go32 sanity check
[binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bool generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bool generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bool *);
410 static bool generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bool generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bool default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bool default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bool);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bool
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bool ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = true;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol.
488
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
499 .
500 */
501
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 const char *string,
505 bool create,
506 bool copy,
507 bool follow)
508 {
509 struct bfd_link_hash_entry *ret;
510
511 if (table == NULL || string == NULL)
512 return NULL;
513
514 ret = ((struct bfd_link_hash_entry *)
515 bfd_hash_lookup (&table->table, string, create, copy));
516
517 if (follow && ret != NULL)
518 {
519 while (ret->type == bfd_link_hash_indirect
520 || ret->type == bfd_link_hash_warning)
521 ret = ret->u.i.link;
522 }
523
524 return ret;
525 }
526
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
530
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 struct bfd_link_info *info,
534 const char *string,
535 bool create,
536 bool copy,
537 bool follow)
538 {
539 size_t amt;
540
541 if (info->wrap_hash != NULL)
542 {
543 const char *l;
544 char prefix = '\0';
545
546 l = string;
547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 {
549 prefix = *l;
550 ++l;
551 }
552
553 #undef WRAP
554 #define WRAP "__wrap_"
555
556 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
557 {
558 char *n;
559 struct bfd_link_hash_entry *h;
560
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
563
564 amt = strlen (l) + sizeof WRAP + 1;
565 n = (char *) bfd_malloc (amt);
566 if (n == NULL)
567 return NULL;
568
569 n[0] = prefix;
570 n[1] = '\0';
571 strcat (n, WRAP);
572 strcat (n, l);
573 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
574 free (n);
575 return h;
576 }
577
578 #undef REAL
579 #define REAL "__real_"
580
581 if (*l == '_'
582 && startswith (l, REAL)
583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 false, false) != NULL)
585 {
586 char *n;
587 struct bfd_link_hash_entry *h;
588
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
592
593 amt = strlen (l + sizeof REAL - 1) + 2;
594 n = (char *) bfd_malloc (amt);
595 if (n == NULL)
596 return NULL;
597
598 n[0] = prefix;
599 n[1] = '\0';
600 strcat (n, l + sizeof REAL - 1);
601 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
602 if (h != NULL)
603 h->ref_real = 1;
604 free (n);
605 return h;
606 }
607
608 #undef REAL
609 }
610
611 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
612 }
613
614 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
615 and the remainder is found in wrap_hash, return the real symbol. */
616
617 struct bfd_link_hash_entry *
618 unwrap_hash_lookup (struct bfd_link_info *info,
619 bfd *input_bfd,
620 struct bfd_link_hash_entry *h)
621 {
622 const char *l = h->root.string;
623
624 if (*l == bfd_get_symbol_leading_char (input_bfd)
625 || *l == info->wrap_char)
626 ++l;
627
628 if (startswith (l, WRAP))
629 {
630 l += sizeof WRAP - 1;
631
632 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
633 {
634 char save = 0;
635 if (l - (sizeof WRAP - 1) != h->root.string)
636 {
637 --l;
638 save = *l;
639 *(char *) l = *h->root.string;
640 }
641 h = bfd_link_hash_lookup (info->hash, l, false, false, false);
642 if (save)
643 *(char *) l = save;
644 }
645 }
646 return h;
647 }
648 #undef WRAP
649
650 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
651 in the treatment of warning symbols. When warning symbols are
652 created they replace the real symbol, so you don't get to see the
653 real symbol in a bfd_hash_traverse. This traversal calls func with
654 the real symbol. */
655
656 void
657 bfd_link_hash_traverse
658 (struct bfd_link_hash_table *htab,
659 bool (*func) (struct bfd_link_hash_entry *, void *),
660 void *info)
661 {
662 unsigned int i;
663
664 htab->table.frozen = 1;
665 for (i = 0; i < htab->table.size; i++)
666 {
667 struct bfd_link_hash_entry *p;
668
669 p = (struct bfd_link_hash_entry *) htab->table.table[i];
670 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
671 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
672 goto out;
673 }
674 out:
675 htab->table.frozen = 0;
676 }
677
678 /* Add a symbol to the linker hash table undefs list. */
679
680 void
681 bfd_link_add_undef (struct bfd_link_hash_table *table,
682 struct bfd_link_hash_entry *h)
683 {
684 BFD_ASSERT (h->u.undef.next == NULL);
685 if (table->undefs_tail != NULL)
686 table->undefs_tail->u.undef.next = h;
687 if (table->undefs == NULL)
688 table->undefs = h;
689 table->undefs_tail = h;
690 }
691
692 /* The undefs list was designed so that in normal use we don't need to
693 remove entries. However, if symbols on the list are changed from
694 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
695 bfd_link_hash_new for some reason, then they must be removed from the
696 list. Failure to do so might result in the linker attempting to add
697 the symbol to the list again at a later stage. */
698
699 void
700 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
701 {
702 struct bfd_link_hash_entry **pun;
703
704 pun = &table->undefs;
705 while (*pun != NULL)
706 {
707 struct bfd_link_hash_entry *h = *pun;
708
709 if (h->type == bfd_link_hash_new
710 || h->type == bfd_link_hash_undefweak)
711 {
712 *pun = h->u.undef.next;
713 h->u.undef.next = NULL;
714 if (h == table->undefs_tail)
715 {
716 if (pun == &table->undefs)
717 table->undefs_tail = NULL;
718 else
719 /* pun points at an u.undef.next field. Go back to
720 the start of the link_hash_entry. */
721 table->undefs_tail = (struct bfd_link_hash_entry *)
722 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
723 break;
724 }
725 }
726 else
727 pun = &h->u.undef.next;
728 }
729 }
730 \f
731 /* Routine to create an entry in a generic link hash table. */
732
733 struct bfd_hash_entry *
734 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
735 struct bfd_hash_table *table,
736 const char *string)
737 {
738 /* Allocate the structure if it has not already been allocated by a
739 subclass. */
740 if (entry == NULL)
741 {
742 entry = (struct bfd_hash_entry *)
743 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
744 if (entry == NULL)
745 return entry;
746 }
747
748 /* Call the allocation method of the superclass. */
749 entry = _bfd_link_hash_newfunc (entry, table, string);
750 if (entry)
751 {
752 struct generic_link_hash_entry *ret;
753
754 /* Set local fields. */
755 ret = (struct generic_link_hash_entry *) entry;
756 ret->written = false;
757 ret->sym = NULL;
758 }
759
760 return entry;
761 }
762
763 /* Create a generic link hash table. */
764
765 struct bfd_link_hash_table *
766 _bfd_generic_link_hash_table_create (bfd *abfd)
767 {
768 struct generic_link_hash_table *ret;
769 size_t amt = sizeof (struct generic_link_hash_table);
770
771 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
772 if (ret == NULL)
773 return NULL;
774 if (! _bfd_link_hash_table_init (&ret->root, abfd,
775 _bfd_generic_link_hash_newfunc,
776 sizeof (struct generic_link_hash_entry)))
777 {
778 free (ret);
779 return NULL;
780 }
781 return &ret->root;
782 }
783
784 void
785 _bfd_generic_link_hash_table_free (bfd *obfd)
786 {
787 struct generic_link_hash_table *ret;
788
789 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
790 ret = (struct generic_link_hash_table *) obfd->link.hash;
791 bfd_hash_table_free (&ret->root.table);
792 free (ret);
793 obfd->link.hash = NULL;
794 obfd->is_linker_output = false;
795 }
796
797 /* Grab the symbols for an object file when doing a generic link. We
798 store the symbols in the outsymbols field. We need to keep them
799 around for the entire link to ensure that we only read them once.
