* bfd/elfxx-mips.c (mips_elf_create_dynamic_relocation): Treat
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
194
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
198 p. 4-20. */
199 bfd_boolean no_fn_stub;
200
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
203 asection *fn_stub;
204
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
207 bfd_boolean need_fn_stub;
208
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
211 asection *call_stub;
212
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
216
217 /* Are we forced local? .*/
218 bfd_boolean forced_local;
219 };
220
221 /* MIPS ELF linker hash table. */
222
223 struct mips_elf_link_hash_table
224 {
225 struct elf_link_hash_table root;
226 #if 0
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
230 #endif
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
236 entry is set to the address of __rld_obj_head as in IRIX5. */
237 bfd_boolean use_rld_obj_head;
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
239 bfd_vma rld_value;
240 /* This is set if we see any mips16 stub sections. */
241 bfd_boolean mips16_stubs_seen;
242 };
243
244 /* Structure used to pass information to mips_elf_output_extsym. */
245
246 struct extsym_info
247 {
248 bfd *abfd;
249 struct bfd_link_info *info;
250 struct ecoff_debug_info *debug;
251 const struct ecoff_debug_swap *swap;
252 bfd_boolean failed;
253 };
254
255 /* The names of the runtime procedure table symbols used on IRIX5. */
256
257 static const char * const mips_elf_dynsym_rtproc_names[] =
258 {
259 "_procedure_table",
260 "_procedure_string_table",
261 "_procedure_table_size",
262 NULL
263 };
264
265 /* These structures are used to generate the .compact_rel section on
266 IRIX5. */
267
268 typedef struct
269 {
270 unsigned long id1; /* Always one? */
271 unsigned long num; /* Number of compact relocation entries. */
272 unsigned long id2; /* Always two? */
273 unsigned long offset; /* The file offset of the first relocation. */
274 unsigned long reserved0; /* Zero? */
275 unsigned long reserved1; /* Zero? */
276 } Elf32_compact_rel;
277
278 typedef struct
279 {
280 bfd_byte id1[4];
281 bfd_byte num[4];
282 bfd_byte id2[4];
283 bfd_byte offset[4];
284 bfd_byte reserved0[4];
285 bfd_byte reserved1[4];
286 } Elf32_External_compact_rel;
287
288 typedef struct
289 {
290 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype : 4; /* Relocation types. See below. */
292 unsigned int dist2to : 8;
293 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst; /* KONST field. See below. */
295 unsigned long vaddr; /* VADDR to be relocated. */
296 } Elf32_crinfo;
297
298 typedef struct
299 {
300 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype : 4; /* Relocation types. See below. */
302 unsigned int dist2to : 8;
303 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst; /* KONST field. See below. */
305 } Elf32_crinfo2;
306
307 typedef struct
308 {
309 bfd_byte info[4];
310 bfd_byte konst[4];
311 bfd_byte vaddr[4];
312 } Elf32_External_crinfo;
313
314 typedef struct
315 {
316 bfd_byte info[4];
317 bfd_byte konst[4];
318 } Elf32_External_crinfo2;
319
320 /* These are the constants used to swap the bitfields in a crinfo. */
321
322 #define CRINFO_CTYPE (0x1)
323 #define CRINFO_CTYPE_SH (31)
324 #define CRINFO_RTYPE (0xf)
325 #define CRINFO_RTYPE_SH (27)
326 #define CRINFO_DIST2TO (0xff)
327 #define CRINFO_DIST2TO_SH (19)
328 #define CRINFO_RELVADDR (0x7ffff)
329 #define CRINFO_RELVADDR_SH (0)
330
331 /* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334 #define CRF_MIPS_LONG 1
335 #define CRF_MIPS_SHORT 0
336
337 /* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
339
340 (type) (konst)
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
345 */
346
347 #define CRT_MIPS_REL32 0xa
348 #define CRT_MIPS_WORD 0xb
349 #define CRT_MIPS_GPHI_LO 0xc
350 #define CRT_MIPS_JMPAD 0xd
351
352 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
356 \f
357 /* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
359
360 typedef struct runtime_pdr {
361 bfd_vma adr; /* Memory address of start of procedure. */
362 long regmask; /* Save register mask. */
363 long regoffset; /* Save register offset. */
364 long fregmask; /* Save floating point register mask. */
365 long fregoffset; /* Save floating point register offset. */
366 long frameoffset; /* Frame size. */
367 short framereg; /* Frame pointer register. */
368 short pcreg; /* Offset or reg of return pc. */
369 long irpss; /* Index into the runtime string table. */
370 long reserved;
371 struct exception_info *exception_info;/* Pointer to exception array. */
372 } RPDR, *pRPDR;
373 #define cbRPDR sizeof (RPDR)
374 #define rpdNil ((pRPDR) 0)
375 \f
376 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
378 static void ecoff_swap_rpdr_out
379 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
380 static bfd_boolean mips_elf_create_procedure_table
381 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
382 struct ecoff_debug_info *));
383 static bfd_boolean mips_elf_check_mips16_stubs
384 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
385 static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
387 static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
389 static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
391 static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
393 #if 0
394 static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
396 #endif
397 static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
399 static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
401 static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
403 static bfd_boolean mips_elf_output_extsym
404 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
405 static int gptab_compare PARAMS ((const void *, const void *));
406 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
407 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
408 static struct mips_got_info *mips_elf_got_info
409 PARAMS ((bfd *, asection **));
410 static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
438 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
441 static bfd_boolean mips_elf_create_compact_rel_section
442 PARAMS ((bfd *, struct bfd_link_info *));
443 static bfd_boolean mips_elf_create_got_section
444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
445 static asection *mips_elf_create_msym_section
446 PARAMS ((bfd *));
447 static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
451 bfd_boolean *, bfd_boolean));
452 static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
454 static bfd_boolean mips_elf_perform_relocation
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
457 bfd_boolean));
458 static bfd_boolean mips_elf_stub_section_p
459 PARAMS ((bfd *, asection *));
460 static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
462 static bfd_boolean mips_elf_create_dynamic_relocation
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
466 static void mips_set_isa_flags PARAMS ((bfd *));
467 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468 static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
470 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
472 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
473 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
475
476 static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484 static int mips_elf_merge_gots PARAMS ((void **, void *));
485 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487 static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489 static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491 static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
493
494 /* This will be used when we sort the dynamic relocation records. */
495 static bfd *reldyn_sorting_bfd;
496
497 /* Nonzero if ABFD is using the N32 ABI. */
498
499 #define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
501
502 /* Nonzero if ABFD is using the N64 ABI. */
503 #define ABI_64_P(abfd) \
504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
505
506 /* Nonzero if ABFD is using NewABI conventions. */
507 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
508
509 /* The IRIX compatibility level we are striving for. */
510 #define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
512
513 /* Whether we are trying to be compatible with IRIX at all. */
514 #define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
516
517 /* The name of the options section. */
518 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
520
521 /* The name of the stub section. */
522 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
524
525 /* The size of an external REL relocation. */
526 #define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
528
529 /* The size of an external dynamic table entry. */
530 #define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
532
533 /* The size of a GOT entry. */
534 #define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
536
537 /* The size of a symbol-table entry. */
538 #define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
540
541 /* The default alignment for sections, as a power of two. */
542 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
543 (get_elf_backend_data (abfd)->s->log_file_align)
544
545 /* Get word-sized data. */
546 #define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
548
549 /* Put out word-sized data. */
550 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
551 (ABI_64_P (abfd) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
554
555 /* Add a dynamic symbol table-entry. */
556 #ifdef BFD64
557 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
561 #else
562 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
564 ? (abort (), FALSE) \
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
566 #endif
567
568 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
570
571 /* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
587
588 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590 #define MINUS_ONE (((bfd_vma)0) - 1)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
604 #define STUB_LW(abfd) \
605 ((ABI_64_P (abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610 #define STUB_JALR 0x0320f809 /* jal t9 */
611 #define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613 #define MIPS_FUNCTION_STUB_SIZE (16)
614
615 /* The name of the dynamic interpreter. This is put in the .interp
616 section. */
617
618 #define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
622
623 #ifdef BFD64
624 #define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
626 #define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628 #define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630 #define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
632 #else
633 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
634 #define ELF_R_SYM(bfd, i) \
635 (ELF32_R_SYM (i))
636 #define ELF_R_TYPE(bfd, i) \
637 (ELF32_R_TYPE (i))
638 #define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
640 #endif
641 \f
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
644
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
653
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
660
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
668 $f0/$f1 and $2/$3.)
669
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
673
674 We record any stubs that we find in the symbol table. */
675
676 #define FN_STUB ".mips16.fn."
677 #define CALL_STUB ".mips16.call."
678 #define CALL_FP_STUB ".mips16.call.fp."
679 \f
680 /* Look up an entry in a MIPS ELF linker hash table. */
681
682 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
685 (copy), (follow)))
686
687 /* Traverse a MIPS ELF linker hash table. */
688
689 #define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
691 (&(table)->root, \
692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
693 (info)))
694
695 /* Get the MIPS ELF linker hash table from a link_info structure. */
696
697 #define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
699
700 /* Create an entry in a MIPS ELF linker hash table. */
701
702 static struct bfd_hash_entry *
703 mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
706 const char *string;
707 {
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
719
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
723 table, string));
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
725 {
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
730 ret->esym.ifd = -2;
731 ret->possibly_dynamic_relocs = 0;
732 ret->readonly_reloc = FALSE;
733 ret->min_dyn_reloc_index = 0;
734 ret->no_fn_stub = FALSE;
735 ret->fn_stub = NULL;
736 ret->need_fn_stub = FALSE;
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
739 ret->forced_local = FALSE;
740 }
741
742 return (struct bfd_hash_entry *) ret;
743 }
744
745 bfd_boolean
746 _bfd_mips_elf_new_section_hook (abfd, sec)
747 bfd *abfd;
748 asection *sec;
749 {
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
752
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
754 if (sdata == NULL)
755 return FALSE;
756 sec->used_by_bfd = (PTR) sdata;
757
758 return _bfd_elf_new_section_hook (abfd, sec);
759 }
760 \f
761 /* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
763
764 bfd_boolean
765 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
766 bfd *abfd;
767 asection *section;
768 struct ecoff_debug_info *debug;
769 {
770 HDRR *symhdr;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
773
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
776
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
779 goto error_return;
780
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
783 goto error_return;
784
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
787
788 /* The symbolic header contains absolute file offsets and sizes to
789 read. */
790 #define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
792 debug->ptr = NULL; \
793 else \
794 { \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
798 goto error_return; \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
801 goto error_return; \
802 }
803
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
810 union aux_ext *);
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
816 #undef READ
817
818 debug->fdr = NULL;
819 debug->adjust = NULL;
820
821 return TRUE;
822
823 error_return:
824 if (ext_hdr != NULL)
825 free (ext_hdr);
826 if (debug->line != NULL)
827 free (debug->line);
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
839 free (debug->ss);
840 if (debug->ssext != NULL)
841 free (debug->ssext);
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
848 return FALSE;
849 }
850 \f
851 /* Swap RPDR (runtime procedure table entry) for output. */
852
853 static void
854 ecoff_swap_rpdr_out (abfd, in, ex)
855 bfd *abfd;
856 const RPDR *in;
857 struct rpdr_ext *ex;
858 {
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
865
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
868
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
870 #if 0 /* FIXME */
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
872 #endif
873 }
874
875 /* Create a runtime procedure table from the .mdebug section. */
876
877 static bfd_boolean
878 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
879 PTR handle;
880 bfd *abfd;
881 struct bfd_link_info *info;
882 asection *s;
883 struct ecoff_debug_info *debug;
884 {
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
887 RPDR *rpdr, *rp;
888 struct rpdr_ext *erp;
889 PTR rtproc;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
892 char *ss, **sv;
893 char *str;
894 bfd_size_type size;
895 bfd_size_type count;
896 unsigned long sindex;
897 unsigned long i;
898 PDR pdr;
899 SYMR sym;
900 const char *no_name_func = _("static procedure (no name)");
901
902 epdr = NULL;
903 rpdr = NULL;
904 esym = NULL;
905 ss = NULL;
906 sv = NULL;
907
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
909
910 sindex = strlen (no_name_func) + 1;
911 count = hdr->ipdMax;
912 if (count > 0)
913 {
914 size = swap->external_pdr_size;
915
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
917 if (epdr == NULL)
918 goto error_return;
919
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
921 goto error_return;
922
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
925 if (rpdr == NULL)
926 goto error_return;
927
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
930 if (sv == NULL)
931 goto error_return;
932
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
936 if (esym == NULL)
937 goto error_return;
938
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
940 goto error_return;
941
942 count = hdr->issMax;
943 ss = (char *) bfd_malloc (count);
944 if (ss == NULL)
945 goto error_return;
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
947 goto error_return;
948
949 count = hdr->ipdMax;
950 for (i = 0; i < (unsigned long) count; i++, rp++)
951 {
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
954 rp->adr = sym.value;
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
962 rp->irpss = sindex;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
965 }
966 }
967
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
971 if (rtproc == NULL)
972 {
973 mips_elf_hash_table (info)->procedure_count = 0;
974 goto error_return;
975 }
976
977 mips_elf_hash_table (info)->procedure_count = count + 2;
978
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
981 erp++;
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
986 {
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
988 strcpy (str, sv[i]);
989 str += strlen (sv[i]) + 1;
990 }
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
992
993 /* Set the size and contents of .rtproc section. */
994 s->_raw_size = size;
995 s->contents = (bfd_byte *) rtproc;
996
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1000
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011
1012 return TRUE;
1013
1014 error_return:
1015 if (epdr != NULL)
1016 free (epdr);
1017 if (rpdr != NULL)
1018 free (rpdr);
1019 if (esym != NULL)
1020 free (esym);
1021 if (ss != NULL)
1022 free (ss);
1023 if (sv != NULL)
1024 free (sv);
1025 return FALSE;
1026 }
1027
1028 /* Check the mips16 stubs for a particular symbol, and see if we can
1029 discard them. */
1030
1031 static bfd_boolean
1032 mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1035 {
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1038
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1041 {
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1050 }
1051
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1054 {
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1063 }
1064
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1067 {
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1076 }
1077
1078 return TRUE;
1079 }
1080 \f
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1083 relocatable, data, gp)
1084 bfd *abfd;
1085 asymbol *symbol;
1086 arelent *reloc_entry;
1087 asection *input_section;
1088 bfd_boolean relocatable;
1089 PTR data;
1090 bfd_vma gp;
1091 {
1092 bfd_vma relocation;
1093 unsigned long insn = 0;
1094 bfd_signed_vma val;
1095
1096 if (bfd_is_com_section (symbol->section))
1097 relocation = 0;
1098 else
1099 relocation = symbol->value;
1100
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1103
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1106
1107 /* Set val to the offset into the section or symbol. */
1108 val = reloc_entry->addend;
1109
1110 if (reloc_entry->howto->partial_inplace)
1111 {
1112 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1113 val += insn & 0xffff;
1114 }
1115
1116 _bfd_mips_elf_sign_extend(val, 16);
1117
1118 /* Adjust val for the final section location and GP value. If we
1119 are producing relocatable output, we don't want to do this for
1120 an external symbol. */
1121 if (! relocatable
1122 || (symbol->flags & BSF_SECTION_SYM) != 0)
1123 val += relocation - gp;
1124
1125 if (reloc_entry->howto->partial_inplace)
1126 {
1127 insn = (insn & ~0xffff) | (val & 0xffff);
1128 bfd_put_32 (abfd, (bfd_vma) insn,
1129 (bfd_byte *) data + reloc_entry->address);
1130 }
1131 else
1132 reloc_entry->addend = val;
1133
1134 if (relocatable)
1135 reloc_entry->address += input_section->output_offset;
1136 else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
1137 return bfd_reloc_overflow;
1138
1139 return bfd_reloc_ok;
1140 }
1141 \f
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1144
1145 static void
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1147 bfd *abfd;
1148 const Elf32_External_gptab *ex;
1149 Elf32_gptab *in;
1150 {
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1153 }
1154
1155 static void
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1157 bfd *abfd;
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1160 {
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1163 }
1164
1165 static void
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1167 bfd *abfd;
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1170 {
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1177 }
1178
1179 static void
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1181 bfd *abfd;
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1184 {
1185 unsigned long l;
1186
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1194 }
1195
1196 #if 0
1197 /* Swap in an MSYM entry. */
1198
1199 static void
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1201 bfd *abfd;
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1204 {
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1207 }
1208 #endif
1209 /* Swap out an MSYM entry. */
1210
1211 static void
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1213 bfd *abfd;
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1216 {
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1219 }
1220 \f
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1224
1225 void
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1227 bfd *abfd;
1228 const Elf32_External_RegInfo *ex;
1229 Elf32_RegInfo *in;
1230 {
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1237 }
1238
1239 void
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1241 bfd *abfd;
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1244 {
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1251 }
1252
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1258
1259 void
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1261 bfd *abfd;
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1264 {
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1272 }
1273
1274 void
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1276 bfd *abfd;
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1279 {
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1287 }
1288
1289 /* Swap in an options header. */
1290
1291 void
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1293 bfd *abfd;
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1296 {
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1301 }
1302
1303 /* Swap out an options header. */
1304
1305 void
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1307 bfd *abfd;
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1310 {
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1315 }
1316 \f
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1319
1320 static int
1321 sort_dynamic_relocs (arg1, arg2)
1322 const PTR arg1;
1323 const PTR arg2;
1324 {
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1327
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1330
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1332 }
1333
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1335
1336 static int
1337 sort_dynamic_relocs_64 (arg1, arg2)
1338 const PTR arg1;
1339 const PTR arg2;
1340 {
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1343
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1348
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1351 }
1352
1353
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1367
1368 static bfd_boolean
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1371 PTR data;
1372 {
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1374 bfd_boolean strip;
1375 asection *sec, *output_section;
1376
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1379
1380 if (h->root.indx == -2)
1381 strip = FALSE;
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1386 strip = TRUE;
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1392 strip = TRUE;
1393 else
1394 strip = FALSE;
1395
1396 if (strip)
1397 return TRUE;
1398
1399 if (h->esym.ifd == -2)
1400 {
1401 h->esym.jmptbl = 0;
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1408
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1411 {
1412 const char *name;
1413
1414 /* Use undefined class. Also, set class and type for some
1415 special symbols. */
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1419 {
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1423 }
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1425 {
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1430 }
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1432 {
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1436 }
1437 else
1438 h->esym.asym.sc = scUndefined;
1439 }
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1443 else
1444 {
1445 const char *name;
1446
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1449
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1454 else
1455 {
1456 name = bfd_section_name (output_section->owner, output_section);
1457
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1475 else
1476 h->esym.asym.sc = scAbs;
1477 }
1478 }
1479
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1482 }
1483
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1488 {
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1493
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1500 else
1501 h->esym.asym.value = 0;
1502 }
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1504 {
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1507
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1509 {
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1512 }
1513
1514 if (!no_fn_stub)
1515 {
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1519 if (sec == NULL)
1520 h->esym.asym.value = 0;
1521 else
1522 {
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1528 else
1529 h->esym.asym.value = 0;
1530 }
1531 #if 0 /* FIXME? */
1532 h->esym.ifd = 0;
1533 #endif
1534 }
1535 }
1536
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1539 &h->esym))
1540 {
1541 einfo->failed = TRUE;
1542 return FALSE;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* A comparison routine used to sort .gptab entries. */
1549
1550 static int
1551 gptab_compare (p1, p2)
1552 const PTR p1;
1553 const PTR p2;
1554 {
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1557
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1559 }
1560 \f
1561 /* Functions to manage the got entry hash table. */
1562
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1564 hash number. */
1565
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1568 bfd_vma addr;
1569 {
1570 #ifdef BFD64
1571 return addr + (addr >> 32);
1572 #else
1573 return addr;
1574 #endif
1575 }
1576
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1579 union members. */
1580
1581 static hashval_t
1582 mips_elf_got_entry_hash (entry_)
1583 const PTR entry_;
1584 {
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1586
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1589 : entry->abfd->id
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1592 }
1593
1594 static int
1595 mips_elf_got_entry_eq (entry1, entry2)
1596 const PTR entry1;
1597 const PTR entry2;
1598 {
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1601
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1606 }
1607
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1611 accordingly. */
1612
1613 static hashval_t
1614 mips_elf_multi_got_entry_hash (entry_)
1615 const PTR entry_;
1616 {
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1618
1619 return entry->symndx
1620 + (! entry->abfd
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1623 ? (entry->abfd->id
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1626 }
1627
1628 static int
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1630 const PTR entry1;
1631 const PTR entry2;
1632 {
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1635
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1641 }
1642 \f
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1644
1645 static asection *
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1647 bfd *dynobj;
1648 bfd_boolean create_p;
1649 {
1650 static const char dname[] = ".rel.dyn";
1651 asection *sreloc;
1652
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1655 {
1656 sreloc = bfd_make_section (dynobj, dname);
1657 if (sreloc == NULL
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1659 (SEC_ALLOC
1660 | SEC_LOAD
1661 | SEC_HAS_CONTENTS
1662 | SEC_IN_MEMORY
1663 | SEC_LINKER_CREATED
1664 | SEC_READONLY))
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1667 return NULL;
1668 }
1669 return sreloc;
1670 }
1671
1672 /* Returns the GOT section for ABFD. */
1673
1674 static asection *
1675 mips_elf_got_section (abfd, maybe_excluded)
1676 bfd *abfd;
1677 bfd_boolean maybe_excluded;
1678 {
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1680 if (sgot == NULL
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1682 return NULL;
1683 return sgot;
1684 }
1685
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1688 section. */
1689
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1692 bfd *abfd;
1693 asection **sgotp;
1694 {
1695 asection *sgot;
1696 struct mips_got_info *g;
1697
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1703
1704 if (sgotp)
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1706
1707 return g;
1708 }
1709
1710 /* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1712 static long
1713 mips_elf_get_global_gotsym_index (abfd)
1714 bfd *abfd;
1715 {
1716 asection *sgot;
1717 struct mips_got_info *g;
1718
1719 if (abfd == NULL)
1720 return 0;
1721
1722 sgot = mips_elf_got_section (abfd, TRUE);
1723 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1724 return 0;
1725
1726 g = mips_elf_section_data (sgot)->u.got_info;
1727 if (g == NULL || g->global_gotsym == NULL)
1728 return 0;
1729
1730 return g->global_gotsym->dynindx;
1731 }
1732
1733 /* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1736
1737 static bfd_vma
1738 mips_elf_local_got_index (abfd, ibfd, info, value)
1739 bfd *abfd, *ibfd;
1740 struct bfd_link_info *info;
1741 bfd_vma value;
1742 {
1743 asection *sgot;
1744 struct mips_got_info *g;
1745 struct mips_got_entry *entry;
1746
1747 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1748
1749 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1750 if (entry)
1751 return entry->gotidx;
1752 else
1753 return MINUS_ONE;
1754 }
1755
1756 /* Returns the GOT index for the global symbol indicated by H. */
1757
1758 static bfd_vma
1759 mips_elf_global_got_index (abfd, ibfd, h)
1760 bfd *abfd, *ibfd;
1761 struct elf_link_hash_entry *h;
1762 {
1763 bfd_vma index;
1764 asection *sgot;
1765 struct mips_got_info *g, *gg;
1766 long global_got_dynindx = 0;
1767
1768 gg = g = mips_elf_got_info (abfd, &sgot);
1769 if (g->bfd2got && ibfd)
1770 {
1771 struct mips_got_entry e, *p;
1772
1773 BFD_ASSERT (h->dynindx >= 0);
1774
1775 g = mips_elf_got_for_ibfd (g, ibfd);
1776 if (g->next != gg)
1777 {
1778 e.abfd = ibfd;
1779 e.symndx = -1;
1780 e.d.h = (struct mips_elf_link_hash_entry *)h;
1781
1782 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1783
1784 BFD_ASSERT (p->gotidx > 0);
1785 return p->gotidx;
1786 }
1787 }
1788
1789 if (gg->global_gotsym != NULL)
1790 global_got_dynindx = gg->global_gotsym->dynindx;
1791
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1795 offset. */
1796 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1797 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1798 * MIPS_ELF_GOT_SIZE (abfd));
1799 BFD_ASSERT (index < sgot->_raw_size);
1800
1801 return index;
1802 }
1803
1804 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1809
1810 static bfd_vma
1811 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1812 bfd *abfd, *ibfd;
1813 struct bfd_link_info *info;
1814 bfd_vma value;
1815 bfd_vma *offsetp;
1816 {
1817 asection *sgot;
1818 struct mips_got_info *g;
1819 bfd_vma index;
1820 struct mips_got_entry *entry;
1821
1822 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1823
1824 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1825 (value + 0x8000)
1826 & (~(bfd_vma)0xffff));
1827
1828 if (!entry)
1829 return MINUS_ONE;
1830
1831 index = entry->gotidx;
1832
1833 if (offsetp)
1834 *offsetp = value - entry->d.address;
1835
1836 return index;
1837 }
1838
1839 /* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1841
1842 static bfd_vma
1843 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1844 bfd *abfd, *ibfd;
1845 struct bfd_link_info *info;
1846 bfd_vma value;
1847 bfd_boolean external;
1848 {
1849 asection *sgot;
1850 struct mips_got_info *g;
1851 struct mips_got_entry *entry;
1852
1853 if (! external)
1854 {
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1858 HI16/LO16 pair. */
1859 value = mips_elf_high (value) << 16;
1860 }
1861
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1863
1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1865 if (entry)
1866 return entry->gotidx;
1867 else
1868 return MINUS_ONE;
1869 }
1870
1871 /* Returns the offset for the entry at the INDEXth position
1872 in the GOT. */
1873
1874 static bfd_vma
1875 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1876 bfd *dynobj;
1877 bfd *output_bfd;
1878 bfd *input_bfd;
1879 bfd_vma index;
1880 {
1881 asection *sgot;
1882 bfd_vma gp;
1883 struct mips_got_info *g;
1884
1885 g = mips_elf_got_info (dynobj, &sgot);
1886 gp = _bfd_get_gp_value (output_bfd)
1887 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1888
1889 return sgot->output_section->vma + sgot->output_offset + index - gp;
1890 }
1891
1892 /* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1894
1895 static struct mips_got_entry *
1896 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1897 bfd *abfd, *ibfd;
1898 struct mips_got_info *gg;
1899 asection *sgot;
1900 bfd_vma value;
1901 {
1902 struct mips_got_entry entry, **loc;
1903 struct mips_got_info *g;
1904
1905 entry.abfd = NULL;
1906 entry.symndx = -1;
1907 entry.d.address = value;
1908
1909 g = mips_elf_got_for_ibfd (gg, ibfd);
1910 if (g == NULL)
1911 {
1912 g = mips_elf_got_for_ibfd (gg, abfd);
1913 BFD_ASSERT (g != NULL);
1914 }
1915
1916 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1917 INSERT);
1918 if (*loc)
1919 return *loc;
1920
1921 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1922
1923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1924
1925 if (! *loc)
