* elfxx-mips.c (LA25_LUI_MICROMIPS_1, LA25_LUI_MICROMIPS_2):
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311 #define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313 #define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* microMIPS 32-bit opcode helper installer. */
1017
1018 static void
1019 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1020 {
1021 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1022 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1023 }
1024
1025 /* microMIPS 32-bit opcode helper retriever. */
1026
1027 static bfd_vma
1028 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1029 {
1030 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1031 }
1032 \f
1033 /* Look up an entry in a MIPS ELF linker hash table. */
1034
1035 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1036 ((struct mips_elf_link_hash_entry *) \
1037 elf_link_hash_lookup (&(table)->root, (string), (create), \
1038 (copy), (follow)))
1039
1040 /* Traverse a MIPS ELF linker hash table. */
1041
1042 #define mips_elf_link_hash_traverse(table, func, info) \
1043 (elf_link_hash_traverse \
1044 (&(table)->root, \
1045 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1046 (info)))
1047
1048 /* Find the base offsets for thread-local storage in this object,
1049 for GD/LD and IE/LE respectively. */
1050
1051 #define TP_OFFSET 0x7000
1052 #define DTP_OFFSET 0x8000
1053
1054 static bfd_vma
1055 dtprel_base (struct bfd_link_info *info)
1056 {
1057 /* If tls_sec is NULL, we should have signalled an error already. */
1058 if (elf_hash_table (info)->tls_sec == NULL)
1059 return 0;
1060 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1061 }
1062
1063 static bfd_vma
1064 tprel_base (struct bfd_link_info *info)
1065 {
1066 /* If tls_sec is NULL, we should have signalled an error already. */
1067 if (elf_hash_table (info)->tls_sec == NULL)
1068 return 0;
1069 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1070 }
1071
1072 /* Create an entry in a MIPS ELF linker hash table. */
1073
1074 static struct bfd_hash_entry *
1075 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1076 struct bfd_hash_table *table, const char *string)
1077 {
1078 struct mips_elf_link_hash_entry *ret =
1079 (struct mips_elf_link_hash_entry *) entry;
1080
1081 /* Allocate the structure if it has not already been allocated by a
1082 subclass. */
1083 if (ret == NULL)
1084 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1085 if (ret == NULL)
1086 return (struct bfd_hash_entry *) ret;
1087
1088 /* Call the allocation method of the superclass. */
1089 ret = ((struct mips_elf_link_hash_entry *)
1090 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1091 table, string));
1092 if (ret != NULL)
1093 {
1094 /* Set local fields. */
1095 memset (&ret->esym, 0, sizeof (EXTR));
1096 /* We use -2 as a marker to indicate that the information has
1097 not been set. -1 means there is no associated ifd. */
1098 ret->esym.ifd = -2;
1099 ret->la25_stub = 0;
1100 ret->possibly_dynamic_relocs = 0;
1101 ret->fn_stub = NULL;
1102 ret->call_stub = NULL;
1103 ret->call_fp_stub = NULL;
1104 ret->tls_type = GOT_NORMAL;
1105 ret->global_got_area = GGA_NONE;
1106 ret->got_only_for_calls = TRUE;
1107 ret->readonly_reloc = FALSE;
1108 ret->has_static_relocs = FALSE;
1109 ret->no_fn_stub = FALSE;
1110 ret->need_fn_stub = FALSE;
1111 ret->has_nonpic_branches = FALSE;
1112 ret->needs_lazy_stub = FALSE;
1113 }
1114
1115 return (struct bfd_hash_entry *) ret;
1116 }
1117
1118 bfd_boolean
1119 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1120 {
1121 if (!sec->used_by_bfd)
1122 {
1123 struct _mips_elf_section_data *sdata;
1124 bfd_size_type amt = sizeof (*sdata);
1125
1126 sdata = bfd_zalloc (abfd, amt);
1127 if (sdata == NULL)
1128 return FALSE;
1129 sec->used_by_bfd = sdata;
1130 }
1131
1132 return _bfd_elf_new_section_hook (abfd, sec);
1133 }
1134 \f
1135 /* Read ECOFF debugging information from a .mdebug section into a
1136 ecoff_debug_info structure. */
1137
1138 bfd_boolean
1139 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1140 struct ecoff_debug_info *debug)
1141 {
1142 HDRR *symhdr;
1143 const struct ecoff_debug_swap *swap;
1144 char *ext_hdr;
1145
1146 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1147 memset (debug, 0, sizeof (*debug));
1148
1149 ext_hdr = bfd_malloc (swap->external_hdr_size);
1150 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1151 goto error_return;
1152
1153 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1154 swap->external_hdr_size))
1155 goto error_return;
1156
1157 symhdr = &debug->symbolic_header;
1158 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1159
1160 /* The symbolic header contains absolute file offsets and sizes to
1161 read. */
1162 #define READ(ptr, offset, count, size, type) \
1163 if (symhdr->count == 0) \
1164 debug->ptr = NULL; \
1165 else \
1166 { \
1167 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1168 debug->ptr = bfd_malloc (amt); \
1169 if (debug->ptr == NULL) \
1170 goto error_return; \
1171 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1172 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1173 goto error_return; \
1174 }
1175
1176 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1177 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1178 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1179 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1180 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1181 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1182 union aux_ext *);
1183 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1184 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1185 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1186 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1187 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1188 #undef READ
1189
1190 debug->fdr = NULL;
1191
1192 return TRUE;
1193
1194 error_return:
1195 if (ext_hdr != NULL)
1196 free (ext_hdr);
1197 if (debug->line != NULL)
1198 free (debug->line);
1199 if (debug->external_dnr != NULL)
1200 free (debug->external_dnr);
1201 if (debug->external_pdr != NULL)
1202 free (debug->external_pdr);
1203 if (debug->external_sym != NULL)
1204 free (debug->external_sym);
1205 if (debug->external_opt != NULL)
1206 free (debug->external_opt);
1207 if (debug->external_aux != NULL)
1208 free (debug->external_aux);
1209 if (debug->ss != NULL)
1210 free (debug->ss);
1211 if (debug->ssext != NULL)
1212 free (debug->ssext);
1213 if (debug->external_fdr != NULL)
1214 free (debug->external_fdr);
1215 if (debug->external_rfd != NULL)
1216 free (debug->external_rfd);
1217 if (debug->external_ext != NULL)
1218 free (debug->external_ext);
1219 return FALSE;
1220 }
1221 \f
1222 /* Swap RPDR (runtime procedure table entry) for output. */
1223
1224 static void
1225 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1226 {
1227 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1228 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1229 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1230 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1231 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1232 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1233
1234 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1235 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1236
1237 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1238 }
1239
1240 /* Create a runtime procedure table from the .mdebug section. */
1241
1242 static bfd_boolean
1243 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1244 struct bfd_link_info *info, asection *s,
1245 struct ecoff_debug_info *debug)
1246 {
1247 const struct ecoff_debug_swap *swap;
1248 HDRR *hdr = &debug->symbolic_header;
1249 RPDR *rpdr, *rp;
1250 struct rpdr_ext *erp;
1251 void *rtproc;
1252 struct pdr_ext *epdr;
1253 struct sym_ext *esym;
1254 char *ss, **sv;
1255 char *str;
1256 bfd_size_type size;
1257 bfd_size_type count;
1258 unsigned long sindex;
1259 unsigned long i;
1260 PDR pdr;
1261 SYMR sym;
1262 const char *no_name_func = _("static procedure (no name)");
1263
1264 epdr = NULL;
1265 rpdr = NULL;
1266 esym = NULL;
1267 ss = NULL;
1268 sv = NULL;
1269
1270 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1271
1272 sindex = strlen (no_name_func) + 1;
1273 count = hdr->ipdMax;
1274 if (count > 0)
1275 {
1276 size = swap->external_pdr_size;
1277
1278 epdr = bfd_malloc (size * count);
1279 if (epdr == NULL)
1280 goto error_return;
1281
1282 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1283 goto error_return;
1284
1285 size = sizeof (RPDR);
1286 rp = rpdr = bfd_malloc (size * count);
1287 if (rpdr == NULL)
1288 goto error_return;
1289
1290 size = sizeof (char *);
1291 sv = bfd_malloc (size * count);
1292 if (sv == NULL)
1293 goto error_return;
1294
1295 count = hdr->isymMax;
1296 size = swap->external_sym_size;
1297 esym = bfd_malloc (size * count);
1298 if (esym == NULL)
1299 goto error_return;
1300
1301 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1302 goto error_return;
1303
1304 count = hdr->issMax;
1305 ss = bfd_malloc (count);
1306 if (ss == NULL)
1307 goto error_return;
1308 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1309 goto error_return;
1310
1311 count = hdr->ipdMax;
1312 for (i = 0; i < (unsigned long) count; i++, rp++)
1313 {
1314 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1315 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1316 rp->adr = sym.value;
1317 rp->regmask = pdr.regmask;
1318 rp->regoffset = pdr.regoffset;
1319 rp->fregmask = pdr.fregmask;
1320 rp->fregoffset = pdr.fregoffset;
1321 rp->frameoffset = pdr.frameoffset;
1322 rp->framereg = pdr.framereg;
1323 rp->pcreg = pdr.pcreg;
1324 rp->irpss = sindex;
1325 sv[i] = ss + sym.iss;
1326 sindex += strlen (sv[i]) + 1;
1327 }
1328 }
1329
1330 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1331 size = BFD_ALIGN (size, 16);
1332 rtproc = bfd_alloc (abfd, size);
1333 if (rtproc == NULL)
1334 {
1335 mips_elf_hash_table (info)->procedure_count = 0;
1336 goto error_return;
1337 }
1338
1339 mips_elf_hash_table (info)->procedure_count = count + 2;
1340
1341 erp = rtproc;
1342 memset (erp, 0, sizeof (struct rpdr_ext));
1343 erp++;
1344 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1345 strcpy (str, no_name_func);
1346 str += strlen (no_name_func) + 1;
1347 for (i = 0; i < count; i++)
1348 {
1349 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1350 strcpy (str, sv[i]);
1351 str += strlen (sv[i]) + 1;
1352 }
1353 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1354
1355 /* Set the size and contents of .rtproc section. */
1356 s->size = size;
1357 s->contents = rtproc;
1358
1359 /* Skip this section later on (I don't think this currently
1360 matters, but someday it might). */
1361 s->map_head.link_order = NULL;
1362
1363 if (epdr != NULL)
1364 free (epdr);
1365 if (rpdr != NULL)
1366 free (rpdr);
1367 if (esym != NULL)
1368 free (esym);
1369 if (ss != NULL)
1370 free (ss);
1371 if (sv != NULL)
1372 free (sv);
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (epdr != NULL)
1378 free (epdr);
1379 if (rpdr != NULL)
1380 free (rpdr);
1381 if (esym != NULL)
1382 free (esym);
1383 if (ss != NULL)
1384 free (ss);
1385 if (sv != NULL)
1386 free (sv);
1387 return FALSE;
1388 }
1389 \f
1390 /* We're going to create a stub for H. Create a symbol for the stub's
1391 value and size, to help make the disassembly easier to read. */
1392
1393 static bfd_boolean
1394 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1395 struct mips_elf_link_hash_entry *h,
1396 const char *prefix, asection *s, bfd_vma value,
1397 bfd_vma size)
1398 {
1399 struct bfd_link_hash_entry *bh;
1400 struct elf_link_hash_entry *elfh;
1401 const char *name;
1402
1403 if (ELF_ST_IS_MICROMIPS (h->root.other))
1404 value |= 1;
1405
1406 /* Create a new symbol. */
1407 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1408 bh = NULL;
1409 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1410 BSF_LOCAL, s, value, NULL,
1411 TRUE, FALSE, &bh))
1412 return FALSE;
1413
1414 /* Make it a local function. */
1415 elfh = (struct elf_link_hash_entry *) bh;
1416 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1417 elfh->size = size;
1418 elfh->forced_local = 1;
1419 return TRUE;
1420 }
1421
1422 /* We're about to redefine H. Create a symbol to represent H's
1423 current value and size, to help make the disassembly easier
1424 to read. */
1425
1426 static bfd_boolean
1427 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1428 struct mips_elf_link_hash_entry *h,
1429 const char *prefix)
1430 {
1431 struct bfd_link_hash_entry *bh;
1432 struct elf_link_hash_entry *elfh;
1433 const char *name;
1434 asection *s;
1435 bfd_vma value;
1436
1437 /* Read the symbol's value. */
1438 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1439 || h->root.root.type == bfd_link_hash_defweak);
1440 s = h->root.root.u.def.section;
1441 value = h->root.root.u.def.value;
1442
1443 /* Create a new symbol. */
1444 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1445 bh = NULL;
1446 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1447 BSF_LOCAL, s, value, NULL,
1448 TRUE, FALSE, &bh))
1449 return FALSE;
1450
1451 /* Make it local and copy the other attributes from H. */
1452 elfh = (struct elf_link_hash_entry *) bh;
1453 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1454 elfh->other = h->root.other;
1455 elfh->size = h->root.size;
1456 elfh->forced_local = 1;
1457 return TRUE;
1458 }
1459
1460 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1461 function rather than to a hard-float stub. */
1462
1463 static bfd_boolean
1464 section_allows_mips16_refs_p (asection *section)
1465 {
1466 const char *name;
1467
1468 name = bfd_get_section_name (section->owner, section);
1469 return (FN_STUB_P (name)
1470 || CALL_STUB_P (name)
1471 || CALL_FP_STUB_P (name)
1472 || strcmp (name, ".pdr") == 0);
1473 }
1474
1475 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1476 stub section of some kind. Return the R_SYMNDX of the target
1477 function, or 0 if we can't decide which function that is. */
1478
1479 static unsigned long
1480 mips16_stub_symndx (const struct elf_backend_data *bed,
1481 asection *sec ATTRIBUTE_UNUSED,
1482 const Elf_Internal_Rela *relocs,
1483 const Elf_Internal_Rela *relend)
1484 {
1485 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1486 const Elf_Internal_Rela *rel;
1487
1488 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1489 one in a compound relocation. */
1490 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1491 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1492 return ELF_R_SYM (sec->owner, rel->r_info);
1493
1494 /* Otherwise trust the first relocation, whatever its kind. This is
1495 the traditional behavior. */
1496 if (relocs < relend)
1497 return ELF_R_SYM (sec->owner, relocs->r_info);
1498
1499 return 0;
1500 }
1501
1502 /* Check the mips16 stubs for a particular symbol, and see if we can
1503 discard them. */
1504
1505 static void
1506 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1507 struct mips_elf_link_hash_entry *h)
1508 {
1509 /* Dynamic symbols must use the standard call interface, in case other
1510 objects try to call them. */
1511 if (h->fn_stub != NULL
1512 && h->root.dynindx != -1)
1513 {
1514 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1515 h->need_fn_stub = TRUE;
1516 }
1517
1518 if (h->fn_stub != NULL
1519 && ! h->need_fn_stub)
1520 {
1521 /* We don't need the fn_stub; the only references to this symbol
1522 are 16 bit calls. Clobber the size to 0 to prevent it from
1523 being included in the link. */
1524 h->fn_stub->size = 0;
1525 h->fn_stub->flags &= ~SEC_RELOC;
1526 h->fn_stub->reloc_count = 0;
1527 h->fn_stub->flags |= SEC_EXCLUDE;
1528 }
1529
1530 if (h->call_stub != NULL
1531 && ELF_ST_IS_MIPS16 (h->root.other))
1532 {
1533 /* We don't need the call_stub; this is a 16 bit function, so
1534 calls from other 16 bit functions are OK. Clobber the size
1535 to 0 to prevent it from being included in the link. */
1536 h->call_stub->size = 0;
1537 h->call_stub->flags &= ~SEC_RELOC;
1538 h->call_stub->reloc_count = 0;
1539 h->call_stub->flags |= SEC_EXCLUDE;
1540 }
1541
1542 if (h->call_fp_stub != NULL
1543 && ELF_ST_IS_MIPS16 (h->root.other))
1544 {
1545 /* We don't need the call_stub; this is a 16 bit function, so
1546 calls from other 16 bit functions are OK. Clobber the size
1547 to 0 to prevent it from being included in the link. */
1548 h->call_fp_stub->size = 0;
1549 h->call_fp_stub->flags &= ~SEC_RELOC;
1550 h->call_fp_stub->reloc_count = 0;
1551 h->call_fp_stub->flags |= SEC_EXCLUDE;
1552 }
1553 }
1554
1555 /* Hashtable callbacks for mips_elf_la25_stubs. */
1556
1557 static hashval_t
1558 mips_elf_la25_stub_hash (const void *entry_)
1559 {
1560 const struct mips_elf_la25_stub *entry;
1561
1562 entry = (struct mips_elf_la25_stub *) entry_;
1563 return entry->h->root.root.u.def.section->id
1564 + entry->h->root.root.u.def.value;
1565 }
1566
1567 static int
1568 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1569 {
1570 const struct mips_elf_la25_stub *entry1, *entry2;
1571
1572 entry1 = (struct mips_elf_la25_stub *) entry1_;
1573 entry2 = (struct mips_elf_la25_stub *) entry2_;
1574 return ((entry1->h->root.root.u.def.section
1575 == entry2->h->root.root.u.def.section)
1576 && (entry1->h->root.root.u.def.value
1577 == entry2->h->root.root.u.def.value));
1578 }
1579
1580 /* Called by the linker to set up the la25 stub-creation code. FN is
1581 the linker's implementation of add_stub_function. Return true on
1582 success. */
1583
1584 bfd_boolean
1585 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1586 asection *(*fn) (const char *, asection *,
1587 asection *))
1588 {
1589 struct mips_elf_link_hash_table *htab;
1590
1591 htab = mips_elf_hash_table (info);
1592 if (htab == NULL)
1593 return FALSE;
1594
1595 htab->add_stub_section = fn;
1596 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1597 mips_elf_la25_stub_eq, NULL);
1598 if (htab->la25_stubs == NULL)
1599 return FALSE;
1600
1601 return TRUE;
1602 }
1603
1604 /* Return true if H is a locally-defined PIC function, in the sense
1605 that it or its fn_stub might need $25 to be valid on entry.
1606 Note that MIPS16 functions set up $gp using PC-relative instructions,
1607 so they themselves never need $25 to be valid. Only non-MIPS16
1608 entry points are of interest here. */
1609
1610 static bfd_boolean
1611 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1612 {
1613 return ((h->root.root.type == bfd_link_hash_defined
1614 || h->root.root.type == bfd_link_hash_defweak)
1615 && h->root.def_regular
1616 && !bfd_is_abs_section (h->root.root.u.def.section)
1617 && (!ELF_ST_IS_MIPS16 (h->root.other)
1618 || (h->fn_stub && h->need_fn_stub))
1619 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1620 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1621 }
1622
1623 /* Set *SEC to the input section that contains the target of STUB.
1624 Return the offset of the target from the start of that section. */
1625
1626 static bfd_vma
1627 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1628 asection **sec)
1629 {
1630 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1631 {
1632 BFD_ASSERT (stub->h->need_fn_stub);
1633 *sec = stub->h->fn_stub;
1634 return 0;
1635 }
1636 else
1637 {
1638 *sec = stub->h->root.root.u.def.section;
1639 return stub->h->root.root.u.def.value;
1640 }
1641 }
1642
1643 /* STUB describes an la25 stub that we have decided to implement
1644 by inserting an LUI/ADDIU pair before the target function.
1645 Create the section and redirect the function symbol to it. */
1646
1647 static bfd_boolean
1648 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1649 struct bfd_link_info *info)
1650 {
1651 struct mips_elf_link_hash_table *htab;
1652 char *name;
1653 asection *s, *input_section;
1654 unsigned int align;
1655
1656 htab = mips_elf_hash_table (info);
1657 if (htab == NULL)
1658 return FALSE;
1659
1660 /* Create a unique name for the new section. */
1661 name = bfd_malloc (11 + sizeof (".text.stub."));
1662 if (name == NULL)
1663 return FALSE;
1664 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1665
1666 /* Create the section. */
1667 mips_elf_get_la25_target (stub, &input_section);
1668 s = htab->add_stub_section (name, input_section,
1669 input_section->output_section);
1670 if (s == NULL)
1671 return FALSE;
1672
1673 /* Make sure that any padding goes before the stub. */
1674 align = input_section->alignment_power;
1675 if (!bfd_set_section_alignment (s->owner, s, align))
1676 return FALSE;
1677 if (align > 3)
1678 s->size = (1 << align) - 8;
1679
1680 /* Create a symbol for the stub. */
1681 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1682 stub->stub_section = s;
1683 stub->offset = s->size;
1684
1685 /* Allocate room for it. */
1686 s->size += 8;
1687 return TRUE;
1688 }
1689
1690 /* STUB describes an la25 stub that we have decided to implement
1691 with a separate trampoline. Allocate room for it and redirect
1692 the function symbol to it. */
1693
1694 static bfd_boolean
1695 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1696 struct bfd_link_info *info)
1697 {
1698 struct mips_elf_link_hash_table *htab;
1699 asection *s;
1700
1701 htab = mips_elf_hash_table (info);
1702 if (htab == NULL)
1703 return FALSE;
1704
1705 /* Create a trampoline section, if we haven't already. */
1706 s = htab->strampoline;
1707 if (s == NULL)
1708 {
1709 asection *input_section = stub->h->root.root.u.def.section;
1710 s = htab->add_stub_section (".text", NULL,
1711 input_section->output_section);
1712 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1713 return FALSE;
1714 htab->strampoline = s;
1715 }
1716
1717 /* Create a symbol for the stub. */
1718 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1719 stub->stub_section = s;
1720 stub->offset = s->size;
1721
1722 /* Allocate room for it. */
1723 s->size += 16;
1724 return TRUE;
1725 }
1726
1727 /* H describes a symbol that needs an la25 stub. Make sure that an
1728 appropriate stub exists and point H at it. */
1729
1730 static bfd_boolean
1731 mips_elf_add_la25_stub (struct bfd_link_info *info,
1732 struct mips_elf_link_hash_entry *h)
1733 {
1734 struct mips_elf_link_hash_table *htab;
1735 struct mips_elf_la25_stub search, *stub;
1736 bfd_boolean use_trampoline_p;
1737 asection *s;
1738 bfd_vma value;
1739 void **slot;
1740
1741 /* Describe the stub we want. */
1742 search.stub_section = NULL;
1743 search.offset = 0;
1744 search.h = h;
1745
1746 /* See if we've already created an equivalent stub. */
1747 htab = mips_elf_hash_table (info);
1748 if (htab == NULL)
1749 return FALSE;
1750
1751 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1752 if (slot == NULL)
1753 return FALSE;
1754
1755 stub = (struct mips_elf_la25_stub *) *slot;
1756 if (stub != NULL)
1757 {
1758 /* We can reuse the existing stub. */
1759 h->la25_stub = stub;
1760 return TRUE;
1761 }
1762
1763 /* Create a permanent copy of ENTRY and add it to the hash table. */
1764 stub = bfd_malloc (sizeof (search));
1765 if (stub == NULL)
1766 return FALSE;
1767 *stub = search;
1768 *slot = stub;
1769
1770 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1771 of the section and if we would need no more than 2 nops. */
1772 value = mips_elf_get_la25_target (stub, &s);
1773 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1774
1775 h->la25_stub = stub;
1776 return (use_trampoline_p
1777 ? mips_elf_add_la25_trampoline (stub, info)
1778 : mips_elf_add_la25_intro (stub, info));
1779 }
1780
1781 /* A mips_elf_link_hash_traverse callback that is called before sizing
1782 sections. DATA points to a mips_htab_traverse_info structure. */
1783
1784 static bfd_boolean
1785 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1786 {
1787 struct mips_htab_traverse_info *hti;
1788
1789 hti = (struct mips_htab_traverse_info *) data;
1790 if (!hti->info->relocatable)
1791 mips_elf_check_mips16_stubs (hti->info, h);
1792
1793 if (mips_elf_local_pic_function_p (h))
1794 {
1795 /* PR 12845: If H is in a section that has been garbage
1796 collected it will have its output section set to *ABS*. */
1797 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1798 return TRUE;
1799
1800 /* H is a function that might need $25 to be valid on entry.
1801 If we're creating a non-PIC relocatable object, mark H as
1802 being PIC. If we're creating a non-relocatable object with
1803 non-PIC branches and jumps to H, make sure that H has an la25
1804 stub. */
1805 if (hti->info->relocatable)
1806 {
1807 if (!PIC_OBJECT_P (hti->output_bfd))
1808 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1809 }
1810 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1811 {
1812 hti->error = TRUE;
1813 return FALSE;
1814 }
1815 }
1816 return TRUE;
1817 }
1818 \f
1819 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1820 Most mips16 instructions are 16 bits, but these instructions
1821 are 32 bits.
1822
1823 The format of these instructions is:
1824
1825 +--------------+--------------------------------+
1826 | JALX | X| Imm 20:16 | Imm 25:21 |
1827 +--------------+--------------------------------+
1828 | Immediate 15:0 |
1829 +-----------------------------------------------+
1830
1831 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1832 Note that the immediate value in the first word is swapped.
1833
1834 When producing a relocatable object file, R_MIPS16_26 is
1835 handled mostly like R_MIPS_26. In particular, the addend is
1836 stored as a straight 26-bit value in a 32-bit instruction.
1837 (gas makes life simpler for itself by never adjusting a
1838 R_MIPS16_26 reloc to be against a section, so the addend is
1839 always zero). However, the 32 bit instruction is stored as 2
1840 16-bit values, rather than a single 32-bit value. In a
1841 big-endian file, the result is the same; in a little-endian
1842 file, the two 16-bit halves of the 32 bit value are swapped.
1843 This is so that a disassembler can recognize the jal
1844 instruction.
1845
1846 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1847 instruction stored as two 16-bit values. The addend A is the
1848 contents of the targ26 field. The calculation is the same as
1849 R_MIPS_26. When storing the calculated value, reorder the
1850 immediate value as shown above, and don't forget to store the
1851 value as two 16-bit values.
1852
1853 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1854 defined as
1855
1856 big-endian:
1857 +--------+----------------------+
1858 | | |
1859 | | targ26-16 |
1860 |31 26|25 0|
1861 +--------+----------------------+
1862
1863 little-endian:
1864 +----------+------+-------------+
1865 | | | |
1866 | sub1 | | sub2 |
1867 |0 9|10 15|16 31|
1868 +----------+--------------------+
1869 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1870 ((sub1 << 16) | sub2)).
1871
1872 When producing a relocatable object file, the calculation is
1873 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1874 When producing a fully linked file, the calculation is
1875 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1876 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1877
1878 The table below lists the other MIPS16 instruction relocations.
1879 Each one is calculated in the same way as the non-MIPS16 relocation
1880 given on the right, but using the extended MIPS16 layout of 16-bit
1881 immediate fields:
1882
1883 R_MIPS16_GPREL R_MIPS_GPREL16
1884 R_MIPS16_GOT16 R_MIPS_GOT16
1885 R_MIPS16_CALL16 R_MIPS_CALL16
1886 R_MIPS16_HI16 R_MIPS_HI16
1887 R_MIPS16_LO16 R_MIPS_LO16
1888
1889 A typical instruction will have a format like this:
1890
1891 +--------------+--------------------------------+
1892 | EXTEND | Imm 10:5 | Imm 15:11 |
1893 +--------------+--------------------------------+
1894 | Major | rx | ry | Imm 4:0 |
1895 +--------------+--------------------------------+
1896
1897 EXTEND is the five bit value 11110. Major is the instruction
1898 opcode.
1899
1900 All we need to do here is shuffle the bits appropriately.
1901 As above, the two 16-bit halves must be swapped on a
1902 little-endian system. */
1903
1904 static inline bfd_boolean
1905 mips16_reloc_p (int r_type)
1906 {
1907 switch (r_type)
1908 {
1909 case R_MIPS16_26:
1910 case R_MIPS16_GPREL:
1911 case R_MIPS16_GOT16:
1912 case R_MIPS16_CALL16:
1913 case R_MIPS16_HI16:
1914 case R_MIPS16_LO16:
1915 case R_MIPS16_TLS_GD:
1916 case R_MIPS16_TLS_LDM:
1917 case R_MIPS16_TLS_DTPREL_HI16:
1918 case R_MIPS16_TLS_DTPREL_LO16:
1919 case R_MIPS16_TLS_GOTTPREL:
1920 case R_MIPS16_TLS_TPREL_HI16:
1921 case R_MIPS16_TLS_TPREL_LO16:
1922 return TRUE;
1923
1924 default:
1925 return FALSE;
1926 }
1927 }
1928
1929 /* Check if a microMIPS reloc. */
1930
1931 static inline bfd_boolean
1932 micromips_reloc_p (unsigned int r_type)
1933 {
1934 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1935 }
1936
1937 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1938 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1939 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1940
1941 static inline bfd_boolean
1942 micromips_reloc_shuffle_p (unsigned int r_type)
1943 {
1944 return (micromips_reloc_p (r_type)
1945 && r_type != R_MICROMIPS_PC7_S1
1946 && r_type != R_MICROMIPS_PC10_S1);
1947 }
1948
1949 static inline bfd_boolean
1950 got16_reloc_p (int r_type)
1951 {
1952 return (r_type == R_MIPS_GOT16
1953 || r_type == R_MIPS16_GOT16
1954 || r_type == R_MICROMIPS_GOT16);
1955 }
1956
1957 static inline bfd_boolean
1958 call16_reloc_p (int r_type)
1959 {
1960 return (r_type == R_MIPS_CALL16
1961 || r_type == R_MIPS16_CALL16
1962 || r_type == R_MICROMIPS_CALL16);
1963 }
1964
1965 static inline bfd_boolean
1966 got_disp_reloc_p (unsigned int r_type)
1967 {
1968 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1969 }
1970
1971 static inline bfd_boolean
1972 got_page_reloc_p (unsigned int r_type)
1973 {
1974 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1975 }
1976
1977 static inline bfd_boolean
1978 got_ofst_reloc_p (unsigned int r_type)
1979 {
1980 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1981 }
1982
1983 static inline bfd_boolean
1984 got_hi16_reloc_p (unsigned int r_type)
1985 {
1986 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1987 }
1988
1989 static inline bfd_boolean
1990 got_lo16_reloc_p (unsigned int r_type)
1991 {
1992 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1993 }
1994
1995 static inline bfd_boolean
1996 call_hi16_reloc_p (unsigned int r_type)
1997 {
1998 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1999 }
2000
2001 static inline bfd_boolean
2002 call_lo16_reloc_p (unsigned int r_type)
2003 {
2004 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2005 }
2006
2007 static inline bfd_boolean
2008 hi16_reloc_p (int r_type)
2009 {
2010 return (r_type == R_MIPS_HI16
2011 || r_type == R_MIPS16_HI16
2012 || r_type == R_MICROMIPS_HI16);
2013 }
2014
2015 static inline bfd_boolean
2016 lo16_reloc_p (int r_type)
2017 {
2018 return (r_type == R_MIPS_LO16
2019 || r_type == R_MIPS16_LO16
2020 || r_type == R_MICROMIPS_LO16);
2021 }
2022
2023 static inline bfd_boolean
2024 mips16_call_reloc_p (int r_type)
2025 {
2026 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2027 }
2028
2029 static inline bfd_boolean
2030 jal_reloc_p (int r_type)
2031 {
2032 return (r_type == R_MIPS_26
2033 || r_type == R_MIPS16_26
2034 || r_type == R_MICROMIPS_26_S1);
2035 }
2036
2037 static inline bfd_boolean
2038 micromips_branch_reloc_p (int r_type)
2039 {
2040 return (r_type == R_MICROMIPS_26_S1
2041 || r_type == R_MICROMIPS_PC16_S1
2042 || r_type == R_MICROMIPS_PC10_S1
2043 || r_type == R_MICROMIPS_PC7_S1);
2044 }
2045
2046 static inline bfd_boolean
2047 tls_gd_reloc_p (unsigned int r_type)
2048 {
2049 return (r_type == R_MIPS_TLS_GD
2050 || r_type == R_MIPS16_TLS_GD
2051 || r_type == R_MICROMIPS_TLS_GD);
2052 }
2053
2054 static inline bfd_boolean
2055 tls_ldm_reloc_p (unsigned int r_type)
2056 {
2057 return (r_type == R_MIPS_TLS_LDM
2058 || r_type == R_MIPS16_TLS_LDM
2059 || r_type == R_MICROMIPS_TLS_LDM);
2060 }
2061
2062 static inline bfd_boolean
2063 tls_gottprel_reloc_p (unsigned int r_type)
2064 {
2065 return (r_type == R_MIPS_TLS_GOTTPREL
2066 || r_type == R_MIPS16_TLS_GOTTPREL
2067 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2068 }
2069
2070 void
2071 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2072 bfd_boolean jal_shuffle, bfd_byte *data)
2073 {
2074 bfd_vma first, second, val;
2075
2076 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2077 return;
2078
2079 /* Pick up the first and second halfwords of the instruction. */
2080 first = bfd_get_16 (abfd, data);
2081 second = bfd_get_16 (abfd, data + 2);
2082 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2083 val = first << 16 | second;
2084 else if (r_type != R_MIPS16_26)
2085 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2086 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2087 else
2088 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2089 | ((first & 0x1f) << 21) | second);
2090 bfd_put_32 (abfd, val, data);
2091 }
2092
2093 void
2094 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2095 bfd_boolean jal_shuffle, bfd_byte *data)
2096 {
2097 bfd_vma first, second, val;
2098
2099 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2100 return;
2101
2102 val = bfd_get_32 (abfd, data);
2103 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2104 {
2105 second = val & 0xffff;
2106 first = val >> 16;
2107 }
2108 else if (r_type != R_MIPS16_26)
2109 {
2110 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2111 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2112 }
2113 else
2114 {
2115 second = val & 0xffff;
2116 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2117 | ((val >> 21) & 0x1f);
2118 }
2119 bfd_put_16 (abfd, second, data + 2);
2120 bfd_put_16 (abfd, first, data);
2121 }
2122
2123 bfd_reloc_status_type
2124 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2125 arelent *reloc_entry, asection *input_section,
2126 bfd_boolean relocatable, void *data, bfd_vma gp)
2127 {
2128 bfd_vma relocation;
2129 bfd_signed_vma val;
2130 bfd_reloc_status_type status;
2131
2132 if (bfd_is_com_section (symbol->section))
2133 relocation = 0;
2134 else
2135 relocation = symbol->value;
2136
2137 relocation += symbol->section->output_section->vma;
2138 relocation += symbol->section->output_offset;
2139
2140 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2141 return bfd_reloc_outofrange;
2142
2143 /* Set val to the offset into the section or symbol. */
2144 val = reloc_entry->addend;
2145
2146 _bfd_mips_elf_sign_extend (val, 16);
2147
2148 /* Adjust val for the final section location and GP value. If we
2149 are producing relocatable output, we don't want to do this for
2150 an external symbol. */
2151 if (! relocatable
2152 || (symbol->flags & BSF_SECTION_SYM) != 0)
2153 val += relocation - gp;
2154
2155 if (reloc_entry->howto->partial_inplace)
2156 {
2157 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2158 (bfd_byte *) data
2159 + reloc_entry->address);
2160 if (status != bfd_reloc_ok)
2161 return status;
2162 }
2163 else
2164 reloc_entry->addend = val;
2165
2166 if (relocatable)
2167 reloc_entry->address += input_section->output_offset;
2168
2169 return bfd_reloc_ok;
2170 }
2171
2172 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2173 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2174 that contains the relocation field and DATA points to the start of
2175 INPUT_SECTION. */
2176
2177 struct mips_hi16
2178 {
2179 struct mips_hi16 *next;
2180 bfd_byte *data;
2181 asection *input_section;
2182 arelent rel;
2183 };
2184
2185 /* FIXME: This should not be a static variable. */
2186
2187 static struct mips_hi16 *mips_hi16_list;
2188
2189 /* A howto special_function for REL *HI16 relocations. We can only
2190 calculate the correct value once we've seen the partnering
2191 *LO16 relocation, so just save the information for later.
2192
2193 The ABI requires that the *LO16 immediately follow the *HI16.
2194 However, as a GNU extension, we permit an arbitrary number of
2195 *HI16s to be associated with a single *LO16. This significantly
2196 simplies the relocation handling in gcc. */
2197
2198 bfd_reloc_status_type
2199 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2200 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2201 asection *input_section, bfd *output_bfd,
2202 char **error_message ATTRIBUTE_UNUSED)
2203 {
2204 struct mips_hi16 *n;
2205
2206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2207 return bfd_reloc_outofrange;
2208
2209 n = bfd_malloc (sizeof *n);
2210 if (n == NULL)
2211 return bfd_reloc_outofrange;
2212
2213 n->next = mips_hi16_list;
2214 n->data = data;
2215 n->input_section = input_section;
2216 n->rel = *reloc_entry;
2217 mips_hi16_list = n;
2218
2219 if (output_bfd != NULL)
2220 reloc_entry->address += input_section->output_offset;
2221
2222 return bfd_reloc_ok;
2223 }
2224
2225 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2226 like any other 16-bit relocation when applied to global symbols, but is
2227 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2228
2229 bfd_reloc_status_type
2230 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2231 void *data, asection *input_section,
2232 bfd *output_bfd, char **error_message)
2233 {
2234 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2235 || bfd_is_und_section (bfd_get_section (symbol))
2236 || bfd_is_com_section (bfd_get_section (symbol)))
2237 /* The relocation is against a global symbol. */
2238 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2239 input_section, output_bfd,
2240 error_message);
2241
2242 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244 }
2245
2246 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2247 is a straightforward 16 bit inplace relocation, but we must deal with
2248 any partnering high-part relocations as well. */
2249
2250 bfd_reloc_status_type
2251 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 bfd_vma vallo;
2256 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2257
2258 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2259 return bfd_reloc_outofrange;
2260
2261 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2262 location);
2263 vallo = bfd_get_32 (abfd, location);
2264 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2265 location);
2266
2267 while (mips_hi16_list != NULL)
2268 {
2269 bfd_reloc_status_type ret;
2270 struct mips_hi16 *hi;
2271
2272 hi = mips_hi16_list;
2273
2274 /* R_MIPS*_GOT16 relocations are something of a special case. We
2275 want to install the addend in the same way as for a R_MIPS*_HI16
2276 relocation (with a rightshift of 16). However, since GOT16
2277 relocations can also be used with global symbols, their howto
2278 has a rightshift of 0. */
2279 if (hi->rel.howto->type == R_MIPS_GOT16)
2280 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2281 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2282 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2283 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2284 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2285
2286 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2287 carry or borrow will induce a change of +1 or -1 in the high part. */
2288 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2289
2290 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2291 hi->input_section, output_bfd,
2292 error_message);
2293 if (ret != bfd_reloc_ok)
2294 return ret;
2295
2296 mips_hi16_list = hi->next;
2297 free (hi);
2298 }
2299
2300 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2301 input_section, output_bfd,
2302 error_message);
2303 }
2304
2305 /* A generic howto special_function. This calculates and installs the
2306 relocation itself, thus avoiding the oft-discussed problems in
2307 bfd_perform_relocation and bfd_install_relocation. */
2308
2309 bfd_reloc_status_type
2310 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2311 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2312 asection *input_section, bfd *output_bfd,
2313 char **error_message ATTRIBUTE_UNUSED)
2314 {
2315 bfd_signed_vma val;
2316 bfd_reloc_status_type status;
2317 bfd_boolean relocatable;
2318
2319 relocatable = (output_bfd != NULL);
2320
2321 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2322 return bfd_reloc_outofrange;
2323
2324 /* Build up the field adjustment in VAL. */
2325 val = 0;
2326 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2327 {
2328 /* Either we're calculating the final field value or we have a
2329 relocation against a section symbol. Add in the section's
2330 offset or address. */
2331 val += symbol->section->output_section->vma;
2332 val += symbol->section->output_offset;
2333 }
2334
2335 if (!relocatable)
2336 {
2337 /* We're calculating the final field value. Add in the symbol's value
2338 and, if pc-relative, subtract the address of the field itself. */
2339 val += symbol->value;
2340 if (reloc_entry->howto->pc_relative)
2341 {
2342 val -= input_section->output_section->vma;
2343 val -= input_section->output_offset;
2344 val -= reloc_entry->address;
2345 }
2346 }
2347
2348 /* VAL is now the final adjustment. If we're keeping this relocation
2349 in the output file, and if the relocation uses a separate addend,
2350 we just need to add VAL to that addend. Otherwise we need to add
2351 VAL to the relocation field itself. */
2352 if (relocatable && !reloc_entry->howto->partial_inplace)
2353 reloc_entry->addend += val;
2354 else
2355 {
2356 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2357
2358 /* Add in the separate addend, if any. */
2359 val += reloc_entry->addend;
2360
2361 /* Add VAL to the relocation field. */
2362 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2363 location);
2364 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2365 location);
2366 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2367 location);
2368
2369 if (status != bfd_reloc_ok)
2370 return status;
2371 }
2372
2373 if (relocatable)
2374 reloc_entry->address += input_section->output_offset;
2375
2376 return bfd_reloc_ok;
2377 }
2378 \f
2379 /* Swap an entry in a .gptab section. Note that these routines rely
2380 on the equivalence of the two elements of the union. */
2381
2382 static void
2383 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2384 Elf32_gptab *in)
2385 {
2386 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2387 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2388 }
2389
2390 static void
2391 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2392 Elf32_External_gptab *ex)
2393 {
2394 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2395 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2396 }
2397
2398 static void
2399 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2400 Elf32_External_compact_rel *ex)
2401 {
2402 H_PUT_32 (abfd, in->id1, ex->id1);
2403 H_PUT_32 (abfd, in->num, ex->num);
2404 H_PUT_32 (abfd, in->id2, ex->id2);
2405 H_PUT_32 (abfd, in->offset, ex->offset);
2406 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2407 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2408 }
2409
2410 static void
2411 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2412 Elf32_External_crinfo *ex)
2413 {
2414 unsigned long l;
2415
2416 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2417 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2418 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2419 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2420 H_PUT_32 (abfd, l, ex->info);
2421 H_PUT_32 (abfd, in->konst, ex->konst);
2422 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2423 }
2424 \f
2425 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2426 routines swap this structure in and out. They are used outside of
2427 BFD, so they are globally visible. */
2428
2429 void
2430 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2431 Elf32_RegInfo *in)
2432 {
2433 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2434 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2435 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2436 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2437 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2438 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2439 }
2440
2441 void
2442 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2443 Elf32_External_RegInfo *ex)
2444 {
2445 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2446 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2447 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2448 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2449 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2450 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2451 }
2452
2453 /* In the 64 bit ABI, the .MIPS.options section holds register
2454 information in an Elf64_Reginfo structure. These routines swap
2455 them in and out. They are globally visible because they are used
2456 outside of BFD. These routines are here so that gas can call them
2457 without worrying about whether the 64 bit ABI has been included. */
2458
2459 void
2460 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2461 Elf64_Internal_RegInfo *in)
2462 {
2463 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2464 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2465 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2466 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2467 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2468 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2469 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2470 }
2471
2472 void
2473 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2474 Elf64_External_RegInfo *ex)
2475 {
2476 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2477 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2478 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2479 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2480 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2481 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2482 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2483 }
2484
2485 /* Swap in an options header. */
2486
2487 void
2488 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2489 Elf_Internal_Options *in)
2490 {
2491 in->kind = H_GET_8 (abfd, ex->kind);
2492 in->size = H_GET_8 (abfd, ex->size);
2493 in->section = H_GET_16 (abfd, ex->section);
2494 in->info = H_GET_32 (abfd, ex->info);
2495 }
2496
2497 /* Swap out an options header. */
2498
2499 void
2500 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2501 Elf_External_Options *ex)
2502 {
2503 H_PUT_8 (abfd, in->kind, ex->kind);
2504 H_PUT_8 (abfd, in->size, ex->size);
2505 H_PUT_16 (abfd, in->section, ex->section);
2506 H_PUT_32 (abfd, in->info, ex->info);
2507 }
2508 \f
2509 /* This function is called via qsort() to sort the dynamic relocation
2510 entries by increasing r_symndx value. */
2511
2512 static int
2513 sort_dynamic_relocs (const void *arg1, const void *arg2)
2514 {
2515 Elf_Internal_Rela int_reloc1;
2516 Elf_Internal_Rela int_reloc2;
2517 int diff;
2518
2519 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2520 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2521
2522 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2523 if (diff != 0)
2524 return diff;
2525
2526 if (int_reloc1.r_offset < int_reloc2.r_offset)
2527 return -1;
2528 if (int_reloc1.r_offset > int_reloc2.r_offset)
2529 return 1;
2530 return 0;
2531 }
2532
2533 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2534
2535 static int
2536 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2537 const void *arg2 ATTRIBUTE_UNUSED)
2538 {
2539 #ifdef BFD64
2540 Elf_Internal_Rela int_reloc1[3];
2541 Elf_Internal_Rela int_reloc2[3];
2542
2543 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2544 (reldyn_sorting_bfd, arg1, int_reloc1);
2545 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2546 (reldyn_sorting_bfd, arg2, int_reloc2);
2547
2548 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2549 return -1;
2550 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2551 return 1;
2552
2553 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2554 return -1;
2555 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2556 return 1;
2557 return 0;
2558 #else
2559 abort ();
2560 #endif
2561 }
2562
2563
2564 /* This routine is used to write out ECOFF debugging external symbol
2565 information. It is called via mips_elf_link_hash_traverse. The
2566 ECOFF external symbol information must match the ELF external
2567 symbol information. Unfortunately, at this point we don't know
2568 whether a symbol is required by reloc information, so the two
2569 tables may wind up being different. We must sort out the external
2570 symbol information before we can set the final size of the .mdebug
2571 section, and we must set the size of the .mdebug section before we
2572 can relocate any sections, and we can't know which symbols are
2573 required by relocation until we relocate the sections.
