* elfxx-mips.c (mips_elf_irix6_finish_dynamic_symbol): Make the
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
194
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
198 p. 4-20. */
199 bfd_boolean no_fn_stub;
200
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
203 asection *fn_stub;
204
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
207 bfd_boolean need_fn_stub;
208
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
211 asection *call_stub;
212
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
216
217 /* Are we forced local? .*/
218 bfd_boolean forced_local;
219 };
220
221 /* MIPS ELF linker hash table. */
222
223 struct mips_elf_link_hash_table
224 {
225 struct elf_link_hash_table root;
226 #if 0
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
230 #endif
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
236 entry is set to the address of __rld_obj_head as in IRIX5. */
237 bfd_boolean use_rld_obj_head;
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
239 bfd_vma rld_value;
240 /* This is set if we see any mips16 stub sections. */
241 bfd_boolean mips16_stubs_seen;
242 };
243
244 /* Structure used to pass information to mips_elf_output_extsym. */
245
246 struct extsym_info
247 {
248 bfd *abfd;
249 struct bfd_link_info *info;
250 struct ecoff_debug_info *debug;
251 const struct ecoff_debug_swap *swap;
252 bfd_boolean failed;
253 };
254
255 /* The names of the runtime procedure table symbols used on IRIX5. */
256
257 static const char * const mips_elf_dynsym_rtproc_names[] =
258 {
259 "_procedure_table",
260 "_procedure_string_table",
261 "_procedure_table_size",
262 NULL
263 };
264
265 /* These structures are used to generate the .compact_rel section on
266 IRIX5. */
267
268 typedef struct
269 {
270 unsigned long id1; /* Always one? */
271 unsigned long num; /* Number of compact relocation entries. */
272 unsigned long id2; /* Always two? */
273 unsigned long offset; /* The file offset of the first relocation. */
274 unsigned long reserved0; /* Zero? */
275 unsigned long reserved1; /* Zero? */
276 } Elf32_compact_rel;
277
278 typedef struct
279 {
280 bfd_byte id1[4];
281 bfd_byte num[4];
282 bfd_byte id2[4];
283 bfd_byte offset[4];
284 bfd_byte reserved0[4];
285 bfd_byte reserved1[4];
286 } Elf32_External_compact_rel;
287
288 typedef struct
289 {
290 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype : 4; /* Relocation types. See below. */
292 unsigned int dist2to : 8;
293 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst; /* KONST field. See below. */
295 unsigned long vaddr; /* VADDR to be relocated. */
296 } Elf32_crinfo;
297
298 typedef struct
299 {
300 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype : 4; /* Relocation types. See below. */
302 unsigned int dist2to : 8;
303 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst; /* KONST field. See below. */
305 } Elf32_crinfo2;
306
307 typedef struct
308 {
309 bfd_byte info[4];
310 bfd_byte konst[4];
311 bfd_byte vaddr[4];
312 } Elf32_External_crinfo;
313
314 typedef struct
315 {
316 bfd_byte info[4];
317 bfd_byte konst[4];
318 } Elf32_External_crinfo2;
319
320 /* These are the constants used to swap the bitfields in a crinfo. */
321
322 #define CRINFO_CTYPE (0x1)
323 #define CRINFO_CTYPE_SH (31)
324 #define CRINFO_RTYPE (0xf)
325 #define CRINFO_RTYPE_SH (27)
326 #define CRINFO_DIST2TO (0xff)
327 #define CRINFO_DIST2TO_SH (19)
328 #define CRINFO_RELVADDR (0x7ffff)
329 #define CRINFO_RELVADDR_SH (0)
330
331 /* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334 #define CRF_MIPS_LONG 1
335 #define CRF_MIPS_SHORT 0
336
337 /* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
339
340 (type) (konst)
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
345 */
346
347 #define CRT_MIPS_REL32 0xa
348 #define CRT_MIPS_WORD 0xb
349 #define CRT_MIPS_GPHI_LO 0xc
350 #define CRT_MIPS_JMPAD 0xd
351
352 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
356 \f
357 /* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
359
360 typedef struct runtime_pdr {
361 bfd_vma adr; /* Memory address of start of procedure. */
362 long regmask; /* Save register mask. */
363 long regoffset; /* Save register offset. */
364 long fregmask; /* Save floating point register mask. */
365 long fregoffset; /* Save floating point register offset. */
366 long frameoffset; /* Frame size. */
367 short framereg; /* Frame pointer register. */
368 short pcreg; /* Offset or reg of return pc. */
369 long irpss; /* Index into the runtime string table. */
370 long reserved;
371 struct exception_info *exception_info;/* Pointer to exception array. */
372 } RPDR, *pRPDR;
373 #define cbRPDR sizeof (RPDR)
374 #define rpdNil ((pRPDR) 0)
375 \f
376 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
378 static void ecoff_swap_rpdr_out
379 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
380 static bfd_boolean mips_elf_create_procedure_table
381 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
382 struct ecoff_debug_info *));
383 static bfd_boolean mips_elf_check_mips16_stubs
384 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
385 static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
387 static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
389 static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
391 static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
393 #if 0
394 static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
396 #endif
397 static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
399 static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
401 static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
403 static bfd_boolean mips_elf_output_extsym
404 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
405 static int gptab_compare PARAMS ((const void *, const void *));
406 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
407 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
408 static struct mips_got_info *mips_elf_got_info
409 PARAMS ((bfd *, asection **));
410 static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
438 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
441 static bfd_boolean mips_elf_create_compact_rel_section
442 PARAMS ((bfd *, struct bfd_link_info *));
443 static bfd_boolean mips_elf_create_got_section
444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
445 static asection *mips_elf_create_msym_section
446 PARAMS ((bfd *));
447 static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
451 bfd_boolean *, bfd_boolean));
452 static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
454 static bfd_boolean mips_elf_perform_relocation
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
457 bfd_boolean));
458 static bfd_boolean mips_elf_stub_section_p
459 PARAMS ((bfd *, asection *));
460 static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
462 static bfd_boolean mips_elf_create_dynamic_relocation
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
466 static void mips_set_isa_flags PARAMS ((bfd *));
467 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468 static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
470 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
472 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
473 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
475
476 static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484 static int mips_elf_merge_gots PARAMS ((void **, void *));
485 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487 static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489 static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491 static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
493
494 /* This will be used when we sort the dynamic relocation records. */
495 static bfd *reldyn_sorting_bfd;
496
497 /* Nonzero if ABFD is using the N32 ABI. */
498
499 #define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
501
502 /* Nonzero if ABFD is using the N64 ABI. */
503 #define ABI_64_P(abfd) \
504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
505
506 /* Nonzero if ABFD is using NewABI conventions. */
507 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
508
509 /* The IRIX compatibility level we are striving for. */
510 #define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
512
513 /* Whether we are trying to be compatible with IRIX at all. */
514 #define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
516
517 /* The name of the options section. */
518 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
520
521 /* The name of the stub section. */
522 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
524
525 /* The size of an external REL relocation. */
526 #define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
528
529 /* The size of an external dynamic table entry. */
530 #define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
532
533 /* The size of a GOT entry. */
534 #define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
536
537 /* The size of a symbol-table entry. */
538 #define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
540
541 /* The default alignment for sections, as a power of two. */
542 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
543 (get_elf_backend_data (abfd)->s->log_file_align)
544
545 /* Get word-sized data. */
546 #define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
548
549 /* Put out word-sized data. */
550 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
551 (ABI_64_P (abfd) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
554
555 /* Add a dynamic symbol table-entry. */
556 #ifdef BFD64
557 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
561 #else
562 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
564 ? (abort (), FALSE) \
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
566 #endif
567
568 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
570
571 /* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
587
588 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590 #define MINUS_ONE (((bfd_vma)0) - 1)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
604 #define STUB_LW(abfd) \
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610 #define STUB_JALR 0x0320f809 /* jal t9 */
611 #define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613 #define MIPS_FUNCTION_STUB_SIZE (16)
614
615 /* The name of the dynamic interpreter. This is put in the .interp
616 section. */
617
618 #define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
622
623 #ifdef BFD64
624 #define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
626 #define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628 #define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630 #define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
632 #else
633 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
634 #define ELF_R_SYM(bfd, i) \
635 (ELF32_R_SYM (i))
636 #define ELF_R_TYPE(bfd, i) \
637 (ELF32_R_TYPE (i))
638 #define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
640 #endif
641 \f
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
644
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
653
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
660
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
668 $f0/$f1 and $2/$3.)
669
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
673
674 We record any stubs that we find in the symbol table. */
675
676 #define FN_STUB ".mips16.fn."
677 #define CALL_STUB ".mips16.call."
678 #define CALL_FP_STUB ".mips16.call.fp."
679 \f
680 /* Look up an entry in a MIPS ELF linker hash table. */
681
682 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
685 (copy), (follow)))
686
687 /* Traverse a MIPS ELF linker hash table. */
688
689 #define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
691 (&(table)->root, \
692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
693 (info)))
694
695 /* Get the MIPS ELF linker hash table from a link_info structure. */
696
697 #define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
699
700 /* Create an entry in a MIPS ELF linker hash table. */
701
702 static struct bfd_hash_entry *
703 mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
706 const char *string;
707 {
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
732 ret->readonly_reloc = FALSE;
733 ret->min_dyn_reloc_index = 0;
734 ret->no_fn_stub = FALSE;
735 ret->fn_stub = NULL;
736 ret->need_fn_stub = FALSE;
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
739 ret->forced_local = FALSE;
740 }
741
742 return (struct bfd_hash_entry *) ret;
743 }
744
745 bfd_boolean
746 _bfd_mips_elf_new_section_hook (abfd, sec)
747 bfd *abfd;
748 asection *sec;
749 {
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
752
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
754 if (sdata == NULL)
755 return FALSE;
756 sec->used_by_bfd = (PTR) sdata;
757
758 return _bfd_elf_new_section_hook (abfd, sec);
759 }
760 \f
761 /* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
763
764 bfd_boolean
765 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
766 bfd *abfd;
767 asection *section;
768 struct ecoff_debug_info *debug;
769 {
770 HDRR *symhdr;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
773
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
776
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
779 goto error_return;
780
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
783 goto error_return;
784
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
787
788 /* The symbolic header contains absolute file offsets and sizes to
789 read. */
790 #define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
792 debug->ptr = NULL; \
793 else \
794 { \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
798 goto error_return; \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
801 goto error_return; \
802 }
803
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
810 union aux_ext *);
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
816 #undef READ
817
818 debug->fdr = NULL;
819 debug->adjust = NULL;
820
821 return TRUE;
822
823 error_return:
824 if (ext_hdr != NULL)
825 free (ext_hdr);
826 if (debug->line != NULL)
827 free (debug->line);
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
839 free (debug->ss);
840 if (debug->ssext != NULL)
841 free (debug->ssext);
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
848 return FALSE;
849 }
850 \f
851 /* Swap RPDR (runtime procedure table entry) for output. */
852
853 static void
854 ecoff_swap_rpdr_out (abfd, in, ex)
855 bfd *abfd;
856 const RPDR *in;
857 struct rpdr_ext *ex;
858 {
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
865
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
868
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
870 #if 0 /* FIXME */
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
872 #endif
873 }
874
875 /* Create a runtime procedure table from the .mdebug section. */
876
877 static bfd_boolean
878 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
879 PTR handle;
880 bfd *abfd;
881 struct bfd_link_info *info;
882 asection *s;
883 struct ecoff_debug_info *debug;
884 {
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
887 RPDR *rpdr, *rp;
888 struct rpdr_ext *erp;
889 PTR rtproc;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
892 char *ss, **sv;
893 char *str;
894 bfd_size_type size;
895 bfd_size_type count;
896 unsigned long sindex;
897 unsigned long i;
898 PDR pdr;
899 SYMR sym;
900 const char *no_name_func = _("static procedure (no name)");
901
902 epdr = NULL;
903 rpdr = NULL;
904 esym = NULL;
905 ss = NULL;
906 sv = NULL;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909
910 sindex = strlen (no_name_func) + 1;
911 count = hdr->ipdMax;
912 if (count > 0)
913 {
914 size = swap->external_pdr_size;
915
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
917 if (epdr == NULL)
918 goto error_return;
919
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
921 goto error_return;
922
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
925 if (rpdr == NULL)
926 goto error_return;
927
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
930 if (sv == NULL)
931 goto error_return;
932
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
936 if (esym == NULL)
937 goto error_return;
938
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
940 goto error_return;
941
942 count = hdr->issMax;
943 ss = (char *) bfd_malloc (count);
944 if (ss == NULL)
945 goto error_return;
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
947 goto error_return;
948
949 count = hdr->ipdMax;
950 for (i = 0; i < (unsigned long) count; i++, rp++)
951 {
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
954 rp->adr = sym.value;
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
962 rp->irpss = sindex;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
965 }
966 }
967
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
971 if (rtproc == NULL)
972 {
973 mips_elf_hash_table (info)->procedure_count = 0;
974 goto error_return;
975 }
976
977 mips_elf_hash_table (info)->procedure_count = count + 2;
978
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
981 erp++;
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
986 {
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
988 strcpy (str, sv[i]);
989 str += strlen (sv[i]) + 1;
990 }
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
992
993 /* Set the size and contents of .rtproc section. */
994 s->_raw_size = size;
995 s->contents = (bfd_byte *) rtproc;
996
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1000
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011
1012 return TRUE;
1013
1014 error_return:
1015 if (epdr != NULL)
1016 free (epdr);
1017 if (rpdr != NULL)
1018 free (rpdr);
1019 if (esym != NULL)
1020 free (esym);
1021 if (ss != NULL)
1022 free (ss);
1023 if (sv != NULL)
1024 free (sv);
1025 return FALSE;
1026 }
1027
1028 /* Check the mips16 stubs for a particular symbol, and see if we can
1029 discard them. */
1030
1031 static bfd_boolean
1032 mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1035 {
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1038
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1041 {
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1050 }
1051
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1054 {
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1063 }
1064
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1067 {
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1076 }
1077
1078 return TRUE;
1079 }
1080 \f
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1083 relocatable, data, gp)
1084 bfd *abfd;
1085 asymbol *symbol;
1086 arelent *reloc_entry;
1087 asection *input_section;
1088 bfd_boolean relocatable;
1089 PTR data;
1090 bfd_vma gp;
1091 {
1092 bfd_vma relocation;
1093 unsigned long insn = 0;
1094 bfd_signed_vma val;
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1103
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1106
1107 /* Set val to the offset into the section or symbol. */
1108 val = reloc_entry->addend;
1109
1110 if (reloc_entry->howto->partial_inplace)
1111 {
1112 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1113 val += insn & 0xffff;
1114 }
1115
1116 _bfd_mips_elf_sign_extend(val, 16);
1117
1118 /* Adjust val for the final section location and GP value. If we
1119 are producing relocatable output, we don't want to do this for
1120 an external symbol. */
1121 if (! relocatable
1122 || (symbol->flags & BSF_SECTION_SYM) != 0)
1123 val += relocation - gp;
1124
1125 if (reloc_entry->howto->partial_inplace)
1126 {
1127 insn = (insn & ~0xffff) | (val & 0xffff);
1128 bfd_put_32 (abfd, (bfd_vma) insn,
1129 (bfd_byte *) data + reloc_entry->address);
1130 }
1131 else
1132 reloc_entry->addend = val;
1133
1134 if (relocatable)
1135 reloc_entry->address += input_section->output_offset;
1136 else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1592 }
1593
1594 static int
1595 mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598 {
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606 }
1607
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613 static hashval_t
1614 mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616 {
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626 }
1627
1628 static int
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632 {
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1641 }
1642 \f
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1644
1645 static asection *
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649 {
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1667 return NULL;
1668 }
1669 return sreloc;
1670 }
1671
1672 /* Returns the GOT section for ABFD. */
1673
1674 static asection *
1675 mips_elf_got_section (abfd, maybe_excluded)
1676 bfd *abfd;
1677 bfd_boolean maybe_excluded;
1678 {
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
1684 }
1685
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694 {
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
1707 return g;
1708 }
1709
1710 /* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1712 static long
1713 mips_elf_get_global_gotsym_index (abfd)
1714 bfd *abfd;
1715 {
1716 asection *sgot;
1717 struct mips_got_info *g;
1718
1719 if (abfd == NULL)
1720 return 0;
1721
1722 sgot = mips_elf_got_section (abfd, TRUE);
1723 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1724 return 0;
1725
1726 g = mips_elf_section_data (sgot)->u.got_info;
1727 if (g == NULL || g->global_gotsym == NULL)
1728 return 0;
1729
1730 return g->global_gotsym->dynindx;
1731 }
1732
1733 /* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1736
1737 static bfd_vma
1738 mips_elf_local_got_index (abfd, ibfd, info, value)
1739 bfd *abfd, *ibfd;
1740 struct bfd_link_info *info;
1741 bfd_vma value;
1742 {
1743 asection *sgot;
1744 struct mips_got_info *g;
1745 struct mips_got_entry *entry;
1746
1747 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1748
1749 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1750 if (entry)
1751 return entry->gotidx;
1752 else
1753 return MINUS_ONE;
1754 }
1755
1756 /* Returns the GOT index for the global symbol indicated by H. */
1757
1758 static bfd_vma
1759 mips_elf_global_got_index (abfd, ibfd, h)
1760 bfd *abfd, *ibfd;
1761 struct elf_link_hash_entry *h;
1762 {
1763 bfd_vma index;
1764 asection *sgot;
1765 struct mips_got_info *g, *gg;
1766 long global_got_dynindx = 0;
1767
1768 gg = g = mips_elf_got_info (abfd, &sgot);
1769 if (g->bfd2got && ibfd)
1770 {
1771 struct mips_got_entry e, *p;
1772
1773 BFD_ASSERT (h->dynindx >= 0);
1774
1775 g = mips_elf_got_for_ibfd (g, ibfd);
1776 if (g->next != gg)
1777 {
1778 e.abfd = ibfd;
1779 e.symndx = -1;
1780 e.d.h = (struct mips_elf_link_hash_entry *)h;
1781
1782 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1783
1784 BFD_ASSERT (p->gotidx > 0);
1785 return p->gotidx;
1786 }
1787 }
1788
1789 if (gg->global_gotsym != NULL)
1790 global_got_dynindx = gg->global_gotsym->dynindx;
1791
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1795 offset. */
1796 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1797 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1798 * MIPS_ELF_GOT_SIZE (abfd));
1799 BFD_ASSERT (index < sgot->_raw_size);
1800
1801 return index;
1802 }
1803
1804 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1809
1810 static bfd_vma
1811 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1812 bfd *abfd, *ibfd;
1813 struct bfd_link_info *info;
1814 bfd_vma value;
1815 bfd_vma *offsetp;
1816 {
1817 asection *sgot;
1818 struct mips_got_info *g;
1819 bfd_vma index;
1820 struct mips_got_entry *entry;
1821
1822 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1823
1824 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1825 (value + 0x8000)
1826 & (~(bfd_vma)0xffff));
1827
1828 if (!entry)
1829 return MINUS_ONE;
1830
1831 index = entry->gotidx;
1832
1833 if (offsetp)
1834 *offsetp = value - entry->d.address;
1835
1836 return index;
1837 }
1838
1839 /* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1841
1842 static bfd_vma
1843 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1844 bfd *abfd, *ibfd;
1845 struct bfd_link_info *info;
1846 bfd_vma value;
1847 bfd_boolean external;
1848 {
1849 asection *sgot;
1850 struct mips_got_info *g;
1851 struct mips_got_entry *entry;
1852
1853 if (! external)
1854 {
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1858 HI16/LO16 pair. */
1859 value = mips_elf_high (value) << 16;
1860 }
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
1869 }
1870
1871 /* Returns the offset for the entry at the INDEXth position
1872 in the GOT. */
1873
1874 static bfd_vma
1875 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1876 bfd *dynobj;
1877 bfd *output_bfd;
1878 bfd *input_bfd;
1879 bfd_vma index;
1880 {
1881 asection *sgot;
1882 bfd_vma gp;
1883 struct mips_got_info *g;
1884
1885 g = mips_elf_got_info (dynobj, &sgot);
1886 gp = _bfd_get_gp_value (output_bfd)
1887 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1888
1889 return sgot->output_section->vma + sgot->output_offset + index - gp;
1890 }
1891
1892 /* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1894
1895 static struct mips_got_entry *
1896 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1897 bfd *abfd, *ibfd;
1898 struct mips_got_info *gg;
1899 asection *sgot;
1900 bfd_vma value;
1901 {
1902 struct mips_got_entry entry, **loc;
1903 struct mips_got_info *g;
1904
1905 entry.abfd = NULL;
1906 entry.symndx = -1;
1907 entry.d.address = value;
1908
1909 g = mips_elf_got_for_ibfd (gg, ibfd);
1910 if (g == NULL)
1911 {
1912 g = mips_elf_got_for_ibfd (gg, abfd);
1913 BFD_ASSERT (g != NULL);
1914 }
1915
1916 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1917 INSERT);
1918 if (*loc)
1919 return *loc;
1920
1921 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1922
1923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1924
1925 if (! *loc)
1926 return NULL;
1927
1928 memcpy (*loc, &entry, sizeof entry);
1929
1930 if (g->assigned_gotno >= g->local_gotno)
1931 {
1932 (*loc)->gotidx = -1;
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value);
1937 return NULL;
1938 }
1939
1940 MIPS_ELF_PUT_WORD (abfd, value,
1941 (sgot->contents + entry.gotidx));
1942
1943 return *loc;
1944 }
1945
1946 /* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1952
1953 static bfd_boolean
1954 mips_elf_sort_hash_table (info, max_local)
1955 struct bfd_link_info *info;
1956 unsigned long max_local;
1957 {
1958 struct mips_elf_hash_sort_data hsd;
1959 struct mips_got_info *g;
1960 bfd *dynobj;
1961
1962 dynobj = elf_hash_table (info)->dynobj;
1963
1964 g = mips_elf_got_info (dynobj, NULL);
1965
1966 hsd.low = NULL;
1967 hsd.max_unref_got_dynindx =
1968 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g->next ? g->assigned_gotno : 0);
1977 hsd.max_non_got_dynindx = max_local;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1979 elf_hash_table (info)),
1980 mips_elf_sort_hash_table_f,
1981 &hsd);
1982
1983 /* There should have been enough room in the symbol table to
1984 accommodate both the GOT and non-GOT symbols. */
1985 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1986 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1987 <= elf_hash_table (info)->dynsymcount);
1988
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
1991 g->global_gotsym = hsd.low;
1992
1993 return TRUE;
1994 }
1995
1996 /* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
1998 index. */
1999
2000 static bfd_boolean
2001 mips_elf_sort_hash_table_f (h, data)
2002 struct mips_elf_link_hash_entry *h;
2003 PTR data;
2004 {
2005 struct mips_elf_hash_sort_data *hsd
2006 = (struct mips_elf_hash_sort_data *) data;
2007
2008 if (h->root.root.type == bfd_link_hash_warning)
2009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2010
2011 /* Symbols without dynamic symbol table entries aren't interesting
2012 at all. */
2013 if (h->root.dynindx == -1)
2014 return TRUE;
2015
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2019 -1. */
2020 if (h->root.got.offset == 2)
2021 {
2022 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2023 hsd->low = (struct elf_link_hash_entry *) h;
2024 h->root.dynindx = hsd->max_unref_got_dynindx++;
2025 }
2026 else if (h->root.got.offset != 1)
2027 h->root.dynindx = hsd->max_non_got_dynindx++;
2028 else
2029 {
2030 h->root.dynindx = --hsd->min_got_dynindx;
2031 hsd->low = (struct elf_link_hash_entry *) h;
2032 }
2033
2034 return TRUE;
2035 }
2036
2037 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2039 posterity. */
2040
2041 static bfd_boolean
2042 mips_elf_record_global_got_symbol (h, abfd, info, g)
2043 struct elf_link_hash_entry *h;
2044 bfd *abfd;
2045 struct bfd_link_info *info;
2046 struct mips_got_info *g;
2047 {
2048 struct mips_got_entry entry, **loc;
2049
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2051 table. */
2052 if (h->dynindx == -1)
2053 {
2054 switch (ELF_ST_VISIBILITY (h->other))
2055 {
2056 case STV_INTERNAL:
2057 case STV_HIDDEN:
2058 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2059 break;
2060 }
2061 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2062 return FALSE;
2063 }
2064
2065 entry.abfd = abfd;
2066 entry.symndx = -1;
2067 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2068
2069 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2070 INSERT);
2071
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
2074 if (*loc)
2075 return TRUE;
2076
2077 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2078
2079 if (! *loc)
2080 return FALSE;
2081
2082 entry.gotidx = -1;
2083 memcpy (*loc, &entry, sizeof entry);
2084
2085 if (h->got.offset != MINUS_ONE)
2086 return TRUE;
2087
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2091 h->got.offset = 1;
2092
2093 return TRUE;
2094 }
2095
2096 /* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2098
2099 static bfd_boolean
2100 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2101 bfd *abfd;
2102 long symndx;
2103 bfd_vma addend;
2104 struct mips_got_info *g;
2105 {
2106 struct mips_got_entry entry, **loc;
2107
2108 entry.abfd = abfd;
2109 entry.symndx = symndx;
2110 entry.d.addend = addend;
2111 loc = (struct mips_got_entry **)
2112 htab_find_slot (g->got_entries, &entry, INSERT);
2113
2114 if (*loc)
2115 return TRUE;
2116
2117 entry.gotidx = g->local_gotno++;
2118
2119 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2120
2121 if (! *loc)
2122 return FALSE;
2123
2124 memcpy (*loc, &entry, sizeof entry);
2125
2126 return TRUE;
2127 }
2128 \f
2129 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2130
2131 static hashval_t
2132 mips_elf_bfd2got_entry_hash (entry_)
2133 const PTR entry_;
2134 {
2135 const struct mips_elf_bfd2got_hash *entry
2136 = (struct mips_elf_bfd2got_hash *)entry_;
2137
2138 return entry->bfd->id;
2139 }
2140
2141 /* Check whether two hash entries have the same bfd. */
2142
2143 static int
2144 mips_elf_bfd2got_entry_eq (entry1, entry2)
2145 const PTR entry1;
2146 const PTR entry2;
2147 {
2148 const struct mips_elf_bfd2got_hash *e1
2149 = (const struct mips_elf_bfd2got_hash *)entry1;
2150 const struct mips_elf_bfd2got_hash *e2
2151 = (const struct mips_elf_bfd2got_hash *)entry2;
2152
2153 return e1->bfd == e2->bfd;
2154 }
2155
2156 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2157 be the master GOT data. */
2158
2159 static struct mips_got_info *
2160 mips_elf_got_for_ibfd (g, ibfd)
2161 struct mips_got_info *g;
2162 bfd *ibfd;
2163 {
2164 struct mips_elf_bfd2got_hash e, *p;
2165
2166 if (! g->bfd2got)
2167 return g;
2168
2169 e.bfd = ibfd;
2170 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2171 return p ? p->g : NULL;
2172 }
2173
2174 /* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2176 bfd requires. */
2177
2178 static int
2179 mips_elf_make_got_per_bfd (entryp, p)
2180 void **entryp;
2181 void *p;
2182 {
2183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2185 htab_t bfd2got = arg->bfd2got;
2186 struct mips_got_info *g;
2187 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2188 void **bfdgotp;
2189
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2191 none exists. */
2192 bfdgot_entry.bfd = entry->abfd;
2193 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2194 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2195
2196 if (bfdgot != NULL)
2197 g = bfdgot->g;
2198 else
2199 {
2200 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2201 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2202
2203 if (bfdgot == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 *bfdgotp = bfdgot;
2210
2211 bfdgot->bfd = entry->abfd;
2212 bfdgot->g = g = (struct mips_got_info *)
2213 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2214 if (g == NULL)
2215 {
2216 arg->obfd = 0;
2217 return 0;
2218 }
2219
2220 g->global_gotsym = NULL;
2221 g->global_gotno = 0;
2222 g->local_gotno = 0;
2223 g->assigned_gotno = -1;
2224 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2225 mips_elf_multi_got_entry_eq,
2226 (htab_del) NULL);
2227 if (g->got_entries == NULL)
2228 {
2229 arg->obfd = 0;
2230 return 0;
2231 }
2232
2233 g->bfd2got = NULL;
2234 g->next = NULL;
2235 }
2236
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2239 if (*entryp != NULL)
2240 return 1;
2241
2242 *entryp = entry;
2243
2244 if (entry->symndx >= 0 || entry->d.h->forced_local)
2245 ++g->local_gotno;
2246 else
2247 ++g->global_gotno;
2248
2249 return 1;
2250 }
2251
2252 /* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2258
2259 static int
2260 mips_elf_merge_gots (bfd2got_, p)
2261 void **bfd2got_;
2262 void *p;
2263 {
2264 struct mips_elf_bfd2got_hash *bfd2got
2265 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2266 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2267 unsigned int lcount = bfd2got->g->local_gotno;
2268 unsigned int gcount = bfd2got->g->global_gotno;
2269 unsigned int maxcnt = arg->max_count;
2270
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg->primary && lcount + gcount <= maxcnt)
2274 {
2275 arg->primary = bfd2got->g;
2276 arg->primary_count = lcount + gcount;
2277 }
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg->primary
2282 && (arg->primary_count + lcount + gcount) <= maxcnt)
2283 {
2284 struct mips_got_info *g = bfd2got->g;
2285 int old_lcount = arg->primary->local_gotno;
2286 int old_gcount = arg->primary->global_gotno;
2287
2288 bfd2got->g = arg->primary;
2289
2290 htab_traverse (g->got_entries,
2291 mips_elf_make_got_per_bfd,
2292 arg);
2293 if (arg->obfd == NULL)
2294 return 0;
2295
2296 htab_delete (g->got_entries);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2299 table anyway. */
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2303
2304 arg->primary_count = arg->primary->local_gotno
2305 + arg->primary->global_gotno;
2306 }
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg->current
2309 && arg->current_count + lcount + gcount <= maxcnt)
2310 {
2311 struct mips_got_info *g = bfd2got->g;
2312 int old_lcount = arg->current->local_gotno;
2313 int old_gcount = arg->current->global_gotno;
2314
2315 bfd2got->g = arg->current;
2316
2317 htab_traverse (g->got_entries,
2318 mips_elf_make_got_per_bfd,
2319 arg);
2320 if (arg->obfd == NULL)
2321 return 0;
2322
2323 htab_delete (g->got_entries);
2324
2325 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2326 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2327
2328 arg->current_count = arg->current->local_gotno
2329 + arg->current->global_gotno;
2330 }
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2334 else
2335 {
2336 bfd2got->g->next = arg->current;
2337 arg->current = bfd2got->g;
2338
2339 arg->current_count = lcount + gcount;
2340 }
2341
2342 return 1;
2343 }
2344
2345 /* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2348
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2357 stub. */
2358 static int
2359 mips_elf_set_global_got_offset (entryp, p)
2360 void **entryp;
2361 void *p;
2362 {
2363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2364 struct mips_elf_set_global_got_offset_arg *arg
2365 = (struct mips_elf_set_global_got_offset_arg *)p;
2366 struct mips_got_info *g = arg->g;
2367
2368 if (entry->abfd != NULL && entry->symndx == -1
2369 && entry->d.h->root.dynindx != -1)
2370 {
2371 if (g)
2372 {
2373 BFD_ASSERT (g->global_gotsym == NULL);
2374
2375 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry->d.h->no_fn_stub = TRUE;
2380 if (arg->info->shared
2381 || (elf_hash_table (arg->info)->dynamic_sections_created
2382 && ((entry->d.h->root.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2384 && ((entry->d.h->root.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2386 ++arg->needed_relocs;
2387 }
2388 else
2389 entry->d.h->root.got.offset = arg->value;
2390 }
2391
2392 return 1;
2393 }
2394
2395 /* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2401 static int
2402 mips_elf_resolve_final_got_entry (entryp, p)
2403 void **entryp;
2404 void *p;
2405 {
2406 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2407 htab_t got_entries = *(htab_t *)p;
2408
2409 if (entry->abfd != NULL && entry->symndx == -1)
2410 {
2411 struct mips_elf_link_hash_entry *h = entry->d.h;
2412
2413 while (h->root.root.type == bfd_link_hash_indirect
2414 || h->root.root.type == bfd_link_hash_warning)
2415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2416
2417 if (entry->d.h == h)
2418 return 1;
2419
2420 entry->d.h = h;
2421
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries, entry))
2425 {
2426 htab_clear_slot (got_entries, entryp);
2427 entryp = htab_find_slot (got_entries, entry, INSERT);
2428 if (! *entryp)
2429 *entryp = entry;
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2432 process. */
2433 *(htab_t *)p = NULL;
2434 return 0;
2435 }
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2438 }
2439
2440 return 1;
2441 }
2442
2443 /* Turn indirect got entries in a got_entries table into their final
2444 locations. */
2445 static void
2446 mips_elf_resolve_final_got_entries (g)
2447 struct mips_got_info *g;
2448 {
2449 htab_t got_entries;
2450
2451 do
2452 {
2453 got_entries = g->got_entries;
2454
2455 htab_traverse (got_entries,
2456 mips_elf_resolve_final_got_entry,
2457 &got_entries);
2458 }
2459 while (got_entries == NULL);
2460 }
2461
2462 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2463 the primary GOT. */
2464 static bfd_vma
2465 mips_elf_adjust_gp (abfd, g, ibfd)
2466 bfd *abfd;
2467 struct mips_got_info *g;
2468 bfd *ibfd;
2469 {
2470 if (g->bfd2got == NULL)
2471 return 0;
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (! g)
2475 return 0;
2476
2477 BFD_ASSERT (g->next);
2478
2479 g = g->next;
2480
2481 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2482 }
2483
2484 /* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2486
2487 static bfd_boolean
2488 mips_elf_multi_got (abfd, info, g, got, pages)
2489 bfd *abfd;
2490 struct bfd_link_info *info;
2491 struct mips_got_info *g;
2492 asection *got;
2493 bfd_size_type pages;
2494 {
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2497 struct mips_got_info *gg;
2498 unsigned int assign;
2499
2500 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2501 mips_elf_bfd2got_entry_eq,
2502 (htab_del) NULL);
2503 if (g->bfd2got == NULL)
2504 return FALSE;
2505
2506 got_per_bfd_arg.bfd2got = g->bfd2got;
2507 got_per_bfd_arg.obfd = abfd;
2508 got_per_bfd_arg.info = info;
2509
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g);
2513 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2514 if (got_per_bfd_arg.obfd == NULL)
2515 return FALSE;
2516
2517 got_per_bfd_arg.current = NULL;
2518 got_per_bfd_arg.primary = NULL;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2523 / MIPS_ELF_GOT_SIZE (abfd))
2524 - MIPS_RESERVED_GOTNO - pages);
2525
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2530 if (got_per_bfd_arg.obfd == NULL)
2531 return FALSE;
2532
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg.primary == NULL)
2535 {
2536 g->next = (struct mips_got_info *)
2537 bfd_alloc (abfd, sizeof (struct mips_got_info));
2538 if (g->next == NULL)
2539 return FALSE;
2540
2541 g->next->global_gotsym = NULL;
2542 g->next->global_gotno = 0;
2543 g->next->local_gotno = 0;
2544 g->next->assigned_gotno = 0;
2545 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2546 mips_elf_multi_got_entry_eq,
2547 (htab_del) NULL);
2548 if (g->next->got_entries == NULL)
2549 return FALSE;
2550 g->next->bfd2got = NULL;
2551 }
2552 else
2553 g->next = got_per_bfd_arg.primary;
2554 g->next->next = got_per_bfd_arg.current;
2555
2556 /* GG is now the master GOT, and G is the primary GOT. */
2557 gg = g;
2558 g = g->next;
2559
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2564 list. */
2565 {
2566 struct mips_elf_bfd2got_hash *bfdgot;
2567 void **bfdgotp;
2568
2569 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2570 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2571
2572 if (bfdgot == NULL)
2573 return FALSE;
2574
2575 bfdgot->bfd = abfd;
2576 bfdgot->g = g;
2577 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2578
2579 BFD_ASSERT (*bfdgotp == NULL);
2580 *bfdgotp = bfdgot;
2581 }
2582
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2586 referenced.