800 If we read them multiple times, we might wind up with relocs and
801 the hash table pointing to different instances of the symbol
802 structure. */
803
804 bool
805 bfd_generic_link_read_symbols (bfd *abfd)
806 {
807 if (bfd_get_outsymbols (abfd) == NULL)
808 {
809 long symsize;
810 long symcount;
811
812 symsize = bfd_get_symtab_upper_bound (abfd);
813 if (symsize < 0)
814 return false;
815 abfd->outsymbols = bfd_alloc (abfd, symsize);
816 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
817 return false;
818 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
819 if (symcount < 0)
820 return false;
821 abfd->symcount = symcount;
822 }
823
824 return true;
825 }
826 \f
827 /* Indicate that we are only retrieving symbol values from this
828 section. We want the symbols to act as though the values in the
829 file are absolute. */
830
831 void
832 _bfd_generic_link_just_syms (asection *sec,
833 struct bfd_link_info *info ATTRIBUTE_UNUSED)
834 {
835 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
836 sec->output_section = bfd_abs_section_ptr;
837 sec->output_offset = sec->vma;
838 }
839
840 /* Copy the symbol type and other attributes for a linker script
841 assignment from HSRC to HDEST.
842 The default implementation does nothing. */
843 void
844 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
845 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
846 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
847 {
848 }
849
850 /* Generic function to add symbols from an object file to the
851 global hash table. */
852
853 bool
854 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
855 {
856 bool ret;
857
858 switch (bfd_get_format (abfd))
859 {
860 case bfd_object:
861 ret = generic_link_add_object_symbols (abfd, info);
862 break;
863 case bfd_archive:
864 ret = (_bfd_generic_link_add_archive_symbols
865 (abfd, info, generic_link_check_archive_element));
866 break;
867 default:
868 bfd_set_error (bfd_error_wrong_format);
869 ret = false;
870 }
871
872 return ret;
873 }
874
875 /* Add symbols from an object file to the global hash table. */
876
877 static bool
878 generic_link_add_object_symbols (bfd *abfd,
879 struct bfd_link_info *info)
880 {
881 bfd_size_type symcount;
882 struct bfd_symbol **outsyms;
883
884 if (!bfd_generic_link_read_symbols (abfd))
885 return false;
886 symcount = _bfd_generic_link_get_symcount (abfd);
887 outsyms = _bfd_generic_link_get_symbols (abfd);
888 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
889 }
890 \f
891 /* Generic function to add symbols from an archive file to the global
892 hash file. This function presumes that the archive symbol table
893 has already been read in (this is normally done by the
894 bfd_check_format entry point). It looks through the archive symbol
895 table for symbols that are undefined or common in the linker global
896 symbol hash table. When one is found, the CHECKFN argument is used
897 to see if an object file should be included. This allows targets
898 to customize common symbol behaviour. CHECKFN should set *PNEEDED
899 to TRUE if the object file should be included, and must also call
900 the bfd_link_info add_archive_element callback function and handle
901 adding the symbols to the global hash table. CHECKFN must notice
902 if the callback indicates a substitute BFD, and arrange to add
903 those symbols instead if it does so. CHECKFN should only return
904 FALSE if some sort of error occurs. */
905
906 bool
907 _bfd_generic_link_add_archive_symbols
908 (bfd *abfd,
909 struct bfd_link_info *info,
910 bool (*checkfn) (bfd *, struct bfd_link_info *,
911 struct bfd_link_hash_entry *, const char *, bool *))
912 {
913 bool loop;
914 bfd_size_type amt;
915 unsigned char *included;
916
917 if (! bfd_has_map (abfd))
918 {
919 /* An empty archive is a special case. */
920 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
921 return true;
922 bfd_set_error (bfd_error_no_armap);
923 return false;
924 }
925
926 amt = bfd_ardata (abfd)->symdef_count;
927 if (amt == 0)
928 return true;
929 amt *= sizeof (*included);
930 included = (unsigned char *) bfd_zmalloc (amt);
931 if (included == NULL)
932 return false;
933
934 do
935 {
936 carsym *arsyms;
937 carsym *arsym_end;
938 carsym *arsym;
939 unsigned int indx;
940 file_ptr last_ar_offset = -1;
941 bool needed = false;
942 bfd *element = NULL;
943
944 loop = false;
945 arsyms = bfd_ardata (abfd)->symdefs;
946 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
947 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
948 {
949 struct bfd_link_hash_entry *h;
950 struct bfd_link_hash_entry *undefs_tail;
951
952 if (included[indx])
953 continue;
954 if (needed && arsym->file_offset == last_ar_offset)
955 {
956 included[indx] = 1;
957 continue;
958 }
959
960 if (arsym->name == NULL)
961 goto error_return;
962
963 h = bfd_link_hash_lookup (info->hash, arsym->name,
964 false, false, true);
965
966 if (h == NULL
967 && info->pei386_auto_import
968 && startswith (arsym->name, "__imp_"))
969 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
970 false, false, true);
971 if (h == NULL)
972 continue;
973
974 if (h->type != bfd_link_hash_undefined
975 && h->type != bfd_link_hash_common)
976 {
977 if (h->type != bfd_link_hash_undefweak)
978 /* Symbol must be defined. Don't check it again. */
979 included[indx] = 1;
980 continue;
981 }
982
983 if (last_ar_offset != arsym->file_offset)
984 {
985 last_ar_offset = arsym->file_offset;
986 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset,
987 info);
988 if (element == NULL
989 || !bfd_check_format (element, bfd_object))
990 goto error_return;
991 }
992
993 undefs_tail = info->hash->undefs_tail;
994
995 /* CHECKFN will see if this element should be included, and
996 go ahead and include it if appropriate. */
997 if (! (*checkfn) (element, info, h, arsym->name, &needed))
998 goto error_return;
999
1000 if (needed)
1001 {
1002 unsigned int mark;
1003
1004 /* Look backward to mark all symbols from this object file
1005 which we have already seen in this pass. */
1006 mark = indx;
1007 do
1008 {
1009 included[mark] = 1;
1010 if (mark == 0)
1011 break;
1012 --mark;
1013 }
1014 while (arsyms[mark].file_offset == last_ar_offset);
1015
1016 if (undefs_tail != info->hash->undefs_tail)
1017 loop = true;
1018 }
1019 }
1020 } while (loop);
1021
1022 free (included);
1023 return true;
1024
1025 error_return:
1026 free (included);
1027 return false;
1028 }
1029 \f
1030 /* See if we should include an archive element. */
1031
1032 static bool
1033 generic_link_check_archive_element (bfd *abfd,
1034 struct bfd_link_info *info,
1035 struct bfd_link_hash_entry *h,
1036 const char *name ATTRIBUTE_UNUSED,
1037 bool *pneeded)
1038 {
1039 asymbol **pp, **ppend;
1040
1041 *pneeded = false;
1042
1043 if (!bfd_generic_link_read_symbols (abfd))
1044 return false;
1045
1046 pp = _bfd_generic_link_get_symbols (abfd);
1047 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1048 for (; pp < ppend; pp++)
1049 {
1050 asymbol *p;
1051
1052 p = *pp;
1053
1054 /* We are only interested in globally visible symbols. */
1055 if (! bfd_is_com_section (p->section)
1056 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1057 continue;
1058
1059 /* We are only interested if we know something about this
1060 symbol, and it is undefined or common. An undefined weak
1061 symbol (type bfd_link_hash_undefweak) is not considered to be
1062 a reference when pulling files out of an archive. See the
1063 SVR4 ABI, p. 4-27. */
1064 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1065 false, true);
1066 if (h == NULL
1067 || (h->type != bfd_link_hash_undefined
1068 && h->type != bfd_link_hash_common))
1069 continue;
1070
1071 /* P is a symbol we are looking for. */
1072
1073 if (! bfd_is_com_section (p->section)
1074 || (h->type == bfd_link_hash_undefined
1075 && h->u.undef.abfd == NULL))
1076 {
1077 /* P is not a common symbol, or an undefined reference was
1078 created from outside BFD such as from a linker -u option.
