* elfxx-mips.c (mips_got_entry): Add more commentary.
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 };
339
340 #define TLS_RELOC_P(r_type) \
341 (r_type == R_MIPS_TLS_DTPMOD32 \
342 || r_type == R_MIPS_TLS_DTPMOD64 \
343 || r_type == R_MIPS_TLS_DTPREL32 \
344 || r_type == R_MIPS_TLS_DTPREL64 \
345 || r_type == R_MIPS_TLS_GD \
346 || r_type == R_MIPS_TLS_LDM \
347 || r_type == R_MIPS_TLS_DTPREL_HI16 \
348 || r_type == R_MIPS_TLS_DTPREL_LO16 \
349 || r_type == R_MIPS_TLS_GOTTPREL \
350 || r_type == R_MIPS_TLS_TPREL32 \
351 || r_type == R_MIPS_TLS_TPREL64 \
352 || r_type == R_MIPS_TLS_TPREL_HI16 \
353 || r_type == R_MIPS_TLS_TPREL_LO16)
354
355 /* Structure used to pass information to mips_elf_output_extsym. */
356
357 struct extsym_info
358 {
359 bfd *abfd;
360 struct bfd_link_info *info;
361 struct ecoff_debug_info *debug;
362 const struct ecoff_debug_swap *swap;
363 bfd_boolean failed;
364 };
365
366 /* The names of the runtime procedure table symbols used on IRIX5. */
367
368 static const char * const mips_elf_dynsym_rtproc_names[] =
369 {
370 "_procedure_table",
371 "_procedure_string_table",
372 "_procedure_table_size",
373 NULL
374 };
375
376 /* These structures are used to generate the .compact_rel section on
377 IRIX5. */
378
379 typedef struct
380 {
381 unsigned long id1; /* Always one? */
382 unsigned long num; /* Number of compact relocation entries. */
383 unsigned long id2; /* Always two? */
384 unsigned long offset; /* The file offset of the first relocation. */
385 unsigned long reserved0; /* Zero? */
386 unsigned long reserved1; /* Zero? */
387 } Elf32_compact_rel;
388
389 typedef struct
390 {
391 bfd_byte id1[4];
392 bfd_byte num[4];
393 bfd_byte id2[4];
394 bfd_byte offset[4];
395 bfd_byte reserved0[4];
396 bfd_byte reserved1[4];
397 } Elf32_External_compact_rel;
398
399 typedef struct
400 {
401 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
402 unsigned int rtype : 4; /* Relocation types. See below. */
403 unsigned int dist2to : 8;
404 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
405 unsigned long konst; /* KONST field. See below. */
406 unsigned long vaddr; /* VADDR to be relocated. */
407 } Elf32_crinfo;
408
409 typedef struct
410 {
411 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
412 unsigned int rtype : 4; /* Relocation types. See below. */
413 unsigned int dist2to : 8;
414 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
415 unsigned long konst; /* KONST field. See below. */
416 } Elf32_crinfo2;
417
418 typedef struct
419 {
420 bfd_byte info[4];
421 bfd_byte konst[4];
422 bfd_byte vaddr[4];
423 } Elf32_External_crinfo;
424
425 typedef struct
426 {
427 bfd_byte info[4];
428 bfd_byte konst[4];
429 } Elf32_External_crinfo2;
430
431 /* These are the constants used to swap the bitfields in a crinfo. */
432
433 #define CRINFO_CTYPE (0x1)
434 #define CRINFO_CTYPE_SH (31)
435 #define CRINFO_RTYPE (0xf)
436 #define CRINFO_RTYPE_SH (27)
437 #define CRINFO_DIST2TO (0xff)
438 #define CRINFO_DIST2TO_SH (19)
439 #define CRINFO_RELVADDR (0x7ffff)
440 #define CRINFO_RELVADDR_SH (0)
441
442 /* A compact relocation info has long (3 words) or short (2 words)
443 formats. A short format doesn't have VADDR field and relvaddr
444 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
445 #define CRF_MIPS_LONG 1
446 #define CRF_MIPS_SHORT 0
447
448 /* There are 4 types of compact relocation at least. The value KONST
449 has different meaning for each type:
450
451 (type) (konst)
452 CT_MIPS_REL32 Address in data
453 CT_MIPS_WORD Address in word (XXX)
454 CT_MIPS_GPHI_LO GP - vaddr
455 CT_MIPS_JMPAD Address to jump
456 */
457
458 #define CRT_MIPS_REL32 0xa
459 #define CRT_MIPS_WORD 0xb
460 #define CRT_MIPS_GPHI_LO 0xc
461 #define CRT_MIPS_JMPAD 0xd
462
463 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
464 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
465 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
466 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
467 \f
468 /* The structure of the runtime procedure descriptor created by the
469 loader for use by the static exception system. */
470
471 typedef struct runtime_pdr {
472 bfd_vma adr; /* Memory address of start of procedure. */
473 long regmask; /* Save register mask. */
474 long regoffset; /* Save register offset. */
475 long fregmask; /* Save floating point register mask. */
476 long fregoffset; /* Save floating point register offset. */
477 long frameoffset; /* Frame size. */
478 short framereg; /* Frame pointer register. */
479 short pcreg; /* Offset or reg of return pc. */
480 long irpss; /* Index into the runtime string table. */
481 long reserved;
482 struct exception_info *exception_info;/* Pointer to exception array. */
483 } RPDR, *pRPDR;
484 #define cbRPDR sizeof (RPDR)
485 #define rpdNil ((pRPDR) 0)
486 \f
487 static struct mips_got_entry *mips_elf_create_local_got_entry
488 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
489 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
490 static bfd_boolean mips_elf_sort_hash_table_f
491 (struct mips_elf_link_hash_entry *, void *);
492 static bfd_vma mips_elf_high
493 (bfd_vma);
494 static bfd_boolean mips_elf_stub_section_p
495 (bfd *, asection *);
496 static bfd_boolean mips_elf_create_dynamic_relocation
497 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
498 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
499 bfd_vma *, asection *);
500 static hashval_t mips_elf_got_entry_hash
501 (const void *);
502 static bfd_vma mips_elf_adjust_gp
503 (bfd *, struct mips_got_info *, bfd *);
504 static struct mips_got_info *mips_elf_got_for_ibfd
505 (struct mips_got_info *, bfd *);
506
507 /* This will be used when we sort the dynamic relocation records. */
508 static bfd *reldyn_sorting_bfd;
509
510 /* Nonzero if ABFD is using the N32 ABI. */
511 #define ABI_N32_P(abfd) \
512 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
513
514 /* Nonzero if ABFD is using the N64 ABI. */
515 #define ABI_64_P(abfd) \
516 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
517
518 /* Nonzero if ABFD is using NewABI conventions. */
519 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
520
521 /* The IRIX compatibility level we are striving for. */
522 #define IRIX_COMPAT(abfd) \
523 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
524
525 /* Whether we are trying to be compatible with IRIX at all. */
526 #define SGI_COMPAT(abfd) \
527 (IRIX_COMPAT (abfd) != ict_none)
528
529 /* The name of the options section. */
530 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
531 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
532
533 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
534 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
535 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
536 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
537
538 /* The name of the stub section. */
539 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
540
541 /* The size of an external REL relocation. */
542 #define MIPS_ELF_REL_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->sizeof_rel)
544
545 /* The size of an external RELA relocation. */
546 #define MIPS_ELF_RELA_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_rela)
548
549 /* The size of an external dynamic table entry. */
550 #define MIPS_ELF_DYN_SIZE(abfd) \
551 (get_elf_backend_data (abfd)->s->sizeof_dyn)
552
553 /* The size of a GOT entry. */
554 #define MIPS_ELF_GOT_SIZE(abfd) \
555 (get_elf_backend_data (abfd)->s->arch_size / 8)
556
557 /* The size of a symbol-table entry. */
558 #define MIPS_ELF_SYM_SIZE(abfd) \
559 (get_elf_backend_data (abfd)->s->sizeof_sym)
560
561 /* The default alignment for sections, as a power of two. */
562 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
563 (get_elf_backend_data (abfd)->s->log_file_align)
564
565 /* Get word-sized data. */
566 #define MIPS_ELF_GET_WORD(abfd, ptr) \
567 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
568
569 /* Put out word-sized data. */
570 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
571 (ABI_64_P (abfd) \
572 ? bfd_put_64 (abfd, val, ptr) \
573 : bfd_put_32 (abfd, val, ptr))
574
575 /* Add a dynamic symbol table-entry. */
576 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
577 _bfd_elf_add_dynamic_entry (info, tag, val)
578
579 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
580 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
581
582 /* Determine whether the internal relocation of index REL_IDX is REL
583 (zero) or RELA (non-zero). The assumption is that, if there are
584 two relocation sections for this section, one of them is REL and
585 the other is RELA. If the index of the relocation we're testing is
586 in range for the first relocation section, check that the external
587 relocation size is that for RELA. It is also assumed that, if
588 rel_idx is not in range for the first section, and this first
589 section contains REL relocs, then the relocation is in the second
590 section, that is RELA. */
591 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
592 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
593 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
594 > (bfd_vma)(rel_idx)) \
595 == (elf_section_data (sec)->rel_hdr.sh_entsize \
596 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
597 : sizeof (Elf32_External_Rela))))
598
599 /* The name of the dynamic relocation section. */
600 #define MIPS_ELF_REL_DYN_NAME(INFO) \
601 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
602
603 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
604 from smaller values. Start with zero, widen, *then* decrement. */
605 #define MINUS_ONE (((bfd_vma)0) - 1)
606 #define MINUS_TWO (((bfd_vma)0) - 2)
607
608 /* The number of local .got entries we reserve. */
609 #define MIPS_RESERVED_GOTNO(INFO) \
610 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
611
612 /* The offset of $gp from the beginning of the .got section. */
613 #define ELF_MIPS_GP_OFFSET(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
615
616 /* The maximum size of the GOT for it to be addressable using 16-bit
617 offsets from $gp. */
618 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
619
620 /* Instructions which appear in a stub. */
621 #define STUB_LW(abfd) \
622 ((ABI_64_P (abfd) \
623 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
624 : 0x8f998010)) /* lw t9,0x8010(gp) */
625 #define STUB_MOVE(abfd) \
626 ((ABI_64_P (abfd) \
627 ? 0x03e0782d /* daddu t7,ra */ \
628 : 0x03e07821)) /* addu t7,ra */
629 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
630 #define STUB_LI16(abfd) \
631 ((ABI_64_P (abfd) \
632 ? 0x64180000 /* daddiu t8,zero,0 */ \
633 : 0x24180000)) /* addiu t8,zero,0 */
634 #define MIPS_FUNCTION_STUB_SIZE (16)
635
636 /* The name of the dynamic interpreter. This is put in the .interp
637 section. */
638
639 #define ELF_DYNAMIC_INTERPRETER(abfd) \
640 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
641 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
642 : "/usr/lib/libc.so.1")
643
644 #ifdef BFD64
645 #define MNAME(bfd,pre,pos) \
646 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
647 #define ELF_R_SYM(bfd, i) \
648 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
649 #define ELF_R_TYPE(bfd, i) \
650 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
651 #define ELF_R_INFO(bfd, s, t) \
652 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
653 #else
654 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
655 #define ELF_R_SYM(bfd, i) \
656 (ELF32_R_SYM (i))
657 #define ELF_R_TYPE(bfd, i) \
658 (ELF32_R_TYPE (i))
659 #define ELF_R_INFO(bfd, s, t) \
660 (ELF32_R_INFO (s, t))
661 #endif
662 \f
663 /* The mips16 compiler uses a couple of special sections to handle
664 floating point arguments.
665
666 Section names that look like .mips16.fn.FNNAME contain stubs that
667 copy floating point arguments from the fp regs to the gp regs and
668 then jump to FNNAME. If any 32 bit function calls FNNAME, the
669 call should be redirected to the stub instead. If no 32 bit
670 function calls FNNAME, the stub should be discarded. We need to
671 consider any reference to the function, not just a call, because
672 if the address of the function is taken we will need the stub,
673 since the address might be passed to a 32 bit function.
674
675 Section names that look like .mips16.call.FNNAME contain stubs
676 that copy floating point arguments from the gp regs to the fp
677 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
678 then any 16 bit function that calls FNNAME should be redirected
679 to the stub instead. If FNNAME is not a 32 bit function, the
680 stub should be discarded.
681
682 .mips16.call.fp.FNNAME sections are similar, but contain stubs
683 which call FNNAME and then copy the return value from the fp regs
684 to the gp regs. These stubs store the return value in $18 while
685 calling FNNAME; any function which might call one of these stubs
686 must arrange to save $18 around the call. (This case is not
687 needed for 32 bit functions that call 16 bit functions, because
688 16 bit functions always return floating point values in both
689 $f0/$f1 and $2/$3.)
690
691 Note that in all cases FNNAME might be defined statically.
692 Therefore, FNNAME is not used literally. Instead, the relocation
693 information will indicate which symbol the section is for.
694
695 We record any stubs that we find in the symbol table. */
696
697 #define FN_STUB ".mips16.fn."
698 #define CALL_STUB ".mips16.call."
699 #define CALL_FP_STUB ".mips16.call.fp."
700 \f
701 /* The format of the first PLT entry in a VxWorks executable. */
702 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
703 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
704 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
705 0x8f390008, /* lw t9, 8(t9) */
706 0x00000000, /* nop */
707 0x03200008, /* jr t9 */
708 0x00000000 /* nop */
709 };
710
711 /* The format of subsequent PLT entries. */
712 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
713 0x10000000, /* b .PLT_resolver */
714 0x24180000, /* li t8, <pltindex> */
715 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
716 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
717 0x8f390000, /* lw t9, 0(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721 };
722
723 /* The format of the first PLT entry in a VxWorks shared object. */
724 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
725 0x8f990008, /* lw t9, 8(gp) */
726 0x00000000, /* nop */
727 0x03200008, /* jr t9 */
728 0x00000000, /* nop */
729 0x00000000, /* nop */
730 0x00000000 /* nop */
731 };
732
733 /* The format of subsequent PLT entries. */
734 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000 /* li t8, <pltindex> */
737 };
738 \f
739 /* Look up an entry in a MIPS ELF linker hash table. */
740
741 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
742 ((struct mips_elf_link_hash_entry *) \
743 elf_link_hash_lookup (&(table)->root, (string), (create), \
744 (copy), (follow)))
745
746 /* Traverse a MIPS ELF linker hash table. */
747
748 #define mips_elf_link_hash_traverse(table, func, info) \
749 (elf_link_hash_traverse \
750 (&(table)->root, \
751 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
752 (info)))
753
754 /* Get the MIPS ELF linker hash table from a link_info structure. */
755
756 #define mips_elf_hash_table(p) \
757 ((struct mips_elf_link_hash_table *) ((p)->hash))
758
759 /* Find the base offsets for thread-local storage in this object,
760 for GD/LD and IE/LE respectively. */
761
762 #define TP_OFFSET 0x7000
763 #define DTP_OFFSET 0x8000
764
765 static bfd_vma
766 dtprel_base (struct bfd_link_info *info)
767 {
768 /* If tls_sec is NULL, we should have signalled an error already. */
769 if (elf_hash_table (info)->tls_sec == NULL)
770 return 0;
771 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
772 }
773
774 static bfd_vma
775 tprel_base (struct bfd_link_info *info)
776 {
777 /* If tls_sec is NULL, we should have signalled an error already. */
778 if (elf_hash_table (info)->tls_sec == NULL)
779 return 0;
780 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
781 }
782
783 /* Create an entry in a MIPS ELF linker hash table. */
784
785 static struct bfd_hash_entry *
786 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
787 struct bfd_hash_table *table, const char *string)
788 {
789 struct mips_elf_link_hash_entry *ret =
790 (struct mips_elf_link_hash_entry *) entry;
791
792 /* Allocate the structure if it has not already been allocated by a
793 subclass. */
794 if (ret == NULL)
795 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
796 if (ret == NULL)
797 return (struct bfd_hash_entry *) ret;
798
799 /* Call the allocation method of the superclass. */
800 ret = ((struct mips_elf_link_hash_entry *)
801 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
802 table, string));
803 if (ret != NULL)
804 {
805 /* Set local fields. */
806 memset (&ret->esym, 0, sizeof (EXTR));
807 /* We use -2 as a marker to indicate that the information has
808 not been set. -1 means there is no associated ifd. */
809 ret->esym.ifd = -2;
810 ret->possibly_dynamic_relocs = 0;
811 ret->readonly_reloc = FALSE;
812 ret->no_fn_stub = FALSE;
813 ret->fn_stub = NULL;
814 ret->need_fn_stub = FALSE;
815 ret->call_stub = NULL;
816 ret->call_fp_stub = NULL;
817 ret->forced_local = FALSE;
818 ret->is_branch_target = FALSE;
819 ret->is_relocation_target = FALSE;
820 ret->tls_type = GOT_NORMAL;
821 }
822
823 return (struct bfd_hash_entry *) ret;
824 }
825
826 bfd_boolean
827 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
828 {
829 struct _mips_elf_section_data *sdata;
830 bfd_size_type amt = sizeof (*sdata);
831
832 sdata = bfd_zalloc (abfd, amt);
833 if (sdata == NULL)
834 return FALSE;
835 sec->used_by_bfd = sdata;
836
837 return _bfd_elf_new_section_hook (abfd, sec);
838 }
839 \f
840 /* Read ECOFF debugging information from a .mdebug section into a
841 ecoff_debug_info structure. */
842
843 bfd_boolean
844 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
845 struct ecoff_debug_info *debug)
846 {
847 HDRR *symhdr;
848 const struct ecoff_debug_swap *swap;
849 char *ext_hdr;
850
851 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
852 memset (debug, 0, sizeof (*debug));
853
854 ext_hdr = bfd_malloc (swap->external_hdr_size);
855 if (ext_hdr == NULL && swap->external_hdr_size != 0)
856 goto error_return;
857
858 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
859 swap->external_hdr_size))
860 goto error_return;
861
862 symhdr = &debug->symbolic_header;
863 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
864
865 /* The symbolic header contains absolute file offsets and sizes to
866 read. */
867 #define READ(ptr, offset, count, size, type) \
868 if (symhdr->count == 0) \
869 debug->ptr = NULL; \
870 else \
871 { \
872 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
873 debug->ptr = bfd_malloc (amt); \
874 if (debug->ptr == NULL) \
875 goto error_return; \
876 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
877 || bfd_bread (debug->ptr, amt, abfd) != amt) \
878 goto error_return; \
879 }
880
881 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
882 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
883 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
884 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
885 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
886 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
887 union aux_ext *);
888 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
889 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
890 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
891 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
892 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
893 #undef READ
894
895 debug->fdr = NULL;
896
897 return TRUE;
898
899 error_return:
900 if (ext_hdr != NULL)
901 free (ext_hdr);
902 if (debug->line != NULL)
903 free (debug->line);
904 if (debug->external_dnr != NULL)
905 free (debug->external_dnr);
906 if (debug->external_pdr != NULL)
907 free (debug->external_pdr);
908 if (debug->external_sym != NULL)
909 free (debug->external_sym);
910 if (debug->external_opt != NULL)
911 free (debug->external_opt);
912 if (debug->external_aux != NULL)
913 free (debug->external_aux);
914 if (debug->ss != NULL)
915 free (debug->ss);
916 if (debug->ssext != NULL)
917 free (debug->ssext);
918 if (debug->external_fdr != NULL)
919 free (debug->external_fdr);
920 if (debug->external_rfd != NULL)
921 free (debug->external_rfd);
922 if (debug->external_ext != NULL)
923 free (debug->external_ext);
924 return FALSE;
925 }
926 \f
927 /* Swap RPDR (runtime procedure table entry) for output. */
928
929 static void
930 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
931 {
932 H_PUT_S32 (abfd, in->adr, ex->p_adr);
933 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
934 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
935 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
936 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
937 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
938
939 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
940 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
941
942 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
943 }
944
945 /* Create a runtime procedure table from the .mdebug section. */
946
947 static bfd_boolean
948 mips_elf_create_procedure_table (void *handle, bfd *abfd,
949 struct bfd_link_info *info, asection *s,
950 struct ecoff_debug_info *debug)
951 {
952 const struct ecoff_debug_swap *swap;
953 HDRR *hdr = &debug->symbolic_header;
954 RPDR *rpdr, *rp;
955 struct rpdr_ext *erp;
956 void *rtproc;
957 struct pdr_ext *epdr;
958 struct sym_ext *esym;
959 char *ss, **sv;
960 char *str;
961 bfd_size_type size;
962 bfd_size_type count;
963 unsigned long sindex;
964 unsigned long i;
965 PDR pdr;
966 SYMR sym;
967 const char *no_name_func = _("static procedure (no name)");
968
969 epdr = NULL;
970 rpdr = NULL;
971 esym = NULL;
972 ss = NULL;
973 sv = NULL;
974
975 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
976
977 sindex = strlen (no_name_func) + 1;
978 count = hdr->ipdMax;
979 if (count > 0)
980 {
981 size = swap->external_pdr_size;
982
983 epdr = bfd_malloc (size * count);
984 if (epdr == NULL)
985 goto error_return;
986
987 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
988 goto error_return;
989
990 size = sizeof (RPDR);
991 rp = rpdr = bfd_malloc (size * count);
992 if (rpdr == NULL)
993 goto error_return;
994
995 size = sizeof (char *);
996 sv = bfd_malloc (size * count);
997 if (sv == NULL)
998 goto error_return;
999
1000 count = hdr->isymMax;
1001 size = swap->external_sym_size;
1002 esym = bfd_malloc (size * count);
1003 if (esym == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1007 goto error_return;
1008
1009 count = hdr->issMax;
1010 ss = bfd_malloc (count);
1011 if (ss == NULL)
1012 goto error_return;
1013 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1014 goto error_return;
1015
1016 count = hdr->ipdMax;
1017 for (i = 0; i < (unsigned long) count; i++, rp++)
1018 {
1019 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1020 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1021 rp->adr = sym.value;
1022 rp->regmask = pdr.regmask;
1023 rp->regoffset = pdr.regoffset;
1024 rp->fregmask = pdr.fregmask;
1025 rp->fregoffset = pdr.fregoffset;
1026 rp->frameoffset = pdr.frameoffset;
1027 rp->framereg = pdr.framereg;
1028 rp->pcreg = pdr.pcreg;
1029 rp->irpss = sindex;
1030 sv[i] = ss + sym.iss;
1031 sindex += strlen (sv[i]) + 1;
1032 }
1033 }
1034
1035 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1036 size = BFD_ALIGN (size, 16);
1037 rtproc = bfd_alloc (abfd, size);
1038 if (rtproc == NULL)
1039 {
1040 mips_elf_hash_table (info)->procedure_count = 0;
1041 goto error_return;
1042 }
1043
1044 mips_elf_hash_table (info)->procedure_count = count + 2;
1045
1046 erp = rtproc;
1047 memset (erp, 0, sizeof (struct rpdr_ext));
1048 erp++;
1049 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1050 strcpy (str, no_name_func);
1051 str += strlen (no_name_func) + 1;
1052 for (i = 0; i < count; i++)
1053 {
1054 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1055 strcpy (str, sv[i]);
1056 str += strlen (sv[i]) + 1;
1057 }
1058 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1059
1060 /* Set the size and contents of .rtproc section. */
1061 s->size = size;
1062 s->contents = rtproc;
1063
1064 /* Skip this section later on (I don't think this currently
1065 matters, but someday it might). */
1066 s->map_head.link_order = NULL;
1067
1068 if (epdr != NULL)
1069 free (epdr);
1070 if (rpdr != NULL)
1071 free (rpdr);
1072 if (esym != NULL)
1073 free (esym);
1074 if (ss != NULL)
1075 free (ss);
1076 if (sv != NULL)
1077 free (sv);
1078
1079 return TRUE;
1080
1081 error_return:
1082 if (epdr != NULL)
1083 free (epdr);
1084 if (rpdr != NULL)
1085 free (rpdr);
1086 if (esym != NULL)
1087 free (esym);
1088 if (ss != NULL)
1089 free (ss);
1090 if (sv != NULL)
1091 free (sv);
1092 return FALSE;
1093 }
1094
1095 /* Check the mips16 stubs for a particular symbol, and see if we can
1096 discard them. */
1097
1098 static bfd_boolean
1099 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1100 void *data ATTRIBUTE_UNUSED)
1101 {
1102 if (h->root.root.type == bfd_link_hash_warning)
1103 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1104
1105 if (h->fn_stub != NULL
1106 && ! h->need_fn_stub)
1107 {
1108 /* We don't need the fn_stub; the only references to this symbol
1109 are 16 bit calls. Clobber the size to 0 to prevent it from
1110 being included in the link. */
1111 h->fn_stub->size = 0;
1112 h->fn_stub->flags &= ~SEC_RELOC;
1113 h->fn_stub->reloc_count = 0;
1114 h->fn_stub->flags |= SEC_EXCLUDE;
1115 }
1116
1117 if (h->call_stub != NULL
1118 && h->root.other == STO_MIPS16)
1119 {
1120 /* We don't need the call_stub; this is a 16 bit function, so
1121 calls from other 16 bit functions are OK. Clobber the size
1122 to 0 to prevent it from being included in the link. */
1123 h->call_stub->size = 0;
1124 h->call_stub->flags &= ~SEC_RELOC;
1125 h->call_stub->reloc_count = 0;
1126 h->call_stub->flags |= SEC_EXCLUDE;
1127 }
1128
1129 if (h->call_fp_stub != NULL
1130 && h->root.other == STO_MIPS16)
1131 {
1132 /* We don't need the call_stub; this is a 16 bit function, so
1133 calls from other 16 bit functions are OK. Clobber the size
1134 to 0 to prevent it from being included in the link. */
1135 h->call_fp_stub->size = 0;
1136 h->call_fp_stub->flags &= ~SEC_RELOC;
1137 h->call_fp_stub->reloc_count = 0;
1138 h->call_fp_stub->flags |= SEC_EXCLUDE;
1139 }
1140
1141 return TRUE;
1142 }
1143 \f
1144 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1145 Most mips16 instructions are 16 bits, but these instructions
1146 are 32 bits.
1147
1148 The format of these instructions is:
1149
1150 +--------------+--------------------------------+
1151 | JALX | X| Imm 20:16 | Imm 25:21 |
1152 +--------------+--------------------------------+
1153 | Immediate 15:0 |
1154 +-----------------------------------------------+
1155
1156 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1157 Note that the immediate value in the first word is swapped.
1158
1159 When producing a relocatable object file, R_MIPS16_26 is
1160 handled mostly like R_MIPS_26. In particular, the addend is
1161 stored as a straight 26-bit value in a 32-bit instruction.
1162 (gas makes life simpler for itself by never adjusting a
1163 R_MIPS16_26 reloc to be against a section, so the addend is
1164 always zero). However, the 32 bit instruction is stored as 2
1165 16-bit values, rather than a single 32-bit value. In a
1166 big-endian file, the result is the same; in a little-endian
1167 file, the two 16-bit halves of the 32 bit value are swapped.
1168 This is so that a disassembler can recognize the jal
1169 instruction.
1170
1171 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1172 instruction stored as two 16-bit values. The addend A is the
1173 contents of the targ26 field. The calculation is the same as
1174 R_MIPS_26. When storing the calculated value, reorder the
1175 immediate value as shown above, and don't forget to store the
1176 value as two 16-bit values.
1177
1178 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1179 defined as
1180
1181 big-endian:
1182 +--------+----------------------+
1183 | | |
1184 | | targ26-16 |
1185 |31 26|25 0|
1186 +--------+----------------------+
1187
1188 little-endian:
1189 +----------+------+-------------+
1190 | | | |
1191 | sub1 | | sub2 |
1192 |0 9|10 15|16 31|
1193 +----------+--------------------+
1194 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1195 ((sub1 << 16) | sub2)).
1196
1197 When producing a relocatable object file, the calculation is
1198 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1199 When producing a fully linked file, the calculation is
1200 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1201 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1202
1203 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1204 mode. A typical instruction will have a format like this:
1205
1206 +--------------+--------------------------------+
1207 | EXTEND | Imm 10:5 | Imm 15:11 |
1208 +--------------+--------------------------------+
1209 | Major | rx | ry | Imm 4:0 |
1210 +--------------+--------------------------------+
1211
1212 EXTEND is the five bit value 11110. Major is the instruction
1213 opcode.
1214
1215 This is handled exactly like R_MIPS_GPREL16, except that the
1216 addend is retrieved and stored as shown in this diagram; that
1217 is, the Imm fields above replace the V-rel16 field.
1218
1219 All we need to do here is shuffle the bits appropriately. As
1220 above, the two 16-bit halves must be swapped on a
1221 little-endian system.
1222
1223 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1224 access data when neither GP-relative nor PC-relative addressing
1225 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1226 except that the addend is retrieved and stored as shown above
1227 for R_MIPS16_GPREL.
1228 */
1229 void
1230 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1231 bfd_boolean jal_shuffle, bfd_byte *data)
1232 {
1233 bfd_vma extend, insn, val;
1234
1235 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1236 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1237 return;
1238
1239 /* Pick up the mips16 extend instruction and the real instruction. */
1240 extend = bfd_get_16 (abfd, data);
1241 insn = bfd_get_16 (abfd, data + 2);
1242 if (r_type == R_MIPS16_26)
1243 {
1244 if (jal_shuffle)
1245 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1246 | ((extend & 0x1f) << 21) | insn;
1247 else
1248 val = extend << 16 | insn;
1249 }
1250 else
1251 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1252 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1253 bfd_put_32 (abfd, val, data);
1254 }
1255
1256 void
1257 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1258 bfd_boolean jal_shuffle, bfd_byte *data)
1259 {
1260 bfd_vma extend, insn, val;
1261
1262 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1263 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1264 return;
1265
1266 val = bfd_get_32 (abfd, data);
1267 if (r_type == R_MIPS16_26)
1268 {
1269 if (jal_shuffle)
1270 {
1271 insn = val & 0xffff;
1272 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1273 | ((val >> 21) & 0x1f);
1274 }
1275 else
1276 {
1277 insn = val & 0xffff;
1278 extend = val >> 16;
1279 }
1280 }
1281 else
1282 {
1283 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1284 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1285 }
1286 bfd_put_16 (abfd, insn, data + 2);
1287 bfd_put_16 (abfd, extend, data);
1288 }
1289
1290 bfd_reloc_status_type
1291 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1292 arelent *reloc_entry, asection *input_section,
1293 bfd_boolean relocatable, void *data, bfd_vma gp)
1294 {
1295 bfd_vma relocation;
1296 bfd_signed_vma val;
1297 bfd_reloc_status_type status;
1298
1299 if (bfd_is_com_section (symbol->section))
1300 relocation = 0;
1301 else
1302 relocation = symbol->value;
1303
1304 relocation += symbol->section->output_section->vma;
1305 relocation += symbol->section->output_offset;
1306
1307 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1308 return bfd_reloc_outofrange;
1309
1310 /* Set val to the offset into the section or symbol. */
1311 val = reloc_entry->addend;
1312
1313 _bfd_mips_elf_sign_extend (val, 16);
1314
1315 /* Adjust val for the final section location and GP value. If we
1316 are producing relocatable output, we don't want to do this for
1317 an external symbol. */
1318 if (! relocatable
1319 || (symbol->flags & BSF_SECTION_SYM) != 0)
1320 val += relocation - gp;
1321
1322 if (reloc_entry->howto->partial_inplace)
1323 {
1324 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1325 (bfd_byte *) data
1326 + reloc_entry->address);
1327 if (status != bfd_reloc_ok)
1328 return status;
1329 }
1330 else
1331 reloc_entry->addend = val;
1332
1333 if (relocatable)
1334 reloc_entry->address += input_section->output_offset;
1335
1336 return bfd_reloc_ok;
1337 }
1338
1339 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1340 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1341 that contains the relocation field and DATA points to the start of
1342 INPUT_SECTION. */
1343
1344 struct mips_hi16
1345 {
1346 struct mips_hi16 *next;
1347 bfd_byte *data;
1348 asection *input_section;
1349 arelent rel;
1350 };
1351
1352 /* FIXME: This should not be a static variable. */
1353
1354 static struct mips_hi16 *mips_hi16_list;
1355
1356 /* A howto special_function for REL *HI16 relocations. We can only
1357 calculate the correct value once we've seen the partnering
1358 *LO16 relocation, so just save the information for later.
1359
1360 The ABI requires that the *LO16 immediately follow the *HI16.
1361 However, as a GNU extension, we permit an arbitrary number of
1362 *HI16s to be associated with a single *LO16. This significantly
1363 simplies the relocation handling in gcc. */
1364
1365 bfd_reloc_status_type
1366 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1367 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1368 asection *input_section, bfd *output_bfd,
1369 char **error_message ATTRIBUTE_UNUSED)
1370 {
1371 struct mips_hi16 *n;
1372
1373 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1374 return bfd_reloc_outofrange;
1375
1376 n = bfd_malloc (sizeof *n);
1377 if (n == NULL)
1378 return bfd_reloc_outofrange;
1379
1380 n->next = mips_hi16_list;
1381 n->data = data;
1382 n->input_section = input_section;
1383 n->rel = *reloc_entry;
1384 mips_hi16_list = n;
1385
1386 if (output_bfd != NULL)
1387 reloc_entry->address += input_section->output_offset;
1388
1389 return bfd_reloc_ok;
1390 }
1391
1392 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1393 like any other 16-bit relocation when applied to global symbols, but is
1394 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1395
1396 bfd_reloc_status_type
1397 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1398 void *data, asection *input_section,
1399 bfd *output_bfd, char **error_message)
1400 {
1401 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1402 || bfd_is_und_section (bfd_get_section (symbol))
1403 || bfd_is_com_section (bfd_get_section (symbol)))
1404 /* The relocation is against a global symbol. */
1405 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1406 input_section, output_bfd,
1407 error_message);
1408
1409 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1410 input_section, output_bfd, error_message);
1411 }
1412
1413 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1414 is a straightforward 16 bit inplace relocation, but we must deal with
1415 any partnering high-part relocations as well. */
1416
1417 bfd_reloc_status_type
1418 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1419 void *data, asection *input_section,
1420 bfd *output_bfd, char **error_message)
1421 {
1422 bfd_vma vallo;
1423 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1424
1425 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1426 return bfd_reloc_outofrange;
1427
1428 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1429 location);
1430 vallo = bfd_get_32 (abfd, location);
1431 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1432 location);
1433
1434 while (mips_hi16_list != NULL)
1435 {
1436 bfd_reloc_status_type ret;
1437 struct mips_hi16 *hi;
1438
1439 hi = mips_hi16_list;
1440
1441 /* R_MIPS_GOT16 relocations are something of a special case. We
1442 want to install the addend in the same way as for a R_MIPS_HI16
1443 relocation (with a rightshift of 16). However, since GOT16
1444 relocations can also be used with global symbols, their howto
1445 has a rightshift of 0. */
1446 if (hi->rel.howto->type == R_MIPS_GOT16)
1447 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1448
1449 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1450 carry or borrow will induce a change of +1 or -1 in the high part. */
1451 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1452
1453 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1454 hi->input_section, output_bfd,
1455 error_message);
1456 if (ret != bfd_reloc_ok)
1457 return ret;
1458
1459 mips_hi16_list = hi->next;
1460 free (hi);
1461 }
1462
1463 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1464 input_section, output_bfd,
1465 error_message);
1466 }
1467
1468 /* A generic howto special_function. This calculates and installs the
1469 relocation itself, thus avoiding the oft-discussed problems in
1470 bfd_perform_relocation and bfd_install_relocation. */
1471
1472 bfd_reloc_status_type
1473 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1474 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1475 asection *input_section, bfd *output_bfd,
1476 char **error_message ATTRIBUTE_UNUSED)
1477 {
1478 bfd_signed_vma val;
1479 bfd_reloc_status_type status;
1480 bfd_boolean relocatable;
1481
1482 relocatable = (output_bfd != NULL);
1483
1484 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1485 return bfd_reloc_outofrange;
1486
1487 /* Build up the field adjustment in VAL. */
1488 val = 0;
1489 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1490 {
1491 /* Either we're calculating the final field value or we have a
1492 relocation against a section symbol. Add in the section's
1493 offset or address. */
1494 val += symbol->section->output_section->vma;
1495 val += symbol->section->output_offset;
1496 }
1497
1498 if (!relocatable)
1499 {
1500 /* We're calculating the final field value. Add in the symbol's value
1501 and, if pc-relative, subtract the address of the field itself. */
1502 val += symbol->value;
1503 if (reloc_entry->howto->pc_relative)
1504 {
1505 val -= input_section->output_section->vma;
1506 val -= input_section->output_offset;
1507 val -= reloc_entry->address;
1508 }
1509 }
1510
1511 /* VAL is now the final adjustment. If we're keeping this relocation
1512 in the output file, and if the relocation uses a separate addend,
1513 we just need to add VAL to that addend. Otherwise we need to add
1514 VAL to the relocation field itself. */
1515 if (relocatable && !reloc_entry->howto->partial_inplace)
1516 reloc_entry->addend += val;
1517 else
1518 {
1519 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1520
1521 /* Add in the separate addend, if any. */
1522 val += reloc_entry->addend;
1523
1524 /* Add VAL to the relocation field. */
1525 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1526 location);
1527 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1528 location);
1529 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1530 location);
1531
1532 if (status != bfd_reloc_ok)
1533 return status;
1534 }
1535
1536 if (relocatable)
1537 reloc_entry->address += input_section->output_offset;
1538
1539 return bfd_reloc_ok;
1540 }
1541 \f
1542 /* Swap an entry in a .gptab section. Note that these routines rely
1543 on the equivalence of the two elements of the union. */
1544
1545 static void
1546 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1547 Elf32_gptab *in)
1548 {
1549 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1550 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1551 }
1552
1553 static void
1554 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1555 Elf32_External_gptab *ex)
1556 {
1557 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1558 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1559 }
1560
1561 static void
1562 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1563 Elf32_External_compact_rel *ex)
1564 {
1565 H_PUT_32 (abfd, in->id1, ex->id1);
1566 H_PUT_32 (abfd, in->num, ex->num);
1567 H_PUT_32 (abfd, in->id2, ex->id2);
1568 H_PUT_32 (abfd, in->offset, ex->offset);
1569 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1570 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1571 }
1572
1573 static void
1574 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1575 Elf32_External_crinfo *ex)
1576 {
1577 unsigned long l;
1578
1579 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1580 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1581 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1582 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1583 H_PUT_32 (abfd, l, ex->info);
1584 H_PUT_32 (abfd, in->konst, ex->konst);
1585 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1586 }
1587 \f
1588 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1589 routines swap this structure in and out. They are used outside of
1590 BFD, so they are globally visible. */
1591
1592 void
1593 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1594 Elf32_RegInfo *in)
1595 {
1596 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1597 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1598 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1599 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1600 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1601 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1602 }
1603
1604 void
1605 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1606 Elf32_External_RegInfo *ex)
1607 {
1608 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1609 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1610 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1611 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1612 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1613 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1614 }
1615
1616 /* In the 64 bit ABI, the .MIPS.options section holds register
1617 information in an Elf64_Reginfo structure. These routines swap
1618 them in and out. They are globally visible because they are used
1619 outside of BFD. These routines are here so that gas can call them
1620 without worrying about whether the 64 bit ABI has been included. */
1621
1622 void
1623 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1624 Elf64_Internal_RegInfo *in)
1625 {
1626 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1627 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1628 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1629 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1630 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1631 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1632 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1633 }
1634
1635 void
1636 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1637 Elf64_External_RegInfo *ex)
1638 {
1639 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1640 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1641 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1642 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1643 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1644 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1645 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1646 }
1647
1648 /* Swap in an options header. */
1649
1650 void
1651 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1652 Elf_Internal_Options *in)
1653 {
1654 in->kind = H_GET_8 (abfd, ex->kind);
1655 in->size = H_GET_8 (abfd, ex->size);
1656 in->section = H_GET_16 (abfd, ex->section);
1657 in->info = H_GET_32 (abfd, ex->info);
1658 }
1659
1660 /* Swap out an options header. */
1661
1662 void
1663 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1664 Elf_External_Options *ex)
1665 {
1666 H_PUT_8 (abfd, in->kind, ex->kind);
1667 H_PUT_8 (abfd, in->size, ex->size);
1668 H_PUT_16 (abfd, in->section, ex->section);
1669 H_PUT_32 (abfd, in->info, ex->info);
1670 }
1671 \f
1672 /* This function is called via qsort() to sort the dynamic relocation
1673 entries by increasing r_symndx value. */
1674
1675 static int
1676 sort_dynamic_relocs (const void *arg1, const void *arg2)
1677 {
1678 Elf_Internal_Rela int_reloc1;
1679 Elf_Internal_Rela int_reloc2;
1680
1681 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1682 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1683
1684 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1685 }
1686
1687 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1688
1689 static int
1690 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1691 const void *arg2 ATTRIBUTE_UNUSED)
1692 {
1693 #ifdef BFD64
1694 Elf_Internal_Rela int_reloc1[3];
1695 Elf_Internal_Rela int_reloc2[3];
1696
1697 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1698 (reldyn_sorting_bfd, arg1, int_reloc1);
1699 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1700 (reldyn_sorting_bfd, arg2, int_reloc2);
1701
1702 return (ELF64_R_SYM (int_reloc1[0].r_info)
1703 - ELF64_R_SYM (int_reloc2[0].r_info));
1704 #else
1705 abort ();
1706 #endif
1707 }
1708
1709
1710 /* This routine is used to write out ECOFF debugging external symbol
1711 information. It is called via mips_elf_link_hash_traverse. The
1712 ECOFF external symbol information must match the ELF external
1713 symbol information. Unfortunately, at this point we don't know
1714 whether a symbol is required by reloc information, so the two
1715 tables may wind up being different. We must sort out the external
1716 symbol information before we can set the final size of the .mdebug
1717 section, and we must set the size of the .mdebug section before we
1718 can relocate any sections, and we can't know which symbols are
1719 required by relocation until we relocate the sections.
