* elfxx-mips.c (mips_elf_multi_got): New function.
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) (sec)->used_by_bfd)
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
167 GOTs). */
168 long max_unref_got_dynindx;
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx;
172 };
173
174 /* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
176
177 struct mips_elf_link_hash_entry
178 {
179 struct elf_link_hash_entry root;
180
181 /* External symbol information. */
182 EXTR esym;
183
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 this symbol. */
186 unsigned int possibly_dynamic_relocs;
187
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
190 bfd_boolean readonly_reloc;
191
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index;
195
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 p. 4-20. */
200 bfd_boolean no_fn_stub;
201
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
204 asection *fn_stub;
205
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
208 bfd_boolean need_fn_stub;
209
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
212 asection *call_stub;
213
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection *call_fp_stub;
217
218 /* Are we forced local? .*/
219 bfd_boolean forced_local;
220 };
221
222 /* MIPS ELF linker hash table. */
223
224 struct mips_elf_link_hash_table
225 {
226 struct elf_link_hash_table root;
227 #if 0
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231 #endif
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
237 entry is set to the address of __rld_obj_head as in IRIX5. */
238 bfd_boolean use_rld_obj_head;
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 bfd_vma rld_value;
241 /* This is set if we see any mips16 stub sections. */
242 bfd_boolean mips16_stubs_seen;
243 };
244
245 /* Structure used to pass information to mips_elf_output_extsym. */
246
247 struct extsym_info
248 {
249 bfd *abfd;
250 struct bfd_link_info *info;
251 struct ecoff_debug_info *debug;
252 const struct ecoff_debug_swap *swap;
253 bfd_boolean failed;
254 };
255
256 /* The names of the runtime procedure table symbols used on IRIX5. */
257
258 static const char * const mips_elf_dynsym_rtproc_names[] =
259 {
260 "_procedure_table",
261 "_procedure_string_table",
262 "_procedure_table_size",
263 NULL
264 };
265
266 /* These structures are used to generate the .compact_rel section on
267 IRIX5. */
268
269 typedef struct
270 {
271 unsigned long id1; /* Always one? */
272 unsigned long num; /* Number of compact relocation entries. */
273 unsigned long id2; /* Always two? */
274 unsigned long offset; /* The file offset of the first relocation. */
275 unsigned long reserved0; /* Zero? */
276 unsigned long reserved1; /* Zero? */
277 } Elf32_compact_rel;
278
279 typedef struct
280 {
281 bfd_byte id1[4];
282 bfd_byte num[4];
283 bfd_byte id2[4];
284 bfd_byte offset[4];
285 bfd_byte reserved0[4];
286 bfd_byte reserved1[4];
287 } Elf32_External_compact_rel;
288
289 typedef struct
290 {
291 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype : 4; /* Relocation types. See below. */
293 unsigned int dist2to : 8;
294 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst; /* KONST field. See below. */
296 unsigned long vaddr; /* VADDR to be relocated. */
297 } Elf32_crinfo;
298
299 typedef struct
300 {
301 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype : 4; /* Relocation types. See below. */
303 unsigned int dist2to : 8;
304 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst; /* KONST field. See below. */
306 } Elf32_crinfo2;
307
308 typedef struct
309 {
310 bfd_byte info[4];
311 bfd_byte konst[4];
312 bfd_byte vaddr[4];
313 } Elf32_External_crinfo;
314
315 typedef struct
316 {
317 bfd_byte info[4];
318 bfd_byte konst[4];
319 } Elf32_External_crinfo2;
320
321 /* These are the constants used to swap the bitfields in a crinfo. */
322
323 #define CRINFO_CTYPE (0x1)
324 #define CRINFO_CTYPE_SH (31)
325 #define CRINFO_RTYPE (0xf)
326 #define CRINFO_RTYPE_SH (27)
327 #define CRINFO_DIST2TO (0xff)
328 #define CRINFO_DIST2TO_SH (19)
329 #define CRINFO_RELVADDR (0x7ffff)
330 #define CRINFO_RELVADDR_SH (0)
331
332 /* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335 #define CRF_MIPS_LONG 1
336 #define CRF_MIPS_SHORT 0
337
338 /* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
340
341 (type) (konst)
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
346 */
347
348 #define CRT_MIPS_REL32 0xa
349 #define CRT_MIPS_WORD 0xb
350 #define CRT_MIPS_GPHI_LO 0xc
351 #define CRT_MIPS_JMPAD 0xd
352
353 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357 \f
358 /* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
360
361 typedef struct runtime_pdr {
362 bfd_vma adr; /* memory address of start of procedure */
363 long regmask; /* save register mask */
364 long regoffset; /* save register offset */
365 long fregmask; /* save floating point register mask */
366 long fregoffset; /* save floating point register offset */
367 long frameoffset; /* frame size */
368 short framereg; /* frame pointer register */
369 short pcreg; /* offset or reg of return pc */
370 long irpss; /* index into the runtime string table */
371 long reserved;
372 struct exception_info *exception_info;/* pointer to exception array */
373 } RPDR, *pRPDR;
374 #define cbRPDR sizeof (RPDR)
375 #define rpdNil ((pRPDR) 0)
376 \f
377 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
379 static void ecoff_swap_rpdr_out
380 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
381 static bfd_boolean mips_elf_create_procedure_table
382 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
383 struct ecoff_debug_info *));
384 static bfd_boolean mips_elf_check_mips16_stubs
385 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
386 static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
388 static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
390 static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
392 static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394 #if 0
395 static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397 #endif
398 static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
400 static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
402 static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
404 static bfd_boolean mips_elf_output_extsym
405 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
406 static int gptab_compare PARAMS ((const void *, const void *));
407 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
408 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
409 static struct mips_got_info *mips_elf_got_info
410 PARAMS ((bfd *, asection **));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
438 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
439 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
441 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
442 static bfd_boolean mips_elf_create_compact_rel_section
443 PARAMS ((bfd *, struct bfd_link_info *));
444 static bfd_boolean mips_elf_create_got_section
445 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
446 static asection *mips_elf_create_msym_section
447 PARAMS ((bfd *));
448 static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
450 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
451 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
452 bfd_boolean *, bfd_boolean));
453 static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
455 static bfd_boolean mips_elf_perform_relocation
456 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
457 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
458 bfd_boolean));
459 static bfd_boolean mips_elf_stub_section_p
460 PARAMS ((bfd *, asection *));
461 static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd *, unsigned int));
463 static bfd_boolean mips_elf_create_dynamic_relocation
464 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
465 struct mips_elf_link_hash_entry *, asection *,
466 bfd_vma, bfd_vma *, asection *));
467 static void mips_set_isa_flags PARAMS ((bfd *));
468 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
469 static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
471 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
472 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
473 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
474 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
475 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
476
477 static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
479 asection *, bfd_size_type));
480 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
481 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
482 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
483 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
484 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
485 static int mips_elf_merge_gots PARAMS ((void **, void *));
486 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
487 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
488 static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info *));
490 static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd *, struct mips_got_info *, bfd *));
492 static struct mips_got_info *mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info *, bfd *));
494
495 /* This will be used when we sort the dynamic relocation records. */
496 static bfd *reldyn_sorting_bfd;
497
498 /* Nonzero if ABFD is using the N32 ABI. */
499
500 #define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502
503 /* Nonzero if ABFD is using the N64 ABI. */
504 #define ABI_64_P(abfd) \
505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
506
507 /* Nonzero if ABFD is using NewABI conventions. */
508 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509
510 /* The IRIX compatibility level we are striving for. */
511 #define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513
514 /* Whether we are trying to be compatible with IRIX at all. */
515 #define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
517
518 /* The name of the options section. */
519 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
521
522 /* The name of the stub section. */
523 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
525
526 /* The size of an external REL relocation. */
527 #define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
529
530 /* The size of an external dynamic table entry. */
531 #define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533
534 /* The size of a GOT entry. */
535 #define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
537
538 /* The size of a symbol-table entry. */
539 #define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
541
542 /* The default alignment for sections, as a power of two. */
543 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
545
546 /* Get word-sized data. */
547 #define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549
550 /* Put out word-sized data. */
551 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 (ABI_64_P (abfd) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
555
556 /* Add a dynamic symbol table-entry. */
557 #ifdef BFD64
558 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562 #else
563 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
565 ? (abort (), FALSE) \
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
567 #endif
568
569 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571
572 /* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
588
589 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591 #define MINUS_ONE (((bfd_vma)0) - 1)
592
593 /* The number of local .got entries we reserve. */
594 #define MIPS_RESERVED_GOTNO (2)
595
596 /* The offset of $gp from the beginning of the .got section. */
597 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598
599 /* The maximum size of the GOT for it to be addressable using 16-bit
600 offsets from $gp. */
601 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602
603 /* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
605 #define STUB_LW(abfd) \
606 ((ABI_64_P (abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
609 #define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611 #define STUB_JALR 0x0320f809 /* jal t9 */
612 #define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614 #define MIPS_FUNCTION_STUB_SIZE (16)
615
616 /* The name of the dynamic interpreter. This is put in the .interp
617 section. */
618
619 #define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
623
624 #ifdef BFD64
625 #define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
627 #define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629 #define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631 #define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633 #else
634 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
635 #define ELF_R_SYM(bfd, i) \
636 (ELF32_R_SYM (i))
637 #define ELF_R_TYPE(bfd, i) \
638 (ELF32_R_TYPE (i))
639 #define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
641 #endif
642 \f
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
645
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
654
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
661
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
669 $f0/$f1 and $2/$3.)
670
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
674
675 We record any stubs that we find in the symbol table. */
676
677 #define FN_STUB ".mips16.fn."
678 #define CALL_STUB ".mips16.call."
679 #define CALL_FP_STUB ".mips16.call.fp."
680 \f
681 /* Look up an entry in a MIPS ELF linker hash table. */
682
683 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
686 (copy), (follow)))
687
688 /* Traverse a MIPS ELF linker hash table. */
689
690 #define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
692 (&(table)->root, \
693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
694 (info)))
695
696 /* Get the MIPS ELF linker hash table from a link_info structure. */
697
698 #define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
700
701 /* Create an entry in a MIPS ELF linker hash table. */
702
703 static struct bfd_hash_entry *
704 mips_elf_link_hash_newfunc (entry, table, string)
705 struct bfd_hash_entry *entry;
706 struct bfd_hash_table *table;
707 const char *string;
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == (struct mips_elf_link_hash_entry *) NULL)
715 ret = ((struct mips_elf_link_hash_entry *)
716 bfd_hash_allocate (table,
717 sizeof (struct mips_elf_link_hash_entry)));
718 if (ret == (struct mips_elf_link_hash_entry *) NULL)
719 return (struct bfd_hash_entry *) ret;
720
721 /* Call the allocation method of the superclass. */
722 ret = ((struct mips_elf_link_hash_entry *)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 table, string));
725 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 {
727 /* Set local fields. */
728 memset (&ret->esym, 0, sizeof (EXTR));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
731 ret->esym.ifd = -2;
732 ret->possibly_dynamic_relocs = 0;
733 ret->readonly_reloc = FALSE;
734 ret->min_dyn_reloc_index = 0;
735 ret->no_fn_stub = FALSE;
736 ret->fn_stub = NULL;
737 ret->need_fn_stub = FALSE;
738 ret->call_stub = NULL;
739 ret->call_fp_stub = NULL;
740 ret->forced_local = FALSE;
741 }
742
743 return (struct bfd_hash_entry *) ret;
744 }
745
746 bfd_boolean
747 _bfd_mips_elf_new_section_hook (abfd, sec)
748 bfd *abfd;
749 asection *sec;
750 {
751 struct _mips_elf_section_data *sdata;
752 bfd_size_type amt = sizeof (*sdata);
753
754 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
755 if (sdata == NULL)
756 return FALSE;
757 sec->used_by_bfd = (PTR) sdata;
758
759 return _bfd_elf_new_section_hook (abfd, sec);
760 }
761 \f
762 /* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
764
765 bfd_boolean
766 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
767 bfd *abfd;
768 asection *section;
769 struct ecoff_debug_info *debug;
770 {
771 HDRR *symhdr;
772 const struct ecoff_debug_swap *swap;
773 char *ext_hdr = NULL;
774
775 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
776 memset (debug, 0, sizeof (*debug));
777
778 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
779 if (ext_hdr == NULL && swap->external_hdr_size != 0)
780 goto error_return;
781
782 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
783 swap->external_hdr_size))
784 goto error_return;
785
786 symhdr = &debug->symbolic_header;
787 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788
789 /* The symbolic header contains absolute file offsets and sizes to
790 read. */
791 #define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
793 debug->ptr = NULL; \
794 else \
795 { \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
799 goto error_return; \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
802 goto error_return; \
803 }
804
805 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
807 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
808 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
809 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
810 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 union aux_ext *);
812 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
813 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
814 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
815 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
816 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
817 #undef READ
818
819 debug->fdr = NULL;
820 debug->adjust = NULL;
821
822 return TRUE;
823
824 error_return:
825 if (ext_hdr != NULL)
826 free (ext_hdr);
827 if (debug->line != NULL)
828 free (debug->line);
829 if (debug->external_dnr != NULL)
830 free (debug->external_dnr);
831 if (debug->external_pdr != NULL)
832 free (debug->external_pdr);
833 if (debug->external_sym != NULL)
834 free (debug->external_sym);
835 if (debug->external_opt != NULL)
836 free (debug->external_opt);
837 if (debug->external_aux != NULL)
838 free (debug->external_aux);
839 if (debug->ss != NULL)
840 free (debug->ss);
841 if (debug->ssext != NULL)
842 free (debug->ssext);
843 if (debug->external_fdr != NULL)
844 free (debug->external_fdr);
845 if (debug->external_rfd != NULL)
846 free (debug->external_rfd);
847 if (debug->external_ext != NULL)
848 free (debug->external_ext);
849 return FALSE;
850 }
851 \f
852 /* Swap RPDR (runtime procedure table entry) for output. */
853
854 static void
855 ecoff_swap_rpdr_out (abfd, in, ex)
856 bfd *abfd;
857 const RPDR *in;
858 struct rpdr_ext *ex;
859 {
860 H_PUT_S32 (abfd, in->adr, ex->p_adr);
861 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
862 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
863 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
864 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
865 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866
867 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
868 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869
870 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871 #if 0 /* FIXME */
872 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
873 #endif
874 }
875
876 /* Create a runtime procedure table from the .mdebug section. */
877
878 static bfd_boolean
879 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
880 PTR handle;
881 bfd *abfd;
882 struct bfd_link_info *info;
883 asection *s;
884 struct ecoff_debug_info *debug;
885 {
886 const struct ecoff_debug_swap *swap;
887 HDRR *hdr = &debug->symbolic_header;
888 RPDR *rpdr, *rp;
889 struct rpdr_ext *erp;
890 PTR rtproc;
891 struct pdr_ext *epdr;
892 struct sym_ext *esym;
893 char *ss, **sv;
894 char *str;
895 bfd_size_type size;
896 bfd_size_type count;
897 unsigned long sindex;
898 unsigned long i;
899 PDR pdr;
900 SYMR sym;
901 const char *no_name_func = _("static procedure (no name)");
902
903 epdr = NULL;
904 rpdr = NULL;
905 esym = NULL;
906 ss = NULL;
907 sv = NULL;
908
909 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910
911 sindex = strlen (no_name_func) + 1;
912 count = hdr->ipdMax;
913 if (count > 0)
914 {
915 size = swap->external_pdr_size;
916
917 epdr = (struct pdr_ext *) bfd_malloc (size * count);
918 if (epdr == NULL)
919 goto error_return;
920
921 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
922 goto error_return;
923
924 size = sizeof (RPDR);
925 rp = rpdr = (RPDR *) bfd_malloc (size * count);
926 if (rpdr == NULL)
927 goto error_return;
928
929 size = sizeof (char *);
930 sv = (char **) bfd_malloc (size * count);
931 if (sv == NULL)
932 goto error_return;
933
934 count = hdr->isymMax;
935 size = swap->external_sym_size;
936 esym = (struct sym_ext *) bfd_malloc (size * count);
937 if (esym == NULL)
938 goto error_return;
939
940 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
941 goto error_return;
942
943 count = hdr->issMax;
944 ss = (char *) bfd_malloc (count);
945 if (ss == NULL)
946 goto error_return;
947 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
948 goto error_return;
949
950 count = hdr->ipdMax;
951 for (i = 0; i < (unsigned long) count; i++, rp++)
952 {
953 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
954 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->adr = sym.value;
956 rp->regmask = pdr.regmask;
957 rp->regoffset = pdr.regoffset;
958 rp->fregmask = pdr.fregmask;
959 rp->fregoffset = pdr.fregoffset;
960 rp->frameoffset = pdr.frameoffset;
961 rp->framereg = pdr.framereg;
962 rp->pcreg = pdr.pcreg;
963 rp->irpss = sindex;
964 sv[i] = ss + sym.iss;
965 sindex += strlen (sv[i]) + 1;
966 }
967 }
968
969 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
970 size = BFD_ALIGN (size, 16);
971 rtproc = (PTR) bfd_alloc (abfd, size);
972 if (rtproc == NULL)
973 {
974 mips_elf_hash_table (info)->procedure_count = 0;
975 goto error_return;
976 }
977
978 mips_elf_hash_table (info)->procedure_count = count + 2;
979
980 erp = (struct rpdr_ext *) rtproc;
981 memset (erp, 0, sizeof (struct rpdr_ext));
982 erp++;
983 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
984 strcpy (str, no_name_func);
985 str += strlen (no_name_func) + 1;
986 for (i = 0; i < count; i++)
987 {
988 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 strcpy (str, sv[i]);
990 str += strlen (sv[i]) + 1;
991 }
992 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993
994 /* Set the size and contents of .rtproc section. */
995 s->_raw_size = size;
996 s->contents = (bfd_byte *) rtproc;
997
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s->link_order_head = (struct bfd_link_order *) NULL;
1001
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012
1013 return TRUE;
1014
1015 error_return:
1016 if (epdr != NULL)
1017 free (epdr);
1018 if (rpdr != NULL)
1019 free (rpdr);
1020 if (esym != NULL)
1021 free (esym);
1022 if (ss != NULL)
1023 free (ss);
1024 if (sv != NULL)
1025 free (sv);
1026 return FALSE;
1027 }
1028
1029 /* Check the mips16 stubs for a particular symbol, and see if we can
1030 discard them. */
1031
1032 static bfd_boolean
1033 mips_elf_check_mips16_stubs (h, data)
1034 struct mips_elf_link_hash_entry *h;
1035 PTR data ATTRIBUTE_UNUSED;
1036 {
1037 if (h->root.root.type == bfd_link_hash_warning)
1038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039
1040 if (h->fn_stub != NULL
1041 && ! h->need_fn_stub)
1042 {
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h->fn_stub->_raw_size = 0;
1047 h->fn_stub->_cooked_size = 0;
1048 h->fn_stub->flags &= ~SEC_RELOC;
1049 h->fn_stub->reloc_count = 0;
1050 h->fn_stub->flags |= SEC_EXCLUDE;
1051 }
1052
1053 if (h->call_stub != NULL
1054 && h->root.other == STO_MIPS16)
1055 {
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h->call_stub->_raw_size = 0;
1060 h->call_stub->_cooked_size = 0;
1061 h->call_stub->flags &= ~SEC_RELOC;
1062 h->call_stub->reloc_count = 0;
1063 h->call_stub->flags |= SEC_EXCLUDE;
1064 }
1065
1066 if (h->call_fp_stub != NULL
1067 && h->root.other == STO_MIPS16)
1068 {
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h->call_fp_stub->_raw_size = 0;
1073 h->call_fp_stub->_cooked_size = 0;
1074 h->call_fp_stub->flags &= ~SEC_RELOC;
1075 h->call_fp_stub->reloc_count = 0;
1076 h->call_fp_stub->flags |= SEC_EXCLUDE;
1077 }
1078
1079 return TRUE;
1080 }
1081 \f
1082 bfd_reloc_status_type
1083 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1084 relocateable, data, gp)
1085 bfd *abfd;
1086 asymbol *symbol;
1087 arelent *reloc_entry;
1088 asection *input_section;
1089 bfd_boolean relocateable;
1090 PTR data;
1091 bfd_vma gp;
1092 {
1093 bfd_vma relocation;
1094 unsigned long insn;
1095 unsigned long val;
1096
1097 if (bfd_is_com_section (symbol->section))
1098 relocation = 0;
1099 else
1100 relocation = symbol->value;
1101
1102 relocation += symbol->section->output_section->vma;
1103 relocation += symbol->section->output_offset;
1104
1105 if (reloc_entry->address > input_section->_cooked_size)
1106 return bfd_reloc_outofrange;
1107
1108 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1109
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry->howto->src_mask == 0)
1112 {
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val = reloc_entry->addend;
1115 }
1116 else
1117 {
1118 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1119 if (val & 0x8000)
1120 val -= 0x10000;
1121 }
1122
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1126 if (! relocateable
1127 || (symbol->flags & BSF_SECTION_SYM) != 0)
1128 val += relocation - gp;
1129
1130 insn = (insn & ~0xffff) | (val & 0xffff);
1131 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1132
1133 if (relocateable)
1134 reloc_entry->address += input_section->output_offset;
1135
1136 else if ((long) val >= 0x8000 || (long) val < -0x8000)
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->abfd->id + entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1590 : entry->d.h->root.root.root.hash);
1591 }
1592
1593 static int
1594 mips_elf_got_entry_eq (entry1, entry2)
1595 const PTR entry1;
1596 const PTR entry2;
1597 {
1598 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1599 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1600
1601 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1602 && (! e1->abfd ? e1->d.address == e2->d.address
1603 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1604 : e1->d.h == e2->d.h);
1605 }
1606
1607 /* multi_got_entries are still a match in the case of global objects,
1608 even if the input bfd in which they're referenced differs, so the
1609 hash computation and compare functions are adjusted
1610 accordingly. */
1611
1612 static hashval_t
1613 mips_elf_multi_got_entry_hash (entry_)
1614 const PTR entry_;
1615 {
1616 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1617
1618 return entry->symndx
1619 + (! entry->abfd
1620 ? mips_elf_hash_bfd_vma (entry->d.address)
1621 : entry->symndx >= 0
1622 ? (entry->abfd->id
1623 + mips_elf_hash_bfd_vma (entry->d.addend))
1624 : entry->d.h->root.root.root.hash);
1625 }
1626
1627 static int
1628 mips_elf_multi_got_entry_eq (entry1, entry2)
1629 const PTR entry1;
1630 const PTR entry2;
1631 {
1632 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1633 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1634
1635 return e1->symndx == e2->symndx
1636 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1637 : e1->abfd == NULL || e2->abfd == NULL
1638 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1639 : e1->d.h == e2->d.h);
1640 }
1641 \f
1642 /* Returns the dynamic relocation section for DYNOBJ. */
1643
1644 static asection *
1645 mips_elf_rel_dyn_section (dynobj, create_p)
1646 bfd *dynobj;
1647 bfd_boolean create_p;
1648 {
1649 static const char dname[] = ".rel.dyn";
1650 asection *sreloc;
1651
1652 sreloc = bfd_get_section_by_name (dynobj, dname);
1653 if (sreloc == NULL && create_p)
1654 {
1655 sreloc = bfd_make_section (dynobj, dname);
1656 if (sreloc == NULL
1657 || ! bfd_set_section_flags (dynobj, sreloc,
1658 (SEC_ALLOC
1659 | SEC_LOAD
1660 | SEC_HAS_CONTENTS
1661 | SEC_IN_MEMORY
1662 | SEC_LINKER_CREATED
1663 | SEC_READONLY))
1664 || ! bfd_set_section_alignment (dynobj, sreloc,
1665 4))
1666 return NULL;
1667 }
1668 return sreloc;
1669 }
1670
1671 /* Returns the GOT section for ABFD. */
1672
1673 static asection *
1674 mips_elf_got_section (abfd, maybe_excluded)
1675 bfd *abfd;
1676 bfd_boolean maybe_excluded;
1677 {
1678 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1679 if (sgot == NULL
1680 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1681 return NULL;
1682 return sgot;
1683 }
1684
1685 /* Returns the GOT information associated with the link indicated by
1686 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1687 section. */
1688
1689 static struct mips_got_info *
1690 mips_elf_got_info (abfd, sgotp)
1691 bfd *abfd;
1692 asection **sgotp;
1693 {
1694 asection *sgot;
1695 struct mips_got_info *g;
1696
1697 sgot = mips_elf_got_section (abfd, TRUE);
1698 BFD_ASSERT (sgot != NULL);
1699 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1700 g = mips_elf_section_data (sgot)->u.got_info;
1701 BFD_ASSERT (g != NULL);
1702
1703 if (sgotp)
1704 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1705
1706 return g;
1707 }
1708
1709 /* Returns the GOT offset at which the indicated address can be found.
