* bfd/elfxx-mips.c (mips_elf_create_dynamic_relocation): In SGI-
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
194
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
198 p. 4-20. */
199 bfd_boolean no_fn_stub;
200
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
203 asection *fn_stub;
204
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
207 bfd_boolean need_fn_stub;
208
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
211 asection *call_stub;
212
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
216
217 /* Are we forced local? .*/
218 bfd_boolean forced_local;
219 };
220
221 /* MIPS ELF linker hash table. */
222
223 struct mips_elf_link_hash_table
224 {
225 struct elf_link_hash_table root;
226 #if 0
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
230 #endif
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
236 entry is set to the address of __rld_obj_head as in IRIX5. */
237 bfd_boolean use_rld_obj_head;
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
239 bfd_vma rld_value;
240 /* This is set if we see any mips16 stub sections. */
241 bfd_boolean mips16_stubs_seen;
242 };
243
244 /* Structure used to pass information to mips_elf_output_extsym. */
245
246 struct extsym_info
247 {
248 bfd *abfd;
249 struct bfd_link_info *info;
250 struct ecoff_debug_info *debug;
251 const struct ecoff_debug_swap *swap;
252 bfd_boolean failed;
253 };
254
255 /* The names of the runtime procedure table symbols used on IRIX5. */
256
257 static const char * const mips_elf_dynsym_rtproc_names[] =
258 {
259 "_procedure_table",
260 "_procedure_string_table",
261 "_procedure_table_size",
262 NULL
263 };
264
265 /* These structures are used to generate the .compact_rel section on
266 IRIX5. */
267
268 typedef struct
269 {
270 unsigned long id1; /* Always one? */
271 unsigned long num; /* Number of compact relocation entries. */
272 unsigned long id2; /* Always two? */
273 unsigned long offset; /* The file offset of the first relocation. */
274 unsigned long reserved0; /* Zero? */
275 unsigned long reserved1; /* Zero? */
276 } Elf32_compact_rel;
277
278 typedef struct
279 {
280 bfd_byte id1[4];
281 bfd_byte num[4];
282 bfd_byte id2[4];
283 bfd_byte offset[4];
284 bfd_byte reserved0[4];
285 bfd_byte reserved1[4];
286 } Elf32_External_compact_rel;
287
288 typedef struct
289 {
290 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype : 4; /* Relocation types. See below. */
292 unsigned int dist2to : 8;
293 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst; /* KONST field. See below. */
295 unsigned long vaddr; /* VADDR to be relocated. */
296 } Elf32_crinfo;
297
298 typedef struct
299 {
300 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype : 4; /* Relocation types. See below. */
302 unsigned int dist2to : 8;
303 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst; /* KONST field. See below. */
305 } Elf32_crinfo2;
306
307 typedef struct
308 {
309 bfd_byte info[4];
310 bfd_byte konst[4];
311 bfd_byte vaddr[4];
312 } Elf32_External_crinfo;
313
314 typedef struct
315 {
316 bfd_byte info[4];
317 bfd_byte konst[4];
318 } Elf32_External_crinfo2;
319
320 /* These are the constants used to swap the bitfields in a crinfo. */
321
322 #define CRINFO_CTYPE (0x1)
323 #define CRINFO_CTYPE_SH (31)
324 #define CRINFO_RTYPE (0xf)
325 #define CRINFO_RTYPE_SH (27)
326 #define CRINFO_DIST2TO (0xff)
327 #define CRINFO_DIST2TO_SH (19)
328 #define CRINFO_RELVADDR (0x7ffff)
329 #define CRINFO_RELVADDR_SH (0)
330
331 /* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334 #define CRF_MIPS_LONG 1
335 #define CRF_MIPS_SHORT 0
336
337 /* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
339
340 (type) (konst)
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
345 */
346
347 #define CRT_MIPS_REL32 0xa
348 #define CRT_MIPS_WORD 0xb
349 #define CRT_MIPS_GPHI_LO 0xc
350 #define CRT_MIPS_JMPAD 0xd
351
352 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
356 \f
357 /* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
359
360 typedef struct runtime_pdr {
361 bfd_vma adr; /* Memory address of start of procedure. */
362 long regmask; /* Save register mask. */
363 long regoffset; /* Save register offset. */
364 long fregmask; /* Save floating point register mask. */
365 long fregoffset; /* Save floating point register offset. */
366 long frameoffset; /* Frame size. */
367 short framereg; /* Frame pointer register. */
368 short pcreg; /* Offset or reg of return pc. */
369 long irpss; /* Index into the runtime string table. */
370 long reserved;
371 struct exception_info *exception_info;/* Pointer to exception array. */
372 } RPDR, *pRPDR;
373 #define cbRPDR sizeof (RPDR)
374 #define rpdNil ((pRPDR) 0)
375 \f
376 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
378 static void ecoff_swap_rpdr_out
379 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
380 static bfd_boolean mips_elf_create_procedure_table
381 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
382 struct ecoff_debug_info *));
383 static bfd_boolean mips_elf_check_mips16_stubs
384 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
385 static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
387 static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
389 static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
391 static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
393 #if 0
394 static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
396 #endif
397 static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
399 static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
401 static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
403 static bfd_boolean mips_elf_output_extsym
404 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
405 static int gptab_compare PARAMS ((const void *, const void *));
406 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
407 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
408 static struct mips_got_info *mips_elf_got_info
409 PARAMS ((bfd *, asection **));
410 static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
438 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
441 static bfd_boolean mips_elf_create_compact_rel_section
442 PARAMS ((bfd *, struct bfd_link_info *));
443 static bfd_boolean mips_elf_create_got_section
444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
445 static asection *mips_elf_create_msym_section
446 PARAMS ((bfd *));
447 static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
451 bfd_boolean *, bfd_boolean));
452 static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
454 static bfd_boolean mips_elf_perform_relocation
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
457 bfd_boolean));
458 static bfd_boolean mips_elf_stub_section_p
459 PARAMS ((bfd *, asection *));
460 static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
462 static bfd_boolean mips_elf_create_dynamic_relocation
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
466 static void mips_set_isa_flags PARAMS ((bfd *));
467 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468 static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
470 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
472 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
473 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
475
476 static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484 static int mips_elf_merge_gots PARAMS ((void **, void *));
485 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487 static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489 static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491 static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
493
494 /* This will be used when we sort the dynamic relocation records. */
495 static bfd *reldyn_sorting_bfd;
496
497 /* Nonzero if ABFD is using the N32 ABI. */
498
499 #define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
501
502 /* Nonzero if ABFD is using the N64 ABI. */
503 #define ABI_64_P(abfd) \
504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
505
506 /* Nonzero if ABFD is using NewABI conventions. */
507 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
508
509 /* The IRIX compatibility level we are striving for. */
510 #define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
512
513 /* Whether we are trying to be compatible with IRIX at all. */
514 #define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
516
517 /* The name of the options section. */
518 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
520
521 /* The name of the stub section. */
522 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
524
525 /* The size of an external REL relocation. */
526 #define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
528
529 /* The size of an external dynamic table entry. */
530 #define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
532
533 /* The size of a GOT entry. */
534 #define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
536
537 /* The size of a symbol-table entry. */
538 #define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
540
541 /* The default alignment for sections, as a power of two. */
542 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
543 (get_elf_backend_data (abfd)->s->log_file_align)
544
545 /* Get word-sized data. */
546 #define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
548
549 /* Put out word-sized data. */
550 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
551 (ABI_64_P (abfd) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
554
555 /* Add a dynamic symbol table-entry. */
556 #ifdef BFD64
557 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
561 #else
562 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
564 ? (abort (), FALSE) \
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
566 #endif
567
568 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
570
571 /* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
587
588 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590 #define MINUS_ONE (((bfd_vma)0) - 1)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
604 #define STUB_LW(abfd) \
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610 #define STUB_JALR 0x0320f809 /* jal t9 */
611 #define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613 #define MIPS_FUNCTION_STUB_SIZE (16)
614
615 /* The name of the dynamic interpreter. This is put in the .interp
616 section. */
617
618 #define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
622
623 #ifdef BFD64
624 #define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
626 #define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628 #define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630 #define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
632 #else
633 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
634 #define ELF_R_SYM(bfd, i) \
635 (ELF32_R_SYM (i))
636 #define ELF_R_TYPE(bfd, i) \
637 (ELF32_R_TYPE (i))
638 #define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
640 #endif
641 \f
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
644
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
653
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
660
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
668 $f0/$f1 and $2/$3.)
669
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
673
674 We record any stubs that we find in the symbol table. */
675
676 #define FN_STUB ".mips16.fn."
677 #define CALL_STUB ".mips16.call."
678 #define CALL_FP_STUB ".mips16.call.fp."
679 \f
680 /* Look up an entry in a MIPS ELF linker hash table. */
681
682 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
685 (copy), (follow)))
686
687 /* Traverse a MIPS ELF linker hash table. */
688
689 #define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
691 (&(table)->root, \
692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
693 (info)))
694
695 /* Get the MIPS ELF linker hash table from a link_info structure. */
696
697 #define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
699
700 /* Create an entry in a MIPS ELF linker hash table. */
701
702 static struct bfd_hash_entry *
703 mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
706 const char *string;
707 {
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
732 ret->readonly_reloc = FALSE;
733 ret->min_dyn_reloc_index = 0;
734 ret->no_fn_stub = FALSE;
735 ret->fn_stub = NULL;
736 ret->need_fn_stub = FALSE;
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
739 ret->forced_local = FALSE;
740 }
741
742 return (struct bfd_hash_entry *) ret;
743 }
744
745 bfd_boolean
746 _bfd_mips_elf_new_section_hook (abfd, sec)
747 bfd *abfd;
748 asection *sec;
749 {
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
752
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
754 if (sdata == NULL)
755 return FALSE;
756 sec->used_by_bfd = (PTR) sdata;
757
758 return _bfd_elf_new_section_hook (abfd, sec);
759 }
760 \f
761 /* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
763
764 bfd_boolean
765 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
766 bfd *abfd;
767 asection *section;
768 struct ecoff_debug_info *debug;
769 {
770 HDRR *symhdr;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
773
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
776
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
779 goto error_return;
780
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
783 goto error_return;
784
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
787
788 /* The symbolic header contains absolute file offsets and sizes to
789 read. */
790 #define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
792 debug->ptr = NULL; \
793 else \
794 { \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
798 goto error_return; \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
801 goto error_return; \
802 }
803
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
810 union aux_ext *);
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
816 #undef READ
817
818 debug->fdr = NULL;
819 debug->adjust = NULL;
820
821 return TRUE;
822
823 error_return:
824 if (ext_hdr != NULL)
825 free (ext_hdr);
826 if (debug->line != NULL)
827 free (debug->line);
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
839 free (debug->ss);
840 if (debug->ssext != NULL)
841 free (debug->ssext);
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
848 return FALSE;
849 }
850 \f
851 /* Swap RPDR (runtime procedure table entry) for output. */
852
853 static void
854 ecoff_swap_rpdr_out (abfd, in, ex)
855 bfd *abfd;
856 const RPDR *in;
857 struct rpdr_ext *ex;
858 {
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
865
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
868
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
870 #if 0 /* FIXME */
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
872 #endif
873 }
874
875 /* Create a runtime procedure table from the .mdebug section. */
876
877 static bfd_boolean
878 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
879 PTR handle;
880 bfd *abfd;
881 struct bfd_link_info *info;
882 asection *s;
883 struct ecoff_debug_info *debug;
884 {
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
887 RPDR *rpdr, *rp;
888 struct rpdr_ext *erp;
889 PTR rtproc;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
892 char *ss, **sv;
893 char *str;
894 bfd_size_type size;
895 bfd_size_type count;
896 unsigned long sindex;
897 unsigned long i;
898 PDR pdr;
899 SYMR sym;
900 const char *no_name_func = _("static procedure (no name)");
901
902 epdr = NULL;
903 rpdr = NULL;
904 esym = NULL;
905 ss = NULL;
906 sv = NULL;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909
910 sindex = strlen (no_name_func) + 1;
911 count = hdr->ipdMax;
912 if (count > 0)
913 {
914 size = swap->external_pdr_size;
915
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
917 if (epdr == NULL)
918 goto error_return;
919
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
921 goto error_return;
922
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
925 if (rpdr == NULL)
926 goto error_return;
927
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
930 if (sv == NULL)
931 goto error_return;
932
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
936 if (esym == NULL)
937 goto error_return;
938
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
940 goto error_return;
941
942 count = hdr->issMax;
943 ss = (char *) bfd_malloc (count);
944 if (ss == NULL)
945 goto error_return;
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
947 goto error_return;
948
949 count = hdr->ipdMax;
950 for (i = 0; i < (unsigned long) count; i++, rp++)
951 {
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
954 rp->adr = sym.value;
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
962 rp->irpss = sindex;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
965 }
966 }
967
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
971 if (rtproc == NULL)
972 {
973 mips_elf_hash_table (info)->procedure_count = 0;
974 goto error_return;
975 }
976
977 mips_elf_hash_table (info)->procedure_count = count + 2;
978
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
981 erp++;
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
986 {
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
988 strcpy (str, sv[i]);
989 str += strlen (sv[i]) + 1;
990 }
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
992
993 /* Set the size and contents of .rtproc section. */
994 s->_raw_size = size;
995 s->contents = (bfd_byte *) rtproc;
996
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1000
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011
1012 return TRUE;
1013
1014 error_return:
1015 if (epdr != NULL)
1016 free (epdr);
1017 if (rpdr != NULL)
1018 free (rpdr);
1019 if (esym != NULL)
1020 free (esym);
1021 if (ss != NULL)
1022 free (ss);
1023 if (sv != NULL)
1024 free (sv);
1025 return FALSE;
1026 }
1027
1028 /* Check the mips16 stubs for a particular symbol, and see if we can
1029 discard them. */
1030
1031 static bfd_boolean
1032 mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1035 {
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1038
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1041 {
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1050 }
1051
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1054 {
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1063 }
1064
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1067 {
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1076 }
1077
1078 return TRUE;
1079 }
1080 \f
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1083 relocatable, data, gp)
1084 bfd *abfd;
1085 asymbol *symbol;
1086 arelent *reloc_entry;
1087 asection *input_section;
1088 bfd_boolean relocatable;
1089 PTR data;
1090 bfd_vma gp;
1091 {
1092 bfd_vma relocation;
1093 unsigned long insn = 0;
1094 bfd_signed_vma val;
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1103
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1106
1107 /* Set val to the offset into the section or symbol. */
1108 val = reloc_entry->addend;
1109
1110 if (reloc_entry->howto->partial_inplace)
1111 {
1112 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1113 val += insn & 0xffff;
1114 }
1115
1116 _bfd_mips_elf_sign_extend(val, 16);
1117
1118 /* Adjust val for the final section location and GP value. If we
1119 are producing relocatable output, we don't want to do this for
1120 an external symbol. */
1121 if (! relocatable
1122 || (symbol->flags & BSF_SECTION_SYM) != 0)
1123 val += relocation - gp;
1124
1125 if (reloc_entry->howto->partial_inplace)
1126 {
1127 insn = (insn & ~0xffff) | (val & 0xffff);
1128 bfd_put_32 (abfd, (bfd_vma) insn,
1129 (bfd_byte *) data + reloc_entry->address);
1130 }
1131 else
1132 reloc_entry->addend = val;
1133
1134 if (relocatable)
1135 reloc_entry->address += input_section->output_offset;
1136 else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1592 }
1593
1594 static int
1595 mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598 {
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606 }
1607
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613 static hashval_t
1614 mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616 {
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626 }
1627
1628 static int
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632 {
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1641 }
1642 \f
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1644
1645 static asection *
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649 {
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1667 return NULL;
1668 }
1669 return sreloc;
1670 }
1671
1672 /* Returns the GOT section for ABFD. */
1673
1674 static asection *
1675 mips_elf_got_section (abfd, maybe_excluded)
1676 bfd *abfd;
1677 bfd_boolean maybe_excluded;
1678 {
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
1684 }
1685
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694 {
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
1707 return g;
1708 }
1709
1710 /* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1712 static long
1713 mips_elf_get_global_gotsym_index (abfd)
1714 bfd *abfd;
1715 {
1716 asection *sgot;
1717 struct mips_got_info *g;
1718
1719 if (abfd == NULL)
1720 return 0;
1721
1722 sgot = mips_elf_got_section (abfd, TRUE);
1723 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1724 return 0;
1725
1726 g = mips_elf_section_data (sgot)->u.got_info;
1727 if (g == NULL || g->global_gotsym == NULL)
1728 return 0;
1729
1730 return g->global_gotsym->dynindx;
1731 }
1732
1733 /* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1736
1737 static bfd_vma
1738 mips_elf_local_got_index (abfd, ibfd, info, value)
1739 bfd *abfd, *ibfd;
1740 struct bfd_link_info *info;
1741 bfd_vma value;
1742 {
1743 asection *sgot;
1744 struct mips_got_info *g;
1745 struct mips_got_entry *entry;
1746
1747 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1748
1749 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1750 if (entry)
1751 return entry->gotidx;
1752 else
1753 return MINUS_ONE;
1754 }
1755
1756 /* Returns the GOT index for the global symbol indicated by H. */
1757
1758 static bfd_vma
1759 mips_elf_global_got_index (abfd, ibfd, h)
1760 bfd *abfd, *ibfd;
1761 struct elf_link_hash_entry *h;
1762 {
1763 bfd_vma index;
1764 asection *sgot;
1765 struct mips_got_info *g, *gg;
1766 long global_got_dynindx = 0;
1767
1768 gg = g = mips_elf_got_info (abfd, &sgot);
1769 if (g->bfd2got && ibfd)
1770 {
1771 struct mips_got_entry e, *p;
1772
1773 BFD_ASSERT (h->dynindx >= 0);
1774
1775 g = mips_elf_got_for_ibfd (g, ibfd);
1776 if (g->next != gg)
1777 {
1778 e.abfd = ibfd;
1779 e.symndx = -1;
1780 e.d.h = (struct mips_elf_link_hash_entry *)h;
1781
1782 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1783
1784 BFD_ASSERT (p->gotidx > 0);
1785 return p->gotidx;
1786 }
1787 }
1788
1789 if (gg->global_gotsym != NULL)
1790 global_got_dynindx = gg->global_gotsym->dynindx;
1791
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1795 offset. */
1796 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1797 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1798 * MIPS_ELF_GOT_SIZE (abfd));
1799 BFD_ASSERT (index < sgot->_raw_size);
1800
1801 return index;
1802 }
1803
1804 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1809
1810 static bfd_vma
1811 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1812 bfd *abfd, *ibfd;
1813 struct bfd_link_info *info;
1814 bfd_vma value;
1815 bfd_vma *offsetp;
1816 {
1817 asection *sgot;
1818 struct mips_got_info *g;
1819 bfd_vma index;
1820 struct mips_got_entry *entry;
1821
1822 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1823
1824 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1825 (value + 0x8000)
1826 & (~(bfd_vma)0xffff));
1827
1828 if (!entry)
1829 return MINUS_ONE;
1830
1831 index = entry->gotidx;
1832
1833 if (offsetp)
1834 *offsetp = value - entry->d.address;
1835
1836 return index;
1837 }
1838
1839 /* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1841
1842 static bfd_vma
1843 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1844 bfd *abfd, *ibfd;
1845 struct bfd_link_info *info;
1846 bfd_vma value;
1847 bfd_boolean external;
1848 {
1849 asection *sgot;
1850 struct mips_got_info *g;
1851 struct mips_got_entry *entry;
1852
1853 if (! external)
1854 {
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1858 HI16/LO16 pair. */
1859 value = mips_elf_high (value) << 16;
1860 }
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
1869 }
1870
1871 /* Returns the offset for the entry at the INDEXth position
1872 in the GOT. */
1873
1874 static bfd_vma
1875 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1876 bfd *dynobj;
1877 bfd *output_bfd;
1878 bfd *input_bfd;
1879 bfd_vma index;
1880 {
1881 asection *sgot;
1882 bfd_vma gp;
1883 struct mips_got_info *g;
1884
1885 g = mips_elf_got_info (dynobj, &sgot);
1886 gp = _bfd_get_gp_value (output_bfd)
1887 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1888
1889 return sgot->output_section->vma + sgot->output_offset + index - gp;
1890 }
1891
1892 /* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1894
1895 static struct mips_got_entry *
1896 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1897 bfd *abfd, *ibfd;
1898 struct mips_got_info *gg;
1899 asection *sgot;
1900 bfd_vma value;
1901 {
1902 struct mips_got_entry entry, **loc;
1903 struct mips_got_info *g;
1904
1905 entry.abfd = NULL;
1906 entry.symndx = -1;
1907 entry.d.address = value;
1908
1909 g = mips_elf_got_for_ibfd (gg, ibfd);
1910 if (g == NULL)
1911 {
1912 g = mips_elf_got_for_ibfd (gg, abfd);
1913 BFD_ASSERT (g != NULL);
1914 }
1915
1916 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1917 INSERT);
1918 if (*loc)
1919 return *loc;
1920
1921 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1922
1923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1924
1925 if (! *loc)
1926 return NULL;
1927
1928 memcpy (*loc, &entry, sizeof entry);
1929
1930 if (g->assigned_gotno >= g->local_gotno)
1931 {
1932 (*loc)->gotidx = -1;
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value);
1937 return NULL;
1938 }
1939
1940 MIPS_ELF_PUT_WORD (abfd, value,
1941 (sgot->contents + entry.gotidx));
1942
1943 return *loc;
1944 }
1945
1946 /* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1952
1953 static bfd_boolean
1954 mips_elf_sort_hash_table (info, max_local)
1955 struct bfd_link_info *info;
1956 unsigned long max_local;
1957 {
1958 struct mips_elf_hash_sort_data hsd;
1959 struct mips_got_info *g;
1960 bfd *dynobj;
1961
1962 dynobj = elf_hash_table (info)->dynobj;
1963
1964 g = mips_elf_got_info (dynobj, NULL);
1965
1966 hsd.low = NULL;
1967 hsd.max_unref_got_dynindx =
1968 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g->next ? g->assigned_gotno : 0);
1977 hsd.max_non_got_dynindx = max_local;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1979 elf_hash_table (info)),
1980 mips_elf_sort_hash_table_f,
1981 &hsd);
1982
1983 /* There should have been enough room in the symbol table to
1984 accommodate both the GOT and non-GOT symbols. */
1985 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1986 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1987 <= elf_hash_table (info)->dynsymcount);
1988
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
1991 g->global_gotsym = hsd.low;
1992
1993 return TRUE;
1994 }
1995
1996 /* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
1998 index. */
1999
2000 static bfd_boolean
2001 mips_elf_sort_hash_table_f (h, data)
2002 struct mips_elf_link_hash_entry *h;
2003 PTR data;
2004 {
2005 struct mips_elf_hash_sort_data *hsd
2006 = (struct mips_elf_hash_sort_data *) data;
2007
2008 if (h->root.root.type == bfd_link_hash_warning)
2009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2010
2011 /* Symbols without dynamic symbol table entries aren't interesting
2012 at all. */
2013 if (h->root.dynindx == -1)
2014 return TRUE;
2015
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2019 -1. */
2020 if (h->root.got.offset == 2)
2021 {
2022 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2023 hsd->low = (struct elf_link_hash_entry *) h;
2024 h->root.dynindx = hsd->max_unref_got_dynindx++;
2025 }
2026 else if (h->root.got.offset != 1)
2027 h->root.dynindx = hsd->max_non_got_dynindx++;
2028 else
2029 {
2030 h->root.dynindx = --hsd->min_got_dynindx;
2031 hsd->low = (struct elf_link_hash_entry *) h;
2032 }
2033
2034 return TRUE;
2035 }
2036
2037 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2039 posterity. */
2040
2041 static bfd_boolean
2042 mips_elf_record_global_got_symbol (h, abfd, info, g)
2043 struct elf_link_hash_entry *h;
2044 bfd *abfd;
2045 struct bfd_link_info *info;
2046 struct mips_got_info *g;
2047 {
2048 struct mips_got_entry entry, **loc;
2049
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2051 table. */
2052 if (h->dynindx == -1)
2053 {
2054 switch (ELF_ST_VISIBILITY (h->other))
2055 {
2056 case STV_INTERNAL:
2057 case STV_HIDDEN:
2058 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2059 break;
2060 }
2061 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2062 return FALSE;
2063 }
2064
2065 entry.abfd = abfd;
2066 entry.symndx = -1;
2067 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2068
2069 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2070 INSERT);
2071
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
2074 if (*loc)
2075 return TRUE;
2076
2077 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2078
2079 if (! *loc)
2080 return FALSE;
2081
2082 entry.gotidx = -1;
2083 memcpy (*loc, &entry, sizeof entry);
2084
2085 if (h->got.offset != MINUS_ONE)
2086 return TRUE;
2087
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2091 h->got.offset = 1;
2092
2093 return TRUE;
2094 }
2095
2096 /* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2098
2099 static bfd_boolean
2100 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2101 bfd *abfd;
2102 long symndx;
2103 bfd_vma addend;
2104 struct mips_got_info *g;
2105 {
2106 struct mips_got_entry entry, **loc;
2107
2108 entry.abfd = abfd;
2109 entry.symndx = symndx;
2110 entry.d.addend = addend;
2111 loc = (struct mips_got_entry **)
2112 htab_find_slot (g->got_entries, &entry, INSERT);
2113
2114 if (*loc)
2115 return TRUE;
2116
2117 entry.gotidx = g->local_gotno++;
2118
2119 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2120
2121 if (! *loc)
2122 return FALSE;
2123
2124 memcpy (*loc, &entry, sizeof entry);
2125
2126 return TRUE;
2127 }
2128 \f
2129 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2130
2131 static hashval_t
2132 mips_elf_bfd2got_entry_hash (entry_)
2133 const PTR entry_;
2134 {
2135 const struct mips_elf_bfd2got_hash *entry
2136 = (struct mips_elf_bfd2got_hash *)entry_;
2137
2138 return entry->bfd->id;
2139 }
2140
2141 /* Check whether two hash entries have the same bfd. */
2142
2143 static int
2144 mips_elf_bfd2got_entry_eq (entry1, entry2)
2145 const PTR entry1;
2146 const PTR entry2;
2147 {
2148 const struct mips_elf_bfd2got_hash *e1
2149 = (const struct mips_elf_bfd2got_hash *)entry1;
2150 const struct mips_elf_bfd2got_hash *e2
2151 = (const struct mips_elf_bfd2got_hash *)entry2;
2152
2153 return e1->bfd == e2->bfd;
2154 }
2155
2156 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2157 be the master GOT data. */
2158
2159 static struct mips_got_info *
2160 mips_elf_got_for_ibfd (g, ibfd)
2161 struct mips_got_info *g;
2162 bfd *ibfd;
2163 {
2164 struct mips_elf_bfd2got_hash e, *p;
2165
2166 if (! g->bfd2got)
2167 return g;
2168
2169 e.bfd = ibfd;
2170 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2171 return p ? p->g : NULL;
2172 }
2173
2174 /* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2176 bfd requires. */
2177
2178 static int
2179 mips_elf_make_got_per_bfd (entryp, p)
2180 void **entryp;
2181 void *p;
2182 {
2183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2185 htab_t bfd2got = arg->bfd2got;
2186 struct mips_got_info *g;
2187 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2188 void **bfdgotp;
2189
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2191 none exists. */
2192 bfdgot_entry.bfd = entry->abfd;
2193 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2194 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2195
2196 if (bfdgot != NULL)
2197 g = bfdgot->g;
2198 else
2199 {
2200 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2201 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2202
2203 if (bfdgot == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 *bfdgotp = bfdgot;
2210
2211 bfdgot->bfd = entry->abfd;
2212 bfdgot->g = g = (struct mips_got_info *)
2213 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2214 if (g == NULL)
2215 {
2216 arg->obfd = 0;
2217 return 0;
2218 }
2219
2220 g->global_gotsym = NULL;
2221 g->global_gotno = 0;
2222 g->local_gotno = 0;
2223 g->assigned_gotno = -1;
2224 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2225 mips_elf_multi_got_entry_eq,
2226 (htab_del) NULL);
2227 if (g->got_entries == NULL)
2228 {
2229 arg->obfd = 0;
2230 return 0;
2231 }
2232
2233 g->bfd2got = NULL;
2234 g->next = NULL;
2235 }
2236
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2239 if (*entryp != NULL)
2240 return 1;
2241
2242 *entryp = entry;
2243
2244 if (entry->symndx >= 0 || entry->d.h->forced_local)
2245 ++g->local_gotno;
2246 else
2247 ++g->global_gotno;
2248
2249 return 1;
2250 }
2251
2252 /* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2258
2259 static int
2260 mips_elf_merge_gots (bfd2got_, p)
2261 void **bfd2got_;
2262 void *p;
2263 {
2264 struct mips_elf_bfd2got_hash *bfd2got
2265 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2266 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2267 unsigned int lcount = bfd2got->g->local_gotno;
2268 unsigned int gcount = bfd2got->g->global_gotno;
2269 unsigned int maxcnt = arg->max_count;
2270
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg->primary && lcount + gcount <= maxcnt)
2274 {
2275 arg->primary = bfd2got->g;
2276 arg->primary_count = lcount + gcount;
2277 }
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg->primary
2282 && (arg->primary_count + lcount + gcount) <= maxcnt)
2283 {
2284 struct mips_got_info *g = bfd2got->g;
2285 int old_lcount = arg->primary->local_gotno;
2286 int old_gcount = arg->primary->global_gotno;
2287
2288 bfd2got->g = arg->primary;
2289
2290 htab_traverse (g->got_entries,
2291 mips_elf_make_got_per_bfd,
2292 arg);
2293 if (arg->obfd == NULL)
2294 return 0;
2295
2296 htab_delete (g->got_entries);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2299 table anyway. */
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2303
2304 arg->primary_count = arg->primary->local_gotno
2305 + arg->primary->global_gotno;
2306 }
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg->current
2309 && arg->current_count + lcount + gcount <= maxcnt)
2310 {
2311 struct mips_got_info *g = bfd2got->g;
2312 int old_lcount = arg->current->local_gotno;
2313 int old_gcount = arg->current->global_gotno;
2314
2315 bfd2got->g = arg->current;
2316
2317 htab_traverse (g->got_entries,
2318 mips_elf_make_got_per_bfd,
2319 arg);
2320 if (arg->obfd == NULL)
2321 return 0;
2322
2323 htab_delete (g->got_entries);
2324
2325 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2326 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2327
2328 arg->current_count = arg->current->local_gotno
2329 + arg->current->global_gotno;
2330 }
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2334 else
2335 {
2336 bfd2got->g->next = arg->current;
2337 arg->current = bfd2got->g;
2338
2339 arg->current_count = lcount + gcount;
2340 }
2341
2342 return 1;
2343 }
2344
2345 /* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2348
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2357 stub. */
2358 static int
2359 mips_elf_set_global_got_offset (entryp, p)
2360 void **entryp;
2361 void *p;
2362 {
2363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2364 struct mips_elf_set_global_got_offset_arg *arg
2365 = (struct mips_elf_set_global_got_offset_arg *)p;
2366 struct mips_got_info *g = arg->g;
2367
2368 if (entry->abfd != NULL && entry->symndx == -1
2369 && entry->d.h->root.dynindx != -1)
2370 {
2371 if (g)
2372 {
2373 BFD_ASSERT (g->global_gotsym == NULL);
2374
2375 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry->d.h->no_fn_stub = TRUE;
2380 if (arg->info->shared
2381 || (elf_hash_table (arg->info)->dynamic_sections_created
2382 && ((entry->d.h->root.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2384 && ((entry->d.h->root.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2386 ++arg->needed_relocs;
2387 }
2388 else
2389 entry->d.h->root.got.offset = arg->value;
2390 }
2391
2392 return 1;
2393 }
2394
2395 /* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2401 static int
2402 mips_elf_resolve_final_got_entry (entryp, p)
2403 void **entryp;
2404 void *p;
2405 {
2406 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2407 htab_t got_entries = *(htab_t *)p;
2408
2409 if (entry->abfd != NULL && entry->symndx == -1)
2410 {
2411 struct mips_elf_link_hash_entry *h = entry->d.h;
2412
2413 while (h->root.root.type == bfd_link_hash_indirect
2414 || h->root.root.type == bfd_link_hash_warning)
2415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2416
2417 if (entry->d.h == h)
2418 return 1;
2419
2420 entry->d.h = h;
2421
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries, entry))
2425 {
2426 htab_clear_slot (got_entries, entryp);
2427 entryp = htab_find_slot (got_entries, entry, INSERT);
2428 if (! *entryp)
2429 *entryp = entry;
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2432 process. */
2433 *(htab_t *)p = NULL;
2434 return 0;
2435 }
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2438 }
2439
2440 return 1;
2441 }
2442
2443 /* Turn indirect got entries in a got_entries table into their final
2444 locations. */
2445 static void
2446 mips_elf_resolve_final_got_entries (g)
2447 struct mips_got_info *g;
2448 {
2449 htab_t got_entries;
2450
2451 do
2452 {
2453 got_entries = g->got_entries;
2454
2455 htab_traverse (got_entries,
2456 mips_elf_resolve_final_got_entry,
2457 &got_entries);
2458 }
2459 while (got_entries == NULL);
2460 }
2461
2462 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2463 the primary GOT. */
2464 static bfd_vma
2465 mips_elf_adjust_gp (abfd, g, ibfd)
2466 bfd *abfd;
2467 struct mips_got_info *g;
2468 bfd *ibfd;
2469 {
2470 if (g->bfd2got == NULL)
2471 return 0;
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (! g)
2475 return 0;
2476
2477 BFD_ASSERT (g->next);
2478
2479 g = g->next;
2480
2481 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2482 }
2483
2484 /* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2486
2487 static bfd_boolean
2488 mips_elf_multi_got (abfd, info, g, got, pages)
2489 bfd *abfd;
2490 struct bfd_link_info *info;
2491 struct mips_got_info *g;
2492 asection *got;
2493 bfd_size_type pages;
2494 {
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2497 struct mips_got_info *gg;
2498 unsigned int assign;
2499
2500 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2501 mips_elf_bfd2got_entry_eq,
2502 (htab_del) NULL);
2503 if (g->bfd2got == NULL)
2504 return FALSE;
2505
2506 got_per_bfd_arg.bfd2got = g->bfd2got;
2507 got_per_bfd_arg.obfd = abfd;
2508 got_per_bfd_arg.info = info;
2509
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g);
2513 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2514 if (got_per_bfd_arg.obfd == NULL)
2515 return FALSE;
2516
2517 got_per_bfd_arg.current = NULL;
2518 got_per_bfd_arg.primary = NULL;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2523 / MIPS_ELF_GOT_SIZE (abfd))
2524 - MIPS_RESERVED_GOTNO - pages);
2525
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2530 if (got_per_bfd_arg.obfd == NULL)
2531 return FALSE;
2532
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg.primary == NULL)
2535 {
2536 g->next = (struct mips_got_info *)
2537 bfd_alloc (abfd, sizeof (struct mips_got_info));
2538 if (g->next == NULL)
2539 return FALSE;
2540
2541 g->next->global_gotsym = NULL;
2542 g->next->global_gotno = 0;
2543 g->next->local_gotno = 0;
2544 g->next->assigned_gotno = 0;
2545 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2546 mips_elf_multi_got_entry_eq,
2547 (htab_del) NULL);
2548 if (g->next->got_entries == NULL)
2549 return FALSE;
2550 g->next->bfd2got = NULL;
2551 }
2552 else
2553 g->next = got_per_bfd_arg.primary;
2554 g->next->next = got_per_bfd_arg.current;
2555
2556 /* GG is now the master GOT, and G is the primary GOT. */
2557 gg = g;
2558 g = g->next;
2559
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2564 list. */
2565 {
2566 struct mips_elf_bfd2got_hash *bfdgot;
2567 void **bfdgotp;
2568
2569 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2570 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2571
2572 if (bfdgot == NULL)
2573 return FALSE;
2574
2575 bfdgot->bfd = abfd;
2576 bfdgot->g = g;
2577 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2578
2579 BFD_ASSERT (*bfdgotp == NULL);
2580 *bfdgotp = bfdgot;
2581 }
2582
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2586 referenced.