1926 return NULL;
1927
1928 memcpy (*loc, &entry, sizeof entry);
1929
1930 if (g->assigned_gotno >= g->local_gotno)
1931 {
1932 (*loc)->gotidx = -1;
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value);
1937 return NULL;
1938 }
1939
1940 MIPS_ELF_PUT_WORD (abfd, value,
1941 (sgot->contents + entry.gotidx));
1942
1943 return *loc;
1944 }
1945
1946 /* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1952
1953 static bfd_boolean
1954 mips_elf_sort_hash_table (info, max_local)
1955 struct bfd_link_info *info;
1956 unsigned long max_local;
1957 {
1958 struct mips_elf_hash_sort_data hsd;
1959 struct mips_got_info *g;
1960 bfd *dynobj;
1961
1962 dynobj = elf_hash_table (info)->dynobj;
1963
1964 g = mips_elf_got_info (dynobj, NULL);
1965
1966 hsd.low = NULL;
1967 hsd.max_unref_got_dynindx =
1968 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g->next ? g->assigned_gotno : 0);
1977 hsd.max_non_got_dynindx = max_local;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1979 elf_hash_table (info)),
1980 mips_elf_sort_hash_table_f,
1981 &hsd);
1982
1983 /* There should have been enough room in the symbol table to
1984 accommodate both the GOT and non-GOT symbols. */
1985 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1986 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1987 <= elf_hash_table (info)->dynsymcount);
1988
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
1991 g->global_gotsym = hsd.low;
1992
1993 return TRUE;
1994 }
1995
1996 /* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
1998 index. */
1999
2000 static bfd_boolean
2001 mips_elf_sort_hash_table_f (h, data)
2002 struct mips_elf_link_hash_entry *h;
2003 PTR data;
2004 {
2005 struct mips_elf_hash_sort_data *hsd
2006 = (struct mips_elf_hash_sort_data *) data;
2007
2008 if (h->root.root.type == bfd_link_hash_warning)
2009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2010
2011 /* Symbols without dynamic symbol table entries aren't interesting
2012 at all. */
2013 if (h->root.dynindx == -1)
2014 return TRUE;
2015
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2019 -1. */
2020 if (h->root.got.offset == 2)
2021 {
2022 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2023 hsd->low = (struct elf_link_hash_entry *) h;
2024 h->root.dynindx = hsd->max_unref_got_dynindx++;
2025 }
2026 else if (h->root.got.offset != 1)
2027 h->root.dynindx = hsd->max_non_got_dynindx++;
2028 else
2029 {
2030 h->root.dynindx = --hsd->min_got_dynindx;
2031 hsd->low = (struct elf_link_hash_entry *) h;
2032 }
2033
2034 return TRUE;
2035 }
2036
2037 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2039 posterity. */
2040
2041 static bfd_boolean
2042 mips_elf_record_global_got_symbol (h, abfd, info, g)
2043 struct elf_link_hash_entry *h;
2044 bfd *abfd;
2045 struct bfd_link_info *info;
2046 struct mips_got_info *g;
2047 {
2048 struct mips_got_entry entry, **loc;
2049
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2051 table. */
2052 if (h->dynindx == -1)
2053 {
2054 switch (ELF_ST_VISIBILITY (h->other))
2055 {
2056 case STV_INTERNAL:
2057 case STV_HIDDEN:
2058 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2059 break;
2060 }
2061 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2062 return FALSE;
2063 }
2064
2065 entry.abfd = abfd;
2066 entry.symndx = -1;
2067 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2068
2069 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2070 INSERT);
2071
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
2074 if (*loc)
2075 return TRUE;
2076
2077 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2078
2079 if (! *loc)
2080 return FALSE;
2081
2082 entry.gotidx = -1;
2083 memcpy (*loc, &entry, sizeof entry);
2084
2085 if (h->got.offset != MINUS_ONE)
2086 return TRUE;
2087
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2091 h->got.offset = 1;
2092
2093 return TRUE;
2094 }
2095
2096 /* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2098
2099 static bfd_boolean
2100 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2101 bfd *abfd;
2102 long symndx;
2103 bfd_vma addend;
2104 struct mips_got_info *g;
2105 {
2106 struct mips_got_entry entry, **loc;
2107
2108 entry.abfd = abfd;
2109 entry.symndx = symndx;
2110 entry.d.addend = addend;
2111 loc = (struct mips_got_entry **)
2112 htab_find_slot (g->got_entries, &entry, INSERT);
2113
2114 if (*loc)
2115 return TRUE;
2116
2117 entry.gotidx = g->local_gotno++;
2118
2119 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2120
2121 if (! *loc)
2122 return FALSE;
2123
2124 memcpy (*loc, &entry, sizeof entry);
2125
2126 return TRUE;
2127 }
2128 \f
2129 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2130
2131 static hashval_t
2132 mips_elf_bfd2got_entry_hash (entry_)
2133 const PTR entry_;
2134 {
2135 const struct mips_elf_bfd2got_hash *entry
2136 = (struct mips_elf_bfd2got_hash *)entry_;
2137
2138 return entry->bfd->id;
2139 }
2140
2141 /* Check whether two hash entries have the same bfd. */
2142
2143 static int
2144 mips_elf_bfd2got_entry_eq (entry1, entry2)
2145 const PTR entry1;
2146 const PTR entry2;
2147 {
2148 const struct mips_elf_bfd2got_hash *e1
2149 = (const struct mips_elf_bfd2got_hash *)entry1;
2150 const struct mips_elf_bfd2got_hash *e2
2151 = (const struct mips_elf_bfd2got_hash *)entry2;
2152
2153 return e1->bfd == e2->bfd;
2154 }
2155
2156 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2157 be the master GOT data. */
2158
2159 static struct mips_got_info *
2160 mips_elf_got_for_ibfd (g, ibfd)
2161 struct mips_got_info *g;
2162 bfd *ibfd;
2163 {
2164 struct mips_elf_bfd2got_hash e, *p;
2165
2166 if (! g->bfd2got)
2167 return g;
2168
2169 e.bfd = ibfd;
2170 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2171 return p ? p->g : NULL;
2172 }
2173
2174 /* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2176 bfd requires. */
2177
2178 static int
2179 mips_elf_make_got_per_bfd (entryp, p)
2180 void **entryp;
2181 void *p;
2182 {
2183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2185 htab_t bfd2got = arg->bfd2got;
2186 struct mips_got_info *g;
2187 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2188 void **bfdgotp;
2189
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2191 none exists. */
2192 bfdgot_entry.bfd = entry->abfd;
2193 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2194 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2195
2196 if (bfdgot != NULL)
2197 g = bfdgot->g;
2198 else
2199 {
2200 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2201 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2202
2203 if (bfdgot == NULL)
2204 {
2205 arg->obfd = 0;
2206 return 0;
2207 }
2208
2209 *bfdgotp = bfdgot;
2210
2211 bfdgot->bfd = entry->abfd;
2212 bfdgot->g = g = (struct mips_got_info *)
2213 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2214 if (g == NULL)
2215 {
2216 arg->obfd = 0;
2217 return 0;
2218 }
2219
2220 g->global_gotsym = NULL;
2221 g->global_gotno = 0;
2222 g->local_gotno = 0;
2223 g->assigned_gotno = -1;
2224 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2225 mips_elf_multi_got_entry_eq,
2226 (htab_del) NULL);
2227 if (g->got_entries == NULL)
2228 {
2229 arg->obfd = 0;
2230 return 0;
2231 }
2232
2233 g->bfd2got = NULL;
2234 g->next = NULL;
2235 }
2236
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2239 if (*entryp != NULL)
2240 return 1;
2241
2242 *entryp = entry;
2243
2244 if (entry->symndx >= 0 || entry->d.h->forced_local)
2245 ++g->local_gotno;
2246 else
2247 ++g->global_gotno;
2248
2249 return 1;
2250 }
2251
2252 /* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2258
2259 static int
2260 mips_elf_merge_gots (bfd2got_, p)
2261 void **bfd2got_;
2262 void *p;
2263 {
2264 struct mips_elf_bfd2got_hash *bfd2got
2265 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2266 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2267 unsigned int lcount = bfd2got->g->local_gotno;
2268 unsigned int gcount = bfd2got->g->global_gotno;
2269 unsigned int maxcnt = arg->max_count;
2270
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg->primary && lcount + gcount <= maxcnt)
2274 {
2275 arg->primary = bfd2got->g;
2276 arg->primary_count = lcount + gcount;
2277 }
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg->primary
2282 && (arg->primary_count + lcount + gcount) <= maxcnt)
2283 {
2284 struct mips_got_info *g = bfd2got->g;
2285 int old_lcount = arg->primary->local_gotno;
2286 int old_gcount = arg->primary->global_gotno;
2287
2288 bfd2got->g = arg->primary;
2289
2290 htab_traverse (g->got_entries,
2291 mips_elf_make_got_per_bfd,
2292 arg);
2293 if (arg->obfd == NULL)
2294 return 0;
2295
2296 htab_delete (g->got_entries);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2299 table anyway. */
2300
2301 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2303
2304 arg->primary_count = arg->primary->local_gotno
2305 + arg->primary->global_gotno;
2306 }
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg->current
2309 && arg->current_count + lcount + gcount <= maxcnt)
2310 {
2311 struct mips_got_info *g = bfd2got->g;
2312 int old_lcount = arg->current->local_gotno;
2313 int old_gcount = arg->current->global_gotno;
2314
2315 bfd2got->g = arg->current;
2316
2317 htab_traverse (g->got_entries,
2318 mips_elf_make_got_per_bfd,
2319 arg);
2320 if (arg->obfd == NULL)
2321 return 0;
2322
2323 htab_delete (g->got_entries);
2324
2325 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2326 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2327
2328 arg->current_count = arg->current->local_gotno
2329 + arg->current->global_gotno;
2330 }
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2334 else
2335 {
2336 bfd2got->g->next = arg->current;
2337 arg->current = bfd2got->g;
2338
2339 arg->current_count = lcount + gcount;
2340 }
2341
2342 return 1;
2343 }
2344
2345 /* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2348
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2357 stub. */
2358 static int
2359 mips_elf_set_global_got_offset (entryp, p)
2360 void **entryp;
2361 void *p;
2362 {
2363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2364 struct mips_elf_set_global_got_offset_arg *arg
2365 = (struct mips_elf_set_global_got_offset_arg *)p;
2366 struct mips_got_info *g = arg->g;
2367
2368 if (entry->abfd != NULL && entry->symndx == -1
2369 && entry->d.h->root.dynindx != -1)
2370 {
2371 if (g)
2372 {
2373 BFD_ASSERT (g->global_gotsym == NULL);
2374
2375 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry->d.h->no_fn_stub = TRUE;
2380 if (arg->info->shared
2381 || (elf_hash_table (arg->info)->dynamic_sections_created
2382 && ((entry->d.h->root.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2384 && ((entry->d.h->root.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2386 ++arg->needed_relocs;
2387 }
2388 else
2389 entry->d.h->root.got.offset = arg->value;
2390 }
2391
2392 return 1;
2393 }
2394
2395 /* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2401 static int
2402 mips_elf_resolve_final_got_entry (entryp, p)
2403 void **entryp;
2404 void *p;
2405 {
2406 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2407 htab_t got_entries = *(htab_t *)p;
2408
2409 if (entry->abfd != NULL && entry->symndx == -1)
2410 {
2411 struct mips_elf_link_hash_entry *h = entry->d.h;
2412
2413 while (h->root.root.type == bfd_link_hash_indirect
2414 || h->root.root.type == bfd_link_hash_warning)
2415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2416
2417 if (entry->d.h == h)
2418 return 1;
2419
2420 entry->d.h = h;
2421
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries, entry))
2425 {
2426 htab_clear_slot (got_entries, entryp);
2427 entryp = htab_find_slot (got_entries, entry, INSERT);
2428 if (! *entryp)
2429 *entryp = entry;
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2432 process. */
2433 *(htab_t *)p = NULL;
2434 return 0;
2435 }
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2438 }
2439
2440 return 1;
2441 }
2442
2443 /* Turn indirect got entries in a got_entries table into their final
2444 locations. */
2445 static void
2446 mips_elf_resolve_final_got_entries (g)
2447 struct mips_got_info *g;
2448 {
2449 htab_t got_entries;
2450
2451 do
2452 {
2453 got_entries = g->got_entries;
2454
2455 htab_traverse (got_entries,
2456 mips_elf_resolve_final_got_entry,
2457 &got_entries);
2458 }
2459 while (got_entries == NULL);
2460 }
2461
2462 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2463 the primary GOT. */
2464 static bfd_vma
2465 mips_elf_adjust_gp (abfd, g, ibfd)
2466 bfd *abfd;
2467 struct mips_got_info *g;
2468 bfd *ibfd;
2469 {
2470 if (g->bfd2got == NULL)
2471 return 0;
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (! g)
2475 return 0;
2476
2477 BFD_ASSERT (g->next);
2478
2479 g = g->next;
2480
2481 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2482 }
2483
2484 /* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2486
2487 static bfd_boolean
2488 mips_elf_multi_got (abfd, info, g, got, pages)
2489 bfd *abfd;
2490 struct bfd_link_info *info;
2491 struct mips_got_info *g;
2492 asection *got;
2493 bfd_size_type pages;
2494 {
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2497 struct mips_got_info *gg;
2498 unsigned int assign;
2499
2500 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2501 mips_elf_bfd2got_entry_eq,
2502 (htab_del) NULL);
2503 if (g->bfd2got == NULL)
2504 return FALSE;
2505
2506 got_per_bfd_arg.bfd2got = g->bfd2got;
2507 got_per_bfd_arg.obfd = abfd;
2508 got_per_bfd_arg.info = info;
2509
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g);
2513 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2514 if (got_per_bfd_arg.obfd == NULL)
2515 return FALSE;
2516
2517 got_per_bfd_arg.current = NULL;
2518 got_per_bfd_arg.primary = NULL;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2523 / MIPS_ELF_GOT_SIZE (abfd))
2524 - MIPS_RESERVED_GOTNO - pages);
2525
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2530 if (got_per_bfd_arg.obfd == NULL)
2531 return FALSE;
2532
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg.primary == NULL)
2535 {
2536 g->next = (struct mips_got_info *)
2537 bfd_alloc (abfd, sizeof (struct mips_got_info));
2538 if (g->next == NULL)
2539 return FALSE;
2540
2541 g->next->global_gotsym = NULL;
2542 g->next->global_gotno = 0;
2543 g->next->local_gotno = 0;
2544 g->next->assigned_gotno = 0;
2545 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2546 mips_elf_multi_got_entry_eq,
2547 (htab_del) NULL);
2548 if (g->next->got_entries == NULL)
2549 return FALSE;
2550 g->next->bfd2got = NULL;
2551 }
2552 else
2553 g->next = got_per_bfd_arg.primary;
2554 g->next->next = got_per_bfd_arg.current;
2555
2556 /* GG is now the master GOT, and G is the primary GOT. */
2557 gg = g;
2558 g = g->next;
2559
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2564 list. */
2565 {
2566 struct mips_elf_bfd2got_hash *bfdgot;
2567 void **bfdgotp;
2568
2569 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2570 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2571
2572 if (bfdgot == NULL)
2573 return FALSE;
2574
2575 bfdgot->bfd = abfd;
2576 bfdgot->g = g;
2577 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2578
2579 BFD_ASSERT (*bfdgotp == NULL);
2580 *bfdgotp = bfdgot;
2581 }
2582
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2586 referenced.
2587
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
2594
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2599 preserved. */
2600 if (1)
2601 {
2602 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2603 g->global_gotno = gg->global_gotno;
2604 set_got_offset_arg.value = 2;
2605 }
2606 else
2607 {
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg->assigned_gotno = 0;
2615 set_got_offset_arg.value = -1;
2616 }
2617
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg.g = NULL;
2621 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2622 &set_got_offset_arg);
2623 set_got_offset_arg.value = 1;
2624 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2625 &set_got_offset_arg);
2626 if (! mips_elf_sort_hash_table (info, 1))
2627 return FALSE;
2628
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg->local_gotno = -g->global_gotno;
2643 gg->global_gotno = g->global_gotno;
2644 assign = 0;
2645 gg->next = gg;
2646
2647 do
2648 {
2649 struct mips_got_info *gn;
2650
2651 assign += MIPS_RESERVED_GOTNO;
2652 g->assigned_gotno = assign;
2653 g->local_gotno += assign + pages;
2654 assign = g->local_gotno + g->global_gotno;
2655
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2658 gn = g->next;
2659 g->next = gg->next;
2660 gg->next = g;
2661 g = gn;
2662 }
2663 while (g);
2664
2665 got->_raw_size = (gg->next->local_gotno
2666 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2667
2668 return TRUE;
2669 }
2670
2671 \f
2672 /* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2674
2675 static const Elf_Internal_Rela *
2676 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2677 bfd *abfd ATTRIBUTE_UNUSED;
2678 unsigned int r_type;
2679 const Elf_Internal_Rela *relocation;
2680 const Elf_Internal_Rela *relend;
2681 {
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation < relend)
2689 {
2690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2691 return relocation;
2692
2693 ++relocation;
2694 }
2695
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value);
2698 return NULL;
2699 }
2700
2701 /* Return whether a relocation is against a local symbol. */
2702
2703 static bfd_boolean
2704 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2705 check_forced)
2706 bfd *input_bfd;
2707 const Elf_Internal_Rela *relocation;
2708 asection **local_sections;
2709 bfd_boolean check_forced;
2710 {
2711 unsigned long r_symndx;
2712 Elf_Internal_Shdr *symtab_hdr;
2713 struct mips_elf_link_hash_entry *h;
2714 size_t extsymoff;
2715
2716 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2719
2720 if (r_symndx < extsymoff)
2721 return TRUE;
2722 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2723 return TRUE;
2724
2725 if (check_forced)
2726 {
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h = (struct mips_elf_link_hash_entry *)
2730 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h->root.root.type == bfd_link_hash_indirect
2733 || h->root.root.type == bfd_link_hash_warning)
2734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2735 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2736 return TRUE;
2737 }
2738
2739 return FALSE;
2740 }
2741 \f
2742 /* Sign-extend VALUE, which has the indicated number of BITS. */
2743
2744 bfd_vma
2745 _bfd_mips_elf_sign_extend (value, bits)
2746 bfd_vma value;
2747 int bits;
2748 {
2749 if (value & ((bfd_vma) 1 << (bits - 1)))
2750 /* VALUE is negative. */
2751 value |= ((bfd_vma) - 1) << bits;
2752
2753 return value;
2754 }
2755
2756 /* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2758 BITS. */
2759
2760 static bfd_boolean
2761 mips_elf_overflow_p (value, bits)
2762 bfd_vma value;
2763 int bits;
2764 {
2765 bfd_signed_vma svalue = (bfd_signed_vma) value;
2766
2767 if (svalue > (1 << (bits - 1)) - 1)
2768 /* The value is too big. */
2769 return TRUE;
2770 else if (svalue < -(1 << (bits - 1)))
2771 /* The value is too small. */
2772 return TRUE;
2773
2774 /* All is well. */
2775 return FALSE;
2776 }
2777
2778 /* Calculate the %high function. */
2779
2780 static bfd_vma
2781 mips_elf_high (value)
2782 bfd_vma value;
2783 {
2784 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2785 }
2786
2787 /* Calculate the %higher function. */
2788
2789 static bfd_vma
2790 mips_elf_higher (value)
2791 bfd_vma value ATTRIBUTE_UNUSED;
2792 {
2793 #ifdef BFD64
2794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2795 #else
2796 abort ();
2797 return (bfd_vma) -1;
2798 #endif
2799 }
2800
2801 /* Calculate the %highest function. */
2802
2803 static bfd_vma
2804 mips_elf_highest (value)
2805 bfd_vma value ATTRIBUTE_UNUSED;
2806 {
2807 #ifdef BFD64
2808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2809 #else
2810 abort ();
2811 return (bfd_vma) -1;
2812 #endif
2813 }
2814 \f
2815 /* Create the .compact_rel section. */
2816
2817 static bfd_boolean
2818 mips_elf_create_compact_rel_section (abfd, info)
2819 bfd *abfd;
2820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2821 {
2822 flagword flags;
2823 register asection *s;
2824
2825 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2826 {
2827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2828 | SEC_READONLY);
2829
2830 s = bfd_make_section (abfd, ".compact_rel");
2831 if (s == NULL
2832 || ! bfd_set_section_flags (abfd, s, flags)
2833 || ! bfd_set_section_alignment (abfd, s,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2835 return FALSE;
2836
2837 s->_raw_size = sizeof (Elf32_External_compact_rel);
2838 }
2839
2840 return TRUE;
2841 }
2842
2843 /* Create the .got section to hold the global offset table. */
2844
2845 static bfd_boolean
2846 mips_elf_create_got_section (abfd, info, maybe_exclude)
2847 bfd *abfd;
2848 struct bfd_link_info *info;
2849 bfd_boolean maybe_exclude;
2850 {
2851 flagword flags;
2852 register asection *s;
2853 struct elf_link_hash_entry *h;
2854 struct bfd_link_hash_entry *bh;
2855 struct mips_got_info *g;
2856 bfd_size_type amt;
2857
2858 /* This function may be called more than once. */
2859 s = mips_elf_got_section (abfd, TRUE);
2860 if (s)
2861 {
2862 if (! maybe_exclude)
2863 s->flags &= ~SEC_EXCLUDE;
2864 return TRUE;
2865 }
2866
2867 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED);
2869
2870 if (maybe_exclude)
2871 flags |= SEC_EXCLUDE;
2872
2873 /* We have to use an alignment of 2**4 here because this is hardcoded
2874 in the function stub generation and in the linker script. */
2875 s = bfd_make_section (abfd, ".got");
2876 if (s == NULL
2877 || ! bfd_set_section_flags (abfd, s, flags)
2878 || ! bfd_set_section_alignment (abfd, s, 4))
2879 return FALSE;
2880
2881 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2882 linker script because we don't want to define the symbol if we
2883 are not creating a global offset table. */
2884 bh = NULL;
2885 if (! (_bfd_generic_link_add_one_symbol
2886 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2887 (bfd_vma) 0, (const char *) NULL, FALSE,
2888 get_elf_backend_data (abfd)->collect, &bh)))
2889 return FALSE;
2890
2891 h = (struct elf_link_hash_entry *) bh;
2892 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2893 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2894 h->type = STT_OBJECT;
2895
2896 if (info->shared
2897 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2898 return FALSE;
2899
2900 amt = sizeof (struct mips_got_info);
2901 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2902 if (g == NULL)
2903 return FALSE;
2904 g->global_gotsym = NULL;
2905 g->local_gotno = MIPS_RESERVED_GOTNO;
2906 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2907 g->bfd2got = NULL;
2908 g->next = NULL;
2909 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2910 mips_elf_got_entry_eq,
2911 (htab_del) NULL);
2912 if (g->got_entries == NULL)
2913 return FALSE;
2914 mips_elf_section_data (s)->u.got_info = g;
2915 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2916 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2917
2918 return TRUE;
2919 }
2920
2921 /* Returns the .msym section for ABFD, creating it if it does not
2922 already exist. Returns NULL to indicate error. */
2923
2924 static asection *
2925 mips_elf_create_msym_section (abfd)
2926 bfd *abfd;
2927 {
2928 asection *s;
2929
2930 s = bfd_get_section_by_name (abfd, ".msym");
2931 if (!s)
2932 {
2933 s = bfd_make_section (abfd, ".msym");
2934 if (!s
2935 || !bfd_set_section_flags (abfd, s,
2936 SEC_ALLOC
2937 | SEC_LOAD
2938 | SEC_HAS_CONTENTS
2939 | SEC_LINKER_CREATED
2940 | SEC_READONLY)
2941 || !bfd_set_section_alignment (abfd, s,
2942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2943 return NULL;
2944 }
2945
2946 return s;
2947 }
2948 \f
2949 /* Calculate the value produced by the RELOCATION (which comes from
2950 the INPUT_BFD). The ADDEND is the addend to use for this
2951 RELOCATION; RELOCATION->R_ADDEND is ignored.
2952
2953 The result of the relocation calculation is stored in VALUEP.
2954 REQUIRE_JALXP indicates whether or not the opcode used with this
2955 relocation must be JALX.
2956
2957 This function returns bfd_reloc_continue if the caller need take no
2958 further action regarding this relocation, bfd_reloc_notsupported if
2959 something goes dramatically wrong, bfd_reloc_overflow if an
2960 overflow occurs, and bfd_reloc_ok to indicate success. */
2961
2962 static bfd_reloc_status_type
2963 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2964 relocation, addend, howto, local_syms,
2965 local_sections, valuep, namep,
2966 require_jalxp, save_addend)
2967 bfd *abfd;
2968 bfd *input_bfd;
2969 asection *input_section;
2970 struct bfd_link_info *info;
2971 const Elf_Internal_Rela *relocation;
2972 bfd_vma addend;
2973 reloc_howto_type *howto;
2974 Elf_Internal_Sym *local_syms;
2975 asection **local_sections;
2976 bfd_vma *valuep;
2977 const char **namep;
2978 bfd_boolean *require_jalxp;
2979 bfd_boolean save_addend;
2980 {
2981 /* The eventual value we will return. */
2982 bfd_vma value;
2983 /* The address of the symbol against which the relocation is
2984 occurring. */
2985 bfd_vma symbol = 0;
2986 /* The final GP value to be used for the relocatable, executable, or
2987 shared object file being produced. */
2988 bfd_vma gp = MINUS_ONE;
2989 /* The place (section offset or address) of the storage unit being
2990 relocated. */
2991 bfd_vma p;
2992 /* The value of GP used to create the relocatable object. */
2993 bfd_vma gp0 = MINUS_ONE;
2994 /* The offset into the global offset table at which the address of
2995 the relocation entry symbol, adjusted by the addend, resides
2996 during execution. */
2997 bfd_vma g = MINUS_ONE;
2998 /* The section in which the symbol referenced by the relocation is
2999 located. */
3000 asection *sec = NULL;
3001 struct mips_elf_link_hash_entry *h = NULL;
3002 /* TRUE if the symbol referred to by this relocation is a local
3003 symbol. */
3004 bfd_boolean local_p, was_local_p;
3005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3006 bfd_boolean gp_disp_p = FALSE;
3007 Elf_Internal_Shdr *symtab_hdr;
3008 size_t extsymoff;
3009 unsigned long r_symndx;
3010 int r_type;
3011 /* TRUE if overflow occurred during the calculation of the
3012 relocation value. */
3013 bfd_boolean overflowed_p;
3014 /* TRUE if this relocation refers to a MIPS16 function. */
3015 bfd_boolean target_is_16_bit_code_p = FALSE;
3016
3017 /* Parse the relocation. */
3018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3019 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3020 p = (input_section->output_section->vma
3021 + input_section->output_offset
3022 + relocation->r_offset);
3023
3024 /* Assume that there will be no overflow. */
3025 overflowed_p = FALSE;
3026
3027 /* Figure out whether or not the symbol is local, and get the offset
3028 used in the array of hash table entries. */
3029 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3030 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3031 local_sections, FALSE);
3032 was_local_p = local_p;
3033 if (! elf_bad_symtab (input_bfd))
3034 extsymoff = symtab_hdr->sh_info;
3035 else
3036 {
3037 /* The symbol table does not follow the rule that local symbols
3038 must come before globals. */
3039 extsymoff = 0;
3040 }
3041
3042 /* Figure out the value of the symbol. */
3043 if (local_p)
3044 {
3045 Elf_Internal_Sym *sym;
3046
3047 sym = local_syms + r_symndx;
3048 sec = local_sections[r_symndx];
3049
3050 symbol = sec->output_section->vma + sec->output_offset;
3051 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3052 || (sec->flags & SEC_MERGE))
3053 symbol += sym->st_value;
3054 if ((sec->flags & SEC_MERGE)
3055 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3056 {
3057 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3058 addend -= symbol;
3059 addend += sec->output_section->vma + sec->output_offset;
3060 }
3061
3062 /* MIPS16 text labels should be treated as odd. */
3063 if (sym->st_other == STO_MIPS16)
3064 ++symbol;
3065
3066 /* Record the name of this symbol, for our caller. */
3067 *namep = bfd_elf_string_from_elf_section (input_bfd,
3068 symtab_hdr->sh_link,
3069 sym->st_name);
3070 if (*namep == '\0')
3071 *namep = bfd_section_name (input_bfd, sec);
3072
3073 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3074 }
3075 else
3076 {
3077 /* For global symbols we look up the symbol in the hash-table. */
3078 h = ((struct mips_elf_link_hash_entry *)
3079 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3080 /* Find the real hash-table entry for this symbol. */
3081 while (h->root.root.type == bfd_link_hash_indirect
3082 || h->root.root.type == bfd_link_hash_warning)
3083 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3084
3085 /* Record the name of this symbol, for our caller. */
3086 *namep = h->root.root.root.string;
3087
3088 /* See if this is the special _gp_disp symbol. Note that such a
3089 symbol must always be a global symbol. */
3090 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3091 && ! NEWABI_P (input_bfd))
3092 {
3093 /* Relocations against _gp_disp are permitted only with
3094 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3095 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3096 return bfd_reloc_notsupported;
3097
3098 gp_disp_p = TRUE;
3099 }
3100 /* If this symbol is defined, calculate its address. Note that
3101 _gp_disp is a magic symbol, always implicitly defined by the
3102 linker, so it's inappropriate to check to see whether or not
3103 its defined. */
3104 else if ((h->root.root.type == bfd_link_hash_defined
3105 || h->root.root.type == bfd_link_hash_defweak)
3106 && h->root.root.u.def.section)
3107 {
3108 sec = h->root.root.u.def.section;
3109 if (sec->output_section)
3110 symbol = (h->root.root.u.def.value
3111 + sec->output_section->vma
3112 + sec->output_offset);
3113 else
3114 symbol = h->root.root.u.def.value;
3115 }
3116 else if (h->root.root.type == bfd_link_hash_undefweak)
3117 /* We allow relocations against undefined weak symbols, giving
3118 it the value zero, so that you can undefined weak functions
3119 and check to see if they exist by looking at their
3120 addresses. */
3121 symbol = 0;
3122 else if (info->shared
3123 && !info->no_undefined
3124 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3125 symbol = 0;
3126 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3127 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3128 {
3129 /* If this is a dynamic link, we should have created a
3130 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3131 in in _bfd_mips_elf_create_dynamic_sections.
3132 Otherwise, we should define the symbol with a value of 0.
3133 FIXME: It should probably get into the symbol table
3134 somehow as well. */
3135 BFD_ASSERT (! info->shared);
3136 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3137 symbol = 0;
3138 }
3139 else
3140 {
3141 if (! ((*info->callbacks->undefined_symbol)
3142 (info, h->root.root.root.string, input_bfd,
3143 input_section, relocation->r_offset,
3144 (!info->shared || info->no_undefined
3145 || ELF_ST_VISIBILITY (h->root.other)))))
3146 return bfd_reloc_undefined;
3147 symbol = 0;
3148 }
3149
3150 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3151 }
3152
3153 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3154 need to redirect the call to the stub, unless we're already *in*
3155 a stub. */
3156 if (r_type != R_MIPS16_26 && !info->relocatable
3157 && ((h != NULL && h->fn_stub != NULL)
3158 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3159 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3160 && !mips_elf_stub_section_p (input_bfd, input_section))
3161 {
3162 /* This is a 32- or 64-bit call to a 16-bit function. We should
3163 have already noticed that we were going to need the
3164 stub. */
3165 if (local_p)
3166 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3167 else
3168 {
3169 BFD_ASSERT (h->need_fn_stub);
3170 sec = h->fn_stub;
3171 }
3172
3173 symbol = sec->output_section->vma + sec->output_offset;
3174 }
3175 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3176 need to redirect the call to the stub. */
3177 else if (r_type == R_MIPS16_26 && !info->relocatable
3178 && h != NULL
3179 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3180 && !target_is_16_bit_code_p)
3181 {
3182 /* If both call_stub and call_fp_stub are defined, we can figure
3183 out which one to use by seeing which one appears in the input
3184 file. */
3185 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3186 {
3187 asection *o;
3188
3189 sec = NULL;
3190 for (o = input_bfd->sections; o != NULL; o = o->next)
3191 {
3192 if (strncmp (bfd_get_section_name (input_bfd, o),
3193 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3194 {
3195 sec = h->call_fp_stub;
3196 break;
3197 }
3198 }
3199 if (sec == NULL)
3200 sec = h->call_stub;
3201 }
3202 else if (h->call_stub != NULL)
3203 sec = h->call_stub;
3204 else
3205 sec = h->call_fp_stub;
3206
3207 BFD_ASSERT (sec->_raw_size > 0);
3208 symbol = sec->output_section->vma + sec->output_offset;
3209 }
3210
3211 /* Calls from 16-bit code to 32-bit code and vice versa require the
3212 special jalx instruction. */
3213 *require_jalxp = (!info->relocatable
3214 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3215 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3216
3217 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3218 local_sections, TRUE);
3219
3220 /* If we haven't already determined the GOT offset, or the GP value,
3221 and we're going to need it, get it now. */
3222 switch (r_type)
3223 {
3224 case R_MIPS_GOT_PAGE:
3225 case R_MIPS_GOT_OFST:
3226 /* If this symbol got a global GOT entry, we have to decay
3227 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
3228 local_p = local_p || ! h
3229 || (h->root.dynindx
3230 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3231 ->dynobj));
3232 if (local_p || r_type == R_MIPS_GOT_OFST)
3233 break;
3234 /* Fall through. */
3235
3236 case R_MIPS_CALL16:
3237 case R_MIPS_GOT16:
3238 case R_MIPS_GOT_DISP:
3239 case R_MIPS_GOT_HI16:
3240 case R_MIPS_CALL_HI16:
3241 case R_MIPS_GOT_LO16:
3242 case R_MIPS_CALL_LO16:
3243 /* Find the index into the GOT where this value is located. */
3244 if (!local_p)
3245 {
3246 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3247 GOT_PAGE relocation that decays to GOT_DISP because the
3248 symbol turns out to be global. The addend is then added
3249 as GOT_OFST. */
3250 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3251 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3252 input_bfd,
3253 (struct elf_link_hash_entry *) h);
3254 if (! elf_hash_table(info)->dynamic_sections_created
3255 || (info->shared
3256 && (info->symbolic || h->root.dynindx == -1)
3257 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3258 {
3259 /* This is a static link or a -Bsymbolic link. The
3260 symbol is defined locally, or was forced to be local.