1079 This object file defines the symbol, so pull it in. */
1080 *pneeded = true;
1081 if (!(*info->callbacks
1082 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1083 &abfd))
1084 return false;
1085 /* Potentially, the add_archive_element hook may have set a
1086 substitute BFD for us. */
1087 return bfd_link_add_symbols (abfd, info);
1088 }
1089
1090 /* P is a common symbol. */
1091
1092 if (h->type == bfd_link_hash_undefined)
1093 {
1094 bfd *symbfd;
1095 bfd_vma size;
1096 unsigned int power;
1097
1098 /* Turn the symbol into a common symbol but do not link in
1099 the object file. This is how a.out works. Object
1100 formats that require different semantics must implement
1101 this function differently. This symbol is already on the
1102 undefs list. We add the section to a common section
1103 attached to symbfd to ensure that it is in a BFD which
1104 will be linked in. */
1105 symbfd = h->u.undef.abfd;
1106 h->type = bfd_link_hash_common;
1107 h->u.c.p = (struct bfd_link_hash_common_entry *)
1108 bfd_hash_allocate (&info->hash->table,
1109 sizeof (struct bfd_link_hash_common_entry));
1110 if (h->u.c.p == NULL)
1111 return false;
1112
1113 size = bfd_asymbol_value (p);
1114 h->u.c.size = size;
1115
1116 power = bfd_log2 (size);
1117 if (power > 4)
1118 power = 4;
1119 h->u.c.p->alignment_power = power;
1120
1121 if (p->section == bfd_com_section_ptr)
1122 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1123 else
1124 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1125 p->section->name);
1126 h->u.c.p->section->flags |= SEC_ALLOC;
1127 }
1128 else
1129 {
1130 /* Adjust the size of the common symbol if necessary. This
1131 is how a.out works. Object formats that require
1132 different semantics must implement this function
1133 differently. */
1134 if (bfd_asymbol_value (p) > h->u.c.size)
1135 h->u.c.size = bfd_asymbol_value (p);
1136 }
1137 }
1138
1139 /* This archive element is not needed. */
1140 return true;
1141 }
1142
1143 /* Add the symbols from an object file to the global hash table. ABFD
1144 is the object file. INFO is the linker information. SYMBOL_COUNT
1145 is the number of symbols. SYMBOLS is the list of symbols. */
1146
1147 static bool
1148 generic_link_add_symbol_list (bfd *abfd,
1149 struct bfd_link_info *info,
1150 bfd_size_type symbol_count,
1151 asymbol **symbols)
1152 {
1153 asymbol **pp, **ppend;
1154
1155 pp = symbols;
1156 ppend = symbols + symbol_count;
1157 for (; pp < ppend; pp++)
1158 {
1159 asymbol *p;
1160
1161 p = *pp;
1162
1163 if ((p->flags & (BSF_INDIRECT
1164 | BSF_WARNING
1165 | BSF_GLOBAL
1166 | BSF_CONSTRUCTOR
1167 | BSF_WEAK)) != 0
1168 || bfd_is_und_section (bfd_asymbol_section (p))
1169 || bfd_is_com_section (bfd_asymbol_section (p))
1170 || bfd_is_ind_section (bfd_asymbol_section (p)))
1171 {
1172 const char *name;
1173 const char *string;
1174 struct generic_link_hash_entry *h;
1175 struct bfd_link_hash_entry *bh;
1176
1177 string = name = bfd_asymbol_name (p);
1178 if (((p->flags & BSF_INDIRECT) != 0
1179 || bfd_is_ind_section (p->section))
1180 && pp + 1 < ppend)
1181 {
1182 pp++;
1183 string = bfd_asymbol_name (*pp);
1184 }
1185 else if ((p->flags & BSF_WARNING) != 0
1186 && pp + 1 < ppend)
1187 {
1188 /* The name of P is actually the warning string, and the
1189 next symbol is the one to warn about. */
1190 pp++;
1191 name = bfd_asymbol_name (*pp);
1192 }
1193
1194 bh = NULL;
1195 if (! (_bfd_generic_link_add_one_symbol
1196 (info, abfd, name, p->flags, bfd_asymbol_section (p),
1197 p->value, string, false, false, &bh)))
1198 return false;
1199 h = (struct generic_link_hash_entry *) bh;
1200
1201 /* If this is a constructor symbol, and the linker didn't do
1202 anything with it, then we want to just pass the symbol
1203 through to the output file. This will happen when
1204 linking with -r. */
1205 if ((p->flags & BSF_CONSTRUCTOR) != 0
1206 && (h == NULL || h->root.type == bfd_link_hash_new))
1207 {
1208 p->udata.p = NULL;
1209 continue;
1210 }
1211
1212 /* Save the BFD symbol so that we don't lose any backend
1213 specific information that may be attached to it. We only
1214 want this one if it gives more information than the
1215 existing one; we don't want to replace a defined symbol
1216 with an undefined one. This routine may be called with a
1217 hash table other than the generic hash table, so we only
1218 do this if we are certain that the hash table is a
1219 generic one. */
1220 if (info->output_bfd->xvec == abfd->xvec)
1221 {
1222 if (h->sym == NULL
1223 || (! bfd_is_und_section (bfd_asymbol_section (p))
1224 && (! bfd_is_com_section (bfd_asymbol_section (p))
1225 || bfd_is_und_section (bfd_asymbol_section (h->sym)))))
1226 {
1227 h->sym = p;
1228 /* BSF_OLD_COMMON is a hack to support COFF reloc
1229 reading, and it should go away when the COFF
1230 linker is switched to the new version. */
1231 if (bfd_is_com_section (bfd_asymbol_section (p)))
1232 p->flags |= BSF_OLD_COMMON;
1233 }
1234 }
1235
1236 /* Store a back pointer from the symbol to the hash
1237 table entry for the benefit of relaxation code until
1238 it gets rewritten to not use asymbol structures.
1239 Setting this is also used to check whether these
1240 symbols were set up by the generic linker. */
1241 p->udata.p = h;
1242 }
1243 }
1244
1245 return true;
1246 }
1247 \f
1248 /* We use a state table to deal with adding symbols from an object
1249 file. The first index into the state table describes the symbol
1250 from the object file. The second index into the state table is the
1251 type of the symbol in the hash table. */
1252
1253 /* The symbol from the object file is turned into one of these row
1254 values. */
1255
1256 enum link_row
1257 {
1258 UNDEF_ROW, /* Undefined. */
1259 UNDEFW_ROW, /* Weak undefined. */
1260 DEF_ROW, /* Defined. */
1261 DEFW_ROW, /* Weak defined. */
1262 COMMON_ROW, /* Common. */
1263 INDR_ROW, /* Indirect. */
1264 WARN_ROW, /* Warning. */
1265 SET_ROW /* Member of set. */
1266 };
1267
1268 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1269 #undef FAIL
1270
1271 /* The actions to take in the state table. */
1272
1273 enum link_action
1274 {
1275 FAIL, /* Abort. */
1276 UND, /* Mark symbol undefined. */
1277 WEAK, /* Mark symbol weak undefined. */
1278 DEF, /* Mark symbol defined. */
1279 DEFW, /* Mark symbol weak defined. */
1280 COM, /* Mark symbol common. */
1281 REF, /* Mark defined symbol referenced. */
1282 CREF, /* Possibly warn about common reference to defined symbol. */
1283 CDEF, /* Define existing common symbol. */
1284 NOACT, /* No action. */
1285 BIG, /* Mark symbol common using largest size. */
1286 MDEF, /* Multiple definition error. */
1287 MIND, /* Multiple indirect symbols. */
1288 IND, /* Make indirect symbol. */
1289 CIND, /* Make indirect symbol from existing common symbol. */
1290 SET, /* Add value to set. */
1291 MWARN, /* Make warning symbol. */
1292 WARN, /* Warn if referenced, else MWARN. */
1293 CYCLE, /* Repeat with symbol pointed to. */
1294 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1295 WARNC /* Issue warning and then CYCLE. */
1296 };
1297
1298 /* The state table itself. The first index is a link_row and the
1299 second index is a bfd_link_hash_type. */
1300
1301 static const enum link_action link_action[8][8] =
1302 {
1303 /* current\prev new undef undefw def defw com indr warn */
1304 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1305 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1306 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MIND, CYCLE },
1307 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1308 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1309 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1310 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1311 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1312 };
1313
1314 /* Most of the entries in the LINK_ACTION table are straightforward,
1315 but a few are somewhat subtle.