1710 If there is not yet a GOT entry for this value, create one. Returns
1711 -1 if no satisfactory GOT offset can be found. */
1712
1713 static bfd_vma
1714 mips_elf_local_got_index (abfd, ibfd, info, value)
1715 bfd *abfd, *ibfd;
1716 struct bfd_link_info *info;
1717 bfd_vma value;
1718 {
1719 asection *sgot;
1720 struct mips_got_info *g;
1721 struct mips_got_entry *entry;
1722
1723 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1724
1725 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1726 if (entry)
1727 return entry->gotidx;
1728 else
1729 return MINUS_ONE;
1730 }
1731
1732 /* Returns the GOT index for the global symbol indicated by H. */
1733
1734 static bfd_vma
1735 mips_elf_global_got_index (abfd, ibfd, h)
1736 bfd *abfd, *ibfd;
1737 struct elf_link_hash_entry *h;
1738 {
1739 bfd_vma index;
1740 asection *sgot;
1741 struct mips_got_info *g, *gg;
1742 long global_got_dynindx = 0;
1743
1744 gg = g = mips_elf_got_info (abfd, &sgot);
1745 if (g->bfd2got && ibfd)
1746 {
1747 struct mips_got_entry e, *p;
1748
1749 BFD_ASSERT (h->dynindx >= 0);
1750
1751 g = mips_elf_got_for_ibfd (g, ibfd);
1752 if (g->next != gg)
1753 {
1754 e.abfd = ibfd;
1755 e.symndx = -1;
1756 e.d.h = (struct mips_elf_link_hash_entry *)h;
1757
1758 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1759
1760 BFD_ASSERT (p->gotidx > 0);
1761 return p->gotidx;
1762 }
1763 }
1764
1765 if (gg->global_gotsym != NULL)
1766 global_got_dynindx = gg->global_gotsym->dynindx;
1767
1768 /* Once we determine the global GOT entry with the lowest dynamic
1769 symbol table index, we must put all dynamic symbols with greater
1770 indices into the GOT. That makes it easy to calculate the GOT
1771 offset. */
1772 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1773 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1774 * MIPS_ELF_GOT_SIZE (abfd));
1775 BFD_ASSERT (index < sgot->_raw_size);
1776
1777 return index;
1778 }
1779
1780 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1781 are supposed to be placed at small offsets in the GOT, i.e.,
1782 within 32KB of GP. Return the index into the GOT for this page,
1783 and store the offset from this entry to the desired address in
1784 OFFSETP, if it is non-NULL. */
1785
1786 static bfd_vma
1787 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1788 bfd *abfd, *ibfd;
1789 struct bfd_link_info *info;
1790 bfd_vma value;
1791 bfd_vma *offsetp;
1792 {
1793 asection *sgot;
1794 struct mips_got_info *g;
1795 bfd_vma index;
1796 struct mips_got_entry *entry;
1797
1798 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1799
1800 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1801 (value + 0x8000)
1802 & (~(bfd_vma)0xffff));
1803
1804 if (!entry)
1805 return MINUS_ONE;
1806
1807 index = entry->gotidx;
1808
1809 if (offsetp)
1810 *offsetp = value - entry->d.address;
1811
1812 return index;
1813 }
1814
1815 /* Find a GOT entry whose higher-order 16 bits are the same as those
1816 for value. Return the index into the GOT for this entry. */
1817
1818 static bfd_vma
1819 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1820 bfd *abfd, *ibfd;
1821 struct bfd_link_info *info;
1822 bfd_vma value;
1823 bfd_boolean external;
1824 {
1825 asection *sgot;
1826 struct mips_got_info *g;
1827 struct mips_got_entry *entry;
1828
1829 if (! external)
1830 {
1831 /* Although the ABI says that it is "the high-order 16 bits" that we
1832 want, it is really the %high value. The complete value is
1833 calculated with a `addiu' of a LO16 relocation, just as with a
1834 HI16/LO16 pair. */
1835 value = mips_elf_high (value) << 16;
1836 }
1837
1838 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1839
1840 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1841 if (entry)
1842 return entry->gotidx;
1843 else
1844 return MINUS_ONE;
1845 }
1846
1847 /* Returns the offset for the entry at the INDEXth position
1848 in the GOT. */
1849
1850 static bfd_vma
1851 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1852 bfd *dynobj;
1853 bfd *output_bfd;
1854 bfd *input_bfd;
1855 bfd_vma index;
1856 {
1857 asection *sgot;
1858 bfd_vma gp;
1859 struct mips_got_info *g;
1860
1861 g = mips_elf_got_info (dynobj, &sgot);
1862 gp = _bfd_get_gp_value (output_bfd)
1863 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1864
1865 return sgot->output_section->vma + sgot->output_offset + index - gp;
1866 }
1867
1868 /* Create a local GOT entry for VALUE. Return the index of the entry,
1869 or -1 if it could not be created. */
1870
1871 static struct mips_got_entry *
1872 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1873 bfd *abfd, *ibfd;
1874 struct mips_got_info *gg;
1875 asection *sgot;
1876 bfd_vma value;
1877 {
1878 struct mips_got_entry entry, **loc;
1879 struct mips_got_info *g;
1880
1881 entry.abfd = NULL;
1882 entry.symndx = -1;
1883 entry.d.address = value;
1884
1885 g = mips_elf_got_for_ibfd (gg, ibfd);
1886 if (g == NULL)
1887 {
1888 g = mips_elf_got_for_ibfd (gg, abfd);
1889 BFD_ASSERT (g != NULL);
1890 }
1891
1892 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1893 INSERT);
1894 if (*loc)
1895 return *loc;
1896
1897 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1898
1899 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1900
1901 if (! *loc)
1902 return NULL;
1903
1904 memcpy (*loc, &entry, sizeof entry);
1905
1906 if (g->assigned_gotno >= g->local_gotno)
1907 {
1908 (*loc)->gotidx = -1;
1909 /* We didn't allocate enough space in the GOT. */
1910 (*_bfd_error_handler)
1911 (_("not enough GOT space for local GOT entries"));
1912 bfd_set_error (bfd_error_bad_value);
1913 return NULL;
1914 }
1915
1916 MIPS_ELF_PUT_WORD (abfd, value,
1917 (sgot->contents + entry.gotidx));
1918
1919 return *loc;
1920 }
1921
1922 /* Sort the dynamic symbol table so that symbols that need GOT entries
1923 appear towards the end. This reduces the amount of GOT space
1924 required. MAX_LOCAL is used to set the number of local symbols
1925 known to be in the dynamic symbol table. During
1926 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1927 section symbols are added and the count is higher. */
1928
1929 static bfd_boolean
1930 mips_elf_sort_hash_table (info, max_local)
1931 struct bfd_link_info *info;
1932 unsigned long max_local;
1933 {
1934 struct mips_elf_hash_sort_data hsd;
1935 struct mips_got_info *g;
1936 bfd *dynobj;
1937
1938 dynobj = elf_hash_table (info)->dynobj;
1939
1940 g = mips_elf_got_info (dynobj, NULL);
1941
1942 hsd.low = NULL;
1943 hsd.max_unref_got_dynindx =
1944 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1945 /* In the multi-got case, assigned_gotno of the master got_info
1946 indicate the number of entries that aren't referenced in the
1947 primary GOT, but that must have entries because there are
1948 dynamic relocations that reference it. Since they aren't
1949 referenced, we move them to the end of the GOT, so that they
1950 don't prevent other entries that are referenced from getting
1951 too large offsets. */
1952 - (g->next ? g->assigned_gotno : 0);
1953 hsd.max_non_got_dynindx = max_local;
1954 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1955 elf_hash_table (info)),
1956 mips_elf_sort_hash_table_f,
1957 &hsd);
1958
1959 /* There should have been enough room in the symbol table to
1960 accommodate both the GOT and non-GOT symbols. */
1961 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1962 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1963 <= elf_hash_table (info)->dynsymcount);
1964
1965 /* Now we know which dynamic symbol has the lowest dynamic symbol
1966 table index in the GOT. */
1967 g->global_gotsym = hsd.low;
1968
1969 return TRUE;
1970 }
1971
1972 /* If H needs a GOT entry, assign it the highest available dynamic
1973 index. Otherwise, assign it the lowest available dynamic
1974 index. */
1975
1976 static bfd_boolean
1977 mips_elf_sort_hash_table_f (h, data)
1978 struct mips_elf_link_hash_entry *h;
1979 PTR data;
1980 {
1981 struct mips_elf_hash_sort_data *hsd
1982 = (struct mips_elf_hash_sort_data *) data;
1983
1984 if (h->root.root.type == bfd_link_hash_warning)
1985 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1986
1987 /* Symbols without dynamic symbol table entries aren't interesting
1988 at all. */
1989 if (h->root.dynindx == -1)
1990 return TRUE;
1991
1992 /* Global symbols that need GOT entries that are not explicitly
1993 referenced are marked with got offset 2. Those that are
1994 referenced get a 1, and those that don't need GOT entries get
1995 -1. */
1996 if (h->root.got.offset == 2)
1997 {
1998 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
1999 hsd->low = (struct elf_link_hash_entry *) h;
2000 h->root.dynindx = hsd->max_unref_got_dynindx++;
2001 }
2002 else if (h->root.got.offset != 1)
2003 h->root.dynindx = hsd->max_non_got_dynindx++;
2004 else
2005 {
2006 h->root.dynindx = --hsd->min_got_dynindx;
2007 hsd->low = (struct elf_link_hash_entry *) h;
2008 }
2009
2010 return TRUE;
2011 }
2012
2013 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2014 symbol table index lower than any we've seen to date, record it for
2015 posterity. */
2016
2017 static bfd_boolean
2018 mips_elf_record_global_got_symbol (h, abfd, info, g)
2019 struct elf_link_hash_entry *h;
2020 bfd *abfd;
2021 struct bfd_link_info *info;
2022 struct mips_got_info *g;
2023 {
2024 struct mips_got_entry entry, **loc;
2025
2026 /* A global symbol in the GOT must also be in the dynamic symbol
2027 table. */
2028 if (h->dynindx == -1)
2029 {
2030 switch (ELF_ST_VISIBILITY (h->other))
2031 {
2032 case STV_INTERNAL:
2033 case STV_HIDDEN:
2034 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2035 break;
2036 }
2037 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2038 return FALSE;
2039 }
2040
2041 entry.abfd = abfd;
2042 entry.symndx = -1;
2043 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2044
2045 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2046 INSERT);
2047
2048 /* If we've already marked this entry as needing GOT space, we don't
2049 need to do it again. */
2050 if (*loc)
2051 return TRUE;
2052
2053 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2054
2055 if (! *loc)
2056 return FALSE;
2057
2058 entry.gotidx = -1;
2059 memcpy (*loc, &entry, sizeof entry);
2060
2061 if (h->got.offset != MINUS_ONE)
2062 return TRUE;
2063
2064 /* By setting this to a value other than -1, we are indicating that
2065 there needs to be a GOT entry for H. Avoid using zero, as the
2066 generic ELF copy_indirect_symbol tests for <= 0. */
2067 h->got.offset = 1;
2068
2069 return TRUE;
2070 }
2071
2072 /* Reserve space in G for a GOT entry containing the value of symbol
2073 SYMNDX in input bfd ABDF, plus ADDEND. */
2074
2075 static bfd_boolean
2076 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2077 bfd *abfd;
2078 long symndx;
2079 bfd_vma addend;
2080 struct mips_got_info *g;
2081 {
2082 struct mips_got_entry entry, **loc;
2083
2084 entry.abfd = abfd;
2085 entry.symndx = symndx;
2086 entry.d.addend = addend;
2087 loc = (struct mips_got_entry **)
2088 htab_find_slot (g->got_entries, &entry, INSERT);
2089
2090 if (*loc)
2091 return TRUE;
2092
2093 entry.gotidx = g->local_gotno++;
2094
2095 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2096
2097 if (! *loc)
2098 return FALSE;
2099
2100 memcpy (*loc, &entry, sizeof entry);
2101
2102 return TRUE;
2103 }
2104 \f
2105 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2106
2107 static hashval_t
2108 mips_elf_bfd2got_entry_hash (entry_)
2109 const PTR entry_;
2110 {
2111 const struct mips_elf_bfd2got_hash *entry
2112 = (struct mips_elf_bfd2got_hash *)entry_;
2113
2114 return entry->bfd->id;
2115 }
2116
2117 /* Check whether two hash entries have the same bfd. */
2118
2119 static int
2120 mips_elf_bfd2got_entry_eq (entry1, entry2)
2121 const PTR entry1;
2122 const PTR entry2;
2123 {
2124 const struct mips_elf_bfd2got_hash *e1
2125 = (const struct mips_elf_bfd2got_hash *)entry1;
2126 const struct mips_elf_bfd2got_hash *e2
2127 = (const struct mips_elf_bfd2got_hash *)entry2;
2128
2129 return e1->bfd == e2->bfd;
2130 }
2131
2132 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2133 be the master GOT data. */
2134
2135 static struct mips_got_info *
2136 mips_elf_got_for_ibfd (g, ibfd)
2137 struct mips_got_info *g;
2138 bfd *ibfd;
2139 {
2140 struct mips_elf_bfd2got_hash e, *p;
2141
2142 if (! g->bfd2got)
2143 return g;
2144
2145 e.bfd = ibfd;
2146 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2147 return p ? p->g : NULL;
2148 }
2149
2150 /* Create one separate got for each bfd that has entries in the global
2151 got, such that we can tell how many local and global entries each
2152 bfd requires. */
2153
2154 static int
2155 mips_elf_make_got_per_bfd (entryp, p)
2156 void **entryp;
2157 void *p;
2158 {
2159 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2160 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2161 htab_t bfd2got = arg->bfd2got;
2162 struct mips_got_info *g;
2163 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2164 void **bfdgotp;
2165
2166 /* Find the got_info for this GOT entry's input bfd. Create one if
2167 none exists. */
2168 bfdgot_entry.bfd = entry->abfd;
2169 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2170 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2171
2172 if (bfdgot != NULL)
2173 g = bfdgot->g;
2174 else
2175 {
2176 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2177 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2178
2179 if (bfdgot == NULL)
2180 {
2181 arg->obfd = 0;
2182 return 0;
2183 }
2184
2185 *bfdgotp = bfdgot;
2186
2187 bfdgot->bfd = entry->abfd;
2188 bfdgot->g = g = (struct mips_got_info *)
2189 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2190 if (g == NULL)
2191 {
2192 arg->obfd = 0;
2193 return 0;
2194 }
2195
2196 g->global_gotsym = NULL;
2197 g->global_gotno = 0;
2198 g->local_gotno = 0;
2199 g->assigned_gotno = -1;
2200 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2201 mips_elf_multi_got_entry_eq,
2202 (htab_del) NULL);
2203 if (g->got_entries == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 g->bfd2got = NULL;
2210 g->next = NULL;
2211 }
2212
2213 /* Insert the GOT entry in the bfd's got entry hash table. */
2214 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2215 if (*entryp != NULL)
2216 return 1;
2217
2218 *entryp = entry;
2219
2220 if (entry->symndx >= 0 || entry->d.h->forced_local)
2221 ++g->local_gotno;
2222 else
2223 ++g->global_gotno;
2224
2225 return 1;
2226 }
2227
2228 /* Attempt to merge gots of different input bfds. Try to use as much
2229 as possible of the primary got, since it doesn't require explicit
2230 dynamic relocations, but don't use bfds that would reference global
2231 symbols out of the addressable range. Failing the primary got,
2232 attempt to merge with the current got, or finish the current got
2233 and then make make the new got current. */
2234
2235 static int
2236 mips_elf_merge_gots (bfd2got_, p)
2237 void **bfd2got_;
2238 void *p;
2239 {
2240 struct mips_elf_bfd2got_hash *bfd2got
2241 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2242 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2243 unsigned int lcount = bfd2got->g->local_gotno;
2244 unsigned int gcount = bfd2got->g->global_gotno;
2245 unsigned int maxcnt = arg->max_count;
2246
2247 /* If we don't have a primary GOT and this is not too big, use it as
2248 a starting point for the primary GOT. */
2249 if (! arg->primary && lcount + gcount <= maxcnt)
2250 {
2251 arg->primary = bfd2got->g;
2252 arg->primary_count = lcount + gcount;
2253 }
2254 /* If it looks like we can merge this bfd's entries with those of
2255 the primary, merge them. The heuristics is conservative, but we
2256 don't have to squeeze it too hard. */
2257 else if (arg->primary
2258 && (arg->primary_count + lcount + gcount) <= maxcnt)
2259 {
2260 struct mips_got_info *g = bfd2got->g;
2261 int old_lcount = arg->primary->local_gotno;
2262 int old_gcount = arg->primary->global_gotno;
2263
2264 bfd2got->g = arg->primary;
2265
2266 htab_traverse (g->got_entries,
2267 mips_elf_make_got_per_bfd,
2268 arg);
2269 if (arg->obfd == NULL)
2270 return 0;
2271
2272 htab_delete (g->got_entries);
2273 /* We don't have to worry about releasing memory of the actual
2274 got entries, since they're all in the master got_entries hash
2275 table anyway. */
2276
2277 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2278 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2279
2280 arg->primary_count = arg->primary->local_gotno
2281 + arg->primary->global_gotno;
2282 }
2283 /* If we can merge with the last-created got, do it. */
2284 else if (arg->current
2285 && arg->current_count + lcount + gcount <= maxcnt)
2286 {
2287 struct mips_got_info *g = bfd2got->g;
2288 int old_lcount = arg->current->local_gotno;
2289 int old_gcount = arg->current->global_gotno;
2290
2291 bfd2got->g = arg->current;
2292
2293 htab_traverse (g->got_entries,
2294 mips_elf_make_got_per_bfd,
2295 arg);
2296 if (arg->obfd == NULL)
2297 return 0;
2298
2299 htab_delete (g->got_entries);
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2303
2304 arg->current_count = arg->current->local_gotno
2305 + arg->current->global_gotno;
2306 }
2307 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2308 fits; if it turns out that it doesn't, we'll get relocation
2309 overflows anyway. */
2310 else
2311 {
2312 bfd2got->g->next = arg->current;
2313 arg->current = bfd2got->g;
2314
2315 arg->current_count = lcount + gcount;
2316 }
2317
2318 return 1;
2319 }
2320
2321 /* If passed a NULL mips_got_info in the argument, set the marker used
2322 to tell whether a global symbol needs a got entry (in the primary
2323 got) to the given VALUE.
2324
2325 If passed a pointer G to a mips_got_info in the argument (it must
2326 not be the primary GOT), compute the offset from the beginning of
2327 the (primary) GOT section to the entry in G corresponding to the
2328 global symbol. G's assigned_gotno must contain the index of the
2329 first available global GOT entry in G. VALUE must contain the size
2330 of a GOT entry in bytes. For each global GOT entry that requires a
2331 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2332 marked as not elligible for lazy resolution through a function
2333 stub. */
2334 static int
2335 mips_elf_set_global_got_offset (entryp, p)
2336 void **entryp;
2337 void *p;
2338 {
2339 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2340 struct mips_elf_set_global_got_offset_arg *arg
2341 = (struct mips_elf_set_global_got_offset_arg *)p;
2342 struct mips_got_info *g = arg->g;
2343
2344 if (entry->abfd != NULL && entry->symndx == -1
2345 && entry->d.h->root.dynindx != -1)
2346 {
2347 if (g)
2348 {
2349 BFD_ASSERT (g->global_gotsym == NULL);
2350
2351 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2352 /* We can't do lazy update of GOT entries for
2353 non-primary GOTs since the PLT entries don't use the
2354 right offsets, so punt at it for now. */
2355 entry->d.h->no_fn_stub = TRUE;
2356 if (arg->info->shared
2357 || (elf_hash_table (arg->info)->dynamic_sections_created
2358 && ((entry->d.h->root.elf_link_hash_flags
2359 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2360 && ((entry->d.h->root.elf_link_hash_flags
2361 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2362 ++arg->needed_relocs;
2363 }
2364 else
2365 entry->d.h->root.got.offset = arg->value;
2366 }
2367
2368 return 1;
2369 }
2370
2371 /* Follow indirect and warning hash entries so that each got entry
2372 points to the final symbol definition. P must point to a pointer
2373 to the hash table we're traversing. Since this traversal may
2374 modify the hash table, we set this pointer to NULL to indicate
2375 we've made a potentially-destructive change to the hash table, so
2376 the traversal must be restarted. */
2377 static int
2378 mips_elf_resolve_final_got_entry (entryp, p)
2379 void **entryp;
2380 void *p;
2381 {
2382 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2383 htab_t got_entries = *(htab_t *)p;
2384
2385 if (entry->abfd != NULL && entry->symndx == -1)
2386 {
2387 struct mips_elf_link_hash_entry *h = entry->d.h;
2388
2389 while (h->root.root.type == bfd_link_hash_indirect
2390 || h->root.root.type == bfd_link_hash_warning)
2391 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2392
2393 if (entry->d.h == h)
2394 return 1;
2395
2396 entry->d.h = h;
2397
2398 /* If we can't find this entry with the new bfd hash, re-insert
2399 it, and get the traversal restarted. */
2400 if (! htab_find (got_entries, entry))
2401 {
2402 htab_clear_slot (got_entries, entryp);
2403 entryp = htab_find_slot (got_entries, entry, INSERT);
2404 if (! *entryp)
2405 *entryp = entry;
2406 /* Abort the traversal, since the whole table may have
2407 moved, and leave it up to the parent to restart the
2408 process. */
2409 *(htab_t *)p = NULL;
2410 return 0;
2411 }
2412 /* We might want to decrement the global_gotno count, but it's
2413 either too early or too late for that at this point. */
2414 }
2415
2416 return 1;
2417 }
2418
2419 /* Turn indirect got entries in a got_entries table into their final
2420 locations. */
2421 static void
2422 mips_elf_resolve_final_got_entries (g)
2423 struct mips_got_info *g;
2424 {
2425 htab_t got_entries;
2426
2427 do
2428 {
2429 got_entries = g->got_entries;
2430
2431 htab_traverse (got_entries,
2432 mips_elf_resolve_final_got_entry,
2433 &got_entries);
2434 }
2435 while (got_entries == NULL);
2436 }
2437
2438 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2439 the primary GOT. */
2440 static bfd_vma
2441 mips_elf_adjust_gp (abfd, g, ibfd)
2442 bfd *abfd;
2443 struct mips_got_info *g;
2444 bfd *ibfd;
2445 {
2446 if (g->bfd2got == NULL)
2447 return 0;
2448
2449 g = mips_elf_got_for_ibfd (g, ibfd);
2450 if (! g)
2451 return 0;
2452
2453 BFD_ASSERT (g->next);
2454
2455 g = g->next;
2456
2457 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2458 }
2459
2460 /* Turn a single GOT that is too big for 16-bit addressing into
2461 a sequence of GOTs, each one 16-bit addressable. */
2462
2463 static bfd_boolean
2464 mips_elf_multi_got (abfd, info, g, got, pages)
2465 bfd *abfd;
2466 struct bfd_link_info *info;
2467 struct mips_got_info *g;
2468 asection *got;
2469 bfd_size_type pages;
2470 {
2471 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2472 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2473 struct mips_got_info *gg;
2474 unsigned int assign;
2475
2476 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2477 mips_elf_bfd2got_entry_eq,
2478 (htab_del) NULL);
2479 if (g->bfd2got == NULL)
2480 return FALSE;
2481
2482 got_per_bfd_arg.bfd2got = g->bfd2got;
2483 got_per_bfd_arg.obfd = abfd;
2484 got_per_bfd_arg.info = info;
2485
2486 /* Count how many GOT entries each input bfd requires, creating a
2487 map from bfd to got info while at that. */
2488 mips_elf_resolve_final_got_entries (g);
2489 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2490 if (got_per_bfd_arg.obfd == NULL)
2491 return FALSE;
2492
2493 got_per_bfd_arg.current = NULL;
2494 got_per_bfd_arg.primary = NULL;
2495 /* Taking out PAGES entries is a worst-case estimate. We could
2496 compute the maximum number of pages that each separate input bfd
2497 uses, but it's probably not worth it. */
2498 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2499 / MIPS_ELF_GOT_SIZE (abfd))
2500 - MIPS_RESERVED_GOTNO - pages);
2501
2502 /* Try to merge the GOTs of input bfds together, as long as they
2503 don't seem to exceed the maximum GOT size, choosing one of them
2504 to be the primary GOT. */
2505 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2506 if (got_per_bfd_arg.obfd == NULL)
2507 return FALSE;
2508
2509 /* If we find any suitable primary GOT, create an empty one. */
2510 if (got_per_bfd_arg.primary == NULL)
2511 {
2512 g->next = (struct mips_got_info *)
2513 bfd_alloc (abfd, sizeof (struct mips_got_info));
2514 if (g->next == NULL)
2515 return FALSE;
2516
2517 g->next->global_gotsym = NULL;
2518 g->next->global_gotno = 0;
2519 g->next->local_gotno = 0;
2520 g->next->assigned_gotno = 0;
2521 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2522 mips_elf_multi_got_entry_eq,
2523 (htab_del) NULL);
2524 if (g->next->got_entries == NULL)
2525 return FALSE;
2526 g->next->bfd2got = NULL;
2527 }
2528 else
2529 g->next = got_per_bfd_arg.primary;
2530 g->next->next = got_per_bfd_arg.current;
2531
2532 /* GG is now the master GOT, and G is the primary GOT. */
2533 gg = g;
2534 g = g->next;
2535
2536 /* Map the output bfd to the primary got. That's what we're going
2537 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2538 didn't mark in check_relocs, and we want a quick way to find it.
2539 We can't just use gg->next because we're going to reverse the
2540 list. */
2541 {
2542 struct mips_elf_bfd2got_hash *bfdgot;
2543 void **bfdgotp;
2544
2545 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2546 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2547
2548 if (bfdgot == NULL)
2549 return FALSE;
2550
2551 bfdgot->bfd = abfd;
2552 bfdgot->g = g;
2553 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2554
2555 BFD_ASSERT (*bfdgotp == NULL);
2556 *bfdgotp = bfdgot;
2557 }
2558
2559 /* The IRIX dynamic linker requires every symbol that is referenced
2560 in a dynamic relocation to be present in the primary GOT, so
2561 arrange for them to appear after those that are actually
2562 referenced.
2563
2564 GNU/Linux could very well do without it, but it would slow down
2565 the dynamic linker, since it would have to resolve every dynamic
2566 symbol referenced in other GOTs more than once, without help from
2567 the cache. Also, knowing that every external symbol has a GOT
2568 helps speed up the resolution of local symbols too, so GNU/Linux
2569 follows IRIX's practice.
2570
2571 The number 2 is used by mips_elf_sort_hash_table_f to count
2572 global GOT symbols that are unreferenced in the primary GOT, with
2573 an initial dynamic index computed from gg->assigned_gotno, where
2574 the number of unreferenced global entries in the primary GOT is
2575 preserved. */
2576 if (1)
2577 {
2578 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2579 g->global_gotno = gg->global_gotno;
2580 set_got_offset_arg.value = 2;
2581 }
2582 else
2583 {
2584 /* This could be used for dynamic linkers that don't optimize
2585 symbol resolution while applying relocations so as to use
2586 primary GOT entries or assuming the symbol is locally-defined.
2587 With this code, we assign lower dynamic indices to global
2588 symbols that are not referenced in the primary GOT, so that
2589 their entries can be omitted. */
2590 gg->assigned_gotno = 0;
2591 set_got_offset_arg.value = -1;
2592 }
2593
2594 /* Reorder dynamic symbols as described above (which behavior
2595 depends on the setting of VALUE). */
2596 set_got_offset_arg.g = NULL;
2597 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2598 &set_got_offset_arg);
2599 set_got_offset_arg.value = 1;
2600 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2601 &set_got_offset_arg);
2602 if (! mips_elf_sort_hash_table (info, 1))
2603 return FALSE;
2604
2605 /* Now go through the GOTs assigning them offset ranges.
2606 [assigned_gotno, local_gotno[ will be set to the range of local
2607 entries in each GOT. We can then compute the end of a GOT by
2608 adding local_gotno to global_gotno. We reverse the list and make
2609 it circular since then we'll be able to quickly compute the
2610 beginning of a GOT, by computing the end of its predecessor. To
2611 avoid special cases for the primary GOT, while still preserving
2612 assertions that are valid for both single- and multi-got links,
2613 we arrange for the main got struct to have the right number of
2614 global entries, but set its local_gotno such that the initial
2615 offset of the primary GOT is zero. Remember that the primary GOT
2616 will become the last item in the circular linked list, so it
2617 points back to the master GOT. */
2618 gg->local_gotno = -g->global_gotno;
2619 gg->global_gotno = g->global_gotno;
2620 assign = 0;
2621 gg->next = gg;
2622
2623 do
2624 {
2625 struct mips_got_info *gn;
2626
2627 assign += MIPS_RESERVED_GOTNO;
2628 g->assigned_gotno = assign;
2629 g->local_gotno += assign + pages;
2630 assign = g->local_gotno + g->global_gotno;
2631
2632 /* Take g out of the direct list, and push it onto the reversed
2633 list that gg points to. */
2634 gn = g->next;
2635 g->next = gg->next;
2636 gg->next = g;
2637 g = gn;
2638 }
2639 while (g);
2640
2641 got->_raw_size = (gg->next->local_gotno
2642 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2643
2644 return TRUE;
2645 }
2646
2647 \f
2648 /* Returns the first relocation of type r_type found, beginning with
2649 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2650
2651 static const Elf_Internal_Rela *
2652 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2653 bfd *abfd ATTRIBUTE_UNUSED;
2654 unsigned int r_type;
2655 const Elf_Internal_Rela *relocation;
2656 const Elf_Internal_Rela *relend;
2657 {
2658 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2659 immediately following. However, for the IRIX6 ABI, the next
2660 relocation may be a composed relocation consisting of several
2661 relocations for the same address. In that case, the R_MIPS_LO16
2662 relocation may occur as one of these. We permit a similar
2663 extension in general, as that is useful for GCC. */
2664 while (relocation < relend)
2665 {
2666 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2667 return relocation;
2668
2669 ++relocation;
2670 }
2671
2672 /* We didn't find it. */
2673 bfd_set_error (bfd_error_bad_value);
2674 return NULL;
2675 }
2676
2677 /* Return whether a relocation is against a local symbol. */
2678
2679 static bfd_boolean
2680 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2681 check_forced)
2682 bfd *input_bfd;
2683 const Elf_Internal_Rela *relocation;
2684 asection **local_sections;
2685 bfd_boolean check_forced;
2686 {
2687 unsigned long r_symndx;
2688 Elf_Internal_Shdr *symtab_hdr;
2689 struct mips_elf_link_hash_entry *h;
2690 size_t extsymoff;
2691
2692 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2693 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2694 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2695
2696 if (r_symndx < extsymoff)
2697 return TRUE;
2698 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2699 return TRUE;
2700
2701 if (check_forced)
2702 {
2703 /* Look up the hash table to check whether the symbol
2704 was forced local. */
2705 h = (struct mips_elf_link_hash_entry *)
2706 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2707 /* Find the real hash-table entry for this symbol. */
2708 while (h->root.root.type == bfd_link_hash_indirect
2709 || h->root.root.type == bfd_link_hash_warning)
2710 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2711 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2712 return TRUE;
2713 }
2714
2715 return FALSE;
2716 }
2717 \f
2718 /* Sign-extend VALUE, which has the indicated number of BITS. */
2719
2720 static bfd_vma
2721 mips_elf_sign_extend (value, bits)
2722 bfd_vma value;
2723 int bits;
2724 {
2725 if (value & ((bfd_vma) 1 << (bits - 1)))
2726 /* VALUE is negative. */
2727 value |= ((bfd_vma) - 1) << bits;
2728
2729 return value;
2730 }
2731
2732 /* Return non-zero if the indicated VALUE has overflowed the maximum
2733 range expressable by a signed number with the indicated number of
2734 BITS. */
2735
2736 static bfd_boolean
2737 mips_elf_overflow_p (value, bits)
2738 bfd_vma value;
2739 int bits;
2740 {
2741 bfd_signed_vma svalue = (bfd_signed_vma) value;
2742
2743 if (svalue > (1 << (bits - 1)) - 1)
2744 /* The value is too big. */
2745 return TRUE;
2746 else if (svalue < -(1 << (bits - 1)))
2747 /* The value is too small. */
2748 return TRUE;
2749
2750 /* All is well. */
2751 return FALSE;
2752 }
2753
2754 /* Calculate the %high function. */
2755
2756 static bfd_vma
2757 mips_elf_high (value)
2758 bfd_vma value;
2759 {
2760 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2761 }
2762
2763 /* Calculate the %higher function. */
2764
2765 static bfd_vma
2766 mips_elf_higher (value)
2767 bfd_vma value ATTRIBUTE_UNUSED;
2768 {
2769 #ifdef BFD64
2770 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2771 #else
2772 abort ();
2773 return (bfd_vma) -1;
2774 #endif
2775 }
2776
2777 /* Calculate the %highest function. */
2778
2779 static bfd_vma
2780 mips_elf_highest (value)
2781 bfd_vma value ATTRIBUTE_UNUSED;
2782 {
2783 #ifdef BFD64
2784 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2785 #else
2786 abort ();
2787 return (bfd_vma) -1;
2788 #endif
2789 }
2790 \f
2791 /* Create the .compact_rel section. */
2792
2793 static bfd_boolean
2794 mips_elf_create_compact_rel_section (abfd, info)
2795 bfd *abfd;
2796 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2797 {
2798 flagword flags;
2799 register asection *s;
2800
2801 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2802 {
2803 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2804 | SEC_READONLY);
2805
2806 s = bfd_make_section (abfd, ".compact_rel");
2807 if (s == NULL
2808 || ! bfd_set_section_flags (abfd, s, flags)
2809 || ! bfd_set_section_alignment (abfd, s,
2810 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2811 return FALSE;
2812
2813 s->_raw_size = sizeof (Elf32_External_compact_rel);
2814 }
2815
2816 return TRUE;
2817 }
2818
2819 /* Create the .got section to hold the global offset table. */
2820
2821 static bfd_boolean
2822 mips_elf_create_got_section (abfd, info, maybe_exclude)
2823 bfd *abfd;
2824 struct bfd_link_info *info;
2825 bfd_boolean maybe_exclude;
2826 {
2827 flagword flags;
2828 register asection *s;
2829 struct elf_link_hash_entry *h;
2830 struct bfd_link_hash_entry *bh;
2831 struct mips_got_info *g;
2832 bfd_size_type amt;
2833
2834 /* This function may be called more than once. */
2835 s = mips_elf_got_section (abfd, TRUE);
2836 if (s)
2837 {
2838 if (! maybe_exclude)
2839 s->flags &= ~SEC_EXCLUDE;
2840 return TRUE;
2841 }
2842
2843 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2844 | SEC_LINKER_CREATED);
2845
2846 if (maybe_exclude)
2847 flags |= SEC_EXCLUDE;
2848
2849 s = bfd_make_section (abfd, ".got");
2850 if (s == NULL
2851 || ! bfd_set_section_flags (abfd, s, flags)
2852 || ! bfd_set_section_alignment (abfd, s, 4))
2853 return FALSE;
2854
2855 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2856 linker script because we don't want to define the symbol if we
2857 are not creating a global offset table. */
2858 bh = NULL;
2859 if (! (_bfd_generic_link_add_one_symbol
2860 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2861 (bfd_vma) 0, (const char *) NULL, FALSE,
2862 get_elf_backend_data (abfd)->collect, &bh)))
2863 return FALSE;
2864
2865 h = (struct elf_link_hash_entry *) bh;
2866 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2867 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2868 h->type = STT_OBJECT;
2869
2870 if (info->shared
2871 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2872 return FALSE;
2873
2874 amt = sizeof (struct mips_got_info);
2875 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2876 if (g == NULL)
2877 return FALSE;
2878 g->global_gotsym = NULL;
2879 g->local_gotno = MIPS_RESERVED_GOTNO;
2880 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2881 g->bfd2got = NULL;
2882 g->next = NULL;
2883 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2884 mips_elf_got_entry_eq,
2885 (htab_del) NULL);
2886 if (g->got_entries == NULL)
2887 return FALSE;
2888 mips_elf_section_data (s)->u.got_info = g;
2889 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2890 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2891
2892 return TRUE;
2893 }
2894
2895 /* Returns the .msym section for ABFD, creating it if it does not
2896 already exist. Returns NULL to indicate error. */
2897
2898 static asection *
2899 mips_elf_create_msym_section (abfd)
2900 bfd *abfd;
2901 {
2902 asection *s;
2903
2904 s = bfd_get_section_by_name (abfd, ".msym");
2905 if (!s)
2906 {
2907 s = bfd_make_section (abfd, ".msym");
2908 if (!s
2909 || !bfd_set_section_flags (abfd, s,
2910 SEC_ALLOC
2911 | SEC_LOAD
2912 | SEC_HAS_CONTENTS
2913 | SEC_LINKER_CREATED
2914 | SEC_READONLY)
2915 || !bfd_set_section_alignment (abfd, s,
2916 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2917 return NULL;
2918 }
2919
2920 return s;
2921 }
2922 \f
2923 /* Calculate the value produced by the RELOCATION (which comes from
2924 the INPUT_BFD). The ADDEND is the addend to use for this
2925 RELOCATION; RELOCATION->R_ADDEND is ignored.
2926
2927 The result of the relocation calculation is stored in VALUEP.
2928 REQUIRE_JALXP indicates whether or not the opcode used with this
2929 relocation must be JALX.