3261 We must initialize this entry in the GOT. */
3262 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3263 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3264 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3265 }
3266 }
3267 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3268 /* There's no need to create a local GOT entry here; the
3269 calculation for a local GOT16 entry does not involve G. */
3270 break;
3271 else
3272 {
3273 g = mips_elf_local_got_index (abfd, input_bfd,
3274 info, symbol + addend);
3275 if (g == MINUS_ONE)
3276 return bfd_reloc_outofrange;
3277 }
3278
3279 /* Convert GOT indices to actual offsets. */
3280 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3281 abfd, input_bfd, g);
3282 break;
3283
3284 case R_MIPS_HI16:
3285 case R_MIPS_LO16:
3286 case R_MIPS16_GPREL:
3287 case R_MIPS_GPREL16:
3288 case R_MIPS_GPREL32:
3289 case R_MIPS_LITERAL:
3290 gp0 = _bfd_get_gp_value (input_bfd);
3291 gp = _bfd_get_gp_value (abfd);
3292 if (elf_hash_table (info)->dynobj)
3293 gp += mips_elf_adjust_gp (abfd,
3294 mips_elf_got_info
3295 (elf_hash_table (info)->dynobj, NULL),
3296 input_bfd);
3297 break;
3298
3299 default:
3300 break;
3301 }
3302
3303 /* Figure out what kind of relocation is being performed. */
3304 switch (r_type)
3305 {
3306 case R_MIPS_NONE:
3307 return bfd_reloc_continue;
3308
3309 case R_MIPS_16:
3310 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3311 overflowed_p = mips_elf_overflow_p (value, 16);
3312 break;
3313
3314 case R_MIPS_32:
3315 case R_MIPS_REL32:
3316 case R_MIPS_64:
3317 if ((info->shared
3318 || (elf_hash_table (info)->dynamic_sections_created
3319 && h != NULL
3320 && ((h->root.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3322 && ((h->root.elf_link_hash_flags
3323 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3324 && r_symndx != 0
3325 && (input_section->flags & SEC_ALLOC) != 0)
3326 {
3327 /* If we're creating a shared library, or this relocation is
3328 against a symbol in a shared library, then we can't know
3329 where the symbol will end up. So, we create a relocation
3330 record in the output, and leave the job up to the dynamic
3331 linker. */
3332 value = addend;
3333 if (!mips_elf_create_dynamic_relocation (abfd,
3334 info,
3335 relocation,
3336 h,
3337 sec,
3338 symbol,
3339 &value,
3340 input_section))
3341 return bfd_reloc_undefined;
3342 }
3343 else
3344 {
3345 if (r_type != R_MIPS_REL32)
3346 value = symbol + addend;
3347 else
3348 value = addend;
3349 }
3350 value &= howto->dst_mask;
3351 break;
3352
3353 case R_MIPS_PC32:
3354 case R_MIPS_PC64:
3355 case R_MIPS_GNU_REL_LO16:
3356 value = symbol + addend - p;
3357 value &= howto->dst_mask;
3358 break;
3359
3360 case R_MIPS_GNU_REL16_S2:
3361 value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
3362 overflowed_p = mips_elf_overflow_p (value, 18);
3363 value = (value >> 2) & howto->dst_mask;
3364 break;
3365
3366 case R_MIPS_GNU_REL_HI16:
3367 /* Instead of subtracting 'p' here, we should be subtracting the
3368 equivalent value for the LO part of the reloc, since the value
3369 here is relative to that address. Because that's not easy to do,
3370 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3371 the comment there for more information. */
3372 value = mips_elf_high (addend + symbol - p);
3373 value &= howto->dst_mask;
3374 break;
3375
3376 case R_MIPS16_26:
3377 /* The calculation for R_MIPS16_26 is just the same as for an
3378 R_MIPS_26. It's only the storage of the relocated field into
3379 the output file that's different. That's handled in
3380 mips_elf_perform_relocation. So, we just fall through to the
3381 R_MIPS_26 case here. */
3382 case R_MIPS_26:
3383 if (local_p)
3384 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3385 else
3386 value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3387 value &= howto->dst_mask;
3388 break;
3389
3390 case R_MIPS_HI16:
3391 if (!gp_disp_p)
3392 {
3393 value = mips_elf_high (addend + symbol);
3394 value &= howto->dst_mask;
3395 }
3396 else
3397 {
3398 value = mips_elf_high (addend + gp - p);
3399 overflowed_p = mips_elf_overflow_p (value, 16);
3400 }
3401 break;
3402
3403 case R_MIPS_LO16:
3404 if (!gp_disp_p)
3405 value = (symbol + addend) & howto->dst_mask;
3406 else
3407 {
3408 value = addend + gp - p + 4;
3409 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3410 for overflow. But, on, say, IRIX5, relocations against
3411 _gp_disp are normally generated from the .cpload
3412 pseudo-op. It generates code that normally looks like
3413 this:
3414
3415 lui $gp,%hi(_gp_disp)
3416 addiu $gp,$gp,%lo(_gp_disp)
3417 addu $gp,$gp,$t9
3418
3419 Here $t9 holds the address of the function being called,
3420 as required by the MIPS ELF ABI. The R_MIPS_LO16
3421 relocation can easily overflow in this situation, but the
3422 R_MIPS_HI16 relocation will handle the overflow.
3423 Therefore, we consider this a bug in the MIPS ABI, and do
3424 not check for overflow here. */
3425 }
3426 break;
3427
3428 case R_MIPS_LITERAL:
3429 /* Because we don't merge literal sections, we can handle this
3430 just like R_MIPS_GPREL16. In the long run, we should merge
3431 shared literals, and then we will need to additional work
3432 here. */
3433
3434 /* Fall through. */
3435
3436 case R_MIPS16_GPREL:
3437 /* The R_MIPS16_GPREL performs the same calculation as
3438 R_MIPS_GPREL16, but stores the relocated bits in a different
3439 order. We don't need to do anything special here; the
3440 differences are handled in mips_elf_perform_relocation. */
3441 case R_MIPS_GPREL16:
3442 /* Only sign-extend the addend if it was extracted from the
3443 instruction. If the addend was separate, leave it alone,
3444 otherwise we may lose significant bits. */
3445 if (howto->partial_inplace)
3446 addend = _bfd_mips_elf_sign_extend (addend, 16);
3447 value = symbol + addend - gp;
3448 /* If the symbol was local, any earlier relocatable links will
3449 have adjusted its addend with the gp offset, so compensate
3450 for that now. Don't do it for symbols forced local in this
3451 link, though, since they won't have had the gp offset applied
3452 to them before. */
3453 if (was_local_p)
3454 value += gp0;
3455 overflowed_p = mips_elf_overflow_p (value, 16);
3456 break;
3457
3458 case R_MIPS_GOT16:
3459 case R_MIPS_CALL16:
3460 if (local_p)
3461 {
3462 bfd_boolean forced;
3463
3464 /* The special case is when the symbol is forced to be local. We
3465 need the full address in the GOT since no R_MIPS_LO16 relocation
3466 follows. */
3467 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3468 local_sections, FALSE);
3469 value = mips_elf_got16_entry (abfd, input_bfd, info,
3470 symbol + addend, forced);
3471 if (value == MINUS_ONE)
3472 return bfd_reloc_outofrange;
3473 value
3474 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3475 abfd, input_bfd, value);
3476 overflowed_p = mips_elf_overflow_p (value, 16);
3477 break;
3478 }
3479
3480 /* Fall through. */
3481
3482 case R_MIPS_GOT_DISP:
3483 got_disp:
3484 value = g;
3485 overflowed_p = mips_elf_overflow_p (value, 16);
3486 break;
3487
3488 case R_MIPS_GPREL32:
3489 value = (addend + symbol + gp0 - gp);
3490 if (!save_addend)
3491 value &= howto->dst_mask;
3492 break;
3493
3494 case R_MIPS_PC16:
3495 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3496 overflowed_p = mips_elf_overflow_p (value, 16);
3497 break;
3498
3499 case R_MIPS_GOT_HI16:
3500 case R_MIPS_CALL_HI16:
3501 /* We're allowed to handle these two relocations identically.
3502 The dynamic linker is allowed to handle the CALL relocations
3503 differently by creating a lazy evaluation stub. */
3504 value = g;
3505 value = mips_elf_high (value);
3506 value &= howto->dst_mask;
3507 break;
3508
3509 case R_MIPS_GOT_LO16:
3510 case R_MIPS_CALL_LO16:
3511 value = g & howto->dst_mask;
3512 break;
3513
3514 case R_MIPS_GOT_PAGE:
3515 /* GOT_PAGE relocations that reference non-local symbols decay
3516 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3517 0. */
3518 if (! local_p)
3519 goto got_disp;
3520 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3521 if (value == MINUS_ONE)
3522 return bfd_reloc_outofrange;
3523 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3524 abfd, input_bfd, value);
3525 overflowed_p = mips_elf_overflow_p (value, 16);
3526 break;
3527
3528 case R_MIPS_GOT_OFST:
3529 if (local_p)
3530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3531 else
3532 value = addend;
3533 overflowed_p = mips_elf_overflow_p (value, 16);
3534 break;
3535
3536 case R_MIPS_SUB:
3537 value = symbol - addend;
3538 value &= howto->dst_mask;
3539 break;
3540
3541 case R_MIPS_HIGHER:
3542 value = mips_elf_higher (addend + symbol);
3543 value &= howto->dst_mask;
3544 break;
3545
3546 case R_MIPS_HIGHEST:
3547 value = mips_elf_highest (addend + symbol);
3548 value &= howto->dst_mask;
3549 break;
3550
3551 case R_MIPS_SCN_DISP:
3552 value = symbol + addend - sec->output_offset;
3553 value &= howto->dst_mask;
3554 break;
3555
3556 case R_MIPS_PJUMP:
3557 case R_MIPS_JALR:
3558 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3559 hint; we could improve performance by honoring that hint. */
3560 return bfd_reloc_continue;
3561
3562 case R_MIPS_GNU_VTINHERIT:
3563 case R_MIPS_GNU_VTENTRY:
3564 /* We don't do anything with these at present. */
3565 return bfd_reloc_continue;
3566
3567 default:
3568 /* An unrecognized relocation type. */
3569 return bfd_reloc_notsupported;
3570 }
3571
3572 /* Store the VALUE for our caller. */
3573 *valuep = value;
3574 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3575 }
3576
3577 /* Obtain the field relocated by RELOCATION. */
3578
3579 static bfd_vma
3580 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3581 reloc_howto_type *howto;
3582 const Elf_Internal_Rela *relocation;
3583 bfd *input_bfd;
3584 bfd_byte *contents;
3585 {
3586 bfd_vma x;
3587 bfd_byte *location = contents + relocation->r_offset;
3588
3589 /* Obtain the bytes. */
3590 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3591
3592 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3593 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3594 && bfd_little_endian (input_bfd))
3595 /* The two 16-bit words will be reversed on a little-endian system.
3596 See mips_elf_perform_relocation for more details. */
3597 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3598
3599 return x;
3600 }
3601
3602 /* It has been determined that the result of the RELOCATION is the
3603 VALUE. Use HOWTO to place VALUE into the output file at the
3604 appropriate position. The SECTION is the section to which the
3605 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3606 for the relocation must be either JAL or JALX, and it is
3607 unconditionally converted to JALX.
3608
3609 Returns FALSE if anything goes wrong. */
3610
3611 static bfd_boolean
3612 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3613 input_section, contents, require_jalx)
3614 struct bfd_link_info *info;
3615 reloc_howto_type *howto;
3616 const Elf_Internal_Rela *relocation;
3617 bfd_vma value;
3618 bfd *input_bfd;
3619 asection *input_section;
3620 bfd_byte *contents;
3621 bfd_boolean require_jalx;
3622 {
3623 bfd_vma x;
3624 bfd_byte *location;
3625 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3626
3627 /* Figure out where the relocation is occurring. */
3628 location = contents + relocation->r_offset;
3629
3630 /* Obtain the current value. */
3631 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3632
3633 /* Clear the field we are setting. */
3634 x &= ~howto->dst_mask;
3635
3636 /* If this is the R_MIPS16_26 relocation, we must store the
3637 value in a funny way. */
3638 if (r_type == R_MIPS16_26)
3639 {
3640 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3641 Most mips16 instructions are 16 bits, but these instructions
3642 are 32 bits.
3643
3644 The format of these instructions is:
3645
3646 +--------------+--------------------------------+
3647 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3648 +--------------+--------------------------------+
3649 ! Immediate 15:0 !
3650 +-----------------------------------------------+
3651
3652 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3653 Note that the immediate value in the first word is swapped.
3654
3655 When producing a relocatable object file, R_MIPS16_26 is
3656 handled mostly like R_MIPS_26. In particular, the addend is
3657 stored as a straight 26-bit value in a 32-bit instruction.
3658 (gas makes life simpler for itself by never adjusting a
3659 R_MIPS16_26 reloc to be against a section, so the addend is
3660 always zero). However, the 32 bit instruction is stored as 2
3661 16-bit values, rather than a single 32-bit value. In a
3662 big-endian file, the result is the same; in a little-endian
3663 file, the two 16-bit halves of the 32 bit value are swapped.
3664 This is so that a disassembler can recognize the jal
3665 instruction.
3666
3667 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3668 instruction stored as two 16-bit values. The addend A is the
3669 contents of the targ26 field. The calculation is the same as
3670 R_MIPS_26. When storing the calculated value, reorder the
3671 immediate value as shown above, and don't forget to store the
3672 value as two 16-bit values.
3673
3674 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3675 defined as
3676
3677 big-endian:
3678 +--------+----------------------+
3679 | | |
3680 | | targ26-16 |
3681 |31 26|25 0|
3682 +--------+----------------------+
3683
3684 little-endian:
3685 +----------+------+-------------+
3686 | | | |
3687 | sub1 | | sub2 |
3688 |0 9|10 15|16 31|
3689 +----------+--------------------+
3690 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3691 ((sub1 << 16) | sub2)).
3692
3693 When producing a relocatable object file, the calculation is
3694 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 When producing a fully linked file, the calculation is
3696 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3697 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3698
3699 if (!info->relocatable)
3700 /* Shuffle the bits according to the formula above. */
3701 value = (((value & 0x1f0000) << 5)
3702 | ((value & 0x3e00000) >> 5)
3703 | (value & 0xffff));
3704 }
3705 else if (r_type == R_MIPS16_GPREL)
3706 {
3707 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3708 mode. A typical instruction will have a format like this:
3709
3710 +--------------+--------------------------------+
3711 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3712 +--------------+--------------------------------+
3713 ! Major ! rx ! ry ! Imm 4:0 !
3714 +--------------+--------------------------------+
3715
3716 EXTEND is the five bit value 11110. Major is the instruction
3717 opcode.
3718
3719 This is handled exactly like R_MIPS_GPREL16, except that the
3720 addend is retrieved and stored as shown in this diagram; that
3721 is, the Imm fields above replace the V-rel16 field.
3722
3723 All we need to do here is shuffle the bits appropriately. As
3724 above, the two 16-bit halves must be swapped on a
3725 little-endian system. */
3726 value = (((value & 0x7e0) << 16)
3727 | ((value & 0xf800) << 5)
3728 | (value & 0x1f));
3729 }
3730
3731 /* Set the field. */
3732 x |= (value & howto->dst_mask);
3733
3734 /* If required, turn JAL into JALX. */
3735 if (require_jalx)
3736 {
3737 bfd_boolean ok;
3738 bfd_vma opcode = x >> 26;
3739 bfd_vma jalx_opcode;
3740
3741 /* Check to see if the opcode is already JAL or JALX. */
3742 if (r_type == R_MIPS16_26)
3743 {
3744 ok = ((opcode == 0x6) || (opcode == 0x7));
3745 jalx_opcode = 0x7;
3746 }
3747 else
3748 {
3749 ok = ((opcode == 0x3) || (opcode == 0x1d));
3750 jalx_opcode = 0x1d;
3751 }
3752
3753 /* If the opcode is not JAL or JALX, there's a problem. */
3754 if (!ok)
3755 {
3756 (*_bfd_error_handler)
3757 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3758 bfd_archive_filename (input_bfd),
3759 input_section->name,
3760 (unsigned long) relocation->r_offset);
3761 bfd_set_error (bfd_error_bad_value);
3762 return FALSE;
3763 }
3764
3765 /* Make this the JALX opcode. */
3766 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3767 }
3768
3769 /* Swap the high- and low-order 16 bits on little-endian systems
3770 when doing a MIPS16 relocation. */
3771 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3772 && bfd_little_endian (input_bfd))
3773 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3774
3775 /* Put the value into the output. */
3776 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3777 return TRUE;
3778 }
3779
3780 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3781
3782 static bfd_boolean
3783 mips_elf_stub_section_p (abfd, section)
3784 bfd *abfd ATTRIBUTE_UNUSED;
3785 asection *section;
3786 {
3787 const char *name = bfd_get_section_name (abfd, section);
3788
3789 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3790 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3791 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3792 }
3793 \f
3794 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3795
3796 static void
3797 mips_elf_allocate_dynamic_relocations (abfd, n)
3798 bfd *abfd;
3799 unsigned int n;
3800 {
3801 asection *s;
3802
3803 s = mips_elf_rel_dyn_section (abfd, FALSE);
3804 BFD_ASSERT (s != NULL);
3805
3806 if (s->_raw_size == 0)
3807 {
3808 /* Make room for a null element. */
3809 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3810 ++s->reloc_count;
3811 }
3812 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3813 }
3814
3815 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3816 is the original relocation, which is now being transformed into a
3817 dynamic relocation. The ADDENDP is adjusted if necessary; the
3818 caller should store the result in place of the original addend. */
3819
3820 static bfd_boolean
3821 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3822 symbol, addendp, input_section)
3823 bfd *output_bfd;
3824 struct bfd_link_info *info;
3825 const Elf_Internal_Rela *rel;
3826 struct mips_elf_link_hash_entry *h;
3827 asection *sec;
3828 bfd_vma symbol;
3829 bfd_vma *addendp;
3830 asection *input_section;
3831 {
3832 Elf_Internal_Rela outrel[3];
3833 bfd_boolean skip;
3834 asection *sreloc;
3835 bfd *dynobj;
3836 int r_type;
3837
3838 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3839 dynobj = elf_hash_table (info)->dynobj;
3840 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3841 BFD_ASSERT (sreloc != NULL);
3842 BFD_ASSERT (sreloc->contents != NULL);
3843 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3844 < sreloc->_raw_size);
3845
3846 skip = FALSE;
3847 outrel[0].r_offset =
3848 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3849 outrel[1].r_offset =
3850 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3851 outrel[2].r_offset =
3852 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3853
3854 #if 0
3855 /* We begin by assuming that the offset for the dynamic relocation
3856 is the same as for the original relocation. We'll adjust this
3857 later to reflect the correct output offsets. */
3858 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3859 {
3860 outrel[1].r_offset = rel[1].r_offset;
3861 outrel[2].r_offset = rel[2].r_offset;
3862 }
3863 else
3864 {
3865 /* Except that in a stab section things are more complex.
3866 Because we compress stab information, the offset given in the
3867 relocation may not be the one we want; we must let the stabs
3868 machinery tell us the offset. */
3869 outrel[1].r_offset = outrel[0].r_offset;
3870 outrel[2].r_offset = outrel[0].r_offset;
3871 /* If we didn't need the relocation at all, this value will be
3872 -1. */
3873 if (outrel[0].r_offset == (bfd_vma) -1)
3874 skip = TRUE;
3875 }
3876 #endif
3877
3878 if (outrel[0].r_offset == (bfd_vma) -1
3879 || outrel[0].r_offset == (bfd_vma) -2)
3880 skip = TRUE;
3881
3882 /* If we've decided to skip this relocation, just output an empty
3883 record. Note that R_MIPS_NONE == 0, so that this call to memset
3884 is a way of setting R_TYPE to R_MIPS_NONE. */
3885 if (skip)
3886 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3887 else
3888 {
3889 long indx;
3890 bfd_boolean defined_p;
3891
3892 /* We must now calculate the dynamic symbol table index to use
3893 in the relocation. */
3894 if (h != NULL
3895 && (! info->symbolic || (h->root.elf_link_hash_flags
3896 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3897 /* h->root.dynindx may be -1 if this symbol was marked to
3898 become local. */
3899 && h->root.dynindx != -1)
3900 {
3901 indx = h->root.dynindx;
3902 if (SGI_COMPAT (output_bfd))
3903 defined_p = ((h->root.elf_link_hash_flags
3904 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3905 else
3906 /* ??? glibc's ld.so just adds the final GOT entry to the
3907 relocation field. It therefore treats relocs against
3908 defined symbols in the same way as relocs against
3909 undefined symbols. */
3910 defined_p = FALSE;
3911 }
3912 else
3913 {
3914 if (sec != NULL && bfd_is_abs_section (sec))
3915 indx = 0;
3916 else if (sec == NULL || sec->owner == NULL)
3917 {
3918 bfd_set_error (bfd_error_bad_value);
3919 return FALSE;
3920 }
3921 else
3922 {
3923 indx = elf_section_data (sec->output_section)->dynindx;
3924 if (indx == 0)
3925 abort ();
3926 }
3927
3928 /* Instead of generating a relocation using the section
3929 symbol, we may as well make it a fully relative
3930 relocation. We want to avoid generating relocations to
3931 local symbols because we used to generate them
3932 incorrectly, without adding the original symbol value,
3933 which is mandated by the ABI for section symbols. In
3934 order to give dynamic loaders and applications time to
3935 phase out the incorrect use, we refrain from emitting
3936 section-relative relocations. It's not like they're
3937 useful, after all. This should be a bit more efficient
3938 as well. */
3939 /* ??? Although this behavior is compatible with glibc's ld.so,
3940 the ABI says that relocations against STN_UNDEF should have
3941 a symbol value of 0. Irix rld honors this, so relocations
3942 against STN_UNDEF have no effect. */
3943 if (!SGI_COMPAT (output_bfd))
3944 indx = 0;
3945 defined_p = TRUE;
3946 }
3947
3948 /* If the relocation was previously an absolute relocation and
3949 this symbol will not be referred to by the relocation, we must
3950 adjust it by the value we give it in the dynamic symbol table.
3951 Otherwise leave the job up to the dynamic linker. */
3952 if (defined_p && r_type != R_MIPS_REL32)
3953 *addendp += symbol;
3954
3955 /* The relocation is always an REL32 relocation because we don't
3956 know where the shared library will wind up at load-time. */
3957 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3958 R_MIPS_REL32);
3959 /* For strict adherence to the ABI specification, we should
3960 generate a R_MIPS_64 relocation record by itself before the
3961 _REL32/_64 record as well, such that the addend is read in as
3962 a 64-bit value (REL32 is a 32-bit relocation, after all).
3963 However, since none of the existing ELF64 MIPS dynamic
3964 loaders seems to care, we don't waste space with these
3965 artificial relocations. If this turns out to not be true,
3966 mips_elf_allocate_dynamic_relocation() should be tweaked so
3967 as to make room for a pair of dynamic relocations per
3968 invocation if ABI_64_P, and here we should generate an
3969 additional relocation record with R_MIPS_64 by itself for a
3970 NULL symbol before this relocation record. */
3971 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3972 ABI_64_P (output_bfd)
3973 ? R_MIPS_64
3974 : R_MIPS_NONE);
3975 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3976 R_MIPS_NONE);
3977
3978 /* Adjust the output offset of the relocation to reference the
3979 correct location in the output file. */
3980 outrel[0].r_offset += (input_section->output_section->vma
3981 + input_section->output_offset);
3982 outrel[1].r_offset += (input_section->output_section->vma
3983 + input_section->output_offset);
3984 outrel[2].r_offset += (input_section->output_section->vma
3985 + input_section->output_offset);
3986 }
3987
3988 /* Put the relocation back out. We have to use the special
3989 relocation outputter in the 64-bit case since the 64-bit
3990 relocation format is non-standard. */
3991 if (ABI_64_P (output_bfd))
3992 {
3993 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3994 (output_bfd, &outrel[0],
3995 (sreloc->contents
3996 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3997 }
3998 else
3999 bfd_elf32_swap_reloc_out
4000 (output_bfd, &outrel[0],
4001 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4002
4003 /* Record the index of the first relocation referencing H. This
4004 information is later emitted in the .msym section. */
4005 if (h != NULL
4006 && (h->min_dyn_reloc_index == 0
4007 || sreloc->reloc_count < h->min_dyn_reloc_index))
4008 h->min_dyn_reloc_index = sreloc->reloc_count;
4009
4010 /* We've now added another relocation. */
4011 ++sreloc->reloc_count;
4012
4013 /* Make sure the output section is writable. The dynamic linker
4014 will be writing to it. */
4015 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4016 |= SHF_WRITE;
4017
4018 /* On IRIX5, make an entry of compact relocation info. */
4019 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4020 {
4021 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4022 bfd_byte *cr;
4023
4024 if (scpt)
4025 {
4026 Elf32_crinfo cptrel;
4027
4028 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4029 cptrel.vaddr = (rel->r_offset
4030 + input_section->output_section->vma
4031 + input_section->output_offset);
4032 if (r_type == R_MIPS_REL32)
4033 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4034 else
4035 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4036 mips_elf_set_cr_dist2to (cptrel, 0);
4037 cptrel.konst = *addendp;
4038
4039 cr = (scpt->contents
4040 + sizeof (Elf32_External_compact_rel));
4041 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4042 ((Elf32_External_crinfo *) cr
4043 + scpt->reloc_count));
4044 ++scpt->reloc_count;
4045 }
4046 }
4047
4048 return TRUE;
4049 }
4050 \f
4051 /* Return the MACH for a MIPS e_flags value. */
4052
4053 unsigned long
4054 _bfd_elf_mips_mach (flags)
4055 flagword flags;
4056 {
4057 switch (flags & EF_MIPS_MACH)
4058 {
4059 case E_MIPS_MACH_3900:
4060 return bfd_mach_mips3900;
4061
4062 case E_MIPS_MACH_4010:
4063 return bfd_mach_mips4010;
4064
4065 case E_MIPS_MACH_4100:
4066 return bfd_mach_mips4100;
4067
4068 case E_MIPS_MACH_4111:
4069 return bfd_mach_mips4111;
4070
4071 case E_MIPS_MACH_4120:
4072 return bfd_mach_mips4120;
4073
4074 case E_MIPS_MACH_4650:
4075 return bfd_mach_mips4650;
4076
4077 case E_MIPS_MACH_5400:
4078 return bfd_mach_mips5400;
4079
4080 case E_MIPS_MACH_5500:
4081 return bfd_mach_mips5500;
4082
4083 case E_MIPS_MACH_SB1:
4084 return bfd_mach_mips_sb1;
4085
4086 default:
4087 switch (flags & EF_MIPS_ARCH)
4088 {
4089 default:
4090 case E_MIPS_ARCH_1:
4091 return bfd_mach_mips3000;
4092 break;
4093
4094 case E_MIPS_ARCH_2:
4095 return bfd_mach_mips6000;
4096 break;
4097
4098 case E_MIPS_ARCH_3:
4099 return bfd_mach_mips4000;
4100 break;
4101
4102 case E_MIPS_ARCH_4:
4103 return bfd_mach_mips8000;
4104 break;
4105
4106 case E_MIPS_ARCH_5:
4107 return bfd_mach_mips5;
4108 break;
4109
4110 case E_MIPS_ARCH_32:
4111 return bfd_mach_mipsisa32;
4112 break;
4113
4114 case E_MIPS_ARCH_64:
4115 return bfd_mach_mipsisa64;
4116 break;
4117
4118 case E_MIPS_ARCH_32R2:
4119 return bfd_mach_mipsisa32r2;
4120 break;
4121 }
4122 }
4123
4124 return 0;
4125 }
4126
4127 /* Return printable name for ABI. */
4128
4129 static INLINE char *
4130 elf_mips_abi_name (abfd)
4131 bfd *abfd;
4132 {
4133 flagword flags;
4134
4135 flags = elf_elfheader (abfd)->e_flags;
4136 switch (flags & EF_MIPS_ABI)
4137 {
4138 case 0:
4139 if (ABI_N32_P (abfd))
4140 return "N32";
4141 else if (ABI_64_P (abfd))
4142 return "64";
4143 else
4144 return "none";
4145 case E_MIPS_ABI_O32:
4146 return "O32";
4147 case E_MIPS_ABI_O64:
4148 return "O64";
4149 case E_MIPS_ABI_EABI32:
4150 return "EABI32";
4151 case E_MIPS_ABI_EABI64:
4152 return "EABI64";
4153 default:
4154 return "unknown abi";
4155 }
4156 }
4157 \f
4158 /* MIPS ELF uses two common sections. One is the usual one, and the
4159 other is for small objects. All the small objects are kept
4160 together, and then referenced via the gp pointer, which yields
4161 faster assembler code. This is what we use for the small common
4162 section. This approach is copied from ecoff.c. */
4163 static asection mips_elf_scom_section;
4164 static asymbol mips_elf_scom_symbol;
4165 static asymbol *mips_elf_scom_symbol_ptr;
4166
4167 /* MIPS ELF also uses an acommon section, which represents an
4168 allocated common symbol which may be overridden by a
4169 definition in a shared library. */
4170 static asection mips_elf_acom_section;
4171 static asymbol mips_elf_acom_symbol;
4172 static asymbol *mips_elf_acom_symbol_ptr;
4173
4174 /* Handle the special MIPS section numbers that a symbol may use.
4175 This is used for both the 32-bit and the 64-bit ABI. */
4176
4177 void
4178 _bfd_mips_elf_symbol_processing (abfd, asym)
4179 bfd *abfd;
4180 asymbol *asym;
4181 {
4182 elf_symbol_type *elfsym;
4183
4184 elfsym = (elf_symbol_type *) asym;
4185 switch (elfsym->internal_elf_sym.st_shndx)
4186 {
4187 case SHN_MIPS_ACOMMON:
4188 /* This section is used in a dynamically linked executable file.
4189 It is an allocated common section. The dynamic linker can
4190 either resolve these symbols to something in a shared
4191 library, or it can just leave them here. For our purposes,
4192 we can consider these symbols to be in a new section. */
4193 if (mips_elf_acom_section.name == NULL)
4194 {
4195 /* Initialize the acommon section. */
4196 mips_elf_acom_section.name = ".acommon";
4197 mips_elf_acom_section.flags = SEC_ALLOC;
4198 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4199 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4200 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4201 mips_elf_acom_symbol.name = ".acommon";
4202 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4203 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4204 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4205 }
4206 asym->section = &mips_elf_acom_section;
4207 break;
4208
4209 case SHN_COMMON:
4210 /* Common symbols less than the GP size are automatically
4211 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4212 if (asym->value > elf_gp_size (abfd)
4213 || IRIX_COMPAT (abfd) == ict_irix6)
4214 break;
4215 /* Fall through. */
4216 case SHN_MIPS_SCOMMON:
4217 if (mips_elf_scom_section.name == NULL)
4218 {
4219 /* Initialize the small common section. */
4220 mips_elf_scom_section.name = ".scommon";
4221 mips_elf_scom_section.flags = SEC_IS_COMMON;
4222 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4223 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4224 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4225 mips_elf_scom_symbol.name = ".scommon";
4226 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4227 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4228 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4229 }
4230 asym->section = &mips_elf_scom_section;
4231 asym->value = elfsym->internal_elf_sym.st_size;
4232 break;
4233
4234 case SHN_MIPS_SUNDEFINED:
4235 asym->section = bfd_und_section_ptr;
4236 break;
4237
4238 #if 0 /* for SGI_COMPAT */
4239 case SHN_MIPS_TEXT:
4240 asym->section = mips_elf_text_section_ptr;
4241 break;
4242
4243 case SHN_MIPS_DATA:
4244 asym->section = mips_elf_data_section_ptr;
4245 break;
4246 #endif
4247 }
4248 }
4249 \f
4250 /* Work over a section just before writing it out. This routine is
4251 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4252 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4253 a better way. */
4254
4255 bfd_boolean
4256 _bfd_mips_elf_section_processing (abfd, hdr)
4257 bfd *abfd;
4258 Elf_Internal_Shdr *hdr;
4259 {
4260 if (hdr->sh_type == SHT_MIPS_REGINFO
4261 && hdr->sh_size > 0)
4262 {
4263 bfd_byte buf[4];
4264
4265 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4266 BFD_ASSERT (hdr->contents == NULL);
4267
4268 if (bfd_seek (abfd,
4269 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4270 SEEK_SET) != 0)
4271 return FALSE;
4272 H_PUT_32 (abfd, elf_gp (abfd), buf);
4273 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4274 return FALSE;
4275 }
4276
4277 if (hdr->sh_type == SHT_MIPS_OPTIONS
4278 && hdr->bfd_section != NULL
4279 && mips_elf_section_data (hdr->bfd_section) != NULL
4280 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4281 {
4282 bfd_byte *contents, *l, *lend;
4283
4284 /* We stored the section contents in the tdata field in the
4285 set_section_contents routine. We save the section contents
4286 so that we don't have to read them again.