2574 Fortunately, it is relatively unlikely that any symbol will be
2575 stripped but required by a reloc. In particular, it can not happen
2576 when generating a final executable. */
2577
2578 static bfd_boolean
2579 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2580 {
2581 struct extsym_info *einfo = data;
2582 bfd_boolean strip;
2583 asection *sec, *output_section;
2584
2585 if (h->root.indx == -2)
2586 strip = FALSE;
2587 else if ((h->root.def_dynamic
2588 || h->root.ref_dynamic
2589 || h->root.type == bfd_link_hash_new)
2590 && !h->root.def_regular
2591 && !h->root.ref_regular)
2592 strip = TRUE;
2593 else if (einfo->info->strip == strip_all
2594 || (einfo->info->strip == strip_some
2595 && bfd_hash_lookup (einfo->info->keep_hash,
2596 h->root.root.root.string,
2597 FALSE, FALSE) == NULL))
2598 strip = TRUE;
2599 else
2600 strip = FALSE;
2601
2602 if (strip)
2603 return TRUE;
2604
2605 if (h->esym.ifd == -2)
2606 {
2607 h->esym.jmptbl = 0;
2608 h->esym.cobol_main = 0;
2609 h->esym.weakext = 0;
2610 h->esym.reserved = 0;
2611 h->esym.ifd = ifdNil;
2612 h->esym.asym.value = 0;
2613 h->esym.asym.st = stGlobal;
2614
2615 if (h->root.root.type == bfd_link_hash_undefined
2616 || h->root.root.type == bfd_link_hash_undefweak)
2617 {
2618 const char *name;
2619
2620 /* Use undefined class. Also, set class and type for some
2621 special symbols. */
2622 name = h->root.root.root.string;
2623 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2624 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2625 {
2626 h->esym.asym.sc = scData;
2627 h->esym.asym.st = stLabel;
2628 h->esym.asym.value = 0;
2629 }
2630 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2631 {
2632 h->esym.asym.sc = scAbs;
2633 h->esym.asym.st = stLabel;
2634 h->esym.asym.value =
2635 mips_elf_hash_table (einfo->info)->procedure_count;
2636 }
2637 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2638 {
2639 h->esym.asym.sc = scAbs;
2640 h->esym.asym.st = stLabel;
2641 h->esym.asym.value = elf_gp (einfo->abfd);
2642 }
2643 else
2644 h->esym.asym.sc = scUndefined;
2645 }
2646 else if (h->root.root.type != bfd_link_hash_defined
2647 && h->root.root.type != bfd_link_hash_defweak)
2648 h->esym.asym.sc = scAbs;
2649 else
2650 {
2651 const char *name;
2652
2653 sec = h->root.root.u.def.section;
2654 output_section = sec->output_section;
2655
2656 /* When making a shared library and symbol h is the one from
2657 the another shared library, OUTPUT_SECTION may be null. */
2658 if (output_section == NULL)
2659 h->esym.asym.sc = scUndefined;
2660 else
2661 {
2662 name = bfd_section_name (output_section->owner, output_section);
2663
2664 if (strcmp (name, ".text") == 0)
2665 h->esym.asym.sc = scText;
2666 else if (strcmp (name, ".data") == 0)
2667 h->esym.asym.sc = scData;
2668 else if (strcmp (name, ".sdata") == 0)
2669 h->esym.asym.sc = scSData;
2670 else if (strcmp (name, ".rodata") == 0
2671 || strcmp (name, ".rdata") == 0)
2672 h->esym.asym.sc = scRData;
2673 else if (strcmp (name, ".bss") == 0)
2674 h->esym.asym.sc = scBss;
2675 else if (strcmp (name, ".sbss") == 0)
2676 h->esym.asym.sc = scSBss;
2677 else if (strcmp (name, ".init") == 0)
2678 h->esym.asym.sc = scInit;
2679 else if (strcmp (name, ".fini") == 0)
2680 h->esym.asym.sc = scFini;
2681 else
2682 h->esym.asym.sc = scAbs;
2683 }
2684 }
2685
2686 h->esym.asym.reserved = 0;
2687 h->esym.asym.index = indexNil;
2688 }
2689
2690 if (h->root.root.type == bfd_link_hash_common)
2691 h->esym.asym.value = h->root.root.u.c.size;
2692 else if (h->root.root.type == bfd_link_hash_defined
2693 || h->root.root.type == bfd_link_hash_defweak)
2694 {
2695 if (h->esym.asym.sc == scCommon)
2696 h->esym.asym.sc = scBss;
2697 else if (h->esym.asym.sc == scSCommon)
2698 h->esym.asym.sc = scSBss;
2699
2700 sec = h->root.root.u.def.section;
2701 output_section = sec->output_section;
2702 if (output_section != NULL)
2703 h->esym.asym.value = (h->root.root.u.def.value
2704 + sec->output_offset
2705 + output_section->vma);
2706 else
2707 h->esym.asym.value = 0;
2708 }
2709 else
2710 {
2711 struct mips_elf_link_hash_entry *hd = h;
2712
2713 while (hd->root.root.type == bfd_link_hash_indirect)
2714 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2715
2716 if (hd->needs_lazy_stub)
2717 {
2718 /* Set type and value for a symbol with a function stub. */
2719 h->esym.asym.st = stProc;
2720 sec = hd->root.root.u.def.section;
2721 if (sec == NULL)
2722 h->esym.asym.value = 0;
2723 else
2724 {
2725 output_section = sec->output_section;
2726 if (output_section != NULL)
2727 h->esym.asym.value = (hd->root.plt.offset
2728 + sec->output_offset
2729 + output_section->vma);
2730 else
2731 h->esym.asym.value = 0;
2732 }
2733 }
2734 }
2735
2736 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2737 h->root.root.root.string,
2738 &h->esym))
2739 {
2740 einfo->failed = TRUE;
2741 return FALSE;
2742 }
2743
2744 return TRUE;
2745 }
2746
2747 /* A comparison routine used to sort .gptab entries. */
2748
2749 static int
2750 gptab_compare (const void *p1, const void *p2)
2751 {
2752 const Elf32_gptab *a1 = p1;
2753 const Elf32_gptab *a2 = p2;
2754
2755 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2756 }
2757 \f
2758 /* Functions to manage the got entry hash table. */
2759
2760 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2761 hash number. */
2762
2763 static INLINE hashval_t
2764 mips_elf_hash_bfd_vma (bfd_vma addr)
2765 {
2766 #ifdef BFD64
2767 return addr + (addr >> 32);
2768 #else
2769 return addr;
2770 #endif
2771 }
2772
2773 /* got_entries only match if they're identical, except for gotidx, so
2774 use all fields to compute the hash, and compare the appropriate
2775 union members. */
2776
2777 static hashval_t
2778 mips_elf_got_entry_hash (const void *entry_)
2779 {
2780 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2781
2782 return entry->symndx
2783 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2784 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2785 : entry->abfd->id
2786 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2787 : entry->d.h->root.root.root.hash));
2788 }
2789
2790 static int
2791 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2792 {
2793 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2794 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2795
2796 /* An LDM entry can only match another LDM entry. */
2797 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2798 return 0;
2799
2800 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2801 && (! e1->abfd ? e1->d.address == e2->d.address
2802 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2803 : e1->d.h == e2->d.h);
2804 }
2805
2806 /* multi_got_entries are still a match in the case of global objects,
2807 even if the input bfd in which they're referenced differs, so the
2808 hash computation and compare functions are adjusted
2809 accordingly. */
2810
2811 static hashval_t
2812 mips_elf_multi_got_entry_hash (const void *entry_)
2813 {
2814 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2815
2816 return entry->symndx
2817 + (! entry->abfd
2818 ? mips_elf_hash_bfd_vma (entry->d.address)
2819 : entry->symndx >= 0
2820 ? ((entry->tls_type & GOT_TLS_LDM)
2821 ? (GOT_TLS_LDM << 17)
2822 : (entry->abfd->id
2823 + mips_elf_hash_bfd_vma (entry->d.addend)))
2824 : entry->d.h->root.root.root.hash);
2825 }
2826
2827 static int
2828 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2829 {
2830 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2831 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2832
2833 /* Any two LDM entries match. */
2834 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2835 return 1;
2836
2837 /* Nothing else matches an LDM entry. */
2838 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2839 return 0;
2840
2841 return e1->symndx == e2->symndx
2842 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2843 : e1->abfd == NULL || e2->abfd == NULL
2844 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2845 : e1->d.h == e2->d.h);
2846 }
2847
2848 static hashval_t
2849 mips_got_page_entry_hash (const void *entry_)
2850 {
2851 const struct mips_got_page_entry *entry;
2852
2853 entry = (const struct mips_got_page_entry *) entry_;
2854 return entry->abfd->id + entry->symndx;
2855 }
2856
2857 static int
2858 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2859 {
2860 const struct mips_got_page_entry *entry1, *entry2;
2861
2862 entry1 = (const struct mips_got_page_entry *) entry1_;
2863 entry2 = (const struct mips_got_page_entry *) entry2_;
2864 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2865 }
2866 \f
2867 /* Return the dynamic relocation section. If it doesn't exist, try to
2868 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2869 if creation fails. */
2870
2871 static asection *
2872 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2873 {
2874 const char *dname;
2875 asection *sreloc;
2876 bfd *dynobj;
2877
2878 dname = MIPS_ELF_REL_DYN_NAME (info);
2879 dynobj = elf_hash_table (info)->dynobj;
2880 sreloc = bfd_get_linker_section (dynobj, dname);
2881 if (sreloc == NULL && create_p)
2882 {
2883 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2884 (SEC_ALLOC
2885 | SEC_LOAD
2886 | SEC_HAS_CONTENTS
2887 | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED
2889 | SEC_READONLY));
2890 if (sreloc == NULL
2891 || ! bfd_set_section_alignment (dynobj, sreloc,
2892 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2893 return NULL;
2894 }
2895 return sreloc;
2896 }
2897
2898 /* Count the number of relocations needed for a TLS GOT entry, with
2899 access types from TLS_TYPE, and symbol H (or a local symbol if H
2900 is NULL). */
2901
2902 static int
2903 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2904 struct elf_link_hash_entry *h)
2905 {
2906 int indx = 0;
2907 int ret = 0;
2908 bfd_boolean need_relocs = FALSE;
2909 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2910
2911 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2912 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2913 indx = h->dynindx;
2914
2915 if ((info->shared || indx != 0)
2916 && (h == NULL
2917 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2918 || h->root.type != bfd_link_hash_undefweak))
2919 need_relocs = TRUE;
2920
2921 if (!need_relocs)
2922 return FALSE;
2923
2924 if (tls_type & GOT_TLS_GD)
2925 {
2926 ret++;
2927 if (indx != 0)
2928 ret++;
2929 }
2930
2931 if (tls_type & GOT_TLS_IE)
2932 ret++;
2933
2934 if ((tls_type & GOT_TLS_LDM) && info->shared)
2935 ret++;
2936
2937 return ret;
2938 }
2939
2940 /* Count the number of TLS relocations required for the GOT entry in
2941 ARG1, if it describes a local symbol. */
2942
2943 static int
2944 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2945 {
2946 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2947 struct mips_elf_count_tls_arg *arg = arg2;
2948
2949 if (entry->abfd != NULL && entry->symndx != -1)
2950 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2951
2952 return 1;
2953 }
2954
2955 /* Count the number of TLS GOT entries required for the global (or
2956 forced-local) symbol in ARG1. */
2957
2958 static int
2959 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2960 {
2961 struct mips_elf_link_hash_entry *hm
2962 = (struct mips_elf_link_hash_entry *) arg1;
2963 struct mips_elf_count_tls_arg *arg = arg2;
2964
2965 if (hm->tls_type & GOT_TLS_GD)
2966 arg->needed += 2;
2967 if (hm->tls_type & GOT_TLS_IE)
2968 arg->needed += 1;
2969
2970 return 1;
2971 }
2972
2973 /* Count the number of TLS relocations required for the global (or
2974 forced-local) symbol in ARG1. */
2975
2976 static int
2977 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2978 {
2979 struct mips_elf_link_hash_entry *hm
2980 = (struct mips_elf_link_hash_entry *) arg1;
2981 struct mips_elf_count_tls_arg *arg = arg2;
2982
2983 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2984
2985 return 1;
2986 }
2987
2988 /* Output a simple dynamic relocation into SRELOC. */
2989
2990 static void
2991 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2992 asection *sreloc,
2993 unsigned long reloc_index,
2994 unsigned long indx,
2995 int r_type,
2996 bfd_vma offset)
2997 {
2998 Elf_Internal_Rela rel[3];
2999
3000 memset (rel, 0, sizeof (rel));
3001
3002 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3003 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3004
3005 if (ABI_64_P (output_bfd))
3006 {
3007 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3008 (output_bfd, &rel[0],
3009 (sreloc->contents
3010 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3011 }
3012 else
3013 bfd_elf32_swap_reloc_out
3014 (output_bfd, &rel[0],
3015 (sreloc->contents
3016 + reloc_index * sizeof (Elf32_External_Rel)));
3017 }
3018
3019 /* Initialize a set of TLS GOT entries for one symbol. */
3020
3021 static void
3022 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3023 unsigned char *tls_type_p,
3024 struct bfd_link_info *info,
3025 struct mips_elf_link_hash_entry *h,
3026 bfd_vma value)
3027 {
3028 struct mips_elf_link_hash_table *htab;
3029 int indx;
3030 asection *sreloc, *sgot;
3031 bfd_vma offset, offset2;
3032 bfd_boolean need_relocs = FALSE;
3033
3034 htab = mips_elf_hash_table (info);
3035 if (htab == NULL)
3036 return;
3037
3038 sgot = htab->sgot;
3039
3040 indx = 0;
3041 if (h != NULL)
3042 {
3043 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3044
3045 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3046 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3047 indx = h->root.dynindx;
3048 }
3049
3050 if (*tls_type_p & GOT_TLS_DONE)
3051 return;
3052
3053 if ((info->shared || indx != 0)
3054 && (h == NULL
3055 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3056 || h->root.type != bfd_link_hash_undefweak))
3057 need_relocs = TRUE;
3058
3059 /* MINUS_ONE means the symbol is not defined in this object. It may not
3060 be defined at all; assume that the value doesn't matter in that
3061 case. Otherwise complain if we would use the value. */
3062 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3063 || h->root.root.type == bfd_link_hash_undefweak);
3064
3065 /* Emit necessary relocations. */
3066 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3067
3068 /* General Dynamic. */
3069 if (*tls_type_p & GOT_TLS_GD)
3070 {
3071 offset = got_offset;
3072 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3073
3074 if (need_relocs)
3075 {
3076 mips_elf_output_dynamic_relocation
3077 (abfd, sreloc, sreloc->reloc_count++, indx,
3078 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3079 sgot->output_offset + sgot->output_section->vma + offset);
3080
3081 if (indx)
3082 mips_elf_output_dynamic_relocation
3083 (abfd, sreloc, sreloc->reloc_count++, indx,
3084 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3085 sgot->output_offset + sgot->output_section->vma + offset2);
3086 else
3087 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3088 sgot->contents + offset2);
3089 }
3090 else
3091 {
3092 MIPS_ELF_PUT_WORD (abfd, 1,
3093 sgot->contents + offset);
3094 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3095 sgot->contents + offset2);
3096 }
3097
3098 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3099 }
3100
3101 /* Initial Exec model. */
3102 if (*tls_type_p & GOT_TLS_IE)
3103 {
3104 offset = got_offset;
3105
3106 if (need_relocs)
3107 {
3108 if (indx == 0)
3109 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3110 sgot->contents + offset);
3111 else
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + offset);
3114
3115 mips_elf_output_dynamic_relocation
3116 (abfd, sreloc, sreloc->reloc_count++, indx,
3117 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3118 sgot->output_offset + sgot->output_section->vma + offset);
3119 }
3120 else
3121 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3122 sgot->contents + offset);
3123 }
3124
3125 if (*tls_type_p & GOT_TLS_LDM)
3126 {
3127 /* The initial offset is zero, and the LD offsets will include the
3128 bias by DTP_OFFSET. */
3129 MIPS_ELF_PUT_WORD (abfd, 0,
3130 sgot->contents + got_offset
3131 + MIPS_ELF_GOT_SIZE (abfd));
3132
3133 if (!info->shared)
3134 MIPS_ELF_PUT_WORD (abfd, 1,
3135 sgot->contents + got_offset);
3136 else
3137 mips_elf_output_dynamic_relocation
3138 (abfd, sreloc, sreloc->reloc_count++, indx,
3139 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3140 sgot->output_offset + sgot->output_section->vma + got_offset);
3141 }
3142
3143 *tls_type_p |= GOT_TLS_DONE;
3144 }
3145
3146 /* Return the GOT index to use for a relocation of type R_TYPE against
3147 a symbol accessed using TLS_TYPE models. The GOT entries for this
3148 symbol in this GOT start at GOT_INDEX. This function initializes the
3149 GOT entries and corresponding relocations. */
3150
3151 static bfd_vma
3152 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3153 int r_type, struct bfd_link_info *info,
3154 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3155 {
3156 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3157 || tls_gd_reloc_p (r_type)
3158 || tls_ldm_reloc_p (r_type));
3159
3160 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3161
3162 if (tls_gottprel_reloc_p (r_type))
3163 {
3164 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3165 if (*tls_type & GOT_TLS_GD)
3166 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3167 else
3168 return got_index;
3169 }
3170
3171 if (tls_gd_reloc_p (r_type))
3172 {
3173 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3174 return got_index;
3175 }
3176
3177 if (tls_ldm_reloc_p (r_type))
3178 {
3179 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3180 return got_index;
3181 }
3182
3183 return got_index;
3184 }
3185
3186 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3187 for global symbol H. .got.plt comes before the GOT, so the offset
3188 will be negative. */
3189
3190 static bfd_vma
3191 mips_elf_gotplt_index (struct bfd_link_info *info,
3192 struct elf_link_hash_entry *h)
3193 {
3194 bfd_vma plt_index, got_address, got_value;
3195 struct mips_elf_link_hash_table *htab;
3196
3197 htab = mips_elf_hash_table (info);
3198 BFD_ASSERT (htab != NULL);
3199
3200 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3201
3202 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3203 section starts with reserved entries. */
3204 BFD_ASSERT (htab->is_vxworks);
3205
3206 /* Calculate the index of the symbol's PLT entry. */
3207 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3208
3209 /* Calculate the address of the associated .got.plt entry. */
3210 got_address = (htab->sgotplt->output_section->vma
3211 + htab->sgotplt->output_offset
3212 + plt_index * 4);
3213
3214 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3215 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3216 + htab->root.hgot->root.u.def.section->output_offset
3217 + htab->root.hgot->root.u.def.value);
3218
3219 return got_address - got_value;
3220 }
3221
3222 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3223 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3224 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3225 offset can be found. */
3226
3227 static bfd_vma
3228 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3229 bfd_vma value, unsigned long r_symndx,
3230 struct mips_elf_link_hash_entry *h, int r_type)
3231 {
3232 struct mips_elf_link_hash_table *htab;
3233 struct mips_got_entry *entry;
3234
3235 htab = mips_elf_hash_table (info);
3236 BFD_ASSERT (htab != NULL);
3237
3238 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3239 r_symndx, h, r_type);
3240 if (!entry)
3241 return MINUS_ONE;
3242
3243 if (TLS_RELOC_P (r_type))
3244 {
3245 if (entry->symndx == -1 && htab->got_info->next == NULL)
3246 /* A type (3) entry in the single-GOT case. We use the symbol's
3247 hash table entry to track the index. */
3248 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3249 r_type, info, h, value);
3250 else
3251 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3252 r_type, info, h, value);
3253 }
3254 else
3255 return entry->gotidx;
3256 }
3257
3258 /* Returns the GOT index for the global symbol indicated by H. */
3259
3260 static bfd_vma
3261 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3262 int r_type, struct bfd_link_info *info)
3263 {
3264 struct mips_elf_link_hash_table *htab;
3265 bfd_vma got_index;
3266 struct mips_got_info *g, *gg;
3267 long global_got_dynindx = 0;
3268
3269 htab = mips_elf_hash_table (info);
3270 BFD_ASSERT (htab != NULL);
3271
3272 gg = g = htab->got_info;
3273 if (g->bfd2got && ibfd)
3274 {
3275 struct mips_got_entry e, *p;
3276
3277 BFD_ASSERT (h->dynindx >= 0);
3278
3279 g = mips_elf_got_for_ibfd (g, ibfd);
3280 if (g->next != gg || TLS_RELOC_P (r_type))
3281 {
3282 e.abfd = ibfd;
3283 e.symndx = -1;
3284 e.d.h = (struct mips_elf_link_hash_entry *)h;
3285 e.tls_type = 0;
3286
3287 p = htab_find (g->got_entries, &e);
3288
3289 BFD_ASSERT (p->gotidx > 0);
3290
3291 if (TLS_RELOC_P (r_type))
3292 {
3293 bfd_vma value = MINUS_ONE;
3294 if ((h->root.type == bfd_link_hash_defined
3295 || h->root.type == bfd_link_hash_defweak)
3296 && h->root.u.def.section->output_section)
3297 value = (h->root.u.def.value
3298 + h->root.u.def.section->output_offset
3299 + h->root.u.def.section->output_section->vma);
3300
3301 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3302 info, e.d.h, value);
3303 }
3304 else
3305 return p->gotidx;
3306 }
3307 }
3308
3309 if (gg->global_gotsym != NULL)
3310 global_got_dynindx = gg->global_gotsym->dynindx;
3311
3312 if (TLS_RELOC_P (r_type))
3313 {
3314 struct mips_elf_link_hash_entry *hm
3315 = (struct mips_elf_link_hash_entry *) h;
3316 bfd_vma value = MINUS_ONE;
3317
3318 if ((h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak)
3320 && h->root.u.def.section->output_section)
3321 value = (h->root.u.def.value
3322 + h->root.u.def.section->output_offset
3323 + h->root.u.def.section->output_section->vma);
3324
3325 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3326 r_type, info, hm, value);
3327 }
3328 else
3329 {
3330 /* Once we determine the global GOT entry with the lowest dynamic
3331 symbol table index, we must put all dynamic symbols with greater
3332 indices into the GOT. That makes it easy to calculate the GOT
3333 offset. */
3334 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3335 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3336 * MIPS_ELF_GOT_SIZE (abfd));
3337 }
3338 BFD_ASSERT (got_index < htab->sgot->size);
3339
3340 return got_index;
3341 }
3342
3343 /* Find a GOT page entry that points to within 32KB of VALUE. These
3344 entries are supposed to be placed at small offsets in the GOT, i.e.,
3345 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3346 entry could be created. If OFFSETP is nonnull, use it to return the
3347 offset of the GOT entry from VALUE. */
3348
3349 static bfd_vma
3350 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3351 bfd_vma value, bfd_vma *offsetp)
3352 {
3353 bfd_vma page, got_index;
3354 struct mips_got_entry *entry;
3355
3356 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3357 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3358 NULL, R_MIPS_GOT_PAGE);
3359
3360 if (!entry)
3361 return MINUS_ONE;
3362
3363 got_index = entry->gotidx;
3364
3365 if (offsetp)
3366 *offsetp = value - entry->d.address;
3367
3368 return got_index;
3369 }
3370
3371 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3372 EXTERNAL is true if the relocation was originally against a global
3373 symbol that binds locally. */
3374
3375 static bfd_vma
3376 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3377 bfd_vma value, bfd_boolean external)
3378 {
3379 struct mips_got_entry *entry;
3380
3381 /* GOT16 relocations against local symbols are followed by a LO16
3382 relocation; those against global symbols are not. Thus if the
3383 symbol was originally local, the GOT16 relocation should load the
3384 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3385 if (! external)
3386 value = mips_elf_high (value) << 16;
3387
3388 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3389 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3390 same in all cases. */
3391 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3392 NULL, R_MIPS_GOT16);
3393 if (entry)
3394 return entry->gotidx;
3395 else
3396 return MINUS_ONE;
3397 }
3398
3399 /* Returns the offset for the entry at the INDEXth position
3400 in the GOT. */
3401
3402 static bfd_vma
3403 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3404 bfd *input_bfd, bfd_vma got_index)
3405 {
3406 struct mips_elf_link_hash_table *htab;
3407 asection *sgot;
3408 bfd_vma gp;
3409
3410 htab = mips_elf_hash_table (info);
3411 BFD_ASSERT (htab != NULL);
3412
3413 sgot = htab->sgot;
3414 gp = _bfd_get_gp_value (output_bfd)
3415 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3416
3417 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3418 }
3419
3420 /* Create and return a local GOT entry for VALUE, which was calculated
3421 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3422 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3423 instead. */
3424
3425 static struct mips_got_entry *
3426 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3427 bfd *ibfd, bfd_vma value,
3428 unsigned long r_symndx,
3429 struct mips_elf_link_hash_entry *h,
3430 int r_type)
3431 {
3432 struct mips_got_entry entry, **loc;
3433 struct mips_got_info *g;
3434 struct mips_elf_link_hash_table *htab;
3435
3436 htab = mips_elf_hash_table (info);
3437 BFD_ASSERT (htab != NULL);
3438
3439 entry.abfd = NULL;
3440 entry.symndx = -1;
3441 entry.d.address = value;
3442 entry.tls_type = 0;
3443
3444 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3445 if (g == NULL)
3446 {
3447 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3448 BFD_ASSERT (g != NULL);
3449 }
3450
3451 /* This function shouldn't be called for symbols that live in the global
3452 area of the GOT. */
3453 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3454 if (TLS_RELOC_P (r_type))
3455 {
3456 struct mips_got_entry *p;
3457
3458 entry.abfd = ibfd;
3459 if (tls_ldm_reloc_p (r_type))
3460 {
3461 entry.tls_type = GOT_TLS_LDM;
3462 entry.symndx = 0;
3463 entry.d.addend = 0;
3464 }
3465 else if (h == NULL)
3466 {
3467 entry.symndx = r_symndx;
3468 entry.d.addend = 0;
3469 }
3470 else
3471 entry.d.h = h;
3472
3473 p = (struct mips_got_entry *)
3474 htab_find (g->got_entries, &entry);
3475
3476 BFD_ASSERT (p);
3477 return p;
3478 }
3479
3480 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3481 INSERT);
3482 if (*loc)
3483 return *loc;
3484
3485 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3486 entry.tls_type = 0;
3487
3488 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3489
3490 if (! *loc)
3491 return NULL;
3492
3493 memcpy (*loc, &entry, sizeof entry);
3494
3495 if (g->assigned_gotno > g->local_gotno)
3496 {
3497 (*loc)->gotidx = -1;
3498 /* We didn't allocate enough space in the GOT. */
3499 (*_bfd_error_handler)
3500 (_("not enough GOT space for local GOT entries"));
3501 bfd_set_error (bfd_error_bad_value);
3502 return NULL;
3503 }
3504
3505 MIPS_ELF_PUT_WORD (abfd, value,
3506 (htab->sgot->contents + entry.gotidx));
3507
3508 /* These GOT entries need a dynamic relocation on VxWorks. */
3509 if (htab->is_vxworks)
3510 {
3511 Elf_Internal_Rela outrel;
3512 asection *s;
3513 bfd_byte *rloc;
3514 bfd_vma got_address;
3515
3516 s = mips_elf_rel_dyn_section (info, FALSE);
3517 got_address = (htab->sgot->output_section->vma
3518 + htab->sgot->output_offset
3519 + entry.gotidx);
3520
3521 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3522 outrel.r_offset = got_address;
3523 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3524 outrel.r_addend = value;
3525 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3526 }
3527
3528 return *loc;
3529 }
3530
3531 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3532 The number might be exact or a worst-case estimate, depending on how
3533 much information is available to elf_backend_omit_section_dynsym at
3534 the current linking stage. */
3535
3536 static bfd_size_type
3537 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3538 {
3539 bfd_size_type count;
3540
3541 count = 0;
3542 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3543 {
3544 asection *p;
3545 const struct elf_backend_data *bed;
3546
3547 bed = get_elf_backend_data (output_bfd);
3548 for (p = output_bfd->sections; p ; p = p->next)
3549 if ((p->flags & SEC_EXCLUDE) == 0
3550 && (p->flags & SEC_ALLOC) != 0
3551 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3552 ++count;
3553 }
3554 return count;
3555 }
3556
3557 /* Sort the dynamic symbol table so that symbols that need GOT entries
3558 appear towards the end. */
3559
3560 static bfd_boolean
3561 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_elf_hash_sort_data hsd;
3565 struct mips_got_info *g;
3566
3567 if (elf_hash_table (info)->dynsymcount == 0)
3568 return TRUE;
3569
3570 htab = mips_elf_hash_table (info);
3571 BFD_ASSERT (htab != NULL);
3572
3573 g = htab->got_info;
3574 if (g == NULL)
3575 return TRUE;
3576
3577 hsd.low = NULL;
3578 hsd.max_unref_got_dynindx
3579 = hsd.min_got_dynindx
3580 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3581 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3582 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3583 elf_hash_table (info)),
3584 mips_elf_sort_hash_table_f,
3585 &hsd);
3586
3587 /* There should have been enough room in the symbol table to
3588 accommodate both the GOT and non-GOT symbols. */
3589 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3590 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3591 == elf_hash_table (info)->dynsymcount);
3592 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3593 == g->global_gotno);
3594
3595 /* Now we know which dynamic symbol has the lowest dynamic symbol
3596 table index in the GOT. */
3597 g->global_gotsym = hsd.low;
3598
3599 return TRUE;
3600 }
3601
3602 /* If H needs a GOT entry, assign it the highest available dynamic
3603 index. Otherwise, assign it the lowest available dynamic
3604 index. */
3605
3606 static bfd_boolean
3607 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3608 {
3609 struct mips_elf_hash_sort_data *hsd = data;
3610
3611 /* Symbols without dynamic symbol table entries aren't interesting
3612 at all. */
3613 if (h->root.dynindx == -1)
3614 return TRUE;
3615
3616 switch (h->global_got_area)
3617 {
3618 case GGA_NONE:
3619 h->root.dynindx = hsd->max_non_got_dynindx++;
3620 break;
3621
3622 case GGA_NORMAL:
3623 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3624
3625 h->root.dynindx = --hsd->min_got_dynindx;
3626 hsd->low = (struct elf_link_hash_entry *) h;
3627 break;
3628
3629 case GGA_RELOC_ONLY:
3630 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3631
3632 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3633 hsd->low = (struct elf_link_hash_entry *) h;
3634 h->root.dynindx = hsd->max_unref_got_dynindx++;
3635 break;
3636 }
3637
3638 return TRUE;
3639 }
3640
3641 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3642 symbol table index lower than any we've seen to date, record it for
3643 posterity. FOR_CALL is true if the caller is only interested in
3644 using the GOT entry for calls. */
3645
3646 static bfd_boolean
3647 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3648 bfd *abfd, struct bfd_link_info *info,
3649 bfd_boolean for_call,
3650 unsigned char tls_flag)
3651 {
3652 struct mips_elf_link_hash_table *htab;
3653 struct mips_elf_link_hash_entry *hmips;
3654 struct mips_got_entry entry, **loc;
3655 struct mips_got_info *g;
3656
3657 htab = mips_elf_hash_table (info);
3658 BFD_ASSERT (htab != NULL);
3659
3660 hmips = (struct mips_elf_link_hash_entry *) h;
3661 if (!for_call)
3662 hmips->got_only_for_calls = FALSE;
3663
3664 /* A global symbol in the GOT must also be in the dynamic symbol
3665 table. */
3666 if (h->dynindx == -1)
3667 {
3668 switch (ELF_ST_VISIBILITY (h->other))
3669 {
3670 case STV_INTERNAL:
3671 case STV_HIDDEN:
3672 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3673 break;
3674 }
3675 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3676 return FALSE;
3677 }
3678
3679 /* Make sure we have a GOT to put this entry into. */
3680 g = htab->got_info;
3681 BFD_ASSERT (g != NULL);
3682
3683 entry.abfd = abfd;
3684 entry.symndx = -1;
3685 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3686 entry.tls_type = 0;
3687
3688 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3689 INSERT);
3690
3691 /* If we've already marked this entry as needing GOT space, we don't
3692 need to do it again. */
3693 if (*loc)
3694 {
3695 (*loc)->tls_type |= tls_flag;
3696 return TRUE;
3697 }
3698
3699 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3700
3701 if (! *loc)
3702 return FALSE;
3703
3704 entry.gotidx = -1;
3705 entry.tls_type = tls_flag;
3706
3707 memcpy (*loc, &entry, sizeof entry);
3708
3709 if (tls_flag == 0)
3710 hmips->global_got_area = GGA_NORMAL;
3711
3712 return TRUE;
3713 }
3714
3715 /* Reserve space in G for a GOT entry containing the value of symbol
3716 SYMNDX in input bfd ABDF, plus ADDEND. */
3717
3718 static bfd_boolean
3719 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3720 struct bfd_link_info *info,
3721 unsigned char tls_flag)
3722 {
3723 struct mips_elf_link_hash_table *htab;
3724 struct mips_got_info *g;
3725 struct mips_got_entry entry, **loc;
3726
3727 htab = mips_elf_hash_table (info);
3728 BFD_ASSERT (htab != NULL);
3729
3730 g = htab->got_info;
3731 BFD_ASSERT (g != NULL);
3732
3733 entry.abfd = abfd;
3734 entry.symndx = symndx;
3735 entry.d.addend = addend;
3736 entry.tls_type = tls_flag;
3737 loc = (struct mips_got_entry **)
3738 htab_find_slot (g->got_entries, &entry, INSERT);
3739
3740 if (*loc)
3741 {
3742 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3743 {
3744 g->tls_gotno += 2;
3745 (*loc)->tls_type |= tls_flag;
3746 }
3747 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3748 {
3749 g->tls_gotno += 1;
3750 (*loc)->tls_type |= tls_flag;
3751 }
3752 return TRUE;
3753 }
3754
3755 if (tls_flag != 0)
3756 {
3757 entry.gotidx = -1;
3758 entry.tls_type = tls_flag;
3759 if (tls_flag == GOT_TLS_IE)
3760 g->tls_gotno += 1;
3761 else if (tls_flag == GOT_TLS_GD)
3762 g->tls_gotno += 2;
3763 else if (g->tls_ldm_offset == MINUS_ONE)
3764 {
3765 g->tls_ldm_offset = MINUS_TWO;
3766 g->tls_gotno += 2;
3767 }
3768 }
3769 else
3770 {
3771 entry.gotidx = g->local_gotno++;
3772 entry.tls_type = 0;
3773 }
3774
3775 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3776
3777 if (! *loc)
3778 return FALSE;
3779
3780 memcpy (*loc, &entry, sizeof entry);
3781
3782 return TRUE;
3783 }
3784
3785 /* Return the maximum number of GOT page entries required for RANGE. */
3786
3787 static bfd_vma
3788 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3789 {
3790 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3791 }
3792
3793 /* Record that ABFD has a page relocation against symbol SYMNDX and
3794 that ADDEND is the addend for that relocation.
3795
3796 This function creates an upper bound on the number of GOT slots
3797 required; no attempt is made to combine references to non-overridable
3798 global symbols across multiple input files. */
3799
3800 static bfd_boolean
3801 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3802 long symndx, bfd_signed_vma addend)
3803 {
3804 struct mips_elf_link_hash_table *htab;
3805 struct mips_got_info *g;
3806 struct mips_got_page_entry lookup, *entry;
3807 struct mips_got_page_range **range_ptr, *range;
3808 bfd_vma old_pages, new_pages;
3809 void **loc;
3810
3811 htab = mips_elf_hash_table (info);
3812 BFD_ASSERT (htab != NULL);
3813
3814 g = htab->got_info;
3815 BFD_ASSERT (g != NULL);
3816
3817 /* Find the mips_got_page_entry hash table entry for this symbol. */
3818 lookup.abfd = abfd;
3819 lookup.symndx = symndx;
3820 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3821 if (loc == NULL)
3822 return FALSE;
3823
3824 /* Create a mips_got_page_entry if this is the first time we've
3825 seen the symbol. */
3826 entry = (struct mips_got_page_entry *) *loc;
3827 if (!entry)
3828 {
3829 entry = bfd_alloc (abfd, sizeof (*entry));
3830 if (!entry)
3831 return FALSE;
3832
3833 entry->abfd = abfd;
3834 entry->symndx = symndx;
3835 entry->ranges = NULL;
3836 entry->num_pages = 0;
3837 *loc = entry;
3838 }
3839
3840 /* Skip over ranges whose maximum extent cannot share a page entry
3841 with ADDEND. */
3842 range_ptr = &entry->ranges;
3843 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3844 range_ptr = &(*range_ptr)->next;
3845
3846 /* If we scanned to the end of the list, or found a range whose
3847 minimum extent cannot share a page entry with ADDEND, create
3848 a new singleton range. */
3849 range = *range_ptr;
3850 if (!range || addend < range->min_addend - 0xffff)
3851 {
3852 range = bfd_alloc (abfd, sizeof (*range));
3853 if (!range)
3854 return FALSE;
3855
3856 range->next = *range_ptr;
3857 range->min_addend = addend;
3858 range->max_addend = addend;
3859
3860 *range_ptr = range;
3861 entry->num_pages++;
3862 g->page_gotno++;
3863 return TRUE;
3864 }
3865
3866 /* Remember how many pages the old range contributed. */
3867 old_pages = mips_elf_pages_for_range (range);
3868
3869 /* Update the ranges. */
3870 if (addend < range->min_addend)
3871 range->min_addend = addend;
3872 else if (addend > range->max_addend)
3873 {
3874 if (range->next && addend >= range->next->min_addend - 0xffff)
3875 {
3876 old_pages += mips_elf_pages_for_range (range->next);
3877 range->max_addend = range->next->max_addend;
3878 range->next = range->next->next;
3879 }
3880 else
3881 range->max_addend = addend;
3882 }
3883
3884 /* Record any change in the total estimate. */
3885 new_pages = mips_elf_pages_for_range (range);
3886 if (old_pages != new_pages)
3887 {
3888 entry->num_pages += new_pages - old_pages;
3889 g->page_gotno += new_pages - old_pages;
3890 }
3891
3892 return TRUE;
3893 }
3894
3895 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3896
3897 static void
3898 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3899 unsigned int n)
3900 {
3901 asection *s;
3902 struct mips_elf_link_hash_table *htab;
3903
3904 htab = mips_elf_hash_table (info);
3905 BFD_ASSERT (htab != NULL);
3906
3907 s = mips_elf_rel_dyn_section (info, FALSE);
3908 BFD_ASSERT (s != NULL);
3909
3910 if (htab->is_vxworks)
3911 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3912 else
3913 {
3914 if (s->size == 0)
3915 {
3916 /* Make room for a null element. */
3917 s->size += MIPS_ELF_REL_SIZE (abfd);
3918 ++s->reloc_count;
3919 }
3920 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3921 }
3922 }
3923 \f
3924 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3925 if the GOT entry is for an indirect or warning symbol. */
3926
3927 static int
3928 mips_elf_check_recreate_got (void **entryp, void *data)
3929 {
3930 struct mips_got_entry *entry;
3931 bfd_boolean *must_recreate;
3932
3933 entry = (struct mips_got_entry *) *entryp;
3934 must_recreate = (bfd_boolean *) data;
3935 if (entry->abfd != NULL && entry->symndx == -1)
3936 {
3937 struct mips_elf_link_hash_entry *h;
3938
3939 h = entry->d.h;
3940 if (h->root.root.type == bfd_link_hash_indirect
3941 || h->root.root.type == bfd_link_hash_warning)
3942 {
3943 *must_recreate = TRUE;
3944 return 0;
3945 }
3946 }
3947 return 1;
3948 }
3949
3950 /* A htab_traverse callback for GOT entries. Add all entries to
3951 hash table *DATA, converting entries for indirect and warning
3952 symbols into entries for the target symbol. Set *DATA to null
3953 on error. */
3954
3955 static int
3956 mips_elf_recreate_got (void **entryp, void *data)
3957 {
3958 htab_t *new_got;
3959 struct mips_got_entry *entry;
3960 void **slot;
3961
3962 new_got = (htab_t *) data;
3963 entry = (struct mips_got_entry *) *entryp;
3964 if (entry->abfd != NULL && entry->symndx == -1)
3965 {
3966 struct mips_elf_link_hash_entry *h;
3967
3968 h = entry->d.h;
3969 while (h->root.root.type == bfd_link_hash_indirect
3970 || h->root.root.type == bfd_link_hash_warning)
3971 {
3972 BFD_ASSERT (h->global_got_area == GGA_NONE);
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974 }
3975 entry->d.h = h;
3976 }
3977 slot = htab_find_slot (*new_got, entry, INSERT);
3978 if (slot == NULL)
3979 {
3980 *new_got = NULL;
3981 return 0;
3982 }
3983 if (*slot == NULL)
3984 *slot = entry;
3985 else
3986 free (entry);
3987 return 1;
3988 }
3989
3990 /* If any entries in G->got_entries are for indirect or warning symbols,
3991 replace them with entries for the target symbol. */
3992
3993 static bfd_boolean
3994 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3995 {
3996 bfd_boolean must_recreate;
3997 htab_t new_got;
3998
3999 must_recreate = FALSE;
4000 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4001 if (must_recreate)
4002 {
4003 new_got = htab_create (htab_size (g->got_entries),
4004 mips_elf_got_entry_hash,
4005 mips_elf_got_entry_eq, NULL);
4006 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4007 if (new_got == NULL)
4008 return FALSE;
4009
4010 /* Each entry in g->got_entries has either been copied to new_got
4011 or freed. Now delete the hash table itself. */
4012 htab_delete (g->got_entries);
4013 g->got_entries = new_got;
4014 }
4015 return TRUE;
4016 }
4017
4018 /* A mips_elf_link_hash_traverse callback for which DATA points
4019 to the link_info structure. Count the number of type (3) entries
4020 in the master GOT. */
4021
4022 static int
4023 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4024 {
4025 struct bfd_link_info *info;
4026 struct mips_elf_link_hash_table *htab;
4027 struct mips_got_info *g;
4028
4029 info = (struct bfd_link_info *) data;
4030 htab = mips_elf_hash_table (info);
4031 g = htab->got_info;
4032 if (h->global_got_area != GGA_NONE)
4033 {
4034 /* Make a final decision about whether the symbol belongs in the
4035 local or global GOT. Symbols that bind locally can (and in the
4036 case of forced-local symbols, must) live in the local GOT.
4037 Those that are aren't in the dynamic symbol table must also
4038 live in the local GOT.
4039
4040 Note that the former condition does not always imply the
4041 latter: symbols do not bind locally if they are completely
4042 undefined. We'll report undefined symbols later if appropriate. */
4043 if (h->root.dynindx == -1
4044 || (h->got_only_for_calls
4045 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4046 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4047 {
4048 /* The symbol belongs in the local GOT. We no longer need this
4049 entry if it was only used for relocations; those relocations
4050 will be against the null or section symbol instead of H. */
4051 if (h->global_got_area != GGA_RELOC_ONLY)
4052 g->local_gotno++;
4053 h->global_got_area = GGA_NONE;
4054 }
4055 else if (htab->is_vxworks
4056 && h->got_only_for_calls
4057 && h->root.plt.offset != MINUS_ONE)
4058 /* On VxWorks, calls can refer directly to the .got.plt entry;
4059 they don't need entries in the regular GOT. .got.plt entries
4060 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4061 h->global_got_area = GGA_NONE;
4062 else
4063 {
4064 g->global_gotno++;
4065 if (h->global_got_area == GGA_RELOC_ONLY)
4066 g->reloc_only_gotno++;
4067 }
4068 }
4069 return 1;
4070 }
4071 \f
4072 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4073
4074 static hashval_t
4075 mips_elf_bfd2got_entry_hash (const void *entry_)
4076 {
4077 const struct mips_elf_bfd2got_hash *entry
4078 = (struct mips_elf_bfd2got_hash *)entry_;
4079
4080 return entry->bfd->id;
4081 }
4082
4083 /* Check whether two hash entries have the same bfd. */
4084
4085 static int
4086 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4087 {
4088 const struct mips_elf_bfd2got_hash *e1
4089 = (const struct mips_elf_bfd2got_hash *)entry1;
4090 const struct mips_elf_bfd2got_hash *e2
4091 = (const struct mips_elf_bfd2got_hash *)entry2;
4092
4093 return e1->bfd == e2->bfd;
4094 }
4095
4096 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4097 be the master GOT data. */
4098
4099 static struct mips_got_info *
4100 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4101 {
4102 struct mips_elf_bfd2got_hash e, *p;
4103
4104 if (! g->bfd2got)
4105 return g;
4106
4107 e.bfd = ibfd;
4108 p = htab_find (g->bfd2got, &e);
4109 return p ? p->g : NULL;
4110 }
4111
4112 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4113 Return NULL if an error occured. */
4114
4115 static struct mips_got_info *
4116 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4117 bfd *input_bfd)
4118 {
4119 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4120 struct mips_got_info *g;
4121 void **bfdgotp;
4122
4123 bfdgot_entry.bfd = input_bfd;
4124 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4125 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4126
4127 if (bfdgot == NULL)
4128 {
4129 bfdgot = ((struct mips_elf_bfd2got_hash *)
4130 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4131 if (bfdgot == NULL)
4132 return NULL;
4133
4134 *bfdgotp = bfdgot;
4135
4136 g = ((struct mips_got_info *)
4137 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4138 if (g == NULL)
4139 return NULL;
4140
4141 bfdgot->bfd = input_bfd;
4142 bfdgot->g = g;
4143
4144 g->global_gotsym = NULL;
4145 g->global_gotno = 0;
4146 g->reloc_only_gotno = 0;
4147 g->local_gotno = 0;
4148 g->page_gotno = 0;
4149 g->assigned_gotno = -1;
4150 g->tls_gotno = 0;
4151 g->tls_assigned_gotno = 0;
4152 g->tls_ldm_offset = MINUS_ONE;
4153 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4154 mips_elf_multi_got_entry_eq, NULL);
4155 if (g->got_entries == NULL)
4156 return NULL;
4157
4158 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4159 mips_got_page_entry_eq, NULL);
4160 if (g->got_page_entries == NULL)
4161 return NULL;
4162
4163 g->bfd2got = NULL;
4164 g->next = NULL;
4165 }
4166
4167 return bfdgot->g;
4168 }
4169
4170 /* A htab_traverse callback for the entries in the master got.
4171 Create one separate got for each bfd that has entries in the global
4172 got, such that we can tell how many local and global entries each
4173 bfd requires. */
4174
4175 static int
4176 mips_elf_make_got_per_bfd (void **entryp, void *p)
4177 {
4178 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4179 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4180 struct mips_got_info *g;
4181
4182 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4183 if (g == NULL)
4184 {
4185 arg->obfd = NULL;
4186 return 0;
4187 }
4188
4189 /* Insert the GOT entry in the bfd's got entry hash table. */
4190 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4191 if (*entryp != NULL)
4192 return 1;
4193
4194 *entryp = entry;
4195
4196 if (entry->tls_type)
4197 {
4198 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4199 g->tls_gotno += 2;
4200 if (entry->tls_type & GOT_TLS_IE)
4201 g->tls_gotno += 1;
4202 }
4203 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4204 ++g->local_gotno;
4205 else
4206 ++g->global_gotno;
4207
4208 return 1;
4209 }
4210
4211 /* A htab_traverse callback for the page entries in the master got.
4212 Associate each page entry with the bfd's got. */
4213
4214 static int
4215 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4216 {
4217 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4218 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4219 struct mips_got_info *g;
4220
4221 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4222 if (g == NULL)
4223 {
4224 arg->obfd = NULL;
4225 return 0;
4226 }
4227
4228 /* Insert the GOT entry in the bfd's got entry hash table. */
4229 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4230 if (*entryp != NULL)
4231 return 1;
4232
4233 *entryp = entry;
4234 g->page_gotno += entry->num_pages;
4235 return 1;
4236 }
4237
4238 /* Consider merging the got described by BFD2GOT with TO, using the
4239 information given by ARG. Return -1 if this would lead to overflow,
4240 1 if they were merged successfully, and 0 if a merge failed due to
4241 lack of memory. (These values are chosen so that nonnegative return
4242 values can be returned by a htab_traverse callback.) */
4243
4244 static int
4245 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4246 struct mips_got_info *to,
4247 struct mips_elf_got_per_bfd_arg *arg)
4248 {
4249 struct mips_got_info *from = bfd2got->g;
4250 unsigned int estimate;
4251
4252 /* Work out how many page entries we would need for the combined GOT. */
4253 estimate = arg->max_pages;
4254 if (estimate >= from->page_gotno + to->page_gotno)
4255 estimate = from->page_gotno + to->page_gotno;
4256
4257 /* And conservatively estimate how many local and TLS entries
4258 would be needed. */
4259 estimate += from->local_gotno + to->local_gotno;
4260 estimate += from->tls_gotno + to->tls_gotno;
4261
4262 /* If we're merging with the primary got, we will always have
4263 the full set of global entries. Otherwise estimate those
4264 conservatively as well. */
4265 if (to == arg->primary)
4266 estimate += arg->global_count;
4267 else
4268 estimate += from->global_gotno + to->global_gotno;
4269
4270 /* Bail out if the combined GOT might be too big. */
4271 if (estimate > arg->max_count)
4272 return -1;
4273
4274 /* Commit to the merge. Record that TO is now the bfd for this got. */
4275 bfd2got->g = to;
4276
4277 /* Transfer the bfd's got information from FROM to TO. */
4278 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4279 if (arg->obfd == NULL)
4280 return 0;
4281
4282 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4283 if (arg->obfd == NULL)
4284 return 0;
4285
4286 /* We don't have to worry about releasing memory of the actual
4287 got entries, since they're all in the master got_entries hash
4288 table anyway. */
4289 htab_delete (from->got_entries);
4290 htab_delete (from->got_page_entries);
4291 return 1;
4292 }
4293
4294 /* Attempt to merge gots of different input bfds. Try to use as much
4295 as possible of the primary got, since it doesn't require explicit
4296 dynamic relocations, but don't use bfds that would reference global
4297 symbols out of the addressable range. Failing the primary got,
4298 attempt to merge with the current got, or finish the current got
4299 and then make make the new got current. */
4300
4301 static int
4302 mips_elf_merge_gots (void **bfd2got_, void *p)
4303 {
4304 struct mips_elf_bfd2got_hash *bfd2got
4305 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4306 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4307 struct mips_got_info *g;
4308 unsigned int estimate;
4309 int result;
4310
4311 g = bfd2got->g;
4312
4313 /* Work out the number of page, local and TLS entries. */
4314 estimate = arg->max_pages;
4315 if (estimate > g->page_gotno)
4316 estimate = g->page_gotno;
4317 estimate += g->local_gotno + g->tls_gotno;
4318
4319 /* We place TLS GOT entries after both locals and globals. The globals
4320 for the primary GOT may overflow the normal GOT size limit, so be
4321 sure not to merge a GOT which requires TLS with the primary GOT in that
4322 case. This doesn't affect non-primary GOTs. */
4323 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4324
4325 if (estimate <= arg->max_count)
4326 {
4327 /* If we don't have a primary GOT, use it as
4328 a starting point for the primary GOT. */
4329 if (!arg->primary)
4330 {
4331 arg->primary = bfd2got->g;
4332 return 1;
4333 }
4334
4335 /* Try merging with the primary GOT. */
4336 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4337 if (result >= 0)
4338 return result;
4339 }
4340
4341 /* If we can merge with the last-created got, do it. */
4342 if (arg->current)
4343 {
4344 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4345 if (result >= 0)
4346 return result;
4347 }
4348
4349 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4350 fits; if it turns out that it doesn't, we'll get relocation
4351 overflows anyway. */
4352 g->next = arg->current;
4353 arg->current = g;
4354
4355 return 1;
4356 }
4357
4358 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4359 is null iff there is just a single GOT. */
4360
4361 static int
4362 mips_elf_initialize_tls_index (void **entryp, void *p)
4363 {
4364 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4365 struct mips_got_info *g = p;
4366 bfd_vma next_index;
4367 unsigned char tls_type;
4368
4369 /* We're only interested in TLS symbols. */
4370 if (entry->tls_type == 0)
4371 return 1;
4372
4373 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4374
4375 if (entry->symndx == -1 && g->next == NULL)
4376 {
4377 /* A type (3) got entry in the single-GOT case. We use the symbol's
4378 hash table entry to track its index. */
4379 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4380 return 1;
4381 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4382 entry->d.h->tls_got_offset = next_index;
4383 tls_type = entry->d.h->tls_type;
4384 }
4385 else
4386 {
4387 if (entry->tls_type & GOT_TLS_LDM)
4388 {
4389 /* There are separate mips_got_entry objects for each input bfd
4390 that requires an LDM entry. Make sure that all LDM entries in
4391 a GOT resolve to the same index. */
4392 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4393 {
4394 entry->gotidx = g->tls_ldm_offset;
4395 return 1;
4396 }
4397 g->tls_ldm_offset = next_index;
4398 }
4399 entry->gotidx = next_index;
4400 tls_type = entry->tls_type;
4401 }
4402
4403 /* Account for the entries we've just allocated. */
4404 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4405 g->tls_assigned_gotno += 2;
4406 if (tls_type & GOT_TLS_IE)
4407 g->tls_assigned_gotno += 1;
4408
4409 return 1;
4410 }
4411
4412 /* If passed a NULL mips_got_info in the argument, set the marker used
4413 to tell whether a global symbol needs a got entry (in the primary
4414 got) to the given VALUE.
4415
4416 If passed a pointer G to a mips_got_info in the argument (it must
4417 not be the primary GOT), compute the offset from the beginning of
4418 the (primary) GOT section to the entry in G corresponding to the
4419 global symbol. G's assigned_gotno must contain the index of the
4420 first available global GOT entry in G. VALUE must contain the size
4421 of a GOT entry in bytes. For each global GOT entry that requires a
4422 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4423 marked as not eligible for lazy resolution through a function
4424 stub. */
4425 static int
4426 mips_elf_set_global_got_offset (void **entryp, void *p)
4427 {
4428 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4429 struct mips_elf_set_global_got_offset_arg *arg
4430 = (struct mips_elf_set_global_got_offset_arg *)p;
4431 struct mips_got_info *g = arg->g;
4432
4433 if (g && entry->tls_type != GOT_NORMAL)
4434 arg->needed_relocs +=
4435 mips_tls_got_relocs (arg->info, entry->tls_type,
4436 entry->symndx == -1 ? &entry->d.h->root : NULL);
4437
4438 if (entry->abfd != NULL
4439 && entry->symndx == -1
4440 && entry->d.h->global_got_area != GGA_NONE)
4441 {
4442 if (g)
4443 {
4444 BFD_ASSERT (g->global_gotsym == NULL);
4445
4446 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4447 if (arg->info->shared
4448 || (elf_hash_table (arg->info)->dynamic_sections_created
4449 && entry->d.h->root.def_dynamic
4450 && !entry->d.h->root.def_regular))
4451 ++arg->needed_relocs;
4452 }
4453 else
4454 entry->d.h->global_got_area = arg->value;
4455 }
4456
4457 return 1;
4458 }
4459
4460 /* A htab_traverse callback for GOT entries for which DATA is the
4461 bfd_link_info. Forbid any global symbols from having traditional
4462 lazy-binding stubs. */
4463
4464 static int
4465 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4466 {
4467 struct bfd_link_info *info;
4468 struct mips_elf_link_hash_table *htab;
4469 struct mips_got_entry *entry;
4470
4471 entry = (struct mips_got_entry *) *entryp;
4472 info = (struct bfd_link_info *) data;
4473 htab = mips_elf_hash_table (info);
4474 BFD_ASSERT (htab != NULL);
4475
4476 if (entry->abfd != NULL
4477 && entry->symndx == -1
4478 && entry->d.h->needs_lazy_stub)
4479 {
4480 entry->d.h->needs_lazy_stub = FALSE;
4481 htab->lazy_stub_count--;
4482 }
4483
4484 return 1;
4485 }
4486
4487 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4488 the primary GOT. */
4489 static bfd_vma
4490 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4491 {
4492 if (g->bfd2got == NULL)
4493 return 0;
4494
4495 g = mips_elf_got_for_ibfd (g, ibfd);
4496 if (! g)
4497 return 0;
4498
4499 BFD_ASSERT (g->next);
4500
4501 g = g->next;
4502
4503 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4504 * MIPS_ELF_GOT_SIZE (abfd);
4505 }
4506
4507 /* Turn a single GOT that is too big for 16-bit addressing into
4508 a sequence of GOTs, each one 16-bit addressable. */
4509
4510 static bfd_boolean
4511 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4512 asection *got, bfd_size_type pages)
4513 {
4514 struct mips_elf_link_hash_table *htab;
4515 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4516 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4517 struct mips_got_info *g, *gg;
4518 unsigned int assign, needed_relocs;
4519 bfd *dynobj;
4520
4521 dynobj = elf_hash_table (info)->dynobj;
4522 htab = mips_elf_hash_table (info);
4523 BFD_ASSERT (htab != NULL);
4524
4525 g = htab->got_info;
4526 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4527 mips_elf_bfd2got_entry_eq, NULL);
4528 if (g->bfd2got == NULL)
4529 return FALSE;
4530
4531 got_per_bfd_arg.bfd2got = g->bfd2got;
4532 got_per_bfd_arg.obfd = abfd;
4533 got_per_bfd_arg.info = info;
4534
4535 /* Count how many GOT entries each input bfd requires, creating a
4536 map from bfd to got info while at that. */
4537 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4538 if (got_per_bfd_arg.obfd == NULL)
4539 return FALSE;
4540
4541 /* Also count how many page entries each input bfd requires. */
4542 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4543 &got_per_bfd_arg);
4544 if (got_per_bfd_arg.obfd == NULL)
4545 return FALSE;
4546
4547 got_per_bfd_arg.current = NULL;
4548 got_per_bfd_arg.primary = NULL;
4549 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4550 / MIPS_ELF_GOT_SIZE (abfd))
4551 - htab->reserved_gotno);
4552 got_per_bfd_arg.max_pages = pages;
4553 /* The number of globals that will be included in the primary GOT.