2930
2931 This function returns bfd_reloc_continue if the caller need take no
2932 further action regarding this relocation, bfd_reloc_notsupported if
2933 something goes dramatically wrong, bfd_reloc_overflow if an
2934 overflow occurs, and bfd_reloc_ok to indicate success. */
2935
2936 static bfd_reloc_status_type
2937 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2938 relocation, addend, howto, local_syms,
2939 local_sections, valuep, namep,
2940 require_jalxp, save_addend)
2941 bfd *abfd;
2942 bfd *input_bfd;
2943 asection *input_section;
2944 struct bfd_link_info *info;
2945 const Elf_Internal_Rela *relocation;
2946 bfd_vma addend;
2947 reloc_howto_type *howto;
2948 Elf_Internal_Sym *local_syms;
2949 asection **local_sections;
2950 bfd_vma *valuep;
2951 const char **namep;
2952 bfd_boolean *require_jalxp;
2953 bfd_boolean save_addend;
2954 {
2955 /* The eventual value we will return. */
2956 bfd_vma value;
2957 /* The address of the symbol against which the relocation is
2958 occurring. */
2959 bfd_vma symbol = 0;
2960 /* The final GP value to be used for the relocatable, executable, or
2961 shared object file being produced. */
2962 bfd_vma gp = MINUS_ONE;
2963 /* The place (section offset or address) of the storage unit being
2964 relocated. */
2965 bfd_vma p;
2966 /* The value of GP used to create the relocatable object. */
2967 bfd_vma gp0 = MINUS_ONE;
2968 /* The offset into the global offset table at which the address of
2969 the relocation entry symbol, adjusted by the addend, resides
2970 during execution. */
2971 bfd_vma g = MINUS_ONE;
2972 /* The section in which the symbol referenced by the relocation is
2973 located. */
2974 asection *sec = NULL;
2975 struct mips_elf_link_hash_entry *h = NULL;
2976 /* TRUE if the symbol referred to by this relocation is a local
2977 symbol. */
2978 bfd_boolean local_p, was_local_p;
2979 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2980 bfd_boolean gp_disp_p = FALSE;
2981 Elf_Internal_Shdr *symtab_hdr;
2982 size_t extsymoff;
2983 unsigned long r_symndx;
2984 int r_type;
2985 /* TRUE if overflow occurred during the calculation of the
2986 relocation value. */
2987 bfd_boolean overflowed_p;
2988 /* TRUE if this relocation refers to a MIPS16 function. */
2989 bfd_boolean target_is_16_bit_code_p = FALSE;
2990
2991 /* Parse the relocation. */
2992 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2993 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
2994 p = (input_section->output_section->vma
2995 + input_section->output_offset
2996 + relocation->r_offset);
2997
2998 /* Assume that there will be no overflow. */
2999 overflowed_p = FALSE;
3000
3001 /* Figure out whether or not the symbol is local, and get the offset
3002 used in the array of hash table entries. */
3003 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3004 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3005 local_sections, FALSE);
3006 was_local_p = local_p;
3007 if (! elf_bad_symtab (input_bfd))
3008 extsymoff = symtab_hdr->sh_info;
3009 else
3010 {
3011 /* The symbol table does not follow the rule that local symbols
3012 must come before globals. */
3013 extsymoff = 0;
3014 }
3015
3016 /* Figure out the value of the symbol. */
3017 if (local_p)
3018 {
3019 Elf_Internal_Sym *sym;
3020
3021 sym = local_syms + r_symndx;
3022 sec = local_sections[r_symndx];
3023
3024 symbol = sec->output_section->vma + sec->output_offset;
3025 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3026 || (sec->flags & SEC_MERGE))
3027 symbol += sym->st_value;
3028 if ((sec->flags & SEC_MERGE)
3029 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3030 {
3031 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3032 addend -= symbol;
3033 addend += sec->output_section->vma + sec->output_offset;
3034 }
3035
3036 /* MIPS16 text labels should be treated as odd. */
3037 if (sym->st_other == STO_MIPS16)
3038 ++symbol;
3039
3040 /* Record the name of this symbol, for our caller. */
3041 *namep = bfd_elf_string_from_elf_section (input_bfd,
3042 symtab_hdr->sh_link,
3043 sym->st_name);
3044 if (*namep == '\0')
3045 *namep = bfd_section_name (input_bfd, sec);
3046
3047 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3048 }
3049 else
3050 {
3051 /* For global symbols we look up the symbol in the hash-table. */
3052 h = ((struct mips_elf_link_hash_entry *)
3053 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3054 /* Find the real hash-table entry for this symbol. */
3055 while (h->root.root.type == bfd_link_hash_indirect
3056 || h->root.root.type == bfd_link_hash_warning)
3057 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3058
3059 /* Record the name of this symbol, for our caller. */
3060 *namep = h->root.root.root.string;
3061
3062 /* See if this is the special _gp_disp symbol. Note that such a
3063 symbol must always be a global symbol. */
3064 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3065 && ! NEWABI_P (input_bfd))
3066 {
3067 /* Relocations against _gp_disp are permitted only with
3068 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3069 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3070 return bfd_reloc_notsupported;
3071
3072 gp_disp_p = TRUE;
3073 }
3074 /* If this symbol is defined, calculate its address. Note that
3075 _gp_disp is a magic symbol, always implicitly defined by the
3076 linker, so it's inappropriate to check to see whether or not
3077 its defined. */
3078 else if ((h->root.root.type == bfd_link_hash_defined
3079 || h->root.root.type == bfd_link_hash_defweak)
3080 && h->root.root.u.def.section)
3081 {
3082 sec = h->root.root.u.def.section;
3083 if (sec->output_section)
3084 symbol = (h->root.root.u.def.value
3085 + sec->output_section->vma
3086 + sec->output_offset);
3087 else
3088 symbol = h->root.root.u.def.value;
3089 }
3090 else if (h->root.root.type == bfd_link_hash_undefweak)
3091 /* We allow relocations against undefined weak symbols, giving
3092 it the value zero, so that you can undefined weak functions
3093 and check to see if they exist by looking at their
3094 addresses. */
3095 symbol = 0;
3096 else if (info->shared
3097 && (!info->symbolic || info->allow_shlib_undefined)
3098 && !info->no_undefined
3099 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3100 symbol = 0;
3101 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3102 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3103 {
3104 /* If this is a dynamic link, we should have created a
3105 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3106 in in _bfd_mips_elf_create_dynamic_sections.
3107 Otherwise, we should define the symbol with a value of 0.
3108 FIXME: It should probably get into the symbol table
3109 somehow as well. */
3110 BFD_ASSERT (! info->shared);
3111 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3112 symbol = 0;
3113 }
3114 else
3115 {
3116 if (! ((*info->callbacks->undefined_symbol)
3117 (info, h->root.root.root.string, input_bfd,
3118 input_section, relocation->r_offset,
3119 (!info->shared || info->no_undefined
3120 || ELF_ST_VISIBILITY (h->root.other)))))
3121 return bfd_reloc_undefined;
3122 symbol = 0;
3123 }
3124
3125 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3126 }
3127
3128 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3129 need to redirect the call to the stub, unless we're already *in*
3130 a stub. */
3131 if (r_type != R_MIPS16_26 && !info->relocateable
3132 && ((h != NULL && h->fn_stub != NULL)
3133 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3134 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3135 && !mips_elf_stub_section_p (input_bfd, input_section))
3136 {
3137 /* This is a 32- or 64-bit call to a 16-bit function. We should
3138 have already noticed that we were going to need the
3139 stub. */
3140 if (local_p)
3141 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3142 else
3143 {
3144 BFD_ASSERT (h->need_fn_stub);
3145 sec = h->fn_stub;
3146 }
3147
3148 symbol = sec->output_section->vma + sec->output_offset;
3149 }
3150 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3151 need to redirect the call to the stub. */
3152 else if (r_type == R_MIPS16_26 && !info->relocateable
3153 && h != NULL
3154 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3155 && !target_is_16_bit_code_p)
3156 {
3157 /* If both call_stub and call_fp_stub are defined, we can figure
3158 out which one to use by seeing which one appears in the input
3159 file. */
3160 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3161 {
3162 asection *o;
3163
3164 sec = NULL;
3165 for (o = input_bfd->sections; o != NULL; o = o->next)
3166 {
3167 if (strncmp (bfd_get_section_name (input_bfd, o),
3168 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3169 {
3170 sec = h->call_fp_stub;
3171 break;
3172 }
3173 }
3174 if (sec == NULL)
3175 sec = h->call_stub;
3176 }
3177 else if (h->call_stub != NULL)
3178 sec = h->call_stub;
3179 else
3180 sec = h->call_fp_stub;
3181
3182 BFD_ASSERT (sec->_raw_size > 0);
3183 symbol = sec->output_section->vma + sec->output_offset;
3184 }
3185
3186 /* Calls from 16-bit code to 32-bit code and vice versa require the
3187 special jalx instruction. */
3188 *require_jalxp = (!info->relocateable
3189 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3190 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3191
3192 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3193 local_sections, TRUE);
3194
3195 /* If we haven't already determined the GOT offset, or the GP value,
3196 and we're going to need it, get it now. */
3197 switch (r_type)
3198 {
3199 case R_MIPS_CALL16:
3200 case R_MIPS_GOT16:
3201 case R_MIPS_GOT_DISP:
3202 case R_MIPS_GOT_HI16:
3203 case R_MIPS_CALL_HI16:
3204 case R_MIPS_GOT_LO16:
3205 case R_MIPS_CALL_LO16:
3206 /* Find the index into the GOT where this value is located. */
3207 if (!local_p)
3208 {
3209 BFD_ASSERT (addend == 0);
3210 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3211 input_bfd,
3212 (struct elf_link_hash_entry *) h);
3213 if (! elf_hash_table(info)->dynamic_sections_created
3214 || (info->shared
3215 && (info->symbolic || h->root.dynindx == -1)
3216 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3217 {
3218 /* This is a static link or a -Bsymbolic link. The
3219 symbol is defined locally, or was forced to be local.
3220 We must initialize this entry in the GOT. */
3221 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3222 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3223 MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
3224 }
3225 }
3226 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3227 /* There's no need to create a local GOT entry here; the
3228 calculation for a local GOT16 entry does not involve G. */
3229 break;
3230 else
3231 {
3232 g = mips_elf_local_got_index (abfd, input_bfd,
3233 info, symbol + addend);
3234 if (g == MINUS_ONE)
3235 return bfd_reloc_outofrange;
3236 }
3237
3238 /* Convert GOT indices to actual offsets. */
3239 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3240 abfd, input_bfd, g);
3241 break;
3242
3243 case R_MIPS_HI16:
3244 case R_MIPS_LO16:
3245 case R_MIPS16_GPREL:
3246 case R_MIPS_GPREL16:
3247 case R_MIPS_GPREL32:
3248 case R_MIPS_LITERAL:
3249 gp0 = _bfd_get_gp_value (input_bfd);
3250 gp = _bfd_get_gp_value (abfd);
3251 if (elf_hash_table (info)->dynobj)
3252 gp += mips_elf_adjust_gp (abfd,
3253 mips_elf_got_info
3254 (elf_hash_table (info)->dynobj, NULL),
3255 input_bfd);
3256 break;
3257
3258 default:
3259 break;
3260 }
3261
3262 /* Figure out what kind of relocation is being performed. */
3263 switch (r_type)
3264 {
3265 case R_MIPS_NONE:
3266 return bfd_reloc_continue;
3267
3268 case R_MIPS_16:
3269 value = symbol + mips_elf_sign_extend (addend, 16);
3270 overflowed_p = mips_elf_overflow_p (value, 16);
3271 break;
3272
3273 case R_MIPS_32:
3274 case R_MIPS_REL32:
3275 case R_MIPS_64:
3276 if ((info->shared
3277 || (elf_hash_table (info)->dynamic_sections_created
3278 && h != NULL
3279 && ((h->root.elf_link_hash_flags
3280 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3281 && ((h->root.elf_link_hash_flags
3282 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3283 && r_symndx != 0
3284 && (input_section->flags & SEC_ALLOC) != 0)
3285 {
3286 /* If we're creating a shared library, or this relocation is
3287 against a symbol in a shared library, then we can't know
3288 where the symbol will end up. So, we create a relocation
3289 record in the output, and leave the job up to the dynamic
3290 linker. */
3291 value = addend;
3292 if (!mips_elf_create_dynamic_relocation (abfd,
3293 info,
3294 relocation,
3295 h,
3296 sec,
3297 symbol,
3298 &value,
3299 input_section))
3300 return bfd_reloc_undefined;
3301 }
3302 else
3303 {
3304 if (r_type != R_MIPS_REL32)
3305 value = symbol + addend;
3306 else
3307 value = addend;
3308 }
3309 value &= howto->dst_mask;
3310 break;
3311
3312 case R_MIPS_PC32:
3313 case R_MIPS_PC64:
3314 case R_MIPS_GNU_REL_LO16:
3315 value = symbol + addend - p;
3316 value &= howto->dst_mask;
3317 break;
3318
3319 case R_MIPS_GNU_REL16_S2:
3320 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
3321 overflowed_p = mips_elf_overflow_p (value, 18);
3322 value = (value >> 2) & howto->dst_mask;
3323 break;
3324
3325 case R_MIPS_GNU_REL_HI16:
3326 /* Instead of subtracting 'p' here, we should be subtracting the
3327 equivalent value for the LO part of the reloc, since the value
3328 here is relative to that address. Because that's not easy to do,
3329 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3330 the comment there for more information. */
3331 value = mips_elf_high (addend + symbol - p);
3332 value &= howto->dst_mask;
3333 break;
3334
3335 case R_MIPS16_26:
3336 /* The calculation for R_MIPS16_26 is just the same as for an
3337 R_MIPS_26. It's only the storage of the relocated field into
3338 the output file that's different. That's handled in
3339 mips_elf_perform_relocation. So, we just fall through to the
3340 R_MIPS_26 case here. */
3341 case R_MIPS_26:
3342 if (local_p)
3343 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3344 else
3345 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3346 value &= howto->dst_mask;
3347 break;
3348
3349 case R_MIPS_HI16:
3350 if (!gp_disp_p)
3351 {
3352 value = mips_elf_high (addend + symbol);
3353 value &= howto->dst_mask;
3354 }
3355 else
3356 {
3357 value = mips_elf_high (addend + gp - p);
3358 overflowed_p = mips_elf_overflow_p (value, 16);
3359 }
3360 break;
3361
3362 case R_MIPS_LO16:
3363 if (!gp_disp_p)
3364 value = (symbol + addend) & howto->dst_mask;
3365 else
3366 {
3367 value = addend + gp - p + 4;
3368 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3369 for overflow. But, on, say, IRIX5, relocations against
3370 _gp_disp are normally generated from the .cpload
3371 pseudo-op. It generates code that normally looks like
3372 this:
3373
3374 lui $gp,%hi(_gp_disp)
3375 addiu $gp,$gp,%lo(_gp_disp)
3376 addu $gp,$gp,$t9
3377
3378 Here $t9 holds the address of the function being called,
3379 as required by the MIPS ELF ABI. The R_MIPS_LO16
3380 relocation can easily overflow in this situation, but the
3381 R_MIPS_HI16 relocation will handle the overflow.
3382 Therefore, we consider this a bug in the MIPS ABI, and do
3383 not check for overflow here. */
3384 }
3385 break;
3386
3387 case R_MIPS_LITERAL:
3388 /* Because we don't merge literal sections, we can handle this
3389 just like R_MIPS_GPREL16. In the long run, we should merge
3390 shared literals, and then we will need to additional work
3391 here. */
3392
3393 /* Fall through. */
3394
3395 case R_MIPS16_GPREL:
3396 /* The R_MIPS16_GPREL performs the same calculation as
3397 R_MIPS_GPREL16, but stores the relocated bits in a different
3398 order. We don't need to do anything special here; the
3399 differences are handled in mips_elf_perform_relocation. */
3400 case R_MIPS_GPREL16:
3401 /* Only sign-extend the addend if it was extracted from the
3402 instruction. If the addend was separate, leave it alone,
3403 otherwise we may lose significant bits. */
3404 if (howto->partial_inplace)
3405 addend = mips_elf_sign_extend (addend, 16);
3406 value = symbol + addend - gp;
3407 /* If the symbol was local, any earlier relocatable links will
3408 have adjusted its addend with the gp offset, so compensate
3409 for that now. Don't do it for symbols forced local in this
3410 link, though, since they won't have had the gp offset applied
3411 to them before. */
3412 if (was_local_p)
3413 value += gp0;
3414 overflowed_p = mips_elf_overflow_p (value, 16);
3415 break;
3416
3417 case R_MIPS_GOT16:
3418 case R_MIPS_CALL16:
3419 if (local_p)
3420 {
3421 bfd_boolean forced;
3422
3423 /* The special case is when the symbol is forced to be local. We
3424 need the full address in the GOT since no R_MIPS_LO16 relocation
3425 follows. */
3426 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3427 local_sections, FALSE);
3428 value = mips_elf_got16_entry (abfd, input_bfd, info,
3429 symbol + addend, forced);
3430 if (value == MINUS_ONE)
3431 return bfd_reloc_outofrange;
3432 value
3433 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3434 abfd, input_bfd, value);
3435 overflowed_p = mips_elf_overflow_p (value, 16);
3436 break;
3437 }
3438
3439 /* Fall through. */
3440
3441 case R_MIPS_GOT_DISP:
3442 value = g;
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445
3446 case R_MIPS_GPREL32:
3447 value = (addend + symbol + gp0 - gp);
3448 if (!save_addend)
3449 value &= howto->dst_mask;
3450 break;
3451
3452 case R_MIPS_PC16:
3453 value = mips_elf_sign_extend (addend, 16) + symbol - p;
3454 overflowed_p = mips_elf_overflow_p (value, 16);
3455 break;
3456
3457 case R_MIPS_GOT_HI16:
3458 case R_MIPS_CALL_HI16:
3459 /* We're allowed to handle these two relocations identically.
3460 The dynamic linker is allowed to handle the CALL relocations
3461 differently by creating a lazy evaluation stub. */
3462 value = g;
3463 value = mips_elf_high (value);
3464 value &= howto->dst_mask;
3465 break;
3466
3467 case R_MIPS_GOT_LO16:
3468 case R_MIPS_CALL_LO16:
3469 value = g & howto->dst_mask;
3470 break;
3471
3472 case R_MIPS_GOT_PAGE:
3473 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3474 if (value == MINUS_ONE)
3475 return bfd_reloc_outofrange;
3476 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3477 abfd, input_bfd, value);
3478 overflowed_p = mips_elf_overflow_p (value, 16);
3479 break;
3480
3481 case R_MIPS_GOT_OFST:
3482 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3483 overflowed_p = mips_elf_overflow_p (value, 16);
3484 break;
3485
3486 case R_MIPS_SUB:
3487 value = symbol - addend;
3488 value &= howto->dst_mask;
3489 break;
3490
3491 case R_MIPS_HIGHER:
3492 value = mips_elf_higher (addend + symbol);
3493 value &= howto->dst_mask;
3494 break;
3495
3496 case R_MIPS_HIGHEST:
3497 value = mips_elf_highest (addend + symbol);
3498 value &= howto->dst_mask;
3499 break;
3500
3501 case R_MIPS_SCN_DISP:
3502 value = symbol + addend - sec->output_offset;
3503 value &= howto->dst_mask;
3504 break;
3505
3506 case R_MIPS_PJUMP:
3507 case R_MIPS_JALR:
3508 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3509 hint; we could improve performance by honoring that hint. */
3510 return bfd_reloc_continue;
3511
3512 case R_MIPS_GNU_VTINHERIT:
3513 case R_MIPS_GNU_VTENTRY:
3514 /* We don't do anything with these at present. */
3515 return bfd_reloc_continue;
3516
3517 default:
3518 /* An unrecognized relocation type. */
3519 return bfd_reloc_notsupported;
3520 }
3521
3522 /* Store the VALUE for our caller. */
3523 *valuep = value;
3524 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3525 }
3526
3527 /* Obtain the field relocated by RELOCATION. */
3528
3529 static bfd_vma
3530 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3531 reloc_howto_type *howto;
3532 const Elf_Internal_Rela *relocation;
3533 bfd *input_bfd;
3534 bfd_byte *contents;
3535 {
3536 bfd_vma x;
3537 bfd_byte *location = contents + relocation->r_offset;
3538
3539 /* Obtain the bytes. */
3540 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3541
3542 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3543 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3544 && bfd_little_endian (input_bfd))
3545 /* The two 16-bit words will be reversed on a little-endian system.
3546 See mips_elf_perform_relocation for more details. */
3547 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3548
3549 return x;
3550 }
3551
3552 /* It has been determined that the result of the RELOCATION is the
3553 VALUE. Use HOWTO to place VALUE into the output file at the
3554 appropriate position. The SECTION is the section to which the
3555 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3556 for the relocation must be either JAL or JALX, and it is
3557 unconditionally converted to JALX.
3558
3559 Returns FALSE if anything goes wrong. */
3560
3561 static bfd_boolean
3562 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3563 input_section, contents, require_jalx)
3564 struct bfd_link_info *info;
3565 reloc_howto_type *howto;
3566 const Elf_Internal_Rela *relocation;
3567 bfd_vma value;
3568 bfd *input_bfd;
3569 asection *input_section;
3570 bfd_byte *contents;
3571 bfd_boolean require_jalx;
3572 {
3573 bfd_vma x;
3574 bfd_byte *location;
3575 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3576
3577 /* Figure out where the relocation is occurring. */
3578 location = contents + relocation->r_offset;
3579
3580 /* Obtain the current value. */
3581 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3582
3583 /* Clear the field we are setting. */
3584 x &= ~howto->dst_mask;
3585
3586 /* If this is the R_MIPS16_26 relocation, we must store the
3587 value in a funny way. */
3588 if (r_type == R_MIPS16_26)
3589 {
3590 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3591 Most mips16 instructions are 16 bits, but these instructions
3592 are 32 bits.
3593
3594 The format of these instructions is:
3595
3596 +--------------+--------------------------------+
3597 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3598 +--------------+--------------------------------+
3599 ! Immediate 15:0 !
3600 +-----------------------------------------------+
3601
3602 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3603 Note that the immediate value in the first word is swapped.
3604
3605 When producing a relocateable object file, R_MIPS16_26 is
3606 handled mostly like R_MIPS_26. In particular, the addend is
3607 stored as a straight 26-bit value in a 32-bit instruction.
3608 (gas makes life simpler for itself by never adjusting a
3609 R_MIPS16_26 reloc to be against a section, so the addend is
3610 always zero). However, the 32 bit instruction is stored as 2
3611 16-bit values, rather than a single 32-bit value. In a
3612 big-endian file, the result is the same; in a little-endian
3613 file, the two 16-bit halves of the 32 bit value are swapped.
3614 This is so that a disassembler can recognize the jal
3615 instruction.
3616
3617 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3618 instruction stored as two 16-bit values. The addend A is the
3619 contents of the targ26 field. The calculation is the same as
3620 R_MIPS_26. When storing the calculated value, reorder the
3621 immediate value as shown above, and don't forget to store the
3622 value as two 16-bit values.
3623
3624 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3625 defined as
3626
3627 big-endian:
3628 +--------+----------------------+
3629 | | |
3630 | | targ26-16 |
3631 |31 26|25 0|
3632 +--------+----------------------+
3633
3634 little-endian:
3635 +----------+------+-------------+
3636 | | | |
3637 | sub1 | | sub2 |
3638 |0 9|10 15|16 31|
3639 +----------+--------------------+
3640 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3641 ((sub1 << 16) | sub2)).
3642
3643 When producing a relocateable object file, the calculation is
3644 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3645 When producing a fully linked file, the calculation is
3646 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3647 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3648
3649 if (!info->relocateable)
3650 /* Shuffle the bits according to the formula above. */
3651 value = (((value & 0x1f0000) << 5)
3652 | ((value & 0x3e00000) >> 5)
3653 | (value & 0xffff));
3654 }
3655 else if (r_type == R_MIPS16_GPREL)
3656 {
3657 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3658 mode. A typical instruction will have a format like this:
3659
3660 +--------------+--------------------------------+
3661 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3662 +--------------+--------------------------------+
3663 ! Major ! rx ! ry ! Imm 4:0 !
3664 +--------------+--------------------------------+
3665
3666 EXTEND is the five bit value 11110. Major is the instruction
3667 opcode.
3668
3669 This is handled exactly like R_MIPS_GPREL16, except that the
3670 addend is retrieved and stored as shown in this diagram; that
3671 is, the Imm fields above replace the V-rel16 field.
3672
3673 All we need to do here is shuffle the bits appropriately. As
3674 above, the two 16-bit halves must be swapped on a
3675 little-endian system. */
3676 value = (((value & 0x7e0) << 16)
3677 | ((value & 0xf800) << 5)
3678 | (value & 0x1f));
3679 }
3680
3681 /* Set the field. */
3682 x |= (value & howto->dst_mask);
3683
3684 /* If required, turn JAL into JALX. */
3685 if (require_jalx)
3686 {
3687 bfd_boolean ok;
3688 bfd_vma opcode = x >> 26;
3689 bfd_vma jalx_opcode;
3690
3691 /* Check to see if the opcode is already JAL or JALX. */
3692 if (r_type == R_MIPS16_26)
3693 {
3694 ok = ((opcode == 0x6) || (opcode == 0x7));
3695 jalx_opcode = 0x7;
3696 }
3697 else
3698 {
3699 ok = ((opcode == 0x3) || (opcode == 0x1d));
3700 jalx_opcode = 0x1d;
3701 }
3702
3703 /* If the opcode is not JAL or JALX, there's a problem. */
3704 if (!ok)
3705 {
3706 (*_bfd_error_handler)
3707 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3708 bfd_archive_filename (input_bfd),
3709 input_section->name,
3710 (unsigned long) relocation->r_offset);
3711 bfd_set_error (bfd_error_bad_value);
3712 return FALSE;
3713 }
3714
3715 /* Make this the JALX opcode. */
3716 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3717 }
3718
3719 /* Swap the high- and low-order 16 bits on little-endian systems
3720 when doing a MIPS16 relocation. */
3721 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3722 && bfd_little_endian (input_bfd))
3723 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3724
3725 /* Put the value into the output. */
3726 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3727 return TRUE;
3728 }
3729
3730 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3731
3732 static bfd_boolean
3733 mips_elf_stub_section_p (abfd, section)
3734 bfd *abfd ATTRIBUTE_UNUSED;
3735 asection *section;
3736 {
3737 const char *name = bfd_get_section_name (abfd, section);
3738
3739 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3740 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3741 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3742 }
3743 \f
3744 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3745
3746 static void
3747 mips_elf_allocate_dynamic_relocations (abfd, n)
3748 bfd *abfd;
3749 unsigned int n;
3750 {
3751 asection *s;
3752
3753 s = mips_elf_rel_dyn_section (abfd, FALSE);
3754 BFD_ASSERT (s != NULL);
3755
3756 if (s->_raw_size == 0)
3757 {
3758 /* Make room for a null element. */
3759 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3760 ++s->reloc_count;
3761 }
3762 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3763 }
3764
3765 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3766 is the original relocation, which is now being transformed into a
3767 dynamic relocation. The ADDENDP is adjusted if necessary; the
3768 caller should store the result in place of the original addend. */
3769
3770 static bfd_boolean
3771 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3772 symbol, addendp, input_section)
3773 bfd *output_bfd;
3774 struct bfd_link_info *info;
3775 const Elf_Internal_Rela *rel;
3776 struct mips_elf_link_hash_entry *h;
3777 asection *sec;
3778 bfd_vma symbol;
3779 bfd_vma *addendp;
3780 asection *input_section;
3781 {
3782 Elf_Internal_Rela outrel[3];
3783 bfd_boolean skip;
3784 asection *sreloc;
3785 bfd *dynobj;
3786 int r_type;
3787
3788 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3789 dynobj = elf_hash_table (info)->dynobj;
3790 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3791 BFD_ASSERT (sreloc != NULL);
3792 BFD_ASSERT (sreloc->contents != NULL);
3793 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3794 < sreloc->_raw_size);
3795
3796 skip = FALSE;
3797 outrel[0].r_offset =
3798 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3799 outrel[1].r_offset =
3800 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3801 outrel[2].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3803
3804 #if 0
3805 /* We begin by assuming that the offset for the dynamic relocation
3806 is the same as for the original relocation. We'll adjust this
3807 later to reflect the correct output offsets. */
3808 if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
3809 {
3810 outrel[1].r_offset = rel[1].r_offset;
3811 outrel[2].r_offset = rel[2].r_offset;
3812 }
3813 else
3814 {
3815 /* Except that in a stab section things are more complex.
3816 Because we compress stab information, the offset given in the
3817 relocation may not be the one we want; we must let the stabs
3818 machinery tell us the offset. */
3819 outrel[1].r_offset = outrel[0].r_offset;
3820 outrel[2].r_offset = outrel[0].r_offset;
3821 /* If we didn't need the relocation at all, this value will be
3822 -1. */
3823 if (outrel[0].r_offset == (bfd_vma) -1)
3824 skip = TRUE;
3825 }
3826 #endif
3827
3828 if (outrel[0].r_offset == (bfd_vma) -1)
3829 skip = TRUE;
3830 /* FIXME: For -2 runtime relocation needs to be skipped, but
3831 properly resolved statically and installed. */
3832 BFD_ASSERT (outrel[0].r_offset != (bfd_vma) -2);
3833
3834 /* If we've decided to skip this relocation, just output an empty
3835 record. Note that R_MIPS_NONE == 0, so that this call to memset
3836 is a way of setting R_TYPE to R_MIPS_NONE. */
3837 if (skip)
3838 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3839 else
3840 {
3841 long indx;
3842 bfd_vma section_offset;
3843
3844 /* We must now calculate the dynamic symbol table index to use
3845 in the relocation. */
3846 if (h != NULL
3847 && (! info->symbolic || (h->root.elf_link_hash_flags
3848 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3849 {
3850 indx = h->root.dynindx;
3851 /* h->root.dynindx may be -1 if this symbol was marked to
3852 become local. */
3853 if (indx == -1)
3854 indx = 0;
3855 }
3856 else
3857 {
3858 if (sec != NULL && bfd_is_abs_section (sec))
3859 indx = 0;
3860 else if (sec == NULL || sec->owner == NULL)
3861 {
3862 bfd_set_error (bfd_error_bad_value);
3863 return FALSE;
3864 }
3865 else
3866 {
3867 indx = elf_section_data (sec->output_section)->dynindx;
3868 if (indx == 0)
3869 abort ();
3870 }
3871
3872 /* Figure out how far the target of the relocation is from
3873 the beginning of its section. */
3874 section_offset = symbol - sec->output_section->vma;
3875 /* The relocation we're building is section-relative.
3876 Therefore, the original addend must be adjusted by the
3877 section offset. */
3878 *addendp += section_offset;
3879 /* Now, the relocation is just against the section. */
3880 symbol = sec->output_section->vma;
3881 }
3882
3883 /* If the relocation was previously an absolute relocation and
3884 this symbol will not be referred to by the relocation, we must
3885 adjust it by the value we give it in the dynamic symbol table.