1720 Fortunately, it is relatively unlikely that any symbol will be
1721 stripped but required by a reloc. In particular, it can not happen
1722 when generating a final executable. */
1723
1724 static bfd_boolean
1725 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1726 {
1727 struct extsym_info *einfo = data;
1728 bfd_boolean strip;
1729 asection *sec, *output_section;
1730
1731 if (h->root.root.type == bfd_link_hash_warning)
1732 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1733
1734 if (h->root.indx == -2)
1735 strip = FALSE;
1736 else if ((h->root.def_dynamic
1737 || h->root.ref_dynamic
1738 || h->root.type == bfd_link_hash_new)
1739 && !h->root.def_regular
1740 && !h->root.ref_regular)
1741 strip = TRUE;
1742 else if (einfo->info->strip == strip_all
1743 || (einfo->info->strip == strip_some
1744 && bfd_hash_lookup (einfo->info->keep_hash,
1745 h->root.root.root.string,
1746 FALSE, FALSE) == NULL))
1747 strip = TRUE;
1748 else
1749 strip = FALSE;
1750
1751 if (strip)
1752 return TRUE;
1753
1754 if (h->esym.ifd == -2)
1755 {
1756 h->esym.jmptbl = 0;
1757 h->esym.cobol_main = 0;
1758 h->esym.weakext = 0;
1759 h->esym.reserved = 0;
1760 h->esym.ifd = ifdNil;
1761 h->esym.asym.value = 0;
1762 h->esym.asym.st = stGlobal;
1763
1764 if (h->root.root.type == bfd_link_hash_undefined
1765 || h->root.root.type == bfd_link_hash_undefweak)
1766 {
1767 const char *name;
1768
1769 /* Use undefined class. Also, set class and type for some
1770 special symbols. */
1771 name = h->root.root.root.string;
1772 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1773 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1774 {
1775 h->esym.asym.sc = scData;
1776 h->esym.asym.st = stLabel;
1777 h->esym.asym.value = 0;
1778 }
1779 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1780 {
1781 h->esym.asym.sc = scAbs;
1782 h->esym.asym.st = stLabel;
1783 h->esym.asym.value =
1784 mips_elf_hash_table (einfo->info)->procedure_count;
1785 }
1786 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1787 {
1788 h->esym.asym.sc = scAbs;
1789 h->esym.asym.st = stLabel;
1790 h->esym.asym.value = elf_gp (einfo->abfd);
1791 }
1792 else
1793 h->esym.asym.sc = scUndefined;
1794 }
1795 else if (h->root.root.type != bfd_link_hash_defined
1796 && h->root.root.type != bfd_link_hash_defweak)
1797 h->esym.asym.sc = scAbs;
1798 else
1799 {
1800 const char *name;
1801
1802 sec = h->root.root.u.def.section;
1803 output_section = sec->output_section;
1804
1805 /* When making a shared library and symbol h is the one from
1806 the another shared library, OUTPUT_SECTION may be null. */
1807 if (output_section == NULL)
1808 h->esym.asym.sc = scUndefined;
1809 else
1810 {
1811 name = bfd_section_name (output_section->owner, output_section);
1812
1813 if (strcmp (name, ".text") == 0)
1814 h->esym.asym.sc = scText;
1815 else if (strcmp (name, ".data") == 0)
1816 h->esym.asym.sc = scData;
1817 else if (strcmp (name, ".sdata") == 0)
1818 h->esym.asym.sc = scSData;
1819 else if (strcmp (name, ".rodata") == 0
1820 || strcmp (name, ".rdata") == 0)
1821 h->esym.asym.sc = scRData;
1822 else if (strcmp (name, ".bss") == 0)
1823 h->esym.asym.sc = scBss;
1824 else if (strcmp (name, ".sbss") == 0)
1825 h->esym.asym.sc = scSBss;
1826 else if (strcmp (name, ".init") == 0)
1827 h->esym.asym.sc = scInit;
1828 else if (strcmp (name, ".fini") == 0)
1829 h->esym.asym.sc = scFini;
1830 else
1831 h->esym.asym.sc = scAbs;
1832 }
1833 }
1834
1835 h->esym.asym.reserved = 0;
1836 h->esym.asym.index = indexNil;
1837 }
1838
1839 if (h->root.root.type == bfd_link_hash_common)
1840 h->esym.asym.value = h->root.root.u.c.size;
1841 else if (h->root.root.type == bfd_link_hash_defined
1842 || h->root.root.type == bfd_link_hash_defweak)
1843 {
1844 if (h->esym.asym.sc == scCommon)
1845 h->esym.asym.sc = scBss;
1846 else if (h->esym.asym.sc == scSCommon)
1847 h->esym.asym.sc = scSBss;
1848
1849 sec = h->root.root.u.def.section;
1850 output_section = sec->output_section;
1851 if (output_section != NULL)
1852 h->esym.asym.value = (h->root.root.u.def.value
1853 + sec->output_offset
1854 + output_section->vma);
1855 else
1856 h->esym.asym.value = 0;
1857 }
1858 else if (h->root.needs_plt)
1859 {
1860 struct mips_elf_link_hash_entry *hd = h;
1861 bfd_boolean no_fn_stub = h->no_fn_stub;
1862
1863 while (hd->root.root.type == bfd_link_hash_indirect)
1864 {
1865 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1866 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1867 }
1868
1869 if (!no_fn_stub)
1870 {
1871 /* Set type and value for a symbol with a function stub. */
1872 h->esym.asym.st = stProc;
1873 sec = hd->root.root.u.def.section;
1874 if (sec == NULL)
1875 h->esym.asym.value = 0;
1876 else
1877 {
1878 output_section = sec->output_section;
1879 if (output_section != NULL)
1880 h->esym.asym.value = (hd->root.plt.offset
1881 + sec->output_offset
1882 + output_section->vma);
1883 else
1884 h->esym.asym.value = 0;
1885 }
1886 }
1887 }
1888
1889 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1890 h->root.root.root.string,
1891 &h->esym))
1892 {
1893 einfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 return TRUE;
1898 }
1899
1900 /* A comparison routine used to sort .gptab entries. */
1901
1902 static int
1903 gptab_compare (const void *p1, const void *p2)
1904 {
1905 const Elf32_gptab *a1 = p1;
1906 const Elf32_gptab *a2 = p2;
1907
1908 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1909 }
1910 \f
1911 /* Functions to manage the got entry hash table. */
1912
1913 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1914 hash number. */
1915
1916 static INLINE hashval_t
1917 mips_elf_hash_bfd_vma (bfd_vma addr)
1918 {
1919 #ifdef BFD64
1920 return addr + (addr >> 32);
1921 #else
1922 return addr;
1923 #endif
1924 }
1925
1926 /* got_entries only match if they're identical, except for gotidx, so
1927 use all fields to compute the hash, and compare the appropriate
1928 union members. */
1929
1930 static hashval_t
1931 mips_elf_got_entry_hash (const void *entry_)
1932 {
1933 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1934
1935 return entry->symndx
1936 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1937 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1938 : entry->abfd->id
1939 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1940 : entry->d.h->root.root.root.hash));
1941 }
1942
1943 static int
1944 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1945 {
1946 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1947 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1948
1949 /* An LDM entry can only match another LDM entry. */
1950 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1951 return 0;
1952
1953 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1954 && (! e1->abfd ? e1->d.address == e2->d.address
1955 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1956 : e1->d.h == e2->d.h);
1957 }
1958
1959 /* multi_got_entries are still a match in the case of global objects,
1960 even if the input bfd in which they're referenced differs, so the
1961 hash computation and compare functions are adjusted
1962 accordingly. */
1963
1964 static hashval_t
1965 mips_elf_multi_got_entry_hash (const void *entry_)
1966 {
1967 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1968
1969 return entry->symndx
1970 + (! entry->abfd
1971 ? mips_elf_hash_bfd_vma (entry->d.address)
1972 : entry->symndx >= 0
1973 ? ((entry->tls_type & GOT_TLS_LDM)
1974 ? (GOT_TLS_LDM << 17)
1975 : (entry->abfd->id
1976 + mips_elf_hash_bfd_vma (entry->d.addend)))
1977 : entry->d.h->root.root.root.hash);
1978 }
1979
1980 static int
1981 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1982 {
1983 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1984 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1985
1986 /* Any two LDM entries match. */
1987 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1988 return 1;
1989
1990 /* Nothing else matches an LDM entry. */
1991 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1992 return 0;
1993
1994 return e1->symndx == e2->symndx
1995 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1996 : e1->abfd == NULL || e2->abfd == NULL
1997 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1998 : e1->d.h == e2->d.h);
1999 }
2000 \f
2001 /* Return the dynamic relocation section. If it doesn't exist, try to
2002 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2003 if creation fails. */
2004
2005 static asection *
2006 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2007 {
2008 const char *dname;
2009 asection *sreloc;
2010 bfd *dynobj;
2011
2012 dname = MIPS_ELF_REL_DYN_NAME (info);
2013 dynobj = elf_hash_table (info)->dynobj;
2014 sreloc = bfd_get_section_by_name (dynobj, dname);
2015 if (sreloc == NULL && create_p)
2016 {
2017 sreloc = bfd_make_section_with_flags (dynobj, dname,
2018 (SEC_ALLOC
2019 | SEC_LOAD
2020 | SEC_HAS_CONTENTS
2021 | SEC_IN_MEMORY
2022 | SEC_LINKER_CREATED
2023 | SEC_READONLY));
2024 if (sreloc == NULL
2025 || ! bfd_set_section_alignment (dynobj, sreloc,
2026 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2027 return NULL;
2028 }
2029 return sreloc;
2030 }
2031
2032 /* Returns the GOT section for ABFD. */
2033
2034 static asection *
2035 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2036 {
2037 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2038 if (sgot == NULL
2039 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2040 return NULL;
2041 return sgot;
2042 }
2043
2044 /* Returns the GOT information associated with the link indicated by
2045 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2046 section. */
2047
2048 static struct mips_got_info *
2049 mips_elf_got_info (bfd *abfd, asection **sgotp)
2050 {
2051 asection *sgot;
2052 struct mips_got_info *g;
2053
2054 sgot = mips_elf_got_section (abfd, TRUE);
2055 BFD_ASSERT (sgot != NULL);
2056 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2057 g = mips_elf_section_data (sgot)->u.got_info;
2058 BFD_ASSERT (g != NULL);
2059
2060 if (sgotp)
2061 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2062
2063 return g;
2064 }
2065
2066 /* Count the number of relocations needed for a TLS GOT entry, with
2067 access types from TLS_TYPE, and symbol H (or a local symbol if H
2068 is NULL). */
2069
2070 static int
2071 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2072 struct elf_link_hash_entry *h)
2073 {
2074 int indx = 0;
2075 int ret = 0;
2076 bfd_boolean need_relocs = FALSE;
2077 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2078
2079 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2080 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2081 indx = h->dynindx;
2082
2083 if ((info->shared || indx != 0)
2084 && (h == NULL
2085 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2086 || h->root.type != bfd_link_hash_undefweak))
2087 need_relocs = TRUE;
2088
2089 if (!need_relocs)
2090 return FALSE;
2091
2092 if (tls_type & GOT_TLS_GD)
2093 {
2094 ret++;
2095 if (indx != 0)
2096 ret++;
2097 }
2098
2099 if (tls_type & GOT_TLS_IE)
2100 ret++;
2101
2102 if ((tls_type & GOT_TLS_LDM) && info->shared)
2103 ret++;
2104
2105 return ret;
2106 }
2107
2108 /* Count the number of TLS relocations required for the GOT entry in
2109 ARG1, if it describes a local symbol. */
2110
2111 static int
2112 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2113 {
2114 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2115 struct mips_elf_count_tls_arg *arg = arg2;
2116
2117 if (entry->abfd != NULL && entry->symndx != -1)
2118 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2119
2120 return 1;
2121 }
2122
2123 /* Count the number of TLS GOT entries required for the global (or
2124 forced-local) symbol in ARG1. */
2125
2126 static int
2127 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2128 {
2129 struct mips_elf_link_hash_entry *hm
2130 = (struct mips_elf_link_hash_entry *) arg1;
2131 struct mips_elf_count_tls_arg *arg = arg2;
2132
2133 if (hm->tls_type & GOT_TLS_GD)
2134 arg->needed += 2;
2135 if (hm->tls_type & GOT_TLS_IE)
2136 arg->needed += 1;
2137
2138 return 1;
2139 }
2140
2141 /* Count the number of TLS relocations required for the global (or
2142 forced-local) symbol in ARG1. */
2143
2144 static int
2145 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2146 {
2147 struct mips_elf_link_hash_entry *hm
2148 = (struct mips_elf_link_hash_entry *) arg1;
2149 struct mips_elf_count_tls_arg *arg = arg2;
2150
2151 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2152
2153 return 1;
2154 }
2155
2156 /* Output a simple dynamic relocation into SRELOC. */
2157
2158 static void
2159 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2160 asection *sreloc,
2161 unsigned long indx,
2162 int r_type,
2163 bfd_vma offset)
2164 {
2165 Elf_Internal_Rela rel[3];
2166
2167 memset (rel, 0, sizeof (rel));
2168
2169 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2170 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2171
2172 if (ABI_64_P (output_bfd))
2173 {
2174 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2175 (output_bfd, &rel[0],
2176 (sreloc->contents
2177 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2178 }
2179 else
2180 bfd_elf32_swap_reloc_out
2181 (output_bfd, &rel[0],
2182 (sreloc->contents
2183 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2184 ++sreloc->reloc_count;
2185 }
2186
2187 /* Initialize a set of TLS GOT entries for one symbol. */
2188
2189 static void
2190 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2191 unsigned char *tls_type_p,
2192 struct bfd_link_info *info,
2193 struct mips_elf_link_hash_entry *h,
2194 bfd_vma value)
2195 {
2196 int indx;
2197 asection *sreloc, *sgot;
2198 bfd_vma offset, offset2;
2199 bfd *dynobj;
2200 bfd_boolean need_relocs = FALSE;
2201
2202 dynobj = elf_hash_table (info)->dynobj;
2203 sgot = mips_elf_got_section (dynobj, FALSE);
2204
2205 indx = 0;
2206 if (h != NULL)
2207 {
2208 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2209
2210 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2211 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2212 indx = h->root.dynindx;
2213 }
2214
2215 if (*tls_type_p & GOT_TLS_DONE)
2216 return;
2217
2218 if ((info->shared || indx != 0)
2219 && (h == NULL
2220 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2221 || h->root.type != bfd_link_hash_undefweak))
2222 need_relocs = TRUE;
2223
2224 /* MINUS_ONE means the symbol is not defined in this object. It may not
2225 be defined at all; assume that the value doesn't matter in that
2226 case. Otherwise complain if we would use the value. */
2227 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2228 || h->root.root.type == bfd_link_hash_undefweak);
2229
2230 /* Emit necessary relocations. */
2231 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2232
2233 /* General Dynamic. */
2234 if (*tls_type_p & GOT_TLS_GD)
2235 {
2236 offset = got_offset;
2237 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2238
2239 if (need_relocs)
2240 {
2241 mips_elf_output_dynamic_relocation
2242 (abfd, sreloc, indx,
2243 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2244 sgot->output_offset + sgot->output_section->vma + offset);
2245
2246 if (indx)
2247 mips_elf_output_dynamic_relocation
2248 (abfd, sreloc, indx,
2249 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2250 sgot->output_offset + sgot->output_section->vma + offset2);
2251 else
2252 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2253 sgot->contents + offset2);
2254 }
2255 else
2256 {
2257 MIPS_ELF_PUT_WORD (abfd, 1,
2258 sgot->contents + offset);
2259 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2260 sgot->contents + offset2);
2261 }
2262
2263 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2264 }
2265
2266 /* Initial Exec model. */
2267 if (*tls_type_p & GOT_TLS_IE)
2268 {
2269 offset = got_offset;
2270
2271 if (need_relocs)
2272 {
2273 if (indx == 0)
2274 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2275 sgot->contents + offset);
2276 else
2277 MIPS_ELF_PUT_WORD (abfd, 0,
2278 sgot->contents + offset);
2279
2280 mips_elf_output_dynamic_relocation
2281 (abfd, sreloc, indx,
2282 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2283 sgot->output_offset + sgot->output_section->vma + offset);
2284 }
2285 else
2286 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2287 sgot->contents + offset);
2288 }
2289
2290 if (*tls_type_p & GOT_TLS_LDM)
2291 {
2292 /* The initial offset is zero, and the LD offsets will include the
2293 bias by DTP_OFFSET. */
2294 MIPS_ELF_PUT_WORD (abfd, 0,
2295 sgot->contents + got_offset
2296 + MIPS_ELF_GOT_SIZE (abfd));
2297
2298 if (!info->shared)
2299 MIPS_ELF_PUT_WORD (abfd, 1,
2300 sgot->contents + got_offset);
2301 else
2302 mips_elf_output_dynamic_relocation
2303 (abfd, sreloc, indx,
2304 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2305 sgot->output_offset + sgot->output_section->vma + got_offset);
2306 }
2307
2308 *tls_type_p |= GOT_TLS_DONE;
2309 }
2310
2311 /* Return the GOT index to use for a relocation of type R_TYPE against
2312 a symbol accessed using TLS_TYPE models. The GOT entries for this
2313 symbol in this GOT start at GOT_INDEX. This function initializes the
2314 GOT entries and corresponding relocations. */
2315
2316 static bfd_vma
2317 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2318 int r_type, struct bfd_link_info *info,
2319 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2320 {
2321 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2322 || r_type == R_MIPS_TLS_LDM);
2323
2324 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2325
2326 if (r_type == R_MIPS_TLS_GOTTPREL)
2327 {
2328 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2329 if (*tls_type & GOT_TLS_GD)
2330 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2331 else
2332 return got_index;
2333 }
2334
2335 if (r_type == R_MIPS_TLS_GD)
2336 {
2337 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2338 return got_index;
2339 }
2340
2341 if (r_type == R_MIPS_TLS_LDM)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2344 return got_index;
2345 }
2346
2347 return got_index;
2348 }
2349
2350 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2351 for global symbol H. .got.plt comes before the GOT, so the offset
2352 will be negative. */
2353
2354 static bfd_vma
2355 mips_elf_gotplt_index (struct bfd_link_info *info,
2356 struct elf_link_hash_entry *h)
2357 {
2358 bfd_vma plt_index, got_address, got_value;
2359 struct mips_elf_link_hash_table *htab;
2360
2361 htab = mips_elf_hash_table (info);
2362 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2363
2364 /* Calculate the index of the symbol's PLT entry. */
2365 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2366
2367 /* Calculate the address of the associated .got.plt entry. */
2368 got_address = (htab->sgotplt->output_section->vma
2369 + htab->sgotplt->output_offset
2370 + plt_index * 4);
2371
2372 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2373 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2374 + htab->root.hgot->root.u.def.section->output_offset
2375 + htab->root.hgot->root.u.def.value);
2376
2377 return got_address - got_value;
2378 }
2379
2380 /* Return the GOT offset for address VALUE, which was derived from
2381 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2382 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2383 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2384 offset can be found. */
2385
2386 static bfd_vma
2387 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2388 asection *input_section, bfd_vma value,
2389 unsigned long r_symndx,
2390 struct mips_elf_link_hash_entry *h, int r_type)
2391 {
2392 asection *sgot;
2393 struct mips_got_info *g;
2394 struct mips_got_entry *entry;
2395
2396 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2397
2398 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2399 input_section, value,
2400 r_symndx, h, r_type);
2401 if (!entry)
2402 return MINUS_ONE;
2403
2404 if (TLS_RELOC_P (r_type))
2405 {
2406 if (entry->symndx == -1 && g->next == NULL)
2407 /* A type (3) entry in the single-GOT case. We use the symbol's
2408 hash table entry to track the index. */
2409 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2410 r_type, info, h, value);
2411 else
2412 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2413 r_type, info, h, value);
2414 }
2415 else
2416 return entry->gotidx;
2417 }
2418
2419 /* Returns the GOT index for the global symbol indicated by H. */
2420
2421 static bfd_vma
2422 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2423 int r_type, struct bfd_link_info *info)
2424 {
2425 bfd_vma index;
2426 asection *sgot;
2427 struct mips_got_info *g, *gg;
2428 long global_got_dynindx = 0;
2429
2430 gg = g = mips_elf_got_info (abfd, &sgot);
2431 if (g->bfd2got && ibfd)
2432 {
2433 struct mips_got_entry e, *p;
2434
2435 BFD_ASSERT (h->dynindx >= 0);
2436
2437 g = mips_elf_got_for_ibfd (g, ibfd);
2438 if (g->next != gg || TLS_RELOC_P (r_type))
2439 {
2440 e.abfd = ibfd;
2441 e.symndx = -1;
2442 e.d.h = (struct mips_elf_link_hash_entry *)h;
2443 e.tls_type = 0;
2444
2445 p = htab_find (g->got_entries, &e);
2446
2447 BFD_ASSERT (p->gotidx > 0);
2448
2449 if (TLS_RELOC_P (r_type))
2450 {
2451 bfd_vma value = MINUS_ONE;
2452 if ((h->root.type == bfd_link_hash_defined
2453 || h->root.type == bfd_link_hash_defweak)
2454 && h->root.u.def.section->output_section)
2455 value = (h->root.u.def.value
2456 + h->root.u.def.section->output_offset
2457 + h->root.u.def.section->output_section->vma);
2458
2459 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2460 info, e.d.h, value);
2461 }
2462 else
2463 return p->gotidx;
2464 }
2465 }
2466
2467 if (gg->global_gotsym != NULL)
2468 global_got_dynindx = gg->global_gotsym->dynindx;
2469
2470 if (TLS_RELOC_P (r_type))
2471 {
2472 struct mips_elf_link_hash_entry *hm
2473 = (struct mips_elf_link_hash_entry *) h;
2474 bfd_vma value = MINUS_ONE;
2475
2476 if ((h->root.type == bfd_link_hash_defined
2477 || h->root.type == bfd_link_hash_defweak)
2478 && h->root.u.def.section->output_section)
2479 value = (h->root.u.def.value
2480 + h->root.u.def.section->output_offset
2481 + h->root.u.def.section->output_section->vma);
2482
2483 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2484 r_type, info, hm, value);
2485 }
2486 else
2487 {
2488 /* Once we determine the global GOT entry with the lowest dynamic
2489 symbol table index, we must put all dynamic symbols with greater
2490 indices into the GOT. That makes it easy to calculate the GOT
2491 offset. */
2492 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2493 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2494 * MIPS_ELF_GOT_SIZE (abfd));
2495 }
2496 BFD_ASSERT (index < sgot->size);
2497
2498 return index;
2499 }
2500
2501 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2502 calculated from a symbol belonging to INPUT_SECTION. These entries
2503 are supposed to be placed at small offsets in the GOT, i.e., within
2504 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2505 could be created. If OFFSETP is nonnull, use it to return the
2506 offset of the GOT entry from VALUE. */
2507
2508 static bfd_vma
2509 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2510 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2511 {
2512 asection *sgot;
2513 struct mips_got_info *g;
2514 bfd_vma page, index;
2515 struct mips_got_entry *entry;
2516
2517 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2518
2519 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2520 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2521 input_section, page, 0,
2522 NULL, R_MIPS_GOT_PAGE);
2523
2524 if (!entry)
2525 return MINUS_ONE;
2526
2527 index = entry->gotidx;
2528
2529 if (offsetp)
2530 *offsetp = value - entry->d.address;
2531
2532 return index;
2533 }
2534
2535 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2536 which was calculated from a symbol belonging to INPUT_SECTION.
2537 EXTERNAL is true if the relocation was against a global symbol
2538 that has been forced local. */
2539
2540 static bfd_vma
2541 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2542 asection *input_section, bfd_vma value,
2543 bfd_boolean external)
2544 {
2545 asection *sgot;
2546 struct mips_got_info *g;
2547 struct mips_got_entry *entry;
2548
2549 /* GOT16 relocations against local symbols are followed by a LO16
2550 relocation; those against global symbols are not. Thus if the
2551 symbol was originally local, the GOT16 relocation should load the
2552 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2553 if (! external)
2554 value = mips_elf_high (value) << 16;
2555
2556 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2557
2558 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2559 input_section, value, 0,
2560 NULL, R_MIPS_GOT16);
2561 if (entry)
2562 return entry->gotidx;
2563 else
2564 return MINUS_ONE;
2565 }
2566
2567 /* Returns the offset for the entry at the INDEXth position
2568 in the GOT. */
2569
2570 static bfd_vma
2571 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2572 bfd *input_bfd, bfd_vma index)
2573 {
2574 asection *sgot;
2575 bfd_vma gp;
2576 struct mips_got_info *g;
2577
2578 g = mips_elf_got_info (dynobj, &sgot);
2579 gp = _bfd_get_gp_value (output_bfd)
2580 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2581
2582 return sgot->output_section->vma + sgot->output_offset + index - gp;
2583 }
2584
2585 /* Create and return a local GOT entry for VALUE, which was calculated
2586 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2587 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2588 instead. */
2589
2590 static struct mips_got_entry *
2591 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2592 bfd *ibfd, struct mips_got_info *gg,
2593 asection *sgot, asection *input_section,
2594 bfd_vma value, unsigned long r_symndx,
2595 struct mips_elf_link_hash_entry *h,
2596 int r_type)
2597 {
2598 struct mips_got_entry entry, **loc;
2599 struct mips_got_info *g;
2600 struct mips_elf_link_hash_table *htab;
2601
2602 htab = mips_elf_hash_table (info);
2603
2604 entry.abfd = NULL;
2605 entry.symndx = -1;
2606 entry.d.address = value;
2607 entry.tls_type = 0;
2608
2609 g = mips_elf_got_for_ibfd (gg, ibfd);
2610 if (g == NULL)
2611 {
2612 g = mips_elf_got_for_ibfd (gg, abfd);
2613 BFD_ASSERT (g != NULL);
2614 }
2615
2616 /* We might have a symbol, H, if it has been forced local. Use the
2617 global entry then. It doesn't matter whether an entry is local
2618 or global for TLS, since the dynamic linker does not
2619 automatically relocate TLS GOT entries. */
2620 BFD_ASSERT (h == NULL || h->root.forced_local);
2621 if (TLS_RELOC_P (r_type))
2622 {
2623 struct mips_got_entry *p;
2624
2625 entry.abfd = ibfd;
2626 if (r_type == R_MIPS_TLS_LDM)
2627 {
2628 entry.tls_type = GOT_TLS_LDM;
2629 entry.symndx = 0;
2630 entry.d.addend = 0;
2631 }
2632 else if (h == NULL)
2633 {
2634 entry.symndx = r_symndx;
2635 entry.d.addend = 0;
2636 }
2637 else
2638 entry.d.h = h;
2639
2640 p = (struct mips_got_entry *)
2641 htab_find (g->got_entries, &entry);
2642
2643 BFD_ASSERT (p);
2644 return p;
2645 }
2646
2647 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2648 INSERT);
2649 if (*loc)
2650 return *loc;
2651
2652 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2653 entry.tls_type = 0;
2654
2655 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2656
2657 if (! *loc)
2658 return NULL;
2659
2660 memcpy (*loc, &entry, sizeof entry);
2661
2662 if (g->assigned_gotno >= g->local_gotno)
2663 {
2664 (*loc)->gotidx = -1;
2665 /* We didn't allocate enough space in the GOT. */
2666 (*_bfd_error_handler)
2667 (_("not enough GOT space for local GOT entries"));
2668 bfd_set_error (bfd_error_bad_value);
2669 return NULL;
2670 }
2671
2672 MIPS_ELF_PUT_WORD (abfd, value,
2673 (sgot->contents + entry.gotidx));
2674
2675 /* These GOT entries need a dynamic relocation on VxWorks. Because
2676 the offset between segments is not fixed, the relocation must be
2677 against a symbol in the same segment as the original symbol.
2678 The easiest way to do this is to take INPUT_SECTION's output
2679 section and emit a relocation against its section symbol. */
2680 if (htab->is_vxworks)
2681 {
2682 Elf_Internal_Rela outrel;
2683 asection *s, *output_section;
2684 bfd_byte *loc;
2685 bfd_vma got_address;
2686 int dynindx;
2687
2688 s = mips_elf_rel_dyn_section (info, FALSE);
2689 output_section = input_section->output_section;
2690 dynindx = elf_section_data (output_section)->dynindx;
2691 got_address = (sgot->output_section->vma
2692 + sgot->output_offset
2693 + entry.gotidx);
2694
2695 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2696 outrel.r_offset = got_address;
2697 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2698 outrel.r_addend = value - output_section->vma;
2699 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2700 }
2701
2702 return *loc;
2703 }
2704
2705 /* Sort the dynamic symbol table so that symbols that need GOT entries
2706 appear towards the end. This reduces the amount of GOT space
2707 required. MAX_LOCAL is used to set the number of local symbols
2708 known to be in the dynamic symbol table. During
2709 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2710 section symbols are added and the count is higher. */
2711
2712 static bfd_boolean
2713 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2714 {
2715 struct mips_elf_hash_sort_data hsd;
2716 struct mips_got_info *g;
2717 bfd *dynobj;
2718
2719 dynobj = elf_hash_table (info)->dynobj;
2720
2721 g = mips_elf_got_info (dynobj, NULL);
2722
2723 hsd.low = NULL;
2724 hsd.max_unref_got_dynindx =
2725 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2726 /* In the multi-got case, assigned_gotno of the master got_info
2727 indicate the number of entries that aren't referenced in the
2728 primary GOT, but that must have entries because there are
2729 dynamic relocations that reference it. Since they aren't
2730 referenced, we move them to the end of the GOT, so that they
2731 don't prevent other entries that are referenced from getting
2732 too large offsets. */
2733 - (g->next ? g->assigned_gotno : 0);
2734 hsd.max_non_got_dynindx = max_local;
2735 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2736 elf_hash_table (info)),
2737 mips_elf_sort_hash_table_f,
2738 &hsd);
2739
2740 /* There should have been enough room in the symbol table to
2741 accommodate both the GOT and non-GOT symbols. */
2742 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2743 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2744 <= elf_hash_table (info)->dynsymcount);
2745
2746 /* Now we know which dynamic symbol has the lowest dynamic symbol
2747 table index in the GOT. */
2748 g->global_gotsym = hsd.low;
2749
2750 return TRUE;
2751 }
2752
2753 /* If H needs a GOT entry, assign it the highest available dynamic
2754 index. Otherwise, assign it the lowest available dynamic
2755 index. */
2756
2757 static bfd_boolean
2758 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2759 {
2760 struct mips_elf_hash_sort_data *hsd = data;
2761
2762 if (h->root.root.type == bfd_link_hash_warning)
2763 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2764
2765 /* Symbols without dynamic symbol table entries aren't interesting
2766 at all. */
2767 if (h->root.dynindx == -1)
2768 return TRUE;
2769
2770 /* Global symbols that need GOT entries that are not explicitly
2771 referenced are marked with got offset 2. Those that are
2772 referenced get a 1, and those that don't need GOT entries get
2773 -1. */
2774 if (h->root.got.offset == 2)
2775 {
2776 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2777
2778 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2779 hsd->low = (struct elf_link_hash_entry *) h;
2780 h->root.dynindx = hsd->max_unref_got_dynindx++;
2781 }
2782 else if (h->root.got.offset != 1)
2783 h->root.dynindx = hsd->max_non_got_dynindx++;
2784 else
2785 {
2786 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2787
2788 h->root.dynindx = --hsd->min_got_dynindx;
2789 hsd->low = (struct elf_link_hash_entry *) h;
2790 }
2791
2792 return TRUE;
2793 }
2794
2795 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2796 symbol table index lower than any we've seen to date, record it for
2797 posterity. */
2798
2799 static bfd_boolean
2800 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2801 bfd *abfd, struct bfd_link_info *info,
2802 struct mips_got_info *g,
2803 unsigned char tls_flag)
2804 {
2805 struct mips_got_entry entry, **loc;
2806
2807 /* A global symbol in the GOT must also be in the dynamic symbol
2808 table. */
2809 if (h->dynindx == -1)
2810 {
2811 switch (ELF_ST_VISIBILITY (h->other))
2812 {
2813 case STV_INTERNAL:
2814 case STV_HIDDEN:
2815 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2816 break;
2817 }
2818 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2819 return FALSE;
2820 }
2821
2822 /* Make sure we have a GOT to put this entry into. */
2823 BFD_ASSERT (g != NULL);
2824
2825 entry.abfd = abfd;
2826 entry.symndx = -1;
2827 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2828 entry.tls_type = 0;
2829
2830 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2831 INSERT);
2832
2833 /* If we've already marked this entry as needing GOT space, we don't
2834 need to do it again. */
2835 if (*loc)
2836 {
2837 (*loc)->tls_type |= tls_flag;
2838 return TRUE;
2839 }
2840
2841 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2842
2843 if (! *loc)
2844 return FALSE;
2845
2846 entry.gotidx = -1;
2847 entry.tls_type = tls_flag;
2848
2849 memcpy (*loc, &entry, sizeof entry);
2850
2851 if (h->got.offset != MINUS_ONE)
2852 return TRUE;
2853
2854 /* By setting this to a value other than -1, we are indicating that
2855 there needs to be a GOT entry for H. Avoid using zero, as the
2856 generic ELF copy_indirect_symbol tests for <= 0. */
2857 if (tls_flag == 0)
2858 h->got.offset = 1;
2859
2860 return TRUE;
2861 }
2862
2863 /* Reserve space in G for a GOT entry containing the value of symbol
2864 SYMNDX in input bfd ABDF, plus ADDEND. */
2865
2866 static bfd_boolean
2867 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2868 struct mips_got_info *g,
2869 unsigned char tls_flag)
2870 {
2871 struct mips_got_entry entry, **loc;
2872
2873 entry.abfd = abfd;
2874 entry.symndx = symndx;
2875 entry.d.addend = addend;
2876 entry.tls_type = tls_flag;
2877 loc = (struct mips_got_entry **)
2878 htab_find_slot (g->got_entries, &entry, INSERT);
2879
2880 if (*loc)
2881 {
2882 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2883 {
2884 g->tls_gotno += 2;
2885 (*loc)->tls_type |= tls_flag;
2886 }
2887 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2888 {
2889 g->tls_gotno += 1;
2890 (*loc)->tls_type |= tls_flag;
2891 }
2892 return TRUE;
2893 }
2894
2895 if (tls_flag != 0)
2896 {
2897 entry.gotidx = -1;
2898 entry.tls_type = tls_flag;
2899 if (tls_flag == GOT_TLS_IE)
2900 g->tls_gotno += 1;
2901 else if (tls_flag == GOT_TLS_GD)
2902 g->tls_gotno += 2;
2903 else if (g->tls_ldm_offset == MINUS_ONE)
2904 {
2905 g->tls_ldm_offset = MINUS_TWO;
2906 g->tls_gotno += 2;
2907 }
2908 }
2909 else
2910 {
2911 entry.gotidx = g->local_gotno++;
2912 entry.tls_type = 0;
2913 }
2914
2915 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2916
2917 if (! *loc)
2918 return FALSE;
2919
2920 memcpy (*loc, &entry, sizeof entry);
2921
2922 return TRUE;
2923 }
2924 \f
2925 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2926
2927 static hashval_t
2928 mips_elf_bfd2got_entry_hash (const void *entry_)
2929 {
2930 const struct mips_elf_bfd2got_hash *entry
2931 = (struct mips_elf_bfd2got_hash *)entry_;
2932
2933 return entry->bfd->id;
2934 }
2935
2936 /* Check whether two hash entries have the same bfd. */
2937
2938 static int
2939 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2940 {
2941 const struct mips_elf_bfd2got_hash *e1
2942 = (const struct mips_elf_bfd2got_hash *)entry1;
2943 const struct mips_elf_bfd2got_hash *e2
2944 = (const struct mips_elf_bfd2got_hash *)entry2;
2945
2946 return e1->bfd == e2->bfd;
2947 }
2948
2949 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2950 be the master GOT data. */
2951
2952 static struct mips_got_info *
2953 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2954 {
2955 struct mips_elf_bfd2got_hash e, *p;
2956
2957 if (! g->bfd2got)
2958 return g;
2959
2960 e.bfd = ibfd;
2961 p = htab_find (g->bfd2got, &e);
2962 return p ? p->g : NULL;
2963 }
2964
2965 /* Create one separate got for each bfd that has entries in the global
2966 got, such that we can tell how many local and global entries each
2967 bfd requires. */
2968
2969 static int
2970 mips_elf_make_got_per_bfd (void **entryp, void *p)
2971 {
2972 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2973 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2974 htab_t bfd2got = arg->bfd2got;
2975 struct mips_got_info *g;
2976 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2977 void **bfdgotp;
2978
2979 /* Find the got_info for this GOT entry's input bfd. Create one if
2980 none exists. */
2981 bfdgot_entry.bfd = entry->abfd;
2982 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2983 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2984
2985 if (bfdgot != NULL)
2986 g = bfdgot->g;
2987 else
2988 {
2989 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2990 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2991
2992 if (bfdgot == NULL)
2993 {
2994 arg->obfd = 0;
2995 return 0;
2996 }
2997
2998 *bfdgotp = bfdgot;
2999
3000 bfdgot->bfd = entry->abfd;
3001 bfdgot->g = g = (struct mips_got_info *)
3002 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3003 if (g == NULL)
3004 {
3005 arg->obfd = 0;
3006 return 0;
3007 }
3008
3009 g->global_gotsym = NULL;
3010 g->global_gotno = 0;
3011 g->local_gotno = 0;
3012 g->assigned_gotno = -1;
3013 g->tls_gotno = 0;
3014 g->tls_assigned_gotno = 0;
3015 g->tls_ldm_offset = MINUS_ONE;
3016 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3017 mips_elf_multi_got_entry_eq, NULL);
3018 if (g->got_entries == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->bfd2got = NULL;
3025 g->next = NULL;
3026 }
3027
3028 /* Insert the GOT entry in the bfd's got entry hash table. */
3029 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3030 if (*entryp != NULL)
3031 return 1;
3032
3033 *entryp = entry;
3034
3035 if (entry->tls_type)
3036 {
3037 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3038 g->tls_gotno += 2;
3039 if (entry->tls_type & GOT_TLS_IE)
3040 g->tls_gotno += 1;
3041 }
3042 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3043 ++g->local_gotno;
3044 else
3045 ++g->global_gotno;
3046
3047 return 1;
3048 }
3049
3050 /* Attempt to merge gots of different input bfds. Try to use as much
3051 as possible of the primary got, since it doesn't require explicit
3052 dynamic relocations, but don't use bfds that would reference global
3053 symbols out of the addressable range. Failing the primary got,
3054 attempt to merge with the current got, or finish the current got
3055 and then make make the new got current. */
3056
3057 static int
3058 mips_elf_merge_gots (void **bfd2got_, void *p)
3059 {
3060 struct mips_elf_bfd2got_hash *bfd2got
3061 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3062 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3063 unsigned int lcount = bfd2got->g->local_gotno;
3064 unsigned int gcount = bfd2got->g->global_gotno;
3065 unsigned int tcount = bfd2got->g->tls_gotno;
3066 unsigned int maxcnt = arg->max_count;
3067 bfd_boolean too_many_for_tls = FALSE;
3068
3069 /* We place TLS GOT entries after both locals and globals. The globals
3070 for the primary GOT may overflow the normal GOT size limit, so be
3071 sure not to merge a GOT which requires TLS with the primary GOT in that
3072 case. This doesn't affect non-primary GOTs. */
3073 if (tcount > 0)
3074 {
3075 unsigned int primary_total = lcount + tcount + arg->global_count;
3076 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3077 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3078 too_many_for_tls = TRUE;
3079 }
3080
3081 /* If we don't have a primary GOT and this is not too big, use it as
3082 a starting point for the primary GOT. */
3083 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3084 && ! too_many_for_tls)
3085 {
3086 arg->primary = bfd2got->g;
3087 arg->primary_count = lcount + gcount;
3088 }
3089 /* If it looks like we can merge this bfd's entries with those of
3090 the primary, merge them. The heuristics is conservative, but we
3091 don't have to squeeze it too hard. */
3092 else if (arg->primary && ! too_many_for_tls
3093 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3094 {
3095 struct mips_got_info *g = bfd2got->g;
3096 int old_lcount = arg->primary->local_gotno;
3097 int old_gcount = arg->primary->global_gotno;
3098 int old_tcount = arg->primary->tls_gotno;
3099
3100 bfd2got->g = arg->primary;
3101
3102 htab_traverse (g->got_entries,
3103 mips_elf_make_got_per_bfd,
3104 arg);
3105 if (arg->obfd == NULL)
3106 return 0;
3107
3108 htab_delete (g->got_entries);
3109 /* We don't have to worry about releasing memory of the actual
3110 got entries, since they're all in the master got_entries hash
3111 table anyway. */
3112
3113 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3114 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3115 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3116
3117 arg->primary_count = arg->primary->local_gotno
3118 + arg->primary->global_gotno + arg->primary->tls_gotno;
3119 }
3120 /* If we can merge with the last-created got, do it. */
3121 else if (arg->current
3122 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3123 {
3124 struct mips_got_info *g = bfd2got->g;
3125 int old_lcount = arg->current->local_gotno;
3126 int old_gcount = arg->current->global_gotno;
3127 int old_tcount = arg->current->tls_gotno;
3128
3129 bfd2got->g = arg->current;
3130
3131 htab_traverse (g->got_entries,
3132 mips_elf_make_got_per_bfd,
3133 arg);
3134 if (arg->obfd == NULL)
3135 return 0;
3136
3137 htab_delete (g->got_entries);
3138
3139 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3140 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3141 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3142
3143 arg->current_count = arg->current->local_gotno
3144 + arg->current->global_gotno + arg->current->tls_gotno;
3145 }
3146 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3147 fits; if it turns out that it doesn't, we'll get relocation
3148 overflows anyway. */
3149 else
3150 {
3151 bfd2got->g->next = arg->current;
3152 arg->current = bfd2got->g;
3153
3154 arg->current_count = lcount + gcount + 2 * tcount;
3155 }
3156
3157 return 1;
3158 }
3159
3160 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3161 is null iff there is just a single GOT. */
3162
3163 static int
3164 mips_elf_initialize_tls_index (void **entryp, void *p)
3165 {
3166 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3167 struct mips_got_info *g = p;
3168 bfd_vma next_index;
3169
3170 /* We're only interested in TLS symbols. */
3171 if (entry->tls_type == 0)
3172 return 1;
3173
3174 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3175
3176 if (entry->symndx == -1 && g->next == NULL)
3177 {
3178 /* A type (3) got entry in the single-GOT case. We use the symbol's
3179 hash table entry to track its index. */
3180 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3181 return 1;
3182 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3183 entry->d.h->tls_got_offset = next_index;
3184 }
3185 else
3186 {
3187 if (entry->tls_type & GOT_TLS_LDM)
3188 {
3189 /* There are separate mips_got_entry objects for each input bfd
3190 that requires an LDM entry. Make sure that all LDM entries in
3191 a GOT resolve to the same index. */
3192 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3193 {
3194 entry->gotidx = g->tls_ldm_offset;
3195 return 1;
3196 }
3197 g->tls_ldm_offset = next_index;
3198 }
3199 entry->gotidx = next_index;
3200 }
3201
3202 /* Account for the entries we've just allocated. */
3203 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3204 g->tls_assigned_gotno += 2;
3205 if (entry->tls_type & GOT_TLS_IE)
3206 g->tls_assigned_gotno += 1;
3207
3208 return 1;
3209 }
3210
3211 /* If passed a NULL mips_got_info in the argument, set the marker used
3212 to tell whether a global symbol needs a got entry (in the primary
3213 got) to the given VALUE.