1316
1317 A reference to an indirect symbol (UNDEF_ROW/indr or
1318 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1319 symbol and to the symbol the indirect symbol points to.
1320
1321 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1322 causes the warning to be issued.
1323
1324 A common definition of an indirect symbol (COMMON_ROW/indr) is
1325 treated as a multiple definition error. Likewise for an indirect
1326 definition of a common symbol (INDR_ROW/com).
1327
1328 An indirect definition of a warning (INDR_ROW/warn) does not cause
1329 the warning to be issued.
1330
1331 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1332 warning is created for the symbol the indirect symbol points to.
1333
1334 Adding an entry to a set does not count as a reference to a set,
1335 and no warning is issued (SET_ROW/warn). */
1336
1337 /* Return the BFD in which a hash entry has been defined, if known. */
1338
1339 static bfd *
1340 hash_entry_bfd (struct bfd_link_hash_entry *h)
1341 {
1342 while (h->type == bfd_link_hash_warning)
1343 h = h->u.i.link;
1344 switch (h->type)
1345 {
1346 default:
1347 return NULL;
1348 case bfd_link_hash_undefined:
1349 case bfd_link_hash_undefweak:
1350 return h->u.undef.abfd;
1351 case bfd_link_hash_defined:
1352 case bfd_link_hash_defweak:
1353 return h->u.def.section->owner;
1354 case bfd_link_hash_common:
1355 return h->u.c.p->section->owner;
1356 }
1357 /*NOTREACHED*/
1358 }
1359
1360 /* Add a symbol to the global hash table.
1361 ABFD is the BFD the symbol comes from.
1362 NAME is the name of the symbol.
1363 FLAGS is the BSF_* bits associated with the symbol.
1364 SECTION is the section in which the symbol is defined; this may be
1365 bfd_und_section_ptr or bfd_com_section_ptr.
1366 VALUE is the value of the symbol, relative to the section.
1367 STRING is used for either an indirect symbol, in which case it is
1368 the name of the symbol to indirect to, or a warning symbol, in
1369 which case it is the warning string.
1370 COPY is TRUE if NAME or STRING must be copied into locally
1371 allocated memory if they need to be saved.
1372 COLLECT is TRUE if we should automatically collect gcc constructor
1373 or destructor names as collect2 does.
1374 HASHP, if not NULL, is a place to store the created hash table
1375 entry; if *HASHP is not NULL, the caller has already looked up
1376 the hash table entry, and stored it in *HASHP. */
1377
1378 bool
1379 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1380 bfd *abfd,
1381 const char *name,
1382 flagword flags,
1383 asection *section,
1384 bfd_vma value,
1385 const char *string,
1386 bool copy,
1387 bool collect,
1388 struct bfd_link_hash_entry **hashp)
1389 {
1390 enum link_row row;
1391 struct bfd_link_hash_entry *h;
1392 struct bfd_link_hash_entry *inh = NULL;
1393 bool cycle;
1394
1395 BFD_ASSERT (section != NULL);
1396
1397 if (bfd_is_ind_section (section)
1398 || (flags & BSF_INDIRECT) != 0)
1399 {
1400 row = INDR_ROW;
1401 /* Create the indirect symbol here. This is for the benefit of
1402 the plugin "notice" function.
1403 STRING is the name of the symbol we want to indirect to. */
1404 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1405 copy, false);
1406 if (inh == NULL)
1407 return false;
1408 }
1409 else if ((flags & BSF_WARNING) != 0)
1410 row = WARN_ROW;
1411 else if ((flags & BSF_CONSTRUCTOR) != 0)
1412 row = SET_ROW;
1413 else if (bfd_is_und_section (section))
1414 {
1415 if ((flags & BSF_WEAK) != 0)
1416 row = UNDEFW_ROW;
1417 else
1418 row = UNDEF_ROW;
1419 }
1420 else if ((flags & BSF_WEAK) != 0)
1421 row = DEFW_ROW;
1422 else if (bfd_is_com_section (section))
1423 {
1424 row = COMMON_ROW;
1425 if (!bfd_link_relocatable (info)
1426 && name != NULL
1427 && name[0] == '_'
1428 && name[1] == '_'
1429 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1430 _bfd_error_handler
1431 (_("%pB: plugin needed to handle lto object"), abfd);
1432 }
1433 else
1434 row = DEF_ROW;
1435
1436 if (hashp != NULL && *hashp != NULL)
1437 h = *hashp;
1438 else
1439 {
1440 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1441 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1442 else
1443 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1444 if (h == NULL)
1445 {
1446 if (hashp != NULL)
1447 *hashp = NULL;
1448 return false;
1449 }
1450 }
1451
1452 if (info->notice_all
1453 || (info->notice_hash != NULL
1454 && bfd_hash_lookup (info->notice_hash, name, false, false) != NULL))
1455 {
1456 if (! (*info->callbacks->notice) (info, h, inh,
1457 abfd, section, value, flags))
1458 return false;
1459 }
1460
1461 if (hashp != NULL)
1462 *hashp = h;
1463
1464 do
1465 {
1466 enum link_action action;
1467 int prev;
1468
1469 prev = h->type;
1470 /* Treat symbols defined by early linker script pass as undefined. */
1471 if (h->ldscript_def)
1472 prev = bfd_link_hash_undefined;
1473 cycle = false;
1474 action = link_action[(int) row][prev];
1475 switch (action)
1476 {
1477 case FAIL:
1478 abort ();
1479
1480 case NOACT:
1481 /* Do nothing. */
1482 break;
1483
1484 case UND:
1485 /* Make a new undefined symbol. */
1486 h->type = bfd_link_hash_undefined;
1487 h->u.undef.abfd = abfd;
1488 bfd_link_add_undef (info->hash, h);
1489 break;
1490
1491 case WEAK:
1492 /* Make a new weak undefined symbol. */
1493 h->type = bfd_link_hash_undefweak;
1494 h->u.undef.abfd = abfd;
1495 break;
1496
1497 case CDEF:
1498 /* We have found a definition for a symbol which was
1499 previously common. */
1500 BFD_ASSERT (h->type == bfd_link_hash_common);
1501 (*info->callbacks->multiple_common) (info, h, abfd,
1502 bfd_link_hash_defined, 0);
1503 /* Fall through. */
1504 case DEF:
1505 case DEFW:
1506 {
1507 enum bfd_link_hash_type oldtype;
1508
1509 /* Define a symbol. */
1510 oldtype = h->type;
1511 if (action == DEFW)
1512 h->type = bfd_link_hash_defweak;
1513 else
1514 h->type = bfd_link_hash_defined;
1515 h->u.def.section = section;
1516 h->u.def.value = value;
1517 h->linker_def = 0;
1518 h->ldscript_def = 0;
1519
1520 /* If we have been asked to, we act like collect2 and
1521 identify all functions that might be global
1522 constructors and destructors and pass them up in a
1523 callback. We only do this for certain object file
1524 types, since many object file types can handle this
1525 automatically. */
1526 if (collect && name[0] == '_')
1527 {
1528 const char *s;
1529
1530 /* A constructor or destructor name starts like this:
1531 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1532 the second are the same character (we accept any
1533 character there, in case a new object file format
1534 comes along with even worse naming restrictions). */
1535
1536 #define CONS_PREFIX "GLOBAL_"
1537 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1538
1539 s = name + 1;
1540 while (*s == '_')
1541 ++s;
1542 if (s[0] == 'G' && startswith (s, CONS_PREFIX))
1543 {
1544 char c;
1545
1546 c = s[CONS_PREFIX_LEN + 1];
1547 if ((c == 'I' || c == 'D')
1548 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1549 {
1550 /* If this is a definition of a symbol which
1551 was previously weakly defined, we are in
