec == NULL)
3238 sec = h->call_stub;
3239 }
3240 else if (h->call_stub != NULL)
3241 sec = h->call_stub;
3242 else
3243 sec = h->call_fp_stub;
3244
3245 BFD_ASSERT (sec->_raw_size > 0);
3246 symbol = sec->output_section->vma + sec->output_offset;
3247 }
3248
3249 /* Calls from 16-bit code to 32-bit code and vice versa require the
3250 special jalx instruction. */
3251 *require_jalxp = (!info->relocatable
3252 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3253 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3254
3255 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3256 local_sections, TRUE);
3257
3258 /* If we haven't already determined the GOT offset, or the GP value,
3259 and we're going to need it, get it now. */
3260 switch (r_type)
3261 {
3262 case R_MIPS_GOT_PAGE:
3263 case R_MIPS_GOT_OFST:
3264 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3265 bind locally. */
3266 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3267 if (local_p || r_type == R_MIPS_GOT_OFST)
3268 break;
3269 /* Fall through. */
3270
3271 case R_MIPS_CALL16:
3272 case R_MIPS_GOT16:
3273 case R_MIPS_GOT_DISP:
3274 case R_MIPS_GOT_HI16:
3275 case R_MIPS_CALL_HI16:
3276 case R_MIPS_GOT_LO16:
3277 case R_MIPS_CALL_LO16:
3278 /* Find the index into the GOT where this value is located. */
3279 if (!local_p)
3280 {
3281 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3282 GOT_PAGE relocation that decays to GOT_DISP because the
3283 symbol turns out to be global. The addend is then added
3284 as GOT_OFST. */
3285 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3286 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3287 input_bfd,
3288 (struct elf_link_hash_entry *) h);
3289 if (! elf_hash_table(info)->dynamic_sections_created
3290 || (info->shared
3291 && (info->symbolic || h->root.dynindx == -1)
3292 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3293 {
3294 /* This is a static link or a -Bsymbolic link. The
3295 symbol is defined locally, or was forced to be local.
3296 We must initialize this entry in the GOT. */
3297 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3298 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3299 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3300 }
3301 }
3302 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3303 /* There's no need to create a local GOT entry here; the
3304 calculation for a local GOT16 entry does not involve G. */
3305 break;
3306 else
3307 {
3308 g = mips_elf_local_got_index (abfd, input_bfd,
3309 info, symbol + addend);
3310 if (g == MINUS_ONE)
3311 return bfd_reloc_outofrange;
3312 }
3313
3314 /* Convert GOT indices to actual offsets. */
3315 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3316 abfd, input_bfd, g);
3317 break;
3318
3319 case R_MIPS_HI16:
3320 case R_MIPS_LO16:
3321 case R_MIPS16_GPREL:
3322 case R_MIPS_GPREL16:
3323 case R_MIPS_GPREL32:
3324 case R_MIPS_LITERAL:
3325 gp0 = _bfd_get_gp_value (input_bfd);
3326 gp = _bfd_get_gp_value (abfd);
3327 if (elf_hash_table (info)->dynobj)
3328 gp += mips_elf_adjust_gp (abfd,
3329 mips_elf_got_info
3330 (elf_hash_table (info)->dynobj, NULL),
3331 input_bfd);
3332 break;
3333
3334 default:
3335 break;
3336 }
3337
3338 /* Figure out what kind of relocation is being performed. */
3339 switch (r_type)
3340 {
3341 case R_MIPS_NONE:
3342 return bfd_reloc_continue;
3343
3344 case R_MIPS_16:
3345 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3346 overflowed_p = mips_elf_overflow_p (value, 16);
3347 break;
3348
3349 case R_MIPS_32:
3350 case R_MIPS_REL32:
3351 case R_MIPS_64:
3352 if ((info->shared
3353 || (elf_hash_table (info)->dynamic_sections_created
3354 && h != NULL
3355 && ((h->root.elf_link_hash_flags
3356 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3357 && ((h->root.elf_link_hash_flags
3358 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3359 && r_symndx != 0
3360 && (input_section->flags & SEC_ALLOC) != 0)
3361 {
3362 /* If we're creating a shared library, or this relocation is
3363 against a symbol in a shared library, then we can't know
3364 where the symbol will end up. So, we create a relocation
3365 record in the output, and leave the job up to the dynamic
3366 linker. */
3367 value = addend;
3368 if (!mips_elf_create_dynamic_relocation (abfd,
3369 info,
3370 relocation,
3371 h,
3372 sec,
3373 symbol,
3374 &value,
3375 input_section))
3376 return bfd_reloc_undefined;
3377 }
3378 else
3379 {
3380 if (r_type != R_MIPS_REL32)
3381 value = symbol + addend;
3382 else
3383 value = addend;
3384 }
3385 value &= howto->dst_mask;
3386 break;
3387
3388 case R_MIPS_PC32:
3389 case R_MIPS_PC64:
3390 case R_MIPS_GNU_REL_LO16:
3391 value = symbol + addend - p;
3392 value &= howto->dst_mask;
3393 break;
3394
3395 case R_MIPS_GNU_REL16_S2:
3396 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3397 overflowed_p = mips_elf_overflow_p (value, 18);
3398 value = (value >> 2) & howto->dst_mask;
3399 break;
3400
3401 case R_MIPS_GNU_REL_HI16:
3402 /* Instead of subtracting 'p' here, we should be subtracting the
3403 equivalent value for the LO part of the reloc, since the value
3404 here is relative to that address. Because that's not easy to do,
3405 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3406 the comment there for more information. */
3407 value = mips_elf_high (addend + symbol - p);
3408 value &= howto->dst_mask;
3409 break;
3410
3411 case R_MIPS16_26:
3412 /* The calculation for R_MIPS16_26 is just the same as for an
3413 R_MIPS_26. It's only the storage of the relocated field into
3414 the output file that's different. That's handled in
3415 mips_elf_perform_relocation. So, we just fall through to the
3416 R_MIPS_26 case here. */
3417 case R_MIPS_26:
3418 if (local_p)
3419 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3420 else
3421 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3422 value &= howto->dst_mask;
3423 break;
3424
3425 case R_MIPS_HI16:
3426 if (!gp_disp_p)
3427 {
3428 value = mips_elf_high (addend + symbol);
3429 value &= howto->dst_mask;
3430 }
3431 else
3432 {
3433 value = mips_elf_high (addend + gp - p);
3434 overflowed_p = mips_elf_overflow_p (value, 16);
3435 }
3436 break;
3437
3438 case R_MIPS_LO16:
3439 if (!gp_disp_p)
3440 value = (symbol + addend) & howto->dst_mask;
3441 else
3442 {
3443 value = addend + gp - p + 4;
3444 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3445 for overflow. But, on, say, IRIX5, relocations against
3446 _gp_disp are normally generated from the .cpload
3447 pseudo-op. It generates code that normally looks like
3448 this:
3449
3450 lui $gp,%hi(_gp_disp)
3451 addiu $gp,$gp,%lo(_gp_disp)
3452 addu $gp,$gp,$t9
3453
3454 Here $t9 holds the address of the function being called,
3455 as required by the MIPS ELF ABI. The R_MIPS_LO16
3456 relocation can easily overflow in this situation, but the
3457 R_MIPS_HI16 relocation will handle the overflow.
3458 Therefore, we consider this a bug in the MIPS ABI, and do
3459 not check for overflow here. */
3460 }
3461 break;
3462
3463 case R_MIPS_LITERAL:
3464 /* Because we don't merge literal sections, we can handle this
3465 just like R_MIPS_GPREL16. In the long run, we should merge
3466 shared literals, and then we will need to additional work
3467 here. */
3468
3469 /* Fall through. */
3470
3471 case R_MIPS16_GPREL:
3472 /* The R_MIPS16_GPREL performs the same calculation as
3473 R_MIPS_GPREL16, but stores the relocated bits in a different
3474 order. We don't need to do anything special here; the
3475 differences are handled in mips_elf_perform_relocation. */
3476 case R_MIPS_GPREL16:
3477 /* Only sign-extend the addend if it was extracted from the
3478 instruction. If the addend was separate, leave it alone,
3479 otherwise we may lose significant bits. */
3480 if (howto->partial_inplace)
3481 addend = _bfd_mips_elf_sign_extend (addend, 16);
3482 value = symbol + addend - gp;
3483 /* If the symbol was local, any earlier relocatable links will
3484 have adjusted its addend with the gp offset, so compensate
3485 for that now. Don't do it for symbols forced local in this
3486 link, though, since they won't have had the gp offset applied
3487 to them before. */
3488 if (was_local_p)
3489 value += gp0;
3490 overflowed_p = mips_elf_overflow_p (value, 16);
3491 break;
3492
3493 case R_MIPS_GOT16:
3494 case R_MIPS_CALL16:
3495 if (local_p)
3496 {
3497 bfd_boolean forced;
3498
3499 /* The special case is when the symbol is forced to be local. We
3500 need the full address in the GOT since no R_MIPS_LO16 relocation
3501 follows. */
3502 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3503 local_sections, FALSE);
3504 value = mips_elf_got16_entry (abfd, input_bfd, info,
3505 symbol + addend, forced);
3506 if (value == MINUS_ONE)
3507 return bfd_reloc_outofrange;
3508 value
3509 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3510 abfd, input_bfd, value);
3511 overflowed_p = mips_elf_overflow_p (value, 16);
3512 break;
3513 }
3514
3515 /* Fall through. */
3516
3517 case R_MIPS_GOT_DISP:
3518 got_disp:
3519 value = g;
3520 overflowed_p = mips_elf_overflow_p (value, 16);
3521 break;
3522
3523 case R_MIPS_GPREL32:
3524 value = (addend + symbol + gp0 - gp);
3525 if (!save_addend)
3526 value &= howto->dst_mask;
3527 break;
3528
3529 case R_MIPS_PC16:
3530 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3531 overflowed_p = mips_elf_overflow_p (value, 16);
3532 break;
3533
3534 case R_MIPS_GOT_HI16:
3535 case R_MIPS_CALL_HI16:
3536 /* We're allowed to handle these two relocations identically.
3537 The dynamic linker is allowed to handle the CALL relocations
3538 differently by creating a lazy evaluation stub. */
3539 value = g;
3540 value = mips_elf_high (value);
3541 value &= howto->dst_mask;
3542 break;
3543
3544 case R_MIPS_GOT_LO16:
3545 case R_MIPS_CALL_LO16:
3546 value = g & howto->dst_mask;
3547 break;
3548
3549 case R_MIPS_GOT_PAGE:
3550 /* GOT_PAGE relocations that reference non-local symbols decay
3551 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3552 0. */
3553 if (! local_p)
3554 goto got_disp;
3555 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3556 if (value == MINUS_ONE)
3557 return bfd_reloc_outofrange;
3558 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3559 abfd, input_bfd, value);
3560 overflowed_p = mips_elf_overflow_p (value, 16);
3561 break;
3562
3563 case R_MIPS_GOT_OFST:
3564 if (local_p)
3565 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3566 else
3567 value = addend;
3568 overflowed_p = mips_elf_overflow_p (value, 16);
3569 break;
3570
3571 case R_MIPS_SUB:
3572 value = symbol - addend;
3573 value &= howto->dst_mask;
3574 break;
3575
3576 case R_MIPS_HIGHER:
3577 value = mips_elf_higher (addend + symbol);
3578 value &= howto->dst_mask;
3579 break;
3580
3581 case R_MIPS_HIGHEST:
3582 value = mips_elf_highest (addend + symbol);
3583 value &= howto->dst_mask;
3584 break;
3585
3586 case R_MIPS_SCN_DISP:
3587 value = symbol + addend - sec->output_offset;
3588 value &= howto->dst_mask;
3589 break;
3590
3591 case R_MIPS_PJUMP:
3592 case R_MIPS_JALR:
3593 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3594 hint; we could improve performance by honoring that hint. */
3595 return bfd_reloc_continue;
3596
3597 case R_MIPS_GNU_VTINHERIT:
3598 case R_MIPS_GNU_VTENTRY:
3599 /* We don't do anything with these at present. */
3600 return bfd_reloc_continue;
3601
3602 default:
3603 /* An unrecognized relocation type. */
3604 return bfd_reloc_notsupported;
3605 }
3606
3607 /* Store the VALUE for our caller. */
3608 *valuep = value;
3609 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3610 }
3611
3612 /* Obtain the field relocated by RELOCATION. */
3613
3614 static bfd_vma
3615 mips_elf_obtain_contents (reloc_howto_type *howto,
3616 const Elf_Internal_Rela *relocation,
3617 bfd *input_bfd, bfd_byte *contents)
3618 {
3619 bfd_vma x;
3620 bfd_byte *location = contents + relocation->r_offset;
3621
3622 /* Obtain the bytes. */
3623 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3624
3625 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3626 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3627 && bfd_little_endian (input_bfd))
3628 /* The two 16-bit words will be reversed on a little-endian system.
3629 See mips_elf_perform_relocation for more details. */
3630 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3631
3632 return x;
3633 }
3634
3635 /* It has been determined that the result of the RELOCATION is the
3636 VALUE. Use HOWTO to place VALUE into the output file at the
3637 appropriate position. The SECTION is the section to which the
3638 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3639 for the relocation must be either JAL or JALX, and it is
3640 unconditionally converted to JALX.
3641
3642 Returns FALSE if anything goes wrong. */
3643
3644 static bfd_boolean
3645 mips_elf_perform_relocation (struct bfd_link_info *info,
3646 reloc_howto_type *howto,
3647 const Elf_Internal_Rela *relocation,
3648 bfd_vma value, bfd *input_bfd,
3649 asection *input_section, bfd_byte *contents,
3650 bfd_boolean require_jalx)
3651 {
3652 bfd_vma x;
3653 bfd_byte *location;
3654 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3655
3656 /* Figure out where the relocation is occurring. */
3657 location = contents + relocation->r_offset;
3658
3659 /* Obtain the current value. */
3660 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3661
3662 /* Clear the field we are setting. */
3663 x &= ~howto->dst_mask;
3664
3665 /* If this is the R_MIPS16_26 relocation, we must store the
3666 value in a funny way. */
3667 if (r_type == R_MIPS16_26)
3668 {
3669 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3670 Most mips16 instructions are 16 bits, but these instructions
3671 are 32 bits.
3672
3673 The format of these instructions is:
3674
3675 +--------------+--------------------------------+
3676 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3677 +--------------+--------------------------------+
3678 ! Immediate 15:0 !
3679 +-----------------------------------------------+
3680
3681 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3682 Note that the immediate value in the first word is swapped.
3683
3684 When producing a relocatable object file, R_MIPS16_26 is
3685 handled mostly like R_MIPS_26. In particular, the addend is
3686 stored as a straight 26-bit value in a 32-bit instruction.
3687 (gas makes life simpler for itself by never adjusting a
3688 R_MIPS16_26 reloc to be against a section, so the addend is
3689 always zero). However, the 32 bit instruction is stored as 2
3690 16-bit values, rather than a single 32-bit value. In a
3691 big-endian file, the result is the same; in a little-endian
3692 file, the two 16-bit halves of the 32 bit value are swapped.
3693 This is so that a disassembler can recognize the jal
3694 instruction.
3695
3696 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3697 instruction stored as two 16-bit values. The addend A is the
3698 contents of the targ26 field. The calculation is the same as
3699 R_MIPS_26. When storing the calculated value, reorder the
3700 immediate value as shown above, and don't forget to store the
3701 value as two 16-bit values.
3702
3703 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3704 defined as
3705
3706 big-endian:
3707 +--------+----------------------+
3708 | | |
3709 | | targ26-16 |
3710 |31 26|25 0|
3711 +--------+----------------------+
3712
3713 little-endian:
3714 +----------+------+-------------+
3715 | | | |
3716 | sub1 | | sub2 |
3717 |0 9|10 15|16 31|
3718 +----------+--------------------+
3719 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3720 ((sub1 << 16) | sub2)).
3721
3722 When producing a relocatable object file, the calculation is
3723 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3724 When producing a fully linked file, the calculation is
3725 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3726 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3727
3728 if (!info->relocatable)
3729 /* Shuffle the bits according to the formula above. */
3730 value = (((value & 0x1f0000) << 5)
3731 | ((value & 0x3e00000) >> 5)
3732 | (value & 0xffff));
3733 }
3734 else if (r_type == R_MIPS16_GPREL)
3735 {
3736 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3737 mode. A typical instruction will have a format like this:
3738
3739 +--------------+--------------------------------+
3740 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3741 +--------------+--------------------------------+
3742 ! Major ! rx ! ry ! Imm 4:0 !
3743 +--------------+--------------------------------+
3744
3745 EXTEND is the five bit value 11110. Major is the instruction
3746 opcode.
3747
3748 This is handled exactly like R_MIPS_GPREL16, except that the
3749 addend is retrieved and stored as shown in this diagram; that
3750 is, the Imm fields above replace the V-rel16 field.
3751
3752 All we need to do here is shuffle the bits appropriately. As
3753 above, the two 16-bit halves must be swapped on a
3754 little-endian system. */
3755 value = (((value & 0x7e0) << 16)
3756 | ((value & 0xf800) << 5)
3757 | (value & 0x1f));
3758 }
3759
3760 /* Set the field. */
3761 x |= (value & howto->dst_mask);
3762
3763 /* If required, turn JAL into JALX. */
3764 if (require_jalx)
3765 {
3766 bfd_boolean ok;
3767 bfd_vma opcode = x >> 26;
3768 bfd_vma jalx_opcode;
3769
3770 /* Check to see if the opcode is already JAL or JALX. */
3771 if (r_type == R_MIPS16_26)
3772 {
3773 ok = ((opcode == 0x6) || (opcode == 0x7));
3774 jalx_opcode = 0x7;
3775 }
3776 else
3777 {
3778 ok = ((opcode == 0x3) || (opcode == 0x1d));
3779 jalx_opcode = 0x1d;
3780 }
3781
3782 /* If the opcode is not JAL or JALX, there's a problem. */
3783 if (!ok)
3784 {
3785 (*_bfd_error_handler)
3786 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3787 bfd_archive_filename (input_bfd),
3788 input_section->name,
3789 (unsigned long) relocation->r_offset);
3790 bfd_set_error (bfd_error_bad_value);
3791 return FALSE;
3792 }
3793
3794 /* Make this the JALX opcode. */
3795 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3796 }
3797
3798 /* Swap the high- and low-order 16 bits on little-endian systems
3799 when doing a MIPS16 relocation. */
3800 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3801 && bfd_little_endian (input_bfd))
3802 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3803
3804 /* Put the value into the output. */
3805 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3806 return TRUE;
3807 }
3808
3809 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3810
3811 static bfd_boolean
3812 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3813 {
3814 const char *name = bfd_get_section_name (abfd, section);
3815
3816 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3817 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3818 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3819 }
3820 \f
3821 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3822
3823 static void
3824 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3825 {
3826 asection *s;
3827
3828 s = mips_elf_rel_dyn_section (abfd, FALSE);
3829 BFD_ASSERT (s != NULL);
3830
3831 if (s->_raw_size == 0)
3832 {
3833 /* Make room for a null element. */
3834 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3835 ++s->reloc_count;
3836 }
3837 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3838 }
3839
3840 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3841 is the original relocation, which is now being transformed into a
3842 dynamic relocation. The ADDENDP is adjusted if necessary; the
3843 caller should store the result in place of the original addend. */
3844
3845 static bfd_boolean
3846 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3847 struct bfd_link_info *info,
3848 const Elf_Internal_Rela *rel,
3849 struct mips_elf_link_hash_entry *h,
3850 asection *sec, bfd_vma symbol,
3851 bfd_vma *addendp, asection *input_section)
3852 {
3853 Elf_Internal_Rela outrel[3];
3854 bfd_boolean skip;
3855 asection *sreloc;
3856 bfd *dynobj;
3857 int r_type;
3858
3859 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3860 dynobj = elf_hash_table (info)->dynobj;
3861 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3862 BFD_ASSERT (sreloc != NULL);
3863 BFD_ASSERT (sreloc->contents != NULL);
3864 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3865 < sreloc->_raw_size);
3866
3867 skip = FALSE;
3868 outrel[0].r_offset =
3869 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3870 outrel[1].r_offset =
3871 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3872 outrel[2].r_offset =
3873 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3874
3875 #if 0
3876 /* We begin by assuming that the offset for the dynamic relocation
3877 is the same as for the original relocation. We'll adjust this
3878 later to reflect the correct output offsets. */
3879 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3880 {
3881 outrel[1].r_offset = rel[1].r_offset;
3882 outrel[2].r_offset = rel[2].r_offset;
3883 }
3884 else
3885 {
3886 /* Except that in a stab section things are more complex.
3887 Because we compress stab information, the offset given in the
3888 relocation may not be the one we want; we must let the stabs
3889 machinery tell us the offset. */
3890 outrel[1].r_offset = outrel[0].r_offset;
3891 outrel[2].r_offset = outrel[0].r_offset;
3892 /* If we didn't need the relocation at all, this value will be
3893 -1. */
3894 if (outrel[0].r_offset == (bfd_vma) -1)
3895 skip = TRUE;
3896 }
3897 #endif
3898
3899 if (outrel[0].r_offset == (bfd_vma) -1)
3900 /* The relocation field has been deleted. */
3901 skip = TRUE;
3902 else if (outrel[0].r_offset == (bfd_vma) -2)
3903 {
3904 /* The relocation field has been converted into a relative value of
3905 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3906 the field to be fully relocated, so add in the symbol's value. */
3907 skip = TRUE;
3908 *addendp += symbol;
3909 }
3910
3911 /* If we've decided to skip this relocation, just output an empty
3912 record. Note that R_MIPS_NONE == 0, so that this call to memset
3913 is a way of setting R_TYPE to R_MIPS_NONE. */
3914 if (skip)
3915 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3916 else
3917 {
3918 long indx;
3919 bfd_boolean defined_p;
3920
3921 /* We must now calculate the dynamic symbol table index to use
3922 in the relocation. */
3923 if (h != NULL
3924 && (! info->symbolic || (h->root.elf_link_hash_flags
3925 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3926 /* h->root.dynindx may be -1 if this symbol was marked to
3927 become local. */
3928 && h->root.dynindx != -1)
3929 {
3930 indx = h->root.dynindx;
3931 if (SGI_COMPAT (output_bfd))
3932 defined_p = ((h->root.elf_link_hash_flags
3933 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3934 else
3935 /* ??? glibc's ld.so just adds the final GOT entry to the
3936 relocation field. It therefore treats relocs against
3937 defined symbols in the same way as relocs against
3938 undefined symbols. */
3939 defined_p = FALSE;
3940 }
3941 else
3942 {
3943 if (sec != NULL && bfd_is_abs_section (sec))
3944 indx = 0;
3945 else if (sec == NULL || sec->owner == NULL)
3946 {
3947 bfd_set_error (bfd_error_bad_value);
3948 return FALSE;
3949 }
3950 else
3951 {
3952 indx = elf_section_data (sec->output_section)->dynindx;
3953 if (indx == 0)
3954 abort ();
3955 }
3956
3957 /* Instead of generating a relocation using the section
3958 symbol, we may as well make it a fully relative
3959 relocation. We want to avoid generating relocations to
3960 local symbols because we used to generate them
3961 incorrectly, without adding the original symbol value,
3962 which is mandated by the ABI for section symbols. In
3963 order to give dynamic loaders and applications time to
3964 phase out the incorrect use, we refrain from emitting
3965 section-relative relocations. It's not like they're
3966 useful, after all. This should be a bit more efficient
3967 as well. */
3968 /* ??? Although this behavior is compatible with glibc's ld.so,
3969 the ABI says that relocations against STN_UNDEF should have
3970 a symbol value of 0. Irix rld honors this, so relocations
3971 against STN_UNDEF have no effect. */
3972 if (!SGI_COMPAT (output_bfd))
3973 indx = 0;
3974 defined_p = TRUE;
3975 }
3976
3977 /* If the relocation was previously an absolute relocation and
3978 this symbol will not be referred to by the relocation, we must
3979 adjust it by the value we give it in the dynamic symbol table.