2587
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
2594
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2599 preserved. */
2600 if (1)
2601 {
2602 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2603 g->global_gotno = gg->global_gotno;
2604 set_got_offset_arg.value = 2;
2605 }
2606 else
2607 {
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg->assigned_gotno = 0;
2615 set_got_offset_arg.value = -1;
2616 }
2617
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg.g = NULL;
2621 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2622 &set_got_offset_arg);
2623 set_got_offset_arg.value = 1;
2624 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2625 &set_got_offset_arg);
2626 if (! mips_elf_sort_hash_table (info, 1))
2627 return FALSE;
2628
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg->local_gotno = -g->global_gotno;
2643 gg->global_gotno = g->global_gotno;
2644 assign = 0;
2645 gg->next = gg;
2646
2647 do
2648 {
2649 struct mips_got_info *gn;
2650
2651 assign += MIPS_RESERVED_GOTNO;
2652 g->assigned_gotno = assign;
2653 g->local_gotno += assign + pages;
2654 assign = g->local_gotno + g->global_gotno;
2655
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2658 gn = g->next;
2659 g->next = gg->next;
2660 gg->next = g;
2661 g = gn;
2662 }
2663 while (g);
2664
2665 got->_raw_size = (gg->next->local_gotno
2666 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2667
2668 return TRUE;
2669 }
2670
2671 \f
2672 /* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2674
2675 static const Elf_Internal_Rela *
2676 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2677 bfd *abfd ATTRIBUTE_UNUSED;
2678 unsigned int r_type;
2679 const Elf_Internal_Rela *relocation;
2680 const Elf_Internal_Rela *relend;
2681 {
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation < relend)
2689 {
2690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2691 return relocation;
2692
2693 ++relocation;
2694 }
2695
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value);
2698 return NULL;
2699 }
2700
2701 /* Return whether a relocation is against a local symbol. */
2702
2703 static bfd_boolean
2704 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2705 check_forced)
2706 bfd *input_bfd;
2707 const Elf_Internal_Rela *relocation;
2708 asection **local_sections;
2709 bfd_boolean check_forced;
2710 {
2711 unsigned long r_symndx;
2712 Elf_Internal_Shdr *symtab_hdr;
2713 struct mips_elf_link_hash_entry *h;
2714 size_t extsymoff;
2715
2716 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2719
2720 if (r_symndx < extsymoff)
2721 return TRUE;
2722 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2723 return TRUE;
2724
2725 if (check_forced)
2726 {
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h = (struct mips_elf_link_hash_entry *)
2730 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h->root.root.type == bfd_link_hash_indirect
2733 || h->root.root.type == bfd_link_hash_warning)
2734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2735 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2736 return TRUE;
2737 }
2738
2739 return FALSE;
2740 }
2741 \f
2742 /* Sign-extend VALUE, which has the indicated number of BITS. */
2743
2744 bfd_vma
2745 _bfd_mips_elf_sign_extend (value, bits)
2746 bfd_vma value;
2747 int bits;
2748 {
2749 if (value & ((bfd_vma) 1 << (bits - 1)))
2750 /* VALUE is negative. */
2751 value |= ((bfd_vma) - 1) << bits;
2752
2753 return value;
2754 }
2755
2756 /* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2758 BITS. */
2759
2760 static bfd_boolean
2761 mips_elf_overflow_p (value, bits)
2762 bfd_vma value;
2763 int bits;
2764 {
2765 bfd_signed_vma svalue = (bfd_signed_vma) value;
2766
2767 if (svalue > (1 << (bits - 1)) - 1)
2768 /* The value is too big. */
2769 return TRUE;
2770 else if (svalue < -(1 << (bits - 1)))
2771 /* The value is too small. */
2772 return TRUE;
2773
2774 /* All is well. */
2775 return FALSE;
2776 }
2777
2778 /* Calculate the %high function. */
2779
2780 static bfd_vma
2781 mips_elf_high (value)
2782 bfd_vma value;
2783 {
2784 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2785 }
2786
2787 /* Calculate the %higher function. */
2788
2789 static bfd_vma
2790 mips_elf_higher (value)
2791 bfd_vma value ATTRIBUTE_UNUSED;
2792 {
2793 #ifdef BFD64
2794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2795 #else
2796 abort ();
2797 return (bfd_vma) -1;
2798 #endif
2799 }
2800
2801 /* Calculate the %highest function. */
2802
2803 static bfd_vma
2804 mips_elf_highest (value)
2805 bfd_vma value ATTRIBUTE_UNUSED;
2806 {
2807 #ifdef BFD64
2808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2809 #else
2810 abort ();
2811 return (bfd_vma) -1;
2812 #endif
2813 }
2814 \f
2815 /* Create the .compact_rel section. */
2816
2817 static bfd_boolean
2818 mips_elf_create_compact_rel_section (abfd, info)
2819 bfd *abfd;
2820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2821 {
2822 flagword flags;
2823 register asection *s;
2824
2825 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2826 {
2827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2828 | SEC_READONLY);
2829
2830 s = bfd_make_section (abfd, ".compact_rel");
2831 if (s == NULL
2832 || ! bfd_set_section_flags (abfd, s, flags)
2833 || ! bfd_set_section_alignment (abfd, s,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2835 return FALSE;
2836
2837 s->_raw_size = sizeof (Elf32_External_compact_rel);
2838 }
2839
2840 return TRUE;
2841 }
2842
2843 /* Create the .got section to hold the global offset table. */
2844
2845 static bfd_boolean
2846 mips_elf_create_got_section (abfd, info, maybe_exclude)
2847 bfd *abfd;
2848 struct bfd_link_info *info;
2849 bfd_boolean maybe_exclude;
2850 {
2851 flagword flags;
2852 register asection *s;
2853 struct elf_link_hash_entry *h;
2854 struct bfd_link_hash_entry *bh;
2855 struct mips_got_info *g;
2856 bfd_size_type amt;
2857
2858 /* This function may be called more than once. */
2859 s = mips_elf_got_section (abfd, TRUE);
2860 if (s)
2861 {
2862 if (! maybe_exclude)
2863 s->flags &= ~SEC_EXCLUDE;
2864 return TRUE;
2865 }
2866
2867 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED);
2869
2870 if (maybe_exclude)
2871 flags |= SEC_EXCLUDE;
2872
2873 /* We have to use an alignment of 2**4 here because this is hardcoded
2874 in the function stub generation and in the linker script. */
2875 s = bfd_make_section (abfd, ".got");
2876 if (s == NULL
2877 || ! bfd_set_section_flags (abfd, s, flags)
2878 || ! bfd_set_section_alignment (abfd, s, 4))
2879 return FALSE;
2880
2881 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2882 linker script because we don't want to define the symbol if we
2883 are not creating a global offset table. */
2884 bh = NULL;
2885 if (! (_bfd_generic_link_add_one_symbol
2886 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2887 (bfd_vma) 0, (const char *) NULL, FALSE,
2888 get_elf_backend_data (abfd)->collect, &bh)))
2889 return FALSE;
2890
2891 h = (struct elf_link_hash_entry *) bh;
2892 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2893 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2894 h->type = STT_OBJECT;
2895
2896 if (info->shared
2897 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2898 return FALSE;
2899
2900 amt = sizeof (struct mips_got_info);
2901 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2902 if (g == NULL)
2903 return FALSE;
2904 g->global_gotsym = NULL;
2905 g->local_gotno = MIPS_RESERVED_GOTNO;
2906 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2907 g->bfd2got = NULL;
2908 g->next = NULL;
2909 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2910 mips_elf_got_entry_eq,
2911 (htab_del) NULL);
2912 if (g->got_entries == NULL)
2913 return FALSE;
2914 mips_elf_section_data (s)->u.got_info = g;
2915 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2916 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2917
2918 return TRUE;
2919 }
2920
2921 /* Returns the .msym section for ABFD, creating it if it does not
2922 already exist. Returns NULL to indicate error. */
2923
2924 static asection *
2925 mips_elf_create_msym_section (abfd)
2926 bfd *abfd;
2927 {
2928 asection *s;
2929
2930 s = bfd_get_section_by_name (abfd, ".msym");
2931 if (!s)
2932 {
2933 s = bfd_make_section (abfd, ".msym");
2934 if (!s
2935 || !bfd_set_section_flags (abfd, s,
2936 SEC_ALLOC
2937 | SEC_LOAD
2938 | SEC_HAS_CONTENTS
2939 | SEC_LINKER_CREATED
2940 | SEC_READONLY)
2941 || !bfd_set_section_alignment (abfd, s,
2942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2943 return NULL;
2944 }
2945
2946 return s;
2947 }
2948 \f
2949 /* Calculate the value produced by the RELOCATION (which comes from
2950 the INPUT_BFD). The ADDEND is the addend to use for this
2951 RELOCATION; RELOCATION->R_ADDEND is ignored.
2952
2953 The result of the relocation calculation is stored in VALUEP.
2954 REQUIRE_JALXP indicates whether or not the opcode used with this
2955 relocation must be JALX.
2956
2957 This function returns bfd_reloc_continue if the caller need take no
2958 further action regarding this relocation, bfd_reloc_notsupported if
2959 something goes dramatically wrong, bfd_reloc_overflow if an
2960 overflow occurs, and bfd_reloc_ok to indicate success. */
2961
2962 static bfd_reloc_status_type
2963 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2964 relocation, addend, howto, local_syms,
2965 local_sections, valuep, namep,
2966 require_jalxp, save_addend)
2967 bfd *abfd;
2968 bfd *input_bfd;
2969 asection *input_section;
2970 struct bfd_link_info *info;
2971 const Elf_Internal_Rela *relocation;
2972 bfd_vma addend;
2973 reloc_howto_type *howto;
2974 Elf_Internal_Sym *local_syms;
2975 asection **local_sections;
2976 bfd_vma *valuep;
2977 const char **namep;
2978 bfd_boolean *require_jalxp;
2979 bfd_boolean save_addend;
2980 {
2981 /* The eventual value we will return. */
2982 bfd_vma value;
2983 /* The address of the symbol against which the relocation is
2984 occurring. */
2985 bfd_vma symbol = 0;
2986 /* The final GP value to be used for the relocatable, executable, or
2987 shared object file being produced. */
2988 bfd_vma gp = MINUS_ONE;
2989 /* The place (section offset or address) of the storage unit being
2990 relocated. */
2991 bfd_vma p;
2992 /* The value of GP used to create the relocatable object. */
2993 bfd_vma gp0 = MINUS_ONE;
2994 /* The offset into the global offset table at which the address of
2995 the relocation entry symbol, adjusted by the addend, resides
2996 during execution. */
2997 bfd_vma g = MINUS_ONE;
2998 /* The section in which the symbol referenced by the relocation is
2999 located. */
3000 asection *sec = NULL;
3001 struct mips_elf_link_hash_entry *h = NULL;
3002 /* TRUE if the symbol referred to by this relocation is a local
3003 symbol. */
3004 bfd_boolean local_p, was_local_p;
3005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3006 bfd_boolean gp_disp_p = FALSE;
3007 Elf_Internal_Shdr *symtab_hdr;
3008 size_t extsymoff;
3009 unsigned long r_symndx;
3010 int r_type;
3011 /* TRUE if overflow occurred during the calculation of the
3012 relocation value. */
3013 bfd_boolean overflowed_p;
3014 /* TRUE if this relocation refers to a MIPS16 function. */
3015 bfd_boolean target_is_16_bit_code_p = FALSE;
3016
3017 /* Parse the relocation. */
3018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3019 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3020 p = (input_section->output_section->vma
3021 + input_section->output_offset
3022 + relocation->r_offset);
3023
3024 /* Assume that there will be no overflow. */
3025 overflowed_p = FALSE;
3026
3027 /* Figure out whether or not the symbol is local, and get the offset
3028 used in the array of hash table entries. */
3029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3030 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3031 local_sections, FALSE);
3032 was_local_p = local_p;
3033 if (! elf_bad_symtab (input_bfd))
3034 extsymoff = symtab_hdr->sh_info;
3035 else
3036 {
3037 /* The symbol table does not follow the rule that local symbols
3038 must come before globals. */
3039 extsymoff = 0;
3040 }
3041
3042 /* Figure out the value of the symbol. */
3043 if (local_p)
3044 {
3045 Elf_Internal_Sym *sym;
3046
3047 sym = local_syms + r_symndx;
3048 sec = local_sections[r_symndx];
3049
3050 symbol = sec->output_section->vma + sec->output_offset;
3051 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3052 || (sec->flags & SEC_MERGE))
3053 symbol += sym->st_value;
3054 if ((sec->flags & SEC_MERGE)
3055 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3056 {
3057 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3058 addend -= symbol;
3059 addend += sec->output_section->vma + sec->output_offset;
3060 }
3061
3062 /* MIPS16 text labels should be treated as odd. */
3063 if (sym->st_other == STO_MIPS16)
3064 ++symbol;
3065
3066 /* Record the name of this symbol, for our caller. */
3067 *namep = bfd_elf_string_from_elf_section (input_bfd,
3068 symtab_hdr->sh_link,
3069 sym->st_name);
3070 if (*namep == '\0')
3071 *namep = bfd_section_name (input_bfd, sec);
3072
3073 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3074 }
3075 else
3076 {
3077 /* For global symbols we look up the symbol in the hash-table. */
3078 h = ((struct mips_elf_link_hash_entry *)
3079 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3080 /* Find the real hash-table entry for this symbol. */
3081 while (h->root.root.type == bfd_link_hash_indirect
3082 || h->root.root.type == bfd_link_hash_warning)
3083 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3084
3085 /* Record the name of this symbol, for our caller. */
3086 *namep = h->root.root.root.string;
3087
3088 /* See if this is the special _gp_disp symbol. Note that such a
3089 symbol must always be a global symbol. */
3090 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3091 && ! NEWABI_P (input_bfd))
3092 {
3093 /* Relocations against _gp_disp are permitted only with
3094 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3095 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3096 return bfd_reloc_notsupported;
3097
3098 gp_disp_p = TRUE;
3099 }
3100 /* If this symbol is defined, calculate its address. Note that
3101 _gp_disp is a magic symbol, always implicitly defined by the
3102 linker, so it's inappropriate to check to see whether or not
3103 its defined. */
3104 else if ((h->root.root.type == bfd_link_hash_defined
3105 || h->root.root.type == bfd_link_hash_defweak)
3106 && h->root.root.u.def.section)
3107 {
3108 sec = h->root.root.u.def.section;
3109 if (sec->output_section)
3110 symbol = (h->root.root.u.def.value
3111 + sec->output_section->vma
3112 + sec->output_offset);
3113 else
3114 symbol = h->root.root.u.def.value;
3115 }
3116 else if (h->root.root.type == bfd_link_hash_undefweak)
3117 /* We allow relocations against undefined weak symbols, giving
3118 it the value zero, so that you can undefined weak functions
3119 and check to see if they exist by looking at their
3120 addresses. */
3121 symbol = 0;
3122 else if (info->shared
3123 && !info->no_undefined
3124 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3125 symbol = 0;
3126 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3127 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3128 {
3129 /* If this is a dynamic link, we should have created a
3130 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3131 in in _bfd_mips_elf_create_dynamic_sections.
3132 Otherwise, we should define the symbol with a value of 0.
3133 FIXME: It should probably get into the symbol table
3134 somehow as well. */
3135 BFD_ASSERT (! info->shared);
3136 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3137 symbol = 0;
3138 }
3139 else
3140 {
3141 if (! ((*info->callbacks->undefined_symbol)
3142 (info, h->root.root.root.string, input_bfd,
3143 input_section, relocation->r_offset,
3144 (!info->shared || info->no_undefined
3145 || ELF_ST_VISIBILITY (h->root.other)))))
3146 return bfd_reloc_undefined;
3147 symbol = 0;
3148 }
3149
3150 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3151 }
3152
3153 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3154 need to redirect the call to the stub, unless we're already *in*
3155 a stub. */
3156 if (r_type != R_MIPS16_26 && !info->relocatable
3157 && ((h != NULL && h->fn_stub != NULL)
3158 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3159 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3160 && !mips_elf_stub_section_p (input_bfd, input_section))
3161 {
3162 /* This is a 32- or 64-bit call to a 16-bit function. We should
3163 have already noticed that we were going to need the
3164 stub. */
3165 if (local_p)
3166 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3167 else
3168 {
3169 BFD_ASSERT (h->need_fn_stub);
3170 sec = h->fn_stub;
3171 }
3172
3173 symbol = sec->output_section->vma + sec->output_offset;
3174 }
3175 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3176 need to redirect the call to the stub. */
3177 else if (r_type == R_MIPS16_26 && !info->relocatable
3178 && h != NULL
3179 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3180 && !target_is_16_bit_code_p)
3181 {
3182 /* If both call_stub and call_fp_stub are defined, we can figure
3183 out which one to use by seeing which one appears in the input
3184 file. */
3185 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3186 {
3187 asection *o;
3188
3189 sec = NULL;
3190 for (o = input_bfd->sections; o != NULL; o = o->next)
3191 {
3192 if (strncmp (bfd_get_section_name (input_bfd, o),
3193 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3194 {
3195 sec = h->call_fp_stub;
3196 break;
3197 }
3198 }
3199 if (sec == NULL)
3200 sec = h->call_stub;
3201 }
3202 else if (h->call_stub != NULL)
3203 sec = h->call_stub;
3204 else
3205 sec = h->call_fp_stub;
3206
3207 BFD_ASSERT (sec->_raw_size > 0);
3208 symbol = sec->output_section->vma + sec->output_offset;
3209 }
3210
3211 /* Calls from 16-bit code to 32-bit code and vice versa require the
3212 special jalx instruction. */
3213 *require_jalxp = (!info->relocatable
3214 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3215 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3216
3217 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3218 local_sections, TRUE);
3219
3220 /* If we haven't already determined the GOT offset, or the GP value,
3221 and we're going to need it, get it now. */
3222 switch (r_type)
3223 {
3224 case R_MIPS_GOT_PAGE:
3225 case R_MIPS_GOT_OFST:
3226 /* If this symbol got a global GOT entry, we have to decay
3227 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
3228 local_p = local_p || ! h
3229 || (h->root.dynindx
3230 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3231 ->dynobj));
3232 if (local_p || r_type == R_MIPS_GOT_OFST)
3233 break;
3234 /* Fall through. */
3235
3236 case R_MIPS_CALL16:
3237 case R_MIPS_GOT16:
3238 case R_MIPS_GOT_DISP:
3239 case R_MIPS_GOT_HI16:
3240 case R_MIPS_CALL_HI16:
3241 case R_MIPS_GOT_LO16:
3242 case R_MIPS_CALL_LO16:
3243 /* Find the index into the GOT where this value is located. */
3244 if (!local_p)
3245 {
3246 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3247 GOT_PAGE relocation that decays to GOT_DISP because the
3248 symbol turns out to be global. The addend is then added
3249 as GOT_OFST. */
3250 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3251 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3252 input_bfd,
3253 (struct elf_link_hash_entry *) h);
3254 if (! elf_hash_table(info)->dynamic_sections_created
3255 || (info->shared
3256 && (info->symbolic || h->root.dynindx == -1)
3257 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3258 {
3259 /* This is a static link or a -Bsymbolic link. The
3260 symbol is defined locally, or was forced to be local.
3261 We must initialize this entry in the GOT. */
3262 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3263 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3264 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3265 }
3266 }
3267 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3268 /* There's no need to create a local GOT entry here; the
3269 calculation for a local GOT16 entry does not involve G. */
3270 break;
3271 else
3272 {
3273 g = mips_elf_local_got_index (abfd, input_bfd,
3274 info, symbol + addend);
3275 if (g == MINUS_ONE)
3276 return bfd_reloc_outofrange;
3277 }
3278
3279 /* Convert GOT indices to actual offsets. */
3280 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3281 abfd, input_bfd, g);
3282 break;
3283
3284 case R_MIPS_HI16:
3285 case R_MIPS_LO16:
3286 case R_MIPS16_GPREL:
3287 case R_MIPS_GPREL16:
3288 case R_MIPS_GPREL32:
3289 case R_MIPS_LITERAL:
3290 gp0 = _bfd_get_gp_value (input_bfd);
3291 gp = _bfd_get_gp_value (abfd);
3292 if (elf_hash_table (info)->dynobj)
3293 gp += mips_elf_adjust_gp (abfd,
3294 mips_elf_got_info
3295 (elf_hash_table (info)->dynobj, NULL),
3296 input_bfd);
3297 break;
3298
3299 default:
3300 break;
3301 }
3302
3303 /* Figure out what kind of relocation is being performed. */
3304 switch (r_type)
3305 {
3306 case R_MIPS_NONE:
3307 return bfd_reloc_continue;
3308
3309 case R_MIPS_16:
3310 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3311 overflowed_p = mips_elf_overflow_p (value, 16);
3312 break;
3313
3314 case R_MIPS_32:
3315 case R_MIPS_REL32:
3316 case R_MIPS_64:
3317 if ((info->shared
3318 || (elf_hash_table (info)->dynamic_sections_created
3319 && h != NULL
3320 && ((h->root.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3322 && ((h->root.elf_link_hash_flags
3323 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3324 && r_symndx != 0
3325 && (input_section->flags & SEC_ALLOC) != 0)
3326 {
3327 /* If we're creating a shared library, or this relocation is
3328 against a symbol in a shared library, then we can't know
3329 where the symbol will end up. So, we create a relocation
3330 record in the output, and leave the job up to the dynamic
3331 linker. */
3332 value = addend;
3333 if (!mips_elf_create_dynamic_relocation (abfd,
3334 info,
3335 relocation,
3336 h,
3337 sec,
3338 symbol,
3339 &value,
3340 input_section))
3341 return bfd_reloc_undefined;
3342 }
3343 else
3344 {
3345 if (r_type != R_MIPS_REL32)
3346 value = symbol + addend;
3347 else
3348 value = addend;
3349 }
3350 value &= howto->dst_mask;
3351 break;
3352
3353 case R_MIPS_PC32:
3354 case R_MIPS_PC64:
3355 case R_MIPS_GNU_REL_LO16:
3356 value = symbol + addend - p;
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_GNU_REL16_S2:
3361 value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
3362 overflowed_p = mips_elf_overflow_p (value, 18);
3363 value = (value >> 2) & howto->dst_mask;
3364 break;
3365
3366 case R_MIPS_GNU_REL_HI16:
3367 /* Instead of subtracting 'p' here, we should be subtracting the
3368 equivalent value for the LO part of the reloc, since the value
3369 here is relative to that address. Because that's not easy to do,
3370 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3371 the comment there for more information. */
3372 value = mips_elf_high (addend + symbol - p);
3373 value &= howto->dst_mask;
3374 break;
3375
3376 case R_MIPS16_26:
3377 /* The calculation for R_MIPS16_26 is just the same as for an
3378 R_MIPS_26. It's only the storage of the relocated field into
3379 the output file that's different. That's handled in
3380 mips_elf_perform_relocation. So, we just fall through to the
3381 R_MIPS_26 case here. */
3382 case R_MIPS_26:
3383 if (local_p)
3384 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3385 else
3386 value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3387 value &= howto->dst_mask;
3388 break;
3389
3390 case R_MIPS_HI16:
3391 if (!gp_disp_p)
3392 {
3393 value = mips_elf_high (addend + symbol);
3394 value &= howto->dst_mask;
3395 }
3396 else
3397 {
3398 value = mips_elf_high (addend + gp - p);
3399 overflowed_p = mips_elf_overflow_p (value, 16);
3400 }
3401 break;
3402
3403 case R_MIPS_LO16:
3404 if (!gp_disp_p)
3405 value = (symbol + addend) & howto->dst_mask;
3406 else
3407 {
3408 value = addend + gp - p + 4;
3409 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3410 for overflow. But, on, say, IRIX5, relocations against
3411 _gp_disp are normally generated from the .cpload
3412 pseudo-op. It generates code that normally looks like
3413 this:
3414
3415 lui $gp,%hi(_gp_disp)
3416 addiu $gp,$gp,%lo(_gp_disp)
3417 addu $gp,$gp,$t9
3418
3419 Here $t9 holds the address of the function being called,
3420 as required by the MIPS ELF ABI. The R_MIPS_LO16
3421 relocation can easily overflow in this situation, but the
3422 R_MIPS_HI16 relocation will handle the overflow.
3423 Therefore, we consider this a bug in the MIPS ABI, and do
3424 not check for overflow here. */
3425 }
3426 break;
3427
3428 case R_MIPS_LITERAL:
3429 /* Because we don't merge literal sections, we can handle this
3430 just like R_MIPS_GPREL16. In the long run, we should merge
3431 shared literals, and then we will need to additional work
3432 here. */
3433
3434 /* Fall through. */
3435
3436 case R_MIPS16_GPREL:
3437 /* The R_MIPS16_GPREL performs the same calculation as
3438 R_MIPS_GPREL16, but stores the relocated bits in a different
3439 order. We don't need to do anything special here; the
3440 differences are handled in mips_elf_perform_relocation. */
3441 case R_MIPS_GPREL16:
3442 /* Only sign-extend the addend if it was extracted from the
3443 instruction. If the addend was separate, leave it alone,
3444 otherwise we may lose significant bits. */
3445 if (howto->partial_inplace)
3446 addend = _bfd_mips_elf_sign_extend (addend, 16);
3447 value = symbol + addend - gp;
3448 /* If the symbol was local, any earlier relocatable links will
3449 have adjusted its addend with the gp offset, so compensate
3450 for that now. Don't do it for symbols forced local in this
3451 link, though, since they won't have had the gp offset applied
3452 to them before. */
3453 if (was_local_p)
3454 value += gp0;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GOT16:
3459 case R_MIPS_CALL16:
3460 if (local_p)
3461 {
3462 bfd_boolean forced;
3463
3464 /* The special case is when the symbol is forced to be local. We
3465 need the full address in the GOT since no R_MIPS_LO16 relocation
3466 follows. */
3467 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3468 local_sections, FALSE);
3469 value = mips_elf_got16_entry (abfd, input_bfd, info,
3470 symbol + addend, forced);
3471 if (value == MINUS_ONE)
3472 return bfd_reloc_outofrange;
3473 value
3474 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3475 abfd, input_bfd, value);
3476 overflowed_p = mips_elf_overflow_p (value, 16);
3477 break;
3478 }
3479
3480 /* Fall through. */
3481
3482 case R_MIPS_GOT_DISP:
3483 got_disp:
3484 value = g;
3485 overflowed_p = mips_elf_overflow_p (value, 16);
3486 break;
3487
3488 case R_MIPS_GPREL32:
3489 value = (addend + symbol + gp0 - gp);
3490 if (!save_addend)
3491 value &= howto->dst_mask;
3492 break;
3493
3494 case R_MIPS_PC16:
3495 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3496 overflowed_p = mips_elf_overflow_p (value, 16);
3497 break;
3498
3499 case R_MIPS_GOT_HI16:
3500 case R_MIPS_CALL_HI16:
3501 /* We're allowed to handle these two relocations identically.