1552 trouble. We have already added a
1553 constructor entry for the weak defined
1554 symbol, and now we are trying to add one
1555 for the new symbol. Fortunately, this case
1556 should never arise in practice. */
1557 if (oldtype == bfd_link_hash_defweak)
1558 abort ();
1559
1560 (*info->callbacks->constructor) (info, c == 'I',
1561 h->root.string, abfd,
1562 section, value);
1563 }
1564 }
1565 }
1566 }
1567
1568 break;
1569
1570 case COM:
1571 /* We have found a common definition for a symbol. */
1572 if (h->type == bfd_link_hash_new)
1573 bfd_link_add_undef (info->hash, h);
1574 h->type = bfd_link_hash_common;
1575 h->u.c.p = (struct bfd_link_hash_common_entry *)
1576 bfd_hash_allocate (&info->hash->table,
1577 sizeof (struct bfd_link_hash_common_entry));
1578 if (h->u.c.p == NULL)
1579 return false;
1580
1581 h->u.c.size = value;
1582
1583 /* Select a default alignment based on the size. This may
1584 be overridden by the caller. */
1585 {
1586 unsigned int power;
1587
1588 power = bfd_log2 (value);
1589 if (power > 4)
1590 power = 4;
1591 h->u.c.p->alignment_power = power;
1592 }
1593
1594 /* The section of a common symbol is only used if the common
1595 symbol is actually allocated. It basically provides a
1596 hook for the linker script to decide which output section
1597 the common symbols should be put in. In most cases, the
1598 section of a common symbol will be bfd_com_section_ptr,
1599 the code here will choose a common symbol section named
1600 "COMMON", and the linker script will contain *(COMMON) in
1601 the appropriate place. A few targets use separate common
1602 sections for small symbols, and they require special
1603 handling. */
1604 if (section == bfd_com_section_ptr)
1605 {
1606 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1607 h->u.c.p->section->flags |= SEC_ALLOC;
1608 }
1609 else if (section->owner != abfd)
1610 {
1611 h->u.c.p->section = bfd_make_section_old_way (abfd,
1612 section->name);
1613 h->u.c.p->section->flags |= SEC_ALLOC;
1614 }
1615 else
1616 h->u.c.p->section = section;
1617 h->linker_def = 0;
1618 h->ldscript_def = 0;
1619 break;
1620
1621 case REF:
1622 /* A reference to a defined symbol. */
1623 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1624 h->u.undef.next = h;
1625 break;
1626
1627 case BIG:
1628 /* We have found a common definition for a symbol which
1629 already had a common definition. Use the maximum of the
1630 two sizes, and use the section required by the larger symbol. */
1631 BFD_ASSERT (h->type == bfd_link_hash_common);
1632 (*info->callbacks->multiple_common) (info, h, abfd,
1633 bfd_link_hash_common, value);
1634 if (value > h->u.c.size)
1635 {
1636 unsigned int power;
1637
1638 h->u.c.size = value;
1639
1640 /* Select a default alignment based on the size. This may
1641 be overridden by the caller. */
1642 power = bfd_log2 (value);
1643 if (power > 4)
1644 power = 4;
1645 h->u.c.p->alignment_power = power;
1646
1647 /* Some systems have special treatment for small commons,
1648 hence we want to select the section used by the larger
1649 symbol. This makes sure the symbol does not go in a
1650 small common section if it is now too large. */
1651 if (section == bfd_com_section_ptr)
1652 {
1653 h->u.c.p->section
1654 = bfd_make_section_old_way (abfd, "COMMON");
1655 h->u.c.p->section->flags |= SEC_ALLOC;
1656 }
1657 else if (section->owner != abfd)
1658 {
1659 h->u.c.p->section
1660 = bfd_make_section_old_way (abfd, section->name);
1661 h->u.c.p->section->flags |= SEC_ALLOC;
1662 }
1663 else
1664 h->u.c.p->section = section;
1665 }
1666 break;
1667
1668 case CREF:
1669 /* We have found a common definition for a symbol which
1670 was already defined. */
1671 (*info->callbacks->multiple_common) (info, h, abfd,
1672 bfd_link_hash_common, value);
1673 break;
1674
1675 case MIND:
1676 /* Multiple indirect symbols. This is OK if they both point
1677 to the same symbol. */
1678 if (h->u.i.link->type == bfd_link_hash_defweak)
1679 {
1680 /* It is also OK to redefine a symbol that indirects to
1681 a weak definition. So for sym@ver -> sym@@ver where
1682 sym@@ver is weak and we have a new strong sym@ver,
1683 redefine sym@@ver. Of course if there exists
1684 sym -> sym@@ver then this also redefines sym. */
1685 h = h->u.i.link;
1686 cycle = true;
1687 break;
1688 }
1689 if (string != NULL && strcmp (h->u.i.link->root.string, string) == 0)
1690 break;
1691 /* Fall through. */
1692 case MDEF:
1693 /* Handle a multiple definition. */
1694 (*info->callbacks->multiple_definition) (info, h,
1695 abfd, section, value);
1696 break;
1697
1698 case CIND:
1699 /* Create an indirect symbol from an existing common symbol. */
1700 BFD_ASSERT (h->type == bfd_link_hash_common);
1701 (*info->callbacks->multiple_common) (info, h, abfd,
1702 bfd_link_hash_indirect, 0);
1703 /* Fall through. */
1704 case IND:
1705 if (inh->type == bfd_link_hash_indirect
1706 && inh->u.i.link == h)
1707 {
1708 _bfd_error_handler
1709 /* xgettext:c-format */
1710 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1711 abfd, name, string);
1712 bfd_set_error (bfd_error_invalid_operation);
1713 return false;
1714 }
1715 if (inh->type == bfd_link_hash_new)
1716 {
1717 inh->type = bfd_link_hash_undefined;
1718 inh->u.undef.abfd = abfd;
1719 bfd_link_add_undef (info->hash, inh);
1720 }
1721
1722 /* If the indirect symbol has been referenced, we need to
1723 push the reference down to the symbol we are referencing. */
1724 if (h->type != bfd_link_hash_new)
1725 {
1726 /* ??? If inh->type == bfd_link_hash_undefweak this
1727 converts inh to bfd_link_hash_undefined. */
1728 row = UNDEF_ROW;
1729 cycle = true;
1730 }
1731
1732 h->type = bfd_link_hash_indirect;
1733 h->u.i.link = inh;
1734 /* Not setting h = h->u.i.link here means that when cycle is
1735 set above we'll always go to REFC, and then cycle again
1736 to the indirected symbol. This means that any successful
1737 change of an existing symbol to indirect counts as a
1738 reference. ??? That may not be correct when the existing
1739 symbol was defweak. */
1740 break;
1741
1742 case SET:
1743 /* Add an entry to a set. */
1744 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1745 abfd, section, value);
1746 break;
1747
1748 case WARNC:
1749 /* Issue a warning and cycle, except when the reference is
1750 in LTO IR. */
1751 if (h->u.i.warning != NULL
1752 && (abfd->flags & BFD_PLUGIN) == 0)
1753 {
1754 (*info->callbacks->warning) (info, h->u.i.warning,
1755 h->root.string, abfd, NULL, 0);
1756 /* Only issue a warning once. */
1757 h->u.i.warning = NULL;
1758 }
1759 /* Fall through. */
1760 case CYCLE:
1761 /* Try again with the referenced symbol. */
1762 h = h->u.i.link;
1763 cycle = true;
1764 break;
1765
1766 case REFC:
1767 /* A reference to an indirect symbol. */
1768 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1769 h->u.undef.next = h;
1770 h = h->u.i.link;
1771 cycle = true;
1772 break;
1773
1774 case WARN:
1775 /* Warn if this symbol has been referenced already from non-IR,
1776 otherwise add a warning. */
1777 if ((!info->lto_plugin_active