4287 At this point we know that elf_gp is set, so we can look
4288 through the section contents to see if there is an
4289 ODK_REGINFO structure. */
4290
4291 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4292 l = contents;
4293 lend = contents + hdr->sh_size;
4294 while (l + sizeof (Elf_External_Options) <= lend)
4295 {
4296 Elf_Internal_Options intopt;
4297
4298 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4299 &intopt);
4300 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4301 {
4302 bfd_byte buf[8];
4303
4304 if (bfd_seek (abfd,
4305 (hdr->sh_offset
4306 + (l - contents)
4307 + sizeof (Elf_External_Options)
4308 + (sizeof (Elf64_External_RegInfo) - 8)),
4309 SEEK_SET) != 0)
4310 return FALSE;
4311 H_PUT_64 (abfd, elf_gp (abfd), buf);
4312 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4313 return FALSE;
4314 }
4315 else if (intopt.kind == ODK_REGINFO)
4316 {
4317 bfd_byte buf[4];
4318
4319 if (bfd_seek (abfd,
4320 (hdr->sh_offset
4321 + (l - contents)
4322 + sizeof (Elf_External_Options)
4323 + (sizeof (Elf32_External_RegInfo) - 4)),
4324 SEEK_SET) != 0)
4325 return FALSE;
4326 H_PUT_32 (abfd, elf_gp (abfd), buf);
4327 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4328 return FALSE;
4329 }
4330 l += intopt.size;
4331 }
4332 }
4333
4334 if (hdr->bfd_section != NULL)
4335 {
4336 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4337
4338 if (strcmp (name, ".sdata") == 0
4339 || strcmp (name, ".lit8") == 0
4340 || strcmp (name, ".lit4") == 0)
4341 {
4342 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4343 hdr->sh_type = SHT_PROGBITS;
4344 }
4345 else if (strcmp (name, ".sbss") == 0)
4346 {
4347 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4348 hdr->sh_type = SHT_NOBITS;
4349 }
4350 else if (strcmp (name, ".srdata") == 0)
4351 {
4352 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4353 hdr->sh_type = SHT_PROGBITS;
4354 }
4355 else if (strcmp (name, ".compact_rel") == 0)
4356 {
4357 hdr->sh_flags = 0;
4358 hdr->sh_type = SHT_PROGBITS;
4359 }
4360 else if (strcmp (name, ".rtproc") == 0)
4361 {
4362 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4363 {
4364 unsigned int adjust;
4365
4366 adjust = hdr->sh_size % hdr->sh_addralign;
4367 if (adjust != 0)
4368 hdr->sh_size += hdr->sh_addralign - adjust;
4369 }
4370 }
4371 }
4372
4373 return TRUE;
4374 }
4375
4376 /* Handle a MIPS specific section when reading an object file. This
4377 is called when elfcode.h finds a section with an unknown type.
4378 This routine supports both the 32-bit and 64-bit ELF ABI.
4379
4380 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4381 how to. */
4382
4383 bfd_boolean
4384 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4385 bfd *abfd;
4386 Elf_Internal_Shdr *hdr;
4387 const char *name;
4388 {
4389 flagword flags = 0;
4390
4391 /* There ought to be a place to keep ELF backend specific flags, but
4392 at the moment there isn't one. We just keep track of the
4393 sections by their name, instead. Fortunately, the ABI gives
4394 suggested names for all the MIPS specific sections, so we will
4395 probably get away with this. */
4396 switch (hdr->sh_type)
4397 {
4398 case SHT_MIPS_LIBLIST:
4399 if (strcmp (name, ".liblist") != 0)
4400 return FALSE;
4401 break;
4402 case SHT_MIPS_MSYM:
4403 if (strcmp (name, ".msym") != 0)
4404 return FALSE;
4405 break;
4406 case SHT_MIPS_CONFLICT:
4407 if (strcmp (name, ".conflict") != 0)
4408 return FALSE;
4409 break;
4410 case SHT_MIPS_GPTAB:
4411 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4412 return FALSE;
4413 break;
4414 case SHT_MIPS_UCODE:
4415 if (strcmp (name, ".ucode") != 0)
4416 return FALSE;
4417 break;
4418 case SHT_MIPS_DEBUG:
4419 if (strcmp (name, ".mdebug") != 0)
4420 return FALSE;
4421 flags = SEC_DEBUGGING;
4422 break;
4423 case SHT_MIPS_REGINFO:
4424 if (strcmp (name, ".reginfo") != 0
4425 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4426 return FALSE;
4427 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4428 break;
4429 case SHT_MIPS_IFACE:
4430 if (strcmp (name, ".MIPS.interfaces") != 0)
4431 return FALSE;
4432 break;
4433 case SHT_MIPS_CONTENT:
4434 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4435 return FALSE;
4436 break;
4437 case SHT_MIPS_OPTIONS:
4438 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4439 return FALSE;
4440 break;
4441 case SHT_MIPS_DWARF:
4442 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4443 return FALSE;
4444 break;
4445 case SHT_MIPS_SYMBOL_LIB:
4446 if (strcmp (name, ".MIPS.symlib") != 0)
4447 return FALSE;
4448 break;
4449 case SHT_MIPS_EVENTS:
4450 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4451 && strncmp (name, ".MIPS.post_rel",
4452 sizeof ".MIPS.post_rel" - 1) != 0)
4453 return FALSE;
4454 break;
4455 default:
4456 return FALSE;
4457 }
4458
4459 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4460 return FALSE;
4461
4462 if (flags)
4463 {
4464 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4465 (bfd_get_section_flags (abfd,
4466 hdr->bfd_section)
4467 | flags)))
4468 return FALSE;
4469 }
4470
4471 /* FIXME: We should record sh_info for a .gptab section. */
4472
4473 /* For a .reginfo section, set the gp value in the tdata information
4474 from the contents of this section. We need the gp value while
4475 processing relocs, so we just get it now. The .reginfo section
4476 is not used in the 64-bit MIPS ELF ABI. */
4477 if (hdr->sh_type == SHT_MIPS_REGINFO)
4478 {
4479 Elf32_External_RegInfo ext;
4480 Elf32_RegInfo s;
4481
4482 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4483 (file_ptr) 0,
4484 (bfd_size_type) sizeof ext))
4485 return FALSE;
4486 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4487 elf_gp (abfd) = s.ri_gp_value;
4488 }
4489
4490 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4491 set the gp value based on what we find. We may see both
4492 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4493 they should agree. */
4494 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4495 {
4496 bfd_byte *contents, *l, *lend;
4497
4498 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4499 if (contents == NULL)
4500 return FALSE;
4501 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4502 (file_ptr) 0, hdr->sh_size))
4503 {
4504 free (contents);
4505 return FALSE;
4506 }
4507 l = contents;
4508 lend = contents + hdr->sh_size;
4509 while (l + sizeof (Elf_External_Options) <= lend)
4510 {
4511 Elf_Internal_Options intopt;
4512
4513 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4514 &intopt);
4515 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4516 {
4517 Elf64_Internal_RegInfo intreg;
4518
4519 bfd_mips_elf64_swap_reginfo_in
4520 (abfd,
4521 ((Elf64_External_RegInfo *)
4522 (l + sizeof (Elf_External_Options))),
4523 &intreg);
4524 elf_gp (abfd) = intreg.ri_gp_value;
4525 }
4526 else if (intopt.kind == ODK_REGINFO)
4527 {
4528 Elf32_RegInfo intreg;
4529
4530 bfd_mips_elf32_swap_reginfo_in
4531 (abfd,
4532 ((Elf32_External_RegInfo *)
4533 (l + sizeof (Elf_External_Options))),
4534 &intreg);
4535 elf_gp (abfd) = intreg.ri_gp_value;
4536 }
4537 l += intopt.size;
4538 }
4539 free (contents);
4540 }
4541
4542 return TRUE;
4543 }
4544
4545 /* Set the correct type for a MIPS ELF section. We do this by the
4546 section name, which is a hack, but ought to work. This routine is
4547 used by both the 32-bit and the 64-bit ABI. */
4548
4549 bfd_boolean
4550 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4551 bfd *abfd;
4552 Elf_Internal_Shdr *hdr;
4553 asection *sec;
4554 {
4555 register const char *name;
4556
4557 name = bfd_get_section_name (abfd, sec);
4558
4559 if (strcmp (name, ".liblist") == 0)
4560 {
4561 hdr->sh_type = SHT_MIPS_LIBLIST;
4562 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4563 /* The sh_link field is set in final_write_processing. */
4564 }
4565 else if (strcmp (name, ".conflict") == 0)
4566 hdr->sh_type = SHT_MIPS_CONFLICT;
4567 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4568 {
4569 hdr->sh_type = SHT_MIPS_GPTAB;
4570 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4571 /* The sh_info field is set in final_write_processing. */
4572 }
4573 else if (strcmp (name, ".ucode") == 0)
4574 hdr->sh_type = SHT_MIPS_UCODE;
4575 else if (strcmp (name, ".mdebug") == 0)
4576 {
4577 hdr->sh_type = SHT_MIPS_DEBUG;
4578 /* In a shared object on IRIX 5.3, the .mdebug section has an
4579 entsize of 0. FIXME: Does this matter? */
4580 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4581 hdr->sh_entsize = 0;
4582 else
4583 hdr->sh_entsize = 1;
4584 }
4585 else if (strcmp (name, ".reginfo") == 0)
4586 {
4587 hdr->sh_type = SHT_MIPS_REGINFO;
4588 /* In a shared object on IRIX 5.3, the .reginfo section has an
4589 entsize of 0x18. FIXME: Does this matter? */
4590 if (SGI_COMPAT (abfd))
4591 {
4592 if ((abfd->flags & DYNAMIC) != 0)
4593 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4594 else
4595 hdr->sh_entsize = 1;
4596 }
4597 else
4598 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4599 }
4600 else if (SGI_COMPAT (abfd)
4601 && (strcmp (name, ".hash") == 0
4602 || strcmp (name, ".dynamic") == 0
4603 || strcmp (name, ".dynstr") == 0))
4604 {
4605 if (SGI_COMPAT (abfd))
4606 hdr->sh_entsize = 0;
4607 #if 0
4608 /* This isn't how the IRIX6 linker behaves. */
4609 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4610 #endif
4611 }
4612 else if (strcmp (name, ".got") == 0
4613 || strcmp (name, ".srdata") == 0
4614 || strcmp (name, ".sdata") == 0
4615 || strcmp (name, ".sbss") == 0
4616 || strcmp (name, ".lit4") == 0
4617 || strcmp (name, ".lit8") == 0)
4618 hdr->sh_flags |= SHF_MIPS_GPREL;
4619 else if (strcmp (name, ".MIPS.interfaces") == 0)
4620 {
4621 hdr->sh_type = SHT_MIPS_IFACE;
4622 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4623 }
4624 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4625 {
4626 hdr->sh_type = SHT_MIPS_CONTENT;
4627 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4628 /* The sh_info field is set in final_write_processing. */
4629 }
4630 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4631 {
4632 hdr->sh_type = SHT_MIPS_OPTIONS;
4633 hdr->sh_entsize = 1;
4634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4635 }
4636 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4637 hdr->sh_type = SHT_MIPS_DWARF;
4638 else if (strcmp (name, ".MIPS.symlib") == 0)
4639 {
4640 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4641 /* The sh_link and sh_info fields are set in
4642 final_write_processing. */
4643 }
4644 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4645 || strncmp (name, ".MIPS.post_rel",
4646 sizeof ".MIPS.post_rel" - 1) == 0)
4647 {
4648 hdr->sh_type = SHT_MIPS_EVENTS;
4649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4650 /* The sh_link field is set in final_write_processing. */
4651 }
4652 else if (strcmp (name, ".msym") == 0)
4653 {
4654 hdr->sh_type = SHT_MIPS_MSYM;
4655 hdr->sh_flags |= SHF_ALLOC;
4656 hdr->sh_entsize = 8;
4657 }
4658
4659 /* The generic elf_fake_sections will set up REL_HDR using the default
4660 kind of relocations. We used to set up a second header for the
4661 non-default kind of relocations here, but only NewABI would use
4662 these, and the IRIX ld doesn't like resulting empty RELA sections.
4663 Thus we create those header only on demand now. */
4664
4665 return TRUE;
4666 }
4667
4668 /* Given a BFD section, try to locate the corresponding ELF section
4669 index. This is used by both the 32-bit and the 64-bit ABI.
4670 Actually, it's not clear to me that the 64-bit ABI supports these,
4671 but for non-PIC objects we will certainly want support for at least
4672 the .scommon section. */
4673
4674 bfd_boolean
4675 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4676 bfd *abfd ATTRIBUTE_UNUSED;
4677 asection *sec;
4678 int *retval;
4679 {
4680 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4681 {
4682 *retval = SHN_MIPS_SCOMMON;
4683 return TRUE;
4684 }
4685 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4686 {
4687 *retval = SHN_MIPS_ACOMMON;
4688 return TRUE;
4689 }
4690 return FALSE;
4691 }
4692 \f
4693 /* Hook called by the linker routine which adds symbols from an object
4694 file. We must handle the special MIPS section numbers here. */
4695
4696 bfd_boolean
4697 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4698 bfd *abfd;
4699 struct bfd_link_info *info;
4700 const Elf_Internal_Sym *sym;
4701 const char **namep;
4702 flagword *flagsp ATTRIBUTE_UNUSED;
4703 asection **secp;
4704 bfd_vma *valp;
4705 {
4706 if (SGI_COMPAT (abfd)
4707 && (abfd->flags & DYNAMIC) != 0
4708 && strcmp (*namep, "_rld_new_interface") == 0)
4709 {
4710 /* Skip IRIX5 rld entry name. */
4711 *namep = NULL;
4712 return TRUE;
4713 }
4714
4715 switch (sym->st_shndx)
4716 {
4717 case SHN_COMMON:
4718 /* Common symbols less than the GP size are automatically
4719 treated as SHN_MIPS_SCOMMON symbols. */
4720 if (sym->st_size > elf_gp_size (abfd)
4721 || IRIX_COMPAT (abfd) == ict_irix6)
4722 break;
4723 /* Fall through. */
4724 case SHN_MIPS_SCOMMON:
4725 *secp = bfd_make_section_old_way (abfd, ".scommon");
4726 (*secp)->flags |= SEC_IS_COMMON;
4727 *valp = sym->st_size;
4728 break;
4729
4730 case SHN_MIPS_TEXT:
4731 /* This section is used in a shared object. */
4732 if (elf_tdata (abfd)->elf_text_section == NULL)
4733 {
4734 asymbol *elf_text_symbol;
4735 asection *elf_text_section;
4736 bfd_size_type amt = sizeof (asection);
4737
4738 elf_text_section = bfd_zalloc (abfd, amt);
4739 if (elf_text_section == NULL)
4740 return FALSE;
4741
4742 amt = sizeof (asymbol);
4743 elf_text_symbol = bfd_zalloc (abfd, amt);
4744 if (elf_text_symbol == NULL)
4745 return FALSE;
4746
4747 /* Initialize the section. */
4748
4749 elf_tdata (abfd)->elf_text_section = elf_text_section;
4750 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4751
4752 elf_text_section->symbol = elf_text_symbol;
4753 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4754
4755 elf_text_section->name = ".text";
4756 elf_text_section->flags = SEC_NO_FLAGS;
4757 elf_text_section->output_section = NULL;
4758 elf_text_section->owner = abfd;
4759 elf_text_symbol->name = ".text";
4760 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4761 elf_text_symbol->section = elf_text_section;
4762 }
4763 /* This code used to do *secp = bfd_und_section_ptr if
4764 info->shared. I don't know why, and that doesn't make sense,
4765 so I took it out. */
4766 *secp = elf_tdata (abfd)->elf_text_section;
4767 break;
4768
4769 case SHN_MIPS_ACOMMON:
4770 /* Fall through. XXX Can we treat this as allocated data? */
4771 case SHN_MIPS_DATA:
4772 /* This section is used in a shared object. */
4773 if (elf_tdata (abfd)->elf_data_section == NULL)
4774 {
4775 asymbol *elf_data_symbol;
4776 asection *elf_data_section;
4777 bfd_size_type amt = sizeof (asection);
4778
4779 elf_data_section = bfd_zalloc (abfd, amt);
4780 if (elf_data_section == NULL)
4781 return FALSE;
4782
4783 amt = sizeof (asymbol);
4784 elf_data_symbol = bfd_zalloc (abfd, amt);
4785 if (elf_data_symbol == NULL)
4786 return FALSE;
4787
4788 /* Initialize the section. */
4789
4790 elf_tdata (abfd)->elf_data_section = elf_data_section;
4791 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4792
4793 elf_data_section->symbol = elf_data_symbol;
4794 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4795
4796 elf_data_section->name = ".data";
4797 elf_data_section->flags = SEC_NO_FLAGS;
4798 elf_data_section->output_section = NULL;
4799 elf_data_section->owner = abfd;
4800 elf_data_symbol->name = ".data";
4801 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4802 elf_data_symbol->section = elf_data_section;
4803 }
4804 /* This code used to do *secp = bfd_und_section_ptr if
4805 info->shared. I don't know why, and that doesn't make sense,
4806 so I took it out. */
4807 *secp = elf_tdata (abfd)->elf_data_section;
4808 break;
4809
4810 case SHN_MIPS_SUNDEFINED:
4811 *secp = bfd_und_section_ptr;
4812 break;
4813 }
4814
4815 if (SGI_COMPAT (abfd)
4816 && ! info->shared
4817 && info->hash->creator == abfd->xvec
4818 && strcmp (*namep, "__rld_obj_head") == 0)
4819 {
4820 struct elf_link_hash_entry *h;
4821 struct bfd_link_hash_entry *bh;
4822
4823 /* Mark __rld_obj_head as dynamic. */
4824 bh = NULL;
4825 if (! (_bfd_generic_link_add_one_symbol
4826 (info, abfd, *namep, BSF_GLOBAL, *secp,
4827 (bfd_vma) *valp, (const char *) NULL, FALSE,
4828 get_elf_backend_data (abfd)->collect, &bh)))
4829 return FALSE;
4830
4831 h = (struct elf_link_hash_entry *) bh;
4832 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4833 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4834 h->type = STT_OBJECT;
4835
4836 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4837 return FALSE;
4838
4839 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4840 }
4841
4842 /* If this is a mips16 text symbol, add 1 to the value to make it
4843 odd. This will cause something like .word SYM to come up with
4844 the right value when it is loaded into the PC. */
4845 if (sym->st_other == STO_MIPS16)
4846 ++*valp;
4847
4848 return TRUE;
4849 }
4850
4851 /* This hook function is called before the linker writes out a global
4852 symbol. We mark symbols as small common if appropriate. This is
4853 also where we undo the increment of the value for a mips16 symbol. */
4854
4855 bfd_boolean
4856 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4857 bfd *abfd ATTRIBUTE_UNUSED;
4858 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4859 const char *name ATTRIBUTE_UNUSED;
4860 Elf_Internal_Sym *sym;
4861 asection *input_sec;
4862 {
4863 /* If we see a common symbol, which implies a relocatable link, then
4864 if a symbol was small common in an input file, mark it as small
4865 common in the output file. */
4866 if (sym->st_shndx == SHN_COMMON
4867 && strcmp (input_sec->name, ".scommon") == 0)
4868 sym->st_shndx = SHN_MIPS_SCOMMON;
4869
4870 if (sym->st_other == STO_MIPS16
4871 && (sym->st_value & 1) != 0)
4872 --sym->st_value;
4873
4874 return TRUE;
4875 }
4876 \f
4877 /* Functions for the dynamic linker. */
4878
4879 /* Create dynamic sections when linking against a dynamic object. */
4880
4881 bfd_boolean
4882 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4883 bfd *abfd;
4884 struct bfd_link_info *info;
4885 {
4886 struct elf_link_hash_entry *h;
4887 struct bfd_link_hash_entry *bh;
4888 flagword flags;
4889 register asection *s;
4890 const char * const *namep;
4891
4892 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4893 | SEC_LINKER_CREATED | SEC_READONLY);
4894
4895 /* Mips ABI requests the .dynamic section to be read only. */
4896 s = bfd_get_section_by_name (abfd, ".dynamic");
4897 if (s != NULL)
4898 {
4899 if (! bfd_set_section_flags (abfd, s, flags))
4900 return FALSE;
4901 }
4902
4903 /* We need to create .got section. */
4904 if (! mips_elf_create_got_section (abfd, info, FALSE))
4905 return FALSE;
4906
4907 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4908 return FALSE;
4909
4910 /* Create the .msym section on IRIX6. It is used by the dynamic
4911 linker to speed up dynamic relocations, and to avoid computing
4912 the ELF hash for symbols. */
4913 if (IRIX_COMPAT (abfd) == ict_irix6
4914 && !mips_elf_create_msym_section (abfd))
4915 return FALSE;
4916
4917 /* Create .stub section. */
4918 if (bfd_get_section_by_name (abfd,
4919 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4920 {
4921 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4922 if (s == NULL
4923 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4924 || ! bfd_set_section_alignment (abfd, s,
4925 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4926 return FALSE;
4927 }
4928
4929 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4930 && !info->shared
4931 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4932 {
4933 s = bfd_make_section (abfd, ".rld_map");
4934 if (s == NULL
4935 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4936 || ! bfd_set_section_alignment (abfd, s,
4937 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4938 return FALSE;
4939 }
4940
4941 /* On IRIX5, we adjust add some additional symbols and change the
4942 alignments of several sections. There is no ABI documentation
4943 indicating that this is necessary on IRIX6, nor any evidence that
4944 the linker takes such action. */
4945 if (IRIX_COMPAT (abfd) == ict_irix5)
4946 {
4947 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4948 {
4949 bh = NULL;
4950 if (! (_bfd_generic_link_add_one_symbol
4951 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4952 (bfd_vma) 0, (const char *) NULL, FALSE,
4953 get_elf_backend_data (abfd)->collect, &bh)))
4954 return FALSE;
4955
4956 h = (struct elf_link_hash_entry *) bh;
4957 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4958 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4959 h->type = STT_SECTION;
4960
4961 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4962 return FALSE;
4963 }
4964
4965 /* We need to create a .compact_rel section. */
4966 if (SGI_COMPAT (abfd))
4967 {
4968 if (!mips_elf_create_compact_rel_section (abfd, info))
4969 return FALSE;
4970 }
4971
4972 /* Change alignments of some sections. */
4973 s = bfd_get_section_by_name (abfd, ".hash");
4974 if (s != NULL)
4975 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4976 s = bfd_get_section_by_name (abfd, ".dynsym");
4977 if (s != NULL)
4978 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4979 s = bfd_get_section_by_name (abfd, ".dynstr");
4980 if (s != NULL)
4981 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4982 s = bfd_get_section_by_name (abfd, ".reginfo");
4983 if (s != NULL)
4984 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4985 s = bfd_get_section_by_name (abfd, ".dynamic");
4986 if (s != NULL)
4987 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4988 }
4989
4990 if (!info->shared)
4991 {
4992 const char *name;
4993
4994 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4995 bh = NULL;
4996 if (!(_bfd_generic_link_add_one_symbol
4997 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4998 (bfd_vma) 0, (const char *) NULL, FALSE,
4999 get_elf_backend_data (abfd)->collect, &bh)))
5000 return FALSE;
5001
5002 h = (struct elf_link_hash_entry *) bh;
5003 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5004 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5005 h->type = STT_SECTION;
5006
5007 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5008 return FALSE;
5009
5010 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5011 {
5012 /* __rld_map is a four byte word located in the .data section
5013 and is filled in by the rtld to contain a pointer to
5014 the _r_debug structure. Its symbol value will be set in
5015 _bfd_mips_elf_finish_dynamic_symbol. */
5016 s = bfd_get_section_by_name (abfd, ".rld_map");
5017 BFD_ASSERT (s != NULL);
5018
5019 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5020 bh = NULL;
5021 if (!(_bfd_generic_link_add_one_symbol
5022 (info, abfd, name, BSF_GLOBAL, s,
5023 (bfd_vma) 0, (const char *) NULL, FALSE,
5024 get_elf_backend_data (abfd)->collect, &bh)))
5025 return FALSE;
5026
5027 h = (struct elf_link_hash_entry *) bh;
5028 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5029 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5030 h->type = STT_OBJECT;
5031
5032 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5033 return FALSE;
5034 }
5035 }
5036
5037 return TRUE;
5038 }
5039 \f
5040 /* Look through the relocs for a section during the first phase, and
5041 allocate space in the global offset table. */
5042
5043 bfd_boolean
5044 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5045 bfd *abfd;
5046 struct bfd_link_info *info;
5047 asection *sec;
5048 const Elf_Internal_Rela *relocs;
5049 {
5050 const char *name;
5051 bfd *dynobj;
5052 Elf_Internal_Shdr *symtab_hdr;
5053 struct elf_link_hash_entry **sym_hashes;
5054 struct mips_got_info *g;
5055 size_t extsymoff;
5056 const Elf_Internal_Rela *rel;
5057 const Elf_Internal_Rela *rel_end;
5058 asection *sgot;
5059 asection *sreloc;
5060 struct elf_backend_data *bed;
5061
5062 if (info->relocatable)
5063 return TRUE;
5064
5065 dynobj = elf_hash_table (info)->dynobj;
5066 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5067 sym_hashes = elf_sym_hashes (abfd);
5068 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5069
5070 /* Check for the mips16 stub sections. */
5071
5072 name = bfd_get_section_name (abfd, sec);
5073 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5074 {
5075 unsigned long r_symndx;
5076
5077 /* Look at the relocation information to figure out which symbol
5078 this is for. */
5079
5080 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5081
5082 if (r_symndx < extsymoff
5083 || sym_hashes[r_symndx - extsymoff] == NULL)
5084 {
5085 asection *o;
5086
5087 /* This stub is for a local symbol. This stub will only be
5088 needed if there is some relocation in this BFD, other
5089 than a 16 bit function call, which refers to this symbol. */
5090 for (o = abfd->sections; o != NULL; o = o->next)
5091 {
5092 Elf_Internal_Rela *sec_relocs;
5093 const Elf_Internal_Rela *r, *rend;
5094
5095 /* We can ignore stub sections when looking for relocs. */
5096 if ((o->flags & SEC_RELOC) == 0
5097 || o->reloc_count == 0
5098 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5099 sizeof FN_STUB - 1) == 0
5100 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5101 sizeof CALL_STUB - 1) == 0
5102 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5103 sizeof CALL_FP_STUB - 1) == 0)
5104 continue;
5105
5106 sec_relocs
5107 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5108 (Elf_Internal_Rela *) NULL,
5109 info->keep_memory);
5110 if (sec_relocs == NULL)
5111 return FALSE;
5112
5113 rend = sec_relocs + o->reloc_count;
5114 for (r = sec_relocs; r < rend; r++)
5115 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5116 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5117 break;
5118
5119 if (elf_section_data (o)->relocs != sec_relocs)
5120 free (sec_relocs);
5121
5122 if (r < rend)
5123 break;
5124 }
5125
5126 if (o == NULL)
5127 {
5128 /* There is no non-call reloc for this stub, so we do
5129 not need it. Since this function is called before
5130 the linker maps input sections to output sections, we
5131 can easily discard it by setting the SEC_EXCLUDE
5132 flag. */
5133 sec->flags |= SEC_EXCLUDE;
5134 return TRUE;
5135 }
5136
5137 /* Record this stub in an array of local symbol stubs for
5138 this BFD. */
5139 if (elf_tdata (abfd)->local_stubs == NULL)
5140 {
5141 unsigned long symcount;
5142 asection **n;
5143 bfd_size_type amt;
5144
5145 if (elf_bad_symtab (abfd))
5146 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5147 else
5148 symcount = symtab_hdr->sh_info;
5149 amt = symcount * sizeof (asection *);
5150 n = (asection **) bfd_zalloc (abfd, amt);
5151 if (n == NULL)
5152 return FALSE;
5153 elf_tdata (abfd)->local_stubs = n;
5154 }
5155
5156 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5157
5158 /* We don't need to set mips16_stubs_seen in this case.