2587
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
2594
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2599 preserved. */
2600 if (1)
2601 {
2602 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2603 g->global_gotno = gg->global_gotno;
2604 set_got_offset_arg.value = 2;
2605 }
2606 else
2607 {
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg->assigned_gotno = 0;
2615 set_got_offset_arg.value = -1;
2616 }
2617
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg.g = NULL;
2621 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2622 &set_got_offset_arg);
2623 set_got_offset_arg.value = 1;
2624 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2625 &set_got_offset_arg);
2626 if (! mips_elf_sort_hash_table (info, 1))
2627 return FALSE;
2628
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg->local_gotno = -g->global_gotno;
2643 gg->global_gotno = g->global_gotno;
2644 assign = 0;
2645 gg->next = gg;
2646
2647 do
2648 {
2649 struct mips_got_info *gn;
2650
2651 assign += MIPS_RESERVED_GOTNO;
2652 g->assigned_gotno = assign;
2653 g->local_gotno += assign + pages;
2654 assign = g->local_gotno + g->global_gotno;
2655
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2658 gn = g->next;
2659 g->next = gg->next;
2660 gg->next = g;
2661 g = gn;
2662 }
2663 while (g);
2664
2665 got->_raw_size = (gg->next->local_gotno
2666 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2667
2668 return TRUE;
2669 }
2670
2671 \f
2672 /* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2674
2675 static const Elf_Internal_Rela *
2676 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2677 bfd *abfd ATTRIBUTE_UNUSED;
2678 unsigned int r_type;
2679 const Elf_Internal_Rela *relocation;
2680 const Elf_Internal_Rela *relend;
2681 {
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation < relend)
2689 {
2690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2691 return relocation;
2692
2693 ++relocation;
2694 }
2695
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value);
2698 return NULL;
2699 }
2700
2701 /* Return whether a relocation is against a local symbol. */
2702
2703 static bfd_boolean
2704 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2705 check_forced)
2706 bfd *input_bfd;
2707 const Elf_Internal_Rela *relocation;
2708 asection **local_sections;
2709 bfd_boolean check_forced;
2710 {
2711 unsigned long r_symndx;
2712 Elf_Internal_Shdr *symtab_hdr;
2713 struct mips_elf_link_hash_entry *h;
2714 size_t extsymoff;
2715
2716 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2719
2720 if (r_symndx < extsymoff)
2721 return TRUE;
2722 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2723 return TRUE;
2724
2725 if (check_forced)
2726 {
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h = (struct mips_elf_link_hash_entry *)
2730 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h->root.root.type == bfd_link_hash_indirect
2733 || h->root.root.type == bfd_link_hash_warning)
2734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2735 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2736 return TRUE;
2737 }
2738
2739 return FALSE;
2740 }
2741 \f
2742 /* Sign-extend VALUE, which has the indicated number of BITS. */
2743
2744 bfd_vma
2745 _bfd_mips_elf_sign_extend (value, bits)
2746 bfd_vma value;
2747 int bits;
2748 {
2749 if (value & ((bfd_vma) 1 << (bits - 1)))
2750 /* VALUE is negative. */
2751 value |= ((bfd_vma) - 1) << bits;
2752
2753 return value;
2754 }
2755
2756 /* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2758 BITS. */
2759
2760 static bfd_boolean
2761 mips_elf_overflow_p (value, bits)
2762 bfd_vma value;
2763 int bits;
2764 {
2765 bfd_signed_vma svalue = (bfd_signed_vma) value;
2766
2767 if (svalue > (1 << (bits - 1)) - 1)
2768 /* The value is too big. */
2769 return TRUE;
2770 else if (svalue < -(1 << (bits - 1)))
2771 /* The value is too small. */
2772 return TRUE;
2773
2774 /* All is well. */
2775 return FALSE;
2776 }
2777
2778 /* Calculate the %high function. */
2779
2780 static bfd_vma
2781 mips_elf_high (value)
2782 bfd_vma value;
2783 {
2784 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2785 }
2786
2787 /* Calculate the %higher function. */
2788
2789 static bfd_vma
2790 mips_elf_higher (value)
2791 bfd_vma value ATTRIBUTE_UNUSED;
2792 {
2793 #ifdef BFD64
2794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2795 #else
2796 abort ();
2797 return (bfd_vma) -1;
2798 #endif
2799 }
2800
2801 /* Calculate the %highest function. */
2802
2803 static bfd_vma
2804 mips_elf_highest (value)
2805 bfd_vma value ATTRIBUTE_UNUSED;
2806 {
2807 #ifdef BFD64
2808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2809 #else
2810 abort ();
2811 return (bfd_vma) -1;
2812 #endif
2813 }
2814 \f
2815 /* Create the .compact_rel section. */
2816
2817 static bfd_boolean
2818 mips_elf_create_compact_rel_section (abfd, info)
2819 bfd *abfd;
2820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2821 {
2822 flagword flags;
2823 register asection *s;
2824
2825 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2826 {
2827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2828 | SEC_READONLY);
2829
2830 s = bfd_make_section (abfd, ".compact_rel");
2831 if (s == NULL
2832 || ! bfd_set_section_flags (abfd, s, flags)
2833 || ! bfd_set_section_alignment (abfd, s,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2835 return FALSE;
2836
2837 s->_raw_size = sizeof (Elf32_External_compact_rel);
2838 }
2839
2840 return TRUE;
2841 }
2842
2843 /* Create the .got section to hold the global offset table. */
2844
2845 static bfd_boolean
2846 mips_elf_create_got_section (abfd, info, maybe_exclude)
2847 bfd *abfd;
2848 struct bfd_link_info *info;
2849 bfd_boolean maybe_exclude;
2850 {
2851 flagword flags;
2852 register asection *s;
2853 struct elf_link_hash_entry *h;
2854 struct bfd_link_hash_entry *bh;
2855 struct mips_got_info *g;
2856 bfd_size_type amt;
2857
2858 /* This function may be called more than once. */
2859 s = mips_elf_got_section (abfd, TRUE);
2860 if (s)
2861 {
2862 if (! maybe_exclude)
2863 s->flags &= ~SEC_EXCLUDE;
2864 return TRUE;
2865 }
2866
2867 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED);
2869
2870 if (maybe_exclude)
2871 flags |= SEC_EXCLUDE;
2872
2873 /* We have to use an alignment of 2**4 here because this is hardcoded
2874 in the function stub generation and in the linker script. */
2875 s = bfd_make_section (abfd, ".got");
2876 if (s == NULL
2877 || ! bfd_set_section_flags (abfd, s, flags)
2878 || ! bfd_set_section_alignment (abfd, s, 4))
2879 return FALSE;
2880
2881 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2882 linker script because we don't want to define the symbol if we
2883 are not creating a global offset table. */
2884 bh = NULL;
2885 if (! (_bfd_generic_link_add_one_symbol
2886 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2887 (bfd_vma) 0, (const char *) NULL, FALSE,
2888 get_elf_backend_data (abfd)->collect, &bh)))
2889 return FALSE;
2890
2891 h = (struct elf_link_hash_entry *) bh;
2892 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2893 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2894 h->type = STT_OBJECT;
2895
2896 if (info->shared
2897 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2898 return FALSE;
2899
2900 amt = sizeof (struct mips_got_info);
2901 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2902 if (g == NULL)
2903 return FALSE;
2904 g->global_gotsym = NULL;
2905 g->local_gotno = MIPS_RESERVED_GOTNO;
2906 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2907 g->bfd2got = NULL;
2908 g->next = NULL;
2909 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2910 mips_elf_got_entry_eq,
2911 (htab_del) NULL);
2912 if (g->got_entries == NULL)
2913 return FALSE;
2914 mips_elf_section_data (s)->u.got_info = g;
2915 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2916 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2917
2918 return TRUE;
2919 }
2920
2921 /* Returns the .msym section for ABFD, creating it if it does not
2922 already exist. Returns NULL to indicate error. */
2923
2924 static asection *
2925 mips_elf_create_msym_section (abfd)
2926 bfd *abfd;
2927 {
2928 asection *s;
2929
2930 s = bfd_get_section_by_name (abfd, ".msym");
2931 if (!s)
2932 {
2933 s = bfd_make_section (abfd, ".msym");
2934 if (!s
2935 || !bfd_set_section_flags (abfd, s,
2936 SEC_ALLOC
2937 | SEC_LOAD
2938 | SEC_HAS_CONTENTS
2939 | SEC_LINKER_CREATED
2940 | SEC_READONLY)
2941 || !bfd_set_section_alignment (abfd, s,
2942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2943 return NULL;
2944 }
2945
2946 return s;
2947 }
2948 \f
2949 /* Calculate the value produced by the RELOCATION (which comes from
2950 the INPUT_BFD). The ADDEND is the addend to use for this
2951 RELOCATION; RELOCATION->R_ADDEND is ignored.
2952
2953 The result of the relocation calculation is stored in VALUEP.
2954 REQUIRE_JALXP indicates whether or not the opcode used with this
2955 relocation must be JALX.
2956
2957 This function returns bfd_reloc_continue if the caller need take no
2958 further action regarding this relocation, bfd_reloc_notsupported if
2959 something goes dramatically wrong, bfd_reloc_overflow if an
2960 overflow occurs, and bfd_reloc_ok to indicate success. */
2961
2962 static bfd_reloc_status_type
2963 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2964 relocation, addend, howto, local_syms,
2965 local_sections, valuep, namep,
2966 require_jalxp, save_addend)
2967 bfd *abfd;
2968 bfd *input_bfd;
2969 asection *input_section;
2970 struct bfd_link_info *info;
2971 const Elf_Internal_Rela *relocation;
2972 bfd_vma addend;
2973 reloc_howto_type *howto;
2974 Elf_Internal_Sym *local_syms;
2975 asection **local_sections;
2976 bfd_vma *valuep;
2977 const char **namep;
2978 bfd_boolean *require_jalxp;
2979 bfd_boolean save_addend;
2980 {
2981 /* The eventual value we will return. */
2982 bfd_vma value;
2983 /* The address of the symbol against which the relocation is
2984 occurring. */
2985 bfd_vma symbol = 0;
2986 /* The final GP value to be used for the relocatable, executable, or
2987 shared object file being produced. */
2988 bfd_vma gp = MINUS_ONE;
2989 /* The place (section offset or address) of the storage unit being
2990 relocated. */
2991 bfd_vma p;
2992 /* The value of GP used to create the relocatable object. */
2993 bfd_vma gp0 = MINUS_ONE;
2994 /* The offset into the global offset table at which the address of
2995 the relocation entry symbol, adjusted by the addend, resides
2996 during execution. */
2997 bfd_vma g = MINUS_ONE;
2998 /* The section in which the symbol referenced by the relocation is
2999 located. */
3000 asection *sec = NULL;
3001 struct mips_elf_link_hash_entry *h = NULL;
3002 /* TRUE if the symbol referred to by this relocation is a local
3003 symbol. */
3004 bfd_boolean local_p, was_local_p;
3005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3006 bfd_boolean gp_disp_p = FALSE;
3007 Elf_Internal_Shdr *symtab_hdr;
3008 size_t extsymoff;
3009 unsigned long r_symndx;
3010 int r_type;
3011 /* TRUE if overflow occurred during the calculation of the
3012 relocation value. */
3013 bfd_boolean overflowed_p;
3014 /* TRUE if this relocation refers to a MIPS16 function. */
3015 bfd_boolean target_is_16_bit_code_p = FALSE;
3016
3017 /* Parse the relocation. */
3018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3019 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3020 p = (input_section->output_section->vma
3021 + input_section->output_offset
3022 + relocation->r_offset);
3023
3024 /* Assume that there will be no overflow. */
3025 overflowed_p = FALSE;
3026
3027 /* Figure out whether or not the symbol is local, and get the offset
3028 used in the array of hash table entries. */
3029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3030 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3031 local_sections, FALSE);
3032 was_local_p = local_p;
3033 if (! elf_bad_symtab (input_bfd))
3034 extsymoff = symtab_hdr->sh_info;
3035 else
3036 {
3037 /* The symbol table does not follow the rule that local symbols
3038 must come before globals. */
3039 extsymoff = 0;
3040 }
3041
3042 /* Figure out the value of the symbol. */
3043 if (local_p)
3044 {
3045 Elf_Internal_Sym *sym;
3046
3047 sym = local_syms + r_symndx;
3048 sec = local_sections[r_symndx];
3049
3050 symbol = sec->output_section->vma + sec->output_offset;
3051 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3052 || (sec->flags & SEC_MERGE))
3053 symbol += sym->st_value;
3054 if ((sec->flags & SEC_MERGE)
3055 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3056 {
3057 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3058 addend -= symbol;
3059 addend += sec->output_section->vma + sec->output_offset;
3060 }
3061
3062 /* MIPS16 text labels should be treated as odd. */
3063 if (sym->st_other == STO_MIPS16)
3064 ++symbol;
3065
3066 /* Record the name of this symbol, for our caller. */
3067 *namep = bfd_elf_string_from_elf_section (input_bfd,
3068 symtab_hdr->sh_link,
3069 sym->st_name);
3070 if (*namep == '\0')
3071 *namep = bfd_section_name (input_bfd, sec);
3072
3073 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3074 }
3075 else
3076 {
3077 /* For global symbols we look up the symbol in the hash-table. */
3078 h = ((struct mips_elf_link_hash_entry *)
3079 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3080 /* Find the real hash-table entry for this symbol. */
3081 while (h->root.root.type == bfd_link_hash_indirect
3082 || h->root.root.type == bfd_link_hash_warning)
3083 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3084
3085 /* Record the name of this symbol, for our caller. */
3086 *namep = h->root.root.root.string;
3087
3088 /* See if this is the special _gp_disp symbol. Note that such a
3089 symbol must always be a global symbol. */
3090 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3091 && ! NEWABI_P (input_bfd))
3092 {
3093 /* Relocations against _gp_disp are permitted only with
3094 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3095 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3096 return bfd_reloc_notsupported;
3097
3098 gp_disp_p = TRUE;
3099 }
3100 /* If this symbol is defined, calculate its address. Note that
3101 _gp_disp is a magic symbol, always implicitly defined by the
3102 linker, so it's inappropriate to check to see whether or not
3103 its defined. */
3104 else if ((h->root.root.type == bfd_link_hash_defined
3105 || h->root.root.type == bfd_link_hash_defweak)
3106 && h->root.root.u.def.section)
3107 {
3108 sec = h->root.root.u.def.section;
3109 if (sec->output_section)
3110 symbol = (h->root.root.u.def.value
3111 + sec->output_section->vma
3112 + sec->output_offset);
3113 else
3114 symbol = h->root.root.u.def.value;
3115 }
3116 else if (h->root.root.type == bfd_link_hash_undefweak)
3117 /* We allow relocations against undefined weak symbols, giving
3118 it the value zero, so that you can undefined weak functions
3119 and check to see if they exist by looking at their
3120 addresses. */
3121 symbol = 0;
3122 else if (info->shared
3123 && !info->no_undefined
3124 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3125 symbol = 0;
3126 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3127 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3128 {
3129 /* If this is a dynamic link, we should have created a
3130 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3131 in in _bfd_mips_elf_create_dynamic_sections.
3132 Otherwise, we should define the symbol with a value of 0.
3133 FIXME: It should probably get into the symbol table
3134 somehow as well. */
3135 BFD_ASSERT (! info->shared);
3136 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3137 symbol = 0;
3138 }
3139 else
3140 {
3141 if (! ((*info->callbacks->undefined_symbol)
3142 (info, h->root.root.root.string, input_bfd,
3143 input_section, relocation->r_offset,
3144 (!info->shared || info->no_undefined
3145 || ELF_ST_VISIBILITY (h->root.other)))))
3146 return bfd_reloc_undefined;
3147 symbol = 0;
3148 }
3149
3150 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3151 }
3152
3153 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3154 need to redirect the call to the stub, unless we're already *in*
3155 a stub. */
3156 if (r_type != R_MIPS16_26 && !info->relocatable
3157 && ((h != NULL && h->fn_stub != NULL)
3158 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3159 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3160 && !mips_elf_stub_section_p (input_bfd, input_section))
3161 {
3162 /* This is a 32- or 64-bit call to a 16-bit function. We should
3163 have already noticed that we were going to need the
3164 stub. */
3165 if (local_p)
3166 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3167 else
3168 {
3169 BFD_ASSERT (h->need_fn_stub);
3170 sec = h->fn_stub;
3171 }
3172
3173 symbol = sec->output_section->vma + sec->output_offset;
3174 }
3175 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3176 need to redirect the call to the stub. */
3177 else if (r_type == R_MIPS16_26 && !info->relocatable
3178 && h != NULL
3179 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3180 && !target_is_16_bit_code_p)
3181 {
3182 /* If both call_stub and call_fp_stub are defined, we can figure
3183 out which one to use by seeing which one appears in the input
3184 file. */
3185 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3186 {
3187 asection *o;
3188
3189 sec = NULL;
3190 for (o = input_bfd->sections; o != NULL; o = o->next)
3191 {
3192 if (strncmp (bfd_get_section_name (input_bfd, o),
3193 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3194 {
3195 sec = h->call_fp_stub;
3196 break;
3197 }
3198 }
3199 if (sec == NULL)
3200 sec = h->call_stub;
3201 }
3202 else if (h->call_stub != NULL)
3203 sec = h->call_stub;
3204 else
3205 sec = h->call_fp_stub;
3206
3207 BFD_ASSERT (sec->_raw_size > 0);
3208 symbol = sec->output_section->vma + sec->output_offset;
3209 }
3210
3211 /* Calls from 16-bit code to 32-bit code and vice versa require the
3212 special jalx instruction. */
3213 *require_jalxp = (!info->relocatable
3214 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3215 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3216
3217 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3218 local_sections, TRUE);
3219
3220 /* If we haven't already determined the GOT offset, or the GP value,
3221 and we're going to need it, get it now. */
3222 switch (r_type)
3223 {
3224 case R_MIPS_GOT_PAGE:
3225 case R_MIPS_GOT_OFST:
3226 /* If this symbol got a global GOT entry, we have to decay
3227 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
3228 local_p = local_p || ! h
3229 || (h->root.dynindx
3230 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3231 ->dynobj));
3232 if (local_p || r_type == R_MIPS_GOT_OFST)
3233 break;
3234 /* Fall through. */
3235
3236 case R_MIPS_CALL16:
3237 case R_MIPS_GOT16:
3238 case R_MIPS_GOT_DISP:
3239 case R_MIPS_GOT_HI16:
3240 case R_MIPS_CALL_HI16:
3241 case R_MIPS_GOT_LO16:
3242 case R_MIPS_CALL_LO16:
3243 /* Find the index into the GOT where this value is located. */
3244 if (!local_p)
3245 {
3246 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3247 GOT_PAGE relocation that decays to GOT_DISP because the
3248 symbol turns out to be global. The addend is then added
3249 as GOT_OFST. */
3250 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3251 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3252 input_bfd,
3253 (struct elf_link_hash_entry *) h);
3254 if (! elf_hash_table(info)->dynamic_sections_created
3255 || (info->shared
3256 && (info->symbolic || h->root.dynindx == -1)
3257 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3258 {
3259 /* This is a static link or a -Bsymbolic link. The
3260 symbol is defined locally, or was forced to be local.
3261 We must initialize this entry in the GOT. */
3262 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3263 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3264 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3265 }
3266 }
3267 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3268 /* There's no need to create a local GOT entry here; the
3269 calculation for a local GOT16 entry does not involve G. */
3270 break;
3271 else
3272 {
3273 g = mips_elf_local_got_index (abfd, input_bfd,
3274 info, symbol + addend);
3275 if (g == MINUS_ONE)
3276 return bfd_reloc_outofrange;
3277 }
3278
3279 /* Convert GOT indices to actual offsets. */
3280 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3281 abfd, input_bfd, g);
3282 break;
3283
3284 case R_MIPS_HI16:
3285 case R_MIPS_LO16:
3286 case R_MIPS16_GPREL:
3287 case R_MIPS_GPREL16:
3288 case R_MIPS_GPREL32:
3289 case R_MIPS_LITERAL:
3290 gp0 = _bfd_get_gp_value (input_bfd);
3291 gp = _bfd_get_gp_value (abfd);
3292 if (elf_hash_table (info)->dynobj)
3293 gp += mips_elf_adjust_gp (abfd,
3294 mips_elf_got_info
3295 (elf_hash_table (info)->dynobj, NULL),
3296 input_bfd);
3297 break;
3298
3299 default:
3300 break;
3301 }
3302
3303 /* Figure out what kind of relocation is being performed. */
3304 switch (r_type)
3305 {
3306 case R_MIPS_NONE:
3307 return bfd_reloc_continue;
3308
3309 case R_MIPS_16:
3310 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3311 overflowed_p = mips_elf_overflow_p (value, 16);
3312 break;
3313
3314 case R_MIPS_32:
3315 case R_MIPS_REL32:
3316 case R_MIPS_64:
3317 if ((info->shared
3318 || (elf_hash_table (info)->dynamic_sections_created
3319 && h != NULL
3320 && ((h->root.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3322 && ((h->root.elf_link_hash_flags
3323 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3324 && r_symndx != 0
3325 && (input_section->flags & SEC_ALLOC) != 0)
3326 {
3327 /* If we're creating a shared library, or this relocation is
3328 against a symbol in a shared library, then we can't know
3329 where the symbol will end up. So, we create a relocation
3330 record in the output, and leave the job up to the dynamic
3331 linker. */
3332 value = addend;
3333 if (!mips_elf_create_dynamic_relocation (abfd,
3334 info,
3335 relocation,
3336 h,
3337 sec,
3338 symbol,
3339 &value,
3340 input_section))
3341 return bfd_reloc_undefined;
3342 }
3343 else
3344 {
3345 if (r_type != R_MIPS_REL32)
3346 value = symbol + addend;
3347 else
3348 value = addend;
3349 }
3350 value &= howto->dst_mask;
3351 break;
3352
3353 case R_MIPS_PC32:
3354 case R_MIPS_PC64:
3355 case R_MIPS_GNU_REL_LO16:
3356 value = symbol + addend - p;
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_GNU_REL16_S2:
3361 value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
3362 overflowed_p = mips_elf_overflow_p (value, 18);
3363 value = (value >> 2) & howto->dst_mask;
3364 break;
3365
3366 case R_MIPS_GNU_REL_HI16:
3367 /* Instead of subtracting 'p' here, we should be subtracting the
3368 equivalent value for the LO part of the reloc, since the value
3369 here is relative to that address. Because that's not easy to do,
3370 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3371 the comment there for more information. */
3372 value = mips_elf_high (addend + symbol - p);
3373 value &= howto->dst_mask;
3374 break;
3375
3376 case R_MIPS16_26:
3377 /* The calculation for R_MIPS16_26 is just the same as for an
3378 R_MIPS_26. It's only the storage of the relocated field into
3379 the output file that's different. That's handled in
3380 mips_elf_perform_relocation. So, we just fall through to the
3381 R_MIPS_26 case here. */
3382 case R_MIPS_26:
3383 if (local_p)
3384 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3385 else
3386 value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3387 value &= howto->dst_mask;
3388 break;
3389
3390 case R_MIPS_HI16:
3391 if (!gp_disp_p)
3392 {
3393 value = mips_elf_high (addend + symbol);
3394 value &= howto->dst_mask;
3395 }
3396 else
3397 {
3398 value = mips_elf_high (addend + gp - p);
3399 overflowed_p = mips_elf_overflow_p (value, 16);
3400 }
3401 break;
3402
3403 case R_MIPS_LO16:
3404 if (!gp_disp_p)
3405 value = (symbol + addend) & howto->dst_mask;
3406 else
3407 {
3408 value = addend + gp - p + 4;
3409 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3410 for overflow. But, on, say, IRIX5, relocations against
3411 _gp_disp are normally generated from the .cpload
3412 pseudo-op. It generates code that normally looks like
3413 this:
3414
3415 lui $gp,%hi(_gp_disp)
3416 addiu $gp,$gp,%lo(_gp_disp)
3417 addu $gp,$gp,$t9
3418
3419 Here $t9 holds the address of the function being called,
3420 as required by the MIPS ELF ABI. The R_MIPS_LO16
3421 relocation can easily overflow in this situation, but the
3422 R_MIPS_HI16 relocation will handle the overflow.
3423 Therefore, we consider this a bug in the MIPS ABI, and do
3424 not check for overflow here. */
3425 }
3426 break;
3427
3428 case R_MIPS_LITERAL:
3429 /* Because we don't merge literal sections, we can handle this
3430 just like R_MIPS_GPREL16. In the long run, we should merge
3431 shared literals, and then we will need to additional work
3432 here. */
3433
3434 /* Fall through. */
3435
3436 case R_MIPS16_GPREL:
3437 /* The R_MIPS16_GPREL performs the same calculation as
3438 R_MIPS_GPREL16, but stores the relocated bits in a different
3439 order. We don't need to do anything special here; the
3440 differences are handled in mips_elf_perform_relocation. */
3441 case R_MIPS_GPREL16:
3442 /* Only sign-extend the addend if it was extracted from the
3443 instruction. If the addend was separate, leave it alone,
3444 otherwise we may lose significant bits. */
3445 if (howto->partial_inplace)
3446 addend = _bfd_mips_elf_sign_extend (addend, 16);
3447 value = symbol + addend - gp;
3448 /* If the symbol was local, any earlier relocatable links will
3449 have adjusted its addend with the gp offset, so compensate
3450 for that now. Don't do it for symbols forced local in this
3451 link, though, since they won't have had the gp offset applied
3452 to them before. */
3453 if (was_local_p)
3454 value += gp0;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GOT16:
3459 case R_MIPS_CALL16:
3460 if (local_p)
3461 {
3462 bfd_boolean forced;
3463
3464 /* The special case is when the symbol is forced to be local. We
3465 need the full address in the GOT since no R_MIPS_LO16 relocation
3466 follows. */
3467 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3468 local_sections, FALSE);
3469 value = mips_elf_got16_entry (abfd, input_bfd, info,
3470 symbol + addend, forced);
3471 if (value == MINUS_ONE)
3472 return bfd_reloc_outofrange;
3473 value
3474 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3475 abfd, input_bfd, value);
3476 overflowed_p = mips_elf_overflow_p (value, 16);
3477 break;
3478 }
3479
3480 /* Fall through. */
3481
3482 case R_MIPS_GOT_DISP:
3483 got_disp:
3484 value = g;
3485 overflowed_p = mips_elf_overflow_p (value, 16);
3486 break;
3487
3488 case R_MIPS_GPREL32:
3489 value = (addend + symbol + gp0 - gp);
3490 if (!save_addend)
3491 value &= howto->dst_mask;
3492 break;
3493
3494 case R_MIPS_PC16:
3495 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3496 overflowed_p = mips_elf_overflow_p (value, 16);
3497 break;
3498
3499 case R_MIPS_GOT_HI16:
3500 case R_MIPS_CALL_HI16:
3501 /* We're allowed to handle these two relocations identically.