3214
3215 If passed a pointer G to a mips_got_info in the argument (it must
3216 not be the primary GOT), compute the offset from the beginning of
3217 the (primary) GOT section to the entry in G corresponding to the
3218 global symbol. G's assigned_gotno must contain the index of the
3219 first available global GOT entry in G. VALUE must contain the size
3220 of a GOT entry in bytes. For each global GOT entry that requires a
3221 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3222 marked as not eligible for lazy resolution through a function
3223 stub. */
3224 static int
3225 mips_elf_set_global_got_offset (void **entryp, void *p)
3226 {
3227 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3228 struct mips_elf_set_global_got_offset_arg *arg
3229 = (struct mips_elf_set_global_got_offset_arg *)p;
3230 struct mips_got_info *g = arg->g;
3231
3232 if (g && entry->tls_type != GOT_NORMAL)
3233 arg->needed_relocs +=
3234 mips_tls_got_relocs (arg->info, entry->tls_type,
3235 entry->symndx == -1 ? &entry->d.h->root : NULL);
3236
3237 if (entry->abfd != NULL && entry->symndx == -1
3238 && entry->d.h->root.dynindx != -1
3239 && entry->d.h->tls_type == GOT_NORMAL)
3240 {
3241 if (g)
3242 {
3243 BFD_ASSERT (g->global_gotsym == NULL);
3244
3245 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3246 if (arg->info->shared
3247 || (elf_hash_table (arg->info)->dynamic_sections_created
3248 && entry->d.h->root.def_dynamic
3249 && !entry->d.h->root.def_regular))
3250 ++arg->needed_relocs;
3251 }
3252 else
3253 entry->d.h->root.got.offset = arg->value;
3254 }
3255
3256 return 1;
3257 }
3258
3259 /* Mark any global symbols referenced in the GOT we are iterating over
3260 as inelligible for lazy resolution stubs. */
3261 static int
3262 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3263 {
3264 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3265
3266 if (entry->abfd != NULL
3267 && entry->symndx == -1
3268 && entry->d.h->root.dynindx != -1)
3269 entry->d.h->no_fn_stub = TRUE;
3270
3271 return 1;
3272 }
3273
3274 /* Follow indirect and warning hash entries so that each got entry
3275 points to the final symbol definition. P must point to a pointer
3276 to the hash table we're traversing. Since this traversal may
3277 modify the hash table, we set this pointer to NULL to indicate
3278 we've made a potentially-destructive change to the hash table, so
3279 the traversal must be restarted. */
3280 static int
3281 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3282 {
3283 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3284 htab_t got_entries = *(htab_t *)p;
3285
3286 if (entry->abfd != NULL && entry->symndx == -1)
3287 {
3288 struct mips_elf_link_hash_entry *h = entry->d.h;
3289
3290 while (h->root.root.type == bfd_link_hash_indirect
3291 || h->root.root.type == bfd_link_hash_warning)
3292 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3293
3294 if (entry->d.h == h)
3295 return 1;
3296
3297 entry->d.h = h;
3298
3299 /* If we can't find this entry with the new bfd hash, re-insert
3300 it, and get the traversal restarted. */
3301 if (! htab_find (got_entries, entry))
3302 {
3303 htab_clear_slot (got_entries, entryp);
3304 entryp = htab_find_slot (got_entries, entry, INSERT);
3305 if (! *entryp)
3306 *entryp = entry;
3307 /* Abort the traversal, since the whole table may have
3308 moved, and leave it up to the parent to restart the
3309 process. */
3310 *(htab_t *)p = NULL;
3311 return 0;
3312 }
3313 /* We might want to decrement the global_gotno count, but it's
3314 either too early or too late for that at this point. */
3315 }
3316
3317 return 1;
3318 }
3319
3320 /* Turn indirect got entries in a got_entries table into their final
3321 locations. */
3322 static void
3323 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3324 {
3325 htab_t got_entries;
3326
3327 do
3328 {
3329 got_entries = g->got_entries;
3330
3331 htab_traverse (got_entries,
3332 mips_elf_resolve_final_got_entry,
3333 &got_entries);
3334 }
3335 while (got_entries == NULL);
3336 }
3337
3338 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3339 the primary GOT. */
3340 static bfd_vma
3341 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3342 {
3343 if (g->bfd2got == NULL)
3344 return 0;
3345
3346 g = mips_elf_got_for_ibfd (g, ibfd);
3347 if (! g)
3348 return 0;
3349
3350 BFD_ASSERT (g->next);
3351
3352 g = g->next;
3353
3354 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3355 * MIPS_ELF_GOT_SIZE (abfd);
3356 }
3357
3358 /* Turn a single GOT that is too big for 16-bit addressing into
3359 a sequence of GOTs, each one 16-bit addressable. */
3360
3361 static bfd_boolean
3362 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3363 struct mips_got_info *g, asection *got,
3364 bfd_size_type pages)
3365 {
3366 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3367 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3368 struct mips_got_info *gg;
3369 unsigned int assign;
3370
3371 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3372 mips_elf_bfd2got_entry_eq, NULL);
3373 if (g->bfd2got == NULL)
3374 return FALSE;
3375
3376 got_per_bfd_arg.bfd2got = g->bfd2got;
3377 got_per_bfd_arg.obfd = abfd;
3378 got_per_bfd_arg.info = info;
3379
3380 /* Count how many GOT entries each input bfd requires, creating a
3381 map from bfd to got info while at that. */
3382 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3383 if (got_per_bfd_arg.obfd == NULL)
3384 return FALSE;
3385
3386 got_per_bfd_arg.current = NULL;
3387 got_per_bfd_arg.primary = NULL;
3388 /* Taking out PAGES entries is a worst-case estimate. We could
3389 compute the maximum number of pages that each separate input bfd
3390 uses, but it's probably not worth it. */
3391 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3392 / MIPS_ELF_GOT_SIZE (abfd))
3393 - MIPS_RESERVED_GOTNO (info) - pages);
3394 /* The number of globals that will be included in the primary GOT.
3395 See the calls to mips_elf_set_global_got_offset below for more
3396 information. */
3397 got_per_bfd_arg.global_count = g->global_gotno;
3398
3399 /* Try to merge the GOTs of input bfds together, as long as they
3400 don't seem to exceed the maximum GOT size, choosing one of them
3401 to be the primary GOT. */
3402 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3403 if (got_per_bfd_arg.obfd == NULL)
3404 return FALSE;
3405
3406 /* If we do not find any suitable primary GOT, create an empty one. */
3407 if (got_per_bfd_arg.primary == NULL)
3408 {
3409 g->next = (struct mips_got_info *)
3410 bfd_alloc (abfd, sizeof (struct mips_got_info));
3411 if (g->next == NULL)
3412 return FALSE;
3413
3414 g->next->global_gotsym = NULL;
3415 g->next->global_gotno = 0;
3416 g->next->local_gotno = 0;
3417 g->next->tls_gotno = 0;
3418 g->next->assigned_gotno = 0;
3419 g->next->tls_assigned_gotno = 0;
3420 g->next->tls_ldm_offset = MINUS_ONE;
3421 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3422 mips_elf_multi_got_entry_eq,
3423 NULL);
3424 if (g->next->got_entries == NULL)
3425 return FALSE;
3426 g->next->bfd2got = NULL;
3427 }
3428 else
3429 g->next = got_per_bfd_arg.primary;
3430 g->next->next = got_per_bfd_arg.current;
3431
3432 /* GG is now the master GOT, and G is the primary GOT. */
3433 gg = g;
3434 g = g->next;
3435
3436 /* Map the output bfd to the primary got. That's what we're going
3437 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3438 didn't mark in check_relocs, and we want a quick way to find it.
3439 We can't just use gg->next because we're going to reverse the
3440 list. */
3441 {
3442 struct mips_elf_bfd2got_hash *bfdgot;
3443 void **bfdgotp;
3444
3445 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3446 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3447
3448 if (bfdgot == NULL)
3449 return FALSE;
3450
3451 bfdgot->bfd = abfd;
3452 bfdgot->g = g;
3453 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3454
3455 BFD_ASSERT (*bfdgotp == NULL);
3456 *bfdgotp = bfdgot;
3457 }
3458
3459 /* The IRIX dynamic linker requires every symbol that is referenced
3460 in a dynamic relocation to be present in the primary GOT, so
3461 arrange for them to appear after those that are actually
3462 referenced.
3463
3464 GNU/Linux could very well do without it, but it would slow down
3465 the dynamic linker, since it would have to resolve every dynamic
3466 symbol referenced in other GOTs more than once, without help from
3467 the cache. Also, knowing that every external symbol has a GOT
3468 helps speed up the resolution of local symbols too, so GNU/Linux
3469 follows IRIX's practice.
3470
3471 The number 2 is used by mips_elf_sort_hash_table_f to count
3472 global GOT symbols that are unreferenced in the primary GOT, with
3473 an initial dynamic index computed from gg->assigned_gotno, where
3474 the number of unreferenced global entries in the primary GOT is
3475 preserved. */
3476 if (1)
3477 {
3478 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3479 g->global_gotno = gg->global_gotno;
3480 set_got_offset_arg.value = 2;
3481 }
3482 else
3483 {
3484 /* This could be used for dynamic linkers that don't optimize
3485 symbol resolution while applying relocations so as to use
3486 primary GOT entries or assuming the symbol is locally-defined.
3487 With this code, we assign lower dynamic indices to global
3488 symbols that are not referenced in the primary GOT, so that
3489 their entries can be omitted. */
3490 gg->assigned_gotno = 0;
3491 set_got_offset_arg.value = -1;
3492 }
3493
3494 /* Reorder dynamic symbols as described above (which behavior
3495 depends on the setting of VALUE). */
3496 set_got_offset_arg.g = NULL;
3497 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3498 &set_got_offset_arg);
3499 set_got_offset_arg.value = 1;
3500 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3501 &set_got_offset_arg);
3502 if (! mips_elf_sort_hash_table (info, 1))
3503 return FALSE;
3504
3505 /* Now go through the GOTs assigning them offset ranges.
3506 [assigned_gotno, local_gotno[ will be set to the range of local
3507 entries in each GOT. We can then compute the end of a GOT by
3508 adding local_gotno to global_gotno. We reverse the list and make
3509 it circular since then we'll be able to quickly compute the
3510 beginning of a GOT, by computing the end of its predecessor. To
3511 avoid special cases for the primary GOT, while still preserving
3512 assertions that are valid for both single- and multi-got links,
3513 we arrange for the main got struct to have the right number of
3514 global entries, but set its local_gotno such that the initial
3515 offset of the primary GOT is zero. Remember that the primary GOT
3516 will become the last item in the circular linked list, so it
3517 points back to the master GOT. */
3518 gg->local_gotno = -g->global_gotno;
3519 gg->global_gotno = g->global_gotno;
3520 gg->tls_gotno = 0;
3521 assign = 0;
3522 gg->next = gg;
3523
3524 do
3525 {
3526 struct mips_got_info *gn;
3527
3528 assign += MIPS_RESERVED_GOTNO (info);
3529 g->assigned_gotno = assign;
3530 g->local_gotno += assign + pages;
3531 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3532
3533 /* Take g out of the direct list, and push it onto the reversed
3534 list that gg points to. g->next is guaranteed to be nonnull after
3535 this operation, as required by mips_elf_initialize_tls_index. */
3536 gn = g->next;
3537 g->next = gg->next;
3538 gg->next = g;
3539
3540 /* Set up any TLS entries. We always place the TLS entries after
3541 all non-TLS entries. */
3542 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3543 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3544
3545 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3546 g = gn;
3547
3548 /* Mark global symbols in every non-primary GOT as ineligible for
3549 stubs. */
3550 if (g)
3551 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3552 }
3553 while (g);
3554
3555 got->size = (gg->next->local_gotno
3556 + gg->next->global_gotno
3557 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3558
3559 return TRUE;
3560 }
3561
3562 \f
3563 /* Returns the first relocation of type r_type found, beginning with
3564 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3565
3566 static const Elf_Internal_Rela *
3567 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3568 const Elf_Internal_Rela *relocation,
3569 const Elf_Internal_Rela *relend)
3570 {
3571 while (relocation < relend)
3572 {
3573 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3574 return relocation;
3575
3576 ++relocation;
3577 }
3578
3579 /* We didn't find it. */
3580 bfd_set_error (bfd_error_bad_value);
3581 return NULL;
3582 }
3583
3584 /* Return whether a relocation is against a local symbol. */
3585
3586 static bfd_boolean
3587 mips_elf_local_relocation_p (bfd *input_bfd,
3588 const Elf_Internal_Rela *relocation,
3589 asection **local_sections,
3590 bfd_boolean check_forced)
3591 {
3592 unsigned long r_symndx;
3593 Elf_Internal_Shdr *symtab_hdr;
3594 struct mips_elf_link_hash_entry *h;
3595 size_t extsymoff;
3596
3597 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3598 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3599 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3600
3601 if (r_symndx < extsymoff)
3602 return TRUE;
3603 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3604 return TRUE;
3605
3606 if (check_forced)
3607 {
3608 /* Look up the hash table to check whether the symbol
3609 was forced local. */
3610 h = (struct mips_elf_link_hash_entry *)
3611 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3612 /* Find the real hash-table entry for this symbol. */
3613 while (h->root.root.type == bfd_link_hash_indirect
3614 || h->root.root.type == bfd_link_hash_warning)
3615 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3616 if (h->root.forced_local)
3617 return TRUE;
3618 }
3619
3620 return FALSE;
3621 }
3622 \f
3623 /* Sign-extend VALUE, which has the indicated number of BITS. */
3624
3625 bfd_vma
3626 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3627 {
3628 if (value & ((bfd_vma) 1 << (bits - 1)))
3629 /* VALUE is negative. */
3630 value |= ((bfd_vma) - 1) << bits;
3631
3632 return value;
3633 }
3634
3635 /* Return non-zero if the indicated VALUE has overflowed the maximum
3636 range expressible by a signed number with the indicated number of
3637 BITS. */
3638
3639 static bfd_boolean
3640 mips_elf_overflow_p (bfd_vma value, int bits)
3641 {
3642 bfd_signed_vma svalue = (bfd_signed_vma) value;
3643
3644 if (svalue > (1 << (bits - 1)) - 1)
3645 /* The value is too big. */
3646 return TRUE;
3647 else if (svalue < -(1 << (bits - 1)))
3648 /* The value is too small. */
3649 return TRUE;
3650
3651 /* All is well. */
3652 return FALSE;
3653 }
3654
3655 /* Calculate the %high function. */
3656
3657 static bfd_vma
3658 mips_elf_high (bfd_vma value)
3659 {
3660 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3661 }
3662
3663 /* Calculate the %higher function. */
3664
3665 static bfd_vma
3666 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3667 {
3668 #ifdef BFD64
3669 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3670 #else
3671 abort ();
3672 return MINUS_ONE;
3673 #endif
3674 }
3675
3676 /* Calculate the %highest function. */
3677
3678 static bfd_vma
3679 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3680 {
3681 #ifdef BFD64
3682 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3683 #else
3684 abort ();
3685 return MINUS_ONE;
3686 #endif
3687 }
3688 \f
3689 /* Create the .compact_rel section. */
3690
3691 static bfd_boolean
3692 mips_elf_create_compact_rel_section
3693 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3694 {
3695 flagword flags;
3696 register asection *s;
3697
3698 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3699 {
3700 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3701 | SEC_READONLY);
3702
3703 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3704 if (s == NULL
3705 || ! bfd_set_section_alignment (abfd, s,
3706 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3707 return FALSE;
3708
3709 s->size = sizeof (Elf32_External_compact_rel);
3710 }
3711
3712 return TRUE;
3713 }
3714
3715 /* Create the .got section to hold the global offset table. */
3716
3717 static bfd_boolean
3718 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3719 bfd_boolean maybe_exclude)
3720 {
3721 flagword flags;
3722 register asection *s;
3723 struct elf_link_hash_entry *h;
3724 struct bfd_link_hash_entry *bh;
3725 struct mips_got_info *g;
3726 bfd_size_type amt;
3727 struct mips_elf_link_hash_table *htab;
3728
3729 htab = mips_elf_hash_table (info);
3730
3731 /* This function may be called more than once. */
3732 s = mips_elf_got_section (abfd, TRUE);
3733 if (s)
3734 {
3735 if (! maybe_exclude)
3736 s->flags &= ~SEC_EXCLUDE;
3737 return TRUE;
3738 }
3739
3740 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3741 | SEC_LINKER_CREATED);
3742
3743 if (maybe_exclude)
3744 flags |= SEC_EXCLUDE;
3745
3746 /* We have to use an alignment of 2**4 here because this is hardcoded
3747 in the function stub generation and in the linker script. */
3748 s = bfd_make_section_with_flags (abfd, ".got", flags);
3749 if (s == NULL
3750 || ! bfd_set_section_alignment (abfd, s, 4))
3751 return FALSE;
3752
3753 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3754 linker script because we don't want to define the symbol if we
3755 are not creating a global offset table. */
3756 bh = NULL;
3757 if (! (_bfd_generic_link_add_one_symbol
3758 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3759 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3760 return FALSE;
3761
3762 h = (struct elf_link_hash_entry *) bh;
3763 h->non_elf = 0;
3764 h->def_regular = 1;
3765 h->type = STT_OBJECT;
3766 elf_hash_table (info)->hgot = h;
3767
3768 if (info->shared
3769 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3770 return FALSE;
3771
3772 amt = sizeof (struct mips_got_info);
3773 g = bfd_alloc (abfd, amt);
3774 if (g == NULL)
3775 return FALSE;
3776 g->global_gotsym = NULL;
3777 g->global_gotno = 0;
3778 g->tls_gotno = 0;
3779 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3780 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3781 g->bfd2got = NULL;
3782 g->next = NULL;
3783 g->tls_ldm_offset = MINUS_ONE;
3784 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3785 mips_elf_got_entry_eq, NULL);
3786 if (g->got_entries == NULL)
3787 return FALSE;
3788 mips_elf_section_data (s)->u.got_info = g;
3789 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3790 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3791
3792 /* VxWorks also needs a .got.plt section. */
3793 if (htab->is_vxworks)
3794 {
3795 s = bfd_make_section_with_flags (abfd, ".got.plt",
3796 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3797 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3798 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3799 return FALSE;
3800
3801 htab->sgotplt = s;
3802 }
3803 return TRUE;
3804 }
3805 \f
3806 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3807 __GOTT_INDEX__ symbols. These symbols are only special for
3808 shared objects; they are not used in executables. */
3809
3810 static bfd_boolean
3811 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3812 {
3813 return (mips_elf_hash_table (info)->is_vxworks
3814 && info->shared
3815 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3816 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3817 }
3818 \f
3819 /* Calculate the value produced by the RELOCATION (which comes from
3820 the INPUT_BFD). The ADDEND is the addend to use for this
3821 RELOCATION; RELOCATION->R_ADDEND is ignored.
3822
3823 The result of the relocation calculation is stored in VALUEP.
3824 REQUIRE_JALXP indicates whether or not the opcode used with this
3825 relocation must be JALX.
3826
3827 This function returns bfd_reloc_continue if the caller need take no
3828 further action regarding this relocation, bfd_reloc_notsupported if
3829 something goes dramatically wrong, bfd_reloc_overflow if an
3830 overflow occurs, and bfd_reloc_ok to indicate success. */
3831
3832 static bfd_reloc_status_type
3833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3834 asection *input_section,
3835 struct bfd_link_info *info,
3836 const Elf_Internal_Rela *relocation,
3837 bfd_vma addend, reloc_howto_type *howto,
3838 Elf_Internal_Sym *local_syms,
3839 asection **local_sections, bfd_vma *valuep,
3840 const char **namep, bfd_boolean *require_jalxp,
3841 bfd_boolean save_addend)
3842 {
3843 /* The eventual value we will return. */
3844 bfd_vma value;
3845 /* The address of the symbol against which the relocation is
3846 occurring. */
3847 bfd_vma symbol = 0;
3848 /* The final GP value to be used for the relocatable, executable, or
3849 shared object file being produced. */
3850 bfd_vma gp = MINUS_ONE;
3851 /* The place (section offset or address) of the storage unit being
3852 relocated. */
3853 bfd_vma p;
3854 /* The value of GP used to create the relocatable object. */
3855 bfd_vma gp0 = MINUS_ONE;
3856 /* The offset into the global offset table at which the address of
3857 the relocation entry symbol, adjusted by the addend, resides
3858 during execution. */
3859 bfd_vma g = MINUS_ONE;
3860 /* The section in which the symbol referenced by the relocation is
3861 located. */
3862 asection *sec = NULL;
3863 struct mips_elf_link_hash_entry *h = NULL;
3864 /* TRUE if the symbol referred to by this relocation is a local
3865 symbol. */
3866 bfd_boolean local_p, was_local_p;
3867 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3868 bfd_boolean gp_disp_p = FALSE;
3869 /* TRUE if the symbol referred to by this relocation is
3870 "__gnu_local_gp". */
3871 bfd_boolean gnu_local_gp_p = FALSE;
3872 Elf_Internal_Shdr *symtab_hdr;
3873 size_t extsymoff;
3874 unsigned long r_symndx;
3875 int r_type;
3876 /* TRUE if overflow occurred during the calculation of the
3877 relocation value. */
3878 bfd_boolean overflowed_p;
3879 /* TRUE if this relocation refers to a MIPS16 function. */
3880 bfd_boolean target_is_16_bit_code_p = FALSE;
3881 struct mips_elf_link_hash_table *htab;
3882 bfd *dynobj;
3883
3884 dynobj = elf_hash_table (info)->dynobj;
3885 htab = mips_elf_hash_table (info);
3886
3887 /* Parse the relocation. */
3888 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3889 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3890 p = (input_section->output_section->vma
3891 + input_section->output_offset
3892 + relocation->r_offset);
3893
3894 /* Assume that there will be no overflow. */
3895 overflowed_p = FALSE;
3896
3897 /* Figure out whether or not the symbol is local, and get the offset
3898 used in the array of hash table entries. */
3899 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3900 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3901 local_sections, FALSE);
3902 was_local_p = local_p;
3903 if (! elf_bad_symtab (input_bfd))
3904 extsymoff = symtab_hdr->sh_info;
3905 else
3906 {
3907 /* The symbol table does not follow the rule that local symbols
3908 must come before globals. */
3909 extsymoff = 0;
3910 }
3911
3912 /* Figure out the value of the symbol. */
3913 if (local_p)
3914 {
3915 Elf_Internal_Sym *sym;
3916
3917 sym = local_syms + r_symndx;
3918 sec = local_sections[r_symndx];
3919
3920 symbol = sec->output_section->vma + sec->output_offset;
3921 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3922 || (sec->flags & SEC_MERGE))
3923 symbol += sym->st_value;
3924 if ((sec->flags & SEC_MERGE)
3925 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3926 {
3927 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3928 addend -= symbol;
3929 addend += sec->output_section->vma + sec->output_offset;
3930 }
3931
3932 /* MIPS16 text labels should be treated as odd. */
3933 if (sym->st_other == STO_MIPS16)
3934 ++symbol;
3935
3936 /* Record the name of this symbol, for our caller. */
3937 *namep = bfd_elf_string_from_elf_section (input_bfd,
3938 symtab_hdr->sh_link,
3939 sym->st_name);
3940 if (*namep == '\0')
3941 *namep = bfd_section_name (input_bfd, sec);
3942
3943 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3944 }
3945 else
3946 {
3947 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3948
3949 /* For global symbols we look up the symbol in the hash-table. */
3950 h = ((struct mips_elf_link_hash_entry *)
3951 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3952 /* Find the real hash-table entry for this symbol. */
3953 while (h->root.root.type == bfd_link_hash_indirect
3954 || h->root.root.type == bfd_link_hash_warning)
3955 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3956
3957 /* Record the name of this symbol, for our caller. */
3958 *namep = h->root.root.root.string;
3959
3960 /* See if this is the special _gp_disp symbol. Note that such a
3961 symbol must always be a global symbol. */
3962 if (strcmp (*namep, "_gp_disp") == 0
3963 && ! NEWABI_P (input_bfd))
3964 {
3965 /* Relocations against _gp_disp are permitted only with
3966 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3967 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3968 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3969 return bfd_reloc_notsupported;
3970
3971 gp_disp_p = TRUE;
3972 }
3973 /* See if this is the special _gp symbol. Note that such a
3974 symbol must always be a global symbol. */
3975 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3976 gnu_local_gp_p = TRUE;
3977
3978
3979 /* If this symbol is defined, calculate its address. Note that
3980 _gp_disp is a magic symbol, always implicitly defined by the
3981 linker, so it's inappropriate to check to see whether or not
3982 its defined. */
3983 else if ((h->root.root.type == bfd_link_hash_defined
3984 || h->root.root.type == bfd_link_hash_defweak)
3985 && h->root.root.u.def.section)
3986 {
3987 sec = h->root.root.u.def.section;
3988 if (sec->output_section)
3989 symbol = (h->root.root.u.def.value
3990 + sec->output_section->vma
3991 + sec->output_offset);
3992 else
3993 symbol = h->root.root.u.def.value;
3994 }
3995 else if (h->root.root.type == bfd_link_hash_undefweak)
3996 /* We allow relocations against undefined weak symbols, giving
3997 it the value zero, so that you can undefined weak functions
3998 and check to see if they exist by looking at their
3999 addresses. */
4000 symbol = 0;
4001 else if (info->unresolved_syms_in_objects == RM_IGNORE
4002 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4003 symbol = 0;
4004 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4005 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4006 {
4007 /* If this is a dynamic link, we should have created a
4008 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4009 in in _bfd_mips_elf_create_dynamic_sections.
4010 Otherwise, we should define the symbol with a value of 0.
4011 FIXME: It should probably get into the symbol table
4012 somehow as well. */
4013 BFD_ASSERT (! info->shared);
4014 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4015 symbol = 0;
4016 }
4017 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4018 {
4019 /* This is an optional symbol - an Irix specific extension to the
4020 ELF spec. Ignore it for now.
4021 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4022 than simply ignoring them, but we do not handle this for now.
4023 For information see the "64-bit ELF Object File Specification"
4024 which is available from here:
4025 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4026 symbol = 0;
4027 }
4028 else
4029 {
4030 if (! ((*info->callbacks->undefined_symbol)
4031 (info, h->root.root.root.string, input_bfd,
4032 input_section, relocation->r_offset,
4033 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4034 || ELF_ST_VISIBILITY (h->root.other))))
4035 return bfd_reloc_undefined;
4036 symbol = 0;
4037 }
4038
4039 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4040 }
4041
4042 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4043 need to redirect the call to the stub, unless we're already *in*
4044 a stub. */
4045 if (r_type != R_MIPS16_26 && !info->relocatable
4046 && ((h != NULL && h->fn_stub != NULL)
4047 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4048 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4049 && !mips_elf_stub_section_p (input_bfd, input_section))
4050 {
4051 /* This is a 32- or 64-bit call to a 16-bit function. We should
4052 have already noticed that we were going to need the
4053 stub. */
4054 if (local_p)
4055 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4056 else
4057 {
4058 BFD_ASSERT (h->need_fn_stub);
4059 sec = h->fn_stub;
4060 }
4061
4062 symbol = sec->output_section->vma + sec->output_offset;
4063 }
4064 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4065 need to redirect the call to the stub. */
4066 else if (r_type == R_MIPS16_26 && !info->relocatable
4067 && h != NULL
4068 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4069 && !target_is_16_bit_code_p)
4070 {
4071 /* If both call_stub and call_fp_stub are defined, we can figure
4072 out which one to use by seeing which one appears in the input
4073 file. */
4074 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4075 {
4076 asection *o;
4077
4078 sec = NULL;
4079 for (o = input_bfd->sections; o != NULL; o = o->next)
4080 {
4081 if (strncmp (bfd_get_section_name (input_bfd, o),
4082 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4083 {
4084 sec = h->call_fp_stub;
4085 break;
4086 }
4087 }
4088 if (sec == NULL)
4089 sec = h->call_stub;
4090 }
4091 else if (h->call_stub != NULL)
4092 sec = h->call_stub;
4093 else
4094 sec = h->call_fp_stub;
4095
4096 BFD_ASSERT (sec->size > 0);
4097 symbol = sec->output_section->vma + sec->output_offset;
4098 }
4099
4100 /* Calls from 16-bit code to 32-bit code and vice versa require the
4101 special jalx instruction. */
4102 *require_jalxp = (!info->relocatable
4103 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4104 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4105
4106 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4107 local_sections, TRUE);
4108
4109 /* If we haven't already determined the GOT offset, or the GP value,
4110 and we're going to need it, get it now. */
4111 switch (r_type)
4112 {
4113 case R_MIPS_GOT_PAGE:
4114 case R_MIPS_GOT_OFST:
4115 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4116 bind locally. */
4117 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4118 if (local_p || r_type == R_MIPS_GOT_OFST)
4119 break;
4120 /* Fall through. */
4121
4122 case R_MIPS_CALL16:
4123 case R_MIPS_GOT16:
4124 case R_MIPS_GOT_DISP:
4125 case R_MIPS_GOT_HI16:
4126 case R_MIPS_CALL_HI16:
4127 case R_MIPS_GOT_LO16:
4128 case R_MIPS_CALL_LO16:
4129 case R_MIPS_TLS_GD:
4130 case R_MIPS_TLS_GOTTPREL:
4131 case R_MIPS_TLS_LDM:
4132 /* Find the index into the GOT where this value is located. */
4133 if (r_type == R_MIPS_TLS_LDM)
4134 {
4135 g = mips_elf_local_got_index (abfd, input_bfd, info,
4136 sec, 0, 0, NULL, r_type);
4137 if (g == MINUS_ONE)
4138 return bfd_reloc_outofrange;
4139 }
4140 else if (!local_p)
4141 {
4142 /* On VxWorks, CALL relocations should refer to the .got.plt
4143 entry, which is initialized to point at the PLT stub. */
4144 if (htab->is_vxworks
4145 && (r_type == R_MIPS_CALL_HI16
4146 || r_type == R_MIPS_CALL_LO16
4147 || r_type == R_MIPS_CALL16))
4148 {
4149 BFD_ASSERT (addend == 0);
4150 BFD_ASSERT (h->root.needs_plt);
4151 g = mips_elf_gotplt_index (info, &h->root);
4152 }
4153 else
4154 {
4155 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4156 GOT_PAGE relocation that decays to GOT_DISP because the
4157 symbol turns out to be global. The addend is then added
4158 as GOT_OFST. */
4159 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4160 g = mips_elf_global_got_index (dynobj, input_bfd,
4161 &h->root, r_type, info);
4162 if (h->tls_type == GOT_NORMAL
4163 && (! elf_hash_table(info)->dynamic_sections_created
4164 || (info->shared
4165 && (info->symbolic || h->root.forced_local)
4166 && h->root.def_regular)))
4167 {
4168 /* This is a static link or a -Bsymbolic link. The
4169 symbol is defined locally, or was forced to be local.
4170 We must initialize this entry in the GOT. */
4171 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4172 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4173 }
4174 }
4175 }
4176 else if (!htab->is_vxworks
4177 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4178 /* The calculation below does not involve "g". */
4179 break;
4180 else
4181 {
4182 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4183 symbol + addend, r_symndx, h, r_type);
4184 if (g == MINUS_ONE)
4185 return bfd_reloc_outofrange;
4186 }
4187
4188 /* Convert GOT indices to actual offsets. */
4189 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4190 break;
4191
4192 case R_MIPS_HI16:
4193 case R_MIPS_LO16:
4194 case R_MIPS_GPREL16:
4195 case R_MIPS_GPREL32:
4196 case R_MIPS_LITERAL:
4197 case R_MIPS16_HI16:
4198 case R_MIPS16_LO16:
4199 case R_MIPS16_GPREL:
4200 gp0 = _bfd_get_gp_value (input_bfd);
4201 gp = _bfd_get_gp_value (abfd);
4202 if (dynobj)
4203 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4204 input_bfd);
4205 break;
4206
4207 default:
4208 break;
4209 }
4210
4211 if (gnu_local_gp_p)
4212 symbol = gp;
4213
4214 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4215 symbols are resolved by the loader. Add them to .rela.dyn. */
4216 if (h != NULL && is_gott_symbol (info, &h->root))
4217 {
4218 Elf_Internal_Rela outrel;
4219 bfd_byte *loc;
4220 asection *s;
4221
4222 s = mips_elf_rel_dyn_section (info, FALSE);
4223 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4224
4225 outrel.r_offset = (input_section->output_section->vma
4226 + input_section->output_offset
4227 + relocation->r_offset);
4228 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4229 outrel.r_addend = addend;
4230 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4231 *valuep = 0;
4232 return bfd_reloc_ok;
4233 }
4234
4235 /* Figure out what kind of relocation is being performed. */
4236 switch (r_type)
4237 {
4238 case R_MIPS_NONE:
4239 return bfd_reloc_continue;
4240
4241 case R_MIPS_16:
4242 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4243 overflowed_p = mips_elf_overflow_p (value, 16);
4244 break;
4245
4246 case R_MIPS_32:
4247 case R_MIPS_REL32:
4248 case R_MIPS_64:
4249 if ((info->shared
4250 || (!htab->is_vxworks
4251 && htab->root.dynamic_sections_created
4252 && h != NULL
4253 && h->root.def_dynamic
4254 && !h->root.def_regular))
4255 && r_symndx != 0
4256 && (input_section->flags & SEC_ALLOC) != 0)
4257 {
4258 /* If we're creating a shared library, or this relocation is
4259 against a symbol in a shared library, then we can't know
4260 where the symbol will end up. So, we create a relocation
4261 record in the output, and leave the job up to the dynamic
4262 linker.