4554 See the calls to mips_elf_set_global_got_offset below for more
4555 information. */
4556 got_per_bfd_arg.global_count = g->global_gotno;
4557
4558 /* Try to merge the GOTs of input bfds together, as long as they
4559 don't seem to exceed the maximum GOT size, choosing one of them
4560 to be the primary GOT. */
4561 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4562 if (got_per_bfd_arg.obfd == NULL)
4563 return FALSE;
4564
4565 /* If we do not find any suitable primary GOT, create an empty one. */
4566 if (got_per_bfd_arg.primary == NULL)
4567 {
4568 g->next = (struct mips_got_info *)
4569 bfd_alloc (abfd, sizeof (struct mips_got_info));
4570 if (g->next == NULL)
4571 return FALSE;
4572
4573 g->next->global_gotsym = NULL;
4574 g->next->global_gotno = 0;
4575 g->next->reloc_only_gotno = 0;
4576 g->next->local_gotno = 0;
4577 g->next->page_gotno = 0;
4578 g->next->tls_gotno = 0;
4579 g->next->assigned_gotno = 0;
4580 g->next->tls_assigned_gotno = 0;
4581 g->next->tls_ldm_offset = MINUS_ONE;
4582 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4583 mips_elf_multi_got_entry_eq,
4584 NULL);
4585 if (g->next->got_entries == NULL)
4586 return FALSE;
4587 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4588 mips_got_page_entry_eq,
4589 NULL);
4590 if (g->next->got_page_entries == NULL)
4591 return FALSE;
4592 g->next->bfd2got = NULL;
4593 }
4594 else
4595 g->next = got_per_bfd_arg.primary;
4596 g->next->next = got_per_bfd_arg.current;
4597
4598 /* GG is now the master GOT, and G is the primary GOT. */
4599 gg = g;
4600 g = g->next;
4601
4602 /* Map the output bfd to the primary got. That's what we're going
4603 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4604 didn't mark in check_relocs, and we want a quick way to find it.
4605 We can't just use gg->next because we're going to reverse the
4606 list. */
4607 {
4608 struct mips_elf_bfd2got_hash *bfdgot;
4609 void **bfdgotp;
4610
4611 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4612 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4613
4614 if (bfdgot == NULL)
4615 return FALSE;
4616
4617 bfdgot->bfd = abfd;
4618 bfdgot->g = g;
4619 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4620
4621 BFD_ASSERT (*bfdgotp == NULL);
4622 *bfdgotp = bfdgot;
4623 }
4624
4625 /* Every symbol that is referenced in a dynamic relocation must be
4626 present in the primary GOT, so arrange for them to appear after
4627 those that are actually referenced. */
4628 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4629 g->global_gotno = gg->global_gotno;
4630
4631 set_got_offset_arg.g = NULL;
4632 set_got_offset_arg.value = GGA_RELOC_ONLY;
4633 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4634 &set_got_offset_arg);
4635 set_got_offset_arg.value = GGA_NORMAL;
4636 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4637 &set_got_offset_arg);
4638
4639 /* Now go through the GOTs assigning them offset ranges.
4640 [assigned_gotno, local_gotno[ will be set to the range of local
4641 entries in each GOT. We can then compute the end of a GOT by
4642 adding local_gotno to global_gotno. We reverse the list and make
4643 it circular since then we'll be able to quickly compute the
4644 beginning of a GOT, by computing the end of its predecessor. To
4645 avoid special cases for the primary GOT, while still preserving
4646 assertions that are valid for both single- and multi-got links,
4647 we arrange for the main got struct to have the right number of
4648 global entries, but set its local_gotno such that the initial
4649 offset of the primary GOT is zero. Remember that the primary GOT
4650 will become the last item in the circular linked list, so it
4651 points back to the master GOT. */
4652 gg->local_gotno = -g->global_gotno;
4653 gg->global_gotno = g->global_gotno;
4654 gg->tls_gotno = 0;
4655 assign = 0;
4656 gg->next = gg;
4657
4658 do
4659 {
4660 struct mips_got_info *gn;
4661
4662 assign += htab->reserved_gotno;
4663 g->assigned_gotno = assign;
4664 g->local_gotno += assign;
4665 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4666 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4667
4668 /* Take g out of the direct list, and push it onto the reversed
4669 list that gg points to. g->next is guaranteed to be nonnull after
4670 this operation, as required by mips_elf_initialize_tls_index. */
4671 gn = g->next;
4672 g->next = gg->next;
4673 gg->next = g;
4674
4675 /* Set up any TLS entries. We always place the TLS entries after
4676 all non-TLS entries. */
4677 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4678 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4679
4680 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4681 g = gn;
4682
4683 /* Forbid global symbols in every non-primary GOT from having
4684 lazy-binding stubs. */
4685 if (g)
4686 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4687 }
4688 while (g);
4689
4690 got->size = (gg->next->local_gotno
4691 + gg->next->global_gotno
4692 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4693
4694 needed_relocs = 0;
4695 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4696 set_got_offset_arg.info = info;
4697 for (g = gg->next; g && g->next != gg; g = g->next)
4698 {
4699 unsigned int save_assign;
4700
4701 /* Assign offsets to global GOT entries. */
4702 save_assign = g->assigned_gotno;
4703 g->assigned_gotno = g->local_gotno;
4704 set_got_offset_arg.g = g;
4705 set_got_offset_arg.needed_relocs = 0;
4706 htab_traverse (g->got_entries,
4707 mips_elf_set_global_got_offset,
4708 &set_got_offset_arg);
4709 needed_relocs += set_got_offset_arg.needed_relocs;
4710 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4711
4712 g->assigned_gotno = save_assign;
4713 if (info->shared)
4714 {
4715 needed_relocs += g->local_gotno - g->assigned_gotno;
4716 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4717 + g->next->global_gotno
4718 + g->next->tls_gotno
4719 + htab->reserved_gotno);
4720 }
4721 }
4722
4723 if (needed_relocs)
4724 mips_elf_allocate_dynamic_relocations (dynobj, info,
4725 needed_relocs);
4726
4727 return TRUE;
4728 }
4729
4730 \f
4731 /* Returns the first relocation of type r_type found, beginning with
4732 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4733
4734 static const Elf_Internal_Rela *
4735 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4736 const Elf_Internal_Rela *relocation,
4737 const Elf_Internal_Rela *relend)
4738 {
4739 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4740
4741 while (relocation < relend)
4742 {
4743 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4744 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4745 return relocation;
4746
4747 ++relocation;
4748 }
4749
4750 /* We didn't find it. */
4751 return NULL;
4752 }
4753
4754 /* Return whether an input relocation is against a local symbol. */
4755
4756 static bfd_boolean
4757 mips_elf_local_relocation_p (bfd *input_bfd,
4758 const Elf_Internal_Rela *relocation,
4759 asection **local_sections)
4760 {
4761 unsigned long r_symndx;
4762 Elf_Internal_Shdr *symtab_hdr;
4763 size_t extsymoff;
4764
4765 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4766 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4767 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4768
4769 if (r_symndx < extsymoff)
4770 return TRUE;
4771 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4772 return TRUE;
4773
4774 return FALSE;
4775 }
4776 \f
4777 /* Sign-extend VALUE, which has the indicated number of BITS. */
4778
4779 bfd_vma
4780 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4781 {
4782 if (value & ((bfd_vma) 1 << (bits - 1)))
4783 /* VALUE is negative. */
4784 value |= ((bfd_vma) - 1) << bits;
4785
4786 return value;
4787 }
4788
4789 /* Return non-zero if the indicated VALUE has overflowed the maximum
4790 range expressible by a signed number with the indicated number of
4791 BITS. */
4792
4793 static bfd_boolean
4794 mips_elf_overflow_p (bfd_vma value, int bits)
4795 {
4796 bfd_signed_vma svalue = (bfd_signed_vma) value;
4797
4798 if (svalue > (1 << (bits - 1)) - 1)
4799 /* The value is too big. */
4800 return TRUE;
4801 else if (svalue < -(1 << (bits - 1)))
4802 /* The value is too small. */
4803 return TRUE;
4804
4805 /* All is well. */
4806 return FALSE;
4807 }
4808
4809 /* Calculate the %high function. */
4810
4811 static bfd_vma
4812 mips_elf_high (bfd_vma value)
4813 {
4814 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4815 }
4816
4817 /* Calculate the %higher function. */
4818
4819 static bfd_vma
4820 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4821 {
4822 #ifdef BFD64
4823 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4824 #else
4825 abort ();
4826 return MINUS_ONE;
4827 #endif
4828 }
4829
4830 /* Calculate the %highest function. */
4831
4832 static bfd_vma
4833 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4834 {
4835 #ifdef BFD64
4836 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4837 #else
4838 abort ();
4839 return MINUS_ONE;
4840 #endif
4841 }
4842 \f
4843 /* Create the .compact_rel section. */
4844
4845 static bfd_boolean
4846 mips_elf_create_compact_rel_section
4847 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4848 {
4849 flagword flags;
4850 register asection *s;
4851
4852 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4853 {
4854 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4855 | SEC_READONLY);
4856
4857 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4858 if (s == NULL
4859 || ! bfd_set_section_alignment (abfd, s,
4860 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4861 return FALSE;
4862
4863 s->size = sizeof (Elf32_External_compact_rel);
4864 }
4865
4866 return TRUE;
4867 }
4868
4869 /* Create the .got section to hold the global offset table. */
4870
4871 static bfd_boolean
4872 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4873 {
4874 flagword flags;
4875 register asection *s;
4876 struct elf_link_hash_entry *h;
4877 struct bfd_link_hash_entry *bh;
4878 struct mips_got_info *g;
4879 bfd_size_type amt;
4880 struct mips_elf_link_hash_table *htab;
4881
4882 htab = mips_elf_hash_table (info);
4883 BFD_ASSERT (htab != NULL);
4884
4885 /* This function may be called more than once. */
4886 if (htab->sgot)
4887 return TRUE;
4888
4889 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4890 | SEC_LINKER_CREATED);
4891
4892 /* We have to use an alignment of 2**4 here because this is hardcoded
4893 in the function stub generation and in the linker script. */
4894 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4895 if (s == NULL
4896 || ! bfd_set_section_alignment (abfd, s, 4))
4897 return FALSE;
4898 htab->sgot = s;
4899
4900 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4901 linker script because we don't want to define the symbol if we
4902 are not creating a global offset table. */
4903 bh = NULL;
4904 if (! (_bfd_generic_link_add_one_symbol
4905 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4906 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4907 return FALSE;
4908
4909 h = (struct elf_link_hash_entry *) bh;
4910 h->non_elf = 0;
4911 h->def_regular = 1;
4912 h->type = STT_OBJECT;
4913 elf_hash_table (info)->hgot = h;
4914
4915 if (info->shared
4916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4917 return FALSE;
4918
4919 amt = sizeof (struct mips_got_info);
4920 g = bfd_alloc (abfd, amt);
4921 if (g == NULL)
4922 return FALSE;
4923 g->global_gotsym = NULL;
4924 g->global_gotno = 0;
4925 g->reloc_only_gotno = 0;
4926 g->tls_gotno = 0;
4927 g->local_gotno = 0;
4928 g->page_gotno = 0;
4929 g->assigned_gotno = 0;
4930 g->bfd2got = NULL;
4931 g->next = NULL;
4932 g->tls_ldm_offset = MINUS_ONE;
4933 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4934 mips_elf_got_entry_eq, NULL);
4935 if (g->got_entries == NULL)
4936 return FALSE;
4937 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4938 mips_got_page_entry_eq, NULL);
4939 if (g->got_page_entries == NULL)
4940 return FALSE;
4941 htab->got_info = g;
4942 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4943 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4944
4945 /* We also need a .got.plt section when generating PLTs. */
4946 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4947 SEC_ALLOC | SEC_LOAD
4948 | SEC_HAS_CONTENTS
4949 | SEC_IN_MEMORY
4950 | SEC_LINKER_CREATED);
4951 if (s == NULL)
4952 return FALSE;
4953 htab->sgotplt = s;
4954
4955 return TRUE;
4956 }
4957 \f
4958 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4959 __GOTT_INDEX__ symbols. These symbols are only special for
4960 shared objects; they are not used in executables. */
4961
4962 static bfd_boolean
4963 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4964 {
4965 return (mips_elf_hash_table (info)->is_vxworks
4966 && info->shared
4967 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4968 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4969 }
4970
4971 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4972 require an la25 stub. See also mips_elf_local_pic_function_p,
4973 which determines whether the destination function ever requires a
4974 stub. */
4975
4976 static bfd_boolean
4977 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4978 bfd_boolean target_is_16_bit_code_p)
4979 {
4980 /* We specifically ignore branches and jumps from EF_PIC objects,
4981 where the onus is on the compiler or programmer to perform any
4982 necessary initialization of $25. Sometimes such initialization
4983 is unnecessary; for example, -mno-shared functions do not use
4984 the incoming value of $25, and may therefore be called directly. */
4985 if (PIC_OBJECT_P (input_bfd))
4986 return FALSE;
4987
4988 switch (r_type)
4989 {
4990 case R_MIPS_26:
4991 case R_MIPS_PC16:
4992 case R_MICROMIPS_26_S1:
4993 case R_MICROMIPS_PC7_S1:
4994 case R_MICROMIPS_PC10_S1:
4995 case R_MICROMIPS_PC16_S1:
4996 case R_MICROMIPS_PC23_S2:
4997 return TRUE;
4998
4999 case R_MIPS16_26:
5000 return !target_is_16_bit_code_p;
5001
5002 default:
5003 return FALSE;
5004 }
5005 }
5006 \f
5007 /* Calculate the value produced by the RELOCATION (which comes from
5008 the INPUT_BFD). The ADDEND is the addend to use for this
5009 RELOCATION; RELOCATION->R_ADDEND is ignored.
5010
5011 The result of the relocation calculation is stored in VALUEP.
5012 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5013 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5014
5015 This function returns bfd_reloc_continue if the caller need take no
5016 further action regarding this relocation, bfd_reloc_notsupported if
5017 something goes dramatically wrong, bfd_reloc_overflow if an
5018 overflow occurs, and bfd_reloc_ok to indicate success. */
5019
5020 static bfd_reloc_status_type
5021 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5022 asection *input_section,
5023 struct bfd_link_info *info,
5024 const Elf_Internal_Rela *relocation,
5025 bfd_vma addend, reloc_howto_type *howto,
5026 Elf_Internal_Sym *local_syms,
5027 asection **local_sections, bfd_vma *valuep,
5028 const char **namep,
5029 bfd_boolean *cross_mode_jump_p,
5030 bfd_boolean save_addend)
5031 {
5032 /* The eventual value we will return. */
5033 bfd_vma value;
5034 /* The address of the symbol against which the relocation is
5035 occurring. */
5036 bfd_vma symbol = 0;
5037 /* The final GP value to be used for the relocatable, executable, or
5038 shared object file being produced. */
5039 bfd_vma gp;
5040 /* The place (section offset or address) of the storage unit being
5041 relocated. */
5042 bfd_vma p;
5043 /* The value of GP used to create the relocatable object. */
5044 bfd_vma gp0;
5045 /* The offset into the global offset table at which the address of
5046 the relocation entry symbol, adjusted by the addend, resides
5047 during execution. */
5048 bfd_vma g = MINUS_ONE;
5049 /* The section in which the symbol referenced by the relocation is
5050 located. */
5051 asection *sec = NULL;
5052 struct mips_elf_link_hash_entry *h = NULL;
5053 /* TRUE if the symbol referred to by this relocation is a local
5054 symbol. */
5055 bfd_boolean local_p, was_local_p;
5056 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5057 bfd_boolean gp_disp_p = FALSE;
5058 /* TRUE if the symbol referred to by this relocation is
5059 "__gnu_local_gp". */
5060 bfd_boolean gnu_local_gp_p = FALSE;
5061 Elf_Internal_Shdr *symtab_hdr;
5062 size_t extsymoff;
5063 unsigned long r_symndx;
5064 int r_type;
5065 /* TRUE if overflow occurred during the calculation of the
5066 relocation value. */
5067 bfd_boolean overflowed_p;
5068 /* TRUE if this relocation refers to a MIPS16 function. */
5069 bfd_boolean target_is_16_bit_code_p = FALSE;
5070 bfd_boolean target_is_micromips_code_p = FALSE;
5071 struct mips_elf_link_hash_table *htab;
5072 bfd *dynobj;
5073
5074 dynobj = elf_hash_table (info)->dynobj;
5075 htab = mips_elf_hash_table (info);
5076 BFD_ASSERT (htab != NULL);
5077
5078 /* Parse the relocation. */
5079 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5080 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5081 p = (input_section->output_section->vma
5082 + input_section->output_offset
5083 + relocation->r_offset);
5084
5085 /* Assume that there will be no overflow. */
5086 overflowed_p = FALSE;
5087
5088 /* Figure out whether or not the symbol is local, and get the offset
5089 used in the array of hash table entries. */
5090 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5091 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5092 local_sections);
5093 was_local_p = local_p;
5094 if (! elf_bad_symtab (input_bfd))
5095 extsymoff = symtab_hdr->sh_info;
5096 else
5097 {
5098 /* The symbol table does not follow the rule that local symbols
5099 must come before globals. */
5100 extsymoff = 0;
5101 }
5102
5103 /* Figure out the value of the symbol. */
5104 if (local_p)
5105 {
5106 Elf_Internal_Sym *sym;
5107
5108 sym = local_syms + r_symndx;
5109 sec = local_sections[r_symndx];
5110
5111 symbol = sec->output_section->vma + sec->output_offset;
5112 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5113 || (sec->flags & SEC_MERGE))
5114 symbol += sym->st_value;
5115 if ((sec->flags & SEC_MERGE)
5116 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5117 {
5118 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5119 addend -= symbol;
5120 addend += sec->output_section->vma + sec->output_offset;
5121 }
5122
5123 /* MIPS16/microMIPS text labels should be treated as odd. */
5124 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5125 ++symbol;
5126
5127 /* Record the name of this symbol, for our caller. */
5128 *namep = bfd_elf_string_from_elf_section (input_bfd,
5129 symtab_hdr->sh_link,
5130 sym->st_name);
5131 if (*namep == '\0')
5132 *namep = bfd_section_name (input_bfd, sec);
5133
5134 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5135 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5136 }
5137 else
5138 {
5139 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5140
5141 /* For global symbols we look up the symbol in the hash-table. */
5142 h = ((struct mips_elf_link_hash_entry *)
5143 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5144 /* Find the real hash-table entry for this symbol. */
5145 while (h->root.root.type == bfd_link_hash_indirect
5146 || h->root.root.type == bfd_link_hash_warning)
5147 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5148
5149 /* Record the name of this symbol, for our caller. */
5150 *namep = h->root.root.root.string;
5151
5152 /* See if this is the special _gp_disp symbol. Note that such a
5153 symbol must always be a global symbol. */
5154 if (strcmp (*namep, "_gp_disp") == 0
5155 && ! NEWABI_P (input_bfd))
5156 {
5157 /* Relocations against _gp_disp are permitted only with
5158 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5159 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5160 return bfd_reloc_notsupported;
5161
5162 gp_disp_p = TRUE;
5163 }
5164 /* See if this is the special _gp symbol. Note that such a
5165 symbol must always be a global symbol. */
5166 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5167 gnu_local_gp_p = TRUE;
5168
5169
5170 /* If this symbol is defined, calculate its address. Note that
5171 _gp_disp is a magic symbol, always implicitly defined by the
5172 linker, so it's inappropriate to check to see whether or not
5173 its defined. */
5174 else if ((h->root.root.type == bfd_link_hash_defined
5175 || h->root.root.type == bfd_link_hash_defweak)
5176 && h->root.root.u.def.section)
5177 {
5178 sec = h->root.root.u.def.section;
5179 if (sec->output_section)
5180 symbol = (h->root.root.u.def.value
5181 + sec->output_section->vma
5182 + sec->output_offset);
5183 else
5184 symbol = h->root.root.u.def.value;
5185 }
5186 else if (h->root.root.type == bfd_link_hash_undefweak)
5187 /* We allow relocations against undefined weak symbols, giving
5188 it the value zero, so that you can undefined weak functions
5189 and check to see if they exist by looking at their
5190 addresses. */
5191 symbol = 0;
5192 else if (info->unresolved_syms_in_objects == RM_IGNORE
5193 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5194 symbol = 0;
5195 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5196 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5197 {
5198 /* If this is a dynamic link, we should have created a
5199 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5200 in in _bfd_mips_elf_create_dynamic_sections.
5201 Otherwise, we should define the symbol with a value of 0.
5202 FIXME: It should probably get into the symbol table
5203 somehow as well. */
5204 BFD_ASSERT (! info->shared);
5205 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5206 symbol = 0;
5207 }
5208 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5209 {
5210 /* This is an optional symbol - an Irix specific extension to the
5211 ELF spec. Ignore it for now.
5212 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5213 than simply ignoring them, but we do not handle this for now.
5214 For information see the "64-bit ELF Object File Specification"
5215 which is available from here:
5216 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5217 symbol = 0;
5218 }
5219 else if ((*info->callbacks->undefined_symbol)
5220 (info, h->root.root.root.string, input_bfd,
5221 input_section, relocation->r_offset,
5222 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5223 || ELF_ST_VISIBILITY (h->root.other)))
5224 {
5225 return bfd_reloc_undefined;
5226 }
5227 else
5228 {
5229 return bfd_reloc_notsupported;
5230 }
5231
5232 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5233 /* If the output section is the PLT section,
5234 then the target is not microMIPS. */
5235 target_is_micromips_code_p = (htab->splt != sec
5236 && ELF_ST_IS_MICROMIPS (h->root.other));
5237 }
5238
5239 /* If this is a reference to a 16-bit function with a stub, we need
5240 to redirect the relocation to the stub unless:
5241
5242 (a) the relocation is for a MIPS16 JAL;
5243
5244 (b) the relocation is for a MIPS16 PIC call, and there are no
5245 non-MIPS16 uses of the GOT slot; or
5246
5247 (c) the section allows direct references to MIPS16 functions. */
5248 if (r_type != R_MIPS16_26
5249 && !info->relocatable
5250 && ((h != NULL
5251 && h->fn_stub != NULL
5252 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5253 || (local_p
5254 && elf_tdata (input_bfd)->local_stubs != NULL
5255 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5256 && !section_allows_mips16_refs_p (input_section))
5257 {
5258 /* This is a 32- or 64-bit call to a 16-bit function. We should
5259 have already noticed that we were going to need the
5260 stub. */
5261 if (local_p)
5262 {
5263 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5264 value = 0;
5265 }
5266 else
5267 {
5268 BFD_ASSERT (h->need_fn_stub);
5269 if (h->la25_stub)
5270 {
5271 /* If a LA25 header for the stub itself exists, point to the
5272 prepended LUI/ADDIU sequence. */
5273 sec = h->la25_stub->stub_section;
5274 value = h->la25_stub->offset;
5275 }
5276 else
5277 {
5278 sec = h->fn_stub;
5279 value = 0;
5280 }
5281 }
5282
5283 symbol = sec->output_section->vma + sec->output_offset + value;
5284 /* The target is 16-bit, but the stub isn't. */
5285 target_is_16_bit_code_p = FALSE;
5286 }
5287 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5288 need to redirect the call to the stub. Note that we specifically
5289 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5290 use an indirect stub instead. */
5291 else if (r_type == R_MIPS16_26 && !info->relocatable
5292 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5293 || (local_p
5294 && elf_tdata (input_bfd)->local_call_stubs != NULL
5295 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5296 && !target_is_16_bit_code_p)
5297 {
5298 if (local_p)
5299 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5300 else
5301 {
5302 /* If both call_stub and call_fp_stub are defined, we can figure
5303 out which one to use by checking which one appears in the input
5304 file. */
5305 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5306 {
5307 asection *o;
5308
5309 sec = NULL;
5310 for (o = input_bfd->sections; o != NULL; o = o->next)
5311 {
5312 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5313 {
5314 sec = h->call_fp_stub;
5315 break;
5316 }
5317 }
5318 if (sec == NULL)
5319 sec = h->call_stub;
5320 }
5321 else if (h->call_stub != NULL)
5322 sec = h->call_stub;
5323 else
5324 sec = h->call_fp_stub;
5325 }
5326
5327 BFD_ASSERT (sec->size > 0);
5328 symbol = sec->output_section->vma + sec->output_offset;
5329 }
5330 /* If this is a direct call to a PIC function, redirect to the
5331 non-PIC stub. */
5332 else if (h != NULL && h->la25_stub
5333 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5334 target_is_16_bit_code_p))
5335 symbol = (h->la25_stub->stub_section->output_section->vma
5336 + h->la25_stub->stub_section->output_offset
5337 + h->la25_stub->offset);
5338
5339 /* Make sure MIPS16 and microMIPS are not used together. */
5340 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5341 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5342 {
5343 (*_bfd_error_handler)
5344 (_("MIPS16 and microMIPS functions cannot call each other"));
5345 return bfd_reloc_notsupported;
5346 }
5347
5348 /* Calls from 16-bit code to 32-bit code and vice versa require the
5349 mode change. However, we can ignore calls to undefined weak symbols,
5350 which should never be executed at runtime. This exception is important
5351 because the assembly writer may have "known" that any definition of the
5352 symbol would be 16-bit code, and that direct jumps were therefore
5353 acceptable. */
5354 *cross_mode_jump_p = (!info->relocatable
5355 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5356 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5357 || (r_type == R_MICROMIPS_26_S1
5358 && !target_is_micromips_code_p)
5359 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5360 && (target_is_16_bit_code_p
5361 || target_is_micromips_code_p))));
5362
5363 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5364
5365 gp0 = _bfd_get_gp_value (input_bfd);
5366 gp = _bfd_get_gp_value (abfd);
5367 if (htab->got_info)
5368 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5369
5370 if (gnu_local_gp_p)
5371 symbol = gp;
5372
5373 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5374 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5375 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5376 if (got_page_reloc_p (r_type) && !local_p)
5377 {
5378 r_type = (micromips_reloc_p (r_type)
5379 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5380 addend = 0;
5381 }
5382
5383 /* If we haven't already determined the GOT offset, and we're going
5384 to need it, get it now. */
5385 switch (r_type)
5386 {
5387 case R_MIPS16_CALL16:
5388 case R_MIPS16_GOT16:
5389 case R_MIPS_CALL16:
5390 case R_MIPS_GOT16:
5391 case R_MIPS_GOT_DISP:
5392 case R_MIPS_GOT_HI16:
5393 case R_MIPS_CALL_HI16:
5394 case R_MIPS_GOT_LO16:
5395 case R_MIPS_CALL_LO16:
5396 case R_MICROMIPS_CALL16:
5397 case R_MICROMIPS_GOT16:
5398 case R_MICROMIPS_GOT_DISP:
5399 case R_MICROMIPS_GOT_HI16:
5400 case R_MICROMIPS_CALL_HI16:
5401 case R_MICROMIPS_GOT_LO16:
5402 case R_MICROMIPS_CALL_LO16:
5403 case R_MIPS_TLS_GD:
5404 case R_MIPS_TLS_GOTTPREL:
5405 case R_MIPS_TLS_LDM:
5406 case R_MIPS16_TLS_GD:
5407 case R_MIPS16_TLS_GOTTPREL:
5408 case R_MIPS16_TLS_LDM:
5409 case R_MICROMIPS_TLS_GD:
5410 case R_MICROMIPS_TLS_GOTTPREL:
5411 case R_MICROMIPS_TLS_LDM:
5412 /* Find the index into the GOT where this value is located. */
5413 if (tls_ldm_reloc_p (r_type))
5414 {
5415 g = mips_elf_local_got_index (abfd, input_bfd, info,
5416 0, 0, NULL, r_type);
5417 if (g == MINUS_ONE)
5418 return bfd_reloc_outofrange;
5419 }
5420 else if (!local_p)
5421 {
5422 /* On VxWorks, CALL relocations should refer to the .got.plt
5423 entry, which is initialized to point at the PLT stub. */
5424 if (htab->is_vxworks
5425 && (call_hi16_reloc_p (r_type)
5426 || call_lo16_reloc_p (r_type)
5427 || call16_reloc_p (r_type)))
5428 {
5429 BFD_ASSERT (addend == 0);
5430 BFD_ASSERT (h->root.needs_plt);
5431 g = mips_elf_gotplt_index (info, &h->root);
5432 }
5433 else
5434 {
5435 BFD_ASSERT (addend == 0);
5436 g = mips_elf_global_got_index (dynobj, input_bfd,
5437 &h->root, r_type, info);
5438 if (h->tls_type == GOT_NORMAL
5439 && !elf_hash_table (info)->dynamic_sections_created)
5440 /* This is a static link. We must initialize the GOT entry. */
5441 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5442 }
5443 }
5444 else if (!htab->is_vxworks
5445 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5446 /* The calculation below does not involve "g". */
5447 break;
5448 else
5449 {
5450 g = mips_elf_local_got_index (abfd, input_bfd, info,
5451 symbol + addend, r_symndx, h, r_type);
5452 if (g == MINUS_ONE)
5453 return bfd_reloc_outofrange;
5454 }
5455
5456 /* Convert GOT indices to actual offsets. */
5457 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5458 break;
5459 }
5460
5461 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5462 symbols are resolved by the loader. Add them to .rela.dyn. */
5463 if (h != NULL && is_gott_symbol (info, &h->root))
5464 {
5465 Elf_Internal_Rela outrel;
5466 bfd_byte *loc;
5467 asection *s;
5468
5469 s = mips_elf_rel_dyn_section (info, FALSE);
5470 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5471
5472 outrel.r_offset = (input_section->output_section->vma
5473 + input_section->output_offset
5474 + relocation->r_offset);
5475 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5476 outrel.r_addend = addend;
5477 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5478
5479 /* If we've written this relocation for a readonly section,
5480 we need to set DF_TEXTREL again, so that we do not delete the
5481 DT_TEXTREL tag. */
5482 if (MIPS_ELF_READONLY_SECTION (input_section))
5483 info->flags |= DF_TEXTREL;
5484
5485 *valuep = 0;
5486 return bfd_reloc_ok;
5487 }
5488
5489 /* Figure out what kind of relocation is being performed. */
5490 switch (r_type)
5491 {
5492 case R_MIPS_NONE:
5493 return bfd_reloc_continue;
5494
5495 case R_MIPS_16:
5496 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5497 overflowed_p = mips_elf_overflow_p (value, 16);
5498 break;
5499
5500 case R_MIPS_32:
5501 case R_MIPS_REL32:
5502 case R_MIPS_64:
5503 if ((info->shared
5504 || (htab->root.dynamic_sections_created
5505 && h != NULL
5506 && h->root.def_dynamic
5507 && !h->root.def_regular
5508 && !h->has_static_relocs))
5509 && r_symndx != STN_UNDEF
5510 && (h == NULL
5511 || h->root.root.type != bfd_link_hash_undefweak
5512 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5513 && (input_section->flags & SEC_ALLOC) != 0)
5514 {
5515 /* If we're creating a shared library, then we can't know
5516 where the symbol will end up. So, we create a relocation
5517 record in the output, and leave the job up to the dynamic
5518 linker. We must do the same for executable references to
5519 shared library symbols, unless we've decided to use copy
5520 relocs or PLTs instead. */
5521 value = addend;
5522 if (!mips_elf_create_dynamic_relocation (abfd,
5523 info,
5524 relocation,
5525 h,
5526 sec,
5527 symbol,
5528 &value,
5529 input_section))
5530 return bfd_reloc_undefined;
5531 }
5532 else
5533 {
5534 if (r_type != R_MIPS_REL32)
5535 value = symbol + addend;
5536 else
5537 value = addend;
5538 }
5539 value &= howto->dst_mask;
5540 break;
5541
5542 case R_MIPS_PC32:
5543 value = symbol + addend - p;
5544 value &= howto->dst_mask;
5545 break;
5546
5547 case R_MIPS16_26:
5548 /* The calculation for R_MIPS16_26 is just the same as for an
5549 R_MIPS_26. It's only the storage of the relocated field into
5550 the output file that's different. That's handled in
5551 mips_elf_perform_relocation. So, we just fall through to the
5552 R_MIPS_26 case here. */
5553 case R_MIPS_26:
5554 case R_MICROMIPS_26_S1:
5555 {
5556 unsigned int shift;
5557
5558 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5559 the correct ISA mode selector and bit 1 must be 0. */
5560 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5561 return bfd_reloc_outofrange;
5562
5563 /* Shift is 2, unusually, for microMIPS JALX. */
5564 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5565
5566 if (was_local_p)
5567 value = addend | ((p + 4) & (0xfc000000 << shift));
5568 else
5569 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5570 value = (value + symbol) >> shift;
5571 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5572 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5573 value &= howto->dst_mask;
5574 }
5575 break;
5576
5577 case R_MIPS_TLS_DTPREL_HI16:
5578 case R_MIPS16_TLS_DTPREL_HI16:
5579 case R_MICROMIPS_TLS_DTPREL_HI16:
5580 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5581 & howto->dst_mask);
5582 break;
5583
5584 case R_MIPS_TLS_DTPREL_LO16:
5585 case R_MIPS_TLS_DTPREL32:
5586 case R_MIPS_TLS_DTPREL64:
5587 case R_MIPS16_TLS_DTPREL_LO16:
5588 case R_MICROMIPS_TLS_DTPREL_LO16:
5589 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5590 break;
5591
5592 case R_MIPS_TLS_TPREL_HI16:
5593 case R_MIPS16_TLS_TPREL_HI16:
5594 case R_MICROMIPS_TLS_TPREL_HI16:
5595 value = (mips_elf_high (addend + symbol - tprel_base (info))
5596 & howto->dst_mask);
5597 break;
5598
5599 case R_MIPS_TLS_TPREL_LO16:
5600 case R_MIPS_TLS_TPREL32:
5601 case R_MIPS_TLS_TPREL64:
5602 case R_MIPS16_TLS_TPREL_LO16:
5603 case R_MICROMIPS_TLS_TPREL_LO16:
5604 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5605 break;
5606
5607 case R_MIPS_HI16:
5608 case R_MIPS16_HI16:
5609 case R_MICROMIPS_HI16:
5610 if (!gp_disp_p)
5611 {
5612 value = mips_elf_high (addend + symbol);
5613 value &= howto->dst_mask;
5614 }
5615 else
5616 {
5617 /* For MIPS16 ABI code we generate this sequence
5618 0: li $v0,%hi(_gp_disp)
5619 4: addiupc $v1,%lo(_gp_disp)
5620 8: sll $v0,16
5621 12: addu $v0,$v1
5622 14: move $gp,$v0
5623 So the offsets of hi and lo relocs are the same, but the
5624 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5625 ADDIUPC clears the low two bits of the instruction address,
5626 so the base is ($t9 + 4) & ~3. */
5627 if (r_type == R_MIPS16_HI16)
5628 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5629 /* The microMIPS .cpload sequence uses the same assembly
5630 instructions as the traditional psABI version, but the
5631 incoming $t9 has the low bit set. */
5632 else if (r_type == R_MICROMIPS_HI16)
5633 value = mips_elf_high (addend + gp - p - 1);
5634 else
5635 value = mips_elf_high (addend + gp - p);
5636 overflowed_p = mips_elf_overflow_p (value, 16);
5637 }
5638 break;
5639
5640 case R_MIPS_LO16:
5641 case R_MIPS16_LO16:
5642 case R_MICROMIPS_LO16:
5643 case R_MICROMIPS_HI0_LO16:
5644 if (!gp_disp_p)
5645 value = (symbol + addend) & howto->dst_mask;
5646 else
5647 {
5648 /* See the comment for R_MIPS16_HI16 above for the reason
5649 for this conditional. */
5650 if (r_type == R_MIPS16_LO16)
5651 value = addend + gp - (p & ~(bfd_vma) 0x3);
5652 else if (r_type == R_MICROMIPS_LO16
5653 || r_type == R_MICROMIPS_HI0_LO16)
5654 value = addend + gp - p + 3;
5655 else
5656 value = addend + gp - p + 4;
5657 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5658 for overflow. But, on, say, IRIX5, relocations against
5659 _gp_disp are normally generated from the .cpload
5660 pseudo-op. It generates code that normally looks like
5661 this:
5662
5663 lui $gp,%hi(_gp_disp)
5664 addiu $gp,$gp,%lo(_gp_disp)
5665 addu $gp,$gp,$t9
5666
5667 Here $t9 holds the address of the function being called,
5668 as required by the MIPS ELF ABI. The R_MIPS_LO16
5669 relocation can easily overflow in this situation, but the
5670 R_MIPS_HI16 relocation will handle the overflow.
5671 Therefore, we consider this a bug in the MIPS ABI, and do
5672 not check for overflow here. */
5673 }
5674 break;
5675
5676 case R_MIPS_LITERAL:
5677 case R_MICROMIPS_LITERAL:
5678 /* Because we don't merge literal sections, we can handle this
5679 just like R_MIPS_GPREL16. In the long run, we should merge
5680 shared literals, and then we will need to additional work
5681 here. */
5682
5683 /* Fall through. */
5684
5685 case R_MIPS16_GPREL:
5686 /* The R_MIPS16_GPREL performs the same calculation as
5687 R_MIPS_GPREL16, but stores the relocated bits in a different
5688 order. We don't need to do anything special here; the
5689 differences are handled in mips_elf_perform_relocation. */
5690 case R_MIPS_GPREL16:
5691 case R_MICROMIPS_GPREL7_S2:
5692 case R_MICROMIPS_GPREL16:
5693 /* Only sign-extend the addend if it was extracted from the
5694 instruction. If the addend was separate, leave it alone,
5695 otherwise we may lose significant bits. */
5696 if (howto->partial_inplace)
5697 addend = _bfd_mips_elf_sign_extend (addend, 16);
5698 value = symbol + addend - gp;
5699 /* If the symbol was local, any earlier relocatable links will
5700 have adjusted its addend with the gp offset, so compensate
5701 for that now. Don't do it for symbols forced local in this
5702 link, though, since they won't have had the gp offset applied
5703 to them before. */
5704 if (was_local_p)
5705 value += gp0;
5706 overflowed_p = mips_elf_overflow_p (value, 16);
5707 break;
5708
5709 case R_MIPS16_GOT16:
5710 case R_MIPS16_CALL16:
5711 case R_MIPS_GOT16:
5712 case R_MIPS_CALL16:
5713 case R_MICROMIPS_GOT16:
5714 case R_MICROMIPS_CALL16:
5715 /* VxWorks does not have separate local and global semantics for
5716 R_MIPS*_GOT16; every relocation evaluates to "G". */
5717 if (!htab->is_vxworks && local_p)
5718 {
5719 value = mips_elf_got16_entry (abfd, input_bfd, info,
5720 symbol + addend, !was_local_p);
5721 if (value == MINUS_ONE)
5722 return bfd_reloc_outofrange;
5723 value
5724 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5725 overflowed_p = mips_elf_overflow_p (value, 16);
5726 break;
5727 }
5728
5729 /* Fall through. */
5730
5731 case R_MIPS_TLS_GD:
5732 case R_MIPS_TLS_GOTTPREL:
5733 case R_MIPS_TLS_LDM:
5734 case R_MIPS_GOT_DISP:
5735 case R_MIPS16_TLS_GD:
5736 case R_MIPS16_TLS_GOTTPREL:
5737 case R_MIPS16_TLS_LDM:
5738 case R_MICROMIPS_TLS_GD:
5739 case R_MICROMIPS_TLS_GOTTPREL:
5740 case R_MICROMIPS_TLS_LDM:
5741 case R_MICROMIPS_GOT_DISP:
5742 value = g;
5743 overflowed_p = mips_elf_overflow_p (value, 16);
5744 break;
5745
5746 case R_MIPS_GPREL32:
5747 value = (addend + symbol + gp0 - gp);
5748 if (!save_addend)
5749 value &= howto->dst_mask;
5750 break;
5751
5752 case R_MIPS_PC16:
5753 case R_MIPS_GNU_REL16_S2:
5754 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5755 overflowed_p = mips_elf_overflow_p (value, 18);
5756 value >>= howto->rightshift;
5757 value &= howto->dst_mask;
5758 break;
5759
5760 case R_MICROMIPS_PC7_S1:
5761 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5762 overflowed_p = mips_elf_overflow_p (value, 8);
5763 value >>= howto->rightshift;
5764 value &= howto->dst_mask;
5765 break;
5766
5767 case R_MICROMIPS_PC10_S1:
5768 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5769 overflowed_p = mips_elf_overflow_p (value, 11);
5770 value >>= howto->rightshift;
5771 value &= howto->dst_mask;
5772 break;
5773
5774 case R_MICROMIPS_PC16_S1:
5775 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5776 overflowed_p = mips_elf_overflow_p (value, 17);
5777 value >>= howto->rightshift;
5778 value &= howto->dst_mask;
5779 break;
5780
5781 case R_MICROMIPS_PC23_S2:
5782 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5783 overflowed_p = mips_elf_overflow_p (value, 25);
5784 value >>= howto->rightshift;
5785 value &= howto->dst_mask;
5786 break;
5787
5788 case R_MIPS_GOT_HI16:
5789 case R_MIPS_CALL_HI16:
5790 case R_MICROMIPS_GOT_HI16:
5791 case R_MICROMIPS_CALL_HI16:
5792 /* We're allowed to handle these two relocations identically.
5793 The dynamic linker is allowed to handle the CALL relocations
5794 differently by creating a lazy evaluation stub. */
5795 value = g;
5796 value = mips_elf_high (value);
5797 value &= howto->dst_mask;
5798 break;
5799
5800 case R_MIPS_GOT_LO16:
5801 case R_MIPS_CALL_LO16:
5802 case R_MICROMIPS_GOT_LO16:
5803 case R_MICROMIPS_CALL_LO16:
5804 value = g & howto->dst_mask;
5805 break;
5806
5807 case R_MIPS_GOT_PAGE:
5808 case R_MICROMIPS_GOT_PAGE:
5809 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5810 if (value == MINUS_ONE)
5811 return bfd_reloc_outofrange;
5812 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5813 overflowed_p = mips_elf_overflow_p (value, 16);
5814 break;
5815
5816 case R_MIPS_GOT_OFST:
5817 case R_MICROMIPS_GOT_OFST:
5818 if (local_p)
5819 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5820 else
5821 value = addend;
5822 overflowed_p = mips_elf_overflow_p (value, 16);
5823 break;
5824
5825 case R_MIPS_SUB:
5826 case R_MICROMIPS_SUB:
5827 value = symbol - addend;
5828 value &= howto->dst_mask;
5829 break;
5830
5831 case R_MIPS_HIGHER:
5832 case R_MICROMIPS_HIGHER:
5833 value = mips_elf_higher (addend + symbol);
5834 value &= howto->dst_mask;
5835 break;
5836
5837 case R_MIPS_HIGHEST:
5838 case R_MICROMIPS_HIGHEST:
5839 value = mips_elf_highest (addend + symbol);
5840 value &= howto->dst_mask;
5841 break;
5842
5843 case R_MIPS_SCN_DISP:
5844 case R_MICROMIPS_SCN_DISP:
5845 value = symbol + addend - sec->output_offset;
5846 value &= howto->dst_mask;
5847 break;
5848
5849 case R_MIPS_JALR:
5850 case R_MICROMIPS_JALR:
5851 /* This relocation is only a hint. In some cases, we optimize
5852 it into a bal instruction. But we don't try to optimize
5853 when the symbol does not resolve locally. */
5854 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5855 return bfd_reloc_continue;
5856 value = symbol + addend;
5857 break;
5858
5859 case R_MIPS_PJUMP:
5860 case R_MIPS_GNU_VTINHERIT:
5861 case R_MIPS_GNU_VTENTRY:
5862 /* We don't do anything with these at present. */
5863 return bfd_reloc_continue;
5864
5865 default:
5866 /* An unrecognized relocation type. */
5867 return bfd_reloc_notsupported;
5868 }
5869
5870 /* Store the VALUE for our caller. */
5871 *valuep = value;
5872 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5873 }
5874
5875 /* Obtain the field relocated by RELOCATION. */
5876
5877 static bfd_vma
5878 mips_elf_obtain_contents (reloc_howto_type *howto,
5879 const Elf_Internal_Rela *relocation,
5880 bfd *input_bfd, bfd_byte *contents)
5881 {
5882 bfd_vma x;
5883 bfd_byte *location = contents + relocation->r_offset;
5884
5885 /* Obtain the bytes. */
5886 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5887
5888 return x;
5889 }
5890
5891 /* It has been determined that the result of the RELOCATION is the
5892 VALUE. Use HOWTO to place VALUE into the output file at the
5893 appropriate position. The SECTION is the section to which the
5894 relocation applies.
5895 CROSS_MODE_JUMP_P is true if the relocation field
5896 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5897
5898 Returns FALSE if anything goes wrong. */
5899
5900 static bfd_boolean
5901 mips_elf_perform_relocation (struct bfd_link_info *info,
5902 reloc_howto_type *howto,
5903 const Elf_Internal_Rela *relocation,
5904 bfd_vma value, bfd *input_bfd,
5905 asection *input_section, bfd_byte *contents,
5906 bfd_boolean cross_mode_jump_p)
5907 {
5908 bfd_vma x;
5909 bfd_byte *location;
5910 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5911
5912 /* Figure out where the relocation is occurring. */
5913 location = contents + relocation->r_offset;
5914
5915 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5916
5917 /* Obtain the current value. */
5918 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5919
5920 /* Clear the field we are setting. */
5921 x &= ~howto->dst_mask;
5922
5923 /* Set the field. */
5924 x |= (value & howto->dst_mask);
5925
5926 /* If required, turn JAL into JALX. */
5927 if (cross_mode_jump_p && jal_reloc_p (r_type))
5928 {
5929 bfd_boolean ok;
5930 bfd_vma opcode = x >> 26;
5931 bfd_vma jalx_opcode;
5932
5933 /* Check to see if the opcode is already JAL or JALX. */
5934 if (r_type == R_MIPS16_26)
5935 {
5936 ok = ((opcode == 0x6) || (opcode == 0x7));
5937 jalx_opcode = 0x7;
5938 }
5939 else if (r_type == R_MICROMIPS_26_S1)
5940 {
5941 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5942 jalx_opcode = 0x3c;
5943 }
5944 else
5945 {
5946 ok = ((opcode == 0x3) || (opcode == 0x1d));
5947 jalx_opcode = 0x1d;
5948 }
5949
5950 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5951 convert J or JALS to JALX. */
5952 if (!ok)
5953 {
5954 (*_bfd_error_handler)
5955 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5956 input_bfd,
5957 input_section,
5958 (unsigned long) relocation->r_offset);
5959 bfd_set_error (bfd_error_bad_value);
5960 return FALSE;
5961 }
5962
5963 /* Make this the JALX opcode. */
5964 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5965 }
5966
5967 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5968 range. */
5969 if (!info->relocatable
5970 && !cross_mode_jump_p
5971 && ((JAL_TO_BAL_P (input_bfd)
5972 && r_type == R_MIPS_26
5973 && (x >> 26) == 0x3) /* jal addr */
5974 || (JALR_TO_BAL_P (input_bfd)
5975 && r_type == R_MIPS_JALR
5976 && x == 0x0320f809) /* jalr t9 */
5977 || (JR_TO_B_P (input_bfd)
5978 && r_type == R_MIPS_JALR
5979 && x == 0x03200008))) /* jr t9 */
5980 {
5981 bfd_vma addr;
5982 bfd_vma dest;
5983 bfd_signed_vma off;
5984
5985 addr = (input_section->output_section->vma
5986 + input_section->output_offset
5987 + relocation->r_offset
5988 + 4);
5989 if (r_type == R_MIPS_26)
5990 dest = (value << 2) | ((addr >> 28) << 28);
5991 else
5992 dest = value;
5993 off = dest - addr;
5994 if (off <= 0x1ffff && off >= -0x20000)
5995 {
5996 if (x == 0x03200008) /* jr t9 */
5997 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5998 else
5999 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6000 }
6001 }
6002
6003 /* Put the value into the output. */
6004 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6005
6006 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6007 location);
6008
6009 return TRUE;
6010 }
6011 \f
6012 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6013 is the original relocation, which is now being transformed into a
6014 dynamic relocation. The ADDENDP is adjusted if necessary; the
6015 caller should store the result in place of the original addend. */
6016
6017 static bfd_boolean
6018 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6019 struct bfd_link_info *info,
6020 const Elf_Internal_Rela *rel,
6021 struct mips_elf_link_hash_entry *h,
6022 asection *sec, bfd_vma symbol,
6023 bfd_vma *addendp, asection *input_section)
6024 {
6025 Elf_Internal_Rela outrel[3];
6026 asection *sreloc;
6027 bfd *dynobj;
6028 int r_type;
6029 long indx;
6030 bfd_boolean defined_p;
6031 struct mips_elf_link_hash_table *htab;
6032
6033 htab = mips_elf_hash_table (info);
6034 BFD_ASSERT (htab != NULL);
6035
6036 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6037 dynobj = elf_hash_table (info)->dynobj;
6038 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6039 BFD_ASSERT (sreloc != NULL);
6040 BFD_ASSERT (sreloc->contents != NULL);
6041 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6042 < sreloc->size);
6043
6044 outrel[0].r_offset =
6045 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6046 if (ABI_64_P (output_bfd))
6047 {
6048 outrel[1].r_offset =
6049 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6050 outrel[2].r_offset =
6051 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6052 }
6053
6054 if (outrel[0].r_offset == MINUS_ONE)
6055 /* The relocation field has been deleted. */
6056 return TRUE;
6057
6058 if (outrel[0].r_offset == MINUS_TWO)
6059 {
6060 /* The relocation field has been converted into a relative value of
6061 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6062 the field to be fully relocated, so add in the symbol's value. */
6063 *addendp += symbol;
6064 return TRUE;
6065 }
6066
6067 /* We must now calculate the dynamic symbol table index to use
6068 in the relocation. */
6069 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6070 {
6071 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6072 indx = h->root.dynindx;
6073 if (SGI_COMPAT (output_bfd))
6074 defined_p = h->root.def_regular;
6075 else
6076 /* ??? glibc's ld.so just adds the final GOT entry to the
6077 relocation field. It therefore treats relocs against
6078 defined symbols in the same way as relocs against
6079 undefined symbols. */
6080 defined_p = FALSE;
6081 }
6082 else
6083 {
6084 if (sec != NULL && bfd_is_abs_section (sec))
6085 indx = 0;
6086 else if (sec == NULL || sec->owner == NULL)
6087 {
6088 bfd_set_error (bfd_error_bad_value);
6089 return FALSE;
6090 }
6091 else
6092 {
6093 indx = elf_section_data (sec->output_section)->dynindx;
6094 if (indx == 0)
6095 {
6096 asection *osec = htab->root.text_index_section;
6097 indx = elf_section_data (osec)->dynindx;
6098 }
6099 if (indx == 0)
6100 abort ();
6101 }
6102
6103 /* Instead of generating a relocation using the section
6104 symbol, we may as well make it a fully relative
6105 relocation. We want to avoid generating relocations to
6106 local symbols because we used to generate them
6107 incorrectly, without adding the original symbol value,
6108 which is mandated by the ABI for section symbols. In
6109 order to give dynamic loaders and applications time to
6110 phase out the incorrect use, we refrain from emitting
6111 section-relative relocations. It's not like they're
6112 useful, after all. This should be a bit more efficient
6113 as well. */
6114 /* ??? Although this behavior is compatible with glibc's ld.so,
6115 the ABI says that relocations against STN_UNDEF should have
6116 a symbol value of 0. Irix rld honors this, so relocations
6117 against STN_UNDEF have no effect. */
6118 if (!SGI_COMPAT (output_bfd))
6119 indx = 0;
6120 defined_p = TRUE;
6121 }
6122
6123 /* If the relocation was previously an absolute relocation and
6124 this symbol will not be referred to by the relocation, we must
6125 adjust it by the value we give it in the dynamic symbol table.