3980 Otherwise leave the job up to the dynamic linker. */
3981 if (defined_p && r_type != R_MIPS_REL32)
3982 *addendp += symbol;
3983
3984 /* The relocation is always an REL32 relocation because we don't
3985 know where the shared library will wind up at load-time. */
3986 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3987 R_MIPS_REL32);
3988 /* For strict adherence to the ABI specification, we should
3989 generate a R_MIPS_64 relocation record by itself before the
3990 _REL32/_64 record as well, such that the addend is read in as
3991 a 64-bit value (REL32 is a 32-bit relocation, after all).
3992 However, since none of the existing ELF64 MIPS dynamic
3993 loaders seems to care, we don't waste space with these
3994 artificial relocations. If this turns out to not be true,
3995 mips_elf_allocate_dynamic_relocation() should be tweaked so
3996 as to make room for a pair of dynamic relocations per
3997 invocation if ABI_64_P, and here we should generate an
3998 additional relocation record with R_MIPS_64 by itself for a
3999 NULL symbol before this relocation record. */
4000 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4001 ABI_64_P (output_bfd)
4002 ? R_MIPS_64
4003 : R_MIPS_NONE);
4004 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4005
4006 /* Adjust the output offset of the relocation to reference the
4007 correct location in the output file. */
4008 outrel[0].r_offset += (input_section->output_section->vma
4009 + input_section->output_offset);
4010 outrel[1].r_offset += (input_section->output_section->vma
4011 + input_section->output_offset);
4012 outrel[2].r_offset += (input_section->output_section->vma
4013 + input_section->output_offset);
4014 }
4015
4016 /* Put the relocation back out. We have to use the special
4017 relocation outputter in the 64-bit case since the 64-bit
4018 relocation format is non-standard. */
4019 if (ABI_64_P (output_bfd))
4020 {
4021 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4022 (output_bfd, &outrel[0],
4023 (sreloc->contents
4024 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4025 }
4026 else
4027 bfd_elf32_swap_reloc_out
4028 (output_bfd, &outrel[0],
4029 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4030
4031 /* We've now added another relocation. */
4032 ++sreloc->reloc_count;
4033
4034 /* Make sure the output section is writable. The dynamic linker
4035 will be writing to it. */
4036 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4037 |= SHF_WRITE;
4038
4039 /* On IRIX5, make an entry of compact relocation info. */
4040 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4041 {
4042 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4043 bfd_byte *cr;
4044
4045 if (scpt)
4046 {
4047 Elf32_crinfo cptrel;
4048
4049 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4050 cptrel.vaddr = (rel->r_offset
4051 + input_section->output_section->vma
4052 + input_section->output_offset);
4053 if (r_type == R_MIPS_REL32)
4054 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4055 else
4056 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4057 mips_elf_set_cr_dist2to (cptrel, 0);
4058 cptrel.konst = *addendp;
4059
4060 cr = (scpt->contents
4061 + sizeof (Elf32_External_compact_rel));
4062 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4063 ((Elf32_External_crinfo *) cr
4064 + scpt->reloc_count));
4065 ++scpt->reloc_count;
4066 }
4067 }
4068
4069 return TRUE;
4070 }
4071 \f
4072 /* Return the MACH for a MIPS e_flags value. */
4073
4074 unsigned long
4075 _bfd_elf_mips_mach (flagword flags)
4076 {
4077 switch (flags & EF_MIPS_MACH)
4078 {
4079 case E_MIPS_MACH_3900:
4080 return bfd_mach_mips3900;
4081
4082 case E_MIPS_MACH_4010:
4083 return bfd_mach_mips4010;
4084
4085 case E_MIPS_MACH_4100:
4086 return bfd_mach_mips4100;
4087
4088 case E_MIPS_MACH_4111:
4089 return bfd_mach_mips4111;
4090
4091 case E_MIPS_MACH_4120:
4092 return bfd_mach_mips4120;
4093
4094 case E_MIPS_MACH_4650:
4095 return bfd_mach_mips4650;
4096
4097 case E_MIPS_MACH_5400:
4098 return bfd_mach_mips5400;
4099
4100 case E_MIPS_MACH_5500:
4101 return bfd_mach_mips5500;
4102
4103 case E_MIPS_MACH_SB1:
4104 return bfd_mach_mips_sb1;
4105
4106 default:
4107 switch (flags & EF_MIPS_ARCH)
4108 {
4109 default:
4110 case E_MIPS_ARCH_1:
4111 return bfd_mach_mips3000;
4112 break;
4113
4114 case E_MIPS_ARCH_2:
4115 return bfd_mach_mips6000;
4116 break;
4117
4118 case E_MIPS_ARCH_3:
4119 return bfd_mach_mips4000;
4120 break;
4121
4122 case E_MIPS_ARCH_4:
4123 return bfd_mach_mips8000;
4124 break;
4125
4126 case E_MIPS_ARCH_5:
4127 return bfd_mach_mips5;
4128 break;
4129
4130 case E_MIPS_ARCH_32:
4131 return bfd_mach_mipsisa32;
4132 break;
4133
4134 case E_MIPS_ARCH_64:
4135 return bfd_mach_mipsisa64;
4136 break;
4137
4138 case E_MIPS_ARCH_32R2:
4139 return bfd_mach_mipsisa32r2;
4140 break;
4141
4142 case E_MIPS_ARCH_64R2:
4143 return bfd_mach_mipsisa64r2;
4144 break;
4145 }
4146 }
4147
4148 return 0;
4149 }
4150
4151 /* Return printable name for ABI. */
4152
4153 static INLINE char *
4154 elf_mips_abi_name (bfd *abfd)
4155 {
4156 flagword flags;
4157
4158 flags = elf_elfheader (abfd)->e_flags;
4159 switch (flags & EF_MIPS_ABI)
4160 {
4161 case 0:
4162 if (ABI_N32_P (abfd))
4163 return "N32";
4164 else if (ABI_64_P (abfd))
4165 return "64";
4166 else
4167 return "none";
4168 case E_MIPS_ABI_O32:
4169 return "O32";
4170 case E_MIPS_ABI_O64:
4171 return "O64";
4172 case E_MIPS_ABI_EABI32:
4173 return "EABI32";
4174 case E_MIPS_ABI_EABI64:
4175 return "EABI64";
4176 default:
4177 return "unknown abi";
4178 }
4179 }
4180 \f
4181 /* MIPS ELF uses two common sections. One is the usual one, and the
4182 other is for small objects. All the small objects are kept
4183 together, and then referenced via the gp pointer, which yields
4184 faster assembler code. This is what we use for the small common
4185 section. This approach is copied from ecoff.c. */
4186 static asection mips_elf_scom_section;
4187 static asymbol mips_elf_scom_symbol;
4188 static asymbol *mips_elf_scom_symbol_ptr;
4189
4190 /* MIPS ELF also uses an acommon section, which represents an
4191 allocated common symbol which may be overridden by a
4192 definition in a shared library. */
4193 static asection mips_elf_acom_section;
4194 static asymbol mips_elf_acom_symbol;
4195 static asymbol *mips_elf_acom_symbol_ptr;
4196
4197 /* Handle the special MIPS section numbers that a symbol may use.
4198 This is used for both the 32-bit and the 64-bit ABI. */
4199
4200 void
4201 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4202 {
4203 elf_symbol_type *elfsym;
4204
4205 elfsym = (elf_symbol_type *) asym;
4206 switch (elfsym->internal_elf_sym.st_shndx)
4207 {
4208 case SHN_MIPS_ACOMMON:
4209 /* This section is used in a dynamically linked executable file.
4210 It is an allocated common section. The dynamic linker can
4211 either resolve these symbols to something in a shared
4212 library, or it can just leave them here. For our purposes,
4213 we can consider these symbols to be in a new section. */
4214 if (mips_elf_acom_section.name == NULL)
4215 {
4216 /* Initialize the acommon section. */
4217 mips_elf_acom_section.name = ".acommon";
4218 mips_elf_acom_section.flags = SEC_ALLOC;
4219 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4220 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4221 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4222 mips_elf_acom_symbol.name = ".acommon";
4223 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4224 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4225 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4226 }
4227 asym->section = &mips_elf_acom_section;
4228 break;
4229
4230 case SHN_COMMON:
4231 /* Common symbols less than the GP size are automatically
4232 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4233 if (asym->value > elf_gp_size (abfd)
4234 || IRIX_COMPAT (abfd) == ict_irix6)
4235 break;
4236 /* Fall through. */
4237 case SHN_MIPS_SCOMMON:
4238 if (mips_elf_scom_section.name == NULL)
4239 {
4240 /* Initialize the small common section. */
4241 mips_elf_scom_section.name = ".scommon";
4242 mips_elf_scom_section.flags = SEC_IS_COMMON;
4243 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4244 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4245 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4246 mips_elf_scom_symbol.name = ".scommon";
4247 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4248 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4249 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4250 }
4251 asym->section = &mips_elf_scom_section;
4252 asym->value = elfsym->internal_elf_sym.st_size;
4253 break;
4254
4255 case SHN_MIPS_SUNDEFINED:
4256 asym->section = bfd_und_section_ptr;
4257 break;
4258
4259 #if 0 /* for SGI_COMPAT */
4260 case SHN_MIPS_TEXT:
4261 asym->section = mips_elf_text_section_ptr;
4262 break;
4263
4264 case SHN_MIPS_DATA:
4265 asym->section = mips_elf_data_section_ptr;
4266 break;
4267 #endif
4268 }
4269 }
4270 \f
4271 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4272 relocations against two unnamed section symbols to resolve to the
4273 same address. For example, if we have code like:
4274
4275 lw $4,%got_disp(.data)($gp)
4276 lw $25,%got_disp(.text)($gp)
4277 jalr $25
4278
4279 then the linker will resolve both relocations to .data and the program
4280 will jump there rather than to .text.
4281
4282 We can work around this problem by giving names to local section symbols.
4283 This is also what the MIPSpro tools do. */
4284
4285 bfd_boolean
4286 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4287 {
4288 return SGI_COMPAT (abfd);
4289 }
4290 \f
4291 /* Work over a section just before writing it out. This routine is
4292 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4293 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4294 a better way. */
4295
4296 bfd_boolean
4297 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4298 {
4299 if (hdr->sh_type == SHT_MIPS_REGINFO
4300 && hdr->sh_size > 0)
4301 {
4302 bfd_byte buf[4];
4303
4304 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4305 BFD_ASSERT (hdr->contents == NULL);
4306
4307 if (bfd_seek (abfd,
4308 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4309 SEEK_SET) != 0)
4310 return FALSE;
4311 H_PUT_32 (abfd, elf_gp (abfd), buf);
4312 if (bfd_bwrite (buf, 4, abfd) != 4)
4313 return FALSE;
4314 }
4315
4316 if (hdr->sh_type == SHT_MIPS_OPTIONS
4317 && hdr->bfd_section != NULL
4318 && mips_elf_section_data (hdr->bfd_section) != NULL
4319 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4320 {
4321 bfd_byte *contents, *l, *lend;
4322
4323 /* We stored the section contents in the tdata field in the
4324 set_section_contents routine. We save the section contents
4325 so that we don't have to read them again.
4326 At this point we know that elf_gp is set, so we can look
4327 through the section contents to see if there is an
4328 ODK_REGINFO structure. */
4329
4330 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4331 l = contents;
4332 lend = contents + hdr->sh_size;
4333 while (l + sizeof (Elf_External_Options) <= lend)
4334 {
4335 Elf_Internal_Options intopt;
4336
4337 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4338 &intopt);
4339 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4340 {
4341 bfd_byte buf[8];
4342
4343 if (bfd_seek (abfd,
4344 (hdr->sh_offset
4345 + (l - contents)
4346 + sizeof (Elf_External_Options)
4347 + (sizeof (Elf64_External_RegInfo) - 8)),
4348 SEEK_SET) != 0)
4349 return FALSE;
4350 H_PUT_64 (abfd, elf_gp (abfd), buf);
4351 if (bfd_bwrite (buf, 8, abfd) != 8)
4352 return FALSE;
4353 }
4354 else if (intopt.kind == ODK_REGINFO)
4355 {
4356 bfd_byte buf[4];
4357
4358 if (bfd_seek (abfd,
4359 (hdr->sh_offset
4360 + (l - contents)
4361 + sizeof (Elf_External_Options)
4362 + (sizeof (Elf32_External_RegInfo) - 4)),
4363 SEEK_SET) != 0)
4364 return FALSE;
4365 H_PUT_32 (abfd, elf_gp (abfd), buf);
4366 if (bfd_bwrite (buf, 4, abfd) != 4)
4367 return FALSE;
4368 }
4369 l += intopt.size;
4370 }
4371 }
4372
4373 if (hdr->bfd_section != NULL)
4374 {
4375 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4376
4377 if (strcmp (name, ".sdata") == 0
4378 || strcmp (name, ".lit8") == 0
4379 || strcmp (name, ".lit4") == 0)
4380 {
4381 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4382 hdr->sh_type = SHT_PROGBITS;
4383 }
4384 else if (strcmp (name, ".sbss") == 0)
4385 {
4386 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4387 hdr->sh_type = SHT_NOBITS;
4388 }
4389 else if (strcmp (name, ".srdata") == 0)
4390 {
4391 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4392 hdr->sh_type = SHT_PROGBITS;
4393 }
4394 else if (strcmp (name, ".compact_rel") == 0)
4395 {
4396 hdr->sh_flags = 0;
4397 hdr->sh_type = SHT_PROGBITS;
4398 }
4399 else if (strcmp (name, ".rtproc") == 0)
4400 {
4401 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4402 {
4403 unsigned int adjust;
4404
4405 adjust = hdr->sh_size % hdr->sh_addralign;
4406 if (adjust != 0)
4407 hdr->sh_size += hdr->sh_addralign - adjust;
4408 }
4409 }
4410 }
4411
4412 return TRUE;
4413 }
4414
4415 /* Handle a MIPS specific section when reading an object file. This
4416 is called when elfcode.h finds a section with an unknown type.
4417 This routine supports both the 32-bit and 64-bit ELF ABI.
4418
4419 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4420 how to. */
4421
4422 bfd_boolean
4423 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4424 const char *name)
4425 {
4426 flagword flags = 0;
4427
4428 /* There ought to be a place to keep ELF backend specific flags, but
4429 at the moment there isn't one. We just keep track of the
4430 sections by their name, instead. Fortunately, the ABI gives
4431 suggested names for all the MIPS specific sections, so we will
4432 probably get away with this. */
4433 switch (hdr->sh_type)
4434 {
4435 case SHT_MIPS_LIBLIST:
4436 if (strcmp (name, ".liblist") != 0)
4437 return FALSE;
4438 break;
4439 case SHT_MIPS_MSYM:
4440 if (strcmp (name, ".msym") != 0)
4441 return FALSE;
4442 break;
4443 case SHT_MIPS_CONFLICT:
4444 if (strcmp (name, ".conflict") != 0)
4445 return FALSE;
4446 break;
4447 case SHT_MIPS_GPTAB:
4448 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4449 return FALSE;
4450 break;
4451 case SHT_MIPS_UCODE:
4452 if (strcmp (name, ".ucode") != 0)
4453 return FALSE;
4454 break;
4455 case SHT_MIPS_DEBUG:
4456 if (strcmp (name, ".mdebug") != 0)
4457 return FALSE;
4458 flags = SEC_DEBUGGING;
4459 break;
4460 case SHT_MIPS_REGINFO:
4461 if (strcmp (name, ".reginfo") != 0
4462 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4463 return FALSE;
4464 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4465 break;
4466 case SHT_MIPS_IFACE:
4467 if (strcmp (name, ".MIPS.interfaces") != 0)
4468 return FALSE;
4469 break;
4470 case SHT_MIPS_CONTENT:
4471 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4472 return FALSE;
4473 break;
4474 case SHT_MIPS_OPTIONS:
4475 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4476 return FALSE;
4477 break;
4478 case SHT_MIPS_DWARF:
4479 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4480 return FALSE;
4481 break;
4482 case SHT_MIPS_SYMBOL_LIB:
4483 if (strcmp (name, ".MIPS.symlib") != 0)
4484 return FALSE;
4485 break;
4486 case SHT_MIPS_EVENTS:
4487 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4488 && strncmp (name, ".MIPS.post_rel",
4489 sizeof ".MIPS.post_rel" - 1) != 0)
4490 return FALSE;
4491 break;
4492 default:
4493 return FALSE;
4494 }
4495
4496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4497 return FALSE;
4498
4499 if (flags)
4500 {
4501 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4502 (bfd_get_section_flags (abfd,
4503 hdr->bfd_section)
4504 | flags)))
4505 return FALSE;
4506 }
4507
4508 /* FIXME: We should record sh_info for a .gptab section. */
4509
4510 /* For a .reginfo section, set the gp value in the tdata information
4511 from the contents of this section. We need the gp value while
4512 processing relocs, so we just get it now. The .reginfo section
4513 is not used in the 64-bit MIPS ELF ABI. */
4514 if (hdr->sh_type == SHT_MIPS_REGINFO)
4515 {
4516 Elf32_External_RegInfo ext;
4517 Elf32_RegInfo s;
4518
4519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4520 &ext, 0, sizeof ext))
4521 return FALSE;
4522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4523 elf_gp (abfd) = s.ri_gp_value;
4524 }
4525
4526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4527 set the gp value based on what we find. We may see both
4528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4529 they should agree. */
4530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4531 {
4532 bfd_byte *contents, *l, *lend;
4533
4534 contents = bfd_malloc (hdr->sh_size);
4535 if (contents == NULL)
4536 return FALSE;
4537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4538 0, hdr->sh_size))
4539 {
4540 free (contents);
4541 return FALSE;
4542 }
4543 l = contents;
4544 lend = contents + hdr->sh_size;
4545 while (l + sizeof (Elf_External_Options) <= lend)
4546 {
4547 Elf_Internal_Options intopt;
4548
4549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4550 &intopt);
4551 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4552 {
4553 Elf64_Internal_RegInfo intreg;
4554
4555 bfd_mips_elf64_swap_reginfo_in
4556 (abfd,
4557 ((Elf64_External_RegInfo *)
4558 (l + sizeof (Elf_External_Options))),
4559 &intreg);
4560 elf_gp (abfd) = intreg.ri_gp_value;
4561 }
4562 else if (intopt.kind == ODK_REGINFO)
4563 {
4564 Elf32_RegInfo intreg;
4565
4566 bfd_mips_elf32_swap_reginfo_in
4567 (abfd,
4568 ((Elf32_External_RegInfo *)
4569 (l + sizeof (Elf_External_Options))),
4570 &intreg);
4571 elf_gp (abfd) = intreg.ri_gp_value;
4572 }
4573 l += intopt.size;
4574 }
4575 free (contents);
4576 }
4577
4578 return TRUE;
4579 }
4580
4581 /* Set the correct type for a MIPS ELF section. We do this by the
4582 section name, which is a hack, but ought to work. This routine is
4583 used by both the 32-bit and the 64-bit ABI. */
4584
4585 bfd_boolean
4586 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4587 {
4588 register const char *name;
4589
4590 name = bfd_get_section_name (abfd, sec);
4591
4592 if (strcmp (name, ".liblist") == 0)
4593 {
4594 hdr->sh_type = SHT_MIPS_LIBLIST;
4595 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4596 /* The sh_link field is set in final_write_processing. */
4597 }
4598 else if (strcmp (name, ".conflict") == 0)
4599 hdr->sh_type = SHT_MIPS_CONFLICT;
4600 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4601 {
4602 hdr->sh_type = SHT_MIPS_GPTAB;
4603 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4604 /* The sh_info field is set in final_write_processing. */
4605 }
4606 else if (strcmp (name, ".ucode") == 0)
4607 hdr->sh_type = SHT_MIPS_UCODE;
4608 else if (strcmp (name, ".mdebug") == 0)
4609 {
4610 hdr->sh_type = SHT_MIPS_DEBUG;
4611 /* In a shared object on IRIX 5.3, the .mdebug section has an
4612 entsize of 0. FIXME: Does this matter? */
4613 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4614 hdr->sh_entsize = 0;
4615 else
4616 hdr->sh_entsize = 1;
4617 }
4618 else if (strcmp (name, ".reginfo") == 0)
4619 {
4620 hdr->sh_type = SHT_MIPS_REGINFO;
4621 /* In a shared object on IRIX 5.3, the .reginfo section has an
4622 entsize of 0x18. FIXME: Does this matter? */
4623 if (SGI_COMPAT (abfd))
4624 {
4625 if ((abfd->flags & DYNAMIC) != 0)
4626 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4627 else
4628 hdr->sh_entsize = 1;
4629 }
4630 else
4631 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4632 }
4633 else if (SGI_COMPAT (abfd)
4634 && (strcmp (name, ".hash") == 0
4635 || strcmp (name, ".dynamic") == 0
4636 || strcmp (name, ".dynstr") == 0))
4637 {
4638 if (SGI_COMPAT (abfd))
4639 hdr->sh_entsize = 0;
4640 #if 0
4641 /* This isn't how the IRIX6 linker behaves. */
4642 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4643 #endif
4644 }
4645 else if (strcmp (name, ".got") == 0
4646 || strcmp (name, ".srdata") == 0
4647 || strcmp (name, ".sdata") == 0
4648 || strcmp (name, ".sbss") == 0
4649 || strcmp (name, ".lit4") == 0
4650 || strcmp (name, ".lit8") == 0)
4651 hdr->sh_flags |= SHF_MIPS_GPREL;
4652 else if (strcmp (name, ".MIPS.interfaces") == 0)
4653 {
4654 hdr->sh_type = SHT_MIPS_IFACE;
4655 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4656 }
4657 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4658 {
4659 hdr->sh_type = SHT_MIPS_CONTENT;
4660 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4661 /* The sh_info field is set in final_write_processing. */
4662 }
4663 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4664 {
4665 hdr->sh_type = SHT_MIPS_OPTIONS;
4666 hdr->sh_entsize = 1;
4667 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4668 }
4669 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4670 hdr->sh_type = SHT_MIPS_DWARF;
4671 else if (strcmp (name, ".MIPS.symlib") == 0)
4672 {
4673 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4674 /* The sh_link and sh_info fields are set in
4675 final_write_processing. */
4676 }
4677 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4678 || strncmp (name, ".MIPS.post_rel",
4679 sizeof ".MIPS.post_rel" - 1) == 0)
4680 {
4681 hdr->sh_type = SHT_MIPS_EVENTS;
4682 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4683 /* The sh_link field is set in final_write_processing. */
4684 }
4685 else if (strcmp (name, ".msym") == 0)
4686 {
4687 hdr->sh_type = SHT_MIPS_MSYM;
4688 hdr->sh_flags |= SHF_ALLOC;
4689 hdr->sh_entsize = 8;
4690 }
4691
4692 /* The generic elf_fake_sections will set up REL_HDR using the default
4693 kind of relocations. We used to set up a second header for the
4694 non-default kind of relocations here, but only NewABI would use
4695 these, and the IRIX ld doesn't like resulting empty RELA sections.