4263
4264 In VxWorks executables, references to external symbols
4265 are handled using copy relocs or PLT stubs, so there's
4266 no need to add a dynamic relocation here. */
4267 value = addend;
4268 if (!mips_elf_create_dynamic_relocation (abfd,
4269 info,
4270 relocation,
4271 h,
4272 sec,
4273 symbol,
4274 &value,
4275 input_section))
4276 return bfd_reloc_undefined;
4277 }
4278 else
4279 {
4280 if (r_type != R_MIPS_REL32)
4281 value = symbol + addend;
4282 else
4283 value = addend;
4284 }
4285 value &= howto->dst_mask;
4286 break;
4287
4288 case R_MIPS_PC32:
4289 value = symbol + addend - p;
4290 value &= howto->dst_mask;
4291 break;
4292
4293 case R_MIPS16_26:
4294 /* The calculation for R_MIPS16_26 is just the same as for an
4295 R_MIPS_26. It's only the storage of the relocated field into
4296 the output file that's different. That's handled in
4297 mips_elf_perform_relocation. So, we just fall through to the
4298 R_MIPS_26 case here. */
4299 case R_MIPS_26:
4300 if (local_p)
4301 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4302 else
4303 {
4304 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4305 if (h->root.root.type != bfd_link_hash_undefweak)
4306 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4307 }
4308 value &= howto->dst_mask;
4309 break;
4310
4311 case R_MIPS_TLS_DTPREL_HI16:
4312 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4313 & howto->dst_mask);
4314 break;
4315
4316 case R_MIPS_TLS_DTPREL_LO16:
4317 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4318 break;
4319
4320 case R_MIPS_TLS_TPREL_HI16:
4321 value = (mips_elf_high (addend + symbol - tprel_base (info))
4322 & howto->dst_mask);
4323 break;
4324
4325 case R_MIPS_TLS_TPREL_LO16:
4326 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4327 break;
4328
4329 case R_MIPS_HI16:
4330 case R_MIPS16_HI16:
4331 if (!gp_disp_p)
4332 {
4333 value = mips_elf_high (addend + symbol);
4334 value &= howto->dst_mask;
4335 }
4336 else
4337 {
4338 /* For MIPS16 ABI code we generate this sequence
4339 0: li $v0,%hi(_gp_disp)
4340 4: addiupc $v1,%lo(_gp_disp)
4341 8: sll $v0,16
4342 12: addu $v0,$v1
4343 14: move $gp,$v0
4344 So the offsets of hi and lo relocs are the same, but the
4345 $pc is four higher than $t9 would be, so reduce
4346 both reloc addends by 4. */
4347 if (r_type == R_MIPS16_HI16)
4348 value = mips_elf_high (addend + gp - p - 4);
4349 else
4350 value = mips_elf_high (addend + gp - p);
4351 overflowed_p = mips_elf_overflow_p (value, 16);
4352 }
4353 break;
4354
4355 case R_MIPS_LO16:
4356 case R_MIPS16_LO16:
4357 if (!gp_disp_p)
4358 value = (symbol + addend) & howto->dst_mask;
4359 else
4360 {
4361 /* See the comment for R_MIPS16_HI16 above for the reason
4362 for this conditional. */
4363 if (r_type == R_MIPS16_LO16)
4364 value = addend + gp - p;
4365 else
4366 value = addend + gp - p + 4;
4367 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4368 for overflow. But, on, say, IRIX5, relocations against
4369 _gp_disp are normally generated from the .cpload
4370 pseudo-op. It generates code that normally looks like
4371 this:
4372
4373 lui $gp,%hi(_gp_disp)
4374 addiu $gp,$gp,%lo(_gp_disp)
4375 addu $gp,$gp,$t9
4376
4377 Here $t9 holds the address of the function being called,
4378 as required by the MIPS ELF ABI. The R_MIPS_LO16
4379 relocation can easily overflow in this situation, but the
4380 R_MIPS_HI16 relocation will handle the overflow.
4381 Therefore, we consider this a bug in the MIPS ABI, and do
4382 not check for overflow here. */
4383 }
4384 break;
4385
4386 case R_MIPS_LITERAL:
4387 /* Because we don't merge literal sections, we can handle this
4388 just like R_MIPS_GPREL16. In the long run, we should merge
4389 shared literals, and then we will need to additional work
4390 here. */
4391
4392 /* Fall through. */
4393
4394 case R_MIPS16_GPREL:
4395 /* The R_MIPS16_GPREL performs the same calculation as
4396 R_MIPS_GPREL16, but stores the relocated bits in a different
4397 order. We don't need to do anything special here; the
4398 differences are handled in mips_elf_perform_relocation. */
4399 case R_MIPS_GPREL16:
4400 /* Only sign-extend the addend if it was extracted from the
4401 instruction. If the addend was separate, leave it alone,
4402 otherwise we may lose significant bits. */
4403 if (howto->partial_inplace)
4404 addend = _bfd_mips_elf_sign_extend (addend, 16);
4405 value = symbol + addend - gp;
4406 /* If the symbol was local, any earlier relocatable links will
4407 have adjusted its addend with the gp offset, so compensate
4408 for that now. Don't do it for symbols forced local in this
4409 link, though, since they won't have had the gp offset applied
4410 to them before. */
4411 if (was_local_p)
4412 value += gp0;
4413 overflowed_p = mips_elf_overflow_p (value, 16);
4414 break;
4415
4416 case R_MIPS_GOT16:
4417 case R_MIPS_CALL16:
4418 /* VxWorks does not have separate local and global semantics for
4419 R_MIPS_GOT16; every relocation evaluates to "G". */
4420 if (!htab->is_vxworks && local_p)
4421 {
4422 bfd_boolean forced;
4423
4424 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4425 local_sections, FALSE);
4426 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4427 symbol + addend, forced);
4428 if (value == MINUS_ONE)
4429 return bfd_reloc_outofrange;
4430 value
4431 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4432 overflowed_p = mips_elf_overflow_p (value, 16);
4433 break;
4434 }
4435
4436 /* Fall through. */
4437
4438 case R_MIPS_TLS_GD:
4439 case R_MIPS_TLS_GOTTPREL:
4440 case R_MIPS_TLS_LDM:
4441 case R_MIPS_GOT_DISP:
4442 got_disp:
4443 value = g;
4444 overflowed_p = mips_elf_overflow_p (value, 16);
4445 break;
4446
4447 case R_MIPS_GPREL32:
4448 value = (addend + symbol + gp0 - gp);
4449 if (!save_addend)
4450 value &= howto->dst_mask;
4451 break;
4452
4453 case R_MIPS_PC16:
4454 case R_MIPS_GNU_REL16_S2:
4455 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4456 overflowed_p = mips_elf_overflow_p (value, 18);
4457 value = (value >> 2) & howto->dst_mask;
4458 break;
4459
4460 case R_MIPS_GOT_HI16:
4461 case R_MIPS_CALL_HI16:
4462 /* We're allowed to handle these two relocations identically.
4463 The dynamic linker is allowed to handle the CALL relocations
4464 differently by creating a lazy evaluation stub. */
4465 value = g;
4466 value = mips_elf_high (value);
4467 value &= howto->dst_mask;
4468 break;
4469
4470 case R_MIPS_GOT_LO16:
4471 case R_MIPS_CALL_LO16:
4472 value = g & howto->dst_mask;
4473 break;
4474
4475 case R_MIPS_GOT_PAGE:
4476 /* GOT_PAGE relocations that reference non-local symbols decay
4477 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4478 0. */
4479 if (! local_p)
4480 goto got_disp;
4481 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4482 symbol + addend, NULL);
4483 if (value == MINUS_ONE)
4484 return bfd_reloc_outofrange;
4485 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4486 overflowed_p = mips_elf_overflow_p (value, 16);
4487 break;
4488
4489 case R_MIPS_GOT_OFST:
4490 if (local_p)
4491 mips_elf_got_page (abfd, input_bfd, info, sec,
4492 symbol + addend, &value);
4493 else
4494 value = addend;
4495 overflowed_p = mips_elf_overflow_p (value, 16);
4496 break;
4497
4498 case R_MIPS_SUB:
4499 value = symbol - addend;
4500 value &= howto->dst_mask;
4501 break;
4502
4503 case R_MIPS_HIGHER:
4504 value = mips_elf_higher (addend + symbol);
4505 value &= howto->dst_mask;
4506 break;
4507
4508 case R_MIPS_HIGHEST:
4509 value = mips_elf_highest (addend + symbol);
4510 value &= howto->dst_mask;
4511 break;
4512
4513 case R_MIPS_SCN_DISP:
4514 value = symbol + addend - sec->output_offset;
4515 value &= howto->dst_mask;
4516 break;
4517
4518 case R_MIPS_JALR:
4519 /* This relocation is only a hint. In some cases, we optimize
4520 it into a bal instruction. But we don't try to optimize
4521 branches to the PLT; that will wind up wasting time. */
4522 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4523 return bfd_reloc_continue;
4524 value = symbol + addend;
4525 break;
4526
4527 case R_MIPS_PJUMP:
4528 case R_MIPS_GNU_VTINHERIT:
4529 case R_MIPS_GNU_VTENTRY:
4530 /* We don't do anything with these at present. */
4531 return bfd_reloc_continue;
4532
4533 default:
4534 /* An unrecognized relocation type. */
4535 return bfd_reloc_notsupported;
4536 }
4537
4538 /* Store the VALUE for our caller. */
4539 *valuep = value;
4540 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4541 }
4542
4543 /* Obtain the field relocated by RELOCATION. */
4544
4545 static bfd_vma
4546 mips_elf_obtain_contents (reloc_howto_type *howto,
4547 const Elf_Internal_Rela *relocation,
4548 bfd *input_bfd, bfd_byte *contents)
4549 {
4550 bfd_vma x;
4551 bfd_byte *location = contents + relocation->r_offset;
4552
4553 /* Obtain the bytes. */
4554 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4555
4556 return x;
4557 }
4558
4559 /* It has been determined that the result of the RELOCATION is the
4560 VALUE. Use HOWTO to place VALUE into the output file at the
4561 appropriate position. The SECTION is the section to which the
4562 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4563 for the relocation must be either JAL or JALX, and it is
4564 unconditionally converted to JALX.
4565
4566 Returns FALSE if anything goes wrong. */
4567
4568 static bfd_boolean
4569 mips_elf_perform_relocation (struct bfd_link_info *info,
4570 reloc_howto_type *howto,
4571 const Elf_Internal_Rela *relocation,
4572 bfd_vma value, bfd *input_bfd,
4573 asection *input_section, bfd_byte *contents,
4574 bfd_boolean require_jalx)
4575 {
4576 bfd_vma x;
4577 bfd_byte *location;
4578 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4579
4580 /* Figure out where the relocation is occurring. */
4581 location = contents + relocation->r_offset;
4582
4583 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4584
4585 /* Obtain the current value. */
4586 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4587
4588 /* Clear the field we are setting. */
4589 x &= ~howto->dst_mask;
4590
4591 /* Set the field. */
4592 x |= (value & howto->dst_mask);
4593
4594 /* If required, turn JAL into JALX. */
4595 if (require_jalx)
4596 {
4597 bfd_boolean ok;
4598 bfd_vma opcode = x >> 26;
4599 bfd_vma jalx_opcode;
4600
4601 /* Check to see if the opcode is already JAL or JALX. */
4602 if (r_type == R_MIPS16_26)
4603 {
4604 ok = ((opcode == 0x6) || (opcode == 0x7));
4605 jalx_opcode = 0x7;
4606 }
4607 else
4608 {
4609 ok = ((opcode == 0x3) || (opcode == 0x1d));
4610 jalx_opcode = 0x1d;
4611 }
4612
4613 /* If the opcode is not JAL or JALX, there's a problem. */
4614 if (!ok)
4615 {
4616 (*_bfd_error_handler)
4617 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4618 input_bfd,
4619 input_section,
4620 (unsigned long) relocation->r_offset);
4621 bfd_set_error (bfd_error_bad_value);
4622 return FALSE;
4623 }
4624
4625 /* Make this the JALX opcode. */
4626 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4627 }
4628
4629 /* On the RM9000, bal is faster than jal, because bal uses branch
4630 prediction hardware. If we are linking for the RM9000, and we
4631 see jal, and bal fits, use it instead. Note that this
4632 transformation should be safe for all architectures. */
4633 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4634 && !info->relocatable
4635 && !require_jalx
4636 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4637 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4638 {
4639 bfd_vma addr;
4640 bfd_vma dest;
4641 bfd_signed_vma off;
4642
4643 addr = (input_section->output_section->vma
4644 + input_section->output_offset
4645 + relocation->r_offset
4646 + 4);
4647 if (r_type == R_MIPS_26)
4648 dest = (value << 2) | ((addr >> 28) << 28);
4649 else
4650 dest = value;
4651 off = dest - addr;
4652 if (off <= 0x1ffff && off >= -0x20000)
4653 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4654 }
4655
4656 /* Put the value into the output. */
4657 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4658
4659 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4660 location);
4661
4662 return TRUE;
4663 }
4664
4665 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4666
4667 static bfd_boolean
4668 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4669 {
4670 const char *name = bfd_get_section_name (abfd, section);
4671
4672 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4673 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4674 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4675 }
4676 \f
4677 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4678
4679 static void
4680 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4681 unsigned int n)
4682 {
4683 asection *s;
4684 struct mips_elf_link_hash_table *htab;
4685
4686 htab = mips_elf_hash_table (info);
4687 s = mips_elf_rel_dyn_section (info, FALSE);
4688 BFD_ASSERT (s != NULL);
4689
4690 if (htab->is_vxworks)
4691 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4692 else
4693 {
4694 if (s->size == 0)
4695 {
4696 /* Make room for a null element. */
4697 s->size += MIPS_ELF_REL_SIZE (abfd);
4698 ++s->reloc_count;
4699 }
4700 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4701 }
4702 }
4703
4704 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4705 is the original relocation, which is now being transformed into a
4706 dynamic relocation. The ADDENDP is adjusted if necessary; the
4707 caller should store the result in place of the original addend. */
4708
4709 static bfd_boolean
4710 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4711 struct bfd_link_info *info,
4712 const Elf_Internal_Rela *rel,
4713 struct mips_elf_link_hash_entry *h,
4714 asection *sec, bfd_vma symbol,
4715 bfd_vma *addendp, asection *input_section)
4716 {
4717 Elf_Internal_Rela outrel[3];
4718 asection *sreloc;
4719 bfd *dynobj;
4720 int r_type;
4721 long indx;
4722 bfd_boolean defined_p;
4723 struct mips_elf_link_hash_table *htab;
4724
4725 htab = mips_elf_hash_table (info);
4726 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4727 dynobj = elf_hash_table (info)->dynobj;
4728 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4729 BFD_ASSERT (sreloc != NULL);
4730 BFD_ASSERT (sreloc->contents != NULL);
4731 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4732 < sreloc->size);
4733
4734 outrel[0].r_offset =
4735 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4736 outrel[1].r_offset =
4737 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4738 outrel[2].r_offset =
4739 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4740
4741 if (outrel[0].r_offset == MINUS_ONE)
4742 /* The relocation field has been deleted. */
4743 return TRUE;
4744
4745 if (outrel[0].r_offset == MINUS_TWO)
4746 {
4747 /* The relocation field has been converted into a relative value of
4748 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4749 the field to be fully relocated, so add in the symbol's value. */
4750 *addendp += symbol;
4751 return TRUE;
4752 }
4753
4754 /* We must now calculate the dynamic symbol table index to use
4755 in the relocation. */
4756 if (h != NULL
4757 && (!h->root.def_regular
4758 || (info->shared && !info->symbolic && !h->root.forced_local)))
4759 {
4760 indx = h->root.dynindx;
4761 if (SGI_COMPAT (output_bfd))
4762 defined_p = h->root.def_regular;
4763 else
4764 /* ??? glibc's ld.so just adds the final GOT entry to the
4765 relocation field. It therefore treats relocs against
4766 defined symbols in the same way as relocs against
4767 undefined symbols. */
4768 defined_p = FALSE;
4769 }
4770 else
4771 {
4772 if (sec != NULL && bfd_is_abs_section (sec))
4773 indx = 0;
4774 else if (sec == NULL || sec->owner == NULL)
4775 {
4776 bfd_set_error (bfd_error_bad_value);
4777 return FALSE;
4778 }
4779 else
4780 {
4781 indx = elf_section_data (sec->output_section)->dynindx;
4782 if (indx == 0)
4783 abort ();
4784 }
4785
4786 /* Instead of generating a relocation using the section
4787 symbol, we may as well make it a fully relative
4788 relocation. We want to avoid generating relocations to
4789 local symbols because we used to generate them
4790 incorrectly, without adding the original symbol value,
4791 which is mandated by the ABI for section symbols. In
4792 order to give dynamic loaders and applications time to
4793 phase out the incorrect use, we refrain from emitting
4794 section-relative relocations. It's not like they're
4795 useful, after all. This should be a bit more efficient
4796 as well. */
4797 /* ??? Although this behavior is compatible with glibc's ld.so,
4798 the ABI says that relocations against STN_UNDEF should have
4799 a symbol value of 0. Irix rld honors this, so relocations
4800 against STN_UNDEF have no effect. */
4801 if (!SGI_COMPAT (output_bfd))
4802 indx = 0;
4803 defined_p = TRUE;
4804 }
4805
4806 /* If the relocation was previously an absolute relocation and
4807 this symbol will not be referred to by the relocation, we must
4808 adjust it by the value we give it in the dynamic symbol table.
4809 Otherwise leave the job up to the dynamic linker. */
4810 if (defined_p && r_type != R_MIPS_REL32)
4811 *addendp += symbol;
4812
4813 if (htab->is_vxworks)
4814 /* VxWorks uses non-relative relocations for this. */
4815 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4816 else
4817 /* The relocation is always an REL32 relocation because we don't
4818 know where the shared library will wind up at load-time. */
4819 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4820 R_MIPS_REL32);
4821
4822 /* For strict adherence to the ABI specification, we should
4823 generate a R_MIPS_64 relocation record by itself before the
4824 _REL32/_64 record as well, such that the addend is read in as
4825 a 64-bit value (REL32 is a 32-bit relocation, after all).
4826 However, since none of the existing ELF64 MIPS dynamic
4827 loaders seems to care, we don't waste space with these
4828 artificial relocations. If this turns out to not be true,
4829 mips_elf_allocate_dynamic_relocation() should be tweaked so
4830 as to make room for a pair of dynamic relocations per
4831 invocation if ABI_64_P, and here we should generate an
4832 additional relocation record with R_MIPS_64 by itself for a
4833 NULL symbol before this relocation record. */
4834 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4835 ABI_64_P (output_bfd)
4836 ? R_MIPS_64
4837 : R_MIPS_NONE);
4838 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4839
4840 /* Adjust the output offset of the relocation to reference the
4841 correct location in the output file. */
4842 outrel[0].r_offset += (input_section->output_section->vma
4843 + input_section->output_offset);
4844 outrel[1].r_offset += (input_section->output_section->vma
4845 + input_section->output_offset);
4846 outrel[2].r_offset += (input_section->output_section->vma
4847 + input_section->output_offset);
4848
4849 /* Put the relocation back out. We have to use the special
4850 relocation outputter in the 64-bit case since the 64-bit
4851 relocation format is non-standard. */
4852 if (ABI_64_P (output_bfd))
4853 {
4854 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4855 (output_bfd, &outrel[0],
4856 (sreloc->contents
4857 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4858 }
4859 else if (htab->is_vxworks)
4860 {
4861 /* VxWorks uses RELA rather than REL dynamic relocations. */
4862 outrel[0].r_addend = *addendp;
4863 bfd_elf32_swap_reloca_out
4864 (output_bfd, &outrel[0],
4865 (sreloc->contents
4866 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4867 }
4868 else
4869 bfd_elf32_swap_reloc_out
4870 (output_bfd, &outrel[0],
4871 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4872
4873 /* We've now added another relocation. */
4874 ++sreloc->reloc_count;
4875
4876 /* Make sure the output section is writable. The dynamic linker
4877 will be writing to it. */
4878 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4879 |= SHF_WRITE;
4880
4881 /* On IRIX5, make an entry of compact relocation info. */
4882 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4883 {
4884 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4885 bfd_byte *cr;
4886
4887 if (scpt)
4888 {
4889 Elf32_crinfo cptrel;
4890
4891 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4892 cptrel.vaddr = (rel->r_offset
4893 + input_section->output_section->vma
4894 + input_section->output_offset);
4895 if (r_type == R_MIPS_REL32)
4896 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4897 else
4898 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4899 mips_elf_set_cr_dist2to (cptrel, 0);
4900 cptrel.konst = *addendp;
4901
4902 cr = (scpt->contents
4903 + sizeof (Elf32_External_compact_rel));
4904 mips_elf_set_cr_relvaddr (cptrel, 0);
4905 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4906 ((Elf32_External_crinfo *) cr
4907 + scpt->reloc_count));
4908 ++scpt->reloc_count;
4909 }
4910 }
4911
4912 return TRUE;
4913 }
4914 \f
4915 /* Return the MACH for a MIPS e_flags value. */
4916
4917 unsigned long
4918 _bfd_elf_mips_mach (flagword flags)
4919 {
4920 switch (flags & EF_MIPS_MACH)
4921 {
4922 case E_MIPS_MACH_3900:
4923 return bfd_mach_mips3900;
4924
4925 case E_MIPS_MACH_4010:
4926 return bfd_mach_mips4010;
4927
4928 case E_MIPS_MACH_4100:
4929 return bfd_mach_mips4100;
4930
4931 case E_MIPS_MACH_4111:
4932 return bfd_mach_mips4111;
4933
4934 case E_MIPS_MACH_4120:
4935 return bfd_mach_mips4120;
4936
4937 case E_MIPS_MACH_4650:
4938 return bfd_mach_mips4650;
4939
4940 case E_MIPS_MACH_5400:
4941 return bfd_mach_mips5400;
4942
4943 case E_MIPS_MACH_5500:
4944 return bfd_mach_mips5500;
4945
4946 case E_MIPS_MACH_9000:
4947 return bfd_mach_mips9000;
4948
4949 case E_MIPS_MACH_SB1:
4950 return bfd_mach_mips_sb1;
4951
4952 default:
4953 switch (flags & EF_MIPS_ARCH)
4954 {
4955 default:
4956 case E_MIPS_ARCH_1:
4957 return bfd_mach_mips3000;
4958 break;
4959
4960 case E_MIPS_ARCH_2:
4961 return bfd_mach_mips6000;
4962 break;
4963
4964 case E_MIPS_ARCH_3:
4965 return bfd_mach_mips4000;
4966 break;
4967
4968 case E_MIPS_ARCH_4:
4969 return bfd_mach_mips8000;
4970 break;
4971
4972 case E_MIPS_ARCH_5:
4973 return bfd_mach_mips5;
4974 break;
4975
4976 case E_MIPS_ARCH_32:
4977 return bfd_mach_mipsisa32;
4978 break;
4979
4980 case E_MIPS_ARCH_64:
4981 return bfd_mach_mipsisa64;
4982 break;
4983
4984 case E_MIPS_ARCH_32R2:
4985 return bfd_mach_mipsisa32r2;
4986 break;
4987
4988 case E_MIPS_ARCH_64R2:
4989 return bfd_mach_mipsisa64r2;
4990 break;
4991 }
4992 }
4993
4994 return 0;
4995 }
4996
4997 /* Return printable name for ABI. */
4998
4999 static INLINE char *
5000 elf_mips_abi_name (bfd *abfd)
5001 {
5002 flagword flags;
5003
5004 flags = elf_elfheader (abfd)->e_flags;
5005 switch (flags & EF_MIPS_ABI)
5006 {
5007 case 0:
5008 if (ABI_N32_P (abfd))
5009 return "N32";
5010 else if (ABI_64_P (abfd))
5011 return "64";
5012 else
5013 return "none";
5014 case E_MIPS_ABI_O32:
5015 return "O32";
5016 case E_MIPS_ABI_O64:
5017 return "O64";
5018 case E_MIPS_ABI_EABI32:
5019 return "EABI32";
5020 case E_MIPS_ABI_EABI64:
5021 return "EABI64";
5022 default:
5023 return "unknown abi";
5024 }
5025 }
5026 \f
5027 /* MIPS ELF uses two common sections. One is the usual one, and the
5028 other is for small objects. All the small objects are kept
5029 together, and then referenced via the gp pointer, which yields
5030 faster assembler code. This is what we use for the small common
5031 section. This approach is copied from ecoff.c. */
5032 static asection mips_elf_scom_section;
5033 static asymbol mips_elf_scom_symbol;
5034 static asymbol *mips_elf_scom_symbol_ptr;
5035
5036 /* MIPS ELF also uses an acommon section, which represents an
5037 allocated common symbol which may be overridden by a
5038 definition in a shared library. */
5039 static asection mips_elf_acom_section;
5040 static asymbol mips_elf_acom_symbol;
5041 static asymbol *mips_elf_acom_symbol_ptr;
5042
5043 /* Handle the special MIPS section numbers that a symbol may use.
5044 This is used for both the 32-bit and the 64-bit ABI. */
5045
5046 void
5047 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5048 {
5049 elf_symbol_type *elfsym;
5050
5051 elfsym = (elf_symbol_type *) asym;
5052 switch (elfsym->internal_elf_sym.st_shndx)
5053 {
5054 case SHN_MIPS_ACOMMON:
5055 /* This section is used in a dynamically linked executable file.
5056 It is an allocated common section. The dynamic linker can
5057 either resolve these symbols to something in a shared
5058 library, or it can just leave them here. For our purposes,
5059 we can consider these symbols to be in a new section. */
5060 if (mips_elf_acom_section.name == NULL)
5061 {
5062 /* Initialize the acommon section. */
5063 mips_elf_acom_section.name = ".acommon";
5064 mips_elf_acom_section.flags = SEC_ALLOC;
5065 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5066 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5067 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5068 mips_elf_acom_symbol.name = ".acommon";
5069 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5070 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5071 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5072 }
5073 asym->section = &mips_elf_acom_section;
5074 break;
5075
5076 case SHN_COMMON:
5077 /* Common symbols less than the GP size are automatically
5078 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5079 if (asym->value > elf_gp_size (abfd)
5080 || IRIX_COMPAT (abfd) == ict_irix6)
5081 break;
5082 /* Fall through. */
5083 case SHN_MIPS_SCOMMON:
5084 if (mips_elf_scom_section.name == NULL)
5085 {
5086 /* Initialize the small common section. */
5087 mips_elf_scom_section.name = ".scommon";
5088 mips_elf_scom_section.flags = SEC_IS_COMMON;
5089 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5090 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5091 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5092 mips_elf_scom_symbol.name = ".scommon";
5093 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5094 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5095 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5096 }
5097 asym->section = &mips_elf_scom_section;
5098 asym->value = elfsym->internal_elf_sym.st_size;
5099 break;
5100
5101 case SHN_MIPS_SUNDEFINED:
5102 asym->section = bfd_und_section_ptr;
5103 break;
5104
5105 case SHN_MIPS_TEXT:
5106 {
5107 asection *section = bfd_get_section_by_name (abfd, ".text");
5108
5109 BFD_ASSERT (SGI_COMPAT (abfd));
5110 if (section != NULL)
5111 {
5112 asym->section = section;
5113 /* MIPS_TEXT is a bit special, the address is not an offset
5114 to the base of the .text section. So substract the section
5115 base address to make it an offset. */
5116 asym->value -= section->vma;
5117 }
5118 }
5119 break;
5120
5121 case SHN_MIPS_DATA:
5122 {
5123 asection *section = bfd_get_section_by_name (abfd, ".data");
5124
5125 BFD_ASSERT (SGI_COMPAT (abfd));
5126 if (section != NULL)
5127 {
5128 asym->section = section;
5129 /* MIPS_DATA is a bit special, the address is not an offset
5130 to the base of the .data section. So substract the section
5131 base address to make it an offset. */
5132 asym->value -= section->vma;
5133 }
5134 }
5135 break;
5136 }
5137 }
5138 \f
5139 /* Implement elf_backend_eh_frame_address_size. This differs from
5140 the default in the way it handles EABI64.
5141
5142 EABI64 was originally specified as an LP64 ABI, and that is what
5143 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5144 historically accepted the combination of -mabi=eabi and -mlong32,
5145 and this ILP32 variation has become semi-official over time.
5146 Both forms use elf32 and have pointer-sized FDE addresses.
5147
5148 If an EABI object was generated by GCC 4.0 or above, it will have
5149 an empty .gcc_compiled_longXX section, where XX is the size of longs
5150 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5151 have no special marking to distinguish them from LP64 objects.
5152
5153 We don't want users of the official LP64 ABI to be punished for the
5154 existence of the ILP32 variant, but at the same time, we don't want
5155 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5156 We therefore take the following approach:
5157
5158 - If ABFD contains a .gcc_compiled_longXX section, use it to
5159 determine the pointer size.
5160
5161 - Otherwise check the type of the first relocation. Assume that
5162 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5163
5164 - Otherwise punt.
5165
5166 The second check is enough to detect LP64 objects generated by pre-4.0
5167 compilers because, in the kind of output generated by those compilers,
5168 the first relocation will be associated with either a CIE personality
5169 routine or an FDE start address. Furthermore, the compilers never
5170 used a special (non-pointer) encoding for this ABI.
5171
5172 Checking the relocation type should also be safe because there is no
5173 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5174 did so. */
5175
5176 unsigned int
5177 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5178 {
5179 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5180 return 8;
5181 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5182 {
5183 bfd_boolean long32_p, long64_p;
5184
5185 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5186 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5187 if (long32_p && long64_p)
5188 return 0;
5189 if (long32_p)
5190 return 4;
5191 if (long64_p)
5192 return 8;
5193
5194 if (sec->reloc_count > 0
5195 && elf_section_data (sec)->relocs != NULL
5196 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5197 == R_MIPS_64))
5198 return 8;
5199
5200 return 0;
5201 }
5202 return 4;
5203 }
5204 \f
5205 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5206 relocations against two unnamed section symbols to resolve to the
5207 same address. For example, if we have code like:
5208
5209 lw $4,%got_disp(.data)($gp)
5210 lw $25,%got_disp(.text)($gp)
5211 jalr $25
5212
5213 then the linker will resolve both relocations to .data and the program
5214 will jump there rather than to .text.
5215
5216 We can work around this problem by giving names to local section symbols.
5217 This is also what the MIPSpro tools do. */
5218
5219 bfd_boolean
5220 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5221 {
5222 return SGI_COMPAT (abfd);
5223 }
5224 \f
5225 /* Work over a section just before writing it out. This routine is
5226 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5227 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5228 a better way. */
5229
5230 bfd_boolean
5231 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5232 {
5233 if (hdr->sh_type == SHT_MIPS_REGINFO
5234 && hdr->sh_size > 0)
5235 {
5236 bfd_byte buf[4];
5237
5238 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5239 BFD_ASSERT (hdr->contents == NULL);
5240
5241 if (bfd_seek (abfd,
5242 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5243 SEEK_SET) != 0)
5244 return FALSE;
5245 H_PUT_32 (abfd, elf_gp (abfd), buf);
5246 if (bfd_bwrite (buf, 4, abfd) != 4)
5247 return FALSE;
5248 }
5249
5250 if (hdr->sh_type == SHT_MIPS_OPTIONS
5251 && hdr->bfd_section != NULL
5252 && mips_elf_section_data (hdr->bfd_section) != NULL
5253 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5254 {
5255 bfd_byte *contents, *l, *lend;
5256
5257 /* We stored the section contents in the tdata field in the
5258 set_section_contents routine. We save the section contents
5259 so that we don't have to read them again.
5260 At this point we know that elf_gp is set, so we can look
5261 through the section contents to see if there is an
5262 ODK_REGINFO structure. */
5263
5264 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5265 l = contents;
5266 lend = contents + hdr->sh_size;
5267 while (l + sizeof (Elf_External_Options) <= lend)
5268 {
5269 Elf_Internal_Options intopt;
5270
5271 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5272 &intopt);
5273 if (intopt.size < sizeof (Elf_External_Options))
5274 {
5275 (*_bfd_error_handler)
5276 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5277 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5278 break;
5279 }
5280 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5281 {
5282 bfd_byte buf[8];
5283
5284 if (bfd_seek (abfd,
5285 (hdr->sh_offset
5286 + (l - contents)
5287 + sizeof (Elf_External_Options)
5288 + (sizeof (Elf64_External_RegInfo) - 8)),
5289 SEEK_SET) != 0)
5290 return FALSE;
5291 H_PUT_64 (abfd, elf_gp (abfd), buf);
5292 if (bfd_bwrite (buf, 8, abfd) != 8)
5293 return FALSE;
5294 }
5295 else if (intopt.kind == ODK_REGINFO)
5296 {
5297 bfd_byte buf[4];
5298
5299 if (bfd_seek (abfd,
5300 (hdr->sh_offset
5301 + (l - contents)
5302 + sizeof (Elf_External_Options)
5303 + (sizeof (Elf32_External_RegInfo) - 4)),
5304 SEEK_SET) != 0)
5305 return FALSE;
5306 H_PUT_32 (abfd, elf_gp (abfd), buf);
5307 if (bfd_bwrite (buf, 4, abfd) != 4)
5308 return FALSE;
5309 }
5310 l += intopt.size;
5311 }
5312 }
5313
5314 if (hdr->bfd_section != NULL)
5315 {
5316 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5317
5318 if (strcmp (name, ".sdata") == 0
5319 || strcmp (name, ".lit8") == 0
5320 || strcmp (name, ".lit4") == 0)
5321 {
5322 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5323 hdr->sh_type = SHT_PROGBITS;
5324 }
5325 else if (strcmp (name, ".sbss") == 0)
5326 {
5327 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5328 hdr->sh_type = SHT_NOBITS;
5329 }
5330 else if (strcmp (name, ".srdata") == 0)
5331 {
5332 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5333 hdr->sh_type = SHT_PROGBITS;
5334 }
5335 else if (strcmp (name, ".compact_rel") == 0)
5336 {
5337 hdr->sh_flags = 0;
5338 hdr->sh_type = SHT_PROGBITS;
5339 }
5340 else if (strcmp (name, ".rtproc") == 0)
5341 {
5342 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5343 {
5344 unsigned int adjust;
5345
5346 adjust = hdr->sh_size % hdr->sh_addralign;
5347 if (adjust != 0)
5348 hdr->sh_size += hdr->sh_addralign - adjust;
5349 }
5350 }
5351 }
5352
5353 return TRUE;
5354 }
5355
5356 /* Handle a MIPS specific section when reading an object file. This
5357 is called when elfcode.h finds a section with an unknown type.
5358 This routine supports both the 32-bit and 64-bit ELF ABI.
5359
5360 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5361 how to. */
5362
5363 bfd_boolean
5364 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5365 Elf_Internal_Shdr *hdr,
5366 const char *name,
5367 int shindex)
5368 {
5369 flagword flags = 0;
5370
5371 /* There ought to be a place to keep ELF backend specific flags, but
5372 at the moment there isn't one. We just keep track of the
5373 sections by their name, instead. Fortunately, the ABI gives
5374 suggested names for all the MIPS specific sections, so we will
5375 probably get away with this. */
5376 switch (hdr->sh_type)
5377 {
5378 case SHT_MIPS_LIBLIST:
5379 if (strcmp (name, ".liblist") != 0)
5380 return FALSE;
5381 break;
5382 case SHT_MIPS_MSYM:
5383 if (strcmp (name, ".msym") != 0)
5384 return FALSE;
5385 break;
5386 case SHT_MIPS_CONFLICT:
5387 if (strcmp (name, ".conflict") != 0)
5388 return FALSE;
5389 break;
5390 case SHT_MIPS_GPTAB:
5391 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5392 return FALSE;
5393 break;
5394 case SHT_MIPS_UCODE:
5395 if (strcmp (name, ".ucode") != 0)
5396 return FALSE;
5397 break;
5398 case SHT_MIPS_DEBUG:
5399 if (strcmp (name, ".mdebug") != 0)
5400 return FALSE;
5401 flags = SEC_DEBUGGING;
5402 break;
5403 case SHT_MIPS_REGINFO:
5404 if (strcmp (name, ".reginfo") != 0
5405 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5406 return FALSE;
5407 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5408 break;
5409 case SHT_MIPS_IFACE:
5410 if (strcmp (name, ".MIPS.interfaces") != 0)
5411 return FALSE;
5412 break;
5413 case SHT_MIPS_CONTENT:
5414 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5415 return FALSE;
5416 break;
5417 case SHT_MIPS_OPTIONS:
5418 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5419 return FALSE;
5420 break;
5421 case SHT_MIPS_DWARF:
5422 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5423 return FALSE;
5424 break;
5425 case SHT_MIPS_SYMBOL_LIB:
5426 if (strcmp (name, ".MIPS.symlib") != 0)
5427 return FALSE;
5428 break;
5429 case SHT_MIPS_EVENTS:
5430 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5431 && strncmp (name, ".MIPS.post_rel",
5432 sizeof ".MIPS.post_rel" - 1) != 0)
5433 return FALSE;
5434 break;
5435 default:
5436 break;
5437 }
5438
5439 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5440 return FALSE;
5441
5442 if (flags)
5443 {
5444 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5445 (bfd_get_section_flags (abfd,
5446 hdr->bfd_section)
5447 | flags)))
5448 return FALSE;
5449 }
5450
5451 /* FIXME: We should record sh_info for a .gptab section. */
5452
5453 /* For a .reginfo section, set the gp value in the tdata information
5454 from the contents of this section. We need the gp value while
5455 processing relocs, so we just get it now. The .reginfo section
5456 is not used in the 64-bit MIPS ELF ABI. */
5457 if (hdr->sh_type == SHT_MIPS_REGINFO)
5458 {
5459 Elf32_External_RegInfo ext;
5460 Elf32_RegInfo s;
5461
5462 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5463 &ext, 0, sizeof ext))
5464 return FALSE;
5465 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5466 elf_gp (abfd) = s.ri_gp_value;
5467 }
5468
5469 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5470 set the gp value based on what we find. We may see both
5471 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5472 they should agree. */
5473 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5474 {
5475 bfd_byte *contents, *l, *lend;
5476
5477 contents = bfd_malloc (hdr->sh_size);
5478 if (contents == NULL)
5479 return FALSE;
5480 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5481 0, hdr->sh_size))
5482 {
5483 free (contents);
5484 return FALSE;
5485 }
5486 l = contents;
5487 lend = contents + hdr->sh_size;
5488 while (l + sizeof (Elf_External_Options) <= lend)
5489 {
5490 Elf_Internal_Options intopt;
5491
5492 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5493 &intopt);
5494 if (intopt.size < sizeof (Elf_External_Options))
5495 {
5496 (*_bfd_error_handler)
5497 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5498 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5499 break;
5500 }
5501 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5502 {
5503 Elf64_Internal_RegInfo intreg;
5504
5505 bfd_mips_elf64_swap_reginfo_in
5506 (abfd,
5507 ((Elf64_External_RegInfo *)
5508 (l + sizeof (Elf_External_Options))),
5509 &intreg);
5510 elf_gp (abfd) = intreg.ri_gp_value;
5511 }
5512 else if (intopt.kind == ODK_REGINFO)
5513 {
5514 Elf32_RegInfo intreg;
5515
5516 bfd_mips_elf32_swap_reginfo_in
5517 (abfd,
5518 ((Elf32_External_RegInfo *)
5519 (l + sizeof (Elf_External_Options))),
5520 &intreg);
5521 elf_gp (abfd) = intreg.ri_gp_value;
5522 }
5523 l += intopt.size;
5524 }
5525 free (contents);
5526 }
5527
5528 return TRUE;
5529 }
5530
5531 /* Set the correct type for a MIPS ELF section. We do this by the
5532 section name, which is a hack, but ought to work. This routine is
5533 used by both the 32-bit and the 64-bit ABI. */
5534
5535 bfd_boolean
5536 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5537 {
5538 register const char *name;
5539 unsigned int sh_type;
5540
5541 name = bfd_get_section_name (abfd, sec);
5542 sh_type = hdr->sh_type;
5543
5544 if (strcmp (name, ".liblist") == 0)
5545 {
5546 hdr->sh_type = SHT_MIPS_LIBLIST;
5547 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5548 /* The sh_link field is set in final_write_processing. */
5549 }
5550 else if (strcmp (name, ".conflict") == 0)
5551 hdr->sh_type = SHT_MIPS_CONFLICT;
5552 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5553 {
5554 hdr->sh_type = SHT_MIPS_GPTAB;
5555 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5556 /* The sh_info field is set in final_write_processing. */
5557 }
5558 else if (strcmp (name, ".ucode") == 0)
5559 hdr->sh_type = SHT_MIPS_UCODE;
5560 else if (strcmp (name, ".mdebug") == 0)
5561 {
5562 hdr->sh_type = SHT_MIPS_DEBUG;
5563 /* In a shared object on IRIX 5.3, the .mdebug section has an
5564 entsize of 0. FIXME: Does this matter? */
5565 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5566 hdr->sh_entsize = 0;
5567 else
5568 hdr->sh_entsize = 1;
5569 }
5570 else if (strcmp (name, ".reginfo") == 0)
5571 {
5572 hdr->sh_type = SHT_MIPS_REGINFO;
5573 /* In a shared object on IRIX 5.3, the .reginfo section has an
5574 entsize of 0x18. FIXME: Does this matter? */
5575 if (SGI_COMPAT (abfd))
5576 {
5577 if ((abfd->flags & DYNAMIC) != 0)
5578 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5579 else
5580 hdr->sh_entsize = 1;
5581 }
5582 else
5583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5584 }
5585 else if (SGI_COMPAT (abfd)
5586 && (strcmp (name, ".hash") == 0
5587 || strcmp (name, ".dynamic") == 0
5588 || strcmp (name, ".dynstr") == 0))
5589 {
5590 if (SGI_COMPAT (abfd))
5591 hdr->sh_entsize = 0;
5592 #if 0
5593 /* This isn't how the IRIX6 linker behaves. */
5594 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5595 #endif
5596 }
5597 else if (strcmp (name, ".got") == 0
5598 || strcmp (name, ".srdata") == 0
5599 || strcmp (name, ".sdata") == 0
5600 || strcmp (name, ".sbss") == 0
5601 || strcmp (name, ".lit4") == 0
5602 || strcmp (name, ".lit8") == 0)
5603 hdr->sh_flags |= SHF_MIPS_GPREL;
5604 else if (strcmp (name, ".MIPS.interfaces") == 0)
5605 {
5606 hdr->sh_type = SHT_MIPS_IFACE;
5607 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5608 }
5609 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5610 {
5611 hdr->sh_type = SHT_MIPS_CONTENT;
5612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5613 /* The sh_info field is set in final_write_processing. */
5614 }
5615 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5616 {
5617 hdr->sh_type = SHT_MIPS_OPTIONS;
5618 hdr->sh_entsize = 1;
5619 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5620 }
5621 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5622 hdr->sh_type = SHT_MIPS_DWARF;
5623 else if (strcmp (name, ".MIPS.symlib") == 0)
5624 {
5625 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5626 /* The sh_link and sh_info fields are set in
5627 final_write_processing. */
5628 }
5629 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5630 || strncmp (name, ".MIPS.post_rel",
5631 sizeof ".MIPS.post_rel" - 1) == 0)
5632 {
5633 hdr->sh_type = SHT_MIPS_EVENTS;
5634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5635 /* The sh_link field is set in final_write_processing. */
5636 }
5637 else if (strcmp (name, ".msym") == 0)
5638 {
5639 hdr->sh_type = SHT_MIPS_MSYM;
5640 hdr->sh_flags |= SHF_ALLOC;
5641 hdr->sh_entsize = 8;
5642 }
5643
5644 /* In the unlikely event a special section is empty it has to lose its
5645 special meaning. This may happen e.g. when using `strip' with the
5646 "--only-keep-debug" option. */
5647 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5648 hdr->sh_type = sh_type;
5649
5650 /* The generic elf_fake_sections will set up REL_HDR using the default
5651 kind of relocations. We used to set up a second header for the
5652 non-default kind of relocations here, but only NewABI would use
5653 these, and the IRIX ld doesn't like resulting empty RELA sections.