3886 Otherwise leave the job up to the dynamic linker. */
3887 if (!indx && r_type != R_MIPS_REL32)
3888 *addendp += symbol;
3889
3890 /* The relocation is always an REL32 relocation because we don't
3891 know where the shared library will wind up at load-time. */
3892 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3893 R_MIPS_REL32);
3894 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3895 ABI_64_P (output_bfd)
3896 ? R_MIPS_64
3897 : R_MIPS_NONE);
3898 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3899 R_MIPS_NONE);
3900
3901 /* Adjust the output offset of the relocation to reference the
3902 correct location in the output file. */
3903 outrel[0].r_offset += (input_section->output_section->vma
3904 + input_section->output_offset);
3905 outrel[1].r_offset += (input_section->output_section->vma
3906 + input_section->output_offset);
3907 outrel[2].r_offset += (input_section->output_section->vma
3908 + input_section->output_offset);
3909 }
3910
3911 /* Put the relocation back out. We have to use the special
3912 relocation outputter in the 64-bit case since the 64-bit
3913 relocation format is non-standard. */
3914 if (ABI_64_P (output_bfd))
3915 {
3916 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3917 (output_bfd, &outrel[0],
3918 (sreloc->contents
3919 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3920 }
3921 else
3922 bfd_elf32_swap_reloc_out
3923 (output_bfd, &outrel[0],
3924 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3925
3926 /* Record the index of the first relocation referencing H. This
3927 information is later emitted in the .msym section. */
3928 if (h != NULL
3929 && (h->min_dyn_reloc_index == 0
3930 || sreloc->reloc_count < h->min_dyn_reloc_index))
3931 h->min_dyn_reloc_index = sreloc->reloc_count;
3932
3933 /* We've now added another relocation. */
3934 ++sreloc->reloc_count;
3935
3936 /* Make sure the output section is writable. The dynamic linker
3937 will be writing to it. */
3938 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3939 |= SHF_WRITE;
3940
3941 /* On IRIX5, make an entry of compact relocation info. */
3942 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3943 {
3944 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3945 bfd_byte *cr;
3946
3947 if (scpt)
3948 {
3949 Elf32_crinfo cptrel;
3950
3951 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3952 cptrel.vaddr = (rel->r_offset
3953 + input_section->output_section->vma
3954 + input_section->output_offset);
3955 if (r_type == R_MIPS_REL32)
3956 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3957 else
3958 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3959 mips_elf_set_cr_dist2to (cptrel, 0);
3960 cptrel.konst = *addendp;
3961
3962 cr = (scpt->contents
3963 + sizeof (Elf32_External_compact_rel));
3964 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3965 ((Elf32_External_crinfo *) cr
3966 + scpt->reloc_count));
3967 ++scpt->reloc_count;
3968 }
3969 }
3970
3971 return TRUE;
3972 }
3973 \f
3974 /* Return the MACH for a MIPS e_flags value. */
3975
3976 unsigned long
3977 _bfd_elf_mips_mach (flags)
3978 flagword flags;
3979 {
3980 switch (flags & EF_MIPS_MACH)
3981 {
3982 case E_MIPS_MACH_3900:
3983 return bfd_mach_mips3900;
3984
3985 case E_MIPS_MACH_4010:
3986 return bfd_mach_mips4010;
3987
3988 case E_MIPS_MACH_4100:
3989 return bfd_mach_mips4100;
3990
3991 case E_MIPS_MACH_4111:
3992 return bfd_mach_mips4111;
3993
3994 case E_MIPS_MACH_4120:
3995 return bfd_mach_mips4120;
3996
3997 case E_MIPS_MACH_4650:
3998 return bfd_mach_mips4650;
3999
4000 case E_MIPS_MACH_5400:
4001 return bfd_mach_mips5400;
4002
4003 case E_MIPS_MACH_5500:
4004 return bfd_mach_mips5500;
4005
4006 case E_MIPS_MACH_SB1:
4007 return bfd_mach_mips_sb1;
4008
4009 default:
4010 switch (flags & EF_MIPS_ARCH)
4011 {
4012 default:
4013 case E_MIPS_ARCH_1:
4014 return bfd_mach_mips3000;
4015 break;
4016
4017 case E_MIPS_ARCH_2:
4018 return bfd_mach_mips6000;
4019 break;
4020
4021 case E_MIPS_ARCH_3:
4022 return bfd_mach_mips4000;
4023 break;
4024
4025 case E_MIPS_ARCH_4:
4026 return bfd_mach_mips8000;
4027 break;
4028
4029 case E_MIPS_ARCH_5:
4030 return bfd_mach_mips5;
4031 break;
4032
4033 case E_MIPS_ARCH_32:
4034 return bfd_mach_mipsisa32;
4035 break;
4036
4037 case E_MIPS_ARCH_64:
4038 return bfd_mach_mipsisa64;
4039 break;
4040
4041 case E_MIPS_ARCH_32R2:
4042 return bfd_mach_mipsisa32r2;
4043 break;
4044 }
4045 }
4046
4047 return 0;
4048 }
4049
4050 /* Return printable name for ABI. */
4051
4052 static INLINE char *
4053 elf_mips_abi_name (abfd)
4054 bfd *abfd;
4055 {
4056 flagword flags;
4057
4058 flags = elf_elfheader (abfd)->e_flags;
4059 switch (flags & EF_MIPS_ABI)
4060 {
4061 case 0:
4062 if (ABI_N32_P (abfd))
4063 return "N32";
4064 else if (ABI_64_P (abfd))
4065 return "64";
4066 else
4067 return "none";
4068 case E_MIPS_ABI_O32:
4069 return "O32";
4070 case E_MIPS_ABI_O64:
4071 return "O64";
4072 case E_MIPS_ABI_EABI32:
4073 return "EABI32";
4074 case E_MIPS_ABI_EABI64:
4075 return "EABI64";
4076 default:
4077 return "unknown abi";
4078 }
4079 }
4080 \f
4081 /* MIPS ELF uses two common sections. One is the usual one, and the
4082 other is for small objects. All the small objects are kept
4083 together, and then referenced via the gp pointer, which yields
4084 faster assembler code. This is what we use for the small common
4085 section. This approach is copied from ecoff.c. */
4086 static asection mips_elf_scom_section;
4087 static asymbol mips_elf_scom_symbol;
4088 static asymbol *mips_elf_scom_symbol_ptr;
4089
4090 /* MIPS ELF also uses an acommon section, which represents an
4091 allocated common symbol which may be overridden by a
4092 definition in a shared library. */
4093 static asection mips_elf_acom_section;
4094 static asymbol mips_elf_acom_symbol;
4095 static asymbol *mips_elf_acom_symbol_ptr;
4096
4097 /* Handle the special MIPS section numbers that a symbol may use.
4098 This is used for both the 32-bit and the 64-bit ABI. */
4099
4100 void
4101 _bfd_mips_elf_symbol_processing (abfd, asym)
4102 bfd *abfd;
4103 asymbol *asym;
4104 {
4105 elf_symbol_type *elfsym;
4106
4107 elfsym = (elf_symbol_type *) asym;
4108 switch (elfsym->internal_elf_sym.st_shndx)
4109 {
4110 case SHN_MIPS_ACOMMON:
4111 /* This section is used in a dynamically linked executable file.
4112 It is an allocated common section. The dynamic linker can
4113 either resolve these symbols to something in a shared
4114 library, or it can just leave them here. For our purposes,
4115 we can consider these symbols to be in a new section. */
4116 if (mips_elf_acom_section.name == NULL)
4117 {
4118 /* Initialize the acommon section. */
4119 mips_elf_acom_section.name = ".acommon";
4120 mips_elf_acom_section.flags = SEC_ALLOC;
4121 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4122 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4123 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4124 mips_elf_acom_symbol.name = ".acommon";
4125 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4126 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4127 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4128 }
4129 asym->section = &mips_elf_acom_section;
4130 break;
4131
4132 case SHN_COMMON:
4133 /* Common symbols less than the GP size are automatically
4134 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4135 if (asym->value > elf_gp_size (abfd)
4136 || IRIX_COMPAT (abfd) == ict_irix6)
4137 break;
4138 /* Fall through. */
4139 case SHN_MIPS_SCOMMON:
4140 if (mips_elf_scom_section.name == NULL)
4141 {
4142 /* Initialize the small common section. */
4143 mips_elf_scom_section.name = ".scommon";
4144 mips_elf_scom_section.flags = SEC_IS_COMMON;
4145 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4146 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4147 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4148 mips_elf_scom_symbol.name = ".scommon";
4149 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4150 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4151 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4152 }
4153 asym->section = &mips_elf_scom_section;
4154 asym->value = elfsym->internal_elf_sym.st_size;
4155 break;
4156
4157 case SHN_MIPS_SUNDEFINED:
4158 asym->section = bfd_und_section_ptr;
4159 break;
4160
4161 #if 0 /* for SGI_COMPAT */
4162 case SHN_MIPS_TEXT:
4163 asym->section = mips_elf_text_section_ptr;
4164 break;
4165
4166 case SHN_MIPS_DATA:
4167 asym->section = mips_elf_data_section_ptr;
4168 break;
4169 #endif
4170 }
4171 }
4172 \f
4173 /* Work over a section just before writing it out. This routine is
4174 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4175 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4176 a better way. */
4177
4178 bfd_boolean
4179 _bfd_mips_elf_section_processing (abfd, hdr)
4180 bfd *abfd;
4181 Elf_Internal_Shdr *hdr;
4182 {
4183 if (hdr->sh_type == SHT_MIPS_REGINFO
4184 && hdr->sh_size > 0)
4185 {
4186 bfd_byte buf[4];
4187
4188 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4189 BFD_ASSERT (hdr->contents == NULL);
4190
4191 if (bfd_seek (abfd,
4192 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4193 SEEK_SET) != 0)
4194 return FALSE;
4195 H_PUT_32 (abfd, elf_gp (abfd), buf);
4196 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4197 return FALSE;
4198 }
4199
4200 if (hdr->sh_type == SHT_MIPS_OPTIONS
4201 && hdr->bfd_section != NULL
4202 && mips_elf_section_data (hdr->bfd_section) != NULL
4203 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4204 {
4205 bfd_byte *contents, *l, *lend;
4206
4207 /* We stored the section contents in the tdata field in the
4208 set_section_contents routine. We save the section contents
4209 so that we don't have to read them again.
4210 At this point we know that elf_gp is set, so we can look
4211 through the section contents to see if there is an
4212 ODK_REGINFO structure. */
4213
4214 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4215 l = contents;
4216 lend = contents + hdr->sh_size;
4217 while (l + sizeof (Elf_External_Options) <= lend)
4218 {
4219 Elf_Internal_Options intopt;
4220
4221 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4222 &intopt);
4223 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4224 {
4225 bfd_byte buf[8];
4226
4227 if (bfd_seek (abfd,
4228 (hdr->sh_offset
4229 + (l - contents)
4230 + sizeof (Elf_External_Options)
4231 + (sizeof (Elf64_External_RegInfo) - 8)),
4232 SEEK_SET) != 0)
4233 return FALSE;
4234 H_PUT_64 (abfd, elf_gp (abfd), buf);
4235 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4236 return FALSE;
4237 }
4238 else if (intopt.kind == ODK_REGINFO)
4239 {
4240 bfd_byte buf[4];
4241
4242 if (bfd_seek (abfd,
4243 (hdr->sh_offset
4244 + (l - contents)
4245 + sizeof (Elf_External_Options)
4246 + (sizeof (Elf32_External_RegInfo) - 4)),
4247 SEEK_SET) != 0)
4248 return FALSE;
4249 H_PUT_32 (abfd, elf_gp (abfd), buf);
4250 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4251 return FALSE;
4252 }
4253 l += intopt.size;
4254 }
4255 }
4256
4257 if (hdr->bfd_section != NULL)
4258 {
4259 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4260
4261 if (strcmp (name, ".sdata") == 0
4262 || strcmp (name, ".lit8") == 0
4263 || strcmp (name, ".lit4") == 0)
4264 {
4265 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4266 hdr->sh_type = SHT_PROGBITS;
4267 }
4268 else if (strcmp (name, ".sbss") == 0)
4269 {
4270 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4271 hdr->sh_type = SHT_NOBITS;
4272 }
4273 else if (strcmp (name, ".srdata") == 0)
4274 {
4275 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4276 hdr->sh_type = SHT_PROGBITS;
4277 }
4278 else if (strcmp (name, ".compact_rel") == 0)
4279 {
4280 hdr->sh_flags = 0;
4281 hdr->sh_type = SHT_PROGBITS;
4282 }
4283 else if (strcmp (name, ".rtproc") == 0)
4284 {
4285 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4286 {
4287 unsigned int adjust;
4288
4289 adjust = hdr->sh_size % hdr->sh_addralign;
4290 if (adjust != 0)
4291 hdr->sh_size += hdr->sh_addralign - adjust;
4292 }
4293 }
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* Handle a MIPS specific section when reading an object file. This
4300 is called when elfcode.h finds a section with an unknown type.
4301 This routine supports both the 32-bit and 64-bit ELF ABI.
4302
4303 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4304 how to. */
4305
4306 bfd_boolean
4307 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4308 bfd *abfd;
4309 Elf_Internal_Shdr *hdr;
4310 const char *name;
4311 {
4312 flagword flags = 0;
4313
4314 /* There ought to be a place to keep ELF backend specific flags, but
4315 at the moment there isn't one. We just keep track of the
4316 sections by their name, instead. Fortunately, the ABI gives
4317 suggested names for all the MIPS specific sections, so we will
4318 probably get away with this. */
4319 switch (hdr->sh_type)
4320 {
4321 case SHT_MIPS_LIBLIST:
4322 if (strcmp (name, ".liblist") != 0)
4323 return FALSE;
4324 break;
4325 case SHT_MIPS_MSYM:
4326 if (strcmp (name, ".msym") != 0)
4327 return FALSE;
4328 break;
4329 case SHT_MIPS_CONFLICT:
4330 if (strcmp (name, ".conflict") != 0)
4331 return FALSE;
4332 break;
4333 case SHT_MIPS_GPTAB:
4334 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4335 return FALSE;
4336 break;
4337 case SHT_MIPS_UCODE:
4338 if (strcmp (name, ".ucode") != 0)
4339 return FALSE;
4340 break;
4341 case SHT_MIPS_DEBUG:
4342 if (strcmp (name, ".mdebug") != 0)
4343 return FALSE;
4344 flags = SEC_DEBUGGING;
4345 break;
4346 case SHT_MIPS_REGINFO:
4347 if (strcmp (name, ".reginfo") != 0
4348 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4349 return FALSE;
4350 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4351 break;
4352 case SHT_MIPS_IFACE:
4353 if (strcmp (name, ".MIPS.interfaces") != 0)
4354 return FALSE;
4355 break;
4356 case SHT_MIPS_CONTENT:
4357 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4358 return FALSE;
4359 break;
4360 case SHT_MIPS_OPTIONS:
4361 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4362 return FALSE;
4363 break;
4364 case SHT_MIPS_DWARF:
4365 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4366 return FALSE;
4367 break;
4368 case SHT_MIPS_SYMBOL_LIB:
4369 if (strcmp (name, ".MIPS.symlib") != 0)
4370 return FALSE;
4371 break;
4372 case SHT_MIPS_EVENTS:
4373 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4374 && strncmp (name, ".MIPS.post_rel",
4375 sizeof ".MIPS.post_rel" - 1) != 0)
4376 return FALSE;
4377 break;
4378 default:
4379 return FALSE;
4380 }
4381
4382 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4383 return FALSE;
4384
4385 if (flags)
4386 {
4387 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4388 (bfd_get_section_flags (abfd,
4389 hdr->bfd_section)
4390 | flags)))
4391 return FALSE;
4392 }
4393
4394 /* FIXME: We should record sh_info for a .gptab section. */
4395
4396 /* For a .reginfo section, set the gp value in the tdata information
4397 from the contents of this section. We need the gp value while
4398 processing relocs, so we just get it now. The .reginfo section
4399 is not used in the 64-bit MIPS ELF ABI. */
4400 if (hdr->sh_type == SHT_MIPS_REGINFO)
4401 {
4402 Elf32_External_RegInfo ext;
4403 Elf32_RegInfo s;
4404
4405 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4406 (file_ptr) 0,
4407 (bfd_size_type) sizeof ext))
4408 return FALSE;
4409 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4410 elf_gp (abfd) = s.ri_gp_value;
4411 }
4412
4413 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4414 set the gp value based on what we find. We may see both
4415 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4416 they should agree. */
4417 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4418 {
4419 bfd_byte *contents, *l, *lend;
4420
4421 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4422 if (contents == NULL)
4423 return FALSE;
4424 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4425 (file_ptr) 0, hdr->sh_size))
4426 {
4427 free (contents);
4428 return FALSE;
4429 }
4430 l = contents;
4431 lend = contents + hdr->sh_size;
4432 while (l + sizeof (Elf_External_Options) <= lend)
4433 {
4434 Elf_Internal_Options intopt;
4435
4436 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4437 &intopt);
4438 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4439 {
4440 Elf64_Internal_RegInfo intreg;
4441
4442 bfd_mips_elf64_swap_reginfo_in
4443 (abfd,
4444 ((Elf64_External_RegInfo *)
4445 (l + sizeof (Elf_External_Options))),
4446 &intreg);
4447 elf_gp (abfd) = intreg.ri_gp_value;
4448 }
4449 else if (intopt.kind == ODK_REGINFO)
4450 {
4451 Elf32_RegInfo intreg;
4452
4453 bfd_mips_elf32_swap_reginfo_in
4454 (abfd,
4455 ((Elf32_External_RegInfo *)
4456 (l + sizeof (Elf_External_Options))),
4457 &intreg);
4458 elf_gp (abfd) = intreg.ri_gp_value;
4459 }
4460 l += intopt.size;
4461 }
4462 free (contents);
4463 }
4464
4465 return TRUE;
4466 }
4467
4468 /* Set the correct type for a MIPS ELF section. We do this by the
4469 section name, which is a hack, but ought to work. This routine is
4470 used by both the 32-bit and the 64-bit ABI. */
4471
4472 bfd_boolean
4473 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4474 bfd *abfd;
4475 Elf_Internal_Shdr *hdr;
4476 asection *sec;
4477 {
4478 register const char *name;
4479
4480 name = bfd_get_section_name (abfd, sec);
4481
4482 if (strcmp (name, ".liblist") == 0)
4483 {
4484 hdr->sh_type = SHT_MIPS_LIBLIST;
4485 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4486 /* The sh_link field is set in final_write_processing. */
4487 }
4488 else if (strcmp (name, ".conflict") == 0)
4489 hdr->sh_type = SHT_MIPS_CONFLICT;
4490 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4491 {
4492 hdr->sh_type = SHT_MIPS_GPTAB;
4493 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4494 /* The sh_info field is set in final_write_processing. */
4495 }
4496 else if (strcmp (name, ".ucode") == 0)
4497 hdr->sh_type = SHT_MIPS_UCODE;
4498 else if (strcmp (name, ".mdebug") == 0)
4499 {
4500 hdr->sh_type = SHT_MIPS_DEBUG;
4501 /* In a shared object on IRIX 5.3, the .mdebug section has an
4502 entsize of 0. FIXME: Does this matter? */
4503 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4504 hdr->sh_entsize = 0;
4505 else
4506 hdr->sh_entsize = 1;
4507 }
4508 else if (strcmp (name, ".reginfo") == 0)
4509 {
4510 hdr->sh_type = SHT_MIPS_REGINFO;
4511 /* In a shared object on IRIX 5.3, the .reginfo section has an
4512 entsize of 0x18. FIXME: Does this matter? */
4513 if (SGI_COMPAT (abfd))
4514 {
4515 if ((abfd->flags & DYNAMIC) != 0)
4516 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4517 else
4518 hdr->sh_entsize = 1;
4519 }
4520 else
4521 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4522 }
4523 else if (SGI_COMPAT (abfd)
4524 && (strcmp (name, ".hash") == 0
4525 || strcmp (name, ".dynamic") == 0
4526 || strcmp (name, ".dynstr") == 0))
4527 {
4528 if (SGI_COMPAT (abfd))
4529 hdr->sh_entsize = 0;
4530 #if 0
4531 /* This isn't how the IRIX6 linker behaves. */
4532 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4533 #endif
4534 }
4535 else if (strcmp (name, ".got") == 0
4536 || strcmp (name, ".srdata") == 0
4537 || strcmp (name, ".sdata") == 0
4538 || strcmp (name, ".sbss") == 0
4539 || strcmp (name, ".lit4") == 0
4540 || strcmp (name, ".lit8") == 0)
4541 hdr->sh_flags |= SHF_MIPS_GPREL;
4542 else if (strcmp (name, ".MIPS.interfaces") == 0)
4543 {
4544 hdr->sh_type = SHT_MIPS_IFACE;
4545 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4546 }
4547 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4548 {
4549 hdr->sh_type = SHT_MIPS_CONTENT;
4550 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4551 /* The sh_info field is set in final_write_processing. */
4552 }
4553 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4554 {
4555 hdr->sh_type = SHT_MIPS_OPTIONS;
4556 hdr->sh_entsize = 1;
4557 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4558 }
4559 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4560 hdr->sh_type = SHT_MIPS_DWARF;
4561 else if (strcmp (name, ".MIPS.symlib") == 0)
4562 {
4563 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4564 /* The sh_link and sh_info fields are set in
4565 final_write_processing. */
4566 }
4567 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4568 || strncmp (name, ".MIPS.post_rel",
4569 sizeof ".MIPS.post_rel" - 1) == 0)
4570 {
4571 hdr->sh_type = SHT_MIPS_EVENTS;
4572 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4573 /* The sh_link field is set in final_write_processing. */
4574 }
4575 else if (strcmp (name, ".msym") == 0)
4576 {
4577 hdr->sh_type = SHT_MIPS_MSYM;
4578 hdr->sh_flags |= SHF_ALLOC;
4579 hdr->sh_entsize = 8;
4580 }
4581
4582 /* The generic elf_fake_sections will set up REL_HDR using the
4583 default kind of relocations. But, we may actually need both
4584 kinds of relocations, so we set up the second header here.
4585
4586 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4587 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4588 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4589 of the resulting empty .rela.<section> sections starts with
4590 sh_offset == object size, and ld doesn't allow that. While the check
4591 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4592 avoided by not emitting those useless sections in the first place. */
4593 if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
4594 && (sec->flags & SEC_RELOC) != 0)
4595 {
4596 struct bfd_elf_section_data *esd;
4597 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
4598
4599 esd = elf_section_data (sec);
4600 BFD_ASSERT (esd->rel_hdr2 == NULL);
4601 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
4602 if (!esd->rel_hdr2)
4603 return FALSE;
4604 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
4605 !elf_section_data (sec)->use_rela_p);
4606 }
4607
4608 return TRUE;
4609 }
4610
4611 /* Given a BFD section, try to locate the corresponding ELF section
4612 index. This is used by both the 32-bit and the 64-bit ABI.
4613 Actually, it's not clear to me that the 64-bit ABI supports these,
4614 but for non-PIC objects we will certainly want support for at least
4615 the .scommon section. */
4616
4617 bfd_boolean
4618 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4619 bfd *abfd ATTRIBUTE_UNUSED;
4620 asection *sec;
4621 int *retval;
4622 {
4623 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4624 {
4625 *retval = SHN_MIPS_SCOMMON;
4626 return TRUE;
4627 }
4628 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4629 {
4630 *retval = SHN_MIPS_ACOMMON;
4631 return TRUE;
4632 }
4633 return FALSE;
4634 }
4635 \f
4636 /* Hook called by the linker routine which adds symbols from an object
4637 file. We must handle the special MIPS section numbers here. */
4638
4639 bfd_boolean
4640 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4641 bfd *abfd;
4642 struct bfd_link_info *info;
4643 const Elf_Internal_Sym *sym;
4644 const char **namep;
4645 flagword *flagsp ATTRIBUTE_UNUSED;
4646 asection **secp;
4647 bfd_vma *valp;
4648 {
4649 if (SGI_COMPAT (abfd)
4650 && (abfd->flags & DYNAMIC) != 0
4651 && strcmp (*namep, "_rld_new_interface") == 0)
4652 {
4653 /* Skip IRIX5 rld entry name. */
4654 *namep = NULL;
4655 return TRUE;
4656 }
4657
4658 switch (sym->st_shndx)
4659 {
4660 case SHN_COMMON:
4661 /* Common symbols less than the GP size are automatically
4662 treated as SHN_MIPS_SCOMMON symbols. */
4663 if (sym->st_size > elf_gp_size (abfd)
4664 || IRIX_COMPAT (abfd) == ict_irix6)
4665 break;
4666 /* Fall through. */
4667 case SHN_MIPS_SCOMMON:
4668 *secp = bfd_make_section_old_way (abfd, ".scommon");
4669 (*secp)->flags |= SEC_IS_COMMON;
4670 *valp = sym->st_size;
4671 break;
4672
4673 case SHN_MIPS_TEXT:
4674 /* This section is used in a shared object. */
4675 if (elf_tdata (abfd)->elf_text_section == NULL)
4676 {
4677 asymbol *elf_text_symbol;
4678 asection *elf_text_section;
4679 bfd_size_type amt = sizeof (asection);
4680
4681 elf_text_section = bfd_zalloc (abfd, amt);
4682 if (elf_text_section == NULL)
4683 return FALSE;
4684
4685 amt = sizeof (asymbol);
4686 elf_text_symbol = bfd_zalloc (abfd, amt);
4687 if (elf_text_symbol == NULL)
4688 return FALSE;
4689
4690 /* Initialize the section. */
4691
4692 elf_tdata (abfd)->elf_text_section = elf_text_section;
4693 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4694
4695 elf_text_section->symbol = elf_text_symbol;
4696 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4697
4698 elf_text_section->name = ".text";
4699 elf_text_section->flags = SEC_NO_FLAGS;
4700 elf_text_section->output_section = NULL;
4701 elf_text_section->owner = abfd;
4702 elf_text_symbol->name = ".text";
4703 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4704 elf_text_symbol->section = elf_text_section;
4705 }
4706 /* This code used to do *secp = bfd_und_section_ptr if
4707 info->shared. I don't know why, and that doesn't make sense,
4708 so I took it out. */
4709 *secp = elf_tdata (abfd)->elf_text_section;
4710 break;
4711
4712 case SHN_MIPS_ACOMMON:
4713 /* Fall through. XXX Can we treat this as allocated data? */
4714 case SHN_MIPS_DATA:
4715 /* This section is used in a shared object. */
4716 if (elf_tdata (abfd)->elf_data_section == NULL)
4717 {
4718 asymbol *elf_data_symbol;
4719 asection *elf_data_section;
4720 bfd_size_type amt = sizeof (asection);
4721
4722 elf_data_section = bfd_zalloc (abfd, amt);
4723 if (elf_data_section == NULL)
4724 return FALSE;
4725
4726 amt = sizeof (asymbol);
4727 elf_data_symbol = bfd_zalloc (abfd, amt);
4728 if (elf_data_symbol == NULL)
4729 return FALSE;
4730
4731 /* Initialize the section. */
4732
4733 elf_tdata (abfd)->elf_data_section = elf_data_section;
4734 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4735
4736 elf_data_section->symbol = elf_data_symbol;
4737 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4738
4739 elf_data_section->name = ".data";
4740 elf_data_section->flags = SEC_NO_FLAGS;
4741 elf_data_section->output_section = NULL;
4742 elf_data_section->owner = abfd;
4743 elf_data_symbol->name = ".data";
4744 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4745 elf_data_symbol->section = elf_data_section;
4746 }
4747 /* This code used to do *secp = bfd_und_section_ptr if
4748 info->shared. I don't know why, and that doesn't make sense,
4749 so I took it out. */
4750 *secp = elf_tdata (abfd)->elf_data_section;
4751 break;
4752
4753 case SHN_MIPS_SUNDEFINED:
4754 *secp = bfd_und_section_ptr;
4755 break;
4756 }
4757
4758 if (SGI_COMPAT (abfd)
4759 && ! info->shared
4760 && info->hash->creator == abfd->xvec
4761 && strcmp (*namep, "__rld_obj_head") == 0)
4762 {
4763 struct elf_link_hash_entry *h;
4764 struct bfd_link_hash_entry *bh;
4765
4766 /* Mark __rld_obj_head as dynamic. */
4767 bh = NULL;
4768 if (! (_bfd_generic_link_add_one_symbol
4769 (info, abfd, *namep, BSF_GLOBAL, *secp,
4770 (bfd_vma) *valp, (const char *) NULL, FALSE,
4771 get_elf_backend_data (abfd)->collect, &bh)))
4772 return FALSE;
4773
4774 h = (struct elf_link_hash_entry *) bh;
4775 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4776 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4777 h->type = STT_OBJECT;
4778
4779 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4780 return FALSE;
4781
4782 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4783 }
4784
4785 /* If this is a mips16 text symbol, add 1 to the value to make it
4786 odd. This will cause something like .word SYM to come up with
4787 the right value when it is loaded into the PC. */
4788 if (sym->st_other == STO_MIPS16)
4789 ++*valp;
4790
4791 return TRUE;
4792 }
4793
4794 /* This hook function is called before the linker writes out a global
4795 symbol. We mark symbols as small common if appropriate. This is
4796 also where we undo the increment of the value for a mips16 symbol. */
4797
4798 bfd_boolean
4799 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4800 bfd *abfd ATTRIBUTE_UNUSED;
4801 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4802 const char *name ATTRIBUTE_UNUSED;
4803 Elf_Internal_Sym *sym;
4804 asection *input_sec;
4805 {
4806 /* If we see a common symbol, which implies a relocatable link, then
4807 if a symbol was small common in an input file, mark it as small
4808 common in the output file. */
4809 if (sym->st_shndx == SHN_COMMON
4810 && strcmp (input_sec->name, ".scommon") == 0)
4811 sym->st_shndx = SHN_MIPS_SCOMMON;
4812
4813 if (sym->st_other == STO_MIPS16
4814 && (sym->st_value & 1) != 0)
4815 --sym->st_value;
4816
4817 return TRUE;
4818 }
4819 \f
4820 /* Functions for the dynamic linker. */
4821
4822 /* Create dynamic sections when linking against a dynamic object. */
4823
4824 bfd_boolean
4825 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4826 bfd *abfd;
4827 struct bfd_link_info *info;
4828 {
4829 struct elf_link_hash_entry *h;
4830 struct bfd_link_hash_entry *bh;
4831 flagword flags;
4832 register asection *s;
4833 const char * const *namep;
4834
4835 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4836 | SEC_LINKER_CREATED | SEC_READONLY);
4837
4838 /* Mips ABI requests the .dynamic section to be read only. */
4839 s = bfd_get_section_by_name (abfd, ".dynamic");
4840 if (s != NULL)
4841 {
4842 if (! bfd_set_section_flags (abfd, s, flags))
4843 return FALSE;
4844 }
4845
4846 /* We need to create .got section. */
4847 if (! mips_elf_create_got_section (abfd, info, FALSE))
4848 return FALSE;
4849
4850 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4851 return FALSE;
4852
4853 /* Create the .msym section on IRIX6. It is used by the dynamic
4854 linker to speed up dynamic relocations, and to avoid computing
4855 the ELF hash for symbols. */
4856 if (IRIX_COMPAT (abfd) == ict_irix6
4857 && !mips_elf_create_msym_section (abfd))
4858 return FALSE;
4859
4860 /* Create .stub section. */
4861 if (bfd_get_section_by_name (abfd,
4862 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4863 {
4864 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4865 if (s == NULL
4866 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4867 || ! bfd_set_section_alignment (abfd, s,
4868 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4869 return FALSE;
4870 }
4871
4872 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4873 && !info->shared
4874 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4875 {
4876 s = bfd_make_section (abfd, ".rld_map");
4877 if (s == NULL
4878 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4879 || ! bfd_set_section_alignment (abfd, s,
4880 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4881 return FALSE;
4882 }
4883
4884 /* On IRIX5, we adjust add some additional symbols and change the
4885 alignments of several sections. There is no ABI documentation
4886 indicating that this is necessary on IRIX6, nor any evidence that
4887 the linker takes such action. */
4888 if (IRIX_COMPAT (abfd) == ict_irix5)
4889 {
4890 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4891 {
4892 bh = NULL;
4893 if (! (_bfd_generic_link_add_one_symbol
4894 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4895 (bfd_vma) 0, (const char *) NULL, FALSE,
4896 get_elf_backend_data (abfd)->collect, &bh)))
4897 return FALSE;
4898
4899 h = (struct elf_link_hash_entry *) bh;
4900 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4901 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4902 h->type = STT_SECTION;
4903
4904 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4905 return FALSE;
4906 }
4907
4908 /* We need to create a .compact_rel section. */
4909 if (SGI_COMPAT (abfd))
4910 {
4911 if (!mips_elf_create_compact_rel_section (abfd, info))
4912 return FALSE;
4913 }
4914
4915 /* Change alignments of some sections. */
4916 s = bfd_get_section_by_name (abfd, ".hash");
4917 if (s != NULL)
4918 bfd_set_section_alignment (abfd, s, 4);
4919 s = bfd_get_section_by_name (abfd, ".dynsym");
4920 if (s != NULL)
4921 bfd_set_section_alignment (abfd, s, 4);
4922 s = bfd_get_section_by_name (abfd, ".dynstr");
4923 if (s != NULL)
4924 bfd_set_section_alignment (abfd, s, 4);
4925 s = bfd_get_section_by_name (abfd, ".reginfo");
4926 if (s != NULL)
4927 bfd_set_section_alignment (abfd, s, 4);
4928 s = bfd_get_section_by_name (abfd, ".dynamic");
4929 if (s != NULL)
4930 bfd_set_section_alignment (abfd, s, 4);
4931 }
4932
4933 if (!info->shared)
4934 {
4935 const char *name;
4936
4937 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4938 bh = NULL;
4939 if (!(_bfd_generic_link_add_one_symbol
4940 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4941 (bfd_vma) 0, (const char *) NULL, FALSE,
4942 get_elf_backend_data (abfd)->collect, &bh)))
4943 return FALSE;
4944
4945 h = (struct elf_link_hash_entry *) bh;
4946 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4947 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4948 h->type = STT_SECTION;
4949
4950 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4951 return FALSE;
4952
4953 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4954 {
4955 /* __rld_map is a four byte word located in the .data section
4956 and is filled in by the rtld to contain a pointer to
4957 the _r_debug structure. Its symbol value will be set in
4958 _bfd_mips_elf_finish_dynamic_symbol. */
4959 s = bfd_get_section_by_name (abfd, ".rld_map");
4960 BFD_ASSERT (s != NULL);
4961
4962 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4963 bh = NULL;
4964 if (!(_bfd_generic_link_add_one_symbol
4965 (info, abfd, name, BSF_GLOBAL, s,
4966 (bfd_vma) 0, (const char *) NULL, FALSE,
4967 get_elf_backend_data (abfd)->collect, &bh)))
4968 return FALSE;
4969
4970 h = (struct elf_link_hash_entry *) bh;
4971 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4972 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4973 h->type = STT_OBJECT;
4974
4975 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4976 return FALSE;
4977 }
4978 }
4979
4980 return TRUE;
4981 }
4982 \f
4983 /* Look through the relocs for a section during the first phase, and
4984 allocate space in the global offset table. */
4985
4986 bfd_boolean
4987 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
4988 bfd *abfd;
4989 struct bfd_link_info *info;
4990 asection *sec;
4991 const Elf_Internal_Rela *relocs;
4992 {
4993 const char *name;
4994 bfd *dynobj;
4995 Elf_Internal_Shdr *symtab_hdr;
4996 struct elf_link_hash_entry **sym_hashes;
4997 struct mips_got_info *g;
4998 size_t extsymoff;
4999 const Elf_Internal_Rela *rel;
5000 const Elf_Internal_Rela *rel_end;
5001 asection *sgot;
5002 asection *sreloc;
5003 struct elf_backend_data *bed;
5004
5005 if (info->relocateable)
5006 return TRUE;
5007
5008 dynobj = elf_hash_table (info)->dynobj;
5009 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5010 sym_hashes = elf_sym_hashes (abfd);
5011 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5012
5013 /* Check for the mips16 stub sections. */
5014
5015 name = bfd_get_section_name (abfd, sec);
5016 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5017 {
5018 unsigned long r_symndx;
5019
5020 /* Look at the relocation information to figure out which symbol
5021 this is for. */
5022
5023 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5024
5025 if (r_symndx < extsymoff
5026 || sym_hashes[r_symndx - extsymoff] == NULL)
5027 {
5028 asection *o;
5029
5030 /* This stub is for a local symbol. This stub will only be
5031 needed if there is some relocation in this BFD, other
5032 than a 16 bit function call, which refers to this symbol. */
5033 for (o = abfd->sections; o != NULL; o = o->next)
5034 {
5035 Elf_Internal_Rela *sec_relocs;
5036 const Elf_Internal_Rela *r, *rend;
5037
5038 /* We can ignore stub sections when looking for relocs. */
5039 if ((o->flags & SEC_RELOC) == 0
5040 || o->reloc_count == 0
5041 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5042 sizeof FN_STUB - 1) == 0
5043 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5044 sizeof CALL_STUB - 1) == 0
5045 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5046 sizeof CALL_FP_STUB - 1) == 0)
5047 continue;
5048
5049 sec_relocs = (MNAME(abfd,_bfd_elf,link_read_relocs)
5050 (abfd, o, (PTR) NULL,
5051 (Elf_Internal_Rela *) NULL,
5052 info->keep_memory));
5053 if (sec_relocs == NULL)
5054 return FALSE;
5055
5056 rend = sec_relocs + o->reloc_count;
5057 for (r = sec_relocs; r < rend; r++)
5058 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5059 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5060 break;
5061
5062 if (elf_section_data (o)->relocs != sec_relocs)
5063 free (sec_relocs);
5064
5065 if (r < rend)
5066 break;
5067 }
5068
5069 if (o == NULL)
5070 {
5071 /* There is no non-call reloc for this stub, so we do
5072 not need it. Since this function is called before
5073 the linker maps input sections to output sections, we
5074 can easily discard it by setting the SEC_EXCLUDE
5075 flag. */
5076 sec->flags |= SEC_EXCLUDE;
5077 return TRUE;
5078 }
5079
5080 /* Record this stub in an array of local symbol stubs for
5081 this BFD. */
5082 if (elf_tdata (abfd)->local_stubs == NULL)
5083 {
5084 unsigned long symcount;
5085 asection **n;
5086 bfd_size_type amt;
5087
5088 if (elf_bad_symtab (abfd))
5089 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5090 else
5091 symcount = symtab_hdr->sh_info;
5092 amt = symcount * sizeof (asection *);
5093 n = (asection **) bfd_zalloc (abfd, amt);
5094 if (n == NULL)
5095 return FALSE;
5096 elf_tdata (abfd)->local_stubs = n;
5097 }
5098
5099 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5100
5101 /* We don't need to set mips16_stubs_seen in this case.