1778 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1779 || h->non_ir_ref_regular
1780 || h->non_ir_ref_dynamic)
1781 {
1782 (*info->callbacks->warning) (info, string, h->root.string,
1783 hash_entry_bfd (h), NULL, 0);
1784 break;
1785 }
1786 /* Fall through. */
1787 case MWARN:
1788 /* Make a warning symbol. */
1789 {
1790 struct bfd_link_hash_entry *sub;
1791
1792 /* STRING is the warning to give. */
1793 sub = ((struct bfd_link_hash_entry *)
1794 ((*info->hash->table.newfunc)
1795 (NULL, &info->hash->table, h->root.string)));
1796 if (sub == NULL)
1797 return false;
1798 *sub = *h;
1799 sub->type = bfd_link_hash_warning;
1800 sub->u.i.link = h;
1801 if (! copy)
1802 sub->u.i.warning = string;
1803 else
1804 {
1805 char *w;
1806 size_t len = strlen (string) + 1;
1807
1808 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1809 if (w == NULL)
1810 return false;
1811 memcpy (w, string, len);
1812 sub->u.i.warning = w;
1813 }
1814
1815 bfd_hash_replace (&info->hash->table,
1816 (struct bfd_hash_entry *) h,
1817 (struct bfd_hash_entry *) sub);
1818 if (hashp != NULL)
1819 *hashp = sub;
1820 }
1821 break;
1822 }
1823 }
1824 while (cycle);
1825
1826 return true;
1827 }
1828 \f
1829 /* Generic final link routine. */
1830
1831 bool
1832 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1833 {
1834 bfd *sub;
1835 asection *o;
1836 struct bfd_link_order *p;
1837 size_t outsymalloc;
1838 struct generic_write_global_symbol_info wginfo;
1839
1840 abfd->outsymbols = NULL;
1841 abfd->symcount = 0;
1842 outsymalloc = 0;
1843
1844 /* Mark all sections which will be included in the output file. */
1845 for (o = abfd->sections; o != NULL; o = o->next)
1846 for (p = o->map_head.link_order; p != NULL; p = p->next)
1847 if (p->type == bfd_indirect_link_order)
1848 p->u.indirect.section->linker_mark = true;
1849
1850 /* Build the output symbol table. */
1851 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1852 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1853 return false;
1854
1855 /* Accumulate the global symbols. */
1856 wginfo.info = info;
1857 wginfo.output_bfd = abfd;
1858 wginfo.psymalloc = &outsymalloc;
1859 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1860 _bfd_generic_link_write_global_symbol,
1861 &wginfo);
1862
1863 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1864 shouldn't really need one, since we have SYMCOUNT, but some old
1865 code still expects one. */
1866 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1867 return false;
1868
1869 if (bfd_link_relocatable (info))
1870 {
1871 /* Allocate space for the output relocs for each section. */
1872 for (o = abfd->sections; o != NULL; o = o->next)
1873 {
1874 o->reloc_count = 0;
1875 for (p = o->map_head.link_order; p != NULL; p = p->next)
1876 {
1877 if (p->type == bfd_section_reloc_link_order
1878 || p->type == bfd_symbol_reloc_link_order)
1879 ++o->reloc_count;
1880 else if (p->type == bfd_indirect_link_order)
1881 {
1882 asection *input_section;
1883 bfd *input_bfd;
1884 long relsize;
1885 arelent **relocs;
1886 asymbol **symbols;
1887 long reloc_count;
1888
1889 input_section = p->u.indirect.section;
1890 input_bfd = input_section->owner;
1891 relsize = bfd_get_reloc_upper_bound (input_bfd,
1892 input_section);
1893 if (relsize < 0)
1894 return false;
1895 relocs = (arelent **) bfd_malloc (relsize);
1896 if (!relocs && relsize != 0)
1897 return false;
1898 symbols = _bfd_generic_link_get_symbols (input_bfd);
1899 reloc_count = bfd_canonicalize_reloc (input_bfd,
1900 input_section,
1901 relocs,
1902 symbols);
1903 free (relocs);
1904 if (reloc_count < 0)
1905 return false;
1906 BFD_ASSERT ((unsigned long) reloc_count
1907 == input_section->reloc_count);
1908 o->reloc_count += reloc_count;
1909 }
1910 }
1911 if (o->reloc_count > 0)
1912 {
1913 bfd_size_type amt;
1914
1915 amt = o->reloc_count;
1916 amt *= sizeof (arelent *);
1917 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1918 if (!o->orelocation)
1919 return false;
1920 o->flags |= SEC_RELOC;
1921 /* Reset the count so that it can be used as an index
1922 when putting in the output relocs. */
1923 o->reloc_count = 0;
1924 }
1925 }
1926 }
1927
1928 /* Handle all the link order information for the sections. */
1929 for (o = abfd->sections; o != NULL; o = o->next)
1930 {
1931 for (p = o->map_head.link_order; p != NULL; p = p->next)
1932 {
1933 switch (p->type)
1934 {
1935 case bfd_section_reloc_link_order:
1936 case bfd_symbol_reloc_link_order:
1937 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1938 return false;
1939 break;
1940 case bfd_indirect_link_order:
1941 if (! default_indirect_link_order (abfd, info, o, p, true))
1942 return false;
1943 break;
1944 default:
1945 if (! _bfd_default_link_order (abfd, info, o, p))
1946 return false;
1947 break;
1948 }
1949 }
1950 }
1951
1952 return true;
1953 }
1954
1955 /* Add an output symbol to the output BFD. */
1956
1957 static bool
1958 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1959 {
1960 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1961 {
1962 asymbol **newsyms;
1963 bfd_size_type amt;
1964
1965 if (*psymalloc == 0)
1966 *psymalloc = 124;
1967 else
1968 *psymalloc *= 2;
1969 amt = *psymalloc;
1970 amt *= sizeof (asymbol *);
1971 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1972 if (newsyms == NULL)
1973 return false;
1974 output_bfd->outsymbols = newsyms;
1975 }
1976
1977 output_bfd->outsymbols[output_bfd->symcount] = sym;
1978 if (sym != NULL)
1979 ++output_bfd->symcount;
1980
1981 return true;
1982 }
1983
1984 /* Handle the symbols for an input BFD. */
1985
1986 bool
1987 _bfd_generic_link_output_symbols (bfd *output_bfd,
1988 bfd *input_bfd,
1989 struct bfd_link_info *info,
1990 size_t *psymalloc)
1991 {
1992 asymbol **sym_ptr;
1993 asymbol **sym_end;
1994
1995 if (!bfd_generic_link_read_symbols (input_bfd))
1996 return false;
1997
1998 /* Create a filename symbol if we are supposed to. */
1999 if (info->create_object_symbols_section != NULL)
2000 {
2001 asection *sec;
2002
2003 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2004 {
2005 if (sec->output_section == info->create_object_symbols_section)
2006 {
2007 asymbol *newsym;
2008
2009 newsym = bfd_make_empty_symbol (input_bfd);
2010 if (!newsym)
2011 return false;
2012 newsym->name = bfd_get_filename (input_bfd);
2013 newsym->value = 0;
2014 newsym->flags = BSF_LOCAL | BSF_FILE;
2015 newsym->section = sec;
2016
2017 if (! generic_add_output_symbol (output_bfd, psymalloc,
2018 newsym))
2019 return false;
2020
2021 break;
2022 }
2023 }
2024 }
2025
2026 /* Adjust the values of the globally visible symbols, and write out
2027 local symbols. */
2028 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2029 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2030 for (; sym_ptr < sym_end; sym_ptr++)
2031 {
2032 asymbol *sym;
2033 struct generic_link_hash_entry *h;
2034 bool output;
2035
2036 h = NULL;
2037 sym = *sym_ptr;
2038 if ((sym->flags & (BSF_INDIRECT
2039 | BSF_WARNING
2040 | BSF_GLOBAL
2041 | BSF_CONSTRUCTOR
2042 | BSF_WEAK)) != 0
2043 || bfd_is_und_section (bfd_asymbol_section (sym))