3502 The dynamic linker is allowed to handle the CALL relocations
3503 differently by creating a lazy evaluation stub. */
3504 value = g;
3505 value = mips_elf_high (value);
3506 value &= howto->dst_mask;
3507 break;
3508
3509 case R_MIPS_GOT_LO16:
3510 case R_MIPS_CALL_LO16:
3511 value = g & howto->dst_mask;
3512 break;
3513
3514 case R_MIPS_GOT_PAGE:
3515 /* GOT_PAGE relocations that reference non-local symbols decay
3516 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3517 0. */
3518 if (! local_p)
3519 goto got_disp;
3520 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3521 if (value == MINUS_ONE)
3522 return bfd_reloc_outofrange;
3523 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3524 abfd, input_bfd, value);
3525 overflowed_p = mips_elf_overflow_p (value, 16);
3526 break;
3527
3528 case R_MIPS_GOT_OFST:
3529 if (local_p)
3530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3531 else
3532 value = addend;
3533 overflowed_p = mips_elf_overflow_p (value, 16);
3534 break;
3535
3536 case R_MIPS_SUB:
3537 value = symbol - addend;
3538 value &= howto->dst_mask;
3539 break;
3540
3541 case R_MIPS_HIGHER:
3542 value = mips_elf_higher (addend + symbol);
3543 value &= howto->dst_mask;
3544 break;
3545
3546 case R_MIPS_HIGHEST:
3547 value = mips_elf_highest (addend + symbol);
3548 value &= howto->dst_mask;
3549 break;
3550
3551 case R_MIPS_SCN_DISP:
3552 value = symbol + addend - sec->output_offset;
3553 value &= howto->dst_mask;
3554 break;
3555
3556 case R_MIPS_PJUMP:
3557 case R_MIPS_JALR:
3558 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3559 hint; we could improve performance by honoring that hint. */
3560 return bfd_reloc_continue;
3561
3562 case R_MIPS_GNU_VTINHERIT:
3563 case R_MIPS_GNU_VTENTRY:
3564 /* We don't do anything with these at present. */
3565 return bfd_reloc_continue;
3566
3567 default:
3568 /* An unrecognized relocation type. */
3569 return bfd_reloc_notsupported;
3570 }
3571
3572 /* Store the VALUE for our caller. */
3573 *valuep = value;
3574 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3575 }
3576
3577 /* Obtain the field relocated by RELOCATION. */
3578
3579 static bfd_vma
3580 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3581 reloc_howto_type *howto;
3582 const Elf_Internal_Rela *relocation;
3583 bfd *input_bfd;
3584 bfd_byte *contents;
3585 {
3586 bfd_vma x;
3587 bfd_byte *location = contents + relocation->r_offset;
3588
3589 /* Obtain the bytes. */
3590 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3591
3592 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3593 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3594 && bfd_little_endian (input_bfd))
3595 /* The two 16-bit words will be reversed on a little-endian system.
3596 See mips_elf_perform_relocation for more details. */
3597 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3598
3599 return x;
3600 }
3601
3602 /* It has been determined that the result of the RELOCATION is the
3603 VALUE. Use HOWTO to place VALUE into the output file at the
3604 appropriate position. The SECTION is the section to which the
3605 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3606 for the relocation must be either JAL or JALX, and it is
3607 unconditionally converted to JALX.
3608
3609 Returns FALSE if anything goes wrong. */
3610
3611 static bfd_boolean
3612 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3613 input_section, contents, require_jalx)
3614 struct bfd_link_info *info;
3615 reloc_howto_type *howto;
3616 const Elf_Internal_Rela *relocation;
3617 bfd_vma value;
3618 bfd *input_bfd;
3619 asection *input_section;
3620 bfd_byte *contents;
3621 bfd_boolean require_jalx;
3622 {
3623 bfd_vma x;
3624 bfd_byte *location;
3625 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3626
3627 /* Figure out where the relocation is occurring. */
3628 location = contents + relocation->r_offset;
3629
3630 /* Obtain the current value. */
3631 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3632
3633 /* Clear the field we are setting. */
3634 x &= ~howto->dst_mask;
3635
3636 /* If this is the R_MIPS16_26 relocation, we must store the
3637 value in a funny way. */
3638 if (r_type == R_MIPS16_26)
3639 {
3640 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3641 Most mips16 instructions are 16 bits, but these instructions
3642 are 32 bits.
3643
3644 The format of these instructions is:
3645
3646 +--------------+--------------------------------+
3647 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3648 +--------------+--------------------------------+
3649 ! Immediate 15:0 !
3650 +-----------------------------------------------+
3651
3652 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3653 Note that the immediate value in the first word is swapped.
3654
3655 When producing a relocatable object file, R_MIPS16_26 is
3656 handled mostly like R_MIPS_26. In particular, the addend is
3657 stored as a straight 26-bit value in a 32-bit instruction.
3658 (gas makes life simpler for itself by never adjusting a
3659 R_MIPS16_26 reloc to be against a section, so the addend is
3660 always zero). However, the 32 bit instruction is stored as 2
3661 16-bit values, rather than a single 32-bit value. In a
3662 big-endian file, the result is the same; in a little-endian
3663 file, the two 16-bit halves of the 32 bit value are swapped.
3664 This is so that a disassembler can recognize the jal
3665 instruction.
3666
3667 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3668 instruction stored as two 16-bit values. The addend A is the
3669 contents of the targ26 field. The calculation is the same as
3670 R_MIPS_26. When storing the calculated value, reorder the
3671 immediate value as shown above, and don't forget to store the
3672 value as two 16-bit values.
3673
3674 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3675 defined as
3676
3677 big-endian:
3678 +--------+----------------------+
3679 | | |
3680 | | targ26-16 |
3681 |31 26|25 0|
3682 +--------+----------------------+
3683
3684 little-endian:
3685 +----------+------+-------------+
3686 | | | |
3687 | sub1 | | sub2 |
3688 |0 9|10 15|16 31|
3689 +----------+--------------------+
3690 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3691 ((sub1 << 16) | sub2)).
3692
3693 When producing a relocatable object file, the calculation is
3694 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 When producing a fully linked file, the calculation is
3696 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3697 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3698
3699 if (!info->relocatable)
3700 /* Shuffle the bits according to the formula above. */
3701 value = (((value & 0x1f0000) << 5)
3702 | ((value & 0x3e00000) >> 5)
3703 | (value & 0xffff));
3704 }
3705 else if (r_type == R_MIPS16_GPREL)
3706 {
3707 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3708 mode. A typical instruction will have a format like this:
3709
3710 +--------------+--------------------------------+
3711 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3712 +--------------+--------------------------------+
3713 ! Major ! rx ! ry ! Imm 4:0 !
3714 +--------------+--------------------------------+
3715
3716 EXTEND is the five bit value 11110. Major is the instruction
3717 opcode.
3718
3719 This is handled exactly like R_MIPS_GPREL16, except that the
3720 addend is retrieved and stored as shown in this diagram; that
3721 is, the Imm fields above replace the V-rel16 field.
3722
3723 All we need to do here is shuffle the bits appropriately. As
3724 above, the two 16-bit halves must be swapped on a
3725 little-endian system. */
3726 value = (((value & 0x7e0) << 16)
3727 | ((value & 0xf800) << 5)
3728 | (value & 0x1f));
3729 }
3730
3731 /* Set the field. */
3732 x |= (value & howto->dst_mask);
3733
3734 /* If required, turn JAL into JALX. */
3735 if (require_jalx)
3736 {
3737 bfd_boolean ok;
3738 bfd_vma opcode = x >> 26;
3739 bfd_vma jalx_opcode;
3740
3741 /* Check to see if the opcode is already JAL or JALX. */
3742 if (r_type == R_MIPS16_26)
3743 {
3744 ok = ((opcode == 0x6) || (opcode == 0x7));
3745 jalx_opcode = 0x7;
3746 }
3747 else
3748 {
3749 ok = ((opcode == 0x3) || (opcode == 0x1d));
3750 jalx_opcode = 0x1d;
3751 }
3752
3753 /* If the opcode is not JAL or JALX, there's a problem. */
3754 if (!ok)
3755 {
3756 (*_bfd_error_handler)
3757 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3758 bfd_archive_filename (input_bfd),
3759 input_section->name,
3760 (unsigned long) relocation->r_offset);
3761 bfd_set_error (bfd_error_bad_value);
3762 return FALSE;
3763 }
3764
3765 /* Make this the JALX opcode. */
3766 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3767 }
3768
3769 /* Swap the high- and low-order 16 bits on little-endian systems
3770 when doing a MIPS16 relocation. */
3771 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3772 && bfd_little_endian (input_bfd))
3773 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3774
3775 /* Put the value into the output. */
3776 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3777 return TRUE;
3778 }
3779
3780 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3781
3782 static bfd_boolean
3783 mips_elf_stub_section_p (abfd, section)
3784 bfd *abfd ATTRIBUTE_UNUSED;
3785 asection *section;
3786 {
3787 const char *name = bfd_get_section_name (abfd, section);
3788
3789 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3790 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3791 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3792 }
3793 \f
3794 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3795
3796 static void
3797 mips_elf_allocate_dynamic_relocations (abfd, n)
3798 bfd *abfd;
3799 unsigned int n;
3800 {
3801 asection *s;
3802
3803 s = mips_elf_rel_dyn_section (abfd, FALSE);
3804 BFD_ASSERT (s != NULL);
3805
3806 if (s->_raw_size == 0)
3807 {
3808 /* Make room for a null element. */
3809 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3810 ++s->reloc_count;
3811 }
3812 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3813 }
3814
3815 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3816 is the original relocation, which is now being transformed into a
3817 dynamic relocation. The ADDENDP is adjusted if necessary; the
3818 caller should store the result in place of the original addend. */
3819
3820 static bfd_boolean
3821 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3822 symbol, addendp, input_section)
3823 bfd *output_bfd;
3824 struct bfd_link_info *info;
3825 const Elf_Internal_Rela *rel;
3826 struct mips_elf_link_hash_entry *h;
3827 asection *sec;
3828 bfd_vma symbol;
3829 bfd_vma *addendp;
3830 asection *input_section;
3831 {
3832 Elf_Internal_Rela outrel[3];
3833 bfd_boolean skip;
3834 asection *sreloc;
3835 bfd *dynobj;
3836 int r_type;
3837
3838 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3839 dynobj = elf_hash_table (info)->dynobj;
3840 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3841 BFD_ASSERT (sreloc != NULL);
3842 BFD_ASSERT (sreloc->contents != NULL);
3843 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3844 < sreloc->_raw_size);
3845
3846 skip = FALSE;
3847 outrel[0].r_offset =
3848 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3849 outrel[1].r_offset =
3850 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3851 outrel[2].r_offset =
3852 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3853
3854 #if 0
3855 /* We begin by assuming that the offset for the dynamic relocation
3856 is the same as for the original relocation. We'll adjust this
3857 later to reflect the correct output offsets. */
3858 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3859 {
3860 outrel[1].r_offset = rel[1].r_offset;
3861 outrel[2].r_offset = rel[2].r_offset;
3862 }
3863 else
3864 {
3865 /* Except that in a stab section things are more complex.
3866 Because we compress stab information, the offset given in the
3867 relocation may not be the one we want; we must let the stabs
3868 machinery tell us the offset. */
3869 outrel[1].r_offset = outrel[0].r_offset;
3870 outrel[2].r_offset = outrel[0].r_offset;
3871 /* If we didn't need the relocation at all, this value will be
3872 -1. */
3873 if (outrel[0].r_offset == (bfd_vma) -1)
3874 skip = TRUE;
3875 }
3876 #endif
3877
3878 if (outrel[0].r_offset == (bfd_vma) -1
3879 || outrel[0].r_offset == (bfd_vma) -2)
3880 skip = TRUE;
3881
3882 /* If we've decided to skip this relocation, just output an empty
3883 record. Note that R_MIPS_NONE == 0, so that this call to memset
3884 is a way of setting R_TYPE to R_MIPS_NONE. */
3885 if (skip)
3886 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3887 else
3888 {
3889 long indx;
3890 bfd_boolean defined_p;
3891
3892 /* We must now calculate the dynamic symbol table index to use
3893 in the relocation. */
3894 if (h != NULL
3895 && (! info->symbolic || (h->root.elf_link_hash_flags
3896 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3897 {
3898 indx = h->root.dynindx;
3899 /* h->root.dynindx may be -1 if this symbol was marked to
3900 become local. */
3901 if (indx == -1)
3902 indx = 0;
3903 if (SGI_COMPAT (output_bfd))
3904 defined_p = ((h->root.elf_link_hash_flags
3905 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3906 else
3907 /* ??? glibc's ld.so just adds the final GOT entry to the
3908 relocation field. It therefore treats relocs against
3909 defined symbols in the same way as relocs against
3910 undefined symbols. */
3911 defined_p = FALSE;
3912 }
3913 else
3914 {
3915 if (sec != NULL && bfd_is_abs_section (sec))
3916 indx = 0;
3917 else if (sec == NULL || sec->owner == NULL)
3918 {
3919 bfd_set_error (bfd_error_bad_value);
3920 return FALSE;
3921 }
3922 else
3923 {
3924 indx = elf_section_data (sec->output_section)->dynindx;
3925 if (indx == 0)
3926 abort ();
3927 }
3928
3929 /* Instead of generating a relocation using the section
3930 symbol, we may as well make it a fully relative
3931 relocation. We want to avoid generating relocations to
3932 local symbols because we used to generate them
3933 incorrectly, without adding the original symbol value,
3934 which is mandated by the ABI for section symbols. In
3935 order to give dynamic loaders and applications time to
3936 phase out the incorrect use, we refrain from emitting
3937 section-relative relocations. It's not like they're
3938 useful, after all. This should be a bit more efficient
3939 as well. */
3940 indx = 0;
3941 defined_p = TRUE;
3942 }
3943
3944 /* If the relocation was previously an absolute relocation and
3945 this symbol will not be referred to by the relocation, we must
3946 adjust it by the value we give it in the dynamic symbol table.
3947 Otherwise leave the job up to the dynamic linker. */
3948 if (defined_p && r_type != R_MIPS_REL32)
3949 *addendp += symbol;
3950
3951 /* The relocation is always an REL32 relocation because we don't
3952 know where the shared library will wind up at load-time. */
3953 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3954 R_MIPS_REL32);
3955 /* For strict adherence to the ABI specification, we should
3956 generate a R_MIPS_64 relocation record by itself before the
3957 _REL32/_64 record as well, such that the addend is read in as
3958 a 64-bit value (REL32 is a 32-bit relocation, after all).
3959 However, since none of the existing ELF64 MIPS dynamic
3960 loaders seems to care, we don't waste space with these
3961 artificial relocations. If this turns out to not be true,
3962 mips_elf_allocate_dynamic_relocation() should be tweaked so
3963 as to make room for a pair of dynamic relocations per
3964 invocation if ABI_64_P, and here we should generate an
3965 additional relocation record with R_MIPS_64 by itself for a
3966 NULL symbol before this relocation record. */
3967 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3968 ABI_64_P (output_bfd)
3969 ? R_MIPS_64
3970 : R_MIPS_NONE);
3971 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3972 R_MIPS_NONE);
3973
3974 /* Adjust the output offset of the relocation to reference the
3975 correct location in the output file. */
3976 outrel[0].r_offset += (input_section->output_section->vma
3977 + input_section->output_offset);
3978 outrel[1].r_offset += (input_section->output_section->vma
3979 + input_section->output_offset);
3980 outrel[2].r_offset += (input_section->output_section->vma
3981 + input_section->output_offset);
3982 }
3983
3984 /* Put the relocation back out. We have to use the special
3985 relocation outputter in the 64-bit case since the 64-bit
3986 relocation format is non-standard. */
3987 if (ABI_64_P (output_bfd))
3988 {
3989 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3990 (output_bfd, &outrel[0],
3991 (sreloc->contents
3992 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3993 }
3994 else
3995 bfd_elf32_swap_reloc_out
3996 (output_bfd, &outrel[0],
3997 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3998
3999 /* Record the index of the first relocation referencing H. This
4000 information is later emitted in the .msym section. */
4001 if (h != NULL
4002 && (h->min_dyn_reloc_index == 0
4003 || sreloc->reloc_count < h->min_dyn_reloc_index))
4004 h->min_dyn_reloc_index = sreloc->reloc_count;
4005
4006 /* We've now added another relocation. */
4007 ++sreloc->reloc_count;
4008
4009 /* Make sure the output section is writable. The dynamic linker
4010 will be writing to it. */
4011 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4012 |= SHF_WRITE;
4013
4014 /* On IRIX5, make an entry of compact relocation info. */
4015 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4016 {
4017 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4018 bfd_byte *cr;
4019
4020 if (scpt)
4021 {
4022 Elf32_crinfo cptrel;
4023
4024 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4025 cptrel.vaddr = (rel->r_offset
4026 + input_section->output_section->vma
4027 + input_section->output_offset);
4028 if (r_type == R_MIPS_REL32)
4029 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4030 else
4031 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4032 mips_elf_set_cr_dist2to (cptrel, 0);
4033 cptrel.konst = *addendp;
4034
4035 cr = (scpt->contents
4036 + sizeof (Elf32_External_compact_rel));
4037 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4038 ((Elf32_External_crinfo *) cr
4039 + scpt->reloc_count));
4040 ++scpt->reloc_count;
4041 }
4042 }
4043
4044 return TRUE;
4045 }
4046 \f
4047 /* Return the MACH for a MIPS e_flags value. */
4048
4049 unsigned long
4050 _bfd_elf_mips_mach (flags)
4051 flagword flags;
4052 {
4053 switch (flags & EF_MIPS_MACH)
4054 {
4055 case E_MIPS_MACH_3900:
4056 return bfd_mach_mips3900;
4057
4058 case E_MIPS_MACH_4010:
4059 return bfd_mach_mips4010;
4060
4061 case E_MIPS_MACH_4100:
4062 return bfd_mach_mips4100;
4063
4064 case E_MIPS_MACH_4111:
4065 return bfd_mach_mips4111;
4066
4067 case E_MIPS_MACH_4120:
4068 return bfd_mach_mips4120;
4069
4070 case E_MIPS_MACH_4650:
4071 return bfd_mach_mips4650;
4072
4073 case E_MIPS_MACH_5400:
4074 return bfd_mach_mips5400;
4075
4076 case E_MIPS_MACH_5500:
4077 return bfd_mach_mips5500;
4078
4079 case E_MIPS_MACH_SB1:
4080 return bfd_mach_mips_sb1;
4081
4082 default:
4083 switch (flags & EF_MIPS_ARCH)
4084 {
4085 default:
4086 case E_MIPS_ARCH_1:
4087 return bfd_mach_mips3000;
4088 break;
4089
4090 case E_MIPS_ARCH_2:
4091 return bfd_mach_mips6000;
4092 break;
4093
4094 case E_MIPS_ARCH_3:
4095 return bfd_mach_mips4000;
4096 break;
4097
4098 case E_MIPS_ARCH_4:
4099 return bfd_mach_mips8000;
4100 break;
4101
4102 case E_MIPS_ARCH_5:
4103 return bfd_mach_mips5;
4104 break;
4105
4106 case E_MIPS_ARCH_32:
4107 return bfd_mach_mipsisa32;
4108 break;
4109
4110 case E_MIPS_ARCH_64:
4111 return bfd_mach_mipsisa64;
4112 break;
4113
4114 case E_MIPS_ARCH_32R2:
4115 return bfd_mach_mipsisa32r2;
4116 break;
4117 }
4118 }
4119
4120 return 0;
4121 }
4122
4123 /* Return printable name for ABI. */
4124
4125 static INLINE char *
4126 elf_mips_abi_name (abfd)
4127 bfd *abfd;
4128 {
4129 flagword flags;
4130
4131 flags = elf_elfheader (abfd)->e_flags;
4132 switch (flags & EF_MIPS_ABI)
4133 {
4134 case 0:
4135 if (ABI_N32_P (abfd))
4136 return "N32";
4137 else if (ABI_64_P (abfd))
4138 return "64";
4139 else
4140 return "none";
4141 case E_MIPS_ABI_O32:
4142 return "O32";
4143 case E_MIPS_ABI_O64:
4144 return "O64";
4145 case E_MIPS_ABI_EABI32:
4146 return "EABI32";
4147 case E_MIPS_ABI_EABI64:
4148 return "EABI64";
4149 default:
4150 return "unknown abi";
4151 }
4152 }
4153 \f
4154 /* MIPS ELF uses two common sections. One is the usual one, and the
4155 other is for small objects. All the small objects are kept
4156 together, and then referenced via the gp pointer, which yields
4157 faster assembler code. This is what we use for the small common
4158 section. This approach is copied from ecoff.c. */
4159 static asection mips_elf_scom_section;
4160 static asymbol mips_elf_scom_symbol;
4161 static asymbol *mips_elf_scom_symbol_ptr;
4162
4163 /* MIPS ELF also uses an acommon section, which represents an
4164 allocated common symbol which may be overridden by a
4165 definition in a shared library. */
4166 static asection mips_elf_acom_section;
4167 static asymbol mips_elf_acom_symbol;
4168 static asymbol *mips_elf_acom_symbol_ptr;
4169
4170 /* Handle the special MIPS section numbers that a symbol may use.
4171 This is used for both the 32-bit and the 64-bit ABI. */
4172
4173 void
4174 _bfd_mips_elf_symbol_processing (abfd, asym)
4175 bfd *abfd;
4176 asymbol *asym;
4177 {
4178 elf_symbol_type *elfsym;
4179
4180 elfsym = (elf_symbol_type *) asym;
4181 switch (elfsym->internal_elf_sym.st_shndx)
4182 {
4183 case SHN_MIPS_ACOMMON:
4184 /* This section is used in a dynamically linked executable file.
4185 It is an allocated common section. The dynamic linker can
4186 either resolve these symbols to something in a shared
4187 library, or it can just leave them here. For our purposes,
4188 we can consider these symbols to be in a new section. */
4189 if (mips_elf_acom_section.name == NULL)
4190 {
4191 /* Initialize the acommon section. */
4192 mips_elf_acom_section.name = ".acommon";
4193 mips_elf_acom_section.flags = SEC_ALLOC;
4194 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4195 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4196 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4197 mips_elf_acom_symbol.name = ".acommon";
4198 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4199 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4200 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4201 }
4202 asym->section = &mips_elf_acom_section;
4203 break;
4204
4205 case SHN_COMMON:
4206 /* Common symbols less than the GP size are automatically
4207 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4208 if (asym->value > elf_gp_size (abfd)
4209 || IRIX_COMPAT (abfd) == ict_irix6)
4210 break;
4211 /* Fall through. */
4212 case SHN_MIPS_SCOMMON:
4213 if (mips_elf_scom_section.name == NULL)
4214 {
4215 /* Initialize the small common section. */
4216 mips_elf_scom_section.name = ".scommon";
4217 mips_elf_scom_section.flags = SEC_IS_COMMON;
4218 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4219 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4220 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4221 mips_elf_scom_symbol.name = ".scommon";
4222 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4223 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4224 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4225 }
4226 asym->section = &mips_elf_scom_section;
4227 asym->value = elfsym->internal_elf_sym.st_size;
4228 break;
4229
4230 case SHN_MIPS_SUNDEFINED:
4231 asym->section = bfd_und_section_ptr;
4232 break;
4233
4234 #if 0 /* for SGI_COMPAT */
4235 case SHN_MIPS_TEXT:
4236 asym->section = mips_elf_text_section_ptr;
4237 break;
4238
4239 case SHN_MIPS_DATA:
4240 asym->section = mips_elf_data_section_ptr;
4241 break;
4242 #endif
4243 }
4244 }
4245 \f
4246 /* Work over a section just before writing it out. This routine is
4247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4249 a better way. */
4250
4251 bfd_boolean
4252 _bfd_mips_elf_section_processing (abfd, hdr)
4253 bfd *abfd;
4254 Elf_Internal_Shdr *hdr;
4255 {
4256 if (hdr->sh_type == SHT_MIPS_REGINFO
4257 && hdr->sh_size > 0)
4258 {
4259 bfd_byte buf[4];
4260
4261 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4262 BFD_ASSERT (hdr->contents == NULL);
4263
4264 if (bfd_seek (abfd,
4265 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4266 SEEK_SET) != 0)
4267 return FALSE;
4268 H_PUT_32 (abfd, elf_gp (abfd), buf);
4269 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4270 return FALSE;
4271 }
4272
4273 if (hdr->sh_type == SHT_MIPS_OPTIONS
4274 && hdr->bfd_section != NULL
4275 && mips_elf_section_data (hdr->bfd_section) != NULL
4276 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4277 {
4278 bfd_byte *contents, *l, *lend;
4279
4280 /* We stored the section contents in the tdata field in the
4281 set_section_contents routine. We save the section contents
4282 so that we don't have to read them again.
4283 At this point we know that elf_gp is set, so we can look
4284 through the section contents to see if there is an
4285 ODK_REGINFO structure. */
4286
4287 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4288 l = contents;
4289 lend = contents + hdr->sh_size;
4290 while (l + sizeof (Elf_External_Options) <= lend)
4291 {
4292 Elf_Internal_Options intopt;
4293
4294 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4295 &intopt);
4296 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4297 {
4298 bfd_byte buf[8];
4299
4300 if (bfd_seek (abfd,
4301 (hdr->sh_offset
4302 + (l - contents)
4303 + sizeof (Elf_External_Options)
4304 + (sizeof (Elf64_External_RegInfo) - 8)),
4305 SEEK_SET) != 0)
4306 return FALSE;
4307 H_PUT_64 (abfd, elf_gp (abfd), buf);
4308 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4309 return FALSE;
4310 }
4311 else if (intopt.kind == ODK_REGINFO)
4312 {
4313 bfd_byte buf[4];
4314
4315 if (bfd_seek (abfd,
4316 (hdr->sh_offset
4317 + (l - contents)
4318 + sizeof (Elf_External_Options)
4319 + (sizeof (Elf32_External_RegInfo) - 4)),
4320 SEEK_SET) != 0)
4321 return FALSE;
4322 H_PUT_32 (abfd, elf_gp (abfd), buf);
4323 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4324 return FALSE;
4325 }
4326 l += intopt.size;
4327 }
4328 }
4329
4330 if (hdr->bfd_section != NULL)
4331 {
4332 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4333
4334 if (strcmp (name, ".sdata") == 0
4335 || strcmp (name, ".lit8") == 0
4336 || strcmp (name, ".lit4") == 0)
4337 {
4338 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4339 hdr->sh_type = SHT_PROGBITS;
4340 }
4341 else if (strcmp (name, ".sbss") == 0)
4342 {
4343 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4344 hdr->sh_type = SHT_NOBITS;
4345 }
4346 else if (strcmp (name, ".srdata") == 0)
4347 {
4348 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4349 hdr->sh_type = SHT_PROGBITS;
4350 }
4351 else if (strcmp (name, ".compact_rel") == 0)
4352 {
4353 hdr->sh_flags = 0;
4354 hdr->sh_type = SHT_PROGBITS;
4355 }
4356 else if (strcmp (name, ".rtproc") == 0)
4357 {
4358 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4359 {
4360 unsigned int adjust;
4361
4362 adjust = hdr->sh_size % hdr->sh_addralign;
4363 if (adjust != 0)
4364 hdr->sh_size += hdr->sh_addralign - adjust;
4365 }
4366 }
4367 }
4368
4369 return TRUE;
4370 }
4371
4372 /* Handle a MIPS specific section when reading an object file. This
4373 is called when elfcode.h finds a section with an unknown type.