6126 Otherwise leave the job up to the dynamic linker. */
6127 if (defined_p && r_type != R_MIPS_REL32)
6128 *addendp += symbol;
6129
6130 if (htab->is_vxworks)
6131 /* VxWorks uses non-relative relocations for this. */
6132 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6133 else
6134 /* The relocation is always an REL32 relocation because we don't
6135 know where the shared library will wind up at load-time. */
6136 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6137 R_MIPS_REL32);
6138
6139 /* For strict adherence to the ABI specification, we should
6140 generate a R_MIPS_64 relocation record by itself before the
6141 _REL32/_64 record as well, such that the addend is read in as
6142 a 64-bit value (REL32 is a 32-bit relocation, after all).
6143 However, since none of the existing ELF64 MIPS dynamic
6144 loaders seems to care, we don't waste space with these
6145 artificial relocations. If this turns out to not be true,
6146 mips_elf_allocate_dynamic_relocation() should be tweaked so
6147 as to make room for a pair of dynamic relocations per
6148 invocation if ABI_64_P, and here we should generate an
6149 additional relocation record with R_MIPS_64 by itself for a
6150 NULL symbol before this relocation record. */
6151 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6152 ABI_64_P (output_bfd)
6153 ? R_MIPS_64
6154 : R_MIPS_NONE);
6155 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6156
6157 /* Adjust the output offset of the relocation to reference the
6158 correct location in the output file. */
6159 outrel[0].r_offset += (input_section->output_section->vma
6160 + input_section->output_offset);
6161 outrel[1].r_offset += (input_section->output_section->vma
6162 + input_section->output_offset);
6163 outrel[2].r_offset += (input_section->output_section->vma
6164 + input_section->output_offset);
6165
6166 /* Put the relocation back out. We have to use the special
6167 relocation outputter in the 64-bit case since the 64-bit
6168 relocation format is non-standard. */
6169 if (ABI_64_P (output_bfd))
6170 {
6171 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6172 (output_bfd, &outrel[0],
6173 (sreloc->contents
6174 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6175 }
6176 else if (htab->is_vxworks)
6177 {
6178 /* VxWorks uses RELA rather than REL dynamic relocations. */
6179 outrel[0].r_addend = *addendp;
6180 bfd_elf32_swap_reloca_out
6181 (output_bfd, &outrel[0],
6182 (sreloc->contents
6183 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6184 }
6185 else
6186 bfd_elf32_swap_reloc_out
6187 (output_bfd, &outrel[0],
6188 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6189
6190 /* We've now added another relocation. */
6191 ++sreloc->reloc_count;
6192
6193 /* Make sure the output section is writable. The dynamic linker
6194 will be writing to it. */
6195 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6196 |= SHF_WRITE;
6197
6198 /* On IRIX5, make an entry of compact relocation info. */
6199 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6200 {
6201 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6202 bfd_byte *cr;
6203
6204 if (scpt)
6205 {
6206 Elf32_crinfo cptrel;
6207
6208 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6209 cptrel.vaddr = (rel->r_offset
6210 + input_section->output_section->vma
6211 + input_section->output_offset);
6212 if (r_type == R_MIPS_REL32)
6213 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6214 else
6215 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6216 mips_elf_set_cr_dist2to (cptrel, 0);
6217 cptrel.konst = *addendp;
6218
6219 cr = (scpt->contents
6220 + sizeof (Elf32_External_compact_rel));
6221 mips_elf_set_cr_relvaddr (cptrel, 0);
6222 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6223 ((Elf32_External_crinfo *) cr
6224 + scpt->reloc_count));
6225 ++scpt->reloc_count;
6226 }
6227 }
6228
6229 /* If we've written this relocation for a readonly section,
6230 we need to set DF_TEXTREL again, so that we do not delete the
6231 DT_TEXTREL tag. */
6232 if (MIPS_ELF_READONLY_SECTION (input_section))
6233 info->flags |= DF_TEXTREL;
6234
6235 return TRUE;
6236 }
6237 \f
6238 /* Return the MACH for a MIPS e_flags value. */
6239
6240 unsigned long
6241 _bfd_elf_mips_mach (flagword flags)
6242 {
6243 switch (flags & EF_MIPS_MACH)
6244 {
6245 case E_MIPS_MACH_3900:
6246 return bfd_mach_mips3900;
6247
6248 case E_MIPS_MACH_4010:
6249 return bfd_mach_mips4010;
6250
6251 case E_MIPS_MACH_4100:
6252 return bfd_mach_mips4100;
6253
6254 case E_MIPS_MACH_4111:
6255 return bfd_mach_mips4111;
6256
6257 case E_MIPS_MACH_4120:
6258 return bfd_mach_mips4120;
6259
6260 case E_MIPS_MACH_4650:
6261 return bfd_mach_mips4650;
6262
6263 case E_MIPS_MACH_5400:
6264 return bfd_mach_mips5400;
6265
6266 case E_MIPS_MACH_5500:
6267 return bfd_mach_mips5500;
6268
6269 case E_MIPS_MACH_9000:
6270 return bfd_mach_mips9000;
6271
6272 case E_MIPS_MACH_SB1:
6273 return bfd_mach_mips_sb1;
6274
6275 case E_MIPS_MACH_LS2E:
6276 return bfd_mach_mips_loongson_2e;
6277
6278 case E_MIPS_MACH_LS2F:
6279 return bfd_mach_mips_loongson_2f;
6280
6281 case E_MIPS_MACH_LS3A:
6282 return bfd_mach_mips_loongson_3a;
6283
6284 case E_MIPS_MACH_OCTEON2:
6285 return bfd_mach_mips_octeon2;
6286
6287 case E_MIPS_MACH_OCTEON:
6288 return bfd_mach_mips_octeon;
6289
6290 case E_MIPS_MACH_XLR:
6291 return bfd_mach_mips_xlr;
6292
6293 default:
6294 switch (flags & EF_MIPS_ARCH)
6295 {
6296 default:
6297 case E_MIPS_ARCH_1:
6298 return bfd_mach_mips3000;
6299
6300 case E_MIPS_ARCH_2:
6301 return bfd_mach_mips6000;
6302
6303 case E_MIPS_ARCH_3:
6304 return bfd_mach_mips4000;
6305
6306 case E_MIPS_ARCH_4:
6307 return bfd_mach_mips8000;
6308
6309 case E_MIPS_ARCH_5:
6310 return bfd_mach_mips5;
6311
6312 case E_MIPS_ARCH_32:
6313 return bfd_mach_mipsisa32;
6314
6315 case E_MIPS_ARCH_64:
6316 return bfd_mach_mipsisa64;
6317
6318 case E_MIPS_ARCH_32R2:
6319 return bfd_mach_mipsisa32r2;
6320
6321 case E_MIPS_ARCH_64R2:
6322 return bfd_mach_mipsisa64r2;
6323 }
6324 }
6325
6326 return 0;
6327 }
6328
6329 /* Return printable name for ABI. */
6330
6331 static INLINE char *
6332 elf_mips_abi_name (bfd *abfd)
6333 {
6334 flagword flags;
6335
6336 flags = elf_elfheader (abfd)->e_flags;
6337 switch (flags & EF_MIPS_ABI)
6338 {
6339 case 0:
6340 if (ABI_N32_P (abfd))
6341 return "N32";
6342 else if (ABI_64_P (abfd))
6343 return "64";
6344 else
6345 return "none";
6346 case E_MIPS_ABI_O32:
6347 return "O32";
6348 case E_MIPS_ABI_O64:
6349 return "O64";
6350 case E_MIPS_ABI_EABI32:
6351 return "EABI32";
6352 case E_MIPS_ABI_EABI64:
6353 return "EABI64";
6354 default:
6355 return "unknown abi";
6356 }
6357 }
6358 \f
6359 /* MIPS ELF uses two common sections. One is the usual one, and the
6360 other is for small objects. All the small objects are kept
6361 together, and then referenced via the gp pointer, which yields
6362 faster assembler code. This is what we use for the small common
6363 section. This approach is copied from ecoff.c. */
6364 static asection mips_elf_scom_section;
6365 static asymbol mips_elf_scom_symbol;
6366 static asymbol *mips_elf_scom_symbol_ptr;
6367
6368 /* MIPS ELF also uses an acommon section, which represents an
6369 allocated common symbol which may be overridden by a
6370 definition in a shared library. */
6371 static asection mips_elf_acom_section;
6372 static asymbol mips_elf_acom_symbol;
6373 static asymbol *mips_elf_acom_symbol_ptr;
6374
6375 /* This is used for both the 32-bit and the 64-bit ABI. */
6376
6377 void
6378 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6379 {
6380 elf_symbol_type *elfsym;
6381
6382 /* Handle the special MIPS section numbers that a symbol may use. */
6383 elfsym = (elf_symbol_type *) asym;
6384 switch (elfsym->internal_elf_sym.st_shndx)
6385 {
6386 case SHN_MIPS_ACOMMON:
6387 /* This section is used in a dynamically linked executable file.
6388 It is an allocated common section. The dynamic linker can
6389 either resolve these symbols to something in a shared
6390 library, or it can just leave them here. For our purposes,
6391 we can consider these symbols to be in a new section. */
6392 if (mips_elf_acom_section.name == NULL)
6393 {
6394 /* Initialize the acommon section. */
6395 mips_elf_acom_section.name = ".acommon";
6396 mips_elf_acom_section.flags = SEC_ALLOC;
6397 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6398 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6399 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6400 mips_elf_acom_symbol.name = ".acommon";
6401 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6402 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6403 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6404 }
6405 asym->section = &mips_elf_acom_section;
6406 break;
6407
6408 case SHN_COMMON:
6409 /* Common symbols less than the GP size are automatically
6410 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6411 if (asym->value > elf_gp_size (abfd)
6412 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6413 || IRIX_COMPAT (abfd) == ict_irix6)
6414 break;
6415 /* Fall through. */
6416 case SHN_MIPS_SCOMMON:
6417 if (mips_elf_scom_section.name == NULL)
6418 {
6419 /* Initialize the small common section. */
6420 mips_elf_scom_section.name = ".scommon";
6421 mips_elf_scom_section.flags = SEC_IS_COMMON;
6422 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6423 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6424 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6425 mips_elf_scom_symbol.name = ".scommon";
6426 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6427 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6428 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6429 }
6430 asym->section = &mips_elf_scom_section;
6431 asym->value = elfsym->internal_elf_sym.st_size;
6432 break;
6433
6434 case SHN_MIPS_SUNDEFINED:
6435 asym->section = bfd_und_section_ptr;
6436 break;
6437
6438 case SHN_MIPS_TEXT:
6439 {
6440 asection *section = bfd_get_section_by_name (abfd, ".text");
6441
6442 if (section != NULL)
6443 {
6444 asym->section = section;
6445 /* MIPS_TEXT is a bit special, the address is not an offset
6446 to the base of the .text section. So substract the section
6447 base address to make it an offset. */
6448 asym->value -= section->vma;
6449 }
6450 }
6451 break;
6452
6453 case SHN_MIPS_DATA:
6454 {
6455 asection *section = bfd_get_section_by_name (abfd, ".data");
6456
6457 if (section != NULL)
6458 {
6459 asym->section = section;
6460 /* MIPS_DATA is a bit special, the address is not an offset
6461 to the base of the .data section. So substract the section
6462 base address to make it an offset. */
6463 asym->value -= section->vma;
6464 }
6465 }
6466 break;
6467 }
6468
6469 /* If this is an odd-valued function symbol, assume it's a MIPS16
6470 or microMIPS one. */
6471 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6472 && (asym->value & 1) != 0)
6473 {
6474 asym->value--;
6475 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6476 elfsym->internal_elf_sym.st_other
6477 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6478 else
6479 elfsym->internal_elf_sym.st_other
6480 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6481 }
6482 }
6483 \f
6484 /* Implement elf_backend_eh_frame_address_size. This differs from
6485 the default in the way it handles EABI64.
6486
6487 EABI64 was originally specified as an LP64 ABI, and that is what
6488 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6489 historically accepted the combination of -mabi=eabi and -mlong32,
6490 and this ILP32 variation has become semi-official over time.
6491 Both forms use elf32 and have pointer-sized FDE addresses.
6492
6493 If an EABI object was generated by GCC 4.0 or above, it will have
6494 an empty .gcc_compiled_longXX section, where XX is the size of longs
6495 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6496 have no special marking to distinguish them from LP64 objects.
6497
6498 We don't want users of the official LP64 ABI to be punished for the
6499 existence of the ILP32 variant, but at the same time, we don't want
6500 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6501 We therefore take the following approach:
6502
6503 - If ABFD contains a .gcc_compiled_longXX section, use it to
6504 determine the pointer size.
6505
6506 - Otherwise check the type of the first relocation. Assume that
6507 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6508
6509 - Otherwise punt.
6510
6511 The second check is enough to detect LP64 objects generated by pre-4.0
6512 compilers because, in the kind of output generated by those compilers,
6513 the first relocation will be associated with either a CIE personality
6514 routine or an FDE start address. Furthermore, the compilers never
6515 used a special (non-pointer) encoding for this ABI.
6516
6517 Checking the relocation type should also be safe because there is no
6518 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6519 did so. */
6520
6521 unsigned int
6522 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6523 {
6524 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6525 return 8;
6526 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6527 {
6528 bfd_boolean long32_p, long64_p;
6529
6530 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6531 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6532 if (long32_p && long64_p)
6533 return 0;
6534 if (long32_p)
6535 return 4;
6536 if (long64_p)
6537 return 8;
6538
6539 if (sec->reloc_count > 0
6540 && elf_section_data (sec)->relocs != NULL
6541 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6542 == R_MIPS_64))
6543 return 8;
6544
6545 return 0;
6546 }
6547 return 4;
6548 }
6549 \f
6550 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6551 relocations against two unnamed section symbols to resolve to the
6552 same address. For example, if we have code like:
6553
6554 lw $4,%got_disp(.data)($gp)
6555 lw $25,%got_disp(.text)($gp)
6556 jalr $25
6557
6558 then the linker will resolve both relocations to .data and the program
6559 will jump there rather than to .text.
6560
6561 We can work around this problem by giving names to local section symbols.
6562 This is also what the MIPSpro tools do. */
6563
6564 bfd_boolean
6565 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6566 {
6567 return SGI_COMPAT (abfd);
6568 }
6569 \f
6570 /* Work over a section just before writing it out. This routine is
6571 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6572 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6573 a better way. */
6574
6575 bfd_boolean
6576 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6577 {
6578 if (hdr->sh_type == SHT_MIPS_REGINFO
6579 && hdr->sh_size > 0)
6580 {
6581 bfd_byte buf[4];
6582
6583 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6584 BFD_ASSERT (hdr->contents == NULL);
6585
6586 if (bfd_seek (abfd,
6587 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6588 SEEK_SET) != 0)
6589 return FALSE;
6590 H_PUT_32 (abfd, elf_gp (abfd), buf);
6591 if (bfd_bwrite (buf, 4, abfd) != 4)
6592 return FALSE;
6593 }
6594
6595 if (hdr->sh_type == SHT_MIPS_OPTIONS
6596 && hdr->bfd_section != NULL
6597 && mips_elf_section_data (hdr->bfd_section) != NULL
6598 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6599 {
6600 bfd_byte *contents, *l, *lend;
6601
6602 /* We stored the section contents in the tdata field in the
6603 set_section_contents routine. We save the section contents
6604 so that we don't have to read them again.
6605 At this point we know that elf_gp is set, so we can look
6606 through the section contents to see if there is an
6607 ODK_REGINFO structure. */
6608
6609 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6610 l = contents;
6611 lend = contents + hdr->sh_size;
6612 while (l + sizeof (Elf_External_Options) <= lend)
6613 {
6614 Elf_Internal_Options intopt;
6615
6616 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6617 &intopt);
6618 if (intopt.size < sizeof (Elf_External_Options))
6619 {
6620 (*_bfd_error_handler)
6621 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6622 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6623 break;
6624 }
6625 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6626 {
6627 bfd_byte buf[8];
6628
6629 if (bfd_seek (abfd,
6630 (hdr->sh_offset
6631 + (l - contents)
6632 + sizeof (Elf_External_Options)
6633 + (sizeof (Elf64_External_RegInfo) - 8)),
6634 SEEK_SET) != 0)
6635 return FALSE;
6636 H_PUT_64 (abfd, elf_gp (abfd), buf);
6637 if (bfd_bwrite (buf, 8, abfd) != 8)
6638 return FALSE;
6639 }
6640 else if (intopt.kind == ODK_REGINFO)
6641 {
6642 bfd_byte buf[4];
6643
6644 if (bfd_seek (abfd,
6645 (hdr->sh_offset
6646 + (l - contents)
6647 + sizeof (Elf_External_Options)
6648 + (sizeof (Elf32_External_RegInfo) - 4)),
6649 SEEK_SET) != 0)
6650 return FALSE;
6651 H_PUT_32 (abfd, elf_gp (abfd), buf);
6652 if (bfd_bwrite (buf, 4, abfd) != 4)
6653 return FALSE;
6654 }
6655 l += intopt.size;
6656 }
6657 }
6658
6659 if (hdr->bfd_section != NULL)
6660 {
6661 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6662
6663 /* .sbss is not handled specially here because the GNU/Linux
6664 prelinker can convert .sbss from NOBITS to PROGBITS and
6665 changing it back to NOBITS breaks the binary. The entry in
6666 _bfd_mips_elf_special_sections will ensure the correct flags
6667 are set on .sbss if BFD creates it without reading it from an
6668 input file, and without special handling here the flags set
6669 on it in an input file will be followed. */
6670 if (strcmp (name, ".sdata") == 0
6671 || strcmp (name, ".lit8") == 0
6672 || strcmp (name, ".lit4") == 0)
6673 {
6674 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6675 hdr->sh_type = SHT_PROGBITS;
6676 }
6677 else if (strcmp (name, ".srdata") == 0)
6678 {
6679 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6680 hdr->sh_type = SHT_PROGBITS;
6681 }
6682 else if (strcmp (name, ".compact_rel") == 0)
6683 {
6684 hdr->sh_flags = 0;
6685 hdr->sh_type = SHT_PROGBITS;
6686 }
6687 else if (strcmp (name, ".rtproc") == 0)
6688 {
6689 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6690 {
6691 unsigned int adjust;
6692
6693 adjust = hdr->sh_size % hdr->sh_addralign;
6694 if (adjust != 0)
6695 hdr->sh_size += hdr->sh_addralign - adjust;
6696 }
6697 }
6698 }
6699
6700 return TRUE;
6701 }
6702
6703 /* Handle a MIPS specific section when reading an object file. This
6704 is called when elfcode.h finds a section with an unknown type.
6705 This routine supports both the 32-bit and 64-bit ELF ABI.
6706
6707 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6708 how to. */
6709
6710 bfd_boolean
6711 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6712 Elf_Internal_Shdr *hdr,
6713 const char *name,
6714 int shindex)
6715 {
6716 flagword flags = 0;
6717
6718 /* There ought to be a place to keep ELF backend specific flags, but
6719 at the moment there isn't one. We just keep track of the
6720 sections by their name, instead. Fortunately, the ABI gives
6721 suggested names for all the MIPS specific sections, so we will
6722 probably get away with this. */
6723 switch (hdr->sh_type)
6724 {
6725 case SHT_MIPS_LIBLIST:
6726 if (strcmp (name, ".liblist") != 0)
6727 return FALSE;
6728 break;
6729 case SHT_MIPS_MSYM:
6730 if (strcmp (name, ".msym") != 0)
6731 return FALSE;
6732 break;
6733 case SHT_MIPS_CONFLICT:
6734 if (strcmp (name, ".conflict") != 0)
6735 return FALSE;
6736 break;
6737 case SHT_MIPS_GPTAB:
6738 if (! CONST_STRNEQ (name, ".gptab."))
6739 return FALSE;
6740 break;
6741 case SHT_MIPS_UCODE:
6742 if (strcmp (name, ".ucode") != 0)
6743 return FALSE;
6744 break;
6745 case SHT_MIPS_DEBUG:
6746 if (strcmp (name, ".mdebug") != 0)
6747 return FALSE;
6748 flags = SEC_DEBUGGING;
6749 break;
6750 case SHT_MIPS_REGINFO:
6751 if (strcmp (name, ".reginfo") != 0
6752 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6753 return FALSE;
6754 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6755 break;
6756 case SHT_MIPS_IFACE:
6757 if (strcmp (name, ".MIPS.interfaces") != 0)
6758 return FALSE;
6759 break;
6760 case SHT_MIPS_CONTENT:
6761 if (! CONST_STRNEQ (name, ".MIPS.content"))
6762 return FALSE;
6763 break;
6764 case SHT_MIPS_OPTIONS:
6765 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6766 return FALSE;
6767 break;
6768 case SHT_MIPS_DWARF:
6769 if (! CONST_STRNEQ (name, ".debug_")
6770 && ! CONST_STRNEQ (name, ".zdebug_"))
6771 return FALSE;
6772 break;
6773 case SHT_MIPS_SYMBOL_LIB:
6774 if (strcmp (name, ".MIPS.symlib") != 0)
6775 return FALSE;
6776 break;
6777 case SHT_MIPS_EVENTS:
6778 if (! CONST_STRNEQ (name, ".MIPS.events")
6779 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6780 return FALSE;
6781 break;
6782 default:
6783 break;
6784 }
6785
6786 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6787 return FALSE;
6788
6789 if (flags)
6790 {
6791 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6792 (bfd_get_section_flags (abfd,
6793 hdr->bfd_section)
6794 | flags)))
6795 return FALSE;
6796 }
6797
6798 /* FIXME: We should record sh_info for a .gptab section. */
6799
6800 /* For a .reginfo section, set the gp value in the tdata information
6801 from the contents of this section. We need the gp value while
6802 processing relocs, so we just get it now. The .reginfo section
6803 is not used in the 64-bit MIPS ELF ABI. */
6804 if (hdr->sh_type == SHT_MIPS_REGINFO)
6805 {
6806 Elf32_External_RegInfo ext;
6807 Elf32_RegInfo s;
6808
6809 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6810 &ext, 0, sizeof ext))
6811 return FALSE;
6812 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6813 elf_gp (abfd) = s.ri_gp_value;
6814 }
6815
6816 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6817 set the gp value based on what we find. We may see both
6818 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6819 they should agree. */
6820 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6821 {
6822 bfd_byte *contents, *l, *lend;
6823
6824 contents = bfd_malloc (hdr->sh_size);
6825 if (contents == NULL)
6826 return FALSE;
6827 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6828 0, hdr->sh_size))
6829 {
6830 free (contents);
6831 return FALSE;
6832 }
6833 l = contents;
6834 lend = contents + hdr->sh_size;
6835 while (l + sizeof (Elf_External_Options) <= lend)
6836 {
6837 Elf_Internal_Options intopt;
6838
6839 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6840 &intopt);
6841 if (intopt.size < sizeof (Elf_External_Options))
6842 {
6843 (*_bfd_error_handler)
6844 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6845 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6846 break;
6847 }
6848 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6849 {
6850 Elf64_Internal_RegInfo intreg;
6851
6852 bfd_mips_elf64_swap_reginfo_in
6853 (abfd,
6854 ((Elf64_External_RegInfo *)
6855 (l + sizeof (Elf_External_Options))),
6856 &intreg);
6857 elf_gp (abfd) = intreg.ri_gp_value;
6858 }
6859 else if (intopt.kind == ODK_REGINFO)
6860 {
6861 Elf32_RegInfo intreg;
6862
6863 bfd_mips_elf32_swap_reginfo_in
6864 (abfd,
6865 ((Elf32_External_RegInfo *)
6866 (l + sizeof (Elf_External_Options))),
6867 &intreg);
6868 elf_gp (abfd) = intreg.ri_gp_value;
6869 }
6870 l += intopt.size;
6871 }
6872 free (contents);
6873 }
6874
6875 return TRUE;
6876 }
6877
6878 /* Set the correct type for a MIPS ELF section. We do this by the
6879 section name, which is a hack, but ought to work. This routine is
6880 used by both the 32-bit and the 64-bit ABI. */
6881
6882 bfd_boolean
6883 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6884 {
6885 const char *name = bfd_get_section_name (abfd, sec);
6886
6887 if (strcmp (name, ".liblist") == 0)
6888 {
6889 hdr->sh_type = SHT_MIPS_LIBLIST;
6890 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6891 /* The sh_link field is set in final_write_processing. */
6892 }
6893 else if (strcmp (name, ".conflict") == 0)
6894 hdr->sh_type = SHT_MIPS_CONFLICT;
6895 else if (CONST_STRNEQ (name, ".gptab."))
6896 {
6897 hdr->sh_type = SHT_MIPS_GPTAB;
6898 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6899 /* The sh_info field is set in final_write_processing. */
6900 }
6901 else if (strcmp (name, ".ucode") == 0)
6902 hdr->sh_type = SHT_MIPS_UCODE;
6903 else if (strcmp (name, ".mdebug") == 0)
6904 {
6905 hdr->sh_type = SHT_MIPS_DEBUG;
6906 /* In a shared object on IRIX 5.3, the .mdebug section has an
6907 entsize of 0. FIXME: Does this matter? */
6908 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6909 hdr->sh_entsize = 0;
6910 else
6911 hdr->sh_entsize = 1;
6912 }
6913 else if (strcmp (name, ".reginfo") == 0)
6914 {
6915 hdr->sh_type = SHT_MIPS_REGINFO;
6916 /* In a shared object on IRIX 5.3, the .reginfo section has an
6917 entsize of 0x18. FIXME: Does this matter? */
6918 if (SGI_COMPAT (abfd))
6919 {
6920 if ((abfd->flags & DYNAMIC) != 0)
6921 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6922 else
6923 hdr->sh_entsize = 1;
6924 }
6925 else
6926 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6927 }
6928 else if (SGI_COMPAT (abfd)
6929 && (strcmp (name, ".hash") == 0
6930 || strcmp (name, ".dynamic") == 0
6931 || strcmp (name, ".dynstr") == 0))
6932 {
6933 if (SGI_COMPAT (abfd))
6934 hdr->sh_entsize = 0;
6935 #if 0
6936 /* This isn't how the IRIX6 linker behaves. */
6937 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6938 #endif
6939 }
6940 else if (strcmp (name, ".got") == 0
6941 || strcmp (name, ".srdata") == 0
6942 || strcmp (name, ".sdata") == 0
6943 || strcmp (name, ".sbss") == 0
6944 || strcmp (name, ".lit4") == 0
6945 || strcmp (name, ".lit8") == 0)
6946 hdr->sh_flags |= SHF_MIPS_GPREL;
6947 else if (strcmp (name, ".MIPS.interfaces") == 0)
6948 {
6949 hdr->sh_type = SHT_MIPS_IFACE;
6950 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6951 }
6952 else if (CONST_STRNEQ (name, ".MIPS.content"))
6953 {
6954 hdr->sh_type = SHT_MIPS_CONTENT;
6955 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6956 /* The sh_info field is set in final_write_processing. */
6957 }
6958 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6959 {
6960 hdr->sh_type = SHT_MIPS_OPTIONS;
6961 hdr->sh_entsize = 1;
6962 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6963 }
6964 else if (CONST_STRNEQ (name, ".debug_")
6965 || CONST_STRNEQ (name, ".zdebug_"))
6966 {
6967 hdr->sh_type = SHT_MIPS_DWARF;
6968
6969 /* Irix facilities such as libexc expect a single .debug_frame
6970 per executable, the system ones have NOSTRIP set and the linker
6971 doesn't merge sections with different flags so ... */
6972 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6973 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6974 }
6975 else if (strcmp (name, ".MIPS.symlib") == 0)
6976 {
6977 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6978 /* The sh_link and sh_info fields are set in
6979 final_write_processing. */
6980 }
6981 else if (CONST_STRNEQ (name, ".MIPS.events")
6982 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6983 {
6984 hdr->sh_type = SHT_MIPS_EVENTS;
6985 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6986 /* The sh_link field is set in final_write_processing. */
6987 }
6988 else if (strcmp (name, ".msym") == 0)
6989 {
6990 hdr->sh_type = SHT_MIPS_MSYM;
6991 hdr->sh_flags |= SHF_ALLOC;
6992 hdr->sh_entsize = 8;
6993 }
6994
6995 /* The generic elf_fake_sections will set up REL_HDR using the default
6996 kind of relocations. We used to set up a second header for the
6997 non-default kind of relocations here, but only NewABI would use
6998 these, and the IRIX ld doesn't like resulting empty RELA sections.
6999 Thus we create those header only on demand now. */
7000
7001 return TRUE;
7002 }
7003
7004 /* Given a BFD section, try to locate the corresponding ELF section
7005 index. This is used by both the 32-bit and the 64-bit ABI.
7006 Actually, it's not clear to me that the 64-bit ABI supports these,
7007 but for non-PIC objects we will certainly want support for at least
7008 the .scommon section. */
7009
7010 bfd_boolean
7011 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7012 asection *sec, int *retval)
7013 {
7014 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7015 {
7016 *retval = SHN_MIPS_SCOMMON;
7017 return TRUE;
7018 }
7019 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7020 {
7021 *retval = SHN_MIPS_ACOMMON;
7022 return TRUE;
7023 }
7024 return FALSE;
7025 }
7026 \f
7027 /* Hook called by the linker routine which adds symbols from an object
7028 file. We must handle the special MIPS section numbers here. */
7029
7030 bfd_boolean
7031 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7032 Elf_Internal_Sym *sym, const char **namep,
7033 flagword *flagsp ATTRIBUTE_UNUSED,
7034 asection **secp, bfd_vma *valp)
7035 {
7036 if (SGI_COMPAT (abfd)
7037 && (abfd->flags & DYNAMIC) != 0
7038 && strcmp (*namep, "_rld_new_interface") == 0)
7039 {
7040 /* Skip IRIX5 rld entry name. */
7041 *namep = NULL;
7042 return TRUE;
7043 }
7044
7045 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7046 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7047 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7048 a magic symbol resolved by the linker, we ignore this bogus definition
7049 of _gp_disp. New ABI objects do not suffer from this problem so this
7050 is not done for them. */
7051 if (!NEWABI_P(abfd)
7052 && (sym->st_shndx == SHN_ABS)
7053 && (strcmp (*namep, "_gp_disp") == 0))
7054 {
7055 *namep = NULL;
7056 return TRUE;
7057 }
7058
7059 switch (sym->st_shndx)
7060 {
7061 case SHN_COMMON:
7062 /* Common symbols less than the GP size are automatically
7063 treated as SHN_MIPS_SCOMMON symbols. */
7064 if (sym->st_size > elf_gp_size (abfd)
7065 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7066 || IRIX_COMPAT (abfd) == ict_irix6)
7067 break;
7068 /* Fall through. */
7069 case SHN_MIPS_SCOMMON:
7070 *secp = bfd_make_section_old_way (abfd, ".scommon");
7071 (*secp)->flags |= SEC_IS_COMMON;
7072 *valp = sym->st_size;
7073 break;
7074
7075 case SHN_MIPS_TEXT:
7076 /* This section is used in a shared object. */
7077 if (elf_tdata (abfd)->elf_text_section == NULL)
7078 {
7079 asymbol *elf_text_symbol;
7080 asection *elf_text_section;
7081 bfd_size_type amt = sizeof (asection);
7082
7083 elf_text_section = bfd_zalloc (abfd, amt);
7084 if (elf_text_section == NULL)
7085 return FALSE;
7086
7087 amt = sizeof (asymbol);
7088 elf_text_symbol = bfd_zalloc (abfd, amt);
7089 if (elf_text_symbol == NULL)
7090 return FALSE;
7091
7092 /* Initialize the section. */
7093
7094 elf_tdata (abfd)->elf_text_section = elf_text_section;
7095 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7096
7097 elf_text_section->symbol = elf_text_symbol;
7098 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7099
7100 elf_text_section->name = ".text";
7101 elf_text_section->flags = SEC_NO_FLAGS;
7102 elf_text_section->output_section = NULL;
7103 elf_text_section->owner = abfd;
7104 elf_text_symbol->name = ".text";
7105 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7106 elf_text_symbol->section = elf_text_section;
7107 }
7108 /* This code used to do *secp = bfd_und_section_ptr if
7109 info->shared. I don't know why, and that doesn't make sense,
7110 so I took it out. */
7111 *secp = elf_tdata (abfd)->elf_text_section;
7112 break;
7113
7114 case SHN_MIPS_ACOMMON:
7115 /* Fall through. XXX Can we treat this as allocated data? */
7116 case SHN_MIPS_DATA:
7117 /* This section is used in a shared object. */
7118 if (elf_tdata (abfd)->elf_data_section == NULL)
7119 {
7120 asymbol *elf_data_symbol;
7121 asection *elf_data_section;
7122 bfd_size_type amt = sizeof (asection);
7123
7124 elf_data_section = bfd_zalloc (abfd, amt);
7125 if (elf_data_section == NULL)
7126 return FALSE;
7127
7128 amt = sizeof (asymbol);
7129 elf_data_symbol = bfd_zalloc (abfd, amt);
7130 if (elf_data_symbol == NULL)
7131 return FALSE;
7132
7133 /* Initialize the section. */
7134
7135 elf_tdata (abfd)->elf_data_section = elf_data_section;
7136 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7137
7138 elf_data_section->symbol = elf_data_symbol;
7139 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7140
7141 elf_data_section->name = ".data";
7142 elf_data_section->flags = SEC_NO_FLAGS;
7143 elf_data_section->output_section = NULL;
7144 elf_data_section->owner = abfd;
7145 elf_data_symbol->name = ".data";
7146 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7147 elf_data_symbol->section = elf_data_section;
7148 }
7149 /* This code used to do *secp = bfd_und_section_ptr if
7150 info->shared. I don't know why, and that doesn't make sense,
7151 so I took it out. */
7152 *secp = elf_tdata (abfd)->elf_data_section;
7153 break;
7154
7155 case SHN_MIPS_SUNDEFINED:
7156 *secp = bfd_und_section_ptr;
7157 break;
7158 }
7159
7160 if (SGI_COMPAT (abfd)
7161 && ! info->shared
7162 && info->output_bfd->xvec == abfd->xvec
7163 && strcmp (*namep, "__rld_obj_head") == 0)
7164 {
7165 struct elf_link_hash_entry *h;
7166 struct bfd_link_hash_entry *bh;
7167
7168 /* Mark __rld_obj_head as dynamic. */
7169 bh = NULL;
7170 if (! (_bfd_generic_link_add_one_symbol
7171 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7172 get_elf_backend_data (abfd)->collect, &bh)))
7173 return FALSE;
7174
7175 h = (struct elf_link_hash_entry *) bh;
7176 h->non_elf = 0;
7177 h->def_regular = 1;
7178 h->type = STT_OBJECT;
7179
7180 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7181 return FALSE;
7182
7183 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7184 mips_elf_hash_table (info)->rld_symbol = h;
7185 }
7186
7187 /* If this is a mips16 text symbol, add 1 to the value to make it
7188 odd. This will cause something like .word SYM to come up with
7189 the right value when it is loaded into the PC. */
7190 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7191 ++*valp;
7192
7193 return TRUE;
7194 }
7195
7196 /* This hook function is called before the linker writes out a global
7197 symbol. We mark symbols as small common if appropriate. This is
7198 also where we undo the increment of the value for a mips16 symbol. */
7199
7200 int
7201 _bfd_mips_elf_link_output_symbol_hook
7202 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7203 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7204 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7205 {
7206 /* If we see a common symbol, which implies a relocatable link, then
7207 if a symbol was small common in an input file, mark it as small
7208 common in the output file. */
7209 if (sym->st_shndx == SHN_COMMON
7210 && strcmp (input_sec->name, ".scommon") == 0)
7211 sym->st_shndx = SHN_MIPS_SCOMMON;
7212
7213 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7214 sym->st_value &= ~1;
7215
7216 return 1;
7217 }
7218 \f
7219 /* Functions for the dynamic linker. */
7220
7221 /* Create dynamic sections when linking against a dynamic object. */
7222
7223 bfd_boolean
7224 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7225 {
7226 struct elf_link_hash_entry *h;
7227 struct bfd_link_hash_entry *bh;
7228 flagword flags;
7229 register asection *s;
7230 const char * const *namep;
7231 struct mips_elf_link_hash_table *htab;
7232
7233 htab = mips_elf_hash_table (info);
7234 BFD_ASSERT (htab != NULL);
7235
7236 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7237 | SEC_LINKER_CREATED | SEC_READONLY);
7238
7239 /* The psABI requires a read-only .dynamic section, but the VxWorks
7240 EABI doesn't. */
7241 if (!htab->is_vxworks)
7242 {
7243 s = bfd_get_linker_section (abfd, ".dynamic");
7244 if (s != NULL)
7245 {
7246 if (! bfd_set_section_flags (abfd, s, flags))
7247 return FALSE;
7248 }
7249 }
7250
7251 /* We need to create .got section. */
7252 if (!mips_elf_create_got_section (abfd, info))
7253 return FALSE;
7254
7255 if (! mips_elf_rel_dyn_section (info, TRUE))
7256 return FALSE;
7257
7258 /* Create .stub section. */
7259 s = bfd_make_section_anyway_with_flags (abfd,
7260 MIPS_ELF_STUB_SECTION_NAME (abfd),
7261 flags | SEC_CODE);
7262 if (s == NULL
7263 || ! bfd_set_section_alignment (abfd, s,
7264 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7265 return FALSE;
7266 htab->sstubs = s;
7267
7268 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7269 && !info->shared
7270 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7271 {
7272 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7273 flags &~ (flagword) SEC_READONLY);
7274 if (s == NULL
7275 || ! bfd_set_section_alignment (abfd, s,
7276 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7277 return FALSE;
7278 }
7279
7280 /* On IRIX5, we adjust add some additional symbols and change the
7281 alignments of several sections. There is no ABI documentation
7282 indicating that this is necessary on IRIX6, nor any evidence that
7283 the linker takes such action. */
7284 if (IRIX_COMPAT (abfd) == ict_irix5)
7285 {
7286 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7287 {
7288 bh = NULL;
7289 if (! (_bfd_generic_link_add_one_symbol
7290 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7291 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7292 return FALSE;
7293
7294 h = (struct elf_link_hash_entry *) bh;
7295 h->non_elf = 0;
7296 h->def_regular = 1;
7297 h->type = STT_SECTION;
7298
7299 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7300 return FALSE;
7301 }
7302
7303 /* We need to create a .compact_rel section. */
7304 if (SGI_COMPAT (abfd))
7305 {
7306 if (!mips_elf_create_compact_rel_section (abfd, info))
7307 return FALSE;
7308 }
7309
7310 /* Change alignments of some sections. */
7311 s = bfd_get_linker_section (abfd, ".hash");
7312 if (s != NULL)
7313 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7314 s = bfd_get_linker_section (abfd, ".dynsym");
7315 if (s != NULL)
7316 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7317 s = bfd_get_linker_section (abfd, ".dynstr");
7318 if (s != NULL)
7319 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7320 /* ??? */
7321 s = bfd_get_section_by_name (abfd, ".reginfo");
7322 if (s != NULL)
7323 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7324 s = bfd_get_linker_section (abfd, ".dynamic");
7325 if (s != NULL)
7326 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7327 }
7328
7329 if (!info->shared)
7330 {
7331 const char *name;
7332
7333 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7334 bh = NULL;
7335 if (!(_bfd_generic_link_add_one_symbol
7336 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7337 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7338 return FALSE;
7339
7340 h = (struct elf_link_hash_entry *) bh;
7341 h->non_elf = 0;
7342 h->def_regular = 1;
7343 h->type = STT_SECTION;
7344
7345 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7346 return FALSE;
7347
7348 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7349 {
7350 /* __rld_map is a four byte word located in the .data section
7351 and is filled in by the rtld to contain a pointer to
7352 the _r_debug structure. Its symbol value will be set in
7353 _bfd_mips_elf_finish_dynamic_symbol. */
7354 s = bfd_get_linker_section (abfd, ".rld_map");
7355 BFD_ASSERT (s != NULL);
7356
7357 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7358 bh = NULL;
7359 if (!(_bfd_generic_link_add_one_symbol
7360 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7361 get_elf_backend_data (abfd)->collect, &bh)))
7362 return FALSE;
7363
7364 h = (struct elf_link_hash_entry *) bh;
7365 h->non_elf = 0;
7366 h->def_regular = 1;
7367 h->type = STT_OBJECT;
7368
7369 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7370 return FALSE;
7371 mips_elf_hash_table (info)->rld_symbol = h;
7372 }
7373 }
7374
7375 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7376 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7377 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7378 return FALSE;
7379
7380 /* Cache the sections created above. */
7381 htab->splt = bfd_get_linker_section (abfd, ".plt");
7382 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7383 if (htab->is_vxworks)
7384 {
7385 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7386 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7387 }
7388 else
7389 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7390 if (!htab->sdynbss
7391 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7392 || !htab->srelplt
7393 || !htab->splt)
7394 abort ();
7395
7396 if (htab->is_vxworks)
7397 {
7398 /* Do the usual VxWorks handling. */
7399 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7400 return FALSE;
7401
7402 /* Work out the PLT sizes. */
7403 if (info->shared)
7404 {
7405 htab->plt_header_size
7406 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7407 htab->plt_entry_size
7408 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7409 }
7410 else
7411 {
7412 htab->plt_header_size
7413 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7414 htab->plt_entry_size
7415 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7416 }
7417 }
7418 else if (!info->shared)
7419 {
7420 /* All variants of the plt0 entry are the same size. */
7421 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7422 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7423 }
7424
7425 return TRUE;
7426 }
7427 \f
7428 /* Return true if relocation REL against section SEC is a REL rather than
7429 RELA relocation. RELOCS is the first relocation in the section and
7430 ABFD is the bfd that contains SEC. */
7431
7432 static bfd_boolean
7433 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7434 const Elf_Internal_Rela *relocs,
7435 const Elf_Internal_Rela *rel)
7436 {
7437 Elf_Internal_Shdr *rel_hdr;
7438 const struct elf_backend_data *bed;
7439
7440 /* To determine which flavor of relocation this is, we depend on the
7441 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7442 rel_hdr = elf_section_data (sec)->rel.hdr;
7443 if (rel_hdr == NULL)
7444 return FALSE;
7445 bed = get_elf_backend_data (abfd);
7446 return ((size_t) (rel - relocs)
7447 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7448 }
7449
7450 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7451 HOWTO is the relocation's howto and CONTENTS points to the contents
7452 of the section that REL is against. */
7453
7454 static bfd_vma
7455 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7456 reloc_howto_type *howto, bfd_byte *contents)
7457 {
7458 bfd_byte *location;
7459 unsigned int r_type;
7460 bfd_vma addend;
7461
7462 r_type = ELF_R_TYPE (abfd, rel->r_info);
7463 location = contents + rel->r_offset;
7464
7465 /* Get the addend, which is stored in the input file. */
7466 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7467 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7468 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7469
7470 return addend & howto->src_mask;
7471 }
7472
7473 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7474 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7475 and update *ADDEND with the final addend. Return true on success
7476 or false if the LO16 could not be found. RELEND is the exclusive
7477 upper bound on the relocations for REL's section. */
7478
7479 static bfd_boolean
7480 mips_elf_add_lo16_rel_addend (bfd *abfd,
7481 const Elf_Internal_Rela *rel,
7482 const Elf_Internal_Rela *relend,
7483 bfd_byte *contents, bfd_vma *addend)
7484 {
7485 unsigned int r_type, lo16_type;
7486 const Elf_Internal_Rela *lo16_relocation;
7487 reloc_howto_type *lo16_howto;
7488 bfd_vma l;
7489
7490 r_type = ELF_R_TYPE (abfd, rel->r_info);
7491 if (mips16_reloc_p (r_type))
7492 lo16_type = R_MIPS16_LO16;
7493 else if (micromips_reloc_p (r_type))
7494 lo16_type = R_MICROMIPS_LO16;
7495 else
7496 lo16_type = R_MIPS_LO16;
7497
7498 /* The combined value is the sum of the HI16 addend, left-shifted by
7499 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7500 code does a `lui' of the HI16 value, and then an `addiu' of the
7501 LO16 value.)
7502
7503 Scan ahead to find a matching LO16 relocation.
7504
7505 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7506 be immediately following. However, for the IRIX6 ABI, the next
7507 relocation may be a composed relocation consisting of several
7508 relocations for the same address. In that case, the R_MIPS_LO16
7509 relocation may occur as one of these. We permit a similar
7510 extension in general, as that is useful for GCC.
7511
7512 In some cases GCC dead code elimination removes the LO16 but keeps
7513 the corresponding HI16. This is strictly speaking a violation of
7514 the ABI but not immediately harmful. */
7515 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7516 if (lo16_relocation == NULL)
7517 return FALSE;
7518
7519 /* Obtain the addend kept there. */
7520 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7521 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7522
7523 l <<= lo16_howto->rightshift;
7524 l = _bfd_mips_elf_sign_extend (l, 16);
7525
7526 *addend <<= 16;
7527 *addend += l;
7528 return TRUE;
7529 }
7530
7531 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7532 store the contents in *CONTENTS on success. Assume that *CONTENTS
7533 already holds the contents if it is nonull on entry. */
7534
7535 static bfd_boolean
7536 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7537 {
7538 if (*contents)
7539 return TRUE;
7540
7541 /* Get cached copy if it exists. */
7542 if (elf_section_data (sec)->this_hdr.contents != NULL)
7543 {
7544 *contents = elf_section_data (sec)->this_hdr.contents;
7545 return TRUE;
7546 }
7547
7548 return bfd_malloc_and_get_section (abfd, sec, contents);
7549 }
7550
7551 /* Look through the relocs for a section during the first phase, and
7552 allocate space in the global offset table. */
7553
7554 bfd_boolean
7555 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7556 asection *sec, const Elf_Internal_Rela *relocs)
7557 {
7558 const char *name;
7559 bfd *dynobj;
7560 Elf_Internal_Shdr *symtab_hdr;
7561 struct elf_link_hash_entry **sym_hashes;
7562 size_t extsymoff;
7563 const Elf_Internal_Rela *rel;
7564 const Elf_Internal_Rela *rel_end;
7565 asection *sreloc;
7566 const struct elf_backend_data *bed;
7567 struct mips_elf_link_hash_table *htab;
7568 bfd_byte *contents;
7569 bfd_vma addend;
7570 reloc_howto_type *howto;
7571
7572 if (info->relocatable)
7573 return TRUE;
7574
7575 htab = mips_elf_hash_table (info);
7576 BFD_ASSERT (htab != NULL);
7577
7578 dynobj = elf_hash_table (info)->dynobj;
7579 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7580 sym_hashes = elf_sym_hashes (abfd);
7581 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7582
7583 bed = get_elf_backend_data (abfd);
7584 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7585
7586 /* Check for the mips16 stub sections. */
7587
7588 name = bfd_get_section_name (abfd, sec);
7589 if (FN_STUB_P (name))
7590 {
7591 unsigned long r_symndx;
7592
7593 /* Look at the relocation information to figure out which symbol
7594 this is for. */
7595
7596 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7597 if (r_symndx == 0)
7598 {
7599 (*_bfd_error_handler)
7600 (_("%B: Warning: cannot determine the target function for"
7601 " stub section `%s'"),
7602 abfd, name);
7603 bfd_set_error (bfd_error_bad_value);
7604 return FALSE;
7605 }
7606
7607 if (r_symndx < extsymoff
7608 || sym_hashes[r_symndx - extsymoff] == NULL)
7609 {
7610 asection *o;
7611
7612 /* This stub is for a local symbol. This stub will only be
7613 needed if there is some relocation in this BFD, other
7614 than a 16 bit function call, which refers to this symbol. */
7615 for (o = abfd->sections; o != NULL; o = o->next)
7616 {
7617 Elf_Internal_Rela *sec_relocs;
7618 const Elf_Internal_Rela *r, *rend;
7619
7620 /* We can ignore stub sections when looking for relocs. */
7621 if ((o->flags & SEC_RELOC) == 0
7622 || o->reloc_count == 0
7623 || section_allows_mips16_refs_p (o))
7624 continue;
7625
7626 sec_relocs
7627 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7628 info->keep_memory);
7629 if (sec_relocs == NULL)
7630 return FALSE;
7631
7632 rend = sec_relocs + o->reloc_count;
7633 for (r = sec_relocs; r < rend; r++)
7634 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7635 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7636 break;
7637
7638 if (elf_section_data (o)->relocs != sec_relocs)
7639 free (sec_relocs);
7640
7641 if (r < rend)
7642 break;
7643 }
7644
7645 if (o == NULL)
7646 {
7647 /* There is no non-call reloc for this stub, so we do
7648 not need it. Since this function is called before
7649 the linker maps input sections to output sections, we
7650 can easily discard it by setting the SEC_EXCLUDE
7651 flag. */
7652 sec->flags |= SEC_EXCLUDE;
7653 return TRUE;
7654 }
7655
7656 /* Record this stub in an array of local symbol stubs for
7657 this BFD. */
7658 if (elf_tdata (abfd)->local_stubs == NULL)
7659 {
7660 unsigned long symcount;
7661 asection **n;
7662 bfd_size_type amt;
7663
7664 if (elf_bad_symtab (abfd))
7665 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7666 else
7667 symcount = symtab_hdr->sh_info;
7668 amt = symcount * sizeof (asection *);
7669 n = bfd_zalloc (abfd, amt);
7670 if (n == NULL)
7671 return FALSE;
7672 elf_tdata (abfd)->local_stubs = n;
7673 }
7674
7675 sec->flags |= SEC_KEEP;
7676 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7677
7678 /* We don't need to set mips16_stubs_seen in this case.