5102 That flag is used to see whether we need to look through
5103 the global symbol table for stubs. We don't need to set
5104 it here, because we just have a local stub. */
5105 }
5106 else
5107 {
5108 struct mips_elf_link_hash_entry *h;
5109
5110 h = ((struct mips_elf_link_hash_entry *)
5111 sym_hashes[r_symndx - extsymoff]);
5112
5113 /* H is the symbol this stub is for. */
5114
5115 h->fn_stub = sec;
5116 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5117 }
5118 }
5119 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5120 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5121 {
5122 unsigned long r_symndx;
5123 struct mips_elf_link_hash_entry *h;
5124 asection **loc;
5125
5126 /* Look at the relocation information to figure out which symbol
5127 this is for. */
5128
5129 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5130
5131 if (r_symndx < extsymoff
5132 || sym_hashes[r_symndx - extsymoff] == NULL)
5133 {
5134 /* This stub was actually built for a static symbol defined
5135 in the same file. We assume that all static symbols in
5136 mips16 code are themselves mips16, so we can simply
5137 discard this stub. Since this function is called before
5138 the linker maps input sections to output sections, we can
5139 easily discard it by setting the SEC_EXCLUDE flag. */
5140 sec->flags |= SEC_EXCLUDE;
5141 return TRUE;
5142 }
5143
5144 h = ((struct mips_elf_link_hash_entry *)
5145 sym_hashes[r_symndx - extsymoff]);
5146
5147 /* H is the symbol this stub is for. */
5148
5149 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5150 loc = &h->call_fp_stub;
5151 else
5152 loc = &h->call_stub;
5153
5154 /* If we already have an appropriate stub for this function, we
5155 don't need another one, so we can discard this one. Since
5156 this function is called before the linker maps input sections
5157 to output sections, we can easily discard it by setting the
5158 SEC_EXCLUDE flag. We can also discard this section if we
5159 happen to already know that this is a mips16 function; it is
5160 not necessary to check this here, as it is checked later, but
5161 it is slightly faster to check now. */
5162 if (*loc != NULL || h->root.other == STO_MIPS16)
5163 {
5164 sec->flags |= SEC_EXCLUDE;
5165 return TRUE;
5166 }
5167
5168 *loc = sec;
5169 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5170 }
5171
5172 if (dynobj == NULL)
5173 {
5174 sgot = NULL;
5175 g = NULL;
5176 }
5177 else
5178 {
5179 sgot = mips_elf_got_section (dynobj, FALSE);
5180 if (sgot == NULL)
5181 g = NULL;
5182 else
5183 {
5184 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5185 g = mips_elf_section_data (sgot)->u.got_info;
5186 BFD_ASSERT (g != NULL);
5187 }
5188 }
5189
5190 sreloc = NULL;
5191 bed = get_elf_backend_data (abfd);
5192 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5193 for (rel = relocs; rel < rel_end; ++rel)
5194 {
5195 unsigned long r_symndx;
5196 unsigned int r_type;
5197 struct elf_link_hash_entry *h;
5198
5199 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5200 r_type = ELF_R_TYPE (abfd, rel->r_info);
5201
5202 if (r_symndx < extsymoff)
5203 h = NULL;
5204 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5205 {
5206 (*_bfd_error_handler)
5207 (_("%s: Malformed reloc detected for section %s"),
5208 bfd_archive_filename (abfd), name);
5209 bfd_set_error (bfd_error_bad_value);
5210 return FALSE;
5211 }
5212 else
5213 {
5214 h = sym_hashes[r_symndx - extsymoff];
5215
5216 /* This may be an indirect symbol created because of a version. */
5217 if (h != NULL)
5218 {
5219 while (h->root.type == bfd_link_hash_indirect)
5220 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5221 }
5222 }
5223
5224 /* Some relocs require a global offset table. */
5225 if (dynobj == NULL || sgot == NULL)
5226 {
5227 switch (r_type)
5228 {
5229 case R_MIPS_GOT16:
5230 case R_MIPS_CALL16:
5231 case R_MIPS_CALL_HI16:
5232 case R_MIPS_CALL_LO16:
5233 case R_MIPS_GOT_HI16:
5234 case R_MIPS_GOT_LO16:
5235 case R_MIPS_GOT_PAGE:
5236 case R_MIPS_GOT_OFST:
5237 case R_MIPS_GOT_DISP:
5238 if (dynobj == NULL)
5239 elf_hash_table (info)->dynobj = dynobj = abfd;
5240 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5241 return FALSE;
5242 g = mips_elf_got_info (dynobj, &sgot);
5243 break;
5244
5245 case R_MIPS_32:
5246 case R_MIPS_REL32:
5247 case R_MIPS_64:
5248 if (dynobj == NULL
5249 && (info->shared || h != NULL)
5250 && (sec->flags & SEC_ALLOC) != 0)
5251 elf_hash_table (info)->dynobj = dynobj = abfd;
5252 break;
5253
5254 default:
5255 break;
5256 }
5257 }
5258
5259 if (!h && (r_type == R_MIPS_CALL_LO16
5260 || r_type == R_MIPS_GOT_LO16
5261 || r_type == R_MIPS_GOT_DISP))
5262 {
5263 /* We may need a local GOT entry for this relocation. We
5264 don't count R_MIPS_GOT_PAGE because we can estimate the
5265 maximum number of pages needed by looking at the size of
5266 the segment. Similar comments apply to R_MIPS_GOT16 and
5267 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5268 R_MIPS_CALL_HI16 because these are always followed by an
5269 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5270 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5271 rel->r_addend, g))
5272 return FALSE;
5273 }
5274
5275 switch (r_type)
5276 {
5277 case R_MIPS_CALL16:
5278 if (h == NULL)
5279 {
5280 (*_bfd_error_handler)
5281 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5282 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5283 bfd_set_error (bfd_error_bad_value);
5284 return FALSE;
5285 }
5286 /* Fall through. */
5287
5288 case R_MIPS_CALL_HI16:
5289 case R_MIPS_CALL_LO16:
5290 if (h != NULL)
5291 {
5292 /* This symbol requires a global offset table entry. */
5293 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5294 return FALSE;
5295
5296 /* We need a stub, not a plt entry for the undefined
5297 function. But we record it as if it needs plt. See
5298 elf_adjust_dynamic_symbol in elflink.h. */
5299 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5300 h->type = STT_FUNC;
5301 }
5302 break;
5303
5304 case R_MIPS_GOT16:
5305 case R_MIPS_GOT_HI16:
5306 case R_MIPS_GOT_LO16:
5307 case R_MIPS_GOT_DISP:
5308 /* This symbol requires a global offset table entry. */
5309 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5310 return FALSE;
5311 break;
5312
5313 case R_MIPS_32:
5314 case R_MIPS_REL32:
5315 case R_MIPS_64:
5316 if ((info->shared || h != NULL)
5317 && (sec->flags & SEC_ALLOC) != 0)
5318 {
5319 if (sreloc == NULL)
5320 {
5321 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5322 if (sreloc == NULL)
5323 return FALSE;
5324 }
5325 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5326 if (info->shared)
5327 {
5328 /* When creating a shared object, we must copy these
5329 reloc types into the output file as R_MIPS_REL32
5330 relocs. We make room for this reloc in the
5331 .rel.dyn reloc section. */
5332 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5333 if ((sec->flags & MIPS_READONLY_SECTION)
5334 == MIPS_READONLY_SECTION)
5335 /* We tell the dynamic linker that there are
5336 relocations against the text segment. */
5337 info->flags |= DF_TEXTREL;
5338 }
5339 else
5340 {
5341 struct mips_elf_link_hash_entry *hmips;
5342
5343 /* We only need to copy this reloc if the symbol is
5344 defined in a dynamic object. */
5345 hmips = (struct mips_elf_link_hash_entry *) h;
5346 ++hmips->possibly_dynamic_relocs;
5347 if ((sec->flags & MIPS_READONLY_SECTION)
5348 == MIPS_READONLY_SECTION)
5349 /* We need it to tell the dynamic linker if there
5350 are relocations against the text segment. */
5351 hmips->readonly_reloc = TRUE;
5352 }
5353
5354 /* Even though we don't directly need a GOT entry for
5355 this symbol, a symbol must have a dynamic symbol
5356 table index greater that DT_MIPS_GOTSYM if there are
5357 dynamic relocations against it. */
5358 if (h != NULL)
5359 {
5360 if (dynobj == NULL)
5361 elf_hash_table (info)->dynobj = dynobj = abfd;
5362 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5363 return FALSE;
5364 g = mips_elf_got_info (dynobj, &sgot);
5365 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5366 return FALSE;
5367 }
5368 }
5369
5370 if (SGI_COMPAT (abfd))
5371 mips_elf_hash_table (info)->compact_rel_size +=
5372 sizeof (Elf32_External_crinfo);
5373 break;
5374
5375 case R_MIPS_26:
5376 case R_MIPS_GPREL16:
5377 case R_MIPS_LITERAL:
5378 case R_MIPS_GPREL32:
5379 if (SGI_COMPAT (abfd))
5380 mips_elf_hash_table (info)->compact_rel_size +=
5381 sizeof (Elf32_External_crinfo);
5382 break;
5383
5384 /* This relocation describes the C++ object vtable hierarchy.
5385 Reconstruct it for later use during GC. */
5386 case R_MIPS_GNU_VTINHERIT:
5387 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5388 return FALSE;
5389 break;
5390
5391 /* This relocation describes which C++ vtable entries are actually
5392 used. Record for later use during GC. */
5393 case R_MIPS_GNU_VTENTRY:
5394 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5395 return FALSE;
5396 break;
5397
5398 default:
5399 break;
5400 }
5401
5402 /* We must not create a stub for a symbol that has relocations
5403 related to taking the function's address. */
5404 switch (r_type)
5405 {
5406 default:
5407 if (h != NULL)
5408 {
5409 struct mips_elf_link_hash_entry *mh;
5410
5411 mh = (struct mips_elf_link_hash_entry *) h;
5412 mh->no_fn_stub = TRUE;
5413 }
5414 break;
5415 case R_MIPS_CALL16:
5416 case R_MIPS_CALL_HI16:
5417 case R_MIPS_CALL_LO16:
5418 break;
5419 }
5420
5421 /* If this reloc is not a 16 bit call, and it has a global
5422 symbol, then we will need the fn_stub if there is one.
5423 References from a stub section do not count. */
5424 if (h != NULL
5425 && r_type != R_MIPS16_26
5426 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5427 sizeof FN_STUB - 1) != 0
5428 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5429 sizeof CALL_STUB - 1) != 0
5430 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5431 sizeof CALL_FP_STUB - 1) != 0)
5432 {
5433 struct mips_elf_link_hash_entry *mh;
5434
5435 mh = (struct mips_elf_link_hash_entry *) h;
5436 mh->need_fn_stub = TRUE;
5437 }
5438 }
5439
5440 return TRUE;
5441 }
5442 \f
5443 /* Adjust a symbol defined by a dynamic object and referenced by a
5444 regular object. The current definition is in some section of the
5445 dynamic object, but we're not including those sections. We have to
5446 change the definition to something the rest of the link can
5447 understand. */
5448
5449 bfd_boolean
5450 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5451 struct bfd_link_info *info;
5452 struct elf_link_hash_entry *h;
5453 {
5454 bfd *dynobj;
5455 struct mips_elf_link_hash_entry *hmips;
5456 asection *s;
5457
5458 dynobj = elf_hash_table (info)->dynobj;
5459
5460 /* Make sure we know what is going on here. */
5461 BFD_ASSERT (dynobj != NULL
5462 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5463 || h->weakdef != NULL
5464 || ((h->elf_link_hash_flags
5465 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5466 && (h->elf_link_hash_flags
5467 & ELF_LINK_HASH_REF_REGULAR) != 0
5468 && (h->elf_link_hash_flags
5469 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5470
5471 /* If this symbol is defined in a dynamic object, we need to copy
5472 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5473 file. */
5474 hmips = (struct mips_elf_link_hash_entry *) h;
5475 if (! info->relocateable
5476 && hmips->possibly_dynamic_relocs != 0
5477 && (h->root.type == bfd_link_hash_defweak
5478 || (h->elf_link_hash_flags
5479 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5480 {
5481 mips_elf_allocate_dynamic_relocations (dynobj,
5482 hmips->possibly_dynamic_relocs);
5483 if (hmips->readonly_reloc)
5484 /* We tell the dynamic linker that there are relocations
5485 against the text segment. */
5486 info->flags |= DF_TEXTREL;
5487 }
5488
5489 /* For a function, create a stub, if allowed. */
5490 if (! hmips->no_fn_stub
5491 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5492 {
5493 if (! elf_hash_table (info)->dynamic_sections_created)
5494 return TRUE;
5495
5496 /* If this symbol is not defined in a regular file, then set
5497 the symbol to the stub location. This is required to make
5498 function pointers compare as equal between the normal
5499 executable and the shared library. */
5500 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5501 {
5502 /* We need .stub section. */
5503 s = bfd_get_section_by_name (dynobj,
5504 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5505 BFD_ASSERT (s != NULL);
5506
5507 h->root.u.def.section = s;
5508 h->root.u.def.value = s->_raw_size;
5509
5510 /* XXX Write this stub address somewhere. */
5511 h->plt.offset = s->_raw_size;
5512
5513 /* Make room for this stub code. */
5514 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5515
5516 /* The last half word of the stub will be filled with the index
5517 of this symbol in .dynsym section. */
5518 return TRUE;
5519 }
5520 }
5521 else if ((h->type == STT_FUNC)
5522 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5523 {
5524 /* This will set the entry for this symbol in the GOT to 0, and
5525 the dynamic linker will take care of this. */
5526 h->root.u.def.value = 0;
5527 return TRUE;
5528 }
5529
5530 /* If this is a weak symbol, and there is a real definition, the
5531 processor independent code will have arranged for us to see the
5532 real definition first, and we can just use the same value. */
5533 if (h->weakdef != NULL)
5534 {
5535 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5536 || h->weakdef->root.type == bfd_link_hash_defweak);
5537 h->root.u.def.section = h->weakdef->root.u.def.section;
5538 h->root.u.def.value = h->weakdef->root.u.def.value;
5539 return TRUE;
5540 }
5541
5542 /* This is a reference to a symbol defined by a dynamic object which
5543 is not a function. */
5544
5545 return TRUE;
5546 }
5547 \f
5548 /* This function is called after all the input files have been read,
5549 and the input sections have been assigned to output sections. We
5550 check for any mips16 stub sections that we can discard. */
5551
5552 bfd_boolean
5553 _bfd_mips_elf_always_size_sections (output_bfd, info)
5554 bfd *output_bfd;
5555 struct bfd_link_info *info;
5556 {
5557 asection *ri;
5558
5559 bfd *dynobj;
5560 asection *s;
5561 struct mips_got_info *g;
5562 int i;
5563 bfd_size_type loadable_size = 0;
5564 bfd_size_type local_gotno;
5565 bfd *sub;
5566
5567 /* The .reginfo section has a fixed size. */
5568 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5569 if (ri != NULL)
5570 bfd_set_section_size (output_bfd, ri,
5571 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5572
5573 if (! (info->relocateable
5574 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5575 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5576 mips_elf_check_mips16_stubs,
5577 (PTR) NULL);
5578
5579 dynobj = elf_hash_table (info)->dynobj;
5580 if (dynobj == NULL)
5581 /* Relocatable links don't have it. */
5582 return TRUE;
5583
5584 g = mips_elf_got_info (dynobj, &s);
5585 if (s == NULL)
5586 return TRUE;
5587
5588 /* Calculate the total loadable size of the output. That
5589 will give us the maximum number of GOT_PAGE entries
5590 required. */
5591 for (sub = info->input_bfds; sub; sub = sub->link_next)
5592 {
5593 asection *subsection;
5594
5595 for (subsection = sub->sections;
5596 subsection;
5597 subsection = subsection->next)
5598 {
5599 if ((subsection->flags & SEC_ALLOC) == 0)
5600 continue;
5601 loadable_size += ((subsection->_raw_size + 0xf)
5602 &~ (bfd_size_type) 0xf);
5603 }
5604 }
5605
5606 /* There has to be a global GOT entry for every symbol with
5607 a dynamic symbol table index of DT_MIPS_GOTSYM or
5608 higher. Therefore, it make sense to put those symbols
5609 that need GOT entries at the end of the symbol table. We
5610 do that here. */
5611 if (! mips_elf_sort_hash_table (info, 1))
5612 return FALSE;
5613
5614 if (g->global_gotsym != NULL)
5615 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5616 else
5617 /* If there are no global symbols, or none requiring
5618 relocations, then GLOBAL_GOTSYM will be NULL. */
5619 i = 0;
5620
5621 /* In the worst case, we'll get one stub per dynamic symbol, plus
5622 one to account for the dummy entry at the end required by IRIX
5623 rld. */
5624 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5625
5626 /* Assume there are two loadable segments consisting of
5627 contiguous sections. Is 5 enough? */
5628 local_gotno = (loadable_size >> 16) + 5;
5629
5630 g->local_gotno += local_gotno;
5631 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5632
5633 g->global_gotno = i;
5634 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5635
5636 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5637 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5638 return FALSE;
5639
5640 return TRUE;
5641 }
5642
5643 /* Set the sizes of the dynamic sections. */
5644
5645 bfd_boolean
5646 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5647 bfd *output_bfd;
5648 struct bfd_link_info *info;
5649 {
5650 bfd *dynobj;
5651 asection *s;
5652 bfd_boolean reltext;
5653
5654 dynobj = elf_hash_table (info)->dynobj;
5655 BFD_ASSERT (dynobj != NULL);
5656
5657 if (elf_hash_table (info)->dynamic_sections_created)
5658 {
5659 /* Set the contents of the .interp section to the interpreter. */
5660 if (! info->shared)
5661 {
5662 s = bfd_get_section_by_name (dynobj, ".interp");
5663 BFD_ASSERT (s != NULL);
5664 s->_raw_size
5665 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5666 s->contents
5667 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5668 }
5669 }
5670
5671 /* The check_relocs and adjust_dynamic_symbol entry points have
5672 determined the sizes of the various dynamic sections. Allocate
5673 memory for them. */
5674 reltext = FALSE;
5675 for (s = dynobj->sections; s != NULL; s = s->next)
5676 {
5677 const char *name;
5678 bfd_boolean strip;
5679
5680 /* It's OK to base decisions on the section name, because none
5681 of the dynobj section names depend upon the input files. */
5682 name = bfd_get_section_name (dynobj, s);
5683
5684 if ((s->flags & SEC_LINKER_CREATED) == 0)
5685 continue;
5686
5687 strip = FALSE;
5688
5689 if (strncmp (name, ".rel", 4) == 0)
5690 {
5691 if (s->_raw_size == 0)
5692 {
5693 /* We only strip the section if the output section name
5694 has the same name. Otherwise, there might be several
5695 input sections for this output section. FIXME: This
5696 code is probably not needed these days anyhow, since
5697 the linker now does not create empty output sections. */
5698 if (s->output_section != NULL
5699 && strcmp (name,
5700 bfd_get_section_name (s->output_section->owner,
5701 s->output_section)) == 0)
5702 strip = TRUE;
5703 }
5704 else
5705 {
5706 const char *outname;
5707 asection *target;
5708
5709 /* If this relocation section applies to a read only
5710 section, then we probably need a DT_TEXTREL entry.
5711 If the relocation section is .rel.dyn, we always
5712 assert a DT_TEXTREL entry rather than testing whether
5713 there exists a relocation to a read only section or
5714 not. */
5715 outname = bfd_get_section_name (output_bfd,
5716 s->output_section);
5717 target = bfd_get_section_by_name (output_bfd, outname + 4);
5718 if ((target != NULL
5719 && (target->flags & SEC_READONLY) != 0
5720 && (target->flags & SEC_ALLOC) != 0)
5721 || strcmp (outname, ".rel.dyn") == 0)
5722 reltext = TRUE;
5723
5724 /* We use the reloc_count field as a counter if we need
5725 to copy relocs into the output file. */
5726 if (strcmp (name, ".rel.dyn") != 0)
5727 s->reloc_count = 0;
5728
5729 /* If combreloc is enabled, elf_link_sort_relocs() will
5730 sort relocations, but in a different way than we do,
5731 and before we're done creating relocations. Also, it
5732 will move them around between input sections'
5733 relocation's contents, so our sorting would be
5734 broken, so don't let it run. */
5735 info->combreloc = 0;
5736 }
5737 }
5738 else if (strncmp (name, ".got", 4) == 0)
5739 {
5740 /* _bfd_mips_elf_always_size_sections() has already done
5741 most of the work, but some symbols may have been mapped
5742 to versions that we must now resolve in the got_entries
5743 hash tables. */
5744 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5745 struct mips_got_info *g = gg;
5746 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5747 unsigned int needed_relocs = 0;
5748
5749 if (gg->next)
5750 {
5751 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5752 set_got_offset_arg.info = info;
5753
5754 mips_elf_resolve_final_got_entries (gg);
5755 for (g = gg->next; g && g->next != gg; g = g->next)
5756 {
5757 unsigned int save_assign;
5758
5759 mips_elf_resolve_final_got_entries (g);
5760
5761 /* Assign offsets to global GOT entries. */
5762 save_assign = g->assigned_gotno;
5763 g->assigned_gotno = g->local_gotno;
5764 set_got_offset_arg.g = g;
5765 set_got_offset_arg.needed_relocs = 0;
5766 htab_traverse (g->got_entries,
5767 mips_elf_set_global_got_offset,
5768 &set_got_offset_arg);
5769 needed_relocs += set_got_offset_arg.needed_relocs;
5770 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5771 <= g->global_gotno);
5772
5773 g->assigned_gotno = save_assign;
5774 if (info->shared)
5775 {
5776 needed_relocs += g->local_gotno - g->assigned_gotno;
5777 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5778 + g->next->global_gotno
5779 + MIPS_RESERVED_GOTNO);
5780 }
5781 }
5782
5783 if (needed_relocs)
5784 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5785 }
5786 }
5787 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5788 {
5789 /* IRIX rld assumes that the function stub isn't at the end
5790 of .text section. So put a dummy. XXX */
5791 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5792 }
5793 else if (! info->shared
5794 && ! mips_elf_hash_table (info)->use_rld_obj_head
5795 && strncmp (name, ".rld_map", 8) == 0)
5796 {
5797 /* We add a room for __rld_map. It will be filled in by the
5798 rtld to contain a pointer to the _r_debug structure. */
5799 s->_raw_size += 4;
5800 }
5801 else if (SGI_COMPAT (output_bfd)
5802 && strncmp (name, ".compact_rel", 12) == 0)
5803 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5804 else if (strcmp (name, ".msym") == 0)
5805 s->_raw_size = (sizeof (Elf32_External_Msym)
5806 * (elf_hash_table (info)->dynsymcount
5807 + bfd_count_sections (output_bfd)));
5808 else if (strncmp (name, ".init", 5) != 0)
5809 {
5810 /* It's not one of our sections, so don't allocate space. */
5811 continue;
5812 }
5813
5814 if (strip)
5815 {
5816 _bfd_strip_section_from_output (info, s);
5817 continue;
5818 }
5819
5820 /* Allocate memory for the section contents. */
5821 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
5822 if (s->contents == NULL && s->_raw_size != 0)
5823 {
5824 bfd_set_error (bfd_error_no_memory);
5825 return FALSE;
5826 }
5827 }
5828
5829 if (elf_hash_table (info)->dynamic_sections_created)
5830 {
5831 /* Add some entries to the .dynamic section. We fill in the
5832 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
5833 must add the entries now so that we get the correct size for
5834 the .dynamic section. The DT_DEBUG entry is filled in by the
5835 dynamic linker and used by the debugger. */
5836 if (! info->shared)
5837 {
5838 /* SGI object has the equivalence of DT_DEBUG in the
5839 DT_MIPS_RLD_MAP entry. */
5840 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
5841 return FALSE;
5842 if (!SGI_COMPAT (output_bfd))
5843 {
5844 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
5845 return FALSE;
5846 }
5847 }
5848 else
5849 {
5850 /* Shared libraries on traditional mips have DT_DEBUG. */
5851 if (!SGI_COMPAT (output_bfd))
5852 {
5853 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
5854 return FALSE;
5855 }
5856 }
5857
5858 if (reltext && SGI_COMPAT (output_bfd))
5859 info->flags |= DF_TEXTREL;
5860
5861 if ((info->flags & DF_TEXTREL) != 0)
5862 {
5863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
5864 return FALSE;
5865 }
5866
5867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
5868 return FALSE;
5869
5870 if (mips_elf_rel_dyn_section (dynobj, FALSE))
5871 {
5872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
5873 return FALSE;
5874
5875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
5876 return FALSE;
5877
5878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
5879 return FALSE;
5880 }
5881
5882 if (SGI_COMPAT (output_bfd))
5883 {
5884 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
5885 return FALSE;
5886 }
5887
5888 if (SGI_COMPAT (output_bfd))
5889 {
5890 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
5891 return FALSE;
5892 }
5893
5894 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
5895 {
5896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
5897 return FALSE;
5898
5899 s = bfd_get_section_by_name (dynobj, ".liblist");
5900 BFD_ASSERT (s != NULL);
5901
5902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
5903 return FALSE;
5904 }
5905
5906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
5907 return FALSE;
5908
5909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
5910 return FALSE;
5911
5912 #if 0
5913 /* Time stamps in executable files are a bad idea. */
5914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
5915 return FALSE;
5916 #endif
5917
5918 #if 0 /* FIXME */
5919 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
5920 return FALSE;
5921 #endif
5922
5923 #if 0 /* FIXME */
5924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
5925 return FALSE;
5926 #endif
5927
5928 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
5929 return FALSE;
5930
5931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
5932 return FALSE;
5933
5934 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
5935 return FALSE;
5936
5937 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
5938 return FALSE;
5939
5940 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
5941 return FALSE;
5942
5943 if (IRIX_COMPAT (dynobj) == ict_irix5
5944 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
5945 return FALSE;
5946
5947 if (IRIX_COMPAT (dynobj) == ict_irix6
5948 && (bfd_get_section_by_name
5949 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
5950 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
5951 return FALSE;
5952
5953 if (bfd_get_section_by_name (dynobj, ".msym")
5954 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
5955 return FALSE;
5956 }
5957
5958 return TRUE;
5959 }
5960 \f
5961 /* Relocate a MIPS ELF section. */
5962
5963 bfd_boolean
5964 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
5965 contents, relocs, local_syms, local_sections)
5966 bfd *output_bfd;
5967 struct bfd_link_info *info;
5968 bfd *input_bfd;
5969 asection *input_section;
5970 bfd_byte *contents;
5971 Elf_Internal_Rela *relocs;
5972 Elf_Internal_Sym *local_syms;
5973 asection **local_sections;
5974 {
5975 Elf_Internal_Rela *rel;
5976 const Elf_Internal_Rela *relend;
5977 bfd_vma addend = 0;
5978 bfd_boolean use_saved_addend_p = FALSE;
5979 struct elf_backend_data *bed;
5980
5981 bed = get_elf_backend_data (output_bfd);
5982 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
5983 for (rel = relocs; rel < relend; ++rel)
5984 {
5985 const char *name;
5986 bfd_vma value;
5987 reloc_howto_type *howto;
5988 bfd_boolean require_jalx;
5989 /* TRUE if the relocation is a RELA relocation, rather than a
5990 REL relocation. */
5991 bfd_boolean rela_relocation_p = TRUE;
5992 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5993 const char * msg = (const char *) NULL;
5994
5995 /* Find the relocation howto for this relocation. */
5996 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
5997 {
5998 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5999 64-bit code, but make sure all their addresses are in the
6000 lowermost or uppermost 32-bit section of the 64-bit address
6001 space. Thus, when they use an R_MIPS_64 they mean what is
6002 usually meant by R_MIPS_32, with the exception that the
6003 stored value is sign-extended to 64 bits. */
6004 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6005
6006 /* On big-endian systems, we need to lie about the position
6007 of the reloc. */
6008 if (bfd_big_endian (input_bfd))
6009 rel->r_offset += 4;
6010 }
6011 else
6012 /* NewABI defaults to RELA relocations. */
6013 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6014 NEWABI_P (input_bfd)
6015 && (MIPS_RELOC_RELA_P
6016 (input_bfd, input_section,
6017 rel - relocs)));
6018
6019 if (!use_saved_addend_p)
6020 {
6021 Elf_Internal_Shdr *rel_hdr;
6022
6023 /* If these relocations were originally of the REL variety,
6024 we must pull the addend out of the field that will be
6025 relocated. Otherwise, we simply use the contents of the
6026 RELA relocation. To determine which flavor or relocation
6027 this is, we depend on the fact that the INPUT_SECTION's
6028 REL_HDR is read before its REL_HDR2. */
6029 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6030 if ((size_t) (rel - relocs)
6031 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6032 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6033 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6034 {
6035 /* Note that this is a REL relocation. */
6036 rela_relocation_p = FALSE;
6037
6038 /* Get the addend, which is stored in the input file. */
6039 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6040 contents);
6041 addend &= howto->src_mask;
6042 addend <<= howto->rightshift;
6043
6044 /* For some kinds of relocations, the ADDEND is a
6045 combination of the addend stored in two different
6046 relocations. */
6047 if (r_type == R_MIPS_HI16
6048 || r_type == R_MIPS_GNU_REL_HI16
6049 || (r_type == R_MIPS_GOT16
6050 && mips_elf_local_relocation_p (input_bfd, rel,
6051 local_sections, FALSE)))
6052 {
6053 bfd_vma l;
6054 const Elf_Internal_Rela *lo16_relocation;
6055 reloc_howto_type *lo16_howto;
6056 unsigned int lo;
6057
6058 /* The combined value is the sum of the HI16 addend,
6059 left-shifted by sixteen bits, and the LO16
6060 addend, sign extended. (Usually, the code does
6061 a `lui' of the HI16 value, and then an `addiu' of
6062 the LO16 value.)