4374 This routine supports both the 32-bit and 64-bit ELF ABI.
4375
4376 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4377 how to. */
4378
4379 bfd_boolean
4380 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4381 bfd *abfd;
4382 Elf_Internal_Shdr *hdr;
4383 const char *name;
4384 {
4385 flagword flags = 0;
4386
4387 /* There ought to be a place to keep ELF backend specific flags, but
4388 at the moment there isn't one. We just keep track of the
4389 sections by their name, instead. Fortunately, the ABI gives
4390 suggested names for all the MIPS specific sections, so we will
4391 probably get away with this. */
4392 switch (hdr->sh_type)
4393 {
4394 case SHT_MIPS_LIBLIST:
4395 if (strcmp (name, ".liblist") != 0)
4396 return FALSE;
4397 break;
4398 case SHT_MIPS_MSYM:
4399 if (strcmp (name, ".msym") != 0)
4400 return FALSE;
4401 break;
4402 case SHT_MIPS_CONFLICT:
4403 if (strcmp (name, ".conflict") != 0)
4404 return FALSE;
4405 break;
4406 case SHT_MIPS_GPTAB:
4407 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4408 return FALSE;
4409 break;
4410 case SHT_MIPS_UCODE:
4411 if (strcmp (name, ".ucode") != 0)
4412 return FALSE;
4413 break;
4414 case SHT_MIPS_DEBUG:
4415 if (strcmp (name, ".mdebug") != 0)
4416 return FALSE;
4417 flags = SEC_DEBUGGING;
4418 break;
4419 case SHT_MIPS_REGINFO:
4420 if (strcmp (name, ".reginfo") != 0
4421 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4422 return FALSE;
4423 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4424 break;
4425 case SHT_MIPS_IFACE:
4426 if (strcmp (name, ".MIPS.interfaces") != 0)
4427 return FALSE;
4428 break;
4429 case SHT_MIPS_CONTENT:
4430 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4431 return FALSE;
4432 break;
4433 case SHT_MIPS_OPTIONS:
4434 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4435 return FALSE;
4436 break;
4437 case SHT_MIPS_DWARF:
4438 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4439 return FALSE;
4440 break;
4441 case SHT_MIPS_SYMBOL_LIB:
4442 if (strcmp (name, ".MIPS.symlib") != 0)
4443 return FALSE;
4444 break;
4445 case SHT_MIPS_EVENTS:
4446 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4447 && strncmp (name, ".MIPS.post_rel",
4448 sizeof ".MIPS.post_rel" - 1) != 0)
4449 return FALSE;
4450 break;
4451 default:
4452 return FALSE;
4453 }
4454
4455 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4456 return FALSE;
4457
4458 if (flags)
4459 {
4460 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4461 (bfd_get_section_flags (abfd,
4462 hdr->bfd_section)
4463 | flags)))
4464 return FALSE;
4465 }
4466
4467 /* FIXME: We should record sh_info for a .gptab section. */
4468
4469 /* For a .reginfo section, set the gp value in the tdata information
4470 from the contents of this section. We need the gp value while
4471 processing relocs, so we just get it now. The .reginfo section
4472 is not used in the 64-bit MIPS ELF ABI. */
4473 if (hdr->sh_type == SHT_MIPS_REGINFO)
4474 {
4475 Elf32_External_RegInfo ext;
4476 Elf32_RegInfo s;
4477
4478 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4479 (file_ptr) 0,
4480 (bfd_size_type) sizeof ext))
4481 return FALSE;
4482 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4483 elf_gp (abfd) = s.ri_gp_value;
4484 }
4485
4486 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4487 set the gp value based on what we find. We may see both
4488 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4489 they should agree. */
4490 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4491 {
4492 bfd_byte *contents, *l, *lend;
4493
4494 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4495 if (contents == NULL)
4496 return FALSE;
4497 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4498 (file_ptr) 0, hdr->sh_size))
4499 {
4500 free (contents);
4501 return FALSE;
4502 }
4503 l = contents;
4504 lend = contents + hdr->sh_size;
4505 while (l + sizeof (Elf_External_Options) <= lend)
4506 {
4507 Elf_Internal_Options intopt;
4508
4509 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4510 &intopt);
4511 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4512 {
4513 Elf64_Internal_RegInfo intreg;
4514
4515 bfd_mips_elf64_swap_reginfo_in
4516 (abfd,
4517 ((Elf64_External_RegInfo *)
4518 (l + sizeof (Elf_External_Options))),
4519 &intreg);
4520 elf_gp (abfd) = intreg.ri_gp_value;
4521 }
4522 else if (intopt.kind == ODK_REGINFO)
4523 {
4524 Elf32_RegInfo intreg;
4525
4526 bfd_mips_elf32_swap_reginfo_in
4527 (abfd,
4528 ((Elf32_External_RegInfo *)
4529 (l + sizeof (Elf_External_Options))),
4530 &intreg);
4531 elf_gp (abfd) = intreg.ri_gp_value;
4532 }
4533 l += intopt.size;
4534 }
4535 free (contents);
4536 }
4537
4538 return TRUE;
4539 }
4540
4541 /* Set the correct type for a MIPS ELF section. We do this by the
4542 section name, which is a hack, but ought to work. This routine is
4543 used by both the 32-bit and the 64-bit ABI. */
4544
4545 bfd_boolean
4546 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4547 bfd *abfd;
4548 Elf_Internal_Shdr *hdr;
4549 asection *sec;
4550 {
4551 register const char *name;
4552
4553 name = bfd_get_section_name (abfd, sec);
4554
4555 if (strcmp (name, ".liblist") == 0)
4556 {
4557 hdr->sh_type = SHT_MIPS_LIBLIST;
4558 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4559 /* The sh_link field is set in final_write_processing. */
4560 }
4561 else if (strcmp (name, ".conflict") == 0)
4562 hdr->sh_type = SHT_MIPS_CONFLICT;
4563 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4564 {
4565 hdr->sh_type = SHT_MIPS_GPTAB;
4566 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4567 /* The sh_info field is set in final_write_processing. */
4568 }
4569 else if (strcmp (name, ".ucode") == 0)
4570 hdr->sh_type = SHT_MIPS_UCODE;
4571 else if (strcmp (name, ".mdebug") == 0)
4572 {
4573 hdr->sh_type = SHT_MIPS_DEBUG;
4574 /* In a shared object on IRIX 5.3, the .mdebug section has an
4575 entsize of 0. FIXME: Does this matter? */
4576 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4577 hdr->sh_entsize = 0;
4578 else
4579 hdr->sh_entsize = 1;
4580 }
4581 else if (strcmp (name, ".reginfo") == 0)
4582 {
4583 hdr->sh_type = SHT_MIPS_REGINFO;
4584 /* In a shared object on IRIX 5.3, the .reginfo section has an
4585 entsize of 0x18. FIXME: Does this matter? */
4586 if (SGI_COMPAT (abfd))
4587 {
4588 if ((abfd->flags & DYNAMIC) != 0)
4589 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4590 else
4591 hdr->sh_entsize = 1;
4592 }
4593 else
4594 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4595 }
4596 else if (SGI_COMPAT (abfd)
4597 && (strcmp (name, ".hash") == 0
4598 || strcmp (name, ".dynamic") == 0
4599 || strcmp (name, ".dynstr") == 0))
4600 {
4601 if (SGI_COMPAT (abfd))
4602 hdr->sh_entsize = 0;
4603 #if 0
4604 /* This isn't how the IRIX6 linker behaves. */
4605 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4606 #endif
4607 }
4608 else if (strcmp (name, ".got") == 0
4609 || strcmp (name, ".srdata") == 0
4610 || strcmp (name, ".sdata") == 0
4611 || strcmp (name, ".sbss") == 0
4612 || strcmp (name, ".lit4") == 0
4613 || strcmp (name, ".lit8") == 0)
4614 hdr->sh_flags |= SHF_MIPS_GPREL;
4615 else if (strcmp (name, ".MIPS.interfaces") == 0)
4616 {
4617 hdr->sh_type = SHT_MIPS_IFACE;
4618 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4619 }
4620 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4621 {
4622 hdr->sh_type = SHT_MIPS_CONTENT;
4623 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4624 /* The sh_info field is set in final_write_processing. */
4625 }
4626 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4627 {
4628 hdr->sh_type = SHT_MIPS_OPTIONS;
4629 hdr->sh_entsize = 1;
4630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4631 }
4632 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4633 hdr->sh_type = SHT_MIPS_DWARF;
4634 else if (strcmp (name, ".MIPS.symlib") == 0)
4635 {
4636 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4637 /* The sh_link and sh_info fields are set in
4638 final_write_processing. */
4639 }
4640 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4641 || strncmp (name, ".MIPS.post_rel",
4642 sizeof ".MIPS.post_rel" - 1) == 0)
4643 {
4644 hdr->sh_type = SHT_MIPS_EVENTS;
4645 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4646 /* The sh_link field is set in final_write_processing. */
4647 }
4648 else if (strcmp (name, ".msym") == 0)
4649 {
4650 hdr->sh_type = SHT_MIPS_MSYM;
4651 hdr->sh_flags |= SHF_ALLOC;
4652 hdr->sh_entsize = 8;
4653 }
4654
4655 /* The generic elf_fake_sections will set up REL_HDR using the default
4656 kind of relocations. We used to set up a second header for the
4657 non-default kind of relocations here, but only NewABI would use
4658 these, and the IRIX ld doesn't like resulting empty RELA sections.
4659 Thus we create those header only on demand now. */
4660
4661 return TRUE;
4662 }
4663
4664 /* Given a BFD section, try to locate the corresponding ELF section
4665 index. This is used by both the 32-bit and the 64-bit ABI.
4666 Actually, it's not clear to me that the 64-bit ABI supports these,
4667 but for non-PIC objects we will certainly want support for at least
4668 the .scommon section. */
4669
4670 bfd_boolean
4671 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4672 bfd *abfd ATTRIBUTE_UNUSED;
4673 asection *sec;
4674 int *retval;
4675 {
4676 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4677 {
4678 *retval = SHN_MIPS_SCOMMON;
4679 return TRUE;
4680 }
4681 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4682 {
4683 *retval = SHN_MIPS_ACOMMON;
4684 return TRUE;
4685 }
4686 return FALSE;
4687 }
4688 \f
4689 /* Hook called by the linker routine which adds symbols from an object
4690 file. We must handle the special MIPS section numbers here. */
4691
4692 bfd_boolean
4693 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4694 bfd *abfd;
4695 struct bfd_link_info *info;
4696 const Elf_Internal_Sym *sym;
4697 const char **namep;
4698 flagword *flagsp ATTRIBUTE_UNUSED;
4699 asection **secp;
4700 bfd_vma *valp;
4701 {
4702 if (SGI_COMPAT (abfd)
4703 && (abfd->flags & DYNAMIC) != 0
4704 && strcmp (*namep, "_rld_new_interface") == 0)
4705 {
4706 /* Skip IRIX5 rld entry name. */
4707 *namep = NULL;
4708 return TRUE;
4709 }
4710
4711 switch (sym->st_shndx)
4712 {
4713 case SHN_COMMON:
4714 /* Common symbols less than the GP size are automatically
4715 treated as SHN_MIPS_SCOMMON symbols. */
4716 if (sym->st_size > elf_gp_size (abfd)
4717 || IRIX_COMPAT (abfd) == ict_irix6)
4718 break;
4719 /* Fall through. */
4720 case SHN_MIPS_SCOMMON:
4721 *secp = bfd_make_section_old_way (abfd, ".scommon");
4722 (*secp)->flags |= SEC_IS_COMMON;
4723 *valp = sym->st_size;
4724 break;
4725
4726 case SHN_MIPS_TEXT:
4727 /* This section is used in a shared object. */
4728 if (elf_tdata (abfd)->elf_text_section == NULL)
4729 {
4730 asymbol *elf_text_symbol;
4731 asection *elf_text_section;
4732 bfd_size_type amt = sizeof (asection);
4733
4734 elf_text_section = bfd_zalloc (abfd, amt);
4735 if (elf_text_section == NULL)
4736 return FALSE;
4737
4738 amt = sizeof (asymbol);
4739 elf_text_symbol = bfd_zalloc (abfd, amt);
4740 if (elf_text_symbol == NULL)
4741 return FALSE;
4742
4743 /* Initialize the section. */
4744
4745 elf_tdata (abfd)->elf_text_section = elf_text_section;
4746 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4747
4748 elf_text_section->symbol = elf_text_symbol;
4749 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4750
4751 elf_text_section->name = ".text";
4752 elf_text_section->flags = SEC_NO_FLAGS;
4753 elf_text_section->output_section = NULL;
4754 elf_text_section->owner = abfd;
4755 elf_text_symbol->name = ".text";
4756 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4757 elf_text_symbol->section = elf_text_section;
4758 }
4759 /* This code used to do *secp = bfd_und_section_ptr if
4760 info->shared. I don't know why, and that doesn't make sense,
4761 so I took it out. */
4762 *secp = elf_tdata (abfd)->elf_text_section;
4763 break;
4764
4765 case SHN_MIPS_ACOMMON:
4766 /* Fall through. XXX Can we treat this as allocated data? */
4767 case SHN_MIPS_DATA:
4768 /* This section is used in a shared object. */
4769 if (elf_tdata (abfd)->elf_data_section == NULL)
4770 {
4771 asymbol *elf_data_symbol;
4772 asection *elf_data_section;
4773 bfd_size_type amt = sizeof (asection);
4774
4775 elf_data_section = bfd_zalloc (abfd, amt);
4776 if (elf_data_section == NULL)
4777 return FALSE;
4778
4779 amt = sizeof (asymbol);
4780 elf_data_symbol = bfd_zalloc (abfd, amt);
4781 if (elf_data_symbol == NULL)
4782 return FALSE;
4783
4784 /* Initialize the section. */
4785
4786 elf_tdata (abfd)->elf_data_section = elf_data_section;
4787 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4788
4789 elf_data_section->symbol = elf_data_symbol;
4790 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4791
4792 elf_data_section->name = ".data";
4793 elf_data_section->flags = SEC_NO_FLAGS;
4794 elf_data_section->output_section = NULL;
4795 elf_data_section->owner = abfd;
4796 elf_data_symbol->name = ".data";
4797 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4798 elf_data_symbol->section = elf_data_section;
4799 }
4800 /* This code used to do *secp = bfd_und_section_ptr if
4801 info->shared. I don't know why, and that doesn't make sense,
4802 so I took it out. */
4803 *secp = elf_tdata (abfd)->elf_data_section;
4804 break;
4805
4806 case SHN_MIPS_SUNDEFINED:
4807 *secp = bfd_und_section_ptr;
4808 break;
4809 }
4810
4811 if (SGI_COMPAT (abfd)
4812 && ! info->shared
4813 && info->hash->creator == abfd->xvec
4814 && strcmp (*namep, "__rld_obj_head") == 0)
4815 {
4816 struct elf_link_hash_entry *h;
4817 struct bfd_link_hash_entry *bh;
4818
4819 /* Mark __rld_obj_head as dynamic. */
4820 bh = NULL;
4821 if (! (_bfd_generic_link_add_one_symbol
4822 (info, abfd, *namep, BSF_GLOBAL, *secp,
4823 (bfd_vma) *valp, (const char *) NULL, FALSE,
4824 get_elf_backend_data (abfd)->collect, &bh)))
4825 return FALSE;
4826
4827 h = (struct elf_link_hash_entry *) bh;
4828 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4829 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4830 h->type = STT_OBJECT;
4831
4832 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4833 return FALSE;
4834
4835 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4836 }
4837
4838 /* If this is a mips16 text symbol, add 1 to the value to make it
4839 odd. This will cause something like .word SYM to come up with
4840 the right value when it is loaded into the PC. */
4841 if (sym->st_other == STO_MIPS16)
4842 ++*valp;
4843
4844 return TRUE;
4845 }
4846
4847 /* This hook function is called before the linker writes out a global
4848 symbol. We mark symbols as small common if appropriate. This is
4849 also where we undo the increment of the value for a mips16 symbol. */
4850
4851 bfd_boolean
4852 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4853 bfd *abfd ATTRIBUTE_UNUSED;
4854 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4855 const char *name ATTRIBUTE_UNUSED;
4856 Elf_Internal_Sym *sym;
4857 asection *input_sec;
4858 {
4859 /* If we see a common symbol, which implies a relocatable link, then
4860 if a symbol was small common in an input file, mark it as small
4861 common in the output file. */
4862 if (sym->st_shndx == SHN_COMMON
4863 && strcmp (input_sec->name, ".scommon") == 0)
4864 sym->st_shndx = SHN_MIPS_SCOMMON;
4865
4866 if (sym->st_other == STO_MIPS16
4867 && (sym->st_value & 1) != 0)
4868 --sym->st_value;
4869
4870 return TRUE;
4871 }
4872 \f
4873 /* Functions for the dynamic linker. */
4874
4875 /* Create dynamic sections when linking against a dynamic object. */
4876
4877 bfd_boolean
4878 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4879 bfd *abfd;
4880 struct bfd_link_info *info;
4881 {
4882 struct elf_link_hash_entry *h;
4883 struct bfd_link_hash_entry *bh;
4884 flagword flags;
4885 register asection *s;
4886 const char * const *namep;
4887
4888 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4889 | SEC_LINKER_CREATED | SEC_READONLY);
4890
4891 /* Mips ABI requests the .dynamic section to be read only. */
4892 s = bfd_get_section_by_name (abfd, ".dynamic");
4893 if (s != NULL)
4894 {
4895 if (! bfd_set_section_flags (abfd, s, flags))
4896 return FALSE;
4897 }
4898
4899 /* We need to create .got section. */
4900 if (! mips_elf_create_got_section (abfd, info, FALSE))
4901 return FALSE;
4902
4903 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4904 return FALSE;
4905
4906 /* Create the .msym section on IRIX6. It is used by the dynamic
4907 linker to speed up dynamic relocations, and to avoid computing
4908 the ELF hash for symbols. */
4909 if (IRIX_COMPAT (abfd) == ict_irix6
4910 && !mips_elf_create_msym_section (abfd))
4911 return FALSE;
4912
4913 /* Create .stub section. */
4914 if (bfd_get_section_by_name (abfd,
4915 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4916 {
4917 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4918 if (s == NULL
4919 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4920 || ! bfd_set_section_alignment (abfd, s,
4921 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4922 return FALSE;
4923 }
4924
4925 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4926 && !info->shared
4927 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4928 {
4929 s = bfd_make_section (abfd, ".rld_map");
4930 if (s == NULL
4931 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4932 || ! bfd_set_section_alignment (abfd, s,
4933 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4934 return FALSE;
4935 }
4936
4937 /* On IRIX5, we adjust add some additional symbols and change the
4938 alignments of several sections. There is no ABI documentation
4939 indicating that this is necessary on IRIX6, nor any evidence that
4940 the linker takes such action. */
4941 if (IRIX_COMPAT (abfd) == ict_irix5)
4942 {
4943 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4944 {
4945 bh = NULL;
4946 if (! (_bfd_generic_link_add_one_symbol
4947 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4948 (bfd_vma) 0, (const char *) NULL, FALSE,
4949 get_elf_backend_data (abfd)->collect, &bh)))
4950 return FALSE;
4951
4952 h = (struct elf_link_hash_entry *) bh;
4953 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4954 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4955 h->type = STT_SECTION;
4956
4957 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4958 return FALSE;
4959 }
4960
4961 /* We need to create a .compact_rel section. */
4962 if (SGI_COMPAT (abfd))
4963 {
4964 if (!mips_elf_create_compact_rel_section (abfd, info))
4965 return FALSE;
4966 }
4967
4968 /* Change alignments of some sections. */
4969 s = bfd_get_section_by_name (abfd, ".hash");
4970 if (s != NULL)
4971 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4972 s = bfd_get_section_by_name (abfd, ".dynsym");
4973 if (s != NULL)
4974 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4975 s = bfd_get_section_by_name (abfd, ".dynstr");
4976 if (s != NULL)
4977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4978 s = bfd_get_section_by_name (abfd, ".reginfo");
4979 if (s != NULL)
4980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4981 s = bfd_get_section_by_name (abfd, ".dynamic");
4982 if (s != NULL)
4983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4984 }
4985
4986 if (!info->shared)
4987 {
4988 const char *name;
4989
4990 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4991 bh = NULL;
4992 if (!(_bfd_generic_link_add_one_symbol
4993 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4994 (bfd_vma) 0, (const char *) NULL, FALSE,
4995 get_elf_backend_data (abfd)->collect, &bh)))
4996 return FALSE;
4997
4998 h = (struct elf_link_hash_entry *) bh;
4999 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5000 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5001 h->type = STT_SECTION;
5002
5003 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5004 return FALSE;
5005
5006 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5007 {
5008 /* __rld_map is a four byte word located in the .data section
5009 and is filled in by the rtld to contain a pointer to
5010 the _r_debug structure. Its symbol value will be set in
5011 _bfd_mips_elf_finish_dynamic_symbol. */
5012 s = bfd_get_section_by_name (abfd, ".rld_map");
5013 BFD_ASSERT (s != NULL);
5014
5015 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5016 bh = NULL;
5017 if (!(_bfd_generic_link_add_one_symbol
5018 (info, abfd, name, BSF_GLOBAL, s,
5019 (bfd_vma) 0, (const char *) NULL, FALSE,
5020 get_elf_backend_data (abfd)->collect, &bh)))
5021 return FALSE;
5022
5023 h = (struct elf_link_hash_entry *) bh;
5024 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5025 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5026 h->type = STT_OBJECT;
5027
5028 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5029 return FALSE;
5030 }
5031 }
5032
5033 return TRUE;
5034 }
5035 \f
5036 /* Look through the relocs for a section during the first phase, and
5037 allocate space in the global offset table. */
5038
5039 bfd_boolean
5040 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5041 bfd *abfd;
5042 struct bfd_link_info *info;
5043 asection *sec;
5044 const Elf_Internal_Rela *relocs;
5045 {
5046 const char *name;
5047 bfd *dynobj;
5048 Elf_Internal_Shdr *symtab_hdr;
5049 struct elf_link_hash_entry **sym_hashes;
5050 struct mips_got_info *g;
5051 size_t extsymoff;
5052 const Elf_Internal_Rela *rel;
5053 const Elf_Internal_Rela *rel_end;
5054 asection *sgot;
5055 asection *sreloc;
5056 struct elf_backend_data *bed;
5057
5058 if (info->relocatable)
5059 return TRUE;
5060
5061 dynobj = elf_hash_table (info)->dynobj;
5062 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5063 sym_hashes = elf_sym_hashes (abfd);
5064 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5065
5066 /* Check for the mips16 stub sections. */
5067
5068 name = bfd_get_section_name (abfd, sec);
5069 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5070 {
5071 unsigned long r_symndx;
5072
5073 /* Look at the relocation information to figure out which symbol
5074 this is for. */
5075
5076 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5077
5078 if (r_symndx < extsymoff
5079 || sym_hashes[r_symndx - extsymoff] == NULL)
5080 {
5081 asection *o;
5082
5083 /* This stub is for a local symbol. This stub will only be
5084 needed if there is some relocation in this BFD, other
5085 than a 16 bit function call, which refers to this symbol. */
5086 for (o = abfd->sections; o != NULL; o = o->next)
5087 {
5088 Elf_Internal_Rela *sec_relocs;
5089 const Elf_Internal_Rela *r, *rend;
5090
5091 /* We can ignore stub sections when looking for relocs. */
5092 if ((o->flags & SEC_RELOC) == 0
5093 || o->reloc_count == 0
5094 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5095 sizeof FN_STUB - 1) == 0
5096 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5097 sizeof CALL_STUB - 1) == 0
5098 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5099 sizeof CALL_FP_STUB - 1) == 0)
5100 continue;
5101
5102 sec_relocs
5103 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5104 (Elf_Internal_Rela *) NULL,
5105 info->keep_memory);
5106 if (sec_relocs == NULL)
5107 return FALSE;
5108
5109 rend = sec_relocs + o->reloc_count;
5110 for (r = sec_relocs; r < rend; r++)
5111 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5112 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5113 break;
5114
5115 if (elf_section_data (o)->relocs != sec_relocs)
5116 free (sec_relocs);
5117
5118 if (r < rend)
5119 break;
5120 }
5121
5122 if (o == NULL)
5123 {
5124 /* There is no non-call reloc for this stub, so we do
5125 not need it. Since this function is called before
5126 the linker maps input sections to output sections, we
5127 can easily discard it by setting the SEC_EXCLUDE
5128 flag. */
5129 sec->flags |= SEC_EXCLUDE;
5130 return TRUE;
5131 }
5132
5133 /* Record this stub in an array of local symbol stubs for
5134 this BFD. */
5135 if (elf_tdata (abfd)->local_stubs == NULL)
5136 {
5137 unsigned long symcount;
5138 asection **n;
5139 bfd_size_type amt;
5140
5141 if (elf_bad_symtab (abfd))
5142 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5143 else
5144 symcount = symtab_hdr->sh_info;
5145 amt = symcount * sizeof (asection *);
5146 n = (asection **) bfd_zalloc (abfd, amt);
5147 if (n == NULL)
5148 return FALSE;
5149 elf_tdata (abfd)->local_stubs = n;
5150 }
5151
5152 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5153
5154 /* We don't need to set mips16_stubs_seen in this case.
5155 That flag is used to see whether we need to look through
5156 the global symbol table for stubs. We don't need to set
5157 it here, because we just have a local stub. */
5158 }
5159 else
5160 {
5161 struct mips_elf_link_hash_entry *h;
5162
5163 h = ((struct mips_elf_link_hash_entry *)
5164 sym_hashes[r_symndx - extsymoff]);
5165
5166 /* H is the symbol this stub is for. */
5167
5168 h->fn_stub = sec;
5169 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5170 }
5171 }
5172 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5173 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5174 {
5175 unsigned long r_symndx;
5176 struct mips_elf_link_hash_entry *h;
5177 asection **loc;
5178
5179 /* Look at the relocation information to figure out which symbol
5180 this is for. */
5181
5182 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5183
5184 if (r_symndx < extsymoff
5185 || sym_hashes[r_symndx - extsymoff] == NULL)
5186 {
5187 /* This stub was actually built for a static symbol defined
5188 in the same file. We assume that all static symbols in
5189 mips16 code are themselves mips16, so we can simply
5190 discard this stub. Since this function is called before
5191 the linker maps input sections to output sections, we can
5192 easily discard it by setting the SEC_EXCLUDE flag. */
5193 sec->flags |= SEC_EXCLUDE;
5194 return TRUE;
5195 }
5196
5197 h = ((struct mips_elf_link_hash_entry *)
5198 sym_hashes[r_symndx - extsymoff]);
5199
5200 /* H is the symbol this stub is for. */
5201
5202 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5203 loc = &h->call_fp_stub;
5204 else
5205 loc = &h->call_stub;
5206
5207 /* If we already have an appropriate stub for this function, we
5208 don't need another one, so we can discard this one. Since
5209 this function is called before the linker maps input sections
5210 to output sections, we can easily discard it by setting the
5211 SEC_EXCLUDE flag. We can also discard this section if we
5212 happen to already know that this is a mips16 function; it is
5213 not necessary to check this here, as it is checked later, but
5214 it is slightly faster to check now. */
5215 if (*loc != NULL || h->root.other == STO_MIPS16)
5216 {
5217 sec->flags |= SEC_EXCLUDE;
5218 return TRUE;
5219 }
5220
5221 *loc = sec;
5222 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5223 }
5224
5225 if (dynobj == NULL)
5226 {
5227 sgot = NULL;
5228 g = NULL;
5229 }
5230 else
5231 {
5232 sgot = mips_elf_got_section (dynobj, FALSE);
5233 if (sgot == NULL)
5234 g = NULL;
5235 else
5236 {
5237 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5238 g = mips_elf_section_data (sgot)->u.got_info;
5239 BFD_ASSERT (g != NULL);
5240 }
5241 }
5242
5243 sreloc = NULL;
5244 bed = get_elf_backend_data (abfd);
5245 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5246 for (rel = relocs; rel < rel_end; ++rel)
5247 {
5248 unsigned long r_symndx;
5249 unsigned int r_type;
5250 struct elf_link_hash_entry *h;
5251
5252 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5253 r_type = ELF_R_TYPE (abfd, rel->r_info);
5254
5255 if (r_symndx < extsymoff)
5256 h = NULL;
5257 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5258 {
5259 (*_bfd_error_handler)
5260 (_("%s: Malformed reloc detected for section %s"),
5261 bfd_archive_filename (abfd), name);
5262 bfd_set_error (bfd_error_bad_value);
5263 return FALSE;
5264 }
5265 else
5266 {
5267 h = sym_hashes[r_symndx - extsymoff];
5268
5269 /* This may be an indirect symbol created because of a version. */
5270 if (h != NULL)
5271 {
5272 while (h->root.type == bfd_link_hash_indirect)
5273 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5274 }
5275 }
5276
5277 /* Some relocs require a global offset table. */
5278 if (dynobj == NULL || sgot == NULL)
5279 {
5280 switch (r_type)
5281 {
5282 case R_MIPS_GOT16:
5283 case R_MIPS_CALL16:
5284 case R_MIPS_CALL_HI16:
5285 case R_MIPS_CALL_LO16:
5286 case R_MIPS_GOT_HI16:
5287 case R_MIPS_GOT_LO16:
5288 case R_MIPS_GOT_PAGE:
5289 case R_MIPS_GOT_OFST:
5290 case R_MIPS_GOT_DISP:
5291 if (dynobj == NULL)
5292 elf_hash_table (info)->dynobj = dynobj = abfd;
5293 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5294 return FALSE;
5295 g = mips_elf_got_info (dynobj, &sgot);
5296 break;
5297
5298 case R_MIPS_32:
5299 case R_MIPS_REL32:
5300 case R_MIPS_64:
5301 if (dynobj == NULL
5302 && (info->shared || h != NULL)
5303 && (sec->flags & SEC_ALLOC) != 0)
5304 elf_hash_table (info)->dynobj = dynobj = abfd;
5305 break;
5306
5307 default:
5308 break;
5309 }
5310 }
5311
5312 if (!h && (r_type == R_MIPS_CALL_LO16
5313 || r_type == R_MIPS_GOT_LO16
5314 || r_type == R_MIPS_GOT_DISP))
5315 {
5316 /* We may need a local GOT entry for this relocation. We
5317 don't count R_MIPS_GOT_PAGE because we can estimate the
5318 maximum number of pages needed by looking at the size of
5319 the segment. Similar comments apply to R_MIPS_GOT16 and
5320 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5321 R_MIPS_CALL_HI16 because these are always followed by an
5322 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5323 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5324 rel->r_addend, g))
5325 return FALSE;
5326 }
5327
5328 switch (r_type)
5329 {
5330 case R_MIPS_CALL16:
5331 if (h == NULL)
5332 {
5333 (*_bfd_error_handler)
5334 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5335 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5336 bfd_set_error (bfd_error_bad_value);
5337 return FALSE;
5338 }
5339 /* Fall through. */
5340
5341 case R_MIPS_CALL_HI16:
5342 case R_MIPS_CALL_LO16:
5343 if (h != NULL)
5344 {
5345 /* This symbol requires a global offset table entry. */
5346 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5347 return FALSE;
5348
5349 /* We need a stub, not a plt entry for the undefined
5350 function. But we record it as if it needs plt. See
5351 elf_adjust_dynamic_symbol in elflink.h. */
5352 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5353 h->type = STT_FUNC;
5354 }
5355 break;
5356
5357 case R_MIPS_GOT_PAGE:
5358 /* If this is a global, overridable symbol, GOT_PAGE will
5359 decay to GOT_DISP, so we'll need a GOT entry for it. */
5360 if (h == NULL)
5361 break;
5362 else
5363 {
5364 struct mips_elf_link_hash_entry *hmips =
5365 (struct mips_elf_link_hash_entry *) h;
5366
5367 while (hmips->root.root.type == bfd_link_hash_indirect
5368 || hmips->root.root.type == bfd_link_hash_warning)
5369 hmips = (struct mips_elf_link_hash_entry *)
5370 hmips->root.root.u.i.link;
5371
5372 if ((hmips->root.root.type == bfd_link_hash_defined
5373 || hmips->root.root.type == bfd_link_hash_defweak)
5374 && hmips->root.root.u.def.section
5375 && ! (info->shared && ! info->symbolic
5376 && ! (hmips->root.elf_link_hash_flags
5377 & ELF_LINK_FORCED_LOCAL))
5378 /* If we've encountered any other relocation
5379 referencing the symbol, we'll have marked it as
5380 dynamic, and, even though we might be able to get
5381 rid of the GOT entry should we know for sure all
5382 previous relocations were GOT_PAGE ones, at this
5383 point we can't tell, so just keep using the
5384 symbol as dynamic. This is very important in the
5385 multi-got case, since we don't decide whether to
5386 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5387 the symbol is dynamic, we'll need a GOT entry for
5388 every GOT in which the symbol is referenced with
5389 a GOT_PAGE relocation. */
5390 && hmips->root.dynindx == -1)
5391 break;
5392 }
5393 /* Fall through. */
5394
5395 case R_MIPS_GOT16:
5396 case R_MIPS_GOT_HI16:
5397 case R_MIPS_GOT_LO16:
5398 case R_MIPS_GOT_DISP:
5399 /* This symbol requires a global offset table entry. */
5400 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5401 return FALSE;
5402 break;
5403
5404 case R_MIPS_32:
5405 case R_MIPS_REL32:
5406 case R_MIPS_64:
5407 if ((info->shared || h != NULL)
5408 && (sec->flags & SEC_ALLOC) != 0)
5409 {
5410 if (sreloc == NULL)
5411 {
5412 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5413 if (sreloc == NULL)
5414 return FALSE;
5415 }
5416 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5417 if (info->shared)
5418 {
5419 /* When creating a shared object, we must copy these
5420 reloc types into the output file as R_MIPS_REL32
5421 relocs. We make room for this reloc in the
5422 .rel.dyn reloc section. */
5423 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5424 if ((sec->flags & MIPS_READONLY_SECTION)
5425 == MIPS_READONLY_SECTION)
5426 /* We tell the dynamic linker that there are
5427 relocations against the text segment. */
5428 info->flags |= DF_TEXTREL;
5429 }
5430 else
5431 {
5432 struct mips_elf_link_hash_entry *hmips;
5433
5434 /* We only need to copy this reloc if the symbol is
5435 defined in a dynamic object. */
5436 hmips = (struct mips_elf_link_hash_entry *) h;
5437 ++hmips->possibly_dynamic_relocs;
5438 if ((sec->flags & MIPS_READONLY_SECTION)
5439 == MIPS_READONLY_SECTION)
5440 /* We need it to tell the dynamic linker if there
5441 are relocations against the text segment. */
5442 hmips->readonly_reloc = TRUE;
5443 }
5444
5445 /* Even though we don't directly need a GOT entry for
5446 this symbol, a symbol must have a dynamic symbol
5447 table index greater that DT_MIPS_GOTSYM if there are
5448 dynamic relocations against it. */
5449 if (h != NULL)
5450 {
5451 if (dynobj == NULL)
5452 elf_hash_table (info)->dynobj = dynobj = abfd;
5453 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5454 return FALSE;
5455 g = mips_elf_got_info (dynobj, &sgot);
5456 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5457 return FALSE;
5458 }
5459 }
5460
5461 if (SGI_COMPAT (abfd))
5462 mips_elf_hash_table (info)->compact_rel_size +=
5463 sizeof (Elf32_External_crinfo);
5464 break;
5465
5466 case R_MIPS_26:
5467 case R_MIPS_GPREL16:
5468 case R_MIPS_LITERAL:
5469 case R_MIPS_GPREL32:
5470 if (SGI_COMPAT (abfd))
5471 mips_elf_hash_table (info)->compact_rel_size +=
5472 sizeof (Elf32_External_crinfo);
5473 break;
5474
5475 /* This relocation describes the C++ object vtable hierarchy.