3502 The dynamic linker is allowed to handle the CALL relocations
3503 differently by creating a lazy evaluation stub. */
3504 value = g;
3505 value = mips_elf_high (value);
3506 value &= howto->dst_mask;
3507 break;
3508
3509 case R_MIPS_GOT_LO16:
3510 case R_MIPS_CALL_LO16:
3511 value = g & howto->dst_mask;
3512 break;
3513
3514 case R_MIPS_GOT_PAGE:
3515 /* GOT_PAGE relocations that reference non-local symbols decay
3516 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3517 0. */
3518 if (! local_p)
3519 goto got_disp;
3520 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3521 if (value == MINUS_ONE)
3522 return bfd_reloc_outofrange;
3523 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3524 abfd, input_bfd, value);
3525 overflowed_p = mips_elf_overflow_p (value, 16);
3526 break;
3527
3528 case R_MIPS_GOT_OFST:
3529 if (local_p)
3530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3531 else
3532 value = addend;
3533 overflowed_p = mips_elf_overflow_p (value, 16);
3534 break;
3535
3536 case R_MIPS_SUB:
3537 value = symbol - addend;
3538 value &= howto->dst_mask;
3539 break;
3540
3541 case R_MIPS_HIGHER:
3542 value = mips_elf_higher (addend + symbol);
3543 value &= howto->dst_mask;
3544 break;
3545
3546 case R_MIPS_HIGHEST:
3547 value = mips_elf_highest (addend + symbol);
3548 value &= howto->dst_mask;
3549 break;
3550
3551 case R_MIPS_SCN_DISP:
3552 value = symbol + addend - sec->output_offset;
3553 value &= howto->dst_mask;
3554 break;
3555
3556 case R_MIPS_PJUMP:
3557 case R_MIPS_JALR:
3558 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3559 hint; we could improve performance by honoring that hint. */
3560 return bfd_reloc_continue;
3561
3562 case R_MIPS_GNU_VTINHERIT:
3563 case R_MIPS_GNU_VTENTRY:
3564 /* We don't do anything with these at present. */
3565 return bfd_reloc_continue;
3566
3567 default:
3568 /* An unrecognized relocation type. */
3569 return bfd_reloc_notsupported;
3570 }
3571
3572 /* Store the VALUE for our caller. */
3573 *valuep = value;
3574 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3575 }
3576
3577 /* Obtain the field relocated by RELOCATION. */
3578
3579 static bfd_vma
3580 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3581 reloc_howto_type *howto;
3582 const Elf_Internal_Rela *relocation;
3583 bfd *input_bfd;
3584 bfd_byte *contents;
3585 {
3586 bfd_vma x;
3587 bfd_byte *location = contents + relocation->r_offset;
3588
3589 /* Obtain the bytes. */
3590 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3591
3592 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3593 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3594 && bfd_little_endian (input_bfd))
3595 /* The two 16-bit words will be reversed on a little-endian system.
3596 See mips_elf_perform_relocation for more details. */
3597 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3598
3599 return x;
3600 }
3601
3602 /* It has been determined that the result of the RELOCATION is the
3603 VALUE. Use HOWTO to place VALUE into the output file at the
3604 appropriate position. The SECTION is the section to which the
3605 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3606 for the relocation must be either JAL or JALX, and it is
3607 unconditionally converted to JALX.
3608
3609 Returns FALSE if anything goes wrong. */
3610
3611 static bfd_boolean
3612 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3613 input_section, contents, require_jalx)
3614 struct bfd_link_info *info;
3615 reloc_howto_type *howto;
3616 const Elf_Internal_Rela *relocation;
3617 bfd_vma value;
3618 bfd *input_bfd;
3619 asection *input_section;
3620 bfd_byte *contents;
3621 bfd_boolean require_jalx;
3622 {
3623 bfd_vma x;
3624 bfd_byte *location;
3625 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3626
3627 /* Figure out where the relocation is occurring. */
3628 location = contents + relocation->r_offset;
3629
3630 /* Obtain the current value. */
3631 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3632
3633 /* Clear the field we are setting. */
3634 x &= ~howto->dst_mask;
3635
3636 /* If this is the R_MIPS16_26 relocation, we must store the
3637 value in a funny way. */
3638 if (r_type == R_MIPS16_26)
3639 {
3640 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3641 Most mips16 instructions are 16 bits, but these instructions
3642 are 32 bits.
3643
3644 The format of these instructions is:
3645
3646 +--------------+--------------------------------+
3647 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3648 +--------------+--------------------------------+
3649 ! Immediate 15:0 !
3650 +-----------------------------------------------+
3651
3652 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3653 Note that the immediate value in the first word is swapped.
3654
3655 When producing a relocatable object file, R_MIPS16_26 is
3656 handled mostly like R_MIPS_26. In particular, the addend is
3657 stored as a straight 26-bit value in a 32-bit instruction.
3658 (gas makes life simpler for itself by never adjusting a
3659 R_MIPS16_26 reloc to be against a section, so the addend is
3660 always zero). However, the 32 bit instruction is stored as 2
3661 16-bit values, rather than a single 32-bit value. In a
3662 big-endian file, the result is the same; in a little-endian
3663 file, the two 16-bit halves of the 32 bit value are swapped.
3664 This is so that a disassembler can recognize the jal
3665 instruction.
3666
3667 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3668 instruction stored as two 16-bit values. The addend A is the
3669 contents of the targ26 field. The calculation is the same as
3670 R_MIPS_26. When storing the calculated value, reorder the
3671 immediate value as shown above, and don't forget to store the
3672 value as two 16-bit values.
3673
3674 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3675 defined as
3676
3677 big-endian:
3678 +--------+----------------------+
3679 | | |
3680 | | targ26-16 |
3681 |31 26|25 0|
3682 +--------+----------------------+
3683
3684 little-endian:
3685 +----------+------+-------------+
3686 | | | |
3687 | sub1 | | sub2 |
3688 |0 9|10 15|16 31|
3689 +----------+--------------------+
3690 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3691 ((sub1 << 16) | sub2)).
3692
3693 When producing a relocatable object file, the calculation is
3694 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 When producing a fully linked file, the calculation is
3696 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3697 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3698
3699 if (!info->relocatable)
3700 /* Shuffle the bits according to the formula above. */
3701 value = (((value & 0x1f0000) << 5)
3702 | ((value & 0x3e00000) >> 5)
3703 | (value & 0xffff));
3704 }
3705 else if (r_type == R_MIPS16_GPREL)
3706 {
3707 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3708 mode. A typical instruction will have a format like this:
3709
3710 +--------------+--------------------------------+
3711 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3712 +--------------+--------------------------------+
3713 ! Major ! rx ! ry ! Imm 4:0 !
3714 +--------------+--------------------------------+
3715
3716 EXTEND is the five bit value 11110. Major is the instruction
3717 opcode.
3718
3719 This is handled exactly like R_MIPS_GPREL16, except that the
3720 addend is retrieved and stored as shown in this diagram; that
3721 is, the Imm fields above replace the V-rel16 field.
3722
3723 All we need to do here is shuffle the bits appropriately. As
3724 above, the two 16-bit halves must be swapped on a
3725 little-endian system. */
3726 value = (((value & 0x7e0) << 16)
3727 | ((value & 0xf800) << 5)
3728 | (value & 0x1f));
3729 }
3730
3731 /* Set the field. */
3732 x |= (value & howto->dst_mask);
3733
3734 /* If required, turn JAL into JALX. */
3735 if (require_jalx)
3736 {
3737 bfd_boolean ok;
3738 bfd_vma opcode = x >> 26;
3739 bfd_vma jalx_opcode;
3740
3741 /* Check to see if the opcode is already JAL or JALX. */
3742 if (r_type == R_MIPS16_26)
3743 {
3744 ok = ((opcode == 0x6) || (opcode == 0x7));
3745 jalx_opcode = 0x7;
3746 }
3747 else
3748 {
3749 ok = ((opcode == 0x3) || (opcode == 0x1d));
3750 jalx_opcode = 0x1d;
3751 }
3752
3753 /* If the opcode is not JAL or JALX, there's a problem. */
3754 if (!ok)
3755 {
3756 (*_bfd_error_handler)
3757 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3758 bfd_archive_filename (input_bfd),
3759 input_section->name,
3760 (unsigned long) relocation->r_offset);
3761 bfd_set_error (bfd_error_bad_value);
3762 return FALSE;
3763 }
3764
3765 /* Make this the JALX opcode. */
3766 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3767 }
3768
3769 /* Swap the high- and low-order 16 bits on little-endian systems
3770 when doing a MIPS16 relocation. */
3771 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3772 && bfd_little_endian (input_bfd))
3773 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3774
3775 /* Put the value into the output. */
3776 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3777 return TRUE;
3778 }
3779
3780 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3781
3782 static bfd_boolean
3783 mips_elf_stub_section_p (abfd, section)
3784 bfd *abfd ATTRIBUTE_UNUSED;
3785 asection *section;
3786 {
3787 const char *name = bfd_get_section_name (abfd, section);
3788
3789 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3790 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3791 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3792 }
3793 \f
3794 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3795
3796 static void
3797 mips_elf_allocate_dynamic_relocations (abfd, n)
3798 bfd *abfd;
3799 unsigned int n;
3800 {
3801 asection *s;
3802
3803 s = mips_elf_rel_dyn_section (abfd, FALSE);
3804 BFD_ASSERT (s != NULL);
3805
3806 if (s->_raw_size == 0)
3807 {
3808 /* Make room for a null element. */
3809 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3810 ++s->reloc_count;
3811 }
3812 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3813 }
3814
3815 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3816 is the original relocation, which is now being transformed into a
3817 dynamic relocation. The ADDENDP is adjusted if necessary; the
3818 caller should store the result in place of the original addend. */
3819
3820 static bfd_boolean
3821 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3822 symbol, addendp, input_section)
3823 bfd *output_bfd;
3824 struct bfd_link_info *info;
3825 const Elf_Internal_Rela *rel;
3826 struct mips_elf_link_hash_entry *h;
3827 asection *sec;
3828 bfd_vma symbol;
3829 bfd_vma *addendp;
3830 asection *input_section;
3831 {
3832 Elf_Internal_Rela outrel[3];
3833 bfd_boolean skip;
3834 asection *sreloc;
3835 bfd *dynobj;
3836 int r_type;
3837
3838 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3839 dynobj = elf_hash_table (info)->dynobj;
3840 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3841 BFD_ASSERT (sreloc != NULL);
3842 BFD_ASSERT (sreloc->contents != NULL);
3843 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3844 < sreloc->_raw_size);
3845
3846 skip = FALSE;
3847 outrel[0].r_offset =
3848 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3849 outrel[1].r_offset =
3850 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3851 outrel[2].r_offset =
3852 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3853
3854 #if 0
3855 /* We begin by assuming that the offset for the dynamic relocation
3856 is the same as for the original relocation. We'll adjust this
3857 later to reflect the correct output offsets. */
3858 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3859 {
3860 outrel[1].r_offset = rel[1].r_offset;
3861 outrel[2].r_offset = rel[2].r_offset;
3862 }
3863 else
3864 {
3865 /* Except that in a stab section things are more complex.
3866 Because we compress stab information, the offset given in the
3867 relocation may not be the one we want; we must let the stabs
3868 machinery tell us the offset. */
3869 outrel[1].r_offset = outrel[0].r_offset;
3870 outrel[2].r_offset = outrel[0].r_offset;
3871 /* If we didn't need the relocation at all, this value will be
3872 -1. */
3873 if (outrel[0].r_offset == (bfd_vma) -1)
3874 skip = TRUE;
3875 }
3876 #endif
3877
3878 if (outrel[0].r_offset == (bfd_vma) -1)
3879 /* The relocation field has been deleted. */
3880 skip = TRUE;
3881 else if (outrel[0].r_offset == (bfd_vma) -2)
3882 {
3883 /* The relocation field has been converted into a relative value of
3884 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3885 the field to be fully relocated, so add in the symbol's value. */
3886 skip = TRUE;
3887 *addendp += symbol;
3888 }
3889
3890 /* If we've decided to skip this relocation, just output an empty
3891 record. Note that R_MIPS_NONE == 0, so that this call to memset
3892 is a way of setting R_TYPE to R_MIPS_NONE. */
3893 if (skip)
3894 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3895 else
3896 {
3897 long indx;
3898 bfd_boolean defined_p;
3899
3900 /* We must now calculate the dynamic symbol table index to use
3901 in the relocation. */
3902 if (h != NULL
3903 && (! info->symbolic || (h->root.elf_link_hash_flags
3904 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3905 /* h->root.dynindx may be -1 if this symbol was marked to
3906 become local. */
3907 && h->root.dynindx != -1)
3908 {
3909 indx = h->root.dynindx;
3910 if (SGI_COMPAT (output_bfd))
3911 defined_p = ((h->root.elf_link_hash_flags
3912 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3913 else
3914 /* ??? glibc's ld.so just adds the final GOT entry to the
3915 relocation field. It therefore treats relocs against
3916 defined symbols in the same way as relocs against
3917 undefined symbols. */
3918 defined_p = FALSE;
3919 }
3920 else
3921 {
3922 if (sec != NULL && bfd_is_abs_section (sec))
3923 indx = 0;
3924 else if (sec == NULL || sec->owner == NULL)
3925 {
3926 bfd_set_error (bfd_error_bad_value);
3927 return FALSE;
3928 }
3929 else
3930 {
3931 indx = elf_section_data (sec->output_section)->dynindx;
3932 if (indx == 0)
3933 abort ();
3934 }
3935
3936 /* Instead of generating a relocation using the section
3937 symbol, we may as well make it a fully relative
3938 relocation. We want to avoid generating relocations to
3939 local symbols because we used to generate them
3940 incorrectly, without adding the original symbol value,
3941 which is mandated by the ABI for section symbols. In
3942 order to give dynamic loaders and applications time to
3943 phase out the incorrect use, we refrain from emitting
3944 section-relative relocations. It's not like they're
3945 useful, after all. This should be a bit more efficient
3946 as well. */
3947 /* ??? Although this behavior is compatible with glibc's ld.so,
3948 the ABI says that relocations against STN_UNDEF should have
3949 a symbol value of 0. Irix rld honors this, so relocations
3950 against STN_UNDEF have no effect. */
3951 if (!SGI_COMPAT (output_bfd))
3952 indx = 0;
3953 defined_p = TRUE;
3954 }
3955
3956 /* If the relocation was previously an absolute relocation and
3957 this symbol will not be referred to by the relocation, we must
3958 adjust it by the value we give it in the dynamic symbol table.
3959 Otherwise leave the job up to the dynamic linker. */
3960 if (defined_p && r_type != R_MIPS_REL32)
3961 *addendp += symbol;
3962
3963 /* The relocation is always an REL32 relocation because we don't
3964 know where the shared library will wind up at load-time. */
3965 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3966 R_MIPS_REL32);
3967 /* For strict adherence to the ABI specification, we should
3968 generate a R_MIPS_64 relocation record by itself before the
3969 _REL32/_64 record as well, such that the addend is read in as
3970 a 64-bit value (REL32 is a 32-bit relocation, after all).
3971 However, since none of the existing ELF64 MIPS dynamic
3972 loaders seems to care, we don't waste space with these
3973 artificial relocations. If this turns out to not be true,
3974 mips_elf_allocate_dynamic_relocation() should be tweaked so
3975 as to make room for a pair of dynamic relocations per
3976 invocation if ABI_64_P, and here we should generate an
3977 additional relocation record with R_MIPS_64 by itself for a
3978 NULL symbol before this relocation record. */
3979 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3980 ABI_64_P (output_bfd)
3981 ? R_MIPS_64
3982 : R_MIPS_NONE);
3983 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3984 R_MIPS_NONE);
3985
3986 /* Adjust the output offset of the relocation to reference the
3987 correct location in the output file. */
3988 outrel[0].r_offset += (input_section->output_section->vma
3989 + input_section->output_offset);
3990 outrel[1].r_offset += (input_section->output_section->vma
3991 + input_section->output_offset);
3992 outrel[2].r_offset += (input_section->output_section->vma
3993 + input_section->output_offset);
3994 }
3995
3996 /* Put the relocation back out. We have to use the special
3997 relocation outputter in the 64-bit case since the 64-bit
3998 relocation format is non-standard. */
3999 if (ABI_64_P (output_bfd))
4000 {
4001 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4002 (output_bfd, &outrel[0],
4003 (sreloc->contents
4004 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4005 }
4006 else
4007 bfd_elf32_swap_reloc_out
4008 (output_bfd, &outrel[0],
4009 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4010
4011 /* Record the index of the first relocation referencing H. This
4012 information is later emitted in the .msym section. */
4013 if (h != NULL
4014 && (h->min_dyn_reloc_index == 0
4015 || sreloc->reloc_count < h->min_dyn_reloc_index))
4016 h->min_dyn_reloc_index = sreloc->reloc_count;
4017
4018 /* We've now added another relocation. */
4019 ++sreloc->reloc_count;
4020
4021 /* Make sure the output section is writable. The dynamic linker
4022 will be writing to it. */
4023 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4024 |= SHF_WRITE;
4025
4026 /* On IRIX5, make an entry of compact relocation info. */
4027 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4028 {
4029 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4030 bfd_byte *cr;
4031
4032 if (scpt)
4033 {
4034 Elf32_crinfo cptrel;
4035
4036 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4037 cptrel.vaddr = (rel->r_offset
4038 + input_section->output_section->vma
4039 + input_section->output_offset);
4040 if (r_type == R_MIPS_REL32)
4041 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4042 else
4043 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4044 mips_elf_set_cr_dist2to (cptrel, 0);
4045 cptrel.konst = *addendp;
4046
4047 cr = (scpt->contents
4048 + sizeof (Elf32_External_compact_rel));
4049 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4050 ((Elf32_External_crinfo *) cr
4051 + scpt->reloc_count));
4052 ++scpt->reloc_count;
4053 }
4054 }
4055
4056 return TRUE;
4057 }
4058 \f
4059 /* Return the MACH for a MIPS e_flags value. */
4060
4061 unsigned long
4062 _bfd_elf_mips_mach (flags)
4063 flagword flags;
4064 {
4065 switch (flags & EF_MIPS_MACH)
4066 {
4067 case E_MIPS_MACH_3900:
4068 return bfd_mach_mips3900;
4069
4070 case E_MIPS_MACH_4010:
4071 return bfd_mach_mips4010;
4072
4073 case E_MIPS_MACH_4100:
4074 return bfd_mach_mips4100;
4075
4076 case E_MIPS_MACH_4111:
4077 return bfd_mach_mips4111;
4078
4079 case E_MIPS_MACH_4120:
4080 return bfd_mach_mips4120;
4081
4082 case E_MIPS_MACH_4650:
4083 return bfd_mach_mips4650;
4084
4085 case E_MIPS_MACH_5400:
4086 return bfd_mach_mips5400;
4087
4088 case E_MIPS_MACH_5500:
4089 return bfd_mach_mips5500;
4090
4091 case E_MIPS_MACH_SB1:
4092 return bfd_mach_mips_sb1;
4093
4094 default:
4095 switch (flags & EF_MIPS_ARCH)
4096 {
4097 default:
4098 case E_MIPS_ARCH_1:
4099 return bfd_mach_mips3000;
4100 break;
4101
4102 case E_MIPS_ARCH_2:
4103 return bfd_mach_mips6000;
4104 break;
4105
4106 case E_MIPS_ARCH_3:
4107 return bfd_mach_mips4000;
4108 break;
4109
4110 case E_MIPS_ARCH_4:
4111 return bfd_mach_mips8000;
4112 break;
4113
4114 case E_MIPS_ARCH_5:
4115 return bfd_mach_mips5;
4116 break;
4117
4118 case E_MIPS_ARCH_32:
4119 return bfd_mach_mipsisa32;
4120 break;
4121
4122 case E_MIPS_ARCH_64:
4123 return bfd_mach_mipsisa64;
4124 break;
4125
4126 case E_MIPS_ARCH_32R2:
4127 return bfd_mach_mipsisa32r2;
4128 break;
4129 }
4130 }
4131
4132 return 0;
4133 }
4134
4135 /* Return printable name for ABI. */
4136
4137 static INLINE char *
4138 elf_mips_abi_name (abfd)
4139 bfd *abfd;
4140 {
4141 flagword flags;
4142
4143 flags = elf_elfheader (abfd)->e_flags;
4144 switch (flags & EF_MIPS_ABI)
4145 {
4146 case 0:
4147 if (ABI_N32_P (abfd))
4148 return "N32";
4149 else if (ABI_64_P (abfd))
4150 return "64";
4151 else
4152 return "none";
4153 case E_MIPS_ABI_O32:
4154 return "O32";
4155 case E_MIPS_ABI_O64:
4156 return "O64";
4157 case E_MIPS_ABI_EABI32:
4158 return "EABI32";
4159 case E_MIPS_ABI_EABI64:
4160 return "EABI64";
4161 default:
4162 return "unknown abi";
4163 }
4164 }
4165 \f
4166 /* MIPS ELF uses two common sections. One is the usual one, and the
4167 other is for small objects. All the small objects are kept
4168 together, and then referenced via the gp pointer, which yields
4169 faster assembler code. This is what we use for the small common
4170 section. This approach is copied from ecoff.c. */
4171 static asection mips_elf_scom_section;
4172 static asymbol mips_elf_scom_symbol;
4173 static asymbol *mips_elf_scom_symbol_ptr;
4174
4175 /* MIPS ELF also uses an acommon section, which represents an
4176 allocated common symbol which may be overridden by a
4177 definition in a shared library. */
4178 static asection mips_elf_acom_section;
4179 static asymbol mips_elf_acom_symbol;
4180 static asymbol *mips_elf_acom_symbol_ptr;
4181
4182 /* Handle the special MIPS section numbers that a symbol may use.
4183 This is used for both the 32-bit and the 64-bit ABI. */
4184
4185 void
4186 _bfd_mips_elf_symbol_processing (abfd, asym)
4187 bfd *abfd;
4188 asymbol *asym;
4189 {
4190 elf_symbol_type *elfsym;
4191
4192 elfsym = (elf_symbol_type *) asym;
4193 switch (elfsym->internal_elf_sym.st_shndx)
4194 {
4195 case SHN_MIPS_ACOMMON:
4196 /* This section is used in a dynamically linked executable file.
4197 It is an allocated common section. The dynamic linker can
4198 either resolve these symbols to something in a shared
4199 library, or it can just leave them here. For our purposes,
4200 we can consider these symbols to be in a new section. */
4201 if (mips_elf_acom_section.name == NULL)
4202 {
4203 /* Initialize the acommon section. */
4204 mips_elf_acom_section.name = ".acommon";
4205 mips_elf_acom_section.flags = SEC_ALLOC;
4206 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4207 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4208 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4209 mips_elf_acom_symbol.name = ".acommon";
4210 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4211 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4212 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4213 }
4214 asym->section = &mips_elf_acom_section;
4215 break;
4216
4217 case SHN_COMMON:
4218 /* Common symbols less than the GP size are automatically
4219 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4220 if (asym->value > elf_gp_size (abfd)
4221 || IRIX_COMPAT (abfd) == ict_irix6)
4222 break;
4223 /* Fall through. */
4224 case SHN_MIPS_SCOMMON:
4225 if (mips_elf_scom_section.name == NULL)
4226 {
4227 /* Initialize the small common section. */
4228 mips_elf_scom_section.name = ".scommon";
4229 mips_elf_scom_section.flags = SEC_IS_COMMON;
4230 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4231 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4232 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4233 mips_elf_scom_symbol.name = ".scommon";
4234 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4235 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4236 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4237 }
4238 asym->section = &mips_elf_scom_section;
4239 asym->value = elfsym->internal_elf_sym.st_size;
4240 break;
4241
4242 case SHN_MIPS_SUNDEFINED:
4243 asym->section = bfd_und_section_ptr;
4244 break;
4245
4246 #if 0 /* for SGI_COMPAT */
4247 case SHN_MIPS_TEXT:
4248 asym->section = mips_elf_text_section_ptr;
4249 break;
4250
4251 case SHN_MIPS_DATA:
4252 asym->section = mips_elf_data_section_ptr;
4253 break;
4254 #endif
4255 }
4256 }
4257 \f
4258 /* Work over a section just before writing it out. This routine is
4259 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4260 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4261 a better way. */
4262
4263 bfd_boolean
4264 _bfd_mips_elf_section_processing (abfd, hdr)
4265 bfd *abfd;
4266 Elf_Internal_Shdr *hdr;
4267 {
4268 if (hdr->sh_type == SHT_MIPS_REGINFO
4269 && hdr->sh_size > 0)
4270 {
4271 bfd_byte buf[4];
4272
4273 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4274 BFD_ASSERT (hdr->contents == NULL);
4275
4276 if (bfd_seek (abfd,
4277 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4278 SEEK_SET) != 0)
4279 return FALSE;
4280 H_PUT_32 (abfd, elf_gp (abfd), buf);
4281 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4282 return FALSE;
4283 }
4284
4285 if (hdr->sh_type == SHT_MIPS_OPTIONS
4286 && hdr->bfd_section != NULL
4287 && mips_elf_section_data (hdr->bfd_section) != NULL
4288 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4289 {
4290 bfd_byte *contents, *l, *lend;
4291
4292 /* We stored the section contents in the tdata field in the
4293 set_section_contents routine. We save the section contents
4294 so that we don't have to read them again.
4295 At this point we know that elf_gp is set, so we can look
4296 through the section contents to see if there is an
4297 ODK_REGINFO structure. */
4298
4299 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4300 l = contents;
4301 lend = contents + hdr->sh_size;
4302 while (l + sizeof (Elf_External_Options) <= lend)
4303 {
4304 Elf_Internal_Options intopt;
4305
4306 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4307 &intopt);
4308 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4309 {
4310 bfd_byte buf[8];
4311
4312 if (bfd_seek (abfd,
4313 (hdr->sh_offset
4314 + (l - contents)
4315 + sizeof (Elf_External_Options)
4316 + (sizeof (Elf64_External_RegInfo) - 8)),
4317 SEEK_SET) != 0)
4318 return FALSE;
4319 H_PUT_64 (abfd, elf_gp (abfd), buf);
4320 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4321 return FALSE;
4322 }
4323 else if (intopt.kind == ODK_REGINFO)
4324 {
4325 bfd_byte buf[4];
4326
4327 if (bfd_seek (abfd,
4328 (hdr->sh_offset
4329 + (l - contents)
4330 + sizeof (Elf_External_Options)
4331 + (sizeof (Elf32_External_RegInfo) - 4)),
4332 SEEK_SET) != 0)
4333 return FALSE;
4334 H_PUT_32 (abfd, elf_gp (abfd), buf);
4335 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4336 return FALSE;
4337 }
4338 l += intopt.size;
4339 }
4340 }
4341
4342 if (hdr->bfd_section != NULL)
4343 {
4344 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4345
4346 if (strcmp (name, ".sdata") == 0
4347 || strcmp (name, ".lit8") == 0
4348 || strcmp (name, ".lit4") == 0)
4349 {
4350 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4351 hdr->sh_type = SHT_PROGBITS;
4352 }
4353 else if (strcmp (name, ".sbss") == 0)
4354 {
4355 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4356 hdr->sh_type = SHT_NOBITS;
4357 }
4358 else if (strcmp (name, ".srdata") == 0)
4359 {
4360 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4361 hdr->sh_type = SHT_PROGBITS;
4362 }
4363 else if (strcmp (name, ".compact_rel") == 0)
4364 {
4365 hdr->sh_flags = 0;
4366 hdr->sh_type = SHT_PROGBITS;
4367 }
4368 else if (strcmp (name, ".rtproc") == 0)
4369 {
4370 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4371 {
4372 unsigned int adjust;
4373
4374 adjust = hdr->sh_size % hdr->sh_addralign;
4375 if (adjust != 0)
4376 hdr->sh_size += hdr->sh_addralign - adjust;
4377 }
4378 }
4379 }
4380
4381 return TRUE;
4382 }
4383
4384 /* Handle a MIPS specific section when reading an object file. This
4385 is called when elfcode.h finds a section with an unknown type.