6063
6064 Scan ahead to find a matching LO16 relocation. */
6065 if (r_type == R_MIPS_GNU_REL_HI16)
6066 lo = R_MIPS_GNU_REL_LO16;
6067 else
6068 lo = R_MIPS_LO16;
6069 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6070 rel, relend);
6071 if (lo16_relocation == NULL)
6072 return FALSE;
6073
6074 /* Obtain the addend kept there. */
6075 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6076 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6077 input_bfd, contents);
6078 l &= lo16_howto->src_mask;
6079 l <<= lo16_howto->rightshift;
6080 l = mips_elf_sign_extend (l, 16);
6081
6082 addend <<= 16;
6083
6084 /* Compute the combined addend. */
6085 addend += l;
6086
6087 /* If PC-relative, subtract the difference between the
6088 address of the LO part of the reloc and the address of
6089 the HI part. The relocation is relative to the LO
6090 part, but mips_elf_calculate_relocation() doesn't
6091 know its address or the difference from the HI part, so
6092 we subtract that difference here. See also the
6093 comment in mips_elf_calculate_relocation(). */
6094 if (r_type == R_MIPS_GNU_REL_HI16)
6095 addend -= (lo16_relocation->r_offset - rel->r_offset);
6096 }
6097 else if (r_type == R_MIPS16_GPREL)
6098 {
6099 /* The addend is scrambled in the object file. See
6100 mips_elf_perform_relocation for details on the
6101 format. */
6102 addend = (((addend & 0x1f0000) >> 5)
6103 | ((addend & 0x7e00000) >> 16)
6104 | (addend & 0x1f));
6105 }
6106 }
6107 else
6108 addend = rel->r_addend;
6109 }
6110
6111 if (info->relocateable)
6112 {
6113 Elf_Internal_Sym *sym;
6114 unsigned long r_symndx;
6115
6116 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6117 && bfd_big_endian (input_bfd))
6118 rel->r_offset -= 4;
6119
6120 /* Since we're just relocating, all we need to do is copy
6121 the relocations back out to the object file, unless
6122 they're against a section symbol, in which case we need
6123 to adjust by the section offset, or unless they're GP
6124 relative in which case we need to adjust by the amount
6125 that we're adjusting GP in this relocateable object. */
6126
6127 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6128 FALSE))
6129 /* There's nothing to do for non-local relocations. */
6130 continue;
6131
6132 if (r_type == R_MIPS16_GPREL
6133 || r_type == R_MIPS_GPREL16
6134 || r_type == R_MIPS_GPREL32
6135 || r_type == R_MIPS_LITERAL)
6136 addend -= (_bfd_get_gp_value (output_bfd)
6137 - _bfd_get_gp_value (input_bfd));
6138
6139 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6140 sym = local_syms + r_symndx;
6141 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6142 /* Adjust the addend appropriately. */
6143 addend += local_sections[r_symndx]->output_offset;
6144
6145 if (howto->partial_inplace)
6146 {
6147 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6148 then we only want to write out the high-order 16 bits.
6149 The subsequent R_MIPS_LO16 will handle the low-order bits.
6150 */
6151 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6152 || r_type == R_MIPS_GNU_REL_HI16)
6153 addend = mips_elf_high (addend);
6154 else if (r_type == R_MIPS_HIGHER)
6155 addend = mips_elf_higher (addend);
6156 else if (r_type == R_MIPS_HIGHEST)
6157 addend = mips_elf_highest (addend);
6158 }
6159
6160 if (rela_relocation_p)
6161 /* If this is a RELA relocation, just update the addend.
6162 We have to cast away constness for REL. */
6163 rel->r_addend = addend;
6164 else
6165 {
6166 /* Otherwise, we have to write the value back out. Note
6167 that we use the source mask, rather than the
6168 destination mask because the place to which we are
6169 writing will be source of the addend in the final
6170 link. */
6171 addend >>= howto->rightshift;
6172 addend &= howto->src_mask;
6173
6174 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6175 /* See the comment above about using R_MIPS_64 in the 32-bit
6176 ABI. Here, we need to update the addend. It would be
6177 possible to get away with just using the R_MIPS_32 reloc
6178 but for endianness. */
6179 {
6180 bfd_vma sign_bits;
6181 bfd_vma low_bits;
6182 bfd_vma high_bits;
6183
6184 if (addend & ((bfd_vma) 1 << 31))
6185 #ifdef BFD64
6186 sign_bits = ((bfd_vma) 1 << 32) - 1;
6187 #else
6188 sign_bits = -1;
6189 #endif
6190 else
6191 sign_bits = 0;
6192
6193 /* If we don't know that we have a 64-bit type,
6194 do two separate stores. */
6195 if (bfd_big_endian (input_bfd))
6196 {
6197 /* Store the sign-bits (which are most significant)
6198 first. */
6199 low_bits = sign_bits;
6200 high_bits = addend;
6201 }
6202 else
6203 {
6204 low_bits = addend;
6205 high_bits = sign_bits;
6206 }
6207 bfd_put_32 (input_bfd, low_bits,
6208 contents + rel->r_offset);
6209 bfd_put_32 (input_bfd, high_bits,
6210 contents + rel->r_offset + 4);
6211 continue;
6212 }
6213
6214 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6215 input_bfd, input_section,
6216 contents, FALSE))
6217 return FALSE;
6218 }
6219
6220 /* Go on to the next relocation. */
6221 continue;
6222 }
6223
6224 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6225 relocations for the same offset. In that case we are
6226 supposed to treat the output of each relocation as the addend
6227 for the next. */
6228 if (rel + 1 < relend
6229 && rel->r_offset == rel[1].r_offset
6230 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6231 use_saved_addend_p = TRUE;
6232 else
6233 use_saved_addend_p = FALSE;
6234
6235 addend >>= howto->rightshift;
6236
6237 /* Figure out what value we are supposed to relocate. */
6238 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6239 input_section, info, rel,
6240 addend, howto, local_syms,
6241 local_sections, &value,
6242 &name, &require_jalx,
6243 use_saved_addend_p))
6244 {
6245 case bfd_reloc_continue:
6246 /* There's nothing to do. */
6247 continue;
6248
6249 case bfd_reloc_undefined:
6250 /* mips_elf_calculate_relocation already called the
6251 undefined_symbol callback. There's no real point in
6252 trying to perform the relocation at this point, so we
6253 just skip ahead to the next relocation. */
6254 continue;
6255
6256 case bfd_reloc_notsupported:
6257 msg = _("internal error: unsupported relocation error");
6258 info->callbacks->warning
6259 (info, msg, name, input_bfd, input_section, rel->r_offset);
6260 return FALSE;
6261
6262 case bfd_reloc_overflow:
6263 if (use_saved_addend_p)
6264 /* Ignore overflow until we reach the last relocation for
6265 a given location. */
6266 ;
6267 else
6268 {
6269 BFD_ASSERT (name != NULL);
6270 if (! ((*info->callbacks->reloc_overflow)
6271 (info, name, howto->name, (bfd_vma) 0,
6272 input_bfd, input_section, rel->r_offset)))
6273 return FALSE;
6274 }
6275 break;
6276
6277 case bfd_reloc_ok:
6278 break;
6279
6280 default:
6281 abort ();
6282 break;
6283 }
6284
6285 /* If we've got another relocation for the address, keep going
6286 until we reach the last one. */
6287 if (use_saved_addend_p)
6288 {
6289 addend = value;
6290 continue;
6291 }
6292
6293 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6294 /* See the comment above about using R_MIPS_64 in the 32-bit
6295 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6296 that calculated the right value. Now, however, we
6297 sign-extend the 32-bit result to 64-bits, and store it as a
6298 64-bit value. We are especially generous here in that we
6299 go to extreme lengths to support this usage on systems with
6300 only a 32-bit VMA. */
6301 {
6302 bfd_vma sign_bits;
6303 bfd_vma low_bits;
6304 bfd_vma high_bits;
6305
6306 if (value & ((bfd_vma) 1 << 31))
6307 #ifdef BFD64
6308 sign_bits = ((bfd_vma) 1 << 32) - 1;
6309 #else
6310 sign_bits = -1;
6311 #endif
6312 else
6313 sign_bits = 0;
6314
6315 /* If we don't know that we have a 64-bit type,
6316 do two separate stores. */
6317 if (bfd_big_endian (input_bfd))
6318 {
6319 /* Undo what we did above. */
6320 rel->r_offset -= 4;
6321 /* Store the sign-bits (which are most significant)
6322 first. */
6323 low_bits = sign_bits;
6324 high_bits = value;
6325 }
6326 else
6327 {
6328 low_bits = value;
6329 high_bits = sign_bits;
6330 }
6331 bfd_put_32 (input_bfd, low_bits,
6332 contents + rel->r_offset);
6333 bfd_put_32 (input_bfd, high_bits,
6334 contents + rel->r_offset + 4);
6335 continue;
6336 }
6337
6338 /* Actually perform the relocation. */
6339 if (! mips_elf_perform_relocation (info, howto, rel, value,
6340 input_bfd, input_section,
6341 contents, require_jalx))
6342 return FALSE;
6343 }
6344
6345 return TRUE;
6346 }
6347 \f
6348 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6349 adjust it appropriately now. */
6350
6351 static void
6352 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6353 bfd *abfd ATTRIBUTE_UNUSED;
6354 const char *name;
6355 Elf_Internal_Sym *sym;
6356 {
6357 /* The linker script takes care of providing names and values for
6358 these, but we must place them into the right sections. */
6359 static const char* const text_section_symbols[] = {
6360 "_ftext",
6361 "_etext",
6362 "__dso_displacement",
6363 "__elf_header",
6364 "__program_header_table",
6365 NULL
6366 };
6367
6368 static const char* const data_section_symbols[] = {
6369 "_fdata",
6370 "_edata",
6371 "_end",
6372 "_fbss",
6373 NULL
6374 };
6375
6376 const char* const *p;
6377 int i;
6378
6379 for (i = 0; i < 2; ++i)
6380 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6381 *p;
6382 ++p)
6383 if (strcmp (*p, name) == 0)
6384 {
6385 /* All of these symbols are given type STT_SECTION by the
6386 IRIX6 linker. */
6387 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6388
6389 /* The IRIX linker puts these symbols in special sections. */
6390 if (i == 0)
6391 sym->st_shndx = SHN_MIPS_TEXT;
6392 else
6393 sym->st_shndx = SHN_MIPS_DATA;
6394
6395 break;
6396 }
6397 }
6398
6399 /* Finish up dynamic symbol handling. We set the contents of various
6400 dynamic sections here. */
6401
6402 bfd_boolean
6403 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6404 bfd *output_bfd;
6405 struct bfd_link_info *info;
6406 struct elf_link_hash_entry *h;
6407 Elf_Internal_Sym *sym;
6408 {
6409 bfd *dynobj;
6410 bfd_vma gval;
6411 asection *sgot;
6412 asection *smsym;
6413 struct mips_got_info *g, *gg;
6414 const char *name;
6415 struct mips_elf_link_hash_entry *mh;
6416
6417 dynobj = elf_hash_table (info)->dynobj;
6418 gval = sym->st_value;
6419 mh = (struct mips_elf_link_hash_entry *) h;
6420
6421 if (h->plt.offset != (bfd_vma) -1)
6422 {
6423 asection *s;
6424 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6425
6426 /* This symbol has a stub. Set it up. */
6427
6428 BFD_ASSERT (h->dynindx != -1);
6429
6430 s = bfd_get_section_by_name (dynobj,
6431 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6432 BFD_ASSERT (s != NULL);
6433
6434 /* FIXME: Can h->dynindex be more than 64K? */
6435 if (h->dynindx & 0xffff0000)
6436 return FALSE;
6437
6438 /* Fill the stub. */
6439 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6440 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6441 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6442 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6443
6444 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6445 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6446
6447 /* Mark the symbol as undefined. plt.offset != -1 occurs
6448 only for the referenced symbol. */
6449 sym->st_shndx = SHN_UNDEF;
6450
6451 /* The run-time linker uses the st_value field of the symbol
6452 to reset the global offset table entry for this external
6453 to its stub address when unlinking a shared object. */
6454 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6455 sym->st_value = gval;
6456 }
6457
6458 BFD_ASSERT (h->dynindx != -1
6459 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6460
6461 sgot = mips_elf_got_section (dynobj, FALSE);
6462 BFD_ASSERT (sgot != NULL);
6463 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6464 g = mips_elf_section_data (sgot)->u.got_info;
6465 BFD_ASSERT (g != NULL);
6466
6467 /* Run through the global symbol table, creating GOT entries for all
6468 the symbols that need them. */
6469 if (g->global_gotsym != NULL
6470 && h->dynindx >= g->global_gotsym->dynindx)
6471 {
6472 bfd_vma offset;
6473 bfd_vma value;
6474
6475 if (sym->st_value)
6476 value = sym->st_value;
6477 else
6478 {
6479 /* For an entity defined in a shared object, this will be
6480 NULL. (For functions in shared objects for
6481 which we have created stubs, ST_VALUE will be non-NULL.
6482 That's because such the functions are now no longer defined
6483 in a shared object.) */
6484
6485 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6486 || h->root.type == bfd_link_hash_undefweak)
6487 value = 0;
6488 else
6489 value = h->root.u.def.value;
6490 }
6491 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6492 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6493 }
6494
6495 if (g->next && h->dynindx != -1)
6496 {
6497 struct mips_got_entry e, *p;
6498 bfd_vma offset;
6499 bfd_vma value;
6500 Elf_Internal_Rela rel[3];
6501 bfd_vma addend = 0;
6502
6503 gg = g;
6504
6505 e.abfd = output_bfd;
6506 e.symndx = -1;
6507 e.d.h = (struct mips_elf_link_hash_entry *)h;
6508
6509 if (info->shared
6510 || h->root.type == bfd_link_hash_undefined
6511 || h->root.type == bfd_link_hash_undefweak)
6512 value = 0;
6513 else if (sym->st_value)
6514 value = sym->st_value;
6515 else
6516 value = h->root.u.def.value;
6517
6518 memset (rel, 0, sizeof (rel));
6519 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6520
6521 for (g = g->next; g->next != gg; g = g->next)
6522 {
6523 if (g->got_entries
6524 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6525 &e)))
6526 {
6527 offset = p->gotidx;
6528 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6529
6530 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6531
6532 if ((info->shared
6533 || (elf_hash_table (info)->dynamic_sections_created
6534 && p->d.h != NULL
6535 && ((p->d.h->root.elf_link_hash_flags
6536 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6537 && ((p->d.h->root.elf_link_hash_flags
6538 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6539 && ! (mips_elf_create_dynamic_relocation
6540 (output_bfd, info, rel,
6541 e.d.h, NULL, value, &addend, sgot)))
6542 return FALSE;
6543 BFD_ASSERT (addend == 0);
6544 }
6545 }
6546 }
6547
6548 /* Create a .msym entry, if appropriate. */
6549 smsym = bfd_get_section_by_name (dynobj, ".msym");
6550 if (smsym)
6551 {
6552 Elf32_Internal_Msym msym;
6553
6554 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6555 /* It is undocumented what the `1' indicates, but IRIX6 uses
6556 this value. */
6557 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6558 bfd_mips_elf_swap_msym_out
6559 (dynobj, &msym,
6560 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6561 }
6562
6563 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6564 name = h->root.root.string;
6565 if (strcmp (name, "_DYNAMIC") == 0
6566 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6567 sym->st_shndx = SHN_ABS;
6568 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6569 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6570 {
6571 sym->st_shndx = SHN_ABS;
6572 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6573 sym->st_value = 1;
6574 }
6575 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6576 {
6577 sym->st_shndx = SHN_ABS;
6578 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6579 sym->st_value = elf_gp (output_bfd);
6580 }
6581 else if (SGI_COMPAT (output_bfd))
6582 {
6583 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6584 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6585 {
6586 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6587 sym->st_other = STO_PROTECTED;
6588 sym->st_value = 0;
6589 sym->st_shndx = SHN_MIPS_DATA;
6590 }
6591 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6592 {
6593 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6594 sym->st_other = STO_PROTECTED;
6595 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6596 sym->st_shndx = SHN_ABS;
6597 }
6598 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6599 {
6600 if (h->type == STT_FUNC)
6601 sym->st_shndx = SHN_MIPS_TEXT;
6602 else if (h->type == STT_OBJECT)
6603 sym->st_shndx = SHN_MIPS_DATA;
6604 }
6605 }
6606
6607 /* Handle the IRIX6-specific symbols. */
6608 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6609 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6610
6611 if (! info->shared)
6612 {
6613 if (! mips_elf_hash_table (info)->use_rld_obj_head
6614 && (strcmp (name, "__rld_map") == 0
6615 || strcmp (name, "__RLD_MAP") == 0))
6616 {
6617 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6618 BFD_ASSERT (s != NULL);
6619 sym->st_value = s->output_section->vma + s->output_offset;
6620 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6621 if (mips_elf_hash_table (info)->rld_value == 0)
6622 mips_elf_hash_table (info)->rld_value = sym->st_value;
6623 }
6624 else if (mips_elf_hash_table (info)->use_rld_obj_head
6625 && strcmp (name, "__rld_obj_head") == 0)
6626 {
6627 /* IRIX6 does not use a .rld_map section. */
6628 if (IRIX_COMPAT (output_bfd) == ict_irix5
6629 || IRIX_COMPAT (output_bfd) == ict_none)
6630 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6631 != NULL);
6632 mips_elf_hash_table (info)->rld_value = sym->st_value;
6633 }
6634 }
6635
6636 /* If this is a mips16 symbol, force the value to be even. */
6637 if (sym->st_other == STO_MIPS16
6638 && (sym->st_value & 1) != 0)
6639 --sym->st_value;
6640
6641 return TRUE;
6642 }
6643
6644 /* Finish up the dynamic sections. */
6645
6646 bfd_boolean
6647 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6648 bfd *output_bfd;
6649 struct bfd_link_info *info;
6650 {
6651 bfd *dynobj;
6652 asection *sdyn;
6653 asection *sgot;
6654 struct mips_got_info *gg, *g;
6655
6656 dynobj = elf_hash_table (info)->dynobj;
6657
6658 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6659
6660 sgot = mips_elf_got_section (dynobj, FALSE);
6661 if (sgot == NULL)
6662 gg = g = NULL;
6663 else
6664 {
6665 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6666 gg = mips_elf_section_data (sgot)->u.got_info;
6667 BFD_ASSERT (gg != NULL);
6668 g = mips_elf_got_for_ibfd (gg, output_bfd);
6669 BFD_ASSERT (g != NULL);
6670 }
6671
6672 if (elf_hash_table (info)->dynamic_sections_created)
6673 {
6674 bfd_byte *b;
6675
6676 BFD_ASSERT (sdyn != NULL);
6677 BFD_ASSERT (g != NULL);
6678
6679 for (b = sdyn->contents;
6680 b < sdyn->contents + sdyn->_raw_size;
6681 b += MIPS_ELF_DYN_SIZE (dynobj))
6682 {
6683 Elf_Internal_Dyn dyn;
6684 const char *name;
6685 size_t elemsize;
6686 asection *s;
6687 bfd_boolean swap_out_p;
6688
6689 /* Read in the current dynamic entry. */
6690 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6691
6692 /* Assume that we're going to modify it and write it out. */
6693 swap_out_p = TRUE;
6694
6695 switch (dyn.d_tag)
6696 {
6697 case DT_RELENT:
6698 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6699 BFD_ASSERT (s != NULL);
6700 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6701 break;
6702
6703 case DT_STRSZ:
6704 /* Rewrite DT_STRSZ. */
6705 dyn.d_un.d_val =
6706 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6707 break;
6708
6709 case DT_PLTGOT:
6710 name = ".got";
6711 goto get_vma;
6712 case DT_MIPS_CONFLICT:
6713 name = ".conflict";
6714 goto get_vma;
6715 case DT_MIPS_LIBLIST:
6716 name = ".liblist";
6717 get_vma:
6718 s = bfd_get_section_by_name (output_bfd, name);
6719 BFD_ASSERT (s != NULL);
6720 dyn.d_un.d_ptr = s->vma;
6721 break;
6722
6723 case DT_MIPS_RLD_VERSION:
6724 dyn.d_un.d_val = 1; /* XXX */
6725 break;
6726
6727 case DT_MIPS_FLAGS:
6728 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6729 break;
6730
6731 case DT_MIPS_CONFLICTNO:
6732 name = ".conflict";
6733 elemsize = sizeof (Elf32_Conflict);
6734 goto set_elemno;
6735
6736 case DT_MIPS_LIBLISTNO:
6737 name = ".liblist";
6738 elemsize = sizeof (Elf32_Lib);
6739 set_elemno:
6740 s = bfd_get_section_by_name (output_bfd, name);
6741 if (s != NULL)
6742 {
6743 if (s->_cooked_size != 0)
6744 dyn.d_un.d_val = s->_cooked_size / elemsize;
6745 else
6746 dyn.d_un.d_val = s->_raw_size / elemsize;
6747 }
6748 else
6749 dyn.d_un.d_val = 0;
6750 break;
6751
6752 case DT_MIPS_TIME_STAMP:
6753 time ((time_t *) &dyn.d_un.d_val);
6754 break;
6755
6756 case DT_MIPS_ICHECKSUM:
6757 /* XXX FIXME: */
6758 swap_out_p = FALSE;
6759 break;
6760
6761 case DT_MIPS_IVERSION:
6762 /* XXX FIXME: */
6763 swap_out_p = FALSE;
6764 break;
6765
6766 case DT_MIPS_BASE_ADDRESS:
6767 s = output_bfd->sections;
6768 BFD_ASSERT (s != NULL);
6769 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6770 break;
6771
6772 case DT_MIPS_LOCAL_GOTNO:
6773 dyn.d_un.d_val = g->local_gotno;
6774 break;
6775
6776 case DT_MIPS_UNREFEXTNO:
6777 /* The index into the dynamic symbol table which is the
6778 entry of the first external symbol that is not
6779 referenced within the same object. */
6780 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6781 break;
6782
6783 case DT_MIPS_GOTSYM:
6784 if (gg->global_gotsym)
6785 {
6786 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6787 break;
6788 }
6789 /* In case if we don't have global got symbols we default
6790 to setting DT_MIPS_GOTSYM to the same value as
6791 DT_MIPS_SYMTABNO, so we just fall through. */
6792
6793 case DT_MIPS_SYMTABNO:
6794 name = ".dynsym";
6795 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6796 s = bfd_get_section_by_name (output_bfd, name);
6797 BFD_ASSERT (s != NULL);
6798
6799 if (s->_cooked_size != 0)
6800 dyn.d_un.d_val = s->_cooked_size / elemsize;
6801 else
6802 dyn.d_un.d_val = s->_raw_size / elemsize;
6803 break;
6804
6805 case DT_MIPS_HIPAGENO:
6806 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6807 break;
6808
6809 case DT_MIPS_RLD_MAP:
6810 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6811 break;
6812
6813 case DT_MIPS_OPTIONS:
6814 s = (bfd_get_section_by_name
6815 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6816 dyn.d_un.d_ptr = s->vma;
6817 break;
6818
6819 case DT_MIPS_MSYM:
6820 s = (bfd_get_section_by_name (output_bfd, ".msym"));
6821 dyn.d_un.d_ptr = s->vma;
6822 break;
6823
6824 default:
6825 swap_out_p = FALSE;
6826 break;
6827 }
6828
6829 if (swap_out_p)
6830 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6831 (dynobj, &dyn, b);
6832 }
6833 }
6834
6835 /* The first entry of the global offset table will be filled at
6836 runtime. The second entry will be used by some runtime loaders.