5159 That flag is used to see whether we need to look through
5160 the global symbol table for stubs. We don't need to set
5161 it here, because we just have a local stub. */
5162 }
5163 else
5164 {
5165 struct mips_elf_link_hash_entry *h;
5166
5167 h = ((struct mips_elf_link_hash_entry *)
5168 sym_hashes[r_symndx - extsymoff]);
5169
5170 /* H is the symbol this stub is for. */
5171
5172 h->fn_stub = sec;
5173 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5174 }
5175 }
5176 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5177 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5178 {
5179 unsigned long r_symndx;
5180 struct mips_elf_link_hash_entry *h;
5181 asection **loc;
5182
5183 /* Look at the relocation information to figure out which symbol
5184 this is for. */
5185
5186 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5187
5188 if (r_symndx < extsymoff
5189 || sym_hashes[r_symndx - extsymoff] == NULL)
5190 {
5191 /* This stub was actually built for a static symbol defined
5192 in the same file. We assume that all static symbols in
5193 mips16 code are themselves mips16, so we can simply
5194 discard this stub. Since this function is called before
5195 the linker maps input sections to output sections, we can
5196 easily discard it by setting the SEC_EXCLUDE flag. */
5197 sec->flags |= SEC_EXCLUDE;
5198 return TRUE;
5199 }
5200
5201 h = ((struct mips_elf_link_hash_entry *)
5202 sym_hashes[r_symndx - extsymoff]);
5203
5204 /* H is the symbol this stub is for. */
5205
5206 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5207 loc = &h->call_fp_stub;
5208 else
5209 loc = &h->call_stub;
5210
5211 /* If we already have an appropriate stub for this function, we
5212 don't need another one, so we can discard this one. Since
5213 this function is called before the linker maps input sections
5214 to output sections, we can easily discard it by setting the
5215 SEC_EXCLUDE flag. We can also discard this section if we
5216 happen to already know that this is a mips16 function; it is
5217 not necessary to check this here, as it is checked later, but
5218 it is slightly faster to check now. */
5219 if (*loc != NULL || h->root.other == STO_MIPS16)
5220 {
5221 sec->flags |= SEC_EXCLUDE;
5222 return TRUE;
5223 }
5224
5225 *loc = sec;
5226 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5227 }
5228
5229 if (dynobj == NULL)
5230 {
5231 sgot = NULL;
5232 g = NULL;
5233 }
5234 else
5235 {
5236 sgot = mips_elf_got_section (dynobj, FALSE);
5237 if (sgot == NULL)
5238 g = NULL;
5239 else
5240 {
5241 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5242 g = mips_elf_section_data (sgot)->u.got_info;
5243 BFD_ASSERT (g != NULL);
5244 }
5245 }
5246
5247 sreloc = NULL;
5248 bed = get_elf_backend_data (abfd);
5249 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5250 for (rel = relocs; rel < rel_end; ++rel)
5251 {
5252 unsigned long r_symndx;
5253 unsigned int r_type;
5254 struct elf_link_hash_entry *h;
5255
5256 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5257 r_type = ELF_R_TYPE (abfd, rel->r_info);
5258
5259 if (r_symndx < extsymoff)
5260 h = NULL;
5261 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5262 {
5263 (*_bfd_error_handler)
5264 (_("%s: Malformed reloc detected for section %s"),
5265 bfd_archive_filename (abfd), name);
5266 bfd_set_error (bfd_error_bad_value);
5267 return FALSE;
5268 }
5269 else
5270 {
5271 h = sym_hashes[r_symndx - extsymoff];
5272
5273 /* This may be an indirect symbol created because of a version. */
5274 if (h != NULL)
5275 {
5276 while (h->root.type == bfd_link_hash_indirect)
5277 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5278 }
5279 }
5280
5281 /* Some relocs require a global offset table. */
5282 if (dynobj == NULL || sgot == NULL)
5283 {
5284 switch (r_type)
5285 {
5286 case R_MIPS_GOT16:
5287 case R_MIPS_CALL16:
5288 case R_MIPS_CALL_HI16:
5289 case R_MIPS_CALL_LO16:
5290 case R_MIPS_GOT_HI16:
5291 case R_MIPS_GOT_LO16:
5292 case R_MIPS_GOT_PAGE:
5293 case R_MIPS_GOT_OFST:
5294 case R_MIPS_GOT_DISP:
5295 if (dynobj == NULL)
5296 elf_hash_table (info)->dynobj = dynobj = abfd;
5297 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5298 return FALSE;
5299 g = mips_elf_got_info (dynobj, &sgot);
5300 break;
5301
5302 case R_MIPS_32:
5303 case R_MIPS_REL32:
5304 case R_MIPS_64:
5305 if (dynobj == NULL
5306 && (info->shared || h != NULL)
5307 && (sec->flags & SEC_ALLOC) != 0)
5308 elf_hash_table (info)->dynobj = dynobj = abfd;
5309 break;
5310
5311 default:
5312 break;
5313 }
5314 }
5315
5316 if (!h && (r_type == R_MIPS_CALL_LO16
5317 || r_type == R_MIPS_GOT_LO16
5318 || r_type == R_MIPS_GOT_DISP))
5319 {
5320 /* We may need a local GOT entry for this relocation. We
5321 don't count R_MIPS_GOT_PAGE because we can estimate the
5322 maximum number of pages needed by looking at the size of
5323 the segment. Similar comments apply to R_MIPS_GOT16 and
5324 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5325 R_MIPS_CALL_HI16 because these are always followed by an
5326 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5327 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5328 rel->r_addend, g))
5329 return FALSE;
5330 }
5331
5332 switch (r_type)
5333 {
5334 case R_MIPS_CALL16:
5335 if (h == NULL)
5336 {
5337 (*_bfd_error_handler)
5338 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5339 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5340 bfd_set_error (bfd_error_bad_value);
5341 return FALSE;
5342 }
5343 /* Fall through. */
5344
5345 case R_MIPS_CALL_HI16:
5346 case R_MIPS_CALL_LO16:
5347 if (h != NULL)
5348 {
5349 /* This symbol requires a global offset table entry. */
5350 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5351 return FALSE;
5352
5353 /* We need a stub, not a plt entry for the undefined
5354 function. But we record it as if it needs plt. See
5355 elf_adjust_dynamic_symbol in elflink.h. */
5356 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5357 h->type = STT_FUNC;
5358 }
5359 break;
5360
5361 case R_MIPS_GOT_PAGE:
5362 /* If this is a global, overridable symbol, GOT_PAGE will
5363 decay to GOT_DISP, so we'll need a GOT entry for it. */
5364 if (h == NULL)
5365 break;
5366 else
5367 {
5368 struct mips_elf_link_hash_entry *hmips =
5369 (struct mips_elf_link_hash_entry *) h;
5370
5371 while (hmips->root.root.type == bfd_link_hash_indirect
5372 || hmips->root.root.type == bfd_link_hash_warning)
5373 hmips = (struct mips_elf_link_hash_entry *)
5374 hmips->root.root.u.i.link;
5375
5376 if ((hmips->root.root.type == bfd_link_hash_defined
5377 || hmips->root.root.type == bfd_link_hash_defweak)
5378 && hmips->root.root.u.def.section
5379 && ! (info->shared && ! info->symbolic
5380 && ! (hmips->root.elf_link_hash_flags
5381 & ELF_LINK_FORCED_LOCAL))
5382 /* If we've encountered any other relocation
5383 referencing the symbol, we'll have marked it as
5384 dynamic, and, even though we might be able to get
5385 rid of the GOT entry should we know for sure all
5386 previous relocations were GOT_PAGE ones, at this
5387 point we can't tell, so just keep using the
5388 symbol as dynamic. This is very important in the
5389 multi-got case, since we don't decide whether to
5390 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5391 the symbol is dynamic, we'll need a GOT entry for
5392 every GOT in which the symbol is referenced with
5393 a GOT_PAGE relocation. */
5394 && hmips->root.dynindx == -1)
5395 break;
5396 }
5397 /* Fall through. */
5398
5399 case R_MIPS_GOT16:
5400 case R_MIPS_GOT_HI16:
5401 case R_MIPS_GOT_LO16:
5402 case R_MIPS_GOT_DISP:
5403 /* This symbol requires a global offset table entry. */
5404 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5405 return FALSE;
5406 break;
5407
5408 case R_MIPS_32:
5409 case R_MIPS_REL32:
5410 case R_MIPS_64:
5411 if ((info->shared || h != NULL)
5412 && (sec->flags & SEC_ALLOC) != 0)
5413 {
5414 if (sreloc == NULL)
5415 {
5416 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5417 if (sreloc == NULL)
5418 return FALSE;
5419 }
5420 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5421 if (info->shared)
5422 {
5423 /* When creating a shared object, we must copy these
5424 reloc types into the output file as R_MIPS_REL32
5425 relocs. We make room for this reloc in the
5426 .rel.dyn reloc section. */
5427 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5428 if ((sec->flags & MIPS_READONLY_SECTION)
5429 == MIPS_READONLY_SECTION)
5430 /* We tell the dynamic linker that there are
5431 relocations against the text segment. */
5432 info->flags |= DF_TEXTREL;
5433 }
5434 else
5435 {
5436 struct mips_elf_link_hash_entry *hmips;
5437
5438 /* We only need to copy this reloc if the symbol is
5439 defined in a dynamic object. */
5440 hmips = (struct mips_elf_link_hash_entry *) h;
5441 ++hmips->possibly_dynamic_relocs;
5442 if ((sec->flags & MIPS_READONLY_SECTION)
5443 == MIPS_READONLY_SECTION)
5444 /* We need it to tell the dynamic linker if there
5445 are relocations against the text segment. */
5446 hmips->readonly_reloc = TRUE;
5447 }
5448
5449 /* Even though we don't directly need a GOT entry for
5450 this symbol, a symbol must have a dynamic symbol
5451 table index greater that DT_MIPS_GOTSYM if there are
5452 dynamic relocations against it. */
5453 if (h != NULL)
5454 {
5455 if (dynobj == NULL)
5456 elf_hash_table (info)->dynobj = dynobj = abfd;
5457 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5458 return FALSE;
5459 g = mips_elf_got_info (dynobj, &sgot);
5460 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5461 return FALSE;
5462 }
5463 }
5464
5465 if (SGI_COMPAT (abfd))
5466 mips_elf_hash_table (info)->compact_rel_size +=
5467 sizeof (Elf32_External_crinfo);
5468 break;
5469
5470 case R_MIPS_26:
5471 case R_MIPS_GPREL16:
5472 case R_MIPS_LITERAL:
5473 case R_MIPS_GPREL32:
5474 if (SGI_COMPAT (abfd))
5475 mips_elf_hash_table (info)->compact_rel_size +=
5476 sizeof (Elf32_External_crinfo);
5477 break;
5478
5479 /* This relocation describes the C++ object vtable hierarchy.
5480 Reconstruct it for later use during GC. */
5481 case R_MIPS_GNU_VTINHERIT:
5482 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5483 return FALSE;
5484 break;
5485
5486 /* This relocation describes which C++ vtable entries are actually
5487 used. Record for later use during GC. */
5488 case R_MIPS_GNU_VTENTRY:
5489 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5490 return FALSE;
5491 break;
5492
5493 default:
5494 break;
5495 }
5496
5497 /* We must not create a stub for a symbol that has relocations
5498 related to taking the function's address. */
5499 switch (r_type)
5500 {
5501 default:
5502 if (h != NULL)
5503 {
5504 struct mips_elf_link_hash_entry *mh;
5505
5506 mh = (struct mips_elf_link_hash_entry *) h;
5507 mh->no_fn_stub = TRUE;
5508 }
5509 break;
5510 case R_MIPS_CALL16:
5511 case R_MIPS_CALL_HI16:
5512 case R_MIPS_CALL_LO16:
5513 case R_MIPS_JALR:
5514 break;
5515 }
5516
5517 /* If this reloc is not a 16 bit call, and it has a global
5518 symbol, then we will need the fn_stub if there is one.
5519 References from a stub section do not count. */
5520 if (h != NULL
5521 && r_type != R_MIPS16_26
5522 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5523 sizeof FN_STUB - 1) != 0
5524 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5525 sizeof CALL_STUB - 1) != 0
5526 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5527 sizeof CALL_FP_STUB - 1) != 0)
5528 {
5529 struct mips_elf_link_hash_entry *mh;
5530
5531 mh = (struct mips_elf_link_hash_entry *) h;
5532 mh->need_fn_stub = TRUE;
5533 }
5534 }
5535
5536 return TRUE;
5537 }
5538 \f
5539 bfd_boolean
5540 _bfd_mips_relax_section (abfd, sec, link_info, again)
5541 bfd *abfd;
5542 asection *sec;
5543 struct bfd_link_info *link_info;
5544 bfd_boolean *again;
5545 {
5546 Elf_Internal_Rela *internal_relocs;
5547 Elf_Internal_Rela *irel, *irelend;
5548 Elf_Internal_Shdr *symtab_hdr;
5549 bfd_byte *contents = NULL;
5550 bfd_byte *free_contents = NULL;
5551 size_t extsymoff;
5552 bfd_boolean changed_contents = FALSE;
5553 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5554 Elf_Internal_Sym *isymbuf = NULL;
5555
5556 /* We are not currently changing any sizes, so only one pass. */
5557 *again = FALSE;
5558
5559 if (link_info->relocatable)
5560 return TRUE;
5561
5562 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5563 (Elf_Internal_Rela *) NULL,
5564 link_info->keep_memory);
5565 if (internal_relocs == NULL)
5566 return TRUE;
5567
5568 irelend = internal_relocs + sec->reloc_count
5569 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5571 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5572
5573 for (irel = internal_relocs; irel < irelend; irel++)
5574 {
5575 bfd_vma symval;
5576 bfd_signed_vma sym_offset;
5577 unsigned int r_type;
5578 unsigned long r_symndx;
5579 asection *sym_sec;
5580 unsigned long instruction;
5581
5582 /* Turn jalr into bgezal, and jr into beq, if they're marked
5583 with a JALR relocation, that indicate where they jump to.
5584 This saves some pipeline bubbles. */
5585 r_type = ELF_R_TYPE (abfd, irel->r_info);
5586 if (r_type != R_MIPS_JALR)
5587 continue;
5588
5589 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5590 /* Compute the address of the jump target. */
5591 if (r_symndx >= extsymoff)
5592 {
5593 struct mips_elf_link_hash_entry *h
5594 = ((struct mips_elf_link_hash_entry *)
5595 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5596
5597 while (h->root.root.type == bfd_link_hash_indirect
5598 || h->root.root.type == bfd_link_hash_warning)
5599 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5600
5601 /* If a symbol is undefined, or if it may be overridden,
5602 skip it. */
5603 if (! ((h->root.root.type == bfd_link_hash_defined
5604 || h->root.root.type == bfd_link_hash_defweak)
5605 && h->root.root.u.def.section)
5606 || (link_info->shared && ! link_info->symbolic
5607 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5608 continue;
5609
5610 sym_sec = h->root.root.u.def.section;
5611 if (sym_sec->output_section)
5612 symval = (h->root.root.u.def.value
5613 + sym_sec->output_section->vma
5614 + sym_sec->output_offset);
5615 else
5616 symval = h->root.root.u.def.value;
5617 }
5618 else
5619 {
5620 Elf_Internal_Sym *isym;
5621
5622 /* Read this BFD's symbols if we haven't done so already. */
5623 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5624 {
5625 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5626 if (isymbuf == NULL)
5627 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5628 symtab_hdr->sh_info, 0,
5629 NULL, NULL, NULL);
5630 if (isymbuf == NULL)
5631 goto relax_return;
5632 }
5633
5634 isym = isymbuf + r_symndx;
5635 if (isym->st_shndx == SHN_UNDEF)
5636 continue;
5637 else if (isym->st_shndx == SHN_ABS)
5638 sym_sec = bfd_abs_section_ptr;
5639 else if (isym->st_shndx == SHN_COMMON)
5640 sym_sec = bfd_com_section_ptr;
5641 else
5642 sym_sec
5643 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5644 symval = isym->st_value
5645 + sym_sec->output_section->vma
5646 + sym_sec->output_offset;
5647 }
5648
5649 /* Compute branch offset, from delay slot of the jump to the
5650 branch target. */
5651 sym_offset = (symval + irel->r_addend)
5652 - (sec_start + irel->r_offset + 4);
5653
5654 /* Branch offset must be properly aligned. */
5655 if ((sym_offset & 3) != 0)
5656 continue;
5657
5658 sym_offset >>= 2;
5659
5660 /* Check that it's in range. */
5661 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5662 continue;
5663
5664 /* Get the section contents if we haven't done so already. */
5665 if (contents == NULL)
5666 {
5667 /* Get cached copy if it exists. */
5668 if (elf_section_data (sec)->this_hdr.contents != NULL)
5669 contents = elf_section_data (sec)->this_hdr.contents;
5670 else
5671 {
5672 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5673 if (contents == NULL)
5674 goto relax_return;
5675
5676 free_contents = contents;
5677 if (! bfd_get_section_contents (abfd, sec, contents,
5678 (file_ptr) 0, sec->_raw_size))
5679 goto relax_return;
5680 }
5681 }
5682
5683 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5684
5685 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5686 if ((instruction & 0xfc1fffff) == 0x0000f809)
5687 instruction = 0x04110000;
5688 /* If it was jr <reg>, turn it into b <target>. */
5689 else if ((instruction & 0xfc1fffff) == 0x00000008)
5690 instruction = 0x10000000;
5691 else
5692 continue;
5693
5694 instruction |= (sym_offset & 0xffff);
5695 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5696 changed_contents = TRUE;
5697 }
5698
5699 if (contents != NULL
5700 && elf_section_data (sec)->this_hdr.contents != contents)
5701 {
5702 if (!changed_contents && !link_info->keep_memory)
5703 free (contents);
5704 else
5705 {
5706 /* Cache the section contents for elf_link_input_bfd. */
5707 elf_section_data (sec)->this_hdr.contents = contents;
5708 }
5709 }
5710 return TRUE;
5711
5712 relax_return:
5713 if (free_contents != NULL)
5714 free (free_contents);
5715 return FALSE;
5716 }
5717 \f
5718 /* Adjust a symbol defined by a dynamic object and referenced by a
5719 regular object. The current definition is in some section of the
5720 dynamic object, but we're not including those sections. We have to
5721 change the definition to something the rest of the link can
5722 understand. */
5723
5724 bfd_boolean
5725 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5726 struct bfd_link_info *info;
5727 struct elf_link_hash_entry *h;
5728 {
5729 bfd *dynobj;
5730 struct mips_elf_link_hash_entry *hmips;
5731 asection *s;
5732
5733 dynobj = elf_hash_table (info)->dynobj;
5734
5735 /* Make sure we know what is going on here. */
5736 BFD_ASSERT (dynobj != NULL
5737 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5738 || h->weakdef != NULL
5739 || ((h->elf_link_hash_flags
5740 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5741 && (h->elf_link_hash_flags
5742 & ELF_LINK_HASH_REF_REGULAR) != 0
5743 && (h->elf_link_hash_flags
5744 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5745
5746 /* If this symbol is defined in a dynamic object, we need to copy
5747 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5748 file. */
5749 hmips = (struct mips_elf_link_hash_entry *) h;
5750 if (! info->relocatable
5751 && hmips->possibly_dynamic_relocs != 0
5752 && (h->root.type == bfd_link_hash_defweak
5753 || (h->elf_link_hash_flags
5754 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5755 {
5756 mips_elf_allocate_dynamic_relocations (dynobj,
5757 hmips->possibly_dynamic_relocs);
5758 if (hmips->readonly_reloc)
5759 /* We tell the dynamic linker that there are relocations
5760 against the text segment. */
5761 info->flags |= DF_TEXTREL;
5762 }
5763
5764 /* For a function, create a stub, if allowed. */
5765 if (! hmips->no_fn_stub
5766 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5767 {
5768 if (! elf_hash_table (info)->dynamic_sections_created)
5769 return TRUE;
5770
5771 /* If this symbol is not defined in a regular file, then set
5772 the symbol to the stub location. This is required to make
5773 function pointers compare as equal between the normal
5774 executable and the shared library. */
5775 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5776 {
5777 /* We need .stub section. */
5778 s = bfd_get_section_by_name (dynobj,
5779 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5780 BFD_ASSERT (s != NULL);
5781
5782 h->root.u.def.section = s;
5783 h->root.u.def.value = s->_raw_size;
5784
5785 /* XXX Write this stub address somewhere. */
5786 h->plt.offset = s->_raw_size;
5787
5788 /* Make room for this stub code. */
5789 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5790
5791 /* The last half word of the stub will be filled with the index
5792 of this symbol in .dynsym section. */
5793 return TRUE;
5794 }
5795 }
5796 else if ((h->type == STT_FUNC)
5797 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5798 {
5799 /* This will set the entry for this symbol in the GOT to 0, and
5800 the dynamic linker will take care of this. */
5801 h->root.u.def.value = 0;
5802 return TRUE;
5803 }
5804
5805 /* If this is a weak symbol, and there is a real definition, the
5806 processor independent code will have arranged for us to see the
5807 real definition first, and we can just use the same value. */
5808 if (h->weakdef != NULL)
5809 {
5810 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5811 || h->weakdef->root.type == bfd_link_hash_defweak);
5812 h->root.u.def.section = h->weakdef->root.u.def.section;
5813 h->root.u.def.value = h->weakdef->root.u.def.value;
5814 return TRUE;
5815 }
5816
5817 /* This is a reference to a symbol defined by a dynamic object which
5818 is not a function. */
5819
5820 return TRUE;
5821 }
5822 \f
5823 /* This function is called after all the input files have been read,
5824 and the input sections have been assigned to output sections. We
5825 check for any mips16 stub sections that we can discard. */
5826
5827 bfd_boolean
5828 _bfd_mips_elf_always_size_sections (output_bfd, info)
5829 bfd *output_bfd;
5830 struct bfd_link_info *info;
5831 {
5832 asection *ri;
5833
5834 bfd *dynobj;
5835 asection *s;
5836 struct mips_got_info *g;
5837 int i;
5838 bfd_size_type loadable_size = 0;
5839 bfd_size_type local_gotno;
5840 bfd *sub;
5841
5842 /* The .reginfo section has a fixed size. */
5843 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5844 if (ri != NULL)
5845 bfd_set_section_size (output_bfd, ri,
5846 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5847
5848 if (! (info->relocatable
5849 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5850 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5851 mips_elf_check_mips16_stubs,
5852 (PTR) NULL);
5853
5854 dynobj = elf_hash_table (info)->dynobj;
5855 if (dynobj == NULL)
5856 /* Relocatable links don't have it. */
5857 return TRUE;
5858
5859 g = mips_elf_got_info (dynobj, &s);
5860 if (s == NULL)
5861 return TRUE;
5862
5863 /* Calculate the total loadable size of the output. That
5864 will give us the maximum number of GOT_PAGE entries
5865 required. */
5866 for (sub = info->input_bfds; sub; sub = sub->link_next)
5867 {
5868 asection *subsection;
5869
5870 for (subsection = sub->sections;
5871 subsection;
5872 subsection = subsection->next)
5873 {
5874 if ((subsection->flags & SEC_ALLOC) == 0)
5875 continue;
5876 loadable_size += ((subsection->_raw_size + 0xf)
5877 &~ (bfd_size_type) 0xf);
5878 }
5879 }
5880
5881 /* There has to be a global GOT entry for every symbol with
5882 a dynamic symbol table index of DT_MIPS_GOTSYM or
5883 higher. Therefore, it make sense to put those symbols
5884 that need GOT entries at the end of the symbol table. We
5885 do that here. */
5886 if (! mips_elf_sort_hash_table (info, 1))
5887 return FALSE;
5888
5889 if (g->global_gotsym != NULL)
5890 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5891 else
5892 /* If there are no global symbols, or none requiring
5893 relocations, then GLOBAL_GOTSYM will be NULL. */
5894 i = 0;
5895
5896 /* In the worst case, we'll get one stub per dynamic symbol, plus
5897 one to account for the dummy entry at the end required by IRIX
5898 rld. */
5899 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5900
5901 /* Assume there are two loadable segments consisting of
5902 contiguous sections. Is 5 enough? */
5903 local_gotno = (loadable_size >> 16) + 5;
5904
5905 g->local_gotno += local_gotno;
5906 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5907
5908 g->global_gotno = i;
5909 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5910
5911 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5912 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5913 return FALSE;
5914
5915 return TRUE;
5916 }
5917
5918 /* Set the sizes of the dynamic sections. */
5919
5920 bfd_boolean
5921 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5922 bfd *output_bfd;
5923 struct bfd_link_info *info;
5924 {
5925 bfd *dynobj;
5926 asection *s;
5927 bfd_boolean reltext;
5928
5929 dynobj = elf_hash_table (info)->dynobj;
5930 BFD_ASSERT (dynobj != NULL);
5931
5932 if (elf_hash_table (info)->dynamic_sections_created)
5933 {
5934 /* Set the contents of the .interp section to the interpreter. */
5935 if (! info->shared)
5936 {
5937 s = bfd_get_section_by_name (dynobj, ".interp");
5938 BFD_ASSERT (s != NULL);
5939 s->_raw_size
5940 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5941 s->contents
5942 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5943 }
5944 }
5945
5946 /* The check_relocs and adjust_dynamic_symbol entry points have
5947 determined the sizes of the various dynamic sections. Allocate
5948 memory for them. */
5949 reltext = FALSE;
5950 for (s = dynobj->sections; s != NULL; s = s->next)
5951 {
5952 const char *name;
5953 bfd_boolean strip;
5954
5955 /* It's OK to base decisions on the section name, because none
5956 of the dynobj section names depend upon the input files. */
5957 name = bfd_get_section_name (dynobj, s);
5958
5959 if ((s->flags & SEC_LINKER_CREATED) == 0)
5960 continue;
5961
5962 strip = FALSE;
5963
5964 if (strncmp (name, ".rel", 4) == 0)
5965 {
5966 if (s->_raw_size == 0)
5967 {
5968 /* We only strip the section if the output section name
5969 has the same name. Otherwise, there might be several
5970 input sections for this output section. FIXME: This
5971 code is probably not needed these days anyhow, since
5972 the linker now does not create empty output sections. */
5973 if (s->output_section != NULL
5974 && strcmp (name,
5975 bfd_get_section_name (s->output_section->owner,
5976 s->output_section)) == 0)
5977 strip = TRUE;
5978 }
5979 else
5980 {
5981 const char *outname;
5982 asection *target;
5983
5984 /* If this relocation section applies to a read only
5985 section, then we probably need a DT_TEXTREL entry.
5986 If the relocation section is .rel.dyn, we always
5987 assert a DT_TEXTREL entry rather than testing whether
5988 there exists a relocation to a read only section or
5989 not. */
5990 outname = bfd_get_section_name (output_bfd,
5991 s->output_section);
5992 target = bfd_get_section_by_name (output_bfd, outname + 4);
5993 if ((target != NULL
5994 && (target->flags & SEC_READONLY) != 0
5995 && (target->flags & SEC_ALLOC) != 0)
5996 || strcmp (outname, ".rel.dyn") == 0)
5997 reltext = TRUE;
5998
5999 /* We use the reloc_count field as a counter if we need
6000 to copy relocs into the output file. */
6001 if (strcmp (name, ".rel.dyn") != 0)
6002 s->reloc_count = 0;
6003
6004 /* If combreloc is enabled, elf_link_sort_relocs() will
6005 sort relocations, but in a different way than we do,
6006 and before we're done creating relocations. Also, it
6007 will move them around between input sections'
6008 relocation's contents, so our sorting would be
6009 broken, so don't let it run. */
6010 info->combreloc = 0;
6011 }
6012 }
6013 else if (strncmp (name, ".got", 4) == 0)
6014 {
6015 /* _bfd_mips_elf_always_size_sections() has already done
6016 most of the work, but some symbols may have been mapped
6017 to versions that we must now resolve in the got_entries
6018 hash tables. */
6019 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6020 struct mips_got_info *g = gg;
6021 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6022 unsigned int needed_relocs = 0;
6023
6024 if (gg->next)
6025 {
6026 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6027 set_got_offset_arg.info = info;
6028
6029 mips_elf_resolve_final_got_entries (gg);
6030 for (g = gg->next; g && g->next != gg; g = g->next)
6031 {
6032 unsigned int save_assign;
6033
6034 mips_elf_resolve_final_got_entries (g);
6035
6036 /* Assign offsets to global GOT entries. */
6037 save_assign = g->assigned_gotno;
6038 g->assigned_gotno = g->local_gotno;
6039 set_got_offset_arg.g = g;
6040 set_got_offset_arg.needed_relocs = 0;
6041 htab_traverse (g->got_entries,
6042 mips_elf_set_global_got_offset,
6043 &set_got_offset_arg);
6044 needed_relocs += set_got_offset_arg.needed_relocs;
6045 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6046 <= g->global_gotno);
6047
6048 g->assigned_gotno = save_assign;
6049 if (info->shared)
6050 {
6051 needed_relocs += g->local_gotno - g->assigned_gotno;
6052 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6053 + g->next->global_gotno
6054 + MIPS_RESERVED_GOTNO);
6055 }
6056 }
6057
6058 if (needed_relocs)
6059 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6060 }
6061 }
6062 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6063 {
6064 /* IRIX rld assumes that the function stub isn't at the end
6065 of .text section. So put a dummy. XXX */
6066 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6067 }
6068 else if (! info->shared
6069 && ! mips_elf_hash_table (info)->use_rld_obj_head
6070 && strncmp (name, ".rld_map", 8) == 0)
6071 {
6072 /* We add a room for __rld_map. It will be filled in by the
6073 rtld to contain a pointer to the _r_debug structure. */
6074 s->_raw_size += 4;
6075 }
6076 else if (SGI_COMPAT (output_bfd)
6077 && strncmp (name, ".compact_rel", 12) == 0)
6078 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6079 else if (strcmp (name, ".msym") == 0)
6080 s->_raw_size = (sizeof (Elf32_External_Msym)
6081 * (elf_hash_table (info)->dynsymcount
6082 + bfd_count_sections (output_bfd)));
6083 else if (strncmp (name, ".init", 5) != 0)
6084 {
6085 /* It's not one of our sections, so don't allocate space. */
6086 continue;
6087 }
6088
6089 if (strip)
6090 {
6091 _bfd_strip_section_from_output (info, s);
6092 continue;
6093 }
6094
6095 /* Allocate memory for the section contents. */
6096 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6097 if (s->contents == NULL && s->_raw_size != 0)
6098 {
6099 bfd_set_error (bfd_error_no_memory);
6100 return FALSE;
6101 }
6102 }
6103
6104 if (elf_hash_table (info)->dynamic_sections_created)
6105 {
6106 /* Add some entries to the .dynamic section. We fill in the
6107 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6108 must add the entries now so that we get the correct size for
6109 the .dynamic section. The DT_DEBUG entry is filled in by the
6110 dynamic linker and used by the debugger. */
6111 if (! info->shared)
6112 {
6113 /* SGI object has the equivalence of DT_DEBUG in the
6114 DT_MIPS_RLD_MAP entry. */
6115 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6116 return FALSE;
6117 if (!SGI_COMPAT (output_bfd))
6118 {
6119 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6120 return FALSE;
6121 }
6122 }
6123 else
6124 {
6125 /* Shared libraries on traditional mips have DT_DEBUG. */
6126 if (!SGI_COMPAT (output_bfd))
6127 {
6128 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6129 return FALSE;
6130 }
6131 }
6132
6133 if (reltext && SGI_COMPAT (output_bfd))
6134 info->flags |= DF_TEXTREL;
6135
6136 if ((info->flags & DF_TEXTREL) != 0)
6137 {
6138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6139 return FALSE;
6140 }
6141
6142 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6143 return FALSE;
6144
6145 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6146 {
6147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6148 return FALSE;
6149
6150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6151 return FALSE;
6152
6153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6154 return FALSE;
6155 }
6156
6157 if (SGI_COMPAT (output_bfd))
6158 {
6159 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
6160 return FALSE;
6161 }
6162
6163 if (SGI_COMPAT (output_bfd))
6164 {
6165 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
6166 return FALSE;
6167 }
6168
6169 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6170 {
6171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
6172 return FALSE;
6173
6174 s = bfd_get_section_by_name (dynobj, ".liblist");
6175 BFD_ASSERT (s != NULL);
6176
6177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
6178 return FALSE;
6179 }
6180
6181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6182 return FALSE;
6183
6184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6185 return FALSE;
6186
6187 #if 0
6188 /* Time stamps in executable files are a bad idea. */
6189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6190 return FALSE;
6191 #endif
6192
6193 #if 0 /* FIXME */
6194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6195 return FALSE;
6196 #endif
6197
6198 #if 0 /* FIXME */
6199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6200 return FALSE;
6201 #endif
6202
6203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6204 return FALSE;
6205
6206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6207 return FALSE;
6208
6209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6210 return FALSE;
6211
6212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6213 return FALSE;
6214
6215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6216 return FALSE;
6217
6218 if (IRIX_COMPAT (dynobj) == ict_irix5
6219 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6220 return FALSE;
6221
6222 if (IRIX_COMPAT (dynobj) == ict_irix6
6223 && (bfd_get_section_by_name
6224 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6226 return FALSE;
6227
6228 if (bfd_get_section_by_name (dynobj, ".msym")
6229 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
6230 return FALSE;
6231 }
6232
6233 return TRUE;
6234 }
6235 \f
6236 /* Relocate a MIPS ELF section. */
6237
6238 bfd_boolean
6239 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6240 contents, relocs, local_syms, local_sections)
6241 bfd *output_bfd;
6242 struct bfd_link_info *info;
6243 bfd *input_bfd;
6244 asection *input_section;
6245 bfd_byte *contents;
6246 Elf_Internal_Rela *relocs;
6247 Elf_Internal_Sym *local_syms;
6248 asection **local_sections;
6249 {
6250 Elf_Internal_Rela *rel;
6251 const Elf_Internal_Rela *relend;
6252 bfd_vma addend = 0;
6253 bfd_boolean use_saved_addend_p = FALSE;
6254 struct elf_backend_data *bed;
6255
6256 bed = get_elf_backend_data (output_bfd);
6257 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6258 for (rel = relocs; rel < relend; ++rel)
6259 {
6260 const char *name;
6261 bfd_vma value;
6262 reloc_howto_type *howto;
6263 bfd_boolean require_jalx;
6264 /* TRUE if the relocation is a RELA relocation, rather than a
6265 REL relocation. */
6266 bfd_boolean rela_relocation_p = TRUE;
6267 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6268 const char * msg = (const char *) NULL;
6269
6270 /* Find the relocation howto for this relocation. */
6271 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6272 {
6273 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6274 64-bit code, but make sure all their addresses are in the
6275 lowermost or uppermost 32-bit section of the 64-bit address
6276 space. Thus, when they use an R_MIPS_64 they mean what is
6277 usually meant by R_MIPS_32, with the exception that the
6278 stored value is sign-extended to 64 bits. */
6279 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6280
6281 /* On big-endian systems, we need to lie about the position
6282 of the reloc. */
6283 if (bfd_big_endian (input_bfd))
6284 rel->r_offset += 4;
6285 }
6286 else
6287 /* NewABI defaults to RELA relocations. */
6288 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6289 NEWABI_P (input_bfd)
6290 && (MIPS_RELOC_RELA_P
6291 (input_bfd, input_section,
6292 rel - relocs)));
6293
6294 if (!use_saved_addend_p)
6295 {
6296 Elf_Internal_Shdr *rel_hdr;
6297
6298 /* If these relocations were originally of the REL variety,
6299 we must pull the addend out of the field that will be
6300 relocated. Otherwise, we simply use the contents of the
6301 RELA relocation. To determine which flavor or relocation
6302 this is, we depend on the fact that the INPUT_SECTION's
6303 REL_HDR is read before its REL_HDR2. */
6304 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6305 if ((size_t) (rel - relocs)
6306 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6307 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6308 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6309 {
6310 /* Note that this is a REL relocation. */
6311 rela_relocation_p = FALSE;
6312
6313 /* Get the addend, which is stored in the input file. */
6314 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6315 contents);
6316 addend &= howto->src_mask;
6317 addend <<= howto->rightshift;
6318
6319 /* For some kinds of relocations, the ADDEND is a
6320 combination of the addend stored in two different
6321 relocations. */
6322 if (r_type == R_MIPS_HI16
6323 || r_type == R_MIPS_GNU_REL_HI16
6324 || (r_type == R_MIPS_GOT16
6325 && mips_elf_local_relocation_p (input_bfd, rel,
6326 local_sections, FALSE)))
6327 {
6328 bfd_vma l;
6329 const Elf_Internal_Rela *lo16_relocation;
6330 reloc_howto_type *lo16_howto;
6331 unsigned int lo;
6332
6333 /* The combined value is the sum of the HI16 addend,
6334 left-shifted by sixteen bits, and the LO16
6335 addend, sign extended. (Usually, the code does
6336 a `lui' of the HI16 value, and then an `addiu' of
6337 the LO16 value.)