5654 Thus we create those header only on demand now. */
5655
5656 return TRUE;
5657 }
5658
5659 /* Given a BFD section, try to locate the corresponding ELF section
5660 index. This is used by both the 32-bit and the 64-bit ABI.
5661 Actually, it's not clear to me that the 64-bit ABI supports these,
5662 but for non-PIC objects we will certainly want support for at least
5663 the .scommon section. */
5664
5665 bfd_boolean
5666 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5667 asection *sec, int *retval)
5668 {
5669 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5670 {
5671 *retval = SHN_MIPS_SCOMMON;
5672 return TRUE;
5673 }
5674 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5675 {
5676 *retval = SHN_MIPS_ACOMMON;
5677 return TRUE;
5678 }
5679 return FALSE;
5680 }
5681 \f
5682 /* Hook called by the linker routine which adds symbols from an object
5683 file. We must handle the special MIPS section numbers here. */
5684
5685 bfd_boolean
5686 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5687 Elf_Internal_Sym *sym, const char **namep,
5688 flagword *flagsp ATTRIBUTE_UNUSED,
5689 asection **secp, bfd_vma *valp)
5690 {
5691 if (SGI_COMPAT (abfd)
5692 && (abfd->flags & DYNAMIC) != 0
5693 && strcmp (*namep, "_rld_new_interface") == 0)
5694 {
5695 /* Skip IRIX5 rld entry name. */
5696 *namep = NULL;
5697 return TRUE;
5698 }
5699
5700 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5701 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5702 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5703 a magic symbol resolved by the linker, we ignore this bogus definition
5704 of _gp_disp. New ABI objects do not suffer from this problem so this
5705 is not done for them. */
5706 if (!NEWABI_P(abfd)
5707 && (sym->st_shndx == SHN_ABS)
5708 && (strcmp (*namep, "_gp_disp") == 0))
5709 {
5710 *namep = NULL;
5711 return TRUE;
5712 }
5713
5714 switch (sym->st_shndx)
5715 {
5716 case SHN_COMMON:
5717 /* Common symbols less than the GP size are automatically
5718 treated as SHN_MIPS_SCOMMON symbols. */
5719 if (sym->st_size > elf_gp_size (abfd)
5720 || IRIX_COMPAT (abfd) == ict_irix6)
5721 break;
5722 /* Fall through. */
5723 case SHN_MIPS_SCOMMON:
5724 *secp = bfd_make_section_old_way (abfd, ".scommon");
5725 (*secp)->flags |= SEC_IS_COMMON;
5726 *valp = sym->st_size;
5727 break;
5728
5729 case SHN_MIPS_TEXT:
5730 /* This section is used in a shared object. */
5731 if (elf_tdata (abfd)->elf_text_section == NULL)
5732 {
5733 asymbol *elf_text_symbol;
5734 asection *elf_text_section;
5735 bfd_size_type amt = sizeof (asection);
5736
5737 elf_text_section = bfd_zalloc (abfd, amt);
5738 if (elf_text_section == NULL)
5739 return FALSE;
5740
5741 amt = sizeof (asymbol);
5742 elf_text_symbol = bfd_zalloc (abfd, amt);
5743 if (elf_text_symbol == NULL)
5744 return FALSE;
5745
5746 /* Initialize the section. */
5747
5748 elf_tdata (abfd)->elf_text_section = elf_text_section;
5749 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5750
5751 elf_text_section->symbol = elf_text_symbol;
5752 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5753
5754 elf_text_section->name = ".text";
5755 elf_text_section->flags = SEC_NO_FLAGS;
5756 elf_text_section->output_section = NULL;
5757 elf_text_section->owner = abfd;
5758 elf_text_symbol->name = ".text";
5759 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5760 elf_text_symbol->section = elf_text_section;
5761 }
5762 /* This code used to do *secp = bfd_und_section_ptr if
5763 info->shared. I don't know why, and that doesn't make sense,
5764 so I took it out. */
5765 *secp = elf_tdata (abfd)->elf_text_section;
5766 break;
5767
5768 case SHN_MIPS_ACOMMON:
5769 /* Fall through. XXX Can we treat this as allocated data? */
5770 case SHN_MIPS_DATA:
5771 /* This section is used in a shared object. */
5772 if (elf_tdata (abfd)->elf_data_section == NULL)
5773 {
5774 asymbol *elf_data_symbol;
5775 asection *elf_data_section;
5776 bfd_size_type amt = sizeof (asection);
5777
5778 elf_data_section = bfd_zalloc (abfd, amt);
5779 if (elf_data_section == NULL)
5780 return FALSE;
5781
5782 amt = sizeof (asymbol);
5783 elf_data_symbol = bfd_zalloc (abfd, amt);
5784 if (elf_data_symbol == NULL)
5785 return FALSE;
5786
5787 /* Initialize the section. */
5788
5789 elf_tdata (abfd)->elf_data_section = elf_data_section;
5790 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5791
5792 elf_data_section->symbol = elf_data_symbol;
5793 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5794
5795 elf_data_section->name = ".data";
5796 elf_data_section->flags = SEC_NO_FLAGS;
5797 elf_data_section->output_section = NULL;
5798 elf_data_section->owner = abfd;
5799 elf_data_symbol->name = ".data";
5800 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5801 elf_data_symbol->section = elf_data_section;
5802 }
5803 /* This code used to do *secp = bfd_und_section_ptr if
5804 info->shared. I don't know why, and that doesn't make sense,
5805 so I took it out. */
5806 *secp = elf_tdata (abfd)->elf_data_section;
5807 break;
5808
5809 case SHN_MIPS_SUNDEFINED:
5810 *secp = bfd_und_section_ptr;
5811 break;
5812 }
5813
5814 if (SGI_COMPAT (abfd)
5815 && ! info->shared
5816 && info->hash->creator == abfd->xvec
5817 && strcmp (*namep, "__rld_obj_head") == 0)
5818 {
5819 struct elf_link_hash_entry *h;
5820 struct bfd_link_hash_entry *bh;
5821
5822 /* Mark __rld_obj_head as dynamic. */
5823 bh = NULL;
5824 if (! (_bfd_generic_link_add_one_symbol
5825 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5826 get_elf_backend_data (abfd)->collect, &bh)))
5827 return FALSE;
5828
5829 h = (struct elf_link_hash_entry *) bh;
5830 h->non_elf = 0;
5831 h->def_regular = 1;
5832 h->type = STT_OBJECT;
5833
5834 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5835 return FALSE;
5836
5837 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5838 }
5839
5840 /* If this is a mips16 text symbol, add 1 to the value to make it
5841 odd. This will cause something like .word SYM to come up with
5842 the right value when it is loaded into the PC. */
5843 if (sym->st_other == STO_MIPS16)
5844 ++*valp;
5845
5846 return TRUE;
5847 }
5848
5849 /* This hook function is called before the linker writes out a global
5850 symbol. We mark symbols as small common if appropriate. This is
5851 also where we undo the increment of the value for a mips16 symbol. */
5852
5853 bfd_boolean
5854 _bfd_mips_elf_link_output_symbol_hook
5855 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5856 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5857 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5858 {
5859 /* If we see a common symbol, which implies a relocatable link, then
5860 if a symbol was small common in an input file, mark it as small
5861 common in the output file. */
5862 if (sym->st_shndx == SHN_COMMON
5863 && strcmp (input_sec->name, ".scommon") == 0)
5864 sym->st_shndx = SHN_MIPS_SCOMMON;
5865
5866 if (sym->st_other == STO_MIPS16)
5867 sym->st_value &= ~1;
5868
5869 return TRUE;
5870 }
5871 \f
5872 /* Functions for the dynamic linker. */
5873
5874 /* Create dynamic sections when linking against a dynamic object. */
5875
5876 bfd_boolean
5877 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5878 {
5879 struct elf_link_hash_entry *h;
5880 struct bfd_link_hash_entry *bh;
5881 flagword flags;
5882 register asection *s;
5883 const char * const *namep;
5884 struct mips_elf_link_hash_table *htab;
5885
5886 htab = mips_elf_hash_table (info);
5887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5888 | SEC_LINKER_CREATED | SEC_READONLY);
5889
5890 /* The psABI requires a read-only .dynamic section, but the VxWorks
5891 EABI doesn't. */
5892 if (!htab->is_vxworks)
5893 {
5894 s = bfd_get_section_by_name (abfd, ".dynamic");
5895 if (s != NULL)
5896 {
5897 if (! bfd_set_section_flags (abfd, s, flags))
5898 return FALSE;
5899 }
5900 }
5901
5902 /* We need to create .got section. */
5903 if (! mips_elf_create_got_section (abfd, info, FALSE))
5904 return FALSE;
5905
5906 if (! mips_elf_rel_dyn_section (info, TRUE))
5907 return FALSE;
5908
5909 /* Create .stub section. */
5910 if (bfd_get_section_by_name (abfd,
5911 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5912 {
5913 s = bfd_make_section_with_flags (abfd,
5914 MIPS_ELF_STUB_SECTION_NAME (abfd),
5915 flags | SEC_CODE);
5916 if (s == NULL
5917 || ! bfd_set_section_alignment (abfd, s,
5918 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5919 return FALSE;
5920 }
5921
5922 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5923 && !info->shared
5924 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5925 {
5926 s = bfd_make_section_with_flags (abfd, ".rld_map",
5927 flags &~ (flagword) SEC_READONLY);
5928 if (s == NULL
5929 || ! bfd_set_section_alignment (abfd, s,
5930 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5931 return FALSE;
5932 }
5933
5934 /* On IRIX5, we adjust add some additional symbols and change the
5935 alignments of several sections. There is no ABI documentation
5936 indicating that this is necessary on IRIX6, nor any evidence that
5937 the linker takes such action. */
5938 if (IRIX_COMPAT (abfd) == ict_irix5)
5939 {
5940 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5941 {
5942 bh = NULL;
5943 if (! (_bfd_generic_link_add_one_symbol
5944 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5945 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5946 return FALSE;
5947
5948 h = (struct elf_link_hash_entry *) bh;
5949 h->non_elf = 0;
5950 h->def_regular = 1;
5951 h->type = STT_SECTION;
5952
5953 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5954 return FALSE;
5955 }
5956
5957 /* We need to create a .compact_rel section. */
5958 if (SGI_COMPAT (abfd))
5959 {
5960 if (!mips_elf_create_compact_rel_section (abfd, info))
5961 return FALSE;
5962 }
5963
5964 /* Change alignments of some sections. */
5965 s = bfd_get_section_by_name (abfd, ".hash");
5966 if (s != NULL)
5967 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5968 s = bfd_get_section_by_name (abfd, ".dynsym");
5969 if (s != NULL)
5970 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5971 s = bfd_get_section_by_name (abfd, ".dynstr");
5972 if (s != NULL)
5973 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5974 s = bfd_get_section_by_name (abfd, ".reginfo");
5975 if (s != NULL)
5976 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5977 s = bfd_get_section_by_name (abfd, ".dynamic");
5978 if (s != NULL)
5979 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5980 }
5981
5982 if (!info->shared)
5983 {
5984 const char *name;
5985
5986 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5987 bh = NULL;
5988 if (!(_bfd_generic_link_add_one_symbol
5989 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5990 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5991 return FALSE;
5992
5993 h = (struct elf_link_hash_entry *) bh;
5994 h->non_elf = 0;
5995 h->def_regular = 1;
5996 h->type = STT_SECTION;
5997
5998 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5999 return FALSE;
6000
6001 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6002 {
6003 /* __rld_map is a four byte word located in the .data section
6004 and is filled in by the rtld to contain a pointer to
6005 the _r_debug structure. Its symbol value will be set in
6006 _bfd_mips_elf_finish_dynamic_symbol. */
6007 s = bfd_get_section_by_name (abfd, ".rld_map");
6008 BFD_ASSERT (s != NULL);
6009
6010 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6011 bh = NULL;
6012 if (!(_bfd_generic_link_add_one_symbol
6013 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6014 get_elf_backend_data (abfd)->collect, &bh)))
6015 return FALSE;
6016
6017 h = (struct elf_link_hash_entry *) bh;
6018 h->non_elf = 0;
6019 h->def_regular = 1;
6020 h->type = STT_OBJECT;
6021
6022 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6023 return FALSE;
6024 }
6025 }
6026
6027 if (htab->is_vxworks)
6028 {
6029 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6030 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6031 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6032 return FALSE;
6033
6034 /* Cache the sections created above. */
6035 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6036 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6037 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6038 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6039 if (!htab->sdynbss
6040 || (!htab->srelbss && !info->shared)
6041 || !htab->srelplt
6042 || !htab->splt)
6043 abort ();
6044
6045 /* Do the usual VxWorks handling. */
6046 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6047 return FALSE;
6048
6049 /* Work out the PLT sizes. */
6050 if (info->shared)
6051 {
6052 htab->plt_header_size
6053 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6054 htab->plt_entry_size
6055 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6056 }
6057 else
6058 {
6059 htab->plt_header_size
6060 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6061 htab->plt_entry_size
6062 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6063 }
6064 }
6065
6066 return TRUE;
6067 }
6068 \f
6069 /* Look through the relocs for a section during the first phase, and
6070 allocate space in the global offset table. */
6071
6072 bfd_boolean
6073 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6074 asection *sec, const Elf_Internal_Rela *relocs)
6075 {
6076 const char *name;
6077 bfd *dynobj;
6078 Elf_Internal_Shdr *symtab_hdr;
6079 struct elf_link_hash_entry **sym_hashes;
6080 struct mips_got_info *g;
6081 size_t extsymoff;
6082 const Elf_Internal_Rela *rel;
6083 const Elf_Internal_Rela *rel_end;
6084 asection *sgot;
6085 asection *sreloc;
6086 const struct elf_backend_data *bed;
6087 struct mips_elf_link_hash_table *htab;
6088
6089 if (info->relocatable)
6090 return TRUE;
6091
6092 htab = mips_elf_hash_table (info);
6093 dynobj = elf_hash_table (info)->dynobj;
6094 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6095 sym_hashes = elf_sym_hashes (abfd);
6096 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6097
6098 /* Check for the mips16 stub sections. */
6099
6100 name = bfd_get_section_name (abfd, sec);
6101 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6102 {
6103 unsigned long r_symndx;
6104
6105 /* Look at the relocation information to figure out which symbol
6106 this is for. */
6107
6108 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6109
6110 if (r_symndx < extsymoff
6111 || sym_hashes[r_symndx - extsymoff] == NULL)
6112 {
6113 asection *o;
6114
6115 /* This stub is for a local symbol. This stub will only be
6116 needed if there is some relocation in this BFD, other
6117 than a 16 bit function call, which refers to this symbol. */
6118 for (o = abfd->sections; o != NULL; o = o->next)
6119 {
6120 Elf_Internal_Rela *sec_relocs;
6121 const Elf_Internal_Rela *r, *rend;
6122
6123 /* We can ignore stub sections when looking for relocs. */
6124 if ((o->flags & SEC_RELOC) == 0
6125 || o->reloc_count == 0
6126 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6127 sizeof FN_STUB - 1) == 0
6128 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6129 sizeof CALL_STUB - 1) == 0
6130 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6131 sizeof CALL_FP_STUB - 1) == 0)
6132 continue;
6133
6134 sec_relocs
6135 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6136 info->keep_memory);
6137 if (sec_relocs == NULL)
6138 return FALSE;
6139
6140 rend = sec_relocs + o->reloc_count;
6141 for (r = sec_relocs; r < rend; r++)
6142 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6143 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6144 break;
6145
6146 if (elf_section_data (o)->relocs != sec_relocs)
6147 free (sec_relocs);
6148
6149 if (r < rend)
6150 break;
6151 }
6152
6153 if (o == NULL)
6154 {
6155 /* There is no non-call reloc for this stub, so we do
6156 not need it. Since this function is called before
6157 the linker maps input sections to output sections, we
6158 can easily discard it by setting the SEC_EXCLUDE
6159 flag. */
6160 sec->flags |= SEC_EXCLUDE;
6161 return TRUE;
6162 }
6163
6164 /* Record this stub in an array of local symbol stubs for
6165 this BFD. */
6166 if (elf_tdata (abfd)->local_stubs == NULL)
6167 {
6168 unsigned long symcount;
6169 asection **n;
6170 bfd_size_type amt;
6171
6172 if (elf_bad_symtab (abfd))
6173 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6174 else
6175 symcount = symtab_hdr->sh_info;
6176 amt = symcount * sizeof (asection *);
6177 n = bfd_zalloc (abfd, amt);
6178 if (n == NULL)
6179 return FALSE;
6180 elf_tdata (abfd)->local_stubs = n;
6181 }
6182
6183 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6184
6185 /* We don't need to set mips16_stubs_seen in this case.
6186 That flag is used to see whether we need to look through
6187 the global symbol table for stubs. We don't need to set
6188 it here, because we just have a local stub. */
6189 }
6190 else
6191 {
6192 struct mips_elf_link_hash_entry *h;
6193
6194 h = ((struct mips_elf_link_hash_entry *)
6195 sym_hashes[r_symndx - extsymoff]);
6196
6197 while (h->root.root.type == bfd_link_hash_indirect
6198 || h->root.root.type == bfd_link_hash_warning)
6199 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6200
6201 /* H is the symbol this stub is for. */
6202
6203 h->fn_stub = sec;
6204 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6205 }
6206 }
6207 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6208 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6209 {
6210 unsigned long r_symndx;
6211 struct mips_elf_link_hash_entry *h;
6212 asection **loc;
6213
6214 /* Look at the relocation information to figure out which symbol
6215 this is for. */
6216
6217 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6218
6219 if (r_symndx < extsymoff
6220 || sym_hashes[r_symndx - extsymoff] == NULL)
6221 {
6222 /* This stub was actually built for a static symbol defined
6223 in the same file. We assume that all static symbols in
6224 mips16 code are themselves mips16, so we can simply
6225 discard this stub. Since this function is called before
6226 the linker maps input sections to output sections, we can
6227 easily discard it by setting the SEC_EXCLUDE flag. */
6228 sec->flags |= SEC_EXCLUDE;
6229 return TRUE;
6230 }
6231
6232 h = ((struct mips_elf_link_hash_entry *)
6233 sym_hashes[r_symndx - extsymoff]);
6234
6235 /* H is the symbol this stub is for. */
6236
6237 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6238 loc = &h->call_fp_stub;
6239 else
6240 loc = &h->call_stub;
6241
6242 /* If we already have an appropriate stub for this function, we
6243 don't need another one, so we can discard this one. Since
6244 this function is called before the linker maps input sections
6245 to output sections, we can easily discard it by setting the
6246 SEC_EXCLUDE flag. We can also discard this section if we
6247 happen to already know that this is a mips16 function; it is
6248 not necessary to check this here, as it is checked later, but
6249 it is slightly faster to check now. */
6250 if (*loc != NULL || h->root.other == STO_MIPS16)
6251 {
6252 sec->flags |= SEC_EXCLUDE;
6253 return TRUE;
6254 }
6255
6256 *loc = sec;
6257 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6258 }
6259
6260 if (dynobj == NULL)
6261 {
6262 sgot = NULL;
6263 g = NULL;
6264 }
6265 else
6266 {
6267 sgot = mips_elf_got_section (dynobj, FALSE);
6268 if (sgot == NULL)
6269 g = NULL;
6270 else
6271 {
6272 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6273 g = mips_elf_section_data (sgot)->u.got_info;
6274 BFD_ASSERT (g != NULL);
6275 }
6276 }
6277
6278 sreloc = NULL;
6279 bed = get_elf_backend_data (abfd);
6280 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6281 for (rel = relocs; rel < rel_end; ++rel)
6282 {
6283 unsigned long r_symndx;
6284 unsigned int r_type;
6285 struct elf_link_hash_entry *h;
6286
6287 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6288 r_type = ELF_R_TYPE (abfd, rel->r_info);
6289
6290 if (r_symndx < extsymoff)
6291 h = NULL;
6292 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6293 {
6294 (*_bfd_error_handler)
6295 (_("%B: Malformed reloc detected for section %s"),
6296 abfd, name);
6297 bfd_set_error (bfd_error_bad_value);
6298 return FALSE;
6299 }
6300 else
6301 {
6302 h = sym_hashes[r_symndx - extsymoff];
6303
6304 /* This may be an indirect symbol created because of a version. */
6305 if (h != NULL)
6306 {
6307 while (h->root.type == bfd_link_hash_indirect)
6308 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6309 }
6310 }
6311
6312 /* Some relocs require a global offset table. */
6313 if (dynobj == NULL || sgot == NULL)
6314 {
6315 switch (r_type)
6316 {
6317 case R_MIPS_GOT16:
6318 case R_MIPS_CALL16:
6319 case R_MIPS_CALL_HI16:
6320 case R_MIPS_CALL_LO16:
6321 case R_MIPS_GOT_HI16:
6322 case R_MIPS_GOT_LO16:
6323 case R_MIPS_GOT_PAGE:
6324 case R_MIPS_GOT_OFST:
6325 case R_MIPS_GOT_DISP:
6326 case R_MIPS_TLS_GOTTPREL:
6327 case R_MIPS_TLS_GD:
6328 case R_MIPS_TLS_LDM:
6329 if (dynobj == NULL)
6330 elf_hash_table (info)->dynobj = dynobj = abfd;
6331 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6332 return FALSE;
6333 g = mips_elf_got_info (dynobj, &sgot);
6334 if (htab->is_vxworks && !info->shared)
6335 {
6336 (*_bfd_error_handler)
6337 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6338 abfd, (unsigned long) rel->r_offset);
6339 bfd_set_error (bfd_error_bad_value);
6340 return FALSE;
6341 }
6342 break;
6343
6344 case R_MIPS_32:
6345 case R_MIPS_REL32:
6346 case R_MIPS_64:
6347 /* In VxWorks executables, references to external symbols
6348 are handled using copy relocs or PLT stubs, so there's
6349 no need to add a dynamic relocation here. */
6350 if (dynobj == NULL
6351 && (info->shared || (h != NULL && !htab->is_vxworks))
6352 && (sec->flags & SEC_ALLOC) != 0)
6353 elf_hash_table (info)->dynobj = dynobj = abfd;
6354 break;
6355
6356 default:
6357 break;
6358 }
6359 }
6360
6361 if (h)
6362 {
6363 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6364
6365 /* Relocations against the special VxWorks __GOTT_BASE__ and
6366 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6367 room for them in .rela.dyn. */
6368 if (is_gott_symbol (info, h))
6369 {
6370 if (sreloc == NULL)
6371 {
6372 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6373 if (sreloc == NULL)
6374 return FALSE;
6375 }
6376 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6377 }
6378 }
6379 else if (r_type == R_MIPS_CALL_LO16
6380 || r_type == R_MIPS_GOT_LO16
6381 || r_type == R_MIPS_GOT_DISP
6382 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6383 {
6384 /* We may need a local GOT entry for this relocation. We
6385 don't count R_MIPS_GOT_PAGE because we can estimate the
6386 maximum number of pages needed by looking at the size of
6387 the segment. Similar comments apply to R_MIPS_GOT16 and
6388 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6389 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6390 R_MIPS_CALL_HI16 because these are always followed by an
6391 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6392 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6393 rel->r_addend, g, 0))
6394 return FALSE;
6395 }
6396
6397 switch (r_type)
6398 {
6399 case R_MIPS_CALL16:
6400 if (h == NULL)
6401 {
6402 (*_bfd_error_handler)
6403 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6404 abfd, (unsigned long) rel->r_offset);
6405 bfd_set_error (bfd_error_bad_value);
6406 return FALSE;
6407 }
6408 /* Fall through. */
6409
6410 case R_MIPS_CALL_HI16:
6411 case R_MIPS_CALL_LO16:
6412 if (h != NULL)
6413 {
6414 /* VxWorks call relocations point the function's .got.plt
6415 entry, which will be allocated by adjust_dynamic_symbol.
6416 Otherwise, this symbol requires a global GOT entry. */
6417 if (!htab->is_vxworks
6418 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6419 return FALSE;
6420
6421 /* We need a stub, not a plt entry for the undefined
6422 function. But we record it as if it needs plt. See
6423 _bfd_elf_adjust_dynamic_symbol. */
6424 h->needs_plt = 1;
6425 h->type = STT_FUNC;
6426 }
6427 break;
6428
6429 case R_MIPS_GOT_PAGE:
6430 /* If this is a global, overridable symbol, GOT_PAGE will
6431 decay to GOT_DISP, so we'll need a GOT entry for it. */
6432 if (h == NULL)
6433 break;
6434 else
6435 {
6436 struct mips_elf_link_hash_entry *hmips =
6437 (struct mips_elf_link_hash_entry *) h;
6438
6439 while (hmips->root.root.type == bfd_link_hash_indirect
6440 || hmips->root.root.type == bfd_link_hash_warning)
6441 hmips = (struct mips_elf_link_hash_entry *)
6442 hmips->root.root.u.i.link;
6443
6444 if (hmips->root.def_regular
6445 && ! (info->shared && ! info->symbolic
6446 && ! hmips->root.forced_local))
6447 break;
6448 }
6449 /* Fall through. */
6450
6451 case R_MIPS_GOT16:
6452 case R_MIPS_GOT_HI16:
6453 case R_MIPS_GOT_LO16:
6454 case R_MIPS_GOT_DISP:
6455 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6456 return FALSE;
6457 break;
6458
6459 case R_MIPS_TLS_GOTTPREL:
6460 if (info->shared)
6461 info->flags |= DF_STATIC_TLS;
6462 /* Fall through */
6463
6464 case R_MIPS_TLS_LDM:
6465 if (r_type == R_MIPS_TLS_LDM)
6466 {
6467 r_symndx = 0;
6468 h = NULL;
6469 }
6470 /* Fall through */
6471
6472 case R_MIPS_TLS_GD:
6473 /* This symbol requires a global offset table entry, or two
6474 for TLS GD relocations. */
6475 {
6476 unsigned char flag = (r_type == R_MIPS_TLS_GD
6477 ? GOT_TLS_GD
6478 : r_type == R_MIPS_TLS_LDM
6479 ? GOT_TLS_LDM
6480 : GOT_TLS_IE);
6481 if (h != NULL)
6482 {
6483 struct mips_elf_link_hash_entry *hmips =
6484 (struct mips_elf_link_hash_entry *) h;
6485 hmips->tls_type |= flag;
6486
6487 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6488 return FALSE;
6489 }
6490 else
6491 {
6492 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6493
6494 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6495 rel->r_addend, g, flag))
6496 return FALSE;
6497 }
6498 }
6499 break;
6500
6501 case R_MIPS_32:
6502 case R_MIPS_REL32:
6503 case R_MIPS_64:
6504 /* In VxWorks executables, references to external symbols
6505 are handled using copy relocs or PLT stubs, so there's
6506 no need to add a .rela.dyn entry for this relocation. */
6507 if ((info->shared || (h != NULL && !htab->is_vxworks))
6508 && (sec->flags & SEC_ALLOC) != 0)
6509 {
6510 if (sreloc == NULL)
6511 {
6512 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6513 if (sreloc == NULL)
6514 return FALSE;
6515 }
6516 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6517 if (info->shared)
6518 {
6519 /* When creating a shared object, we must copy these
6520 reloc types into the output file as R_MIPS_REL32
6521 relocs. Make room for this reloc in .rel(a).dyn. */
6522 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6523 if ((sec->flags & MIPS_READONLY_SECTION)
6524 == MIPS_READONLY_SECTION)
6525 /* We tell the dynamic linker that there are
6526 relocations against the text segment. */
6527 info->flags |= DF_TEXTREL;
6528 }
6529 else
6530 {
6531 struct mips_elf_link_hash_entry *hmips;
6532
6533 /* We only need to copy this reloc if the symbol is
6534 defined in a dynamic object. */
6535 hmips = (struct mips_elf_link_hash_entry *) h;
6536 ++hmips->possibly_dynamic_relocs;
6537 if ((sec->flags & MIPS_READONLY_SECTION)
6538 == MIPS_READONLY_SECTION)
6539 /* We need it to tell the dynamic linker if there
6540 are relocations against the text segment. */
6541 hmips->readonly_reloc = TRUE;
6542 }
6543
6544 /* Even though we don't directly need a GOT entry for
6545 this symbol, a symbol must have a dynamic symbol
6546 table index greater that DT_MIPS_GOTSYM if there are
6547 dynamic relocations against it. This does not apply
6548 to VxWorks, which does not have the usual coupling
6549 between global GOT entries and .dynsym entries. */
6550 if (h != NULL && !htab->is_vxworks)
6551 {
6552 if (dynobj == NULL)
6553 elf_hash_table (info)->dynobj = dynobj = abfd;
6554 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6555 return FALSE;
6556 g = mips_elf_got_info (dynobj, &sgot);
6557 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6558 return FALSE;
6559 }
6560 }
6561
6562 if (SGI_COMPAT (abfd))
6563 mips_elf_hash_table (info)->compact_rel_size +=
6564 sizeof (Elf32_External_crinfo);
6565 break;
6566
6567 case R_MIPS_PC16:
6568 if (h)
6569 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6570 break;
6571
6572 case R_MIPS_26:
6573 if (h)
6574 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6575 /* Fall through. */
6576
6577 case R_MIPS_GPREL16:
6578 case R_MIPS_LITERAL:
6579 case R_MIPS_GPREL32:
6580 if (SGI_COMPAT (abfd))
6581 mips_elf_hash_table (info)->compact_rel_size +=
6582 sizeof (Elf32_External_crinfo);
6583 break;
6584
6585 /* This relocation describes the C++ object vtable hierarchy.
6586 Reconstruct it for later use during GC. */
6587 case R_MIPS_GNU_VTINHERIT:
6588 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6589 return FALSE;
6590 break;
6591
6592 /* This relocation describes which C++ vtable entries are actually
6593 used. Record for later use during GC. */
6594 case R_MIPS_GNU_VTENTRY:
6595 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6596 return FALSE;
6597 break;
6598
6599 default:
6600 break;
6601 }
6602
6603 /* We must not create a stub for a symbol that has relocations
6604 related to taking the function's address. This doesn't apply to
6605 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6606 a normal .got entry. */
6607 if (!htab->is_vxworks && h != NULL)
6608 switch (r_type)
6609 {
6610 default:
6611 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6612 break;
6613 case R_MIPS_CALL16:
6614 case R_MIPS_CALL_HI16:
6615 case R_MIPS_CALL_LO16:
6616 case R_MIPS_JALR:
6617 break;
6618 }
6619
6620 /* If this reloc is not a 16 bit call, and it has a global
6621 symbol, then we will need the fn_stub if there is one.
6622 References from a stub section do not count. */
6623 if (h != NULL
6624 && r_type != R_MIPS16_26
6625 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6626 sizeof FN_STUB - 1) != 0
6627 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6628 sizeof CALL_STUB - 1) != 0
6629 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6630 sizeof CALL_FP_STUB - 1) != 0)
6631 {
6632 struct mips_elf_link_hash_entry *mh;
6633
6634 mh = (struct mips_elf_link_hash_entry *) h;
6635 mh->need_fn_stub = TRUE;
6636 }
6637 }
6638
6639 return TRUE;
6640 }
6641 \f
6642 bfd_boolean
6643 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6644 struct bfd_link_info *link_info,
6645 bfd_boolean *again)
6646 {
6647 Elf_Internal_Rela *internal_relocs;
6648 Elf_Internal_Rela *irel, *irelend;
6649 Elf_Internal_Shdr *symtab_hdr;
6650 bfd_byte *contents = NULL;
6651 size_t extsymoff;
6652 bfd_boolean changed_contents = FALSE;
6653 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6654 Elf_Internal_Sym *isymbuf = NULL;
6655
6656 /* We are not currently changing any sizes, so only one pass. */
6657 *again = FALSE;
6658
6659 if (link_info->relocatable)
6660 return TRUE;
6661
6662 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6663 link_info->keep_memory);
6664 if (internal_relocs == NULL)
6665 return TRUE;
6666
6667 irelend = internal_relocs + sec->reloc_count
6668 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6669 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6670 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6671
6672 for (irel = internal_relocs; irel < irelend; irel++)
6673 {
6674 bfd_vma symval;
6675 bfd_signed_vma sym_offset;
6676 unsigned int r_type;
6677 unsigned long r_symndx;
6678 asection *sym_sec;
6679 unsigned long instruction;
6680
6681 /* Turn jalr into bgezal, and jr into beq, if they're marked
6682 with a JALR relocation, that indicate where they jump to.