7679 That flag is used to see whether we need to look through
7680 the global symbol table for stubs. We don't need to set
7681 it here, because we just have a local stub. */
7682 }
7683 else
7684 {
7685 struct mips_elf_link_hash_entry *h;
7686
7687 h = ((struct mips_elf_link_hash_entry *)
7688 sym_hashes[r_symndx - extsymoff]);
7689
7690 while (h->root.root.type == bfd_link_hash_indirect
7691 || h->root.root.type == bfd_link_hash_warning)
7692 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7693
7694 /* H is the symbol this stub is for. */
7695
7696 /* If we already have an appropriate stub for this function, we
7697 don't need another one, so we can discard this one. Since
7698 this function is called before the linker maps input sections
7699 to output sections, we can easily discard it by setting the
7700 SEC_EXCLUDE flag. */
7701 if (h->fn_stub != NULL)
7702 {
7703 sec->flags |= SEC_EXCLUDE;
7704 return TRUE;
7705 }
7706
7707 sec->flags |= SEC_KEEP;
7708 h->fn_stub = sec;
7709 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7710 }
7711 }
7712 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7713 {
7714 unsigned long r_symndx;
7715 struct mips_elf_link_hash_entry *h;
7716 asection **loc;
7717
7718 /* Look at the relocation information to figure out which symbol
7719 this is for. */
7720
7721 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7722 if (r_symndx == 0)
7723 {
7724 (*_bfd_error_handler)
7725 (_("%B: Warning: cannot determine the target function for"
7726 " stub section `%s'"),
7727 abfd, name);
7728 bfd_set_error (bfd_error_bad_value);
7729 return FALSE;
7730 }
7731
7732 if (r_symndx < extsymoff
7733 || sym_hashes[r_symndx - extsymoff] == NULL)
7734 {
7735 asection *o;
7736
7737 /* This stub is for a local symbol. This stub will only be
7738 needed if there is some relocation (R_MIPS16_26) in this BFD
7739 that refers to this symbol. */
7740 for (o = abfd->sections; o != NULL; o = o->next)
7741 {
7742 Elf_Internal_Rela *sec_relocs;
7743 const Elf_Internal_Rela *r, *rend;
7744
7745 /* We can ignore stub sections when looking for relocs. */
7746 if ((o->flags & SEC_RELOC) == 0
7747 || o->reloc_count == 0
7748 || section_allows_mips16_refs_p (o))
7749 continue;
7750
7751 sec_relocs
7752 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7753 info->keep_memory);
7754 if (sec_relocs == NULL)
7755 return FALSE;
7756
7757 rend = sec_relocs + o->reloc_count;
7758 for (r = sec_relocs; r < rend; r++)
7759 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7760 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7761 break;
7762
7763 if (elf_section_data (o)->relocs != sec_relocs)
7764 free (sec_relocs);
7765
7766 if (r < rend)
7767 break;
7768 }
7769
7770 if (o == NULL)
7771 {
7772 /* There is no non-call reloc for this stub, so we do
7773 not need it. Since this function is called before
7774 the linker maps input sections to output sections, we
7775 can easily discard it by setting the SEC_EXCLUDE
7776 flag. */
7777 sec->flags |= SEC_EXCLUDE;
7778 return TRUE;
7779 }
7780
7781 /* Record this stub in an array of local symbol call_stubs for
7782 this BFD. */
7783 if (elf_tdata (abfd)->local_call_stubs == NULL)
7784 {
7785 unsigned long symcount;
7786 asection **n;
7787 bfd_size_type amt;
7788
7789 if (elf_bad_symtab (abfd))
7790 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7791 else
7792 symcount = symtab_hdr->sh_info;
7793 amt = symcount * sizeof (asection *);
7794 n = bfd_zalloc (abfd, amt);
7795 if (n == NULL)
7796 return FALSE;
7797 elf_tdata (abfd)->local_call_stubs = n;
7798 }
7799
7800 sec->flags |= SEC_KEEP;
7801 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7802
7803 /* We don't need to set mips16_stubs_seen in this case.
7804 That flag is used to see whether we need to look through
7805 the global symbol table for stubs. We don't need to set
7806 it here, because we just have a local stub. */
7807 }
7808 else
7809 {
7810 h = ((struct mips_elf_link_hash_entry *)
7811 sym_hashes[r_symndx - extsymoff]);
7812
7813 /* H is the symbol this stub is for. */
7814
7815 if (CALL_FP_STUB_P (name))
7816 loc = &h->call_fp_stub;
7817 else
7818 loc = &h->call_stub;
7819
7820 /* If we already have an appropriate stub for this function, we
7821 don't need another one, so we can discard this one. Since
7822 this function is called before the linker maps input sections
7823 to output sections, we can easily discard it by setting the
7824 SEC_EXCLUDE flag. */
7825 if (*loc != NULL)
7826 {
7827 sec->flags |= SEC_EXCLUDE;
7828 return TRUE;
7829 }
7830
7831 sec->flags |= SEC_KEEP;
7832 *loc = sec;
7833 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7834 }
7835 }
7836
7837 sreloc = NULL;
7838 contents = NULL;
7839 for (rel = relocs; rel < rel_end; ++rel)
7840 {
7841 unsigned long r_symndx;
7842 unsigned int r_type;
7843 struct elf_link_hash_entry *h;
7844 bfd_boolean can_make_dynamic_p;
7845
7846 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7847 r_type = ELF_R_TYPE (abfd, rel->r_info);
7848
7849 if (r_symndx < extsymoff)
7850 h = NULL;
7851 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7852 {
7853 (*_bfd_error_handler)
7854 (_("%B: Malformed reloc detected for section %s"),
7855 abfd, name);
7856 bfd_set_error (bfd_error_bad_value);
7857 return FALSE;
7858 }
7859 else
7860 {
7861 h = sym_hashes[r_symndx - extsymoff];
7862 while (h != NULL
7863 && (h->root.type == bfd_link_hash_indirect
7864 || h->root.type == bfd_link_hash_warning))
7865 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7866 }
7867
7868 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7869 relocation into a dynamic one. */
7870 can_make_dynamic_p = FALSE;
7871 switch (r_type)
7872 {
7873 case R_MIPS_GOT16:
7874 case R_MIPS_CALL16:
7875 case R_MIPS_CALL_HI16:
7876 case R_MIPS_CALL_LO16:
7877 case R_MIPS_GOT_HI16:
7878 case R_MIPS_GOT_LO16:
7879 case R_MIPS_GOT_PAGE:
7880 case R_MIPS_GOT_OFST:
7881 case R_MIPS_GOT_DISP:
7882 case R_MIPS_TLS_GOTTPREL:
7883 case R_MIPS_TLS_GD:
7884 case R_MIPS_TLS_LDM:
7885 case R_MIPS16_GOT16:
7886 case R_MIPS16_CALL16:
7887 case R_MIPS16_TLS_GOTTPREL:
7888 case R_MIPS16_TLS_GD:
7889 case R_MIPS16_TLS_LDM:
7890 case R_MICROMIPS_GOT16:
7891 case R_MICROMIPS_CALL16:
7892 case R_MICROMIPS_CALL_HI16:
7893 case R_MICROMIPS_CALL_LO16:
7894 case R_MICROMIPS_GOT_HI16:
7895 case R_MICROMIPS_GOT_LO16:
7896 case R_MICROMIPS_GOT_PAGE:
7897 case R_MICROMIPS_GOT_OFST:
7898 case R_MICROMIPS_GOT_DISP:
7899 case R_MICROMIPS_TLS_GOTTPREL:
7900 case R_MICROMIPS_TLS_GD:
7901 case R_MICROMIPS_TLS_LDM:
7902 if (dynobj == NULL)
7903 elf_hash_table (info)->dynobj = dynobj = abfd;
7904 if (!mips_elf_create_got_section (dynobj, info))
7905 return FALSE;
7906 if (htab->is_vxworks && !info->shared)
7907 {
7908 (*_bfd_error_handler)
7909 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7910 abfd, (unsigned long) rel->r_offset);
7911 bfd_set_error (bfd_error_bad_value);
7912 return FALSE;
7913 }
7914 break;
7915
7916 /* This is just a hint; it can safely be ignored. Don't set
7917 has_static_relocs for the corresponding symbol. */
7918 case R_MIPS_JALR:
7919 case R_MICROMIPS_JALR:
7920 break;
7921
7922 case R_MIPS_32:
7923 case R_MIPS_REL32:
7924 case R_MIPS_64:
7925 /* In VxWorks executables, references to external symbols
7926 must be handled using copy relocs or PLT entries; it is not
7927 possible to convert this relocation into a dynamic one.
7928
7929 For executables that use PLTs and copy-relocs, we have a
7930 choice between converting the relocation into a dynamic
7931 one or using copy relocations or PLT entries. It is
7932 usually better to do the former, unless the relocation is
7933 against a read-only section. */
7934 if ((info->shared
7935 || (h != NULL
7936 && !htab->is_vxworks
7937 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7938 && !(!info->nocopyreloc
7939 && !PIC_OBJECT_P (abfd)
7940 && MIPS_ELF_READONLY_SECTION (sec))))
7941 && (sec->flags & SEC_ALLOC) != 0)
7942 {
7943 can_make_dynamic_p = TRUE;
7944 if (dynobj == NULL)
7945 elf_hash_table (info)->dynobj = dynobj = abfd;
7946 break;
7947 }
7948 /* For sections that are not SEC_ALLOC a copy reloc would be
7949 output if possible (implying questionable semantics for
7950 read-only data objects) or otherwise the final link would
7951 fail as ld.so will not process them and could not therefore
7952 handle any outstanding dynamic relocations.
7953
7954 For such sections that are also SEC_DEBUGGING, we can avoid
7955 these problems by simply ignoring any relocs as these
7956 sections have a predefined use and we know it is safe to do
7957 so.
7958
7959 This is needed in cases such as a global symbol definition
7960 in a shared library causing a common symbol from an object
7961 file to be converted to an undefined reference. If that
7962 happens, then all the relocations against this symbol from
7963 SEC_DEBUGGING sections in the object file will resolve to
7964 nil. */
7965 if ((sec->flags & SEC_DEBUGGING) != 0)
7966 break;
7967 /* Fall through. */
7968
7969 default:
7970 /* Most static relocations require pointer equality, except
7971 for branches. */
7972 if (h)
7973 h->pointer_equality_needed = TRUE;
7974 /* Fall through. */
7975
7976 case R_MIPS_26:
7977 case R_MIPS_PC16:
7978 case R_MIPS16_26:
7979 case R_MICROMIPS_26_S1:
7980 case R_MICROMIPS_PC7_S1:
7981 case R_MICROMIPS_PC10_S1:
7982 case R_MICROMIPS_PC16_S1:
7983 case R_MICROMIPS_PC23_S2:
7984 if (h)
7985 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7986 break;
7987 }
7988
7989 if (h)
7990 {
7991 /* Relocations against the special VxWorks __GOTT_BASE__ and
7992 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7993 room for them in .rela.dyn. */
7994 if (is_gott_symbol (info, h))
7995 {
7996 if (sreloc == NULL)
7997 {
7998 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7999 if (sreloc == NULL)
8000 return FALSE;
8001 }
8002 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8003 if (MIPS_ELF_READONLY_SECTION (sec))
8004 /* We tell the dynamic linker that there are
8005 relocations against the text segment. */
8006 info->flags |= DF_TEXTREL;
8007 }
8008 }
8009 else if (call_lo16_reloc_p (r_type)
8010 || got_lo16_reloc_p (r_type)
8011 || got_disp_reloc_p (r_type)
8012 || (got16_reloc_p (r_type) && htab->is_vxworks))
8013 {
8014 /* We may need a local GOT entry for this relocation. We
8015 don't count R_MIPS_GOT_PAGE because we can estimate the
8016 maximum number of pages needed by looking at the size of
8017 the segment. Similar comments apply to R_MIPS*_GOT16 and
8018 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8019 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8020 R_MIPS_CALL_HI16 because these are always followed by an
8021 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8022 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8023 rel->r_addend, info, 0))
8024 return FALSE;
8025 }
8026
8027 if (h != NULL
8028 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8029 ELF_ST_IS_MIPS16 (h->other)))
8030 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8031
8032 switch (r_type)
8033 {
8034 case R_MIPS_CALL16:
8035 case R_MIPS16_CALL16:
8036 case R_MICROMIPS_CALL16:
8037 if (h == NULL)
8038 {
8039 (*_bfd_error_handler)
8040 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8041 abfd, (unsigned long) rel->r_offset);
8042 bfd_set_error (bfd_error_bad_value);
8043 return FALSE;
8044 }
8045 /* Fall through. */
8046
8047 case R_MIPS_CALL_HI16:
8048 case R_MIPS_CALL_LO16:
8049 case R_MICROMIPS_CALL_HI16:
8050 case R_MICROMIPS_CALL_LO16:
8051 if (h != NULL)
8052 {
8053 /* Make sure there is room in the regular GOT to hold the
8054 function's address. We may eliminate it in favour of
8055 a .got.plt entry later; see mips_elf_count_got_symbols. */
8056 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8057 return FALSE;
8058
8059 /* We need a stub, not a plt entry for the undefined
8060 function. But we record it as if it needs plt. See
8061 _bfd_elf_adjust_dynamic_symbol. */
8062 h->needs_plt = 1;
8063 h->type = STT_FUNC;
8064 }
8065 break;
8066
8067 case R_MIPS_GOT_PAGE:
8068 case R_MICROMIPS_GOT_PAGE:
8069 /* If this is a global, overridable symbol, GOT_PAGE will
8070 decay to GOT_DISP, so we'll need a GOT entry for it. */
8071 if (h)
8072 {
8073 struct mips_elf_link_hash_entry *hmips =
8074 (struct mips_elf_link_hash_entry *) h;
8075
8076 /* This symbol is definitely not overridable. */
8077 if (hmips->root.def_regular
8078 && ! (info->shared && ! info->symbolic
8079 && ! hmips->root.forced_local))
8080 h = NULL;
8081 }
8082 /* Fall through. */
8083
8084 case R_MIPS16_GOT16:
8085 case R_MIPS_GOT16:
8086 case R_MIPS_GOT_HI16:
8087 case R_MIPS_GOT_LO16:
8088 case R_MICROMIPS_GOT16:
8089 case R_MICROMIPS_GOT_HI16:
8090 case R_MICROMIPS_GOT_LO16:
8091 if (!h || got_page_reloc_p (r_type))
8092 {
8093 /* This relocation needs (or may need, if h != NULL) a
8094 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8095 know for sure until we know whether the symbol is
8096 preemptible. */
8097 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8098 {
8099 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8100 return FALSE;
8101 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8102 addend = mips_elf_read_rel_addend (abfd, rel,
8103 howto, contents);
8104 if (got16_reloc_p (r_type))
8105 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8106 contents, &addend);
8107 else
8108 addend <<= howto->rightshift;
8109 }
8110 else
8111 addend = rel->r_addend;
8112 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8113 addend))
8114 return FALSE;
8115 }
8116 /* Fall through. */
8117
8118 case R_MIPS_GOT_DISP:
8119 case R_MICROMIPS_GOT_DISP:
8120 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8121 FALSE, 0))
8122 return FALSE;
8123 break;
8124
8125 case R_MIPS_TLS_GOTTPREL:
8126 case R_MIPS16_TLS_GOTTPREL:
8127 case R_MICROMIPS_TLS_GOTTPREL:
8128 if (info->shared)
8129 info->flags |= DF_STATIC_TLS;
8130 /* Fall through */
8131
8132 case R_MIPS_TLS_LDM:
8133 case R_MIPS16_TLS_LDM:
8134 case R_MICROMIPS_TLS_LDM:
8135 if (tls_ldm_reloc_p (r_type))
8136 {
8137 r_symndx = STN_UNDEF;
8138 h = NULL;
8139 }
8140 /* Fall through */
8141
8142 case R_MIPS_TLS_GD:
8143 case R_MIPS16_TLS_GD:
8144 case R_MICROMIPS_TLS_GD:
8145 /* This symbol requires a global offset table entry, or two
8146 for TLS GD relocations. */
8147 {
8148 unsigned char flag;
8149
8150 flag = (tls_gd_reloc_p (r_type)
8151 ? GOT_TLS_GD
8152 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8153 if (h != NULL)
8154 {
8155 struct mips_elf_link_hash_entry *hmips =
8156 (struct mips_elf_link_hash_entry *) h;
8157 hmips->tls_type |= flag;
8158
8159 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8160 FALSE, flag))
8161 return FALSE;
8162 }
8163 else
8164 {
8165 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8166
8167 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8168 rel->r_addend,
8169 info, flag))
8170 return FALSE;
8171 }
8172 }
8173 break;
8174
8175 case R_MIPS_32:
8176 case R_MIPS_REL32:
8177 case R_MIPS_64:
8178 /* In VxWorks executables, references to external symbols
8179 are handled using copy relocs or PLT stubs, so there's
8180 no need to add a .rela.dyn entry for this relocation. */
8181 if (can_make_dynamic_p)
8182 {
8183 if (sreloc == NULL)
8184 {
8185 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8186 if (sreloc == NULL)
8187 return FALSE;
8188 }
8189 if (info->shared && h == NULL)
8190 {
8191 /* When creating a shared object, we must copy these
8192 reloc types into the output file as R_MIPS_REL32
8193 relocs. Make room for this reloc in .rel(a).dyn. */
8194 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8195 if (MIPS_ELF_READONLY_SECTION (sec))
8196 /* We tell the dynamic linker that there are
8197 relocations against the text segment. */
8198 info->flags |= DF_TEXTREL;
8199 }
8200 else
8201 {
8202 struct mips_elf_link_hash_entry *hmips;
8203
8204 /* For a shared object, we must copy this relocation
8205 unless the symbol turns out to be undefined and
8206 weak with non-default visibility, in which case
8207 it will be left as zero.
8208
8209 We could elide R_MIPS_REL32 for locally binding symbols
8210 in shared libraries, but do not yet do so.
8211
8212 For an executable, we only need to copy this
8213 reloc if the symbol is defined in a dynamic
8214 object. */
8215 hmips = (struct mips_elf_link_hash_entry *) h;
8216 ++hmips->possibly_dynamic_relocs;
8217 if (MIPS_ELF_READONLY_SECTION (sec))
8218 /* We need it to tell the dynamic linker if there
8219 are relocations against the text segment. */
8220 hmips->readonly_reloc = TRUE;
8221 }
8222 }
8223
8224 if (SGI_COMPAT (abfd))
8225 mips_elf_hash_table (info)->compact_rel_size +=
8226 sizeof (Elf32_External_crinfo);
8227 break;
8228
8229 case R_MIPS_26:
8230 case R_MIPS_GPREL16:
8231 case R_MIPS_LITERAL:
8232 case R_MIPS_GPREL32:
8233 case R_MICROMIPS_26_S1:
8234 case R_MICROMIPS_GPREL16:
8235 case R_MICROMIPS_LITERAL:
8236 case R_MICROMIPS_GPREL7_S2:
8237 if (SGI_COMPAT (abfd))
8238 mips_elf_hash_table (info)->compact_rel_size +=
8239 sizeof (Elf32_External_crinfo);
8240 break;
8241
8242 /* This relocation describes the C++ object vtable hierarchy.
8243 Reconstruct it for later use during GC. */
8244 case R_MIPS_GNU_VTINHERIT:
8245 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8246 return FALSE;
8247 break;
8248
8249 /* This relocation describes which C++ vtable entries are actually
8250 used. Record for later use during GC. */
8251 case R_MIPS_GNU_VTENTRY:
8252 BFD_ASSERT (h != NULL);
8253 if (h != NULL
8254 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8255 return FALSE;
8256 break;
8257
8258 default:
8259 break;
8260 }
8261
8262 /* We must not create a stub for a symbol that has relocations
8263 related to taking the function's address. This doesn't apply to
8264 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8265 a normal .got entry. */
8266 if (!htab->is_vxworks && h != NULL)
8267 switch (r_type)
8268 {
8269 default:
8270 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8271 break;
8272 case R_MIPS16_CALL16:
8273 case R_MIPS_CALL16:
8274 case R_MIPS_CALL_HI16:
8275 case R_MIPS_CALL_LO16:
8276 case R_MIPS_JALR:
8277 case R_MICROMIPS_CALL16:
8278 case R_MICROMIPS_CALL_HI16:
8279 case R_MICROMIPS_CALL_LO16:
8280 case R_MICROMIPS_JALR:
8281 break;
8282 }
8283
8284 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8285 if there is one. We only need to handle global symbols here;
8286 we decide whether to keep or delete stubs for local symbols
8287 when processing the stub's relocations. */
8288 if (h != NULL
8289 && !mips16_call_reloc_p (r_type)
8290 && !section_allows_mips16_refs_p (sec))
8291 {
8292 struct mips_elf_link_hash_entry *mh;
8293
8294 mh = (struct mips_elf_link_hash_entry *) h;
8295 mh->need_fn_stub = TRUE;
8296 }
8297
8298 /* Refuse some position-dependent relocations when creating a
8299 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8300 not PIC, but we can create dynamic relocations and the result
8301 will be fine. Also do not refuse R_MIPS_LO16, which can be
8302 combined with R_MIPS_GOT16. */
8303 if (info->shared)
8304 {
8305 switch (r_type)
8306 {
8307 case R_MIPS16_HI16:
8308 case R_MIPS_HI16:
8309 case R_MIPS_HIGHER:
8310 case R_MIPS_HIGHEST:
8311 case R_MICROMIPS_HI16:
8312 case R_MICROMIPS_HIGHER:
8313 case R_MICROMIPS_HIGHEST:
8314 /* Don't refuse a high part relocation if it's against
8315 no symbol (e.g. part of a compound relocation). */
8316 if (r_symndx == STN_UNDEF)
8317 break;
8318
8319 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8320 and has a special meaning. */
8321 if (!NEWABI_P (abfd) && h != NULL
8322 && strcmp (h->root.root.string, "_gp_disp") == 0)
8323 break;
8324
8325 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8326 if (is_gott_symbol (info, h))
8327 break;
8328
8329 /* FALLTHROUGH */
8330
8331 case R_MIPS16_26:
8332 case R_MIPS_26:
8333 case R_MICROMIPS_26_S1:
8334 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8335 (*_bfd_error_handler)
8336 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8337 abfd, howto->name,
8338 (h) ? h->root.root.string : "a local symbol");
8339 bfd_set_error (bfd_error_bad_value);
8340 return FALSE;
8341 default:
8342 break;
8343 }
8344 }
8345 }
8346
8347 return TRUE;
8348 }
8349 \f
8350 bfd_boolean
8351 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8352 struct bfd_link_info *link_info,
8353 bfd_boolean *again)
8354 {
8355 Elf_Internal_Rela *internal_relocs;
8356 Elf_Internal_Rela *irel, *irelend;
8357 Elf_Internal_Shdr *symtab_hdr;
8358 bfd_byte *contents = NULL;
8359 size_t extsymoff;
8360 bfd_boolean changed_contents = FALSE;
8361 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8362 Elf_Internal_Sym *isymbuf = NULL;
8363
8364 /* We are not currently changing any sizes, so only one pass. */
8365 *again = FALSE;
8366
8367 if (link_info->relocatable)
8368 return TRUE;
8369
8370 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8371 link_info->keep_memory);
8372 if (internal_relocs == NULL)
8373 return TRUE;
8374
8375 irelend = internal_relocs + sec->reloc_count
8376 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8377 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8378 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8379
8380 for (irel = internal_relocs; irel < irelend; irel++)
8381 {
8382 bfd_vma symval;
8383 bfd_signed_vma sym_offset;
8384 unsigned int r_type;
8385 unsigned long r_symndx;
8386 asection *sym_sec;
8387 unsigned long instruction;
8388
8389 /* Turn jalr into bgezal, and jr into beq, if they're marked
8390 with a JALR relocation, that indicate where they jump to.
8391 This saves some pipeline bubbles. */
8392 r_type = ELF_R_TYPE (abfd, irel->r_info);
8393 if (r_type != R_MIPS_JALR)
8394 continue;
8395
8396 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8397 /* Compute the address of the jump target. */
8398 if (r_symndx >= extsymoff)
8399 {
8400 struct mips_elf_link_hash_entry *h
8401 = ((struct mips_elf_link_hash_entry *)
8402 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8403
8404 while (h->root.root.type == bfd_link_hash_indirect
8405 || h->root.root.type == bfd_link_hash_warning)
8406 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8407
8408 /* If a symbol is undefined, or if it may be overridden,
8409 skip it. */
8410 if (! ((h->root.root.type == bfd_link_hash_defined
8411 || h->root.root.type == bfd_link_hash_defweak)
8412 && h->root.root.u.def.section)
8413 || (link_info->shared && ! link_info->symbolic
8414 && !h->root.forced_local))
8415 continue;
8416
8417 sym_sec = h->root.root.u.def.section;
8418 if (sym_sec->output_section)
8419 symval = (h->root.root.u.def.value
8420 + sym_sec->output_section->vma
8421 + sym_sec->output_offset);
8422 else
8423 symval = h->root.root.u.def.value;
8424 }
8425 else
8426 {
8427 Elf_Internal_Sym *isym;
8428
8429 /* Read this BFD's symbols if we haven't done so already. */
8430 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8431 {
8432 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8433 if (isymbuf == NULL)
8434 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8435 symtab_hdr->sh_info, 0,
8436 NULL, NULL, NULL);
8437 if (isymbuf == NULL)
8438 goto relax_return;
8439 }
8440
8441 isym = isymbuf + r_symndx;
8442 if (isym->st_shndx == SHN_UNDEF)
8443 continue;
8444 else if (isym->st_shndx == SHN_ABS)
8445 sym_sec = bfd_abs_section_ptr;
8446 else if (isym->st_shndx == SHN_COMMON)
8447 sym_sec = bfd_com_section_ptr;
8448 else
8449 sym_sec
8450 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8451 symval = isym->st_value
8452 + sym_sec->output_section->vma
8453 + sym_sec->output_offset;
8454 }
8455
8456 /* Compute branch offset, from delay slot of the jump to the
8457 branch target. */
8458 sym_offset = (symval + irel->r_addend)
8459 - (sec_start + irel->r_offset + 4);
8460
8461 /* Branch offset must be properly aligned. */
8462 if ((sym_offset & 3) != 0)
8463 continue;
8464
8465 sym_offset >>= 2;
8466
8467 /* Check that it's in range. */
8468 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8469 continue;
8470
8471 /* Get the section contents if we haven't done so already. */
8472 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8473 goto relax_return;
8474
8475 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8476
8477 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8478 if ((instruction & 0xfc1fffff) == 0x0000f809)
8479 instruction = 0x04110000;
8480 /* If it was jr <reg>, turn it into b <target>. */
8481 else if ((instruction & 0xfc1fffff) == 0x00000008)
8482 instruction = 0x10000000;
8483 else
8484 continue;
8485
8486 instruction |= (sym_offset & 0xffff);
8487 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8488 changed_contents = TRUE;
8489 }
8490
8491 if (contents != NULL
8492 && elf_section_data (sec)->this_hdr.contents != contents)
8493 {
8494 if (!changed_contents && !link_info->keep_memory)
8495 free (contents);
8496 else
8497 {
8498 /* Cache the section contents for elf_link_input_bfd. */
8499 elf_section_data (sec)->this_hdr.contents = contents;
8500 }
8501 }
8502 return TRUE;
8503
8504 relax_return:
8505 if (contents != NULL
8506 && elf_section_data (sec)->this_hdr.contents != contents)
8507 free (contents);
8508 return FALSE;
8509 }
8510 \f
8511 /* Allocate space for global sym dynamic relocs. */
8512
8513 static bfd_boolean
8514 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8515 {
8516 struct bfd_link_info *info = inf;
8517 bfd *dynobj;
8518 struct mips_elf_link_hash_entry *hmips;
8519 struct mips_elf_link_hash_table *htab;
8520
8521 htab = mips_elf_hash_table (info);
8522 BFD_ASSERT (htab != NULL);
8523
8524 dynobj = elf_hash_table (info)->dynobj;
8525 hmips = (struct mips_elf_link_hash_entry *) h;
8526
8527 /* VxWorks executables are handled elsewhere; we only need to
8528 allocate relocations in shared objects. */
8529 if (htab->is_vxworks && !info->shared)
8530 return TRUE;
8531
8532 /* Ignore indirect symbols. All relocations against such symbols
8533 will be redirected to the target symbol. */
8534 if (h->root.type == bfd_link_hash_indirect)
8535 return TRUE;
8536
8537 /* If this symbol is defined in a dynamic object, or we are creating
8538 a shared library, we will need to copy any R_MIPS_32 or
8539 R_MIPS_REL32 relocs against it into the output file. */
8540 if (! info->relocatable
8541 && hmips->possibly_dynamic_relocs != 0
8542 && (h->root.type == bfd_link_hash_defweak
8543 || !h->def_regular
8544 || info->shared))
8545 {
8546 bfd_boolean do_copy = TRUE;
8547
8548 if (h->root.type == bfd_link_hash_undefweak)
8549 {
8550 /* Do not copy relocations for undefined weak symbols with
8551 non-default visibility. */
8552 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8553 do_copy = FALSE;
8554
8555 /* Make sure undefined weak symbols are output as a dynamic
8556 symbol in PIEs. */
8557 else if (h->dynindx == -1 && !h->forced_local)
8558 {
8559 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8560 return FALSE;
8561 }
8562 }
8563
8564 if (do_copy)
8565 {
8566 /* Even though we don't directly need a GOT entry for this symbol,
8567 the SVR4 psABI requires it to have a dynamic symbol table
8568 index greater that DT_MIPS_GOTSYM if there are dynamic
8569 relocations against it.
8570
8571 VxWorks does not enforce the same mapping between the GOT
8572 and the symbol table, so the same requirement does not
8573 apply there. */
8574 if (!htab->is_vxworks)
8575 {
8576 if (hmips->global_got_area > GGA_RELOC_ONLY)
8577 hmips->global_got_area = GGA_RELOC_ONLY;
8578 hmips->got_only_for_calls = FALSE;
8579 }
8580
8581 mips_elf_allocate_dynamic_relocations
8582 (dynobj, info, hmips->possibly_dynamic_relocs);
8583 if (hmips->readonly_reloc)
8584 /* We tell the dynamic linker that there are relocations
8585 against the text segment. */
8586 info->flags |= DF_TEXTREL;
8587 }
8588 }
8589
8590 return TRUE;
8591 }
8592
8593 /* Adjust a symbol defined by a dynamic object and referenced by a
8594 regular object. The current definition is in some section of the
8595 dynamic object, but we're not including those sections. We have to
8596 change the definition to something the rest of the link can
8597 understand. */
8598
8599 bfd_boolean
8600 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8601 struct elf_link_hash_entry *h)
8602 {
8603 bfd *dynobj;
8604 struct mips_elf_link_hash_entry *hmips;
8605 struct mips_elf_link_hash_table *htab;
8606
8607 htab = mips_elf_hash_table (info);
8608 BFD_ASSERT (htab != NULL);
8609
8610 dynobj = elf_hash_table (info)->dynobj;
8611 hmips = (struct mips_elf_link_hash_entry *) h;
8612
8613 /* Make sure we know what is going on here. */
8614 BFD_ASSERT (dynobj != NULL
8615 && (h->needs_plt
8616 || h->u.weakdef != NULL
8617 || (h->def_dynamic
8618 && h->ref_regular
8619 && !h->def_regular)));
8620
8621 hmips = (struct mips_elf_link_hash_entry *) h;
8622
8623 /* If there are call relocations against an externally-defined symbol,
8624 see whether we can create a MIPS lazy-binding stub for it. We can
8625 only do this if all references to the function are through call
8626 relocations, and in that case, the traditional lazy-binding stubs
8627 are much more efficient than PLT entries.
8628
8629 Traditional stubs are only available on SVR4 psABI-based systems;
8630 VxWorks always uses PLTs instead. */
8631 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8632 {
8633 if (! elf_hash_table (info)->dynamic_sections_created)
8634 return TRUE;
8635
8636 /* If this symbol is not defined in a regular file, then set
8637 the symbol to the stub location. This is required to make
8638 function pointers compare as equal between the normal
8639 executable and the shared library. */
8640 if (!h->def_regular)
8641 {
8642 hmips->needs_lazy_stub = TRUE;
8643 htab->lazy_stub_count++;
8644 return TRUE;
8645 }
8646 }
8647 /* As above, VxWorks requires PLT entries for externally-defined
8648 functions that are only accessed through call relocations.
8649
8650 Both VxWorks and non-VxWorks targets also need PLT entries if there
8651 are static-only relocations against an externally-defined function.
8652 This can technically occur for shared libraries if there are
8653 branches to the symbol, although it is unlikely that this will be
8654 used in practice due to the short ranges involved. It can occur
8655 for any relative or absolute relocation in executables; in that
8656 case, the PLT entry becomes the function's canonical address. */
8657 else if (((h->needs_plt && !hmips->no_fn_stub)
8658 || (h->type == STT_FUNC && hmips->has_static_relocs))
8659 && htab->use_plts_and_copy_relocs
8660 && !SYMBOL_CALLS_LOCAL (info, h)
8661 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8662 && h->root.type == bfd_link_hash_undefweak))
8663 {
8664 /* If this is the first symbol to need a PLT entry, allocate room
8665 for the header. */
8666 if (htab->splt->size == 0)
8667 {
8668 BFD_ASSERT (htab->sgotplt->size == 0);
8669
8670 /* If we're using the PLT additions to the psABI, each PLT
8671 entry is 16 bytes and the PLT0 entry is 32 bytes.
8672 Encourage better cache usage by aligning. We do this
8673 lazily to avoid pessimizing traditional objects. */
8674 if (!htab->is_vxworks
8675 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8676 return FALSE;
8677
8678 /* Make sure that .got.plt is word-aligned. We do this lazily
8679 for the same reason as above. */
8680 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8681 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8682 return FALSE;
8683
8684 htab->splt->size += htab->plt_header_size;
8685
8686 /* On non-VxWorks targets, the first two entries in .got.plt
8687 are reserved. */
8688 if (!htab->is_vxworks)
8689 htab->sgotplt->size
8690 += get_elf_backend_data (dynobj)->got_header_size;
8691
8692 /* On VxWorks, also allocate room for the header's
8693 .rela.plt.unloaded entries. */
8694 if (htab->is_vxworks && !info->shared)
8695 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8696 }
8697
8698 /* Assign the next .plt entry to this symbol. */
8699 h->plt.offset = htab->splt->size;
8700 htab->splt->size += htab->plt_entry_size;
8701
8702 /* If the output file has no definition of the symbol, set the
8703 symbol's value to the address of the stub. */
8704 if (!info->shared && !h->def_regular)
8705 {
8706 h->root.u.def.section = htab->splt;
8707 h->root.u.def.value = h->plt.offset;
8708 /* For VxWorks, point at the PLT load stub rather than the
8709 lazy resolution stub; this stub will become the canonical
8710 function address. */
8711 if (htab->is_vxworks)
8712 h->root.u.def.value += 8;
8713 }
8714
8715 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8716 relocation. */
8717 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8718 htab->srelplt->size += (htab->is_vxworks
8719 ? MIPS_ELF_RELA_SIZE (dynobj)
8720 : MIPS_ELF_REL_SIZE (dynobj));
8721
8722 /* Make room for the .rela.plt.unloaded relocations. */
8723 if (htab->is_vxworks && !info->shared)
8724 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8725
8726 /* All relocations against this symbol that could have been made
8727 dynamic will now refer to the PLT entry instead. */
8728 hmips->possibly_dynamic_relocs = 0;
8729
8730 return TRUE;
8731 }
8732
8733 /* If this is a weak symbol, and there is a real definition, the
8734 processor independent code will have arranged for us to see the
8735 real definition first, and we can just use the same value. */
8736 if (h->u.weakdef != NULL)
8737 {
8738 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8739 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8740 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8741 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8742 return TRUE;
8743 }
8744
8745 /* Otherwise, there is nothing further to do for symbols defined
8746 in regular objects. */
8747 if (h->def_regular)
8748 return TRUE;
8749
8750 /* There's also nothing more to do if we'll convert all relocations
8751 against this symbol into dynamic relocations. */
8752 if (!hmips->has_static_relocs)
8753 return TRUE;
8754
8755 /* We're now relying on copy relocations. Complain if we have
8756 some that we can't convert. */
8757 if (!htab->use_plts_and_copy_relocs || info->shared)
8758 {
8759 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8760 "dynamic symbol %s"),
8761 h->root.root.string);
8762 bfd_set_error (bfd_error_bad_value);
8763 return FALSE;
8764 }
8765
8766 /* We must allocate the symbol in our .dynbss section, which will
8767 become part of the .bss section of the executable. There will be
8768 an entry for this symbol in the .dynsym section. The dynamic
8769 object will contain position independent code, so all references
8770 from the dynamic object to this symbol will go through the global
8771 offset table. The dynamic linker will use the .dynsym entry to
8772 determine the address it must put in the global offset table, so
8773 both the dynamic object and the regular object will refer to the
8774 same memory location for the variable. */
8775
8776 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8777 {
8778 if (htab->is_vxworks)
8779 htab->srelbss->size += sizeof (Elf32_External_Rela);
8780 else
8781 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8782 h->needs_copy = 1;
8783 }
8784
8785 /* All relocations against this symbol that could have been made
8786 dynamic will now refer to the local copy instead. */
8787 hmips->possibly_dynamic_relocs = 0;
8788
8789 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8790 }
8791 \f
8792 /* This function is called after all the input files have been read,
8793 and the input sections have been assigned to output sections. We
8794 check for any mips16 stub sections that we can discard. */
8795
8796 bfd_boolean
8797 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8798 struct bfd_link_info *info)
8799 {
8800 asection *ri;
8801 struct mips_elf_link_hash_table *htab;
8802 struct mips_htab_traverse_info hti;
8803
8804 htab = mips_elf_hash_table (info);
8805 BFD_ASSERT (htab != NULL);
8806
8807 /* The .reginfo section has a fixed size. */
8808 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8809 if (ri != NULL)
8810 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8811
8812 hti.info = info;
8813 hti.output_bfd = output_bfd;
8814 hti.error = FALSE;
8815 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8816 mips_elf_check_symbols, &hti);
8817 if (hti.error)
8818 return FALSE;
8819
8820 return TRUE;
8821 }
8822
8823 /* If the link uses a GOT, lay it out and work out its size. */
8824
8825 static bfd_boolean
8826 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8827 {
8828 bfd *dynobj;
8829 asection *s;
8830 struct mips_got_info *g;
8831 bfd_size_type loadable_size = 0;
8832 bfd_size_type page_gotno;
8833 bfd *sub;
8834 struct mips_elf_count_tls_arg count_tls_arg;
8835 struct mips_elf_link_hash_table *htab;
8836
8837 htab = mips_elf_hash_table (info);
8838 BFD_ASSERT (htab != NULL);
8839
8840 s = htab->sgot;
8841 if (s == NULL)
8842 return TRUE;
8843
8844 dynobj = elf_hash_table (info)->dynobj;
8845 g = htab->got_info;
8846
8847 /* Allocate room for the reserved entries. VxWorks always reserves
8848 3 entries; other objects only reserve 2 entries. */
8849 BFD_ASSERT (g->assigned_gotno == 0);
8850 if (htab->is_vxworks)
8851 htab->reserved_gotno = 3;
8852 else
8853 htab->reserved_gotno = 2;
8854 g->local_gotno += htab->reserved_gotno;
8855 g->assigned_gotno = htab->reserved_gotno;
8856
8857 /* Replace entries for indirect and warning symbols with entries for
8858 the target symbol. */
8859 if (!mips_elf_resolve_final_got_entries (g))
8860 return FALSE;
8861
8862 /* Count the number of GOT symbols. */
8863 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8864
8865 /* Calculate the total loadable size of the output. That
8866 will give us the maximum number of GOT_PAGE entries
8867 required. */
8868 for (sub = info->input_bfds; sub; sub = sub->link_next)
8869 {
8870 asection *subsection;
8871
8872 for (subsection = sub->sections;
8873 subsection;
8874 subsection = subsection->next)
8875 {
8876 if ((subsection->flags & SEC_ALLOC) == 0)
8877 continue;
8878 loadable_size += ((subsection->size + 0xf)
8879 &~ (bfd_size_type) 0xf);
8880 }
8881 }
8882
8883 if (htab->is_vxworks)
8884 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8885 relocations against local symbols evaluate to "G", and the EABI does
8886 not include R_MIPS_GOT_PAGE. */
8887 page_gotno = 0;
8888 else
8889 /* Assume there are two loadable segments consisting of contiguous
8890 sections. Is 5 enough? */
8891 page_gotno = (loadable_size >> 16) + 5;
8892
8893 /* Choose the smaller of the two estimates; both are intended to be
8894 conservative. */
8895 if (page_gotno > g->page_gotno)
8896 page_gotno = g->page_gotno;
8897
8898 g->local_gotno += page_gotno;
8899 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8900 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8901
8902 /* We need to calculate tls_gotno for global symbols at this point
8903 instead of building it up earlier, to avoid doublecounting
8904 entries for one global symbol from multiple input files. */
8905 count_tls_arg.info = info;
8906 count_tls_arg.needed = 0;
8907 elf_link_hash_traverse (elf_hash_table (info),
8908 mips_elf_count_global_tls_entries,
8909 &count_tls_arg);
8910 g->tls_gotno += count_tls_arg.needed;
8911 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8912
8913 /* VxWorks does not support multiple GOTs. It initializes $gp to
8914 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8915 dynamic loader. */
8916 if (htab->is_vxworks)
8917 {
8918 /* VxWorks executables do not need a GOT. */
8919 if (info->shared)
8920 {
8921 /* Each VxWorks GOT entry needs an explicit relocation. */
8922 unsigned int count;
8923
8924 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8925 if (count)
8926 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8927 }
8928 }
8929 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8930 {
8931 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8932 return FALSE;
8933 }
8934 else
8935 {
8936 struct mips_elf_count_tls_arg arg;
8937
8938 /* Set up TLS entries. */
8939 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8940 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8941
8942 /* Allocate room for the TLS relocations. */
8943 arg.info = info;
8944 arg.needed = 0;
8945 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8946 elf_link_hash_traverse (elf_hash_table (info),
8947 mips_elf_count_global_tls_relocs,
8948 &arg);
8949 if (arg.needed)
8950 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8951 }
8952
8953 return TRUE;
8954 }
8955
8956 /* Estimate the size of the .MIPS.stubs section. */
8957
8958 static void
8959 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8960 {
8961 struct mips_elf_link_hash_table *htab;
8962 bfd_size_type dynsymcount;
8963
8964 htab = mips_elf_hash_table (info);
8965 BFD_ASSERT (htab != NULL);
8966
8967 if (htab->lazy_stub_count == 0)
8968 return;
8969
8970 /* IRIX rld assumes that a function stub isn't at the end of the .text
8971 section, so add a dummy entry to the end. */
8972 htab->lazy_stub_count++;
8973
8974 /* Get a worst-case estimate of the number of dynamic symbols needed.
8975 At this point, dynsymcount does not account for section symbols
8976 and count_section_dynsyms may overestimate the number that will
8977 be needed. */
8978 dynsymcount = (elf_hash_table (info)->dynsymcount
8979 + count_section_dynsyms (output_bfd, info));
8980
8981 /* Determine the size of one stub entry. */
8982 htab->function_stub_size = (dynsymcount > 0x10000
8983 ? MIPS_FUNCTION_STUB_BIG_SIZE
8984 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8985
8986 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8987 }
8988
8989 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8990 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8991 allocate an entry in the stubs section. */
8992
8993 static bfd_boolean
8994 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8995 {
8996 struct mips_elf_link_hash_table *htab;
8997
8998 htab = (struct mips_elf_link_hash_table *) data;
8999 if (h->needs_lazy_stub)
9000 {
9001 h->root.root.u.def.section = htab->sstubs;
9002 h->root.root.u.def.value = htab->sstubs->size;
9003 h->root.plt.offset = htab->sstubs->size;
9004 htab->sstubs->size += htab->function_stub_size;
9005 }
9006 return TRUE;
9007 }
9008
9009 /* Allocate offsets in the stubs section to each symbol that needs one.
9010 Set the final size of the .MIPS.stub section. */
9011
9012 static void
9013 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9014 {
9015 struct mips_elf_link_hash_table *htab;
9016
9017 htab = mips_elf_hash_table (info);
9018 BFD_ASSERT (htab != NULL);
9019
9020 if (htab->lazy_stub_count == 0)
9021 return;
9022
9023 htab->sstubs->size = 0;
9024 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9025 htab->sstubs->size += htab->function_stub_size;
9026 BFD_ASSERT (htab->sstubs->size
9027 == htab->lazy_stub_count * htab->function_stub_size);
9028 }
9029
9030 /* Set the sizes of the dynamic sections. */
9031
9032 bfd_boolean
9033 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9034 struct bfd_link_info *info)
9035 {
9036 bfd *dynobj;
9037 asection *s, *sreldyn;
9038 bfd_boolean reltext;
9039 struct mips_elf_link_hash_table *htab;
9040
9041 htab = mips_elf_hash_table (info);
9042 BFD_ASSERT (htab != NULL);
9043 dynobj = elf_hash_table (info)->dynobj;
9044 BFD_ASSERT (dynobj != NULL);
9045
9046 if (elf_hash_table (info)->dynamic_sections_created)
9047 {
9048 /* Set the contents of the .interp section to the interpreter. */
9049 if (info->executable)
9050 {
9051 s = bfd_get_linker_section (dynobj, ".interp");
9052 BFD_ASSERT (s != NULL);
9053 s->size
9054 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9055 s->contents
9056 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9057 }
9058
9059 /* Create a symbol for the PLT, if we know that we are using it. */
9060 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9061 {
9062 struct elf_link_hash_entry *h;
9063
9064 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9065
9066 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9067 "_PROCEDURE_LINKAGE_TABLE_");
9068 htab->root.hplt = h;
9069 if (h == NULL)
9070 return FALSE;
9071 h->type = STT_FUNC;
9072 }
9073 }
9074
9075 /* Allocate space for global sym dynamic relocs. */
9076 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9077
9078 mips_elf_estimate_stub_size (output_bfd, info);
9079
9080 if (!mips_elf_lay_out_got (output_bfd, info))
9081 return FALSE;
9082
9083 mips_elf_lay_out_lazy_stubs (info);
9084
9085 /* The check_relocs and adjust_dynamic_symbol entry points have
9086 determined the sizes of the various dynamic sections. Allocate
9087 memory for them. */
9088 reltext = FALSE;
9089 for (s = dynobj->sections; s != NULL; s = s->next)
9090 {
9091 const char *name;
9092
9093 /* It's OK to base decisions on the section name, because none
9094 of the dynobj section names depend upon the input files. */
9095 name = bfd_get_section_name (dynobj, s);
9096
9097 if ((s->flags & SEC_LINKER_CREATED) == 0)
9098 continue;
9099
9100 if (CONST_STRNEQ (name, ".rel"))
9101 {
9102 if (s->size != 0)
9103 {
9104 const char *outname;
9105 asection *target;
9106
9107 /* If this relocation section applies to a read only
9108 section, then we probably need a DT_TEXTREL entry.