4696 Thus we create those header only on demand now. */
4697
4698 return TRUE;
4699 }
4700
4701 /* Given a BFD section, try to locate the corresponding ELF section
4702 index. This is used by both the 32-bit and the 64-bit ABI.
4703 Actually, it's not clear to me that the 64-bit ABI supports these,
4704 but for non-PIC objects we will certainly want support for at least
4705 the .scommon section. */
4706
4707 bfd_boolean
4708 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4709 asection *sec, int *retval)
4710 {
4711 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4712 {
4713 *retval = SHN_MIPS_SCOMMON;
4714 return TRUE;
4715 }
4716 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4717 {
4718 *retval = SHN_MIPS_ACOMMON;
4719 return TRUE;
4720 }
4721 return FALSE;
4722 }
4723 \f
4724 /* Hook called by the linker routine which adds symbols from an object
4725 file. We must handle the special MIPS section numbers here. */
4726
4727 bfd_boolean
4728 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4729 const Elf_Internal_Sym *sym, const char **namep,
4730 flagword *flagsp ATTRIBUTE_UNUSED,
4731 asection **secp, bfd_vma *valp)
4732 {
4733 if (SGI_COMPAT (abfd)
4734 && (abfd->flags & DYNAMIC) != 0
4735 && strcmp (*namep, "_rld_new_interface") == 0)
4736 {
4737 /* Skip IRIX5 rld entry name. */
4738 *namep = NULL;
4739 return TRUE;
4740 }
4741
4742 switch (sym->st_shndx)
4743 {
4744 case SHN_COMMON:
4745 /* Common symbols less than the GP size are automatically
4746 treated as SHN_MIPS_SCOMMON symbols. */
4747 if (sym->st_size > elf_gp_size (abfd)
4748 || IRIX_COMPAT (abfd) == ict_irix6)
4749 break;
4750 /* Fall through. */
4751 case SHN_MIPS_SCOMMON:
4752 *secp = bfd_make_section_old_way (abfd, ".scommon");
4753 (*secp)->flags |= SEC_IS_COMMON;
4754 *valp = sym->st_size;
4755 break;
4756
4757 case SHN_MIPS_TEXT:
4758 /* This section is used in a shared object. */
4759 if (elf_tdata (abfd)->elf_text_section == NULL)
4760 {
4761 asymbol *elf_text_symbol;
4762 asection *elf_text_section;
4763 bfd_size_type amt = sizeof (asection);
4764
4765 elf_text_section = bfd_zalloc (abfd, amt);
4766 if (elf_text_section == NULL)
4767 return FALSE;
4768
4769 amt = sizeof (asymbol);
4770 elf_text_symbol = bfd_zalloc (abfd, amt);
4771 if (elf_text_symbol == NULL)
4772 return FALSE;
4773
4774 /* Initialize the section. */
4775
4776 elf_tdata (abfd)->elf_text_section = elf_text_section;
4777 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4778
4779 elf_text_section->symbol = elf_text_symbol;
4780 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4781
4782 elf_text_section->name = ".text";
4783 elf_text_section->flags = SEC_NO_FLAGS;
4784 elf_text_section->output_section = NULL;
4785 elf_text_section->owner = abfd;
4786 elf_text_symbol->name = ".text";
4787 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4788 elf_text_symbol->section = elf_text_section;
4789 }
4790 /* This code used to do *secp = bfd_und_section_ptr if
4791 info->shared. I don't know why, and that doesn't make sense,
4792 so I took it out. */
4793 *secp = elf_tdata (abfd)->elf_text_section;
4794 break;
4795
4796 case SHN_MIPS_ACOMMON:
4797 /* Fall through. XXX Can we treat this as allocated data? */
4798 case SHN_MIPS_DATA:
4799 /* This section is used in a shared object. */
4800 if (elf_tdata (abfd)->elf_data_section == NULL)
4801 {
4802 asymbol *elf_data_symbol;
4803 asection *elf_data_section;
4804 bfd_size_type amt = sizeof (asection);
4805
4806 elf_data_section = bfd_zalloc (abfd, amt);
4807 if (elf_data_section == NULL)
4808 return FALSE;
4809
4810 amt = sizeof (asymbol);
4811 elf_data_symbol = bfd_zalloc (abfd, amt);
4812 if (elf_data_symbol == NULL)
4813 return FALSE;
4814
4815 /* Initialize the section. */
4816
4817 elf_tdata (abfd)->elf_data_section = elf_data_section;
4818 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4819
4820 elf_data_section->symbol = elf_data_symbol;
4821 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4822
4823 elf_data_section->name = ".data";
4824 elf_data_section->flags = SEC_NO_FLAGS;
4825 elf_data_section->output_section = NULL;
4826 elf_data_section->owner = abfd;
4827 elf_data_symbol->name = ".data";
4828 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4829 elf_data_symbol->section = elf_data_section;
4830 }
4831 /* This code used to do *secp = bfd_und_section_ptr if
4832 info->shared. I don't know why, and that doesn't make sense,
4833 so I took it out. */
4834 *secp = elf_tdata (abfd)->elf_data_section;
4835 break;
4836
4837 case SHN_MIPS_SUNDEFINED:
4838 *secp = bfd_und_section_ptr;
4839 break;
4840 }
4841
4842 if (SGI_COMPAT (abfd)
4843 && ! info->shared
4844 && info->hash->creator == abfd->xvec
4845 && strcmp (*namep, "__rld_obj_head") == 0)
4846 {
4847 struct elf_link_hash_entry *h;
4848 struct bfd_link_hash_entry *bh;
4849
4850 /* Mark __rld_obj_head as dynamic. */
4851 bh = NULL;
4852 if (! (_bfd_generic_link_add_one_symbol
4853 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4854 get_elf_backend_data (abfd)->collect, &bh)))
4855 return FALSE;
4856
4857 h = (struct elf_link_hash_entry *) bh;
4858 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4859 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4860 h->type = STT_OBJECT;
4861
4862 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4863 return FALSE;
4864
4865 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4866 }
4867
4868 /* If this is a mips16 text symbol, add 1 to the value to make it
4869 odd. This will cause something like .word SYM to come up with
4870 the right value when it is loaded into the PC. */
4871 if (sym->st_other == STO_MIPS16)
4872 ++*valp;
4873
4874 return TRUE;
4875 }
4876
4877 /* This hook function is called before the linker writes out a global
4878 symbol. We mark symbols as small common if appropriate. This is
4879 also where we undo the increment of the value for a mips16 symbol. */
4880
4881 bfd_boolean
4882 _bfd_mips_elf_link_output_symbol_hook
4883 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4884 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4885 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4886 {
4887 /* If we see a common symbol, which implies a relocatable link, then
4888 if a symbol was small common in an input file, mark it as small
4889 common in the output file. */
4890 if (sym->st_shndx == SHN_COMMON
4891 && strcmp (input_sec->name, ".scommon") == 0)
4892 sym->st_shndx = SHN_MIPS_SCOMMON;
4893
4894 if (sym->st_other == STO_MIPS16)
4895 sym->st_value &= ~1;
4896
4897 return TRUE;
4898 }
4899 \f
4900 /* Functions for the dynamic linker. */
4901
4902 /* Create dynamic sections when linking against a dynamic object. */
4903
4904 bfd_boolean
4905 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4906 {
4907 struct elf_link_hash_entry *h;
4908 struct bfd_link_hash_entry *bh;
4909 flagword flags;
4910 register asection *s;
4911 const char * const *namep;
4912
4913 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4914 | SEC_LINKER_CREATED | SEC_READONLY);
4915
4916 /* Mips ABI requests the .dynamic section to be read only. */
4917 s = bfd_get_section_by_name (abfd, ".dynamic");
4918 if (s != NULL)
4919 {
4920 if (! bfd_set_section_flags (abfd, s, flags))
4921 return FALSE;
4922 }
4923
4924 /* We need to create .got section. */
4925 if (! mips_elf_create_got_section (abfd, info, FALSE))
4926 return FALSE;
4927
4928 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4929 return FALSE;
4930
4931 /* Create .stub section. */
4932 if (bfd_get_section_by_name (abfd,
4933 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4934 {
4935 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4936 if (s == NULL
4937 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4938 || ! bfd_set_section_alignment (abfd, s,
4939 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4940 return FALSE;
4941 }
4942
4943 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4944 && !info->shared
4945 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4946 {
4947 s = bfd_make_section (abfd, ".rld_map");
4948 if (s == NULL
4949 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4950 || ! bfd_set_section_alignment (abfd, s,
4951 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4952 return FALSE;
4953 }
4954
4955 /* On IRIX5, we adjust add some additional symbols and change the
4956 alignments of several sections. There is no ABI documentation
4957 indicating that this is necessary on IRIX6, nor any evidence that
4958 the linker takes such action. */
4959 if (IRIX_COMPAT (abfd) == ict_irix5)
4960 {
4961 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4962 {
4963 bh = NULL;
4964 if (! (_bfd_generic_link_add_one_symbol
4965 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4966 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4967 return FALSE;
4968
4969 h = (struct elf_link_hash_entry *) bh;
4970 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4971 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4972 h->type = STT_SECTION;
4973
4974 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4975 return FALSE;
4976 }
4977
4978 /* We need to create a .compact_rel section. */
4979 if (SGI_COMPAT (abfd))
4980 {
4981 if (!mips_elf_create_compact_rel_section (abfd, info))
4982 return FALSE;
4983 }
4984
4985 /* Change alignments of some sections. */
4986 s = bfd_get_section_by_name (abfd, ".hash");
4987 if (s != NULL)
4988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4989 s = bfd_get_section_by_name (abfd, ".dynsym");
4990 if (s != NULL)
4991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4992 s = bfd_get_section_by_name (abfd, ".dynstr");
4993 if (s != NULL)
4994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4995 s = bfd_get_section_by_name (abfd, ".reginfo");
4996 if (s != NULL)
4997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4998 s = bfd_get_section_by_name (abfd, ".dynamic");
4999 if (s != NULL)
5000 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5001 }
5002
5003 if (!info->shared)
5004 {
5005 const char *name;
5006
5007 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5008 bh = NULL;
5009 if (!(_bfd_generic_link_add_one_symbol
5010 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5011 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5012 return FALSE;
5013
5014 h = (struct elf_link_hash_entry *) bh;
5015 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5016 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5017 h->type = STT_SECTION;
5018
5019 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5020 return FALSE;
5021
5022 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5023 {
5024 /* __rld_map is a four byte word located in the .data section
5025 and is filled in by the rtld to contain a pointer to
5026 the _r_debug structure. Its symbol value will be set in
5027 _bfd_mips_elf_finish_dynamic_symbol. */
5028 s = bfd_get_section_by_name (abfd, ".rld_map");
5029 BFD_ASSERT (s != NULL);
5030
5031 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5032 bh = NULL;
5033 if (!(_bfd_generic_link_add_one_symbol
5034 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
5035 get_elf_backend_data (abfd)->collect, &bh)))
5036 return FALSE;
5037
5038 h = (struct elf_link_hash_entry *) bh;
5039 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5040 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5041 h->type = STT_OBJECT;
5042
5043 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5044 return FALSE;
5045 }
5046 }
5047
5048 return TRUE;
5049 }
5050 \f
5051 /* Look through the relocs for a section during the first phase, and
5052 allocate space in the global offset table. */
5053
5054 bfd_boolean
5055 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5056 asection *sec, const Elf_Internal_Rela *relocs)
5057 {
5058 const char *name;
5059 bfd *dynobj;
5060 Elf_Internal_Shdr *symtab_hdr;
5061 struct elf_link_hash_entry **sym_hashes;
5062 struct mips_got_info *g;
5063 size_t extsymoff;
5064 const Elf_Internal_Rela *rel;
5065 const Elf_Internal_Rela *rel_end;
5066 asection *sgot;
5067 asection *sreloc;
5068 const struct elf_backend_data *bed;
5069
5070 if (info->relocatable)
5071 return TRUE;
5072
5073 dynobj = elf_hash_table (info)->dynobj;
5074 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5075 sym_hashes = elf_sym_hashes (abfd);
5076 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5077
5078 /* Check for the mips16 stub sections. */
5079
5080 name = bfd_get_section_name (abfd, sec);
5081 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5082 {
5083 unsigned long r_symndx;
5084
5085 /* Look at the relocation information to figure out which symbol
5086 this is for. */
5087
5088 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5089
5090 if (r_symndx < extsymoff
5091 || sym_hashes[r_symndx - extsymoff] == NULL)
5092 {
5093 asection *o;
5094
5095 /* This stub is for a local symbol. This stub will only be
5096 needed if there is some relocation in this BFD, other
5097 than a 16 bit function call, which refers to this symbol. */
5098 for (o = abfd->sections; o != NULL; o = o->next)
5099 {
5100 Elf_Internal_Rela *sec_relocs;
5101 const Elf_Internal_Rela *r, *rend;
5102
5103 /* We can ignore stub sections when looking for relocs. */
5104 if ((o->flags & SEC_RELOC) == 0
5105 || o->reloc_count == 0
5106 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5107 sizeof FN_STUB - 1) == 0
5108 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5109 sizeof CALL_STUB - 1) == 0
5110 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5111 sizeof CALL_FP_STUB - 1) == 0)
5112 continue;
5113
5114 sec_relocs
5115 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5116 info->keep_memory);
5117 if (sec_relocs == NULL)
5118 return FALSE;
5119
5120 rend = sec_relocs + o->reloc_count;
5121 for (r = sec_relocs; r < rend; r++)
5122 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5123 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5124 break;
5125
5126 if (elf_section_data (o)->relocs != sec_relocs)
5127 free (sec_relocs);
5128
5129 if (r < rend)
5130 break;
5131 }
5132
5133 if (o == NULL)
5134 {
5135 /* There is no non-call reloc for this stub, so we do
5136 not need it. Since this function is called before
5137 the linker maps input sections to output sections, we
5138 can easily discard it by setting the SEC_EXCLUDE
5139 flag. */
5140 sec->flags |= SEC_EXCLUDE;
5141 return TRUE;
5142 }
5143
5144 /* Record this stub in an array of local symbol stubs for
5145 this BFD. */
5146 if (elf_tdata (abfd)->local_stubs == NULL)
5147 {
5148 unsigned long symcount;
5149 asection **n;
5150 bfd_size_type amt;
5151
5152 if (elf_bad_symtab (abfd))
5153 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5154 else
5155 symcount = symtab_hdr->sh_info;
5156 amt = symcount * sizeof (asection *);
5157 n = bfd_zalloc (abfd, amt);
5158 if (n == NULL)
5159 return FALSE;
5160 elf_tdata (abfd)->local_stubs = n;
5161 }
5162
5163 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5164
5165 /* We don't need to set mips16_stubs_seen in this case.
5166 That flag is used to see whether we need to look through
5167 the global symbol table for stubs. We don't need to set
5168 it here, because we just have a local stub. */
5169 }
5170 else
5171 {
5172 struct mips_elf_link_hash_entry *h;
5173
5174 h = ((struct mips_elf_link_hash_entry *)
5175 sym_hashes[r_symndx - extsymoff]);
5176
5177 /* H is the symbol this stub is for. */
5178
5179 h->fn_stub = sec;
5180 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5181 }
5182 }
5183 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5184 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5185 {
5186 unsigned long r_symndx;
5187 struct mips_elf_link_hash_entry *h;
5188 asection **loc;
5189
5190 /* Look at the relocation information to figure out which symbol
5191 this is for. */
5192
5193 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5194
5195 if (r_symndx < extsymoff
5196 || sym_hashes[r_symndx - extsymoff] == NULL)
5197 {
5198 /* This stub was actually built for a static symbol defined
5199 in the same file. We assume that all static symbols in
5200 mips16 code are themselves mips16, so we can simply
5201 discard this stub. Since this function is called before
5202 the linker maps input sections to output sections, we can
5203 easily discard it by setting the SEC_EXCLUDE flag. */
5204 sec->flags |= SEC_EXCLUDE;
5205 return TRUE;
5206 }
5207
5208 h = ((struct mips_elf_link_hash_entry *)
5209 sym_hashes[r_symndx - extsymoff]);
5210
5211 /* H is the symbol this stub is for. */
5212
5213 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5214 loc = &h->call_fp_stub;
5215 else
5216 loc = &h->call_stub;
5217
5218 /* If we already have an appropriate stub for this function, we
5219 don't need another one, so we can discard this one. Since
5220 this function is called before the linker maps input sections
5221 to output sections, we can easily discard it by setting the
5222 SEC_EXCLUDE flag. We can also discard this section if we
5223 happen to already know that this is a mips16 function; it is
5224 not necessary to check this here, as it is checked later, but
5225 it is slightly faster to check now. */
5226 if (*loc != NULL || h->root.other == STO_MIPS16)
5227 {
5228 sec->flags |= SEC_EXCLUDE;
5229 return TRUE;
5230 }
5231
5232 *loc = sec;
5233 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5234 }
5235
5236 if (dynobj == NULL)
5237 {
5238 sgot = NULL;
5239 g = NULL;
5240 }
5241 else
5242 {
5243 sgot = mips_elf_got_section (dynobj, FALSE);
5244 if (sgot == NULL)
5245 g = NULL;
5246 else
5247 {
5248 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5249 g = mips_elf_section_data (sgot)->u.got_info;
5250 BFD_ASSERT (g != NULL);
5251 }
5252 }
5253
5254 sreloc = NULL;
5255 bed = get_elf_backend_data (abfd);
5256 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5257 for (rel = relocs; rel < rel_end; ++rel)
5258 {
5259 unsigned long r_symndx;
5260 unsigned int r_type;
5261 struct elf_link_hash_entry *h;
5262
5263 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5264 r_type = ELF_R_TYPE (abfd, rel->r_info);
5265
5266 if (r_symndx < extsymoff)
5267 h = NULL;
5268 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5269 {
5270 (*_bfd_error_handler)
5271 (_("%s: Malformed reloc detected for section %s"),
5272 bfd_archive_filename (abfd), name);
5273 bfd_set_error (bfd_error_bad_value);
5274 return FALSE;
5275 }
5276 else
5277 {
5278 h = sym_hashes[r_symndx - extsymoff];
5279
5280 /* This may be an indirect symbol created because of a version. */
5281 if (h != NULL)
5282 {
5283 while (h->root.type == bfd_link_hash_indirect)
5284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5285 }
5286 }
5287
5288 /* Some relocs require a global offset table. */
5289 if (dynobj == NULL || sgot == NULL)
5290 {
5291 switch (r_type)
5292 {
5293 case R_MIPS_GOT16:
5294 case R_MIPS_CALL16:
5295 case R_MIPS_CALL_HI16:
5296 case R_MIPS_CALL_LO16:
5297 case R_MIPS_GOT_HI16:
5298 case R_MIPS_GOT_LO16:
5299 case R_MIPS_GOT_PAGE:
5300 case R_MIPS_GOT_OFST:
5301 case R_MIPS_GOT_DISP:
5302 if (dynobj == NULL)
5303 elf_hash_table (info)->dynobj = dynobj = abfd;
5304 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5305 return FALSE;
5306 g = mips_elf_got_info (dynobj, &sgot);
5307 break;
5308
5309 case R_MIPS_32:
5310 case R_MIPS_REL32:
5311 case R_MIPS_64:
5312 if (dynobj == NULL
5313 && (info->shared || h != NULL)
5314 && (sec->flags & SEC_ALLOC) != 0)
5315 elf_hash_table (info)->dynobj = dynobj = abfd;
5316 break;
5317
5318 default:
5319 break;
5320 }
5321 }
5322
5323 if (!h && (r_type == R_MIPS_CALL_LO16
5324 || r_type == R_MIPS_GOT_LO16
5325 || r_type == R_MIPS_GOT_DISP))
5326 {
5327 /* We may need a local GOT entry for this relocation. We
5328 don't count R_MIPS_GOT_PAGE because we can estimate the
5329 maximum number of pages needed by looking at the size of
5330 the segment. Similar comments apply to R_MIPS_GOT16 and
5331 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5332 R_MIPS_CALL_HI16 because these are always followed by an
5333 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5334 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5335 rel->r_addend, g))
5336 return FALSE;
5337 }
5338
5339 switch (r_type)
5340 {
5341 case R_MIPS_CALL16:
5342 if (h == NULL)
5343 {
5344 (*_bfd_error_handler)
5345 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5346 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5347 bfd_set_error (bfd_error_bad_value);
5348 return FALSE;
5349 }
5350 /* Fall through. */
5351
5352 case R_MIPS_CALL_HI16:
5353 case R_MIPS_CALL_LO16:
5354 if (h != NULL)
5355 {
5356 /* This symbol requires a global offset table entry. */
5357 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5358 return FALSE;
5359
5360 /* We need a stub, not a plt entry for the undefined
5361 function. But we record it as if it needs plt. See
5362 elf_adjust_dynamic_symbol in elflink.h. */
5363 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5364 h->type = STT_FUNC;
5365 }
5366 break;
5367
5368 case R_MIPS_GOT_PAGE:
5369 /* If this is a global, overridable symbol, GOT_PAGE will
5370 decay to GOT_DISP, so we'll need a GOT entry for it. */
5371 if (h == NULL)
5372 break;
5373 else
5374 {
5375 struct mips_elf_link_hash_entry *hmips =
5376 (struct mips_elf_link_hash_entry *) h;
5377
5378 while (hmips->root.root.type == bfd_link_hash_indirect
5379 || hmips->root.root.type == bfd_link_hash_warning)
5380 hmips = (struct mips_elf_link_hash_entry *)
5381 hmips->root.root.u.i.link;
5382
5383 if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
5384 && ! (info->shared && ! info->symbolic
5385 && ! (hmips->root.elf_link_hash_flags
5386 & ELF_LINK_FORCED_LOCAL)))
5387 break;
5388 }
5389 /* Fall through. */
5390
5391 case R_MIPS_GOT16:
5392 case R_MIPS_GOT_HI16:
5393 case R_MIPS_GOT_LO16:
5394 case R_MIPS_GOT_DISP:
5395 /* This symbol requires a global offset table entry. */
5396 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5397 return FALSE;
5398 break;
5399
5400 case R_MIPS_32:
5401 case R_MIPS_REL32:
5402 case R_MIPS_64:
5403 if ((info->shared || h != NULL)
5404 && (sec->flags & SEC_ALLOC) != 0)
5405 {
5406 if (sreloc == NULL)
5407 {
5408 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5409 if (sreloc == NULL)
5410 return FALSE;
5411 }
5412 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5413 if (info->shared)
5414 {
5415 /* When creating a shared object, we must copy these
5416 reloc types into the output file as R_MIPS_REL32
5417 relocs. We make room for this reloc in the
5418 .rel.dyn reloc section. */
5419 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5420 if ((sec->flags & MIPS_READONLY_SECTION)
5421 == MIPS_READONLY_SECTION)
5422 /* We tell the dynamic linker that there are
5423 relocations against the text segment. */
5424 info->flags |= DF_TEXTREL;
5425 }
5426 else
5427 {
5428 struct mips_elf_link_hash_entry *hmips;
5429
5430 /* We only need to copy this reloc if the symbol is
5431 defined in a dynamic object. */
5432 hmips = (struct mips_elf_link_hash_entry *) h;
5433 ++hmips->possibly_dynamic_relocs;
5434 if ((sec->flags & MIPS_READONLY_SECTION)
5435 == MIPS_READONLY_SECTION)
5436 /* We need it to tell the dynamic linker if there
5437 are relocations against the text segment. */
5438 hmips->readonly_reloc = TRUE;
5439 }
5440
5441 /* Even though we don't directly need a GOT entry for
5442 this symbol, a symbol must have a dynamic symbol
5443 table index greater that DT_MIPS_GOTSYM if there are
5444 dynamic relocations against it. */
5445 if (h != NULL)
5446 {
5447 if (dynobj == NULL)
5448 elf_hash_table (info)->dynobj = dynobj = abfd;
5449 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5450 return FALSE;
5451 g = mips_elf_got_info (dynobj, &sgot);
5452 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5453 return FALSE;
5454 }
5455 }
5456
5457 if (SGI_COMPAT (abfd))
5458 mips_elf_hash_table (info)->compact_rel_size +=
5459 sizeof (Elf32_External_crinfo);
5460 break;
5461
5462 case R_MIPS_26:
5463 case R_MIPS_GPREL16:
5464 case R_MIPS_LITERAL:
5465 case R_MIPS_GPREL32:
5466 if (SGI_COMPAT (abfd))
5467 mips_elf_hash_table (info)->compact_rel_size +=
5468 sizeof (Elf32_External_crinfo);
5469 break;
5470
5471 /* This relocation describes the C++ object vtable hierarchy.