6338
6339 Scan ahead to find a matching LO16 relocation. */
6340 if (r_type == R_MIPS_GNU_REL_HI16)
6341 lo = R_MIPS_GNU_REL_LO16;
6342 else
6343 lo = R_MIPS_LO16;
6344 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6345 rel, relend);
6346 if (lo16_relocation == NULL)
6347 return FALSE;
6348
6349 /* Obtain the addend kept there. */
6350 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6351 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6352 input_bfd, contents);
6353 l &= lo16_howto->src_mask;
6354 l <<= lo16_howto->rightshift;
6355 l = _bfd_mips_elf_sign_extend (l, 16);
6356
6357 addend <<= 16;
6358
6359 /* Compute the combined addend. */
6360 addend += l;
6361
6362 /* If PC-relative, subtract the difference between the
6363 address of the LO part of the reloc and the address of
6364 the HI part. The relocation is relative to the LO
6365 part, but mips_elf_calculate_relocation() doesn't
6366 know its address or the difference from the HI part, so
6367 we subtract that difference here. See also the
6368 comment in mips_elf_calculate_relocation(). */
6369 if (r_type == R_MIPS_GNU_REL_HI16)
6370 addend -= (lo16_relocation->r_offset - rel->r_offset);
6371 }
6372 else if (r_type == R_MIPS16_GPREL)
6373 {
6374 /* The addend is scrambled in the object file. See
6375 mips_elf_perform_relocation for details on the
6376 format. */
6377 addend = (((addend & 0x1f0000) >> 5)
6378 | ((addend & 0x7e00000) >> 16)
6379 | (addend & 0x1f));
6380 }
6381 }
6382 else
6383 addend = rel->r_addend;
6384 }
6385
6386 if (info->relocatable)
6387 {
6388 Elf_Internal_Sym *sym;
6389 unsigned long r_symndx;
6390
6391 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6392 && bfd_big_endian (input_bfd))
6393 rel->r_offset -= 4;
6394
6395 /* Since we're just relocating, all we need to do is copy
6396 the relocations back out to the object file, unless
6397 they're against a section symbol, in which case we need
6398 to adjust by the section offset, or unless they're GP
6399 relative in which case we need to adjust by the amount
6400 that we're adjusting GP in this relocatable object. */
6401
6402 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6403 FALSE))
6404 /* There's nothing to do for non-local relocations. */
6405 continue;
6406
6407 if (r_type == R_MIPS16_GPREL
6408 || r_type == R_MIPS_GPREL16
6409 || r_type == R_MIPS_GPREL32
6410 || r_type == R_MIPS_LITERAL)
6411 addend -= (_bfd_get_gp_value (output_bfd)
6412 - _bfd_get_gp_value (input_bfd));
6413
6414 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6415 sym = local_syms + r_symndx;
6416 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6417 /* Adjust the addend appropriately. */
6418 addend += local_sections[r_symndx]->output_offset;
6419
6420 if (howto->partial_inplace)
6421 {
6422 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6423 then we only want to write out the high-order 16 bits.
6424 The subsequent R_MIPS_LO16 will handle the low-order bits.
6425 */
6426 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6427 || r_type == R_MIPS_GNU_REL_HI16)
6428 addend = mips_elf_high (addend);
6429 else if (r_type == R_MIPS_HIGHER)
6430 addend = mips_elf_higher (addend);
6431 else if (r_type == R_MIPS_HIGHEST)
6432 addend = mips_elf_highest (addend);
6433 }
6434
6435 if (rela_relocation_p)
6436 /* If this is a RELA relocation, just update the addend.
6437 We have to cast away constness for REL. */
6438 rel->r_addend = addend;
6439 else
6440 {
6441 /* Otherwise, we have to write the value back out. Note
6442 that we use the source mask, rather than the
6443 destination mask because the place to which we are
6444 writing will be source of the addend in the final
6445 link. */
6446 addend >>= howto->rightshift;
6447 addend &= howto->src_mask;
6448
6449 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6450 /* See the comment above about using R_MIPS_64 in the 32-bit
6451 ABI. Here, we need to update the addend. It would be
6452 possible to get away with just using the R_MIPS_32 reloc
6453 but for endianness. */
6454 {
6455 bfd_vma sign_bits;
6456 bfd_vma low_bits;
6457 bfd_vma high_bits;
6458
6459 if (addend & ((bfd_vma) 1 << 31))
6460 #ifdef BFD64
6461 sign_bits = ((bfd_vma) 1 << 32) - 1;
6462 #else
6463 sign_bits = -1;
6464 #endif
6465 else
6466 sign_bits = 0;
6467
6468 /* If we don't know that we have a 64-bit type,
6469 do two separate stores. */
6470 if (bfd_big_endian (input_bfd))
6471 {
6472 /* Store the sign-bits (which are most significant)
6473 first. */
6474 low_bits = sign_bits;
6475 high_bits = addend;
6476 }
6477 else
6478 {
6479 low_bits = addend;
6480 high_bits = sign_bits;
6481 }
6482 bfd_put_32 (input_bfd, low_bits,
6483 contents + rel->r_offset);
6484 bfd_put_32 (input_bfd, high_bits,
6485 contents + rel->r_offset + 4);
6486 continue;
6487 }
6488
6489 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6490 input_bfd, input_section,
6491 contents, FALSE))
6492 return FALSE;
6493 }
6494
6495 /* Go on to the next relocation. */
6496 continue;
6497 }
6498
6499 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6500 relocations for the same offset. In that case we are
6501 supposed to treat the output of each relocation as the addend
6502 for the next. */
6503 if (rel + 1 < relend
6504 && rel->r_offset == rel[1].r_offset
6505 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6506 use_saved_addend_p = TRUE;
6507 else
6508 use_saved_addend_p = FALSE;
6509
6510 addend >>= howto->rightshift;
6511
6512 /* Figure out what value we are supposed to relocate. */
6513 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6514 input_section, info, rel,
6515 addend, howto, local_syms,
6516 local_sections, &value,
6517 &name, &require_jalx,
6518 use_saved_addend_p))
6519 {
6520 case bfd_reloc_continue:
6521 /* There's nothing to do. */
6522 continue;
6523
6524 case bfd_reloc_undefined:
6525 /* mips_elf_calculate_relocation already called the
6526 undefined_symbol callback. There's no real point in
6527 trying to perform the relocation at this point, so we
6528 just skip ahead to the next relocation. */
6529 continue;
6530
6531 case bfd_reloc_notsupported:
6532 msg = _("internal error: unsupported relocation error");
6533 info->callbacks->warning
6534 (info, msg, name, input_bfd, input_section, rel->r_offset);
6535 return FALSE;
6536
6537 case bfd_reloc_overflow:
6538 if (use_saved_addend_p)
6539 /* Ignore overflow until we reach the last relocation for
6540 a given location. */
6541 ;
6542 else
6543 {
6544 BFD_ASSERT (name != NULL);
6545 if (! ((*info->callbacks->reloc_overflow)
6546 (info, name, howto->name, (bfd_vma) 0,
6547 input_bfd, input_section, rel->r_offset)))
6548 return FALSE;
6549 }
6550 break;
6551
6552 case bfd_reloc_ok:
6553 break;
6554
6555 default:
6556 abort ();
6557 break;
6558 }
6559
6560 /* If we've got another relocation for the address, keep going
6561 until we reach the last one. */
6562 if (use_saved_addend_p)
6563 {
6564 addend = value;
6565 continue;
6566 }
6567
6568 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6569 /* See the comment above about using R_MIPS_64 in the 32-bit
6570 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6571 that calculated the right value. Now, however, we
6572 sign-extend the 32-bit result to 64-bits, and store it as a
6573 64-bit value. We are especially generous here in that we
6574 go to extreme lengths to support this usage on systems with
6575 only a 32-bit VMA. */
6576 {
6577 bfd_vma sign_bits;
6578 bfd_vma low_bits;
6579 bfd_vma high_bits;
6580
6581 if (value & ((bfd_vma) 1 << 31))
6582 #ifdef BFD64
6583 sign_bits = ((bfd_vma) 1 << 32) - 1;
6584 #else
6585 sign_bits = -1;
6586 #endif
6587 else
6588 sign_bits = 0;
6589
6590 /* If we don't know that we have a 64-bit type,
6591 do two separate stores. */
6592 if (bfd_big_endian (input_bfd))
6593 {
6594 /* Undo what we did above. */
6595 rel->r_offset -= 4;
6596 /* Store the sign-bits (which are most significant)
6597 first. */
6598 low_bits = sign_bits;
6599 high_bits = value;
6600 }
6601 else
6602 {
6603 low_bits = value;
6604 high_bits = sign_bits;
6605 }
6606 bfd_put_32 (input_bfd, low_bits,
6607 contents + rel->r_offset);
6608 bfd_put_32 (input_bfd, high_bits,
6609 contents + rel->r_offset + 4);
6610 continue;
6611 }
6612
6613 /* Actually perform the relocation. */
6614 if (! mips_elf_perform_relocation (info, howto, rel, value,
6615 input_bfd, input_section,
6616 contents, require_jalx))
6617 return FALSE;
6618 }
6619
6620 return TRUE;
6621 }
6622 \f
6623 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6624 adjust it appropriately now. */
6625
6626 static void
6627 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6628 bfd *abfd ATTRIBUTE_UNUSED;
6629 const char *name;
6630 Elf_Internal_Sym *sym;
6631 {
6632 /* The linker script takes care of providing names and values for
6633 these, but we must place them into the right sections. */
6634 static const char* const text_section_symbols[] = {
6635 "_ftext",
6636 "_etext",
6637 "__dso_displacement",
6638 "__elf_header",
6639 "__program_header_table",
6640 NULL
6641 };
6642
6643 static const char* const data_section_symbols[] = {
6644 "_fdata",
6645 "_edata",
6646 "_end",
6647 "_fbss",
6648 NULL
6649 };
6650
6651 const char* const *p;
6652 int i;
6653
6654 for (i = 0; i < 2; ++i)
6655 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6656 *p;
6657 ++p)
6658 if (strcmp (*p, name) == 0)
6659 {
6660 /* All of these symbols are given type STT_SECTION by the
6661 IRIX6 linker. */
6662 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6663
6664 /* The IRIX linker puts these symbols in special sections. */
6665 if (i == 0)
6666 sym->st_shndx = SHN_MIPS_TEXT;
6667 else
6668 sym->st_shndx = SHN_MIPS_DATA;
6669
6670 break;
6671 }
6672 }
6673
6674 /* Finish up dynamic symbol handling. We set the contents of various
6675 dynamic sections here. */
6676
6677 bfd_boolean
6678 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6679 bfd *output_bfd;
6680 struct bfd_link_info *info;
6681 struct elf_link_hash_entry *h;
6682 Elf_Internal_Sym *sym;
6683 {
6684 bfd *dynobj;
6685 bfd_vma gval;
6686 asection *sgot;
6687 asection *smsym;
6688 struct mips_got_info *g, *gg;
6689 const char *name;
6690 struct mips_elf_link_hash_entry *mh;
6691
6692 dynobj = elf_hash_table (info)->dynobj;
6693 gval = sym->st_value;
6694 mh = (struct mips_elf_link_hash_entry *) h;
6695
6696 if (h->plt.offset != (bfd_vma) -1)
6697 {
6698 asection *s;
6699 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6700
6701 /* This symbol has a stub. Set it up. */
6702
6703 BFD_ASSERT (h->dynindx != -1);
6704
6705 s = bfd_get_section_by_name (dynobj,
6706 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6707 BFD_ASSERT (s != NULL);
6708
6709 /* FIXME: Can h->dynindex be more than 64K? */
6710 if (h->dynindx & 0xffff0000)
6711 return FALSE;
6712
6713 /* Fill the stub. */
6714 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6715 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6716 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6717 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6718
6719 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6720 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6721
6722 /* Mark the symbol as undefined. plt.offset != -1 occurs
6723 only for the referenced symbol. */
6724 sym->st_shndx = SHN_UNDEF;
6725
6726 /* The run-time linker uses the st_value field of the symbol
6727 to reset the global offset table entry for this external
6728 to its stub address when unlinking a shared object. */
6729 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6730 sym->st_value = gval;
6731 }
6732
6733 BFD_ASSERT (h->dynindx != -1
6734 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6735
6736 sgot = mips_elf_got_section (dynobj, FALSE);
6737 BFD_ASSERT (sgot != NULL);
6738 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6739 g = mips_elf_section_data (sgot)->u.got_info;
6740 BFD_ASSERT (g != NULL);
6741
6742 /* Run through the global symbol table, creating GOT entries for all
6743 the symbols that need them. */
6744 if (g->global_gotsym != NULL
6745 && h->dynindx >= g->global_gotsym->dynindx)
6746 {
6747 bfd_vma offset;
6748 bfd_vma value;
6749
6750 value = sym->st_value;
6751 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6752 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6753 }
6754
6755 if (g->next && h->dynindx != -1)
6756 {
6757 struct mips_got_entry e, *p;
6758 bfd_vma offset;
6759 bfd_vma value;
6760 Elf_Internal_Rela rel[3];
6761 bfd_vma addend = 0;
6762
6763 gg = g;
6764
6765 e.abfd = output_bfd;
6766 e.symndx = -1;
6767 e.d.h = (struct mips_elf_link_hash_entry *)h;
6768
6769 if (info->shared
6770 || h->root.type == bfd_link_hash_undefined
6771 || h->root.type == bfd_link_hash_undefweak)
6772 value = 0;
6773 else if (sym->st_value)
6774 value = sym->st_value;
6775 else
6776 value = h->root.u.def.value;
6777
6778 memset (rel, 0, sizeof (rel));
6779 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6780
6781 for (g = g->next; g->next != gg; g = g->next)
6782 {
6783 if (g->got_entries
6784 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6785 &e)))
6786 {
6787 offset = p->gotidx;
6788 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6789
6790 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6791
6792 if ((info->shared
6793 || (elf_hash_table (info)->dynamic_sections_created
6794 && p->d.h != NULL
6795 && ((p->d.h->root.elf_link_hash_flags
6796 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6797 && ((p->d.h->root.elf_link_hash_flags
6798 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6799 && ! (mips_elf_create_dynamic_relocation
6800 (output_bfd, info, rel,
6801 e.d.h, NULL, value, &addend, sgot)))
6802 return FALSE;
6803 BFD_ASSERT (addend == 0);
6804 }
6805 }
6806 }
6807
6808 /* Create a .msym entry, if appropriate. */
6809 smsym = bfd_get_section_by_name (dynobj, ".msym");
6810 if (smsym)
6811 {
6812 Elf32_Internal_Msym msym;
6813
6814 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6815 /* It is undocumented what the `1' indicates, but IRIX6 uses
6816 this value. */
6817 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6818 bfd_mips_elf_swap_msym_out
6819 (dynobj, &msym,
6820 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6821 }
6822
6823 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6824 name = h->root.root.string;
6825 if (strcmp (name, "_DYNAMIC") == 0
6826 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6827 sym->st_shndx = SHN_ABS;
6828 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6829 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6830 {
6831 sym->st_shndx = SHN_ABS;
6832 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6833 sym->st_value = 1;
6834 }
6835 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6836 {
6837 sym->st_shndx = SHN_ABS;
6838 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6839 sym->st_value = elf_gp (output_bfd);
6840 }
6841 else if (SGI_COMPAT (output_bfd))
6842 {
6843 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6844 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6845 {
6846 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6847 sym->st_other = STO_PROTECTED;
6848 sym->st_value = 0;
6849 sym->st_shndx = SHN_MIPS_DATA;
6850 }
6851 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6852 {
6853 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6854 sym->st_other = STO_PROTECTED;
6855 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6856 sym->st_shndx = SHN_ABS;
6857 }
6858 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6859 {
6860 if (h->type == STT_FUNC)
6861 sym->st_shndx = SHN_MIPS_TEXT;
6862 else if (h->type == STT_OBJECT)
6863 sym->st_shndx = SHN_MIPS_DATA;
6864 }
6865 }
6866
6867 /* Handle the IRIX6-specific symbols. */
6868 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6869 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6870
6871 if (! info->shared)
6872 {
6873 if (! mips_elf_hash_table (info)->use_rld_obj_head
6874 && (strcmp (name, "__rld_map") == 0
6875 || strcmp (name, "__RLD_MAP") == 0))
6876 {
6877 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6878 BFD_ASSERT (s != NULL);
6879 sym->st_value = s->output_section->vma + s->output_offset;
6880 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6881 if (mips_elf_hash_table (info)->rld_value == 0)
6882 mips_elf_hash_table (info)->rld_value = sym->st_value;
6883 }
6884 else if (mips_elf_hash_table (info)->use_rld_obj_head
6885 && strcmp (name, "__rld_obj_head") == 0)
6886 {
6887 /* IRIX6 does not use a .rld_map section. */
6888 if (IRIX_COMPAT (output_bfd) == ict_irix5
6889 || IRIX_COMPAT (output_bfd) == ict_none)
6890 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6891 != NULL);
6892 mips_elf_hash_table (info)->rld_value = sym->st_value;
6893 }
6894 }
6895
6896 /* If this is a mips16 symbol, force the value to be even. */
6897 if (sym->st_other == STO_MIPS16
6898 && (sym->st_value & 1) != 0)
6899 --sym->st_value;
6900
6901 return TRUE;
6902 }
6903
6904 /* Finish up the dynamic sections. */
6905
6906 bfd_boolean
6907 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6908 bfd *output_bfd;
6909 struct bfd_link_info *info;
6910 {
6911 bfd *dynobj;
6912 asection *sdyn;
6913 asection *sgot;
6914 struct mips_got_info *gg, *g;
6915
6916 dynobj = elf_hash_table (info)->dynobj;
6917
6918 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6919
6920 sgot = mips_elf_got_section (dynobj, FALSE);
6921 if (sgot == NULL)
6922 gg = g = NULL;
6923 else
6924 {
6925 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6926 gg = mips_elf_section_data (sgot)->u.got_info;
6927 BFD_ASSERT (gg != NULL);
6928 g = mips_elf_got_for_ibfd (gg, output_bfd);
6929 BFD_ASSERT (g != NULL);
6930 }
6931
6932 if (elf_hash_table (info)->dynamic_sections_created)
6933 {
6934 bfd_byte *b;
6935
6936 BFD_ASSERT (sdyn != NULL);
6937 BFD_ASSERT (g != NULL);
6938
6939 for (b = sdyn->contents;
6940 b < sdyn->contents + sdyn->_raw_size;
6941 b += MIPS_ELF_DYN_SIZE (dynobj))
6942 {
6943 Elf_Internal_Dyn dyn;
6944 const char *name;
6945 size_t elemsize;
6946 asection *s;
6947 bfd_boolean swap_out_p;
6948
6949 /* Read in the current dynamic entry. */
6950 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6951
6952 /* Assume that we're going to modify it and write it out. */
6953 swap_out_p = TRUE;
6954
6955 switch (dyn.d_tag)
6956 {
6957 case DT_RELENT:
6958 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6959 BFD_ASSERT (s != NULL);
6960 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6961 break;
6962
6963 case DT_STRSZ:
6964 /* Rewrite DT_STRSZ. */
6965 dyn.d_un.d_val =
6966 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6967 break;
6968
6969 case DT_PLTGOT:
6970 name = ".got";
6971 goto get_vma;
6972 case DT_MIPS_CONFLICT:
6973 name = ".conflict";
6974 goto get_vma;
6975 case DT_MIPS_LIBLIST:
6976 name = ".liblist";
6977 get_vma:
6978 s = bfd_get_section_by_name (output_bfd, name);
6979 BFD_ASSERT (s != NULL);
6980 dyn.d_un.d_ptr = s->vma;
6981 break;
6982
6983 case DT_MIPS_RLD_VERSION:
6984 dyn.d_un.d_val = 1; /* XXX */
6985 break;
6986
6987 case DT_MIPS_FLAGS:
6988 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6989 break;
6990
6991 case DT_MIPS_CONFLICTNO:
6992 name = ".conflict";
6993 elemsize = sizeof (Elf32_Conflict);
6994 goto set_elemno;
6995
6996 case DT_MIPS_LIBLISTNO:
6997 name = ".liblist";
6998 elemsize = sizeof (Elf32_Lib);
6999 set_elemno:
7000 s = bfd_get_section_by_name (output_bfd, name);
7001 if (s != NULL)
7002 {
7003 if (s->_cooked_size != 0)
7004 dyn.d_un.d_val = s->_cooked_size / elemsize;
7005 else
7006 dyn.d_un.d_val = s->_raw_size / elemsize;
7007 }
7008 else
7009 dyn.d_un.d_val = 0;
7010 break;
7011
7012 case DT_MIPS_TIME_STAMP:
7013 time ((time_t *) &dyn.d_un.d_val);
7014 break;
7015
7016 case DT_MIPS_ICHECKSUM:
7017 /* XXX FIXME: */
7018 swap_out_p = FALSE;
7019 break;
7020
7021 case DT_MIPS_IVERSION:
7022 /* XXX FIXME: */
7023 swap_out_p = FALSE;
7024 break;
7025
7026 case DT_MIPS_BASE_ADDRESS:
7027 s = output_bfd->sections;
7028 BFD_ASSERT (s != NULL);
7029 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7030 break;
7031
7032 case DT_MIPS_LOCAL_GOTNO:
7033 dyn.d_un.d_val = g->local_gotno;
7034 break;
7035
7036 case DT_MIPS_UNREFEXTNO:
7037 /* The index into the dynamic symbol table which is the
7038 entry of the first external symbol that is not
7039 referenced within the same object. */
7040 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7041 break;
7042
7043 case DT_MIPS_GOTSYM:
7044 if (gg->global_gotsym)
7045 {
7046 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7047 break;
7048 }
7049 /* In case if we don't have global got symbols we default
7050 to setting DT_MIPS_GOTSYM to the same value as
7051 DT_MIPS_SYMTABNO, so we just fall through. */
7052
7053 case DT_MIPS_SYMTABNO:
7054 name = ".dynsym";
7055 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7056 s = bfd_get_section_by_name (output_bfd, name);
7057 BFD_ASSERT (s != NULL);
7058
7059 if (s->_cooked_size != 0)
7060 dyn.d_un.d_val = s->_cooked_size / elemsize;
7061 else
7062 dyn.d_un.d_val = s->_raw_size / elemsize;
7063 break;
7064
7065 case DT_MIPS_HIPAGENO:
7066 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7067 break;
7068
7069 case DT_MIPS_RLD_MAP:
7070 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7071 break;
7072
7073 case DT_MIPS_OPTIONS:
7074 s = (bfd_get_section_by_name
7075 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7076 dyn.d_un.d_ptr = s->vma;
7077 break;
7078
7079 case DT_MIPS_MSYM:
7080 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7081 dyn.d_un.d_ptr = s->vma;
7082 break;
7083
7084 default:
7085 swap_out_p = FALSE;
7086 break;
7087 }
7088
7089 if (swap_out_p)
7090 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7091 (dynobj, &dyn, b);
7092 }
7093 }
7094
7095 /* The first entry of the global offset table will be filled at
7096 runtime. The second entry will be used by some runtime loaders.