4386 This routine supports both the 32-bit and 64-bit ELF ABI.
4387
4388 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4389 how to. */
4390
4391 bfd_boolean
4392 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4393 bfd *abfd;
4394 Elf_Internal_Shdr *hdr;
4395 const char *name;
4396 {
4397 flagword flags = 0;
4398
4399 /* There ought to be a place to keep ELF backend specific flags, but
4400 at the moment there isn't one. We just keep track of the
4401 sections by their name, instead. Fortunately, the ABI gives
4402 suggested names for all the MIPS specific sections, so we will
4403 probably get away with this. */
4404 switch (hdr->sh_type)
4405 {
4406 case SHT_MIPS_LIBLIST:
4407 if (strcmp (name, ".liblist") != 0)
4408 return FALSE;
4409 break;
4410 case SHT_MIPS_MSYM:
4411 if (strcmp (name, ".msym") != 0)
4412 return FALSE;
4413 break;
4414 case SHT_MIPS_CONFLICT:
4415 if (strcmp (name, ".conflict") != 0)
4416 return FALSE;
4417 break;
4418 case SHT_MIPS_GPTAB:
4419 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4420 return FALSE;
4421 break;
4422 case SHT_MIPS_UCODE:
4423 if (strcmp (name, ".ucode") != 0)
4424 return FALSE;
4425 break;
4426 case SHT_MIPS_DEBUG:
4427 if (strcmp (name, ".mdebug") != 0)
4428 return FALSE;
4429 flags = SEC_DEBUGGING;
4430 break;
4431 case SHT_MIPS_REGINFO:
4432 if (strcmp (name, ".reginfo") != 0
4433 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4434 return FALSE;
4435 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4436 break;
4437 case SHT_MIPS_IFACE:
4438 if (strcmp (name, ".MIPS.interfaces") != 0)
4439 return FALSE;
4440 break;
4441 case SHT_MIPS_CONTENT:
4442 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4443 return FALSE;
4444 break;
4445 case SHT_MIPS_OPTIONS:
4446 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4447 return FALSE;
4448 break;
4449 case SHT_MIPS_DWARF:
4450 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4451 return FALSE;
4452 break;
4453 case SHT_MIPS_SYMBOL_LIB:
4454 if (strcmp (name, ".MIPS.symlib") != 0)
4455 return FALSE;
4456 break;
4457 case SHT_MIPS_EVENTS:
4458 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4459 && strncmp (name, ".MIPS.post_rel",
4460 sizeof ".MIPS.post_rel" - 1) != 0)
4461 return FALSE;
4462 break;
4463 default:
4464 return FALSE;
4465 }
4466
4467 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4468 return FALSE;
4469
4470 if (flags)
4471 {
4472 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4473 (bfd_get_section_flags (abfd,
4474 hdr->bfd_section)
4475 | flags)))
4476 return FALSE;
4477 }
4478
4479 /* FIXME: We should record sh_info for a .gptab section. */
4480
4481 /* For a .reginfo section, set the gp value in the tdata information
4482 from the contents of this section. We need the gp value while
4483 processing relocs, so we just get it now. The .reginfo section
4484 is not used in the 64-bit MIPS ELF ABI. */
4485 if (hdr->sh_type == SHT_MIPS_REGINFO)
4486 {
4487 Elf32_External_RegInfo ext;
4488 Elf32_RegInfo s;
4489
4490 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4491 (file_ptr) 0,
4492 (bfd_size_type) sizeof ext))
4493 return FALSE;
4494 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4495 elf_gp (abfd) = s.ri_gp_value;
4496 }
4497
4498 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4499 set the gp value based on what we find. We may see both
4500 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4501 they should agree. */
4502 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4503 {
4504 bfd_byte *contents, *l, *lend;
4505
4506 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4507 if (contents == NULL)
4508 return FALSE;
4509 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4510 (file_ptr) 0, hdr->sh_size))
4511 {
4512 free (contents);
4513 return FALSE;
4514 }
4515 l = contents;
4516 lend = contents + hdr->sh_size;
4517 while (l + sizeof (Elf_External_Options) <= lend)
4518 {
4519 Elf_Internal_Options intopt;
4520
4521 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4522 &intopt);
4523 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4524 {
4525 Elf64_Internal_RegInfo intreg;
4526
4527 bfd_mips_elf64_swap_reginfo_in
4528 (abfd,
4529 ((Elf64_External_RegInfo *)
4530 (l + sizeof (Elf_External_Options))),
4531 &intreg);
4532 elf_gp (abfd) = intreg.ri_gp_value;
4533 }
4534 else if (intopt.kind == ODK_REGINFO)
4535 {
4536 Elf32_RegInfo intreg;
4537
4538 bfd_mips_elf32_swap_reginfo_in
4539 (abfd,
4540 ((Elf32_External_RegInfo *)
4541 (l + sizeof (Elf_External_Options))),
4542 &intreg);
4543 elf_gp (abfd) = intreg.ri_gp_value;
4544 }
4545 l += intopt.size;
4546 }
4547 free (contents);
4548 }
4549
4550 return TRUE;
4551 }
4552
4553 /* Set the correct type for a MIPS ELF section. We do this by the
4554 section name, which is a hack, but ought to work. This routine is
4555 used by both the 32-bit and the 64-bit ABI. */
4556
4557 bfd_boolean
4558 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4559 bfd *abfd;
4560 Elf_Internal_Shdr *hdr;
4561 asection *sec;
4562 {
4563 register const char *name;
4564
4565 name = bfd_get_section_name (abfd, sec);
4566
4567 if (strcmp (name, ".liblist") == 0)
4568 {
4569 hdr->sh_type = SHT_MIPS_LIBLIST;
4570 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4571 /* The sh_link field is set in final_write_processing. */
4572 }
4573 else if (strcmp (name, ".conflict") == 0)
4574 hdr->sh_type = SHT_MIPS_CONFLICT;
4575 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4576 {
4577 hdr->sh_type = SHT_MIPS_GPTAB;
4578 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4579 /* The sh_info field is set in final_write_processing. */
4580 }
4581 else if (strcmp (name, ".ucode") == 0)
4582 hdr->sh_type = SHT_MIPS_UCODE;
4583 else if (strcmp (name, ".mdebug") == 0)
4584 {
4585 hdr->sh_type = SHT_MIPS_DEBUG;
4586 /* In a shared object on IRIX 5.3, the .mdebug section has an
4587 entsize of 0. FIXME: Does this matter? */
4588 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4589 hdr->sh_entsize = 0;
4590 else
4591 hdr->sh_entsize = 1;
4592 }
4593 else if (strcmp (name, ".reginfo") == 0)
4594 {
4595 hdr->sh_type = SHT_MIPS_REGINFO;
4596 /* In a shared object on IRIX 5.3, the .reginfo section has an
4597 entsize of 0x18. FIXME: Does this matter? */
4598 if (SGI_COMPAT (abfd))
4599 {
4600 if ((abfd->flags & DYNAMIC) != 0)
4601 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4602 else
4603 hdr->sh_entsize = 1;
4604 }
4605 else
4606 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4607 }
4608 else if (SGI_COMPAT (abfd)
4609 && (strcmp (name, ".hash") == 0
4610 || strcmp (name, ".dynamic") == 0
4611 || strcmp (name, ".dynstr") == 0))
4612 {
4613 if (SGI_COMPAT (abfd))
4614 hdr->sh_entsize = 0;
4615 #if 0
4616 /* This isn't how the IRIX6 linker behaves. */
4617 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4618 #endif
4619 }
4620 else if (strcmp (name, ".got") == 0
4621 || strcmp (name, ".srdata") == 0
4622 || strcmp (name, ".sdata") == 0
4623 || strcmp (name, ".sbss") == 0
4624 || strcmp (name, ".lit4") == 0
4625 || strcmp (name, ".lit8") == 0)
4626 hdr->sh_flags |= SHF_MIPS_GPREL;
4627 else if (strcmp (name, ".MIPS.interfaces") == 0)
4628 {
4629 hdr->sh_type = SHT_MIPS_IFACE;
4630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4631 }
4632 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4633 {
4634 hdr->sh_type = SHT_MIPS_CONTENT;
4635 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4636 /* The sh_info field is set in final_write_processing. */
4637 }
4638 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4639 {
4640 hdr->sh_type = SHT_MIPS_OPTIONS;
4641 hdr->sh_entsize = 1;
4642 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4643 }
4644 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4645 hdr->sh_type = SHT_MIPS_DWARF;
4646 else if (strcmp (name, ".MIPS.symlib") == 0)
4647 {
4648 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4649 /* The sh_link and sh_info fields are set in
4650 final_write_processing. */
4651 }
4652 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4653 || strncmp (name, ".MIPS.post_rel",
4654 sizeof ".MIPS.post_rel" - 1) == 0)
4655 {
4656 hdr->sh_type = SHT_MIPS_EVENTS;
4657 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4658 /* The sh_link field is set in final_write_processing. */
4659 }
4660 else if (strcmp (name, ".msym") == 0)
4661 {
4662 hdr->sh_type = SHT_MIPS_MSYM;
4663 hdr->sh_flags |= SHF_ALLOC;
4664 hdr->sh_entsize = 8;
4665 }
4666
4667 /* The generic elf_fake_sections will set up REL_HDR using the default
4668 kind of relocations. We used to set up a second header for the
4669 non-default kind of relocations here, but only NewABI would use
4670 these, and the IRIX ld doesn't like resulting empty RELA sections.
4671 Thus we create those header only on demand now. */
4672
4673 return TRUE;
4674 }
4675
4676 /* Given a BFD section, try to locate the corresponding ELF section
4677 index. This is used by both the 32-bit and the 64-bit ABI.
4678 Actually, it's not clear to me that the 64-bit ABI supports these,
4679 but for non-PIC objects we will certainly want support for at least
4680 the .scommon section. */
4681
4682 bfd_boolean
4683 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4684 bfd *abfd ATTRIBUTE_UNUSED;
4685 asection *sec;
4686 int *retval;
4687 {
4688 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4689 {
4690 *retval = SHN_MIPS_SCOMMON;
4691 return TRUE;
4692 }
4693 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4694 {
4695 *retval = SHN_MIPS_ACOMMON;
4696 return TRUE;
4697 }
4698 return FALSE;
4699 }
4700 \f
4701 /* Hook called by the linker routine which adds symbols from an object
4702 file. We must handle the special MIPS section numbers here. */
4703
4704 bfd_boolean
4705 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4706 bfd *abfd;
4707 struct bfd_link_info *info;
4708 const Elf_Internal_Sym *sym;
4709 const char **namep;
4710 flagword *flagsp ATTRIBUTE_UNUSED;
4711 asection **secp;
4712 bfd_vma *valp;
4713 {
4714 if (SGI_COMPAT (abfd)
4715 && (abfd->flags & DYNAMIC) != 0
4716 && strcmp (*namep, "_rld_new_interface") == 0)
4717 {
4718 /* Skip IRIX5 rld entry name. */
4719 *namep = NULL;
4720 return TRUE;
4721 }
4722
4723 switch (sym->st_shndx)
4724 {
4725 case SHN_COMMON:
4726 /* Common symbols less than the GP size are automatically
4727 treated as SHN_MIPS_SCOMMON symbols. */
4728 if (sym->st_size > elf_gp_size (abfd)
4729 || IRIX_COMPAT (abfd) == ict_irix6)
4730 break;
4731 /* Fall through. */
4732 case SHN_MIPS_SCOMMON:
4733 *secp = bfd_make_section_old_way (abfd, ".scommon");
4734 (*secp)->flags |= SEC_IS_COMMON;
4735 *valp = sym->st_size;
4736 break;
4737
4738 case SHN_MIPS_TEXT:
4739 /* This section is used in a shared object. */
4740 if (elf_tdata (abfd)->elf_text_section == NULL)
4741 {
4742 asymbol *elf_text_symbol;
4743 asection *elf_text_section;
4744 bfd_size_type amt = sizeof (asection);
4745
4746 elf_text_section = bfd_zalloc (abfd, amt);
4747 if (elf_text_section == NULL)
4748 return FALSE;
4749
4750 amt = sizeof (asymbol);
4751 elf_text_symbol = bfd_zalloc (abfd, amt);
4752 if (elf_text_symbol == NULL)
4753 return FALSE;
4754
4755 /* Initialize the section. */
4756
4757 elf_tdata (abfd)->elf_text_section = elf_text_section;
4758 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4759
4760 elf_text_section->symbol = elf_text_symbol;
4761 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4762
4763 elf_text_section->name = ".text";
4764 elf_text_section->flags = SEC_NO_FLAGS;
4765 elf_text_section->output_section = NULL;
4766 elf_text_section->owner = abfd;
4767 elf_text_symbol->name = ".text";
4768 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4769 elf_text_symbol->section = elf_text_section;
4770 }
4771 /* This code used to do *secp = bfd_und_section_ptr if
4772 info->shared. I don't know why, and that doesn't make sense,
4773 so I took it out. */
4774 *secp = elf_tdata (abfd)->elf_text_section;
4775 break;
4776
4777 case SHN_MIPS_ACOMMON:
4778 /* Fall through. XXX Can we treat this as allocated data? */
4779 case SHN_MIPS_DATA:
4780 /* This section is used in a shared object. */
4781 if (elf_tdata (abfd)->elf_data_section == NULL)
4782 {
4783 asymbol *elf_data_symbol;
4784 asection *elf_data_section;
4785 bfd_size_type amt = sizeof (asection);
4786
4787 elf_data_section = bfd_zalloc (abfd, amt);
4788 if (elf_data_section == NULL)
4789 return FALSE;
4790
4791 amt = sizeof (asymbol);
4792 elf_data_symbol = bfd_zalloc (abfd, amt);
4793 if (elf_data_symbol == NULL)
4794 return FALSE;
4795
4796 /* Initialize the section. */
4797
4798 elf_tdata (abfd)->elf_data_section = elf_data_section;
4799 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4800
4801 elf_data_section->symbol = elf_data_symbol;
4802 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4803
4804 elf_data_section->name = ".data";
4805 elf_data_section->flags = SEC_NO_FLAGS;
4806 elf_data_section->output_section = NULL;
4807 elf_data_section->owner = abfd;
4808 elf_data_symbol->name = ".data";
4809 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4810 elf_data_symbol->section = elf_data_section;
4811 }
4812 /* This code used to do *secp = bfd_und_section_ptr if
4813 info->shared. I don't know why, and that doesn't make sense,
4814 so I took it out. */
4815 *secp = elf_tdata (abfd)->elf_data_section;
4816 break;
4817
4818 case SHN_MIPS_SUNDEFINED:
4819 *secp = bfd_und_section_ptr;
4820 break;
4821 }
4822
4823 if (SGI_COMPAT (abfd)
4824 && ! info->shared
4825 && info->hash->creator == abfd->xvec
4826 && strcmp (*namep, "__rld_obj_head") == 0)
4827 {
4828 struct elf_link_hash_entry *h;
4829 struct bfd_link_hash_entry *bh;
4830
4831 /* Mark __rld_obj_head as dynamic. */
4832 bh = NULL;
4833 if (! (_bfd_generic_link_add_one_symbol
4834 (info, abfd, *namep, BSF_GLOBAL, *secp,
4835 (bfd_vma) *valp, (const char *) NULL, FALSE,
4836 get_elf_backend_data (abfd)->collect, &bh)))
4837 return FALSE;
4838
4839 h = (struct elf_link_hash_entry *) bh;
4840 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4841 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4842 h->type = STT_OBJECT;
4843
4844 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4845 return FALSE;
4846
4847 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4848 }
4849
4850 /* If this is a mips16 text symbol, add 1 to the value to make it
4851 odd. This will cause something like .word SYM to come up with
4852 the right value when it is loaded into the PC. */
4853 if (sym->st_other == STO_MIPS16)
4854 ++*valp;
4855
4856 return TRUE;
4857 }
4858
4859 /* This hook function is called before the linker writes out a global
4860 symbol. We mark symbols as small common if appropriate. This is
4861 also where we undo the increment of the value for a mips16 symbol. */
4862
4863 bfd_boolean
4864 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4865 bfd *abfd ATTRIBUTE_UNUSED;
4866 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4867 const char *name ATTRIBUTE_UNUSED;
4868 Elf_Internal_Sym *sym;
4869 asection *input_sec;
4870 {
4871 /* If we see a common symbol, which implies a relocatable link, then
4872 if a symbol was small common in an input file, mark it as small
4873 common in the output file. */
4874 if (sym->st_shndx == SHN_COMMON
4875 && strcmp (input_sec->name, ".scommon") == 0)
4876 sym->st_shndx = SHN_MIPS_SCOMMON;
4877
4878 if (sym->st_other == STO_MIPS16
4879 && (sym->st_value & 1) != 0)
4880 --sym->st_value;
4881
4882 return TRUE;
4883 }
4884 \f
4885 /* Functions for the dynamic linker. */
4886
4887 /* Create dynamic sections when linking against a dynamic object. */
4888
4889 bfd_boolean
4890 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4891 bfd *abfd;
4892 struct bfd_link_info *info;
4893 {
4894 struct elf_link_hash_entry *h;
4895 struct bfd_link_hash_entry *bh;
4896 flagword flags;
4897 register asection *s;
4898 const char * const *namep;
4899
4900 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4901 | SEC_LINKER_CREATED | SEC_READONLY);
4902
4903 /* Mips ABI requests the .dynamic section to be read only. */
4904 s = bfd_get_section_by_name (abfd, ".dynamic");
4905 if (s != NULL)
4906 {
4907 if (! bfd_set_section_flags (abfd, s, flags))
4908 return FALSE;
4909 }
4910
4911 /* We need to create .got section. */
4912 if (! mips_elf_create_got_section (abfd, info, FALSE))
4913 return FALSE;
4914
4915 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4916 return FALSE;
4917
4918 /* Create the .msym section on IRIX6. It is used by the dynamic
4919 linker to speed up dynamic relocations, and to avoid computing
4920 the ELF hash for symbols. */
4921 if (IRIX_COMPAT (abfd) == ict_irix6
4922 && !mips_elf_create_msym_section (abfd))
4923 return FALSE;
4924
4925 /* Create .stub section. */
4926 if (bfd_get_section_by_name (abfd,
4927 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4928 {
4929 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4930 if (s == NULL
4931 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4932 || ! bfd_set_section_alignment (abfd, s,
4933 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4934 return FALSE;
4935 }
4936
4937 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4938 && !info->shared
4939 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4940 {
4941 s = bfd_make_section (abfd, ".rld_map");
4942 if (s == NULL
4943 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4944 || ! bfd_set_section_alignment (abfd, s,
4945 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4946 return FALSE;
4947 }
4948
4949 /* On IRIX5, we adjust add some additional symbols and change the
4950 alignments of several sections. There is no ABI documentation
4951 indicating that this is necessary on IRIX6, nor any evidence that
4952 the linker takes such action. */
4953 if (IRIX_COMPAT (abfd) == ict_irix5)
4954 {
4955 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4956 {
4957 bh = NULL;
4958 if (! (_bfd_generic_link_add_one_symbol
4959 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4960 (bfd_vma) 0, (const char *) NULL, FALSE,
4961 get_elf_backend_data (abfd)->collect, &bh)))
4962 return FALSE;
4963
4964 h = (struct elf_link_hash_entry *) bh;
4965 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4966 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4967 h->type = STT_SECTION;
4968
4969 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4970 return FALSE;
4971 }
4972
4973 /* We need to create a .compact_rel section. */
4974 if (SGI_COMPAT (abfd))
4975 {
4976 if (!mips_elf_create_compact_rel_section (abfd, info))
4977 return FALSE;
4978 }
4979
4980 /* Change alignments of some sections. */
4981 s = bfd_get_section_by_name (abfd, ".hash");
4982 if (s != NULL)
4983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4984 s = bfd_get_section_by_name (abfd, ".dynsym");
4985 if (s != NULL)
4986 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4987 s = bfd_get_section_by_name (abfd, ".dynstr");
4988 if (s != NULL)
4989 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4990 s = bfd_get_section_by_name (abfd, ".reginfo");
4991 if (s != NULL)
4992 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4993 s = bfd_get_section_by_name (abfd, ".dynamic");
4994 if (s != NULL)
4995 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4996 }
4997
4998 if (!info->shared)
4999 {
5000 const char *name;
5001
5002 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5003 bh = NULL;
5004 if (!(_bfd_generic_link_add_one_symbol
5005 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
5006 (bfd_vma) 0, (const char *) NULL, FALSE,
5007 get_elf_backend_data (abfd)->collect, &bh)))
5008 return FALSE;
5009
5010 h = (struct elf_link_hash_entry *) bh;
5011 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5012 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5013 h->type = STT_SECTION;
5014
5015 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5016 return FALSE;
5017
5018 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5019 {
5020 /* __rld_map is a four byte word located in the .data section
5021 and is filled in by the rtld to contain a pointer to
5022 the _r_debug structure. Its symbol value will be set in
5023 _bfd_mips_elf_finish_dynamic_symbol. */
5024 s = bfd_get_section_by_name (abfd, ".rld_map");
5025 BFD_ASSERT (s != NULL);
5026
5027 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5028 bh = NULL;
5029 if (!(_bfd_generic_link_add_one_symbol
5030 (info, abfd, name, BSF_GLOBAL, s,
5031 (bfd_vma) 0, (const char *) NULL, FALSE,
5032 get_elf_backend_data (abfd)->collect, &bh)))
5033 return FALSE;
5034
5035 h = (struct elf_link_hash_entry *) bh;
5036 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5037 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5038 h->type = STT_OBJECT;
5039
5040 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5041 return FALSE;
5042 }
5043 }
5044
5045 return TRUE;
5046 }
5047 \f
5048 /* Look through the relocs for a section during the first phase, and
5049 allocate space in the global offset table. */
5050
5051 bfd_boolean
5052 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5053 bfd *abfd;
5054 struct bfd_link_info *info;
5055 asection *sec;
5056 const Elf_Internal_Rela *relocs;
5057 {
5058 const char *name;
5059 bfd *dynobj;
5060 Elf_Internal_Shdr *symtab_hdr;
5061 struct elf_link_hash_entry **sym_hashes;
5062 struct mips_got_info *g;
5063 size_t extsymoff;
5064 const Elf_Internal_Rela *rel;
5065 const Elf_Internal_Rela *rel_end;
5066 asection *sgot;
5067 asection *sreloc;
5068 struct elf_backend_data *bed;
5069
5070 if (info->relocatable)
5071 return TRUE;
5072
5073 dynobj = elf_hash_table (info)->dynobj;
5074 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5075 sym_hashes = elf_sym_hashes (abfd);
5076 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5077
5078 /* Check for the mips16 stub sections. */
5079
5080 name = bfd_get_section_name (abfd, sec);
5081 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5082 {
5083 unsigned long r_symndx;
5084
5085 /* Look at the relocation information to figure out which symbol
5086 this is for. */
5087
5088 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5089
5090 if (r_symndx < extsymoff
5091 || sym_hashes[r_symndx - extsymoff] == NULL)
5092 {
5093 asection *o;
5094
5095 /* This stub is for a local symbol. This stub will only be
5096 needed if there is some relocation in this BFD, other
5097 than a 16 bit function call, which refers to this symbol. */
5098 for (o = abfd->sections; o != NULL; o = o->next)
5099 {
5100 Elf_Internal_Rela *sec_relocs;
5101 const Elf_Internal_Rela *r, *rend;
5102
5103 /* We can ignore stub sections when looking for relocs. */
5104 if ((o->flags & SEC_RELOC) == 0
5105 || o->reloc_count == 0
5106 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5107 sizeof FN_STUB - 1) == 0
5108 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5109 sizeof CALL_STUB - 1) == 0
5110 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5111 sizeof CALL_FP_STUB - 1) == 0)
5112 continue;
5113
5114 sec_relocs
5115 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5116 (Elf_Internal_Rela *) NULL,
5117 info->keep_memory);
5118 if (sec_relocs == NULL)
5119 return FALSE;
5120
5121 rend = sec_relocs + o->reloc_count;
5122 for (r = sec_relocs; r < rend; r++)
5123 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5124 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5125 break;
5126
5127 if (elf_section_data (o)->relocs != sec_relocs)
5128 free (sec_relocs);
5129
5130 if (r < rend)
5131 break;
5132 }
5133
5134 if (o == NULL)
5135 {
5136 /* There is no non-call reloc for this stub, so we do
5137 not need it. Since this function is called before
5138 the linker maps input sections to output sections, we
5139 can easily discard it by setting the SEC_EXCLUDE
5140 flag. */
5141 sec->flags |= SEC_EXCLUDE;
5142 return TRUE;
5143 }
5144
5145 /* Record this stub in an array of local symbol stubs for
5146 this BFD. */
5147 if (elf_tdata (abfd)->local_stubs == NULL)
5148 {
5149 unsigned long symcount;
5150 asection **n;
5151 bfd_size_type amt;
5152
5153 if (elf_bad_symtab (abfd))
5154 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5155 else
5156 symcount = symtab_hdr->sh_info;
5157 amt = symcount * sizeof (asection *);
5158 n = (asection **) bfd_zalloc (abfd, amt);
5159 if (n == NULL)
5160 return FALSE;
5161 elf_tdata (abfd)->local_stubs = n;
5162 }
5163
5164 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5165
5166 /* We don't need to set mips16_stubs_seen in this case.
5167 That flag is used to see whether we need to look through
5168 the global symbol table for stubs. We don't need to set
5169 it here, because we just have a local stub. */
5170 }
5171 else
5172 {
5173 struct mips_elf_link_hash_entry *h;
5174
5175 h = ((struct mips_elf_link_hash_entry *)
5176 sym_hashes[r_symndx - extsymoff]);
5177
5178 /* H is the symbol this stub is for. */
5179
5180 h->fn_stub = sec;
5181 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5182 }
5183 }
5184 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5185 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5186 {
5187 unsigned long r_symndx;
5188 struct mips_elf_link_hash_entry *h;
5189 asection **loc;
5190
5191 /* Look at the relocation information to figure out which symbol
5192 this is for. */
5193
5194 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5195
5196 if (r_symndx < extsymoff
5197 || sym_hashes[r_symndx - extsymoff] == NULL)
5198 {
5199 /* This stub was actually built for a static symbol defined
5200 in the same file. We assume that all static symbols in
5201 mips16 code are themselves mips16, so we can simply
5202 discard this stub. Since this function is called before
5203 the linker maps input sections to output sections, we can
5204 easily discard it by setting the SEC_EXCLUDE flag. */
5205 sec->flags |= SEC_EXCLUDE;
5206 return TRUE;
5207 }
5208
5209 h = ((struct mips_elf_link_hash_entry *)
5210 sym_hashes[r_symndx - extsymoff]);
5211
5212 /* H is the symbol this stub is for. */
5213
5214 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5215 loc = &h->call_fp_stub;
5216 else
5217 loc = &h->call_stub;
5218
5219 /* If we already have an appropriate stub for this function, we
5220 don't need another one, so we can discard this one. Since
5221 this function is called before the linker maps input sections
5222 to output sections, we can easily discard it by setting the
5223 SEC_EXCLUDE flag. We can also discard this section if we
5224 happen to already know that this is a mips16 function; it is
5225 not necessary to check this here, as it is checked later, but
5226 it is slightly faster to check now. */
5227 if (*loc != NULL || h->root.other == STO_MIPS16)
5228 {
5229 sec->flags |= SEC_EXCLUDE;
5230 return TRUE;
5231 }
5232
5233 *loc = sec;
5234 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5235 }
5236
5237 if (dynobj == NULL)
5238 {
5239 sgot = NULL;
5240 g = NULL;
5241 }
5242 else
5243 {
5244 sgot = mips_elf_got_section (dynobj, FALSE);
5245 if (sgot == NULL)
5246 g = NULL;
5247 else
5248 {
5249 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5250 g = mips_elf_section_data (sgot)->u.got_info;
5251 BFD_ASSERT (g != NULL);
5252 }
5253 }
5254
5255 sreloc = NULL;
5256 bed = get_elf_backend_data (abfd);
5257 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5258 for (rel = relocs; rel < rel_end; ++rel)
5259 {
5260 unsigned long r_symndx;
5261 unsigned int r_type;
5262 struct elf_link_hash_entry *h;
5263
5264 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5265 r_type = ELF_R_TYPE (abfd, rel->r_info);
5266
5267 if (r_symndx < extsymoff)
5268 h = NULL;
5269 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5270 {
5271 (*_bfd_error_handler)
5272 (_("%s: Malformed reloc detected for section %s"),
5273 bfd_archive_filename (abfd), name);
5274 bfd_set_error (bfd_error_bad_value);
5275 return FALSE;
5276 }
5277 else
5278 {
5279 h = sym_hashes[r_symndx - extsymoff];
5280
5281 /* This may be an indirect symbol created because of a version. */
5282 if (h != NULL)
5283 {
5284 while (h->root.type == bfd_link_hash_indirect)
5285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5286 }
5287 }
5288
5289 /* Some relocs require a global offset table. */
5290 if (dynobj == NULL || sgot == NULL)
5291 {
5292 switch (r_type)
5293 {
5294 case R_MIPS_GOT16:
5295 case R_MIPS_CALL16:
5296 case R_MIPS_CALL_HI16:
5297 case R_MIPS_CALL_LO16:
5298 case R_MIPS_GOT_HI16:
5299 case R_MIPS_GOT_LO16:
5300 case R_MIPS_GOT_PAGE:
5301 case R_MIPS_GOT_OFST:
5302 case R_MIPS_GOT_DISP:
5303 if (dynobj == NULL)
5304 elf_hash_table (info)->dynobj = dynobj = abfd;
5305 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5306 return FALSE;
5307 g = mips_elf_got_info (dynobj, &sgot);
5308 break;
5309
5310 case R_MIPS_32:
5311 case R_MIPS_REL32:
5312 case R_MIPS_64:
5313 if (dynobj == NULL
5314 && (info->shared || h != NULL)
5315 && (sec->flags & SEC_ALLOC) != 0)
5316 elf_hash_table (info)->dynobj = dynobj = abfd;
5317 break;
5318
5319 default:
5320 break;
5321 }
5322 }
5323
5324 if (!h && (r_type == R_MIPS_CALL_LO16
5325 || r_type == R_MIPS_GOT_LO16
5326 || r_type == R_MIPS_GOT_DISP))
5327 {
5328 /* We may need a local GOT entry for this relocation. We
5329 don't count R_MIPS_GOT_PAGE because we can estimate the
5330 maximum number of pages needed by looking at the size of
5331 the segment. Similar comments apply to R_MIPS_GOT16 and
5332 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5333 R_MIPS_CALL_HI16 because these are always followed by an
5334 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5335 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5336 rel->r_addend, g))
5337 return FALSE;
5338 }
5339
5340 switch (r_type)
5341 {
5342 case R_MIPS_CALL16:
5343 if (h == NULL)
5344 {
5345 (*_bfd_error_handler)
5346 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5347 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5348 bfd_set_error (bfd_error_bad_value);
5349 return FALSE;
5350 }
5351 /* Fall through. */
5352
5353 case R_MIPS_CALL_HI16:
5354 case R_MIPS_CALL_LO16:
5355 if (h != NULL)
5356 {
5357 /* This symbol requires a global offset table entry. */
5358 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5359 return FALSE;
5360
5361 /* We need a stub, not a plt entry for the undefined
5362 function. But we record it as if it needs plt. See
5363 elf_adjust_dynamic_symbol in elflink.h. */
5364 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5365 h->type = STT_FUNC;
5366 }
5367 break;
5368
5369 case R_MIPS_GOT_PAGE:
5370 /* If this is a global, overridable symbol, GOT_PAGE will
5371 decay to GOT_DISP, so we'll need a GOT entry for it. */
5372 if (h == NULL)
5373 break;
5374 else
5375 {
5376 struct mips_elf_link_hash_entry *hmips =
5377 (struct mips_elf_link_hash_entry *) h;
5378
5379 while (hmips->root.root.type == bfd_link_hash_indirect
5380 || hmips->root.root.type == bfd_link_hash_warning)
5381 hmips = (struct mips_elf_link_hash_entry *)
5382 hmips->root.root.u.i.link;
5383
5384 if ((hmips->root.root.type == bfd_link_hash_defined
5385 || hmips->root.root.type == bfd_link_hash_defweak)
5386 && hmips->root.root.u.def.section
5387 && ! (info->shared && ! info->symbolic
5388 && ! (hmips->root.elf_link_hash_flags
5389 & ELF_LINK_FORCED_LOCAL))
5390 /* If we've encountered any other relocation
5391 referencing the symbol, we'll have marked it as
5392 dynamic, and, even though we might be able to get
5393 rid of the GOT entry should we know for sure all
5394 previous relocations were GOT_PAGE ones, at this
5395 point we can't tell, so just keep using the
5396 symbol as dynamic. This is very important in the
5397 multi-got case, since we don't decide whether to
5398 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5399 the symbol is dynamic, we'll need a GOT entry for
5400 every GOT in which the symbol is referenced with
5401 a GOT_PAGE relocation. */
5402 && hmips->root.dynindx == -1)
5403 break;
5404 }
5405 /* Fall through. */
5406
5407 case R_MIPS_GOT16:
5408 case R_MIPS_GOT_HI16:
5409 case R_MIPS_GOT_LO16:
5410 case R_MIPS_GOT_DISP:
5411 /* This symbol requires a global offset table entry. */
5412 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5413 return FALSE;
5414 break;
5415
5416 case R_MIPS_32:
5417 case R_MIPS_REL32:
5418 case R_MIPS_64:
5419 if ((info->shared || h != NULL)
5420 && (sec->flags & SEC_ALLOC) != 0)
5421 {
5422 if (sreloc == NULL)
5423 {
5424 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5425 if (sreloc == NULL)
5426 return FALSE;
5427 }
5428 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5429 if (info->shared)
5430 {
5431 /* When creating a shared object, we must copy these
5432 reloc types into the output file as R_MIPS_REL32
5433 relocs. We make room for this reloc in the
5434 .rel.dyn reloc section. */
5435 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5436 if ((sec->flags & MIPS_READONLY_SECTION)
5437 == MIPS_READONLY_SECTION)
5438 /* We tell the dynamic linker that there are
5439 relocations against the text segment. */
5440 info->flags |= DF_TEXTREL;
5441 }
5442 else
5443 {
5444 struct mips_elf_link_hash_entry *hmips;
5445
5446 /* We only need to copy this reloc if the symbol is
5447 defined in a dynamic object. */
5448 hmips = (struct mips_elf_link_hash_entry *) h;
5449 ++hmips->possibly_dynamic_relocs;
5450 if ((sec->flags & MIPS_READONLY_SECTION)
5451 == MIPS_READONLY_SECTION)
5452 /* We need it to tell the dynamic linker if there
5453 are relocations against the text segment. */
5454 hmips->readonly_reloc = TRUE;
5455 }
5456
5457 /* Even though we don't directly need a GOT entry for
5458 this symbol, a symbol must have a dynamic symbol
5459 table index greater that DT_MIPS_GOTSYM if there are
5460 dynamic relocations against it. */
5461 if (h != NULL)
5462 {
5463 if (dynobj == NULL)
5464 elf_hash_table (info)->dynobj = dynobj = abfd;
5465 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5466 return FALSE;
5467 g = mips_elf_got_info (dynobj, &sgot);
5468 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5469 return FALSE;
5470 }
5471 }
5472
5473 if (SGI_COMPAT (abfd))
5474 mips_elf_hash_table (info)->compact_rel_size +=
5475 sizeof (Elf32_External_crinfo);
5476 break;
5477
5478 case R_MIPS_26:
5479 case R_MIPS_GPREL16:
5480 case R_MIPS_LITERAL:
5481 case R_MIPS_GPREL32:
5482 if (SGI_COMPAT (abfd))
5483 mips_elf_hash_table (info)->compact_rel_size +=
5484 sizeof (Elf32_External_crinfo);
5485 break;
5486
5487 /* This relocation describes the C++ object vtable hierarchy.