5472 Reconstruct it for later use during GC. */
5473 case R_MIPS_GNU_VTINHERIT:
5474 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5475 return FALSE;
5476 break;
5477
5478 /* This relocation describes which C++ vtable entries are actually
5479 used. Record for later use during GC. */
5480 case R_MIPS_GNU_VTENTRY:
5481 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5482 return FALSE;
5483 break;
5484
5485 default:
5486 break;
5487 }
5488
5489 /* We must not create a stub for a symbol that has relocations
5490 related to taking the function's address. */
5491 switch (r_type)
5492 {
5493 default:
5494 if (h != NULL)
5495 {
5496 struct mips_elf_link_hash_entry *mh;
5497
5498 mh = (struct mips_elf_link_hash_entry *) h;
5499 mh->no_fn_stub = TRUE;
5500 }
5501 break;
5502 case R_MIPS_CALL16:
5503 case R_MIPS_CALL_HI16:
5504 case R_MIPS_CALL_LO16:
5505 case R_MIPS_JALR:
5506 break;
5507 }
5508
5509 /* If this reloc is not a 16 bit call, and it has a global
5510 symbol, then we will need the fn_stub if there is one.
5511 References from a stub section do not count. */
5512 if (h != NULL
5513 && r_type != R_MIPS16_26
5514 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5515 sizeof FN_STUB - 1) != 0
5516 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5517 sizeof CALL_STUB - 1) != 0
5518 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5519 sizeof CALL_FP_STUB - 1) != 0)
5520 {
5521 struct mips_elf_link_hash_entry *mh;
5522
5523 mh = (struct mips_elf_link_hash_entry *) h;
5524 mh->need_fn_stub = TRUE;
5525 }
5526 }
5527
5528 return TRUE;
5529 }
5530 \f
5531 bfd_boolean
5532 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5533 struct bfd_link_info *link_info,
5534 bfd_boolean *again)
5535 {
5536 Elf_Internal_Rela *internal_relocs;
5537 Elf_Internal_Rela *irel, *irelend;
5538 Elf_Internal_Shdr *symtab_hdr;
5539 bfd_byte *contents = NULL;
5540 bfd_byte *free_contents = NULL;
5541 size_t extsymoff;
5542 bfd_boolean changed_contents = FALSE;
5543 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5544 Elf_Internal_Sym *isymbuf = NULL;
5545
5546 /* We are not currently changing any sizes, so only one pass. */
5547 *again = FALSE;
5548
5549 if (link_info->relocatable)
5550 return TRUE;
5551
5552 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5553 link_info->keep_memory);
5554 if (internal_relocs == NULL)
5555 return TRUE;
5556
5557 irelend = internal_relocs + sec->reloc_count
5558 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5559 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5560 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5561
5562 for (irel = internal_relocs; irel < irelend; irel++)
5563 {
5564 bfd_vma symval;
5565 bfd_signed_vma sym_offset;
5566 unsigned int r_type;
5567 unsigned long r_symndx;
5568 asection *sym_sec;
5569 unsigned long instruction;
5570
5571 /* Turn jalr into bgezal, and jr into beq, if they're marked
5572 with a JALR relocation, that indicate where they jump to.
5573 This saves some pipeline bubbles. */
5574 r_type = ELF_R_TYPE (abfd, irel->r_info);
5575 if (r_type != R_MIPS_JALR)
5576 continue;
5577
5578 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5579 /* Compute the address of the jump target. */
5580 if (r_symndx >= extsymoff)
5581 {
5582 struct mips_elf_link_hash_entry *h
5583 = ((struct mips_elf_link_hash_entry *)
5584 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5585
5586 while (h->root.root.type == bfd_link_hash_indirect
5587 || h->root.root.type == bfd_link_hash_warning)
5588 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5589
5590 /* If a symbol is undefined, or if it may be overridden,
5591 skip it. */
5592 if (! ((h->root.root.type == bfd_link_hash_defined
5593 || h->root.root.type == bfd_link_hash_defweak)
5594 && h->root.root.u.def.section)
5595 || (link_info->shared && ! link_info->symbolic
5596 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5597 continue;
5598
5599 sym_sec = h->root.root.u.def.section;
5600 if (sym_sec->output_section)
5601 symval = (h->root.root.u.def.value
5602 + sym_sec->output_section->vma
5603 + sym_sec->output_offset);
5604 else
5605 symval = h->root.root.u.def.value;
5606 }
5607 else
5608 {
5609 Elf_Internal_Sym *isym;
5610
5611 /* Read this BFD's symbols if we haven't done so already. */
5612 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5613 {
5614 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5615 if (isymbuf == NULL)
5616 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5617 symtab_hdr->sh_info, 0,
5618 NULL, NULL, NULL);
5619 if (isymbuf == NULL)
5620 goto relax_return;
5621 }
5622
5623 isym = isymbuf + r_symndx;
5624 if (isym->st_shndx == SHN_UNDEF)
5625 continue;
5626 else if (isym->st_shndx == SHN_ABS)
5627 sym_sec = bfd_abs_section_ptr;
5628 else if (isym->st_shndx == SHN_COMMON)
5629 sym_sec = bfd_com_section_ptr;
5630 else
5631 sym_sec
5632 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5633 symval = isym->st_value
5634 + sym_sec->output_section->vma
5635 + sym_sec->output_offset;
5636 }
5637
5638 /* Compute branch offset, from delay slot of the jump to the
5639 branch target. */
5640 sym_offset = (symval + irel->r_addend)
5641 - (sec_start + irel->r_offset + 4);
5642
5643 /* Branch offset must be properly aligned. */
5644 if ((sym_offset & 3) != 0)
5645 continue;
5646
5647 sym_offset >>= 2;
5648
5649 /* Check that it's in range. */
5650 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5651 continue;
5652
5653 /* Get the section contents if we haven't done so already. */
5654 if (contents == NULL)
5655 {
5656 /* Get cached copy if it exists. */
5657 if (elf_section_data (sec)->this_hdr.contents != NULL)
5658 contents = elf_section_data (sec)->this_hdr.contents;
5659 else
5660 {
5661 contents = bfd_malloc (sec->_raw_size);
5662 if (contents == NULL)
5663 goto relax_return;
5664
5665 free_contents = contents;
5666 if (! bfd_get_section_contents (abfd, sec, contents,
5667 0, sec->_raw_size))
5668 goto relax_return;
5669 }
5670 }
5671
5672 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5673
5674 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5675 if ((instruction & 0xfc1fffff) == 0x0000f809)
5676 instruction = 0x04110000;
5677 /* If it was jr <reg>, turn it into b <target>. */
5678 else if ((instruction & 0xfc1fffff) == 0x00000008)
5679 instruction = 0x10000000;
5680 else
5681 continue;
5682
5683 instruction |= (sym_offset & 0xffff);
5684 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5685 changed_contents = TRUE;
5686 }
5687
5688 if (contents != NULL
5689 && elf_section_data (sec)->this_hdr.contents != contents)
5690 {
5691 if (!changed_contents && !link_info->keep_memory)
5692 free (contents);
5693 else
5694 {
5695 /* Cache the section contents for elf_link_input_bfd. */
5696 elf_section_data (sec)->this_hdr.contents = contents;
5697 }
5698 }
5699 return TRUE;
5700
5701 relax_return:
5702 if (free_contents != NULL)
5703 free (free_contents);
5704 return FALSE;
5705 }
5706 \f
5707 /* Adjust a symbol defined by a dynamic object and referenced by a
5708 regular object. The current definition is in some section of the
5709 dynamic object, but we're not including those sections. We have to
5710 change the definition to something the rest of the link can
5711 understand. */
5712
5713 bfd_boolean
5714 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5715 struct elf_link_hash_entry *h)
5716 {
5717 bfd *dynobj;
5718 struct mips_elf_link_hash_entry *hmips;
5719 asection *s;
5720
5721 dynobj = elf_hash_table (info)->dynobj;
5722
5723 /* Make sure we know what is going on here. */
5724 BFD_ASSERT (dynobj != NULL
5725 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5726 || h->weakdef != NULL
5727 || ((h->elf_link_hash_flags
5728 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5729 && (h->elf_link_hash_flags
5730 & ELF_LINK_HASH_REF_REGULAR) != 0
5731 && (h->elf_link_hash_flags
5732 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5733
5734 /* If this symbol is defined in a dynamic object, we need to copy
5735 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5736 file. */
5737 hmips = (struct mips_elf_link_hash_entry *) h;
5738 if (! info->relocatable
5739 && hmips->possibly_dynamic_relocs != 0
5740 && (h->root.type == bfd_link_hash_defweak
5741 || (h->elf_link_hash_flags
5742 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5743 {
5744 mips_elf_allocate_dynamic_relocations (dynobj,
5745 hmips->possibly_dynamic_relocs);
5746 if (hmips->readonly_reloc)
5747 /* We tell the dynamic linker that there are relocations
5748 against the text segment. */
5749 info->flags |= DF_TEXTREL;
5750 }
5751
5752 /* For a function, create a stub, if allowed. */
5753 if (! hmips->no_fn_stub
5754 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5755 {
5756 if (! elf_hash_table (info)->dynamic_sections_created)
5757 return TRUE;
5758
5759 /* If this symbol is not defined in a regular file, then set
5760 the symbol to the stub location. This is required to make
5761 function pointers compare as equal between the normal
5762 executable and the shared library. */
5763 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5764 {
5765 /* We need .stub section. */
5766 s = bfd_get_section_by_name (dynobj,
5767 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5768 BFD_ASSERT (s != NULL);
5769
5770 h->root.u.def.section = s;
5771 h->root.u.def.value = s->_raw_size;
5772
5773 /* XXX Write this stub address somewhere. */
5774 h->plt.offset = s->_raw_size;
5775
5776 /* Make room for this stub code. */
5777 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5778
5779 /* The last half word of the stub will be filled with the index
5780 of this symbol in .dynsym section. */
5781 return TRUE;
5782 }
5783 }
5784 else if ((h->type == STT_FUNC)
5785 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5786 {
5787 /* This will set the entry for this symbol in the GOT to 0, and
5788 the dynamic linker will take care of this. */
5789 h->root.u.def.value = 0;
5790 return TRUE;
5791 }
5792
5793 /* If this is a weak symbol, and there is a real definition, the
5794 processor independent code will have arranged for us to see the
5795 real definition first, and we can just use the same value. */
5796 if (h->weakdef != NULL)
5797 {
5798 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5799 || h->weakdef->root.type == bfd_link_hash_defweak);
5800 h->root.u.def.section = h->weakdef->root.u.def.section;
5801 h->root.u.def.value = h->weakdef->root.u.def.value;
5802 return TRUE;
5803 }
5804
5805 /* This is a reference to a symbol defined by a dynamic object which
5806 is not a function. */
5807
5808 return TRUE;
5809 }
5810 \f
5811 /* This function is called after all the input files have been read,
5812 and the input sections have been assigned to output sections. We
5813 check for any mips16 stub sections that we can discard. */
5814
5815 bfd_boolean
5816 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5817 struct bfd_link_info *info)
5818 {
5819 asection *ri;
5820
5821 bfd *dynobj;
5822 asection *s;
5823 struct mips_got_info *g;
5824 int i;
5825 bfd_size_type loadable_size = 0;
5826 bfd_size_type local_gotno;
5827 bfd *sub;
5828
5829 /* The .reginfo section has a fixed size. */
5830 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5831 if (ri != NULL)
5832 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5833
5834 if (! (info->relocatable
5835 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5836 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5837 mips_elf_check_mips16_stubs, NULL);
5838
5839 dynobj = elf_hash_table (info)->dynobj;
5840 if (dynobj == NULL)
5841 /* Relocatable links don't have it. */
5842 return TRUE;
5843
5844 g = mips_elf_got_info (dynobj, &s);
5845 if (s == NULL)
5846 return TRUE;
5847
5848 /* Calculate the total loadable size of the output. That
5849 will give us the maximum number of GOT_PAGE entries
5850 required. */
5851 for (sub = info->input_bfds; sub; sub = sub->link_next)
5852 {
5853 asection *subsection;
5854
5855 for (subsection = sub->sections;
5856 subsection;
5857 subsection = subsection->next)
5858 {
5859 if ((subsection->flags & SEC_ALLOC) == 0)
5860 continue;
5861 loadable_size += ((subsection->_raw_size + 0xf)
5862 &~ (bfd_size_type) 0xf);
5863 }
5864 }
5865
5866 /* There has to be a global GOT entry for every symbol with
5867 a dynamic symbol table index of DT_MIPS_GOTSYM or
5868 higher. Therefore, it make sense to put those symbols
5869 that need GOT entries at the end of the symbol table. We
5870 do that here. */
5871 if (! mips_elf_sort_hash_table (info, 1))
5872 return FALSE;
5873
5874 if (g->global_gotsym != NULL)
5875 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5876 else
5877 /* If there are no global symbols, or none requiring
5878 relocations, then GLOBAL_GOTSYM will be NULL. */
5879 i = 0;
5880
5881 /* In the worst case, we'll get one stub per dynamic symbol, plus
5882 one to account for the dummy entry at the end required by IRIX
5883 rld. */
5884 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5885
5886 /* Assume there are two loadable segments consisting of
5887 contiguous sections. Is 5 enough? */
5888 local_gotno = (loadable_size >> 16) + 5;
5889
5890 g->local_gotno += local_gotno;
5891 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5892
5893 g->global_gotno = i;
5894 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5895
5896 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5897 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5898 return FALSE;
5899
5900 return TRUE;
5901 }
5902
5903 /* Set the sizes of the dynamic sections. */
5904
5905 bfd_boolean
5906 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5907 struct bfd_link_info *info)
5908 {
5909 bfd *dynobj;
5910 asection *s;
5911 bfd_boolean reltext;
5912
5913 dynobj = elf_hash_table (info)->dynobj;
5914 BFD_ASSERT (dynobj != NULL);
5915
5916 if (elf_hash_table (info)->dynamic_sections_created)
5917 {
5918 /* Set the contents of the .interp section to the interpreter. */
5919 if (info->executable)
5920 {
5921 s = bfd_get_section_by_name (dynobj, ".interp");
5922 BFD_ASSERT (s != NULL);
5923 s->_raw_size
5924 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5925 s->contents
5926 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5927 }
5928 }
5929
5930 /* The check_relocs and adjust_dynamic_symbol entry points have
5931 determined the sizes of the various dynamic sections. Allocate
5932 memory for them. */
5933 reltext = FALSE;
5934 for (s = dynobj->sections; s != NULL; s = s->next)
5935 {
5936 const char *name;
5937 bfd_boolean strip;
5938
5939 /* It's OK to base decisions on the section name, because none
5940 of the dynobj section names depend upon the input files. */
5941 name = bfd_get_section_name (dynobj, s);
5942
5943 if ((s->flags & SEC_LINKER_CREATED) == 0)
5944 continue;
5945
5946 strip = FALSE;
5947
5948 if (strncmp (name, ".rel", 4) == 0)
5949 {
5950 if (s->_raw_size == 0)
5951 {
5952 /* We only strip the section if the output section name
5953 has the same name. Otherwise, there might be several
5954 input sections for this output section. FIXME: This
5955 code is probably not needed these days anyhow, since
5956 the linker now does not create empty output sections. */
5957 if (s->output_section != NULL
5958 && strcmp (name,
5959 bfd_get_section_name (s->output_section->owner,
5960 s->output_section)) == 0)
5961 strip = TRUE;
5962 }
5963 else
5964 {
5965 const char *outname;
5966 asection *target;
5967
5968 /* If this relocation section applies to a read only
5969 section, then we probably need a DT_TEXTREL entry.
5970 If the relocation section is .rel.dyn, we always
5971 assert a DT_TEXTREL entry rather than testing whether
5972 there exists a relocation to a read only section or
5973 not. */
5974 outname = bfd_get_section_name (output_bfd,
5975 s->output_section);
5976 target = bfd_get_section_by_name (output_bfd, outname + 4);
5977 if ((target != NULL
5978 && (target->flags & SEC_READONLY) != 0
5979 && (target->flags & SEC_ALLOC) != 0)
5980 || strcmp (outname, ".rel.dyn") == 0)
5981 reltext = TRUE;
5982
5983 /* We use the reloc_count field as a counter if we need
5984 to copy relocs into the output file. */
5985 if (strcmp (name, ".rel.dyn") != 0)
5986 s->reloc_count = 0;
5987
5988 /* If combreloc is enabled, elf_link_sort_relocs() will
5989 sort relocations, but in a different way than we do,
5990 and before we're done creating relocations. Also, it
5991 will move them around between input sections'
5992 relocation's contents, so our sorting would be
5993 broken, so don't let it run. */
5994 info->combreloc = 0;
5995 }
5996 }
5997 else if (strncmp (name, ".got", 4) == 0)
5998 {
5999 /* _bfd_mips_elf_always_size_sections() has already done
6000 most of the work, but some symbols may have been mapped
6001 to versions that we must now resolve in the got_entries
6002 hash tables. */
6003 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6004 struct mips_got_info *g = gg;
6005 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6006 unsigned int needed_relocs = 0;
6007
6008 if (gg->next)
6009 {
6010 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6011 set_got_offset_arg.info = info;
6012
6013 mips_elf_resolve_final_got_entries (gg);
6014 for (g = gg->next; g && g->next != gg; g = g->next)
6015 {
6016 unsigned int save_assign;
6017
6018 mips_elf_resolve_final_got_entries (g);
6019
6020 /* Assign offsets to global GOT entries. */
6021 save_assign = g->assigned_gotno;
6022 g->assigned_gotno = g->local_gotno;
6023 set_got_offset_arg.g = g;
6024 set_got_offset_arg.needed_relocs = 0;
6025 htab_traverse (g->got_entries,
6026 mips_elf_set_global_got_offset,
6027 &set_got_offset_arg);
6028 needed_relocs += set_got_offset_arg.needed_relocs;
6029 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6030 <= g->global_gotno);
6031
6032 g->assigned_gotno = save_assign;
6033 if (info->shared)
6034 {
6035 needed_relocs += g->local_gotno - g->assigned_gotno;
6036 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6037 + g->next->global_gotno
6038 + MIPS_RESERVED_GOTNO);
6039 }
6040 }
6041
6042 if (needed_relocs)
6043 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6044 }
6045 }
6046 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6047 {
6048 /* IRIX rld assumes that the function stub isn't at the end
6049 of .text section. So put a dummy. XXX */
6050 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6051 }
6052 else if (! info->shared
6053 && ! mips_elf_hash_table (info)->use_rld_obj_head
6054 && strncmp (name, ".rld_map", 8) == 0)
6055 {
6056 /* We add a room for __rld_map. It will be filled in by the
6057 rtld to contain a pointer to the _r_debug structure. */
6058 s->_raw_size += 4;
6059 }
6060 else if (SGI_COMPAT (output_bfd)
6061 && strncmp (name, ".compact_rel", 12) == 0)
6062 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6063 else if (strncmp (name, ".init", 5) != 0)
6064 {
6065 /* It's not one of our sections, so don't allocate space. */
6066 continue;
6067 }
6068
6069 if (strip)
6070 {
6071 _bfd_strip_section_from_output (info, s);
6072 continue;
6073 }
6074
6075 /* Allocate memory for the section contents. */
6076 s->contents = bfd_zalloc (dynobj, s->_raw_size);
6077 if (s->contents == NULL && s->_raw_size != 0)
6078 {
6079 bfd_set_error (bfd_error_no_memory);
6080 return FALSE;
6081 }
6082 }
6083
6084 if (elf_hash_table (info)->dynamic_sections_created)
6085 {
6086 /* Add some entries to the .dynamic section. We fill in the
6087 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6088 must add the entries now so that we get the correct size for
6089 the .dynamic section. The DT_DEBUG entry is filled in by the
6090 dynamic linker and used by the debugger. */
6091 if (! info->shared)
6092 {
6093 /* SGI object has the equivalence of DT_DEBUG in the
6094 DT_MIPS_RLD_MAP entry. */
6095 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6096 return FALSE;
6097 if (!SGI_COMPAT (output_bfd))
6098 {
6099 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6100 return FALSE;
6101 }
6102 }
6103 else
6104 {
6105 /* Shared libraries on traditional mips have DT_DEBUG. */
6106 if (!SGI_COMPAT (output_bfd))
6107 {
6108 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6109 return FALSE;
6110 }
6111 }
6112
6113 if (reltext && SGI_COMPAT (output_bfd))
6114 info->flags |= DF_TEXTREL;
6115
6116 if ((info->flags & DF_TEXTREL) != 0)
6117 {
6118 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6119 return FALSE;
6120 }
6121
6122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6123 return FALSE;
6124
6125 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6126 {
6127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6128 return FALSE;
6129
6130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6131 return FALSE;
6132
6133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6134 return FALSE;
6135 }
6136
6137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6138 return FALSE;
6139
6140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6141 return FALSE;
6142
6143 #if 0
6144 /* Time stamps in executable files are a bad idea. */
6145 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6146 return FALSE;
6147 #endif
6148
6149 #if 0 /* FIXME */
6150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6151 return FALSE;
6152 #endif
6153
6154 #if 0 /* FIXME */
6155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6156 return FALSE;
6157 #endif
6158
6159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6160 return FALSE;
6161
6162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6163 return FALSE;
6164
6165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6166 return FALSE;
6167
6168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6169 return FALSE;
6170
6171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6172 return FALSE;
6173
6174 if (IRIX_COMPAT (dynobj) == ict_irix5
6175 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6176 return FALSE;
6177
6178 if (IRIX_COMPAT (dynobj) == ict_irix6
6179 && (bfd_get_section_by_name
6180 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6181 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6182 return FALSE;
6183 }
6184
6185 return TRUE;
6186 }
6187 \f
6188 /* Relocate a MIPS ELF section. */
6189
6190 bfd_boolean
6191 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6192 bfd *input_bfd, asection *input_section,
6193 bfd_byte *contents, Elf_Internal_Rela *relocs,
6194 Elf_Internal_Sym *local_syms,
6195 asection **local_sections)
6196 {
6197 Elf_Internal_Rela *rel;
6198 const Elf_Internal_Rela *relend;
6199 bfd_vma addend = 0;
6200 bfd_boolean use_saved_addend_p = FALSE;
6201 const struct elf_backend_data *bed;
6202
6203 bed = get_elf_backend_data (output_bfd);
6204 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6205 for (rel = relocs; rel < relend; ++rel)
6206 {
6207 const char *name;
6208 bfd_vma value;
6209 reloc_howto_type *howto;
6210 bfd_boolean require_jalx;
6211 /* TRUE if the relocation is a RELA relocation, rather than a
6212 REL relocation. */
6213 bfd_boolean rela_relocation_p = TRUE;
6214 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6215 const char *msg;
6216
6217 /* Find the relocation howto for this relocation. */
6218 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6219 {
6220 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6221 64-bit code, but make sure all their addresses are in the
6222 lowermost or uppermost 32-bit section of the 64-bit address
6223 space. Thus, when they use an R_MIPS_64 they mean what is
6224 usually meant by R_MIPS_32, with the exception that the
6225 stored value is sign-extended to 64 bits. */
6226 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6227
6228 /* On big-endian systems, we need to lie about the position
6229 of the reloc. */
6230 if (bfd_big_endian (input_bfd))
6231 rel->r_offset += 4;
6232 }
6233 else
6234 /* NewABI defaults to RELA relocations. */
6235 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6236 NEWABI_P (input_bfd)
6237 && (MIPS_RELOC_RELA_P
6238 (input_bfd, input_section,
6239 rel - relocs)));
6240
6241 if (!use_saved_addend_p)
6242 {
6243 Elf_Internal_Shdr *rel_hdr;
6244
6245 /* If these relocations were originally of the REL variety,
6246 we must pull the addend out of the field that will be
6247 relocated. Otherwise, we simply use the contents of the
6248 RELA relocation. To determine which flavor or relocation
6249 this is, we depend on the fact that the INPUT_SECTION's
6250 REL_HDR is read before its REL_HDR2. */
6251 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6252 if ((size_t) (rel - relocs)
6253 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6254 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6255 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6256 {
6257 /* Note that this is a REL relocation. */
6258 rela_relocation_p = FALSE;
6259
6260 /* Get the addend, which is stored in the input file. */
6261 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6262 contents);
6263 addend &= howto->src_mask;
6264
6265 /* For some kinds of relocations, the ADDEND is a
6266 combination of the addend stored in two different
6267 relocations. */
6268 if (r_type == R_MIPS_HI16
6269 || r_type == R_MIPS_GNU_REL_HI16
6270 || (r_type == R_MIPS_GOT16
6271 && mips_elf_local_relocation_p (input_bfd, rel,
6272 local_sections, FALSE)))
6273 {
6274 bfd_vma l;
6275 const Elf_Internal_Rela *lo16_relocation;
6276 reloc_howto_type *lo16_howto;
6277 unsigned int lo;
6278
6279 /* The combined value is the sum of the HI16 addend,
6280 left-shifted by sixteen bits, and the LO16
6281 addend, sign extended. (Usually, the code does
6282 a `lui' of the HI16 value, and then an `addiu' of
6283 the LO16 value.)