7097 This isn't the case of IRIX rld. */
7098 if (sgot != NULL && sgot->_raw_size > 0)
7099 {
7100 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7101 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7102 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7103 }
7104
7105 if (sgot != NULL)
7106 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7107 = MIPS_ELF_GOT_SIZE (output_bfd);
7108
7109 /* Generate dynamic relocations for the non-primary gots. */
7110 if (gg != NULL && gg->next)
7111 {
7112 Elf_Internal_Rela rel[3];
7113 bfd_vma addend = 0;
7114
7115 memset (rel, 0, sizeof (rel));
7116 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7117
7118 for (g = gg->next; g->next != gg; g = g->next)
7119 {
7120 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7121
7122 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7123 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7124 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7125 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7126
7127 if (! info->shared)
7128 continue;
7129
7130 while (index < g->assigned_gotno)
7131 {
7132 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7133 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7134 if (!(mips_elf_create_dynamic_relocation
7135 (output_bfd, info, rel, NULL,
7136 bfd_abs_section_ptr,
7137 0, &addend, sgot)))
7138 return FALSE;
7139 BFD_ASSERT (addend == 0);
7140 }
7141 }
7142 }
7143
7144 {
7145 asection *smsym;
7146 asection *s;
7147 Elf32_compact_rel cpt;
7148
7149 /* ??? The section symbols for the output sections were set up in
7150 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7151 symbols. Should we do so? */
7152
7153 smsym = bfd_get_section_by_name (dynobj, ".msym");
7154 if (smsym != NULL)
7155 {
7156 Elf32_Internal_Msym msym;
7157
7158 msym.ms_hash_value = 0;
7159 msym.ms_info = ELF32_MS_INFO (0, 1);
7160
7161 for (s = output_bfd->sections; s != NULL; s = s->next)
7162 {
7163 long dynindx = elf_section_data (s)->dynindx;
7164
7165 bfd_mips_elf_swap_msym_out
7166 (output_bfd, &msym,
7167 (((Elf32_External_Msym *) smsym->contents)
7168 + dynindx));
7169 }
7170 }
7171
7172 if (SGI_COMPAT (output_bfd))
7173 {
7174 /* Write .compact_rel section out. */
7175 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7176 if (s != NULL)
7177 {
7178 cpt.id1 = 1;
7179 cpt.num = s->reloc_count;
7180 cpt.id2 = 2;
7181 cpt.offset = (s->output_section->filepos
7182 + sizeof (Elf32_External_compact_rel));
7183 cpt.reserved0 = 0;
7184 cpt.reserved1 = 0;
7185 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7186 ((Elf32_External_compact_rel *)
7187 s->contents));
7188
7189 /* Clean up a dummy stub function entry in .text. */
7190 s = bfd_get_section_by_name (dynobj,
7191 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7192 if (s != NULL)
7193 {
7194 file_ptr dummy_offset;
7195
7196 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7197 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7198 memset (s->contents + dummy_offset, 0,
7199 MIPS_FUNCTION_STUB_SIZE);
7200 }
7201 }
7202 }
7203
7204 /* We need to sort the entries of the dynamic relocation section. */
7205
7206 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7207
7208 if (s != NULL
7209 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7210 {
7211 reldyn_sorting_bfd = output_bfd;
7212
7213 if (ABI_64_P (output_bfd))
7214 qsort ((Elf64_External_Rel *) s->contents + 1,
7215 (size_t) s->reloc_count - 1,
7216 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7217 else
7218 qsort ((Elf32_External_Rel *) s->contents + 1,
7219 (size_t) s->reloc_count - 1,
7220 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7221 }
7222 }
7223
7224 return TRUE;
7225 }
7226
7227
7228 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7229
7230 static void
7231 mips_set_isa_flags (abfd)
7232 bfd *abfd;
7233 {
7234 flagword val;
7235
7236 switch (bfd_get_mach (abfd))
7237 {
7238 default:
7239 case bfd_mach_mips3000:
7240 val = E_MIPS_ARCH_1;
7241 break;
7242
7243 case bfd_mach_mips3900:
7244 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7245 break;
7246
7247 case bfd_mach_mips6000:
7248 val = E_MIPS_ARCH_2;
7249 break;
7250
7251 case bfd_mach_mips4000:
7252 case bfd_mach_mips4300:
7253 case bfd_mach_mips4400:
7254 case bfd_mach_mips4600:
7255 val = E_MIPS_ARCH_3;
7256 break;
7257
7258 case bfd_mach_mips4010:
7259 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7260 break;
7261
7262 case bfd_mach_mips4100:
7263 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7264 break;
7265
7266 case bfd_mach_mips4111:
7267 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7268 break;
7269
7270 case bfd_mach_mips4120:
7271 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7272 break;
7273
7274 case bfd_mach_mips4650:
7275 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7276 break;
7277
7278 case bfd_mach_mips5400:
7279 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7280 break;
7281
7282 case bfd_mach_mips5500:
7283 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7284 break;
7285
7286 case bfd_mach_mips5000:
7287 case bfd_mach_mips8000:
7288 case bfd_mach_mips10000:
7289 case bfd_mach_mips12000:
7290 val = E_MIPS_ARCH_4;
7291 break;
7292
7293 case bfd_mach_mips5:
7294 val = E_MIPS_ARCH_5;
7295 break;
7296
7297 case bfd_mach_mips_sb1:
7298 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7299 break;
7300
7301 case bfd_mach_mipsisa32:
7302 val = E_MIPS_ARCH_32;
7303 break;
7304
7305 case bfd_mach_mipsisa64:
7306 val = E_MIPS_ARCH_64;
7307 break;
7308
7309 case bfd_mach_mipsisa32r2:
7310 val = E_MIPS_ARCH_32R2;
7311 break;
7312 }
7313 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7314 elf_elfheader (abfd)->e_flags |= val;
7315
7316 }
7317
7318
7319 /* The final processing done just before writing out a MIPS ELF object
7320 file. This gets the MIPS architecture right based on the machine
7321 number. This is used by both the 32-bit and the 64-bit ABI. */
7322
7323 void
7324 _bfd_mips_elf_final_write_processing (abfd, linker)
7325 bfd *abfd;
7326 bfd_boolean linker ATTRIBUTE_UNUSED;
7327 {
7328 unsigned int i;
7329 Elf_Internal_Shdr **hdrpp;
7330 const char *name;
7331 asection *sec;
7332
7333 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7334 is nonzero. This is for compatibility with old objects, which used
7335 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7336 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7337 mips_set_isa_flags (abfd);
7338
7339 /* Set the sh_info field for .gptab sections and other appropriate
7340 info for each special section. */
7341 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7342 i < elf_numsections (abfd);
7343 i++, hdrpp++)
7344 {
7345 switch ((*hdrpp)->sh_type)
7346 {
7347 case SHT_MIPS_MSYM:
7348 case SHT_MIPS_LIBLIST:
7349 sec = bfd_get_section_by_name (abfd, ".dynstr");
7350 if (sec != NULL)
7351 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7352 break;
7353
7354 case SHT_MIPS_GPTAB:
7355 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7356 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7357 BFD_ASSERT (name != NULL
7358 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7359 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7360 BFD_ASSERT (sec != NULL);
7361 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7362 break;
7363
7364 case SHT_MIPS_CONTENT:
7365 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7366 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7367 BFD_ASSERT (name != NULL
7368 && strncmp (name, ".MIPS.content",
7369 sizeof ".MIPS.content" - 1) == 0);
7370 sec = bfd_get_section_by_name (abfd,
7371 name + sizeof ".MIPS.content" - 1);
7372 BFD_ASSERT (sec != NULL);
7373 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7374 break;
7375
7376 case SHT_MIPS_SYMBOL_LIB:
7377 sec = bfd_get_section_by_name (abfd, ".dynsym");
7378 if (sec != NULL)
7379 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7380 sec = bfd_get_section_by_name (abfd, ".liblist");
7381 if (sec != NULL)
7382 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7383 break;
7384
7385 case SHT_MIPS_EVENTS:
7386 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7387 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7388 BFD_ASSERT (name != NULL);
7389 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7390 sec = bfd_get_section_by_name (abfd,
7391 name + sizeof ".MIPS.events" - 1);
7392 else
7393 {
7394 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7395 sizeof ".MIPS.post_rel" - 1) == 0);
7396 sec = bfd_get_section_by_name (abfd,
7397 (name
7398 + sizeof ".MIPS.post_rel" - 1));
7399 }
7400 BFD_ASSERT (sec != NULL);
7401 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7402 break;
7403
7404 }
7405 }
7406 }
7407 \f
7408 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7409 segments. */
7410
7411 int
7412 _bfd_mips_elf_additional_program_headers (abfd)
7413 bfd *abfd;
7414 {
7415 asection *s;
7416 int ret = 0;
7417
7418 /* See if we need a PT_MIPS_REGINFO segment. */
7419 s = bfd_get_section_by_name (abfd, ".reginfo");
7420 if (s && (s->flags & SEC_LOAD))
7421 ++ret;
7422
7423 /* See if we need a PT_MIPS_OPTIONS segment. */
7424 if (IRIX_COMPAT (abfd) == ict_irix6
7425 && bfd_get_section_by_name (abfd,
7426 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7427 ++ret;
7428
7429 /* See if we need a PT_MIPS_RTPROC segment. */
7430 if (IRIX_COMPAT (abfd) == ict_irix5
7431 && bfd_get_section_by_name (abfd, ".dynamic")
7432 && bfd_get_section_by_name (abfd, ".mdebug"))
7433 ++ret;
7434
7435 return ret;
7436 }
7437
7438 /* Modify the segment map for an IRIX5 executable. */
7439
7440 bfd_boolean
7441 _bfd_mips_elf_modify_segment_map (abfd)
7442 bfd *abfd;
7443 {
7444 asection *s;
7445 struct elf_segment_map *m, **pm;
7446 bfd_size_type amt;
7447
7448 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7449 segment. */
7450 s = bfd_get_section_by_name (abfd, ".reginfo");
7451 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7452 {
7453 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7454 if (m->p_type == PT_MIPS_REGINFO)
7455 break;
7456 if (m == NULL)
7457 {
7458 amt = sizeof *m;
7459 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7460 if (m == NULL)
7461 return FALSE;
7462
7463 m->p_type = PT_MIPS_REGINFO;
7464 m->count = 1;
7465 m->sections[0] = s;
7466
7467 /* We want to put it after the PHDR and INTERP segments. */
7468 pm = &elf_tdata (abfd)->segment_map;
7469 while (*pm != NULL
7470 && ((*pm)->p_type == PT_PHDR
7471 || (*pm)->p_type == PT_INTERP))
7472 pm = &(*pm)->next;
7473
7474 m->next = *pm;
7475 *pm = m;
7476 }
7477 }
7478
7479 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7480 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7481 PT_OPTIONS segment immediately following the program header
7482 table. */
7483 if (NEWABI_P (abfd)
7484 /* On non-IRIX6 new abi, we'll have already created a segment
7485 for this section, so don't create another. I'm not sure this
7486 is not also the case for IRIX 6, but I can't test it right
7487 now. */
7488 && IRIX_COMPAT (abfd) == ict_irix6)
7489 {
7490 for (s = abfd->sections; s; s = s->next)
7491 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7492 break;
7493
7494 if (s)
7495 {
7496 struct elf_segment_map *options_segment;
7497
7498 /* Usually, there's a program header table. But, sometimes
7499 there's not (like when running the `ld' testsuite). So,
7500 if there's no program header table, we just put the
7501 options segment at the end. */
7502 for (pm = &elf_tdata (abfd)->segment_map;
7503 *pm != NULL;
7504 pm = &(*pm)->next)
7505 if ((*pm)->p_type == PT_PHDR)
7506 break;
7507
7508 amt = sizeof (struct elf_segment_map);
7509 options_segment = bfd_zalloc (abfd, amt);
7510 options_segment->next = *pm;
7511 options_segment->p_type = PT_MIPS_OPTIONS;
7512 options_segment->p_flags = PF_R;
7513 options_segment->p_flags_valid = TRUE;
7514 options_segment->count = 1;
7515 options_segment->sections[0] = s;
7516 *pm = options_segment;
7517 }
7518 }
7519 else
7520 {
7521 if (IRIX_COMPAT (abfd) == ict_irix5)
7522 {
7523 /* If there are .dynamic and .mdebug sections, we make a room
7524 for the RTPROC header. FIXME: Rewrite without section names. */
7525 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7526 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7527 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7528 {
7529 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7530 if (m->p_type == PT_MIPS_RTPROC)
7531 break;
7532 if (m == NULL)
7533 {
7534 amt = sizeof *m;
7535 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7536 if (m == NULL)
7537 return FALSE;
7538
7539 m->p_type = PT_MIPS_RTPROC;
7540
7541 s = bfd_get_section_by_name (abfd, ".rtproc");
7542 if (s == NULL)
7543 {
7544 m->count = 0;
7545 m->p_flags = 0;
7546 m->p_flags_valid = 1;
7547 }
7548 else
7549 {
7550 m->count = 1;
7551 m->sections[0] = s;
7552 }
7553
7554 /* We want to put it after the DYNAMIC segment. */
7555 pm = &elf_tdata (abfd)->segment_map;
7556 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7557 pm = &(*pm)->next;
7558 if (*pm != NULL)
7559 pm = &(*pm)->next;
7560
7561 m->next = *pm;
7562 *pm = m;
7563 }
7564 }
7565 }
7566 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7567 .dynstr, .dynsym, and .hash sections, and everything in
7568 between. */
7569 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7570 pm = &(*pm)->next)
7571 if ((*pm)->p_type == PT_DYNAMIC)
7572 break;
7573 m = *pm;
7574 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7575 {
7576 /* For a normal mips executable the permissions for the PT_DYNAMIC
7577 segment are read, write and execute. We do that here since
7578 the code in elf.c sets only the read permission. This matters
7579 sometimes for the dynamic linker. */
7580 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7581 {
7582 m->p_flags = PF_R | PF_W | PF_X;
7583 m->p_flags_valid = 1;
7584 }
7585 }
7586 if (m != NULL
7587 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7588 {
7589 static const char *sec_names[] =
7590 {
7591 ".dynamic", ".dynstr", ".dynsym", ".hash"
7592 };
7593 bfd_vma low, high;
7594 unsigned int i, c;
7595 struct elf_segment_map *n;
7596
7597 low = 0xffffffff;
7598 high = 0;
7599 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7600 {
7601 s = bfd_get_section_by_name (abfd, sec_names[i]);
7602 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7603 {
7604 bfd_size_type sz;
7605
7606 if (low > s->vma)
7607 low = s->vma;
7608 sz = s->_cooked_size;
7609 if (sz == 0)
7610 sz = s->_raw_size;
7611 if (high < s->vma + sz)
7612 high = s->vma + sz;
7613 }
7614 }
7615
7616 c = 0;
7617 for (s = abfd->sections; s != NULL; s = s->next)
7618 if ((s->flags & SEC_LOAD) != 0
7619 && s->vma >= low
7620 && ((s->vma
7621 + (s->_cooked_size !=
7622 0 ? s->_cooked_size : s->_raw_size)) <= high))
7623 ++c;
7624
7625 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7626 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7627 if (n == NULL)
7628 return FALSE;
7629 *n = *m;
7630 n->count = c;
7631
7632 i = 0;
7633 for (s = abfd->sections; s != NULL; s = s->next)
7634 {
7635 if ((s->flags & SEC_LOAD) != 0
7636 && s->vma >= low
7637 && ((s->vma
7638 + (s->_cooked_size != 0 ?
7639 s->_cooked_size : s->_raw_size)) <= high))
7640 {
7641 n->sections[i] = s;
7642 ++i;
7643 }
7644 }
7645
7646 *pm = n;
7647 }
7648 }
7649
7650 return TRUE;
7651 }
7652 \f
7653 /* Return the section that should be marked against GC for a given
7654 relocation. */
7655
7656 asection *
7657 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7658 asection *sec;
7659 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7660 Elf_Internal_Rela *rel;
7661 struct elf_link_hash_entry *h;
7662 Elf_Internal_Sym *sym;
7663 {
7664 /* ??? Do mips16 stub sections need to be handled special? */
7665
7666 if (h != NULL)
7667 {
7668 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7669 {
7670 case R_MIPS_GNU_VTINHERIT:
7671 case R_MIPS_GNU_VTENTRY:
7672 break;
7673
7674 default:
7675 switch (h->root.type)
7676 {
7677 case bfd_link_hash_defined:
7678 case bfd_link_hash_defweak:
7679 return h->root.u.def.section;
7680
7681 case bfd_link_hash_common:
7682 return h->root.u.c.p->section;
7683
7684 default:
7685 break;
7686 }
7687 }
7688 }
7689 else
7690 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7691
7692 return NULL;
7693 }
7694
7695 /* Update the got entry reference counts for the section being removed. */
7696
7697 bfd_boolean
7698 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7699 bfd *abfd ATTRIBUTE_UNUSED;
7700 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7701 asection *sec ATTRIBUTE_UNUSED;
7702 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7703 {
7704 #if 0
7705 Elf_Internal_Shdr *symtab_hdr;
7706 struct elf_link_hash_entry **sym_hashes;
7707 bfd_signed_vma *local_got_refcounts;
7708 const Elf_Internal_Rela *rel, *relend;
7709 unsigned long r_symndx;
7710 struct elf_link_hash_entry *h;
7711
7712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7713 sym_hashes = elf_sym_hashes (abfd);
7714 local_got_refcounts = elf_local_got_refcounts (abfd);
7715
7716 relend = relocs + sec->reloc_count;
7717 for (rel = relocs; rel < relend; rel++)
7718 switch (ELF_R_TYPE (abfd, rel->r_info))
7719 {
7720 case R_MIPS_GOT16:
7721 case R_MIPS_CALL16:
7722 case R_MIPS_CALL_HI16:
7723 case R_MIPS_CALL_LO16:
7724 case R_MIPS_GOT_HI16:
7725 case R_MIPS_GOT_LO16:
7726 case R_MIPS_GOT_DISP:
7727 case R_MIPS_GOT_PAGE:
7728 case R_MIPS_GOT_OFST:
7729 /* ??? It would seem that the existing MIPS code does no sort
7730 of reference counting or whatnot on its GOT and PLT entries,
7731 so it is not possible to garbage collect them at this time. */
7732 break;
7733
7734 default:
7735 break;
7736 }
7737 #endif
7738
7739 return TRUE;
7740 }
7741 \f
7742 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7743 hiding the old indirect symbol. Process additional relocation
7744 information. Also called for weakdefs, in which case we just let
7745 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7746
7747 void
7748 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7749 struct elf_backend_data *bed;
7750 struct elf_link_hash_entry *dir, *ind;
7751 {
7752 struct mips_elf_link_hash_entry *dirmips, *indmips;
7753
7754 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7755
7756 if (ind->root.type != bfd_link_hash_indirect)
7757 return;
7758
7759 dirmips = (struct mips_elf_link_hash_entry *) dir;
7760 indmips = (struct mips_elf_link_hash_entry *) ind;
7761 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7762 if (indmips->readonly_reloc)
7763 dirmips->readonly_reloc = TRUE;
7764 if (dirmips->min_dyn_reloc_index == 0
7765 || (indmips->min_dyn_reloc_index != 0
7766 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7767 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7768 if (indmips->no_fn_stub)
7769 dirmips->no_fn_stub = TRUE;
7770 }
7771
7772 void
7773 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7774 struct bfd_link_info *info;
7775 struct elf_link_hash_entry *entry;
7776 bfd_boolean force_local;
7777 {
7778 bfd *dynobj;
7779 asection *got;
7780 struct mips_got_info *g;
7781 struct mips_elf_link_hash_entry *h;
7782
7783 h = (struct mips_elf_link_hash_entry *) entry;
7784 if (h->forced_local)
7785 return;
7786 h->forced_local = force_local;
7787
7788 dynobj = elf_hash_table (info)->dynobj;
7789 if (dynobj != NULL && force_local)
7790 {
7791 got = mips_elf_got_section (dynobj, FALSE);
7792 g = mips_elf_section_data (got)->u.got_info;
7793
7794 if (g->next)
7795 {
7796 struct mips_got_entry e;
7797 struct mips_got_info *gg = g;
7798
7799 /* Since we're turning what used to be a global symbol into a
7800 local one, bump up the number of local entries of each GOT
7801 that had an entry for it. This will automatically decrease
7802 the number of global entries, since global_gotno is actually
7803 the upper limit of global entries. */
7804 e.abfd = dynobj;
7805 e.symndx = -1;
7806 e.d.h = h;
7807
7808 for (g = g->next; g != gg; g = g->next)
7809 if (htab_find (g->got_entries, &e))
7810 {
7811 BFD_ASSERT (g->global_gotno > 0);
7812 g->local_gotno++;
7813 g->global_gotno--;
7814 }
7815
7816 /* If this was a global symbol forced into the primary GOT, we
7817 no longer need an entry for it. We can't release the entry
7818 at this point, but we must at least stop counting it as one
7819 of the symbols that required a forced got entry. */
7820 if (h->root.got.offset == 2)
7821 {
7822 BFD_ASSERT (gg->assigned_gotno > 0);
7823 gg->assigned_gotno--;
7824 }
7825 }
7826 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7827 /* If we haven't got through GOT allocation yet, just bump up the
7828 number of local entries, as this symbol won't be counted as
7829 global. */
7830 g->local_gotno++;
7831 else if (h->root.got.offset == 1)
7832 {
7833 /* If we're past non-multi-GOT allocation and this symbol had
7834 been marked for a global got entry, give it a local entry
7835 instead. */
7836 BFD_ASSERT (g->global_gotno > 0);
7837 g->local_gotno++;
7838 g->global_gotno--;
7839 }
7840 }
7841
7842 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7843 }
7844 \f
7845 #define PDR_SIZE 32
7846
7847 bfd_boolean
7848 _bfd_mips_elf_discard_info (abfd, cookie, info)
7849 bfd *abfd;
7850 struct elf_reloc_cookie *cookie;
7851 struct bfd_link_info *info;
7852 {
7853 asection *o;
7854 bfd_boolean ret = FALSE;
7855 unsigned char *tdata;
7856 size_t i, skip;
7857
7858 o = bfd_get_section_by_name (abfd, ".pdr");
7859 if (! o)
7860 return FALSE;
7861 if (o->_raw_size == 0)
7862 return FALSE;
7863 if (o->_raw_size % PDR_SIZE != 0)
7864 return FALSE;
7865 if (o->output_section != NULL
7866 && bfd_is_abs_section (o->output_section))
7867 return FALSE;
7868
7869 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7870 if (! tdata)
7871 return FALSE;
7872
7873 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7874 (Elf_Internal_Rela *) NULL,
7875 info->keep_memory);
7876 if (!cookie->rels)
7877 {
7878 free (tdata);
7879 return FALSE;
7880 }
7881
7882 cookie->rel = cookie->rels;
7883 cookie->relend = cookie->rels + o->reloc_count;
7884
7885 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7886 {
7887 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7888 {
7889 tdata[i] = 1;
7890 skip ++;
7891 }
7892 }
7893
7894 if (skip != 0)
7895 {
7896 mips_elf_section_data (o)->u.tdata = tdata;
7897 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7898 ret = TRUE;
7899 }
7900 else
7901 free (tdata);
7902
7903 if (! info->keep_memory)
7904 free (cookie->rels);
7905
7906 return ret;
7907 }
7908
7909 bfd_boolean
7910 _bfd_mips_elf_ignore_discarded_relocs (sec)
7911 asection *sec;
7912 {
7913 if (strcmp (sec->name, ".pdr") == 0)
7914 return TRUE;
7915 return FALSE;
7916 }
7917
7918 bfd_boolean
7919 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7920 bfd *output_bfd;
7921 asection *sec;
7922 bfd_byte *contents;
7923 {
7924 bfd_byte *to, *from, *end;
7925 int i;
7926
7927 if (strcmp (sec->name, ".pdr") != 0)
7928 return FALSE;
7929
7930 if (mips_elf_section_data (sec)->u.tdata == NULL)
7931 return FALSE;
7932
7933 to = contents;
7934 end = contents + sec->_raw_size;
7935 for (from = contents, i = 0;
7936 from < end;
7937 from += PDR_SIZE, i++)
7938 {
7939 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7940 continue;
7941 if (to != from)
7942 memcpy (to, from, PDR_SIZE);
7943 to += PDR_SIZE;
7944 }
7945 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7946 (file_ptr) sec->output_offset,
7947 sec->_cooked_size);
7948 return TRUE;
7949 }
7950 \f
7951 /* MIPS ELF uses a special find_nearest_line routine in order the
7952 handle the ECOFF debugging information. */
7953
7954 struct mips_elf_find_line
7955 {
7956 struct ecoff_debug_info d;
7957 struct ecoff_find_line i;
7958 };
7959
7960 bfd_boolean
7961 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7962 functionname_ptr, line_ptr)
7963 bfd *abfd;
7964 asection *section;
7965 asymbol **symbols;
7966 bfd_vma offset;
7967 const char **filename_ptr;
7968 const char **functionname_ptr;
7969 unsigned int *line_ptr;
7970 {
7971 asection *msec;
7972
7973 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7974 filename_ptr, functionname_ptr,
7975 line_ptr))
7976 return TRUE;
7977
7978 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7979 filename_ptr, functionname_ptr,
7980 line_ptr,
7981 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7982 &elf_tdata (abfd)->dwarf2_find_line_info))
7983 return TRUE;
7984
7985 msec = bfd_get_section_by_name (abfd, ".mdebug");
7986 if (msec != NULL)
7987 {
7988 flagword origflags;
7989 struct mips_elf_find_line *fi;
7990 const struct ecoff_debug_swap * const swap =
7991 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7992
7993 /* If we are called during a link, mips_elf_final_link may have
7994 cleared the SEC_HAS_CONTENTS field. We force it back on here
7995 if appropriate (which it normally will be). */
7996 origflags = msec->flags;
7997 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7998 msec->flags |= SEC_HAS_CONTENTS;
7999
8000 fi = elf_tdata (abfd)->find_line_info;
8001 if (fi == NULL)
8002 {
8003 bfd_size_type external_fdr_size;
8004 char *fraw_src;
8005 char *fraw_end;
8006 struct fdr *fdr_ptr;
8007 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8008
8009 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
8010 if (fi == NULL)
8011 {
8012 msec->flags = origflags;
8013 return FALSE;
8014 }
8015
8016 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8017 {
8018 msec->flags = origflags;
8019 return FALSE;
8020 }
8021
8022 /* Swap in the FDR information. */
8023 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8024 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8025 if (fi->d.fdr == NULL)
8026 {
8027 msec->flags = origflags;
8028 return FALSE;
8029 }
8030 external_fdr_size = swap->external_fdr_size;
8031 fdr_ptr = fi->d.fdr;
8032 fraw_src = (char *) fi->d.external_fdr;
8033 fraw_end = (fraw_src
8034 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8035 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8036 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8037
8038 elf_tdata (abfd)->find_line_info = fi;
8039
8040 /* Note that we don't bother to ever free this information.
8041 find_nearest_line is either called all the time, as in
8042 objdump -l, so the information should be saved, or it is
8043 rarely called, as in ld error messages, so the memory
8044 wasted is unimportant. Still, it would probably be a
8045 good idea for free_cached_info to throw it away. */
8046 }
8047
8048 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8049 &fi->i, filename_ptr, functionname_ptr,
8050 line_ptr))
8051 {
8052 msec->flags = origflags;
8053 return TRUE;
8054 }
8055
8056 msec->flags = origflags;
8057 }
8058
8059 /* Fall back on the generic ELF find_nearest_line routine. */
8060
8061 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8062 filename_ptr, functionname_ptr,
8063 line_ptr);
8064 }
8065 \f
8066 /* When are writing out the .options or .MIPS.options section,
8067 remember the bytes we are writing out, so that we can install the
8068 GP value in the section_processing routine. */
8069
8070 bfd_boolean
8071 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8072 bfd *abfd;
8073 sec_ptr section;
8074 PTR location;
8075 file_ptr offset;
8076 bfd_size_type count;
8077 {
8078 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8079 {
8080 bfd_byte *c;
8081
8082 if (elf_section_data (section) == NULL)
8083 {
8084 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8085 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8086 if (elf_section_data (section) == NULL)
8087 return FALSE;
8088 }
8089 c = mips_elf_section_data (section)->u.tdata;
8090 if (c == NULL)
8091 {
8092 bfd_size_type size;
8093
8094 if (section->_cooked_size != 0)
8095 size = section->_cooked_size;
8096 else
8097 size = section->_raw_size;
8098 c = (bfd_byte *) bfd_zalloc (abfd, size);
8099 if (c == NULL)
8100 return FALSE;
8101 mips_elf_section_data (section)->u.tdata = c;
8102 }
8103
8104 memcpy (c + offset, location, (size_t) count);
8105 }
8106
8107 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8108 count);
8109 }
8110
8111 /* This is almost identical to bfd_generic_get_... except that some
8112 MIPS relocations need to be handled specially. Sigh. */
8113
8114 bfd_byte *
8115 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8116 data, relocatable, symbols)
8117 bfd *abfd;
8118 struct bfd_link_info *link_info;
8119 struct bfd_link_order *link_order;
8120 bfd_byte *data;
8121 bfd_boolean relocatable;
8122 asymbol **symbols;
8123 {
8124 /* Get enough memory to hold the stuff */
8125 bfd *input_bfd = link_order->u.indirect.section->owner;
8126 asection *input_section = link_order->u.indirect.section;
8127
8128 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8129 arelent **reloc_vector = NULL;
8130 long reloc_count;
8131
8132 if (reloc_size < 0)
8133 goto error_return;
8134
8135 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8136 if (reloc_vector == NULL && reloc_size != 0)
8137 goto error_return;
8138
8139 /* read in the section */
8140 if (!bfd_get_section_contents (input_bfd,
8141 input_section,
8142 (PTR) data,
8143 (file_ptr) 0,
8144 input_section->_raw_size))
8145 goto error_return;
8146
8147 /* We're not relaxing the section, so just copy the size info */
8148 input_section->_cooked_size = input_section->_raw_size;
8149 input_section->reloc_done = TRUE;
8150
8151 reloc_count = bfd_canonicalize_reloc (input_bfd,
8152 input_section,
8153 reloc_vector,
8154 symbols);
8155 if (reloc_count < 0)
8156 goto error_return;
8157
8158 if (reloc_count > 0)
8159 {
8160 arelent **parent;
8161 /* for mips */
8162 int gp_found;
8163 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8164
8165 {
8166 struct bfd_hash_entry *h;
8167 struct bfd_link_hash_entry *lh;
8168 /* Skip all this stuff if we aren't mixing formats. */
8169 if (abfd && input_bfd
8170 && abfd->xvec == input_bfd->xvec)
8171 lh = 0;
8172 else
8173 {
8174 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8175 lh = (struct bfd_link_hash_entry *) h;
8176 }
8177 lookup:
8178 if (lh)
8179 {
8180 switch (lh->type)
8181 {
8182 case bfd_link_hash_undefined:
8183 case bfd_link_hash_undefweak:
8184 case bfd_link_hash_common:
8185 gp_found = 0;
8186 break;
8187 case bfd_link_hash_defined:
8188 case bfd_link_hash_defweak:
8189 gp_found = 1;
8190 gp = lh->u.def.value;
8191 break;
8192 case bfd_link_hash_indirect:
8193 case bfd_link_hash_warning:
8194 lh = lh->u.i.link;
8195 /* @@FIXME ignoring warning for now */
8196 goto lookup;
8197 case bfd_link_hash_new:
8198 default:
8199 abort ();
8200 }
8201 }
8202 else
8203 gp_found = 0;
8204 }
8205 /* end mips */
8206 for (parent = reloc_vector; *parent != (arelent *) NULL;
8207 parent++)
8208 {
8209 char *error_message = (char *) NULL;
8210 bfd_reloc_status_type r;
8211
8212 /* Specific to MIPS: Deal with relocation types that require
8213 knowing the gp of the output bfd. */
8214 asymbol *sym = *(*parent)->sym_ptr_ptr;
8215 if (bfd_is_abs_section (sym->section) && abfd)
8216 {
8217 /* The special_function wouldn't get called anyway. */
8218 }
8219 else if (!gp_found)
8220 {
8221 /* The gp isn't there; let the special function code
8222 fall over on its own. */
8223 }
8224 else if ((*parent)->howto->special_function
8225 == _bfd_mips_elf32_gprel16_reloc)
8226 {
8227 /* bypass special_function call */
8228 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8229 input_section, relocatable,
8230 (PTR) data, gp);
8231 goto skip_bfd_perform_relocation;
8232 }
8233 /* end mips specific stuff */
8234
8235 r = bfd_perform_relocation (input_bfd,
8236 *parent,
8237 (PTR) data,
8238 input_section,
8239 relocatable ? abfd : (bfd *) NULL,
8240 &error_message);
8241 skip_bfd_perform_relocation:
8242
8243 if (relocatable)
8244 {
8245 asection *os = input_section->output_section;
8246
8247 /* A partial link, so keep the relocs */
8248 os->orelocation[os->reloc_count] = *parent;
8249 os->reloc_count++;
8250 }
8251
8252 if (r != bfd_reloc_ok)
8253 {
8254 switch (r)
8255 {
8256 case bfd_reloc_undefined:
8257 if (!((*link_info->callbacks->undefined_symbol)
8258 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8259 input_bfd, input_section, (*parent)->address,
8260 TRUE)))
8261 goto error_return;
8262 break;
8263 case bfd_reloc_dangerous:
8264 BFD_ASSERT (error_message != (char *) NULL);
8265 if (!((*link_info->callbacks->reloc_dangerous)
8266 (link_info, error_message, input_bfd, input_section,
8267 (*parent)->address)))
8268 goto error_return;
8269 break;
8270 case bfd_reloc_overflow:
8271 if (!((*link_info->callbacks->reloc_overflow)
8272 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8273 (*parent)->howto->name, (*parent)->addend,
8274 input_bfd, input_section, (*parent)->address)))
8275 goto error_return;
8276 break;
8277 case bfd_reloc_outofrange:
8278 default:
8279 abort ();
8280 break;
8281 }
8282
8283 }
8284 }
8285 }
8286 if (reloc_vector != NULL)
8287 free (reloc_vector);
8288 return data;
8289
8290 error_return:
8291 if (reloc_vector != NULL)
8292 free (reloc_vector);
8293 return NULL;
8294 }
8295 \f
8296 /* Create a MIPS ELF linker hash table. */
8297
8298 struct bfd_link_hash_table *
8299 _bfd_mips_elf_link_hash_table_create (abfd)
8300 bfd *abfd;
8301 {
8302 struct mips_elf_link_hash_table *ret;
8303 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8304
8305 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8306 if (ret == (struct mips_elf_link_hash_table *) NULL)
8307 return NULL;
8308
8309 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8310 mips_elf_link_hash_newfunc))
8311 {
8312 free (ret);
8313 return NULL;
8314 }
8315
8316 #if 0
8317 /* We no longer use this. */
8318 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8319 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8320 #endif
8321 ret->procedure_count = 0;
8322 ret->compact_rel_size = 0;
8323 ret->use_rld_obj_head = FALSE;
8324 ret->rld_value = 0;
8325 ret->mips16_stubs_seen = FALSE;
8326
8327 return &ret->root.root;
8328 }
8329 \f
8330 /* We need to use a special link routine to handle the .reginfo and
8331 the .mdebug sections. We need to merge all instances of these
8332 sections together, not write them all out sequentially. */
8333
8334 bfd_boolean
8335 _bfd_mips_elf_final_link (abfd, info)
8336 bfd *abfd;
8337 struct bfd_link_info *info;
8338 {
8339 asection **secpp;
8340 asection *o;
8341 struct bfd_link_order *p;
8342 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8343 asection *rtproc_sec;
8344 Elf32_RegInfo reginfo;
8345 struct ecoff_debug_info debug;
8346 const struct ecoff_debug_swap *swap
8347 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8348 HDRR *symhdr = &debug.symbolic_header;
8349 PTR mdebug_handle = NULL;
8350 asection *s;
8351 EXTR esym;
8352 unsigned int i;
8353 bfd_size_type amt;
8354
8355 static const char * const secname[] =
8356 {
8357 ".text", ".init", ".fini", ".data",
8358 ".rodata", ".sdata", ".sbss", ".bss"
8359 };
8360 static const int sc[] =
8361 {
8362 scText, scInit, scFini, scData,
8363 scRData, scSData, scSBss, scBss
8364 };
8365
8366 /* We'd carefully arranged the dynamic symbol indices, and then the
8367 generic size_dynamic_sections renumbered them out from under us.