5476 Reconstruct it for later use during GC. */
5477 case R_MIPS_GNU_VTINHERIT:
5478 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5479 return FALSE;
5480 break;
5481
5482 /* This relocation describes which C++ vtable entries are actually
5483 used. Record for later use during GC. */
5484 case R_MIPS_GNU_VTENTRY:
5485 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5486 return FALSE;
5487 break;
5488
5489 default:
5490 break;
5491 }
5492
5493 /* We must not create a stub for a symbol that has relocations
5494 related to taking the function's address. */
5495 switch (r_type)
5496 {
5497 default:
5498 if (h != NULL)
5499 {
5500 struct mips_elf_link_hash_entry *mh;
5501
5502 mh = (struct mips_elf_link_hash_entry *) h;
5503 mh->no_fn_stub = TRUE;
5504 }
5505 break;
5506 case R_MIPS_CALL16:
5507 case R_MIPS_CALL_HI16:
5508 case R_MIPS_CALL_LO16:
5509 case R_MIPS_JALR:
5510 break;
5511 }
5512
5513 /* If this reloc is not a 16 bit call, and it has a global
5514 symbol, then we will need the fn_stub if there is one.
5515 References from a stub section do not count. */
5516 if (h != NULL
5517 && r_type != R_MIPS16_26
5518 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5519 sizeof FN_STUB - 1) != 0
5520 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5521 sizeof CALL_STUB - 1) != 0
5522 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5523 sizeof CALL_FP_STUB - 1) != 0)
5524 {
5525 struct mips_elf_link_hash_entry *mh;
5526
5527 mh = (struct mips_elf_link_hash_entry *) h;
5528 mh->need_fn_stub = TRUE;
5529 }
5530 }
5531
5532 return TRUE;
5533 }
5534 \f
5535 bfd_boolean
5536 _bfd_mips_relax_section (abfd, sec, link_info, again)
5537 bfd *abfd;
5538 asection *sec;
5539 struct bfd_link_info *link_info;
5540 bfd_boolean *again;
5541 {
5542 Elf_Internal_Rela *internal_relocs;
5543 Elf_Internal_Rela *irel, *irelend;
5544 Elf_Internal_Shdr *symtab_hdr;
5545 bfd_byte *contents = NULL;
5546 bfd_byte *free_contents = NULL;
5547 size_t extsymoff;
5548 bfd_boolean changed_contents = FALSE;
5549 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5550 Elf_Internal_Sym *isymbuf = NULL;
5551
5552 /* We are not currently changing any sizes, so only one pass. */
5553 *again = FALSE;
5554
5555 if (link_info->relocatable)
5556 return TRUE;
5557
5558 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5559 (Elf_Internal_Rela *) NULL,
5560 link_info->keep_memory);
5561 if (internal_relocs == NULL)
5562 return TRUE;
5563
5564 irelend = internal_relocs + sec->reloc_count
5565 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5566 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5567 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5568
5569 for (irel = internal_relocs; irel < irelend; irel++)
5570 {
5571 bfd_vma symval;
5572 bfd_signed_vma sym_offset;
5573 unsigned int r_type;
5574 unsigned long r_symndx;
5575 asection *sym_sec;
5576 unsigned long instruction;
5577
5578 /* Turn jalr into bgezal, and jr into beq, if they're marked
5579 with a JALR relocation, that indicate where they jump to.
5580 This saves some pipeline bubbles. */
5581 r_type = ELF_R_TYPE (abfd, irel->r_info);
5582 if (r_type != R_MIPS_JALR)
5583 continue;
5584
5585 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5586 /* Compute the address of the jump target. */
5587 if (r_symndx >= extsymoff)
5588 {
5589 struct mips_elf_link_hash_entry *h
5590 = ((struct mips_elf_link_hash_entry *)
5591 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5592
5593 while (h->root.root.type == bfd_link_hash_indirect
5594 || h->root.root.type == bfd_link_hash_warning)
5595 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5596
5597 /* If a symbol is undefined, or if it may be overridden,
5598 skip it. */
5599 if (! ((h->root.root.type == bfd_link_hash_defined
5600 || h->root.root.type == bfd_link_hash_defweak)
5601 && h->root.root.u.def.section)
5602 || (link_info->shared && ! link_info->symbolic
5603 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5604 continue;
5605
5606 sym_sec = h->root.root.u.def.section;
5607 if (sym_sec->output_section)
5608 symval = (h->root.root.u.def.value
5609 + sym_sec->output_section->vma
5610 + sym_sec->output_offset);
5611 else
5612 symval = h->root.root.u.def.value;
5613 }
5614 else
5615 {
5616 Elf_Internal_Sym *isym;
5617
5618 /* Read this BFD's symbols if we haven't done so already. */
5619 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5620 {
5621 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5622 if (isymbuf == NULL)
5623 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5624 symtab_hdr->sh_info, 0,
5625 NULL, NULL, NULL);
5626 if (isymbuf == NULL)
5627 goto relax_return;
5628 }
5629
5630 isym = isymbuf + r_symndx;
5631 if (isym->st_shndx == SHN_UNDEF)
5632 continue;
5633 else if (isym->st_shndx == SHN_ABS)
5634 sym_sec = bfd_abs_section_ptr;
5635 else if (isym->st_shndx == SHN_COMMON)
5636 sym_sec = bfd_com_section_ptr;
5637 else
5638 sym_sec
5639 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5640 symval = isym->st_value
5641 + sym_sec->output_section->vma
5642 + sym_sec->output_offset;
5643 }
5644
5645 /* Compute branch offset, from delay slot of the jump to the
5646 branch target. */
5647 sym_offset = (symval + irel->r_addend)
5648 - (sec_start + irel->r_offset + 4);
5649
5650 /* Branch offset must be properly aligned. */
5651 if ((sym_offset & 3) != 0)
5652 continue;
5653
5654 sym_offset >>= 2;
5655
5656 /* Check that it's in range. */
5657 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5658 continue;
5659
5660 /* Get the section contents if we haven't done so already. */
5661 if (contents == NULL)
5662 {
5663 /* Get cached copy if it exists. */
5664 if (elf_section_data (sec)->this_hdr.contents != NULL)
5665 contents = elf_section_data (sec)->this_hdr.contents;
5666 else
5667 {
5668 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5669 if (contents == NULL)
5670 goto relax_return;
5671
5672 free_contents = contents;
5673 if (! bfd_get_section_contents (abfd, sec, contents,
5674 (file_ptr) 0, sec->_raw_size))
5675 goto relax_return;
5676 }
5677 }
5678
5679 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5680
5681 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5682 if ((instruction & 0xfc1fffff) == 0x0000f809)
5683 instruction = 0x04110000;
5684 /* If it was jr <reg>, turn it into b <target>. */
5685 else if ((instruction & 0xfc1fffff) == 0x00000008)
5686 instruction = 0x10000000;
5687 else
5688 continue;
5689
5690 instruction |= (sym_offset & 0xffff);
5691 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5692 changed_contents = TRUE;
5693 }
5694
5695 if (contents != NULL
5696 && elf_section_data (sec)->this_hdr.contents != contents)
5697 {
5698 if (!changed_contents && !link_info->keep_memory)
5699 free (contents);
5700 else
5701 {
5702 /* Cache the section contents for elf_link_input_bfd. */
5703 elf_section_data (sec)->this_hdr.contents = contents;
5704 }
5705 }
5706 return TRUE;
5707
5708 relax_return:
5709 if (free_contents != NULL)
5710 free (free_contents);
5711 return FALSE;
5712 }
5713 \f
5714 /* Adjust a symbol defined by a dynamic object and referenced by a
5715 regular object. The current definition is in some section of the
5716 dynamic object, but we're not including those sections. We have to
5717 change the definition to something the rest of the link can
5718 understand. */
5719
5720 bfd_boolean
5721 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5722 struct bfd_link_info *info;
5723 struct elf_link_hash_entry *h;
5724 {
5725 bfd *dynobj;
5726 struct mips_elf_link_hash_entry *hmips;
5727 asection *s;
5728
5729 dynobj = elf_hash_table (info)->dynobj;
5730
5731 /* Make sure we know what is going on here. */
5732 BFD_ASSERT (dynobj != NULL
5733 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5734 || h->weakdef != NULL
5735 || ((h->elf_link_hash_flags
5736 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5737 && (h->elf_link_hash_flags
5738 & ELF_LINK_HASH_REF_REGULAR) != 0
5739 && (h->elf_link_hash_flags
5740 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5741
5742 /* If this symbol is defined in a dynamic object, we need to copy
5743 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5744 file. */
5745 hmips = (struct mips_elf_link_hash_entry *) h;
5746 if (! info->relocatable
5747 && hmips->possibly_dynamic_relocs != 0
5748 && (h->root.type == bfd_link_hash_defweak
5749 || (h->elf_link_hash_flags
5750 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5751 {
5752 mips_elf_allocate_dynamic_relocations (dynobj,
5753 hmips->possibly_dynamic_relocs);
5754 if (hmips->readonly_reloc)
5755 /* We tell the dynamic linker that there are relocations
5756 against the text segment. */
5757 info->flags |= DF_TEXTREL;
5758 }
5759
5760 /* For a function, create a stub, if allowed. */
5761 if (! hmips->no_fn_stub
5762 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5763 {
5764 if (! elf_hash_table (info)->dynamic_sections_created)
5765 return TRUE;
5766
5767 /* If this symbol is not defined in a regular file, then set
5768 the symbol to the stub location. This is required to make
5769 function pointers compare as equal between the normal
5770 executable and the shared library. */
5771 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5772 {
5773 /* We need .stub section. */
5774 s = bfd_get_section_by_name (dynobj,
5775 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5776 BFD_ASSERT (s != NULL);
5777
5778 h->root.u.def.section = s;
5779 h->root.u.def.value = s->_raw_size;
5780
5781 /* XXX Write this stub address somewhere. */
5782 h->plt.offset = s->_raw_size;
5783
5784 /* Make room for this stub code. */
5785 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5786
5787 /* The last half word of the stub will be filled with the index
5788 of this symbol in .dynsym section. */
5789 return TRUE;
5790 }
5791 }
5792 else if ((h->type == STT_FUNC)
5793 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5794 {
5795 /* This will set the entry for this symbol in the GOT to 0, and
5796 the dynamic linker will take care of this. */
5797 h->root.u.def.value = 0;
5798 return TRUE;
5799 }
5800
5801 /* If this is a weak symbol, and there is a real definition, the
5802 processor independent code will have arranged for us to see the
5803 real definition first, and we can just use the same value. */
5804 if (h->weakdef != NULL)
5805 {
5806 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5807 || h->weakdef->root.type == bfd_link_hash_defweak);
5808 h->root.u.def.section = h->weakdef->root.u.def.section;
5809 h->root.u.def.value = h->weakdef->root.u.def.value;
5810 return TRUE;
5811 }
5812
5813 /* This is a reference to a symbol defined by a dynamic object which
5814 is not a function. */
5815
5816 return TRUE;
5817 }
5818 \f
5819 /* This function is called after all the input files have been read,
5820 and the input sections have been assigned to output sections. We
5821 check for any mips16 stub sections that we can discard. */
5822
5823 bfd_boolean
5824 _bfd_mips_elf_always_size_sections (output_bfd, info)
5825 bfd *output_bfd;
5826 struct bfd_link_info *info;
5827 {
5828 asection *ri;
5829
5830 bfd *dynobj;
5831 asection *s;
5832 struct mips_got_info *g;
5833 int i;
5834 bfd_size_type loadable_size = 0;
5835 bfd_size_type local_gotno;
5836 bfd *sub;
5837
5838 /* The .reginfo section has a fixed size. */
5839 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5840 if (ri != NULL)
5841 bfd_set_section_size (output_bfd, ri,
5842 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5843
5844 if (! (info->relocatable
5845 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5846 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5847 mips_elf_check_mips16_stubs,
5848 (PTR) NULL);
5849
5850 dynobj = elf_hash_table (info)->dynobj;
5851 if (dynobj == NULL)
5852 /* Relocatable links don't have it. */
5853 return TRUE;
5854
5855 g = mips_elf_got_info (dynobj, &s);
5856 if (s == NULL)
5857 return TRUE;
5858
5859 /* Calculate the total loadable size of the output. That
5860 will give us the maximum number of GOT_PAGE entries
5861 required. */
5862 for (sub = info->input_bfds; sub; sub = sub->link_next)
5863 {
5864 asection *subsection;
5865
5866 for (subsection = sub->sections;
5867 subsection;
5868 subsection = subsection->next)
5869 {
5870 if ((subsection->flags & SEC_ALLOC) == 0)
5871 continue;
5872 loadable_size += ((subsection->_raw_size + 0xf)
5873 &~ (bfd_size_type) 0xf);
5874 }
5875 }
5876
5877 /* There has to be a global GOT entry for every symbol with
5878 a dynamic symbol table index of DT_MIPS_GOTSYM or
5879 higher. Therefore, it make sense to put those symbols
5880 that need GOT entries at the end of the symbol table. We
5881 do that here. */
5882 if (! mips_elf_sort_hash_table (info, 1))
5883 return FALSE;
5884
5885 if (g->global_gotsym != NULL)
5886 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5887 else
5888 /* If there are no global symbols, or none requiring
5889 relocations, then GLOBAL_GOTSYM will be NULL. */
5890 i = 0;
5891
5892 /* In the worst case, we'll get one stub per dynamic symbol, plus
5893 one to account for the dummy entry at the end required by IRIX
5894 rld. */
5895 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5896
5897 /* Assume there are two loadable segments consisting of
5898 contiguous sections. Is 5 enough? */
5899 local_gotno = (loadable_size >> 16) + 5;
5900
5901 g->local_gotno += local_gotno;
5902 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5903
5904 g->global_gotno = i;
5905 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5906
5907 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5908 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5909 return FALSE;
5910
5911 return TRUE;
5912 }
5913
5914 /* Set the sizes of the dynamic sections. */
5915
5916 bfd_boolean
5917 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5918 bfd *output_bfd;
5919 struct bfd_link_info *info;
5920 {
5921 bfd *dynobj;
5922 asection *s;
5923 bfd_boolean reltext;
5924
5925 dynobj = elf_hash_table (info)->dynobj;
5926 BFD_ASSERT (dynobj != NULL);
5927
5928 if (elf_hash_table (info)->dynamic_sections_created)
5929 {
5930 /* Set the contents of the .interp section to the interpreter. */
5931 if (! info->shared)
5932 {
5933 s = bfd_get_section_by_name (dynobj, ".interp");
5934 BFD_ASSERT (s != NULL);
5935 s->_raw_size
5936 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5937 s->contents
5938 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5939 }
5940 }
5941
5942 /* The check_relocs and adjust_dynamic_symbol entry points have
5943 determined the sizes of the various dynamic sections. Allocate
5944 memory for them. */
5945 reltext = FALSE;
5946 for (s = dynobj->sections; s != NULL; s = s->next)
5947 {
5948 const char *name;
5949 bfd_boolean strip;
5950
5951 /* It's OK to base decisions on the section name, because none
5952 of the dynobj section names depend upon the input files. */
5953 name = bfd_get_section_name (dynobj, s);
5954
5955 if ((s->flags & SEC_LINKER_CREATED) == 0)
5956 continue;
5957
5958 strip = FALSE;
5959
5960 if (strncmp (name, ".rel", 4) == 0)
5961 {
5962 if (s->_raw_size == 0)
5963 {
5964 /* We only strip the section if the output section name
5965 has the same name. Otherwise, there might be several
5966 input sections for this output section. FIXME: This
5967 code is probably not needed these days anyhow, since
5968 the linker now does not create empty output sections. */
5969 if (s->output_section != NULL
5970 && strcmp (name,
5971 bfd_get_section_name (s->output_section->owner,
5972 s->output_section)) == 0)
5973 strip = TRUE;
5974 }
5975 else
5976 {
5977 const char *outname;
5978 asection *target;
5979
5980 /* If this relocation section applies to a read only
5981 section, then we probably need a DT_TEXTREL entry.
5982 If the relocation section is .rel.dyn, we always
5983 assert a DT_TEXTREL entry rather than testing whether
5984 there exists a relocation to a read only section or
5985 not. */
5986 outname = bfd_get_section_name (output_bfd,
5987 s->output_section);
5988 target = bfd_get_section_by_name (output_bfd, outname + 4);
5989 if ((target != NULL
5990 && (target->flags & SEC_READONLY) != 0
5991 && (target->flags & SEC_ALLOC) != 0)
5992 || strcmp (outname, ".rel.dyn") == 0)
5993 reltext = TRUE;
5994
5995 /* We use the reloc_count field as a counter if we need
5996 to copy relocs into the output file. */
5997 if (strcmp (name, ".rel.dyn") != 0)
5998 s->reloc_count = 0;
5999
6000 /* If combreloc is enabled, elf_link_sort_relocs() will
6001 sort relocations, but in a different way than we do,
6002 and before we're done creating relocations. Also, it
6003 will move them around between input sections'
6004 relocation's contents, so our sorting would be
6005 broken, so don't let it run. */
6006 info->combreloc = 0;
6007 }
6008 }
6009 else if (strncmp (name, ".got", 4) == 0)
6010 {
6011 /* _bfd_mips_elf_always_size_sections() has already done
6012 most of the work, but some symbols may have been mapped
6013 to versions that we must now resolve in the got_entries
6014 hash tables. */
6015 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6016 struct mips_got_info *g = gg;
6017 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6018 unsigned int needed_relocs = 0;
6019
6020 if (gg->next)
6021 {
6022 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6023 set_got_offset_arg.info = info;
6024
6025 mips_elf_resolve_final_got_entries (gg);
6026 for (g = gg->next; g && g->next != gg; g = g->next)
6027 {
6028 unsigned int save_assign;
6029
6030 mips_elf_resolve_final_got_entries (g);
6031
6032 /* Assign offsets to global GOT entries. */
6033 save_assign = g->assigned_gotno;
6034 g->assigned_gotno = g->local_gotno;
6035 set_got_offset_arg.g = g;
6036 set_got_offset_arg.needed_relocs = 0;
6037 htab_traverse (g->got_entries,
6038 mips_elf_set_global_got_offset,
6039 &set_got_offset_arg);
6040 needed_relocs += set_got_offset_arg.needed_relocs;
6041 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6042 <= g->global_gotno);
6043
6044 g->assigned_gotno = save_assign;
6045 if (info->shared)
6046 {
6047 needed_relocs += g->local_gotno - g->assigned_gotno;
6048 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6049 + g->next->global_gotno
6050 + MIPS_RESERVED_GOTNO);
6051 }
6052 }
6053
6054 if (needed_relocs)
6055 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6056 }
6057 }
6058 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6059 {
6060 /* IRIX rld assumes that the function stub isn't at the end
6061 of .text section. So put a dummy. XXX */
6062 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6063 }
6064 else if (! info->shared
6065 && ! mips_elf_hash_table (info)->use_rld_obj_head
6066 && strncmp (name, ".rld_map", 8) == 0)
6067 {
6068 /* We add a room for __rld_map. It will be filled in by the
6069 rtld to contain a pointer to the _r_debug structure. */
6070 s->_raw_size += 4;
6071 }
6072 else if (SGI_COMPAT (output_bfd)
6073 && strncmp (name, ".compact_rel", 12) == 0)
6074 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6075 else if (strcmp (name, ".msym") == 0)
6076 s->_raw_size = (sizeof (Elf32_External_Msym)
6077 * (elf_hash_table (info)->dynsymcount
6078 + bfd_count_sections (output_bfd)));
6079 else if (strncmp (name, ".init", 5) != 0)
6080 {
6081 /* It's not one of our sections, so don't allocate space. */
6082 continue;
6083 }
6084
6085 if (strip)
6086 {
6087 _bfd_strip_section_from_output (info, s);
6088 continue;
6089 }
6090
6091 /* Allocate memory for the section contents. */
6092 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6093 if (s->contents == NULL && s->_raw_size != 0)
6094 {
6095 bfd_set_error (bfd_error_no_memory);
6096 return FALSE;
6097 }
6098 }
6099
6100 if (elf_hash_table (info)->dynamic_sections_created)
6101 {
6102 /* Add some entries to the .dynamic section. We fill in the
6103 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6104 must add the entries now so that we get the correct size for
6105 the .dynamic section. The DT_DEBUG entry is filled in by the
6106 dynamic linker and used by the debugger. */
6107 if (! info->shared)
6108 {
6109 /* SGI object has the equivalence of DT_DEBUG in the
6110 DT_MIPS_RLD_MAP entry. */
6111 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6112 return FALSE;
6113 if (!SGI_COMPAT (output_bfd))
6114 {
6115 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6116 return FALSE;
6117 }
6118 }
6119 else
6120 {
6121 /* Shared libraries on traditional mips have DT_DEBUG. */
6122 if (!SGI_COMPAT (output_bfd))
6123 {
6124 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6125 return FALSE;
6126 }
6127 }
6128
6129 if (reltext && SGI_COMPAT (output_bfd))
6130 info->flags |= DF_TEXTREL;
6131
6132 if ((info->flags & DF_TEXTREL) != 0)
6133 {
6134 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6135 return FALSE;
6136 }
6137
6138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6139 return FALSE;
6140
6141 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6142 {
6143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6144 return FALSE;
6145
6146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6147 return FALSE;
6148
6149 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6150 return FALSE;
6151 }
6152
6153 if (SGI_COMPAT (output_bfd))
6154 {
6155 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
6156 return FALSE;
6157 }
6158
6159 if (SGI_COMPAT (output_bfd))
6160 {
6161 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
6162 return FALSE;
6163 }
6164
6165 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6166 {
6167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
6168 return FALSE;
6169
6170 s = bfd_get_section_by_name (dynobj, ".liblist");
6171 BFD_ASSERT (s != NULL);
6172
6173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
6174 return FALSE;
6175 }
6176
6177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6178 return FALSE;
6179
6180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6181 return FALSE;
6182
6183 #if 0
6184 /* Time stamps in executable files are a bad idea. */
6185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6186 return FALSE;
6187 #endif
6188
6189 #if 0 /* FIXME */
6190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6191 return FALSE;
6192 #endif
6193
6194 #if 0 /* FIXME */
6195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6196 return FALSE;
6197 #endif
6198
6199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6200 return FALSE;
6201
6202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6203 return FALSE;
6204
6205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6206 return FALSE;
6207
6208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6209 return FALSE;
6210
6211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6212 return FALSE;
6213
6214 if (IRIX_COMPAT (dynobj) == ict_irix5
6215 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6216 return FALSE;
6217
6218 if (IRIX_COMPAT (dynobj) == ict_irix6
6219 && (bfd_get_section_by_name
6220 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6221 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6222 return FALSE;
6223
6224 if (bfd_get_section_by_name (dynobj, ".msym")
6225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
6226 return FALSE;
6227 }
6228
6229 return TRUE;
6230 }
6231 \f
6232 /* Relocate a MIPS ELF section. */
6233
6234 bfd_boolean
6235 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6236 contents, relocs, local_syms, local_sections)
6237 bfd *output_bfd;
6238 struct bfd_link_info *info;
6239 bfd *input_bfd;
6240 asection *input_section;
6241 bfd_byte *contents;
6242 Elf_Internal_Rela *relocs;
6243 Elf_Internal_Sym *local_syms;
6244 asection **local_sections;
6245 {
6246 Elf_Internal_Rela *rel;
6247 const Elf_Internal_Rela *relend;
6248 bfd_vma addend = 0;
6249 bfd_boolean use_saved_addend_p = FALSE;
6250 struct elf_backend_data *bed;
6251
6252 bed = get_elf_backend_data (output_bfd);
6253 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6254 for (rel = relocs; rel < relend; ++rel)
6255 {
6256 const char *name;
6257 bfd_vma value;
6258 reloc_howto_type *howto;
6259 bfd_boolean require_jalx;
6260 /* TRUE if the relocation is a RELA relocation, rather than a
6261 REL relocation. */
6262 bfd_boolean rela_relocation_p = TRUE;
6263 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6264 const char * msg = (const char *) NULL;
6265
6266 /* Find the relocation howto for this relocation. */
6267 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6268 {
6269 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6270 64-bit code, but make sure all their addresses are in the
6271 lowermost or uppermost 32-bit section of the 64-bit address
6272 space. Thus, when they use an R_MIPS_64 they mean what is
6273 usually meant by R_MIPS_32, with the exception that the
6274 stored value is sign-extended to 64 bits. */
6275 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6276
6277 /* On big-endian systems, we need to lie about the position
6278 of the reloc. */
6279 if (bfd_big_endian (input_bfd))
6280 rel->r_offset += 4;
6281 }
6282 else
6283 /* NewABI defaults to RELA relocations. */
6284 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6285 NEWABI_P (input_bfd)
6286 && (MIPS_RELOC_RELA_P
6287 (input_bfd, input_section,
6288 rel - relocs)));
6289
6290 if (!use_saved_addend_p)
6291 {
6292 Elf_Internal_Shdr *rel_hdr;
6293
6294 /* If these relocations were originally of the REL variety,
6295 we must pull the addend out of the field that will be
6296 relocated. Otherwise, we simply use the contents of the
6297 RELA relocation. To determine which flavor or relocation
6298 this is, we depend on the fact that the INPUT_SECTION's
6299 REL_HDR is read before its REL_HDR2. */
6300 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6301 if ((size_t) (rel - relocs)
6302 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6303 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6304 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6305 {
6306 /* Note that this is a REL relocation. */
6307 rela_relocation_p = FALSE;
6308
6309 /* Get the addend, which is stored in the input file. */
6310 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6311 contents);
6312 addend &= howto->src_mask;
6313 addend <<= howto->rightshift;
6314
6315 /* For some kinds of relocations, the ADDEND is a
6316 combination of the addend stored in two different
6317 relocations. */
6318 if (r_type == R_MIPS_HI16
6319 || r_type == R_MIPS_GNU_REL_HI16
6320 || (r_type == R_MIPS_GOT16
6321 && mips_elf_local_relocation_p (input_bfd, rel,
6322 local_sections, FALSE)))
6323 {
6324 bfd_vma l;
6325 const Elf_Internal_Rela *lo16_relocation;
6326 reloc_howto_type *lo16_howto;
6327 unsigned int lo;
6328
6329 /* The combined value is the sum of the HI16 addend,
6330 left-shifted by sixteen bits, and the LO16
6331 addend, sign extended. (Usually, the code does
6332 a `lui' of the HI16 value, and then an `addiu' of
6333 the LO16 value.)