2044 || bfd_is_com_section (bfd_asymbol_section (sym))
2045 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2046 {
2047 if (sym->udata.p != NULL)
2048 h = (struct generic_link_hash_entry *) sym->udata.p;
2049 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2050 {
2051 /* This case normally means that the main linker code
2052 deliberately ignored this constructor symbol. We
2053 should just pass it through. This will screw up if
2054 the constructor symbol is from a different,
2055 non-generic, object file format, but the case will
2056 only arise when linking with -r, which will probably
2057 fail anyhow, since there will be no way to represent
2058 the relocs in the output format being used. */
2059 h = NULL;
2060 }
2061 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2062 h = ((struct generic_link_hash_entry *)
2063 bfd_wrapped_link_hash_lookup (output_bfd, info,
2064 bfd_asymbol_name (sym),
2065 false, false, true));
2066 else
2067 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2068 bfd_asymbol_name (sym),
2069 false, false, true);
2070
2071 if (h != NULL)
2072 {
2073 /* Force all references to this symbol to point to
2074 the same area in memory. It is possible that
2075 this routine will be called with a hash table
2076 other than a generic hash table, so we double
2077 check that. */
2078 if (info->output_bfd->xvec == input_bfd->xvec)
2079 {
2080 if (h->sym != NULL)
2081 *sym_ptr = sym = h->sym;
2082 }
2083
2084 switch (h->root.type)
2085 {
2086 default:
2087 case bfd_link_hash_new:
2088 abort ();
2089 case bfd_link_hash_undefined:
2090 break;
2091 case bfd_link_hash_undefweak:
2092 sym->flags |= BSF_WEAK;
2093 break;
2094 case bfd_link_hash_indirect:
2095 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2096 /* fall through */
2097 case bfd_link_hash_defined:
2098 sym->flags |= BSF_GLOBAL;
2099 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2100 sym->value = h->root.u.def.value;
2101 sym->section = h->root.u.def.section;
2102 break;
2103 case bfd_link_hash_defweak:
2104 sym->flags |= BSF_WEAK;
2105 sym->flags &=~ BSF_CONSTRUCTOR;
2106 sym->value = h->root.u.def.value;
2107 sym->section = h->root.u.def.section;
2108 break;
2109 case bfd_link_hash_common:
2110 sym->value = h->root.u.c.size;
2111 sym->flags |= BSF_GLOBAL;
2112 if (! bfd_is_com_section (sym->section))
2113 {
2114 BFD_ASSERT (bfd_is_und_section (sym->section));
2115 sym->section = bfd_com_section_ptr;
2116 }
2117 /* We do not set the section of the symbol to
2118 h->root.u.c.p->section. That value was saved so
2119 that we would know where to allocate the symbol
2120 if it was defined. In this case the type is
2121 still bfd_link_hash_common, so we did not define
2122 it, so we do not want to use that section. */
2123 break;
2124 }
2125 }
2126 }
2127
2128 if ((sym->flags & BSF_KEEP) == 0
2129 && (info->strip == strip_all
2130 || (info->strip == strip_some
2131 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2132 false, false) == NULL)))
2133 output = false;
2134 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2135 {
2136 /* If this symbol is marked as occurring now, rather
2137 than at the end, output it now. This is used for
2138 COFF C_EXT FCN symbols. FIXME: There must be a
2139 better way. */
2140 if (bfd_asymbol_bfd (sym) == input_bfd
2141 && (sym->flags & BSF_NOT_AT_END) != 0)
2142 output = true;
2143 else
2144 output = false;
2145 }
2146 else if ((sym->flags & BSF_KEEP) != 0)
2147 output = true;
2148 else if (bfd_is_ind_section (sym->section))
2149 output = false;
2150 else if ((sym->flags & BSF_DEBUGGING) != 0)
2151 {
2152 if (info->strip == strip_none)
2153 output = true;
2154 else
2155 output = false;
2156 }
2157 else if (bfd_is_und_section (sym->section)
2158 || bfd_is_com_section (sym->section))
2159 output = false;
2160 else if ((sym->flags & BSF_LOCAL) != 0)
2161 {
2162 if ((sym->flags & BSF_WARNING) != 0)
2163 output = false;
2164 else
2165 {
2166 switch (info->discard)
2167 {
2168 default:
2169 case discard_all:
2170 output = false;
2171 break;
2172 case discard_sec_merge:
2173 output = true;
2174 if (bfd_link_relocatable (info)
2175 || ! (sym->section->flags & SEC_MERGE))
2176 break;
2177 /* FALLTHROUGH */
2178 case discard_l:
2179 if (bfd_is_local_label (input_bfd, sym))
2180 output = false;
2181 else
2182 output = true;
2183 break;
2184 case discard_none:
2185 output = true;
2186 break;
2187 }
2188 }
2189 }
2190 else if ((sym->flags & BSF_CONSTRUCTOR))
2191 {
2192 if (info->strip != strip_all)
2193 output = true;
2194 else
2195 output = false;
2196 }
2197 else if (sym->flags == 0
2198 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2199 /* LTO doesn't set symbol information. We get here with the
2200 generic linker for a symbol that was "common" but no longer
2201 needs to be global. */
2202 output = false;
2203 else
2204 abort ();
2205
2206 /* If this symbol is in a section which is not being included
2207 in the output file, then we don't want to output the
2208 symbol. */
2209 if (!bfd_is_abs_section (sym->section)
2210 && bfd_section_removed_from_list (output_bfd,
2211 sym->section->output_section))
2212 output = false;
2213
2214 if (output)
2215 {
2216 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2217 return false;
2218 if (h != NULL)
2219 h->written = true;
2220 }
2221 }
2222
2223 return true;
2224 }
2225
2226 /* Set the section and value of a generic BFD symbol based on a linker
2227 hash table entry. */
2228
2229 static void
2230 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2231 {
2232 switch (h->type)
2233 {
2234 default:
2235 abort ();
2236 break;
2237 case bfd_link_hash_new:
2238 /* This can happen when a constructor symbol is seen but we are
2239 not building constructors. */
2240 if (sym->section != NULL)
2241 {
2242 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2243 }
2244 else
2245 {
2246 sym->flags |= BSF_CONSTRUCTOR;
2247 sym->section = bfd_abs_section_ptr;
2248 sym->value = 0;
2249 }
2250 break;
2251 case bfd_link_hash_undefined:
2252 sym->section = bfd_und_section_ptr;
2253 sym->value = 0;
2254 break;
2255 case bfd_link_hash_undefweak:
2256 sym->section = bfd_und_section_ptr;
2257 sym->value = 0;
2258 sym->flags |= BSF_WEAK;
2259 break;
2260 case bfd_link_hash_defined:
2261 sym->section = h->u.def.section;
2262 sym->value = h->u.def.value;
2263 break;
2264 case bfd_link_hash_defweak:
2265 sym->flags |= BSF_WEAK;
2266 sym->section = h->u.def.section;
2267 sym->value = h->u.def.value;
2268 break;
2269 case bfd_link_hash_common:
2270 sym->value = h->u.c.size;
2271 if (sym->section == NULL)
2272 sym->section = bfd_com_section_ptr;
2273 else if (! bfd_is_com_section (sym->section))
2274 {
2275 BFD_ASSERT (bfd_is_und_section (sym->section));
2276 sym->section = bfd_com_section_ptr;
2277 }
2278 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2279 break;
2280 case bfd_link_hash_indirect:
2281 case bfd_link_hash_warning:
2282 /* FIXME: What should we do here? */
2283 break;
2284 }
2285 }
2286
2287 /* Write out a global symbol, if it hasn't already been written out.