9109 If the relocation section is .rel(a).dyn, we always
9110 assert a DT_TEXTREL entry rather than testing whether
9111 there exists a relocation to a read only section or
9112 not. */
9113 outname = bfd_get_section_name (output_bfd,
9114 s->output_section);
9115 target = bfd_get_section_by_name (output_bfd, outname + 4);
9116 if ((target != NULL
9117 && (target->flags & SEC_READONLY) != 0
9118 && (target->flags & SEC_ALLOC) != 0)
9119 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9120 reltext = TRUE;
9121
9122 /* We use the reloc_count field as a counter if we need
9123 to copy relocs into the output file. */
9124 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9125 s->reloc_count = 0;
9126
9127 /* If combreloc is enabled, elf_link_sort_relocs() will
9128 sort relocations, but in a different way than we do,
9129 and before we're done creating relocations. Also, it
9130 will move them around between input sections'
9131 relocation's contents, so our sorting would be
9132 broken, so don't let it run. */
9133 info->combreloc = 0;
9134 }
9135 }
9136 else if (! info->shared
9137 && ! mips_elf_hash_table (info)->use_rld_obj_head
9138 && CONST_STRNEQ (name, ".rld_map"))
9139 {
9140 /* We add a room for __rld_map. It will be filled in by the
9141 rtld to contain a pointer to the _r_debug structure. */
9142 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9143 }
9144 else if (SGI_COMPAT (output_bfd)
9145 && CONST_STRNEQ (name, ".compact_rel"))
9146 s->size += mips_elf_hash_table (info)->compact_rel_size;
9147 else if (s == htab->splt)
9148 {
9149 /* If the last PLT entry has a branch delay slot, allocate
9150 room for an extra nop to fill the delay slot. This is
9151 for CPUs without load interlocking. */
9152 if (! LOAD_INTERLOCKS_P (output_bfd)
9153 && ! htab->is_vxworks && s->size > 0)
9154 s->size += 4;
9155 }
9156 else if (! CONST_STRNEQ (name, ".init")
9157 && s != htab->sgot
9158 && s != htab->sgotplt
9159 && s != htab->sstubs
9160 && s != htab->sdynbss)
9161 {
9162 /* It's not one of our sections, so don't allocate space. */
9163 continue;
9164 }
9165
9166 if (s->size == 0)
9167 {
9168 s->flags |= SEC_EXCLUDE;
9169 continue;
9170 }
9171
9172 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9173 continue;
9174
9175 /* Allocate memory for the section contents. */
9176 s->contents = bfd_zalloc (dynobj, s->size);
9177 if (s->contents == NULL)
9178 {
9179 bfd_set_error (bfd_error_no_memory);
9180 return FALSE;
9181 }
9182 }
9183
9184 if (elf_hash_table (info)->dynamic_sections_created)
9185 {
9186 /* Add some entries to the .dynamic section. We fill in the
9187 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9188 must add the entries now so that we get the correct size for
9189 the .dynamic section. */
9190
9191 /* SGI object has the equivalence of DT_DEBUG in the
9192 DT_MIPS_RLD_MAP entry. This must come first because glibc
9193 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9194 may only look at the first one they see. */
9195 if (!info->shared
9196 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9197 return FALSE;
9198
9199 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9200 used by the debugger. */
9201 if (info->executable
9202 && !SGI_COMPAT (output_bfd)
9203 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9204 return FALSE;
9205
9206 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9207 info->flags |= DF_TEXTREL;
9208
9209 if ((info->flags & DF_TEXTREL) != 0)
9210 {
9211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9212 return FALSE;
9213
9214 /* Clear the DF_TEXTREL flag. It will be set again if we
9215 write out an actual text relocation; we may not, because
9216 at this point we do not know whether e.g. any .eh_frame
9217 absolute relocations have been converted to PC-relative. */
9218 info->flags &= ~DF_TEXTREL;
9219 }
9220
9221 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9222 return FALSE;
9223
9224 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9225 if (htab->is_vxworks)
9226 {
9227 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9228 use any of the DT_MIPS_* tags. */
9229 if (sreldyn && sreldyn->size > 0)
9230 {
9231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9232 return FALSE;
9233
9234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9235 return FALSE;
9236
9237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9238 return FALSE;
9239 }
9240 }
9241 else
9242 {
9243 if (sreldyn && sreldyn->size > 0)
9244 {
9245 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9246 return FALSE;
9247
9248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9249 return FALSE;
9250
9251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9252 return FALSE;
9253 }
9254
9255 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9256 return FALSE;
9257
9258 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9259 return FALSE;
9260
9261 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9262 return FALSE;
9263
9264 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9265 return FALSE;
9266
9267 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9268 return FALSE;
9269
9270 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9271 return FALSE;
9272
9273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9274 return FALSE;
9275
9276 if (IRIX_COMPAT (dynobj) == ict_irix5
9277 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9278 return FALSE;
9279
9280 if (IRIX_COMPAT (dynobj) == ict_irix6
9281 && (bfd_get_section_by_name
9282 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9283 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9284 return FALSE;
9285 }
9286 if (htab->splt->size > 0)
9287 {
9288 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9289 return FALSE;
9290
9291 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9292 return FALSE;
9293
9294 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9295 return FALSE;
9296
9297 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9298 return FALSE;
9299 }
9300 if (htab->is_vxworks
9301 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9302 return FALSE;
9303 }
9304
9305 return TRUE;
9306 }
9307 \f
9308 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9309 Adjust its R_ADDEND field so that it is correct for the output file.
9310 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9311 and sections respectively; both use symbol indexes. */
9312
9313 static void
9314 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9315 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9316 asection **local_sections, Elf_Internal_Rela *rel)
9317 {
9318 unsigned int r_type, r_symndx;
9319 Elf_Internal_Sym *sym;
9320 asection *sec;
9321
9322 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9323 {
9324 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9325 if (gprel16_reloc_p (r_type)
9326 || r_type == R_MIPS_GPREL32
9327 || literal_reloc_p (r_type))
9328 {
9329 rel->r_addend += _bfd_get_gp_value (input_bfd);
9330 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9331 }
9332
9333 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9334 sym = local_syms + r_symndx;
9335
9336 /* Adjust REL's addend to account for section merging. */
9337 if (!info->relocatable)
9338 {
9339 sec = local_sections[r_symndx];
9340 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9341 }
9342
9343 /* This would normally be done by the rela_normal code in elflink.c. */
9344 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9345 rel->r_addend += local_sections[r_symndx]->output_offset;
9346 }
9347 }
9348
9349 /* Handle relocations against symbols from removed linkonce sections,
9350 or sections discarded by a linker script. We use this wrapper around
9351 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9352 on 64-bit ELF targets. In this case for any relocation handled, which
9353 always be the first in a triplet, the remaining two have to be processed
9354 together with the first, even if they are R_MIPS_NONE. It is the symbol
9355 index referred by the first reloc that applies to all the three and the
9356 remaining two never refer to an object symbol. And it is the final
9357 relocation (the last non-null one) that determines the output field of
9358 the whole relocation so retrieve the corresponding howto structure for
9359 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9360
9361 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9362 and therefore requires to be pasted in a loop. It also defines a block
9363 and does not protect any of its arguments, hence the extra brackets. */
9364
9365 static void
9366 mips_reloc_against_discarded_section (bfd *output_bfd,
9367 struct bfd_link_info *info,
9368 bfd *input_bfd, asection *input_section,
9369 Elf_Internal_Rela **rel,
9370 const Elf_Internal_Rela **relend,
9371 bfd_boolean rel_reloc,
9372 reloc_howto_type *howto,
9373 bfd_byte *contents)
9374 {
9375 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9376 int count = bed->s->int_rels_per_ext_rel;
9377 unsigned int r_type;
9378 int i;
9379
9380 for (i = count - 1; i > 0; i--)
9381 {
9382 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9383 if (r_type != R_MIPS_NONE)
9384 {
9385 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9386 break;
9387 }
9388 }
9389 do
9390 {
9391 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9392 (*rel), count, (*relend),
9393 howto, i, contents);
9394 }
9395 while (0);
9396 }
9397
9398 /* Relocate a MIPS ELF section. */
9399
9400 bfd_boolean
9401 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9402 bfd *input_bfd, asection *input_section,
9403 bfd_byte *contents, Elf_Internal_Rela *relocs,
9404 Elf_Internal_Sym *local_syms,
9405 asection **local_sections)
9406 {
9407 Elf_Internal_Rela *rel;
9408 const Elf_Internal_Rela *relend;
9409 bfd_vma addend = 0;
9410 bfd_boolean use_saved_addend_p = FALSE;
9411 const struct elf_backend_data *bed;
9412
9413 bed = get_elf_backend_data (output_bfd);
9414 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9415 for (rel = relocs; rel < relend; ++rel)
9416 {
9417 const char *name;
9418 bfd_vma value = 0;
9419 reloc_howto_type *howto;
9420 bfd_boolean cross_mode_jump_p;
9421 /* TRUE if the relocation is a RELA relocation, rather than a
9422 REL relocation. */
9423 bfd_boolean rela_relocation_p = TRUE;
9424 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9425 const char *msg;
9426 unsigned long r_symndx;
9427 asection *sec;
9428 Elf_Internal_Shdr *symtab_hdr;
9429 struct elf_link_hash_entry *h;
9430 bfd_boolean rel_reloc;
9431
9432 rel_reloc = (NEWABI_P (input_bfd)
9433 && mips_elf_rel_relocation_p (input_bfd, input_section,
9434 relocs, rel));
9435 /* Find the relocation howto for this relocation. */
9436 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9437
9438 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9439 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9440 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9441 {
9442 sec = local_sections[r_symndx];
9443 h = NULL;
9444 }
9445 else
9446 {
9447 unsigned long extsymoff;
9448
9449 extsymoff = 0;
9450 if (!elf_bad_symtab (input_bfd))
9451 extsymoff = symtab_hdr->sh_info;
9452 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9453 while (h->root.type == bfd_link_hash_indirect
9454 || h->root.type == bfd_link_hash_warning)
9455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9456
9457 sec = NULL;
9458 if (h->root.type == bfd_link_hash_defined
9459 || h->root.type == bfd_link_hash_defweak)
9460 sec = h->root.u.def.section;
9461 }
9462
9463 if (sec != NULL && discarded_section (sec))
9464 {
9465 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9466 input_section, &rel, &relend,
9467 rel_reloc, howto, contents);
9468 continue;
9469 }
9470
9471 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9472 {
9473 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9474 64-bit code, but make sure all their addresses are in the
9475 lowermost or uppermost 32-bit section of the 64-bit address
9476 space. Thus, when they use an R_MIPS_64 they mean what is
9477 usually meant by R_MIPS_32, with the exception that the
9478 stored value is sign-extended to 64 bits. */
9479 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9480
9481 /* On big-endian systems, we need to lie about the position
9482 of the reloc. */
9483 if (bfd_big_endian (input_bfd))
9484 rel->r_offset += 4;
9485 }
9486
9487 if (!use_saved_addend_p)
9488 {
9489 /* If these relocations were originally of the REL variety,
9490 we must pull the addend out of the field that will be
9491 relocated. Otherwise, we simply use the contents of the
9492 RELA relocation. */
9493 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9494 relocs, rel))
9495 {
9496 rela_relocation_p = FALSE;
9497 addend = mips_elf_read_rel_addend (input_bfd, rel,
9498 howto, contents);
9499 if (hi16_reloc_p (r_type)
9500 || (got16_reloc_p (r_type)
9501 && mips_elf_local_relocation_p (input_bfd, rel,
9502 local_sections)))
9503 {
9504 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9505 contents, &addend))
9506 {
9507 if (h)
9508 name = h->root.root.string;
9509 else
9510 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9511 local_syms + r_symndx,
9512 sec);
9513 (*_bfd_error_handler)
9514 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9515 input_bfd, input_section, name, howto->name,
9516 rel->r_offset);
9517 }
9518 }
9519 else
9520 addend <<= howto->rightshift;
9521 }
9522 else
9523 addend = rel->r_addend;
9524 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9525 local_syms, local_sections, rel);
9526 }
9527
9528 if (info->relocatable)
9529 {
9530 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9531 && bfd_big_endian (input_bfd))
9532 rel->r_offset -= 4;
9533
9534 if (!rela_relocation_p && rel->r_addend)
9535 {
9536 addend += rel->r_addend;
9537 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9538 addend = mips_elf_high (addend);
9539 else if (r_type == R_MIPS_HIGHER)
9540 addend = mips_elf_higher (addend);
9541 else if (r_type == R_MIPS_HIGHEST)
9542 addend = mips_elf_highest (addend);
9543 else
9544 addend >>= howto->rightshift;
9545
9546 /* We use the source mask, rather than the destination
9547 mask because the place to which we are writing will be
9548 source of the addend in the final link. */
9549 addend &= howto->src_mask;
9550
9551 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9552 /* See the comment above about using R_MIPS_64 in the 32-bit
9553 ABI. Here, we need to update the addend. It would be
9554 possible to get away with just using the R_MIPS_32 reloc
9555 but for endianness. */
9556 {
9557 bfd_vma sign_bits;
9558 bfd_vma low_bits;
9559 bfd_vma high_bits;
9560
9561 if (addend & ((bfd_vma) 1 << 31))
9562 #ifdef BFD64
9563 sign_bits = ((bfd_vma) 1 << 32) - 1;
9564 #else
9565 sign_bits = -1;
9566 #endif
9567 else
9568 sign_bits = 0;
9569
9570 /* If we don't know that we have a 64-bit type,
9571 do two separate stores. */
9572 if (bfd_big_endian (input_bfd))
9573 {
9574 /* Store the sign-bits (which are most significant)
9575 first. */
9576 low_bits = sign_bits;
9577 high_bits = addend;
9578 }
9579 else
9580 {
9581 low_bits = addend;
9582 high_bits = sign_bits;
9583 }
9584 bfd_put_32 (input_bfd, low_bits,
9585 contents + rel->r_offset);
9586 bfd_put_32 (input_bfd, high_bits,
9587 contents + rel->r_offset + 4);
9588 continue;
9589 }
9590
9591 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9592 input_bfd, input_section,
9593 contents, FALSE))
9594 return FALSE;
9595 }
9596
9597 /* Go on to the next relocation. */
9598 continue;
9599 }
9600
9601 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9602 relocations for the same offset. In that case we are
9603 supposed to treat the output of each relocation as the addend
9604 for the next. */
9605 if (rel + 1 < relend
9606 && rel->r_offset == rel[1].r_offset
9607 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9608 use_saved_addend_p = TRUE;
9609 else
9610 use_saved_addend_p = FALSE;
9611
9612 /* Figure out what value we are supposed to relocate. */
9613 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9614 input_section, info, rel,
9615 addend, howto, local_syms,
9616 local_sections, &value,
9617 &name, &cross_mode_jump_p,
9618 use_saved_addend_p))
9619 {
9620 case bfd_reloc_continue:
9621 /* There's nothing to do. */
9622 continue;
9623
9624 case bfd_reloc_undefined:
9625 /* mips_elf_calculate_relocation already called the
9626 undefined_symbol callback. There's no real point in
9627 trying to perform the relocation at this point, so we
9628 just skip ahead to the next relocation. */
9629 continue;
9630
9631 case bfd_reloc_notsupported:
9632 msg = _("internal error: unsupported relocation error");
9633 info->callbacks->warning
9634 (info, msg, name, input_bfd, input_section, rel->r_offset);
9635 return FALSE;
9636
9637 case bfd_reloc_overflow:
9638 if (use_saved_addend_p)
9639 /* Ignore overflow until we reach the last relocation for
9640 a given location. */
9641 ;
9642 else
9643 {
9644 struct mips_elf_link_hash_table *htab;
9645
9646 htab = mips_elf_hash_table (info);
9647 BFD_ASSERT (htab != NULL);
9648 BFD_ASSERT (name != NULL);
9649 if (!htab->small_data_overflow_reported
9650 && (gprel16_reloc_p (howto->type)
9651 || literal_reloc_p (howto->type)))
9652 {
9653 msg = _("small-data section exceeds 64KB;"
9654 " lower small-data size limit (see option -G)");
9655
9656 htab->small_data_overflow_reported = TRUE;
9657 (*info->callbacks->einfo) ("%P: %s\n", msg);
9658 }
9659 if (! ((*info->callbacks->reloc_overflow)
9660 (info, NULL, name, howto->name, (bfd_vma) 0,
9661 input_bfd, input_section, rel->r_offset)))
9662 return FALSE;
9663 }
9664 break;
9665
9666 case bfd_reloc_ok:
9667 break;
9668
9669 case bfd_reloc_outofrange:
9670 if (jal_reloc_p (howto->type))
9671 {
9672 msg = _("JALX to a non-word-aligned address");
9673 info->callbacks->warning
9674 (info, msg, name, input_bfd, input_section, rel->r_offset);
9675 return FALSE;
9676 }
9677 /* Fall through. */
9678
9679 default:
9680 abort ();
9681 break;
9682 }
9683
9684 /* If we've got another relocation for the address, keep going
9685 until we reach the last one. */
9686 if (use_saved_addend_p)
9687 {
9688 addend = value;
9689 continue;
9690 }
9691
9692 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9693 /* See the comment above about using R_MIPS_64 in the 32-bit
9694 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9695 that calculated the right value. Now, however, we
9696 sign-extend the 32-bit result to 64-bits, and store it as a
9697 64-bit value. We are especially generous here in that we
9698 go to extreme lengths to support this usage on systems with
9699 only a 32-bit VMA. */
9700 {
9701 bfd_vma sign_bits;
9702 bfd_vma low_bits;
9703 bfd_vma high_bits;
9704
9705 if (value & ((bfd_vma) 1 << 31))
9706 #ifdef BFD64
9707 sign_bits = ((bfd_vma) 1 << 32) - 1;
9708 #else
9709 sign_bits = -1;
9710 #endif
9711 else
9712 sign_bits = 0;
9713
9714 /* If we don't know that we have a 64-bit type,
9715 do two separate stores. */
9716 if (bfd_big_endian (input_bfd))
9717 {
9718 /* Undo what we did above. */
9719 rel->r_offset -= 4;
9720 /* Store the sign-bits (which are most significant)
9721 first. */
9722 low_bits = sign_bits;
9723 high_bits = value;
9724 }
9725 else
9726 {
9727 low_bits = value;
9728 high_bits = sign_bits;
9729 }
9730 bfd_put_32 (input_bfd, low_bits,
9731 contents + rel->r_offset);
9732 bfd_put_32 (input_bfd, high_bits,
9733 contents + rel->r_offset + 4);
9734 continue;
9735 }
9736
9737 /* Actually perform the relocation. */
9738 if (! mips_elf_perform_relocation (info, howto, rel, value,
9739 input_bfd, input_section,
9740 contents, cross_mode_jump_p))
9741 return FALSE;
9742 }
9743
9744 return TRUE;
9745 }
9746 \f
9747 /* A function that iterates over each entry in la25_stubs and fills
9748 in the code for each one. DATA points to a mips_htab_traverse_info. */
9749
9750 static int
9751 mips_elf_create_la25_stub (void **slot, void *data)
9752 {
9753 struct mips_htab_traverse_info *hti;
9754 struct mips_elf_link_hash_table *htab;
9755 struct mips_elf_la25_stub *stub;
9756 asection *s;
9757 bfd_byte *loc;
9758 bfd_vma offset, target, target_high, target_low;
9759
9760 stub = (struct mips_elf_la25_stub *) *slot;
9761 hti = (struct mips_htab_traverse_info *) data;
9762 htab = mips_elf_hash_table (hti->info);
9763 BFD_ASSERT (htab != NULL);
9764
9765 /* Create the section contents, if we haven't already. */
9766 s = stub->stub_section;
9767 loc = s->contents;
9768 if (loc == NULL)
9769 {
9770 loc = bfd_malloc (s->size);
9771 if (loc == NULL)
9772 {
9773 hti->error = TRUE;
9774 return FALSE;
9775 }
9776 s->contents = loc;
9777 }
9778
9779 /* Work out where in the section this stub should go. */
9780 offset = stub->offset;
9781
9782 /* Work out the target address. */
9783 target = mips_elf_get_la25_target (stub, &s);
9784 target += s->output_section->vma + s->output_offset;
9785
9786 target_high = ((target + 0x8000) >> 16) & 0xffff;
9787 target_low = (target & 0xffff);
9788
9789 if (stub->stub_section != htab->strampoline)
9790 {
9791 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9792 of the section and write the two instructions at the end. */
9793 memset (loc, 0, offset);
9794 loc += offset;
9795 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9796 {
9797 bfd_put_micromips_32 (hti->output_bfd,
9798 LA25_LUI_MICROMIPS (target_high),
9799 loc);
9800 bfd_put_micromips_32 (hti->output_bfd,
9801 LA25_ADDIU_MICROMIPS (target_low),
9802 loc + 4);
9803 }
9804 else
9805 {
9806 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9807 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9808 }
9809 }
9810 else
9811 {
9812 /* This is trampoline. */
9813 loc += offset;
9814 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9815 {
9816 bfd_put_micromips_32 (hti->output_bfd,
9817 LA25_LUI_MICROMIPS (target_high), loc);
9818 bfd_put_micromips_32 (hti->output_bfd,
9819 LA25_J_MICROMIPS (target), loc + 4);
9820 bfd_put_micromips_32 (hti->output_bfd,
9821 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9822 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9823 }
9824 else
9825 {
9826 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9827 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9828 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9829 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9830 }
9831 }
9832 return TRUE;
9833 }
9834
9835 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9836 adjust it appropriately now. */
9837
9838 static void
9839 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9840 const char *name, Elf_Internal_Sym *sym)
9841 {
9842 /* The linker script takes care of providing names and values for
9843 these, but we must place them into the right sections. */
9844 static const char* const text_section_symbols[] = {
9845 "_ftext",
9846 "_etext",
9847 "__dso_displacement",
9848 "__elf_header",
9849 "__program_header_table",
9850 NULL
9851 };
9852
9853 static const char* const data_section_symbols[] = {
9854 "_fdata",
9855 "_edata",
9856 "_end",
9857 "_fbss",
9858 NULL
9859 };
9860
9861 const char* const *p;
9862 int i;
9863
9864 for (i = 0; i < 2; ++i)
9865 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9866 *p;
9867 ++p)
9868 if (strcmp (*p, name) == 0)
9869 {
9870 /* All of these symbols are given type STT_SECTION by the
9871 IRIX6 linker. */
9872 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9873 sym->st_other = STO_PROTECTED;
9874
9875 /* The IRIX linker puts these symbols in special sections. */
9876 if (i == 0)
9877 sym->st_shndx = SHN_MIPS_TEXT;
9878 else
9879 sym->st_shndx = SHN_MIPS_DATA;
9880
9881 break;
9882 }
9883 }
9884
9885 /* Finish up dynamic symbol handling. We set the contents of various
9886 dynamic sections here. */
9887
9888 bfd_boolean
9889 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9890 struct bfd_link_info *info,
9891 struct elf_link_hash_entry *h,
9892 Elf_Internal_Sym *sym)
9893 {
9894 bfd *dynobj;
9895 asection *sgot;
9896 struct mips_got_info *g, *gg;
9897 const char *name;
9898 int idx;
9899 struct mips_elf_link_hash_table *htab;
9900 struct mips_elf_link_hash_entry *hmips;
9901
9902 htab = mips_elf_hash_table (info);
9903 BFD_ASSERT (htab != NULL);
9904 dynobj = elf_hash_table (info)->dynobj;
9905 hmips = (struct mips_elf_link_hash_entry *) h;
9906
9907 BFD_ASSERT (!htab->is_vxworks);
9908
9909 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9910 {
9911 /* We've decided to create a PLT entry for this symbol. */
9912 bfd_byte *loc;
9913 bfd_vma header_address, plt_index, got_address;
9914 bfd_vma got_address_high, got_address_low, load;
9915 const bfd_vma *plt_entry;
9916
9917 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9918 BFD_ASSERT (h->dynindx != -1);
9919 BFD_ASSERT (htab->splt != NULL);
9920 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9921 BFD_ASSERT (!h->def_regular);
9922
9923 /* Calculate the address of the PLT header. */
9924 header_address = (htab->splt->output_section->vma
9925 + htab->splt->output_offset);
9926
9927 /* Calculate the index of the entry. */
9928 plt_index = ((h->plt.offset - htab->plt_header_size)
9929 / htab->plt_entry_size);
9930
9931 /* Calculate the address of the .got.plt entry. */
9932 got_address = (htab->sgotplt->output_section->vma
9933 + htab->sgotplt->output_offset
9934 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9935 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9936 got_address_low = got_address & 0xffff;
9937
9938 /* Initially point the .got.plt entry at the PLT header. */
9939 loc = (htab->sgotplt->contents
9940 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9941 if (ABI_64_P (output_bfd))
9942 bfd_put_64 (output_bfd, header_address, loc);
9943 else
9944 bfd_put_32 (output_bfd, header_address, loc);
9945
9946 /* Find out where the .plt entry should go. */
9947 loc = htab->splt->contents + h->plt.offset;
9948
9949 /* Pick the load opcode. */
9950 load = MIPS_ELF_LOAD_WORD (output_bfd);
9951
9952 /* Fill in the PLT entry itself. */
9953 plt_entry = mips_exec_plt_entry;
9954 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9955 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9956
9957 if (! LOAD_INTERLOCKS_P (output_bfd))
9958 {
9959 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9960 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9961 }
9962 else
9963 {
9964 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9965 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9966 }
9967
9968 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9969 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9970 plt_index, h->dynindx,
9971 R_MIPS_JUMP_SLOT, got_address);
9972
9973 /* We distinguish between PLT entries and lazy-binding stubs by
9974 giving the former an st_other value of STO_MIPS_PLT. Set the
9975 flag and leave the value if there are any relocations in the
9976 binary where pointer equality matters. */
9977 sym->st_shndx = SHN_UNDEF;
9978 if (h->pointer_equality_needed)
9979 sym->st_other = STO_MIPS_PLT;
9980 else
9981 sym->st_value = 0;
9982 }
9983 else if (h->plt.offset != MINUS_ONE)
9984 {
9985 /* We've decided to create a lazy-binding stub. */
9986 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9987
9988 /* This symbol has a stub. Set it up. */
9989
9990 BFD_ASSERT (h->dynindx != -1);
9991
9992 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9993 || (h->dynindx <= 0xffff));
9994
9995 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9996 sign extension at runtime in the stub, resulting in a negative
9997 index value. */
9998 if (h->dynindx & ~0x7fffffff)
9999 return FALSE;
10000
10001 /* Fill the stub. */
10002 idx = 0;
10003 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10004 idx += 4;
10005 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10006 idx += 4;
10007 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10008 {
10009 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10010 stub + idx);
10011 idx += 4;
10012 }
10013 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10014 idx += 4;
10015
10016 /* If a large stub is not required and sign extension is not a
10017 problem, then use legacy code in the stub. */
10018 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10019 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10020 else if (h->dynindx & ~0x7fff)
10021 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10022 else
10023 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10024 stub + idx);
10025
10026 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10027 memcpy (htab->sstubs->contents + h->plt.offset,
10028 stub, htab->function_stub_size);
10029
10030 /* Mark the symbol as undefined. plt.offset != -1 occurs
10031 only for the referenced symbol. */
10032 sym->st_shndx = SHN_UNDEF;
10033
10034 /* The run-time linker uses the st_value field of the symbol
10035 to reset the global offset table entry for this external
10036 to its stub address when unlinking a shared object. */
10037 sym->st_value = (htab->sstubs->output_section->vma
10038 + htab->sstubs->output_offset
10039 + h->plt.offset);
10040 }
10041
10042 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10043 refer to the stub, since only the stub uses the standard calling
10044 conventions. */
10045 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10046 {
10047 BFD_ASSERT (hmips->need_fn_stub);
10048 sym->st_value = (hmips->fn_stub->output_section->vma
10049 + hmips->fn_stub->output_offset);
10050 sym->st_size = hmips->fn_stub->size;
10051 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10052 }
10053
10054 BFD_ASSERT (h->dynindx != -1
10055 || h->forced_local);
10056
10057 sgot = htab->sgot;
10058 g = htab->got_info;
10059 BFD_ASSERT (g != NULL);
10060
10061 /* Run through the global symbol table, creating GOT entries for all
10062 the symbols that need them. */
10063 if (hmips->global_got_area != GGA_NONE)
10064 {
10065 bfd_vma offset;
10066 bfd_vma value;
10067
10068 value = sym->st_value;
10069 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10070 R_MIPS_GOT16, info);
10071 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10072 }
10073
10074 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10075 {
10076 struct mips_got_entry e, *p;
10077 bfd_vma entry;
10078 bfd_vma offset;
10079
10080 gg = g;
10081
10082 e.abfd = output_bfd;
10083 e.symndx = -1;
10084 e.d.h = hmips;
10085 e.tls_type = 0;
10086
10087 for (g = g->next; g->next != gg; g = g->next)
10088 {
10089 if (g->got_entries
10090 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10091 &e)))
10092 {
10093 offset = p->gotidx;
10094 if (info->shared
10095 || (elf_hash_table (info)->dynamic_sections_created
10096 && p->d.h != NULL
10097 && p->d.h->root.def_dynamic
10098 && !p->d.h->root.def_regular))
10099 {
10100 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10101 the various compatibility problems, it's easier to mock
10102 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10103 mips_elf_create_dynamic_relocation to calculate the
10104 appropriate addend. */
10105 Elf_Internal_Rela rel[3];
10106
10107 memset (rel, 0, sizeof (rel));
10108 if (ABI_64_P (output_bfd))
10109 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10110 else
10111 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10112 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10113
10114 entry = 0;
10115 if (! (mips_elf_create_dynamic_relocation
10116 (output_bfd, info, rel,
10117 e.d.h, NULL, sym->st_value, &entry, sgot)))
10118 return FALSE;
10119 }
10120 else
10121 entry = sym->st_value;
10122 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10123 }
10124 }
10125 }
10126
10127 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10128 name = h->root.root.string;
10129 if (strcmp (name, "_DYNAMIC") == 0
10130 || h == elf_hash_table (info)->hgot)
10131 sym->st_shndx = SHN_ABS;
10132 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10133 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10134 {
10135 sym->st_shndx = SHN_ABS;
10136 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10137 sym->st_value = 1;
10138 }
10139 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10140 {
10141 sym->st_shndx = SHN_ABS;
10142 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10143 sym->st_value = elf_gp (output_bfd);
10144 }
10145 else if (SGI_COMPAT (output_bfd))
10146 {
10147 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10148 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10149 {
10150 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10151 sym->st_other = STO_PROTECTED;
10152 sym->st_value = 0;
10153 sym->st_shndx = SHN_MIPS_DATA;
10154 }
10155 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10156 {
10157 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10158 sym->st_other = STO_PROTECTED;
10159 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10160 sym->st_shndx = SHN_ABS;
10161 }
10162 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10163 {
10164 if (h->type == STT_FUNC)
10165 sym->st_shndx = SHN_MIPS_TEXT;
10166 else if (h->type == STT_OBJECT)
10167 sym->st_shndx = SHN_MIPS_DATA;
10168 }
10169 }
10170
10171 /* Emit a copy reloc, if needed. */
10172 if (h->needs_copy)
10173 {
10174 asection *s;
10175 bfd_vma symval;
10176
10177 BFD_ASSERT (h->dynindx != -1);
10178 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10179
10180 s = mips_elf_rel_dyn_section (info, FALSE);
10181 symval = (h->root.u.def.section->output_section->vma
10182 + h->root.u.def.section->output_offset
10183 + h->root.u.def.value);
10184 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10185 h->dynindx, R_MIPS_COPY, symval);
10186 }
10187
10188 /* Handle the IRIX6-specific symbols. */
10189 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10190 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10191
10192 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10193 treat MIPS16 symbols like any other. */
10194 if (ELF_ST_IS_MIPS16 (sym->st_other))
10195 {
10196 BFD_ASSERT (sym->st_value & 1);
10197 sym->st_other -= STO_MIPS16;
10198 }
10199
10200 return TRUE;
10201 }
10202
10203 /* Likewise, for VxWorks. */
10204
10205 bfd_boolean
10206 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10207 struct bfd_link_info *info,
10208 struct elf_link_hash_entry *h,
10209 Elf_Internal_Sym *sym)
10210 {
10211 bfd *dynobj;
10212 asection *sgot;
10213 struct mips_got_info *g;
10214 struct mips_elf_link_hash_table *htab;
10215 struct mips_elf_link_hash_entry *hmips;
10216
10217 htab = mips_elf_hash_table (info);
10218 BFD_ASSERT (htab != NULL);
10219 dynobj = elf_hash_table (info)->dynobj;
10220 hmips = (struct mips_elf_link_hash_entry *) h;
10221
10222 if (h->plt.offset != (bfd_vma) -1)
10223 {
10224 bfd_byte *loc;
10225 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10226 Elf_Internal_Rela rel;
10227 static const bfd_vma *plt_entry;
10228
10229 BFD_ASSERT (h->dynindx != -1);
10230 BFD_ASSERT (htab->splt != NULL);
10231 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10232
10233 /* Calculate the address of the .plt entry. */
10234 plt_address = (htab->splt->output_section->vma
10235 + htab->splt->output_offset
10236 + h->plt.offset);
10237
10238 /* Calculate the index of the entry. */
10239 plt_index = ((h->plt.offset - htab->plt_header_size)
10240 / htab->plt_entry_size);
10241
10242 /* Calculate the address of the .got.plt entry. */
10243 got_address = (htab->sgotplt->output_section->vma
10244 + htab->sgotplt->output_offset
10245 + plt_index * 4);
10246
10247 /* Calculate the offset of the .got.plt entry from
10248 _GLOBAL_OFFSET_TABLE_. */
10249 got_offset = mips_elf_gotplt_index (info, h);
10250
10251 /* Calculate the offset for the branch at the start of the PLT
10252 entry. The branch jumps to the beginning of .plt. */
10253 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10254
10255 /* Fill in the initial value of the .got.plt entry. */
10256 bfd_put_32 (output_bfd, plt_address,
10257 htab->sgotplt->contents + plt_index * 4);
10258
10259 /* Find out where the .plt entry should go. */
10260 loc = htab->splt->contents + h->plt.offset;
10261
10262 if (info->shared)
10263 {
10264 plt_entry = mips_vxworks_shared_plt_entry;
10265 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10266 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10267 }
10268 else
10269 {
10270 bfd_vma got_address_high, got_address_low;
10271
10272 plt_entry = mips_vxworks_exec_plt_entry;
10273 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10274 got_address_low = got_address & 0xffff;
10275
10276 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10277 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10278 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10279 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10280 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10281 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10282 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10283 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10284
10285 loc = (htab->srelplt2->contents
10286 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10287
10288 /* Emit a relocation for the .got.plt entry. */
10289 rel.r_offset = got_address;
10290 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10291 rel.r_addend = h->plt.offset;
10292 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10293
10294 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10295 loc += sizeof (Elf32_External_Rela);
10296 rel.r_offset = plt_address + 8;
10297 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10298 rel.r_addend = got_offset;
10299 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10300
10301 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10302 loc += sizeof (Elf32_External_Rela);
10303 rel.r_offset += 4;
10304 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10305 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10306 }
10307
10308 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10309 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10310 rel.r_offset = got_address;
10311 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10312 rel.r_addend = 0;
10313 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10314
10315 if (!h->def_regular)
10316 sym->st_shndx = SHN_UNDEF;
10317 }
10318
10319 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10320
10321 sgot = htab->sgot;
10322 g = htab->got_info;
10323 BFD_ASSERT (g != NULL);
10324
10325 /* See if this symbol has an entry in the GOT. */
10326 if (hmips->global_got_area != GGA_NONE)
10327 {
10328 bfd_vma offset;
10329 Elf_Internal_Rela outrel;
10330 bfd_byte *loc;
10331 asection *s;
10332
10333 /* Install the symbol value in the GOT. */
10334 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10335 R_MIPS_GOT16, info);
10336 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10337
10338 /* Add a dynamic relocation for it. */
10339 s = mips_elf_rel_dyn_section (info, FALSE);
10340 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10341 outrel.r_offset = (sgot->output_section->vma
10342 + sgot->output_offset
10343 + offset);
10344 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10345 outrel.r_addend = 0;
10346 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10347 }
10348
10349 /* Emit a copy reloc, if needed. */
10350 if (h->needs_copy)
10351 {
10352 Elf_Internal_Rela rel;
10353
10354 BFD_ASSERT (h->dynindx != -1);
10355
10356 rel.r_offset = (h->root.u.def.section->output_section->vma
10357 + h->root.u.def.section->output_offset
10358 + h->root.u.def.value);
10359 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10360 rel.r_addend = 0;
10361 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10362 htab->srelbss->contents
10363 + (htab->srelbss->reloc_count
10364 * sizeof (Elf32_External_Rela)));
10365 ++htab->srelbss->reloc_count;
10366 }
10367
10368 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10369 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10370 sym->st_value &= ~1;
10371
10372 return TRUE;
10373 }
10374
10375 /* Write out a plt0 entry to the beginning of .plt. */
10376
10377 static void
10378 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10379 {
10380 bfd_byte *loc;
10381 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10382 static const bfd_vma *plt_entry;
10383 struct mips_elf_link_hash_table *htab;
10384
10385 htab = mips_elf_hash_table (info);
10386 BFD_ASSERT (htab != NULL);
10387
10388 if (ABI_64_P (output_bfd))
10389 plt_entry = mips_n64_exec_plt0_entry;
10390 else if (ABI_N32_P (output_bfd))
10391 plt_entry = mips_n32_exec_plt0_entry;
10392 else
10393 plt_entry = mips_o32_exec_plt0_entry;
10394
10395 /* Calculate the value of .got.plt. */
10396 gotplt_value = (htab->sgotplt->output_section->vma
10397 + htab->sgotplt->output_offset);
10398 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10399 gotplt_value_low = gotplt_value & 0xffff;
10400
10401 /* The PLT sequence is not safe for N64 if .got.plt's address can
10402 not be loaded in two instructions. */
10403 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10404 || ~(gotplt_value | 0x7fffffff) == 0);
10405
10406 /* Install the PLT header. */
10407 loc = htab->splt->contents;
10408 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10409 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10410 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10411 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10412 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10413 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10414 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10415 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10416 }
10417
10418 /* Install the PLT header for a VxWorks executable and finalize the
10419 contents of .rela.plt.unloaded. */
10420
10421 static void
10422 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10423 {
10424 Elf_Internal_Rela rela;
10425 bfd_byte *loc;
10426 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10427 static const bfd_vma *plt_entry;
10428 struct mips_elf_link_hash_table *htab;
10429
10430 htab = mips_elf_hash_table (info);
10431 BFD_ASSERT (htab != NULL);
10432
10433 plt_entry = mips_vxworks_exec_plt0_entry;
10434
10435 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10436 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10437 + htab->root.hgot->root.u.def.section->output_offset
10438 + htab->root.hgot->root.u.def.value);
10439
10440 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10441 got_value_low = got_value & 0xffff;
10442
10443 /* Calculate the address of the PLT header. */
10444 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10445
10446 /* Install the PLT header. */
10447 loc = htab->splt->contents;
10448 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10449 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10450 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10451 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10452 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10453 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10454
10455 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10456 loc = htab->srelplt2->contents;
10457 rela.r_offset = plt_address;
10458 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10459 rela.r_addend = 0;
10460 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10461 loc += sizeof (Elf32_External_Rela);
10462
10463 /* Output the relocation for the following addiu of
10464 %lo(_GLOBAL_OFFSET_TABLE_). */
10465 rela.r_offset += 4;
10466 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10467 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10468 loc += sizeof (Elf32_External_Rela);
10469
10470 /* Fix up the remaining relocations. They may have the wrong
10471 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10472 in which symbols were output. */
10473 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10474 {
10475 Elf_Internal_Rela rel;
10476
10477 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10478 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10479 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10480 loc += sizeof (Elf32_External_Rela);
10481
10482 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10483 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10484 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10485 loc += sizeof (Elf32_External_Rela);
10486
10487 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10488 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10489 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10490 loc += sizeof (Elf32_External_Rela);
10491 }
10492 }
10493
10494 /* Install the PLT header for a VxWorks shared library. */
10495
10496 static void
10497 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10498 {
10499 unsigned int i;
10500 struct mips_elf_link_hash_table *htab;
10501
10502 htab = mips_elf_hash_table (info);
10503 BFD_ASSERT (htab != NULL);
10504
10505 /* We just need to copy the entry byte-by-byte. */
10506 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10507 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10508 htab->splt->contents + i * 4);
10509 }
10510
10511 /* Finish up the dynamic sections. */
10512
10513 bfd_boolean
10514 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10515 struct bfd_link_info *info)
10516 {
10517 bfd *dynobj;
10518 asection *sdyn;
10519 asection *sgot;
10520 struct mips_got_info *gg, *g;
10521 struct mips_elf_link_hash_table *htab;
10522
10523 htab = mips_elf_hash_table (info);
10524 BFD_ASSERT (htab != NULL);
10525
10526 dynobj = elf_hash_table (info)->dynobj;
10527
10528 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10529
10530 sgot = htab->sgot;
10531 gg = htab->got_info;
10532
10533 if (elf_hash_table (info)->dynamic_sections_created)
10534 {
10535 bfd_byte *b;
10536 int dyn_to_skip = 0, dyn_skipped = 0;
10537
10538 BFD_ASSERT (sdyn != NULL);
10539 BFD_ASSERT (gg != NULL);
10540
10541 g = mips_elf_got_for_ibfd (gg, output_bfd);
10542 BFD_ASSERT (g != NULL);
10543
10544 for (b = sdyn->contents;
10545 b < sdyn->contents + sdyn->size;
10546 b += MIPS_ELF_DYN_SIZE (dynobj))
10547 {
10548 Elf_Internal_Dyn dyn;
10549 const char *name;
10550 size_t elemsize;
10551 asection *s;
10552 bfd_boolean swap_out_p;
10553
10554 /* Read in the current dynamic entry. */
10555 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10556
10557 /* Assume that we're going to modify it and write it out. */
10558 swap_out_p = TRUE;
10559
10560 switch (dyn.d_tag)
10561 {
10562 case DT_RELENT:
10563 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10564 break;
10565
10566 case DT_RELAENT:
10567 BFD_ASSERT (htab->is_vxworks);
10568 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10569 break;
10570
10571 case DT_STRSZ:
10572 /* Rewrite DT_STRSZ. */
10573 dyn.d_un.d_val =
10574 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10575 break;
10576
10577 case DT_PLTGOT:
10578 s = htab->sgot;
10579 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10580 break;
10581
10582 case DT_MIPS_PLTGOT:
10583 s = htab->sgotplt;
10584 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10585 break;
10586
10587 case DT_MIPS_RLD_VERSION:
10588 dyn.d_un.d_val = 1; /* XXX */
10589 break;
10590
10591 case DT_MIPS_FLAGS:
10592 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10593 break;
10594
10595 case DT_MIPS_TIME_STAMP:
10596 {
10597 time_t t;
10598 time (&t);
10599 dyn.d_un.d_val = t;
10600 }
10601 break;
10602
10603 case DT_MIPS_ICHECKSUM:
10604 /* XXX FIXME: */
10605 swap_out_p = FALSE;
10606 break;
10607
10608 case DT_MIPS_IVERSION:
10609 /* XXX FIXME: */
10610 swap_out_p = FALSE;
10611 break;
10612
10613 case DT_MIPS_BASE_ADDRESS:
10614 s = output_bfd->sections;
10615 BFD_ASSERT (s != NULL);
10616 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10617 break;
10618
10619 case DT_MIPS_LOCAL_GOTNO:
10620 dyn.d_un.d_val = g->local_gotno;
10621 break;
10622
10623 case DT_MIPS_UNREFEXTNO:
10624 /* The index into the dynamic symbol table which is the
10625 entry of the first external symbol that is not
10626 referenced within the same object. */
10627 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10628 break;
10629
10630 case DT_MIPS_GOTSYM:
10631 if (gg->global_gotsym)
10632 {
10633 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10634 break;
10635 }
10636 /* In case if we don't have global got symbols we default
10637 to setting DT_MIPS_GOTSYM to the same value as
10638 DT_MIPS_SYMTABNO, so we just fall through. */
10639
10640 case DT_MIPS_SYMTABNO:
10641 name = ".dynsym";
10642 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10643 s = bfd_get_section_by_name (output_bfd, name);
10644 BFD_ASSERT (s != NULL);
10645
10646 dyn.d_un.d_val = s->size / elemsize;
10647 break;
10648
10649 case DT_MIPS_HIPAGENO:
10650 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10651 break;
10652
10653 case DT_MIPS_RLD_MAP:
10654 {
10655 struct elf_link_hash_entry *h;
10656 h = mips_elf_hash_table (info)->rld_symbol;
10657 if (!h)
10658 {
10659 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10660 swap_out_p = FALSE;
10661 break;
10662 }
10663 s = h->root.u.def.section;
10664 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10665 + h->root.u.def.value);
10666 }
10667 break;
10668
10669 case DT_MIPS_OPTIONS:
10670 s = (bfd_get_section_by_name
10671 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10672 dyn.d_un.d_ptr = s->vma;
10673 break;
10674
10675 case DT_RELASZ:
10676 BFD_ASSERT (htab->is_vxworks);
10677 /* The count does not include the JUMP_SLOT relocations. */
10678 if (htab->srelplt)
10679 dyn.d_un.d_val -= htab->srelplt->size;
10680 break;
10681
10682 case DT_PLTREL:
10683 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10684 if (htab->is_vxworks)
10685 dyn.d_un.d_val = DT_RELA;
10686 else
10687 dyn.d_un.d_val = DT_REL;
10688 break;
10689
10690 case DT_PLTRELSZ:
10691 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10692 dyn.d_un.d_val = htab->srelplt->size;
10693 break;
10694
10695 case DT_JMPREL:
10696 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10697 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10698 + htab->srelplt->output_offset);
10699 break;
10700
10701 case DT_TEXTREL:
10702 /* If we didn't need any text relocations after all, delete
10703 the dynamic tag. */
10704 if (!(info->flags & DF_TEXTREL))
10705 {
10706 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10707 swap_out_p = FALSE;
10708 }
10709 break;
10710
10711 case DT_FLAGS:
10712 /* If we didn't need any text relocations after all, clear
10713 DF_TEXTREL from DT_FLAGS. */
10714 if (!(info->flags & DF_TEXTREL))
10715 dyn.d_un.d_val &= ~DF_TEXTREL;
10716 else
10717 swap_out_p = FALSE;
10718 break;
10719
10720 default:
10721 swap_out_p = FALSE;
10722 if (htab->is_vxworks
10723 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10724 swap_out_p = TRUE;
10725 break;
10726 }
10727
10728 if (swap_out_p || dyn_skipped)
10729 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10730 (dynobj, &dyn, b - dyn_skipped);
10731
10732 if (dyn_to_skip)
10733 {
10734 dyn_skipped += dyn_to_skip;
10735 dyn_to_skip = 0;
10736 }
10737 }
10738
10739 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10740 if (dyn_skipped > 0)
10741 memset (b - dyn_skipped, 0, dyn_skipped);
10742 }
10743
10744 if (sgot != NULL && sgot->size > 0
10745 && !bfd_is_abs_section (sgot->output_section))
10746 {
10747 if (htab->is_vxworks)
10748 {
10749 /* The first entry of the global offset table points to the
10750 ".dynamic" section. The second is initialized by the
10751 loader and contains the shared library identifier.
10752 The third is also initialized by the loader and points
10753 to the lazy resolution stub. */
10754 MIPS_ELF_PUT_WORD (output_bfd,
10755 sdyn->output_offset + sdyn->output_section->vma,
10756 sgot->contents);
10757 MIPS_ELF_PUT_WORD (output_bfd, 0,
10758 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10759 MIPS_ELF_PUT_WORD (output_bfd, 0,
10760 sgot->contents
10761 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10762 }
10763 else
10764 {
10765 /* The first entry of the global offset table will be filled at
10766 runtime. The second entry will be used by some runtime loaders.