6334
6335 Scan ahead to find a matching LO16 relocation. */
6336 if (r_type == R_MIPS_GNU_REL_HI16)
6337 lo = R_MIPS_GNU_REL_LO16;
6338 else
6339 lo = R_MIPS_LO16;
6340 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6341 rel, relend);
6342 if (lo16_relocation == NULL)
6343 return FALSE;
6344
6345 /* Obtain the addend kept there. */
6346 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6347 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6348 input_bfd, contents);
6349 l &= lo16_howto->src_mask;
6350 l <<= lo16_howto->rightshift;
6351 l = _bfd_mips_elf_sign_extend (l, 16);
6352
6353 addend <<= 16;
6354
6355 /* Compute the combined addend. */
6356 addend += l;
6357
6358 /* If PC-relative, subtract the difference between the
6359 address of the LO part of the reloc and the address of
6360 the HI part. The relocation is relative to the LO
6361 part, but mips_elf_calculate_relocation() doesn't
6362 know its address or the difference from the HI part, so
6363 we subtract that difference here. See also the
6364 comment in mips_elf_calculate_relocation(). */
6365 if (r_type == R_MIPS_GNU_REL_HI16)
6366 addend -= (lo16_relocation->r_offset - rel->r_offset);
6367 }
6368 else if (r_type == R_MIPS16_GPREL)
6369 {
6370 /* The addend is scrambled in the object file. See
6371 mips_elf_perform_relocation for details on the
6372 format. */
6373 addend = (((addend & 0x1f0000) >> 5)
6374 | ((addend & 0x7e00000) >> 16)
6375 | (addend & 0x1f));
6376 }
6377 }
6378 else
6379 addend = rel->r_addend;
6380 }
6381
6382 if (info->relocatable)
6383 {
6384 Elf_Internal_Sym *sym;
6385 unsigned long r_symndx;
6386
6387 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6388 && bfd_big_endian (input_bfd))
6389 rel->r_offset -= 4;
6390
6391 /* Since we're just relocating, all we need to do is copy
6392 the relocations back out to the object file, unless
6393 they're against a section symbol, in which case we need
6394 to adjust by the section offset, or unless they're GP
6395 relative in which case we need to adjust by the amount
6396 that we're adjusting GP in this relocatable object. */
6397
6398 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6399 FALSE))
6400 /* There's nothing to do for non-local relocations. */
6401 continue;
6402
6403 if (r_type == R_MIPS16_GPREL
6404 || r_type == R_MIPS_GPREL16
6405 || r_type == R_MIPS_GPREL32
6406 || r_type == R_MIPS_LITERAL)
6407 addend -= (_bfd_get_gp_value (output_bfd)
6408 - _bfd_get_gp_value (input_bfd));
6409
6410 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6411 sym = local_syms + r_symndx;
6412 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6413 /* Adjust the addend appropriately. */
6414 addend += local_sections[r_symndx]->output_offset;
6415
6416 if (howto->partial_inplace)
6417 {
6418 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6419 then we only want to write out the high-order 16 bits.
6420 The subsequent R_MIPS_LO16 will handle the low-order bits.
6421 */
6422 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6423 || r_type == R_MIPS_GNU_REL_HI16)
6424 addend = mips_elf_high (addend);
6425 else if (r_type == R_MIPS_HIGHER)
6426 addend = mips_elf_higher (addend);
6427 else if (r_type == R_MIPS_HIGHEST)
6428 addend = mips_elf_highest (addend);
6429 }
6430
6431 if (rela_relocation_p)
6432 /* If this is a RELA relocation, just update the addend.
6433 We have to cast away constness for REL. */
6434 rel->r_addend = addend;
6435 else
6436 {
6437 /* Otherwise, we have to write the value back out. Note
6438 that we use the source mask, rather than the
6439 destination mask because the place to which we are
6440 writing will be source of the addend in the final
6441 link. */
6442 addend >>= howto->rightshift;
6443 addend &= howto->src_mask;
6444
6445 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6446 /* See the comment above about using R_MIPS_64 in the 32-bit
6447 ABI. Here, we need to update the addend. It would be
6448 possible to get away with just using the R_MIPS_32 reloc
6449 but for endianness. */
6450 {
6451 bfd_vma sign_bits;
6452 bfd_vma low_bits;
6453 bfd_vma high_bits;
6454
6455 if (addend & ((bfd_vma) 1 << 31))
6456 #ifdef BFD64
6457 sign_bits = ((bfd_vma) 1 << 32) - 1;
6458 #else
6459 sign_bits = -1;
6460 #endif
6461 else
6462 sign_bits = 0;
6463
6464 /* If we don't know that we have a 64-bit type,
6465 do two separate stores. */
6466 if (bfd_big_endian (input_bfd))
6467 {
6468 /* Store the sign-bits (which are most significant)
6469 first. */
6470 low_bits = sign_bits;
6471 high_bits = addend;
6472 }
6473 else
6474 {
6475 low_bits = addend;
6476 high_bits = sign_bits;
6477 }
6478 bfd_put_32 (input_bfd, low_bits,
6479 contents + rel->r_offset);
6480 bfd_put_32 (input_bfd, high_bits,
6481 contents + rel->r_offset + 4);
6482 continue;
6483 }
6484
6485 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6486 input_bfd, input_section,
6487 contents, FALSE))
6488 return FALSE;
6489 }
6490
6491 /* Go on to the next relocation. */
6492 continue;
6493 }
6494
6495 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6496 relocations for the same offset. In that case we are
6497 supposed to treat the output of each relocation as the addend
6498 for the next. */
6499 if (rel + 1 < relend
6500 && rel->r_offset == rel[1].r_offset
6501 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6502 use_saved_addend_p = TRUE;
6503 else
6504 use_saved_addend_p = FALSE;
6505
6506 addend >>= howto->rightshift;
6507
6508 /* Figure out what value we are supposed to relocate. */
6509 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6510 input_section, info, rel,
6511 addend, howto, local_syms,
6512 local_sections, &value,
6513 &name, &require_jalx,
6514 use_saved_addend_p))
6515 {
6516 case bfd_reloc_continue:
6517 /* There's nothing to do. */
6518 continue;
6519
6520 case bfd_reloc_undefined:
6521 /* mips_elf_calculate_relocation already called the
6522 undefined_symbol callback. There's no real point in
6523 trying to perform the relocation at this point, so we
6524 just skip ahead to the next relocation. */
6525 continue;
6526
6527 case bfd_reloc_notsupported:
6528 msg = _("internal error: unsupported relocation error");
6529 info->callbacks->warning
6530 (info, msg, name, input_bfd, input_section, rel->r_offset);
6531 return FALSE;
6532
6533 case bfd_reloc_overflow:
6534 if (use_saved_addend_p)
6535 /* Ignore overflow until we reach the last relocation for
6536 a given location. */
6537 ;
6538 else
6539 {
6540 BFD_ASSERT (name != NULL);
6541 if (! ((*info->callbacks->reloc_overflow)
6542 (info, name, howto->name, (bfd_vma) 0,
6543 input_bfd, input_section, rel->r_offset)))
6544 return FALSE;
6545 }
6546 break;
6547
6548 case bfd_reloc_ok:
6549 break;
6550
6551 default:
6552 abort ();
6553 break;
6554 }
6555
6556 /* If we've got another relocation for the address, keep going
6557 until we reach the last one. */
6558 if (use_saved_addend_p)
6559 {
6560 addend = value;
6561 continue;
6562 }
6563
6564 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6565 /* See the comment above about using R_MIPS_64 in the 32-bit
6566 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6567 that calculated the right value. Now, however, we
6568 sign-extend the 32-bit result to 64-bits, and store it as a
6569 64-bit value. We are especially generous here in that we
6570 go to extreme lengths to support this usage on systems with
6571 only a 32-bit VMA. */
6572 {
6573 bfd_vma sign_bits;
6574 bfd_vma low_bits;
6575 bfd_vma high_bits;
6576
6577 if (value & ((bfd_vma) 1 << 31))
6578 #ifdef BFD64
6579 sign_bits = ((bfd_vma) 1 << 32) - 1;
6580 #else
6581 sign_bits = -1;
6582 #endif
6583 else
6584 sign_bits = 0;
6585
6586 /* If we don't know that we have a 64-bit type,
6587 do two separate stores. */
6588 if (bfd_big_endian (input_bfd))
6589 {
6590 /* Undo what we did above. */
6591 rel->r_offset -= 4;
6592 /* Store the sign-bits (which are most significant)
6593 first. */
6594 low_bits = sign_bits;
6595 high_bits = value;
6596 }
6597 else
6598 {
6599 low_bits = value;
6600 high_bits = sign_bits;
6601 }
6602 bfd_put_32 (input_bfd, low_bits,
6603 contents + rel->r_offset);
6604 bfd_put_32 (input_bfd, high_bits,
6605 contents + rel->r_offset + 4);
6606 continue;
6607 }
6608
6609 /* Actually perform the relocation. */
6610 if (! mips_elf_perform_relocation (info, howto, rel, value,
6611 input_bfd, input_section,
6612 contents, require_jalx))
6613 return FALSE;
6614 }
6615
6616 return TRUE;
6617 }
6618 \f
6619 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6620 adjust it appropriately now. */
6621
6622 static void
6623 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6624 bfd *abfd ATTRIBUTE_UNUSED;
6625 const char *name;
6626 Elf_Internal_Sym *sym;
6627 {
6628 /* The linker script takes care of providing names and values for
6629 these, but we must place them into the right sections. */
6630 static const char* const text_section_symbols[] = {
6631 "_ftext",
6632 "_etext",
6633 "__dso_displacement",
6634 "__elf_header",
6635 "__program_header_table",
6636 NULL
6637 };
6638
6639 static const char* const data_section_symbols[] = {
6640 "_fdata",
6641 "_edata",
6642 "_end",
6643 "_fbss",
6644 NULL
6645 };
6646
6647 const char* const *p;
6648 int i;
6649
6650 for (i = 0; i < 2; ++i)
6651 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6652 *p;
6653 ++p)
6654 if (strcmp (*p, name) == 0)
6655 {
6656 /* All of these symbols are given type STT_SECTION by the
6657 IRIX6 linker. */
6658 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6659
6660 /* The IRIX linker puts these symbols in special sections. */
6661 if (i == 0)
6662 sym->st_shndx = SHN_MIPS_TEXT;
6663 else
6664 sym->st_shndx = SHN_MIPS_DATA;
6665
6666 break;
6667 }
6668 }
6669
6670 /* Finish up dynamic symbol handling. We set the contents of various
6671 dynamic sections here. */
6672
6673 bfd_boolean
6674 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6675 bfd *output_bfd;
6676 struct bfd_link_info *info;
6677 struct elf_link_hash_entry *h;
6678 Elf_Internal_Sym *sym;
6679 {
6680 bfd *dynobj;
6681 bfd_vma gval;
6682 asection *sgot;
6683 asection *smsym;
6684 struct mips_got_info *g, *gg;
6685 const char *name;
6686 struct mips_elf_link_hash_entry *mh;
6687
6688 dynobj = elf_hash_table (info)->dynobj;
6689 gval = sym->st_value;
6690 mh = (struct mips_elf_link_hash_entry *) h;
6691
6692 if (h->plt.offset != (bfd_vma) -1)
6693 {
6694 asection *s;
6695 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6696
6697 /* This symbol has a stub. Set it up. */
6698
6699 BFD_ASSERT (h->dynindx != -1);
6700
6701 s = bfd_get_section_by_name (dynobj,
6702 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6703 BFD_ASSERT (s != NULL);
6704
6705 /* FIXME: Can h->dynindex be more than 64K? */
6706 if (h->dynindx & 0xffff0000)
6707 return FALSE;
6708
6709 /* Fill the stub. */
6710 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6711 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6712 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6713 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6714
6715 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6716 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6717
6718 /* Mark the symbol as undefined. plt.offset != -1 occurs
6719 only for the referenced symbol. */
6720 sym->st_shndx = SHN_UNDEF;
6721
6722 /* The run-time linker uses the st_value field of the symbol
6723 to reset the global offset table entry for this external
6724 to its stub address when unlinking a shared object. */
6725 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6726 sym->st_value = gval;
6727 }
6728
6729 BFD_ASSERT (h->dynindx != -1
6730 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6731
6732 sgot = mips_elf_got_section (dynobj, FALSE);
6733 BFD_ASSERT (sgot != NULL);
6734 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6735 g = mips_elf_section_data (sgot)->u.got_info;
6736 BFD_ASSERT (g != NULL);
6737
6738 /* Run through the global symbol table, creating GOT entries for all
6739 the symbols that need them. */
6740 if (g->global_gotsym != NULL
6741 && h->dynindx >= g->global_gotsym->dynindx)
6742 {
6743 bfd_vma offset;
6744 bfd_vma value;
6745
6746 value = sym->st_value;
6747 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6748 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6749 }
6750
6751 if (g->next && h->dynindx != -1)
6752 {
6753 struct mips_got_entry e, *p;
6754 bfd_vma offset;
6755 bfd_vma value;
6756 Elf_Internal_Rela rel[3];
6757 bfd_vma addend = 0;
6758
6759 gg = g;
6760
6761 e.abfd = output_bfd;
6762 e.symndx = -1;
6763 e.d.h = (struct mips_elf_link_hash_entry *)h;
6764
6765 if (info->shared
6766 || h->root.type == bfd_link_hash_undefined
6767 || h->root.type == bfd_link_hash_undefweak)
6768 value = 0;
6769 else if (sym->st_value)
6770 value = sym->st_value;
6771 else
6772 value = h->root.u.def.value;
6773
6774 memset (rel, 0, sizeof (rel));
6775 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6776
6777 for (g = g->next; g->next != gg; g = g->next)
6778 {
6779 if (g->got_entries
6780 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6781 &e)))
6782 {
6783 offset = p->gotidx;
6784 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6785
6786 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6787
6788 if ((info->shared
6789 || (elf_hash_table (info)->dynamic_sections_created
6790 && p->d.h != NULL
6791 && ((p->d.h->root.elf_link_hash_flags
6792 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6793 && ((p->d.h->root.elf_link_hash_flags
6794 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6795 && ! (mips_elf_create_dynamic_relocation
6796 (output_bfd, info, rel,
6797 e.d.h, NULL, value, &addend, sgot)))
6798 return FALSE;
6799 BFD_ASSERT (addend == 0);
6800 }
6801 }
6802 }
6803
6804 /* Create a .msym entry, if appropriate. */
6805 smsym = bfd_get_section_by_name (dynobj, ".msym");
6806 if (smsym)
6807 {
6808 Elf32_Internal_Msym msym;
6809
6810 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6811 /* It is undocumented what the `1' indicates, but IRIX6 uses
6812 this value. */
6813 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6814 bfd_mips_elf_swap_msym_out
6815 (dynobj, &msym,
6816 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6817 }
6818
6819 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6820 name = h->root.root.string;
6821 if (strcmp (name, "_DYNAMIC") == 0
6822 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6823 sym->st_shndx = SHN_ABS;
6824 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6825 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6826 {
6827 sym->st_shndx = SHN_ABS;
6828 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6829 sym->st_value = 1;
6830 }
6831 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6832 {
6833 sym->st_shndx = SHN_ABS;
6834 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6835 sym->st_value = elf_gp (output_bfd);
6836 }
6837 else if (SGI_COMPAT (output_bfd))
6838 {
6839 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6840 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6841 {
6842 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6843 sym->st_other = STO_PROTECTED;
6844 sym->st_value = 0;
6845 sym->st_shndx = SHN_MIPS_DATA;
6846 }
6847 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6848 {
6849 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6850 sym->st_other = STO_PROTECTED;
6851 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6852 sym->st_shndx = SHN_ABS;
6853 }
6854 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6855 {
6856 if (h->type == STT_FUNC)
6857 sym->st_shndx = SHN_MIPS_TEXT;
6858 else if (h->type == STT_OBJECT)
6859 sym->st_shndx = SHN_MIPS_DATA;
6860 }
6861 }
6862
6863 /* Handle the IRIX6-specific symbols. */
6864 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6865 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6866
6867 if (! info->shared)
6868 {
6869 if (! mips_elf_hash_table (info)->use_rld_obj_head
6870 && (strcmp (name, "__rld_map") == 0
6871 || strcmp (name, "__RLD_MAP") == 0))
6872 {
6873 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6874 BFD_ASSERT (s != NULL);
6875 sym->st_value = s->output_section->vma + s->output_offset;
6876 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6877 if (mips_elf_hash_table (info)->rld_value == 0)
6878 mips_elf_hash_table (info)->rld_value = sym->st_value;
6879 }
6880 else if (mips_elf_hash_table (info)->use_rld_obj_head
6881 && strcmp (name, "__rld_obj_head") == 0)
6882 {
6883 /* IRIX6 does not use a .rld_map section. */
6884 if (IRIX_COMPAT (output_bfd) == ict_irix5
6885 || IRIX_COMPAT (output_bfd) == ict_none)
6886 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6887 != NULL);
6888 mips_elf_hash_table (info)->rld_value = sym->st_value;
6889 }
6890 }
6891
6892 /* If this is a mips16 symbol, force the value to be even. */
6893 if (sym->st_other == STO_MIPS16
6894 && (sym->st_value & 1) != 0)
6895 --sym->st_value;
6896
6897 return TRUE;
6898 }
6899
6900 /* Finish up the dynamic sections. */
6901
6902 bfd_boolean
6903 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6904 bfd *output_bfd;
6905 struct bfd_link_info *info;
6906 {
6907 bfd *dynobj;
6908 asection *sdyn;
6909 asection *sgot;
6910 struct mips_got_info *gg, *g;
6911
6912 dynobj = elf_hash_table (info)->dynobj;
6913
6914 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6915
6916 sgot = mips_elf_got_section (dynobj, FALSE);
6917 if (sgot == NULL)
6918 gg = g = NULL;
6919 else
6920 {
6921 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6922 gg = mips_elf_section_data (sgot)->u.got_info;
6923 BFD_ASSERT (gg != NULL);
6924 g = mips_elf_got_for_ibfd (gg, output_bfd);
6925 BFD_ASSERT (g != NULL);
6926 }
6927
6928 if (elf_hash_table (info)->dynamic_sections_created)
6929 {
6930 bfd_byte *b;
6931
6932 BFD_ASSERT (sdyn != NULL);
6933 BFD_ASSERT (g != NULL);
6934
6935 for (b = sdyn->contents;
6936 b < sdyn->contents + sdyn->_raw_size;
6937 b += MIPS_ELF_DYN_SIZE (dynobj))
6938 {
6939 Elf_Internal_Dyn dyn;
6940 const char *name;
6941 size_t elemsize;
6942 asection *s;
6943 bfd_boolean swap_out_p;
6944
6945 /* Read in the current dynamic entry. */
6946 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6947
6948 /* Assume that we're going to modify it and write it out. */
6949 swap_out_p = TRUE;
6950
6951 switch (dyn.d_tag)
6952 {
6953 case DT_RELENT:
6954 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6955 BFD_ASSERT (s != NULL);
6956 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6957 break;
6958
6959 case DT_STRSZ:
6960 /* Rewrite DT_STRSZ. */
6961 dyn.d_un.d_val =
6962 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6963 break;
6964
6965 case DT_PLTGOT:
6966 name = ".got";
6967 goto get_vma;
6968 case DT_MIPS_CONFLICT:
6969 name = ".conflict";
6970 goto get_vma;
6971 case DT_MIPS_LIBLIST:
6972 name = ".liblist";
6973 get_vma:
6974 s = bfd_get_section_by_name (output_bfd, name);
6975 BFD_ASSERT (s != NULL);
6976 dyn.d_un.d_ptr = s->vma;
6977 break;
6978
6979 case DT_MIPS_RLD_VERSION:
6980 dyn.d_un.d_val = 1; /* XXX */
6981 break;
6982
6983 case DT_MIPS_FLAGS:
6984 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6985 break;
6986
6987 case DT_MIPS_CONFLICTNO:
6988 name = ".conflict";
6989 elemsize = sizeof (Elf32_Conflict);
6990 goto set_elemno;
6991
6992 case DT_MIPS_LIBLISTNO:
6993 name = ".liblist";
6994 elemsize = sizeof (Elf32_Lib);
6995 set_elemno:
6996 s = bfd_get_section_by_name (output_bfd, name);
6997 if (s != NULL)
6998 {
6999 if (s->_cooked_size != 0)
7000 dyn.d_un.d_val = s->_cooked_size / elemsize;
7001 else
7002 dyn.d_un.d_val = s->_raw_size / elemsize;
7003 }
7004 else
7005 dyn.d_un.d_val = 0;
7006 break;
7007
7008 case DT_MIPS_TIME_STAMP:
7009 time ((time_t *) &dyn.d_un.d_val);
7010 break;
7011
7012 case DT_MIPS_ICHECKSUM:
7013 /* XXX FIXME: */
7014 swap_out_p = FALSE;
7015 break;
7016
7017 case DT_MIPS_IVERSION:
7018 /* XXX FIXME: */
7019 swap_out_p = FALSE;
7020 break;
7021
7022 case DT_MIPS_BASE_ADDRESS:
7023 s = output_bfd->sections;
7024 BFD_ASSERT (s != NULL);
7025 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7026 break;
7027
7028 case DT_MIPS_LOCAL_GOTNO:
7029 dyn.d_un.d_val = g->local_gotno;
7030 break;
7031
7032 case DT_MIPS_UNREFEXTNO:
7033 /* The index into the dynamic symbol table which is the
7034 entry of the first external symbol that is not
7035 referenced within the same object. */
7036 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7037 break;
7038
7039 case DT_MIPS_GOTSYM:
7040 if (gg->global_gotsym)
7041 {
7042 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7043 break;
7044 }
7045 /* In case if we don't have global got symbols we default
7046 to setting DT_MIPS_GOTSYM to the same value as
7047 DT_MIPS_SYMTABNO, so we just fall through. */
7048
7049 case DT_MIPS_SYMTABNO:
7050 name = ".dynsym";
7051 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7052 s = bfd_get_section_by_name (output_bfd, name);
7053 BFD_ASSERT (s != NULL);
7054
7055 if (s->_cooked_size != 0)
7056 dyn.d_un.d_val = s->_cooked_size / elemsize;
7057 else
7058 dyn.d_un.d_val = s->_raw_size / elemsize;
7059 break;
7060
7061 case DT_MIPS_HIPAGENO:
7062 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7063 break;
7064
7065 case DT_MIPS_RLD_MAP:
7066 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7067 break;
7068
7069 case DT_MIPS_OPTIONS:
7070 s = (bfd_get_section_by_name
7071 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7072 dyn.d_un.d_ptr = s->vma;
7073 break;
7074
7075 case DT_MIPS_MSYM:
7076 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7077 dyn.d_un.d_ptr = s->vma;
7078 break;
7079
7080 default:
7081 swap_out_p = FALSE;
7082 break;
7083 }
7084
7085 if (swap_out_p)
7086 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7087 (dynobj, &dyn, b);
7088 }
7089 }
7090
7091 /* The first entry of the global offset table will be filled at
7092 runtime. The second entry will be used by some runtime loaders.