6284
6285 Scan ahead to find a matching LO16 relocation. */
6286 if (r_type == R_MIPS_GNU_REL_HI16)
6287 lo = R_MIPS_GNU_REL_LO16;
6288 else
6289 lo = R_MIPS_LO16;
6290 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6291 rel, relend);
6292 if (lo16_relocation == NULL)
6293 return FALSE;
6294
6295 /* Obtain the addend kept there. */
6296 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6297 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6298 input_bfd, contents);
6299 l &= lo16_howto->src_mask;
6300 l <<= lo16_howto->rightshift;
6301 l = _bfd_mips_elf_sign_extend (l, 16);
6302
6303 addend <<= 16;
6304
6305 /* Compute the combined addend. */
6306 addend += l;
6307
6308 /* If PC-relative, subtract the difference between the
6309 address of the LO part of the reloc and the address of
6310 the HI part. The relocation is relative to the LO
6311 part, but mips_elf_calculate_relocation() doesn't
6312 know its address or the difference from the HI part, so
6313 we subtract that difference here. See also the
6314 comment in mips_elf_calculate_relocation(). */
6315 if (r_type == R_MIPS_GNU_REL_HI16)
6316 addend -= (lo16_relocation->r_offset - rel->r_offset);
6317 }
6318 else if (r_type == R_MIPS16_GPREL)
6319 {
6320 /* The addend is scrambled in the object file. See
6321 mips_elf_perform_relocation for details on the
6322 format. */
6323 addend = (((addend & 0x1f0000) >> 5)
6324 | ((addend & 0x7e00000) >> 16)
6325 | (addend & 0x1f));
6326 }
6327 else
6328 addend <<= howto->rightshift;
6329 }
6330 else
6331 addend = rel->r_addend;
6332 }
6333
6334 if (info->relocatable)
6335 {
6336 Elf_Internal_Sym *sym;
6337 unsigned long r_symndx;
6338
6339 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6340 && bfd_big_endian (input_bfd))
6341 rel->r_offset -= 4;
6342
6343 /* Since we're just relocating, all we need to do is copy
6344 the relocations back out to the object file, unless
6345 they're against a section symbol, in which case we need
6346 to adjust by the section offset, or unless they're GP
6347 relative in which case we need to adjust by the amount
6348 that we're adjusting GP in this relocatable object. */
6349
6350 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6351 FALSE))
6352 /* There's nothing to do for non-local relocations. */
6353 continue;
6354
6355 if (r_type == R_MIPS16_GPREL
6356 || r_type == R_MIPS_GPREL16
6357 || r_type == R_MIPS_GPREL32
6358 || r_type == R_MIPS_LITERAL)
6359 addend -= (_bfd_get_gp_value (output_bfd)
6360 - _bfd_get_gp_value (input_bfd));
6361
6362 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6363 sym = local_syms + r_symndx;
6364 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6365 /* Adjust the addend appropriately. */
6366 addend += local_sections[r_symndx]->output_offset;
6367
6368 if (rela_relocation_p)
6369 /* If this is a RELA relocation, just update the addend. */
6370 rel->r_addend = addend;
6371 else
6372 {
6373 if (r_type == R_MIPS_HI16
6374 || r_type == R_MIPS_GOT16
6375 || r_type == R_MIPS_GNU_REL_HI16)
6376 addend = mips_elf_high (addend);
6377 else if (r_type == R_MIPS_HIGHER)
6378 addend = mips_elf_higher (addend);
6379 else if (r_type == R_MIPS_HIGHEST)
6380 addend = mips_elf_highest (addend);
6381 else
6382 addend >>= howto->rightshift;
6383
6384 /* We use the source mask, rather than the destination
6385 mask because the place to which we are writing will be
6386 source of the addend in the final link. */
6387 addend &= howto->src_mask;
6388
6389 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6390 /* See the comment above about using R_MIPS_64 in the 32-bit
6391 ABI. Here, we need to update the addend. It would be
6392 possible to get away with just using the R_MIPS_32 reloc
6393 but for endianness. */
6394 {
6395 bfd_vma sign_bits;
6396 bfd_vma low_bits;
6397 bfd_vma high_bits;
6398
6399 if (addend & ((bfd_vma) 1 << 31))
6400 #ifdef BFD64
6401 sign_bits = ((bfd_vma) 1 << 32) - 1;
6402 #else
6403 sign_bits = -1;
6404 #endif
6405 else
6406 sign_bits = 0;
6407
6408 /* If we don't know that we have a 64-bit type,
6409 do two separate stores. */
6410 if (bfd_big_endian (input_bfd))
6411 {
6412 /* Store the sign-bits (which are most significant)
6413 first. */
6414 low_bits = sign_bits;
6415 high_bits = addend;
6416 }
6417 else
6418 {
6419 low_bits = addend;
6420 high_bits = sign_bits;
6421 }
6422 bfd_put_32 (input_bfd, low_bits,
6423 contents + rel->r_offset);
6424 bfd_put_32 (input_bfd, high_bits,
6425 contents + rel->r_offset + 4);
6426 continue;
6427 }
6428
6429 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6430 input_bfd, input_section,
6431 contents, FALSE))
6432 return FALSE;
6433 }
6434
6435 /* Go on to the next relocation. */
6436 continue;
6437 }
6438
6439 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6440 relocations for the same offset. In that case we are
6441 supposed to treat the output of each relocation as the addend
6442 for the next. */
6443 if (rel + 1 < relend
6444 && rel->r_offset == rel[1].r_offset
6445 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6446 use_saved_addend_p = TRUE;
6447 else
6448 use_saved_addend_p = FALSE;
6449
6450 /* Figure out what value we are supposed to relocate. */
6451 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6452 input_section, info, rel,
6453 addend, howto, local_syms,
6454 local_sections, &value,
6455 &name, &require_jalx,
6456 use_saved_addend_p))
6457 {
6458 case bfd_reloc_continue:
6459 /* There's nothing to do. */
6460 continue;
6461
6462 case bfd_reloc_undefined:
6463 /* mips_elf_calculate_relocation already called the
6464 undefined_symbol callback. There's no real point in
6465 trying to perform the relocation at this point, so we
6466 just skip ahead to the next relocation. */
6467 continue;
6468
6469 case bfd_reloc_notsupported:
6470 msg = _("internal error: unsupported relocation error");
6471 info->callbacks->warning
6472 (info, msg, name, input_bfd, input_section, rel->r_offset);
6473 return FALSE;
6474
6475 case bfd_reloc_overflow:
6476 if (use_saved_addend_p)
6477 /* Ignore overflow until we reach the last relocation for
6478 a given location. */
6479 ;
6480 else
6481 {
6482 BFD_ASSERT (name != NULL);
6483 if (! ((*info->callbacks->reloc_overflow)
6484 (info, name, howto->name, 0,
6485 input_bfd, input_section, rel->r_offset)))
6486 return FALSE;
6487 }
6488 break;
6489
6490 case bfd_reloc_ok:
6491 break;
6492
6493 default:
6494 abort ();
6495 break;
6496 }
6497
6498 /* If we've got another relocation for the address, keep going
6499 until we reach the last one. */
6500 if (use_saved_addend_p)
6501 {
6502 addend = value;
6503 continue;
6504 }
6505
6506 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6507 /* See the comment above about using R_MIPS_64 in the 32-bit
6508 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6509 that calculated the right value. Now, however, we
6510 sign-extend the 32-bit result to 64-bits, and store it as a
6511 64-bit value. We are especially generous here in that we
6512 go to extreme lengths to support this usage on systems with
6513 only a 32-bit VMA. */
6514 {
6515 bfd_vma sign_bits;
6516 bfd_vma low_bits;
6517 bfd_vma high_bits;
6518
6519 if (value & ((bfd_vma) 1 << 31))
6520 #ifdef BFD64
6521 sign_bits = ((bfd_vma) 1 << 32) - 1;
6522 #else
6523 sign_bits = -1;
6524 #endif
6525 else
6526 sign_bits = 0;
6527
6528 /* If we don't know that we have a 64-bit type,
6529 do two separate stores. */
6530 if (bfd_big_endian (input_bfd))
6531 {
6532 /* Undo what we did above. */
6533 rel->r_offset -= 4;
6534 /* Store the sign-bits (which are most significant)
6535 first. */
6536 low_bits = sign_bits;
6537 high_bits = value;
6538 }
6539 else
6540 {
6541 low_bits = value;
6542 high_bits = sign_bits;
6543 }
6544 bfd_put_32 (input_bfd, low_bits,
6545 contents + rel->r_offset);
6546 bfd_put_32 (input_bfd, high_bits,
6547 contents + rel->r_offset + 4);
6548 continue;
6549 }
6550
6551 /* Actually perform the relocation. */
6552 if (! mips_elf_perform_relocation (info, howto, rel, value,
6553 input_bfd, input_section,
6554 contents, require_jalx))
6555 return FALSE;
6556 }
6557
6558 return TRUE;
6559 }
6560 \f
6561 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6562 adjust it appropriately now. */
6563
6564 static void
6565 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6566 const char *name, Elf_Internal_Sym *sym)
6567 {
6568 /* The linker script takes care of providing names and values for
6569 these, but we must place them into the right sections. */
6570 static const char* const text_section_symbols[] = {
6571 "_ftext",
6572 "_etext",
6573 "__dso_displacement",
6574 "__elf_header",
6575 "__program_header_table",
6576 NULL
6577 };
6578
6579 static const char* const data_section_symbols[] = {
6580 "_fdata",
6581 "_edata",
6582 "_end",
6583 "_fbss",
6584 NULL
6585 };
6586
6587 const char* const *p;
6588 int i;
6589
6590 for (i = 0; i < 2; ++i)
6591 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6592 *p;
6593 ++p)
6594 if (strcmp (*p, name) == 0)
6595 {
6596 /* All of these symbols are given type STT_SECTION by the
6597 IRIX6 linker. */
6598 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6599 sym->st_other = STO_PROTECTED;
6600
6601 /* The IRIX linker puts these symbols in special sections. */
6602 if (i == 0)
6603 sym->st_shndx = SHN_MIPS_TEXT;
6604 else
6605 sym->st_shndx = SHN_MIPS_DATA;
6606
6607 break;
6608 }
6609 }
6610
6611 /* Finish up dynamic symbol handling. We set the contents of various
6612 dynamic sections here. */
6613
6614 bfd_boolean
6615 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6616 struct bfd_link_info *info,
6617 struct elf_link_hash_entry *h,
6618 Elf_Internal_Sym *sym)
6619 {
6620 bfd *dynobj;
6621 bfd_vma gval;
6622 asection *sgot;
6623 struct mips_got_info *g, *gg;
6624 const char *name;
6625
6626 dynobj = elf_hash_table (info)->dynobj;
6627 gval = sym->st_value;
6628
6629 if (h->plt.offset != (bfd_vma) -1)
6630 {
6631 asection *s;
6632 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6633
6634 /* This symbol has a stub. Set it up. */
6635
6636 BFD_ASSERT (h->dynindx != -1);
6637
6638 s = bfd_get_section_by_name (dynobj,
6639 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6640 BFD_ASSERT (s != NULL);
6641
6642 /* FIXME: Can h->dynindex be more than 64K? */
6643 if (h->dynindx & 0xffff0000)
6644 return FALSE;
6645
6646 /* Fill the stub. */
6647 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6648 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6649 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6650 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6651
6652 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6653 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6654
6655 /* Mark the symbol as undefined. plt.offset != -1 occurs
6656 only for the referenced symbol. */
6657 sym->st_shndx = SHN_UNDEF;
6658
6659 /* The run-time linker uses the st_value field of the symbol
6660 to reset the global offset table entry for this external
6661 to its stub address when unlinking a shared object. */
6662 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6663 sym->st_value = gval;
6664 }
6665
6666 BFD_ASSERT (h->dynindx != -1
6667 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6668
6669 sgot = mips_elf_got_section (dynobj, FALSE);
6670 BFD_ASSERT (sgot != NULL);
6671 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6672 g = mips_elf_section_data (sgot)->u.got_info;
6673 BFD_ASSERT (g != NULL);
6674
6675 /* Run through the global symbol table, creating GOT entries for all
6676 the symbols that need them. */
6677 if (g->global_gotsym != NULL
6678 && h->dynindx >= g->global_gotsym->dynindx)
6679 {
6680 bfd_vma offset;
6681 bfd_vma value;
6682
6683 value = sym->st_value;
6684 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6685 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6686 }
6687
6688 if (g->next && h->dynindx != -1)
6689 {
6690 struct mips_got_entry e, *p;
6691 bfd_vma entry;
6692 bfd_vma offset;
6693
6694 gg = g;
6695
6696 e.abfd = output_bfd;
6697 e.symndx = -1;
6698 e.d.h = (struct mips_elf_link_hash_entry *)h;
6699
6700 for (g = g->next; g->next != gg; g = g->next)
6701 {
6702 if (g->got_entries
6703 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6704 &e)))
6705 {
6706 offset = p->gotidx;
6707 if (info->shared
6708 || (elf_hash_table (info)->dynamic_sections_created
6709 && p->d.h != NULL
6710 && ((p->d.h->root.elf_link_hash_flags
6711 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6712 && ((p->d.h->root.elf_link_hash_flags
6713 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6714 {
6715 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6716 the various compatibility problems, it's easier to mock
6717 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6718 mips_elf_create_dynamic_relocation to calculate the
6719 appropriate addend. */
6720 Elf_Internal_Rela rel[3];
6721
6722 memset (rel, 0, sizeof (rel));
6723 if (ABI_64_P (output_bfd))
6724 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6725 else
6726 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6727 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6728
6729 entry = 0;
6730 if (! (mips_elf_create_dynamic_relocation
6731 (output_bfd, info, rel,
6732 e.d.h, NULL, sym->st_value, &entry, sgot)))
6733 return FALSE;
6734 }
6735 else
6736 entry = sym->st_value;
6737 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6738 }
6739 }
6740 }
6741
6742 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6743 name = h->root.root.string;
6744 if (strcmp (name, "_DYNAMIC") == 0
6745 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6746 sym->st_shndx = SHN_ABS;
6747 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6748 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6749 {
6750 sym->st_shndx = SHN_ABS;
6751 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6752 sym->st_value = 1;
6753 }
6754 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6755 {
6756 sym->st_shndx = SHN_ABS;
6757 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6758 sym->st_value = elf_gp (output_bfd);
6759 }
6760 else if (SGI_COMPAT (output_bfd))
6761 {
6762 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6763 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6764 {
6765 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6766 sym->st_other = STO_PROTECTED;
6767 sym->st_value = 0;
6768 sym->st_shndx = SHN_MIPS_DATA;
6769 }
6770 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6771 {
6772 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6773 sym->st_other = STO_PROTECTED;
6774 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6775 sym->st_shndx = SHN_ABS;
6776 }
6777 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6778 {
6779 if (h->type == STT_FUNC)
6780 sym->st_shndx = SHN_MIPS_TEXT;
6781 else if (h->type == STT_OBJECT)
6782 sym->st_shndx = SHN_MIPS_DATA;
6783 }
6784 }
6785
6786 /* Handle the IRIX6-specific symbols. */
6787 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6788 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6789
6790 if (! info->shared)
6791 {
6792 if (! mips_elf_hash_table (info)->use_rld_obj_head
6793 && (strcmp (name, "__rld_map") == 0
6794 || strcmp (name, "__RLD_MAP") == 0))
6795 {
6796 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6797 BFD_ASSERT (s != NULL);
6798 sym->st_value = s->output_section->vma + s->output_offset;
6799 bfd_put_32 (output_bfd, 0, s->contents);
6800 if (mips_elf_hash_table (info)->rld_value == 0)
6801 mips_elf_hash_table (info)->rld_value = sym->st_value;
6802 }
6803 else if (mips_elf_hash_table (info)->use_rld_obj_head
6804 && strcmp (name, "__rld_obj_head") == 0)
6805 {
6806 /* IRIX6 does not use a .rld_map section. */
6807 if (IRIX_COMPAT (output_bfd) == ict_irix5
6808 || IRIX_COMPAT (output_bfd) == ict_none)
6809 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6810 != NULL);
6811 mips_elf_hash_table (info)->rld_value = sym->st_value;
6812 }
6813 }
6814
6815 /* If this is a mips16 symbol, force the value to be even. */
6816 if (sym->st_other == STO_MIPS16)
6817 sym->st_value &= ~1;
6818
6819 return TRUE;
6820 }
6821
6822 /* Finish up the dynamic sections. */
6823
6824 bfd_boolean
6825 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6826 struct bfd_link_info *info)
6827 {
6828 bfd *dynobj;
6829 asection *sdyn;
6830 asection *sgot;
6831 struct mips_got_info *gg, *g;
6832
6833 dynobj = elf_hash_table (info)->dynobj;
6834
6835 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6836
6837 sgot = mips_elf_got_section (dynobj, FALSE);
6838 if (sgot == NULL)
6839 gg = g = NULL;
6840 else
6841 {
6842 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6843 gg = mips_elf_section_data (sgot)->u.got_info;
6844 BFD_ASSERT (gg != NULL);
6845 g = mips_elf_got_for_ibfd (gg, output_bfd);
6846 BFD_ASSERT (g != NULL);
6847 }
6848
6849 if (elf_hash_table (info)->dynamic_sections_created)
6850 {
6851 bfd_byte *b;
6852
6853 BFD_ASSERT (sdyn != NULL);
6854 BFD_ASSERT (g != NULL);
6855
6856 for (b = sdyn->contents;
6857 b < sdyn->contents + sdyn->_raw_size;
6858 b += MIPS_ELF_DYN_SIZE (dynobj))
6859 {
6860 Elf_Internal_Dyn dyn;
6861 const char *name;
6862 size_t elemsize;
6863 asection *s;
6864 bfd_boolean swap_out_p;
6865
6866 /* Read in the current dynamic entry. */
6867 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6868
6869 /* Assume that we're going to modify it and write it out. */
6870 swap_out_p = TRUE;
6871
6872 switch (dyn.d_tag)
6873 {
6874 case DT_RELENT:
6875 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6876 BFD_ASSERT (s != NULL);
6877 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6878 break;
6879
6880 case DT_STRSZ:
6881 /* Rewrite DT_STRSZ. */
6882 dyn.d_un.d_val =
6883 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6884 break;
6885
6886 case DT_PLTGOT:
6887 name = ".got";
6888 s = bfd_get_section_by_name (output_bfd, name);
6889 BFD_ASSERT (s != NULL);
6890 dyn.d_un.d_ptr = s->vma;
6891 break;
6892
6893 case DT_MIPS_RLD_VERSION:
6894 dyn.d_un.d_val = 1; /* XXX */
6895 break;
6896
6897 case DT_MIPS_FLAGS:
6898 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6899 break;
6900
6901 case DT_MIPS_TIME_STAMP:
6902 time ((time_t *) &dyn.d_un.d_val);
6903 break;
6904
6905 case DT_MIPS_ICHECKSUM:
6906 /* XXX FIXME: */
6907 swap_out_p = FALSE;
6908 break;
6909
6910 case DT_MIPS_IVERSION:
6911 /* XXX FIXME: */
6912 swap_out_p = FALSE;
6913 break;
6914
6915 case DT_MIPS_BASE_ADDRESS:
6916 s = output_bfd->sections;
6917 BFD_ASSERT (s != NULL);
6918 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6919 break;
6920
6921 case DT_MIPS_LOCAL_GOTNO:
6922 dyn.d_un.d_val = g->local_gotno;
6923 break;
6924
6925 case DT_MIPS_UNREFEXTNO:
6926 /* The index into the dynamic symbol table which is the
6927 entry of the first external symbol that is not
6928 referenced within the same object. */
6929 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6930 break;
6931
6932 case DT_MIPS_GOTSYM:
6933 if (gg->global_gotsym)
6934 {
6935 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6936 break;
6937 }
6938 /* In case if we don't have global got symbols we default
6939 to setting DT_MIPS_GOTSYM to the same value as
6940 DT_MIPS_SYMTABNO, so we just fall through. */
6941
6942 case DT_MIPS_SYMTABNO:
6943 name = ".dynsym";
6944 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6945 s = bfd_get_section_by_name (output_bfd, name);
6946 BFD_ASSERT (s != NULL);
6947
6948 if (s->_cooked_size != 0)
6949 dyn.d_un.d_val = s->_cooked_size / elemsize;
6950 else
6951 dyn.d_un.d_val = s->_raw_size / elemsize;
6952 break;
6953
6954 case DT_MIPS_HIPAGENO:
6955 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6956 break;
6957
6958 case DT_MIPS_RLD_MAP:
6959 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6960 break;
6961
6962 case DT_MIPS_OPTIONS:
6963 s = (bfd_get_section_by_name
6964 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6965 dyn.d_un.d_ptr = s->vma;
6966 break;
6967
6968 case DT_RELSZ:
6969 /* Reduce DT_RELSZ to account for any relocations we
6970 decided not to make. This is for the n64 irix rld,
6971 which doesn't seem to apply any relocations if there
6972 are trailing null entries. */
6973 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6974 dyn.d_un.d_val = (s->reloc_count
6975 * (ABI_64_P (output_bfd)
6976 ? sizeof (Elf64_Mips_External_Rel)
6977 : sizeof (Elf32_External_Rel)));
6978 break;
6979
6980 default:
6981 swap_out_p = FALSE;
6982 break;
6983 }
6984
6985 if (swap_out_p)
6986 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6987 (dynobj, &dyn, b);
6988 }
6989 }
6990
6991 /* The first entry of the global offset table will be filled at
6992 runtime. The second entry will be used by some runtime loaders.