6683 This saves some pipeline bubbles. */
6684 r_type = ELF_R_TYPE (abfd, irel->r_info);
6685 if (r_type != R_MIPS_JALR)
6686 continue;
6687
6688 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6689 /* Compute the address of the jump target. */
6690 if (r_symndx >= extsymoff)
6691 {
6692 struct mips_elf_link_hash_entry *h
6693 = ((struct mips_elf_link_hash_entry *)
6694 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6695
6696 while (h->root.root.type == bfd_link_hash_indirect
6697 || h->root.root.type == bfd_link_hash_warning)
6698 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6699
6700 /* If a symbol is undefined, or if it may be overridden,
6701 skip it. */
6702 if (! ((h->root.root.type == bfd_link_hash_defined
6703 || h->root.root.type == bfd_link_hash_defweak)
6704 && h->root.root.u.def.section)
6705 || (link_info->shared && ! link_info->symbolic
6706 && !h->root.forced_local))
6707 continue;
6708
6709 sym_sec = h->root.root.u.def.section;
6710 if (sym_sec->output_section)
6711 symval = (h->root.root.u.def.value
6712 + sym_sec->output_section->vma
6713 + sym_sec->output_offset);
6714 else
6715 symval = h->root.root.u.def.value;
6716 }
6717 else
6718 {
6719 Elf_Internal_Sym *isym;
6720
6721 /* Read this BFD's symbols if we haven't done so already. */
6722 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6723 {
6724 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6725 if (isymbuf == NULL)
6726 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6727 symtab_hdr->sh_info, 0,
6728 NULL, NULL, NULL);
6729 if (isymbuf == NULL)
6730 goto relax_return;
6731 }
6732
6733 isym = isymbuf + r_symndx;
6734 if (isym->st_shndx == SHN_UNDEF)
6735 continue;
6736 else if (isym->st_shndx == SHN_ABS)
6737 sym_sec = bfd_abs_section_ptr;
6738 else if (isym->st_shndx == SHN_COMMON)
6739 sym_sec = bfd_com_section_ptr;
6740 else
6741 sym_sec
6742 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6743 symval = isym->st_value
6744 + sym_sec->output_section->vma
6745 + sym_sec->output_offset;
6746 }
6747
6748 /* Compute branch offset, from delay slot of the jump to the
6749 branch target. */
6750 sym_offset = (symval + irel->r_addend)
6751 - (sec_start + irel->r_offset + 4);
6752
6753 /* Branch offset must be properly aligned. */
6754 if ((sym_offset & 3) != 0)
6755 continue;
6756
6757 sym_offset >>= 2;
6758
6759 /* Check that it's in range. */
6760 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6761 continue;
6762
6763 /* Get the section contents if we haven't done so already. */
6764 if (contents == NULL)
6765 {
6766 /* Get cached copy if it exists. */
6767 if (elf_section_data (sec)->this_hdr.contents != NULL)
6768 contents = elf_section_data (sec)->this_hdr.contents;
6769 else
6770 {
6771 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6772 goto relax_return;
6773 }
6774 }
6775
6776 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6777
6778 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6779 if ((instruction & 0xfc1fffff) == 0x0000f809)
6780 instruction = 0x04110000;
6781 /* If it was jr <reg>, turn it into b <target>. */
6782 else if ((instruction & 0xfc1fffff) == 0x00000008)
6783 instruction = 0x10000000;
6784 else
6785 continue;
6786
6787 instruction |= (sym_offset & 0xffff);
6788 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6789 changed_contents = TRUE;
6790 }
6791
6792 if (contents != NULL
6793 && elf_section_data (sec)->this_hdr.contents != contents)
6794 {
6795 if (!changed_contents && !link_info->keep_memory)
6796 free (contents);
6797 else
6798 {
6799 /* Cache the section contents for elf_link_input_bfd. */
6800 elf_section_data (sec)->this_hdr.contents = contents;
6801 }
6802 }
6803 return TRUE;
6804
6805 relax_return:
6806 if (contents != NULL
6807 && elf_section_data (sec)->this_hdr.contents != contents)
6808 free (contents);
6809 return FALSE;
6810 }
6811 \f
6812 /* Adjust a symbol defined by a dynamic object and referenced by a
6813 regular object. The current definition is in some section of the
6814 dynamic object, but we're not including those sections. We have to
6815 change the definition to something the rest of the link can
6816 understand. */
6817
6818 bfd_boolean
6819 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6820 struct elf_link_hash_entry *h)
6821 {
6822 bfd *dynobj;
6823 struct mips_elf_link_hash_entry *hmips;
6824 asection *s;
6825
6826 dynobj = elf_hash_table (info)->dynobj;
6827
6828 /* Make sure we know what is going on here. */
6829 BFD_ASSERT (dynobj != NULL
6830 && (h->needs_plt
6831 || h->u.weakdef != NULL
6832 || (h->def_dynamic
6833 && h->ref_regular
6834 && !h->def_regular)));
6835
6836 /* If this symbol is defined in a dynamic object, we need to copy
6837 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6838 file. */
6839 hmips = (struct mips_elf_link_hash_entry *) h;
6840 if (! info->relocatable
6841 && hmips->possibly_dynamic_relocs != 0
6842 && (h->root.type == bfd_link_hash_defweak
6843 || !h->def_regular))
6844 {
6845 mips_elf_allocate_dynamic_relocations
6846 (dynobj, info, hmips->possibly_dynamic_relocs);
6847 if (hmips->readonly_reloc)
6848 /* We tell the dynamic linker that there are relocations
6849 against the text segment. */
6850 info->flags |= DF_TEXTREL;
6851 }
6852
6853 /* For a function, create a stub, if allowed. */
6854 if (! hmips->no_fn_stub
6855 && h->needs_plt)
6856 {
6857 if (! elf_hash_table (info)->dynamic_sections_created)
6858 return TRUE;
6859
6860 /* If this symbol is not defined in a regular file, then set
6861 the symbol to the stub location. This is required to make
6862 function pointers compare as equal between the normal
6863 executable and the shared library. */
6864 if (!h->def_regular)
6865 {
6866 /* We need .stub section. */
6867 s = bfd_get_section_by_name (dynobj,
6868 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6869 BFD_ASSERT (s != NULL);
6870
6871 h->root.u.def.section = s;
6872 h->root.u.def.value = s->size;
6873
6874 /* XXX Write this stub address somewhere. */
6875 h->plt.offset = s->size;
6876
6877 /* Make room for this stub code. */
6878 s->size += MIPS_FUNCTION_STUB_SIZE;
6879
6880 /* The last half word of the stub will be filled with the index
6881 of this symbol in .dynsym section. */
6882 return TRUE;
6883 }
6884 }
6885 else if ((h->type == STT_FUNC)
6886 && !h->needs_plt)
6887 {
6888 /* This will set the entry for this symbol in the GOT to 0, and
6889 the dynamic linker will take care of this. */
6890 h->root.u.def.value = 0;
6891 return TRUE;
6892 }
6893
6894 /* If this is a weak symbol, and there is a real definition, the
6895 processor independent code will have arranged for us to see the
6896 real definition first, and we can just use the same value. */
6897 if (h->u.weakdef != NULL)
6898 {
6899 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6900 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6901 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6902 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6903 return TRUE;
6904 }
6905
6906 /* This is a reference to a symbol defined by a dynamic object which
6907 is not a function. */
6908
6909 return TRUE;
6910 }
6911
6912 /* Likewise, for VxWorks. */
6913
6914 bfd_boolean
6915 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6916 struct elf_link_hash_entry *h)
6917 {
6918 bfd *dynobj;
6919 struct mips_elf_link_hash_entry *hmips;
6920 struct mips_elf_link_hash_table *htab;
6921 unsigned int power_of_two;
6922
6923 htab = mips_elf_hash_table (info);
6924 dynobj = elf_hash_table (info)->dynobj;
6925 hmips = (struct mips_elf_link_hash_entry *) h;
6926
6927 /* Make sure we know what is going on here. */
6928 BFD_ASSERT (dynobj != NULL
6929 && (h->needs_plt
6930 || h->needs_copy
6931 || h->u.weakdef != NULL
6932 || (h->def_dynamic
6933 && h->ref_regular
6934 && !h->def_regular)));
6935
6936 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6937 either (a) we want to branch to the symbol or (b) we're linking an
6938 executable that needs a canonical function address. In the latter
6939 case, the canonical address will be the address of the executable's
6940 load stub. */
6941 if ((hmips->is_branch_target
6942 || (!info->shared
6943 && h->type == STT_FUNC
6944 && hmips->is_relocation_target))
6945 && h->def_dynamic
6946 && h->ref_regular
6947 && !h->def_regular
6948 && !h->forced_local)
6949 h->needs_plt = 1;
6950
6951 /* Locally-binding symbols do not need a PLT stub; we can refer to
6952 the functions directly. */
6953 else if (h->needs_plt
6954 && (SYMBOL_CALLS_LOCAL (info, h)
6955 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6956 && h->root.type == bfd_link_hash_undefweak)))
6957 {
6958 h->needs_plt = 0;
6959 return TRUE;
6960 }
6961
6962 if (h->needs_plt)
6963 {
6964 /* If this is the first symbol to need a PLT entry, allocate room
6965 for the header, and for the header's .rela.plt.unloaded entries. */
6966 if (htab->splt->size == 0)
6967 {
6968 htab->splt->size += htab->plt_header_size;
6969 if (!info->shared)
6970 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6971 }
6972
6973 /* Assign the next .plt entry to this symbol. */
6974 h->plt.offset = htab->splt->size;
6975 htab->splt->size += htab->plt_entry_size;
6976
6977 /* If the output file has no definition of the symbol, set the
6978 symbol's value to the address of the stub. For executables,
6979 point at the PLT load stub rather than the lazy resolution stub;
6980 this stub will become the canonical function address. */
6981 if (!h->def_regular)
6982 {
6983 h->root.u.def.section = htab->splt;
6984 h->root.u.def.value = h->plt.offset;
6985 if (!info->shared)
6986 h->root.u.def.value += 8;
6987 }
6988
6989 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
6990 htab->sgotplt->size += 4;
6991 htab->srelplt->size += sizeof (Elf32_External_Rela);
6992
6993 /* Make room for the .rela.plt.unloaded relocations. */
6994 if (!info->shared)
6995 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
6996
6997 return TRUE;
6998 }
6999
7000 /* If a function symbol is defined by a dynamic object, and we do not
7001 need a PLT stub for it, the symbol's value should be zero. */
7002 if (h->type == STT_FUNC
7003 && h->def_dynamic
7004 && h->ref_regular
7005 && !h->def_regular)
7006 {
7007 h->root.u.def.value = 0;
7008 return TRUE;
7009 }
7010
7011 /* If this is a weak symbol, and there is a real definition, the
7012 processor independent code will have arranged for us to see the
7013 real definition first, and we can just use the same value. */
7014 if (h->u.weakdef != NULL)
7015 {
7016 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7017 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7018 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7019 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7020 return TRUE;
7021 }
7022
7023 /* This is a reference to a symbol defined by a dynamic object which
7024 is not a function. */
7025 if (info->shared)
7026 return TRUE;
7027
7028 /* We must allocate the symbol in our .dynbss section, which will
7029 become part of the .bss section of the executable. There will be
7030 an entry for this symbol in the .dynsym section. The dynamic
7031 object will contain position independent code, so all references
7032 from the dynamic object to this symbol will go through the global
7033 offset table. The dynamic linker will use the .dynsym entry to
7034 determine the address it must put in the global offset table, so
7035 both the dynamic object and the regular object will refer to the
7036 same memory location for the variable. */
7037
7038 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7039 {
7040 htab->srelbss->size += sizeof (Elf32_External_Rela);
7041 h->needs_copy = 1;
7042 }
7043
7044 /* We need to figure out the alignment required for this symbol. */
7045 power_of_two = bfd_log2 (h->size);
7046 if (power_of_two > 4)
7047 power_of_two = 4;
7048
7049 /* Apply the required alignment. */
7050 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7051 (bfd_size_type) 1 << power_of_two);
7052 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7053 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7054 return FALSE;
7055
7056 /* Define the symbol as being at this point in the section. */
7057 h->root.u.def.section = htab->sdynbss;
7058 h->root.u.def.value = htab->sdynbss->size;
7059
7060 /* Increment the section size to make room for the symbol. */
7061 htab->sdynbss->size += h->size;
7062
7063 return TRUE;
7064 }
7065 \f
7066 /* This function is called after all the input files have been read,
7067 and the input sections have been assigned to output sections. We
7068 check for any mips16 stub sections that we can discard. */
7069
7070 bfd_boolean
7071 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7072 struct bfd_link_info *info)
7073 {
7074 asection *ri;
7075
7076 bfd *dynobj;
7077 asection *s;
7078 struct mips_got_info *g;
7079 int i;
7080 bfd_size_type loadable_size = 0;
7081 bfd_size_type local_gotno;
7082 bfd *sub;
7083 struct mips_elf_count_tls_arg count_tls_arg;
7084 struct mips_elf_link_hash_table *htab;
7085
7086 htab = mips_elf_hash_table (info);
7087
7088 /* The .reginfo section has a fixed size. */
7089 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7090 if (ri != NULL)
7091 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7092
7093 if (! (info->relocatable
7094 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7095 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7096 mips_elf_check_mips16_stubs, NULL);
7097
7098 dynobj = elf_hash_table (info)->dynobj;
7099 if (dynobj == NULL)
7100 /* Relocatable links don't have it. */
7101 return TRUE;
7102
7103 g = mips_elf_got_info (dynobj, &s);
7104 if (s == NULL)
7105 return TRUE;
7106
7107 /* Calculate the total loadable size of the output. That
7108 will give us the maximum number of GOT_PAGE entries
7109 required. */
7110 for (sub = info->input_bfds; sub; sub = sub->link_next)
7111 {
7112 asection *subsection;
7113
7114 for (subsection = sub->sections;
7115 subsection;
7116 subsection = subsection->next)
7117 {
7118 if ((subsection->flags & SEC_ALLOC) == 0)
7119 continue;
7120 loadable_size += ((subsection->size + 0xf)
7121 &~ (bfd_size_type) 0xf);
7122 }
7123 }
7124
7125 /* There has to be a global GOT entry for every symbol with
7126 a dynamic symbol table index of DT_MIPS_GOTSYM or
7127 higher. Therefore, it make sense to put those symbols
7128 that need GOT entries at the end of the symbol table. We
7129 do that here. */
7130 if (! mips_elf_sort_hash_table (info, 1))
7131 return FALSE;
7132
7133 if (g->global_gotsym != NULL)
7134 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7135 else
7136 /* If there are no global symbols, or none requiring
7137 relocations, then GLOBAL_GOTSYM will be NULL. */
7138 i = 0;
7139
7140 /* In the worst case, we'll get one stub per dynamic symbol, plus
7141 one to account for the dummy entry at the end required by IRIX
7142 rld. */
7143 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
7144
7145 if (htab->is_vxworks)
7146 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7147 relocations against local symbols evaluate to "G", and the EABI does
7148 not include R_MIPS_GOT_PAGE. */
7149 local_gotno = 0;
7150 else
7151 /* Assume there are two loadable segments consisting of contiguous
7152 sections. Is 5 enough? */
7153 local_gotno = (loadable_size >> 16) + 5;
7154
7155 g->local_gotno += local_gotno;
7156 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7157
7158 g->global_gotno = i;
7159 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7160
7161 /* We need to calculate tls_gotno for global symbols at this point
7162 instead of building it up earlier, to avoid doublecounting
7163 entries for one global symbol from multiple input files. */
7164 count_tls_arg.info = info;
7165 count_tls_arg.needed = 0;
7166 elf_link_hash_traverse (elf_hash_table (info),
7167 mips_elf_count_global_tls_entries,
7168 &count_tls_arg);
7169 g->tls_gotno += count_tls_arg.needed;
7170 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7171
7172 mips_elf_resolve_final_got_entries (g);
7173
7174 /* VxWorks does not support multiple GOTs. It initializes $gp to
7175 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7176 dynamic loader. */
7177 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7178 {
7179 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7180 return FALSE;
7181 }
7182 else
7183 {
7184 /* Set up TLS entries for the first GOT. */
7185 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7186 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7187 }
7188
7189 return TRUE;
7190 }
7191
7192 /* Set the sizes of the dynamic sections. */
7193
7194 bfd_boolean
7195 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7196 struct bfd_link_info *info)
7197 {
7198 bfd *dynobj;
7199 asection *s, *sreldyn;
7200 bfd_boolean reltext;
7201 struct mips_elf_link_hash_table *htab;
7202
7203 htab = mips_elf_hash_table (info);
7204 dynobj = elf_hash_table (info)->dynobj;
7205 BFD_ASSERT (dynobj != NULL);
7206
7207 if (elf_hash_table (info)->dynamic_sections_created)
7208 {
7209 /* Set the contents of the .interp section to the interpreter. */
7210 if (info->executable)
7211 {
7212 s = bfd_get_section_by_name (dynobj, ".interp");
7213 BFD_ASSERT (s != NULL);
7214 s->size
7215 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7216 s->contents
7217 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7218 }
7219 }
7220
7221 /* The check_relocs and adjust_dynamic_symbol entry points have
7222 determined the sizes of the various dynamic sections. Allocate
7223 memory for them. */
7224 reltext = FALSE;
7225 sreldyn = NULL;
7226 for (s = dynobj->sections; s != NULL; s = s->next)
7227 {
7228 const char *name;
7229
7230 /* It's OK to base decisions on the section name, because none
7231 of the dynobj section names depend upon the input files. */
7232 name = bfd_get_section_name (dynobj, s);
7233
7234 if ((s->flags & SEC_LINKER_CREATED) == 0)
7235 continue;
7236
7237 if (strncmp (name, ".rel", 4) == 0)
7238 {
7239 if (s->size != 0)
7240 {
7241 const char *outname;
7242 asection *target;
7243
7244 /* If this relocation section applies to a read only
7245 section, then we probably need a DT_TEXTREL entry.
7246 If the relocation section is .rel(a).dyn, we always
7247 assert a DT_TEXTREL entry rather than testing whether
7248 there exists a relocation to a read only section or
7249 not. */
7250 outname = bfd_get_section_name (output_bfd,
7251 s->output_section);
7252 target = bfd_get_section_by_name (output_bfd, outname + 4);
7253 if ((target != NULL
7254 && (target->flags & SEC_READONLY) != 0
7255 && (target->flags & SEC_ALLOC) != 0)
7256 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7257 reltext = TRUE;
7258
7259 /* We use the reloc_count field as a counter if we need
7260 to copy relocs into the output file. */
7261 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7262 s->reloc_count = 0;
7263
7264 /* If combreloc is enabled, elf_link_sort_relocs() will
7265 sort relocations, but in a different way than we do,
7266 and before we're done creating relocations. Also, it
7267 will move them around between input sections'
7268 relocation's contents, so our sorting would be
7269 broken, so don't let it run. */
7270 info->combreloc = 0;
7271 }
7272 }
7273 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7274 {
7275 /* Executables do not need a GOT. */
7276 if (info->shared)
7277 {
7278 /* Allocate relocations for all but the reserved entries. */
7279 struct mips_got_info *g;
7280 unsigned int count;
7281
7282 g = mips_elf_got_info (dynobj, NULL);
7283 count = (g->global_gotno
7284 + g->local_gotno
7285 - MIPS_RESERVED_GOTNO (info));
7286 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7287 }
7288 }
7289 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7290 {
7291 /* _bfd_mips_elf_always_size_sections() has already done
7292 most of the work, but some symbols may have been mapped
7293 to versions that we must now resolve in the got_entries
7294 hash tables. */
7295 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7296 struct mips_got_info *g = gg;
7297 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7298 unsigned int needed_relocs = 0;
7299
7300 if (gg->next)
7301 {
7302 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7303 set_got_offset_arg.info = info;
7304
7305 /* NOTE 2005-02-03: How can this call, or the next, ever
7306 find any indirect entries to resolve? They were all
7307 resolved in mips_elf_multi_got. */
7308 mips_elf_resolve_final_got_entries (gg);
7309 for (g = gg->next; g && g->next != gg; g = g->next)
7310 {
7311 unsigned int save_assign;
7312
7313 mips_elf_resolve_final_got_entries (g);
7314
7315 /* Assign offsets to global GOT entries. */
7316 save_assign = g->assigned_gotno;
7317 g->assigned_gotno = g->local_gotno;
7318 set_got_offset_arg.g = g;
7319 set_got_offset_arg.needed_relocs = 0;
7320 htab_traverse (g->got_entries,
7321 mips_elf_set_global_got_offset,
7322 &set_got_offset_arg);
7323 needed_relocs += set_got_offset_arg.needed_relocs;
7324 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7325 <= g->global_gotno);
7326
7327 g->assigned_gotno = save_assign;
7328 if (info->shared)
7329 {
7330 needed_relocs += g->local_gotno - g->assigned_gotno;
7331 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7332 + g->next->global_gotno
7333 + g->next->tls_gotno
7334 + MIPS_RESERVED_GOTNO (info));
7335 }
7336 }
7337 }
7338 else
7339 {
7340 struct mips_elf_count_tls_arg arg;
7341 arg.info = info;
7342 arg.needed = 0;
7343
7344 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7345 &arg);
7346 elf_link_hash_traverse (elf_hash_table (info),
7347 mips_elf_count_global_tls_relocs,
7348 &arg);
7349
7350 needed_relocs += arg.needed;
7351 }
7352
7353 if (needed_relocs)
7354 mips_elf_allocate_dynamic_relocations (dynobj, info,
7355 needed_relocs);
7356 }
7357 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7358 {
7359 /* IRIX rld assumes that the function stub isn't at the end
7360 of .text section. So put a dummy. XXX */
7361 s->size += MIPS_FUNCTION_STUB_SIZE;
7362 }
7363 else if (! info->shared
7364 && ! mips_elf_hash_table (info)->use_rld_obj_head
7365 && strncmp (name, ".rld_map", 8) == 0)
7366 {
7367 /* We add a room for __rld_map. It will be filled in by the
7368 rtld to contain a pointer to the _r_debug structure. */
7369 s->size += 4;
7370 }
7371 else if (SGI_COMPAT (output_bfd)
7372 && strncmp (name, ".compact_rel", 12) == 0)
7373 s->size += mips_elf_hash_table (info)->compact_rel_size;
7374 else if (strncmp (name, ".init", 5) != 0
7375 && s != htab->sgotplt
7376 && s != htab->splt)
7377 {
7378 /* It's not one of our sections, so don't allocate space. */
7379 continue;
7380 }
7381
7382 if (s->size == 0)
7383 {
7384 s->flags |= SEC_EXCLUDE;
7385 continue;
7386 }
7387
7388 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7389 continue;
7390
7391 /* Allocate memory for this section last, since we may increase its
7392 size above. */
7393 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7394 {
7395 sreldyn = s;
7396 continue;
7397 }
7398
7399 /* Allocate memory for the section contents. */
7400 s->contents = bfd_zalloc (dynobj, s->size);
7401 if (s->contents == NULL)
7402 {
7403 bfd_set_error (bfd_error_no_memory);
7404 return FALSE;
7405 }
7406 }
7407
7408 /* Allocate memory for the .rel(a).dyn section. */
7409 if (sreldyn != NULL)
7410 {
7411 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7412 if (sreldyn->contents == NULL)
7413 {
7414 bfd_set_error (bfd_error_no_memory);
7415 return FALSE;
7416 }
7417 }
7418
7419 if (elf_hash_table (info)->dynamic_sections_created)
7420 {
7421 /* Add some entries to the .dynamic section. We fill in the
7422 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7423 must add the entries now so that we get the correct size for
7424 the .dynamic section. The DT_DEBUG entry is filled in by the
7425 dynamic linker and used by the debugger. */
7426 if (! info->shared)
7427 {
7428 /* SGI object has the equivalence of DT_DEBUG in the
7429 DT_MIPS_RLD_MAP entry. */
7430 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7431 return FALSE;
7432 if (!SGI_COMPAT (output_bfd))
7433 {
7434 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7435 return FALSE;
7436 }
7437 }
7438 else
7439 {
7440 /* Shared libraries on traditional mips have DT_DEBUG. */
7441 if (!SGI_COMPAT (output_bfd))
7442 {
7443 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7444 return FALSE;
7445 }
7446 }
7447
7448 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7449 info->flags |= DF_TEXTREL;
7450
7451 if ((info->flags & DF_TEXTREL) != 0)
7452 {
7453 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7454 return FALSE;
7455 }
7456
7457 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7458 return FALSE;
7459
7460 if (htab->is_vxworks)
7461 {
7462 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7463 use any of the DT_MIPS_* tags. */
7464 if (mips_elf_rel_dyn_section (info, FALSE))
7465 {
7466 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7467 return FALSE;
7468
7469 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7470 return FALSE;
7471
7472 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7473 return FALSE;
7474 }
7475 if (htab->splt->size > 0)
7476 {
7477 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7478 return FALSE;
7479
7480 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7481 return FALSE;
7482
7483 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7484 return FALSE;
7485 }
7486 }
7487 else
7488 {
7489 if (mips_elf_rel_dyn_section (info, FALSE))
7490 {
7491 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7492 return FALSE;
7493
7494 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7495 return FALSE;
7496
7497 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7498 return FALSE;
7499 }
7500
7501 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7502 return FALSE;
7503
7504 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7505 return FALSE;
7506
7507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7508 return FALSE;
7509
7510 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7511 return FALSE;
7512
7513 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7514 return FALSE;
7515
7516 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7517 return FALSE;
7518
7519 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7520 return FALSE;
7521
7522 if (IRIX_COMPAT (dynobj) == ict_irix5
7523 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7524 return FALSE;
7525
7526 if (IRIX_COMPAT (dynobj) == ict_irix6
7527 && (bfd_get_section_by_name
7528 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7529 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7530 return FALSE;
7531 }
7532 }
7533
7534 return TRUE;
7535 }
7536 \f
7537 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7538 Adjust its R_ADDEND field so that it is correct for the output file.
7539 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7540 and sections respectively; both use symbol indexes. */
7541
7542 static void
7543 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7544 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7545 asection **local_sections, Elf_Internal_Rela *rel)
7546 {
7547 unsigned int r_type, r_symndx;
7548 Elf_Internal_Sym *sym;
7549 asection *sec;
7550
7551 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7552 {
7553 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7554 if (r_type == R_MIPS16_GPREL
7555 || r_type == R_MIPS_GPREL16
7556 || r_type == R_MIPS_GPREL32
7557 || r_type == R_MIPS_LITERAL)
7558 {
7559 rel->r_addend += _bfd_get_gp_value (input_bfd);
7560 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7561 }
7562
7563 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7564 sym = local_syms + r_symndx;
7565
7566 /* Adjust REL's addend to account for section merging. */
7567 if (!info->relocatable)
7568 {
7569 sec = local_sections[r_symndx];
7570 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7571 }
7572
7573 /* This would normally be done by the rela_normal code in elflink.c. */
7574 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7575 rel->r_addend += local_sections[r_symndx]->output_offset;
7576 }
7577 }
7578
7579 /* Relocate a MIPS ELF section. */
7580
7581 bfd_boolean
7582 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7583 bfd *input_bfd, asection *input_section,
7584 bfd_byte *contents, Elf_Internal_Rela *relocs,
7585 Elf_Internal_Sym *local_syms,
7586 asection **local_sections)
7587 {
7588 Elf_Internal_Rela *rel;
7589 const Elf_Internal_Rela *relend;
7590 bfd_vma addend = 0;
7591 bfd_boolean use_saved_addend_p = FALSE;
7592 const struct elf_backend_data *bed;
7593
7594 bed = get_elf_backend_data (output_bfd);
7595 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7596 for (rel = relocs; rel < relend; ++rel)
7597 {
7598 const char *name;
7599 bfd_vma value = 0;
7600 reloc_howto_type *howto;
7601 bfd_boolean require_jalx;
7602 /* TRUE if the relocation is a RELA relocation, rather than a
7603 REL relocation. */
7604 bfd_boolean rela_relocation_p = TRUE;
7605 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7606 const char *msg;
7607
7608 /* Find the relocation howto for this relocation. */
7609 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7610 {
7611 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7612 64-bit code, but make sure all their addresses are in the
7613 lowermost or uppermost 32-bit section of the 64-bit address
7614 space. Thus, when they use an R_MIPS_64 they mean what is
7615 usually meant by R_MIPS_32, with the exception that the
7616 stored value is sign-extended to 64 bits. */
7617 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7618
7619 /* On big-endian systems, we need to lie about the position
7620 of the reloc. */
7621 if (bfd_big_endian (input_bfd))
7622 rel->r_offset += 4;
7623 }
7624 else
7625 /* NewABI defaults to RELA relocations. */
7626 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7627 NEWABI_P (input_bfd)
7628 && (MIPS_RELOC_RELA_P
7629 (input_bfd, input_section,
7630 rel - relocs)));
7631
7632 if (!use_saved_addend_p)
7633 {
7634 Elf_Internal_Shdr *rel_hdr;
7635
7636 /* If these relocations were originally of the REL variety,
7637 we must pull the addend out of the field that will be
7638 relocated. Otherwise, we simply use the contents of the
7639 RELA relocation. To determine which flavor or relocation
7640 this is, we depend on the fact that the INPUT_SECTION's
7641 REL_HDR is read before its REL_HDR2. */
7642 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7643 if ((size_t) (rel - relocs)
7644 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7645 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7646 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7647 {
7648 bfd_byte *location = contents + rel->r_offset;
7649
7650 /* Note that this is a REL relocation. */
7651 rela_relocation_p = FALSE;
7652
7653 /* Get the addend, which is stored in the input file. */
7654 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7655 location);
7656 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7657 contents);
7658 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7659 location);
7660
7661 addend &= howto->src_mask;
7662
7663 /* For some kinds of relocations, the ADDEND is a
7664 combination of the addend stored in two different
7665 relocations. */
7666 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7667 || (r_type == R_MIPS_GOT16
7668 && mips_elf_local_relocation_p (input_bfd, rel,
7669 local_sections, FALSE)))
7670 {
7671 bfd_vma l;
7672 const Elf_Internal_Rela *lo16_relocation;
7673 reloc_howto_type *lo16_howto;
7674 bfd_byte *lo16_location;
7675 int lo16_type;
7676
7677 if (r_type == R_MIPS16_HI16)
7678 lo16_type = R_MIPS16_LO16;
7679 else
7680 lo16_type = R_MIPS_LO16;
7681
7682 /* The combined value is the sum of the HI16 addend,
7683 left-shifted by sixteen bits, and the LO16
7684 addend, sign extended. (Usually, the code does
7685 a `lui' of the HI16 value, and then an `addiu' of
7686 the LO16 value.)
7687
7688 Scan ahead to find a matching LO16 relocation.
7689
7690 According to the MIPS ELF ABI, the R_MIPS_LO16
7691 relocation must be immediately following.
7692 However, for the IRIX6 ABI, the next relocation
7693 may be a composed relocation consisting of
7694 several relocations for the same address. In
7695 that case, the R_MIPS_LO16 relocation may occur
7696 as one of these. We permit a similar extension
7697 in general, as that is useful for GCC. */
7698 lo16_relocation = mips_elf_next_relocation (input_bfd,
7699 lo16_type,
7700 rel, relend);
7701 if (lo16_relocation == NULL)
7702 return FALSE;
7703
7704 lo16_location = contents + lo16_relocation->r_offset;
7705
7706 /* Obtain the addend kept there. */
7707 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7708 lo16_type, FALSE);
7709 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7710 lo16_location);
7711 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7712 input_bfd, contents);
7713 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7714 lo16_location);
7715 l &= lo16_howto->src_mask;
7716 l <<= lo16_howto->rightshift;
7717 l = _bfd_mips_elf_sign_extend (l, 16);
7718
7719 addend <<= 16;
7720
7721 /* Compute the combined addend. */
7722 addend += l;
7723 }
7724 else
7725 addend <<= howto->rightshift;
7726 }
7727 else
7728 addend = rel->r_addend;
7729 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7730 local_syms, local_sections, rel);
7731 }
7732
7733 if (info->relocatable)
7734 {
7735 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7736 && bfd_big_endian (input_bfd))
7737 rel->r_offset -= 4;
7738
7739 if (!rela_relocation_p && rel->r_addend)
7740 {
7741 addend += rel->r_addend;
7742 if (r_type == R_MIPS_HI16
7743 || r_type == R_MIPS_GOT16)
7744 addend = mips_elf_high (addend);
7745 else if (r_type == R_MIPS_HIGHER)
7746 addend = mips_elf_higher (addend);
7747 else if (r_type == R_MIPS_HIGHEST)
7748 addend = mips_elf_highest (addend);
7749 else
7750 addend >>= howto->rightshift;
7751
7752 /* We use the source mask, rather than the destination
7753 mask because the place to which we are writing will be
7754 source of the addend in the final link. */
7755 addend &= howto->src_mask;
7756
7757 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7758 /* See the comment above about using R_MIPS_64 in the 32-bit
7759 ABI. Here, we need to update the addend. It would be
7760 possible to get away with just using the R_MIPS_32 reloc
7761 but for endianness. */
7762 {
7763 bfd_vma sign_bits;
7764 bfd_vma low_bits;
7765 bfd_vma high_bits;
7766
7767 if (addend & ((bfd_vma) 1 << 31))
7768 #ifdef BFD64
7769 sign_bits = ((bfd_vma) 1 << 32) - 1;
7770 #else
7771 sign_bits = -1;
7772 #endif
7773 else
7774 sign_bits = 0;
7775
7776 /* If we don't know that we have a 64-bit type,
7777 do two separate stores. */
7778 if (bfd_big_endian (input_bfd))
7779 {
7780 /* Store the sign-bits (which are most significant)
7781 first. */
7782 low_bits = sign_bits;
7783 high_bits = addend;
7784 }
7785 else
7786 {
7787 low_bits = addend;
7788 high_bits = sign_bits;
7789 }
7790 bfd_put_32 (input_bfd, low_bits,
7791 contents + rel->r_offset);
7792 bfd_put_32 (input_bfd, high_bits,
7793 contents + rel->r_offset + 4);
7794 continue;
7795 }
7796
7797 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7798 input_bfd, input_section,
7799 contents, FALSE))
7800 return FALSE;
7801 }
7802
7803 /* Go on to the next relocation. */
7804 continue;
7805 }
7806
7807 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7808 relocations for the same offset. In that case we are
7809 supposed to treat the output of each relocation as the addend
7810 for the next. */
7811 if (rel + 1 < relend
7812 && rel->r_offset == rel[1].r_offset
7813 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7814 use_saved_addend_p = TRUE;
7815 else
7816 use_saved_addend_p = FALSE;
7817
7818 /* Figure out what value we are supposed to relocate. */
7819 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7820 input_section, info, rel,
7821 addend, howto, local_syms,
7822 local_sections, &value,
7823 &name, &require_jalx,
7824 use_saved_addend_p))
7825 {
7826 case bfd_reloc_continue:
7827 /* There's nothing to do. */
7828 continue;
7829
7830 case bfd_reloc_undefined:
7831 /* mips_elf_calculate_relocation already called the
7832 undefined_symbol callback. There's no real point in
7833 trying to perform the relocation at this point, so we
7834 just skip ahead to the next relocation. */
7835 continue;
7836
7837 case bfd_reloc_notsupported:
7838 msg = _("internal error: unsupported relocation error");
7839 info->callbacks->warning
7840 (info, msg, name, input_bfd, input_section, rel->r_offset);
7841 return FALSE;
7842
7843 case bfd_reloc_overflow:
7844 if (use_saved_addend_p)
7845 /* Ignore overflow until we reach the last relocation for
7846 a given location. */
7847 ;
7848 else
7849 {
7850 BFD_ASSERT (name != NULL);
7851 if (! ((*info->callbacks->reloc_overflow)
7852 (info, NULL, name, howto->name, (bfd_vma) 0,
7853 input_bfd, input_section, rel->r_offset)))
7854 return FALSE;
7855 }
7856 break;
7857
7858 case bfd_reloc_ok:
7859 break;
7860
7861 default:
7862 abort ();
7863 break;
7864 }
7865
7866 /* If we've got another relocation for the address, keep going
7867 until we reach the last one. */
7868 if (use_saved_addend_p)
7869 {
7870 addend = value;
7871 continue;
7872 }
7873
7874 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7875 /* See the comment above about using R_MIPS_64 in the 32-bit
7876 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7877 that calculated the right value. Now, however, we
7878 sign-extend the 32-bit result to 64-bits, and store it as a
7879 64-bit value. We are especially generous here in that we
7880 go to extreme lengths to support this usage on systems with
7881 only a 32-bit VMA. */
7882 {
7883 bfd_vma sign_bits;
7884 bfd_vma low_bits;
7885 bfd_vma high_bits;
7886
7887 if (value & ((bfd_vma) 1 << 31))
7888 #ifdef BFD64
7889 sign_bits = ((bfd_vma) 1 << 32) - 1;
7890 #else
7891 sign_bits = -1;
7892 #endif
7893 else
7894 sign_bits = 0;
7895
7896 /* If we don't know that we have a 64-bit type,
7897 do two separate stores. */
7898 if (bfd_big_endian (input_bfd))
7899 {
7900 /* Undo what we did above. */
7901 rel->r_offset -= 4;
7902 /* Store the sign-bits (which are most significant)
7903 first. */
7904 low_bits = sign_bits;
7905 high_bits = value;
7906 }
7907 else
7908 {
7909 low_bits = value;
7910 high_bits = sign_bits;
7911 }
7912 bfd_put_32 (input_bfd, low_bits,
7913 contents + rel->r_offset);
7914 bfd_put_32 (input_bfd, high_bits,
7915 contents + rel->r_offset + 4);
7916 continue;
7917 }
7918
7919 /* Actually perform the relocation. */
7920 if (! mips_elf_perform_relocation (info, howto, rel, value,
7921 input_bfd, input_section,
7922 contents, require_jalx))
7923 return FALSE;
7924 }
7925
7926 return TRUE;
7927 }
7928 \f
7929 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7930 adjust it appropriately now. */
7931
7932 static void
7933 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7934 const char *name, Elf_Internal_Sym *sym)
7935 {
7936 /* The linker script takes care of providing names and values for
7937 these, but we must place them into the right sections. */
7938 static const char* const text_section_symbols[] = {
7939 "_ftext",
7940 "_etext",
7941 "__dso_displacement",
7942 "__elf_header",
7943 "__program_header_table",
7944 NULL
7945 };
7946
7947 static const char* const data_section_symbols[] = {
7948 "_fdata",
7949 "_edata",
7950 "_end",
7951 "_fbss",
7952 NULL
7953 };
7954
7955 const char* const *p;
7956 int i;
7957
7958 for (i = 0; i < 2; ++i)
7959 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7960 *p;
7961 ++p)
7962 if (strcmp (*p, name) == 0)
7963 {
7964 /* All of these symbols are given type STT_SECTION by the
7965 IRIX6 linker. */
7966 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7967 sym->st_other = STO_PROTECTED;
7968
7969 /* The IRIX linker puts these symbols in special sections. */
7970 if (i == 0)
7971 sym->st_shndx = SHN_MIPS_TEXT;
7972 else
7973 sym->st_shndx = SHN_MIPS_DATA;
7974
7975 break;
7976 }
7977 }
7978
7979 /* Finish up dynamic symbol handling. We set the contents of various
7980 dynamic sections here. */
7981
7982 bfd_boolean
7983 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7984 struct bfd_link_info *info,
7985 struct elf_link_hash_entry *h,
7986 Elf_Internal_Sym *sym)
7987 {
7988 bfd *dynobj;
7989 asection *sgot;
7990 struct mips_got_info *g, *gg;
7991 const char *name;
7992
7993 dynobj = elf_hash_table (info)->dynobj;
7994
7995 if (h->plt.offset != MINUS_ONE)
7996 {
7997 asection *s;
7998 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7999
8000 /* This symbol has a stub. Set it up. */
8001
8002 BFD_ASSERT (h->dynindx != -1);
8003
8004 s = bfd_get_section_by_name (dynobj,
8005 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8006 BFD_ASSERT (s != NULL);
8007
8008 /* FIXME: Can h->dynindx be more than 64K? */
8009 if (h->dynindx & 0xffff0000)
8010 return FALSE;
8011
8012 /* Fill the stub. */
8013 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
8014 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
8015 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
8016 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
8017
8018 BFD_ASSERT (h->plt.offset <= s->size);
8019 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8020
8021 /* Mark the symbol as undefined. plt.offset != -1 occurs
8022 only for the referenced symbol. */
8023 sym->st_shndx = SHN_UNDEF;
8024
8025 /* The run-time linker uses the st_value field of the symbol
8026 to reset the global offset table entry for this external
8027 to its stub address when unlinking a shared object. */
8028 sym->st_value = (s->output_section->vma + s->output_offset
8029 + h->plt.offset);
8030 }
8031
8032 BFD_ASSERT (h->dynindx != -1
8033 || h->forced_local);
8034
8035 sgot = mips_elf_got_section (dynobj, FALSE);
8036 BFD_ASSERT (sgot != NULL);
8037 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8038 g = mips_elf_section_data (sgot)->u.got_info;
8039 BFD_ASSERT (g != NULL);
8040
8041 /* Run through the global symbol table, creating GOT entries for all
8042 the symbols that need them. */
8043 if (g->global_gotsym != NULL
8044 && h->dynindx >= g->global_gotsym->dynindx)
8045 {
8046 bfd_vma offset;
8047 bfd_vma value;
8048
8049 value = sym->st_value;
8050 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8051 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8052 }
8053
8054 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8055 {
8056 struct mips_got_entry e, *p;
8057 bfd_vma entry;
8058 bfd_vma offset;
8059
8060 gg = g;
8061
8062 e.abfd = output_bfd;
8063 e.symndx = -1;
8064 e.d.h = (struct mips_elf_link_hash_entry *)h;
8065 e.tls_type = 0;
8066
8067 for (g = g->next; g->next != gg; g = g->next)
8068 {
8069 if (g->got_entries
8070 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8071 &e)))
8072 {
8073 offset = p->gotidx;
8074 if (info->shared
8075 || (elf_hash_table (info)->dynamic_sections_created
8076 && p->d.h != NULL
8077 && p->d.h->root.def_dynamic
8078 && !p->d.h->root.def_regular))
8079 {
8080 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8081 the various compatibility problems, it's easier to mock
8082 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8083 mips_elf_create_dynamic_relocation to calculate the
8084 appropriate addend. */
8085 Elf_Internal_Rela rel[3];
8086
8087 memset (rel, 0, sizeof (rel));
8088 if (ABI_64_P (output_bfd))
8089 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8090 else
8091 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8092 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8093
8094 entry = 0;
8095 if (! (mips_elf_create_dynamic_relocation
8096 (output_bfd, info, rel,
8097 e.d.h, NULL, sym->st_value, &entry, sgot)))
8098 return FALSE;
8099 }
8100 else
8101 entry = sym->st_value;
8102 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8103 }
8104 }
8105 }
8106
8107 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8108 name = h->root.root.string;
8109 if (strcmp (name, "_DYNAMIC") == 0
8110 || h == elf_hash_table (info)->hgot)
8111 sym->st_shndx = SHN_ABS;
8112 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8113 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8114 {
8115 sym->st_shndx = SHN_ABS;
8116 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8117 sym->st_value = 1;
8118 }
8119 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8120 {
8121 sym->st_shndx = SHN_ABS;
8122 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8123 sym->st_value = elf_gp (output_bfd);
8124 }
8125 else if (SGI_COMPAT (output_bfd))
8126 {
8127 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8128 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8129 {
8130 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8131 sym->st_other = STO_PROTECTED;
8132 sym->st_value = 0;
8133 sym->st_shndx = SHN_MIPS_DATA;
8134 }
8135 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8136 {
8137 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8138 sym->st_other = STO_PROTECTED;
8139 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8140 sym->st_shndx = SHN_ABS;
8141 }
8142 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8143 {
8144 if (h->type == STT_FUNC)
8145 sym->st_shndx = SHN_MIPS_TEXT;
8146 else if (h->type == STT_OBJECT)
8147 sym->st_shndx = SHN_MIPS_DATA;
8148 }
8149 }
8150
8151 /* Handle the IRIX6-specific symbols. */
8152 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8153 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8154
8155 if (! info->shared)
8156 {
8157 if (! mips_elf_hash_table (info)->use_rld_obj_head
8158 && (strcmp (name, "__rld_map") == 0
8159 || strcmp (name, "__RLD_MAP") == 0))
8160 {
8161 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8162 BFD_ASSERT (s != NULL);
8163 sym->st_value = s->output_section->vma + s->output_offset;
8164 bfd_put_32 (output_bfd, 0, s->contents);
8165 if (mips_elf_hash_table (info)->rld_value == 0)
8166 mips_elf_hash_table (info)->rld_value = sym->st_value;
8167 }
8168 else if (mips_elf_hash_table (info)->use_rld_obj_head
8169 && strcmp (name, "__rld_obj_head") == 0)
8170 {
8171 /* IRIX6 does not use a .rld_map section. */
8172 if (IRIX_COMPAT (output_bfd) == ict_irix5
8173 || IRIX_COMPAT (output_bfd) == ict_none)
8174 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8175 != NULL);
8176 mips_elf_hash_table (info)->rld_value = sym->st_value;
8177 }
8178 }
8179
8180 /* If this is a mips16 symbol, force the value to be even. */
8181 if (sym->st_other == STO_MIPS16)
8182 sym->st_value &= ~1;
8183
8184 return TRUE;
8185 }
8186
8187 /* Likewise, for VxWorks. */
8188
8189 bfd_boolean
8190 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8191 struct bfd_link_info *info,
8192 struct elf_link_hash_entry *h,
8193 Elf_Internal_Sym *sym)
8194 {
8195 bfd *dynobj;
8196 asection *sgot;
8197 struct mips_got_info *g;
8198 struct mips_elf_link_hash_table *htab;
8199
8200 htab = mips_elf_hash_table (info);
8201 dynobj = elf_hash_table (info)->dynobj;
8202
8203 if (h->plt.offset != (bfd_vma) -1)
8204 {
8205 bfd_byte *loc;
8206 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8207 Elf_Internal_Rela rel;
8208 static const bfd_vma *plt_entry;
8209
8210 BFD_ASSERT (h->dynindx != -1);
8211 BFD_ASSERT (htab->splt != NULL);
8212 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8213
8214 /* Calculate the address of the .plt entry. */
8215 plt_address = (htab->splt->output_section->vma
8216 + htab->splt->output_offset
8217 + h->plt.offset);
8218
8219 /* Calculate the index of the entry. */
8220 plt_index = ((h->plt.offset - htab->plt_header_size)
8221 / htab->plt_entry_size);
8222
8223 /* Calculate the address of the .got.plt entry. */
8224 got_address = (htab->sgotplt->output_section->vma
8225 + htab->sgotplt->output_offset
8226 + plt_index * 4);
8227
8228 /* Calculate the offset of the .got.plt entry from
8229 _GLOBAL_OFFSET_TABLE_. */
8230 got_offset = mips_elf_gotplt_index (info, h);
8231
8232 /* Calculate the offset for the branch at the start of the PLT
8233 entry. The branch jumps to the beginning of .plt. */
8234 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8235
8236 /* Fill in the initial value of the .got.plt entry. */
8237 bfd_put_32 (output_bfd, plt_address,
8238 htab->sgotplt->contents + plt_index * 4);
8239
8240 /* Find out where the .plt entry should go. */
8241 loc = htab->splt->contents + h->plt.offset;
8242
8243 if (info->shared)
8244 {
8245 plt_entry = mips_vxworks_shared_plt_entry;
8246 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8247 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8248 }
8249 else
8250 {
8251 bfd_vma got_address_high, got_address_low;
8252
8253 plt_entry = mips_vxworks_exec_plt_entry;
8254 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8255 got_address_low = got_address & 0xffff;
8256
8257 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8258 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8259 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8260 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8261 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8262 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8263 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8264 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8265
8266 loc = (htab->srelplt2->contents
8267 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8268
8269 /* Emit a relocation for the .got.plt entry. */
8270 rel.r_offset = got_address;
8271 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8272 rel.r_addend = h->plt.offset;
8273 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8274
8275 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8276 loc += sizeof (Elf32_External_Rela);
8277 rel.r_offset = plt_address + 8;
8278 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8279 rel.r_addend = got_offset;
8280 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8281
8282 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8283 loc += sizeof (Elf32_External_Rela);
8284 rel.r_offset += 4;
8285 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8286 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8287 }
8288
8289 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8290 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8291 rel.r_offset = got_address;
8292 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8293 rel.r_addend = 0;
8294 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8295
8296 if (!h->def_regular)
8297 sym->st_shndx = SHN_UNDEF;
8298 }
8299
8300 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8301
8302 sgot = mips_elf_got_section (dynobj, FALSE);
8303 BFD_ASSERT (sgot != NULL);
8304 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8305 g = mips_elf_section_data (sgot)->u.got_info;
8306 BFD_ASSERT (g != NULL);
8307
8308 /* See if this symbol has an entry in the GOT. */
8309 if (g->global_gotsym != NULL
8310 && h->dynindx >= g->global_gotsym->dynindx)
8311 {
8312 bfd_vma offset;
8313 Elf_Internal_Rela outrel;
8314 bfd_byte *loc;
8315 asection *s;
8316
8317 /* Install the symbol value in the GOT. */
8318 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8319 R_MIPS_GOT16, info);
8320 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8321
8322 /* Add a dynamic relocation for it. */
8323 s = mips_elf_rel_dyn_section (info, FALSE);
8324 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8325 outrel.r_offset = (sgot->output_section->vma
8326 + sgot->output_offset
8327 + offset);
8328 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8329 outrel.r_addend = 0;
8330 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8331 }
8332
8333 /* Emit a copy reloc, if needed. */
8334 if (h->needs_copy)
8335 {
8336 Elf_Internal_Rela rel;
8337
8338 BFD_ASSERT (h->dynindx != -1);
8339
8340 rel.r_offset = (h->root.u.def.section->output_section->vma
8341 + h->root.u.def.section->output_offset
8342 + h->root.u.def.value);
8343 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8344 rel.r_addend = 0;
8345 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8346 htab->srelbss->contents
8347 + (htab->srelbss->reloc_count
8348 * sizeof (Elf32_External_Rela)));
8349 ++htab->srelbss->reloc_count;
8350 }
8351
8352 /* If this is a mips16 symbol, force the value to be even. */
8353 if (sym->st_other == STO_MIPS16)
8354 sym->st_value &= ~1;
8355
8356 return TRUE;
8357 }
8358
8359 /* Install the PLT header for a VxWorks executable and finalize the
8360 contents of .rela.plt.unloaded. */
8361
8362 static void
8363 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8364 {
8365 Elf_Internal_Rela rela;
8366 bfd_byte *loc;
8367 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8368 static const bfd_vma *plt_entry;
8369 struct mips_elf_link_hash_table *htab;
8370
8371 htab = mips_elf_hash_table (info);
8372 plt_entry = mips_vxworks_exec_plt0_entry;
8373
8374 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8375 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8376 + htab->root.hgot->root.u.def.section->output_offset
8377 + htab->root.hgot->root.u.def.value);
8378
8379 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8380 got_value_low = got_value & 0xffff;
8381
8382 /* Calculate the address of the PLT header. */
8383 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8384
8385 /* Install the PLT header. */
8386 loc = htab->splt->contents;
8387 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8388 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8389 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8390 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8391 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8392 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8393
8394 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8395 loc = htab->srelplt2->contents;
8396 rela.r_offset = plt_address;
8397 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8398 rela.r_addend = 0;
8399 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8400 loc += sizeof (Elf32_External_Rela);
8401
8402 /* Output the relocation for the following addiu of
8403 %lo(_GLOBAL_OFFSET_TABLE_). */
8404 rela.r_offset += 4;
8405 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8406 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8407 loc += sizeof (Elf32_External_Rela);
8408
8409 /* Fix up the remaining relocations. They may have the wrong
8410 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8411 in which symbols were output. */
8412 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8413 {
8414 Elf_Internal_Rela rel;
8415
8416 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8417 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8418 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8419 loc += sizeof (Elf32_External_Rela);
8420
8421 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8422 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8423 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8424 loc += sizeof (Elf32_External_Rela);
8425
8426 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8427 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8428 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8429 loc += sizeof (Elf32_External_Rela);
8430 }
8431 }
8432
8433 /* Install the PLT header for a VxWorks shared library. */
8434
8435 static void
8436 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8437 {
8438 unsigned int i;
8439 struct mips_elf_link_hash_table *htab;
8440
8441 htab = mips_elf_hash_table (info);
8442
8443 /* We just need to copy the entry byte-by-byte. */
8444 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8445 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8446 htab->splt->contents + i * 4);
8447 }
8448
8449 /* Finish up the dynamic sections. */
8450
8451 bfd_boolean
8452 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8453 struct bfd_link_info *info)
8454 {
8455 bfd *dynobj;
8456 asection *sdyn;
8457 asection *sgot;
8458 struct mips_got_info *gg, *g;
8459 struct mips_elf_link_hash_table *htab;
8460
8461 htab = mips_elf_hash_table (info);
8462 dynobj = elf_hash_table (info)->dynobj;
8463
8464 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8465
8466 sgot = mips_elf_got_section (dynobj, FALSE);
8467 if (sgot == NULL)
8468 gg = g = NULL;
8469 else
8470 {
8471 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8472 gg = mips_elf_section_data (sgot)->u.got_info;
8473 BFD_ASSERT (gg != NULL);
8474 g = mips_elf_got_for_ibfd (gg, output_bfd);
8475 BFD_ASSERT (g != NULL);
8476 }
8477
8478 if (elf_hash_table (info)->dynamic_sections_created)
8479 {
8480 bfd_byte *b;
8481
8482 BFD_ASSERT (sdyn != NULL);
8483 BFD_ASSERT (g != NULL);
8484
8485 for (b = sdyn->contents;
8486 b < sdyn->contents + sdyn->size;
8487 b += MIPS_ELF_DYN_SIZE (dynobj))
8488 {
8489 Elf_Internal_Dyn dyn;
8490 const char *name;
8491 size_t elemsize;
8492 asection *s;
8493 bfd_boolean swap_out_p;
8494
8495 /* Read in the current dynamic entry. */
8496 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8497
8498 /* Assume that we're going to modify it and write it out. */
8499 swap_out_p = TRUE;
8500
8501 switch (dyn.d_tag)
8502 {
8503 case DT_RELENT:
8504 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8505 break;
8506
8507 case DT_RELAENT:
8508 BFD_ASSERT (htab->is_vxworks);
8509 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8510 break;
8511
8512 case DT_STRSZ:
8513 /* Rewrite DT_STRSZ. */
8514 dyn.d_un.d_val =
8515 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8516 break;
8517
8518 case DT_PLTGOT:
8519 name = ".got";
8520 if (htab->is_vxworks)
8521 {
8522 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8523 of the ".got" section in DYNOBJ. */
8524 s = bfd_get_section_by_name (dynobj, name);
8525 BFD_ASSERT (s != NULL);
8526 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8527 }
8528 else
8529 {
8530 s = bfd_get_section_by_name (output_bfd, name);
8531 BFD_ASSERT (s != NULL);
8532 dyn.d_un.d_ptr = s->vma;
8533 }
8534 break;
8535
8536 case DT_MIPS_RLD_VERSION:
8537 dyn.d_un.d_val = 1; /* XXX */
8538 break;
8539
8540 case DT_MIPS_FLAGS:
8541 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8542 break;
8543
8544 case DT_MIPS_TIME_STAMP:
8545 {
8546 time_t t;
8547 time (&t);
8548 dyn.d_un.d_val = t;
8549 }
8550 break;
8551
8552 case DT_MIPS_ICHECKSUM:
8553 /* XXX FIXME: */
8554 swap_out_p = FALSE;
8555 break;
8556
8557 case DT_MIPS_IVERSION:
8558 /* XXX FIXME: */
8559 swap_out_p = FALSE;
8560 break;
8561
8562 case DT_MIPS_BASE_ADDRESS:
8563 s = output_bfd->sections;
8564 BFD_ASSERT (s != NULL);
8565 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8566 break;
8567
8568 case DT_MIPS_LOCAL_GOTNO:
8569 dyn.d_un.d_val = g->local_gotno;
8570 break;
8571
8572 case DT_MIPS_UNREFEXTNO:
8573 /* The index into the dynamic symbol table which is the
8574 entry of the first external symbol that is not
8575 referenced within the same object. */
8576 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8577 break;
8578
8579 case DT_MIPS_GOTSYM:
8580 if (gg->global_gotsym)
8581 {
8582 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8583 break;
8584 }
8585 /* In case if we don't have global got symbols we default
8586 to setting DT_MIPS_GOTSYM to the same value as
8587 DT_MIPS_SYMTABNO, so we just fall through. */
8588
8589 case DT_MIPS_SYMTABNO:
8590 name = ".dynsym";
8591 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8592 s = bfd_get_section_by_name (output_bfd, name);
8593 BFD_ASSERT (s != NULL);
8594
8595 dyn.d_un.d_val = s->size / elemsize;
8596 break;
8597
8598 case DT_MIPS_HIPAGENO:
8599 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8600 break;
8601
8602 case DT_MIPS_RLD_MAP:
8603 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8604 break;
8605
8606 case DT_MIPS_OPTIONS:
8607 s = (bfd_get_section_by_name
8608 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8609 dyn.d_un.d_ptr = s->vma;
8610 break;
8611
8612 case DT_RELASZ:
8613 BFD_ASSERT (htab->is_vxworks);
8614 /* The count does not include the JUMP_SLOT relocations. */
8615 if (htab->srelplt)
8616 dyn.d_un.d_val -= htab->srelplt->size;
8617 break;
8618
8619 case DT_PLTREL:
8620 BFD_ASSERT (htab->is_vxworks);
8621 dyn.d_un.d_val = DT_RELA;
8622 break;
8623
8624 case DT_PLTRELSZ:
8625 BFD_ASSERT (htab->is_vxworks);
8626 dyn.d_un.d_val = htab->srelplt->size;
8627 break;
8628
8629 case DT_JMPREL:
8630 BFD_ASSERT (htab->is_vxworks);
8631 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8632 + htab->srelplt->output_offset);
8633 break;
8634
8635 default:
8636 swap_out_p = FALSE;
8637 break;
8638 }
8639
8640 if (swap_out_p)
8641 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8642 (dynobj, &dyn, b);
8643 }
8644 }
8645
8646 if (sgot != NULL && sgot->size > 0)
8647 {
8648 if (htab->is_vxworks)
8649 {
8650 /* The first entry of the global offset table points to the
8651 ".dynamic" section. The second is initialized by the
8652 loader and contains the shared library identifier.