7093 This isn't the case of IRIX rld. */
7094 if (sgot != NULL && sgot->_raw_size > 0)
7095 {
7096 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7097 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7098 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7099 }
7100
7101 if (sgot != NULL)
7102 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7103 = MIPS_ELF_GOT_SIZE (output_bfd);
7104
7105 /* Generate dynamic relocations for the non-primary gots. */
7106 if (gg != NULL && gg->next)
7107 {
7108 Elf_Internal_Rela rel[3];
7109 bfd_vma addend = 0;
7110
7111 memset (rel, 0, sizeof (rel));
7112 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7113
7114 for (g = gg->next; g->next != gg; g = g->next)
7115 {
7116 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7117
7118 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7119 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7120 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7121 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7122
7123 if (! info->shared)
7124 continue;
7125
7126 while (index < g->assigned_gotno)
7127 {
7128 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7129 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7130 if (!(mips_elf_create_dynamic_relocation
7131 (output_bfd, info, rel, NULL,
7132 bfd_abs_section_ptr,
7133 0, &addend, sgot)))
7134 return FALSE;
7135 BFD_ASSERT (addend == 0);
7136 }
7137 }
7138 }
7139
7140 {
7141 asection *smsym;
7142 asection *s;
7143 Elf32_compact_rel cpt;
7144
7145 /* ??? The section symbols for the output sections were set up in
7146 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7147 symbols. Should we do so? */
7148
7149 smsym = bfd_get_section_by_name (dynobj, ".msym");
7150 if (smsym != NULL)
7151 {
7152 Elf32_Internal_Msym msym;
7153
7154 msym.ms_hash_value = 0;
7155 msym.ms_info = ELF32_MS_INFO (0, 1);
7156
7157 for (s = output_bfd->sections; s != NULL; s = s->next)
7158 {
7159 long dynindx = elf_section_data (s)->dynindx;
7160
7161 bfd_mips_elf_swap_msym_out
7162 (output_bfd, &msym,
7163 (((Elf32_External_Msym *) smsym->contents)
7164 + dynindx));
7165 }
7166 }
7167
7168 if (SGI_COMPAT (output_bfd))
7169 {
7170 /* Write .compact_rel section out. */
7171 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7172 if (s != NULL)
7173 {
7174 cpt.id1 = 1;
7175 cpt.num = s->reloc_count;
7176 cpt.id2 = 2;
7177 cpt.offset = (s->output_section->filepos
7178 + sizeof (Elf32_External_compact_rel));
7179 cpt.reserved0 = 0;
7180 cpt.reserved1 = 0;
7181 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7182 ((Elf32_External_compact_rel *)
7183 s->contents));
7184
7185 /* Clean up a dummy stub function entry in .text. */
7186 s = bfd_get_section_by_name (dynobj,
7187 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7188 if (s != NULL)
7189 {
7190 file_ptr dummy_offset;
7191
7192 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7193 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7194 memset (s->contents + dummy_offset, 0,
7195 MIPS_FUNCTION_STUB_SIZE);
7196 }
7197 }
7198 }
7199
7200 /* We need to sort the entries of the dynamic relocation section. */
7201
7202 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7203
7204 if (s != NULL
7205 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7206 {
7207 reldyn_sorting_bfd = output_bfd;
7208
7209 if (ABI_64_P (output_bfd))
7210 qsort ((Elf64_External_Rel *) s->contents + 1,
7211 (size_t) s->reloc_count - 1,
7212 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7213 else
7214 qsort ((Elf32_External_Rel *) s->contents + 1,
7215 (size_t) s->reloc_count - 1,
7216 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7217 }
7218 }
7219
7220 return TRUE;
7221 }
7222
7223
7224 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7225
7226 static void
7227 mips_set_isa_flags (abfd)
7228 bfd *abfd;
7229 {
7230 flagword val;
7231
7232 switch (bfd_get_mach (abfd))
7233 {
7234 default:
7235 case bfd_mach_mips3000:
7236 val = E_MIPS_ARCH_1;
7237 break;
7238
7239 case bfd_mach_mips3900:
7240 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7241 break;
7242
7243 case bfd_mach_mips6000:
7244 val = E_MIPS_ARCH_2;
7245 break;
7246
7247 case bfd_mach_mips4000:
7248 case bfd_mach_mips4300:
7249 case bfd_mach_mips4400:
7250 case bfd_mach_mips4600:
7251 val = E_MIPS_ARCH_3;
7252 break;
7253
7254 case bfd_mach_mips4010:
7255 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7256 break;
7257
7258 case bfd_mach_mips4100:
7259 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7260 break;
7261
7262 case bfd_mach_mips4111:
7263 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7264 break;
7265
7266 case bfd_mach_mips4120:
7267 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7268 break;
7269
7270 case bfd_mach_mips4650:
7271 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7272 break;
7273
7274 case bfd_mach_mips5400:
7275 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7276 break;
7277
7278 case bfd_mach_mips5500:
7279 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7280 break;
7281
7282 case bfd_mach_mips5000:
7283 case bfd_mach_mips8000:
7284 case bfd_mach_mips10000:
7285 case bfd_mach_mips12000:
7286 val = E_MIPS_ARCH_4;
7287 break;
7288
7289 case bfd_mach_mips5:
7290 val = E_MIPS_ARCH_5;
7291 break;
7292
7293 case bfd_mach_mips_sb1:
7294 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7295 break;
7296
7297 case bfd_mach_mipsisa32:
7298 val = E_MIPS_ARCH_32;
7299 break;
7300
7301 case bfd_mach_mipsisa64:
7302 val = E_MIPS_ARCH_64;
7303 break;
7304
7305 case bfd_mach_mipsisa32r2:
7306 val = E_MIPS_ARCH_32R2;
7307 break;
7308 }
7309 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7310 elf_elfheader (abfd)->e_flags |= val;
7311
7312 }
7313
7314
7315 /* The final processing done just before writing out a MIPS ELF object
7316 file. This gets the MIPS architecture right based on the machine
7317 number. This is used by both the 32-bit and the 64-bit ABI. */
7318
7319 void
7320 _bfd_mips_elf_final_write_processing (abfd, linker)
7321 bfd *abfd;
7322 bfd_boolean linker ATTRIBUTE_UNUSED;
7323 {
7324 unsigned int i;
7325 Elf_Internal_Shdr **hdrpp;
7326 const char *name;
7327 asection *sec;
7328
7329 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7330 is nonzero. This is for compatibility with old objects, which used
7331 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7332 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7333 mips_set_isa_flags (abfd);
7334
7335 /* Set the sh_info field for .gptab sections and other appropriate
7336 info for each special section. */
7337 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7338 i < elf_numsections (abfd);
7339 i++, hdrpp++)
7340 {
7341 switch ((*hdrpp)->sh_type)
7342 {
7343 case SHT_MIPS_MSYM:
7344 case SHT_MIPS_LIBLIST:
7345 sec = bfd_get_section_by_name (abfd, ".dynstr");
7346 if (sec != NULL)
7347 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7348 break;
7349
7350 case SHT_MIPS_GPTAB:
7351 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7352 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7353 BFD_ASSERT (name != NULL
7354 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7355 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7356 BFD_ASSERT (sec != NULL);
7357 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7358 break;
7359
7360 case SHT_MIPS_CONTENT:
7361 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7362 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7363 BFD_ASSERT (name != NULL
7364 && strncmp (name, ".MIPS.content",
7365 sizeof ".MIPS.content" - 1) == 0);
7366 sec = bfd_get_section_by_name (abfd,
7367 name + sizeof ".MIPS.content" - 1);
7368 BFD_ASSERT (sec != NULL);
7369 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7370 break;
7371
7372 case SHT_MIPS_SYMBOL_LIB:
7373 sec = bfd_get_section_by_name (abfd, ".dynsym");
7374 if (sec != NULL)
7375 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7376 sec = bfd_get_section_by_name (abfd, ".liblist");
7377 if (sec != NULL)
7378 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7379 break;
7380
7381 case SHT_MIPS_EVENTS:
7382 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7383 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7384 BFD_ASSERT (name != NULL);
7385 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7386 sec = bfd_get_section_by_name (abfd,
7387 name + sizeof ".MIPS.events" - 1);
7388 else
7389 {
7390 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7391 sizeof ".MIPS.post_rel" - 1) == 0);
7392 sec = bfd_get_section_by_name (abfd,
7393 (name
7394 + sizeof ".MIPS.post_rel" - 1));
7395 }
7396 BFD_ASSERT (sec != NULL);
7397 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7398 break;
7399
7400 }
7401 }
7402 }
7403 \f
7404 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7405 segments. */
7406
7407 int
7408 _bfd_mips_elf_additional_program_headers (abfd)
7409 bfd *abfd;
7410 {
7411 asection *s;
7412 int ret = 0;
7413
7414 /* See if we need a PT_MIPS_REGINFO segment. */
7415 s = bfd_get_section_by_name (abfd, ".reginfo");
7416 if (s && (s->flags & SEC_LOAD))
7417 ++ret;
7418
7419 /* See if we need a PT_MIPS_OPTIONS segment. */
7420 if (IRIX_COMPAT (abfd) == ict_irix6
7421 && bfd_get_section_by_name (abfd,
7422 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7423 ++ret;
7424
7425 /* See if we need a PT_MIPS_RTPROC segment. */
7426 if (IRIX_COMPAT (abfd) == ict_irix5
7427 && bfd_get_section_by_name (abfd, ".dynamic")
7428 && bfd_get_section_by_name (abfd, ".mdebug"))
7429 ++ret;
7430
7431 return ret;
7432 }
7433
7434 /* Modify the segment map for an IRIX5 executable. */
7435
7436 bfd_boolean
7437 _bfd_mips_elf_modify_segment_map (abfd)
7438 bfd *abfd;
7439 {
7440 asection *s;
7441 struct elf_segment_map *m, **pm;
7442 bfd_size_type amt;
7443
7444 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7445 segment. */
7446 s = bfd_get_section_by_name (abfd, ".reginfo");
7447 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7448 {
7449 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7450 if (m->p_type == PT_MIPS_REGINFO)
7451 break;
7452 if (m == NULL)
7453 {
7454 amt = sizeof *m;
7455 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7456 if (m == NULL)
7457 return FALSE;
7458
7459 m->p_type = PT_MIPS_REGINFO;
7460 m->count = 1;
7461 m->sections[0] = s;
7462
7463 /* We want to put it after the PHDR and INTERP segments. */
7464 pm = &elf_tdata (abfd)->segment_map;
7465 while (*pm != NULL
7466 && ((*pm)->p_type == PT_PHDR
7467 || (*pm)->p_type == PT_INTERP))
7468 pm = &(*pm)->next;
7469
7470 m->next = *pm;
7471 *pm = m;
7472 }
7473 }
7474
7475 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7476 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7477 PT_OPTIONS segment immediately following the program header
7478 table. */
7479 if (NEWABI_P (abfd)
7480 /* On non-IRIX6 new abi, we'll have already created a segment
7481 for this section, so don't create another. I'm not sure this
7482 is not also the case for IRIX 6, but I can't test it right
7483 now. */
7484 && IRIX_COMPAT (abfd) == ict_irix6)
7485 {
7486 for (s = abfd->sections; s; s = s->next)
7487 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7488 break;
7489
7490 if (s)
7491 {
7492 struct elf_segment_map *options_segment;
7493
7494 /* Usually, there's a program header table. But, sometimes
7495 there's not (like when running the `ld' testsuite). So,
7496 if there's no program header table, we just put the
7497 options segment at the end. */
7498 for (pm = &elf_tdata (abfd)->segment_map;
7499 *pm != NULL;
7500 pm = &(*pm)->next)
7501 if ((*pm)->p_type == PT_PHDR)
7502 break;
7503
7504 amt = sizeof (struct elf_segment_map);
7505 options_segment = bfd_zalloc (abfd, amt);
7506 options_segment->next = *pm;
7507 options_segment->p_type = PT_MIPS_OPTIONS;
7508 options_segment->p_flags = PF_R;
7509 options_segment->p_flags_valid = TRUE;
7510 options_segment->count = 1;
7511 options_segment->sections[0] = s;
7512 *pm = options_segment;
7513 }
7514 }
7515 else
7516 {
7517 if (IRIX_COMPAT (abfd) == ict_irix5)
7518 {
7519 /* If there are .dynamic and .mdebug sections, we make a room
7520 for the RTPROC header. FIXME: Rewrite without section names. */
7521 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7522 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7523 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7524 {
7525 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7526 if (m->p_type == PT_MIPS_RTPROC)
7527 break;
7528 if (m == NULL)
7529 {
7530 amt = sizeof *m;
7531 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7532 if (m == NULL)
7533 return FALSE;
7534
7535 m->p_type = PT_MIPS_RTPROC;
7536
7537 s = bfd_get_section_by_name (abfd, ".rtproc");
7538 if (s == NULL)
7539 {
7540 m->count = 0;
7541 m->p_flags = 0;
7542 m->p_flags_valid = 1;
7543 }
7544 else
7545 {
7546 m->count = 1;
7547 m->sections[0] = s;
7548 }
7549
7550 /* We want to put it after the DYNAMIC segment. */
7551 pm = &elf_tdata (abfd)->segment_map;
7552 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7553 pm = &(*pm)->next;
7554 if (*pm != NULL)
7555 pm = &(*pm)->next;
7556
7557 m->next = *pm;
7558 *pm = m;
7559 }
7560 }
7561 }
7562 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7563 .dynstr, .dynsym, and .hash sections, and everything in
7564 between. */
7565 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7566 pm = &(*pm)->next)
7567 if ((*pm)->p_type == PT_DYNAMIC)
7568 break;
7569 m = *pm;
7570 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7571 {
7572 /* For a normal mips executable the permissions for the PT_DYNAMIC
7573 segment are read, write and execute. We do that here since
7574 the code in elf.c sets only the read permission. This matters
7575 sometimes for the dynamic linker. */
7576 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7577 {
7578 m->p_flags = PF_R | PF_W | PF_X;
7579 m->p_flags_valid = 1;
7580 }
7581 }
7582 if (m != NULL
7583 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7584 {
7585 static const char *sec_names[] =
7586 {
7587 ".dynamic", ".dynstr", ".dynsym", ".hash"
7588 };
7589 bfd_vma low, high;
7590 unsigned int i, c;
7591 struct elf_segment_map *n;
7592
7593 low = 0xffffffff;
7594 high = 0;
7595 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7596 {
7597 s = bfd_get_section_by_name (abfd, sec_names[i]);
7598 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7599 {
7600 bfd_size_type sz;
7601
7602 if (low > s->vma)
7603 low = s->vma;
7604 sz = s->_cooked_size;
7605 if (sz == 0)
7606 sz = s->_raw_size;
7607 if (high < s->vma + sz)
7608 high = s->vma + sz;
7609 }
7610 }
7611
7612 c = 0;
7613 for (s = abfd->sections; s != NULL; s = s->next)
7614 if ((s->flags & SEC_LOAD) != 0
7615 && s->vma >= low
7616 && ((s->vma
7617 + (s->_cooked_size !=
7618 0 ? s->_cooked_size : s->_raw_size)) <= high))
7619 ++c;
7620
7621 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7622 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7623 if (n == NULL)
7624 return FALSE;
7625 *n = *m;
7626 n->count = c;
7627
7628 i = 0;
7629 for (s = abfd->sections; s != NULL; s = s->next)
7630 {
7631 if ((s->flags & SEC_LOAD) != 0
7632 && s->vma >= low
7633 && ((s->vma
7634 + (s->_cooked_size != 0 ?
7635 s->_cooked_size : s->_raw_size)) <= high))
7636 {
7637 n->sections[i] = s;
7638 ++i;
7639 }
7640 }
7641
7642 *pm = n;
7643 }
7644 }
7645
7646 return TRUE;
7647 }
7648 \f
7649 /* Return the section that should be marked against GC for a given
7650 relocation. */
7651
7652 asection *
7653 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7654 asection *sec;
7655 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7656 Elf_Internal_Rela *rel;
7657 struct elf_link_hash_entry *h;
7658 Elf_Internal_Sym *sym;
7659 {
7660 /* ??? Do mips16 stub sections need to be handled special? */
7661
7662 if (h != NULL)
7663 {
7664 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7665 {
7666 case R_MIPS_GNU_VTINHERIT:
7667 case R_MIPS_GNU_VTENTRY:
7668 break;
7669
7670 default:
7671 switch (h->root.type)
7672 {
7673 case bfd_link_hash_defined:
7674 case bfd_link_hash_defweak:
7675 return h->root.u.def.section;
7676
7677 case bfd_link_hash_common:
7678 return h->root.u.c.p->section;
7679
7680 default:
7681 break;
7682 }
7683 }
7684 }
7685 else
7686 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7687
7688 return NULL;
7689 }
7690
7691 /* Update the got entry reference counts for the section being removed. */
7692
7693 bfd_boolean
7694 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7695 bfd *abfd ATTRIBUTE_UNUSED;
7696 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7697 asection *sec ATTRIBUTE_UNUSED;
7698 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7699 {
7700 #if 0
7701 Elf_Internal_Shdr *symtab_hdr;
7702 struct elf_link_hash_entry **sym_hashes;
7703 bfd_signed_vma *local_got_refcounts;
7704 const Elf_Internal_Rela *rel, *relend;
7705 unsigned long r_symndx;
7706 struct elf_link_hash_entry *h;
7707
7708 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7709 sym_hashes = elf_sym_hashes (abfd);
7710 local_got_refcounts = elf_local_got_refcounts (abfd);
7711
7712 relend = relocs + sec->reloc_count;
7713 for (rel = relocs; rel < relend; rel++)
7714 switch (ELF_R_TYPE (abfd, rel->r_info))
7715 {
7716 case R_MIPS_GOT16:
7717 case R_MIPS_CALL16:
7718 case R_MIPS_CALL_HI16:
7719 case R_MIPS_CALL_LO16:
7720 case R_MIPS_GOT_HI16:
7721 case R_MIPS_GOT_LO16:
7722 case R_MIPS_GOT_DISP:
7723 case R_MIPS_GOT_PAGE:
7724 case R_MIPS_GOT_OFST:
7725 /* ??? It would seem that the existing MIPS code does no sort
7726 of reference counting or whatnot on its GOT and PLT entries,
7727 so it is not possible to garbage collect them at this time. */
7728 break;
7729
7730 default:
7731 break;
7732 }
7733 #endif
7734
7735 return TRUE;
7736 }
7737 \f
7738 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7739 hiding the old indirect symbol. Process additional relocation
7740 information. Also called for weakdefs, in which case we just let
7741 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7742
7743 void
7744 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7745 struct elf_backend_data *bed;
7746 struct elf_link_hash_entry *dir, *ind;
7747 {
7748 struct mips_elf_link_hash_entry *dirmips, *indmips;
7749
7750 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7751
7752 if (ind->root.type != bfd_link_hash_indirect)
7753 return;
7754
7755 dirmips = (struct mips_elf_link_hash_entry *) dir;
7756 indmips = (struct mips_elf_link_hash_entry *) ind;
7757 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7758 if (indmips->readonly_reloc)
7759 dirmips->readonly_reloc = TRUE;
7760 if (dirmips->min_dyn_reloc_index == 0
7761 || (indmips->min_dyn_reloc_index != 0
7762 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7763 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7764 if (indmips->no_fn_stub)
7765 dirmips->no_fn_stub = TRUE;
7766 }
7767
7768 void
7769 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7770 struct bfd_link_info *info;
7771 struct elf_link_hash_entry *entry;
7772 bfd_boolean force_local;
7773 {
7774 bfd *dynobj;
7775 asection *got;
7776 struct mips_got_info *g;
7777 struct mips_elf_link_hash_entry *h;
7778
7779 h = (struct mips_elf_link_hash_entry *) entry;
7780 if (h->forced_local)
7781 return;
7782 h->forced_local = force_local;
7783
7784 dynobj = elf_hash_table (info)->dynobj;
7785 if (dynobj != NULL && force_local)
7786 {
7787 got = mips_elf_got_section (dynobj, FALSE);
7788 g = mips_elf_section_data (got)->u.got_info;
7789
7790 if (g->next)
7791 {
7792 struct mips_got_entry e;
7793 struct mips_got_info *gg = g;
7794
7795 /* Since we're turning what used to be a global symbol into a
7796 local one, bump up the number of local entries of each GOT
7797 that had an entry for it. This will automatically decrease
7798 the number of global entries, since global_gotno is actually
7799 the upper limit of global entries. */
7800 e.abfd = dynobj;
7801 e.symndx = -1;
7802 e.d.h = h;
7803
7804 for (g = g->next; g != gg; g = g->next)
7805 if (htab_find (g->got_entries, &e))
7806 {
7807 BFD_ASSERT (g->global_gotno > 0);
7808 g->local_gotno++;
7809 g->global_gotno--;
7810 }
7811
7812 /* If this was a global symbol forced into the primary GOT, we
7813 no longer need an entry for it. We can't release the entry
7814 at this point, but we must at least stop counting it as one
7815 of the symbols that required a forced got entry. */
7816 if (h->root.got.offset == 2)
7817 {
7818 BFD_ASSERT (gg->assigned_gotno > 0);
7819 gg->assigned_gotno--;
7820 }
7821 }
7822 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7823 /* If we haven't got through GOT allocation yet, just bump up the
7824 number of local entries, as this symbol won't be counted as
7825 global. */
7826 g->local_gotno++;
7827 else if (h->root.got.offset == 1)
7828 {
7829 /* If we're past non-multi-GOT allocation and this symbol had
7830 been marked for a global got entry, give it a local entry
7831 instead. */
7832 BFD_ASSERT (g->global_gotno > 0);
7833 g->local_gotno++;
7834 g->global_gotno--;
7835 }
7836 }
7837
7838 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7839 }
7840 \f
7841 #define PDR_SIZE 32
7842
7843 bfd_boolean
7844 _bfd_mips_elf_discard_info (abfd, cookie, info)
7845 bfd *abfd;
7846 struct elf_reloc_cookie *cookie;
7847 struct bfd_link_info *info;
7848 {
7849 asection *o;
7850 bfd_boolean ret = FALSE;
7851 unsigned char *tdata;
7852 size_t i, skip;
7853
7854 o = bfd_get_section_by_name (abfd, ".pdr");
7855 if (! o)
7856 return FALSE;
7857 if (o->_raw_size == 0)
7858 return FALSE;
7859 if (o->_raw_size % PDR_SIZE != 0)
7860 return FALSE;
7861 if (o->output_section != NULL
7862 && bfd_is_abs_section (o->output_section))
7863 return FALSE;
7864
7865 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7866 if (! tdata)
7867 return FALSE;
7868
7869 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7870 (Elf_Internal_Rela *) NULL,
7871 info->keep_memory);
7872 if (!cookie->rels)
7873 {
7874 free (tdata);
7875 return FALSE;
7876 }
7877
7878 cookie->rel = cookie->rels;
7879 cookie->relend = cookie->rels + o->reloc_count;
7880
7881 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7882 {
7883 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7884 {
7885 tdata[i] = 1;
7886 skip ++;
7887 }
7888 }
7889
7890 if (skip != 0)
7891 {
7892 mips_elf_section_data (o)->u.tdata = tdata;
7893 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7894 ret = TRUE;
7895 }
7896 else
7897 free (tdata);
7898
7899 if (! info->keep_memory)
7900 free (cookie->rels);
7901
7902 return ret;
7903 }
7904
7905 bfd_boolean
7906 _bfd_mips_elf_ignore_discarded_relocs (sec)
7907 asection *sec;
7908 {
7909 if (strcmp (sec->name, ".pdr") == 0)
7910 return TRUE;
7911 return FALSE;
7912 }
7913
7914 bfd_boolean
7915 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7916 bfd *output_bfd;
7917 asection *sec;
7918 bfd_byte *contents;
7919 {
7920 bfd_byte *to, *from, *end;
7921 int i;
7922
7923 if (strcmp (sec->name, ".pdr") != 0)
7924 return FALSE;
7925
7926 if (mips_elf_section_data (sec)->u.tdata == NULL)
7927 return FALSE;
7928
7929 to = contents;
7930 end = contents + sec->_raw_size;
7931 for (from = contents, i = 0;
7932 from < end;
7933 from += PDR_SIZE, i++)
7934 {
7935 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7936 continue;
7937 if (to != from)
7938 memcpy (to, from, PDR_SIZE);
7939 to += PDR_SIZE;
7940 }
7941 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7942 (file_ptr) sec->output_offset,
7943 sec->_cooked_size);
7944 return TRUE;
7945 }
7946 \f
7947 /* MIPS ELF uses a special find_nearest_line routine in order the
7948 handle the ECOFF debugging information. */
7949
7950 struct mips_elf_find_line
7951 {
7952 struct ecoff_debug_info d;
7953 struct ecoff_find_line i;
7954 };
7955
7956 bfd_boolean
7957 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7958 functionname_ptr, line_ptr)
7959 bfd *abfd;
7960 asection *section;
7961 asymbol **symbols;
7962 bfd_vma offset;
7963 const char **filename_ptr;
7964 const char **functionname_ptr;
7965 unsigned int *line_ptr;
7966 {
7967 asection *msec;
7968
7969 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7970 filename_ptr, functionname_ptr,
7971 line_ptr))
7972 return TRUE;
7973
7974 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7975 filename_ptr, functionname_ptr,
7976 line_ptr,
7977 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7978 &elf_tdata (abfd)->dwarf2_find_line_info))
7979 return TRUE;
7980
7981 msec = bfd_get_section_by_name (abfd, ".mdebug");
7982 if (msec != NULL)
7983 {
7984 flagword origflags;
7985 struct mips_elf_find_line *fi;
7986 const struct ecoff_debug_swap * const swap =
7987 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7988
7989 /* If we are called during a link, mips_elf_final_link may have
7990 cleared the SEC_HAS_CONTENTS field. We force it back on here
7991 if appropriate (which it normally will be). */
7992 origflags = msec->flags;
7993 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7994 msec->flags |= SEC_HAS_CONTENTS;
7995
7996 fi = elf_tdata (abfd)->find_line_info;
7997 if (fi == NULL)
7998 {
7999 bfd_size_type external_fdr_size;
8000 char *fraw_src;
8001 char *fraw_end;
8002 struct fdr *fdr_ptr;
8003 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8004
8005 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
8006 if (fi == NULL)
8007 {
8008 msec->flags = origflags;
8009 return FALSE;
8010 }
8011
8012 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8013 {
8014 msec->flags = origflags;
8015 return FALSE;
8016 }
8017
8018 /* Swap in the FDR information. */
8019 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8020 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8021 if (fi->d.fdr == NULL)
8022 {
8023 msec->flags = origflags;
8024 return FALSE;
8025 }
8026 external_fdr_size = swap->external_fdr_size;
8027 fdr_ptr = fi->d.fdr;
8028 fraw_src = (char *) fi->d.external_fdr;
8029 fraw_end = (fraw_src
8030 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8031 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8032 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8033
8034 elf_tdata (abfd)->find_line_info = fi;
8035
8036 /* Note that we don't bother to ever free this information.
8037 find_nearest_line is either called all the time, as in
8038 objdump -l, so the information should be saved, or it is
8039 rarely called, as in ld error messages, so the memory
8040 wasted is unimportant. Still, it would probably be a
8041 good idea for free_cached_info to throw it away. */
8042 }
8043
8044 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8045 &fi->i, filename_ptr, functionname_ptr,
8046 line_ptr))
8047 {
8048 msec->flags = origflags;
8049 return TRUE;
8050 }
8051
8052 msec->flags = origflags;
8053 }
8054
8055 /* Fall back on the generic ELF find_nearest_line routine. */
8056
8057 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8058 filename_ptr, functionname_ptr,
8059 line_ptr);
8060 }
8061 \f
8062 /* When are writing out the .options or .MIPS.options section,
8063 remember the bytes we are writing out, so that we can install the
8064 GP value in the section_processing routine. */
8065
8066 bfd_boolean
8067 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8068 bfd *abfd;
8069 sec_ptr section;
8070 PTR location;
8071 file_ptr offset;
8072 bfd_size_type count;
8073 {
8074 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8075 {
8076 bfd_byte *c;
8077
8078 if (elf_section_data (section) == NULL)
8079 {
8080 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8081 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8082 if (elf_section_data (section) == NULL)
8083 return FALSE;
8084 }
8085 c = mips_elf_section_data (section)->u.tdata;
8086 if (c == NULL)
8087 {
8088 bfd_size_type size;
8089
8090 if (section->_cooked_size != 0)
8091 size = section->_cooked_size;
8092 else
8093 size = section->_raw_size;
8094 c = (bfd_byte *) bfd_zalloc (abfd, size);
8095 if (c == NULL)
8096 return FALSE;
8097 mips_elf_section_data (section)->u.tdata = c;
8098 }
8099
8100 memcpy (c + offset, location, (size_t) count);
8101 }
8102
8103 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8104 count);
8105 }
8106
8107 /* This is almost identical to bfd_generic_get_... except that some
8108 MIPS relocations need to be handled specially. Sigh. */
8109
8110 bfd_byte *
8111 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8112 data, relocatable, symbols)
8113 bfd *abfd;
8114 struct bfd_link_info *link_info;
8115 struct bfd_link_order *link_order;
8116 bfd_byte *data;
8117 bfd_boolean relocatable;
8118 asymbol **symbols;
8119 {
8120 /* Get enough memory to hold the stuff */
8121 bfd *input_bfd = link_order->u.indirect.section->owner;
8122 asection *input_section = link_order->u.indirect.section;
8123
8124 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8125 arelent **reloc_vector = NULL;
8126 long reloc_count;
8127
8128 if (reloc_size < 0)
8129 goto error_return;
8130
8131 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8132 if (reloc_vector == NULL && reloc_size != 0)
8133 goto error_return;
8134
8135 /* read in the section */
8136 if (!bfd_get_section_contents (input_bfd,
8137 input_section,
8138 (PTR) data,
8139 (file_ptr) 0,
8140 input_section->_raw_size))
8141 goto error_return;
8142
8143 /* We're not relaxing the section, so just copy the size info */
8144 input_section->_cooked_size = input_section->_raw_size;
8145 input_section->reloc_done = TRUE;
8146
8147 reloc_count = bfd_canonicalize_reloc (input_bfd,
8148 input_section,
8149 reloc_vector,
8150 symbols);
8151 if (reloc_count < 0)
8152 goto error_return;
8153
8154 if (reloc_count > 0)
8155 {
8156 arelent **parent;
8157 /* for mips */
8158 int gp_found;
8159 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8160
8161 {
8162 struct bfd_hash_entry *h;
8163 struct bfd_link_hash_entry *lh;
8164 /* Skip all this stuff if we aren't mixing formats. */
8165 if (abfd && input_bfd
8166 && abfd->xvec == input_bfd->xvec)
8167 lh = 0;
8168 else
8169 {
8170 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8171 lh = (struct bfd_link_hash_entry *) h;
8172 }
8173 lookup:
8174 if (lh)
8175 {
8176 switch (lh->type)
8177 {
8178 case bfd_link_hash_undefined:
8179 case bfd_link_hash_undefweak:
8180 case bfd_link_hash_common:
8181 gp_found = 0;
8182 break;
8183 case bfd_link_hash_defined:
8184 case bfd_link_hash_defweak:
8185 gp_found = 1;
8186 gp = lh->u.def.value;
8187 break;
8188 case bfd_link_hash_indirect:
8189 case bfd_link_hash_warning:
8190 lh = lh->u.i.link;
8191 /* @@FIXME ignoring warning for now */
8192 goto lookup;
8193 case bfd_link_hash_new:
8194 default:
8195 abort ();
8196 }
8197 }
8198 else
8199 gp_found = 0;
8200 }
8201 /* end mips */
8202 for (parent = reloc_vector; *parent != (arelent *) NULL;
8203 parent++)
8204 {
8205 char *error_message = (char *) NULL;
8206 bfd_reloc_status_type r;
8207
8208 /* Specific to MIPS: Deal with relocation types that require
8209 knowing the gp of the output bfd. */
8210 asymbol *sym = *(*parent)->sym_ptr_ptr;
8211 if (bfd_is_abs_section (sym->section) && abfd)
8212 {
8213 /* The special_function wouldn't get called anyway. */
8214 }
8215 else if (!gp_found)
8216 {
8217 /* The gp isn't there; let the special function code
8218 fall over on its own. */
8219 }
8220 else if ((*parent)->howto->special_function
8221 == _bfd_mips_elf32_gprel16_reloc)
8222 {
8223 /* bypass special_function call */
8224 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8225 input_section, relocatable,
8226 (PTR) data, gp);
8227 goto skip_bfd_perform_relocation;
8228 }
8229 /* end mips specific stuff */
8230
8231 r = bfd_perform_relocation (input_bfd,
8232 *parent,
8233 (PTR) data,
8234 input_section,
8235 relocatable ? abfd : (bfd *) NULL,
8236 &error_message);
8237 skip_bfd_perform_relocation:
8238
8239 if (relocatable)
8240 {
8241 asection *os = input_section->output_section;
8242
8243 /* A partial link, so keep the relocs */
8244 os->orelocation[os->reloc_count] = *parent;
8245 os->reloc_count++;
8246 }
8247
8248 if (r != bfd_reloc_ok)
8249 {
8250 switch (r)
8251 {
8252 case bfd_reloc_undefined:
8253 if (!((*link_info->callbacks->undefined_symbol)
8254 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8255 input_bfd, input_section, (*parent)->address,
8256 TRUE)))
8257 goto error_return;
8258 break;
8259 case bfd_reloc_dangerous:
8260 BFD_ASSERT (error_message != (char *) NULL);
8261 if (!((*link_info->callbacks->reloc_dangerous)
8262 (link_info, error_message, input_bfd, input_section,
8263 (*parent)->address)))
8264 goto error_return;
8265 break;
8266 case bfd_reloc_overflow:
8267 if (!((*link_info->callbacks->reloc_overflow)
8268 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8269 (*parent)->howto->name, (*parent)->addend,
8270 input_bfd, input_section, (*parent)->address)))
8271 goto error_return;
8272 break;
8273 case bfd_reloc_outofrange:
8274 default:
8275 abort ();
8276 break;
8277 }
8278
8279 }
8280 }
8281 }
8282 if (reloc_vector != NULL)
8283 free (reloc_vector);
8284 return data;
8285
8286 error_return:
8287 if (reloc_vector != NULL)
8288 free (reloc_vector);
8289 return NULL;
8290 }
8291 \f
8292 /* Create a MIPS ELF linker hash table. */
8293
8294 struct bfd_link_hash_table *
8295 _bfd_mips_elf_link_hash_table_create (abfd)
8296 bfd *abfd;
8297 {
8298 struct mips_elf_link_hash_table *ret;
8299 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8300
8301 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8302 if (ret == (struct mips_elf_link_hash_table *) NULL)
8303 return NULL;
8304
8305 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8306 mips_elf_link_hash_newfunc))
8307 {
8308 free (ret);
8309 return NULL;
8310 }
8311
8312 #if 0
8313 /* We no longer use this. */
8314 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8315 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8316 #endif
8317 ret->procedure_count = 0;
8318 ret->compact_rel_size = 0;
8319 ret->use_rld_obj_head = FALSE;
8320 ret->rld_value = 0;
8321 ret->mips16_stubs_seen = FALSE;
8322
8323 return &ret->root.root;
8324 }
8325 \f
8326 /* We need to use a special link routine to handle the .reginfo and
8327 the .mdebug sections. We need to merge all instances of these
8328 sections together, not write them all out sequentially. */
8329
8330 bfd_boolean
8331 _bfd_mips_elf_final_link (abfd, info)
8332 bfd *abfd;
8333 struct bfd_link_info *info;
8334 {
8335 asection **secpp;
8336 asection *o;
8337 struct bfd_link_order *p;
8338 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8339 asection *rtproc_sec;
8340 Elf32_RegInfo reginfo;
8341 struct ecoff_debug_info debug;
8342 const struct ecoff_debug_swap *swap
8343 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8344 HDRR *symhdr = &debug.symbolic_header;
8345 PTR mdebug_handle = NULL;
8346 asection *s;
8347 EXTR esym;
8348 unsigned int i;
8349 bfd_size_type amt;
8350
8351 static const char * const secname[] =
8352 {
8353 ".text", ".init", ".fini", ".data",
8354 ".rodata", ".sdata", ".sbss", ".bss"
8355 };
8356 static const int sc[] =
8357 {
8358 scText, scInit, scFini, scData,
8359 scRData, scSData, scSBss, scBss
8360 };
8361
8362 /* We'd carefully arranged the dynamic symbol indices, and then the
8363 generic size_dynamic_sections renumbered them out from under us.
8364 Rather than trying somehow to prevent the renumbering, just do
8365 the sort again. */
8366 if (elf_hash_table (info)->dynamic_sections_created)
8367 {
8368 bfd *dynobj;
8369 asection *got;
8370 struct mips_got_info *g;
8371
8372 /* When we resort, we must tell mips_elf_sort_hash_table what
8373 the lowest index it may use is. That's the number of section
8374 symbols we're going to add. The generic ELF linker only
8375 adds these symbols when building a shared object. Note that
8376 we count the sections after (possibly) removing the .options
8377 section above. */
8378 if (! mips_elf_sort_hash_table (info, (info->shared
8379 ? bfd_count_sections (abfd) + 1
8380 : 1)))
8381 return FALSE;
8382
8383 /* Make sure we didn't grow the global .got region. */
8384 dynobj = elf_hash_table (info)->dynobj;
8385 got = mips_elf_got_section (dynobj, FALSE);
8386 g = mips_elf_section_data (got)->u.got_info;
8387
8388 if (g->global_gotsym != NULL)
8389 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8390 - g->global_gotsym->dynindx)
8391 <= g->global_gotno);
8392 }
8393
8394 #if 0
8395 /* We want to set the GP value for ld -r. */
8396 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8397 include it, even though we don't process it quite right. (Some
8398 entries are supposed to be merged.) Empirically, we seem to be
8399 better off including it then not. */
8400 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8401 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8402 {
8403 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8404 {
8405 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8406 if (p->type == bfd_indirect_link_order)
8407 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8408 (*secpp)->link_order_head = NULL;
8409 bfd_section_list_remove (abfd, secpp);
8410 --abfd->section_count;
8411
8412 break;
8413 }
8414 }
8415
8416 /* We include .MIPS.options, even though we don't process it quite right.