5488 Reconstruct it for later use during GC. */
5489 case R_MIPS_GNU_VTINHERIT:
5490 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5491 return FALSE;
5492 break;
5493
5494 /* This relocation describes which C++ vtable entries are actually
5495 used. Record for later use during GC. */
5496 case R_MIPS_GNU_VTENTRY:
5497 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5498 return FALSE;
5499 break;
5500
5501 default:
5502 break;
5503 }
5504
5505 /* We must not create a stub for a symbol that has relocations
5506 related to taking the function's address. */
5507 switch (r_type)
5508 {
5509 default:
5510 if (h != NULL)
5511 {
5512 struct mips_elf_link_hash_entry *mh;
5513
5514 mh = (struct mips_elf_link_hash_entry *) h;
5515 mh->no_fn_stub = TRUE;
5516 }
5517 break;
5518 case R_MIPS_CALL16:
5519 case R_MIPS_CALL_HI16:
5520 case R_MIPS_CALL_LO16:
5521 case R_MIPS_JALR:
5522 break;
5523 }
5524
5525 /* If this reloc is not a 16 bit call, and it has a global
5526 symbol, then we will need the fn_stub if there is one.
5527 References from a stub section do not count. */
5528 if (h != NULL
5529 && r_type != R_MIPS16_26
5530 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5531 sizeof FN_STUB - 1) != 0
5532 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5533 sizeof CALL_STUB - 1) != 0
5534 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5535 sizeof CALL_FP_STUB - 1) != 0)
5536 {
5537 struct mips_elf_link_hash_entry *mh;
5538
5539 mh = (struct mips_elf_link_hash_entry *) h;
5540 mh->need_fn_stub = TRUE;
5541 }
5542 }
5543
5544 return TRUE;
5545 }
5546 \f
5547 bfd_boolean
5548 _bfd_mips_relax_section (abfd, sec, link_info, again)
5549 bfd *abfd;
5550 asection *sec;
5551 struct bfd_link_info *link_info;
5552 bfd_boolean *again;
5553 {
5554 Elf_Internal_Rela *internal_relocs;
5555 Elf_Internal_Rela *irel, *irelend;
5556 Elf_Internal_Shdr *symtab_hdr;
5557 bfd_byte *contents = NULL;
5558 bfd_byte *free_contents = NULL;
5559 size_t extsymoff;
5560 bfd_boolean changed_contents = FALSE;
5561 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5562 Elf_Internal_Sym *isymbuf = NULL;
5563
5564 /* We are not currently changing any sizes, so only one pass. */
5565 *again = FALSE;
5566
5567 if (link_info->relocatable)
5568 return TRUE;
5569
5570 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5571 (Elf_Internal_Rela *) NULL,
5572 link_info->keep_memory);
5573 if (internal_relocs == NULL)
5574 return TRUE;
5575
5576 irelend = internal_relocs + sec->reloc_count
5577 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5578 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5579 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5580
5581 for (irel = internal_relocs; irel < irelend; irel++)
5582 {
5583 bfd_vma symval;
5584 bfd_signed_vma sym_offset;
5585 unsigned int r_type;
5586 unsigned long r_symndx;
5587 asection *sym_sec;
5588 unsigned long instruction;
5589
5590 /* Turn jalr into bgezal, and jr into beq, if they're marked
5591 with a JALR relocation, that indicate where they jump to.
5592 This saves some pipeline bubbles. */
5593 r_type = ELF_R_TYPE (abfd, irel->r_info);
5594 if (r_type != R_MIPS_JALR)
5595 continue;
5596
5597 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5598 /* Compute the address of the jump target. */
5599 if (r_symndx >= extsymoff)
5600 {
5601 struct mips_elf_link_hash_entry *h
5602 = ((struct mips_elf_link_hash_entry *)
5603 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5604
5605 while (h->root.root.type == bfd_link_hash_indirect
5606 || h->root.root.type == bfd_link_hash_warning)
5607 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5608
5609 /* If a symbol is undefined, or if it may be overridden,
5610 skip it. */
5611 if (! ((h->root.root.type == bfd_link_hash_defined
5612 || h->root.root.type == bfd_link_hash_defweak)
5613 && h->root.root.u.def.section)
5614 || (link_info->shared && ! link_info->symbolic
5615 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5616 continue;
5617
5618 sym_sec = h->root.root.u.def.section;
5619 if (sym_sec->output_section)
5620 symval = (h->root.root.u.def.value
5621 + sym_sec->output_section->vma
5622 + sym_sec->output_offset);
5623 else
5624 symval = h->root.root.u.def.value;
5625 }
5626 else
5627 {
5628 Elf_Internal_Sym *isym;
5629
5630 /* Read this BFD's symbols if we haven't done so already. */
5631 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5632 {
5633 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5634 if (isymbuf == NULL)
5635 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5636 symtab_hdr->sh_info, 0,
5637 NULL, NULL, NULL);
5638 if (isymbuf == NULL)
5639 goto relax_return;
5640 }
5641
5642 isym = isymbuf + r_symndx;
5643 if (isym->st_shndx == SHN_UNDEF)
5644 continue;
5645 else if (isym->st_shndx == SHN_ABS)
5646 sym_sec = bfd_abs_section_ptr;
5647 else if (isym->st_shndx == SHN_COMMON)
5648 sym_sec = bfd_com_section_ptr;
5649 else
5650 sym_sec
5651 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5652 symval = isym->st_value
5653 + sym_sec->output_section->vma
5654 + sym_sec->output_offset;
5655 }
5656
5657 /* Compute branch offset, from delay slot of the jump to the
5658 branch target. */
5659 sym_offset = (symval + irel->r_addend)
5660 - (sec_start + irel->r_offset + 4);
5661
5662 /* Branch offset must be properly aligned. */
5663 if ((sym_offset & 3) != 0)
5664 continue;
5665
5666 sym_offset >>= 2;
5667
5668 /* Check that it's in range. */
5669 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5670 continue;
5671
5672 /* Get the section contents if we haven't done so already. */
5673 if (contents == NULL)
5674 {
5675 /* Get cached copy if it exists. */
5676 if (elf_section_data (sec)->this_hdr.contents != NULL)
5677 contents = elf_section_data (sec)->this_hdr.contents;
5678 else
5679 {
5680 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5681 if (contents == NULL)
5682 goto relax_return;
5683
5684 free_contents = contents;
5685 if (! bfd_get_section_contents (abfd, sec, contents,
5686 (file_ptr) 0, sec->_raw_size))
5687 goto relax_return;
5688 }
5689 }
5690
5691 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5692
5693 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5694 if ((instruction & 0xfc1fffff) == 0x0000f809)
5695 instruction = 0x04110000;
5696 /* If it was jr <reg>, turn it into b <target>. */
5697 else if ((instruction & 0xfc1fffff) == 0x00000008)
5698 instruction = 0x10000000;
5699 else
5700 continue;
5701
5702 instruction |= (sym_offset & 0xffff);
5703 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5704 changed_contents = TRUE;
5705 }
5706
5707 if (contents != NULL
5708 && elf_section_data (sec)->this_hdr.contents != contents)
5709 {
5710 if (!changed_contents && !link_info->keep_memory)
5711 free (contents);
5712 else
5713 {
5714 /* Cache the section contents for elf_link_input_bfd. */
5715 elf_section_data (sec)->this_hdr.contents = contents;
5716 }
5717 }
5718 return TRUE;
5719
5720 relax_return:
5721 if (free_contents != NULL)
5722 free (free_contents);
5723 return FALSE;
5724 }
5725 \f
5726 /* Adjust a symbol defined by a dynamic object and referenced by a
5727 regular object. The current definition is in some section of the
5728 dynamic object, but we're not including those sections. We have to
5729 change the definition to something the rest of the link can
5730 understand. */
5731
5732 bfd_boolean
5733 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5734 struct bfd_link_info *info;
5735 struct elf_link_hash_entry *h;
5736 {
5737 bfd *dynobj;
5738 struct mips_elf_link_hash_entry *hmips;
5739 asection *s;
5740
5741 dynobj = elf_hash_table (info)->dynobj;
5742
5743 /* Make sure we know what is going on here. */
5744 BFD_ASSERT (dynobj != NULL
5745 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5746 || h->weakdef != NULL
5747 || ((h->elf_link_hash_flags
5748 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5749 && (h->elf_link_hash_flags
5750 & ELF_LINK_HASH_REF_REGULAR) != 0
5751 && (h->elf_link_hash_flags
5752 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5753
5754 /* If this symbol is defined in a dynamic object, we need to copy
5755 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5756 file. */
5757 hmips = (struct mips_elf_link_hash_entry *) h;
5758 if (! info->relocatable
5759 && hmips->possibly_dynamic_relocs != 0
5760 && (h->root.type == bfd_link_hash_defweak
5761 || (h->elf_link_hash_flags
5762 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5763 {
5764 mips_elf_allocate_dynamic_relocations (dynobj,
5765 hmips->possibly_dynamic_relocs);
5766 if (hmips->readonly_reloc)
5767 /* We tell the dynamic linker that there are relocations
5768 against the text segment. */
5769 info->flags |= DF_TEXTREL;
5770 }
5771
5772 /* For a function, create a stub, if allowed. */
5773 if (! hmips->no_fn_stub
5774 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5775 {
5776 if (! elf_hash_table (info)->dynamic_sections_created)
5777 return TRUE;
5778
5779 /* If this symbol is not defined in a regular file, then set
5780 the symbol to the stub location. This is required to make
5781 function pointers compare as equal between the normal
5782 executable and the shared library. */
5783 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5784 {
5785 /* We need .stub section. */
5786 s = bfd_get_section_by_name (dynobj,
5787 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5788 BFD_ASSERT (s != NULL);
5789
5790 h->root.u.def.section = s;
5791 h->root.u.def.value = s->_raw_size;
5792
5793 /* XXX Write this stub address somewhere. */
5794 h->plt.offset = s->_raw_size;
5795
5796 /* Make room for this stub code. */
5797 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5798
5799 /* The last half word of the stub will be filled with the index
5800 of this symbol in .dynsym section. */
5801 return TRUE;
5802 }
5803 }
5804 else if ((h->type == STT_FUNC)
5805 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5806 {
5807 /* This will set the entry for this symbol in the GOT to 0, and
5808 the dynamic linker will take care of this. */
5809 h->root.u.def.value = 0;
5810 return TRUE;
5811 }
5812
5813 /* If this is a weak symbol, and there is a real definition, the
5814 processor independent code will have arranged for us to see the
5815 real definition first, and we can just use the same value. */
5816 if (h->weakdef != NULL)
5817 {
5818 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5819 || h->weakdef->root.type == bfd_link_hash_defweak);
5820 h->root.u.def.section = h->weakdef->root.u.def.section;
5821 h->root.u.def.value = h->weakdef->root.u.def.value;
5822 return TRUE;
5823 }
5824
5825 /* This is a reference to a symbol defined by a dynamic object which
5826 is not a function. */
5827
5828 return TRUE;
5829 }
5830 \f
5831 /* This function is called after all the input files have been read,
5832 and the input sections have been assigned to output sections. We
5833 check for any mips16 stub sections that we can discard. */
5834
5835 bfd_boolean
5836 _bfd_mips_elf_always_size_sections (output_bfd, info)
5837 bfd *output_bfd;
5838 struct bfd_link_info *info;
5839 {
5840 asection *ri;
5841
5842 bfd *dynobj;
5843 asection *s;
5844 struct mips_got_info *g;
5845 int i;
5846 bfd_size_type loadable_size = 0;
5847 bfd_size_type local_gotno;
5848 bfd *sub;
5849
5850 /* The .reginfo section has a fixed size. */
5851 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5852 if (ri != NULL)
5853 bfd_set_section_size (output_bfd, ri,
5854 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5855
5856 if (! (info->relocatable
5857 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5858 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5859 mips_elf_check_mips16_stubs,
5860 (PTR) NULL);
5861
5862 dynobj = elf_hash_table (info)->dynobj;
5863 if (dynobj == NULL)
5864 /* Relocatable links don't have it. */
5865 return TRUE;
5866
5867 g = mips_elf_got_info (dynobj, &s);
5868 if (s == NULL)
5869 return TRUE;
5870
5871 /* Calculate the total loadable size of the output. That
5872 will give us the maximum number of GOT_PAGE entries
5873 required. */
5874 for (sub = info->input_bfds; sub; sub = sub->link_next)
5875 {
5876 asection *subsection;
5877
5878 for (subsection = sub->sections;
5879 subsection;
5880 subsection = subsection->next)
5881 {
5882 if ((subsection->flags & SEC_ALLOC) == 0)
5883 continue;
5884 loadable_size += ((subsection->_raw_size + 0xf)
5885 &~ (bfd_size_type) 0xf);
5886 }
5887 }
5888
5889 /* There has to be a global GOT entry for every symbol with
5890 a dynamic symbol table index of DT_MIPS_GOTSYM or
5891 higher. Therefore, it make sense to put those symbols
5892 that need GOT entries at the end of the symbol table. We
5893 do that here. */
5894 if (! mips_elf_sort_hash_table (info, 1))
5895 return FALSE;
5896
5897 if (g->global_gotsym != NULL)
5898 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5899 else
5900 /* If there are no global symbols, or none requiring
5901 relocations, then GLOBAL_GOTSYM will be NULL. */
5902 i = 0;
5903
5904 /* In the worst case, we'll get one stub per dynamic symbol, plus
5905 one to account for the dummy entry at the end required by IRIX
5906 rld. */
5907 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5908
5909 /* Assume there are two loadable segments consisting of
5910 contiguous sections. Is 5 enough? */
5911 local_gotno = (loadable_size >> 16) + 5;
5912
5913 g->local_gotno += local_gotno;
5914 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5915
5916 g->global_gotno = i;
5917 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5918
5919 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5920 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5921 return FALSE;
5922
5923 return TRUE;
5924 }
5925
5926 /* Set the sizes of the dynamic sections. */
5927
5928 bfd_boolean
5929 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5930 bfd *output_bfd;
5931 struct bfd_link_info *info;
5932 {
5933 bfd *dynobj;
5934 asection *s;
5935 bfd_boolean reltext;
5936
5937 dynobj = elf_hash_table (info)->dynobj;
5938 BFD_ASSERT (dynobj != NULL);
5939
5940 if (elf_hash_table (info)->dynamic_sections_created)
5941 {
5942 /* Set the contents of the .interp section to the interpreter. */
5943 if (! info->shared)
5944 {
5945 s = bfd_get_section_by_name (dynobj, ".interp");
5946 BFD_ASSERT (s != NULL);
5947 s->_raw_size
5948 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5949 s->contents
5950 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5951 }
5952 }
5953
5954 /* The check_relocs and adjust_dynamic_symbol entry points have
5955 determined the sizes of the various dynamic sections. Allocate
5956 memory for them. */
5957 reltext = FALSE;
5958 for (s = dynobj->sections; s != NULL; s = s->next)
5959 {
5960 const char *name;
5961 bfd_boolean strip;
5962
5963 /* It's OK to base decisions on the section name, because none
5964 of the dynobj section names depend upon the input files. */
5965 name = bfd_get_section_name (dynobj, s);
5966
5967 if ((s->flags & SEC_LINKER_CREATED) == 0)
5968 continue;
5969
5970 strip = FALSE;
5971
5972 if (strncmp (name, ".rel", 4) == 0)
5973 {
5974 if (s->_raw_size == 0)
5975 {
5976 /* We only strip the section if the output section name
5977 has the same name. Otherwise, there might be several
5978 input sections for this output section. FIXME: This
5979 code is probably not needed these days anyhow, since
5980 the linker now does not create empty output sections. */
5981 if (s->output_section != NULL
5982 && strcmp (name,
5983 bfd_get_section_name (s->output_section->owner,
5984 s->output_section)) == 0)
5985 strip = TRUE;
5986 }
5987 else
5988 {
5989 const char *outname;
5990 asection *target;
5991
5992 /* If this relocation section applies to a read only
5993 section, then we probably need a DT_TEXTREL entry.
5994 If the relocation section is .rel.dyn, we always
5995 assert a DT_TEXTREL entry rather than testing whether
5996 there exists a relocation to a read only section or
5997 not. */
5998 outname = bfd_get_section_name (output_bfd,
5999 s->output_section);
6000 target = bfd_get_section_by_name (output_bfd, outname + 4);
6001 if ((target != NULL
6002 && (target->flags & SEC_READONLY) != 0
6003 && (target->flags & SEC_ALLOC) != 0)
6004 || strcmp (outname, ".rel.dyn") == 0)
6005 reltext = TRUE;
6006
6007 /* We use the reloc_count field as a counter if we need
6008 to copy relocs into the output file. */
6009 if (strcmp (name, ".rel.dyn") != 0)
6010 s->reloc_count = 0;
6011
6012 /* If combreloc is enabled, elf_link_sort_relocs() will
6013 sort relocations, but in a different way than we do,
6014 and before we're done creating relocations. Also, it
6015 will move them around between input sections'
6016 relocation's contents, so our sorting would be
6017 broken, so don't let it run. */
6018 info->combreloc = 0;
6019 }
6020 }
6021 else if (strncmp (name, ".got", 4) == 0)
6022 {
6023 /* _bfd_mips_elf_always_size_sections() has already done
6024 most of the work, but some symbols may have been mapped
6025 to versions that we must now resolve in the got_entries
6026 hash tables. */
6027 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6028 struct mips_got_info *g = gg;
6029 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6030 unsigned int needed_relocs = 0;
6031
6032 if (gg->next)
6033 {
6034 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6035 set_got_offset_arg.info = info;
6036
6037 mips_elf_resolve_final_got_entries (gg);
6038 for (g = gg->next; g && g->next != gg; g = g->next)
6039 {
6040 unsigned int save_assign;
6041
6042 mips_elf_resolve_final_got_entries (g);
6043
6044 /* Assign offsets to global GOT entries. */
6045 save_assign = g->assigned_gotno;
6046 g->assigned_gotno = g->local_gotno;
6047 set_got_offset_arg.g = g;
6048 set_got_offset_arg.needed_relocs = 0;
6049 htab_traverse (g->got_entries,
6050 mips_elf_set_global_got_offset,
6051 &set_got_offset_arg);
6052 needed_relocs += set_got_offset_arg.needed_relocs;
6053 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6054 <= g->global_gotno);
6055
6056 g->assigned_gotno = save_assign;
6057 if (info->shared)
6058 {
6059 needed_relocs += g->local_gotno - g->assigned_gotno;
6060 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6061 + g->next->global_gotno
6062 + MIPS_RESERVED_GOTNO);
6063 }
6064 }
6065
6066 if (needed_relocs)
6067 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6068 }
6069 }
6070 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6071 {
6072 /* IRIX rld assumes that the function stub isn't at the end
6073 of .text section. So put a dummy. XXX */
6074 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6075 }
6076 else if (! info->shared
6077 && ! mips_elf_hash_table (info)->use_rld_obj_head
6078 && strncmp (name, ".rld_map", 8) == 0)
6079 {
6080 /* We add a room for __rld_map. It will be filled in by the
6081 rtld to contain a pointer to the _r_debug structure. */
6082 s->_raw_size += 4;
6083 }
6084 else if (SGI_COMPAT (output_bfd)
6085 && strncmp (name, ".compact_rel", 12) == 0)
6086 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6087 else if (strcmp (name, ".msym") == 0)
6088 s->_raw_size = (sizeof (Elf32_External_Msym)
6089 * (elf_hash_table (info)->dynsymcount
6090 + bfd_count_sections (output_bfd)));
6091 else if (strncmp (name, ".init", 5) != 0)
6092 {
6093 /* It's not one of our sections, so don't allocate space. */
6094 continue;
6095 }
6096
6097 if (strip)
6098 {
6099 _bfd_strip_section_from_output (info, s);
6100 continue;
6101 }
6102
6103 /* Allocate memory for the section contents. */
6104 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6105 if (s->contents == NULL && s->_raw_size != 0)
6106 {
6107 bfd_set_error (bfd_error_no_memory);
6108 return FALSE;
6109 }
6110 }
6111
6112 if (elf_hash_table (info)->dynamic_sections_created)
6113 {
6114 /* Add some entries to the .dynamic section. We fill in the
6115 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6116 must add the entries now so that we get the correct size for
6117 the .dynamic section. The DT_DEBUG entry is filled in by the
6118 dynamic linker and used by the debugger. */
6119 if (! info->shared)
6120 {
6121 /* SGI object has the equivalence of DT_DEBUG in the
6122 DT_MIPS_RLD_MAP entry. */
6123 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6124 return FALSE;
6125 if (!SGI_COMPAT (output_bfd))
6126 {
6127 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6128 return FALSE;
6129 }
6130 }
6131 else
6132 {
6133 /* Shared libraries on traditional mips have DT_DEBUG. */
6134 if (!SGI_COMPAT (output_bfd))
6135 {
6136 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6137 return FALSE;
6138 }
6139 }
6140
6141 if (reltext && SGI_COMPAT (output_bfd))
6142 info->flags |= DF_TEXTREL;
6143
6144 if ((info->flags & DF_TEXTREL) != 0)
6145 {
6146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6147 return FALSE;
6148 }
6149
6150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6151 return FALSE;
6152
6153 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6154 {
6155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6156 return FALSE;
6157
6158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6159 return FALSE;
6160
6161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6162 return FALSE;
6163 }
6164
6165 if (SGI_COMPAT (output_bfd))
6166 {
6167 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
6168 return FALSE;
6169 }
6170
6171 if (SGI_COMPAT (output_bfd))
6172 {
6173 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
6174 return FALSE;
6175 }
6176
6177 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6178 {
6179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
6180 return FALSE;
6181
6182 s = bfd_get_section_by_name (dynobj, ".liblist");
6183 BFD_ASSERT (s != NULL);
6184
6185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
6186 return FALSE;
6187 }
6188
6189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6190 return FALSE;
6191
6192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6193 return FALSE;
6194
6195 #if 0
6196 /* Time stamps in executable files are a bad idea. */
6197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6198 return FALSE;
6199 #endif
6200
6201 #if 0 /* FIXME */
6202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6203 return FALSE;
6204 #endif
6205
6206 #if 0 /* FIXME */
6207 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6208 return FALSE;
6209 #endif
6210
6211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6212 return FALSE;
6213
6214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6215 return FALSE;
6216
6217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6218 return FALSE;
6219
6220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6221 return FALSE;
6222
6223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6224 return FALSE;
6225
6226 if (IRIX_COMPAT (dynobj) == ict_irix5
6227 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6228 return FALSE;
6229
6230 if (IRIX_COMPAT (dynobj) == ict_irix6
6231 && (bfd_get_section_by_name
6232 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6233 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6234 return FALSE;
6235
6236 if (bfd_get_section_by_name (dynobj, ".msym")
6237 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
6238 return FALSE;
6239 }
6240
6241 return TRUE;
6242 }
6243 \f
6244 /* Relocate a MIPS ELF section. */
6245
6246 bfd_boolean
6247 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6248 contents, relocs, local_syms, local_sections)
6249 bfd *output_bfd;
6250 struct bfd_link_info *info;
6251 bfd *input_bfd;
6252 asection *input_section;
6253 bfd_byte *contents;
6254 Elf_Internal_Rela *relocs;
6255 Elf_Internal_Sym *local_syms;
6256 asection **local_sections;
6257 {
6258 Elf_Internal_Rela *rel;
6259 const Elf_Internal_Rela *relend;
6260 bfd_vma addend = 0;
6261 bfd_boolean use_saved_addend_p = FALSE;
6262 struct elf_backend_data *bed;
6263
6264 bed = get_elf_backend_data (output_bfd);
6265 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6266 for (rel = relocs; rel < relend; ++rel)
6267 {
6268 const char *name;
6269 bfd_vma value;
6270 reloc_howto_type *howto;
6271 bfd_boolean require_jalx;
6272 /* TRUE if the relocation is a RELA relocation, rather than a
6273 REL relocation. */
6274 bfd_boolean rela_relocation_p = TRUE;
6275 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6276 const char * msg = (const char *) NULL;
6277
6278 /* Find the relocation howto for this relocation. */
6279 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6280 {
6281 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6282 64-bit code, but make sure all their addresses are in the
6283 lowermost or uppermost 32-bit section of the 64-bit address
6284 space. Thus, when they use an R_MIPS_64 they mean what is
6285 usually meant by R_MIPS_32, with the exception that the
6286 stored value is sign-extended to 64 bits. */
6287 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6288
6289 /* On big-endian systems, we need to lie about the position
6290 of the reloc. */
6291 if (bfd_big_endian (input_bfd))
6292 rel->r_offset += 4;
6293 }
6294 else
6295 /* NewABI defaults to RELA relocations. */
6296 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6297 NEWABI_P (input_bfd)
6298 && (MIPS_RELOC_RELA_P
6299 (input_bfd, input_section,
6300 rel - relocs)));
6301
6302 if (!use_saved_addend_p)
6303 {
6304 Elf_Internal_Shdr *rel_hdr;
6305
6306 /* If these relocations were originally of the REL variety,
6307 we must pull the addend out of the field that will be
6308 relocated. Otherwise, we simply use the contents of the
6309 RELA relocation. To determine which flavor or relocation
6310 this is, we depend on the fact that the INPUT_SECTION's
6311 REL_HDR is read before its REL_HDR2. */
6312 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6313 if ((size_t) (rel - relocs)
6314 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6315 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6316 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6317 {
6318 /* Note that this is a REL relocation. */
6319 rela_relocation_p = FALSE;
6320
6321 /* Get the addend, which is stored in the input file. */
6322 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6323 contents);
6324 addend &= howto->src_mask;
6325 addend <<= howto->rightshift;
6326
6327 /* For some kinds of relocations, the ADDEND is a
6328 combination of the addend stored in two different
6329 relocations. */
6330 if (r_type == R_MIPS_HI16
6331 || r_type == R_MIPS_GNU_REL_HI16
6332 || (r_type == R_MIPS_GOT16
6333 && mips_elf_local_relocation_p (input_bfd, rel,
6334 local_sections, FALSE)))
6335 {
6336 bfd_vma l;
6337 const Elf_Internal_Rela *lo16_relocation;
6338 reloc_howto_type *lo16_howto;
6339 unsigned int lo;
6340
6341 /* The combined value is the sum of the HI16 addend,
6342 left-shifted by sixteen bits, and the LO16
6343 addend, sign extended. (Usually, the code does
6344 a `lui' of the HI16 value, and then an `addiu' of
6345 the LO16 value.)