10767 This isn't the case of IRIX rld. */
10768 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10769 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10770 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10771 }
10772
10773 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10774 = MIPS_ELF_GOT_SIZE (output_bfd);
10775 }
10776
10777 /* Generate dynamic relocations for the non-primary gots. */
10778 if (gg != NULL && gg->next)
10779 {
10780 Elf_Internal_Rela rel[3];
10781 bfd_vma addend = 0;
10782
10783 memset (rel, 0, sizeof (rel));
10784 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10785
10786 for (g = gg->next; g->next != gg; g = g->next)
10787 {
10788 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10789 + g->next->tls_gotno;
10790
10791 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10792 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10793 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10794 sgot->contents
10795 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10796
10797 if (! info->shared)
10798 continue;
10799
10800 while (got_index < g->assigned_gotno)
10801 {
10802 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10803 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10804 if (!(mips_elf_create_dynamic_relocation
10805 (output_bfd, info, rel, NULL,
10806 bfd_abs_section_ptr,
10807 0, &addend, sgot)))
10808 return FALSE;
10809 BFD_ASSERT (addend == 0);
10810 }
10811 }
10812 }
10813
10814 /* The generation of dynamic relocations for the non-primary gots
10815 adds more dynamic relocations. We cannot count them until
10816 here. */
10817
10818 if (elf_hash_table (info)->dynamic_sections_created)
10819 {
10820 bfd_byte *b;
10821 bfd_boolean swap_out_p;
10822
10823 BFD_ASSERT (sdyn != NULL);
10824
10825 for (b = sdyn->contents;
10826 b < sdyn->contents + sdyn->size;
10827 b += MIPS_ELF_DYN_SIZE (dynobj))
10828 {
10829 Elf_Internal_Dyn dyn;
10830 asection *s;
10831
10832 /* Read in the current dynamic entry. */
10833 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10834
10835 /* Assume that we're going to modify it and write it out. */
10836 swap_out_p = TRUE;
10837
10838 switch (dyn.d_tag)
10839 {
10840 case DT_RELSZ:
10841 /* Reduce DT_RELSZ to account for any relocations we
10842 decided not to make. This is for the n64 irix rld,
10843 which doesn't seem to apply any relocations if there
10844 are trailing null entries. */
10845 s = mips_elf_rel_dyn_section (info, FALSE);
10846 dyn.d_un.d_val = (s->reloc_count
10847 * (ABI_64_P (output_bfd)
10848 ? sizeof (Elf64_Mips_External_Rel)
10849 : sizeof (Elf32_External_Rel)));
10850 /* Adjust the section size too. Tools like the prelinker
10851 can reasonably expect the values to the same. */
10852 elf_section_data (s->output_section)->this_hdr.sh_size
10853 = dyn.d_un.d_val;
10854 break;
10855
10856 default:
10857 swap_out_p = FALSE;
10858 break;
10859 }
10860
10861 if (swap_out_p)
10862 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10863 (dynobj, &dyn, b);
10864 }
10865 }
10866
10867 {
10868 asection *s;
10869 Elf32_compact_rel cpt;
10870
10871 if (SGI_COMPAT (output_bfd))
10872 {
10873 /* Write .compact_rel section out. */
10874 s = bfd_get_linker_section (dynobj, ".compact_rel");
10875 if (s != NULL)
10876 {
10877 cpt.id1 = 1;
10878 cpt.num = s->reloc_count;
10879 cpt.id2 = 2;
10880 cpt.offset = (s->output_section->filepos
10881 + sizeof (Elf32_External_compact_rel));
10882 cpt.reserved0 = 0;
10883 cpt.reserved1 = 0;
10884 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10885 ((Elf32_External_compact_rel *)
10886 s->contents));
10887
10888 /* Clean up a dummy stub function entry in .text. */
10889 if (htab->sstubs != NULL)
10890 {
10891 file_ptr dummy_offset;
10892
10893 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10894 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10895 memset (htab->sstubs->contents + dummy_offset, 0,
10896 htab->function_stub_size);
10897 }
10898 }
10899 }
10900
10901 /* The psABI says that the dynamic relocations must be sorted in
10902 increasing order of r_symndx. The VxWorks EABI doesn't require
10903 this, and because the code below handles REL rather than RELA
10904 relocations, using it for VxWorks would be outright harmful. */
10905 if (!htab->is_vxworks)
10906 {
10907 s = mips_elf_rel_dyn_section (info, FALSE);
10908 if (s != NULL
10909 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10910 {
10911 reldyn_sorting_bfd = output_bfd;
10912
10913 if (ABI_64_P (output_bfd))
10914 qsort ((Elf64_External_Rel *) s->contents + 1,
10915 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10916 sort_dynamic_relocs_64);
10917 else
10918 qsort ((Elf32_External_Rel *) s->contents + 1,
10919 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10920 sort_dynamic_relocs);
10921 }
10922 }
10923 }
10924
10925 if (htab->splt && htab->splt->size > 0)
10926 {
10927 if (htab->is_vxworks)
10928 {
10929 if (info->shared)
10930 mips_vxworks_finish_shared_plt (output_bfd, info);
10931 else
10932 mips_vxworks_finish_exec_plt (output_bfd, info);
10933 }
10934 else
10935 {
10936 BFD_ASSERT (!info->shared);
10937 mips_finish_exec_plt (output_bfd, info);
10938 }
10939 }
10940 return TRUE;
10941 }
10942
10943
10944 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10945
10946 static void
10947 mips_set_isa_flags (bfd *abfd)
10948 {
10949 flagword val;
10950
10951 switch (bfd_get_mach (abfd))
10952 {
10953 default:
10954 case bfd_mach_mips3000:
10955 val = E_MIPS_ARCH_1;
10956 break;
10957
10958 case bfd_mach_mips3900:
10959 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10960 break;
10961
10962 case bfd_mach_mips6000:
10963 val = E_MIPS_ARCH_2;
10964 break;
10965
10966 case bfd_mach_mips4000:
10967 case bfd_mach_mips4300:
10968 case bfd_mach_mips4400:
10969 case bfd_mach_mips4600:
10970 val = E_MIPS_ARCH_3;
10971 break;
10972
10973 case bfd_mach_mips4010:
10974 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10975 break;
10976
10977 case bfd_mach_mips4100:
10978 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10979 break;
10980
10981 case bfd_mach_mips4111:
10982 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10983 break;
10984
10985 case bfd_mach_mips4120:
10986 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10987 break;
10988
10989 case bfd_mach_mips4650:
10990 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10991 break;
10992
10993 case bfd_mach_mips5400:
10994 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10995 break;
10996
10997 case bfd_mach_mips5500:
10998 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10999 break;
11000
11001 case bfd_mach_mips9000:
11002 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11003 break;
11004
11005 case bfd_mach_mips5000:
11006 case bfd_mach_mips7000:
11007 case bfd_mach_mips8000:
11008 case bfd_mach_mips10000:
11009 case bfd_mach_mips12000:
11010 case bfd_mach_mips14000:
11011 case bfd_mach_mips16000:
11012 val = E_MIPS_ARCH_4;
11013 break;
11014
11015 case bfd_mach_mips5:
11016 val = E_MIPS_ARCH_5;
11017 break;
11018
11019 case bfd_mach_mips_loongson_2e:
11020 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11021 break;
11022
11023 case bfd_mach_mips_loongson_2f:
11024 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11025 break;
11026
11027 case bfd_mach_mips_sb1:
11028 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11029 break;
11030
11031 case bfd_mach_mips_loongson_3a:
11032 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11033 break;
11034
11035 case bfd_mach_mips_octeon:
11036 case bfd_mach_mips_octeonp:
11037 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11038 break;
11039
11040 case bfd_mach_mips_xlr:
11041 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11042 break;
11043
11044 case bfd_mach_mips_octeon2:
11045 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11046 break;
11047
11048 case bfd_mach_mipsisa32:
11049 val = E_MIPS_ARCH_32;
11050 break;
11051
11052 case bfd_mach_mipsisa64:
11053 val = E_MIPS_ARCH_64;
11054 break;
11055
11056 case bfd_mach_mipsisa32r2:
11057 val = E_MIPS_ARCH_32R2;
11058 break;
11059
11060 case bfd_mach_mipsisa64r2:
11061 val = E_MIPS_ARCH_64R2;
11062 break;
11063 }
11064 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11065 elf_elfheader (abfd)->e_flags |= val;
11066
11067 }
11068
11069
11070 /* The final processing done just before writing out a MIPS ELF object
11071 file. This gets the MIPS architecture right based on the machine
11072 number. This is used by both the 32-bit and the 64-bit ABI. */
11073
11074 void
11075 _bfd_mips_elf_final_write_processing (bfd *abfd,
11076 bfd_boolean linker ATTRIBUTE_UNUSED)
11077 {
11078 unsigned int i;
11079 Elf_Internal_Shdr **hdrpp;
11080 const char *name;
11081 asection *sec;
11082
11083 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11084 is nonzero. This is for compatibility with old objects, which used
11085 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11086 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11087 mips_set_isa_flags (abfd);
11088
11089 /* Set the sh_info field for .gptab sections and other appropriate
11090 info for each special section. */
11091 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11092 i < elf_numsections (abfd);
11093 i++, hdrpp++)
11094 {
11095 switch ((*hdrpp)->sh_type)
11096 {
11097 case SHT_MIPS_MSYM:
11098 case SHT_MIPS_LIBLIST:
11099 sec = bfd_get_section_by_name (abfd, ".dynstr");
11100 if (sec != NULL)
11101 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11102 break;
11103
11104 case SHT_MIPS_GPTAB:
11105 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11106 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11107 BFD_ASSERT (name != NULL
11108 && CONST_STRNEQ (name, ".gptab."));
11109 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11110 BFD_ASSERT (sec != NULL);
11111 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11112 break;
11113
11114 case SHT_MIPS_CONTENT:
11115 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11116 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11117 BFD_ASSERT (name != NULL
11118 && CONST_STRNEQ (name, ".MIPS.content"));
11119 sec = bfd_get_section_by_name (abfd,
11120 name + sizeof ".MIPS.content" - 1);
11121 BFD_ASSERT (sec != NULL);
11122 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11123 break;
11124
11125 case SHT_MIPS_SYMBOL_LIB:
11126 sec = bfd_get_section_by_name (abfd, ".dynsym");
11127 if (sec != NULL)
11128 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11129 sec = bfd_get_section_by_name (abfd, ".liblist");
11130 if (sec != NULL)
11131 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11132 break;
11133
11134 case SHT_MIPS_EVENTS:
11135 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11136 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11137 BFD_ASSERT (name != NULL);
11138 if (CONST_STRNEQ (name, ".MIPS.events"))
11139 sec = bfd_get_section_by_name (abfd,
11140 name + sizeof ".MIPS.events" - 1);
11141 else
11142 {
11143 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11144 sec = bfd_get_section_by_name (abfd,
11145 (name
11146 + sizeof ".MIPS.post_rel" - 1));
11147 }
11148 BFD_ASSERT (sec != NULL);
11149 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11150 break;
11151
11152 }
11153 }
11154 }
11155 \f
11156 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11157 segments. */
11158
11159 int
11160 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11161 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11162 {
11163 asection *s;
11164 int ret = 0;
11165
11166 /* See if we need a PT_MIPS_REGINFO segment. */
11167 s = bfd_get_section_by_name (abfd, ".reginfo");
11168 if (s && (s->flags & SEC_LOAD))
11169 ++ret;
11170
11171 /* See if we need a PT_MIPS_OPTIONS segment. */
11172 if (IRIX_COMPAT (abfd) == ict_irix6
11173 && bfd_get_section_by_name (abfd,
11174 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11175 ++ret;
11176
11177 /* See if we need a PT_MIPS_RTPROC segment. */
11178 if (IRIX_COMPAT (abfd) == ict_irix5
11179 && bfd_get_section_by_name (abfd, ".dynamic")
11180 && bfd_get_section_by_name (abfd, ".mdebug"))
11181 ++ret;
11182
11183 /* Allocate a PT_NULL header in dynamic objects. See
11184 _bfd_mips_elf_modify_segment_map for details. */
11185 if (!SGI_COMPAT (abfd)
11186 && bfd_get_section_by_name (abfd, ".dynamic"))
11187 ++ret;
11188
11189 return ret;
11190 }
11191
11192 /* Modify the segment map for an IRIX5 executable. */
11193
11194 bfd_boolean
11195 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11196 struct bfd_link_info *info)
11197 {
11198 asection *s;
11199 struct elf_segment_map *m, **pm;
11200 bfd_size_type amt;
11201
11202 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11203 segment. */
11204 s = bfd_get_section_by_name (abfd, ".reginfo");
11205 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11206 {
11207 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11208 if (m->p_type == PT_MIPS_REGINFO)
11209 break;
11210 if (m == NULL)
11211 {
11212 amt = sizeof *m;
11213 m = bfd_zalloc (abfd, amt);
11214 if (m == NULL)
11215 return FALSE;
11216
11217 m->p_type = PT_MIPS_REGINFO;
11218 m->count = 1;
11219 m->sections[0] = s;
11220
11221 /* We want to put it after the PHDR and INTERP segments. */
11222 pm = &elf_tdata (abfd)->segment_map;
11223 while (*pm != NULL
11224 && ((*pm)->p_type == PT_PHDR
11225 || (*pm)->p_type == PT_INTERP))
11226 pm = &(*pm)->next;
11227
11228 m->next = *pm;
11229 *pm = m;
11230 }
11231 }
11232
11233 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11234 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11235 PT_MIPS_OPTIONS segment immediately following the program header
11236 table. */
11237 if (NEWABI_P (abfd)
11238 /* On non-IRIX6 new abi, we'll have already created a segment
11239 for this section, so don't create another. I'm not sure this
11240 is not also the case for IRIX 6, but I can't test it right
11241 now. */
11242 && IRIX_COMPAT (abfd) == ict_irix6)
11243 {
11244 for (s = abfd->sections; s; s = s->next)
11245 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11246 break;
11247
11248 if (s)
11249 {
11250 struct elf_segment_map *options_segment;
11251
11252 pm = &elf_tdata (abfd)->segment_map;
11253 while (*pm != NULL
11254 && ((*pm)->p_type == PT_PHDR
11255 || (*pm)->p_type == PT_INTERP))
11256 pm = &(*pm)->next;
11257
11258 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11259 {
11260 amt = sizeof (struct elf_segment_map);
11261 options_segment = bfd_zalloc (abfd, amt);
11262 options_segment->next = *pm;
11263 options_segment->p_type = PT_MIPS_OPTIONS;
11264 options_segment->p_flags = PF_R;
11265 options_segment->p_flags_valid = TRUE;
11266 options_segment->count = 1;
11267 options_segment->sections[0] = s;
11268 *pm = options_segment;
11269 }
11270 }
11271 }
11272 else
11273 {
11274 if (IRIX_COMPAT (abfd) == ict_irix5)
11275 {
11276 /* If there are .dynamic and .mdebug sections, we make a room
11277 for the RTPROC header. FIXME: Rewrite without section names. */
11278 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11279 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11280 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11281 {
11282 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11283 if (m->p_type == PT_MIPS_RTPROC)
11284 break;
11285 if (m == NULL)
11286 {
11287 amt = sizeof *m;
11288 m = bfd_zalloc (abfd, amt);
11289 if (m == NULL)
11290 return FALSE;
11291
11292 m->p_type = PT_MIPS_RTPROC;
11293
11294 s = bfd_get_section_by_name (abfd, ".rtproc");
11295 if (s == NULL)
11296 {
11297 m->count = 0;
11298 m->p_flags = 0;
11299 m->p_flags_valid = 1;
11300 }
11301 else
11302 {
11303 m->count = 1;
11304 m->sections[0] = s;
11305 }
11306
11307 /* We want to put it after the DYNAMIC segment. */
11308 pm = &elf_tdata (abfd)->segment_map;
11309 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11310 pm = &(*pm)->next;
11311 if (*pm != NULL)
11312 pm = &(*pm)->next;
11313
11314 m->next = *pm;
11315 *pm = m;
11316 }
11317 }
11318 }
11319 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11320 .dynstr, .dynsym, and .hash sections, and everything in
11321 between. */
11322 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11323 pm = &(*pm)->next)
11324 if ((*pm)->p_type == PT_DYNAMIC)
11325 break;
11326 m = *pm;
11327 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11328 {
11329 /* For a normal mips executable the permissions for the PT_DYNAMIC
11330 segment are read, write and execute. We do that here since
11331 the code in elf.c sets only the read permission. This matters
11332 sometimes for the dynamic linker. */
11333 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11334 {
11335 m->p_flags = PF_R | PF_W | PF_X;
11336 m->p_flags_valid = 1;
11337 }
11338 }
11339 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11340 glibc's dynamic linker has traditionally derived the number of
11341 tags from the p_filesz field, and sometimes allocates stack
11342 arrays of that size. An overly-big PT_DYNAMIC segment can
11343 be actively harmful in such cases. Making PT_DYNAMIC contain
11344 other sections can also make life hard for the prelinker,
11345 which might move one of the other sections to a different
11346 PT_LOAD segment. */
11347 if (SGI_COMPAT (abfd)
11348 && m != NULL
11349 && m->count == 1
11350 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11351 {
11352 static const char *sec_names[] =
11353 {
11354 ".dynamic", ".dynstr", ".dynsym", ".hash"
11355 };
11356 bfd_vma low, high;
11357 unsigned int i, c;
11358 struct elf_segment_map *n;
11359
11360 low = ~(bfd_vma) 0;
11361 high = 0;
11362 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11363 {
11364 s = bfd_get_section_by_name (abfd, sec_names[i]);
11365 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11366 {
11367 bfd_size_type sz;
11368
11369 if (low > s->vma)
11370 low = s->vma;
11371 sz = s->size;
11372 if (high < s->vma + sz)
11373 high = s->vma + sz;
11374 }
11375 }
11376
11377 c = 0;
11378 for (s = abfd->sections; s != NULL; s = s->next)
11379 if ((s->flags & SEC_LOAD) != 0
11380 && s->vma >= low
11381 && s->vma + s->size <= high)
11382 ++c;
11383
11384 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11385 n = bfd_zalloc (abfd, amt);
11386 if (n == NULL)
11387 return FALSE;
11388 *n = *m;
11389 n->count = c;
11390
11391 i = 0;
11392 for (s = abfd->sections; s != NULL; s = s->next)
11393 {
11394 if ((s->flags & SEC_LOAD) != 0
11395 && s->vma >= low
11396 && s->vma + s->size <= high)
11397 {
11398 n->sections[i] = s;
11399 ++i;
11400 }
11401 }
11402
11403 *pm = n;
11404 }
11405 }
11406
11407 /* Allocate a spare program header in dynamic objects so that tools
11408 like the prelinker can add an extra PT_LOAD entry.
11409
11410 If the prelinker needs to make room for a new PT_LOAD entry, its
11411 standard procedure is to move the first (read-only) sections into
11412 the new (writable) segment. However, the MIPS ABI requires
11413 .dynamic to be in a read-only segment, and the section will often
11414 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11415
11416 Although the prelinker could in principle move .dynamic to a
11417 writable segment, it seems better to allocate a spare program
11418 header instead, and avoid the need to move any sections.
11419 There is a long tradition of allocating spare dynamic tags,
11420 so allocating a spare program header seems like a natural
11421 extension.
11422
11423 If INFO is NULL, we may be copying an already prelinked binary
11424 with objcopy or strip, so do not add this header. */
11425 if (info != NULL
11426 && !SGI_COMPAT (abfd)
11427 && bfd_get_section_by_name (abfd, ".dynamic"))
11428 {
11429 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11430 if ((*pm)->p_type == PT_NULL)
11431 break;
11432 if (*pm == NULL)
11433 {
11434 m = bfd_zalloc (abfd, sizeof (*m));
11435 if (m == NULL)
11436 return FALSE;
11437
11438 m->p_type = PT_NULL;
11439 *pm = m;
11440 }
11441 }
11442
11443 return TRUE;
11444 }
11445 \f
11446 /* Return the section that should be marked against GC for a given
11447 relocation. */
11448
11449 asection *
11450 _bfd_mips_elf_gc_mark_hook (asection *sec,
11451 struct bfd_link_info *info,
11452 Elf_Internal_Rela *rel,
11453 struct elf_link_hash_entry *h,
11454 Elf_Internal_Sym *sym)
11455 {
11456 /* ??? Do mips16 stub sections need to be handled special? */
11457
11458 if (h != NULL)
11459 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11460 {
11461 case R_MIPS_GNU_VTINHERIT:
11462 case R_MIPS_GNU_VTENTRY:
11463 return NULL;
11464 }
11465
11466 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11467 }
11468
11469 /* Update the got entry reference counts for the section being removed. */
11470
11471 bfd_boolean
11472 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11473 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11474 asection *sec ATTRIBUTE_UNUSED,
11475 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11476 {
11477 #if 0
11478 Elf_Internal_Shdr *symtab_hdr;
11479 struct elf_link_hash_entry **sym_hashes;
11480 bfd_signed_vma *local_got_refcounts;
11481 const Elf_Internal_Rela *rel, *relend;
11482 unsigned long r_symndx;
11483 struct elf_link_hash_entry *h;
11484
11485 if (info->relocatable)
11486 return TRUE;
11487
11488 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11489 sym_hashes = elf_sym_hashes (abfd);
11490 local_got_refcounts = elf_local_got_refcounts (abfd);
11491
11492 relend = relocs + sec->reloc_count;
11493 for (rel = relocs; rel < relend; rel++)
11494 switch (ELF_R_TYPE (abfd, rel->r_info))
11495 {
11496 case R_MIPS16_GOT16:
11497 case R_MIPS16_CALL16:
11498 case R_MIPS_GOT16:
11499 case R_MIPS_CALL16:
11500 case R_MIPS_CALL_HI16:
11501 case R_MIPS_CALL_LO16:
11502 case R_MIPS_GOT_HI16:
11503 case R_MIPS_GOT_LO16:
11504 case R_MIPS_GOT_DISP:
11505 case R_MIPS_GOT_PAGE:
11506 case R_MIPS_GOT_OFST:
11507 case R_MICROMIPS_GOT16:
11508 case R_MICROMIPS_CALL16:
11509 case R_MICROMIPS_CALL_HI16:
11510 case R_MICROMIPS_CALL_LO16:
11511 case R_MICROMIPS_GOT_HI16:
11512 case R_MICROMIPS_GOT_LO16:
11513 case R_MICROMIPS_GOT_DISP:
11514 case R_MICROMIPS_GOT_PAGE:
11515 case R_MICROMIPS_GOT_OFST:
11516 /* ??? It would seem that the existing MIPS code does no sort
11517 of reference counting or whatnot on its GOT and PLT entries,
11518 so it is not possible to garbage collect them at this time. */
11519 break;
11520
11521 default:
11522 break;
11523 }
11524 #endif
11525
11526 return TRUE;
11527 }
11528 \f
11529 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11530 hiding the old indirect symbol. Process additional relocation
11531 information. Also called for weakdefs, in which case we just let
11532 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11533
11534 void
11535 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11536 struct elf_link_hash_entry *dir,
11537 struct elf_link_hash_entry *ind)
11538 {
11539 struct mips_elf_link_hash_entry *dirmips, *indmips;
11540
11541 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11542
11543 dirmips = (struct mips_elf_link_hash_entry *) dir;
11544 indmips = (struct mips_elf_link_hash_entry *) ind;
11545 /* Any absolute non-dynamic relocations against an indirect or weak
11546 definition will be against the target symbol. */
11547 if (indmips->has_static_relocs)
11548 dirmips->has_static_relocs = TRUE;
11549
11550 if (ind->root.type != bfd_link_hash_indirect)
11551 return;
11552
11553 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11554 if (indmips->readonly_reloc)
11555 dirmips->readonly_reloc = TRUE;
11556 if (indmips->no_fn_stub)
11557 dirmips->no_fn_stub = TRUE;
11558 if (indmips->fn_stub)
11559 {
11560 dirmips->fn_stub = indmips->fn_stub;
11561 indmips->fn_stub = NULL;
11562 }
11563 if (indmips->need_fn_stub)
11564 {
11565 dirmips->need_fn_stub = TRUE;
11566 indmips->need_fn_stub = FALSE;
11567 }
11568 if (indmips->call_stub)
11569 {
11570 dirmips->call_stub = indmips->call_stub;
11571 indmips->call_stub = NULL;
11572 }
11573 if (indmips->call_fp_stub)
11574 {
11575 dirmips->call_fp_stub = indmips->call_fp_stub;
11576 indmips->call_fp_stub = NULL;
11577 }
11578 if (indmips->global_got_area < dirmips->global_got_area)
11579 dirmips->global_got_area = indmips->global_got_area;
11580 if (indmips->global_got_area < GGA_NONE)
11581 indmips->global_got_area = GGA_NONE;
11582 if (indmips->has_nonpic_branches)
11583 dirmips->has_nonpic_branches = TRUE;
11584
11585 if (dirmips->tls_type == 0)
11586 dirmips->tls_type = indmips->tls_type;
11587 }
11588 \f
11589 #define PDR_SIZE 32
11590
11591 bfd_boolean
11592 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11593 struct bfd_link_info *info)
11594 {
11595 asection *o;
11596 bfd_boolean ret = FALSE;
11597 unsigned char *tdata;
11598 size_t i, skip;
11599
11600 o = bfd_get_section_by_name (abfd, ".pdr");
11601 if (! o)
11602 return FALSE;
11603 if (o->size == 0)
11604 return FALSE;
11605 if (o->size % PDR_SIZE != 0)
11606 return FALSE;
11607 if (o->output_section != NULL
11608 && bfd_is_abs_section (o->output_section))
11609 return FALSE;
11610
11611 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11612 if (! tdata)
11613 return FALSE;
11614
11615 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11616 info->keep_memory);
11617 if (!cookie->rels)
11618 {
11619 free (tdata);
11620 return FALSE;
11621 }
11622
11623 cookie->rel = cookie->rels;
11624 cookie->relend = cookie->rels + o->reloc_count;
11625
11626 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11627 {
11628 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11629 {
11630 tdata[i] = 1;
11631 skip ++;
11632 }
11633 }
11634
11635 if (skip != 0)
11636 {
11637 mips_elf_section_data (o)->u.tdata = tdata;
11638 o->size -= skip * PDR_SIZE;
11639 ret = TRUE;
11640 }
11641 else
11642 free (tdata);
11643
11644 if (! info->keep_memory)
11645 free (cookie->rels);
11646
11647 return ret;
11648 }
11649
11650 bfd_boolean
11651 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11652 {
11653 if (strcmp (sec->name, ".pdr") == 0)
11654 return TRUE;
11655 return FALSE;
11656 }
11657
11658 bfd_boolean
11659 _bfd_mips_elf_write_section (bfd *output_bfd,
11660 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11661 asection *sec, bfd_byte *contents)
11662 {
11663 bfd_byte *to, *from, *end;
11664 int i;
11665
11666 if (strcmp (sec->name, ".pdr") != 0)
11667 return FALSE;
11668
11669 if (mips_elf_section_data (sec)->u.tdata == NULL)
11670 return FALSE;
11671
11672 to = contents;
11673 end = contents + sec->size;
11674 for (from = contents, i = 0;
11675 from < end;
11676 from += PDR_SIZE, i++)
11677 {
11678 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11679 continue;
11680 if (to != from)
11681 memcpy (to, from, PDR_SIZE);
11682 to += PDR_SIZE;
11683 }
11684 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11685 sec->output_offset, sec->size);
11686 return TRUE;
11687 }
11688 \f
11689 /* microMIPS code retains local labels for linker relaxation. Omit them
11690 from output by default for clarity. */
11691
11692 bfd_boolean
11693 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11694 {
11695 return _bfd_elf_is_local_label_name (abfd, sym->name);
11696 }
11697
11698 /* MIPS ELF uses a special find_nearest_line routine in order the
11699 handle the ECOFF debugging information. */
11700
11701 struct mips_elf_find_line
11702 {
11703 struct ecoff_debug_info d;
11704 struct ecoff_find_line i;
11705 };
11706
11707 bfd_boolean
11708 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11709 asymbol **symbols, bfd_vma offset,
11710 const char **filename_ptr,
11711 const char **functionname_ptr,
11712 unsigned int *line_ptr)
11713 {
11714 asection *msec;
11715
11716 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11717 filename_ptr, functionname_ptr,
11718 line_ptr))
11719 return TRUE;
11720
11721 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11722 section, symbols, offset,
11723 filename_ptr, functionname_ptr,
11724 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11725 &elf_tdata (abfd)->dwarf2_find_line_info))
11726 return TRUE;
11727
11728 msec = bfd_get_section_by_name (abfd, ".mdebug");
11729 if (msec != NULL)
11730 {
11731 flagword origflags;
11732 struct mips_elf_find_line *fi;
11733 const struct ecoff_debug_swap * const swap =
11734 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11735
11736 /* If we are called during a link, mips_elf_final_link may have
11737 cleared the SEC_HAS_CONTENTS field. We force it back on here
11738 if appropriate (which it normally will be). */
11739 origflags = msec->flags;
11740 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11741 msec->flags |= SEC_HAS_CONTENTS;
11742
11743 fi = elf_tdata (abfd)->find_line_info;
11744 if (fi == NULL)
11745 {
11746 bfd_size_type external_fdr_size;
11747 char *fraw_src;
11748 char *fraw_end;
11749 struct fdr *fdr_ptr;
11750 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11751
11752 fi = bfd_zalloc (abfd, amt);
11753 if (fi == NULL)
11754 {
11755 msec->flags = origflags;
11756 return FALSE;
11757 }
11758
11759 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11760 {
11761 msec->flags = origflags;
11762 return FALSE;
11763 }
11764
11765 /* Swap in the FDR information. */
11766 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11767 fi->d.fdr = bfd_alloc (abfd, amt);
11768 if (fi->d.fdr == NULL)
11769 {
11770 msec->flags = origflags;
11771 return FALSE;
11772 }
11773 external_fdr_size = swap->external_fdr_size;
11774 fdr_ptr = fi->d.fdr;
11775 fraw_src = (char *) fi->d.external_fdr;
11776 fraw_end = (fraw_src
11777 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11778 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11779 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11780
11781 elf_tdata (abfd)->find_line_info = fi;
11782
11783 /* Note that we don't bother to ever free this information.
11784 find_nearest_line is either called all the time, as in
11785 objdump -l, so the information should be saved, or it is
11786 rarely called, as in ld error messages, so the memory
11787 wasted is unimportant. Still, it would probably be a
11788 good idea for free_cached_info to throw it away. */
11789 }
11790
11791 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11792 &fi->i, filename_ptr, functionname_ptr,
11793 line_ptr))
11794 {
11795 msec->flags = origflags;
11796 return TRUE;
11797 }
11798
11799 msec->flags = origflags;
11800 }
11801
11802 /* Fall back on the generic ELF find_nearest_line routine. */
11803
11804 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11805 filename_ptr, functionname_ptr,
11806 line_ptr);
11807 }
11808
11809 bfd_boolean
11810 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11811 const char **filename_ptr,
11812 const char **functionname_ptr,
11813 unsigned int *line_ptr)
11814 {
11815 bfd_boolean found;
11816 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11817 functionname_ptr, line_ptr,
11818 & elf_tdata (abfd)->dwarf2_find_line_info);
11819 return found;
11820 }
11821
11822 \f
11823 /* When are writing out the .options or .MIPS.options section,
11824 remember the bytes we are writing out, so that we can install the
11825 GP value in the section_processing routine. */
11826
11827 bfd_boolean
11828 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11829 const void *location,
11830 file_ptr offset, bfd_size_type count)
11831 {
11832 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11833 {
11834 bfd_byte *c;
11835
11836 if (elf_section_data (section) == NULL)
11837 {
11838 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11839 section->used_by_bfd = bfd_zalloc (abfd, amt);
11840 if (elf_section_data (section) == NULL)
11841 return FALSE;
11842 }
11843 c = mips_elf_section_data (section)->u.tdata;
11844 if (c == NULL)
11845 {
11846 c = bfd_zalloc (abfd, section->size);
11847 if (c == NULL)
11848 return FALSE;
11849 mips_elf_section_data (section)->u.tdata = c;
11850 }
11851
11852 memcpy (c + offset, location, count);
11853 }
11854
11855 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11856 count);
11857 }
11858
11859 /* This is almost identical to bfd_generic_get_... except that some
11860 MIPS relocations need to be handled specially. Sigh. */
11861
11862 bfd_byte *
11863 _bfd_elf_mips_get_relocated_section_contents
11864 (bfd *abfd,
11865 struct bfd_link_info *link_info,
11866 struct bfd_link_order *link_order,
11867 bfd_byte *data,
11868 bfd_boolean relocatable,
11869 asymbol **symbols)
11870 {
11871 /* Get enough memory to hold the stuff */
11872 bfd *input_bfd = link_order->u.indirect.section->owner;
11873 asection *input_section = link_order->u.indirect.section;
11874 bfd_size_type sz;
11875
11876 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11877 arelent **reloc_vector = NULL;
11878 long reloc_count;
11879
11880 if (reloc_size < 0)
11881 goto error_return;
11882
11883 reloc_vector = bfd_malloc (reloc_size);
11884 if (reloc_vector == NULL && reloc_size != 0)
11885 goto error_return;
11886
11887 /* read in the section */
11888 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11889 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11890 goto error_return;
11891
11892 reloc_count = bfd_canonicalize_reloc (input_bfd,
11893 input_section,
11894 reloc_vector,
11895 symbols);
11896 if (reloc_count < 0)
11897 goto error_return;
11898
11899 if (reloc_count > 0)
11900 {
11901 arelent **parent;
11902 /* for mips */
11903 int gp_found;
11904 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11905
11906 {
11907 struct bfd_hash_entry *h;
11908 struct bfd_link_hash_entry *lh;
11909 /* Skip all this stuff if we aren't mixing formats. */
11910 if (abfd && input_bfd
11911 && abfd->xvec == input_bfd->xvec)
11912 lh = 0;
11913 else
11914 {
11915 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11916 lh = (struct bfd_link_hash_entry *) h;
11917 }
11918 lookup:
11919 if (lh)
11920 {
11921 switch (lh->type)
11922 {
11923 case bfd_link_hash_undefined:
11924 case bfd_link_hash_undefweak:
11925 case bfd_link_hash_common:
11926 gp_found = 0;
11927 break;
11928 case bfd_link_hash_defined:
11929 case bfd_link_hash_defweak:
11930 gp_found = 1;
11931 gp = lh->u.def.value;
11932 break;
11933 case bfd_link_hash_indirect:
11934 case bfd_link_hash_warning:
11935 lh = lh->u.i.link;
11936 /* @@FIXME ignoring warning for now */
11937 goto lookup;
11938 case bfd_link_hash_new:
11939 default:
11940 abort ();
11941 }
11942 }
11943 else
11944 gp_found = 0;
11945 }
11946 /* end mips */
11947 for (parent = reloc_vector; *parent != NULL; parent++)
11948 {
11949 char *error_message = NULL;
11950 bfd_reloc_status_type r;
11951
11952 /* Specific to MIPS: Deal with relocation types that require
11953 knowing the gp of the output bfd. */
11954 asymbol *sym = *(*parent)->sym_ptr_ptr;
11955
11956 /* If we've managed to find the gp and have a special
11957 function for the relocation then go ahead, else default
11958 to the generic handling. */
11959 if (gp_found
11960 && (*parent)->howto->special_function
11961 == _bfd_mips_elf32_gprel16_reloc)
11962 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11963 input_section, relocatable,
11964 data, gp);
11965 else
11966 r = bfd_perform_relocation (input_bfd, *parent, data,
11967 input_section,
11968 relocatable ? abfd : NULL,
11969 &error_message);
11970
11971 if (relocatable)
11972 {
11973 asection *os = input_section->output_section;
11974
11975 /* A partial link, so keep the relocs */
11976 os->orelocation[os->reloc_count] = *parent;
11977 os->reloc_count++;
11978 }
11979
11980 if (r != bfd_reloc_ok)
11981 {
11982 switch (r)
11983 {
11984 case bfd_reloc_undefined:
11985 if (!((*link_info->callbacks->undefined_symbol)
11986 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11987 input_bfd, input_section, (*parent)->address, TRUE)))
11988 goto error_return;
11989 break;
11990 case bfd_reloc_dangerous:
11991 BFD_ASSERT (error_message != NULL);
11992 if (!((*link_info->callbacks->reloc_dangerous)
11993 (link_info, error_message, input_bfd, input_section,
11994 (*parent)->address)))
11995 goto error_return;
11996 break;
11997 case bfd_reloc_overflow:
11998 if (!((*link_info->callbacks->reloc_overflow)
11999 (link_info, NULL,
12000 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12001 (*parent)->howto->name, (*parent)->addend,
12002 input_bfd, input_section, (*parent)->address)))
12003 goto error_return;
12004 break;
12005 case bfd_reloc_outofrange:
12006 default:
12007 abort ();
12008 break;
12009 }
12010
12011 }
12012 }
12013 }
12014 if (reloc_vector != NULL)
12015 free (reloc_vector);
12016 return data;
12017
12018 error_return:
12019 if (reloc_vector != NULL)
12020 free (reloc_vector);
12021 return NULL;
12022 }
12023 \f
12024 static bfd_boolean
12025 mips_elf_relax_delete_bytes (bfd *abfd,
12026 asection *sec, bfd_vma addr, int count)
12027 {
12028 Elf_Internal_Shdr *symtab_hdr;
12029 unsigned int sec_shndx;
12030 bfd_byte *contents;
12031 Elf_Internal_Rela *irel, *irelend;
12032 Elf_Internal_Sym *isym;
12033 Elf_Internal_Sym *isymend;
12034 struct elf_link_hash_entry **sym_hashes;
12035 struct elf_link_hash_entry **end_hashes;
12036 struct elf_link_hash_entry **start_hashes;
12037 unsigned int symcount;
12038
12039 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12040 contents = elf_section_data (sec)->this_hdr.contents;
12041
12042 irel = elf_section_data (sec)->relocs;
12043 irelend = irel + sec->reloc_count;
12044
12045 /* Actually delete the bytes. */
12046 memmove (contents + addr, contents + addr + count,
12047 (size_t) (sec->size - addr - count));
12048 sec->size -= count;
12049
12050 /* Adjust all the relocs. */
12051 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12052 {
12053 /* Get the new reloc address. */
12054 if (irel->r_offset > addr)
12055 irel->r_offset -= count;
12056 }
12057
12058 BFD_ASSERT (addr % 2 == 0);
12059 BFD_ASSERT (count % 2 == 0);
12060
12061 /* Adjust the local symbols defined in this section. */
12062 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12063 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12064 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12065 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12066 isym->st_value -= count;
12067
12068 /* Now adjust the global symbols defined in this section. */
12069 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12070 - symtab_hdr->sh_info);
12071 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12072 end_hashes = sym_hashes + symcount;
12073
12074 for (; sym_hashes < end_hashes; sym_hashes++)
12075 {
12076 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12077
12078 if ((sym_hash->root.type == bfd_link_hash_defined
12079 || sym_hash->root.type == bfd_link_hash_defweak)
12080 && sym_hash->root.u.def.section == sec)
12081 {
12082 bfd_vma value = sym_hash->root.u.def.value;
12083
12084 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12085 value &= MINUS_TWO;
12086 if (value > addr)
12087 sym_hash->root.u.def.value -= count;
12088 }
12089 }
12090
12091 return TRUE;
12092 }
12093
12094
12095 /* Opcodes needed for microMIPS relaxation as found in
12096 opcodes/micromips-opc.c. */
12097
12098 struct opcode_descriptor {
12099 unsigned long match;
12100 unsigned long mask;
12101 };
12102
12103 /* The $ra register aka $31. */
12104
12105 #define RA 31
12106
12107 /* 32-bit instruction format register fields. */
12108
12109 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12110 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12111
12112 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12113
12114 #define OP16_VALID_REG(r) \
12115 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12116
12117
12118 /* 32-bit and 16-bit branches. */
12119
12120 static const struct opcode_descriptor b_insns_32[] = {
12121 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12122 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12123 { 0, 0 } /* End marker for find_match(). */
12124 };
12125
12126 static const struct opcode_descriptor bc_insn_32 =
12127 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12128
12129 static const struct opcode_descriptor bz_insn_32 =
12130 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12131
12132 static const struct opcode_descriptor bzal_insn_32 =
12133 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12134
12135 static const struct opcode_descriptor beq_insn_32 =
12136 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12137
12138 static const struct opcode_descriptor b_insn_16 =
12139 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12140
12141 static const struct opcode_descriptor bz_insn_16 =
12142 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12143
12144
12145 /* 32-bit and 16-bit branch EQ and NE zero. */
12146
12147 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12148 eq and second the ne. This convention is used when replacing a
12149 32-bit BEQ/BNE with the 16-bit version. */
12150
12151 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12152
12153 static const struct opcode_descriptor bz_rs_insns_32[] = {
12154 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12155 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12156 { 0, 0 } /* End marker for find_match(). */
12157 };
12158
12159 static const struct opcode_descriptor bz_rt_insns_32[] = {
12160 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12161 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12162 { 0, 0 } /* End marker for find_match(). */
12163 };
12164
12165 static const struct opcode_descriptor bzc_insns_32[] = {
12166 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12167 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12168 { 0, 0 } /* End marker for find_match(). */
12169 };
12170
12171 static const struct opcode_descriptor bz_insns_16[] = {
12172 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12173 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12174 { 0, 0 } /* End marker for find_match(). */
12175 };
12176
12177 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12178
12179 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12180 #define BZ16_REG_FIELD(r) \
12181 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12182
12183
12184 /* 32-bit instructions with a delay slot. */
12185
12186 static const struct opcode_descriptor jal_insn_32_bd16 =
12187 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12188
12189 static const struct opcode_descriptor jal_insn_32_bd32 =
12190 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12191
12192 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12193 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12194
12195 static const struct opcode_descriptor j_insn_32 =
12196 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12197
12198 static const struct opcode_descriptor jalr_insn_32 =
12199 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12200
12201 /* This table can be compacted, because no opcode replacement is made. */
12202
12203 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12204 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12205
12206 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12207 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12208
12209 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12210 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12211 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12212 { 0, 0 } /* End marker for find_match(). */
12213 };
12214
12215 /* This table can be compacted, because no opcode replacement is made. */
12216
12217 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12218 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12219
12220 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12221 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12222 { 0, 0 } /* End marker for find_match(). */
12223 };
12224
12225
12226 /* 16-bit instructions with a delay slot. */
12227
12228 static const struct opcode_descriptor jalr_insn_16_bd16 =
12229 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12230
12231 static const struct opcode_descriptor jalr_insn_16_bd32 =
12232 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12233
12234 static const struct opcode_descriptor jr_insn_16 =
12235 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12236
12237 #define JR16_REG(opcode) ((opcode) & 0x1f)
12238
12239 /* This table can be compacted, because no opcode replacement is made. */
12240
12241 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12242 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12243
12244 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12245 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12246 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12247 { 0, 0 } /* End marker for find_match(). */
12248 };
12249
12250
12251 /* LUI instruction. */
12252
12253 static const struct opcode_descriptor lui_insn =
12254 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12255
12256
12257 /* ADDIU instruction. */
12258
12259 static const struct opcode_descriptor addiu_insn =
12260 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12261
12262 static const struct opcode_descriptor addiupc_insn =
12263 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12264
12265 #define ADDIUPC_REG_FIELD(r) \
12266 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12267
12268
12269 /* Relaxable instructions in a JAL delay slot: MOVE. */
12270
12271 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12272 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12273 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12274 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12275
12276 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12277 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12278
12279 static const struct opcode_descriptor move_insns_32[] = {
12280 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12281 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12282 { 0, 0 } /* End marker for find_match(). */
12283 };
12284
12285 static const struct opcode_descriptor move_insn_16 =
12286 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12287
12288
12289 /* NOP instructions. */
12290
12291 static const struct opcode_descriptor nop_insn_32 =
12292 { /* "nop", "", */ 0x00000000, 0xffffffff };
12293
12294 static const struct opcode_descriptor nop_insn_16 =
12295 { /* "nop", "", */ 0x0c00, 0xffff };
12296
12297
12298 /* Instruction match support. */
12299
12300 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12301
12302 static int
12303 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12304 {
12305 unsigned long indx;
12306
12307 for (indx = 0; insn[indx].mask != 0; indx++)
12308 if (MATCH (opcode, insn[indx]))
12309 return indx;
12310
12311 return -1;
12312 }
12313
12314
12315 /* Branch and delay slot decoding support. */
12316
12317 /* If PTR points to what *might* be a 16-bit branch or jump, then
12318 return the minimum length of its delay slot, otherwise return 0.
12319 Non-zero results are not definitive as we might be checking against
12320 the second half of another instruction. */
12321
12322 static int
12323 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12324 {
12325 unsigned long opcode;
12326 int bdsize;
12327
12328 opcode = bfd_get_16 (abfd, ptr);
12329 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12330 /* 16-bit branch/jump with a 32-bit delay slot. */
12331 bdsize = 4;
12332 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12333 || find_match (opcode, ds_insns_16_bd16) >= 0)
12334 /* 16-bit branch/jump with a 16-bit delay slot. */
12335 bdsize = 2;
12336 else
12337 /* No delay slot. */
12338 bdsize = 0;
12339
12340 return bdsize;
12341 }
12342
12343 /* If PTR points to what *might* be a 32-bit branch or jump, then
12344 return the minimum length of its delay slot, otherwise return 0.
12345 Non-zero results are not definitive as we might be checking against
12346 the second half of another instruction. */
12347
12348 static int
12349 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12350 {
12351 unsigned long opcode;
12352 int bdsize;
12353
12354 opcode = bfd_get_micromips_32 (abfd, ptr);
12355 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12356 /* 32-bit branch/jump with a 32-bit delay slot. */
12357 bdsize = 4;
12358 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12359 /* 32-bit branch/jump with a 16-bit delay slot. */
12360 bdsize = 2;
12361 else
12362 /* No delay slot. */
12363 bdsize = 0;
12364
12365 return bdsize;
12366 }
12367
12368 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12369 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12370
12371 static bfd_boolean
12372 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12373 {
12374 unsigned long opcode;
12375
12376 opcode = bfd_get_16 (abfd, ptr);
12377 if (MATCH (opcode, b_insn_16)
12378 /* B16 */
12379 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12380 /* JR16 */
12381 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12382 /* BEQZ16, BNEZ16 */
12383 || (MATCH (opcode, jalr_insn_16_bd32)
12384 /* JALR16 */
12385 && reg != JR16_REG (opcode) && reg != RA))
12386 return TRUE;
12387
12388 return FALSE;
12389 }
12390
12391 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12392 then return TRUE, otherwise FALSE. */
12393
12394 static bfd_boolean
12395 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12396 {
12397 unsigned long opcode;
12398
12399 opcode = bfd_get_micromips_32 (abfd, ptr);
12400 if (MATCH (opcode, j_insn_32)
12401 /* J */
12402 || MATCH (opcode, bc_insn_32)
12403 /* BC1F, BC1T, BC2F, BC2T */
12404 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12405 /* JAL, JALX */
12406 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12407 /* BGEZ, BGTZ, BLEZ, BLTZ */
12408 || (MATCH (opcode, bzal_insn_32)
12409 /* BGEZAL, BLTZAL */
12410 && reg != OP32_SREG (opcode) && reg != RA)
12411 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12412 /* JALR, JALR.HB, BEQ, BNE */
12413 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12414 return TRUE;
12415
12416 return FALSE;
12417 }
12418
12419 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12420 IRELEND) at OFFSET indicate that there must be a compact branch there,
12421 then return TRUE, otherwise FALSE. */
12422
12423 static bfd_boolean
12424 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12425 const Elf_Internal_Rela *internal_relocs,
12426 const Elf_Internal_Rela *irelend)
12427 {
12428 const Elf_Internal_Rela *irel;
12429 unsigned long opcode;
12430
12431 opcode = bfd_get_micromips_32 (abfd, ptr);
12432 if (find_match (opcode, bzc_insns_32) < 0)
12433 return FALSE;
12434
12435 for (irel = internal_relocs; irel < irelend; irel++)
12436 if (irel->r_offset == offset
12437 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12438 return TRUE;
12439
12440 return FALSE;
12441 }
12442
12443 /* Bitsize checking. */
12444 #define IS_BITSIZE(val, N) \
12445 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12446 - (1ULL << ((N) - 1))) == (val))
12447
12448 \f
12449 bfd_boolean
12450 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12451 struct bfd_link_info *link_info,
12452 bfd_boolean *again)
12453 {
12454 Elf_Internal_Shdr *symtab_hdr;
12455 Elf_Internal_Rela *internal_relocs;
12456 Elf_Internal_Rela *irel, *irelend;
12457 bfd_byte *contents = NULL;
12458 Elf_Internal_Sym *isymbuf = NULL;
12459
12460 /* Assume nothing changes. */
12461 *again = FALSE;
12462
12463 /* We don't have to do anything for a relocatable link, if
12464 this section does not have relocs, or if this is not a
12465 code section. */
12466
12467 if (link_info->relocatable
12468 || (sec->flags & SEC_RELOC) == 0
12469 || sec->reloc_count == 0
12470 || (sec->flags & SEC_CODE) == 0)
12471 return TRUE;
12472
12473 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12474
12475 /* Get a copy of the native relocations. */
12476 internal_relocs = (_bfd_elf_link_read_relocs
12477 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12478 link_info->keep_memory));
12479 if (internal_relocs == NULL)
12480 goto error_return;
12481
12482 /* Walk through them looking for relaxing opportunities. */
12483 irelend = internal_relocs + sec->reloc_count;
12484 for (irel = internal_relocs; irel < irelend; irel++)
12485 {
12486 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12487 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12488 bfd_boolean target_is_micromips_code_p;
12489 unsigned long opcode;
12490 bfd_vma symval;
12491 bfd_vma pcrval;
12492 bfd_byte *ptr;
12493 int fndopc;
12494
12495 /* The number of bytes to delete for relaxation and from where
12496 to delete these bytes starting at irel->r_offset. */
12497 int delcnt = 0;
12498 int deloff = 0;
12499
12500 /* If this isn't something that can be relaxed, then ignore
12501 this reloc. */
12502 if (r_type != R_MICROMIPS_HI16
12503 && r_type != R_MICROMIPS_PC16_S1
12504 && r_type != R_MICROMIPS_26_S1)
12505 continue;
12506
12507 /* Get the section contents if we haven't done so already. */
12508 if (contents == NULL)
12509 {
12510 /* Get cached copy if it exists. */
12511 if (elf_section_data (sec)->this_hdr.contents != NULL)
12512 contents = elf_section_data (sec)->this_hdr.contents;
12513 /* Go get them off disk. */
12514 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12515 goto error_return;
12516 }
12517 ptr = contents + irel->r_offset;
12518
12519 /* Read this BFD's local symbols if we haven't done so already. */
12520 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12521 {
12522 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12523 if (isymbuf == NULL)
12524 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12525 symtab_hdr->sh_info, 0,
12526 NULL, NULL, NULL);
12527 if (isymbuf == NULL)
12528 goto error_return;
12529 }
12530
12531 /* Get the value of the symbol referred to by the reloc. */
12532 if (r_symndx < symtab_hdr->sh_info)
12533 {
12534 /* A local symbol. */
12535 Elf_Internal_Sym *isym;
12536 asection *sym_sec;
12537
12538 isym = isymbuf + r_symndx;
12539 if (isym->st_shndx == SHN_UNDEF)
12540 sym_sec = bfd_und_section_ptr;
12541 else if (isym->st_shndx == SHN_ABS)
12542 sym_sec = bfd_abs_section_ptr;
12543 else if (isym->st_shndx == SHN_COMMON)
12544 sym_sec = bfd_com_section_ptr;
12545 else
12546 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12547 symval = (isym->st_value
12548 + sym_sec->output_section->vma
12549 + sym_sec->output_offset);
12550 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12551 }
12552 else
12553 {
12554 unsigned long indx;
12555 struct elf_link_hash_entry *h;
12556
12557 /* An external symbol. */
12558 indx = r_symndx - symtab_hdr->sh_info;
12559 h = elf_sym_hashes (abfd)[indx];
12560 BFD_ASSERT (h != NULL);
12561
12562 if (h->root.type != bfd_link_hash_defined
12563 && h->root.type != bfd_link_hash_defweak)
12564 /* This appears to be a reference to an undefined
12565 symbol. Just ignore it -- it will be caught by the
12566 regular reloc processing. */
12567 continue;
12568
12569 symval = (h->root.u.def.value
12570 + h->root.u.def.section->output_section->vma
12571 + h->root.u.def.section->output_offset);
12572 target_is_micromips_code_p = (!h->needs_plt
12573 && ELF_ST_IS_MICROMIPS (h->other));
12574 }
12575
12576
12577 /* For simplicity of coding, we are going to modify the
12578 section contents, the section relocs, and the BFD symbol
12579 table. We must tell the rest of the code not to free up this
12580 information. It would be possible to instead create a table
12581 of changes which have to be made, as is done in coff-mips.c;
12582 that would be more work, but would require less memory when
12583 the linker is run. */
12584
12585 /* Only 32-bit instructions relaxed. */
12586 if (irel->r_offset + 4 > sec->size)
12587 continue;
12588
12589 opcode = bfd_get_micromips_32 (abfd, ptr);
12590
12591 /* This is the pc-relative distance from the instruction the
12592 relocation is applied to, to the symbol referred. */
12593 pcrval = (symval
12594 - (sec->output_section->vma + sec->output_offset)
12595 - irel->r_offset);
12596
12597 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12598 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12599 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12600
12601 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12602
12603 where pcrval has first to be adjusted to apply against the LO16
12604 location (we make the adjustment later on, when we have figured
12605 out the offset). */
12606 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12607 {
12608 bfd_boolean bzc = FALSE;
12609 unsigned long nextopc;
12610 unsigned long reg;
12611 bfd_vma offset;
12612
12613 /* Give up if the previous reloc was a HI16 against this symbol
12614 too. */
12615 if (irel > internal_relocs
12616 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12617 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12618 continue;
12619
12620 /* Or if the next reloc is not a LO16 against this symbol. */
12621 if (irel + 1 >= irelend
12622 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12623 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12624 continue;
12625
12626 /* Or if the second next reloc is a LO16 against this symbol too. */
12627 if (irel + 2 >= irelend
12628 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12629 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12630 continue;
12631
12632 /* See if the LUI instruction *might* be in a branch delay slot.
12633 We check whether what looks like a 16-bit branch or jump is
12634 actually an immediate argument to a compact branch, and let
12635 it through if so. */
12636 if (irel->r_offset >= 2
12637 && check_br16_dslot (abfd, ptr - 2)
12638 && !(irel->r_offset >= 4
12639 && (bzc = check_relocated_bzc (abfd,
12640 ptr - 4, irel->r_offset - 4,
12641 internal_relocs, irelend))))
12642 continue;
12643 if (irel->r_offset >= 4
12644 && !bzc
12645 && check_br32_dslot (abfd, ptr - 4))
12646 continue;
12647
12648 reg = OP32_SREG (opcode);
12649
12650 /* We only relax adjacent instructions or ones separated with
12651 a branch or jump that has a delay slot. The branch or jump
12652 must not fiddle with the register used to hold the address.