8653 The third is also initialized by the loader and points
8654 to the lazy resolution stub. */
8655 MIPS_ELF_PUT_WORD (output_bfd,
8656 sdyn->output_offset + sdyn->output_section->vma,
8657 sgot->contents);
8658 MIPS_ELF_PUT_WORD (output_bfd, 0,
8659 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8660 MIPS_ELF_PUT_WORD (output_bfd, 0,
8661 sgot->contents
8662 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8663 }
8664 else
8665 {
8666 /* The first entry of the global offset table will be filled at
8667 runtime. The second entry will be used by some runtime loaders.
8668 This isn't the case of IRIX rld. */
8669 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8670 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8671 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8672 }
8673 }
8674
8675 if (sgot != NULL)
8676 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8677 = MIPS_ELF_GOT_SIZE (output_bfd);
8678
8679 /* Generate dynamic relocations for the non-primary gots. */
8680 if (gg != NULL && gg->next)
8681 {
8682 Elf_Internal_Rela rel[3];
8683 bfd_vma addend = 0;
8684
8685 memset (rel, 0, sizeof (rel));
8686 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8687
8688 for (g = gg->next; g->next != gg; g = g->next)
8689 {
8690 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8691 + g->next->tls_gotno;
8692
8693 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8694 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8695 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8696 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8697
8698 if (! info->shared)
8699 continue;
8700
8701 while (index < g->assigned_gotno)
8702 {
8703 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8704 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8705 if (!(mips_elf_create_dynamic_relocation
8706 (output_bfd, info, rel, NULL,
8707 bfd_abs_section_ptr,
8708 0, &addend, sgot)))
8709 return FALSE;
8710 BFD_ASSERT (addend == 0);
8711 }
8712 }
8713 }
8714
8715 /* The generation of dynamic relocations for the non-primary gots
8716 adds more dynamic relocations. We cannot count them until
8717 here. */
8718
8719 if (elf_hash_table (info)->dynamic_sections_created)
8720 {
8721 bfd_byte *b;
8722 bfd_boolean swap_out_p;
8723
8724 BFD_ASSERT (sdyn != NULL);
8725
8726 for (b = sdyn->contents;
8727 b < sdyn->contents + sdyn->size;
8728 b += MIPS_ELF_DYN_SIZE (dynobj))
8729 {
8730 Elf_Internal_Dyn dyn;
8731 asection *s;
8732
8733 /* Read in the current dynamic entry. */
8734 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8735
8736 /* Assume that we're going to modify it and write it out. */
8737 swap_out_p = TRUE;
8738
8739 switch (dyn.d_tag)
8740 {
8741 case DT_RELSZ:
8742 /* Reduce DT_RELSZ to account for any relocations we
8743 decided not to make. This is for the n64 irix rld,
8744 which doesn't seem to apply any relocations if there
8745 are trailing null entries. */
8746 s = mips_elf_rel_dyn_section (info, FALSE);
8747 dyn.d_un.d_val = (s->reloc_count
8748 * (ABI_64_P (output_bfd)
8749 ? sizeof (Elf64_Mips_External_Rel)
8750 : sizeof (Elf32_External_Rel)));
8751 break;
8752
8753 default:
8754 swap_out_p = FALSE;
8755 break;
8756 }
8757
8758 if (swap_out_p)
8759 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8760 (dynobj, &dyn, b);
8761 }
8762 }
8763
8764 {
8765 asection *s;
8766 Elf32_compact_rel cpt;
8767
8768 if (SGI_COMPAT (output_bfd))
8769 {
8770 /* Write .compact_rel section out. */
8771 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8772 if (s != NULL)
8773 {
8774 cpt.id1 = 1;
8775 cpt.num = s->reloc_count;
8776 cpt.id2 = 2;
8777 cpt.offset = (s->output_section->filepos
8778 + sizeof (Elf32_External_compact_rel));
8779 cpt.reserved0 = 0;
8780 cpt.reserved1 = 0;
8781 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8782 ((Elf32_External_compact_rel *)
8783 s->contents));
8784
8785 /* Clean up a dummy stub function entry in .text. */
8786 s = bfd_get_section_by_name (dynobj,
8787 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8788 if (s != NULL)
8789 {
8790 file_ptr dummy_offset;
8791
8792 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
8793 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
8794 memset (s->contents + dummy_offset, 0,
8795 MIPS_FUNCTION_STUB_SIZE);
8796 }
8797 }
8798 }
8799
8800 /* The psABI says that the dynamic relocations must be sorted in
8801 increasing order of r_symndx. The VxWorks EABI doesn't require
8802 this, and because the code below handles REL rather than RELA
8803 relocations, using it for VxWorks would be outright harmful. */
8804 if (!htab->is_vxworks)
8805 {
8806 s = mips_elf_rel_dyn_section (info, FALSE);
8807 if (s != NULL
8808 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8809 {
8810 reldyn_sorting_bfd = output_bfd;
8811
8812 if (ABI_64_P (output_bfd))
8813 qsort ((Elf64_External_Rel *) s->contents + 1,
8814 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8815 sort_dynamic_relocs_64);
8816 else
8817 qsort ((Elf32_External_Rel *) s->contents + 1,
8818 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8819 sort_dynamic_relocs);
8820 }
8821 }
8822 }
8823
8824 if (htab->is_vxworks && htab->splt->size > 0)
8825 {
8826 if (info->shared)
8827 mips_vxworks_finish_shared_plt (output_bfd, info);
8828 else
8829 mips_vxworks_finish_exec_plt (output_bfd, info);
8830 }
8831 return TRUE;
8832 }
8833
8834
8835 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8836
8837 static void
8838 mips_set_isa_flags (bfd *abfd)
8839 {
8840 flagword val;
8841
8842 switch (bfd_get_mach (abfd))
8843 {
8844 default:
8845 case bfd_mach_mips3000:
8846 val = E_MIPS_ARCH_1;
8847 break;
8848
8849 case bfd_mach_mips3900:
8850 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8851 break;
8852
8853 case bfd_mach_mips6000:
8854 val = E_MIPS_ARCH_2;
8855 break;
8856
8857 case bfd_mach_mips4000:
8858 case bfd_mach_mips4300:
8859 case bfd_mach_mips4400:
8860 case bfd_mach_mips4600:
8861 val = E_MIPS_ARCH_3;
8862 break;
8863
8864 case bfd_mach_mips4010:
8865 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8866 break;
8867
8868 case bfd_mach_mips4100:
8869 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8870 break;
8871
8872 case bfd_mach_mips4111:
8873 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8874 break;
8875
8876 case bfd_mach_mips4120:
8877 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8878 break;
8879
8880 case bfd_mach_mips4650:
8881 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8882 break;
8883
8884 case bfd_mach_mips5400:
8885 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
8886 break;
8887
8888 case bfd_mach_mips5500:
8889 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
8890 break;
8891
8892 case bfd_mach_mips9000:
8893 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
8894 break;
8895
8896 case bfd_mach_mips5000:
8897 case bfd_mach_mips7000:
8898 case bfd_mach_mips8000:
8899 case bfd_mach_mips10000:
8900 case bfd_mach_mips12000:
8901 val = E_MIPS_ARCH_4;
8902 break;
8903
8904 case bfd_mach_mips5:
8905 val = E_MIPS_ARCH_5;
8906 break;
8907
8908 case bfd_mach_mips_sb1:
8909 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
8910 break;
8911
8912 case bfd_mach_mipsisa32:
8913 val = E_MIPS_ARCH_32;
8914 break;
8915
8916 case bfd_mach_mipsisa64:
8917 val = E_MIPS_ARCH_64;
8918 break;
8919
8920 case bfd_mach_mipsisa32r2:
8921 val = E_MIPS_ARCH_32R2;
8922 break;
8923
8924 case bfd_mach_mipsisa64r2:
8925 val = E_MIPS_ARCH_64R2;
8926 break;
8927 }
8928 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8929 elf_elfheader (abfd)->e_flags |= val;
8930
8931 }
8932
8933
8934 /* The final processing done just before writing out a MIPS ELF object
8935 file. This gets the MIPS architecture right based on the machine
8936 number. This is used by both the 32-bit and the 64-bit ABI. */
8937
8938 void
8939 _bfd_mips_elf_final_write_processing (bfd *abfd,
8940 bfd_boolean linker ATTRIBUTE_UNUSED)
8941 {
8942 unsigned int i;
8943 Elf_Internal_Shdr **hdrpp;
8944 const char *name;
8945 asection *sec;
8946
8947 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8948 is nonzero. This is for compatibility with old objects, which used
8949 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8950 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
8951 mips_set_isa_flags (abfd);
8952
8953 /* Set the sh_info field for .gptab sections and other appropriate
8954 info for each special section. */
8955 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
8956 i < elf_numsections (abfd);
8957 i++, hdrpp++)
8958 {
8959 switch ((*hdrpp)->sh_type)
8960 {
8961 case SHT_MIPS_MSYM:
8962 case SHT_MIPS_LIBLIST:
8963 sec = bfd_get_section_by_name (abfd, ".dynstr");
8964 if (sec != NULL)
8965 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8966 break;
8967
8968 case SHT_MIPS_GPTAB:
8969 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8970 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8971 BFD_ASSERT (name != NULL
8972 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8973 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8974 BFD_ASSERT (sec != NULL);
8975 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8976 break;
8977
8978 case SHT_MIPS_CONTENT:
8979 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8980 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8981 BFD_ASSERT (name != NULL
8982 && strncmp (name, ".MIPS.content",
8983 sizeof ".MIPS.content" - 1) == 0);
8984 sec = bfd_get_section_by_name (abfd,
8985 name + sizeof ".MIPS.content" - 1);
8986 BFD_ASSERT (sec != NULL);
8987 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8988 break;
8989
8990 case SHT_MIPS_SYMBOL_LIB:
8991 sec = bfd_get_section_by_name (abfd, ".dynsym");
8992 if (sec != NULL)
8993 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8994 sec = bfd_get_section_by_name (abfd, ".liblist");
8995 if (sec != NULL)
8996 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8997 break;
8998
8999 case SHT_MIPS_EVENTS:
9000 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9001 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9002 BFD_ASSERT (name != NULL);
9003 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9004 sec = bfd_get_section_by_name (abfd,
9005 name + sizeof ".MIPS.events" - 1);
9006 else
9007 {
9008 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9009 sizeof ".MIPS.post_rel" - 1) == 0);
9010 sec = bfd_get_section_by_name (abfd,
9011 (name
9012 + sizeof ".MIPS.post_rel" - 1));
9013 }
9014 BFD_ASSERT (sec != NULL);
9015 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9016 break;
9017
9018 }
9019 }
9020 }
9021 \f
9022 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9023 segments. */
9024
9025 int
9026 _bfd_mips_elf_additional_program_headers (bfd *abfd)
9027 {
9028 asection *s;
9029 int ret = 0;
9030
9031 /* See if we need a PT_MIPS_REGINFO segment. */
9032 s = bfd_get_section_by_name (abfd, ".reginfo");
9033 if (s && (s->flags & SEC_LOAD))
9034 ++ret;
9035
9036 /* See if we need a PT_MIPS_OPTIONS segment. */
9037 if (IRIX_COMPAT (abfd) == ict_irix6
9038 && bfd_get_section_by_name (abfd,
9039 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9040 ++ret;
9041
9042 /* See if we need a PT_MIPS_RTPROC segment. */
9043 if (IRIX_COMPAT (abfd) == ict_irix5
9044 && bfd_get_section_by_name (abfd, ".dynamic")
9045 && bfd_get_section_by_name (abfd, ".mdebug"))
9046 ++ret;
9047
9048 return ret;
9049 }
9050
9051 /* Modify the segment map for an IRIX5 executable. */
9052
9053 bfd_boolean
9054 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9055 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9056 {
9057 asection *s;
9058 struct elf_segment_map *m, **pm;
9059 bfd_size_type amt;
9060
9061 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9062 segment. */
9063 s = bfd_get_section_by_name (abfd, ".reginfo");
9064 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9065 {
9066 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9067 if (m->p_type == PT_MIPS_REGINFO)
9068 break;
9069 if (m == NULL)
9070 {
9071 amt = sizeof *m;
9072 m = bfd_zalloc (abfd, amt);
9073 if (m == NULL)
9074 return FALSE;
9075
9076 m->p_type = PT_MIPS_REGINFO;
9077 m->count = 1;
9078 m->sections[0] = s;
9079
9080 /* We want to put it after the PHDR and INTERP segments. */
9081 pm = &elf_tdata (abfd)->segment_map;
9082 while (*pm != NULL
9083 && ((*pm)->p_type == PT_PHDR
9084 || (*pm)->p_type == PT_INTERP))
9085 pm = &(*pm)->next;
9086
9087 m->next = *pm;
9088 *pm = m;
9089 }
9090 }
9091
9092 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9093 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9094 PT_MIPS_OPTIONS segment immediately following the program header
9095 table. */
9096 if (NEWABI_P (abfd)
9097 /* On non-IRIX6 new abi, we'll have already created a segment
9098 for this section, so don't create another. I'm not sure this
9099 is not also the case for IRIX 6, but I can't test it right
9100 now. */
9101 && IRIX_COMPAT (abfd) == ict_irix6)
9102 {
9103 for (s = abfd->sections; s; s = s->next)
9104 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9105 break;
9106
9107 if (s)
9108 {
9109 struct elf_segment_map *options_segment;
9110
9111 pm = &elf_tdata (abfd)->segment_map;
9112 while (*pm != NULL
9113 && ((*pm)->p_type == PT_PHDR
9114 || (*pm)->p_type == PT_INTERP))
9115 pm = &(*pm)->next;
9116
9117 amt = sizeof (struct elf_segment_map);
9118 options_segment = bfd_zalloc (abfd, amt);
9119 options_segment->next = *pm;
9120 options_segment->p_type = PT_MIPS_OPTIONS;
9121 options_segment->p_flags = PF_R;
9122 options_segment->p_flags_valid = TRUE;
9123 options_segment->count = 1;
9124 options_segment->sections[0] = s;
9125 *pm = options_segment;
9126 }
9127 }
9128 else
9129 {
9130 if (IRIX_COMPAT (abfd) == ict_irix5)
9131 {
9132 /* If there are .dynamic and .mdebug sections, we make a room
9133 for the RTPROC header. FIXME: Rewrite without section names. */
9134 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9135 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9136 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9137 {
9138 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9139 if (m->p_type == PT_MIPS_RTPROC)
9140 break;
9141 if (m == NULL)
9142 {
9143 amt = sizeof *m;
9144 m = bfd_zalloc (abfd, amt);
9145 if (m == NULL)
9146 return FALSE;
9147
9148 m->p_type = PT_MIPS_RTPROC;
9149
9150 s = bfd_get_section_by_name (abfd, ".rtproc");
9151 if (s == NULL)
9152 {
9153 m->count = 0;
9154 m->p_flags = 0;
9155 m->p_flags_valid = 1;
9156 }
9157 else
9158 {
9159 m->count = 1;
9160 m->sections[0] = s;
9161 }
9162
9163 /* We want to put it after the DYNAMIC segment. */
9164 pm = &elf_tdata (abfd)->segment_map;
9165 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9166 pm = &(*pm)->next;
9167 if (*pm != NULL)
9168 pm = &(*pm)->next;
9169
9170 m->next = *pm;
9171 *pm = m;
9172 }
9173 }
9174 }
9175 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9176 .dynstr, .dynsym, and .hash sections, and everything in
9177 between. */
9178 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9179 pm = &(*pm)->next)
9180 if ((*pm)->p_type == PT_DYNAMIC)
9181 break;
9182 m = *pm;
9183 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9184 {
9185 /* For a normal mips executable the permissions for the PT_DYNAMIC
9186 segment are read, write and execute. We do that here since
9187 the code in elf.c sets only the read permission. This matters
9188 sometimes for the dynamic linker. */
9189 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9190 {
9191 m->p_flags = PF_R | PF_W | PF_X;
9192 m->p_flags_valid = 1;
9193 }
9194 }
9195 if (m != NULL
9196 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9197 {
9198 static const char *sec_names[] =
9199 {
9200 ".dynamic", ".dynstr", ".dynsym", ".hash"
9201 };
9202 bfd_vma low, high;
9203 unsigned int i, c;
9204 struct elf_segment_map *n;
9205
9206 low = ~(bfd_vma) 0;
9207 high = 0;
9208 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9209 {
9210 s = bfd_get_section_by_name (abfd, sec_names[i]);
9211 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9212 {
9213 bfd_size_type sz;
9214
9215 if (low > s->vma)
9216 low = s->vma;
9217 sz = s->size;
9218 if (high < s->vma + sz)
9219 high = s->vma + sz;
9220 }
9221 }
9222
9223 c = 0;
9224 for (s = abfd->sections; s != NULL; s = s->next)
9225 if ((s->flags & SEC_LOAD) != 0
9226 && s->vma >= low
9227 && s->vma + s->size <= high)
9228 ++c;
9229
9230 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9231 n = bfd_zalloc (abfd, amt);
9232 if (n == NULL)
9233 return FALSE;
9234 *n = *m;
9235 n->count = c;
9236
9237 i = 0;
9238 for (s = abfd->sections; s != NULL; s = s->next)
9239 {
9240 if ((s->flags & SEC_LOAD) != 0
9241 && s->vma >= low
9242 && s->vma + s->size <= high)
9243 {
9244 n->sections[i] = s;
9245 ++i;
9246 }
9247 }
9248
9249 *pm = n;
9250 }
9251 }
9252
9253 return TRUE;
9254 }
9255 \f
9256 /* Return the section that should be marked against GC for a given
9257 relocation. */
9258
9259 asection *
9260 _bfd_mips_elf_gc_mark_hook (asection *sec,
9261 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9262 Elf_Internal_Rela *rel,
9263 struct elf_link_hash_entry *h,
9264 Elf_Internal_Sym *sym)
9265 {
9266 /* ??? Do mips16 stub sections need to be handled special? */
9267
9268 if (h != NULL)
9269 {
9270 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9271 {
9272 case R_MIPS_GNU_VTINHERIT:
9273 case R_MIPS_GNU_VTENTRY:
9274 break;
9275
9276 default:
9277 switch (h->root.type)
9278 {
9279 case bfd_link_hash_defined:
9280 case bfd_link_hash_defweak:
9281 return h->root.u.def.section;
9282
9283 case bfd_link_hash_common:
9284 return h->root.u.c.p->section;
9285
9286 default:
9287 break;
9288 }
9289 }
9290 }
9291 else
9292 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9293
9294 return NULL;
9295 }
9296
9297 /* Update the got entry reference counts for the section being removed. */
9298
9299 bfd_boolean
9300 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9301 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9302 asection *sec ATTRIBUTE_UNUSED,
9303 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9304 {
9305 #if 0
9306 Elf_Internal_Shdr *symtab_hdr;
9307 struct elf_link_hash_entry **sym_hashes;
9308 bfd_signed_vma *local_got_refcounts;
9309 const Elf_Internal_Rela *rel, *relend;
9310 unsigned long r_symndx;
9311 struct elf_link_hash_entry *h;
9312
9313 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9314 sym_hashes = elf_sym_hashes (abfd);
9315 local_got_refcounts = elf_local_got_refcounts (abfd);
9316
9317 relend = relocs + sec->reloc_count;
9318 for (rel = relocs; rel < relend; rel++)
9319 switch (ELF_R_TYPE (abfd, rel->r_info))
9320 {
9321 case R_MIPS_GOT16:
9322 case R_MIPS_CALL16:
9323 case R_MIPS_CALL_HI16:
9324 case R_MIPS_CALL_LO16:
9325 case R_MIPS_GOT_HI16:
9326 case R_MIPS_GOT_LO16:
9327 case R_MIPS_GOT_DISP:
9328 case R_MIPS_GOT_PAGE:
9329 case R_MIPS_GOT_OFST:
9330 /* ??? It would seem that the existing MIPS code does no sort
9331 of reference counting or whatnot on its GOT and PLT entries,
9332 so it is not possible to garbage collect them at this time. */
9333 break;
9334
9335 default:
9336 break;
9337 }
9338 #endif
9339
9340 return TRUE;
9341 }
9342 \f
9343 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9344 hiding the old indirect symbol. Process additional relocation
9345 information. Also called for weakdefs, in which case we just let
9346 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9347
9348 void
9349 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9350 struct elf_link_hash_entry *dir,
9351 struct elf_link_hash_entry *ind)
9352 {
9353 struct mips_elf_link_hash_entry *dirmips, *indmips;
9354
9355 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9356
9357 if (ind->root.type != bfd_link_hash_indirect)
9358 return;
9359
9360 dirmips = (struct mips_elf_link_hash_entry *) dir;
9361 indmips = (struct mips_elf_link_hash_entry *) ind;
9362 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9363 if (indmips->readonly_reloc)
9364 dirmips->readonly_reloc = TRUE;
9365 if (indmips->no_fn_stub)
9366 dirmips->no_fn_stub = TRUE;
9367
9368 if (dirmips->tls_type == 0)
9369 dirmips->tls_type = indmips->tls_type;
9370 }
9371
9372 void
9373 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9374 struct elf_link_hash_entry *entry,
9375 bfd_boolean force_local)
9376 {
9377 bfd *dynobj;
9378 asection *got;
9379 struct mips_got_info *g;
9380 struct mips_elf_link_hash_entry *h;
9381
9382 h = (struct mips_elf_link_hash_entry *) entry;
9383 if (h->forced_local)
9384 return;
9385 h->forced_local = force_local;
9386
9387 dynobj = elf_hash_table (info)->dynobj;
9388 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9389 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
9390 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9391 {
9392 if (g->next)
9393 {
9394 struct mips_got_entry e;
9395 struct mips_got_info *gg = g;
9396
9397 /* Since we're turning what used to be a global symbol into a
9398 local one, bump up the number of local entries of each GOT
9399 that had an entry for it. This will automatically decrease
9400 the number of global entries, since global_gotno is actually
9401 the upper limit of global entries. */
9402 e.abfd = dynobj;
9403 e.symndx = -1;
9404 e.d.h = h;
9405 e.tls_type = 0;
9406
9407 for (g = g->next; g != gg; g = g->next)
9408 if (htab_find (g->got_entries, &e))
9409 {
9410 BFD_ASSERT (g->global_gotno > 0);
9411 g->local_gotno++;
9412 g->global_gotno--;
9413 }
9414
9415 /* If this was a global symbol forced into the primary GOT, we
9416 no longer need an entry for it. We can't release the entry
9417 at this point, but we must at least stop counting it as one
9418 of the symbols that required a forced got entry. */
9419 if (h->root.got.offset == 2)
9420 {
9421 BFD_ASSERT (gg->assigned_gotno > 0);
9422 gg->assigned_gotno--;
9423 }
9424 }
9425 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9426 /* If we haven't got through GOT allocation yet, just bump up the
9427 number of local entries, as this symbol won't be counted as
9428 global. */
9429 g->local_gotno++;
9430 else if (h->root.got.offset == 1)
9431 {
9432 /* If we're past non-multi-GOT allocation and this symbol had
9433 been marked for a global got entry, give it a local entry
9434 instead. */
9435 BFD_ASSERT (g->global_gotno > 0);
9436 g->local_gotno++;
9437 g->global_gotno--;
9438 }
9439 }
9440
9441 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9442 }
9443 \f
9444 #define PDR_SIZE 32
9445
9446 bfd_boolean
9447 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9448 struct bfd_link_info *info)
9449 {
9450 asection *o;
9451 bfd_boolean ret = FALSE;
9452 unsigned char *tdata;
9453 size_t i, skip;
9454
9455 o = bfd_get_section_by_name (abfd, ".pdr");
9456 if (! o)
9457 return FALSE;
9458 if (o->size == 0)
9459 return FALSE;
9460 if (o->size % PDR_SIZE != 0)
9461 return FALSE;
9462 if (o->output_section != NULL
9463 && bfd_is_abs_section (o->output_section))
9464 return FALSE;
9465
9466 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9467 if (! tdata)
9468 return FALSE;
9469
9470 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9471 info->keep_memory);
9472 if (!cookie->rels)
9473 {
9474 free (tdata);
9475 return FALSE;
9476 }
9477
9478 cookie->rel = cookie->rels;
9479 cookie->relend = cookie->rels + o->reloc_count;
9480
9481 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9482 {
9483 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9484 {
9485 tdata[i] = 1;
9486 skip ++;
9487 }
9488 }
9489
9490 if (skip != 0)
9491 {
9492 mips_elf_section_data (o)->u.tdata = tdata;
9493 o->size -= skip * PDR_SIZE;
9494 ret = TRUE;
9495 }
9496 else
9497 free (tdata);
9498
9499 if (! info->keep_memory)
9500 free (cookie->rels);
9501
9502 return ret;
9503 }
9504
9505 bfd_boolean
9506 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9507 {
9508 if (strcmp (sec->name, ".pdr") == 0)
9509 return TRUE;
9510 return FALSE;
9511 }
9512
9513 bfd_boolean
9514 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9515 bfd_byte *contents)
9516 {
9517 bfd_byte *to, *from, *end;
9518 int i;
9519
9520 if (strcmp (sec->name, ".pdr") != 0)
9521 return FALSE;
9522
9523 if (mips_elf_section_data (sec)->u.tdata == NULL)
9524 return FALSE;
9525
9526 to = contents;
9527 end = contents + sec->size;
9528 for (from = contents, i = 0;
9529 from < end;
9530 from += PDR_SIZE, i++)
9531 {
9532 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9533 continue;
9534 if (to != from)
9535 memcpy (to, from, PDR_SIZE);
9536 to += PDR_SIZE;
9537 }
9538 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9539 sec->output_offset, sec->size);
9540 return TRUE;
9541 }
9542 \f
9543 /* MIPS ELF uses a special find_nearest_line routine in order the
9544 handle the ECOFF debugging information. */
9545
9546 struct mips_elf_find_line
9547 {
9548 struct ecoff_debug_info d;
9549 struct ecoff_find_line i;
9550 };
9551
9552 bfd_boolean
9553 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9554 asymbol **symbols, bfd_vma offset,
9555 const char **filename_ptr,
9556 const char **functionname_ptr,
9557 unsigned int *line_ptr)
9558 {
9559 asection *msec;
9560
9561 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9562 filename_ptr, functionname_ptr,
9563 line_ptr))
9564 return TRUE;
9565
9566 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9567 filename_ptr, functionname_ptr,
9568 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9569 &elf_tdata (abfd)->dwarf2_find_line_info))
9570 return TRUE;
9571
9572 msec = bfd_get_section_by_name (abfd, ".mdebug");
9573 if (msec != NULL)
9574 {
9575 flagword origflags;
9576 struct mips_elf_find_line *fi;
9577 const struct ecoff_debug_swap * const swap =
9578 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9579
9580 /* If we are called during a link, mips_elf_final_link may have
9581 cleared the SEC_HAS_CONTENTS field. We force it back on here
9582 if appropriate (which it normally will be). */
9583 origflags = msec->flags;
9584 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9585 msec->flags |= SEC_HAS_CONTENTS;
9586
9587 fi = elf_tdata (abfd)->find_line_info;
9588 if (fi == NULL)
9589 {
9590 bfd_size_type external_fdr_size;
9591 char *fraw_src;
9592 char *fraw_end;
9593 struct fdr *fdr_ptr;
9594 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9595
9596 fi = bfd_zalloc (abfd, amt);
9597 if (fi == NULL)
9598 {
9599 msec->flags = origflags;
9600 return FALSE;
9601 }
9602
9603 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9604 {
9605 msec->flags = origflags;
9606 return FALSE;
9607 }
9608
9609 /* Swap in the FDR information. */
9610 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9611 fi->d.fdr = bfd_alloc (abfd, amt);
9612 if (fi->d.fdr == NULL)
9613 {
9614 msec->flags = origflags;
9615 return FALSE;
9616 }
9617 external_fdr_size = swap->external_fdr_size;
9618 fdr_ptr = fi->d.fdr;
9619 fraw_src = (char *) fi->d.external_fdr;
9620 fraw_end = (fraw_src
9621 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9622 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9623 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9624
9625 elf_tdata (abfd)->find_line_info = fi;
9626
9627 /* Note that we don't bother to ever free this information.