6837 This isn't the case of IRIX rld. */
6838 if (sgot != NULL && sgot->_raw_size > 0)
6839 {
6840 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
6841 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
6842 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6843 }
6844
6845 if (sgot != NULL)
6846 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6847 = MIPS_ELF_GOT_SIZE (output_bfd);
6848
6849 /* Generate dynamic relocations for the non-primary gots. */
6850 if (gg != NULL && gg->next)
6851 {
6852 Elf_Internal_Rela rel[3];
6853 bfd_vma addend = 0;
6854
6855 memset (rel, 0, sizeof (rel));
6856 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6857
6858 for (g = gg->next; g->next != gg; g = g->next)
6859 {
6860 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6861
6862 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
6863 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6864 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
6865 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6866
6867 if (! info->shared)
6868 continue;
6869
6870 while (index < g->assigned_gotno)
6871 {
6872 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6873 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6874 if (!(mips_elf_create_dynamic_relocation
6875 (output_bfd, info, rel, NULL,
6876 bfd_abs_section_ptr,
6877 0, &addend, sgot)))
6878 return FALSE;
6879 BFD_ASSERT (addend == 0);
6880 }
6881 }
6882 }
6883
6884 {
6885 asection *smsym;
6886 asection *s;
6887 Elf32_compact_rel cpt;
6888
6889 /* ??? The section symbols for the output sections were set up in
6890 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
6891 symbols. Should we do so? */
6892
6893 smsym = bfd_get_section_by_name (dynobj, ".msym");
6894 if (smsym != NULL)
6895 {
6896 Elf32_Internal_Msym msym;
6897
6898 msym.ms_hash_value = 0;
6899 msym.ms_info = ELF32_MS_INFO (0, 1);
6900
6901 for (s = output_bfd->sections; s != NULL; s = s->next)
6902 {
6903 long dynindx = elf_section_data (s)->dynindx;
6904
6905 bfd_mips_elf_swap_msym_out
6906 (output_bfd, &msym,
6907 (((Elf32_External_Msym *) smsym->contents)
6908 + dynindx));
6909 }
6910 }
6911
6912 if (SGI_COMPAT (output_bfd))
6913 {
6914 /* Write .compact_rel section out. */
6915 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6916 if (s != NULL)
6917 {
6918 cpt.id1 = 1;
6919 cpt.num = s->reloc_count;
6920 cpt.id2 = 2;
6921 cpt.offset = (s->output_section->filepos
6922 + sizeof (Elf32_External_compact_rel));
6923 cpt.reserved0 = 0;
6924 cpt.reserved1 = 0;
6925 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6926 ((Elf32_External_compact_rel *)
6927 s->contents));
6928
6929 /* Clean up a dummy stub function entry in .text. */
6930 s = bfd_get_section_by_name (dynobj,
6931 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6932 if (s != NULL)
6933 {
6934 file_ptr dummy_offset;
6935
6936 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
6937 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
6938 memset (s->contents + dummy_offset, 0,
6939 MIPS_FUNCTION_STUB_SIZE);
6940 }
6941 }
6942 }
6943
6944 /* We need to sort the entries of the dynamic relocation section. */
6945
6946 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6947
6948 if (s != NULL
6949 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
6950 {
6951 reldyn_sorting_bfd = output_bfd;
6952
6953 if (ABI_64_P (output_bfd))
6954 qsort ((Elf64_External_Rel *) s->contents + 1,
6955 (size_t) s->reloc_count - 1,
6956 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
6957 else
6958 qsort ((Elf32_External_Rel *) s->contents + 1,
6959 (size_t) s->reloc_count - 1,
6960 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
6961 }
6962 }
6963
6964 return TRUE;
6965 }
6966
6967
6968 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
6969
6970 static void
6971 mips_set_isa_flags (abfd)
6972 bfd *abfd;
6973 {
6974 flagword val;
6975
6976 switch (bfd_get_mach (abfd))
6977 {
6978 default:
6979 case bfd_mach_mips3000:
6980 val = E_MIPS_ARCH_1;
6981 break;
6982
6983 case bfd_mach_mips3900:
6984 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
6985 break;
6986
6987 case bfd_mach_mips6000:
6988 val = E_MIPS_ARCH_2;
6989 break;
6990
6991 case bfd_mach_mips4000:
6992 case bfd_mach_mips4300:
6993 case bfd_mach_mips4400:
6994 case bfd_mach_mips4600:
6995 val = E_MIPS_ARCH_3;
6996 break;
6997
6998 case bfd_mach_mips4010:
6999 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7000 break;
7001
7002 case bfd_mach_mips4100:
7003 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7004 break;
7005
7006 case bfd_mach_mips4111:
7007 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7008 break;
7009
7010 case bfd_mach_mips4120:
7011 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7012 break;
7013
7014 case bfd_mach_mips4650:
7015 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7016 break;
7017
7018 case bfd_mach_mips5400:
7019 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7020 break;
7021
7022 case bfd_mach_mips5500:
7023 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7024 break;
7025
7026 case bfd_mach_mips5000:
7027 case bfd_mach_mips8000:
7028 case bfd_mach_mips10000:
7029 case bfd_mach_mips12000:
7030 val = E_MIPS_ARCH_4;
7031 break;
7032
7033 case bfd_mach_mips5:
7034 val = E_MIPS_ARCH_5;
7035 break;
7036
7037 case bfd_mach_mips_sb1:
7038 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7039 break;
7040
7041 case bfd_mach_mipsisa32:
7042 val = E_MIPS_ARCH_32;
7043 break;
7044
7045 case bfd_mach_mipsisa64:
7046 val = E_MIPS_ARCH_64;
7047 break;
7048
7049 case bfd_mach_mipsisa32r2:
7050 val = E_MIPS_ARCH_32R2;
7051 break;
7052 }
7053 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7054 elf_elfheader (abfd)->e_flags |= val;
7055
7056 }
7057
7058
7059 /* The final processing done just before writing out a MIPS ELF object
7060 file. This gets the MIPS architecture right based on the machine
7061 number. This is used by both the 32-bit and the 64-bit ABI. */
7062
7063 void
7064 _bfd_mips_elf_final_write_processing (abfd, linker)
7065 bfd *abfd;
7066 bfd_boolean linker ATTRIBUTE_UNUSED;
7067 {
7068 unsigned int i;
7069 Elf_Internal_Shdr **hdrpp;
7070 const char *name;
7071 asection *sec;
7072
7073 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7074 is nonzero. This is for compatibility with old objects, which used
7075 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7076 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7077 mips_set_isa_flags (abfd);
7078
7079 /* Set the sh_info field for .gptab sections and other appropriate
7080 info for each special section. */
7081 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7082 i < elf_numsections (abfd);
7083 i++, hdrpp++)
7084 {
7085 switch ((*hdrpp)->sh_type)
7086 {
7087 case SHT_MIPS_MSYM:
7088 case SHT_MIPS_LIBLIST:
7089 sec = bfd_get_section_by_name (abfd, ".dynstr");
7090 if (sec != NULL)
7091 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7092 break;
7093
7094 case SHT_MIPS_GPTAB:
7095 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7096 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7097 BFD_ASSERT (name != NULL
7098 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7099 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7100 BFD_ASSERT (sec != NULL);
7101 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7102 break;
7103
7104 case SHT_MIPS_CONTENT:
7105 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7106 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7107 BFD_ASSERT (name != NULL
7108 && strncmp (name, ".MIPS.content",
7109 sizeof ".MIPS.content" - 1) == 0);
7110 sec = bfd_get_section_by_name (abfd,
7111 name + sizeof ".MIPS.content" - 1);
7112 BFD_ASSERT (sec != NULL);
7113 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7114 break;
7115
7116 case SHT_MIPS_SYMBOL_LIB:
7117 sec = bfd_get_section_by_name (abfd, ".dynsym");
7118 if (sec != NULL)
7119 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7120 sec = bfd_get_section_by_name (abfd, ".liblist");
7121 if (sec != NULL)
7122 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7123 break;
7124
7125 case SHT_MIPS_EVENTS:
7126 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7127 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7128 BFD_ASSERT (name != NULL);
7129 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7130 sec = bfd_get_section_by_name (abfd,
7131 name + sizeof ".MIPS.events" - 1);
7132 else
7133 {
7134 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7135 sizeof ".MIPS.post_rel" - 1) == 0);
7136 sec = bfd_get_section_by_name (abfd,
7137 (name
7138 + sizeof ".MIPS.post_rel" - 1));
7139 }
7140 BFD_ASSERT (sec != NULL);
7141 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7142 break;
7143
7144 }
7145 }
7146 }
7147 \f
7148 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7149 segments. */
7150
7151 int
7152 _bfd_mips_elf_additional_program_headers (abfd)
7153 bfd *abfd;
7154 {
7155 asection *s;
7156 int ret = 0;
7157
7158 /* See if we need a PT_MIPS_REGINFO segment. */
7159 s = bfd_get_section_by_name (abfd, ".reginfo");
7160 if (s && (s->flags & SEC_LOAD))
7161 ++ret;
7162
7163 /* See if we need a PT_MIPS_OPTIONS segment. */
7164 if (IRIX_COMPAT (abfd) == ict_irix6
7165 && bfd_get_section_by_name (abfd,
7166 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7167 ++ret;
7168
7169 /* See if we need a PT_MIPS_RTPROC segment. */
7170 if (IRIX_COMPAT (abfd) == ict_irix5
7171 && bfd_get_section_by_name (abfd, ".dynamic")
7172 && bfd_get_section_by_name (abfd, ".mdebug"))
7173 ++ret;
7174
7175 return ret;
7176 }
7177
7178 /* Modify the segment map for an IRIX5 executable. */
7179
7180 bfd_boolean
7181 _bfd_mips_elf_modify_segment_map (abfd)
7182 bfd *abfd;
7183 {
7184 asection *s;
7185 struct elf_segment_map *m, **pm;
7186 bfd_size_type amt;
7187
7188 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7189 segment. */
7190 s = bfd_get_section_by_name (abfd, ".reginfo");
7191 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7192 {
7193 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7194 if (m->p_type == PT_MIPS_REGINFO)
7195 break;
7196 if (m == NULL)
7197 {
7198 amt = sizeof *m;
7199 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7200 if (m == NULL)
7201 return FALSE;
7202
7203 m->p_type = PT_MIPS_REGINFO;
7204 m->count = 1;
7205 m->sections[0] = s;
7206
7207 /* We want to put it after the PHDR and INTERP segments. */
7208 pm = &elf_tdata (abfd)->segment_map;
7209 while (*pm != NULL
7210 && ((*pm)->p_type == PT_PHDR
7211 || (*pm)->p_type == PT_INTERP))
7212 pm = &(*pm)->next;
7213
7214 m->next = *pm;
7215 *pm = m;
7216 }
7217 }
7218
7219 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7220 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7221 PT_OPTIONS segment immediately following the program header
7222 table. */
7223 if (NEWABI_P (abfd)
7224 /* On non-IRIX6 new abi, we'll have already created a segment
7225 for this section, so don't create another. I'm not sure this
7226 is not also the case for IRIX 6, but I can't test it right
7227 now. */
7228 && IRIX_COMPAT (abfd) == ict_irix6)
7229 {
7230 for (s = abfd->sections; s; s = s->next)
7231 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7232 break;
7233
7234 if (s)
7235 {
7236 struct elf_segment_map *options_segment;
7237
7238 /* Usually, there's a program header table. But, sometimes
7239 there's not (like when running the `ld' testsuite). So,
7240 if there's no program header table, we just put the
7241 options segment at the end. */
7242 for (pm = &elf_tdata (abfd)->segment_map;
7243 *pm != NULL;
7244 pm = &(*pm)->next)
7245 if ((*pm)->p_type == PT_PHDR)
7246 break;
7247
7248 amt = sizeof (struct elf_segment_map);
7249 options_segment = bfd_zalloc (abfd, amt);
7250 options_segment->next = *pm;
7251 options_segment->p_type = PT_MIPS_OPTIONS;
7252 options_segment->p_flags = PF_R;
7253 options_segment->p_flags_valid = TRUE;
7254 options_segment->count = 1;
7255 options_segment->sections[0] = s;
7256 *pm = options_segment;
7257 }
7258 }
7259 else
7260 {
7261 if (IRIX_COMPAT (abfd) == ict_irix5)
7262 {
7263 /* If there are .dynamic and .mdebug sections, we make a room
7264 for the RTPROC header. FIXME: Rewrite without section names. */
7265 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7266 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7267 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7268 {
7269 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7270 if (m->p_type == PT_MIPS_RTPROC)
7271 break;
7272 if (m == NULL)
7273 {
7274 amt = sizeof *m;
7275 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7276 if (m == NULL)
7277 return FALSE;
7278
7279 m->p_type = PT_MIPS_RTPROC;
7280
7281 s = bfd_get_section_by_name (abfd, ".rtproc");
7282 if (s == NULL)
7283 {
7284 m->count = 0;
7285 m->p_flags = 0;
7286 m->p_flags_valid = 1;
7287 }
7288 else
7289 {
7290 m->count = 1;
7291 m->sections[0] = s;
7292 }
7293
7294 /* We want to put it after the DYNAMIC segment. */
7295 pm = &elf_tdata (abfd)->segment_map;
7296 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7297 pm = &(*pm)->next;
7298 if (*pm != NULL)
7299 pm = &(*pm)->next;
7300
7301 m->next = *pm;
7302 *pm = m;
7303 }
7304 }
7305 }
7306 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7307 .dynstr, .dynsym, and .hash sections, and everything in
7308 between. */
7309 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7310 pm = &(*pm)->next)
7311 if ((*pm)->p_type == PT_DYNAMIC)
7312 break;
7313 m = *pm;
7314 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7315 {
7316 /* For a normal mips executable the permissions for the PT_DYNAMIC
7317 segment are read, write and execute. We do that here since
7318 the code in elf.c sets only the read permission. This matters
7319 sometimes for the dynamic linker. */
7320 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7321 {
7322 m->p_flags = PF_R | PF_W | PF_X;
7323 m->p_flags_valid = 1;
7324 }
7325 }
7326 if (m != NULL
7327 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7328 {
7329 static const char *sec_names[] =
7330 {
7331 ".dynamic", ".dynstr", ".dynsym", ".hash"
7332 };
7333 bfd_vma low, high;
7334 unsigned int i, c;
7335 struct elf_segment_map *n;
7336
7337 low = 0xffffffff;
7338 high = 0;
7339 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7340 {
7341 s = bfd_get_section_by_name (abfd, sec_names[i]);
7342 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7343 {
7344 bfd_size_type sz;
7345
7346 if (low > s->vma)
7347 low = s->vma;
7348 sz = s->_cooked_size;
7349 if (sz == 0)
7350 sz = s->_raw_size;
7351 if (high < s->vma + sz)
7352 high = s->vma + sz;
7353 }
7354 }
7355
7356 c = 0;
7357 for (s = abfd->sections; s != NULL; s = s->next)
7358 if ((s->flags & SEC_LOAD) != 0
7359 && s->vma >= low
7360 && ((s->vma
7361 + (s->_cooked_size !=
7362 0 ? s->_cooked_size : s->_raw_size)) <= high))
7363 ++c;
7364
7365 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7366 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7367 if (n == NULL)
7368 return FALSE;
7369 *n = *m;
7370 n->count = c;
7371
7372 i = 0;
7373 for (s = abfd->sections; s != NULL; s = s->next)
7374 {
7375 if ((s->flags & SEC_LOAD) != 0
7376 && s->vma >= low
7377 && ((s->vma
7378 + (s->_cooked_size != 0 ?
7379 s->_cooked_size : s->_raw_size)) <= high))
7380 {
7381 n->sections[i] = s;
7382 ++i;
7383 }
7384 }
7385
7386 *pm = n;
7387 }
7388 }
7389
7390 return TRUE;
7391 }
7392 \f
7393 /* Return the section that should be marked against GC for a given
7394 relocation. */
7395
7396 asection *
7397 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7398 asection *sec;
7399 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7400 Elf_Internal_Rela *rel;
7401 struct elf_link_hash_entry *h;
7402 Elf_Internal_Sym *sym;
7403 {
7404 /* ??? Do mips16 stub sections need to be handled special? */
7405
7406 if (h != NULL)
7407 {
7408 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7409 {
7410 case R_MIPS_GNU_VTINHERIT:
7411 case R_MIPS_GNU_VTENTRY:
7412 break;
7413
7414 default:
7415 switch (h->root.type)
7416 {
7417 case bfd_link_hash_defined:
7418 case bfd_link_hash_defweak:
7419 return h->root.u.def.section;
7420
7421 case bfd_link_hash_common:
7422 return h->root.u.c.p->section;
7423
7424 default:
7425 break;
7426 }
7427 }
7428 }
7429 else
7430 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7431
7432 return NULL;
7433 }
7434
7435 /* Update the got entry reference counts for the section being removed. */
7436
7437 bfd_boolean
7438 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7439 bfd *abfd ATTRIBUTE_UNUSED;
7440 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7441 asection *sec ATTRIBUTE_UNUSED;
7442 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7443 {
7444 #if 0
7445 Elf_Internal_Shdr *symtab_hdr;
7446 struct elf_link_hash_entry **sym_hashes;
7447 bfd_signed_vma *local_got_refcounts;
7448 const Elf_Internal_Rela *rel, *relend;
7449 unsigned long r_symndx;
7450 struct elf_link_hash_entry *h;
7451
7452 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7453 sym_hashes = elf_sym_hashes (abfd);
7454 local_got_refcounts = elf_local_got_refcounts (abfd);
7455
7456 relend = relocs + sec->reloc_count;
7457 for (rel = relocs; rel < relend; rel++)
7458 switch (ELF_R_TYPE (abfd, rel->r_info))
7459 {
7460 case R_MIPS_GOT16:
7461 case R_MIPS_CALL16:
7462 case R_MIPS_CALL_HI16:
7463 case R_MIPS_CALL_LO16:
7464 case R_MIPS_GOT_HI16:
7465 case R_MIPS_GOT_LO16:
7466 case R_MIPS_GOT_DISP:
7467 case R_MIPS_GOT_PAGE:
7468 case R_MIPS_GOT_OFST:
7469 /* ??? It would seem that the existing MIPS code does no sort
7470 of reference counting or whatnot on its GOT and PLT entries,
7471 so it is not possible to garbage collect them at this time. */
7472 break;
7473
7474 default:
7475 break;
7476 }
7477 #endif
7478
7479 return TRUE;
7480 }
7481 \f
7482 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7483 hiding the old indirect symbol. Process additional relocation
7484 information. Also called for weakdefs, in which case we just let
7485 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7486
7487 void
7488 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7489 struct elf_backend_data *bed;
7490 struct elf_link_hash_entry *dir, *ind;
7491 {
7492 struct mips_elf_link_hash_entry *dirmips, *indmips;
7493
7494 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7495
7496 if (ind->root.type != bfd_link_hash_indirect)
7497 return;
7498
7499 dirmips = (struct mips_elf_link_hash_entry *) dir;
7500 indmips = (struct mips_elf_link_hash_entry *) ind;
7501 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7502 if (indmips->readonly_reloc)
7503 dirmips->readonly_reloc = TRUE;
7504 if (dirmips->min_dyn_reloc_index == 0
7505 || (indmips->min_dyn_reloc_index != 0
7506 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7507 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7508 if (indmips->no_fn_stub)
7509 dirmips->no_fn_stub = TRUE;
7510 }
7511
7512 void
7513 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7514 struct bfd_link_info *info;
7515 struct elf_link_hash_entry *entry;
7516 bfd_boolean force_local;
7517 {
7518 bfd *dynobj;
7519 asection *got;
7520 struct mips_got_info *g;
7521 struct mips_elf_link_hash_entry *h;
7522
7523 h = (struct mips_elf_link_hash_entry *) entry;
7524 if (h->forced_local)
7525 return;
7526 h->forced_local = TRUE;
7527
7528 dynobj = elf_hash_table (info)->dynobj;
7529 got = mips_elf_got_section (dynobj, FALSE);
7530 g = mips_elf_section_data (got)->u.got_info;
7531
7532 if (g->next)
7533 {
7534 struct mips_got_entry e;
7535 struct mips_got_info *gg = g;
7536
7537 /* Since we're turning what used to be a global symbol into a
7538 local one, bump up the number of local entries of each GOT
7539 that had an entry for it. This will automatically decrease
7540 the number of global entries, since global_gotno is actually
7541 the upper limit of global entries. */
7542 e.abfd = dynobj;
7543 e.symndx = -1;
7544 e.d.h = h;
7545
7546 for (g = g->next; g != gg; g = g->next)
7547 if (htab_find (g->got_entries, &e))
7548 {
7549 BFD_ASSERT (g->global_gotno > 0);
7550 g->local_gotno++;
7551 g->global_gotno--;
7552 }
7553
7554 /* If this was a global symbol forced into the primary GOT, we
7555 no longer need an entry for it. We can't release the entry
7556 at this point, but we must at least stop counting it as one
7557 of the symbols that required a forced got entry. */
7558 if (h->root.got.offset == 2)
7559 {
7560 BFD_ASSERT (gg->assigned_gotno > 0);
7561 gg->assigned_gotno--;
7562 }
7563 }
7564 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7565 /* If we haven't got through GOT allocation yet, just bump up the
7566 number of local entries, as this symbol won't be counted as
7567 global. */
7568 g->local_gotno++;
7569 else if (h->root.got.offset == 1)
7570 {
7571 /* If we're past non-multi-GOT allocation and this symbol had
7572 been marked for a global got entry, give it a local entry
7573 instead. */
7574 BFD_ASSERT (g->global_gotno > 0);
7575 g->local_gotno++;
7576 g->global_gotno--;
7577 }
7578
7579 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7580 }
7581 \f
7582 #define PDR_SIZE 32
7583
7584 bfd_boolean
7585 _bfd_mips_elf_discard_info (abfd, cookie, info)
7586 bfd *abfd;
7587 struct elf_reloc_cookie *cookie;
7588 struct bfd_link_info *info;
7589 {
7590 asection *o;
7591 bfd_boolean ret = FALSE;
7592 unsigned char *tdata;
7593 size_t i, skip;
7594
7595 o = bfd_get_section_by_name (abfd, ".pdr");
7596 if (! o)
7597 return FALSE;
7598 if (o->_raw_size == 0)
7599 return FALSE;
7600 if (o->_raw_size % PDR_SIZE != 0)
7601 return FALSE;
7602 if (o->output_section != NULL
7603 && bfd_is_abs_section (o->output_section))
7604 return FALSE;
7605
7606 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7607 if (! tdata)
7608 return FALSE;
7609
7610 cookie->rels = (MNAME(abfd,_bfd_elf,link_read_relocs)
7611 (abfd, o, (PTR) NULL,
7612 (Elf_Internal_Rela *) NULL,
7613 info->keep_memory));
7614 if (!cookie->rels)
7615 {
7616 free (tdata);
7617 return FALSE;
7618 }
7619
7620 cookie->rel = cookie->rels;
7621 cookie->relend = cookie->rels + o->reloc_count;
7622
7623 for (i = 0, skip = 0; i < o->_raw_size; i ++)
7624 {
7625 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7626 {
7627 tdata[i] = 1;
7628 skip ++;
7629 }
7630 }
7631
7632 if (skip != 0)
7633 {
7634 mips_elf_section_data (o)->u.tdata = tdata;
7635 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7636 ret = TRUE;
7637 }
7638 else
7639 free (tdata);
7640
7641 if (! info->keep_memory)
7642 free (cookie->rels);
7643
7644 return ret;
7645 }
7646
7647 bfd_boolean
7648 _bfd_mips_elf_ignore_discarded_relocs (sec)
7649 asection *sec;
7650 {
7651 if (strcmp (sec->name, ".pdr") == 0)
7652 return TRUE;
7653 return FALSE;
7654 }
7655
7656 bfd_boolean
7657 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7658 bfd *output_bfd;
7659 asection *sec;
7660 bfd_byte *contents;
7661 {
7662 bfd_byte *to, *from, *end;
7663 int i;
7664
7665 if (strcmp (sec->name, ".pdr") != 0)
7666 return FALSE;
7667
7668 if (mips_elf_section_data (sec)->u.tdata == NULL)
7669 return FALSE;
7670
7671 to = contents;
7672 end = contents + sec->_raw_size;
7673 for (from = contents, i = 0;
7674 from < end;
7675 from += PDR_SIZE, i++)
7676 {
7677 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7678 continue;
7679 if (to != from)
7680 memcpy (to, from, PDR_SIZE);
7681 to += PDR_SIZE;
7682 }
7683 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7684 (file_ptr) sec->output_offset,
7685 sec->_cooked_size);
7686 return TRUE;
7687 }
7688 \f
7689 /* MIPS ELF uses a special find_nearest_line routine in order the
7690 handle the ECOFF debugging information. */
7691
7692 struct mips_elf_find_line
7693 {
7694 struct ecoff_debug_info d;
7695 struct ecoff_find_line i;
7696 };
7697
7698 bfd_boolean
7699 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7700 functionname_ptr, line_ptr)
7701 bfd *abfd;
7702 asection *section;
7703 asymbol **symbols;
7704 bfd_vma offset;
7705 const char **filename_ptr;
7706 const char **functionname_ptr;
7707 unsigned int *line_ptr;
7708 {
7709 asection *msec;
7710
7711 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7712 filename_ptr, functionname_ptr,
7713 line_ptr))
7714 return TRUE;
7715
7716 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7717 filename_ptr, functionname_ptr,
7718 line_ptr,
7719 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7720 &elf_tdata (abfd)->dwarf2_find_line_info))
7721 return TRUE;
7722
7723 msec = bfd_get_section_by_name (abfd, ".mdebug");
7724 if (msec != NULL)
7725 {
7726 flagword origflags;
7727 struct mips_elf_find_line *fi;
7728 const struct ecoff_debug_swap * const swap =
7729 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7730
7731 /* If we are called during a link, mips_elf_final_link may have
7732 cleared the SEC_HAS_CONTENTS field. We force it back on here
7733 if appropriate (which it normally will be). */
7734 origflags = msec->flags;
7735 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7736 msec->flags |= SEC_HAS_CONTENTS;
7737
7738 fi = elf_tdata (abfd)->find_line_info;
7739 if (fi == NULL)
7740 {
7741 bfd_size_type external_fdr_size;
7742 char *fraw_src;
7743 char *fraw_end;
7744 struct fdr *fdr_ptr;
7745 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7746
7747 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
7748 if (fi == NULL)
7749 {
7750 msec->flags = origflags;
7751 return FALSE;
7752 }
7753
7754 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7755 {
7756 msec->flags = origflags;
7757 return FALSE;
7758 }
7759
7760 /* Swap in the FDR information. */
7761 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7762 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
7763 if (fi->d.fdr == NULL)
7764 {
7765 msec->flags = origflags;
7766 return FALSE;
7767 }
7768 external_fdr_size = swap->external_fdr_size;
7769 fdr_ptr = fi->d.fdr;
7770 fraw_src = (char *) fi->d.external_fdr;
7771 fraw_end = (fraw_src
7772 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7773 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7774 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
7775
7776 elf_tdata (abfd)->find_line_info = fi;
7777
7778 /* Note that we don't bother to ever free this information.
7779 find_nearest_line is either called all the time, as in
7780 objdump -l, so the information should be saved, or it is
7781 rarely called, as in ld error messages, so the memory
7782 wasted is unimportant. Still, it would probably be a
7783 good idea for free_cached_info to throw it away. */
7784 }
7785
7786 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7787 &fi->i, filename_ptr, functionname_ptr,
7788 line_ptr))
7789 {
7790 msec->flags = origflags;
7791 return TRUE;
7792 }
7793
7794 msec->flags = origflags;
7795 }
7796
7797 /* Fall back on the generic ELF find_nearest_line routine. */
7798
7799 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7800 filename_ptr, functionname_ptr,
7801 line_ptr);
7802 }
7803 \f
7804 /* When are writing out the .options or .MIPS.options section,
7805 remember the bytes we are writing out, so that we can install the
7806 GP value in the section_processing routine. */
7807
7808 bfd_boolean
7809 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
7810 bfd *abfd;
7811 sec_ptr section;
7812 PTR location;
7813 file_ptr offset;
7814 bfd_size_type count;
7815 {
7816 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7817 {
7818 bfd_byte *c;
7819
7820 if (elf_section_data (section) == NULL)
7821 {
7822 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7823 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7824 if (elf_section_data (section) == NULL)
7825 return FALSE;
7826 }
7827 c = mips_elf_section_data (section)->u.tdata;
7828 if (c == NULL)
7829 {
7830 bfd_size_type size;
7831
7832 if (section->_cooked_size != 0)
7833 size = section->_cooked_size;
7834 else
7835 size = section->_raw_size;
7836 c = (bfd_byte *) bfd_zalloc (abfd, size);
7837 if (c == NULL)
7838 return FALSE;
7839 mips_elf_section_data (section)->u.tdata = c;
7840 }
7841
7842 memcpy (c + offset, location, (size_t) count);
7843 }
7844
7845 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7846 count);
7847 }
7848
7849 /* This is almost identical to bfd_generic_get_... except that some
7850 MIPS relocations need to be handled specially. Sigh. */
7851
7852 bfd_byte *
7853 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
7854 data, relocateable, symbols)
7855 bfd *abfd;
7856 struct bfd_link_info *link_info;
7857 struct bfd_link_order *link_order;
7858 bfd_byte *data;
7859 bfd_boolean relocateable;
7860 asymbol **symbols;
7861 {
7862 /* Get enough memory to hold the stuff */
7863 bfd *input_bfd = link_order->u.indirect.section->owner;
7864 asection *input_section = link_order->u.indirect.section;
7865
7866 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7867 arelent **reloc_vector = NULL;
7868 long reloc_count;
7869
7870 if (reloc_size < 0)
7871 goto error_return;
7872
7873 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
7874 if (reloc_vector == NULL && reloc_size != 0)
7875 goto error_return;
7876
7877 /* read in the section */
7878 if (!bfd_get_section_contents (input_bfd,
7879 input_section,
7880 (PTR) data,
7881 (file_ptr) 0,
7882 input_section->_raw_size))
7883 goto error_return;
7884
7885 /* We're not relaxing the section, so just copy the size info */
7886 input_section->_cooked_size = input_section->_raw_size;
7887 input_section->reloc_done = TRUE;
7888
7889 reloc_count = bfd_canonicalize_reloc (input_bfd,
7890 input_section,
7891 reloc_vector,
7892 symbols);
7893 if (reloc_count < 0)
7894 goto error_return;
7895
7896 if (reloc_count > 0)
7897 {
7898 arelent **parent;
7899 /* for mips */
7900 int gp_found;
7901 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7902
7903 {
7904 struct bfd_hash_entry *h;
7905 struct bfd_link_hash_entry *lh;
7906 /* Skip all this stuff if we aren't mixing formats. */
7907 if (abfd && input_bfd
7908 && abfd->xvec == input_bfd->xvec)
7909 lh = 0;
7910 else
7911 {
7912 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7913 lh = (struct bfd_link_hash_entry *) h;
7914 }
7915 lookup:
7916 if (lh)
7917 {
7918 switch (lh->type)
7919 {
7920 case bfd_link_hash_undefined:
7921 case bfd_link_hash_undefweak:
7922 case bfd_link_hash_common:
7923 gp_found = 0;
7924 break;
7925 case bfd_link_hash_defined:
7926 case bfd_link_hash_defweak:
7927 gp_found = 1;
7928 gp = lh->u.def.value;
7929 break;
7930 case bfd_link_hash_indirect:
7931 case bfd_link_hash_warning:
7932 lh = lh->u.i.link;
7933 /* @@FIXME ignoring warning for now */
7934 goto lookup;
7935 case bfd_link_hash_new:
7936 default:
7937 abort ();
7938 }
7939 }
7940 else
7941 gp_found = 0;
7942 }
7943 /* end mips */
7944 for (parent = reloc_vector; *parent != (arelent *) NULL;
7945 parent++)
7946 {
7947 char *error_message = (char *) NULL;
7948 bfd_reloc_status_type r;
7949
7950 /* Specific to MIPS: Deal with relocation types that require
7951 knowing the gp of the output bfd. */
7952 asymbol *sym = *(*parent)->sym_ptr_ptr;
7953 if (bfd_is_abs_section (sym->section) && abfd)
7954 {
7955 /* The special_function wouldn't get called anyway. */
7956 }
7957 else if (!gp_found)
7958 {
7959 /* The gp isn't there; let the special function code
7960 fall over on its own. */
7961 }
7962 else if ((*parent)->howto->special_function
7963 == _bfd_mips_elf32_gprel16_reloc)
7964 {
7965 /* bypass special_function call */
7966 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7967 input_section, relocateable,
7968 (PTR) data, gp);
7969 goto skip_bfd_perform_relocation;
7970 }
7971 /* end mips specific stuff */
7972
7973 r = bfd_perform_relocation (input_bfd,
7974 *parent,
7975 (PTR) data,
7976 input_section,
7977 relocateable ? abfd : (bfd *) NULL,
7978 &error_message);
7979 skip_bfd_perform_relocation:
7980
7981 if (relocateable)
7982 {
7983 asection *os = input_section->output_section;
7984
7985 /* A partial link, so keep the relocs */
7986 os->orelocation[os->reloc_count] = *parent;
7987 os->reloc_count++;
7988 }
7989
7990 if (r != bfd_reloc_ok)
7991 {
7992 switch (r)
7993 {
7994 case bfd_reloc_undefined:
7995 if (!((*link_info->callbacks->undefined_symbol)
7996 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
7997 input_bfd, input_section, (*parent)->address,
7998 TRUE)))
7999 goto error_return;
8000 break;
8001 case bfd_reloc_dangerous:
8002 BFD_ASSERT (error_message != (char *) NULL);
8003 if (!((*link_info->callbacks->reloc_dangerous)
8004 (link_info, error_message, input_bfd, input_section,
8005 (*parent)->address)))
8006 goto error_return;
8007 break;
8008 case bfd_reloc_overflow:
8009 if (!((*link_info->callbacks->reloc_overflow)
8010 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8011 (*parent)->howto->name, (*parent)->addend,
8012 input_bfd, input_section, (*parent)->address)))
8013 goto error_return;
8014 break;
8015 case bfd_reloc_outofrange:
8016 default:
8017 abort ();
8018 break;
8019 }
8020
8021 }
8022 }
8023 }
8024 if (reloc_vector != NULL)
8025 free (reloc_vector);
8026 return data;
8027
8028 error_return:
8029 if (reloc_vector != NULL)
8030 free (reloc_vector);
8031 return NULL;
8032 }
8033 \f
8034 /* Create a MIPS ELF linker hash table. */
8035
8036 struct bfd_link_hash_table *
8037 _bfd_mips_elf_link_hash_table_create (abfd)
8038 bfd *abfd;
8039 {
8040 struct mips_elf_link_hash_table *ret;
8041 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8042
8043 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8044 if (ret == (struct mips_elf_link_hash_table *) NULL)
8045 return NULL;
8046
8047 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8048 mips_elf_link_hash_newfunc))
8049 {
8050 free (ret);
8051 return NULL;
8052 }
8053
8054 #if 0
8055 /* We no longer use this. */
8056 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8057 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8058 #endif
8059 ret->procedure_count = 0;
8060 ret->compact_rel_size = 0;
8061 ret->use_rld_obj_head = FALSE;
8062 ret->rld_value = 0;
8063 ret->mips16_stubs_seen = FALSE;
8064
8065 return &ret->root.root;
8066 }
8067 \f
8068 /* We need to use a special link routine to handle the .reginfo and
8069 the .mdebug sections. We need to merge all instances of these
8070 sections together, not write them all out sequentially. */
8071
8072 bfd_boolean
8073 _bfd_mips_elf_final_link (abfd, info)
8074 bfd *abfd;
8075 struct bfd_link_info *info;
8076 {
8077 asection **secpp;
8078 asection *o;
8079 struct bfd_link_order *p;
8080 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8081 asection *rtproc_sec;
8082 Elf32_RegInfo reginfo;
8083 struct ecoff_debug_info debug;
8084 const struct ecoff_debug_swap *swap
8085 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8086 HDRR *symhdr = &debug.symbolic_header;
8087 PTR mdebug_handle = NULL;
8088 asection *s;
8089 EXTR esym;
8090 unsigned int i;
8091 bfd_size_type amt;
8092
8093 static const char * const secname[] =
8094 {
8095 ".text", ".init", ".fini", ".data",
8096 ".rodata", ".sdata", ".sbss", ".bss"
8097 };
8098 static const int sc[] =
8099 {
8100 scText, scInit, scFini, scData,
8101 scRData, scSData, scSBss, scBss
8102 };
8103
8104 /* If all the things we linked together were PIC, but we're
8105 producing an executable (rather than a shared object), then the
8106 resulting file is CPIC (i.e., it calls PIC code.) */
8107 if (!info->shared
8108 && !info->relocateable
8109 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
8110 {
8111 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
8112 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
8113 }
8114
8115 /* We'd carefully arranged the dynamic symbol indices, and then the
8116 generic size_dynamic_sections renumbered them out from under us.