8368 Rather than trying somehow to prevent the renumbering, just do
8369 the sort again. */
8370 if (elf_hash_table (info)->dynamic_sections_created)
8371 {
8372 bfd *dynobj;
8373 asection *got;
8374 struct mips_got_info *g;
8375
8376 /* When we resort, we must tell mips_elf_sort_hash_table what
8377 the lowest index it may use is. That's the number of section
8378 symbols we're going to add. The generic ELF linker only
8379 adds these symbols when building a shared object. Note that
8380 we count the sections after (possibly) removing the .options
8381 section above. */
8382 if (! mips_elf_sort_hash_table (info, (info->shared
8383 ? bfd_count_sections (abfd) + 1
8384 : 1)))
8385 return FALSE;
8386
8387 /* Make sure we didn't grow the global .got region. */
8388 dynobj = elf_hash_table (info)->dynobj;
8389 got = mips_elf_got_section (dynobj, FALSE);
8390 g = mips_elf_section_data (got)->u.got_info;
8391
8392 if (g->global_gotsym != NULL)
8393 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8394 - g->global_gotsym->dynindx)
8395 <= g->global_gotno);
8396 }
8397
8398 #if 0
8399 /* We want to set the GP value for ld -r. */
8400 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8401 include it, even though we don't process it quite right. (Some
8402 entries are supposed to be merged.) Empirically, we seem to be
8403 better off including it then not. */
8404 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8405 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8406 {
8407 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8408 {
8409 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8410 if (p->type == bfd_indirect_link_order)
8411 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8412 (*secpp)->link_order_head = NULL;
8413 bfd_section_list_remove (abfd, secpp);
8414 --abfd->section_count;
8415
8416 break;
8417 }
8418 }
8419
8420 /* We include .MIPS.options, even though we don't process it quite right.
8421 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8422 to be better off including it than not. */
8423 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8424 {
8425 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8426 {
8427 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8428 if (p->type == bfd_indirect_link_order)
8429 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8430 (*secpp)->link_order_head = NULL;
8431 bfd_section_list_remove (abfd, secpp);
8432 --abfd->section_count;
8433
8434 break;
8435 }
8436 }
8437 #endif
8438
8439 /* Get a value for the GP register. */
8440 if (elf_gp (abfd) == 0)
8441 {
8442 struct bfd_link_hash_entry *h;
8443
8444 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8445 if (h != (struct bfd_link_hash_entry *) NULL
8446 && h->type == bfd_link_hash_defined)
8447 elf_gp (abfd) = (h->u.def.value
8448 + h->u.def.section->output_section->vma
8449 + h->u.def.section->output_offset);
8450 else if (info->relocatable)
8451 {
8452 bfd_vma lo = MINUS_ONE;
8453
8454 /* Find the GP-relative section with the lowest offset. */
8455 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8456 if (o->vma < lo
8457 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8458 lo = o->vma;
8459
8460 /* And calculate GP relative to that. */
8461 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8462 }
8463 else
8464 {
8465 /* If the relocate_section function needs to do a reloc
8466 involving the GP value, it should make a reloc_dangerous
8467 callback to warn that GP is not defined. */
8468 }
8469 }
8470
8471 /* Go through the sections and collect the .reginfo and .mdebug
8472 information. */
8473 reginfo_sec = NULL;
8474 mdebug_sec = NULL;
8475 gptab_data_sec = NULL;
8476 gptab_bss_sec = NULL;
8477 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8478 {
8479 if (strcmp (o->name, ".reginfo") == 0)
8480 {
8481 memset (&reginfo, 0, sizeof reginfo);
8482
8483 /* We have found the .reginfo section in the output file.
8484 Look through all the link_orders comprising it and merge
8485 the information together. */
8486 for (p = o->link_order_head;
8487 p != (struct bfd_link_order *) NULL;
8488 p = p->next)
8489 {
8490 asection *input_section;
8491 bfd *input_bfd;
8492 Elf32_External_RegInfo ext;
8493 Elf32_RegInfo sub;
8494
8495 if (p->type != bfd_indirect_link_order)
8496 {
8497 if (p->type == bfd_data_link_order)
8498 continue;
8499 abort ();
8500 }
8501
8502 input_section = p->u.indirect.section;
8503 input_bfd = input_section->owner;
8504
8505 /* The linker emulation code has probably clobbered the
8506 size to be zero bytes. */
8507 if (input_section->_raw_size == 0)
8508 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8509
8510 if (! bfd_get_section_contents (input_bfd, input_section,
8511 (PTR) &ext,
8512 (file_ptr) 0,
8513 (bfd_size_type) sizeof ext))
8514 return FALSE;
8515
8516 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8517
8518 reginfo.ri_gprmask |= sub.ri_gprmask;
8519 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8520 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8521 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8522 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8523
8524 /* ri_gp_value is set by the function
8525 mips_elf32_section_processing when the section is
8526 finally written out. */
8527
8528 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8529 elf_link_input_bfd ignores this section. */
8530 input_section->flags &= ~SEC_HAS_CONTENTS;
8531 }
8532
8533 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8534 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8535
8536 /* Skip this section later on (I don't think this currently
8537 matters, but someday it might). */
8538 o->link_order_head = (struct bfd_link_order *) NULL;
8539
8540 reginfo_sec = o;
8541 }
8542
8543 if (strcmp (o->name, ".mdebug") == 0)
8544 {
8545 struct extsym_info einfo;
8546 bfd_vma last;
8547
8548 /* We have found the .mdebug section in the output file.
8549 Look through all the link_orders comprising it and merge
8550 the information together. */
8551 symhdr->magic = swap->sym_magic;
8552 /* FIXME: What should the version stamp be? */
8553 symhdr->vstamp = 0;
8554 symhdr->ilineMax = 0;
8555 symhdr->cbLine = 0;
8556 symhdr->idnMax = 0;
8557 symhdr->ipdMax = 0;
8558 symhdr->isymMax = 0;
8559 symhdr->ioptMax = 0;
8560 symhdr->iauxMax = 0;
8561 symhdr->issMax = 0;
8562 symhdr->issExtMax = 0;
8563 symhdr->ifdMax = 0;
8564 symhdr->crfd = 0;
8565 symhdr->iextMax = 0;
8566
8567 /* We accumulate the debugging information itself in the
8568 debug_info structure. */
8569 debug.line = NULL;
8570 debug.external_dnr = NULL;
8571 debug.external_pdr = NULL;
8572 debug.external_sym = NULL;
8573 debug.external_opt = NULL;
8574 debug.external_aux = NULL;
8575 debug.ss = NULL;
8576 debug.ssext = debug.ssext_end = NULL;
8577 debug.external_fdr = NULL;
8578 debug.external_rfd = NULL;
8579 debug.external_ext = debug.external_ext_end = NULL;
8580
8581 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8582 if (mdebug_handle == (PTR) NULL)
8583 return FALSE;
8584
8585 esym.jmptbl = 0;
8586 esym.cobol_main = 0;
8587 esym.weakext = 0;
8588 esym.reserved = 0;
8589 esym.ifd = ifdNil;
8590 esym.asym.iss = issNil;
8591 esym.asym.st = stLocal;
8592 esym.asym.reserved = 0;
8593 esym.asym.index = indexNil;
8594 last = 0;
8595 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8596 {
8597 esym.asym.sc = sc[i];
8598 s = bfd_get_section_by_name (abfd, secname[i]);
8599 if (s != NULL)
8600 {
8601 esym.asym.value = s->vma;
8602 last = s->vma + s->_raw_size;
8603 }
8604 else
8605 esym.asym.value = last;
8606 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8607 secname[i], &esym))
8608 return FALSE;
8609 }
8610
8611 for (p = o->link_order_head;
8612 p != (struct bfd_link_order *) NULL;
8613 p = p->next)
8614 {
8615 asection *input_section;
8616 bfd *input_bfd;
8617 const struct ecoff_debug_swap *input_swap;
8618 struct ecoff_debug_info input_debug;
8619 char *eraw_src;
8620 char *eraw_end;
8621
8622 if (p->type != bfd_indirect_link_order)
8623 {
8624 if (p->type == bfd_data_link_order)
8625 continue;
8626 abort ();
8627 }
8628
8629 input_section = p->u.indirect.section;
8630 input_bfd = input_section->owner;
8631
8632 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8633 || (get_elf_backend_data (input_bfd)
8634 ->elf_backend_ecoff_debug_swap) == NULL)
8635 {
8636 /* I don't know what a non MIPS ELF bfd would be
8637 doing with a .mdebug section, but I don't really
8638 want to deal with it. */
8639 continue;
8640 }
8641
8642 input_swap = (get_elf_backend_data (input_bfd)
8643 ->elf_backend_ecoff_debug_swap);
8644
8645 BFD_ASSERT (p->size == input_section->_raw_size);
8646
8647 /* The ECOFF linking code expects that we have already
8648 read in the debugging information and set up an
8649 ecoff_debug_info structure, so we do that now. */
8650 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8651 &input_debug))
8652 return FALSE;
8653
8654 if (! (bfd_ecoff_debug_accumulate
8655 (mdebug_handle, abfd, &debug, swap, input_bfd,
8656 &input_debug, input_swap, info)))
8657 return FALSE;
8658
8659 /* Loop through the external symbols. For each one with
8660 interesting information, try to find the symbol in
8661 the linker global hash table and save the information
8662 for the output external symbols. */
8663 eraw_src = input_debug.external_ext;
8664 eraw_end = (eraw_src
8665 + (input_debug.symbolic_header.iextMax
8666 * input_swap->external_ext_size));
8667 for (;
8668 eraw_src < eraw_end;
8669 eraw_src += input_swap->external_ext_size)
8670 {
8671 EXTR ext;
8672 const char *name;
8673 struct mips_elf_link_hash_entry *h;
8674
8675 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8676 if (ext.asym.sc == scNil
8677 || ext.asym.sc == scUndefined
8678 || ext.asym.sc == scSUndefined)
8679 continue;
8680
8681 name = input_debug.ssext + ext.asym.iss;
8682 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8683 name, FALSE, FALSE, TRUE);
8684 if (h == NULL || h->esym.ifd != -2)
8685 continue;
8686
8687 if (ext.ifd != -1)
8688 {
8689 BFD_ASSERT (ext.ifd
8690 < input_debug.symbolic_header.ifdMax);
8691 ext.ifd = input_debug.ifdmap[ext.ifd];
8692 }
8693
8694 h->esym = ext;
8695 }
8696
8697 /* Free up the information we just read. */
8698 free (input_debug.line);
8699 free (input_debug.external_dnr);
8700 free (input_debug.external_pdr);
8701 free (input_debug.external_sym);
8702 free (input_debug.external_opt);
8703 free (input_debug.external_aux);
8704 free (input_debug.ss);
8705 free (input_debug.ssext);
8706 free (input_debug.external_fdr);
8707 free (input_debug.external_rfd);
8708 free (input_debug.external_ext);
8709
8710 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8711 elf_link_input_bfd ignores this section. */
8712 input_section->flags &= ~SEC_HAS_CONTENTS;
8713 }
8714
8715 if (SGI_COMPAT (abfd) && info->shared)
8716 {
8717 /* Create .rtproc section. */
8718 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8719 if (rtproc_sec == NULL)
8720 {
8721 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8722 | SEC_LINKER_CREATED | SEC_READONLY);
8723
8724 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8725 if (rtproc_sec == NULL
8726 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8727 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8728 return FALSE;
8729 }
8730
8731 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8732 info, rtproc_sec,
8733 &debug))
8734 return FALSE;
8735 }
8736
8737 /* Build the external symbol information. */
8738 einfo.abfd = abfd;
8739 einfo.info = info;
8740 einfo.debug = &debug;
8741 einfo.swap = swap;
8742 einfo.failed = FALSE;
8743 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8744 mips_elf_output_extsym,
8745 (PTR) &einfo);
8746 if (einfo.failed)
8747 return FALSE;
8748
8749 /* Set the size of the .mdebug section. */
8750 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8751
8752 /* Skip this section later on (I don't think this currently
8753 matters, but someday it might). */
8754 o->link_order_head = (struct bfd_link_order *) NULL;
8755
8756 mdebug_sec = o;
8757 }
8758
8759 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8760 {
8761 const char *subname;
8762 unsigned int c;
8763 Elf32_gptab *tab;
8764 Elf32_External_gptab *ext_tab;
8765 unsigned int j;
8766
8767 /* The .gptab.sdata and .gptab.sbss sections hold
8768 information describing how the small data area would
8769 change depending upon the -G switch. These sections
8770 not used in executables files. */
8771 if (! info->relocatable)
8772 {
8773 for (p = o->link_order_head;
8774 p != (struct bfd_link_order *) NULL;
8775 p = p->next)
8776 {
8777 asection *input_section;
8778
8779 if (p->type != bfd_indirect_link_order)
8780 {
8781 if (p->type == bfd_data_link_order)
8782 continue;
8783 abort ();
8784 }
8785
8786 input_section = p->u.indirect.section;
8787
8788 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8789 elf_link_input_bfd ignores this section. */
8790 input_section->flags &= ~SEC_HAS_CONTENTS;
8791 }
8792
8793 /* Skip this section later on (I don't think this
8794 currently matters, but someday it might). */
8795 o->link_order_head = (struct bfd_link_order *) NULL;
8796
8797 /* Really remove the section. */
8798 for (secpp = &abfd->sections;
8799 *secpp != o;
8800 secpp = &(*secpp)->next)
8801 ;
8802 bfd_section_list_remove (abfd, secpp);
8803 --abfd->section_count;
8804
8805 continue;
8806 }
8807
8808 /* There is one gptab for initialized data, and one for
8809 uninitialized data. */
8810 if (strcmp (o->name, ".gptab.sdata") == 0)
8811 gptab_data_sec = o;
8812 else if (strcmp (o->name, ".gptab.sbss") == 0)
8813 gptab_bss_sec = o;
8814 else
8815 {
8816 (*_bfd_error_handler)
8817 (_("%s: illegal section name `%s'"),
8818 bfd_get_filename (abfd), o->name);
8819 bfd_set_error (bfd_error_nonrepresentable_section);
8820 return FALSE;
8821 }
8822
8823 /* The linker script always combines .gptab.data and
8824 .gptab.sdata into .gptab.sdata, and likewise for
8825 .gptab.bss and .gptab.sbss. It is possible that there is
8826 no .sdata or .sbss section in the output file, in which
8827 case we must change the name of the output section. */
8828 subname = o->name + sizeof ".gptab" - 1;
8829 if (bfd_get_section_by_name (abfd, subname) == NULL)
8830 {
8831 if (o == gptab_data_sec)
8832 o->name = ".gptab.data";
8833 else
8834 o->name = ".gptab.bss";
8835 subname = o->name + sizeof ".gptab" - 1;
8836 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8837 }
8838
8839 /* Set up the first entry. */
8840 c = 1;
8841 amt = c * sizeof (Elf32_gptab);
8842 tab = (Elf32_gptab *) bfd_malloc (amt);
8843 if (tab == NULL)
8844 return FALSE;
8845 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8846 tab[0].gt_header.gt_unused = 0;
8847
8848 /* Combine the input sections. */
8849 for (p = o->link_order_head;
8850 p != (struct bfd_link_order *) NULL;
8851 p = p->next)
8852 {
8853 asection *input_section;
8854 bfd *input_bfd;
8855 bfd_size_type size;
8856 unsigned long last;
8857 bfd_size_type gpentry;
8858
8859 if (p->type != bfd_indirect_link_order)
8860 {
8861 if (p->type == bfd_data_link_order)
8862 continue;
8863 abort ();
8864 }
8865
8866 input_section = p->u.indirect.section;
8867 input_bfd = input_section->owner;
8868
8869 /* Combine the gptab entries for this input section one
8870 by one. We know that the input gptab entries are
8871 sorted by ascending -G value. */
8872 size = bfd_section_size (input_bfd, input_section);
8873 last = 0;
8874 for (gpentry = sizeof (Elf32_External_gptab);
8875 gpentry < size;
8876 gpentry += sizeof (Elf32_External_gptab))
8877 {
8878 Elf32_External_gptab ext_gptab;
8879 Elf32_gptab int_gptab;
8880 unsigned long val;
8881 unsigned long add;
8882 bfd_boolean exact;
8883 unsigned int look;
8884
8885 if (! (bfd_get_section_contents
8886 (input_bfd, input_section, (PTR) &ext_gptab,
8887 (file_ptr) gpentry,
8888 (bfd_size_type) sizeof (Elf32_External_gptab))))
8889 {
8890 free (tab);
8891 return FALSE;
8892 }
8893
8894 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8895 &int_gptab);
8896 val = int_gptab.gt_entry.gt_g_value;
8897 add = int_gptab.gt_entry.gt_bytes - last;
8898
8899 exact = FALSE;
8900 for (look = 1; look < c; look++)
8901 {
8902 if (tab[look].gt_entry.gt_g_value >= val)
8903 tab[look].gt_entry.gt_bytes += add;
8904
8905 if (tab[look].gt_entry.gt_g_value == val)
8906 exact = TRUE;
8907 }
8908
8909 if (! exact)
8910 {
8911 Elf32_gptab *new_tab;
8912 unsigned int max;
8913
8914 /* We need a new table entry. */
8915 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8916 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8917 if (new_tab == NULL)
8918 {
8919 free (tab);
8920 return FALSE;
8921 }
8922 tab = new_tab;
8923 tab[c].gt_entry.gt_g_value = val;
8924 tab[c].gt_entry.gt_bytes = add;
8925
8926 /* Merge in the size for the next smallest -G
8927 value, since that will be implied by this new
8928 value. */
8929 max = 0;
8930 for (look = 1; look < c; look++)
8931 {
8932 if (tab[look].gt_entry.gt_g_value < val
8933 && (max == 0
8934 || (tab[look].gt_entry.gt_g_value
8935 > tab[max].gt_entry.gt_g_value)))
8936 max = look;
8937 }
8938 if (max != 0)
8939 tab[c].gt_entry.gt_bytes +=
8940 tab[max].gt_entry.gt_bytes;
8941
8942 ++c;
8943 }
8944
8945 last = int_gptab.gt_entry.gt_bytes;
8946 }
8947
8948 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8949 elf_link_input_bfd ignores this section. */
8950 input_section->flags &= ~SEC_HAS_CONTENTS;
8951 }
8952
8953 /* The table must be sorted by -G value. */
8954 if (c > 2)
8955 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8956
8957 /* Swap out the table. */
8958 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8959 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8960 if (ext_tab == NULL)
8961 {
8962 free (tab);
8963 return FALSE;
8964 }
8965
8966 for (j = 0; j < c; j++)
8967 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8968 free (tab);
8969
8970 o->_raw_size = c * sizeof (Elf32_External_gptab);
8971 o->contents = (bfd_byte *) ext_tab;
8972
8973 /* Skip this section later on (I don't think this currently
8974 matters, but someday it might). */
8975 o->link_order_head = (struct bfd_link_order *) NULL;
8976 }
8977 }
8978
8979 /* Invoke the regular ELF backend linker to do all the work. */
8980 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8981 return FALSE;
8982
8983 /* Now write out the computed sections. */
8984
8985 if (reginfo_sec != (asection *) NULL)
8986 {
8987 Elf32_External_RegInfo ext;
8988
8989 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8990 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8991 (file_ptr) 0,
8992 (bfd_size_type) sizeof ext))
8993 return FALSE;
8994 }
8995
8996 if (mdebug_sec != (asection *) NULL)
8997 {
8998 BFD_ASSERT (abfd->output_has_begun);
8999 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9000 swap, info,
9001 mdebug_sec->filepos))
9002 return FALSE;
9003
9004 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9005 }
9006
9007 if (gptab_data_sec != (asection *) NULL)
9008 {
9009 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9010 gptab_data_sec->contents,
9011 (file_ptr) 0,
9012 gptab_data_sec->_raw_size))
9013 return FALSE;
9014 }
9015
9016 if (gptab_bss_sec != (asection *) NULL)
9017 {
9018 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9019 gptab_bss_sec->contents,
9020 (file_ptr) 0,
9021 gptab_bss_sec->_raw_size))
9022 return FALSE;
9023 }
9024
9025 if (SGI_COMPAT (abfd))
9026 {
9027 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9028 if (rtproc_sec != NULL)
9029 {
9030 if (! bfd_set_section_contents (abfd, rtproc_sec,
9031 rtproc_sec->contents,
9032 (file_ptr) 0,
9033 rtproc_sec->_raw_size))
9034 return FALSE;
9035 }
9036 }
9037
9038 return TRUE;
9039 }
9040 \f
9041 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9042
9043 struct mips_mach_extension {
9044 unsigned long extension, base;
9045 };
9046
9047
9048 /* An array describing how BFD machines relate to one another. The entries
9049 are ordered topologically with MIPS I extensions listed last. */
9050
9051 static const struct mips_mach_extension mips_mach_extensions[] = {
9052 /* MIPS64 extensions. */
9053 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9054
9055 /* MIPS V extensions. */
9056 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9057
9058 /* R10000 extensions. */
9059 { bfd_mach_mips12000, bfd_mach_mips10000 },
9060
9061 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9062 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9063 better to allow vr5400 and vr5500 code to be merged anyway, since
9064 many libraries will just use the core ISA. Perhaps we could add
9065 some sort of ASE flag if this ever proves a problem. */
9066 { bfd_mach_mips5500, bfd_mach_mips5400 },
9067 { bfd_mach_mips5400, bfd_mach_mips5000 },
9068
9069 /* MIPS IV extensions. */
9070 { bfd_mach_mips5, bfd_mach_mips8000 },
9071 { bfd_mach_mips10000, bfd_mach_mips8000 },
9072 { bfd_mach_mips5000, bfd_mach_mips8000 },
9073
9074 /* VR4100 extensions. */
9075 { bfd_mach_mips4120, bfd_mach_mips4100 },
9076 { bfd_mach_mips4111, bfd_mach_mips4100 },
9077
9078 /* MIPS III extensions. */
9079 { bfd_mach_mips8000, bfd_mach_mips4000 },
9080 { bfd_mach_mips4650, bfd_mach_mips4000 },
9081 { bfd_mach_mips4600, bfd_mach_mips4000 },
9082 { bfd_mach_mips4400, bfd_mach_mips4000 },
9083 { bfd_mach_mips4300, bfd_mach_mips4000 },
9084 { bfd_mach_mips4100, bfd_mach_mips4000 },
9085 { bfd_mach_mips4010, bfd_mach_mips4000 },
9086
9087 /* MIPS32 extensions. */
9088 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9089
9090 /* MIPS II extensions. */
9091 { bfd_mach_mips4000, bfd_mach_mips6000 },
9092 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9093
9094 /* MIPS I extensions. */
9095 { bfd_mach_mips6000, bfd_mach_mips3000 },
9096 { bfd_mach_mips3900, bfd_mach_mips3000 }
9097 };
9098
9099
9100 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9101
9102 static bfd_boolean
9103 mips_mach_extends_p (base, extension)
9104 unsigned long base, extension;
9105 {
9106 size_t i;
9107
9108 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9109 if (extension == mips_mach_extensions[i].extension)
9110 extension = mips_mach_extensions[i].base;
9111
9112 return extension == base;
9113 }
9114
9115
9116 /* Return true if the given ELF header flags describe a 32-bit binary. */
9117
9118 static bfd_boolean
9119 mips_32bit_flags_p (flags)
9120 flagword flags;
9121 {
9122 return ((flags & EF_MIPS_32BITMODE) != 0
9123 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9124 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9125 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9126 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9127 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9128 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9129 }
9130
9131
9132 /* Merge backend specific data from an object file to the output
9133 object file when linking. */
9134
9135 bfd_boolean
9136 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9137 bfd *ibfd;
9138 bfd *obfd;
9139 {
9140 flagword old_flags;
9141 flagword new_flags;
9142 bfd_boolean ok;
9143 bfd_boolean null_input_bfd = TRUE;
9144 asection *sec;
9145
9146 /* Check if we have the same endianess */
9147 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9148 {
9149 (*_bfd_error_handler)
9150 (_("%s: endianness incompatible with that of the selected emulation"),
9151 bfd_archive_filename (ibfd));
9152 return FALSE;
9153 }
9154
9155 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9156 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9157 return TRUE;
9158
9159 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9160 {
9161 (*_bfd_error_handler)
9162 (_("%s: ABI is incompatible with that of the selected emulation"),
9163 bfd_archive_filename (ibfd));
9164 return FALSE;
9165 }
9166
9167 new_flags = elf_elfheader (ibfd)->e_flags;
9168 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9169 old_flags = elf_elfheader (obfd)->e_flags;
9170
9171 if (! elf_flags_init (obfd))
9172 {
9173 elf_flags_init (obfd) = TRUE;
9174 elf_elfheader (obfd)->e_flags = new_flags;
9175 elf_elfheader (obfd)->e_ident[EI_CLASS]
9176 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9177
9178 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9179 && bfd_get_arch_info (obfd)->the_default)
9180 {
9181 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9182 bfd_get_mach (ibfd)))
9183 return FALSE;
9184 }
9185
9186 return TRUE;
9187 }
9188
9189 /* Check flag compatibility. */
9190
9191 new_flags &= ~EF_MIPS_NOREORDER;
9192 old_flags &= ~EF_MIPS_NOREORDER;
9193
9194 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9195 doesn't seem to matter. */
9196 new_flags &= ~EF_MIPS_XGOT;
9197 old_flags &= ~EF_MIPS_XGOT;
9198
9199 if (new_flags == old_flags)
9200 return TRUE;
9201
9202 /* Check to see if the input BFD actually contains any sections.
9203 If not, its flags may not have been initialised either, but it cannot
9204 actually cause any incompatibility. */
9205 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9206 {
9207 /* Ignore synthetic sections and empty .text, .data and .bss sections
9208 which are automatically generated by gas. */
9209 if (strcmp (sec->name, ".reginfo")
9210 && strcmp (sec->name, ".mdebug")
9211 && ((!strcmp (sec->name, ".text")
9212 || !strcmp (sec->name, ".data")
9213 || !strcmp (sec->name, ".bss"))
9214 && sec->_raw_size != 0))
9215 {
9216 null_input_bfd = FALSE;
9217 break;
9218 }
9219 }
9220 if (null_input_bfd)
9221 return TRUE;
9222
9223 ok = TRUE;
9224
9225 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9226 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9227 {
9228 (*_bfd_error_handler)
9229 (_("%s: warning: linking PIC files with non-PIC files"),
9230 bfd_archive_filename (ibfd));
9231 ok = TRUE;
9232 }
9233
9234 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9235 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9236 if (! (new_flags & EF_MIPS_PIC))
9237 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9238
9239 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9240 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9241
9242 /* Compare the ISAs. */
9243 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9244 {
9245 (*_bfd_error_handler)
9246 (_("%s: linking 32-bit code with 64-bit code"),
9247 bfd_archive_filename (ibfd));
9248 ok = FALSE;
9249 }
9250 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9251 {
9252 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9253 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9254 {
9255 /* Copy the architecture info from IBFD to OBFD. Also copy
9256 the 32-bit flag (if set) so that we continue to recognise
9257 OBFD as a 32-bit binary. */
9258 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9259 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9260 elf_elfheader (obfd)->e_flags
9261 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9262
9263 /* Copy across the ABI flags if OBFD doesn't use them
9264 and if that was what caused us to treat IBFD as 32-bit. */
9265 if ((old_flags & EF_MIPS_ABI) == 0
9266 && mips_32bit_flags_p (new_flags)
9267 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9268 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9269 }
9270 else
9271 {
9272 /* The ISAs aren't compatible. */
9273 (*_bfd_error_handler)
9274 (_("%s: linking %s module with previous %s modules"),
9275 bfd_archive_filename (ibfd),
9276 bfd_printable_name (ibfd),
9277 bfd_printable_name (obfd));
9278 ok = FALSE;
9279 }
9280 }
9281
9282 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9283 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9284
9285 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9286 does set EI_CLASS differently from any 32-bit ABI. */
9287 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9288 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9289 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9290 {
9291 /* Only error if both are set (to different values). */
9292 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9293 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9294 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9295 {
9296 (*_bfd_error_handler)
9297 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9298 bfd_archive_filename (ibfd),
9299 elf_mips_abi_name (ibfd),
9300 elf_mips_abi_name (obfd));
9301 ok = FALSE;
9302 }
9303 new_flags &= ~EF_MIPS_ABI;
9304 old_flags &= ~EF_MIPS_ABI;
9305 }
9306
9307 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9308 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9309 {
9310 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9311
9312 new_flags &= ~ EF_MIPS_ARCH_ASE;
9313 old_flags &= ~ EF_MIPS_ARCH_ASE;
9314 }
9315
9316 /* Warn about any other mismatches */
9317 if (new_flags != old_flags)
9318 {
9319 (*_bfd_error_handler)
9320 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9321 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9322 (unsigned long) old_flags);
9323 ok = FALSE;
9324 }
9325
9326 if (! ok)
9327 {
9328 bfd_set_error (bfd_error_bad_value);
9329 return FALSE;
9330 }
9331
9332 return TRUE;
9333 }
9334
9335 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9336
9337 bfd_boolean
9338 _bfd_mips_elf_set_private_flags (abfd, flags)
9339 bfd *abfd;
9340 flagword flags;
9341 {
9342 BFD_ASSERT (!elf_flags_init (abfd)
9343 || elf_elfheader (abfd)->e_flags == flags);
9344
9345 elf_elfheader (abfd)->e_flags = flags;
9346 elf_flags_init (abfd) = TRUE;
9347 return TRUE;
9348 }
9349
9350 bfd_boolean
9351 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9352 bfd *abfd;
9353 PTR ptr;
9354 {
9355 FILE *file = (FILE *) ptr;
9356
9357 BFD_ASSERT (abfd != NULL && ptr != NULL);
9358
9359 /* Print normal ELF private data. */
9360 _bfd_elf_print_private_bfd_data (abfd, ptr);
9361
9362 /* xgettext:c-format */
9363 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9364
9365 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9366 fprintf (file, _(" [abi=O32]"));
9367 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9368 fprintf (file, _(" [abi=O64]"));
9369 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9370 fprintf (file, _(" [abi=EABI32]"));
9371 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9372 fprintf (file, _(" [abi=EABI64]"));
9373 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9374 fprintf (file, _(" [abi unknown]"));
9375 else if (ABI_N32_P (abfd))
9376 fprintf (file, _(" [abi=N32]"));
9377 else if (ABI_64_P (abfd))
9378 fprintf (file, _(" [abi=64]"));
9379 else
9380 fprintf (file, _(" [no abi set]"));
9381
9382 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9383 fprintf (file, _(" [mips1]"));
9384 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9385 fprintf (file, _(" [mips2]"));
9386 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9387 fprintf (file, _(" [mips3]"));
9388 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9389 fprintf (file, _(" [mips4]"));
9390 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9391 fprintf (file, _(" [mips5]"));
9392 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9393 fprintf (file, _(" [mips32]"));
9394 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9395 fprintf (file, _(" [mips64]"));
9396 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9397 fprintf (file, _(" [mips32r2]"));
9398 else
9399 fprintf (file, _(" [unknown ISA]"));
9400
9401 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9402 fprintf (file, _(" [mdmx]"));
9403
9404 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9405 fprintf (file, _(" [mips16]"));
9406
9407 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9408 fprintf (file, _(" [32bitmode]"));
9409 else
9410 fprintf (file, _(" [not 32bitmode]"));
9411
9412 fputc ('\n', file);
9413
9414 return TRUE;
9415 }