6993 This isn't the case of IRIX rld. */
6994 if (sgot != NULL && sgot->_raw_size > 0)
6995 {
6996 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6997 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6998 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6999 }
7000
7001 if (sgot != NULL)
7002 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7003 = MIPS_ELF_GOT_SIZE (output_bfd);
7004
7005 /* Generate dynamic relocations for the non-primary gots. */
7006 if (gg != NULL && gg->next)
7007 {
7008 Elf_Internal_Rela rel[3];
7009 bfd_vma addend = 0;
7010
7011 memset (rel, 0, sizeof (rel));
7012 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7013
7014 for (g = gg->next; g->next != gg; g = g->next)
7015 {
7016 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7017
7018 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
7019 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7020 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
7021 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7022
7023 if (! info->shared)
7024 continue;
7025
7026 while (index < g->assigned_gotno)
7027 {
7028 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7029 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7030 if (!(mips_elf_create_dynamic_relocation
7031 (output_bfd, info, rel, NULL,
7032 bfd_abs_section_ptr,
7033 0, &addend, sgot)))
7034 return FALSE;
7035 BFD_ASSERT (addend == 0);
7036 }
7037 }
7038 }
7039
7040 {
7041 asection *s;
7042 Elf32_compact_rel cpt;
7043
7044 if (SGI_COMPAT (output_bfd))
7045 {
7046 /* Write .compact_rel section out. */
7047 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7048 if (s != NULL)
7049 {
7050 cpt.id1 = 1;
7051 cpt.num = s->reloc_count;
7052 cpt.id2 = 2;
7053 cpt.offset = (s->output_section->filepos
7054 + sizeof (Elf32_External_compact_rel));
7055 cpt.reserved0 = 0;
7056 cpt.reserved1 = 0;
7057 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7058 ((Elf32_External_compact_rel *)
7059 s->contents));
7060
7061 /* Clean up a dummy stub function entry in .text. */
7062 s = bfd_get_section_by_name (dynobj,
7063 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7064 if (s != NULL)
7065 {
7066 file_ptr dummy_offset;
7067
7068 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7069 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7070 memset (s->contents + dummy_offset, 0,
7071 MIPS_FUNCTION_STUB_SIZE);
7072 }
7073 }
7074 }
7075
7076 /* We need to sort the entries of the dynamic relocation section. */
7077
7078 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7079
7080 if (s != NULL
7081 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7082 {
7083 reldyn_sorting_bfd = output_bfd;
7084
7085 if (ABI_64_P (output_bfd))
7086 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7087 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7088 else
7089 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7090 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7091 }
7092 }
7093
7094 return TRUE;
7095 }
7096
7097
7098 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7099
7100 static void
7101 mips_set_isa_flags (bfd *abfd)
7102 {
7103 flagword val;
7104
7105 switch (bfd_get_mach (abfd))
7106 {
7107 default:
7108 case bfd_mach_mips3000:
7109 val = E_MIPS_ARCH_1;
7110 break;
7111
7112 case bfd_mach_mips3900:
7113 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7114 break;
7115
7116 case bfd_mach_mips6000:
7117 val = E_MIPS_ARCH_2;
7118 break;
7119
7120 case bfd_mach_mips4000:
7121 case bfd_mach_mips4300:
7122 case bfd_mach_mips4400:
7123 case bfd_mach_mips4600:
7124 val = E_MIPS_ARCH_3;
7125 break;
7126
7127 case bfd_mach_mips4010:
7128 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7129 break;
7130
7131 case bfd_mach_mips4100:
7132 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7133 break;
7134
7135 case bfd_mach_mips4111:
7136 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7137 break;
7138
7139 case bfd_mach_mips4120:
7140 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7141 break;
7142
7143 case bfd_mach_mips4650:
7144 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7145 break;
7146
7147 case bfd_mach_mips5400:
7148 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7149 break;
7150
7151 case bfd_mach_mips5500:
7152 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7153 break;
7154
7155 case bfd_mach_mips5000:
7156 case bfd_mach_mips7000:
7157 case bfd_mach_mips8000:
7158 case bfd_mach_mips10000:
7159 case bfd_mach_mips12000:
7160 val = E_MIPS_ARCH_4;
7161 break;
7162
7163 case bfd_mach_mips5:
7164 val = E_MIPS_ARCH_5;
7165 break;
7166
7167 case bfd_mach_mips_sb1:
7168 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7169 break;
7170
7171 case bfd_mach_mipsisa32:
7172 val = E_MIPS_ARCH_32;
7173 break;
7174
7175 case bfd_mach_mipsisa64:
7176 val = E_MIPS_ARCH_64;
7177 break;
7178
7179 case bfd_mach_mipsisa32r2:
7180 val = E_MIPS_ARCH_32R2;
7181 break;
7182
7183 case bfd_mach_mipsisa64r2:
7184 val = E_MIPS_ARCH_64R2;
7185 break;
7186 }
7187 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7188 elf_elfheader (abfd)->e_flags |= val;
7189
7190 }
7191
7192
7193 /* The final processing done just before writing out a MIPS ELF object
7194 file. This gets the MIPS architecture right based on the machine
7195 number. This is used by both the 32-bit and the 64-bit ABI. */
7196
7197 void
7198 _bfd_mips_elf_final_write_processing (bfd *abfd,
7199 bfd_boolean linker ATTRIBUTE_UNUSED)
7200 {
7201 unsigned int i;
7202 Elf_Internal_Shdr **hdrpp;
7203 const char *name;
7204 asection *sec;
7205
7206 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7207 is nonzero. This is for compatibility with old objects, which used
7208 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7209 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7210 mips_set_isa_flags (abfd);
7211
7212 /* Set the sh_info field for .gptab sections and other appropriate
7213 info for each special section. */
7214 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7215 i < elf_numsections (abfd);
7216 i++, hdrpp++)
7217 {
7218 switch ((*hdrpp)->sh_type)
7219 {
7220 case SHT_MIPS_MSYM:
7221 case SHT_MIPS_LIBLIST:
7222 sec = bfd_get_section_by_name (abfd, ".dynstr");
7223 if (sec != NULL)
7224 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7225 break;
7226
7227 case SHT_MIPS_GPTAB:
7228 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7229 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7230 BFD_ASSERT (name != NULL
7231 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7232 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7233 BFD_ASSERT (sec != NULL);
7234 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7235 break;
7236
7237 case SHT_MIPS_CONTENT:
7238 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7239 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7240 BFD_ASSERT (name != NULL
7241 && strncmp (name, ".MIPS.content",
7242 sizeof ".MIPS.content" - 1) == 0);
7243 sec = bfd_get_section_by_name (abfd,
7244 name + sizeof ".MIPS.content" - 1);
7245 BFD_ASSERT (sec != NULL);
7246 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7247 break;
7248
7249 case SHT_MIPS_SYMBOL_LIB:
7250 sec = bfd_get_section_by_name (abfd, ".dynsym");
7251 if (sec != NULL)
7252 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7253 sec = bfd_get_section_by_name (abfd, ".liblist");
7254 if (sec != NULL)
7255 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7256 break;
7257
7258 case SHT_MIPS_EVENTS:
7259 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7260 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7261 BFD_ASSERT (name != NULL);
7262 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7263 sec = bfd_get_section_by_name (abfd,
7264 name + sizeof ".MIPS.events" - 1);
7265 else
7266 {
7267 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7268 sizeof ".MIPS.post_rel" - 1) == 0);
7269 sec = bfd_get_section_by_name (abfd,
7270 (name
7271 + sizeof ".MIPS.post_rel" - 1));
7272 }
7273 BFD_ASSERT (sec != NULL);
7274 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7275 break;
7276
7277 }
7278 }
7279 }
7280 \f
7281 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7282 segments. */
7283
7284 int
7285 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7286 {
7287 asection *s;
7288 int ret = 0;
7289
7290 /* See if we need a PT_MIPS_REGINFO segment. */
7291 s = bfd_get_section_by_name (abfd, ".reginfo");
7292 if (s && (s->flags & SEC_LOAD))
7293 ++ret;
7294
7295 /* See if we need a PT_MIPS_OPTIONS segment. */
7296 if (IRIX_COMPAT (abfd) == ict_irix6
7297 && bfd_get_section_by_name (abfd,
7298 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7299 ++ret;
7300
7301 /* See if we need a PT_MIPS_RTPROC segment. */
7302 if (IRIX_COMPAT (abfd) == ict_irix5
7303 && bfd_get_section_by_name (abfd, ".dynamic")
7304 && bfd_get_section_by_name (abfd, ".mdebug"))
7305 ++ret;
7306
7307 return ret;
7308 }
7309
7310 /* Modify the segment map for an IRIX5 executable. */
7311
7312 bfd_boolean
7313 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7314 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7315 {
7316 asection *s;
7317 struct elf_segment_map *m, **pm;
7318 bfd_size_type amt;
7319
7320 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7321 segment. */
7322 s = bfd_get_section_by_name (abfd, ".reginfo");
7323 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7324 {
7325 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7326 if (m->p_type == PT_MIPS_REGINFO)
7327 break;
7328 if (m == NULL)
7329 {
7330 amt = sizeof *m;
7331 m = bfd_zalloc (abfd, amt);
7332 if (m == NULL)
7333 return FALSE;
7334
7335 m->p_type = PT_MIPS_REGINFO;
7336 m->count = 1;
7337 m->sections[0] = s;
7338
7339 /* We want to put it after the PHDR and INTERP segments. */
7340 pm = &elf_tdata (abfd)->segment_map;
7341 while (*pm != NULL
7342 && ((*pm)->p_type == PT_PHDR
7343 || (*pm)->p_type == PT_INTERP))
7344 pm = &(*pm)->next;
7345
7346 m->next = *pm;
7347 *pm = m;
7348 }
7349 }
7350
7351 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7352 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7353 PT_MIPS_OPTIONS segment immediately following the program header
7354 table. */
7355 if (NEWABI_P (abfd)
7356 /* On non-IRIX6 new abi, we'll have already created a segment
7357 for this section, so don't create another. I'm not sure this
7358 is not also the case for IRIX 6, but I can't test it right
7359 now. */
7360 && IRIX_COMPAT (abfd) == ict_irix6)
7361 {
7362 for (s = abfd->sections; s; s = s->next)
7363 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7364 break;
7365
7366 if (s)
7367 {
7368 struct elf_segment_map *options_segment;
7369
7370 pm = &elf_tdata (abfd)->segment_map;
7371 while (*pm != NULL
7372 && ((*pm)->p_type == PT_PHDR
7373 || (*pm)->p_type == PT_INTERP))
7374 pm = &(*pm)->next;
7375
7376 amt = sizeof (struct elf_segment_map);
7377 options_segment = bfd_zalloc (abfd, amt);
7378 options_segment->next = *pm;
7379 options_segment->p_type = PT_MIPS_OPTIONS;
7380 options_segment->p_flags = PF_R;
7381 options_segment->p_flags_valid = TRUE;
7382 options_segment->count = 1;
7383 options_segment->sections[0] = s;
7384 *pm = options_segment;
7385 }
7386 }
7387 else
7388 {
7389 if (IRIX_COMPAT (abfd) == ict_irix5)
7390 {
7391 /* If there are .dynamic and .mdebug sections, we make a room
7392 for the RTPROC header. FIXME: Rewrite without section names. */
7393 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7394 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7395 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7396 {
7397 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7398 if (m->p_type == PT_MIPS_RTPROC)
7399 break;
7400 if (m == NULL)
7401 {
7402 amt = sizeof *m;
7403 m = bfd_zalloc (abfd, amt);
7404 if (m == NULL)
7405 return FALSE;
7406
7407 m->p_type = PT_MIPS_RTPROC;
7408
7409 s = bfd_get_section_by_name (abfd, ".rtproc");
7410 if (s == NULL)
7411 {
7412 m->count = 0;
7413 m->p_flags = 0;
7414 m->p_flags_valid = 1;
7415 }
7416 else
7417 {
7418 m->count = 1;
7419 m->sections[0] = s;
7420 }
7421
7422 /* We want to put it after the DYNAMIC segment. */
7423 pm = &elf_tdata (abfd)->segment_map;
7424 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7425 pm = &(*pm)->next;
7426 if (*pm != NULL)
7427 pm = &(*pm)->next;
7428
7429 m->next = *pm;
7430 *pm = m;
7431 }
7432 }
7433 }
7434 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7435 .dynstr, .dynsym, and .hash sections, and everything in
7436 between. */
7437 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7438 pm = &(*pm)->next)
7439 if ((*pm)->p_type == PT_DYNAMIC)
7440 break;
7441 m = *pm;
7442 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7443 {
7444 /* For a normal mips executable the permissions for the PT_DYNAMIC
7445 segment are read, write and execute. We do that here since
7446 the code in elf.c sets only the read permission. This matters
7447 sometimes for the dynamic linker. */
7448 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7449 {
7450 m->p_flags = PF_R | PF_W | PF_X;
7451 m->p_flags_valid = 1;
7452 }
7453 }
7454 if (m != NULL
7455 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7456 {
7457 static const char *sec_names[] =
7458 {
7459 ".dynamic", ".dynstr", ".dynsym", ".hash"
7460 };
7461 bfd_vma low, high;
7462 unsigned int i, c;
7463 struct elf_segment_map *n;
7464
7465 low = ~(bfd_vma) 0;
7466 high = 0;
7467 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7468 {
7469 s = bfd_get_section_by_name (abfd, sec_names[i]);
7470 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7471 {
7472 bfd_size_type sz;
7473
7474 if (low > s->vma)
7475 low = s->vma;
7476 sz = s->_cooked_size;
7477 if (sz == 0)
7478 sz = s->_raw_size;
7479 if (high < s->vma + sz)
7480 high = s->vma + sz;
7481 }
7482 }
7483
7484 c = 0;
7485 for (s = abfd->sections; s != NULL; s = s->next)
7486 if ((s->flags & SEC_LOAD) != 0
7487 && s->vma >= low
7488 && ((s->vma
7489 + (s->_cooked_size !=
7490 0 ? s->_cooked_size : s->_raw_size)) <= high))
7491 ++c;
7492
7493 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7494 n = bfd_zalloc (abfd, amt);
7495 if (n == NULL)
7496 return FALSE;
7497 *n = *m;
7498 n->count = c;
7499
7500 i = 0;
7501 for (s = abfd->sections; s != NULL; s = s->next)
7502 {
7503 if ((s->flags & SEC_LOAD) != 0
7504 && s->vma >= low
7505 && ((s->vma
7506 + (s->_cooked_size != 0 ?