6346
6347 Scan ahead to find a matching LO16 relocation. */
6348 if (r_type == R_MIPS_GNU_REL_HI16)
6349 lo = R_MIPS_GNU_REL_LO16;
6350 else
6351 lo = R_MIPS_LO16;
6352 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6353 rel, relend);
6354 if (lo16_relocation == NULL)
6355 return FALSE;
6356
6357 /* Obtain the addend kept there. */
6358 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6359 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6360 input_bfd, contents);
6361 l &= lo16_howto->src_mask;
6362 l <<= lo16_howto->rightshift;
6363 l = _bfd_mips_elf_sign_extend (l, 16);
6364
6365 addend <<= 16;
6366
6367 /* Compute the combined addend. */
6368 addend += l;
6369
6370 /* If PC-relative, subtract the difference between the
6371 address of the LO part of the reloc and the address of
6372 the HI part. The relocation is relative to the LO
6373 part, but mips_elf_calculate_relocation() doesn't
6374 know its address or the difference from the HI part, so
6375 we subtract that difference here. See also the
6376 comment in mips_elf_calculate_relocation(). */
6377 if (r_type == R_MIPS_GNU_REL_HI16)
6378 addend -= (lo16_relocation->r_offset - rel->r_offset);
6379 }
6380 else if (r_type == R_MIPS16_GPREL)
6381 {
6382 /* The addend is scrambled in the object file. See
6383 mips_elf_perform_relocation for details on the
6384 format. */
6385 addend = (((addend & 0x1f0000) >> 5)
6386 | ((addend & 0x7e00000) >> 16)
6387 | (addend & 0x1f));
6388 }
6389 }
6390 else
6391 addend = rel->r_addend;
6392 }
6393
6394 if (info->relocatable)
6395 {
6396 Elf_Internal_Sym *sym;
6397 unsigned long r_symndx;
6398
6399 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6400 && bfd_big_endian (input_bfd))
6401 rel->r_offset -= 4;
6402
6403 /* Since we're just relocating, all we need to do is copy
6404 the relocations back out to the object file, unless
6405 they're against a section symbol, in which case we need
6406 to adjust by the section offset, or unless they're GP
6407 relative in which case we need to adjust by the amount
6408 that we're adjusting GP in this relocatable object. */
6409
6410 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6411 FALSE))
6412 /* There's nothing to do for non-local relocations. */
6413 continue;
6414
6415 if (r_type == R_MIPS16_GPREL
6416 || r_type == R_MIPS_GPREL16
6417 || r_type == R_MIPS_GPREL32
6418 || r_type == R_MIPS_LITERAL)
6419 addend -= (_bfd_get_gp_value (output_bfd)
6420 - _bfd_get_gp_value (input_bfd));
6421
6422 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6423 sym = local_syms + r_symndx;
6424 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6425 /* Adjust the addend appropriately. */
6426 addend += local_sections[r_symndx]->output_offset;
6427
6428 if (howto->partial_inplace)
6429 {
6430 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6431 then we only want to write out the high-order 16 bits.
6432 The subsequent R_MIPS_LO16 will handle the low-order bits.
6433 */
6434 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6435 || r_type == R_MIPS_GNU_REL_HI16)
6436 addend = mips_elf_high (addend);
6437 else if (r_type == R_MIPS_HIGHER)
6438 addend = mips_elf_higher (addend);
6439 else if (r_type == R_MIPS_HIGHEST)
6440 addend = mips_elf_highest (addend);
6441 }
6442
6443 if (rela_relocation_p)
6444 /* If this is a RELA relocation, just update the addend.
6445 We have to cast away constness for REL. */
6446 rel->r_addend = addend;
6447 else
6448 {
6449 /* Otherwise, we have to write the value back out. Note
6450 that we use the source mask, rather than the
6451 destination mask because the place to which we are
6452 writing will be source of the addend in the final
6453 link. */
6454 addend >>= howto->rightshift;
6455 addend &= howto->src_mask;
6456
6457 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6458 /* See the comment above about using R_MIPS_64 in the 32-bit
6459 ABI. Here, we need to update the addend. It would be
6460 possible to get away with just using the R_MIPS_32 reloc
6461 but for endianness. */
6462 {
6463 bfd_vma sign_bits;
6464 bfd_vma low_bits;
6465 bfd_vma high_bits;
6466
6467 if (addend & ((bfd_vma) 1 << 31))
6468 #ifdef BFD64
6469 sign_bits = ((bfd_vma) 1 << 32) - 1;
6470 #else
6471 sign_bits = -1;
6472 #endif
6473 else
6474 sign_bits = 0;
6475
6476 /* If we don't know that we have a 64-bit type,
6477 do two separate stores. */
6478 if (bfd_big_endian (input_bfd))
6479 {
6480 /* Store the sign-bits (which are most significant)
6481 first. */
6482 low_bits = sign_bits;
6483 high_bits = addend;
6484 }
6485 else
6486 {
6487 low_bits = addend;
6488 high_bits = sign_bits;
6489 }
6490 bfd_put_32 (input_bfd, low_bits,
6491 contents + rel->r_offset);
6492 bfd_put_32 (input_bfd, high_bits,
6493 contents + rel->r_offset + 4);
6494 continue;
6495 }
6496
6497 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6498 input_bfd, input_section,
6499 contents, FALSE))
6500 return FALSE;
6501 }
6502
6503 /* Go on to the next relocation. */
6504 continue;
6505 }
6506
6507 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6508 relocations for the same offset. In that case we are
6509 supposed to treat the output of each relocation as the addend
6510 for the next. */
6511 if (rel + 1 < relend
6512 && rel->r_offset == rel[1].r_offset
6513 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6514 use_saved_addend_p = TRUE;
6515 else
6516 use_saved_addend_p = FALSE;
6517
6518 addend >>= howto->rightshift;
6519
6520 /* Figure out what value we are supposed to relocate. */
6521 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6522 input_section, info, rel,
6523 addend, howto, local_syms,
6524 local_sections, &value,
6525 &name, &require_jalx,
6526 use_saved_addend_p))
6527 {
6528 case bfd_reloc_continue:
6529 /* There's nothing to do. */
6530 continue;
6531
6532 case bfd_reloc_undefined:
6533 /* mips_elf_calculate_relocation already called the
6534 undefined_symbol callback. There's no real point in
6535 trying to perform the relocation at this point, so we
6536 just skip ahead to the next relocation. */
6537 continue;
6538
6539 case bfd_reloc_notsupported:
6540 msg = _("internal error: unsupported relocation error");
6541 info->callbacks->warning
6542 (info, msg, name, input_bfd, input_section, rel->r_offset);
6543 return FALSE;
6544
6545 case bfd_reloc_overflow:
6546 if (use_saved_addend_p)
6547 /* Ignore overflow until we reach the last relocation for
6548 a given location. */
6549 ;
6550 else
6551 {
6552 BFD_ASSERT (name != NULL);
6553 if (! ((*info->callbacks->reloc_overflow)
6554 (info, name, howto->name, (bfd_vma) 0,
6555 input_bfd, input_section, rel->r_offset)))
6556 return FALSE;
6557 }
6558 break;
6559
6560 case bfd_reloc_ok:
6561 break;
6562
6563 default:
6564 abort ();
6565 break;
6566 }
6567
6568 /* If we've got another relocation for the address, keep going
6569 until we reach the last one. */
6570 if (use_saved_addend_p)
6571 {
6572 addend = value;
6573 continue;
6574 }
6575
6576 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6577 /* See the comment above about using R_MIPS_64 in the 32-bit
6578 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6579 that calculated the right value. Now, however, we
6580 sign-extend the 32-bit result to 64-bits, and store it as a
6581 64-bit value. We are especially generous here in that we
6582 go to extreme lengths to support this usage on systems with
6583 only a 32-bit VMA. */
6584 {
6585 bfd_vma sign_bits;
6586 bfd_vma low_bits;
6587 bfd_vma high_bits;
6588
6589 if (value & ((bfd_vma) 1 << 31))
6590 #ifdef BFD64
6591 sign_bits = ((bfd_vma) 1 << 32) - 1;
6592 #else
6593 sign_bits = -1;
6594 #endif
6595 else
6596 sign_bits = 0;
6597
6598 /* If we don't know that we have a 64-bit type,
6599 do two separate stores. */
6600 if (bfd_big_endian (input_bfd))
6601 {
6602 /* Undo what we did above. */
6603 rel->r_offset -= 4;
6604 /* Store the sign-bits (which are most significant)
6605 first. */
6606 low_bits = sign_bits;
6607 high_bits = value;
6608 }
6609 else
6610 {
6611 low_bits = value;
6612 high_bits = sign_bits;
6613 }
6614 bfd_put_32 (input_bfd, low_bits,
6615 contents + rel->r_offset);
6616 bfd_put_32 (input_bfd, high_bits,
6617 contents + rel->r_offset + 4);
6618 continue;
6619 }
6620
6621 /* Actually perform the relocation. */
6622 if (! mips_elf_perform_relocation (info, howto, rel, value,
6623 input_bfd, input_section,
6624 contents, require_jalx))
6625 return FALSE;
6626 }
6627
6628 return TRUE;
6629 }
6630 \f
6631 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6632 adjust it appropriately now. */
6633
6634 static void
6635 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6636 bfd *abfd ATTRIBUTE_UNUSED;
6637 const char *name;
6638 Elf_Internal_Sym *sym;
6639 {
6640 /* The linker script takes care of providing names and values for
6641 these, but we must place them into the right sections. */
6642 static const char* const text_section_symbols[] = {
6643 "_ftext",
6644 "_etext",
6645 "__dso_displacement",
6646 "__elf_header",
6647 "__program_header_table",
6648 NULL
6649 };
6650
6651 static const char* const data_section_symbols[] = {
6652 "_fdata",
6653 "_edata",
6654 "_end",
6655 "_fbss",
6656 NULL
6657 };
6658
6659 const char* const *p;
6660 int i;
6661
6662 for (i = 0; i < 2; ++i)
6663 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6664 *p;
6665 ++p)
6666 if (strcmp (*p, name) == 0)
6667 {
6668 /* All of these symbols are given type STT_SECTION by the
6669 IRIX6 linker. */
6670 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6671 sym->st_other = STO_PROTECTED;
6672
6673 /* The IRIX linker puts these symbols in special sections. */
6674 if (i == 0)
6675 sym->st_shndx = SHN_MIPS_TEXT;
6676 else
6677 sym->st_shndx = SHN_MIPS_DATA;
6678
6679 break;
6680 }
6681 }
6682
6683 /* Finish up dynamic symbol handling. We set the contents of various
6684 dynamic sections here. */
6685
6686 bfd_boolean
6687 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6688 bfd *output_bfd;
6689 struct bfd_link_info *info;
6690 struct elf_link_hash_entry *h;
6691 Elf_Internal_Sym *sym;
6692 {
6693 bfd *dynobj;
6694 bfd_vma gval;
6695 asection *sgot;
6696 asection *smsym;
6697 struct mips_got_info *g, *gg;
6698 const char *name;
6699 struct mips_elf_link_hash_entry *mh;
6700
6701 dynobj = elf_hash_table (info)->dynobj;
6702 gval = sym->st_value;
6703 mh = (struct mips_elf_link_hash_entry *) h;
6704
6705 if (h->plt.offset != (bfd_vma) -1)
6706 {
6707 asection *s;
6708 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6709
6710 /* This symbol has a stub. Set it up. */
6711
6712 BFD_ASSERT (h->dynindx != -1);
6713
6714 s = bfd_get_section_by_name (dynobj,
6715 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6716 BFD_ASSERT (s != NULL);
6717
6718 /* FIXME: Can h->dynindex be more than 64K? */
6719 if (h->dynindx & 0xffff0000)
6720 return FALSE;
6721
6722 /* Fill the stub. */
6723 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6724 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6725 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6726 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6727
6728 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6729 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6730
6731 /* Mark the symbol as undefined. plt.offset != -1 occurs
6732 only for the referenced symbol. */
6733 sym->st_shndx = SHN_UNDEF;
6734
6735 /* The run-time linker uses the st_value field of the symbol
6736 to reset the global offset table entry for this external
6737 to its stub address when unlinking a shared object. */
6738 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6739 sym->st_value = gval;
6740 }
6741
6742 BFD_ASSERT (h->dynindx != -1
6743 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6744
6745 sgot = mips_elf_got_section (dynobj, FALSE);
6746 BFD_ASSERT (sgot != NULL);
6747 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6748 g = mips_elf_section_data (sgot)->u.got_info;
6749 BFD_ASSERT (g != NULL);
6750
6751 /* Run through the global symbol table, creating GOT entries for all
6752 the symbols that need them. */
6753 if (g->global_gotsym != NULL
6754 && h->dynindx >= g->global_gotsym->dynindx)
6755 {
6756 bfd_vma offset;
6757 bfd_vma value;
6758
6759 value = sym->st_value;
6760 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6761 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6762 }
6763
6764 if (g->next && h->dynindx != -1)
6765 {
6766 struct mips_got_entry e, *p;
6767 bfd_vma offset;
6768 bfd_vma value;
6769 Elf_Internal_Rela rel[3];
6770 bfd_vma addend = 0;
6771
6772 gg = g;
6773
6774 e.abfd = output_bfd;
6775 e.symndx = -1;
6776 e.d.h = (struct mips_elf_link_hash_entry *)h;
6777
6778 if (info->shared
6779 || h->root.type == bfd_link_hash_undefined
6780 || h->root.type == bfd_link_hash_undefweak)
6781 value = 0;
6782 else if (sym->st_value)
6783 value = sym->st_value;
6784 else
6785 value = h->root.u.def.value;
6786
6787 memset (rel, 0, sizeof (rel));
6788 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6789
6790 for (g = g->next; g->next != gg; g = g->next)
6791 {
6792 if (g->got_entries
6793 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6794 &e)))
6795 {
6796 offset = p->gotidx;
6797 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6798
6799 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6800
6801 if ((info->shared
6802 || (elf_hash_table (info)->dynamic_sections_created
6803 && p->d.h != NULL
6804 && ((p->d.h->root.elf_link_hash_flags
6805 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6806 && ((p->d.h->root.elf_link_hash_flags
6807 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6808 && ! (mips_elf_create_dynamic_relocation
6809 (output_bfd, info, rel,
6810 e.d.h, NULL, value, &addend, sgot)))
6811 return FALSE;
6812 BFD_ASSERT (addend == 0);
6813 }
6814 }
6815 }
6816
6817 /* Create a .msym entry, if appropriate. */
6818 smsym = bfd_get_section_by_name (dynobj, ".msym");
6819 if (smsym)
6820 {
6821 Elf32_Internal_Msym msym;
6822
6823 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6824 /* It is undocumented what the `1' indicates, but IRIX6 uses
6825 this value. */
6826 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6827 bfd_mips_elf_swap_msym_out
6828 (dynobj, &msym,
6829 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6830 }
6831
6832 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6833 name = h->root.root.string;
6834 if (strcmp (name, "_DYNAMIC") == 0
6835 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6836 sym->st_shndx = SHN_ABS;
6837 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6838 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6839 {
6840 sym->st_shndx = SHN_ABS;
6841 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6842 sym->st_value = 1;
6843 }
6844 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6845 {
6846 sym->st_shndx = SHN_ABS;
6847 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6848 sym->st_value = elf_gp (output_bfd);
6849 }
6850 else if (SGI_COMPAT (output_bfd))
6851 {
6852 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6853 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6854 {
6855 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6856 sym->st_other = STO_PROTECTED;
6857 sym->st_value = 0;
6858 sym->st_shndx = SHN_MIPS_DATA;
6859 }
6860 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6861 {
6862 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6863 sym->st_other = STO_PROTECTED;
6864 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6865 sym->st_shndx = SHN_ABS;
6866 }
6867 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6868 {
6869 if (h->type == STT_FUNC)
6870 sym->st_shndx = SHN_MIPS_TEXT;
6871 else if (h->type == STT_OBJECT)
6872 sym->st_shndx = SHN_MIPS_DATA;
6873 }
6874 }
6875
6876 /* Handle the IRIX6-specific symbols. */
6877 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6878 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6879
6880 if (! info->shared)
6881 {
6882 if (! mips_elf_hash_table (info)->use_rld_obj_head
6883 && (strcmp (name, "__rld_map") == 0
6884 || strcmp (name, "__RLD_MAP") == 0))
6885 {
6886 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6887 BFD_ASSERT (s != NULL);
6888 sym->st_value = s->output_section->vma + s->output_offset;
6889 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6890 if (mips_elf_hash_table (info)->rld_value == 0)
6891 mips_elf_hash_table (info)->rld_value = sym->st_value;
6892 }
6893 else if (mips_elf_hash_table (info)->use_rld_obj_head
6894 && strcmp (name, "__rld_obj_head") == 0)
6895 {
6896 /* IRIX6 does not use a .rld_map section. */
6897 if (IRIX_COMPAT (output_bfd) == ict_irix5
6898 || IRIX_COMPAT (output_bfd) == ict_none)
6899 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6900 != NULL);
6901 mips_elf_hash_table (info)->rld_value = sym->st_value;
6902 }
6903 }
6904
6905 /* If this is a mips16 symbol, force the value to be even. */
6906 if (sym->st_other == STO_MIPS16
6907 && (sym->st_value & 1) != 0)
6908 --sym->st_value;
6909
6910 return TRUE;
6911 }
6912
6913 /* Finish up the dynamic sections. */
6914
6915 bfd_boolean
6916 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6917 bfd *output_bfd;
6918 struct bfd_link_info *info;
6919 {
6920 bfd *dynobj;
6921 asection *sdyn;
6922 asection *sgot;
6923 struct mips_got_info *gg, *g;
6924
6925 dynobj = elf_hash_table (info)->dynobj;
6926
6927 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6928
6929 sgot = mips_elf_got_section (dynobj, FALSE);
6930 if (sgot == NULL)
6931 gg = g = NULL;
6932 else
6933 {
6934 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6935 gg = mips_elf_section_data (sgot)->u.got_info;
6936 BFD_ASSERT (gg != NULL);
6937 g = mips_elf_got_for_ibfd (gg, output_bfd);
6938 BFD_ASSERT (g != NULL);
6939 }
6940
6941 if (elf_hash_table (info)->dynamic_sections_created)
6942 {
6943 bfd_byte *b;
6944
6945 BFD_ASSERT (sdyn != NULL);
6946 BFD_ASSERT (g != NULL);
6947
6948 for (b = sdyn->contents;
6949 b < sdyn->contents + sdyn->_raw_size;
6950 b += MIPS_ELF_DYN_SIZE (dynobj))
6951 {
6952 Elf_Internal_Dyn dyn;
6953 const char *name;
6954 size_t elemsize;
6955 asection *s;
6956 bfd_boolean swap_out_p;
6957
6958 /* Read in the current dynamic entry. */
6959 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6960
6961 /* Assume that we're going to modify it and write it out. */
6962 swap_out_p = TRUE;
6963
6964 switch (dyn.d_tag)
6965 {
6966 case DT_RELENT:
6967 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6968 BFD_ASSERT (s != NULL);
6969 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6970 break;
6971
6972 case DT_STRSZ:
6973 /* Rewrite DT_STRSZ. */
6974 dyn.d_un.d_val =
6975 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6976 break;
6977
6978 case DT_PLTGOT:
6979 name = ".got";
6980 goto get_vma;
6981 case DT_MIPS_CONFLICT:
6982 name = ".conflict";
6983 goto get_vma;
6984 case DT_MIPS_LIBLIST:
6985 name = ".liblist";
6986 get_vma:
6987 s = bfd_get_section_by_name (output_bfd, name);
6988 BFD_ASSERT (s != NULL);
6989 dyn.d_un.d_ptr = s->vma;
6990 break;
6991
6992 case DT_MIPS_RLD_VERSION:
6993 dyn.d_un.d_val = 1; /* XXX */
6994 break;
6995
6996 case DT_MIPS_FLAGS:
6997 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6998 break;
6999
7000 case DT_MIPS_CONFLICTNO:
7001 name = ".conflict";
7002 elemsize = sizeof (Elf32_Conflict);
7003 goto set_elemno;
7004
7005 case DT_MIPS_LIBLISTNO:
7006 name = ".liblist";
7007 elemsize = sizeof (Elf32_Lib);
7008 set_elemno:
7009 s = bfd_get_section_by_name (output_bfd, name);
7010 if (s != NULL)
7011 {
7012 if (s->_cooked_size != 0)
7013 dyn.d_un.d_val = s->_cooked_size / elemsize;
7014 else
7015 dyn.d_un.d_val = s->_raw_size / elemsize;
7016 }
7017 else
7018 dyn.d_un.d_val = 0;
7019 break;
7020
7021 case DT_MIPS_TIME_STAMP:
7022 time ((time_t *) &dyn.d_un.d_val);
7023 break;
7024
7025 case DT_MIPS_ICHECKSUM:
7026 /* XXX FIXME: */
7027 swap_out_p = FALSE;
7028 break;
7029
7030 case DT_MIPS_IVERSION:
7031 /* XXX FIXME: */
7032 swap_out_p = FALSE;
7033 break;
7034
7035 case DT_MIPS_BASE_ADDRESS:
7036 s = output_bfd->sections;
7037 BFD_ASSERT (s != NULL);
7038 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7039 break;
7040
7041 case DT_MIPS_LOCAL_GOTNO:
7042 dyn.d_un.d_val = g->local_gotno;
7043 break;
7044
7045 case DT_MIPS_UNREFEXTNO:
7046 /* The index into the dynamic symbol table which is the
7047 entry of the first external symbol that is not
7048 referenced within the same object. */
7049 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7050 break;
7051
7052 case DT_MIPS_GOTSYM:
7053 if (gg->global_gotsym)
7054 {
7055 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7056 break;
7057 }
7058 /* In case if we don't have global got symbols we default
7059 to setting DT_MIPS_GOTSYM to the same value as
7060 DT_MIPS_SYMTABNO, so we just fall through. */
7061
7062 case DT_MIPS_SYMTABNO:
7063 name = ".dynsym";
7064 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7065 s = bfd_get_section_by_name (output_bfd, name);
7066 BFD_ASSERT (s != NULL);
7067
7068 if (s->_cooked_size != 0)
7069 dyn.d_un.d_val = s->_cooked_size / elemsize;
7070 else
7071 dyn.d_un.d_val = s->_raw_size / elemsize;
7072 break;
7073
7074 case DT_MIPS_HIPAGENO:
7075 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7076 break;
7077
7078 case DT_MIPS_RLD_MAP:
7079 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7080 break;
7081
7082 case DT_MIPS_OPTIONS:
7083 s = (bfd_get_section_by_name
7084 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7085 dyn.d_un.d_ptr = s->vma;
7086 break;
7087
7088 case DT_MIPS_MSYM:
7089 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7090 dyn.d_un.d_ptr = s->vma;
7091 break;
7092
7093 default:
7094 swap_out_p = FALSE;
7095 break;
7096 }
7097
7098 if (swap_out_p)
7099 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7100 (dynobj, &dyn, b);
7101 }
7102 }
7103
7104 /* The first entry of the global offset table will be filled at
7105 runtime. The second entry will be used by some runtime loaders.