12653 Subtract 4 for the LUI itself. */
12654 offset = irel[1].r_offset - irel[0].r_offset;
12655 switch (offset - 4)
12656 {
12657 case 0:
12658 break;
12659 case 2:
12660 if (check_br16 (abfd, ptr + 4, reg))
12661 break;
12662 continue;
12663 case 4:
12664 if (check_br32 (abfd, ptr + 4, reg))
12665 break;
12666 continue;
12667 default:
12668 continue;
12669 }
12670
12671 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12672
12673 /* Give up unless the same register is used with both
12674 relocations. */
12675 if (OP32_SREG (nextopc) != reg)
12676 continue;
12677
12678 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12679 and rounding up to take masking of the two LSBs into account. */
12680 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12681
12682 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12683 if (IS_BITSIZE (symval, 16))
12684 {
12685 /* Fix the relocation's type. */
12686 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12687
12688 /* Instructions using R_MICROMIPS_LO16 have the base or
12689 source register in bits 20:16. This register becomes $0
12690 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12691 nextopc &= ~0x001f0000;
12692 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12693 contents + irel[1].r_offset);
12694 }
12695
12696 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12697 We add 4 to take LUI deletion into account while checking
12698 the PC-relative distance. */
12699 else if (symval % 4 == 0
12700 && IS_BITSIZE (pcrval + 4, 25)
12701 && MATCH (nextopc, addiu_insn)
12702 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12703 && OP16_VALID_REG (OP32_TREG (nextopc)))
12704 {
12705 /* Fix the relocation's type. */
12706 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12707
12708 /* Replace ADDIU with the ADDIUPC version. */
12709 nextopc = (addiupc_insn.match
12710 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12711
12712 bfd_put_micromips_32 (abfd, nextopc,
12713 contents + irel[1].r_offset);
12714 }
12715
12716 /* Can't do anything, give up, sigh... */
12717 else
12718 continue;
12719
12720 /* Fix the relocation's type. */
12721 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12722
12723 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12724 delcnt = 4;
12725 deloff = 0;
12726 }
12727
12728 /* Compact branch relaxation -- due to the multitude of macros
12729 employed by the compiler/assembler, compact branches are not
12730 always generated. Obviously, this can/will be fixed elsewhere,
12731 but there is no drawback in double checking it here. */
12732 else if (r_type == R_MICROMIPS_PC16_S1
12733 && irel->r_offset + 5 < sec->size
12734 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12735 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12736 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12737 {
12738 unsigned long reg;
12739
12740 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12741
12742 /* Replace BEQZ/BNEZ with the compact version. */
12743 opcode = (bzc_insns_32[fndopc].match
12744 | BZC32_REG_FIELD (reg)
12745 | (opcode & 0xffff)); /* Addend value. */
12746
12747 bfd_put_micromips_32 (abfd, opcode, ptr);
12748
12749 /* Delete the 16-bit delay slot NOP: two bytes from
12750 irel->offset + 4. */
12751 delcnt = 2;
12752 deloff = 4;
12753 }
12754
12755 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12756 to check the distance from the next instruction, so subtract 2. */
12757 else if (r_type == R_MICROMIPS_PC16_S1
12758 && IS_BITSIZE (pcrval - 2, 11)
12759 && find_match (opcode, b_insns_32) >= 0)
12760 {
12761 /* Fix the relocation's type. */
12762 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12763
12764 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12765 bfd_put_16 (abfd,
12766 (b_insn_16.match
12767 | (opcode & 0x3ff)), /* Addend value. */
12768 ptr);
12769
12770 /* Delete 2 bytes from irel->r_offset + 2. */
12771 delcnt = 2;
12772 deloff = 2;
12773 }
12774
12775 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12776 to check the distance from the next instruction, so subtract 2. */
12777 else if (r_type == R_MICROMIPS_PC16_S1
12778 && IS_BITSIZE (pcrval - 2, 8)
12779 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12780 && OP16_VALID_REG (OP32_SREG (opcode)))
12781 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12782 && OP16_VALID_REG (OP32_TREG (opcode)))))
12783 {
12784 unsigned long reg;
12785
12786 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12787
12788 /* Fix the relocation's type. */
12789 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12790
12791 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12792 bfd_put_16 (abfd,
12793 (bz_insns_16[fndopc].match
12794 | BZ16_REG_FIELD (reg)
12795 | (opcode & 0x7f)), /* Addend value. */
12796 ptr);
12797
12798 /* Delete 2 bytes from irel->r_offset + 2. */
12799 delcnt = 2;
12800 deloff = 2;
12801 }
12802
12803 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12804 else if (r_type == R_MICROMIPS_26_S1
12805 && target_is_micromips_code_p
12806 && irel->r_offset + 7 < sec->size
12807 && MATCH (opcode, jal_insn_32_bd32))
12808 {
12809 unsigned long n32opc;
12810 bfd_boolean relaxed = FALSE;
12811
12812 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12813
12814 if (MATCH (n32opc, nop_insn_32))
12815 {
12816 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12817 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12818
12819 relaxed = TRUE;
12820 }
12821 else if (find_match (n32opc, move_insns_32) >= 0)
12822 {
12823 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12824 bfd_put_16 (abfd,
12825 (move_insn_16.match
12826 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12827 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12828 ptr + 4);
12829
12830 relaxed = TRUE;
12831 }
12832 /* Other 32-bit instructions relaxable to 16-bit
12833 instructions will be handled here later. */
12834
12835 if (relaxed)
12836 {
12837 /* JAL with 32-bit delay slot that is changed to a JALS
12838 with 16-bit delay slot. */
12839 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12840
12841 /* Delete 2 bytes from irel->r_offset + 6. */
12842 delcnt = 2;
12843 deloff = 6;
12844 }
12845 }
12846
12847 if (delcnt != 0)
12848 {
12849 /* Note that we've changed the relocs, section contents, etc. */
12850 elf_section_data (sec)->relocs = internal_relocs;
12851 elf_section_data (sec)->this_hdr.contents = contents;
12852 symtab_hdr->contents = (unsigned char *) isymbuf;
12853
12854 /* Delete bytes depending on the delcnt and deloff. */
12855 if (!mips_elf_relax_delete_bytes (abfd, sec,
12856 irel->r_offset + deloff, delcnt))
12857 goto error_return;
12858
12859 /* That will change things, so we should relax again.
12860 Note that this is not required, and it may be slow. */
12861 *again = TRUE;
12862 }
12863 }
12864
12865 if (isymbuf != NULL
12866 && symtab_hdr->contents != (unsigned char *) isymbuf)
12867 {
12868 if (! link_info->keep_memory)
12869 free (isymbuf);
12870 else
12871 {
12872 /* Cache the symbols for elf_link_input_bfd. */
12873 symtab_hdr->contents = (unsigned char *) isymbuf;
12874 }
12875 }
12876
12877 if (contents != NULL
12878 && elf_section_data (sec)->this_hdr.contents != contents)
12879 {
12880 if (! link_info->keep_memory)
12881 free (contents);
12882 else
12883 {
12884 /* Cache the section contents for elf_link_input_bfd. */
12885 elf_section_data (sec)->this_hdr.contents = contents;
12886 }
12887 }
12888
12889 if (internal_relocs != NULL
12890 && elf_section_data (sec)->relocs != internal_relocs)
12891 free (internal_relocs);
12892
12893 return TRUE;
12894
12895 error_return:
12896 if (isymbuf != NULL
12897 && symtab_hdr->contents != (unsigned char *) isymbuf)
12898 free (isymbuf);
12899 if (contents != NULL
12900 && elf_section_data (sec)->this_hdr.contents != contents)
12901 free (contents);
12902 if (internal_relocs != NULL
12903 && elf_section_data (sec)->relocs != internal_relocs)
12904 free (internal_relocs);
12905
12906 return FALSE;
12907 }
12908 \f
12909 /* Create a MIPS ELF linker hash table. */
12910
12911 struct bfd_link_hash_table *
12912 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12913 {
12914 struct mips_elf_link_hash_table *ret;
12915 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12916
12917 ret = bfd_malloc (amt);
12918 if (ret == NULL)
12919 return NULL;
12920
12921 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12922 mips_elf_link_hash_newfunc,
12923 sizeof (struct mips_elf_link_hash_entry),
12924 MIPS_ELF_DATA))
12925 {
12926 free (ret);
12927 return NULL;
12928 }
12929
12930 #if 0
12931 /* We no longer use this. */
12932 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12933 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12934 #endif
12935 ret->procedure_count = 0;
12936 ret->compact_rel_size = 0;
12937 ret->use_rld_obj_head = FALSE;
12938 ret->rld_symbol = NULL;
12939 ret->mips16_stubs_seen = FALSE;
12940 ret->use_plts_and_copy_relocs = FALSE;
12941 ret->is_vxworks = FALSE;
12942 ret->small_data_overflow_reported = FALSE;
12943 ret->srelbss = NULL;
12944 ret->sdynbss = NULL;
12945 ret->srelplt = NULL;
12946 ret->srelplt2 = NULL;
12947 ret->sgotplt = NULL;
12948 ret->splt = NULL;
12949 ret->sstubs = NULL;
12950 ret->sgot = NULL;
12951 ret->got_info = NULL;
12952 ret->plt_header_size = 0;
12953 ret->plt_entry_size = 0;
12954 ret->lazy_stub_count = 0;
12955 ret->function_stub_size = 0;
12956 ret->strampoline = NULL;
12957 ret->la25_stubs = NULL;
12958 ret->add_stub_section = NULL;
12959
12960 return &ret->root.root;
12961 }
12962
12963 /* Likewise, but indicate that the target is VxWorks. */
12964
12965 struct bfd_link_hash_table *
12966 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12967 {
12968 struct bfd_link_hash_table *ret;
12969
12970 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12971 if (ret)
12972 {
12973 struct mips_elf_link_hash_table *htab;
12974
12975 htab = (struct mips_elf_link_hash_table *) ret;
12976 htab->use_plts_and_copy_relocs = TRUE;
12977 htab->is_vxworks = TRUE;
12978 }
12979 return ret;
12980 }
12981
12982 /* A function that the linker calls if we are allowed to use PLTs
12983 and copy relocs. */
12984
12985 void
12986 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12987 {
12988 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12989 }
12990 \f
12991 /* We need to use a special link routine to handle the .reginfo and
12992 the .mdebug sections. We need to merge all instances of these
12993 sections together, not write them all out sequentially. */
12994
12995 bfd_boolean
12996 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12997 {
12998 asection *o;
12999 struct bfd_link_order *p;
13000 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13001 asection *rtproc_sec;
13002 Elf32_RegInfo reginfo;
13003 struct ecoff_debug_info debug;
13004 struct mips_htab_traverse_info hti;
13005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13006 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13007 HDRR *symhdr = &debug.symbolic_header;
13008 void *mdebug_handle = NULL;
13009 asection *s;
13010 EXTR esym;
13011 unsigned int i;
13012 bfd_size_type amt;
13013 struct mips_elf_link_hash_table *htab;
13014
13015 static const char * const secname[] =
13016 {
13017 ".text", ".init", ".fini", ".data",
13018 ".rodata", ".sdata", ".sbss", ".bss"
13019 };
13020 static const int sc[] =
13021 {
13022 scText, scInit, scFini, scData,
13023 scRData, scSData, scSBss, scBss
13024 };
13025
13026 /* Sort the dynamic symbols so that those with GOT entries come after
13027 those without. */
13028 htab = mips_elf_hash_table (info);
13029 BFD_ASSERT (htab != NULL);
13030
13031 if (!mips_elf_sort_hash_table (abfd, info))
13032 return FALSE;
13033
13034 /* Create any scheduled LA25 stubs. */
13035 hti.info = info;
13036 hti.output_bfd = abfd;
13037 hti.error = FALSE;
13038 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13039 if (hti.error)
13040 return FALSE;
13041
13042 /* Get a value for the GP register. */
13043 if (elf_gp (abfd) == 0)
13044 {
13045 struct bfd_link_hash_entry *h;
13046
13047 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13048 if (h != NULL && h->type == bfd_link_hash_defined)
13049 elf_gp (abfd) = (h->u.def.value
13050 + h->u.def.section->output_section->vma
13051 + h->u.def.section->output_offset);
13052 else if (htab->is_vxworks
13053 && (h = bfd_link_hash_lookup (info->hash,
13054 "_GLOBAL_OFFSET_TABLE_",
13055 FALSE, FALSE, TRUE))
13056 && h->type == bfd_link_hash_defined)
13057 elf_gp (abfd) = (h->u.def.section->output_section->vma
13058 + h->u.def.section->output_offset
13059 + h->u.def.value);
13060 else if (info->relocatable)
13061 {
13062 bfd_vma lo = MINUS_ONE;
13063
13064 /* Find the GP-relative section with the lowest offset. */
13065 for (o = abfd->sections; o != NULL; o = o->next)
13066 if (o->vma < lo
13067 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13068 lo = o->vma;
13069
13070 /* And calculate GP relative to that. */
13071 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13072 }
13073 else
13074 {
13075 /* If the relocate_section function needs to do a reloc
13076 involving the GP value, it should make a reloc_dangerous
13077 callback to warn that GP is not defined. */
13078 }
13079 }
13080
13081 /* Go through the sections and collect the .reginfo and .mdebug
13082 information. */
13083 reginfo_sec = NULL;
13084 mdebug_sec = NULL;
13085 gptab_data_sec = NULL;
13086 gptab_bss_sec = NULL;
13087 for (o = abfd->sections; o != NULL; o = o->next)
13088 {
13089 if (strcmp (o->name, ".reginfo") == 0)
13090 {
13091 memset (&reginfo, 0, sizeof reginfo);
13092
13093 /* We have found the .reginfo section in the output file.
13094 Look through all the link_orders comprising it and merge
13095 the information together. */
13096 for (p = o->map_head.link_order; p != NULL; p = p->next)
13097 {
13098 asection *input_section;
13099 bfd *input_bfd;
13100 Elf32_External_RegInfo ext;
13101 Elf32_RegInfo sub;
13102
13103 if (p->type != bfd_indirect_link_order)
13104 {
13105 if (p->type == bfd_data_link_order)
13106 continue;
13107 abort ();
13108 }
13109
13110 input_section = p->u.indirect.section;
13111 input_bfd = input_section->owner;
13112
13113 if (! bfd_get_section_contents (input_bfd, input_section,
13114 &ext, 0, sizeof ext))
13115 return FALSE;
13116
13117 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13118
13119 reginfo.ri_gprmask |= sub.ri_gprmask;
13120 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13121 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13122 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13123 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13124
13125 /* ri_gp_value is set by the function
13126 mips_elf32_section_processing when the section is
13127 finally written out. */
13128
13129 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13130 elf_link_input_bfd ignores this section. */
13131 input_section->flags &= ~SEC_HAS_CONTENTS;
13132 }
13133
13134 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13135 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13136
13137 /* Skip this section later on (I don't think this currently
13138 matters, but someday it might). */
13139 o->map_head.link_order = NULL;
13140
13141 reginfo_sec = o;
13142 }
13143
13144 if (strcmp (o->name, ".mdebug") == 0)
13145 {
13146 struct extsym_info einfo;
13147 bfd_vma last;
13148
13149 /* We have found the .mdebug section in the output file.
13150 Look through all the link_orders comprising it and merge
13151 the information together. */
13152 symhdr->magic = swap->sym_magic;
13153 /* FIXME: What should the version stamp be? */
13154 symhdr->vstamp = 0;
13155 symhdr->ilineMax = 0;
13156 symhdr->cbLine = 0;
13157 symhdr->idnMax = 0;
13158 symhdr->ipdMax = 0;
13159 symhdr->isymMax = 0;
13160 symhdr->ioptMax = 0;
13161 symhdr->iauxMax = 0;
13162 symhdr->issMax = 0;
13163 symhdr->issExtMax = 0;
13164 symhdr->ifdMax = 0;
13165 symhdr->crfd = 0;
13166 symhdr->iextMax = 0;
13167
13168 /* We accumulate the debugging information itself in the
13169 debug_info structure. */
13170 debug.line = NULL;
13171 debug.external_dnr = NULL;
13172 debug.external_pdr = NULL;
13173 debug.external_sym = NULL;
13174 debug.external_opt = NULL;
13175 debug.external_aux = NULL;
13176 debug.ss = NULL;
13177 debug.ssext = debug.ssext_end = NULL;
13178 debug.external_fdr = NULL;
13179 debug.external_rfd = NULL;
13180 debug.external_ext = debug.external_ext_end = NULL;
13181
13182 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13183 if (mdebug_handle == NULL)
13184 return FALSE;
13185
13186 esym.jmptbl = 0;
13187 esym.cobol_main = 0;
13188 esym.weakext = 0;
13189 esym.reserved = 0;
13190 esym.ifd = ifdNil;
13191 esym.asym.iss = issNil;
13192 esym.asym.st = stLocal;
13193 esym.asym.reserved = 0;
13194 esym.asym.index = indexNil;
13195 last = 0;
13196 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13197 {
13198 esym.asym.sc = sc[i];
13199 s = bfd_get_section_by_name (abfd, secname[i]);
13200 if (s != NULL)
13201 {
13202 esym.asym.value = s->vma;
13203 last = s->vma + s->size;
13204 }
13205 else
13206 esym.asym.value = last;
13207 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13208 secname[i], &esym))
13209 return FALSE;
13210 }
13211
13212 for (p = o->map_head.link_order; p != NULL; p = p->next)
13213 {
13214 asection *input_section;
13215 bfd *input_bfd;
13216 const struct ecoff_debug_swap *input_swap;
13217 struct ecoff_debug_info input_debug;
13218 char *eraw_src;
13219 char *eraw_end;
13220
13221 if (p->type != bfd_indirect_link_order)
13222 {
13223 if (p->type == bfd_data_link_order)
13224 continue;
13225 abort ();
13226 }
13227
13228 input_section = p->u.indirect.section;
13229 input_bfd = input_section->owner;
13230
13231 if (!is_mips_elf (input_bfd))
13232 {
13233 /* I don't know what a non MIPS ELF bfd would be
13234 doing with a .mdebug section, but I don't really
13235 want to deal with it. */
13236 continue;
13237 }
13238
13239 input_swap = (get_elf_backend_data (input_bfd)
13240 ->elf_backend_ecoff_debug_swap);
13241
13242 BFD_ASSERT (p->size == input_section->size);
13243
13244 /* The ECOFF linking code expects that we have already
13245 read in the debugging information and set up an
13246 ecoff_debug_info structure, so we do that now. */
13247 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13248 &input_debug))
13249 return FALSE;
13250
13251 if (! (bfd_ecoff_debug_accumulate
13252 (mdebug_handle, abfd, &debug, swap, input_bfd,
13253 &input_debug, input_swap, info)))
13254 return FALSE;
13255
13256 /* Loop through the external symbols. For each one with
13257 interesting information, try to find the symbol in
13258 the linker global hash table and save the information
13259 for the output external symbols. */
13260 eraw_src = input_debug.external_ext;
13261 eraw_end = (eraw_src
13262 + (input_debug.symbolic_header.iextMax
13263 * input_swap->external_ext_size));
13264 for (;
13265 eraw_src < eraw_end;
13266 eraw_src += input_swap->external_ext_size)
13267 {
13268 EXTR ext;
13269 const char *name;
13270 struct mips_elf_link_hash_entry *h;
13271
13272 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13273 if (ext.asym.sc == scNil
13274 || ext.asym.sc == scUndefined
13275 || ext.asym.sc == scSUndefined)
13276 continue;
13277
13278 name = input_debug.ssext + ext.asym.iss;
13279 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13280 name, FALSE, FALSE, TRUE);
13281 if (h == NULL || h->esym.ifd != -2)
13282 continue;
13283
13284 if (ext.ifd != -1)
13285 {
13286 BFD_ASSERT (ext.ifd
13287 < input_debug.symbolic_header.ifdMax);
13288 ext.ifd = input_debug.ifdmap[ext.ifd];
13289 }
13290
13291 h->esym = ext;
13292 }
13293
13294 /* Free up the information we just read. */
13295 free (input_debug.line);
13296 free (input_debug.external_dnr);
13297 free (input_debug.external_pdr);
13298 free (input_debug.external_sym);
13299 free (input_debug.external_opt);
13300 free (input_debug.external_aux);
13301 free (input_debug.ss);
13302 free (input_debug.ssext);
13303 free (input_debug.external_fdr);
13304 free (input_debug.external_rfd);
13305 free (input_debug.external_ext);
13306
13307 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13308 elf_link_input_bfd ignores this section. */
13309 input_section->flags &= ~SEC_HAS_CONTENTS;
13310 }
13311
13312 if (SGI_COMPAT (abfd) && info->shared)
13313 {
13314 /* Create .rtproc section. */
13315 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13316 if (rtproc_sec == NULL)
13317 {
13318 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13319 | SEC_LINKER_CREATED | SEC_READONLY);
13320
13321 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13322 ".rtproc",
13323 flags);
13324 if (rtproc_sec == NULL
13325 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13326 return FALSE;
13327 }
13328
13329 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13330 info, rtproc_sec,
13331 &debug))
13332 return FALSE;
13333 }
13334
13335 /* Build the external symbol information. */
13336 einfo.abfd = abfd;
13337 einfo.info = info;
13338 einfo.debug = &debug;
13339 einfo.swap = swap;
13340 einfo.failed = FALSE;
13341 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13342 mips_elf_output_extsym, &einfo);
13343 if (einfo.failed)
13344 return FALSE;
13345
13346 /* Set the size of the .mdebug section. */
13347 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13348
13349 /* Skip this section later on (I don't think this currently
13350 matters, but someday it might). */
13351 o->map_head.link_order = NULL;
13352
13353 mdebug_sec = o;
13354 }
13355
13356 if (CONST_STRNEQ (o->name, ".gptab."))
13357 {
13358 const char *subname;
13359 unsigned int c;
13360 Elf32_gptab *tab;
13361 Elf32_External_gptab *ext_tab;
13362 unsigned int j;
13363
13364 /* The .gptab.sdata and .gptab.sbss sections hold
13365 information describing how the small data area would
13366 change depending upon the -G switch. These sections
13367 not used in executables files. */
13368 if (! info->relocatable)
13369 {
13370 for (p = o->map_head.link_order; p != NULL; p = p->next)
13371 {
13372 asection *input_section;
13373
13374 if (p->type != bfd_indirect_link_order)
13375 {
13376 if (p->type == bfd_data_link_order)
13377 continue;
13378 abort ();
13379 }
13380
13381 input_section = p->u.indirect.section;
13382
13383 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13384 elf_link_input_bfd ignores this section. */
13385 input_section->flags &= ~SEC_HAS_CONTENTS;
13386 }
13387
13388 /* Skip this section later on (I don't think this
13389 currently matters, but someday it might). */
13390 o->map_head.link_order = NULL;
13391
13392 /* Really remove the section. */
13393 bfd_section_list_remove (abfd, o);
13394 --abfd->section_count;
13395
13396 continue;
13397 }
13398
13399 /* There is one gptab for initialized data, and one for
13400 uninitialized data. */
13401 if (strcmp (o->name, ".gptab.sdata") == 0)
13402 gptab_data_sec = o;
13403 else if (strcmp (o->name, ".gptab.sbss") == 0)
13404 gptab_bss_sec = o;
13405 else
13406 {
13407 (*_bfd_error_handler)
13408 (_("%s: illegal section name `%s'"),
13409 bfd_get_filename (abfd), o->name);
13410 bfd_set_error (bfd_error_nonrepresentable_section);
13411 return FALSE;
13412 }
13413
13414 /* The linker script always combines .gptab.data and
13415 .gptab.sdata into .gptab.sdata, and likewise for
13416 .gptab.bss and .gptab.sbss. It is possible that there is
13417 no .sdata or .sbss section in the output file, in which
13418 case we must change the name of the output section. */
13419 subname = o->name + sizeof ".gptab" - 1;
13420 if (bfd_get_section_by_name (abfd, subname) == NULL)
13421 {
13422 if (o == gptab_data_sec)
13423 o->name = ".gptab.data";
13424 else
13425 o->name = ".gptab.bss";
13426 subname = o->name + sizeof ".gptab" - 1;
13427 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13428 }
13429
13430 /* Set up the first entry. */
13431 c = 1;
13432 amt = c * sizeof (Elf32_gptab);
13433 tab = bfd_malloc (amt);
13434 if (tab == NULL)
13435 return FALSE;
13436 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13437 tab[0].gt_header.gt_unused = 0;
13438
13439 /* Combine the input sections. */
13440 for (p = o->map_head.link_order; p != NULL; p = p->next)
13441 {
13442 asection *input_section;
13443 bfd *input_bfd;
13444 bfd_size_type size;
13445 unsigned long last;
13446 bfd_size_type gpentry;
13447
13448 if (p->type != bfd_indirect_link_order)
13449 {
13450 if (p->type == bfd_data_link_order)
13451 continue;
13452 abort ();
13453 }
13454
13455 input_section = p->u.indirect.section;
13456 input_bfd = input_section->owner;
13457
13458 /* Combine the gptab entries for this input section one
13459 by one. We know that the input gptab entries are
13460 sorted by ascending -G value. */
13461 size = input_section->size;
13462 last = 0;
13463 for (gpentry = sizeof (Elf32_External_gptab);
13464 gpentry < size;
13465 gpentry += sizeof (Elf32_External_gptab))
13466 {
13467 Elf32_External_gptab ext_gptab;
13468 Elf32_gptab int_gptab;
13469 unsigned long val;
13470 unsigned long add;
13471 bfd_boolean exact;
13472 unsigned int look;
13473
13474 if (! (bfd_get_section_contents
13475 (input_bfd, input_section, &ext_gptab, gpentry,
13476 sizeof (Elf32_External_gptab))))
13477 {
13478 free (tab);
13479 return FALSE;
13480 }
13481
13482 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13483 &int_gptab);
13484 val = int_gptab.gt_entry.gt_g_value;
13485 add = int_gptab.gt_entry.gt_bytes - last;
13486
13487 exact = FALSE;
13488 for (look = 1; look < c; look++)
13489 {
13490 if (tab[look].gt_entry.gt_g_value >= val)
13491 tab[look].gt_entry.gt_bytes += add;
13492
13493 if (tab[look].gt_entry.gt_g_value == val)
13494 exact = TRUE;
13495 }
13496
13497 if (! exact)
13498 {
13499 Elf32_gptab *new_tab;
13500 unsigned int max;
13501
13502 /* We need a new table entry. */
13503 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13504 new_tab = bfd_realloc (tab, amt);
13505 if (new_tab == NULL)
13506 {
13507 free (tab);
13508 return FALSE;
13509 }
13510 tab = new_tab;
13511 tab[c].gt_entry.gt_g_value = val;
13512 tab[c].gt_entry.gt_bytes = add;
13513
13514 /* Merge in the size for the next smallest -G
13515 value, since that will be implied by this new
13516 value. */
13517 max = 0;
13518 for (look = 1; look < c; look++)
13519 {
13520 if (tab[look].gt_entry.gt_g_value < val
13521 && (max == 0
13522 || (tab[look].gt_entry.gt_g_value
13523 > tab[max].gt_entry.gt_g_value)))
13524 max = look;
13525 }
13526 if (max != 0)
13527 tab[c].gt_entry.gt_bytes +=
13528 tab[max].gt_entry.gt_bytes;
13529
13530 ++c;
13531 }
13532
13533 last = int_gptab.gt_entry.gt_bytes;
13534 }
13535
13536 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13537 elf_link_input_bfd ignores this section. */
13538 input_section->flags &= ~SEC_HAS_CONTENTS;
13539 }
13540
13541 /* The table must be sorted by -G value. */
13542 if (c > 2)
13543 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13544
13545 /* Swap out the table. */
13546 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13547 ext_tab = bfd_alloc (abfd, amt);
13548 if (ext_tab == NULL)
13549 {
13550 free (tab);
13551 return FALSE;
13552 }
13553
13554 for (j = 0; j < c; j++)
13555 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13556 free (tab);
13557
13558 o->size = c * sizeof (Elf32_External_gptab);
13559 o->contents = (bfd_byte *) ext_tab;
13560
13561 /* Skip this section later on (I don't think this currently
13562 matters, but someday it might). */
13563 o->map_head.link_order = NULL;
13564 }
13565 }
13566
13567 /* Invoke the regular ELF backend linker to do all the work. */
13568 if (!bfd_elf_final_link (abfd, info))
13569 return FALSE;
13570
13571 /* Now write out the computed sections. */
13572
13573 if (reginfo_sec != NULL)
13574 {
13575 Elf32_External_RegInfo ext;
13576
13577 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13578 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13579 return FALSE;
13580 }
13581
13582 if (mdebug_sec != NULL)
13583 {
13584 BFD_ASSERT (abfd->output_has_begun);
13585 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13586 swap, info,
13587 mdebug_sec->filepos))
13588 return FALSE;
13589
13590 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13591 }
13592
13593 if (gptab_data_sec != NULL)
13594 {
13595 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13596 gptab_data_sec->contents,
13597 0, gptab_data_sec->size))
13598 return FALSE;
13599 }
13600
13601 if (gptab_bss_sec != NULL)
13602 {
13603 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13604 gptab_bss_sec->contents,
13605 0, gptab_bss_sec->size))
13606 return FALSE;
13607 }
13608
13609 if (SGI_COMPAT (abfd))
13610 {
13611 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13612 if (rtproc_sec != NULL)
13613 {
13614 if (! bfd_set_section_contents (abfd, rtproc_sec,
13615 rtproc_sec->contents,
13616 0, rtproc_sec->size))
13617 return FALSE;
13618 }
13619 }
13620
13621 return TRUE;
13622 }
13623 \f
13624 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13625
13626 struct mips_mach_extension {
13627 unsigned long extension, base;
13628 };
13629
13630
13631 /* An array describing how BFD machines relate to one another. The entries
13632 are ordered topologically with MIPS I extensions listed last. */
13633
13634 static const struct mips_mach_extension mips_mach_extensions[] = {
13635 /* MIPS64r2 extensions. */
13636 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13637 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13638 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13639
13640 /* MIPS64 extensions. */
13641 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13642 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13643 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13644 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13645
13646 /* MIPS V extensions. */
13647 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13648
13649 /* R10000 extensions. */
13650 { bfd_mach_mips12000, bfd_mach_mips10000 },
13651 { bfd_mach_mips14000, bfd_mach_mips10000 },
13652 { bfd_mach_mips16000, bfd_mach_mips10000 },
13653
13654 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13655 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13656 better to allow vr5400 and vr5500 code to be merged anyway, since
13657 many libraries will just use the core ISA. Perhaps we could add
13658 some sort of ASE flag if this ever proves a problem. */
13659 { bfd_mach_mips5500, bfd_mach_mips5400 },
13660 { bfd_mach_mips5400, bfd_mach_mips5000 },
13661
13662 /* MIPS IV extensions. */
13663 { bfd_mach_mips5, bfd_mach_mips8000 },
13664 { bfd_mach_mips10000, bfd_mach_mips8000 },
13665 { bfd_mach_mips5000, bfd_mach_mips8000 },
13666 { bfd_mach_mips7000, bfd_mach_mips8000 },
13667 { bfd_mach_mips9000, bfd_mach_mips8000 },
13668
13669 /* VR4100 extensions. */
13670 { bfd_mach_mips4120, bfd_mach_mips4100 },
13671 { bfd_mach_mips4111, bfd_mach_mips4100 },
13672
13673 /* MIPS III extensions. */
13674 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13675 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13676 { bfd_mach_mips8000, bfd_mach_mips4000 },
13677 { bfd_mach_mips4650, bfd_mach_mips4000 },
13678 { bfd_mach_mips4600, bfd_mach_mips4000 },
13679 { bfd_mach_mips4400, bfd_mach_mips4000 },
13680 { bfd_mach_mips4300, bfd_mach_mips4000 },
13681 { bfd_mach_mips4100, bfd_mach_mips4000 },
13682 { bfd_mach_mips4010, bfd_mach_mips4000 },
13683
13684 /* MIPS32 extensions. */
13685 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13686
13687 /* MIPS II extensions. */
13688 { bfd_mach_mips4000, bfd_mach_mips6000 },
13689 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13690
13691 /* MIPS I extensions. */
13692 { bfd_mach_mips6000, bfd_mach_mips3000 },
13693 { bfd_mach_mips3900, bfd_mach_mips3000 }
13694 };
13695
13696
13697 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13698
13699 static bfd_boolean
13700 mips_mach_extends_p (unsigned long base, unsigned long extension)
13701 {
13702 size_t i;
13703
13704 if (extension == base)
13705 return TRUE;
13706
13707 if (base == bfd_mach_mipsisa32
13708 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13709 return TRUE;
13710
13711 if (base == bfd_mach_mipsisa32r2
13712 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13713 return TRUE;
13714
13715 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13716 if (extension == mips_mach_extensions[i].extension)
13717 {
13718 extension = mips_mach_extensions[i].base;
13719 if (extension == base)
13720 return TRUE;
13721 }
13722
13723 return FALSE;
13724 }
13725
13726
13727 /* Return true if the given ELF header flags describe a 32-bit binary. */
13728
13729 static bfd_boolean
13730 mips_32bit_flags_p (flagword flags)
13731 {
13732 return ((flags & EF_MIPS_32BITMODE) != 0
13733 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13734 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13735 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13736 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13737 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13738 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13739 }
13740
13741
13742 /* Merge object attributes from IBFD into OBFD. Raise an error if
13743 there are conflicting attributes. */
13744 static bfd_boolean
13745 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13746 {
13747 obj_attribute *in_attr;
13748 obj_attribute *out_attr;
13749
13750 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13751 {
13752 /* This is the first object. Copy the attributes. */
13753 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13754
13755 /* Use the Tag_null value to indicate the attributes have been
13756 initialized. */
13757 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13758
13759 return TRUE;
13760 }
13761
13762 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13763 non-conflicting ones. */
13764 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13765 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13766 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13767 {
13768 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13769 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13770 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13771 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13772 ;
13773 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13774 _bfd_error_handler
13775 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13776 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13777 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13778 _bfd_error_handler
13779 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13780 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13781 else
13782 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13783 {
13784 case 1:
13785 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13786 {
13787 case 2:
13788 _bfd_error_handler
13789 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13790 obfd, ibfd);
13791 break;
13792
13793 case 3:
13794 _bfd_error_handler
13795 (_("Warning: %B uses hard float, %B uses soft float"),
13796 obfd, ibfd);
13797 break;
13798
13799 case 4:
13800 _bfd_error_handler
13801 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13802 obfd, ibfd);
13803 break;
13804
13805 default:
13806 abort ();
13807 }
13808 break;
13809
13810 case 2:
13811 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13812 {
13813 case 1:
13814 _bfd_error_handler
13815 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13816 ibfd, obfd);
13817 break;
13818
13819 case 3:
13820 _bfd_error_handler
13821 (_("Warning: %B uses hard float, %B uses soft float"),
13822 obfd, ibfd);
13823 break;
13824
13825 case 4:
13826 _bfd_error_handler
13827 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13828 obfd, ibfd);
13829 break;
13830
13831 default:
13832 abort ();
13833 }
13834 break;
13835
13836 case 3:
13837 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13838 {
13839 case 1:
13840 case 2:
13841 case 4:
13842 _bfd_error_handler
13843 (_("Warning: %B uses hard float, %B uses soft float"),
13844 ibfd, obfd);
13845 break;
13846
13847 default:
13848 abort ();
13849 }
13850 break;
13851
13852 case 4:
13853 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13854 {
13855 case 1:
13856 _bfd_error_handler
13857 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13858 ibfd, obfd);
13859 break;
13860
13861 case 2:
13862 _bfd_error_handler
13863 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13864 ibfd, obfd);
13865 break;
13866
13867 case 3:
13868 _bfd_error_handler
13869 (_("Warning: %B uses hard float, %B uses soft float"),
13870 obfd, ibfd);
13871 break;
13872
13873 default:
13874 abort ();
13875 }
13876 break;
13877
13878 default:
13879 abort ();
13880 }
13881 }
13882
13883 /* Merge Tag_compatibility attributes and any common GNU ones. */
13884 _bfd_elf_merge_object_attributes (ibfd, obfd);
13885
13886 return TRUE;
13887 }
13888
13889 /* Merge backend specific data from an object file to the output
13890 object file when linking. */
13891
13892 bfd_boolean
13893 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13894 {
13895 flagword old_flags;
13896 flagword new_flags;
13897 bfd_boolean ok;
13898 bfd_boolean null_input_bfd = TRUE;
13899 asection *sec;
13900
13901 /* Check if we have the same endianness. */
13902 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13903 {
13904 (*_bfd_error_handler)
13905 (_("%B: endianness incompatible with that of the selected emulation"),
13906 ibfd);
13907 return FALSE;
13908 }
13909
13910 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13911 return TRUE;
13912
13913 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13914 {
13915 (*_bfd_error_handler)
13916 (_("%B: ABI is incompatible with that of the selected emulation"),
13917 ibfd);
13918 return FALSE;
13919 }
13920
13921 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13922 return FALSE;
13923
13924 new_flags = elf_elfheader (ibfd)->e_flags;
13925 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13926 old_flags = elf_elfheader (obfd)->e_flags;
13927
13928 if (! elf_flags_init (obfd))
13929 {
13930 elf_flags_init (obfd) = TRUE;
13931 elf_elfheader (obfd)->e_flags = new_flags;
13932 elf_elfheader (obfd)->e_ident[EI_CLASS]
13933 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13934
13935 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13936 && (bfd_get_arch_info (obfd)->the_default
13937 || mips_mach_extends_p (bfd_get_mach (obfd),
13938 bfd_get_mach (ibfd))))
13939 {
13940 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13941 bfd_get_mach (ibfd)))
13942 return FALSE;
13943 }
13944
13945 return TRUE;
13946 }
13947
13948 /* Check flag compatibility. */
13949
13950 new_flags &= ~EF_MIPS_NOREORDER;
13951 old_flags &= ~EF_MIPS_NOREORDER;
13952
13953 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13954 doesn't seem to matter. */
13955 new_flags &= ~EF_MIPS_XGOT;
13956 old_flags &= ~EF_MIPS_XGOT;
13957
13958 /* MIPSpro generates ucode info in n64 objects. Again, we should
13959 just be able to ignore this. */
13960 new_flags &= ~EF_MIPS_UCODE;
13961 old_flags &= ~EF_MIPS_UCODE;
13962
13963 /* DSOs should only be linked with CPIC code. */
13964 if ((ibfd->flags & DYNAMIC) != 0)
13965 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13966
13967 if (new_flags == old_flags)
13968 return TRUE;
13969
13970 /* Check to see if the input BFD actually contains any sections.
13971 If not, its flags may not have been initialised either, but it cannot
13972 actually cause any incompatibility. */
13973 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13974 {
13975 /* Ignore synthetic sections and empty .text, .data and .bss sections
13976 which are automatically generated by gas. Also ignore fake
13977 (s)common sections, since merely defining a common symbol does
13978 not affect compatibility. */
13979 if ((sec->flags & SEC_IS_COMMON) == 0
13980 && strcmp (sec->name, ".reginfo")
13981 && strcmp (sec->name, ".mdebug")
13982 && (sec->size != 0
13983 || (strcmp (sec->name, ".text")
13984 && strcmp (sec->name, ".data")
13985 && strcmp (sec->name, ".bss"))))
13986 {
13987 null_input_bfd = FALSE;
13988 break;
13989 }
13990 }
13991 if (null_input_bfd)
13992 return TRUE;
13993
13994 ok = TRUE;
13995
13996 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13997 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13998 {
13999 (*_bfd_error_handler)
14000 (_("%B: warning: linking abicalls files with non-abicalls files"),
14001 ibfd);
14002 ok = TRUE;
14003 }
14004
14005 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14006 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14007 if (! (new_flags & EF_MIPS_PIC))
14008 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14009
14010 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14011 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14012
14013 /* Compare the ISAs. */
14014 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14015 {
14016 (*_bfd_error_handler)
14017 (_("%B: linking 32-bit code with 64-bit code"),
14018 ibfd);
14019 ok = FALSE;
14020 }
14021 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14022 {
14023 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14024 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14025 {
14026 /* Copy the architecture info from IBFD to OBFD. Also copy
14027 the 32-bit flag (if set) so that we continue to recognise
14028 OBFD as a 32-bit binary. */
14029 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14030 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14031 elf_elfheader (obfd)->e_flags
14032 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14033
14034 /* Copy across the ABI flags if OBFD doesn't use them
14035 and if that was what caused us to treat IBFD as 32-bit. */
14036 if ((old_flags & EF_MIPS_ABI) == 0
14037 && mips_32bit_flags_p (new_flags)
14038 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14039 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14040 }
14041 else
14042 {
14043 /* The ISAs aren't compatible. */
14044 (*_bfd_error_handler)
14045 (_("%B: linking %s module with previous %s modules"),
14046 ibfd,
14047 bfd_printable_name (ibfd),
14048 bfd_printable_name (obfd));
14049 ok = FALSE;
14050 }
14051 }
14052
14053 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14054 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14055
14056 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14057 does set EI_CLASS differently from any 32-bit ABI. */
14058 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14059 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14060 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14061 {
14062 /* Only error if both are set (to different values). */
14063 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14064 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14065 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14066 {
14067 (*_bfd_error_handler)
14068 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14069 ibfd,
14070 elf_mips_abi_name (ibfd),
14071 elf_mips_abi_name (obfd));
14072 ok = FALSE;
14073 }
14074 new_flags &= ~EF_MIPS_ABI;
14075 old_flags &= ~EF_MIPS_ABI;
14076 }
14077
14078 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14079 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14080 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14081 {
14082 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14083 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14084 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14085 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14086 int micro_mis = old_m16 && new_micro;
14087 int m16_mis = old_micro && new_m16;
14088
14089 if (m16_mis || micro_mis)
14090 {
14091 (*_bfd_error_handler)
14092 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14093 ibfd,
14094 m16_mis ? "MIPS16" : "microMIPS",
14095 m16_mis ? "microMIPS" : "MIPS16");
14096 ok = FALSE;
14097 }
14098
14099 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14100
14101 new_flags &= ~ EF_MIPS_ARCH_ASE;
14102 old_flags &= ~ EF_MIPS_ARCH_ASE;
14103 }
14104
14105 /* Warn about any other mismatches */
14106 if (new_flags != old_flags)
14107 {
14108 (*_bfd_error_handler)
14109 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14110 ibfd, (unsigned long) new_flags,
14111 (unsigned long) old_flags);
14112 ok = FALSE;
14113 }
14114
14115 if (! ok)
14116 {
14117 bfd_set_error (bfd_error_bad_value);
14118 return FALSE;
14119 }
14120
14121 return TRUE;
14122 }
14123
14124 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14125
14126 bfd_boolean
14127 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14128 {
14129 BFD_ASSERT (!elf_flags_init (abfd)
14130 || elf_elfheader (abfd)->e_flags == flags);
14131
14132 elf_elfheader (abfd)->e_flags = flags;
14133 elf_flags_init (abfd) = TRUE;
14134 return TRUE;
14135 }
14136
14137 char *
14138 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14139 {
14140 switch (dtag)
14141 {
14142 default: return "";
14143 case DT_MIPS_RLD_VERSION:
14144 return "MIPS_RLD_VERSION";
14145 case DT_MIPS_TIME_STAMP:
14146 return "MIPS_TIME_STAMP";
14147 case DT_MIPS_ICHECKSUM:
14148 return "MIPS_ICHECKSUM";
14149 case DT_MIPS_IVERSION:
14150 return "MIPS_IVERSION";
14151 case DT_MIPS_FLAGS:
14152 return "MIPS_FLAGS";
14153 case DT_MIPS_BASE_ADDRESS:
14154 return "MIPS_BASE_ADDRESS";
14155 case DT_MIPS_MSYM:
14156 return "MIPS_MSYM";
14157 case DT_MIPS_CONFLICT:
14158 return "MIPS_CONFLICT";
14159 case DT_MIPS_LIBLIST:
14160 return "MIPS_LIBLIST";
14161 case DT_MIPS_LOCAL_GOTNO:
14162 return "MIPS_LOCAL_GOTNO";
14163 case DT_MIPS_CONFLICTNO:
14164 return "MIPS_CONFLICTNO";
14165 case DT_MIPS_LIBLISTNO:
14166 return "MIPS_LIBLISTNO";
14167 case DT_MIPS_SYMTABNO:
14168 return "MIPS_SYMTABNO";
14169 case DT_MIPS_UNREFEXTNO:
14170 return "MIPS_UNREFEXTNO";
14171 case DT_MIPS_GOTSYM:
14172 return "MIPS_GOTSYM";
14173 case DT_MIPS_HIPAGENO:
14174 return "MIPS_HIPAGENO";
14175 case DT_MIPS_RLD_MAP:
14176 return "MIPS_RLD_MAP";
14177 case DT_MIPS_DELTA_CLASS:
14178 return "MIPS_DELTA_CLASS";
14179 case DT_MIPS_DELTA_CLASS_NO:
14180 return "MIPS_DELTA_CLASS_NO";
14181 case DT_MIPS_DELTA_INSTANCE:
14182 return "MIPS_DELTA_INSTANCE";
14183 case DT_MIPS_DELTA_INSTANCE_NO:
14184 return "MIPS_DELTA_INSTANCE_NO";
14185 case DT_MIPS_DELTA_RELOC:
14186 return "MIPS_DELTA_RELOC";
14187 case DT_MIPS_DELTA_RELOC_NO:
14188 return "MIPS_DELTA_RELOC_NO";
14189 case DT_MIPS_DELTA_SYM:
14190 return "MIPS_DELTA_SYM";
14191 case DT_MIPS_DELTA_SYM_NO:
14192 return "MIPS_DELTA_SYM_NO";
14193 case DT_MIPS_DELTA_CLASSSYM:
14194 return "MIPS_DELTA_CLASSSYM";
14195 case DT_MIPS_DELTA_CLASSSYM_NO:
14196 return "MIPS_DELTA_CLASSSYM_NO";
14197 case DT_MIPS_CXX_FLAGS:
14198 return "MIPS_CXX_FLAGS";
14199 case DT_MIPS_PIXIE_INIT:
14200 return "MIPS_PIXIE_INIT";
14201 case DT_MIPS_SYMBOL_LIB:
14202 return "MIPS_SYMBOL_LIB";
14203 case DT_MIPS_LOCALPAGE_GOTIDX:
14204 return "MIPS_LOCALPAGE_GOTIDX";
14205 case DT_MIPS_LOCAL_GOTIDX:
14206 return "MIPS_LOCAL_GOTIDX";
14207 case DT_MIPS_HIDDEN_GOTIDX:
14208 return "MIPS_HIDDEN_GOTIDX";
14209 case DT_MIPS_PROTECTED_GOTIDX:
14210 return "MIPS_PROTECTED_GOT_IDX";
14211 case DT_MIPS_OPTIONS:
14212 return "MIPS_OPTIONS";
14213 case DT_MIPS_INTERFACE:
14214 return "MIPS_INTERFACE";
14215 case DT_MIPS_DYNSTR_ALIGN:
14216 return "DT_MIPS_DYNSTR_ALIGN";
14217 case DT_MIPS_INTERFACE_SIZE:
14218 return "DT_MIPS_INTERFACE_SIZE";
14219 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14220 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14221 case DT_MIPS_PERF_SUFFIX:
14222 return "DT_MIPS_PERF_SUFFIX";
14223 case DT_MIPS_COMPACT_SIZE:
14224 return "DT_MIPS_COMPACT_SIZE";
14225 case DT_MIPS_GP_VALUE:
14226 return "DT_MIPS_GP_VALUE";
14227 case DT_MIPS_AUX_DYNAMIC:
14228 return "DT_MIPS_AUX_DYNAMIC";
14229 case DT_MIPS_PLTGOT:
14230 return "DT_MIPS_PLTGOT";
14231 case DT_MIPS_RWPLT:
14232 return "DT_MIPS_RWPLT";
14233 }
14234 }
14235
14236 bfd_boolean
14237 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14238 {
14239 FILE *file = ptr;
14240
14241 BFD_ASSERT (abfd != NULL && ptr != NULL);
14242
14243 /* Print normal ELF private data. */
14244 _bfd_elf_print_private_bfd_data (abfd, ptr);
14245
14246 /* xgettext:c-format */
14247 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14248
14249 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14250 fprintf (file, _(" [abi=O32]"));
14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14252 fprintf (file, _(" [abi=O64]"));
14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14254 fprintf (file, _(" [abi=EABI32]"));
14255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14256 fprintf (file, _(" [abi=EABI64]"));
14257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14258 fprintf (file, _(" [abi unknown]"));
14259 else if (ABI_N32_P (abfd))
14260 fprintf (file, _(" [abi=N32]"));
14261 else if (ABI_64_P (abfd))
14262 fprintf (file, _(" [abi=64]"));
14263 else
14264 fprintf (file, _(" [no abi set]"));
14265
14266 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14267 fprintf (file, " [mips1]");
14268 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14269 fprintf (file, " [mips2]");
14270 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14271 fprintf (file, " [mips3]");
14272 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14273 fprintf (file, " [mips4]");
14274 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14275 fprintf (file, " [mips5]");
14276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14277 fprintf (file, " [mips32]");
14278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14279 fprintf (file, " [mips64]");
14280 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14281 fprintf (file, " [mips32r2]");
14282 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14283 fprintf (file, " [mips64r2]");
14284 else
14285 fprintf (file, _(" [unknown ISA]"));
14286
14287 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14288 fprintf (file, " [mdmx]");
14289
14290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14291 fprintf (file, " [mips16]");
14292
14293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14294 fprintf (file, " [micromips]");
14295
14296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14297 fprintf (file, " [32bitmode]");
14298 else
14299 fprintf (file, _(" [not 32bitmode]"));
14300
14301 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14302 fprintf (file, " [noreorder]");
14303
14304 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14305 fprintf (file, " [PIC]");
14306
14307 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14308 fprintf (file, " [CPIC]");
14309
14310 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14311 fprintf (file, " [XGOT]");
14312
14313 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14314 fprintf (file, " [UCODE]");
14315
14316 fputc ('\n', file);
14317
14318 return TRUE;
14319 }
14320
14321 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14322 {
14323 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14324 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14325 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14326 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14327 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14328 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14329 { NULL, 0, 0, 0, 0 }
14330 };
14331
14332 /* Merge non visibility st_other attributes. Ensure that the
14333 STO_OPTIONAL flag is copied into h->other, even if this is not a
14334 definiton of the symbol. */
14335 void
14336 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14337 const Elf_Internal_Sym *isym,
14338 bfd_boolean definition,
14339 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14340 {
14341 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14342 {
14343 unsigned char other;
14344
14345 other = (definition ? isym->st_other : h->other);
14346 other &= ~ELF_ST_VISIBILITY (-1);
14347 h->other = other | ELF_ST_VISIBILITY (h->other);
14348 }
14349
14350 if (!definition
14351 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14352 h->other |= STO_OPTIONAL;
14353 }
14354
14355 /* Decide whether an undefined symbol is special and can be ignored.
14356 This is the case for OPTIONAL symbols on IRIX. */
14357 bfd_boolean
14358 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14359 {
14360 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14361 }
14362
14363 bfd_boolean
14364 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14365 {
14366 return (sym->st_shndx == SHN_COMMON
14367 || sym->st_shndx == SHN_MIPS_ACOMMON
14368 || sym->st_shndx == SHN_MIPS_SCOMMON);
14369 }
14370
14371 /* Return address for Ith PLT stub in section PLT, for relocation REL
14372 or (bfd_vma) -1 if it should not be included. */
14373
14374 bfd_vma
14375 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14376 const arelent *rel ATTRIBUTE_UNUSED)
14377 {
14378 return (plt->vma
14379 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14380 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14381 }
14382
14383 void
14384 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14385 {
14386 struct mips_elf_link_hash_table *htab;
14387 Elf_Internal_Ehdr *i_ehdrp;
14388
14389 i_ehdrp = elf_elfheader (abfd);
14390 if (link_info)
14391 {
14392 htab = mips_elf_hash_table (link_info);
14393 BFD_ASSERT (htab != NULL);
14394
14395 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14396 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14397 }
14398 }