7507 s->_cooked_size : s->_raw_size)) <= high))
7508 {
7509 n->sections[i] = s;
7510 ++i;
7511 }
7512 }
7513
7514 *pm = n;
7515 }
7516 }
7517
7518 return TRUE;
7519 }
7520 \f
7521 /* Return the section that should be marked against GC for a given
7522 relocation. */
7523
7524 asection *
7525 _bfd_mips_elf_gc_mark_hook (asection *sec,
7526 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7527 Elf_Internal_Rela *rel,
7528 struct elf_link_hash_entry *h,
7529 Elf_Internal_Sym *sym)
7530 {
7531 /* ??? Do mips16 stub sections need to be handled special? */
7532
7533 if (h != NULL)
7534 {
7535 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7536 {
7537 case R_MIPS_GNU_VTINHERIT:
7538 case R_MIPS_GNU_VTENTRY:
7539 break;
7540
7541 default:
7542 switch (h->root.type)
7543 {
7544 case bfd_link_hash_defined:
7545 case bfd_link_hash_defweak:
7546 return h->root.u.def.section;
7547
7548 case bfd_link_hash_common:
7549 return h->root.u.c.p->section;
7550
7551 default:
7552 break;
7553 }
7554 }
7555 }
7556 else
7557 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7558
7559 return NULL;
7560 }
7561
7562 /* Update the got entry reference counts for the section being removed. */
7563
7564 bfd_boolean
7565 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7566 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7567 asection *sec ATTRIBUTE_UNUSED,
7568 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7569 {
7570 #if 0
7571 Elf_Internal_Shdr *symtab_hdr;
7572 struct elf_link_hash_entry **sym_hashes;
7573 bfd_signed_vma *local_got_refcounts;
7574 const Elf_Internal_Rela *rel, *relend;
7575 unsigned long r_symndx;
7576 struct elf_link_hash_entry *h;
7577
7578 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7579 sym_hashes = elf_sym_hashes (abfd);
7580 local_got_refcounts = elf_local_got_refcounts (abfd);
7581
7582 relend = relocs + sec->reloc_count;
7583 for (rel = relocs; rel < relend; rel++)
7584 switch (ELF_R_TYPE (abfd, rel->r_info))
7585 {
7586 case R_MIPS_GOT16:
7587 case R_MIPS_CALL16:
7588 case R_MIPS_CALL_HI16:
7589 case R_MIPS_CALL_LO16:
7590 case R_MIPS_GOT_HI16:
7591 case R_MIPS_GOT_LO16:
7592 case R_MIPS_GOT_DISP:
7593 case R_MIPS_GOT_PAGE:
7594 case R_MIPS_GOT_OFST:
7595 /* ??? It would seem that the existing MIPS code does no sort
7596 of reference counting or whatnot on its GOT and PLT entries,
7597 so it is not possible to garbage collect them at this time. */
7598 break;
7599
7600 default:
7601 break;
7602 }
7603 #endif
7604
7605 return TRUE;
7606 }
7607 \f
7608 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7609 hiding the old indirect symbol. Process additional relocation
7610 information. Also called for weakdefs, in which case we just let
7611 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7612
7613 void
7614 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7615 struct elf_link_hash_entry *dir,
7616 struct elf_link_hash_entry *ind)
7617 {
7618 struct mips_elf_link_hash_entry *dirmips, *indmips;
7619
7620 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7621
7622 if (ind->root.type != bfd_link_hash_indirect)
7623 return;
7624
7625 dirmips = (struct mips_elf_link_hash_entry *) dir;
7626 indmips = (struct mips_elf_link_hash_entry *) ind;
7627 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7628 if (indmips->readonly_reloc)
7629 dirmips->readonly_reloc = TRUE;
7630 if (indmips->no_fn_stub)
7631 dirmips->no_fn_stub = TRUE;
7632 }
7633
7634 void
7635 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7636 struct elf_link_hash_entry *entry,
7637 bfd_boolean force_local)
7638 {
7639 bfd *dynobj;
7640 asection *got;
7641 struct mips_got_info *g;
7642 struct mips_elf_link_hash_entry *h;
7643
7644 h = (struct mips_elf_link_hash_entry *) entry;
7645 if (h->forced_local)
7646 return;
7647 h->forced_local = force_local;
7648
7649 dynobj = elf_hash_table (info)->dynobj;
7650 if (dynobj != NULL && force_local)
7651 {
7652 got = mips_elf_got_section (dynobj, FALSE);
7653 g = mips_elf_section_data (got)->u.got_info;
7654
7655 if (g->next)
7656 {
7657 struct mips_got_entry e;
7658 struct mips_got_info *gg = g;
7659
7660 /* Since we're turning what used to be a global symbol into a
7661 local one, bump up the number of local entries of each GOT
7662 that had an entry for it. This will automatically decrease
7663 the number of global entries, since global_gotno is actually
7664 the upper limit of global entries. */
7665 e.abfd = dynobj;
7666 e.symndx = -1;
7667 e.d.h = h;
7668
7669 for (g = g->next; g != gg; g = g->next)
7670 if (htab_find (g->got_entries, &e))
7671 {
7672 BFD_ASSERT (g->global_gotno > 0);
7673 g->local_gotno++;
7674 g->global_gotno--;
7675 }
7676
7677 /* If this was a global symbol forced into the primary GOT, we
7678 no longer need an entry for it. We can't release the entry
7679 at this point, but we must at least stop counting it as one
7680 of the symbols that required a forced got entry. */
7681 if (h->root.got.offset == 2)
7682 {
7683 BFD_ASSERT (gg->assigned_gotno > 0);
7684 gg->assigned_gotno--;
7685 }
7686 }
7687 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7688 /* If we haven't got through GOT allocation yet, just bump up the
7689 number of local entries, as this symbol won't be counted as
7690 global. */
7691 g->local_gotno++;
7692 else if (h->root.got.offset == 1)
7693 {
7694 /* If we're past non-multi-GOT allocation and this symbol had
7695 been marked for a global got entry, give it a local entry
7696 instead. */
7697 BFD_ASSERT (g->global_gotno > 0);
7698 g->local_gotno++;
7699 g->global_gotno--;
7700 }
7701 }
7702
7703 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7704 }
7705 \f
7706 #define PDR_SIZE 32
7707
7708 bfd_boolean
7709 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7710 struct bfd_link_info *info)
7711 {
7712 asection *o;
7713 bfd_boolean ret = FALSE;
7714 unsigned char *tdata;
7715 size_t i, skip;
7716
7717 o = bfd_get_section_by_name (abfd, ".pdr");
7718 if (! o)
7719 return FALSE;
7720 if (o->_raw_size == 0)
7721 return FALSE;
7722 if (o->_raw_size % PDR_SIZE != 0)
7723 return FALSE;
7724 if (o->output_section != NULL
7725 && bfd_is_abs_section (o->output_section))
7726 return FALSE;
7727
7728 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7729 if (! tdata)
7730 return FALSE;
7731
7732 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7733 info->keep_memory);
7734 if (!cookie->rels)
7735 {
7736 free (tdata);
7737 return FALSE;
7738 }
7739
7740 cookie->rel = cookie->rels;
7741 cookie->relend = cookie->rels + o->reloc_count;
7742
7743 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7744 {
7745 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7746 {
7747 tdata[i] = 1;
7748 skip ++;
7749 }
7750 }
7751
7752 if (skip != 0)
7753 {
7754 mips_elf_section_data (o)->u.tdata = tdata;
7755 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7756 ret = TRUE;
7757 }
7758 else
7759 free (tdata);
7760
7761 if (! info->keep_memory)
7762 free (cookie->rels);
7763
7764 return ret;
7765 }
7766
7767 bfd_boolean
7768 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7769 {
7770 if (strcmp (sec->name, ".pdr") == 0)
7771 return TRUE;
7772 return FALSE;
7773 }
7774
7775 bfd_boolean
7776 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7777 bfd_byte *contents)
7778 {
7779 bfd_byte *to, *from, *end;
7780 int i;
7781
7782 if (strcmp (sec->name, ".pdr") != 0)
7783 return FALSE;
7784
7785 if (mips_elf_section_data (sec)->u.tdata == NULL)
7786 return FALSE;
7787
7788 to = contents;
7789 end = contents + sec->_raw_size;
7790 for (from = contents, i = 0;
7791 from < end;
7792 from += PDR_SIZE, i++)
7793 {
7794 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7795 continue;
7796 if (to != from)
7797 memcpy (to, from, PDR_SIZE);
7798 to += PDR_SIZE;
7799 }
7800 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7801 sec->output_offset, sec->_cooked_size);
7802 return TRUE;
7803 }
7804 \f
7805 /* MIPS ELF uses a special find_nearest_line routine in order the
7806 handle the ECOFF debugging information. */
7807
7808 struct mips_elf_find_line
7809 {
7810 struct ecoff_debug_info d;
7811 struct ecoff_find_line i;
7812 };
7813
7814 bfd_boolean
7815 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7816 asymbol **symbols, bfd_vma offset,
7817 const char **filename_ptr,
7818 const char **functionname_ptr,
7819 unsigned int *line_ptr)
7820 {
7821 asection *msec;
7822
7823 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7824 filename_ptr, functionname_ptr,
7825 line_ptr))
7826 return TRUE;
7827
7828 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7829 filename_ptr, functionname_ptr,
7830 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7831 &elf_tdata (abfd)->dwarf2_find_line_info))
7832 return TRUE;
7833
7834 msec = bfd_get_section_by_name (abfd, ".mdebug");
7835 if (msec != NULL)
7836 {
7837 flagword origflags;
7838 struct mips_elf_find_line *fi;
7839 const struct ecoff_debug_swap * const swap =
7840 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7841
7842 /* If we are called during a link, mips_elf_final_link may have
7843 cleared the SEC_HAS_CONTENTS field. We force it back on here
7844 if appropriate (which it normally will be). */
7845 origflags = msec->flags;
7846 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7847 msec->flags |= SEC_HAS_CONTENTS;
7848
7849 fi = elf_tdata (abfd)->find_line_info;
7850 if (fi == NULL)
7851 {
7852 bfd_size_type external_fdr_size;
7853 char *fraw_src;
7854 char *fraw_end;
7855 struct fdr *fdr_ptr;
7856 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7857
7858 fi = bfd_zalloc (abfd, amt);
7859 if (fi == NULL)
7860 {
7861 msec->flags = origflags;
7862 return FALSE;
7863 }
7864
7865 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7866 {
7867 msec->flags = origflags;
7868 return FALSE;
7869 }
7870
7871 /* Swap in the FDR information. */
7872 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7873 fi->d.fdr = bfd_alloc (abfd, amt);
7874 if (fi->d.fdr == NULL)
7875 {
7876 msec->flags = origflags;
7877 return FALSE;
7878 }
7879 external_fdr_size = swap->external_fdr_size;
7880 fdr_ptr = fi->d.fdr;
7881 fraw_src = (char *) fi->d.external_fdr;
7882 fraw_end = (fraw_src
7883 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7884 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7885 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7886
7887 elf_tdata (abfd)->find_line_info = fi;
7888
7889 /* Note that we don't bother to ever free this information.
7890 find_nearest_line is either called all the time, as in
7891 objdump -l, so the information should be saved, or it is
7892 rarely called, as in ld error messages, so the memory
7893 wasted is unimportant. Still, it would probably be a
7894 good idea for free_cached_info to throw it away. */
7895 }
7896
7897 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7898 &fi->i, filename_ptr, functionname_ptr,
7899 line_ptr))
7900 {
7901 msec->flags = origflags;
7902 return TRUE;
7903 }
7904
7905 msec->flags = origflags;
7906 }
7907
7908 /* Fall back on the generic ELF find_nearest_line routine. */
7909
7910 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7911 filename_ptr, functionname_ptr,
7912 line_ptr);
7913 }
7914 \f
7915 /* When are writing out the .options or .MIPS.options section,
7916 remember the bytes we are writing out, so that we can install the
7917 GP value in the section_processing routine. */
7918
7919 bfd_boolean
7920 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7921 const void *location,
7922 file_ptr offset, bfd_size_type count)
7923 {
7924 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7925 {
7926 bfd_byte *c;
7927
7928 if (elf_section_data (section) == NULL)
7929 {
7930 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7931 section->used_by_bfd = bfd_zalloc (abfd, amt);
7932 if (elf_section_data (section) == NULL)
7933 return FALSE;
7934 }
7935 c = mips_elf_section_data (section)->u.tdata;
7936 if (c == NULL)
7937 {
7938 bfd_size_type size;
7939
7940 if (section->_cooked_size != 0)
7941 size = section->_cooked_size;
7942 else
7943 size = section->_raw_size;
7944 c = bfd_zalloc (abfd, size);
7945 if (c == NULL)
7946 return FALSE;
7947 mips_elf_section_data (section)->u.tdata = c;
7948 }
7949
7950 memcpy (c + offset, location, count);
7951 }
7952
7953 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7954 count);
7955 }
7956
7957 /* This is almost identical to bfd_generic_get_... except that some
7958 MIPS relocations need to be handled specially. Sigh. */
7959
7960 bfd_byte *
7961 _bfd_elf_mips_get_relocated_section_contents
7962 (bfd *abfd,
7963 struct bfd_link_info *link_info,
7964 struct bfd_link_order *link_order,
7965 bfd_byte *data,
7966 bfd_boolean relocatable,
7967 asymbol **symbols)
7968 {
7969 /* Get enough memory to hold the stuff */
7970 bfd *input_bfd = link_order->u.indirect.section->owner;
7971 asection *input_section = link_order->u.indirect.section;
7972
7973 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7974 arelent **reloc_vector = NULL;
7975 long reloc_count;
7976
7977 if (reloc_size < 0)
7978 goto error_return;
7979
7980 reloc_vector = bfd_malloc (reloc_size);
7981 if (reloc_vector == NULL && reloc_size != 0)
7982 goto error_return;
7983
7984 /* read in the section */
7985 if (!bfd_get_section_contents (input_bfd, input_section, data, 0,
7986 input_section->_raw_size))
7987 goto error_return;
7988
7989 /* We're not relaxing the section, so just copy the size info */
7990 input_section->_cooked_size = input_section->_raw_size;
7991 input_section->reloc_done = TRUE;
7992
7993 reloc_count = bfd_canonicalize_reloc (input_bfd,
7994 input_section,
7995 reloc_vector,
7996 symbols);
7997 if (reloc_count < 0)
7998 goto error_return;
7999
8000 if (reloc_count > 0)
8001 {
8002 arelent **parent;
8003 /* for mips */
8004 int gp_found;
8005 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8006
8007 {
8008 struct bfd_hash_entry *h;
8009 struct bfd_link_hash_entry *lh;
8010 /* Skip all this stuff if we aren't mixing formats. */
8011 if (abfd && input_bfd
8012 && abfd->xvec == input_bfd->xvec)
8013 lh = 0;
8014 else
8015 {
8016 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8017 lh = (struct bfd_link_hash_entry *) h;
8018 }
8019 lookup:
8020 if (lh)
8021 {
8022 switch (lh->type)
8023 {
8024 case bfd_link_hash_undefined:
8025 case bfd_link_hash_undefweak:
8026 case bfd_link_hash_common:
8027 gp_found = 0;
8028 break;
8029 case bfd_link_hash_defined:
8030 case bfd_link_hash_defweak:
8031 gp_found = 1;
8032 gp = lh->u.def.value;
8033 break;
8034 case bfd_link_hash_indirect:
8035 case bfd_link_hash_warning:
8036 lh = lh->u.i.link;
8037 /* @@FIXME ignoring warning for now */
8038 goto lookup;
8039 case bfd_link_hash_new:
8040 default:
8041 abort ();
8042 }
8043 }
8044 else
8045 gp_found = 0;
8046 }
8047 /* end mips */
8048 for (parent = reloc_vector; *parent != NULL; parent++)
8049 {
8050 char *error_message = NULL;
8051 bfd_reloc_status_type r;
8052
8053 /* Specific to MIPS: Deal with relocation types that require
8054 knowing the gp of the output bfd. */
8055 asymbol *sym = *(*parent)->sym_ptr_ptr;
8056 if (bfd_is_abs_section (sym->section) && abfd)
8057 {
8058 /* The special_function wouldn't get called anyway. */
8059 }
8060 else if (!gp_found)
8061 {
8062 /* The gp isn't there; let the special function code
8063 fall over on its own. */
8064 }
8065 else if ((*parent)->howto->special_function
8066 == _bfd_mips_elf32_gprel16_reloc)
8067 {
8068 /* bypass special_function call */
8069 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8070 input_section, relocatable,
8071 data, gp);
8072 goto skip_bfd_perform_relocation;
8073 }
8074 /* end mips specific stuff */
8075
8076 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8077 relocatable ? abfd : NULL,
8078 &error_message);
8079 skip_bfd_perform_relocation:
8080
8081 if (relocatable)
8082 {
8083 asection *os = input_section->output_section;
8084
8085 /* A partial link, so keep the relocs */
8086 os->orelocation[os->reloc_count] = *parent;
8087 os->reloc_count++;
8088 }
8089
8090 if (r != bfd_reloc_ok)
8091 {
8092 switch (r)
8093 {
8094 case bfd_reloc_undefined:
8095 if (!((*link_info->callbacks->undefined_symbol)
8096 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8097 input_bfd, input_section, (*parent)->address,
8098 TRUE)))
8099 goto error_return;
8100 break;
8101 case bfd_reloc_dangerous:
8102 BFD_ASSERT (error_message != NULL);
8103 if (!((*link_info->callbacks->reloc_dangerous)
8104 (link_info, error_message, input_bfd, input_section,
8105 (*parent)->address)))
8106 goto error_return;
8107 break;
8108 case bfd_reloc_overflow:
8109 if (!((*link_info->callbacks->reloc_overflow)
8110 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8111 (*parent)->howto->name, (*parent)->addend,
8112 input_bfd, input_section, (*parent)->address)))
8113 goto error_return;
8114 break;
8115 case bfd_reloc_outofrange:
8116 default:
8117 abort ();
8118 break;
8119 }
8120
8121 }
8122 }
8123 }
8124 if (reloc_vector != NULL)
8125 free (reloc_vector);
8126 return data;
8127
8128 error_return:
8129 if (reloc_vector != NULL)
8130 free (reloc_vector);
8131 return NULL;
8132 }
8133 \f
8134 /* Create a MIPS ELF linker hash table. */
8135
8136 struct bfd_link_hash_table *
8137 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8138 {
8139 struct mips_elf_link_hash_table *ret;
8140 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8141
8142 ret = bfd_malloc (amt);
8143 if (ret == NULL)
8144 return NULL;
8145
8146 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8147 mips_elf_link_hash_newfunc))
8148 {
8149 free (ret);
8150 return NULL;
8151 }
8152
8153 #if 0
8154 /* We no longer use this. */
8155 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8156 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8157 #endif
8158 ret->procedure_count = 0;
8159 ret->compact_rel_size = 0;
8160 ret->use_rld_obj_head = FALSE;
8161 ret->rld_value = 0;
8162 ret->mips16_stubs_seen = FALSE;
8163
8164 return &ret->root.root;
8165 }
8166 \f
8167 /* We need to use a special link routine to handle the .reginfo and
8168 the .mdebug sections. We need to merge all instances of these
8169 sections together, not write them all out sequentially. */
8170
8171 bfd_boolean
8172 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8173 {
8174 asection **secpp;
8175 asection *o;
8176 struct bfd_link_order *p;
8177 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8178 asection *rtproc_sec;
8179 Elf32_RegInfo reginfo;
8180 struct ecoff_debug_info debug;
8181 const struct ecoff_debug_swap *swap
8182 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8183 HDRR *symhdr = &debug.symbolic_header;
8184 void *mdebug_handle = NULL;
8185 asection *s;
8186 EXTR esym;
8187 unsigned int i;
8188 bfd_size_type amt;
8189
8190 static const char * const secname[] =
8191 {
8192 ".text", ".init", ".fini", ".data",
8193 ".rodata", ".sdata", ".sbss", ".bss"
8194 };
8195 static const int sc[] =
8196 {
8197 scText, scInit, scFini, scData,
8198 scRData, scSData, scSBss, scBss
8199 };
8200
8201 /* We'd carefully arranged the dynamic symbol indices, and then the
8202 generic size_dynamic_sections renumbered them out from under us.
8203 Rather than trying somehow to prevent the renumbering, just do
8204 the sort again. */
8205 if (elf_hash_table (info)->dynamic_sections_created)
8206 {
8207 bfd *dynobj;
8208 asection *got;
8209 struct mips_got_info *g;
8210
8211 /* When we resort, we must tell mips_elf_sort_hash_table what
8212 the lowest index it may use is. That's the number of section
8213 symbols we're going to add. The generic ELF linker only
8214 adds these symbols when building a shared object. Note that
8215 we count the sections after (possibly) removing the .options
8216 section above. */
8217 if (! mips_elf_sort_hash_table (info, (info->shared
8218 ? bfd_count_sections (abfd) + 1
8219 : 1)))
8220 return FALSE;
8221
8222 /* Make sure we didn't grow the global .got region. */
8223 dynobj = elf_hash_table (info)->dynobj;
8224 got = mips_elf_got_section (dynobj, FALSE);
8225 g = mips_elf_section_data (got)->u.got_info;
8226
8227 if (g->global_gotsym != NULL)
8228 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8229 - g->global_gotsym->dynindx)
8230 <= g->global_gotno);
8231 }
8232
8233 #if 0
8234 /* We want to set the GP value for ld -r. */
8235 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8236 include it, even though we don't process it quite right. (Some
8237 entries are supposed to be merged.) Empirically, we seem to be
8238 better off including it then not. */
8239 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8240 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8241 {
8242 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8243 {
8244 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8245 if (p->type == bfd_indirect_link_order)
8246 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8247 (*secpp)->link_order_head = NULL;
8248 bfd_section_list_remove (abfd, secpp);
8249 --abfd->section_count;
8250
8251 break;
8252 }
8253 }
8254
8255 /* We include .MIPS.options, even though we don't process it quite right.
8256 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8257 to be better off including it than not. */
8258 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8259 {
8260 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8261 {
8262 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8263 if (p->type == bfd_indirect_link_order)
8264 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8265 (*secpp)->link_order_head = NULL;
8266 bfd_section_list_remove (abfd, secpp);
8267 --abfd->section_count;
8268
8269 break;
8270 }
8271 }
8272 #endif
8273
8274 /* Get a value for the GP register. */
8275 if (elf_gp (abfd) == 0)
8276 {
8277 struct bfd_link_hash_entry *h;
8278
8279 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8280 if (h != NULL && h->type == bfd_link_hash_defined)
8281 elf_gp (abfd) = (h->u.def.value
8282 + h->u.def.section->output_section->vma
8283 + h->u.def.section->output_offset);
8284 else if (info->relocatable)
8285 {
8286 bfd_vma lo = MINUS_ONE;
8287
8288 /* Find the GP-relative section with the lowest offset. */
8289 for (o = abfd->sections; o != NULL; o = o->next)
8290 if (o->vma < lo
8291 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8292 lo = o->vma;
8293
8294 /* And calculate GP relative to that. */
8295 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8296 }
8297 else
8298 {
8299 /* If the relocate_section function needs to do a reloc
8300 involving the GP value, it should make a reloc_dangerous
8301 callback to warn that GP is not defined. */
8302 }
8303 }
8304
8305 /* Go through the sections and collect the .reginfo and .mdebug
8306 information. */
8307 reginfo_sec = NULL;
8308 mdebug_sec = NULL;
8309 gptab_data_sec = NULL;
8310 gptab_bss_sec = NULL;
8311 for (o = abfd->sections; o != NULL; o = o->next)
8312 {
8313 if (strcmp (o->name, ".reginfo") == 0)
8314 {
8315 memset (&reginfo, 0, sizeof reginfo);
8316
8317 /* We have found the .reginfo section in the output file.
8318 Look through all the link_orders comprising it and merge
8319 the information together. */
8320 for (p = o->link_order_head; p != NULL; p = p->next)
8321 {
8322 asection *input_section;
8323 bfd *input_bfd;
8324 Elf32_External_RegInfo ext;
8325 Elf32_RegInfo sub;
8326
8327 if (p->type != bfd_indirect_link_order)
8328 {
8329 if (p->type == bfd_data_link_order)
8330 continue;
8331 abort ();
8332 }
8333
8334 input_section = p->u.indirect.section;
8335 input_bfd = input_section->owner;
8336
8337 /* The linker emulation code has probably clobbered the
8338 size to be zero bytes. */
8339 if (input_section->_raw_size == 0)
8340 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8341
8342 if (! bfd_get_section_contents (input_bfd, input_section,
8343 &ext, 0, sizeof ext))
8344 return FALSE;
8345
8346 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8347
8348 reginfo.ri_gprmask |= sub.ri_gprmask;
8349 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8350 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8351 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8352 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8353
8354 /* ri_gp_value is set by the function
8355 mips_elf32_section_processing when the section is
8356 finally written out. */
8357
8358 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8359 elf_link_input_bfd ignores this section. */
8360 input_section->flags &= ~SEC_HAS_CONTENTS;
8361 }
8362
8363 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8364 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8365
8366 /* Skip this section later on (I don't think this currently
8367 matters, but someday it might). */
8368 o->link_order_head = NULL;
8369
8370 reginfo_sec = o;
8371 }
8372
8373 if (strcmp (o->name, ".mdebug") == 0)
8374 {
8375 struct extsym_info einfo;
8376 bfd_vma last;
8377
8378 /* We have found the .mdebug section in the output file.