9628 find_nearest_line is either called all the time, as in
9629 objdump -l, so the information should be saved, or it is
9630 rarely called, as in ld error messages, so the memory
9631 wasted is unimportant. Still, it would probably be a
9632 good idea for free_cached_info to throw it away. */
9633 }
9634
9635 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9636 &fi->i, filename_ptr, functionname_ptr,
9637 line_ptr))
9638 {
9639 msec->flags = origflags;
9640 return TRUE;
9641 }
9642
9643 msec->flags = origflags;
9644 }
9645
9646 /* Fall back on the generic ELF find_nearest_line routine. */
9647
9648 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9649 filename_ptr, functionname_ptr,
9650 line_ptr);
9651 }
9652
9653 bfd_boolean
9654 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9655 const char **filename_ptr,
9656 const char **functionname_ptr,
9657 unsigned int *line_ptr)
9658 {
9659 bfd_boolean found;
9660 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9661 functionname_ptr, line_ptr,
9662 & elf_tdata (abfd)->dwarf2_find_line_info);
9663 return found;
9664 }
9665
9666 \f
9667 /* When are writing out the .options or .MIPS.options section,
9668 remember the bytes we are writing out, so that we can install the
9669 GP value in the section_processing routine. */
9670
9671 bfd_boolean
9672 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9673 const void *location,
9674 file_ptr offset, bfd_size_type count)
9675 {
9676 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9677 {
9678 bfd_byte *c;
9679
9680 if (elf_section_data (section) == NULL)
9681 {
9682 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9683 section->used_by_bfd = bfd_zalloc (abfd, amt);
9684 if (elf_section_data (section) == NULL)
9685 return FALSE;
9686 }
9687 c = mips_elf_section_data (section)->u.tdata;
9688 if (c == NULL)
9689 {
9690 c = bfd_zalloc (abfd, section->size);
9691 if (c == NULL)
9692 return FALSE;
9693 mips_elf_section_data (section)->u.tdata = c;
9694 }
9695
9696 memcpy (c + offset, location, count);
9697 }
9698
9699 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9700 count);
9701 }
9702
9703 /* This is almost identical to bfd_generic_get_... except that some
9704 MIPS relocations need to be handled specially. Sigh. */
9705
9706 bfd_byte *
9707 _bfd_elf_mips_get_relocated_section_contents
9708 (bfd *abfd,
9709 struct bfd_link_info *link_info,
9710 struct bfd_link_order *link_order,
9711 bfd_byte *data,
9712 bfd_boolean relocatable,
9713 asymbol **symbols)
9714 {
9715 /* Get enough memory to hold the stuff */
9716 bfd *input_bfd = link_order->u.indirect.section->owner;
9717 asection *input_section = link_order->u.indirect.section;
9718 bfd_size_type sz;
9719
9720 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9721 arelent **reloc_vector = NULL;
9722 long reloc_count;
9723
9724 if (reloc_size < 0)
9725 goto error_return;
9726
9727 reloc_vector = bfd_malloc (reloc_size);
9728 if (reloc_vector == NULL && reloc_size != 0)
9729 goto error_return;
9730
9731 /* read in the section */
9732 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9733 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9734 goto error_return;
9735
9736 reloc_count = bfd_canonicalize_reloc (input_bfd,
9737 input_section,
9738 reloc_vector,
9739 symbols);
9740 if (reloc_count < 0)
9741 goto error_return;
9742
9743 if (reloc_count > 0)
9744 {
9745 arelent **parent;
9746 /* for mips */
9747 int gp_found;
9748 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9749
9750 {
9751 struct bfd_hash_entry *h;
9752 struct bfd_link_hash_entry *lh;
9753 /* Skip all this stuff if we aren't mixing formats. */
9754 if (abfd && input_bfd
9755 && abfd->xvec == input_bfd->xvec)
9756 lh = 0;
9757 else
9758 {
9759 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9760 lh = (struct bfd_link_hash_entry *) h;
9761 }
9762 lookup:
9763 if (lh)
9764 {
9765 switch (lh->type)
9766 {
9767 case bfd_link_hash_undefined:
9768 case bfd_link_hash_undefweak:
9769 case bfd_link_hash_common:
9770 gp_found = 0;
9771 break;
9772 case bfd_link_hash_defined:
9773 case bfd_link_hash_defweak:
9774 gp_found = 1;
9775 gp = lh->u.def.value;
9776 break;
9777 case bfd_link_hash_indirect:
9778 case bfd_link_hash_warning:
9779 lh = lh->u.i.link;
9780 /* @@FIXME ignoring warning for now */
9781 goto lookup;
9782 case bfd_link_hash_new:
9783 default:
9784 abort ();
9785 }
9786 }
9787 else
9788 gp_found = 0;
9789 }
9790 /* end mips */
9791 for (parent = reloc_vector; *parent != NULL; parent++)
9792 {
9793 char *error_message = NULL;
9794 bfd_reloc_status_type r;
9795
9796 /* Specific to MIPS: Deal with relocation types that require
9797 knowing the gp of the output bfd. */
9798 asymbol *sym = *(*parent)->sym_ptr_ptr;
9799
9800 /* If we've managed to find the gp and have a special
9801 function for the relocation then go ahead, else default
9802 to the generic handling. */
9803 if (gp_found
9804 && (*parent)->howto->special_function
9805 == _bfd_mips_elf32_gprel16_reloc)
9806 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9807 input_section, relocatable,
9808 data, gp);
9809 else
9810 r = bfd_perform_relocation (input_bfd, *parent, data,
9811 input_section,
9812 relocatable ? abfd : NULL,
9813 &error_message);
9814
9815 if (relocatable)
9816 {
9817 asection *os = input_section->output_section;
9818
9819 /* A partial link, so keep the relocs */
9820 os->orelocation[os->reloc_count] = *parent;
9821 os->reloc_count++;
9822 }
9823
9824 if (r != bfd_reloc_ok)
9825 {
9826 switch (r)
9827 {
9828 case bfd_reloc_undefined:
9829 if (!((*link_info->callbacks->undefined_symbol)
9830 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9831 input_bfd, input_section, (*parent)->address, TRUE)))
9832 goto error_return;
9833 break;
9834 case bfd_reloc_dangerous:
9835 BFD_ASSERT (error_message != NULL);
9836 if (!((*link_info->callbacks->reloc_dangerous)
9837 (link_info, error_message, input_bfd, input_section,
9838 (*parent)->address)))
9839 goto error_return;
9840 break;
9841 case bfd_reloc_overflow:
9842 if (!((*link_info->callbacks->reloc_overflow)
9843 (link_info, NULL,
9844 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9845 (*parent)->howto->name, (*parent)->addend,
9846 input_bfd, input_section, (*parent)->address)))
9847 goto error_return;
9848 break;
9849 case bfd_reloc_outofrange:
9850 default:
9851 abort ();
9852 break;
9853 }
9854
9855 }
9856 }
9857 }
9858 if (reloc_vector != NULL)
9859 free (reloc_vector);
9860 return data;
9861
9862 error_return:
9863 if (reloc_vector != NULL)
9864 free (reloc_vector);
9865 return NULL;
9866 }
9867 \f
9868 /* Create a MIPS ELF linker hash table. */
9869
9870 struct bfd_link_hash_table *
9871 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9872 {
9873 struct mips_elf_link_hash_table *ret;
9874 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9875
9876 ret = bfd_malloc (amt);
9877 if (ret == NULL)
9878 return NULL;
9879
9880 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
9881 mips_elf_link_hash_newfunc,
9882 sizeof (struct mips_elf_link_hash_entry)))
9883 {
9884 free (ret);
9885 return NULL;
9886 }
9887
9888 #if 0
9889 /* We no longer use this. */
9890 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
9891 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
9892 #endif
9893 ret->procedure_count = 0;
9894 ret->compact_rel_size = 0;
9895 ret->use_rld_obj_head = FALSE;
9896 ret->rld_value = 0;
9897 ret->mips16_stubs_seen = FALSE;
9898 ret->is_vxworks = FALSE;
9899 ret->srelbss = NULL;
9900 ret->sdynbss = NULL;
9901 ret->srelplt = NULL;
9902 ret->srelplt2 = NULL;
9903 ret->sgotplt = NULL;
9904 ret->splt = NULL;
9905 ret->plt_header_size = 0;
9906 ret->plt_entry_size = 0;
9907
9908 return &ret->root.root;
9909 }
9910
9911 /* Likewise, but indicate that the target is VxWorks. */
9912
9913 struct bfd_link_hash_table *
9914 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
9915 {
9916 struct bfd_link_hash_table *ret;
9917
9918 ret = _bfd_mips_elf_link_hash_table_create (abfd);
9919 if (ret)
9920 {
9921 struct mips_elf_link_hash_table *htab;
9922
9923 htab = (struct mips_elf_link_hash_table *) ret;
9924 htab->is_vxworks = 1;
9925 }
9926 return ret;
9927 }
9928 \f
9929 /* We need to use a special link routine to handle the .reginfo and
9930 the .mdebug sections. We need to merge all instances of these
9931 sections together, not write them all out sequentially. */
9932
9933 bfd_boolean
9934 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9935 {
9936 asection *o;
9937 struct bfd_link_order *p;
9938 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
9939 asection *rtproc_sec;
9940 Elf32_RegInfo reginfo;
9941 struct ecoff_debug_info debug;
9942 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9943 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
9944 HDRR *symhdr = &debug.symbolic_header;
9945 void *mdebug_handle = NULL;
9946 asection *s;
9947 EXTR esym;
9948 unsigned int i;
9949 bfd_size_type amt;
9950 struct mips_elf_link_hash_table *htab;
9951
9952 static const char * const secname[] =
9953 {
9954 ".text", ".init", ".fini", ".data",
9955 ".rodata", ".sdata", ".sbss", ".bss"
9956 };
9957 static const int sc[] =
9958 {
9959 scText, scInit, scFini, scData,
9960 scRData, scSData, scSBss, scBss
9961 };
9962
9963 /* We'd carefully arranged the dynamic symbol indices, and then the
9964 generic size_dynamic_sections renumbered them out from under us.
9965 Rather than trying somehow to prevent the renumbering, just do
9966 the sort again. */
9967 htab = mips_elf_hash_table (info);
9968 if (elf_hash_table (info)->dynamic_sections_created)
9969 {
9970 bfd *dynobj;
9971 asection *got;
9972 struct mips_got_info *g;
9973 bfd_size_type dynsecsymcount;
9974
9975 /* When we resort, we must tell mips_elf_sort_hash_table what
9976 the lowest index it may use is. That's the number of section
9977 symbols we're going to add. The generic ELF linker only
9978 adds these symbols when building a shared object. Note that
9979 we count the sections after (possibly) removing the .options
9980 section above. */
9981
9982 dynsecsymcount = 0;
9983 if (info->shared)
9984 {
9985 asection * p;
9986
9987 for (p = abfd->sections; p ; p = p->next)
9988 if ((p->flags & SEC_EXCLUDE) == 0
9989 && (p->flags & SEC_ALLOC) != 0
9990 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
9991 ++ dynsecsymcount;
9992 }
9993
9994 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
9995 return FALSE;
9996
9997 /* Make sure we didn't grow the global .got region. */
9998 dynobj = elf_hash_table (info)->dynobj;
9999 got = mips_elf_got_section (dynobj, FALSE);
10000 g = mips_elf_section_data (got)->u.got_info;
10001
10002 if (g->global_gotsym != NULL)
10003 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10004 - g->global_gotsym->dynindx)
10005 <= g->global_gotno);
10006 }
10007
10008 /* Get a value for the GP register. */
10009 if (elf_gp (abfd) == 0)
10010 {
10011 struct bfd_link_hash_entry *h;
10012
10013 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10014 if (h != NULL && h->type == bfd_link_hash_defined)
10015 elf_gp (abfd) = (h->u.def.value
10016 + h->u.def.section->output_section->vma
10017 + h->u.def.section->output_offset);
10018 else if (htab->is_vxworks
10019 && (h = bfd_link_hash_lookup (info->hash,
10020 "_GLOBAL_OFFSET_TABLE_",
10021 FALSE, FALSE, TRUE))
10022 && h->type == bfd_link_hash_defined)
10023 elf_gp (abfd) = (h->u.def.section->output_section->vma
10024 + h->u.def.section->output_offset
10025 + h->u.def.value);
10026 else if (info->relocatable)
10027 {
10028 bfd_vma lo = MINUS_ONE;
10029
10030 /* Find the GP-relative section with the lowest offset. */
10031 for (o = abfd->sections; o != NULL; o = o->next)
10032 if (o->vma < lo
10033 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10034 lo = o->vma;
10035
10036 /* And calculate GP relative to that. */
10037 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10038 }
10039 else
10040 {
10041 /* If the relocate_section function needs to do a reloc
10042 involving the GP value, it should make a reloc_dangerous
10043 callback to warn that GP is not defined. */
10044 }
10045 }
10046
10047 /* Go through the sections and collect the .reginfo and .mdebug
10048 information. */
10049 reginfo_sec = NULL;
10050 mdebug_sec = NULL;
10051 gptab_data_sec = NULL;
10052 gptab_bss_sec = NULL;
10053 for (o = abfd->sections; o != NULL; o = o->next)
10054 {
10055 if (strcmp (o->name, ".reginfo") == 0)
10056 {
10057 memset (&reginfo, 0, sizeof reginfo);
10058
10059 /* We have found the .reginfo section in the output file.
10060 Look through all the link_orders comprising it and merge
10061 the information together. */
10062 for (p = o->map_head.link_order; p != NULL; p = p->next)
10063 {
10064 asection *input_section;
10065 bfd *input_bfd;
10066 Elf32_External_RegInfo ext;
10067 Elf32_RegInfo sub;
10068
10069 if (p->type != bfd_indirect_link_order)
10070 {
10071 if (p->type == bfd_data_link_order)
10072 continue;
10073 abort ();
10074 }
10075
10076 input_section = p->u.indirect.section;
10077 input_bfd = input_section->owner;
10078
10079 if (! bfd_get_section_contents (input_bfd, input_section,
10080 &ext, 0, sizeof ext))
10081 return FALSE;
10082
10083 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10084
10085 reginfo.ri_gprmask |= sub.ri_gprmask;
10086 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10087 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10088 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10089 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10090
10091 /* ri_gp_value is set by the function
10092 mips_elf32_section_processing when the section is
10093 finally written out. */
10094
10095 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10096 elf_link_input_bfd ignores this section. */
10097 input_section->flags &= ~SEC_HAS_CONTENTS;
10098 }
10099
10100 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10101 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10102
10103 /* Skip this section later on (I don't think this currently
10104 matters, but someday it might). */
10105 o->map_head.link_order = NULL;
10106
10107 reginfo_sec = o;
10108 }
10109
10110 if (strcmp (o->name, ".mdebug") == 0)
10111 {
10112 struct extsym_info einfo;
10113 bfd_vma last;
10114
10115 /* We have found the .mdebug section in the output file.
10116 Look through all the link_orders comprising it and merge
10117 the information together. */
10118 symhdr->magic = swap->sym_magic;
10119 /* FIXME: What should the version stamp be? */
10120 symhdr->vstamp = 0;
10121 symhdr->ilineMax = 0;
10122 symhdr->cbLine = 0;
10123 symhdr->idnMax = 0;
10124 symhdr->ipdMax = 0;
10125 symhdr->isymMax = 0;
10126 symhdr->ioptMax = 0;
10127 symhdr->iauxMax = 0;
10128 symhdr->issMax = 0;
10129 symhdr->issExtMax = 0;
10130 symhdr->ifdMax = 0;
10131 symhdr->crfd = 0;
10132 symhdr->iextMax = 0;
10133
10134 /* We accumulate the debugging information itself in the
10135 debug_info structure. */
10136 debug.line = NULL;
10137 debug.external_dnr = NULL;
10138 debug.external_pdr = NULL;
10139 debug.external_sym = NULL;
10140 debug.external_opt = NULL;
10141 debug.external_aux = NULL;
10142 debug.ss = NULL;
10143 debug.ssext = debug.ssext_end = NULL;
10144 debug.external_fdr = NULL;
10145 debug.external_rfd = NULL;
10146 debug.external_ext = debug.external_ext_end = NULL;
10147
10148 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10149 if (mdebug_handle == NULL)
10150 return FALSE;
10151
10152 esym.jmptbl = 0;
10153 esym.cobol_main = 0;
10154 esym.weakext = 0;
10155 esym.reserved = 0;
10156 esym.ifd = ifdNil;
10157 esym.asym.iss = issNil;
10158 esym.asym.st = stLocal;
10159 esym.asym.reserved = 0;
10160 esym.asym.index = indexNil;
10161 last = 0;
10162 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10163 {
10164 esym.asym.sc = sc[i];
10165 s = bfd_get_section_by_name (abfd, secname[i]);
10166 if (s != NULL)
10167 {
10168 esym.asym.value = s->vma;
10169 last = s->vma + s->size;
10170 }
10171 else
10172 esym.asym.value = last;
10173 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10174 secname[i], &esym))
10175 return FALSE;
10176 }
10177
10178 for (p = o->map_head.link_order; p != NULL; p = p->next)
10179 {
10180 asection *input_section;
10181 bfd *input_bfd;
10182 const struct ecoff_debug_swap *input_swap;
10183 struct ecoff_debug_info input_debug;
10184 char *eraw_src;
10185 char *eraw_end;
10186
10187 if (p->type != bfd_indirect_link_order)
10188 {
10189 if (p->type == bfd_data_link_order)
10190 continue;
10191 abort ();
10192 }
10193
10194 input_section = p->u.indirect.section;
10195 input_bfd = input_section->owner;
10196
10197 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10198 || (get_elf_backend_data (input_bfd)
10199 ->elf_backend_ecoff_debug_swap) == NULL)
10200 {
10201 /* I don't know what a non MIPS ELF bfd would be
10202 doing with a .mdebug section, but I don't really
10203 want to deal with it. */
10204 continue;
10205 }
10206
10207 input_swap = (get_elf_backend_data (input_bfd)
10208 ->elf_backend_ecoff_debug_swap);
10209
10210 BFD_ASSERT (p->size == input_section->size);
10211
10212 /* The ECOFF linking code expects that we have already
10213 read in the debugging information and set up an
10214 ecoff_debug_info structure, so we do that now. */
10215 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10216 &input_debug))
10217 return FALSE;
10218
10219 if (! (bfd_ecoff_debug_accumulate
10220 (mdebug_handle, abfd, &debug, swap, input_bfd,
10221 &input_debug, input_swap, info)))
10222 return FALSE;
10223
10224 /* Loop through the external symbols. For each one with
10225 interesting information, try to find the symbol in
10226 the linker global hash table and save the information
10227 for the output external symbols. */
10228 eraw_src = input_debug.external_ext;
10229 eraw_end = (eraw_src
10230 + (input_debug.symbolic_header.iextMax
10231 * input_swap->external_ext_size));
10232 for (;
10233 eraw_src < eraw_end;
10234 eraw_src += input_swap->external_ext_size)
10235 {
10236 EXTR ext;
10237 const char *name;
10238 struct mips_elf_link_hash_entry *h;
10239
10240 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10241 if (ext.asym.sc == scNil
10242 || ext.asym.sc == scUndefined
10243 || ext.asym.sc == scSUndefined)
10244 continue;
10245
10246 name = input_debug.ssext + ext.asym.iss;
10247 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10248 name, FALSE, FALSE, TRUE);
10249 if (h == NULL || h->esym.ifd != -2)
10250 continue;
10251
10252 if (ext.ifd != -1)
10253 {
10254 BFD_ASSERT (ext.ifd
10255 < input_debug.symbolic_header.ifdMax);
10256 ext.ifd = input_debug.ifdmap[ext.ifd];
10257 }
10258
10259 h->esym = ext;
10260 }
10261
10262 /* Free up the information we just read. */
10263 free (input_debug.line);
10264 free (input_debug.external_dnr);
10265 free (input_debug.external_pdr);
10266 free (input_debug.external_sym);
10267 free (input_debug.external_opt);
10268 free (input_debug.external_aux);
10269 free (input_debug.ss);
10270 free (input_debug.ssext);
10271 free (input_debug.external_fdr);
10272 free (input_debug.external_rfd);
10273 free (input_debug.external_ext);
10274
10275 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10276 elf_link_input_bfd ignores this section. */
10277 input_section->flags &= ~SEC_HAS_CONTENTS;
10278 }
10279
10280 if (SGI_COMPAT (abfd) && info->shared)
10281 {
10282 /* Create .rtproc section. */
10283 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10284 if (rtproc_sec == NULL)
10285 {
10286 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10287 | SEC_LINKER_CREATED | SEC_READONLY);
10288
10289 rtproc_sec = bfd_make_section_with_flags (abfd,
10290 ".rtproc",
10291 flags);
10292 if (rtproc_sec == NULL
10293 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10294 return FALSE;
10295 }
10296
10297 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10298 info, rtproc_sec,
10299 &debug))
10300 return FALSE;
10301 }
10302
10303 /* Build the external symbol information. */
10304 einfo.abfd = abfd;
10305 einfo.info = info;
10306 einfo.debug = &debug;
10307 einfo.swap = swap;
10308 einfo.failed = FALSE;
10309 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10310 mips_elf_output_extsym, &einfo);
10311 if (einfo.failed)
10312 return FALSE;
10313
10314 /* Set the size of the .mdebug section. */
10315 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10316
10317 /* Skip this section later on (I don't think this currently
10318 matters, but someday it might). */
10319 o->map_head.link_order = NULL;
10320
10321 mdebug_sec = o;
10322 }
10323
10324 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10325 {
10326 const char *subname;
10327 unsigned int c;
10328 Elf32_gptab *tab;
10329 Elf32_External_gptab *ext_tab;
10330 unsigned int j;
10331
10332 /* The .gptab.sdata and .gptab.sbss sections hold
10333 information describing how the small data area would
10334 change depending upon the -G switch. These sections
10335 not used in executables files. */
10336 if (! info->relocatable)
10337 {
10338 for (p = o->map_head.link_order; p != NULL; p = p->next)
10339 {
10340 asection *input_section;
10341
10342 if (p->type != bfd_indirect_link_order)
10343 {
10344 if (p->type == bfd_data_link_order)
10345 continue;
10346 abort ();
10347 }
10348
10349 input_section = p->u.indirect.section;
10350
10351 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10352 elf_link_input_bfd ignores this section. */
10353 input_section->flags &= ~SEC_HAS_CONTENTS;
10354 }
10355
10356 /* Skip this section later on (I don't think this
10357 currently matters, but someday it might). */
10358 o->map_head.link_order = NULL;
10359
10360 /* Really remove the section. */
10361 bfd_section_list_remove (abfd, o);
10362 --abfd->section_count;
10363
10364 continue;
10365 }
10366
10367 /* There is one gptab for initialized data, and one for
10368 uninitialized data. */
10369 if (strcmp (o->name, ".gptab.sdata") == 0)
10370 gptab_data_sec = o;
10371 else if (strcmp (o->name, ".gptab.sbss") == 0)
10372 gptab_bss_sec = o;
10373 else
10374 {
10375 (*_bfd_error_handler)
10376 (_("%s: illegal section name `%s'"),
10377 bfd_get_filename (abfd), o->name);
10378 bfd_set_error (bfd_error_nonrepresentable_section);
10379 return FALSE;
10380 }
10381
10382 /* The linker script always combines .gptab.data and
10383 .gptab.sdata into .gptab.sdata, and likewise for
10384 .gptab.bss and .gptab.sbss. It is possible that there is
10385 no .sdata or .sbss section in the output file, in which
10386 case we must change the name of the output section. */
10387 subname = o->name + sizeof ".gptab" - 1;
10388 if (bfd_get_section_by_name (abfd, subname) == NULL)
10389 {
10390 if (o == gptab_data_sec)
10391 o->name = ".gptab.data";
10392 else
10393 o->name = ".gptab.bss";
10394 subname = o->name + sizeof ".gptab" - 1;
10395 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10396 }
10397
10398 /* Set up the first entry. */
10399 c = 1;
10400 amt = c * sizeof (Elf32_gptab);
10401 tab = bfd_malloc (amt);
10402 if (tab == NULL)
10403 return FALSE;
10404 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10405 tab[0].gt_header.gt_unused = 0;
10406
10407 /* Combine the input sections. */
10408 for (p = o->map_head.link_order; p != NULL; p = p->next)
10409 {
10410 asection *input_section;
10411 bfd *input_bfd;
10412 bfd_size_type size;
10413 unsigned long last;
10414 bfd_size_type gpentry;
10415
10416 if (p->type != bfd_indirect_link_order)
10417 {
10418 if (p->type == bfd_data_link_order)
10419 continue;
10420 abort ();
10421 }
10422
10423 input_section = p->u.indirect.section;
10424 input_bfd = input_section->owner;
10425
10426 /* Combine the gptab entries for this input section one
10427 by one. We know that the input gptab entries are
10428 sorted by ascending -G value. */
10429 size = input_section->size;
10430 last = 0;
10431 for (gpentry = sizeof (Elf32_External_gptab);
10432 gpentry < size;
10433 gpentry += sizeof (Elf32_External_gptab))
10434 {
10435 Elf32_External_gptab ext_gptab;
10436 Elf32_gptab int_gptab;
10437 unsigned long val;
10438 unsigned long add;
10439 bfd_boolean exact;
10440 unsigned int look;
10441
10442 if (! (bfd_get_section_contents
10443 (input_bfd, input_section, &ext_gptab, gpentry,
10444 sizeof (Elf32_External_gptab))))
10445 {
10446 free (tab);
10447 return FALSE;
10448 }
10449
10450 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10451 &int_gptab);
10452 val = int_gptab.gt_entry.gt_g_value;
10453 add = int_gptab.gt_entry.gt_bytes - last;
10454
10455 exact = FALSE;
10456 for (look = 1; look < c; look++)
10457 {
10458 if (tab[look].gt_entry.gt_g_value >= val)
10459 tab[look].gt_entry.gt_bytes += add;
10460
10461 if (tab[look].gt_entry.gt_g_value == val)
10462 exact = TRUE;
10463 }
10464
10465 if (! exact)
10466 {
10467 Elf32_gptab *new_tab;
10468 unsigned int max;
10469
10470 /* We need a new table entry. */
10471 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10472 new_tab = bfd_realloc (tab, amt);
10473 if (new_tab == NULL)
10474 {
10475 free (tab);
10476 return FALSE;
10477 }
10478 tab = new_tab;
10479 tab[c].gt_entry.gt_g_value = val;
10480 tab[c].gt_entry.gt_bytes = add;
10481
10482 /* Merge in the size for the next smallest -G
10483 value, since that will be implied by this new
10484 value. */
10485 max = 0;
10486 for (look = 1; look < c; look++)
10487 {
10488 if (tab[look].gt_entry.gt_g_value < val
10489 && (max == 0
10490 || (tab[look].gt_entry.gt_g_value
10491 > tab[max].gt_entry.gt_g_value)))
10492 max = look;
10493 }
10494 if (max != 0)
10495 tab[c].gt_entry.gt_bytes +=
10496 tab[max].gt_entry.gt_bytes;
10497
10498 ++c;
10499 }
10500
10501 last = int_gptab.gt_entry.gt_bytes;
10502 }
10503
10504 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10505 elf_link_input_bfd ignores this section. */
10506 input_section->flags &= ~SEC_HAS_CONTENTS;
10507 }
10508
10509 /* The table must be sorted by -G value. */
10510 if (c > 2)
10511 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10512
10513 /* Swap out the table. */
10514 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10515 ext_tab = bfd_alloc (abfd, amt);
10516 if (ext_tab == NULL)
10517 {
10518 free (tab);
10519 return FALSE;
10520 }
10521
10522 for (j = 0; j < c; j++)
10523 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10524 free (tab);
10525
10526 o->size = c * sizeof (Elf32_External_gptab);
10527 o->contents = (bfd_byte *) ext_tab;
10528
10529 /* Skip this section later on (I don't think this currently
10530 matters, but someday it might). */
10531 o->map_head.link_order = NULL;
10532 }
10533 }
10534
10535 /* Invoke the regular ELF backend linker to do all the work. */
10536 if (!bfd_elf_final_link (abfd, info))
10537 return FALSE;
10538
10539 /* Now write out the computed sections. */
10540
10541 if (reginfo_sec != NULL)
10542 {
10543 Elf32_External_RegInfo ext;
10544
10545 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10546 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10547 return FALSE;
10548 }
10549
10550 if (mdebug_sec != NULL)
10551 {
10552 BFD_ASSERT (abfd->output_has_begun);
10553 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10554 swap, info,
10555 mdebug_sec->filepos))
10556 return FALSE;
10557
10558 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10559 }
10560
10561 if (gptab_data_sec != NULL)
10562 {
10563 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10564 gptab_data_sec->contents,
10565 0, gptab_data_sec->size))
10566 return FALSE;
10567 }
10568
10569 if (gptab_bss_sec != NULL)
10570 {
10571 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10572 gptab_bss_sec->contents,
10573 0, gptab_bss_sec->size))
10574 return FALSE;
10575 }
10576
10577 if (SGI_COMPAT (abfd))
10578 {
10579 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10580 if (rtproc_sec != NULL)
10581 {
10582 if (! bfd_set_section_contents (abfd, rtproc_sec,
10583 rtproc_sec->contents,
10584 0, rtproc_sec->size))
10585 return FALSE;
10586 }
10587 }
10588
10589 return TRUE;
10590 }
10591 \f
10592 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10593
10594 struct mips_mach_extension {
10595 unsigned long extension, base;
10596 };
10597
10598
10599 /* An array describing how BFD machines relate to one another. The entries
10600 are ordered topologically with MIPS I extensions listed last. */
10601
10602 static const struct mips_mach_extension mips_mach_extensions[] = {
10603 /* MIPS64 extensions. */
10604 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10605 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10606
10607 /* MIPS V extensions. */
10608 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10609
10610 /* R10000 extensions. */
10611 { bfd_mach_mips12000, bfd_mach_mips10000 },
10612
10613 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10614 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10615 better to allow vr5400 and vr5500 code to be merged anyway, since
10616 many libraries will just use the core ISA. Perhaps we could add
10617 some sort of ASE flag if this ever proves a problem. */
10618 { bfd_mach_mips5500, bfd_mach_mips5400 },
10619 { bfd_mach_mips5400, bfd_mach_mips5000 },
10620
10621 /* MIPS IV extensions. */
10622 { bfd_mach_mips5, bfd_mach_mips8000 },
10623 { bfd_mach_mips10000, bfd_mach_mips8000 },
10624 { bfd_mach_mips5000, bfd_mach_mips8000 },
10625 { bfd_mach_mips7000, bfd_mach_mips8000 },
10626 { bfd_mach_mips9000, bfd_mach_mips8000 },
10627
10628 /* VR4100 extensions. */
10629 { bfd_mach_mips4120, bfd_mach_mips4100 },
10630 { bfd_mach_mips4111, bfd_mach_mips4100 },
10631
10632 /* MIPS III extensions. */
10633 { bfd_mach_mips8000, bfd_mach_mips4000 },
10634 { bfd_mach_mips4650, bfd_mach_mips4000 },
10635 { bfd_mach_mips4600, bfd_mach_mips4000 },
10636 { bfd_mach_mips4400, bfd_mach_mips4000 },
10637 { bfd_mach_mips4300, bfd_mach_mips4000 },
10638 { bfd_mach_mips4100, bfd_mach_mips4000 },
10639 { bfd_mach_mips4010, bfd_mach_mips4000 },
10640
10641 /* MIPS32 extensions. */
10642 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10643
10644 /* MIPS II extensions. */
10645 { bfd_mach_mips4000, bfd_mach_mips6000 },
10646 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10647
10648 /* MIPS I extensions. */
10649 { bfd_mach_mips6000, bfd_mach_mips3000 },
10650 { bfd_mach_mips3900, bfd_mach_mips3000 }
10651 };
10652
10653
10654 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10655
10656 static bfd_boolean
10657 mips_mach_extends_p (unsigned long base, unsigned long extension)
10658 {
10659 size_t i;
10660
10661 if (extension == base)
10662 return TRUE;
10663
10664 if (base == bfd_mach_mipsisa32
10665 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10666 return TRUE;
10667
10668 if (base == bfd_mach_mipsisa32r2
10669 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10670 return TRUE;
10671
10672 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10673 if (extension == mips_mach_extensions[i].extension)
10674 {
10675 extension = mips_mach_extensions[i].base;
10676 if (extension == base)
10677 return TRUE;
10678 }
10679
10680 return FALSE;
10681 }
10682
10683
10684 /* Return true if the given ELF header flags describe a 32-bit binary. */
10685
10686 static bfd_boolean
10687 mips_32bit_flags_p (flagword flags)
10688 {
10689 return ((flags & EF_MIPS_32BITMODE) != 0
10690 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10691 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10692 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10693 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10694 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10695 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10696 }
10697
10698
10699 /* Merge backend specific data from an object file to the output
10700 object file when linking. */
10701
10702 bfd_boolean
10703 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10704 {
10705 flagword old_flags;
10706 flagword new_flags;
10707 bfd_boolean ok;
10708 bfd_boolean null_input_bfd = TRUE;
10709 asection *sec;
10710
10711 /* Check if we have the same endianess */
10712 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10713 {
10714 (*_bfd_error_handler)
10715 (_("%B: endianness incompatible with that of the selected emulation"),
10716 ibfd);
10717 return FALSE;
10718 }
10719
10720 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10721 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10722 return TRUE;
10723
10724 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10725 {
10726 (*_bfd_error_handler)
10727 (_("%B: ABI is incompatible with that of the selected emulation"),
10728 ibfd);
10729 return FALSE;
10730 }
10731
10732 new_flags = elf_elfheader (ibfd)->e_flags;
10733 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10734 old_flags = elf_elfheader (obfd)->e_flags;
10735
10736 if (! elf_flags_init (obfd))
10737 {
10738 elf_flags_init (obfd) = TRUE;
10739 elf_elfheader (obfd)->e_flags = new_flags;
10740 elf_elfheader (obfd)->e_ident[EI_CLASS]
10741 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10742
10743 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10744 && bfd_get_arch_info (obfd)->the_default)
10745 {
10746 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10747 bfd_get_mach (ibfd)))
10748 return FALSE;
10749 }
10750
10751 return TRUE;
10752 }
10753
10754 /* Check flag compatibility. */
10755
10756 new_flags &= ~EF_MIPS_NOREORDER;
10757 old_flags &= ~EF_MIPS_NOREORDER;
10758
10759 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10760 doesn't seem to matter. */
10761 new_flags &= ~EF_MIPS_XGOT;
10762 old_flags &= ~EF_MIPS_XGOT;
10763
10764 /* MIPSpro generates ucode info in n64 objects. Again, we should
10765 just be able to ignore this. */
10766 new_flags &= ~EF_MIPS_UCODE;
10767 old_flags &= ~EF_MIPS_UCODE;
10768
10769 /* Don't care about the PIC flags from dynamic objects; they are
10770 PIC by design. */
10771 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10772 && (ibfd->flags & DYNAMIC) != 0)
10773 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10774
10775 if (new_flags == old_flags)
10776 return TRUE;
10777
10778 /* Check to see if the input BFD actually contains any sections.
10779 If not, its flags may not have been initialised either, but it cannot
10780 actually cause any incompatibility. */
10781 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10782 {
10783 /* Ignore synthetic sections and empty .text, .data and .bss sections
10784 which are automatically generated by gas. */
10785 if (strcmp (sec->name, ".reginfo")
10786 && strcmp (sec->name, ".mdebug")
10787 && (sec->size != 0
10788 || (strcmp (sec->name, ".text")
10789 && strcmp (sec->name, ".data")
10790 && strcmp (sec->name, ".bss"))))
10791 {
10792 null_input_bfd = FALSE;
10793 break;
10794 }
10795 }
10796 if (null_input_bfd)
10797 return TRUE;
10798
10799 ok = TRUE;
10800
10801 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10802 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10803 {
10804 (*_bfd_error_handler)
10805 (_("%B: warning: linking PIC files with non-PIC files"),
10806 ibfd);
10807 ok = TRUE;
10808 }
10809
10810 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10811 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10812 if (! (new_flags & EF_MIPS_PIC))
10813 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10814
10815 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10816 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10817
10818 /* Compare the ISAs. */
10819 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10820 {
10821 (*_bfd_error_handler)
10822 (_("%B: linking 32-bit code with 64-bit code"),
10823 ibfd);
10824 ok = FALSE;
10825 }
10826 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10827 {
10828 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10829 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10830 {
10831 /* Copy the architecture info from IBFD to OBFD. Also copy
10832 the 32-bit flag (if set) so that we continue to recognise
10833 OBFD as a 32-bit binary. */
10834 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10835 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10836 elf_elfheader (obfd)->e_flags
10837 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10838
10839 /* Copy across the ABI flags if OBFD doesn't use them
10840 and if that was what caused us to treat IBFD as 32-bit. */
10841 if ((old_flags & EF_MIPS_ABI) == 0
10842 && mips_32bit_flags_p (new_flags)
10843 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10844 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10845 }
10846 else
10847 {
10848 /* The ISAs aren't compatible. */
10849 (*_bfd_error_handler)
10850 (_("%B: linking %s module with previous %s modules"),
10851 ibfd,
10852 bfd_printable_name (ibfd),
10853 bfd_printable_name (obfd));
10854 ok = FALSE;
10855 }
10856 }
10857
10858 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10859 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10860
10861 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10862 does set EI_CLASS differently from any 32-bit ABI. */
10863 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10864 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10865 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10866 {
10867 /* Only error if both are set (to different values). */
10868 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10869 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10870 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10871 {
10872 (*_bfd_error_handler)
10873 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10874 ibfd,
10875 elf_mips_abi_name (ibfd),
10876 elf_mips_abi_name (obfd));
10877 ok = FALSE;
10878 }
10879 new_flags &= ~EF_MIPS_ABI;
10880 old_flags &= ~EF_MIPS_ABI;
10881 }
10882
10883 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10884 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10885 {
10886 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10887
10888 new_flags &= ~ EF_MIPS_ARCH_ASE;
10889 old_flags &= ~ EF_MIPS_ARCH_ASE;
10890 }
10891
10892 /* Warn about any other mismatches */
10893 if (new_flags != old_flags)
10894 {
10895 (*_bfd_error_handler)
10896 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10897 ibfd, (unsigned long) new_flags,
10898 (unsigned long) old_flags);
10899 ok = FALSE;
10900 }
10901
10902 if (! ok)
10903 {
10904 bfd_set_error (bfd_error_bad_value);
10905 return FALSE;
10906 }
10907
10908 return TRUE;
10909 }
10910
10911 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
10912
10913 bfd_boolean
10914 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
10915 {
10916 BFD_ASSERT (!elf_flags_init (abfd)
10917 || elf_elfheader (abfd)->e_flags == flags);
10918
10919 elf_elfheader (abfd)->e_flags = flags;
10920 elf_flags_init (abfd) = TRUE;
10921 return TRUE;
10922 }
10923
10924 bfd_boolean
10925 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
10926 {
10927 FILE *file = ptr;
10928
10929 BFD_ASSERT (abfd != NULL && ptr != NULL);
10930
10931 /* Print normal ELF private data. */
10932 _bfd_elf_print_private_bfd_data (abfd, ptr);
10933
10934 /* xgettext:c-format */
10935 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10936
10937 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
10938 fprintf (file, _(" [abi=O32]"));
10939 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
10940 fprintf (file, _(" [abi=O64]"));
10941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
10942 fprintf (file, _(" [abi=EABI32]"));
10943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
10944 fprintf (file, _(" [abi=EABI64]"));
10945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
10946 fprintf (file, _(" [abi unknown]"));
10947 else if (ABI_N32_P (abfd))
10948 fprintf (file, _(" [abi=N32]"));
10949 else if (ABI_64_P (abfd))
10950 fprintf (file, _(" [abi=64]"));
10951 else
10952 fprintf (file, _(" [no abi set]"));
10953
10954 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
10955 fprintf (file, _(" [mips1]"));
10956 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
10957 fprintf (file, _(" [mips2]"));
10958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
10959 fprintf (file, _(" [mips3]"));
10960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
10961 fprintf (file, _(" [mips4]"));
10962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
10963 fprintf (file, _(" [mips5]"));
10964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
10965 fprintf (file, _(" [mips32]"));
10966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
10967 fprintf (file, _(" [mips64]"));
10968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
10969 fprintf (file, _(" [mips32r2]"));
10970 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
10971 fprintf (file, _(" [mips64r2]"));
10972 else
10973 fprintf (file, _(" [unknown ISA]"));
10974
10975 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
10976 fprintf (file, _(" [mdmx]"));
10977
10978 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
10979 fprintf (file, _(" [mips16]"));
10980
10981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
10982 fprintf (file, _(" [32bitmode]"));
10983 else
10984 fprintf (file, _(" [not 32bitmode]"));
10985
10986 fputc ('\n', file);
10987
10988 return TRUE;
10989 }
10990
10991 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
10992 {
10993 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10994 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10995 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
10996 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10997 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10998 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
10999 { NULL, 0, 0, 0, 0 }
11000 };
11001
11002 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
11003 even if this is not a defintion of the symbol. */
11004 void
11005 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11006 const Elf_Internal_Sym *isym,
11007 bfd_boolean definition,
11008 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11009 {
11010 if (! definition
11011 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11012 h->other |= STO_OPTIONAL;
11013 }
11014
11015 /* Decide whether an undefined symbol is special and can be ignored.
11016 This is the case for OPTIONAL symbols on IRIX. */
11017 bfd_boolean
11018 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11019 {
11020 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11021 }