7106 This isn't the case of IRIX rld. */
7107 if (sgot != NULL && sgot->_raw_size > 0)
7108 {
7109 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7110 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7111 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7112 }
7113
7114 if (sgot != NULL)
7115 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7116 = MIPS_ELF_GOT_SIZE (output_bfd);
7117
7118 /* Generate dynamic relocations for the non-primary gots. */
7119 if (gg != NULL && gg->next)
7120 {
7121 Elf_Internal_Rela rel[3];
7122 bfd_vma addend = 0;
7123
7124 memset (rel, 0, sizeof (rel));
7125 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7126
7127 for (g = gg->next; g->next != gg; g = g->next)
7128 {
7129 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7130
7131 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7132 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7133 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7134 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7135
7136 if (! info->shared)
7137 continue;
7138
7139 while (index < g->assigned_gotno)
7140 {
7141 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7142 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7143 if (!(mips_elf_create_dynamic_relocation
7144 (output_bfd, info, rel, NULL,
7145 bfd_abs_section_ptr,
7146 0, &addend, sgot)))
7147 return FALSE;
7148 BFD_ASSERT (addend == 0);
7149 }
7150 }
7151 }
7152
7153 {
7154 asection *smsym;
7155 asection *s;
7156 Elf32_compact_rel cpt;
7157
7158 /* ??? The section symbols for the output sections were set up in
7159 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7160 symbols. Should we do so? */
7161
7162 smsym = bfd_get_section_by_name (dynobj, ".msym");
7163 if (smsym != NULL)
7164 {
7165 Elf32_Internal_Msym msym;
7166
7167 msym.ms_hash_value = 0;
7168 msym.ms_info = ELF32_MS_INFO (0, 1);
7169
7170 for (s = output_bfd->sections; s != NULL; s = s->next)
7171 {
7172 long dynindx = elf_section_data (s)->dynindx;
7173
7174 bfd_mips_elf_swap_msym_out
7175 (output_bfd, &msym,
7176 (((Elf32_External_Msym *) smsym->contents)
7177 + dynindx));
7178 }
7179 }
7180
7181 if (SGI_COMPAT (output_bfd))
7182 {
7183 /* Write .compact_rel section out. */
7184 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7185 if (s != NULL)
7186 {
7187 cpt.id1 = 1;
7188 cpt.num = s->reloc_count;
7189 cpt.id2 = 2;
7190 cpt.offset = (s->output_section->filepos
7191 + sizeof (Elf32_External_compact_rel));
7192 cpt.reserved0 = 0;
7193 cpt.reserved1 = 0;
7194 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7195 ((Elf32_External_compact_rel *)
7196 s->contents));
7197
7198 /* Clean up a dummy stub function entry in .text. */
7199 s = bfd_get_section_by_name (dynobj,
7200 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7201 if (s != NULL)
7202 {
7203 file_ptr dummy_offset;
7204
7205 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7206 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7207 memset (s->contents + dummy_offset, 0,
7208 MIPS_FUNCTION_STUB_SIZE);
7209 }
7210 }
7211 }
7212
7213 /* We need to sort the entries of the dynamic relocation section. */
7214
7215 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7216
7217 if (s != NULL
7218 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7219 {
7220 reldyn_sorting_bfd = output_bfd;
7221
7222 if (ABI_64_P (output_bfd))
7223 qsort ((Elf64_External_Rel *) s->contents + 1,
7224 (size_t) s->reloc_count - 1,
7225 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7226 else
7227 qsort ((Elf32_External_Rel *) s->contents + 1,
7228 (size_t) s->reloc_count - 1,
7229 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7230 }
7231 }
7232
7233 return TRUE;
7234 }
7235
7236
7237 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7238
7239 static void
7240 mips_set_isa_flags (abfd)
7241 bfd *abfd;
7242 {
7243 flagword val;
7244
7245 switch (bfd_get_mach (abfd))
7246 {
7247 default:
7248 case bfd_mach_mips3000:
7249 val = E_MIPS_ARCH_1;
7250 break;
7251
7252 case bfd_mach_mips3900:
7253 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7254 break;
7255
7256 case bfd_mach_mips6000:
7257 val = E_MIPS_ARCH_2;
7258 break;
7259
7260 case bfd_mach_mips4000:
7261 case bfd_mach_mips4300:
7262 case bfd_mach_mips4400:
7263 case bfd_mach_mips4600:
7264 val = E_MIPS_ARCH_3;
7265 break;
7266
7267 case bfd_mach_mips4010:
7268 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7269 break;
7270
7271 case bfd_mach_mips4100:
7272 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7273 break;
7274
7275 case bfd_mach_mips4111:
7276 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7277 break;
7278
7279 case bfd_mach_mips4120:
7280 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7281 break;
7282
7283 case bfd_mach_mips4650:
7284 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7285 break;
7286
7287 case bfd_mach_mips5400:
7288 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7289 break;
7290
7291 case bfd_mach_mips5500:
7292 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7293 break;
7294
7295 case bfd_mach_mips5000:
7296 case bfd_mach_mips8000:
7297 case bfd_mach_mips10000:
7298 case bfd_mach_mips12000:
7299 val = E_MIPS_ARCH_4;
7300 break;
7301
7302 case bfd_mach_mips5:
7303 val = E_MIPS_ARCH_5;
7304 break;
7305
7306 case bfd_mach_mips_sb1:
7307 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7308 break;
7309
7310 case bfd_mach_mipsisa32:
7311 val = E_MIPS_ARCH_32;
7312 break;
7313
7314 case bfd_mach_mipsisa64:
7315 val = E_MIPS_ARCH_64;
7316 break;
7317
7318 case bfd_mach_mipsisa32r2:
7319 val = E_MIPS_ARCH_32R2;
7320 break;
7321 }
7322 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7323 elf_elfheader (abfd)->e_flags |= val;
7324
7325 }
7326
7327
7328 /* The final processing done just before writing out a MIPS ELF object
7329 file. This gets the MIPS architecture right based on the machine
7330 number. This is used by both the 32-bit and the 64-bit ABI. */
7331
7332 void
7333 _bfd_mips_elf_final_write_processing (abfd, linker)
7334 bfd *abfd;
7335 bfd_boolean linker ATTRIBUTE_UNUSED;
7336 {
7337 unsigned int i;
7338 Elf_Internal_Shdr **hdrpp;
7339 const char *name;
7340 asection *sec;
7341
7342 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7343 is nonzero. This is for compatibility with old objects, which used
7344 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7345 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7346 mips_set_isa_flags (abfd);
7347
7348 /* Set the sh_info field for .gptab sections and other appropriate
7349 info for each special section. */
7350 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7351 i < elf_numsections (abfd);
7352 i++, hdrpp++)
7353 {
7354 switch ((*hdrpp)->sh_type)
7355 {
7356 case SHT_MIPS_MSYM:
7357 case SHT_MIPS_LIBLIST:
7358 sec = bfd_get_section_by_name (abfd, ".dynstr");
7359 if (sec != NULL)
7360 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7361 break;
7362
7363 case SHT_MIPS_GPTAB:
7364 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7365 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7366 BFD_ASSERT (name != NULL
7367 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7368 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7369 BFD_ASSERT (sec != NULL);
7370 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7371 break;
7372
7373 case SHT_MIPS_CONTENT:
7374 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7375 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7376 BFD_ASSERT (name != NULL
7377 && strncmp (name, ".MIPS.content",
7378 sizeof ".MIPS.content" - 1) == 0);
7379 sec = bfd_get_section_by_name (abfd,
7380 name + sizeof ".MIPS.content" - 1);
7381 BFD_ASSERT (sec != NULL);
7382 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7383 break;
7384
7385 case SHT_MIPS_SYMBOL_LIB:
7386 sec = bfd_get_section_by_name (abfd, ".dynsym");
7387 if (sec != NULL)
7388 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7389 sec = bfd_get_section_by_name (abfd, ".liblist");
7390 if (sec != NULL)
7391 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7392 break;
7393
7394 case SHT_MIPS_EVENTS:
7395 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7396 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7397 BFD_ASSERT (name != NULL);
7398 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7399 sec = bfd_get_section_by_name (abfd,
7400 name + sizeof ".MIPS.events" - 1);
7401 else
7402 {
7403 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7404 sizeof ".MIPS.post_rel" - 1) == 0);
7405 sec = bfd_get_section_by_name (abfd,
7406 (name
7407 + sizeof ".MIPS.post_rel" - 1));
7408 }
7409 BFD_ASSERT (sec != NULL);
7410 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7411 break;
7412
7413 }
7414 }
7415 }
7416 \f
7417 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7418 segments. */
7419
7420 int
7421 _bfd_mips_elf_additional_program_headers (abfd)
7422 bfd *abfd;
7423 {
7424 asection *s;
7425 int ret = 0;
7426
7427 /* See if we need a PT_MIPS_REGINFO segment. */
7428 s = bfd_get_section_by_name (abfd, ".reginfo");
7429 if (s && (s->flags & SEC_LOAD))
7430 ++ret;
7431
7432 /* See if we need a PT_MIPS_OPTIONS segment. */
7433 if (IRIX_COMPAT (abfd) == ict_irix6
7434 && bfd_get_section_by_name (abfd,
7435 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7436 ++ret;
7437
7438 /* See if we need a PT_MIPS_RTPROC segment. */
7439 if (IRIX_COMPAT (abfd) == ict_irix5
7440 && bfd_get_section_by_name (abfd, ".dynamic")
7441 && bfd_get_section_by_name (abfd, ".mdebug"))
7442 ++ret;
7443
7444 return ret;
7445 }
7446
7447 /* Modify the segment map for an IRIX5 executable. */
7448
7449 bfd_boolean
7450 _bfd_mips_elf_modify_segment_map (abfd)
7451 bfd *abfd;
7452 {
7453 asection *s;
7454 struct elf_segment_map *m, **pm;
7455 bfd_size_type amt;
7456
7457 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7458 segment. */
7459 s = bfd_get_section_by_name (abfd, ".reginfo");
7460 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7461 {
7462 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7463 if (m->p_type == PT_MIPS_REGINFO)
7464 break;
7465 if (m == NULL)
7466 {
7467 amt = sizeof *m;
7468 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7469 if (m == NULL)
7470 return FALSE;
7471
7472 m->p_type = PT_MIPS_REGINFO;
7473 m->count = 1;
7474 m->sections[0] = s;
7475
7476 /* We want to put it after the PHDR and INTERP segments. */
7477 pm = &elf_tdata (abfd)->segment_map;
7478 while (*pm != NULL
7479 && ((*pm)->p_type == PT_PHDR
7480 || (*pm)->p_type == PT_INTERP))
7481 pm = &(*pm)->next;
7482
7483 m->next = *pm;
7484 *pm = m;
7485 }
7486 }
7487
7488 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7489 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7490 PT_OPTIONS segment immediately following the program header
7491 table. */
7492 if (NEWABI_P (abfd)
7493 /* On non-IRIX6 new abi, we'll have already created a segment
7494 for this section, so don't create another. I'm not sure this
7495 is not also the case for IRIX 6, but I can't test it right
7496 now. */
7497 && IRIX_COMPAT (abfd) == ict_irix6)
7498 {
7499 for (s = abfd->sections; s; s = s->next)
7500 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7501 break;
7502
7503 if (s)
7504 {
7505 struct elf_segment_map *options_segment;
7506
7507 /* Usually, there's a program header table. But, sometimes
7508 there's not (like when running the `ld' testsuite). So,
7509 if there's no program header table, we just put the
7510 options segment at the end. */
7511 for (pm = &elf_tdata (abfd)->segment_map;
7512 *pm != NULL;
7513 pm = &(*pm)->next)
7514 if ((*pm)->p_type == PT_PHDR)
7515 break;
7516
7517 amt = sizeof (struct elf_segment_map);
7518 options_segment = bfd_zalloc (abfd, amt);
7519 options_segment->next = *pm;
7520 options_segment->p_type = PT_MIPS_OPTIONS;
7521 options_segment->p_flags = PF_R;
7522 options_segment->p_flags_valid = TRUE;
7523 options_segment->count = 1;
7524 options_segment->sections[0] = s;
7525 *pm = options_segment;
7526 }
7527 }
7528 else
7529 {
7530 if (IRIX_COMPAT (abfd) == ict_irix5)
7531 {
7532 /* If there are .dynamic and .mdebug sections, we make a room
7533 for the RTPROC header. FIXME: Rewrite without section names. */
7534 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7535 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7536 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7537 {
7538 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7539 if (m->p_type == PT_MIPS_RTPROC)
7540 break;
7541 if (m == NULL)
7542 {
7543 amt = sizeof *m;
7544 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7545 if (m == NULL)
7546 return FALSE;
7547
7548 m->p_type = PT_MIPS_RTPROC;
7549
7550 s = bfd_get_section_by_name (abfd, ".rtproc");
7551 if (s == NULL)
7552 {
7553 m->count = 0;
7554 m->p_flags = 0;
7555 m->p_flags_valid = 1;
7556 }
7557 else
7558 {
7559 m->count = 1;
7560 m->sections[0] = s;
7561 }
7562
7563 /* We want to put it after the DYNAMIC segment. */
7564 pm = &elf_tdata (abfd)->segment_map;
7565 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7566 pm = &(*pm)->next;
7567 if (*pm != NULL)
7568 pm = &(*pm)->next;
7569
7570 m->next = *pm;
7571 *pm = m;
7572 }
7573 }
7574 }
7575 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7576 .dynstr, .dynsym, and .hash sections, and everything in
7577 between. */
7578 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7579 pm = &(*pm)->next)
7580 if ((*pm)->p_type == PT_DYNAMIC)
7581 break;
7582 m = *pm;
7583 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7584 {
7585 /* For a normal mips executable the permissions for the PT_DYNAMIC
7586 segment are read, write and execute. We do that here since
7587 the code in elf.c sets only the read permission. This matters
7588 sometimes for the dynamic linker. */
7589 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7590 {
7591 m->p_flags = PF_R | PF_W | PF_X;
7592 m->p_flags_valid = 1;
7593 }
7594 }
7595 if (m != NULL
7596 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7597 {
7598 static const char *sec_names[] =
7599 {
7600 ".dynamic", ".dynstr", ".dynsym", ".hash"
7601 };
7602 bfd_vma low, high;
7603 unsigned int i, c;
7604 struct elf_segment_map *n;
7605
7606 low = 0xffffffff;
7607 high = 0;
7608 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7609 {
7610 s = bfd_get_section_by_name (abfd, sec_names[i]);
7611 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7612 {
7613 bfd_size_type sz;
7614
7615 if (low > s->vma)
7616 low = s->vma;
7617 sz = s->_cooked_size;
7618 if (sz == 0)
7619 sz = s->_raw_size;
7620 if (high < s->vma + sz)
7621 high = s->vma + sz;
7622 }
7623 }
7624
7625 c = 0;
7626 for (s = abfd->sections; s != NULL; s = s->next)
7627 if ((s->flags & SEC_LOAD) != 0
7628 && s->vma >= low
7629 && ((s->vma
7630 + (s->_cooked_size !=
7631 0 ? s->_cooked_size : s->_raw_size)) <= high))
7632 ++c;
7633
7634 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7635 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7636 if (n == NULL)
7637 return FALSE;
7638 *n = *m;
7639 n->count = c;
7640
7641 i = 0;
7642 for (s = abfd->sections; s != NULL; s = s->next)
7643 {
7644 if ((s->flags & SEC_LOAD) != 0
7645 && s->vma >= low
7646 && ((s->vma
7647 + (s->_cooked_size != 0 ?
7648 s->_cooked_size : s->_raw_size)) <= high))
7649 {
7650 n->sections[i] = s;
7651 ++i;
7652 }
7653 }
7654
7655 *pm = n;
7656 }
7657 }
7658
7659 return TRUE;
7660 }
7661 \f
7662 /* Return the section that should be marked against GC for a given
7663 relocation. */
7664
7665 asection *
7666 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7667 asection *sec;
7668 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7669 Elf_Internal_Rela *rel;
7670 struct elf_link_hash_entry *h;
7671 Elf_Internal_Sym *sym;
7672 {
7673 /* ??? Do mips16 stub sections need to be handled special? */
7674
7675 if (h != NULL)
7676 {
7677 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7678 {
7679 case R_MIPS_GNU_VTINHERIT:
7680 case R_MIPS_GNU_VTENTRY:
7681 break;
7682
7683 default:
7684 switch (h->root.type)
7685 {
7686 case bfd_link_hash_defined:
7687 case bfd_link_hash_defweak:
7688 return h->root.u.def.section;
7689
7690 case bfd_link_hash_common:
7691 return h->root.u.c.p->section;
7692
7693 default:
7694 break;
7695 }
7696 }
7697 }
7698 else
7699 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7700
7701 return NULL;
7702 }
7703
7704 /* Update the got entry reference counts for the section being removed. */
7705
7706 bfd_boolean
7707 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7708 bfd *abfd ATTRIBUTE_UNUSED;
7709 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7710 asection *sec ATTRIBUTE_UNUSED;
7711 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7712 {
7713 #if 0
7714 Elf_Internal_Shdr *symtab_hdr;
7715 struct elf_link_hash_entry **sym_hashes;
7716 bfd_signed_vma *local_got_refcounts;
7717 const Elf_Internal_Rela *rel, *relend;
7718 unsigned long r_symndx;
7719 struct elf_link_hash_entry *h;
7720
7721 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7722 sym_hashes = elf_sym_hashes (abfd);
7723 local_got_refcounts = elf_local_got_refcounts (abfd);
7724
7725 relend = relocs + sec->reloc_count;
7726 for (rel = relocs; rel < relend; rel++)
7727 switch (ELF_R_TYPE (abfd, rel->r_info))
7728 {
7729 case R_MIPS_GOT16:
7730 case R_MIPS_CALL16:
7731 case R_MIPS_CALL_HI16:
7732 case R_MIPS_CALL_LO16:
7733 case R_MIPS_GOT_HI16:
7734 case R_MIPS_GOT_LO16:
7735 case R_MIPS_GOT_DISP:
7736 case R_MIPS_GOT_PAGE:
7737 case R_MIPS_GOT_OFST:
7738 /* ??? It would seem that the existing MIPS code does no sort
7739 of reference counting or whatnot on its GOT and PLT entries,
7740 so it is not possible to garbage collect them at this time. */
7741 break;
7742
7743 default:
7744 break;
7745 }
7746 #endif
7747
7748 return TRUE;
7749 }
7750 \f
7751 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7752 hiding the old indirect symbol. Process additional relocation
7753 information. Also called for weakdefs, in which case we just let
7754 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7755
7756 void
7757 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7758 struct elf_backend_data *bed;
7759 struct elf_link_hash_entry *dir, *ind;
7760 {
7761 struct mips_elf_link_hash_entry *dirmips, *indmips;
7762
7763 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7764
7765 if (ind->root.type != bfd_link_hash_indirect)
7766 return;
7767
7768 dirmips = (struct mips_elf_link_hash_entry *) dir;
7769 indmips = (struct mips_elf_link_hash_entry *) ind;
7770 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7771 if (indmips->readonly_reloc)
7772 dirmips->readonly_reloc = TRUE;
7773 if (dirmips->min_dyn_reloc_index == 0
7774 || (indmips->min_dyn_reloc_index != 0
7775 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7776 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7777 if (indmips->no_fn_stub)
7778 dirmips->no_fn_stub = TRUE;
7779 }
7780
7781 void
7782 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7783 struct bfd_link_info *info;
7784 struct elf_link_hash_entry *entry;
7785 bfd_boolean force_local;
7786 {
7787 bfd *dynobj;
7788 asection *got;
7789 struct mips_got_info *g;
7790 struct mips_elf_link_hash_entry *h;
7791
7792 h = (struct mips_elf_link_hash_entry *) entry;
7793 if (h->forced_local)
7794 return;
7795 h->forced_local = force_local;
7796
7797 dynobj = elf_hash_table (info)->dynobj;
7798 if (dynobj != NULL && force_local)
7799 {
7800 got = mips_elf_got_section (dynobj, FALSE);
7801 g = mips_elf_section_data (got)->u.got_info;
7802
7803 if (g->next)
7804 {
7805 struct mips_got_entry e;
7806 struct mips_got_info *gg = g;
7807
7808 /* Since we're turning what used to be a global symbol into a
7809 local one, bump up the number of local entries of each GOT
7810 that had an entry for it. This will automatically decrease
7811 the number of global entries, since global_gotno is actually
7812 the upper limit of global entries. */
7813 e.abfd = dynobj;
7814 e.symndx = -1;
7815 e.d.h = h;
7816
7817 for (g = g->next; g != gg; g = g->next)
7818 if (htab_find (g->got_entries, &e))
7819 {
7820 BFD_ASSERT (g->global_gotno > 0);
7821 g->local_gotno++;
7822 g->global_gotno--;
7823 }
7824
7825 /* If this was a global symbol forced into the primary GOT, we
7826 no longer need an entry for it. We can't release the entry
7827 at this point, but we must at least stop counting it as one
7828 of the symbols that required a forced got entry. */
7829 if (h->root.got.offset == 2)
7830 {
7831 BFD_ASSERT (gg->assigned_gotno > 0);
7832 gg->assigned_gotno--;
7833 }
7834 }
7835 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7836 /* If we haven't got through GOT allocation yet, just bump up the
7837 number of local entries, as this symbol won't be counted as
7838 global. */
7839 g->local_gotno++;
7840 else if (h->root.got.offset == 1)
7841 {
7842 /* If we're past non-multi-GOT allocation and this symbol had
7843 been marked for a global got entry, give it a local entry
7844 instead. */
7845 BFD_ASSERT (g->global_gotno > 0);
7846 g->local_gotno++;
7847 g->global_gotno--;
7848 }
7849 }
7850
7851 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7852 }
7853 \f
7854 #define PDR_SIZE 32
7855
7856 bfd_boolean
7857 _bfd_mips_elf_discard_info (abfd, cookie, info)
7858 bfd *abfd;
7859 struct elf_reloc_cookie *cookie;
7860 struct bfd_link_info *info;
7861 {
7862 asection *o;
7863 bfd_boolean ret = FALSE;
7864 unsigned char *tdata;
7865 size_t i, skip;
7866
7867 o = bfd_get_section_by_name (abfd, ".pdr");
7868 if (! o)
7869 return FALSE;
7870 if (o->_raw_size == 0)
7871 return FALSE;
7872 if (o->_raw_size % PDR_SIZE != 0)
7873 return FALSE;
7874 if (o->output_section != NULL
7875 && bfd_is_abs_section (o->output_section))
7876 return FALSE;
7877
7878 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7879 if (! tdata)
7880 return FALSE;
7881
7882 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7883 (Elf_Internal_Rela *) NULL,
7884 info->keep_memory);
7885 if (!cookie->rels)
7886 {
7887 free (tdata);
7888 return FALSE;
7889 }
7890
7891 cookie->rel = cookie->rels;
7892 cookie->relend = cookie->rels + o->reloc_count;
7893
7894 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7895 {
7896 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7897 {
7898 tdata[i] = 1;
7899 skip ++;
7900 }
7901 }
7902
7903 if (skip != 0)
7904 {
7905 mips_elf_section_data (o)->u.tdata = tdata;
7906 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7907 ret = TRUE;
7908 }
7909 else
7910 free (tdata);
7911
7912 if (! info->keep_memory)
7913 free (cookie->rels);
7914
7915 return ret;
7916 }
7917
7918 bfd_boolean
7919 _bfd_mips_elf_ignore_discarded_relocs (sec)
7920 asection *sec;
7921 {
7922 if (strcmp (sec->name, ".pdr") == 0)
7923 return TRUE;
7924 return FALSE;
7925 }
7926
7927 bfd_boolean
7928 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7929 bfd *output_bfd;
7930 asection *sec;
7931 bfd_byte *contents;
7932 {
7933 bfd_byte *to, *from, *end;
7934 int i;
7935
7936 if (strcmp (sec->name, ".pdr") != 0)
7937 return FALSE;
7938
7939 if (mips_elf_section_data (sec)->u.tdata == NULL)
7940 return FALSE;
7941
7942 to = contents;
7943 end = contents + sec->_raw_size;
7944 for (from = contents, i = 0;
7945 from < end;
7946 from += PDR_SIZE, i++)
7947 {
7948 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7949 continue;
7950 if (to != from)
7951 memcpy (to, from, PDR_SIZE);
7952 to += PDR_SIZE;
7953 }
7954 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7955 (file_ptr) sec->output_offset,
7956 sec->_cooked_size);
7957 return TRUE;
7958 }
7959 \f
7960 /* MIPS ELF uses a special find_nearest_line routine in order the
7961 handle the ECOFF debugging information. */
7962
7963 struct mips_elf_find_line
7964 {
7965 struct ecoff_debug_info d;
7966 struct ecoff_find_line i;
7967 };
7968
7969 bfd_boolean
7970 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7971 functionname_ptr, line_ptr)
7972 bfd *abfd;
7973 asection *section;
7974 asymbol **symbols;
7975 bfd_vma offset;
7976 const char **filename_ptr;
7977 const char **functionname_ptr;
7978 unsigned int *line_ptr;
7979 {
7980 asection *msec;
7981
7982 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7983 filename_ptr, functionname_ptr,
7984 line_ptr))
7985 return TRUE;
7986
7987 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7988 filename_ptr, functionname_ptr,
7989 line_ptr,
7990 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7991 &elf_tdata (abfd)->dwarf2_find_line_info))
7992 return TRUE;
7993
7994 msec = bfd_get_section_by_name (abfd, ".mdebug");
7995 if (msec != NULL)
7996 {
7997 flagword origflags;
7998 struct mips_elf_find_line *fi;
7999 const struct ecoff_debug_swap * const swap =
8000 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8001
8002 /* If we are called during a link, mips_elf_final_link may have
8003 cleared the SEC_HAS_CONTENTS field. We force it back on here
8004 if appropriate (which it normally will be). */
8005 origflags = msec->flags;
8006 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8007 msec->flags |= SEC_HAS_CONTENTS;
8008
8009 fi = elf_tdata (abfd)->find_line_info;
8010 if (fi == NULL)
8011 {
8012 bfd_size_type external_fdr_size;
8013 char *fraw_src;
8014 char *fraw_end;
8015 struct fdr *fdr_ptr;
8016 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8017
8018 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
8019 if (fi == NULL)
8020 {
8021 msec->flags = origflags;
8022 return FALSE;
8023 }
8024
8025 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8026 {
8027 msec->flags = origflags;
8028 return FALSE;
8029 }
8030
8031 /* Swap in the FDR information. */
8032 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8033 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8034 if (fi->d.fdr == NULL)
8035 {
8036 msec->flags = origflags;
8037 return FALSE;
8038 }
8039 external_fdr_size = swap->external_fdr_size;
8040 fdr_ptr = fi->d.fdr;
8041 fraw_src = (char *) fi->d.external_fdr;
8042 fraw_end = (fraw_src
8043 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8044 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8045 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8046
8047 elf_tdata (abfd)->find_line_info = fi;
8048
8049 /* Note that we don't bother to ever free this information.
8050 find_nearest_line is either called all the time, as in
8051 objdump -l, so the information should be saved, or it is
8052 rarely called, as in ld error messages, so the memory
8053 wasted is unimportant. Still, it would probably be a
8054 good idea for free_cached_info to throw it away. */
8055 }
8056
8057 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8058 &fi->i, filename_ptr, functionname_ptr,
8059 line_ptr))
8060 {
8061 msec->flags = origflags;
8062 return TRUE;
8063 }
8064
8065 msec->flags = origflags;
8066 }
8067
8068 /* Fall back on the generic ELF find_nearest_line routine. */
8069
8070 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8071 filename_ptr, functionname_ptr,
8072 line_ptr);
8073 }
8074 \f
8075 /* When are writing out the .options or .MIPS.options section,
8076 remember the bytes we are writing out, so that we can install the
8077 GP value in the section_processing routine. */
8078
8079 bfd_boolean
8080 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8081 bfd *abfd;
8082 sec_ptr section;
8083 PTR location;
8084 file_ptr offset;
8085 bfd_size_type count;
8086 {
8087 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8088 {
8089 bfd_byte *c;
8090
8091 if (elf_section_data (section) == NULL)
8092 {
8093 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8094 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8095 if (elf_section_data (section) == NULL)
8096 return FALSE;
8097 }
8098 c = mips_elf_section_data (section)->u.tdata;
8099 if (c == NULL)
8100 {
8101 bfd_size_type size;
8102
8103 if (section->_cooked_size != 0)
8104 size = section->_cooked_size;
8105 else
8106 size = section->_raw_size;
8107 c = (bfd_byte *) bfd_zalloc (abfd, size);
8108 if (c == NULL)
8109 return FALSE;
8110 mips_elf_section_data (section)->u.tdata = c;
8111 }
8112
8113 memcpy (c + offset, location, (size_t) count);
8114 }
8115
8116 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8117 count);
8118 }
8119
8120 /* This is almost identical to bfd_generic_get_... except that some
8121 MIPS relocations need to be handled specially. Sigh. */
8122
8123 bfd_byte *
8124 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8125 data, relocatable, symbols)
8126 bfd *abfd;
8127 struct bfd_link_info *link_info;
8128 struct bfd_link_order *link_order;
8129 bfd_byte *data;
8130 bfd_boolean relocatable;
8131 asymbol **symbols;
8132 {
8133 /* Get enough memory to hold the stuff */
8134 bfd *input_bfd = link_order->u.indirect.section->owner;
8135 asection *input_section = link_order->u.indirect.section;
8136
8137 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8138 arelent **reloc_vector = NULL;
8139 long reloc_count;
8140
8141 if (reloc_size < 0)
8142 goto error_return;
8143
8144 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8145 if (reloc_vector == NULL && reloc_size != 0)
8146 goto error_return;
8147
8148 /* read in the section */
8149 if (!bfd_get_section_contents (input_bfd,
8150 input_section,
8151 (PTR) data,
8152 (file_ptr) 0,
8153 input_section->_raw_size))
8154 goto error_return;
8155
8156 /* We're not relaxing the section, so just copy the size info */
8157 input_section->_cooked_size = input_section->_raw_size;
8158 input_section->reloc_done = TRUE;
8159
8160 reloc_count = bfd_canonicalize_reloc (input_bfd,
8161 input_section,
8162 reloc_vector,
8163 symbols);
8164 if (reloc_count < 0)
8165 goto error_return;
8166
8167 if (reloc_count > 0)
8168 {
8169 arelent **parent;
8170 /* for mips */
8171 int gp_found;
8172 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8173
8174 {
8175 struct bfd_hash_entry *h;
8176 struct bfd_link_hash_entry *lh;
8177 /* Skip all this stuff if we aren't mixing formats. */
8178 if (abfd && input_bfd
8179 && abfd->xvec == input_bfd->xvec)
8180 lh = 0;
8181 else
8182 {
8183 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8184 lh = (struct bfd_link_hash_entry *) h;
8185 }
8186 lookup:
8187 if (lh)
8188 {
8189 switch (lh->type)
8190 {
8191 case bfd_link_hash_undefined:
8192 case bfd_link_hash_undefweak:
8193 case bfd_link_hash_common:
8194 gp_found = 0;
8195 break;
8196 case bfd_link_hash_defined:
8197 case bfd_link_hash_defweak:
8198 gp_found = 1;
8199 gp = lh->u.def.value;
8200 break;
8201 case bfd_link_hash_indirect:
8202 case bfd_link_hash_warning:
8203 lh = lh->u.i.link;
8204 /* @@FIXME ignoring warning for now */
8205 goto lookup;
8206 case bfd_link_hash_new:
8207 default:
8208 abort ();
8209 }
8210 }
8211 else
8212 gp_found = 0;
8213 }
8214 /* end mips */
8215 for (parent = reloc_vector; *parent != (arelent *) NULL;
8216 parent++)
8217 {
8218 char *error_message = (char *) NULL;
8219 bfd_reloc_status_type r;
8220
8221 /* Specific to MIPS: Deal with relocation types that require
8222 knowing the gp of the output bfd. */
8223 asymbol *sym = *(*parent)->sym_ptr_ptr;
8224 if (bfd_is_abs_section (sym->section) && abfd)
8225 {
8226 /* The special_function wouldn't get called anyway. */
8227 }
8228 else if (!gp_found)
8229 {
8230 /* The gp isn't there; let the special function code
8231 fall over on its own. */
8232 }
8233 else if ((*parent)->howto->special_function
8234 == _bfd_mips_elf32_gprel16_reloc)
8235 {
8236 /* bypass special_function call */
8237 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8238 input_section, relocatable,
8239 (PTR) data, gp);
8240 goto skip_bfd_perform_relocation;
8241 }
8242 /* end mips specific stuff */
8243
8244 r = bfd_perform_relocation (input_bfd,
8245 *parent,
8246 (PTR) data,
8247 input_section,
8248 relocatable ? abfd : (bfd *) NULL,
8249 &error_message);
8250 skip_bfd_perform_relocation:
8251
8252 if (relocatable)
8253 {
8254 asection *os = input_section->output_section;
8255
8256 /* A partial link, so keep the relocs */
8257 os->orelocation[os->reloc_count] = *parent;
8258 os->reloc_count++;
8259 }
8260
8261 if (r != bfd_reloc_ok)
8262 {
8263 switch (r)
8264 {
8265 case bfd_reloc_undefined:
8266 if (!((*link_info->callbacks->undefined_symbol)
8267 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8268 input_bfd, input_section, (*parent)->address,
8269 TRUE)))
8270 goto error_return;
8271 break;
8272 case bfd_reloc_dangerous:
8273 BFD_ASSERT (error_message != (char *) NULL);
8274 if (!((*link_info->callbacks->reloc_dangerous)
8275 (link_info, error_message, input_bfd, input_section,
8276 (*parent)->address)))
8277 goto error_return;
8278 break;
8279 case bfd_reloc_overflow:
8280 if (!((*link_info->callbacks->reloc_overflow)
8281 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8282 (*parent)->howto->name, (*parent)->addend,
8283 input_bfd, input_section, (*parent)->address)))
8284 goto error_return;
8285 break;
8286 case bfd_reloc_outofrange:
8287 default:
8288 abort ();
8289 break;
8290 }
8291
8292 }
8293 }
8294 }
8295 if (reloc_vector != NULL)
8296 free (reloc_vector);
8297 return data;
8298
8299 error_return:
8300 if (reloc_vector != NULL)
8301 free (reloc_vector);
8302 return NULL;
8303 }
8304 \f
8305 /* Create a MIPS ELF linker hash table. */
8306
8307 struct bfd_link_hash_table *
8308 _bfd_mips_elf_link_hash_table_create (abfd)
8309 bfd *abfd;
8310 {
8311 struct mips_elf_link_hash_table *ret;
8312 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8313
8314 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8315 if (ret == (struct mips_elf_link_hash_table *) NULL)
8316 return NULL;
8317
8318 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8319 mips_elf_link_hash_newfunc))
8320 {
8321 free (ret);
8322 return NULL;
8323 }
8324
8325 #if 0
8326 /* We no longer use this. */
8327 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8328 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8329 #endif
8330 ret->procedure_count = 0;
8331 ret->compact_rel_size = 0;
8332 ret->use_rld_obj_head = FALSE;
8333 ret->rld_value = 0;
8334 ret->mips16_stubs_seen = FALSE;
8335
8336 return &ret->root.root;
8337 }
8338 \f
8339 /* We need to use a special link routine to handle the .reginfo and
8340 the .mdebug sections. We need to merge all instances of these
8341 sections together, not write them all out sequentially. */
8342
8343 bfd_boolean
8344 _bfd_mips_elf_final_link (abfd, info)
8345 bfd *abfd;
8346 struct bfd_link_info *info;
8347 {
8348 asection **secpp;
8349 asection *o;
8350 struct bfd_link_order *p;
8351 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8352 asection *rtproc_sec;
8353 Elf32_RegInfo reginfo;
8354 struct ecoff_debug_info debug;
8355 const struct ecoff_debug_swap *swap
8356 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8357 HDRR *symhdr = &debug.symbolic_header;
8358 PTR mdebug_handle = NULL;
8359 asection *s;
8360 EXTR esym;
8361 unsigned int i;
8362 bfd_size_type amt;
8363
8364 static const char * const secname[] =
8365 {
8366 ".text", ".init", ".fini", ".data",
8367 ".rodata", ".sdata", ".sbss", ".bss"
8368 };
8369 static const int sc[] =
8370 {
8371 scText, scInit, scFini, scData,
8372 scRData, scSData, scSBss, scBss
8373 };
8374
8375 /* We'd carefully arranged the dynamic symbol indices, and then the
8376 generic size_dynamic_sections renumbered them out from under us.