8379 Look through all the link_orders comprising it and merge
8380 the information together. */
8381 symhdr->magic = swap->sym_magic;
8382 /* FIXME: What should the version stamp be? */
8383 symhdr->vstamp = 0;
8384 symhdr->ilineMax = 0;
8385 symhdr->cbLine = 0;
8386 symhdr->idnMax = 0;
8387 symhdr->ipdMax = 0;
8388 symhdr->isymMax = 0;
8389 symhdr->ioptMax = 0;
8390 symhdr->iauxMax = 0;
8391 symhdr->issMax = 0;
8392 symhdr->issExtMax = 0;
8393 symhdr->ifdMax = 0;
8394 symhdr->crfd = 0;
8395 symhdr->iextMax = 0;
8396
8397 /* We accumulate the debugging information itself in the
8398 debug_info structure. */
8399 debug.line = NULL;
8400 debug.external_dnr = NULL;
8401 debug.external_pdr = NULL;
8402 debug.external_sym = NULL;
8403 debug.external_opt = NULL;
8404 debug.external_aux = NULL;
8405 debug.ss = NULL;
8406 debug.ssext = debug.ssext_end = NULL;
8407 debug.external_fdr = NULL;
8408 debug.external_rfd = NULL;
8409 debug.external_ext = debug.external_ext_end = NULL;
8410
8411 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8412 if (mdebug_handle == NULL)
8413 return FALSE;
8414
8415 esym.jmptbl = 0;
8416 esym.cobol_main = 0;
8417 esym.weakext = 0;
8418 esym.reserved = 0;
8419 esym.ifd = ifdNil;
8420 esym.asym.iss = issNil;
8421 esym.asym.st = stLocal;
8422 esym.asym.reserved = 0;
8423 esym.asym.index = indexNil;
8424 last = 0;
8425 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8426 {
8427 esym.asym.sc = sc[i];
8428 s = bfd_get_section_by_name (abfd, secname[i]);
8429 if (s != NULL)
8430 {
8431 esym.asym.value = s->vma;
8432 last = s->vma + s->_raw_size;
8433 }
8434 else
8435 esym.asym.value = last;
8436 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8437 secname[i], &esym))
8438 return FALSE;
8439 }
8440
8441 for (p = o->link_order_head; p != NULL; p = p->next)
8442 {
8443 asection *input_section;
8444 bfd *input_bfd;
8445 const struct ecoff_debug_swap *input_swap;
8446 struct ecoff_debug_info input_debug;
8447 char *eraw_src;
8448 char *eraw_end;
8449
8450 if (p->type != bfd_indirect_link_order)
8451 {
8452 if (p->type == bfd_data_link_order)
8453 continue;
8454 abort ();
8455 }
8456
8457 input_section = p->u.indirect.section;
8458 input_bfd = input_section->owner;
8459
8460 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8461 || (get_elf_backend_data (input_bfd)
8462 ->elf_backend_ecoff_debug_swap) == NULL)
8463 {
8464 /* I don't know what a non MIPS ELF bfd would be
8465 doing with a .mdebug section, but I don't really
8466 want to deal with it. */
8467 continue;
8468 }
8469
8470 input_swap = (get_elf_backend_data (input_bfd)
8471 ->elf_backend_ecoff_debug_swap);
8472
8473 BFD_ASSERT (p->size == input_section->_raw_size);
8474
8475 /* The ECOFF linking code expects that we have already
8476 read in the debugging information and set up an
8477 ecoff_debug_info structure, so we do that now. */
8478 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8479 &input_debug))
8480 return FALSE;
8481
8482 if (! (bfd_ecoff_debug_accumulate
8483 (mdebug_handle, abfd, &debug, swap, input_bfd,
8484 &input_debug, input_swap, info)))
8485 return FALSE;
8486
8487 /* Loop through the external symbols. For each one with
8488 interesting information, try to find the symbol in
8489 the linker global hash table and save the information
8490 for the output external symbols. */
8491 eraw_src = input_debug.external_ext;
8492 eraw_end = (eraw_src
8493 + (input_debug.symbolic_header.iextMax
8494 * input_swap->external_ext_size));
8495 for (;
8496 eraw_src < eraw_end;
8497 eraw_src += input_swap->external_ext_size)
8498 {
8499 EXTR ext;
8500 const char *name;
8501 struct mips_elf_link_hash_entry *h;
8502
8503 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8504 if (ext.asym.sc == scNil
8505 || ext.asym.sc == scUndefined
8506 || ext.asym.sc == scSUndefined)
8507 continue;
8508
8509 name = input_debug.ssext + ext.asym.iss;
8510 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8511 name, FALSE, FALSE, TRUE);
8512 if (h == NULL || h->esym.ifd != -2)
8513 continue;
8514
8515 if (ext.ifd != -1)
8516 {
8517 BFD_ASSERT (ext.ifd
8518 < input_debug.symbolic_header.ifdMax);
8519 ext.ifd = input_debug.ifdmap[ext.ifd];
8520 }
8521
8522 h->esym = ext;
8523 }
8524
8525 /* Free up the information we just read. */
8526 free (input_debug.line);
8527 free (input_debug.external_dnr);
8528 free (input_debug.external_pdr);
8529 free (input_debug.external_sym);
8530 free (input_debug.external_opt);
8531 free (input_debug.external_aux);
8532 free (input_debug.ss);
8533 free (input_debug.ssext);
8534 free (input_debug.external_fdr);
8535 free (input_debug.external_rfd);
8536 free (input_debug.external_ext);
8537
8538 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8539 elf_link_input_bfd ignores this section. */
8540 input_section->flags &= ~SEC_HAS_CONTENTS;
8541 }
8542
8543 if (SGI_COMPAT (abfd) && info->shared)
8544 {
8545 /* Create .rtproc section. */
8546 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8547 if (rtproc_sec == NULL)
8548 {
8549 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8550 | SEC_LINKER_CREATED | SEC_READONLY);
8551
8552 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8553 if (rtproc_sec == NULL
8554 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8555 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8556 return FALSE;
8557 }
8558
8559 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8560 info, rtproc_sec,
8561 &debug))
8562 return FALSE;
8563 }
8564
8565 /* Build the external symbol information. */
8566 einfo.abfd = abfd;
8567 einfo.info = info;
8568 einfo.debug = &debug;
8569 einfo.swap = swap;
8570 einfo.failed = FALSE;
8571 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8572 mips_elf_output_extsym, &einfo);
8573 if (einfo.failed)
8574 return FALSE;
8575
8576 /* Set the size of the .mdebug section. */
8577 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8578
8579 /* Skip this section later on (I don't think this currently
8580 matters, but someday it might). */
8581 o->link_order_head = NULL;
8582
8583 mdebug_sec = o;
8584 }
8585
8586 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8587 {
8588 const char *subname;
8589 unsigned int c;
8590 Elf32_gptab *tab;
8591 Elf32_External_gptab *ext_tab;
8592 unsigned int j;
8593
8594 /* The .gptab.sdata and .gptab.sbss sections hold
8595 information describing how the small data area would
8596 change depending upon the -G switch. These sections
8597 not used in executables files. */
8598 if (! info->relocatable)
8599 {
8600 for (p = o->link_order_head; p != NULL; p = p->next)
8601 {
8602 asection *input_section;
8603
8604 if (p->type != bfd_indirect_link_order)
8605 {
8606 if (p->type == bfd_data_link_order)
8607 continue;
8608 abort ();
8609 }
8610
8611 input_section = p->u.indirect.section;
8612
8613 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8614 elf_link_input_bfd ignores this section. */
8615 input_section->flags &= ~SEC_HAS_CONTENTS;
8616 }
8617
8618 /* Skip this section later on (I don't think this
8619 currently matters, but someday it might). */
8620 o->link_order_head = NULL;
8621
8622 /* Really remove the section. */
8623 for (secpp = &abfd->sections;
8624 *secpp != o;
8625 secpp = &(*secpp)->next)
8626 ;
8627 bfd_section_list_remove (abfd, secpp);
8628 --abfd->section_count;
8629
8630 continue;
8631 }
8632
8633 /* There is one gptab for initialized data, and one for
8634 uninitialized data. */
8635 if (strcmp (o->name, ".gptab.sdata") == 0)
8636 gptab_data_sec = o;
8637 else if (strcmp (o->name, ".gptab.sbss") == 0)
8638 gptab_bss_sec = o;
8639 else
8640 {
8641 (*_bfd_error_handler)
8642 (_("%s: illegal section name `%s'"),
8643 bfd_get_filename (abfd), o->name);
8644 bfd_set_error (bfd_error_nonrepresentable_section);
8645 return FALSE;
8646 }
8647
8648 /* The linker script always combines .gptab.data and
8649 .gptab.sdata into .gptab.sdata, and likewise for
8650 .gptab.bss and .gptab.sbss. It is possible that there is
8651 no .sdata or .sbss section in the output file, in which
8652 case we must change the name of the output section. */
8653 subname = o->name + sizeof ".gptab" - 1;
8654 if (bfd_get_section_by_name (abfd, subname) == NULL)
8655 {
8656 if (o == gptab_data_sec)
8657 o->name = ".gptab.data";
8658 else
8659 o->name = ".gptab.bss";
8660 subname = o->name + sizeof ".gptab" - 1;
8661 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8662 }
8663
8664 /* Set up the first entry. */
8665 c = 1;
8666 amt = c * sizeof (Elf32_gptab);
8667 tab = bfd_malloc (amt);
8668 if (tab == NULL)
8669 return FALSE;
8670 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8671 tab[0].gt_header.gt_unused = 0;
8672
8673 /* Combine the input sections. */
8674 for (p = o->link_order_head; p != NULL; p = p->next)
8675 {
8676 asection *input_section;
8677 bfd *input_bfd;
8678 bfd_size_type size;
8679 unsigned long last;
8680 bfd_size_type gpentry;
8681
8682 if (p->type != bfd_indirect_link_order)
8683 {
8684 if (p->type == bfd_data_link_order)
8685 continue;
8686 abort ();
8687 }
8688
8689 input_section = p->u.indirect.section;
8690 input_bfd = input_section->owner;
8691
8692 /* Combine the gptab entries for this input section one
8693 by one. We know that the input gptab entries are
8694 sorted by ascending -G value. */
8695 size = bfd_section_size (input_bfd, input_section);
8696 last = 0;
8697 for (gpentry = sizeof (Elf32_External_gptab);
8698 gpentry < size;
8699 gpentry += sizeof (Elf32_External_gptab))
8700 {
8701 Elf32_External_gptab ext_gptab;
8702 Elf32_gptab int_gptab;
8703 unsigned long val;
8704 unsigned long add;
8705 bfd_boolean exact;
8706 unsigned int look;
8707
8708 if (! (bfd_get_section_contents
8709 (input_bfd, input_section, &ext_gptab, gpentry,
8710 sizeof (Elf32_External_gptab))))
8711 {
8712 free (tab);
8713 return FALSE;
8714 }
8715
8716 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8717 &int_gptab);
8718 val = int_gptab.gt_entry.gt_g_value;
8719 add = int_gptab.gt_entry.gt_bytes - last;
8720
8721 exact = FALSE;
8722 for (look = 1; look < c; look++)
8723 {
8724 if (tab[look].gt_entry.gt_g_value >= val)
8725 tab[look].gt_entry.gt_bytes += add;
8726
8727 if (tab[look].gt_entry.gt_g_value == val)
8728 exact = TRUE;
8729 }
8730
8731 if (! exact)
8732 {
8733 Elf32_gptab *new_tab;
8734 unsigned int max;
8735
8736 /* We need a new table entry. */
8737 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8738 new_tab = bfd_realloc (tab, amt);
8739 if (new_tab == NULL)
8740 {
8741 free (tab);
8742 return FALSE;
8743 }
8744 tab = new_tab;
8745 tab[c].gt_entry.gt_g_value = val;
8746 tab[c].gt_entry.gt_bytes = add;
8747
8748 /* Merge in the size for the next smallest -G
8749 value, since that will be implied by this new
8750 value. */
8751 max = 0;
8752 for (look = 1; look < c; look++)
8753 {
8754 if (tab[look].gt_entry.gt_g_value < val
8755 && (max == 0
8756 || (tab[look].gt_entry.gt_g_value
8757 > tab[max].gt_entry.gt_g_value)))
8758 max = look;
8759 }
8760 if (max != 0)
8761 tab[c].gt_entry.gt_bytes +=
8762 tab[max].gt_entry.gt_bytes;
8763
8764 ++c;
8765 }
8766
8767 last = int_gptab.gt_entry.gt_bytes;
8768 }
8769
8770 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8771 elf_link_input_bfd ignores this section. */
8772 input_section->flags &= ~SEC_HAS_CONTENTS;
8773 }
8774
8775 /* The table must be sorted by -G value. */
8776 if (c > 2)
8777 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8778
8779 /* Swap out the table. */
8780 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8781 ext_tab = bfd_alloc (abfd, amt);
8782 if (ext_tab == NULL)
8783 {
8784 free (tab);
8785 return FALSE;
8786 }
8787
8788 for (j = 0; j < c; j++)
8789 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8790 free (tab);
8791
8792 o->_raw_size = c * sizeof (Elf32_External_gptab);
8793 o->contents = (bfd_byte *) ext_tab;
8794
8795 /* Skip this section later on (I don't think this currently
8796 matters, but someday it might). */
8797 o->link_order_head = NULL;
8798 }
8799 }
8800
8801 /* Invoke the regular ELF backend linker to do all the work. */
8802 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8803 return FALSE;
8804
8805 /* Now write out the computed sections. */
8806
8807 if (reginfo_sec != NULL)
8808 {
8809 Elf32_External_RegInfo ext;
8810
8811 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8812 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8813 return FALSE;
8814 }
8815
8816 if (mdebug_sec != NULL)
8817 {
8818 BFD_ASSERT (abfd->output_has_begun);
8819 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8820 swap, info,
8821 mdebug_sec->filepos))
8822 return FALSE;
8823
8824 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8825 }
8826
8827 if (gptab_data_sec != NULL)
8828 {
8829 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8830 gptab_data_sec->contents,
8831 0, gptab_data_sec->_raw_size))
8832 return FALSE;
8833 }
8834
8835 if (gptab_bss_sec != NULL)
8836 {
8837 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8838 gptab_bss_sec->contents,
8839 0, gptab_bss_sec->_raw_size))
8840 return FALSE;
8841 }
8842
8843 if (SGI_COMPAT (abfd))
8844 {
8845 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8846 if (rtproc_sec != NULL)
8847 {
8848 if (! bfd_set_section_contents (abfd, rtproc_sec,
8849 rtproc_sec->contents,
8850 0, rtproc_sec->_raw_size))
8851 return FALSE;
8852 }
8853 }
8854
8855 return TRUE;
8856 }
8857 \f
8858 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8859
8860 struct mips_mach_extension {
8861 unsigned long extension, base;
8862 };
8863
8864
8865 /* An array describing how BFD machines relate to one another. The entries
8866 are ordered topologically with MIPS I extensions listed last. */
8867
8868 static const struct mips_mach_extension mips_mach_extensions[] = {
8869 /* MIPS64 extensions. */
8870 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8871 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8872
8873 /* MIPS V extensions. */
8874 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8875
8876 /* R10000 extensions. */
8877 { bfd_mach_mips12000, bfd_mach_mips10000 },
8878
8879 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8880 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8881 better to allow vr5400 and vr5500 code to be merged anyway, since
8882 many libraries will just use the core ISA. Perhaps we could add
8883 some sort of ASE flag if this ever proves a problem. */
8884 { bfd_mach_mips5500, bfd_mach_mips5400 },
8885 { bfd_mach_mips5400, bfd_mach_mips5000 },
8886
8887 /* MIPS IV extensions. */
8888 { bfd_mach_mips5, bfd_mach_mips8000 },
8889 { bfd_mach_mips10000, bfd_mach_mips8000 },
8890 { bfd_mach_mips5000, bfd_mach_mips8000 },
8891 { bfd_mach_mips7000, bfd_mach_mips8000 },
8892
8893 /* VR4100 extensions. */
8894 { bfd_mach_mips4120, bfd_mach_mips4100 },
8895 { bfd_mach_mips4111, bfd_mach_mips4100 },
8896
8897 /* MIPS III extensions. */
8898 { bfd_mach_mips8000, bfd_mach_mips4000 },
8899 { bfd_mach_mips4650, bfd_mach_mips4000 },
8900 { bfd_mach_mips4600, bfd_mach_mips4000 },
8901 { bfd_mach_mips4400, bfd_mach_mips4000 },
8902 { bfd_mach_mips4300, bfd_mach_mips4000 },
8903 { bfd_mach_mips4100, bfd_mach_mips4000 },
8904 { bfd_mach_mips4010, bfd_mach_mips4000 },
8905
8906 /* MIPS32 extensions. */
8907 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8908
8909 /* MIPS II extensions. */
8910 { bfd_mach_mips4000, bfd_mach_mips6000 },
8911 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8912
8913 /* MIPS I extensions. */
8914 { bfd_mach_mips6000, bfd_mach_mips3000 },
8915 { bfd_mach_mips3900, bfd_mach_mips3000 }
8916 };
8917
8918
8919 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8920
8921 static bfd_boolean
8922 mips_mach_extends_p (unsigned long base, unsigned long extension)
8923 {
8924 size_t i;
8925
8926 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8927 if (extension == mips_mach_extensions[i].extension)
8928 extension = mips_mach_extensions[i].base;
8929
8930 return extension == base;
8931 }
8932
8933
8934 /* Return true if the given ELF header flags describe a 32-bit binary. */
8935
8936 static bfd_boolean
8937 mips_32bit_flags_p (flagword flags)
8938 {
8939 return ((flags & EF_MIPS_32BITMODE) != 0
8940 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8941 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8942 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8943 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8944 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8945 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8946 }
8947
8948
8949 /* Merge backend specific data from an object file to the output
8950 object file when linking. */
8951
8952 bfd_boolean
8953 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8954 {
8955 flagword old_flags;
8956 flagword new_flags;
8957 bfd_boolean ok;
8958 bfd_boolean null_input_bfd = TRUE;
8959 asection *sec;
8960
8961 /* Check if we have the same endianess */
8962 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8963 {
8964 (*_bfd_error_handler)
8965 (_("%s: endianness incompatible with that of the selected emulation"),
8966 bfd_archive_filename (ibfd));
8967 return FALSE;
8968 }
8969
8970 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8971 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8972 return TRUE;
8973
8974 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8975 {
8976 (*_bfd_error_handler)
8977 (_("%s: ABI is incompatible with that of the selected emulation"),
8978 bfd_archive_filename (ibfd));
8979 return FALSE;
8980 }
8981
8982 new_flags = elf_elfheader (ibfd)->e_flags;
8983 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8984 old_flags = elf_elfheader (obfd)->e_flags;
8985
8986 if (! elf_flags_init (obfd))
8987 {
8988 elf_flags_init (obfd) = TRUE;
8989 elf_elfheader (obfd)->e_flags = new_flags;
8990 elf_elfheader (obfd)->e_ident[EI_CLASS]
8991 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8992
8993 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8994 && bfd_get_arch_info (obfd)->the_default)
8995 {
8996 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8997 bfd_get_mach (ibfd)))
8998 return FALSE;
8999 }
9000
9001 return TRUE;
9002 }
9003
9004 /* Check flag compatibility. */
9005
9006 new_flags &= ~EF_MIPS_NOREORDER;
9007 old_flags &= ~EF_MIPS_NOREORDER;
9008
9009 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9010 doesn't seem to matter. */
9011 new_flags &= ~EF_MIPS_XGOT;
9012 old_flags &= ~EF_MIPS_XGOT;
9013
9014 /* MIPSpro generates ucode info in n64 objects. Again, we should
9015 just be able to ignore this. */
9016 new_flags &= ~EF_MIPS_UCODE;
9017 old_flags &= ~EF_MIPS_UCODE;
9018
9019 if (new_flags == old_flags)
9020 return TRUE;
9021
9022 /* Check to see if the input BFD actually contains any sections.
9023 If not, its flags may not have been initialised either, but it cannot
9024 actually cause any incompatibility. */
9025 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9026 {
9027 /* Ignore synthetic sections and empty .text, .data and .bss sections
9028 which are automatically generated by gas. */
9029 if (strcmp (sec->name, ".reginfo")
9030 && strcmp (sec->name, ".mdebug")
9031 && (sec->_raw_size != 0
9032 || (strcmp (sec->name, ".text")
9033 && strcmp (sec->name, ".data")
9034 && strcmp (sec->name, ".bss"))))
9035 {
9036 null_input_bfd = FALSE;
9037 break;
9038 }
9039 }
9040 if (null_input_bfd)
9041 return TRUE;
9042
9043 ok = TRUE;
9044
9045 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9046 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9047 {
9048 (*_bfd_error_handler)
9049 (_("%s: warning: linking PIC files with non-PIC files"),
9050 bfd_archive_filename (ibfd));
9051 ok = TRUE;
9052 }
9053
9054 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9055 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9056 if (! (new_flags & EF_MIPS_PIC))
9057 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9058
9059 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9060 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9061
9062 /* Compare the ISAs. */
9063 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9064 {
9065 (*_bfd_error_handler)
9066 (_("%s: linking 32-bit code with 64-bit code"),
9067 bfd_archive_filename (ibfd));
9068 ok = FALSE;
9069 }
9070 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9071 {
9072 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9073 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9074 {
9075 /* Copy the architecture info from IBFD to OBFD. Also copy
9076 the 32-bit flag (if set) so that we continue to recognise
9077 OBFD as a 32-bit binary. */
9078 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9079 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9080 elf_elfheader (obfd)->e_flags
9081 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9082
9083 /* Copy across the ABI flags if OBFD doesn't use them
9084 and if that was what caused us to treat IBFD as 32-bit. */
9085 if ((old_flags & EF_MIPS_ABI) == 0
9086 && mips_32bit_flags_p (new_flags)
9087 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9088 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9089 }
9090 else
9091 {
9092 /* The ISAs aren't compatible. */
9093 (*_bfd_error_handler)
9094 (_("%s: linking %s module with previous %s modules"),
9095 bfd_archive_filename (ibfd),
9096 bfd_printable_name (ibfd),
9097 bfd_printable_name (obfd));
9098 ok = FALSE;
9099 }
9100 }
9101
9102 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9103 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9104
9105 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9106 does set EI_CLASS differently from any 32-bit ABI. */
9107 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9108 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9109 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9110 {
9111 /* Only error if both are set (to different values). */
9112 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9113 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9114 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9115 {
9116 (*_bfd_error_handler)
9117 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9118 bfd_archive_filename (ibfd),
9119 elf_mips_abi_name (ibfd),
9120 elf_mips_abi_name (obfd));
9121 ok = FALSE;
9122 }
9123 new_flags &= ~EF_MIPS_ABI;
9124 old_flags &= ~EF_MIPS_ABI;
9125 }
9126
9127 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9128 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9129 {
9130 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9131
9132 new_flags &= ~ EF_MIPS_ARCH_ASE;
9133 old_flags &= ~ EF_MIPS_ARCH_ASE;
9134 }
9135
9136 /* Warn about any other mismatches */
9137 if (new_flags != old_flags)
9138 {
9139 (*_bfd_error_handler)
9140 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9141 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9142 (unsigned long) old_flags);
9143 ok = FALSE;
9144 }
9145
9146 if (! ok)
9147 {
9148 bfd_set_error (bfd_error_bad_value);
9149 return FALSE;
9150 }
9151
9152 return TRUE;
9153 }
9154
9155 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9156
9157 bfd_boolean
9158 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9159 {
9160 BFD_ASSERT (!elf_flags_init (abfd)
9161 || elf_elfheader (abfd)->e_flags == flags);
9162
9163 elf_elfheader (abfd)->e_flags = flags;
9164 elf_flags_init (abfd) = TRUE;
9165 return TRUE;
9166 }
9167
9168 bfd_boolean
9169 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9170 {
9171 FILE *file = ptr;
9172
9173 BFD_ASSERT (abfd != NULL && ptr != NULL);
9174
9175 /* Print normal ELF private data. */
9176 _bfd_elf_print_private_bfd_data (abfd, ptr);
9177
9178 /* xgettext:c-format */
9179 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9180
9181 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9182 fprintf (file, _(" [abi=O32]"));
9183 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9184 fprintf (file, _(" [abi=O64]"));
9185 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9186 fprintf (file, _(" [abi=EABI32]"));
9187 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9188 fprintf (file, _(" [abi=EABI64]"));
9189 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9190 fprintf (file, _(" [abi unknown]"));
9191 else if (ABI_N32_P (abfd))
9192 fprintf (file, _(" [abi=N32]"));
9193 else if (ABI_64_P (abfd))
9194 fprintf (file, _(" [abi=64]"));
9195 else
9196 fprintf (file, _(" [no abi set]"));
9197
9198 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9199 fprintf (file, _(" [mips1]"));
9200 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9201 fprintf (file, _(" [mips2]"));
9202 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9203 fprintf (file, _(" [mips3]"));
9204 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9205 fprintf (file, _(" [mips4]"));
9206 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9207 fprintf (file, _(" [mips5]"));
9208 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9209 fprintf (file, _(" [mips32]"));
9210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9211 fprintf (file, _(" [mips64]"));
9212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9213 fprintf (file, _(" [mips32r2]"));
9214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9215 fprintf (file, _(" [mips64r2]"));
9216 else
9217 fprintf (file, _(" [unknown ISA]"));
9218
9219 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9220 fprintf (file, _(" [mdmx]"));
9221
9222 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9223 fprintf (file, _(" [mips16]"));
9224
9225 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9226 fprintf (file, _(" [32bitmode]"));
9227 else
9228 fprintf (file, _(" [not 32bitmode]"));
9229
9230 fputc ('\n', file);
9231
9232 return TRUE;
9233 }
9234
9235 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9236 {
9237 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9238 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9239 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9240 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9241 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9242 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9243 { NULL, 0, 0, 0, 0 }
9244 };