8117 Rather than trying somehow to prevent the renumbering, just do
8118 the sort again. */
8119 if (elf_hash_table (info)->dynamic_sections_created)
8120 {
8121 bfd *dynobj;
8122 asection *got;
8123 struct mips_got_info *g;
8124
8125 /* When we resort, we must tell mips_elf_sort_hash_table what
8126 the lowest index it may use is. That's the number of section
8127 symbols we're going to add. The generic ELF linker only
8128 adds these symbols when building a shared object. Note that
8129 we count the sections after (possibly) removing the .options
8130 section above. */
8131 if (! mips_elf_sort_hash_table (info, (info->shared
8132 ? bfd_count_sections (abfd) + 1
8133 : 1)))
8134 return FALSE;
8135
8136 /* Make sure we didn't grow the global .got region. */
8137 dynobj = elf_hash_table (info)->dynobj;
8138 got = mips_elf_got_section (dynobj, FALSE);
8139 g = mips_elf_section_data (got)->u.got_info;
8140
8141 if (g->global_gotsym != NULL)
8142 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8143 - g->global_gotsym->dynindx)
8144 <= g->global_gotno);
8145 }
8146
8147 #if 0
8148 /* We want to set the GP value for ld -r. */
8149 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8150 include it, even though we don't process it quite right. (Some
8151 entries are supposed to be merged.) Empirically, we seem to be
8152 better off including it then not. */
8153 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8154 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8155 {
8156 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8157 {
8158 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8159 if (p->type == bfd_indirect_link_order)
8160 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8161 (*secpp)->link_order_head = NULL;
8162 bfd_section_list_remove (abfd, secpp);
8163 --abfd->section_count;
8164
8165 break;
8166 }
8167 }
8168
8169 /* We include .MIPS.options, even though we don't process it quite right.
8170 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8171 to be better off including it than not. */
8172 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8173 {
8174 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8175 {
8176 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8177 if (p->type == bfd_indirect_link_order)
8178 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8179 (*secpp)->link_order_head = NULL;
8180 bfd_section_list_remove (abfd, secpp);
8181 --abfd->section_count;
8182
8183 break;
8184 }
8185 }
8186 #endif
8187
8188 /* Get a value for the GP register. */
8189 if (elf_gp (abfd) == 0)
8190 {
8191 struct bfd_link_hash_entry *h;
8192
8193 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8194 if (h != (struct bfd_link_hash_entry *) NULL
8195 && h->type == bfd_link_hash_defined)
8196 elf_gp (abfd) = (h->u.def.value
8197 + h->u.def.section->output_section->vma
8198 + h->u.def.section->output_offset);
8199 else if (info->relocateable)
8200 {
8201 bfd_vma lo = MINUS_ONE;
8202
8203 /* Find the GP-relative section with the lowest offset. */
8204 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8205 if (o->vma < lo
8206 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8207 lo = o->vma;
8208
8209 /* And calculate GP relative to that. */
8210 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8211 }
8212 else
8213 {
8214 /* If the relocate_section function needs to do a reloc
8215 involving the GP value, it should make a reloc_dangerous
8216 callback to warn that GP is not defined. */
8217 }
8218 }
8219
8220 /* Go through the sections and collect the .reginfo and .mdebug
8221 information. */
8222 reginfo_sec = NULL;
8223 mdebug_sec = NULL;
8224 gptab_data_sec = NULL;
8225 gptab_bss_sec = NULL;
8226 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8227 {
8228 if (strcmp (o->name, ".reginfo") == 0)
8229 {
8230 memset (&reginfo, 0, sizeof reginfo);
8231
8232 /* We have found the .reginfo section in the output file.
8233 Look through all the link_orders comprising it and merge
8234 the information together. */
8235 for (p = o->link_order_head;
8236 p != (struct bfd_link_order *) NULL;
8237 p = p->next)
8238 {
8239 asection *input_section;
8240 bfd *input_bfd;
8241 Elf32_External_RegInfo ext;
8242 Elf32_RegInfo sub;
8243
8244 if (p->type != bfd_indirect_link_order)
8245 {
8246 if (p->type == bfd_data_link_order)
8247 continue;
8248 abort ();
8249 }
8250
8251 input_section = p->u.indirect.section;
8252 input_bfd = input_section->owner;
8253
8254 /* The linker emulation code has probably clobbered the
8255 size to be zero bytes. */
8256 if (input_section->_raw_size == 0)
8257 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8258
8259 if (! bfd_get_section_contents (input_bfd, input_section,
8260 (PTR) &ext,
8261 (file_ptr) 0,
8262 (bfd_size_type) sizeof ext))
8263 return FALSE;
8264
8265 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8266
8267 reginfo.ri_gprmask |= sub.ri_gprmask;
8268 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8269 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8270 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8271 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8272
8273 /* ri_gp_value is set by the function
8274 mips_elf32_section_processing when the section is
8275 finally written out. */
8276
8277 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8278 elf_link_input_bfd ignores this section. */
8279 input_section->flags &= ~SEC_HAS_CONTENTS;
8280 }
8281
8282 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8283 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8284
8285 /* Skip this section later on (I don't think this currently
8286 matters, but someday it might). */
8287 o->link_order_head = (struct bfd_link_order *) NULL;
8288
8289 reginfo_sec = o;
8290 }
8291
8292 if (strcmp (o->name, ".mdebug") == 0)
8293 {
8294 struct extsym_info einfo;
8295 bfd_vma last;
8296
8297 /* We have found the .mdebug section in the output file.
8298 Look through all the link_orders comprising it and merge
8299 the information together. */
8300 symhdr->magic = swap->sym_magic;
8301 /* FIXME: What should the version stamp be? */
8302 symhdr->vstamp = 0;
8303 symhdr->ilineMax = 0;
8304 symhdr->cbLine = 0;
8305 symhdr->idnMax = 0;
8306 symhdr->ipdMax = 0;
8307 symhdr->isymMax = 0;
8308 symhdr->ioptMax = 0;
8309 symhdr->iauxMax = 0;
8310 symhdr->issMax = 0;
8311 symhdr->issExtMax = 0;
8312 symhdr->ifdMax = 0;
8313 symhdr->crfd = 0;
8314 symhdr->iextMax = 0;
8315
8316 /* We accumulate the debugging information itself in the
8317 debug_info structure. */
8318 debug.line = NULL;
8319 debug.external_dnr = NULL;
8320 debug.external_pdr = NULL;
8321 debug.external_sym = NULL;
8322 debug.external_opt = NULL;
8323 debug.external_aux = NULL;
8324 debug.ss = NULL;
8325 debug.ssext = debug.ssext_end = NULL;
8326 debug.external_fdr = NULL;
8327 debug.external_rfd = NULL;
8328 debug.external_ext = debug.external_ext_end = NULL;
8329
8330 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8331 if (mdebug_handle == (PTR) NULL)
8332 return FALSE;
8333
8334 esym.jmptbl = 0;
8335 esym.cobol_main = 0;
8336 esym.weakext = 0;
8337 esym.reserved = 0;
8338 esym.ifd = ifdNil;
8339 esym.asym.iss = issNil;
8340 esym.asym.st = stLocal;
8341 esym.asym.reserved = 0;
8342 esym.asym.index = indexNil;
8343 last = 0;
8344 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8345 {
8346 esym.asym.sc = sc[i];
8347 s = bfd_get_section_by_name (abfd, secname[i]);
8348 if (s != NULL)
8349 {
8350 esym.asym.value = s->vma;
8351 last = s->vma + s->_raw_size;
8352 }
8353 else
8354 esym.asym.value = last;
8355 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8356 secname[i], &esym))
8357 return FALSE;
8358 }
8359
8360 for (p = o->link_order_head;
8361 p != (struct bfd_link_order *) NULL;
8362 p = p->next)
8363 {
8364 asection *input_section;
8365 bfd *input_bfd;
8366 const struct ecoff_debug_swap *input_swap;
8367 struct ecoff_debug_info input_debug;
8368 char *eraw_src;
8369 char *eraw_end;
8370
8371 if (p->type != bfd_indirect_link_order)
8372 {
8373 if (p->type == bfd_data_link_order)
8374 continue;
8375 abort ();
8376 }
8377
8378 input_section = p->u.indirect.section;
8379 input_bfd = input_section->owner;
8380
8381 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8382 || (get_elf_backend_data (input_bfd)
8383 ->elf_backend_ecoff_debug_swap) == NULL)
8384 {
8385 /* I don't know what a non MIPS ELF bfd would be
8386 doing with a .mdebug section, but I don't really
8387 want to deal with it. */
8388 continue;
8389 }
8390
8391 input_swap = (get_elf_backend_data (input_bfd)
8392 ->elf_backend_ecoff_debug_swap);
8393
8394 BFD_ASSERT (p->size == input_section->_raw_size);
8395
8396 /* The ECOFF linking code expects that we have already
8397 read in the debugging information and set up an
8398 ecoff_debug_info structure, so we do that now. */
8399 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8400 &input_debug))
8401 return FALSE;
8402
8403 if (! (bfd_ecoff_debug_accumulate
8404 (mdebug_handle, abfd, &debug, swap, input_bfd,
8405 &input_debug, input_swap, info)))
8406 return FALSE;
8407
8408 /* Loop through the external symbols. For each one with
8409 interesting information, try to find the symbol in
8410 the linker global hash table and save the information
8411 for the output external symbols. */
8412 eraw_src = input_debug.external_ext;
8413 eraw_end = (eraw_src
8414 + (input_debug.symbolic_header.iextMax
8415 * input_swap->external_ext_size));
8416 for (;
8417 eraw_src < eraw_end;
8418 eraw_src += input_swap->external_ext_size)
8419 {
8420 EXTR ext;
8421 const char *name;
8422 struct mips_elf_link_hash_entry *h;
8423
8424 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8425 if (ext.asym.sc == scNil
8426 || ext.asym.sc == scUndefined
8427 || ext.asym.sc == scSUndefined)
8428 continue;
8429
8430 name = input_debug.ssext + ext.asym.iss;
8431 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8432 name, FALSE, FALSE, TRUE);
8433 if (h == NULL || h->esym.ifd != -2)
8434 continue;
8435
8436 if (ext.ifd != -1)
8437 {
8438 BFD_ASSERT (ext.ifd
8439 < input_debug.symbolic_header.ifdMax);
8440 ext.ifd = input_debug.ifdmap[ext.ifd];
8441 }
8442
8443 h->esym = ext;
8444 }
8445
8446 /* Free up the information we just read. */
8447 free (input_debug.line);
8448 free (input_debug.external_dnr);
8449 free (input_debug.external_pdr);
8450 free (input_debug.external_sym);
8451 free (input_debug.external_opt);
8452 free (input_debug.external_aux);
8453 free (input_debug.ss);
8454 free (input_debug.ssext);
8455 free (input_debug.external_fdr);
8456 free (input_debug.external_rfd);
8457 free (input_debug.external_ext);
8458
8459 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8460 elf_link_input_bfd ignores this section. */
8461 input_section->flags &= ~SEC_HAS_CONTENTS;
8462 }
8463
8464 if (SGI_COMPAT (abfd) && info->shared)
8465 {
8466 /* Create .rtproc section. */
8467 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8468 if (rtproc_sec == NULL)
8469 {
8470 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8471 | SEC_LINKER_CREATED | SEC_READONLY);
8472
8473 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8474 if (rtproc_sec == NULL
8475 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8476 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8477 return FALSE;
8478 }
8479
8480 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8481 info, rtproc_sec,
8482 &debug))
8483 return FALSE;
8484 }
8485
8486 /* Build the external symbol information. */
8487 einfo.abfd = abfd;
8488 einfo.info = info;
8489 einfo.debug = &debug;
8490 einfo.swap = swap;
8491 einfo.failed = FALSE;
8492 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8493 mips_elf_output_extsym,
8494 (PTR) &einfo);
8495 if (einfo.failed)
8496 return FALSE;
8497
8498 /* Set the size of the .mdebug section. */
8499 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8500
8501 /* Skip this section later on (I don't think this currently
8502 matters, but someday it might). */
8503 o->link_order_head = (struct bfd_link_order *) NULL;
8504
8505 mdebug_sec = o;
8506 }
8507
8508 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8509 {
8510 const char *subname;
8511 unsigned int c;
8512 Elf32_gptab *tab;
8513 Elf32_External_gptab *ext_tab;
8514 unsigned int j;
8515
8516 /* The .gptab.sdata and .gptab.sbss sections hold
8517 information describing how the small data area would
8518 change depending upon the -G switch. These sections
8519 not used in executables files. */
8520 if (! info->relocateable)
8521 {
8522 for (p = o->link_order_head;
8523 p != (struct bfd_link_order *) NULL;
8524 p = p->next)
8525 {
8526 asection *input_section;
8527
8528 if (p->type != bfd_indirect_link_order)
8529 {
8530 if (p->type == bfd_data_link_order)
8531 continue;
8532 abort ();
8533 }
8534
8535 input_section = p->u.indirect.section;
8536
8537 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8538 elf_link_input_bfd ignores this section. */
8539 input_section->flags &= ~SEC_HAS_CONTENTS;
8540 }
8541
8542 /* Skip this section later on (I don't think this
8543 currently matters, but someday it might). */
8544 o->link_order_head = (struct bfd_link_order *) NULL;
8545
8546 /* Really remove the section. */
8547 for (secpp = &abfd->sections;
8548 *secpp != o;
8549 secpp = &(*secpp)->next)
8550 ;
8551 bfd_section_list_remove (abfd, secpp);
8552 --abfd->section_count;
8553
8554 continue;
8555 }
8556
8557 /* There is one gptab for initialized data, and one for
8558 uninitialized data. */
8559 if (strcmp (o->name, ".gptab.sdata") == 0)
8560 gptab_data_sec = o;
8561 else if (strcmp (o->name, ".gptab.sbss") == 0)
8562 gptab_bss_sec = o;
8563 else
8564 {
8565 (*_bfd_error_handler)
8566 (_("%s: illegal section name `%s'"),
8567 bfd_get_filename (abfd), o->name);
8568 bfd_set_error (bfd_error_nonrepresentable_section);
8569 return FALSE;
8570 }
8571
8572 /* The linker script always combines .gptab.data and
8573 .gptab.sdata into .gptab.sdata, and likewise for
8574 .gptab.bss and .gptab.sbss. It is possible that there is
8575 no .sdata or .sbss section in the output file, in which
8576 case we must change the name of the output section. */
8577 subname = o->name + sizeof ".gptab" - 1;
8578 if (bfd_get_section_by_name (abfd, subname) == NULL)
8579 {
8580 if (o == gptab_data_sec)
8581 o->name = ".gptab.data";
8582 else
8583 o->name = ".gptab.bss";
8584 subname = o->name + sizeof ".gptab" - 1;
8585 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8586 }
8587
8588 /* Set up the first entry. */
8589 c = 1;
8590 amt = c * sizeof (Elf32_gptab);
8591 tab = (Elf32_gptab *) bfd_malloc (amt);
8592 if (tab == NULL)
8593 return FALSE;
8594 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8595 tab[0].gt_header.gt_unused = 0;
8596
8597 /* Combine the input sections. */
8598 for (p = o->link_order_head;
8599 p != (struct bfd_link_order *) NULL;
8600 p = p->next)
8601 {
8602 asection *input_section;
8603 bfd *input_bfd;
8604 bfd_size_type size;
8605 unsigned long last;
8606 bfd_size_type gpentry;
8607
8608 if (p->type != bfd_indirect_link_order)
8609 {
8610 if (p->type == bfd_data_link_order)
8611 continue;
8612 abort ();
8613 }
8614
8615 input_section = p->u.indirect.section;
8616 input_bfd = input_section->owner;
8617
8618 /* Combine the gptab entries for this input section one
8619 by one. We know that the input gptab entries are
8620 sorted by ascending -G value. */
8621 size = bfd_section_size (input_bfd, input_section);
8622 last = 0;
8623 for (gpentry = sizeof (Elf32_External_gptab);
8624 gpentry < size;
8625 gpentry += sizeof (Elf32_External_gptab))
8626 {
8627 Elf32_External_gptab ext_gptab;
8628 Elf32_gptab int_gptab;
8629 unsigned long val;
8630 unsigned long add;
8631 bfd_boolean exact;
8632 unsigned int look;
8633
8634 if (! (bfd_get_section_contents
8635 (input_bfd, input_section, (PTR) &ext_gptab,
8636 (file_ptr) gpentry,
8637 (bfd_size_type) sizeof (Elf32_External_gptab))))
8638 {
8639 free (tab);
8640 return FALSE;
8641 }
8642
8643 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8644 &int_gptab);
8645 val = int_gptab.gt_entry.gt_g_value;
8646 add = int_gptab.gt_entry.gt_bytes - last;
8647
8648 exact = FALSE;
8649 for (look = 1; look < c; look++)
8650 {
8651 if (tab[look].gt_entry.gt_g_value >= val)
8652 tab[look].gt_entry.gt_bytes += add;
8653
8654 if (tab[look].gt_entry.gt_g_value == val)
8655 exact = TRUE;
8656 }
8657
8658 if (! exact)
8659 {
8660 Elf32_gptab *new_tab;
8661 unsigned int max;
8662
8663 /* We need a new table entry. */
8664 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8665 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8666 if (new_tab == NULL)
8667 {
8668 free (tab);
8669 return FALSE;
8670 }
8671 tab = new_tab;
8672 tab[c].gt_entry.gt_g_value = val;
8673 tab[c].gt_entry.gt_bytes = add;
8674
8675 /* Merge in the size for the next smallest -G
8676 value, since that will be implied by this new
8677 value. */
8678 max = 0;
8679 for (look = 1; look < c; look++)
8680 {
8681 if (tab[look].gt_entry.gt_g_value < val
8682 && (max == 0
8683 || (tab[look].gt_entry.gt_g_value
8684 > tab[max].gt_entry.gt_g_value)))
8685 max = look;
8686 }
8687 if (max != 0)
8688 tab[c].gt_entry.gt_bytes +=
8689 tab[max].gt_entry.gt_bytes;
8690
8691 ++c;
8692 }
8693
8694 last = int_gptab.gt_entry.gt_bytes;
8695 }
8696
8697 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8698 elf_link_input_bfd ignores this section. */
8699 input_section->flags &= ~SEC_HAS_CONTENTS;
8700 }
8701
8702 /* The table must be sorted by -G value. */
8703 if (c > 2)
8704 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8705
8706 /* Swap out the table. */
8707 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8708 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8709 if (ext_tab == NULL)
8710 {
8711 free (tab);
8712 return FALSE;
8713 }
8714
8715 for (j = 0; j < c; j++)
8716 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8717 free (tab);
8718
8719 o->_raw_size = c * sizeof (Elf32_External_gptab);
8720 o->contents = (bfd_byte *) ext_tab;
8721
8722 /* Skip this section later on (I don't think this currently
8723 matters, but someday it might). */
8724 o->link_order_head = (struct bfd_link_order *) NULL;
8725 }
8726 }
8727
8728 /* Invoke the regular ELF backend linker to do all the work. */
8729 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8730 return FALSE;
8731
8732 /* Now write out the computed sections. */
8733
8734 if (reginfo_sec != (asection *) NULL)
8735 {
8736 Elf32_External_RegInfo ext;
8737
8738 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8739 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8740 (file_ptr) 0,
8741 (bfd_size_type) sizeof ext))
8742 return FALSE;
8743 }
8744
8745 if (mdebug_sec != (asection *) NULL)
8746 {
8747 BFD_ASSERT (abfd->output_has_begun);
8748 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8749 swap, info,
8750 mdebug_sec->filepos))
8751 return FALSE;
8752
8753 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8754 }
8755
8756 if (gptab_data_sec != (asection *) NULL)
8757 {
8758 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8759 gptab_data_sec->contents,
8760 (file_ptr) 0,
8761 gptab_data_sec->_raw_size))
8762 return FALSE;
8763 }
8764
8765 if (gptab_bss_sec != (asection *) NULL)
8766 {
8767 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8768 gptab_bss_sec->contents,
8769 (file_ptr) 0,
8770 gptab_bss_sec->_raw_size))
8771 return FALSE;
8772 }
8773
8774 if (SGI_COMPAT (abfd))
8775 {
8776 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8777 if (rtproc_sec != NULL)
8778 {
8779 if (! bfd_set_section_contents (abfd, rtproc_sec,
8780 rtproc_sec->contents,
8781 (file_ptr) 0,
8782 rtproc_sec->_raw_size))
8783 return FALSE;
8784 }
8785 }
8786
8787 return TRUE;
8788 }
8789 \f
8790 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8791
8792 struct mips_mach_extension {
8793 unsigned long extension, base;
8794 };
8795
8796
8797 /* An array describing how BFD machines relate to one another. The entries
8798 are ordered topologically with MIPS I extensions listed last. */
8799
8800 static const struct mips_mach_extension mips_mach_extensions[] = {
8801 /* MIPS64 extensions. */
8802 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8803
8804 /* MIPS V extensions. */
8805 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8806
8807 /* R10000 extensions. */
8808 { bfd_mach_mips12000, bfd_mach_mips10000 },
8809
8810 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8811 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8812 better to allow vr5400 and vr5500 code to be merged anyway, since
8813 many libraries will just use the core ISA. Perhaps we could add
8814 some sort of ASE flag if this ever proves a problem. */
8815 { bfd_mach_mips5500, bfd_mach_mips5400 },
8816 { bfd_mach_mips5400, bfd_mach_mips5000 },
8817
8818 /* MIPS IV extensions. */
8819 { bfd_mach_mips5, bfd_mach_mips8000 },
8820 { bfd_mach_mips10000, bfd_mach_mips8000 },
8821 { bfd_mach_mips5000, bfd_mach_mips8000 },
8822
8823 /* VR4100 extensions. */
8824 { bfd_mach_mips4120, bfd_mach_mips4100 },
8825 { bfd_mach_mips4111, bfd_mach_mips4100 },
8826
8827 /* MIPS III extensions. */
8828 { bfd_mach_mips8000, bfd_mach_mips4000 },
8829 { bfd_mach_mips4650, bfd_mach_mips4000 },
8830 { bfd_mach_mips4600, bfd_mach_mips4000 },
8831 { bfd_mach_mips4400, bfd_mach_mips4000 },
8832 { bfd_mach_mips4300, bfd_mach_mips4000 },
8833 { bfd_mach_mips4100, bfd_mach_mips4000 },
8834 { bfd_mach_mips4010, bfd_mach_mips4000 },
8835
8836 /* MIPS32 extensions. */
8837 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8838
8839 /* MIPS II extensions. */
8840 { bfd_mach_mips4000, bfd_mach_mips6000 },
8841 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8842
8843 /* MIPS I extensions. */
8844 { bfd_mach_mips6000, bfd_mach_mips3000 },
8845 { bfd_mach_mips3900, bfd_mach_mips3000 }
8846 };
8847
8848
8849 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8850
8851 static bfd_boolean
8852 mips_mach_extends_p (base, extension)
8853 unsigned long base, extension;
8854 {
8855 size_t i;
8856
8857 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8858 if (extension == mips_mach_extensions[i].extension)
8859 extension = mips_mach_extensions[i].base;
8860
8861 return extension == base;
8862 }
8863
8864
8865 /* Return true if the given ELF header flags describe a 32-bit binary. */
8866
8867 static bfd_boolean
8868 mips_32bit_flags_p (flags)
8869 flagword flags;
8870 {
8871 return ((flags & EF_MIPS_32BITMODE) != 0
8872 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8873 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8874 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8875 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8876 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8877 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8878 }
8879
8880
8881 /* Merge backend specific data from an object file to the output
8882 object file when linking. */
8883
8884 bfd_boolean
8885 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
8886 bfd *ibfd;
8887 bfd *obfd;
8888 {
8889 flagword old_flags;
8890 flagword new_flags;
8891 bfd_boolean ok;
8892 bfd_boolean null_input_bfd = TRUE;
8893 asection *sec;
8894
8895 /* Check if we have the same endianess */
8896 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8897 return FALSE;
8898
8899 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8900 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8901 return TRUE;
8902
8903 new_flags = elf_elfheader (ibfd)->e_flags;
8904 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8905 old_flags = elf_elfheader (obfd)->e_flags;
8906
8907 if (! elf_flags_init (obfd))
8908 {
8909 elf_flags_init (obfd) = TRUE;
8910 elf_elfheader (obfd)->e_flags = new_flags;
8911 elf_elfheader (obfd)->e_ident[EI_CLASS]
8912 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8913
8914 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8915 && bfd_get_arch_info (obfd)->the_default)
8916 {
8917 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8918 bfd_get_mach (ibfd)))
8919 return FALSE;
8920 }
8921
8922 return TRUE;
8923 }
8924
8925 /* Check flag compatibility. */
8926
8927 new_flags &= ~EF_MIPS_NOREORDER;
8928 old_flags &= ~EF_MIPS_NOREORDER;
8929
8930 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8931 doesn't seem to matter. */
8932 new_flags &= ~EF_MIPS_XGOT;
8933 old_flags &= ~EF_MIPS_XGOT;
8934
8935 if (new_flags == old_flags)
8936 return TRUE;
8937
8938 /* Check to see if the input BFD actually contains any sections.
8939 If not, its flags may not have been initialised either, but it cannot
8940 actually cause any incompatibility. */
8941 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8942 {
8943 /* Ignore synthetic sections and empty .text, .data and .bss sections
8944 which are automatically generated by gas. */
8945 if (strcmp (sec->name, ".reginfo")
8946 && strcmp (sec->name, ".mdebug")
8947 && ((!strcmp (sec->name, ".text")
8948 || !strcmp (sec->name, ".data")
8949 || !strcmp (sec->name, ".bss"))
8950 && sec->_raw_size != 0))
8951 {
8952 null_input_bfd = FALSE;
8953 break;
8954 }
8955 }
8956 if (null_input_bfd)
8957 return TRUE;
8958
8959 ok = TRUE;
8960
8961 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
8962 {
8963 new_flags &= ~EF_MIPS_PIC;
8964 old_flags &= ~EF_MIPS_PIC;
8965 (*_bfd_error_handler)
8966 (_("%s: linking PIC files with non-PIC files"),
8967 bfd_archive_filename (ibfd));
8968 ok = FALSE;
8969 }
8970
8971 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
8972 {
8973 new_flags &= ~EF_MIPS_CPIC;
8974 old_flags &= ~EF_MIPS_CPIC;
8975 (*_bfd_error_handler)
8976 (_("%s: linking abicalls files with non-abicalls files"),
8977 bfd_archive_filename (ibfd));
8978 ok = FALSE;
8979 }
8980
8981 /* Compare the ISAs. */
8982 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8983 {
8984 (*_bfd_error_handler)
8985 (_("%s: linking 32-bit code with 64-bit code"),
8986 bfd_archive_filename (ibfd));
8987 ok = FALSE;
8988 }
8989 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8990 {
8991 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8992 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
8993 {
8994 /* Copy the architecture info from IBFD to OBFD. Also copy
8995 the 32-bit flag (if set) so that we continue to recognise
8996 OBFD as a 32-bit binary. */
8997 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8998 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8999 elf_elfheader (obfd)->e_flags
9000 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9001
9002 /* Copy across the ABI flags if OBFD doesn't use them
9003 and if that was what caused us to treat IBFD as 32-bit. */
9004 if ((old_flags & EF_MIPS_ABI) == 0
9005 && mips_32bit_flags_p (new_flags)
9006 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9007 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9008 }
9009 else
9010 {
9011 /* The ISAs aren't compatible. */
9012 (*_bfd_error_handler)
9013 (_("%s: linking %s module with previous %s modules"),
9014 bfd_archive_filename (ibfd),
9015 bfd_printable_name (ibfd),
9016 bfd_printable_name (obfd));
9017 ok = FALSE;
9018 }
9019 }
9020
9021 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9022 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9023
9024 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9025 does set EI_CLASS differently from any 32-bit ABI. */
9026 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9027 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9028 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9029 {
9030 /* Only error if both are set (to different values). */
9031 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9032 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9033 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9034 {
9035 (*_bfd_error_handler)
9036 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9037 bfd_archive_filename (ibfd),
9038 elf_mips_abi_name (ibfd),
9039 elf_mips_abi_name (obfd));
9040 ok = FALSE;
9041 }
9042 new_flags &= ~EF_MIPS_ABI;
9043 old_flags &= ~EF_MIPS_ABI;
9044 }
9045
9046 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9047 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9048 {
9049 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9050
9051 new_flags &= ~ EF_MIPS_ARCH_ASE;
9052 old_flags &= ~ EF_MIPS_ARCH_ASE;
9053 }
9054
9055 /* Warn about any other mismatches */
9056 if (new_flags != old_flags)
9057 {
9058 (*_bfd_error_handler)
9059 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9060 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9061 (unsigned long) old_flags);
9062 ok = FALSE;
9063 }
9064
9065 if (! ok)
9066 {
9067 bfd_set_error (bfd_error_bad_value);
9068 return FALSE;
9069 }
9070
9071 return TRUE;
9072 }
9073
9074 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9075
9076 bfd_boolean
9077 _bfd_mips_elf_set_private_flags (abfd, flags)
9078 bfd *abfd;
9079 flagword flags;
9080 {
9081 BFD_ASSERT (!elf_flags_init (abfd)
9082 || elf_elfheader (abfd)->e_flags == flags);
9083
9084 elf_elfheader (abfd)->e_flags = flags;
9085 elf_flags_init (abfd) = TRUE;
9086 return TRUE;
9087 }
9088
9089 bfd_boolean
9090 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9091 bfd *abfd;
9092 PTR ptr;
9093 {
9094 FILE *file = (FILE *) ptr;
9095
9096 BFD_ASSERT (abfd != NULL && ptr != NULL);
9097
9098 /* Print normal ELF private data. */
9099 _bfd_elf_print_private_bfd_data (abfd, ptr);
9100
9101 /* xgettext:c-format */
9102 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9103
9104 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9105 fprintf (file, _(" [abi=O32]"));
9106 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9107 fprintf (file, _(" [abi=O64]"));
9108 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9109 fprintf (file, _(" [abi=EABI32]"));
9110 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9111 fprintf (file, _(" [abi=EABI64]"));
9112 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9113 fprintf (file, _(" [abi unknown]"));
9114 else if (ABI_N32_P (abfd))
9115 fprintf (file, _(" [abi=N32]"));
9116 else if (ABI_64_P (abfd))
9117 fprintf (file, _(" [abi=64]"));
9118 else
9119 fprintf (file, _(" [no abi set]"));
9120
9121 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9122 fprintf (file, _(" [mips1]"));
9123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9124 fprintf (file, _(" [mips2]"));
9125 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9126 fprintf (file, _(" [mips3]"));
9127 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9128 fprintf (file, _(" [mips4]"));
9129 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9130 fprintf (file, _(" [mips5]"));
9131 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9132 fprintf (file, _(" [mips32]"));
9133 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9134 fprintf (file, _(" [mips64]"));
9135 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9136 fprintf (file, _(" [mips32r2]"));
9137 else
9138 fprintf (file, _(" [unknown ISA]"));
9139
9140 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9141 fprintf (file, _(" [mdmx]"));
9142
9143 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9144 fprintf (file, _(" [mips16]"));
9145
9146 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9147 fprintf (file, _(" [32bitmode]"));
9148 else
9149 fprintf (file, _(" [not 32bitmode]"));
9150
9151 fputc ('\n', file);
9152
9153 return TRUE;
9154 }