8377 Rather than trying somehow to prevent the renumbering, just do
8378 the sort again. */
8379 if (elf_hash_table (info)->dynamic_sections_created)
8380 {
8381 bfd *dynobj;
8382 asection *got;
8383 struct mips_got_info *g;
8384
8385 /* When we resort, we must tell mips_elf_sort_hash_table what
8386 the lowest index it may use is. That's the number of section
8387 symbols we're going to add. The generic ELF linker only
8388 adds these symbols when building a shared object. Note that
8389 we count the sections after (possibly) removing the .options
8390 section above. */
8391 if (! mips_elf_sort_hash_table (info, (info->shared
8392 ? bfd_count_sections (abfd) + 1
8393 : 1)))
8394 return FALSE;
8395
8396 /* Make sure we didn't grow the global .got region. */
8397 dynobj = elf_hash_table (info)->dynobj;
8398 got = mips_elf_got_section (dynobj, FALSE);
8399 g = mips_elf_section_data (got)->u.got_info;
8400
8401 if (g->global_gotsym != NULL)
8402 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8403 - g->global_gotsym->dynindx)
8404 <= g->global_gotno);
8405 }
8406
8407 #if 0
8408 /* We want to set the GP value for ld -r. */
8409 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8410 include it, even though we don't process it quite right. (Some
8411 entries are supposed to be merged.) Empirically, we seem to be
8412 better off including it then not. */
8413 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8414 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8415 {
8416 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8417 {
8418 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8419 if (p->type == bfd_indirect_link_order)
8420 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8421 (*secpp)->link_order_head = NULL;
8422 bfd_section_list_remove (abfd, secpp);
8423 --abfd->section_count;
8424
8425 break;
8426 }
8427 }
8428
8429 /* We include .MIPS.options, even though we don't process it quite right.
8430 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8431 to be better off including it than not. */
8432 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8433 {
8434 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8435 {
8436 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8437 if (p->type == bfd_indirect_link_order)
8438 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8439 (*secpp)->link_order_head = NULL;
8440 bfd_section_list_remove (abfd, secpp);
8441 --abfd->section_count;
8442
8443 break;
8444 }
8445 }
8446 #endif
8447
8448 /* Get a value for the GP register. */
8449 if (elf_gp (abfd) == 0)
8450 {
8451 struct bfd_link_hash_entry *h;
8452
8453 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8454 if (h != (struct bfd_link_hash_entry *) NULL
8455 && h->type == bfd_link_hash_defined)
8456 elf_gp (abfd) = (h->u.def.value
8457 + h->u.def.section->output_section->vma
8458 + h->u.def.section->output_offset);
8459 else if (info->relocatable)
8460 {
8461 bfd_vma lo = MINUS_ONE;
8462
8463 /* Find the GP-relative section with the lowest offset. */
8464 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8465 if (o->vma < lo
8466 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8467 lo = o->vma;
8468
8469 /* And calculate GP relative to that. */
8470 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8471 }
8472 else
8473 {
8474 /* If the relocate_section function needs to do a reloc
8475 involving the GP value, it should make a reloc_dangerous
8476 callback to warn that GP is not defined. */
8477 }
8478 }
8479
8480 /* Go through the sections and collect the .reginfo and .mdebug
8481 information. */
8482 reginfo_sec = NULL;
8483 mdebug_sec = NULL;
8484 gptab_data_sec = NULL;
8485 gptab_bss_sec = NULL;
8486 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8487 {
8488 if (strcmp (o->name, ".reginfo") == 0)
8489 {
8490 memset (&reginfo, 0, sizeof reginfo);
8491
8492 /* We have found the .reginfo section in the output file.
8493 Look through all the link_orders comprising it and merge
8494 the information together. */
8495 for (p = o->link_order_head;
8496 p != (struct bfd_link_order *) NULL;
8497 p = p->next)
8498 {
8499 asection *input_section;
8500 bfd *input_bfd;
8501 Elf32_External_RegInfo ext;
8502 Elf32_RegInfo sub;
8503
8504 if (p->type != bfd_indirect_link_order)
8505 {
8506 if (p->type == bfd_data_link_order)
8507 continue;
8508 abort ();
8509 }
8510
8511 input_section = p->u.indirect.section;
8512 input_bfd = input_section->owner;
8513
8514 /* The linker emulation code has probably clobbered the
8515 size to be zero bytes. */
8516 if (input_section->_raw_size == 0)
8517 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8518
8519 if (! bfd_get_section_contents (input_bfd, input_section,
8520 (PTR) &ext,
8521 (file_ptr) 0,
8522 (bfd_size_type) sizeof ext))
8523 return FALSE;
8524
8525 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8526
8527 reginfo.ri_gprmask |= sub.ri_gprmask;
8528 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8529 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8530 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8531 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8532
8533 /* ri_gp_value is set by the function
8534 mips_elf32_section_processing when the section is
8535 finally written out. */
8536
8537 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8538 elf_link_input_bfd ignores this section. */
8539 input_section->flags &= ~SEC_HAS_CONTENTS;
8540 }
8541
8542 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8543 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8544
8545 /* Skip this section later on (I don't think this currently
8546 matters, but someday it might). */
8547 o->link_order_head = (struct bfd_link_order *) NULL;
8548
8549 reginfo_sec = o;
8550 }
8551
8552 if (strcmp (o->name, ".mdebug") == 0)
8553 {
8554 struct extsym_info einfo;
8555 bfd_vma last;
8556
8557 /* We have found the .mdebug section in the output file.
8558 Look through all the link_orders comprising it and merge
8559 the information together. */
8560 symhdr->magic = swap->sym_magic;
8561 /* FIXME: What should the version stamp be? */
8562 symhdr->vstamp = 0;
8563 symhdr->ilineMax = 0;
8564 symhdr->cbLine = 0;
8565 symhdr->idnMax = 0;
8566 symhdr->ipdMax = 0;
8567 symhdr->isymMax = 0;
8568 symhdr->ioptMax = 0;
8569 symhdr->iauxMax = 0;
8570 symhdr->issMax = 0;
8571 symhdr->issExtMax = 0;
8572 symhdr->ifdMax = 0;
8573 symhdr->crfd = 0;
8574 symhdr->iextMax = 0;
8575
8576 /* We accumulate the debugging information itself in the
8577 debug_info structure. */
8578 debug.line = NULL;
8579 debug.external_dnr = NULL;
8580 debug.external_pdr = NULL;
8581 debug.external_sym = NULL;
8582 debug.external_opt = NULL;
8583 debug.external_aux = NULL;
8584 debug.ss = NULL;
8585 debug.ssext = debug.ssext_end = NULL;
8586 debug.external_fdr = NULL;
8587 debug.external_rfd = NULL;
8588 debug.external_ext = debug.external_ext_end = NULL;
8589
8590 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8591 if (mdebug_handle == (PTR) NULL)
8592 return FALSE;
8593
8594 esym.jmptbl = 0;
8595 esym.cobol_main = 0;
8596 esym.weakext = 0;
8597 esym.reserved = 0;
8598 esym.ifd = ifdNil;
8599 esym.asym.iss = issNil;
8600 esym.asym.st = stLocal;
8601 esym.asym.reserved = 0;
8602 esym.asym.index = indexNil;
8603 last = 0;
8604 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8605 {
8606 esym.asym.sc = sc[i];
8607 s = bfd_get_section_by_name (abfd, secname[i]);
8608 if (s != NULL)
8609 {
8610 esym.asym.value = s->vma;
8611 last = s->vma + s->_raw_size;
8612 }
8613 else
8614 esym.asym.value = last;
8615 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8616 secname[i], &esym))
8617 return FALSE;
8618 }
8619
8620 for (p = o->link_order_head;
8621 p != (struct bfd_link_order *) NULL;
8622 p = p->next)
8623 {
8624 asection *input_section;
8625 bfd *input_bfd;
8626 const struct ecoff_debug_swap *input_swap;
8627 struct ecoff_debug_info input_debug;
8628 char *eraw_src;
8629 char *eraw_end;
8630
8631 if (p->type != bfd_indirect_link_order)
8632 {
8633 if (p->type == bfd_data_link_order)
8634 continue;
8635 abort ();
8636 }
8637
8638 input_section = p->u.indirect.section;
8639 input_bfd = input_section->owner;
8640
8641 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8642 || (get_elf_backend_data (input_bfd)
8643 ->elf_backend_ecoff_debug_swap) == NULL)
8644 {
8645 /* I don't know what a non MIPS ELF bfd would be
8646 doing with a .mdebug section, but I don't really
8647 want to deal with it. */
8648 continue;
8649 }
8650
8651 input_swap = (get_elf_backend_data (input_bfd)
8652 ->elf_backend_ecoff_debug_swap);
8653
8654 BFD_ASSERT (p->size == input_section->_raw_size);
8655
8656 /* The ECOFF linking code expects that we have already
8657 read in the debugging information and set up an
8658 ecoff_debug_info structure, so we do that now. */
8659 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8660 &input_debug))
8661 return FALSE;
8662
8663 if (! (bfd_ecoff_debug_accumulate
8664 (mdebug_handle, abfd, &debug, swap, input_bfd,
8665 &input_debug, input_swap, info)))
8666 return FALSE;
8667
8668 /* Loop through the external symbols. For each one with
8669 interesting information, try to find the symbol in
8670 the linker global hash table and save the information
8671 for the output external symbols. */
8672 eraw_src = input_debug.external_ext;
8673 eraw_end = (eraw_src
8674 + (input_debug.symbolic_header.iextMax
8675 * input_swap->external_ext_size));
8676 for (;
8677 eraw_src < eraw_end;
8678 eraw_src += input_swap->external_ext_size)
8679 {
8680 EXTR ext;
8681 const char *name;
8682 struct mips_elf_link_hash_entry *h;
8683
8684 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8685 if (ext.asym.sc == scNil
8686 || ext.asym.sc == scUndefined
8687 || ext.asym.sc == scSUndefined)
8688 continue;
8689
8690 name = input_debug.ssext + ext.asym.iss;
8691 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8692 name, FALSE, FALSE, TRUE);
8693 if (h == NULL || h->esym.ifd != -2)
8694 continue;
8695
8696 if (ext.ifd != -1)
8697 {
8698 BFD_ASSERT (ext.ifd
8699 < input_debug.symbolic_header.ifdMax);
8700 ext.ifd = input_debug.ifdmap[ext.ifd];
8701 }
8702
8703 h->esym = ext;
8704 }
8705
8706 /* Free up the information we just read. */
8707 free (input_debug.line);
8708 free (input_debug.external_dnr);
8709 free (input_debug.external_pdr);
8710 free (input_debug.external_sym);
8711 free (input_debug.external_opt);
8712 free (input_debug.external_aux);
8713 free (input_debug.ss);
8714 free (input_debug.ssext);
8715 free (input_debug.external_fdr);
8716 free (input_debug.external_rfd);
8717 free (input_debug.external_ext);
8718
8719 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8720 elf_link_input_bfd ignores this section. */
8721 input_section->flags &= ~SEC_HAS_CONTENTS;
8722 }
8723
8724 if (SGI_COMPAT (abfd) && info->shared)
8725 {
8726 /* Create .rtproc section. */
8727 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8728 if (rtproc_sec == NULL)
8729 {
8730 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8731 | SEC_LINKER_CREATED | SEC_READONLY);
8732
8733 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8734 if (rtproc_sec == NULL
8735 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8736 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8737 return FALSE;
8738 }
8739
8740 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8741 info, rtproc_sec,
8742 &debug))
8743 return FALSE;
8744 }
8745
8746 /* Build the external symbol information. */
8747 einfo.abfd = abfd;
8748 einfo.info = info;
8749 einfo.debug = &debug;
8750 einfo.swap = swap;
8751 einfo.failed = FALSE;
8752 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8753 mips_elf_output_extsym,
8754 (PTR) &einfo);
8755 if (einfo.failed)
8756 return FALSE;
8757
8758 /* Set the size of the .mdebug section. */
8759 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8760
8761 /* Skip this section later on (I don't think this currently
8762 matters, but someday it might). */
8763 o->link_order_head = (struct bfd_link_order *) NULL;
8764
8765 mdebug_sec = o;
8766 }
8767
8768 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8769 {
8770 const char *subname;
8771 unsigned int c;
8772 Elf32_gptab *tab;
8773 Elf32_External_gptab *ext_tab;
8774 unsigned int j;
8775
8776 /* The .gptab.sdata and .gptab.sbss sections hold
8777 information describing how the small data area would
8778 change depending upon the -G switch. These sections
8779 not used in executables files. */
8780 if (! info->relocatable)
8781 {
8782 for (p = o->link_order_head;
8783 p != (struct bfd_link_order *) NULL;
8784 p = p->next)
8785 {
8786 asection *input_section;
8787
8788 if (p->type != bfd_indirect_link_order)
8789 {
8790 if (p->type == bfd_data_link_order)
8791 continue;
8792 abort ();
8793 }
8794
8795 input_section = p->u.indirect.section;
8796
8797 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8798 elf_link_input_bfd ignores this section. */
8799 input_section->flags &= ~SEC_HAS_CONTENTS;
8800 }
8801
8802 /* Skip this section later on (I don't think this
8803 currently matters, but someday it might). */
8804 o->link_order_head = (struct bfd_link_order *) NULL;
8805
8806 /* Really remove the section. */
8807 for (secpp = &abfd->sections;
8808 *secpp != o;
8809 secpp = &(*secpp)->next)
8810 ;
8811 bfd_section_list_remove (abfd, secpp);
8812 --abfd->section_count;
8813
8814 continue;
8815 }
8816
8817 /* There is one gptab for initialized data, and one for
8818 uninitialized data. */
8819 if (strcmp (o->name, ".gptab.sdata") == 0)
8820 gptab_data_sec = o;
8821 else if (strcmp (o->name, ".gptab.sbss") == 0)
8822 gptab_bss_sec = o;
8823 else
8824 {
8825 (*_bfd_error_handler)
8826 (_("%s: illegal section name `%s'"),
8827 bfd_get_filename (abfd), o->name);
8828 bfd_set_error (bfd_error_nonrepresentable_section);
8829 return FALSE;
8830 }
8831
8832 /* The linker script always combines .gptab.data and
8833 .gptab.sdata into .gptab.sdata, and likewise for
8834 .gptab.bss and .gptab.sbss. It is possible that there is
8835 no .sdata or .sbss section in the output file, in which
8836 case we must change the name of the output section. */
8837 subname = o->name + sizeof ".gptab" - 1;
8838 if (bfd_get_section_by_name (abfd, subname) == NULL)
8839 {
8840 if (o == gptab_data_sec)
8841 o->name = ".gptab.data";
8842 else
8843 o->name = ".gptab.bss";
8844 subname = o->name + sizeof ".gptab" - 1;
8845 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8846 }
8847
8848 /* Set up the first entry. */
8849 c = 1;
8850 amt = c * sizeof (Elf32_gptab);
8851 tab = (Elf32_gptab *) bfd_malloc (amt);
8852 if (tab == NULL)
8853 return FALSE;
8854 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8855 tab[0].gt_header.gt_unused = 0;
8856
8857 /* Combine the input sections. */
8858 for (p = o->link_order_head;
8859 p != (struct bfd_link_order *) NULL;
8860 p = p->next)
8861 {
8862 asection *input_section;
8863 bfd *input_bfd;
8864 bfd_size_type size;
8865 unsigned long last;
8866 bfd_size_type gpentry;
8867
8868 if (p->type != bfd_indirect_link_order)
8869 {
8870 if (p->type == bfd_data_link_order)
8871 continue;
8872 abort ();
8873 }
8874
8875 input_section = p->u.indirect.section;
8876 input_bfd = input_section->owner;
8877
8878 /* Combine the gptab entries for this input section one
8879 by one. We know that the input gptab entries are
8880 sorted by ascending -G value. */
8881 size = bfd_section_size (input_bfd, input_section);
8882 last = 0;
8883 for (gpentry = sizeof (Elf32_External_gptab);
8884 gpentry < size;
8885 gpentry += sizeof (Elf32_External_gptab))
8886 {
8887 Elf32_External_gptab ext_gptab;
8888 Elf32_gptab int_gptab;
8889 unsigned long val;
8890 unsigned long add;
8891 bfd_boolean exact;
8892 unsigned int look;
8893
8894 if (! (bfd_get_section_contents
8895 (input_bfd, input_section, (PTR) &ext_gptab,
8896 (file_ptr) gpentry,
8897 (bfd_size_type) sizeof (Elf32_External_gptab))))
8898 {
8899 free (tab);
8900 return FALSE;
8901 }
8902
8903 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8904 &int_gptab);
8905 val = int_gptab.gt_entry.gt_g_value;
8906 add = int_gptab.gt_entry.gt_bytes - last;
8907
8908 exact = FALSE;
8909 for (look = 1; look < c; look++)
8910 {
8911 if (tab[look].gt_entry.gt_g_value >= val)
8912 tab[look].gt_entry.gt_bytes += add;
8913
8914 if (tab[look].gt_entry.gt_g_value == val)
8915 exact = TRUE;
8916 }
8917
8918 if (! exact)
8919 {
8920 Elf32_gptab *new_tab;
8921 unsigned int max;
8922
8923 /* We need a new table entry. */
8924 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8925 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8926 if (new_tab == NULL)
8927 {
8928 free (tab);
8929 return FALSE;
8930 }
8931 tab = new_tab;
8932 tab[c].gt_entry.gt_g_value = val;
8933 tab[c].gt_entry.gt_bytes = add;
8934
8935 /* Merge in the size for the next smallest -G
8936 value, since that will be implied by this new
8937 value. */
8938 max = 0;
8939 for (look = 1; look < c; look++)
8940 {
8941 if (tab[look].gt_entry.gt_g_value < val
8942 && (max == 0
8943 || (tab[look].gt_entry.gt_g_value
8944 > tab[max].gt_entry.gt_g_value)))
8945 max = look;
8946 }
8947 if (max != 0)
8948 tab[c].gt_entry.gt_bytes +=
8949 tab[max].gt_entry.gt_bytes;
8950
8951 ++c;
8952 }
8953
8954 last = int_gptab.gt_entry.gt_bytes;
8955 }
8956
8957 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8958 elf_link_input_bfd ignores this section. */
8959 input_section->flags &= ~SEC_HAS_CONTENTS;
8960 }
8961
8962 /* The table must be sorted by -G value. */
8963 if (c > 2)
8964 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8965
8966 /* Swap out the table. */
8967 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8968 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8969 if (ext_tab == NULL)
8970 {
8971 free (tab);
8972 return FALSE;
8973 }
8974
8975 for (j = 0; j < c; j++)
8976 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8977 free (tab);
8978
8979 o->_raw_size = c * sizeof (Elf32_External_gptab);
8980 o->contents = (bfd_byte *) ext_tab;
8981
8982 /* Skip this section later on (I don't think this currently
8983 matters, but someday it might). */
8984 o->link_order_head = (struct bfd_link_order *) NULL;
8985 }
8986 }
8987
8988 /* Invoke the regular ELF backend linker to do all the work. */
8989 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8990 return FALSE;
8991
8992 /* Now write out the computed sections. */
8993
8994 if (reginfo_sec != (asection *) NULL)
8995 {
8996 Elf32_External_RegInfo ext;
8997
8998 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8999 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
9000 (file_ptr) 0,
9001 (bfd_size_type) sizeof ext))
9002 return FALSE;
9003 }
9004
9005 if (mdebug_sec != (asection *) NULL)
9006 {
9007 BFD_ASSERT (abfd->output_has_begun);
9008 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9009 swap, info,
9010 mdebug_sec->filepos))
9011 return FALSE;
9012
9013 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9014 }
9015
9016 if (gptab_data_sec != (asection *) NULL)
9017 {
9018 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9019 gptab_data_sec->contents,
9020 (file_ptr) 0,
9021 gptab_data_sec->_raw_size))
9022 return FALSE;
9023 }
9024
9025 if (gptab_bss_sec != (asection *) NULL)
9026 {
9027 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9028 gptab_bss_sec->contents,
9029 (file_ptr) 0,
9030 gptab_bss_sec->_raw_size))
9031 return FALSE;
9032 }
9033
9034 if (SGI_COMPAT (abfd))
9035 {
9036 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9037 if (rtproc_sec != NULL)
9038 {
9039 if (! bfd_set_section_contents (abfd, rtproc_sec,
9040 rtproc_sec->contents,
9041 (file_ptr) 0,
9042 rtproc_sec->_raw_size))
9043 return FALSE;
9044 }
9045 }
9046
9047 return TRUE;
9048 }
9049 \f
9050 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9051
9052 struct mips_mach_extension {
9053 unsigned long extension, base;
9054 };
9055
9056
9057 /* An array describing how BFD machines relate to one another. The entries
9058 are ordered topologically with MIPS I extensions listed last. */
9059
9060 static const struct mips_mach_extension mips_mach_extensions[] = {
9061 /* MIPS64 extensions. */
9062 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9063
9064 /* MIPS V extensions. */
9065 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9066
9067 /* R10000 extensions. */
9068 { bfd_mach_mips12000, bfd_mach_mips10000 },
9069
9070 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9071 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9072 better to allow vr5400 and vr5500 code to be merged anyway, since
9073 many libraries will just use the core ISA. Perhaps we could add
9074 some sort of ASE flag if this ever proves a problem. */
9075 { bfd_mach_mips5500, bfd_mach_mips5400 },
9076 { bfd_mach_mips5400, bfd_mach_mips5000 },
9077
9078 /* MIPS IV extensions. */
9079 { bfd_mach_mips5, bfd_mach_mips8000 },
9080 { bfd_mach_mips10000, bfd_mach_mips8000 },
9081 { bfd_mach_mips5000, bfd_mach_mips8000 },
9082
9083 /* VR4100 extensions. */
9084 { bfd_mach_mips4120, bfd_mach_mips4100 },
9085 { bfd_mach_mips4111, bfd_mach_mips4100 },
9086
9087 /* MIPS III extensions. */
9088 { bfd_mach_mips8000, bfd_mach_mips4000 },
9089 { bfd_mach_mips4650, bfd_mach_mips4000 },
9090 { bfd_mach_mips4600, bfd_mach_mips4000 },
9091 { bfd_mach_mips4400, bfd_mach_mips4000 },
9092 { bfd_mach_mips4300, bfd_mach_mips4000 },
9093 { bfd_mach_mips4100, bfd_mach_mips4000 },
9094 { bfd_mach_mips4010, bfd_mach_mips4000 },
9095
9096 /* MIPS32 extensions. */
9097 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9098
9099 /* MIPS II extensions. */
9100 { bfd_mach_mips4000, bfd_mach_mips6000 },
9101 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9102
9103 /* MIPS I extensions. */
9104 { bfd_mach_mips6000, bfd_mach_mips3000 },
9105 { bfd_mach_mips3900, bfd_mach_mips3000 }
9106 };
9107
9108
9109 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9110
9111 static bfd_boolean
9112 mips_mach_extends_p (base, extension)
9113 unsigned long base, extension;
9114 {
9115 size_t i;
9116
9117 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9118 if (extension == mips_mach_extensions[i].extension)
9119 extension = mips_mach_extensions[i].base;
9120
9121 return extension == base;
9122 }
9123
9124
9125 /* Return true if the given ELF header flags describe a 32-bit binary. */
9126
9127 static bfd_boolean
9128 mips_32bit_flags_p (flags)
9129 flagword flags;
9130 {
9131 return ((flags & EF_MIPS_32BITMODE) != 0
9132 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9133 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9134 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9135 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9136 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9137 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9138 }
9139
9140
9141 /* Merge backend specific data from an object file to the output
9142 object file when linking. */
9143
9144 bfd_boolean
9145 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9146 bfd *ibfd;
9147 bfd *obfd;
9148 {
9149 flagword old_flags;
9150 flagword new_flags;
9151 bfd_boolean ok;
9152 bfd_boolean null_input_bfd = TRUE;
9153 asection *sec;
9154
9155 /* Check if we have the same endianess */
9156 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9157 {
9158 (*_bfd_error_handler)
9159 (_("%s: endianness incompatible with that of the selected emulation"),
9160 bfd_archive_filename (ibfd));
9161 return FALSE;
9162 }
9163
9164 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9165 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9166 return TRUE;
9167
9168 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9169 {
9170 (*_bfd_error_handler)
9171 (_("%s: ABI is incompatible with that of the selected emulation"),
9172 bfd_archive_filename (ibfd));
9173 return FALSE;
9174 }
9175
9176 new_flags = elf_elfheader (ibfd)->e_flags;
9177 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9178 old_flags = elf_elfheader (obfd)->e_flags;
9179
9180 if (! elf_flags_init (obfd))
9181 {
9182 elf_flags_init (obfd) = TRUE;
9183 elf_elfheader (obfd)->e_flags = new_flags;
9184 elf_elfheader (obfd)->e_ident[EI_CLASS]
9185 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9186
9187 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9188 && bfd_get_arch_info (obfd)->the_default)
9189 {
9190 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9191 bfd_get_mach (ibfd)))
9192 return FALSE;
9193 }
9194
9195 return TRUE;
9196 }
9197
9198 /* Check flag compatibility. */
9199
9200 new_flags &= ~EF_MIPS_NOREORDER;
9201 old_flags &= ~EF_MIPS_NOREORDER;
9202
9203 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9204 doesn't seem to matter. */
9205 new_flags &= ~EF_MIPS_XGOT;
9206 old_flags &= ~EF_MIPS_XGOT;
9207
9208 if (new_flags == old_flags)
9209 return TRUE;
9210
9211 /* Check to see if the input BFD actually contains any sections.
9212 If not, its flags may not have been initialised either, but it cannot
9213 actually cause any incompatibility. */
9214 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9215 {
9216 /* Ignore synthetic sections and empty .text, .data and .bss sections
9217 which are automatically generated by gas. */
9218 if (strcmp (sec->name, ".reginfo")
9219 && strcmp (sec->name, ".mdebug")
9220 && ((!strcmp (sec->name, ".text")
9221 || !strcmp (sec->name, ".data")
9222 || !strcmp (sec->name, ".bss"))
9223 && sec->_raw_size != 0))
9224 {
9225 null_input_bfd = FALSE;
9226 break;
9227 }
9228 }
9229 if (null_input_bfd)
9230 return TRUE;
9231
9232 ok = TRUE;
9233
9234 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9235 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9236 {
9237 (*_bfd_error_handler)
9238 (_("%s: warning: linking PIC files with non-PIC files"),
9239 bfd_archive_filename (ibfd));
9240 ok = TRUE;
9241 }
9242
9243 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9244 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9245 if (! (new_flags & EF_MIPS_PIC))
9246 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9247
9248 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9249 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9250
9251 /* Compare the ISAs. */
9252 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9253 {
9254 (*_bfd_error_handler)
9255 (_("%s: linking 32-bit code with 64-bit code"),
9256 bfd_archive_filename (ibfd));
9257 ok = FALSE;
9258 }
9259 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9260 {
9261 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9262 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9263 {
9264 /* Copy the architecture info from IBFD to OBFD. Also copy
9265 the 32-bit flag (if set) so that we continue to recognise
9266 OBFD as a 32-bit binary. */
9267 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9268 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9269 elf_elfheader (obfd)->e_flags
9270 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9271
9272 /* Copy across the ABI flags if OBFD doesn't use them
9273 and if that was what caused us to treat IBFD as 32-bit. */
9274 if ((old_flags & EF_MIPS_ABI) == 0
9275 && mips_32bit_flags_p (new_flags)
9276 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9277 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9278 }
9279 else
9280 {
9281 /* The ISAs aren't compatible. */
9282 (*_bfd_error_handler)
9283 (_("%s: linking %s module with previous %s modules"),
9284 bfd_archive_filename (ibfd),
9285 bfd_printable_name (ibfd),
9286 bfd_printable_name (obfd));
9287 ok = FALSE;
9288 }
9289 }
9290
9291 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9292 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9293
9294 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9295 does set EI_CLASS differently from any 32-bit ABI. */
9296 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9297 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9298 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9299 {
9300 /* Only error if both are set (to different values). */
9301 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9302 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9303 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9304 {
9305 (*_bfd_error_handler)
9306 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9307 bfd_archive_filename (ibfd),
9308 elf_mips_abi_name (ibfd),
9309 elf_mips_abi_name (obfd));
9310 ok = FALSE;
9311 }
9312 new_flags &= ~EF_MIPS_ABI;
9313 old_flags &= ~EF_MIPS_ABI;
9314 }
9315
9316 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9317 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9318 {
9319 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9320
9321 new_flags &= ~ EF_MIPS_ARCH_ASE;
9322 old_flags &= ~ EF_MIPS_ARCH_ASE;
9323 }
9324
9325 /* Warn about any other mismatches */
9326 if (new_flags != old_flags)
9327 {
9328 (*_bfd_error_handler)
9329 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9330 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9331 (unsigned long) old_flags);
9332 ok = FALSE;
9333 }
9334
9335 if (! ok)
9336 {
9337 bfd_set_error (bfd_error_bad_value);
9338 return FALSE;
9339 }
9340
9341 return TRUE;
9342 }
9343
9344 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9345
9346 bfd_boolean
9347 _bfd_mips_elf_set_private_flags (abfd, flags)
9348 bfd *abfd;
9349 flagword flags;
9350 {
9351 BFD_ASSERT (!elf_flags_init (abfd)
9352 || elf_elfheader (abfd)->e_flags == flags);
9353
9354 elf_elfheader (abfd)->e_flags = flags;
9355 elf_flags_init (abfd) = TRUE;
9356 return TRUE;
9357 }
9358
9359 bfd_boolean
9360 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9361 bfd *abfd;
9362 PTR ptr;
9363 {
9364 FILE *file = (FILE *) ptr;
9365
9366 BFD_ASSERT (abfd != NULL && ptr != NULL);
9367
9368 /* Print normal ELF private data. */
9369 _bfd_elf_print_private_bfd_data (abfd, ptr);
9370
9371 /* xgettext:c-format */
9372 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9373
9374 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9375 fprintf (file, _(" [abi=O32]"));
9376 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9377 fprintf (file, _(" [abi=O64]"));
9378 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9379 fprintf (file, _(" [abi=EABI32]"));
9380 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9381 fprintf (file, _(" [abi=EABI64]"));
9382 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9383 fprintf (file, _(" [abi unknown]"));
9384 else if (ABI_N32_P (abfd))
9385 fprintf (file, _(" [abi=N32]"));
9386 else if (ABI_64_P (abfd))
9387 fprintf (file, _(" [abi=64]"));
9388 else
9389 fprintf (file, _(" [no abi set]"));
9390
9391 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9392 fprintf (file, _(" [mips1]"));
9393 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9394 fprintf (file, _(" [mips2]"));
9395 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9396 fprintf (file, _(" [mips3]"));
9397 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9398 fprintf (file, _(" [mips4]"));
9399 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9400 fprintf (file, _(" [mips5]"));
9401 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9402 fprintf (file, _(" [mips32]"));
9403 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9404 fprintf (file, _(" [mips64]"));
9405 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9406 fprintf (file, _(" [mips32r2]"));
9407 else
9408 fprintf (file, _(" [unknown ISA]"));
9409
9410 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9411 fprintf (file, _(" [mdmx]"));
9412
9413 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9414 fprintf (file, _(" [mips16]"));
9415
9416 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9417 fprintf (file, _(" [32bitmode]"));
9418 else
9419 fprintf (file, _(" [not 32bitmode]"));
9420
9421 fputc ('\n', file);
9422
9423 return TRUE;
9424 }