8417 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8418 to be better off including it than not. */
8419 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8420 {
8421 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8422 {
8423 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8424 if (p->type == bfd_indirect_link_order)
8425 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8426 (*secpp)->link_order_head = NULL;
8427 bfd_section_list_remove (abfd, secpp);
8428 --abfd->section_count;
8429
8430 break;
8431 }
8432 }
8433 #endif
8434
8435 /* Get a value for the GP register. */
8436 if (elf_gp (abfd) == 0)
8437 {
8438 struct bfd_link_hash_entry *h;
8439
8440 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8441 if (h != (struct bfd_link_hash_entry *) NULL
8442 && h->type == bfd_link_hash_defined)
8443 elf_gp (abfd) = (h->u.def.value
8444 + h->u.def.section->output_section->vma
8445 + h->u.def.section->output_offset);
8446 else if (info->relocatable)
8447 {
8448 bfd_vma lo = MINUS_ONE;
8449
8450 /* Find the GP-relative section with the lowest offset. */
8451 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8452 if (o->vma < lo
8453 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8454 lo = o->vma;
8455
8456 /* And calculate GP relative to that. */
8457 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8458 }
8459 else
8460 {
8461 /* If the relocate_section function needs to do a reloc
8462 involving the GP value, it should make a reloc_dangerous
8463 callback to warn that GP is not defined. */
8464 }
8465 }
8466
8467 /* Go through the sections and collect the .reginfo and .mdebug
8468 information. */
8469 reginfo_sec = NULL;
8470 mdebug_sec = NULL;
8471 gptab_data_sec = NULL;
8472 gptab_bss_sec = NULL;
8473 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8474 {
8475 if (strcmp (o->name, ".reginfo") == 0)
8476 {
8477 memset (&reginfo, 0, sizeof reginfo);
8478
8479 /* We have found the .reginfo section in the output file.
8480 Look through all the link_orders comprising it and merge
8481 the information together. */
8482 for (p = o->link_order_head;
8483 p != (struct bfd_link_order *) NULL;
8484 p = p->next)
8485 {
8486 asection *input_section;
8487 bfd *input_bfd;
8488 Elf32_External_RegInfo ext;
8489 Elf32_RegInfo sub;
8490
8491 if (p->type != bfd_indirect_link_order)
8492 {
8493 if (p->type == bfd_data_link_order)
8494 continue;
8495 abort ();
8496 }
8497
8498 input_section = p->u.indirect.section;
8499 input_bfd = input_section->owner;
8500
8501 /* The linker emulation code has probably clobbered the
8502 size to be zero bytes. */
8503 if (input_section->_raw_size == 0)
8504 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8505
8506 if (! bfd_get_section_contents (input_bfd, input_section,
8507 (PTR) &ext,
8508 (file_ptr) 0,
8509 (bfd_size_type) sizeof ext))
8510 return FALSE;
8511
8512 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8513
8514 reginfo.ri_gprmask |= sub.ri_gprmask;
8515 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8516 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8517 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8518 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8519
8520 /* ri_gp_value is set by the function
8521 mips_elf32_section_processing when the section is
8522 finally written out. */
8523
8524 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8525 elf_link_input_bfd ignores this section. */
8526 input_section->flags &= ~SEC_HAS_CONTENTS;
8527 }
8528
8529 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8530 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8531
8532 /* Skip this section later on (I don't think this currently
8533 matters, but someday it might). */
8534 o->link_order_head = (struct bfd_link_order *) NULL;
8535
8536 reginfo_sec = o;
8537 }
8538
8539 if (strcmp (o->name, ".mdebug") == 0)
8540 {
8541 struct extsym_info einfo;
8542 bfd_vma last;
8543
8544 /* We have found the .mdebug section in the output file.
8545 Look through all the link_orders comprising it and merge
8546 the information together. */
8547 symhdr->magic = swap->sym_magic;
8548 /* FIXME: What should the version stamp be? */
8549 symhdr->vstamp = 0;
8550 symhdr->ilineMax = 0;
8551 symhdr->cbLine = 0;
8552 symhdr->idnMax = 0;
8553 symhdr->ipdMax = 0;
8554 symhdr->isymMax = 0;
8555 symhdr->ioptMax = 0;
8556 symhdr->iauxMax = 0;
8557 symhdr->issMax = 0;
8558 symhdr->issExtMax = 0;
8559 symhdr->ifdMax = 0;
8560 symhdr->crfd = 0;
8561 symhdr->iextMax = 0;
8562
8563 /* We accumulate the debugging information itself in the
8564 debug_info structure. */
8565 debug.line = NULL;
8566 debug.external_dnr = NULL;
8567 debug.external_pdr = NULL;
8568 debug.external_sym = NULL;
8569 debug.external_opt = NULL;
8570 debug.external_aux = NULL;
8571 debug.ss = NULL;
8572 debug.ssext = debug.ssext_end = NULL;
8573 debug.external_fdr = NULL;
8574 debug.external_rfd = NULL;
8575 debug.external_ext = debug.external_ext_end = NULL;
8576
8577 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8578 if (mdebug_handle == (PTR) NULL)
8579 return FALSE;
8580
8581 esym.jmptbl = 0;
8582 esym.cobol_main = 0;
8583 esym.weakext = 0;
8584 esym.reserved = 0;
8585 esym.ifd = ifdNil;
8586 esym.asym.iss = issNil;
8587 esym.asym.st = stLocal;
8588 esym.asym.reserved = 0;
8589 esym.asym.index = indexNil;
8590 last = 0;
8591 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8592 {
8593 esym.asym.sc = sc[i];
8594 s = bfd_get_section_by_name (abfd, secname[i]);
8595 if (s != NULL)
8596 {
8597 esym.asym.value = s->vma;
8598 last = s->vma + s->_raw_size;
8599 }
8600 else
8601 esym.asym.value = last;
8602 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8603 secname[i], &esym))
8604 return FALSE;
8605 }
8606
8607 for (p = o->link_order_head;
8608 p != (struct bfd_link_order *) NULL;
8609 p = p->next)
8610 {
8611 asection *input_section;
8612 bfd *input_bfd;
8613 const struct ecoff_debug_swap *input_swap;
8614 struct ecoff_debug_info input_debug;
8615 char *eraw_src;
8616 char *eraw_end;
8617
8618 if (p->type != bfd_indirect_link_order)
8619 {
8620 if (p->type == bfd_data_link_order)
8621 continue;
8622 abort ();
8623 }
8624
8625 input_section = p->u.indirect.section;
8626 input_bfd = input_section->owner;
8627
8628 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8629 || (get_elf_backend_data (input_bfd)
8630 ->elf_backend_ecoff_debug_swap) == NULL)
8631 {
8632 /* I don't know what a non MIPS ELF bfd would be
8633 doing with a .mdebug section, but I don't really
8634 want to deal with it. */
8635 continue;
8636 }
8637
8638 input_swap = (get_elf_backend_data (input_bfd)
8639 ->elf_backend_ecoff_debug_swap);
8640
8641 BFD_ASSERT (p->size == input_section->_raw_size);
8642
8643 /* The ECOFF linking code expects that we have already
8644 read in the debugging information and set up an
8645 ecoff_debug_info structure, so we do that now. */
8646 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8647 &input_debug))
8648 return FALSE;
8649
8650 if (! (bfd_ecoff_debug_accumulate
8651 (mdebug_handle, abfd, &debug, swap, input_bfd,
8652 &input_debug, input_swap, info)))
8653 return FALSE;
8654
8655 /* Loop through the external symbols. For each one with
8656 interesting information, try to find the symbol in
8657 the linker global hash table and save the information
8658 for the output external symbols. */
8659 eraw_src = input_debug.external_ext;
8660 eraw_end = (eraw_src
8661 + (input_debug.symbolic_header.iextMax
8662 * input_swap->external_ext_size));
8663 for (;
8664 eraw_src < eraw_end;
8665 eraw_src += input_swap->external_ext_size)
8666 {
8667 EXTR ext;
8668 const char *name;
8669 struct mips_elf_link_hash_entry *h;
8670
8671 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8672 if (ext.asym.sc == scNil
8673 || ext.asym.sc == scUndefined
8674 || ext.asym.sc == scSUndefined)
8675 continue;
8676
8677 name = input_debug.ssext + ext.asym.iss;
8678 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8679 name, FALSE, FALSE, TRUE);
8680 if (h == NULL || h->esym.ifd != -2)
8681 continue;
8682
8683 if (ext.ifd != -1)
8684 {
8685 BFD_ASSERT (ext.ifd
8686 < input_debug.symbolic_header.ifdMax);
8687 ext.ifd = input_debug.ifdmap[ext.ifd];
8688 }
8689
8690 h->esym = ext;
8691 }
8692
8693 /* Free up the information we just read. */
8694 free (input_debug.line);
8695 free (input_debug.external_dnr);
8696 free (input_debug.external_pdr);
8697 free (input_debug.external_sym);
8698 free (input_debug.external_opt);
8699 free (input_debug.external_aux);
8700 free (input_debug.ss);
8701 free (input_debug.ssext);
8702 free (input_debug.external_fdr);
8703 free (input_debug.external_rfd);
8704 free (input_debug.external_ext);
8705
8706 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8707 elf_link_input_bfd ignores this section. */
8708 input_section->flags &= ~SEC_HAS_CONTENTS;
8709 }
8710
8711 if (SGI_COMPAT (abfd) && info->shared)
8712 {
8713 /* Create .rtproc section. */
8714 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8715 if (rtproc_sec == NULL)
8716 {
8717 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8718 | SEC_LINKER_CREATED | SEC_READONLY);
8719
8720 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8721 if (rtproc_sec == NULL
8722 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8723 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8724 return FALSE;
8725 }
8726
8727 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8728 info, rtproc_sec,
8729 &debug))
8730 return FALSE;
8731 }
8732
8733 /* Build the external symbol information. */
8734 einfo.abfd = abfd;
8735 einfo.info = info;
8736 einfo.debug = &debug;
8737 einfo.swap = swap;
8738 einfo.failed = FALSE;
8739 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8740 mips_elf_output_extsym,
8741 (PTR) &einfo);
8742 if (einfo.failed)
8743 return FALSE;
8744
8745 /* Set the size of the .mdebug section. */
8746 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8747
8748 /* Skip this section later on (I don't think this currently
8749 matters, but someday it might). */
8750 o->link_order_head = (struct bfd_link_order *) NULL;
8751
8752 mdebug_sec = o;
8753 }
8754
8755 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8756 {
8757 const char *subname;
8758 unsigned int c;
8759 Elf32_gptab *tab;
8760 Elf32_External_gptab *ext_tab;
8761 unsigned int j;
8762
8763 /* The .gptab.sdata and .gptab.sbss sections hold
8764 information describing how the small data area would
8765 change depending upon the -G switch. These sections
8766 not used in executables files. */
8767 if (! info->relocatable)
8768 {
8769 for (p = o->link_order_head;
8770 p != (struct bfd_link_order *) NULL;
8771 p = p->next)
8772 {
8773 asection *input_section;
8774
8775 if (p->type != bfd_indirect_link_order)
8776 {
8777 if (p->type == bfd_data_link_order)
8778 continue;
8779 abort ();
8780 }
8781
8782 input_section = p->u.indirect.section;
8783
8784 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8785 elf_link_input_bfd ignores this section. */
8786 input_section->flags &= ~SEC_HAS_CONTENTS;
8787 }
8788
8789 /* Skip this section later on (I don't think this
8790 currently matters, but someday it might). */
8791 o->link_order_head = (struct bfd_link_order *) NULL;
8792
8793 /* Really remove the section. */
8794 for (secpp = &abfd->sections;
8795 *secpp != o;
8796 secpp = &(*secpp)->next)
8797 ;
8798 bfd_section_list_remove (abfd, secpp);
8799 --abfd->section_count;
8800
8801 continue;
8802 }
8803
8804 /* There is one gptab for initialized data, and one for
8805 uninitialized data. */
8806 if (strcmp (o->name, ".gptab.sdata") == 0)
8807 gptab_data_sec = o;
8808 else if (strcmp (o->name, ".gptab.sbss") == 0)
8809 gptab_bss_sec = o;
8810 else
8811 {
8812 (*_bfd_error_handler)
8813 (_("%s: illegal section name `%s'"),
8814 bfd_get_filename (abfd), o->name);
8815 bfd_set_error (bfd_error_nonrepresentable_section);
8816 return FALSE;
8817 }
8818
8819 /* The linker script always combines .gptab.data and
8820 .gptab.sdata into .gptab.sdata, and likewise for
8821 .gptab.bss and .gptab.sbss. It is possible that there is
8822 no .sdata or .sbss section in the output file, in which
8823 case we must change the name of the output section. */
8824 subname = o->name + sizeof ".gptab" - 1;
8825 if (bfd_get_section_by_name (abfd, subname) == NULL)
8826 {
8827 if (o == gptab_data_sec)
8828 o->name = ".gptab.data";
8829 else
8830 o->name = ".gptab.bss";
8831 subname = o->name + sizeof ".gptab" - 1;
8832 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8833 }
8834
8835 /* Set up the first entry. */
8836 c = 1;
8837 amt = c * sizeof (Elf32_gptab);
8838 tab = (Elf32_gptab *) bfd_malloc (amt);
8839 if (tab == NULL)
8840 return FALSE;
8841 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8842 tab[0].gt_header.gt_unused = 0;
8843
8844 /* Combine the input sections. */
8845 for (p = o->link_order_head;
8846 p != (struct bfd_link_order *) NULL;
8847 p = p->next)
8848 {
8849 asection *input_section;
8850 bfd *input_bfd;
8851 bfd_size_type size;
8852 unsigned long last;
8853 bfd_size_type gpentry;
8854
8855 if (p->type != bfd_indirect_link_order)
8856 {
8857 if (p->type == bfd_data_link_order)
8858 continue;
8859 abort ();
8860 }
8861
8862 input_section = p->u.indirect.section;
8863 input_bfd = input_section->owner;
8864
8865 /* Combine the gptab entries for this input section one
8866 by one. We know that the input gptab entries are
8867 sorted by ascending -G value. */
8868 size = bfd_section_size (input_bfd, input_section);
8869 last = 0;
8870 for (gpentry = sizeof (Elf32_External_gptab);
8871 gpentry < size;
8872 gpentry += sizeof (Elf32_External_gptab))
8873 {
8874 Elf32_External_gptab ext_gptab;
8875 Elf32_gptab int_gptab;
8876 unsigned long val;
8877 unsigned long add;
8878 bfd_boolean exact;
8879 unsigned int look;
8880
8881 if (! (bfd_get_section_contents
8882 (input_bfd, input_section, (PTR) &ext_gptab,
8883 (file_ptr) gpentry,
8884 (bfd_size_type) sizeof (Elf32_External_gptab))))
8885 {
8886 free (tab);
8887 return FALSE;
8888 }
8889
8890 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8891 &int_gptab);
8892 val = int_gptab.gt_entry.gt_g_value;
8893 add = int_gptab.gt_entry.gt_bytes - last;
8894
8895 exact = FALSE;
8896 for (look = 1; look < c; look++)
8897 {
8898 if (tab[look].gt_entry.gt_g_value >= val)
8899 tab[look].gt_entry.gt_bytes += add;
8900
8901 if (tab[look].gt_entry.gt_g_value == val)
8902 exact = TRUE;
8903 }
8904
8905 if (! exact)
8906 {
8907 Elf32_gptab *new_tab;
8908 unsigned int max;
8909
8910 /* We need a new table entry. */
8911 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8912 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8913 if (new_tab == NULL)
8914 {
8915 free (tab);
8916 return FALSE;
8917 }
8918 tab = new_tab;
8919 tab[c].gt_entry.gt_g_value = val;
8920 tab[c].gt_entry.gt_bytes = add;
8921
8922 /* Merge in the size for the next smallest -G
8923 value, since that will be implied by this new
8924 value. */
8925 max = 0;
8926 for (look = 1; look < c; look++)
8927 {
8928 if (tab[look].gt_entry.gt_g_value < val
8929 && (max == 0
8930 || (tab[look].gt_entry.gt_g_value
8931 > tab[max].gt_entry.gt_g_value)))
8932 max = look;
8933 }
8934 if (max != 0)
8935 tab[c].gt_entry.gt_bytes +=
8936 tab[max].gt_entry.gt_bytes;
8937
8938 ++c;
8939 }
8940
8941 last = int_gptab.gt_entry.gt_bytes;
8942 }
8943
8944 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8945 elf_link_input_bfd ignores this section. */
8946 input_section->flags &= ~SEC_HAS_CONTENTS;
8947 }
8948
8949 /* The table must be sorted by -G value. */
8950 if (c > 2)
8951 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8952
8953 /* Swap out the table. */
8954 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8955 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8956 if (ext_tab == NULL)
8957 {
8958 free (tab);
8959 return FALSE;
8960 }
8961
8962 for (j = 0; j < c; j++)
8963 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8964 free (tab);
8965
8966 o->_raw_size = c * sizeof (Elf32_External_gptab);
8967 o->contents = (bfd_byte *) ext_tab;
8968
8969 /* Skip this section later on (I don't think this currently
8970 matters, but someday it might). */
8971 o->link_order_head = (struct bfd_link_order *) NULL;
8972 }
8973 }
8974
8975 /* Invoke the regular ELF backend linker to do all the work. */
8976 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8977 return FALSE;
8978
8979 /* Now write out the computed sections. */
8980
8981 if (reginfo_sec != (asection *) NULL)
8982 {
8983 Elf32_External_RegInfo ext;
8984
8985 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8986 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8987 (file_ptr) 0,
8988 (bfd_size_type) sizeof ext))
8989 return FALSE;
8990 }
8991
8992 if (mdebug_sec != (asection *) NULL)
8993 {
8994 BFD_ASSERT (abfd->output_has_begun);
8995 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8996 swap, info,
8997 mdebug_sec->filepos))
8998 return FALSE;
8999
9000 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9001 }
9002
9003 if (gptab_data_sec != (asection *) NULL)
9004 {
9005 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9006 gptab_data_sec->contents,
9007 (file_ptr) 0,
9008 gptab_data_sec->_raw_size))
9009 return FALSE;
9010 }
9011
9012 if (gptab_bss_sec != (asection *) NULL)
9013 {
9014 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9015 gptab_bss_sec->contents,
9016 (file_ptr) 0,
9017 gptab_bss_sec->_raw_size))
9018 return FALSE;
9019 }
9020
9021 if (SGI_COMPAT (abfd))
9022 {
9023 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9024 if (rtproc_sec != NULL)
9025 {
9026 if (! bfd_set_section_contents (abfd, rtproc_sec,
9027 rtproc_sec->contents,
9028 (file_ptr) 0,
9029 rtproc_sec->_raw_size))
9030 return FALSE;
9031 }
9032 }
9033
9034 return TRUE;
9035 }
9036 \f
9037 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9038
9039 struct mips_mach_extension {
9040 unsigned long extension, base;
9041 };
9042
9043
9044 /* An array describing how BFD machines relate to one another. The entries
9045 are ordered topologically with MIPS I extensions listed last. */
9046
9047 static const struct mips_mach_extension mips_mach_extensions[] = {
9048 /* MIPS64 extensions. */
9049 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9050
9051 /* MIPS V extensions. */
9052 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9053
9054 /* R10000 extensions. */
9055 { bfd_mach_mips12000, bfd_mach_mips10000 },
9056
9057 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9058 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9059 better to allow vr5400 and vr5500 code to be merged anyway, since
9060 many libraries will just use the core ISA. Perhaps we could add
9061 some sort of ASE flag if this ever proves a problem. */
9062 { bfd_mach_mips5500, bfd_mach_mips5400 },
9063 { bfd_mach_mips5400, bfd_mach_mips5000 },
9064
9065 /* MIPS IV extensions. */
9066 { bfd_mach_mips5, bfd_mach_mips8000 },
9067 { bfd_mach_mips10000, bfd_mach_mips8000 },
9068 { bfd_mach_mips5000, bfd_mach_mips8000 },
9069
9070 /* VR4100 extensions. */
9071 { bfd_mach_mips4120, bfd_mach_mips4100 },
9072 { bfd_mach_mips4111, bfd_mach_mips4100 },
9073
9074 /* MIPS III extensions. */
9075 { bfd_mach_mips8000, bfd_mach_mips4000 },
9076 { bfd_mach_mips4650, bfd_mach_mips4000 },
9077 { bfd_mach_mips4600, bfd_mach_mips4000 },
9078 { bfd_mach_mips4400, bfd_mach_mips4000 },
9079 { bfd_mach_mips4300, bfd_mach_mips4000 },
9080 { bfd_mach_mips4100, bfd_mach_mips4000 },
9081 { bfd_mach_mips4010, bfd_mach_mips4000 },
9082
9083 /* MIPS32 extensions. */
9084 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9085
9086 /* MIPS II extensions. */
9087 { bfd_mach_mips4000, bfd_mach_mips6000 },
9088 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9089
9090 /* MIPS I extensions. */
9091 { bfd_mach_mips6000, bfd_mach_mips3000 },
9092 { bfd_mach_mips3900, bfd_mach_mips3000 }
9093 };
9094
9095
9096 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9097
9098 static bfd_boolean
9099 mips_mach_extends_p (base, extension)
9100 unsigned long base, extension;
9101 {
9102 size_t i;
9103
9104 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9105 if (extension == mips_mach_extensions[i].extension)
9106 extension = mips_mach_extensions[i].base;
9107
9108 return extension == base;
9109 }
9110
9111
9112 /* Return true if the given ELF header flags describe a 32-bit binary. */
9113
9114 static bfd_boolean
9115 mips_32bit_flags_p (flags)
9116 flagword flags;
9117 {
9118 return ((flags & EF_MIPS_32BITMODE) != 0
9119 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9120 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9121 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9122 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9123 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9124 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9125 }
9126
9127
9128 /* Merge backend specific data from an object file to the output
9129 object file when linking. */
9130
9131 bfd_boolean
9132 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9133 bfd *ibfd;
9134 bfd *obfd;
9135 {
9136 flagword old_flags;
9137 flagword new_flags;
9138 bfd_boolean ok;
9139 bfd_boolean null_input_bfd = TRUE;
9140 asection *sec;
9141
9142 /* Check if we have the same endianess */
9143 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9144 {
9145 (*_bfd_error_handler)
9146 (_("%s: endianness incompatible with that of the selected emulation"),
9147 bfd_archive_filename (ibfd));
9148 return FALSE;
9149 }
9150
9151 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9152 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9153 return TRUE;
9154
9155 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9156 {
9157 (*_bfd_error_handler)
9158 (_("%s: ABI is incompatible with that of the selected emulation"),
9159 bfd_archive_filename (ibfd));
9160 return FALSE;
9161 }
9162
9163 new_flags = elf_elfheader (ibfd)->e_flags;
9164 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9165 old_flags = elf_elfheader (obfd)->e_flags;
9166
9167 if (! elf_flags_init (obfd))
9168 {
9169 elf_flags_init (obfd) = TRUE;
9170 elf_elfheader (obfd)->e_flags = new_flags;
9171 elf_elfheader (obfd)->e_ident[EI_CLASS]
9172 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9173
9174 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9175 && bfd_get_arch_info (obfd)->the_default)
9176 {
9177 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9178 bfd_get_mach (ibfd)))
9179 return FALSE;
9180 }
9181
9182 return TRUE;
9183 }
9184
9185 /* Check flag compatibility. */
9186
9187 new_flags &= ~EF_MIPS_NOREORDER;
9188 old_flags &= ~EF_MIPS_NOREORDER;
9189
9190 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9191 doesn't seem to matter. */
9192 new_flags &= ~EF_MIPS_XGOT;
9193 old_flags &= ~EF_MIPS_XGOT;
9194
9195 if (new_flags == old_flags)
9196 return TRUE;
9197
9198 /* Check to see if the input BFD actually contains any sections.
9199 If not, its flags may not have been initialised either, but it cannot
9200 actually cause any incompatibility. */
9201 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9202 {
9203 /* Ignore synthetic sections and empty .text, .data and .bss sections
9204 which are automatically generated by gas. */
9205 if (strcmp (sec->name, ".reginfo")
9206 && strcmp (sec->name, ".mdebug")
9207 && ((!strcmp (sec->name, ".text")
9208 || !strcmp (sec->name, ".data")
9209 || !strcmp (sec->name, ".bss"))
9210 && sec->_raw_size != 0))
9211 {
9212 null_input_bfd = FALSE;
9213 break;
9214 }
9215 }
9216 if (null_input_bfd)
9217 return TRUE;
9218
9219 ok = TRUE;
9220
9221 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9222 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9223 {
9224 (*_bfd_error_handler)
9225 (_("%s: warning: linking PIC files with non-PIC files"),
9226 bfd_archive_filename (ibfd));
9227 ok = TRUE;
9228 }
9229
9230 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9231 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9232 if (! (new_flags & EF_MIPS_PIC))
9233 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9234
9235 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9236 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9237
9238 /* Compare the ISAs. */
9239 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9240 {
9241 (*_bfd_error_handler)
9242 (_("%s: linking 32-bit code with 64-bit code"),
9243 bfd_archive_filename (ibfd));
9244 ok = FALSE;
9245 }
9246 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9247 {
9248 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9249 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9250 {
9251 /* Copy the architecture info from IBFD to OBFD. Also copy
9252 the 32-bit flag (if set) so that we continue to recognise
9253 OBFD as a 32-bit binary. */
9254 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9255 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9256 elf_elfheader (obfd)->e_flags
9257 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9258
9259 /* Copy across the ABI flags if OBFD doesn't use them
9260 and if that was what caused us to treat IBFD as 32-bit. */
9261 if ((old_flags & EF_MIPS_ABI) == 0
9262 && mips_32bit_flags_p (new_flags)
9263 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9264 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9265 }
9266 else
9267 {
9268 /* The ISAs aren't compatible. */
9269 (*_bfd_error_handler)
9270 (_("%s: linking %s module with previous %s modules"),
9271 bfd_archive_filename (ibfd),
9272 bfd_printable_name (ibfd),
9273 bfd_printable_name (obfd));
9274 ok = FALSE;
9275 }
9276 }
9277
9278 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9279 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9280
9281 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9282 does set EI_CLASS differently from any 32-bit ABI. */
9283 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9284 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9285 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9286 {
9287 /* Only error if both are set (to different values). */
9288 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9289 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9290 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9291 {
9292 (*_bfd_error_handler)
9293 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9294 bfd_archive_filename (ibfd),
9295 elf_mips_abi_name (ibfd),
9296 elf_mips_abi_name (obfd));
9297 ok = FALSE;
9298 }
9299 new_flags &= ~EF_MIPS_ABI;
9300 old_flags &= ~EF_MIPS_ABI;
9301 }
9302
9303 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9304 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9305 {
9306 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9307
9308 new_flags &= ~ EF_MIPS_ARCH_ASE;
9309 old_flags &= ~ EF_MIPS_ARCH_ASE;
9310 }
9311
9312 /* Warn about any other mismatches */
9313 if (new_flags != old_flags)
9314 {
9315 (*_bfd_error_handler)
9316 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9317 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9318 (unsigned long) old_flags);
9319 ok = FALSE;
9320 }
9321
9322 if (! ok)
9323 {
9324 bfd_set_error (bfd_error_bad_value);
9325 return FALSE;
9326 }
9327
9328 return TRUE;
9329 }
9330
9331 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9332
9333 bfd_boolean
9334 _bfd_mips_elf_set_private_flags (abfd, flags)
9335 bfd *abfd;
9336 flagword flags;
9337 {
9338 BFD_ASSERT (!elf_flags_init (abfd)
9339 || elf_elfheader (abfd)->e_flags == flags);
9340
9341 elf_elfheader (abfd)->e_flags = flags;
9342 elf_flags_init (abfd) = TRUE;
9343 return TRUE;
9344 }
9345
9346 bfd_boolean
9347 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9348 bfd *abfd;
9349 PTR ptr;
9350 {
9351 FILE *file = (FILE *) ptr;
9352
9353 BFD_ASSERT (abfd != NULL && ptr != NULL);
9354
9355 /* Print normal ELF private data. */
9356 _bfd_elf_print_private_bfd_data (abfd, ptr);
9357
9358 /* xgettext:c-format */
9359 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9360
9361 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9362 fprintf (file, _(" [abi=O32]"));
9363 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9364 fprintf (file, _(" [abi=O64]"));
9365 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9366 fprintf (file, _(" [abi=EABI32]"));
9367 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9368 fprintf (file, _(" [abi=EABI64]"));
9369 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9370 fprintf (file, _(" [abi unknown]"));
9371 else if (ABI_N32_P (abfd))
9372 fprintf (file, _(" [abi=N32]"));
9373 else if (ABI_64_P (abfd))
9374 fprintf (file, _(" [abi=64]"));
9375 else
9376 fprintf (file, _(" [no abi set]"));
9377
9378 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9379 fprintf (file, _(" [mips1]"));
9380 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9381 fprintf (file, _(" [mips2]"));
9382 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9383 fprintf (file, _(" [mips3]"));
9384 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9385 fprintf (file, _(" [mips4]"));
9386 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9387 fprintf (file, _(" [mips5]"));
9388 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9389 fprintf (file, _(" [mips32]"));
9390 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9391 fprintf (file, _(" [mips64]"));
9392 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9393 fprintf (file, _(" [mips32r2]"));
9394 else
9395 fprintf (file, _(" [unknown ISA]"));
9396
9397 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9398 fprintf (file, _(" [mdmx]"));
9399
9400 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9401 fprintf (file, _(" [mips16]"));
9402
9403 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9404 fprintf (file, _(" [32bitmode]"));
9405 else
9406 fprintf (file, _(" [not 32bitmode]"));
9407
9408 fputc ('\n', file);
9409
9410 return TRUE;
9411 }