2288 This is called for each symbol in the hash table. */
2289
2290 bool
2291 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2292 void *data)
2293 {
2294 struct generic_write_global_symbol_info *wginfo =
2295 (struct generic_write_global_symbol_info *) data;
2296 asymbol *sym;
2297
2298 if (h->written)
2299 return true;
2300
2301 h->written = true;
2302
2303 if (wginfo->info->strip == strip_all
2304 || (wginfo->info->strip == strip_some
2305 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2306 false, false) == NULL))
2307 return true;
2308
2309 if (h->sym != NULL)
2310 sym = h->sym;
2311 else
2312 {
2313 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2314 if (!sym)
2315 return false;
2316 sym->name = h->root.root.string;
2317 sym->flags = 0;
2318 }
2319
2320 set_symbol_from_hash (sym, &h->root);
2321
2322 sym->flags |= BSF_GLOBAL;
2323
2324 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2325 sym))
2326 {
2327 /* FIXME: No way to return failure. */
2328 abort ();
2329 }
2330
2331 return true;
2332 }
2333
2334 /* Create a relocation. */
2335
2336 bool
2337 _bfd_generic_reloc_link_order (bfd *abfd,
2338 struct bfd_link_info *info,
2339 asection *sec,
2340 struct bfd_link_order *link_order)
2341 {
2342 arelent *r;
2343
2344 if (! bfd_link_relocatable (info))
2345 abort ();
2346 if (sec->orelocation == NULL)
2347 abort ();
2348
2349 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2350 if (r == NULL)
2351 return false;
2352
2353 r->address = link_order->offset;
2354 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2355 if (r->howto == 0)
2356 {
2357 bfd_set_error (bfd_error_bad_value);
2358 return false;
2359 }
2360
2361 /* Get the symbol to use for the relocation. */
2362 if (link_order->type == bfd_section_reloc_link_order)
2363 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2364 else
2365 {
2366 struct generic_link_hash_entry *h;
2367
2368 h = ((struct generic_link_hash_entry *)
2369 bfd_wrapped_link_hash_lookup (abfd, info,
2370 link_order->u.reloc.p->u.name,
2371 false, false, true));
2372 if (h == NULL
2373 || ! h->written)
2374 {
2375 (*info->callbacks->unattached_reloc)
2376 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2377 bfd_set_error (bfd_error_bad_value);
2378 return false;
2379 }
2380 r->sym_ptr_ptr = &h->sym;
2381 }
2382
2383 /* If this is an inplace reloc, write the addend to the object file.
2384 Otherwise, store it in the reloc addend. */
2385 if (! r->howto->partial_inplace)
2386 r->addend = link_order->u.reloc.p->addend;
2387 else
2388 {
2389 bfd_size_type size;
2390 bfd_reloc_status_type rstat;
2391 bfd_byte *buf;
2392 bool ok;
2393 file_ptr loc;
2394
2395 size = bfd_get_reloc_size (r->howto);
2396 buf = (bfd_byte *) bfd_zmalloc (size);
2397 if (buf == NULL && size != 0)
2398 return false;
2399 rstat = _bfd_relocate_contents (r->howto, abfd,
2400 (bfd_vma) link_order->u.reloc.p->addend,
2401 buf);
2402 switch (rstat)
2403 {
2404 case bfd_reloc_ok:
2405 break;
2406 default:
2407 case bfd_reloc_outofrange:
2408 abort ();
2409 case bfd_reloc_overflow:
2410 (*info->callbacks->reloc_overflow)
2411 (info, NULL,
2412 (link_order->type == bfd_section_reloc_link_order
2413 ? bfd_section_name (link_order->u.reloc.p->u.section)
2414 : link_order->u.reloc.p->u.name),
2415 r->howto->name, link_order->u.reloc.p->addend,
2416 NULL, NULL, 0);
2417 break;
2418 }
2419 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2420 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2421 free (buf);
2422 if (! ok)
2423 return false;
2424
2425 r->addend = 0;
2426 }
2427
2428 sec->orelocation[sec->reloc_count] = r;
2429 ++sec->reloc_count;
2430
2431 return true;
2432 }
2433 \f
2434 /* Allocate a new link_order for a section. */
2435
2436 struct bfd_link_order *
2437 bfd_new_link_order (bfd *abfd, asection *section)
2438 {
2439 size_t amt = sizeof (struct bfd_link_order);
2440 struct bfd_link_order *new_lo;
2441
2442 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2443 if (!new_lo)
2444 return NULL;
2445
2446 new_lo->type = bfd_undefined_link_order;
2447
2448 if (section->map_tail.link_order != NULL)
2449 section->map_tail.link_order->next = new_lo;
2450 else
2451 section->map_head.link_order = new_lo;
2452 section->map_tail.link_order = new_lo;
2453
2454 return new_lo;
2455 }
2456
2457 /* Default link order processing routine. Note that we can not handle
2458 the reloc_link_order types here, since they depend upon the details
2459 of how the particular backends generates relocs. */
2460
2461 bool
2462 _bfd_default_link_order (bfd *abfd,
2463 struct bfd_link_info *info,
2464 asection *sec,
2465 struct bfd_link_order *link_order)
2466 {
2467 switch (link_order->type)
2468 {
2469 case bfd_undefined_link_order:
2470 case bfd_section_reloc_link_order:
2471 case bfd_symbol_reloc_link_order:
2472 default:
2473 abort ();
2474 case bfd_indirect_link_order:
2475 return default_indirect_link_order (abfd, info, sec, link_order,
2476 false);
2477 case bfd_data_link_order:
2478 return default_data_link_order (abfd, info, sec, link_order);
2479 }
2480 }
2481
2482 /* Default routine to handle a bfd_data_link_order. */
2483
2484 static bool
2485 default_data_link_order (bfd *abfd,
2486 struct bfd_link_info *info,
2487 asection *sec,
2488 struct bfd_link_order *link_order)
2489 {
2490 bfd_size_type size;
2491 size_t fill_size;
2492 bfd_byte *fill;
2493 file_ptr loc;
2494 bool result;
2495
2496 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2497
2498 size = link_order->size;
2499 if (size == 0)
2500 return true;
2501
2502 fill = link_order->u.data.contents;
2503 fill_size = link_order->u.data.size;
2504 if (fill_size == 0)
2505 {
2506 fill = abfd->arch_info->fill (size, info->big_endian,
2507 (sec->flags & SEC_CODE) != 0);
2508 if (fill == NULL)
2509 return false;
2510 }
2511 else if (fill_size < size)
2512 {
2513 bfd_byte *p;
2514 fill = (bfd_byte *) bfd_malloc (size);
2515 if (fill == NULL)
2516 return false;
2517 p = fill;
2518 if (fill_size == 1)
2519 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2520 else
2521 {
2522 do
2523 {
2524 memcpy (p, link_order->u.data.contents, fill_size);
2525 p += fill_size;
2526 size -= fill_size;
2527 }
2528 while (size >= fill_size);
2529 if (size != 0)
2530 memcpy (p, link_order->u.data.contents, (size_t) size);
2531 size = link_order->size;
2532 }
2533 }
2534
2535 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2536 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2537
2538 if (fill != link_order->u.data.contents)
2539 free (fill);
2540 return result;
2541 }
2542
2543 /* Default routine to handle a bfd_indirect_link_order. */
2544
2545 static bool
2546 default_indirect_link_order (bfd *output_bfd,
2547 struct bfd_link_info *info,
2548 asection *output_section,
2549 struct bfd_link_order *link_order,
2550 bool generic_linker)
2551 {
2552 asection *input_section;
2553 bfd *input_bfd;
2554 bfd_byte *contents = NULL;
2555 bfd_byte *new_contents;
2556 bfd_size_type sec_size;
2557 file_ptr loc;
2558
2559 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2560
2561 input_section = link_order->u.indirect.section;
2562 input_bfd = input_section->owner;
2563 if (input_section->size == 0)
2564 return true;
2565
2566 BFD_ASSERT (input_section->output_section == output_section);
2567 BFD_ASSERT (input_section->output_offset == link_order->offset);
2568 BFD_ASSERT (input_section->size == link_order->size);
2569
2570 if (bfd_link_relocatable (info)
2571 && input_section->reloc_count > 0
2572 && output_section->orelocation == NULL)
2573 {
2574 /* Space has not been allocated for the output relocations.
2575 This can happen when we are called by a specific backend
2576 because somebody is attempting to link together different
2577 types of object files. Handling this case correctly is
2578 difficult, and sometimes impossible. */
2579 _bfd_error_handler
2580 /* xgettext:c-format */
2581 (_("attempt to do relocatable link with %s input and %s output"),
2582 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2583 bfd_set_error (bfd_error_wrong_format);
2584 return false;
2585 }
2586
2587 if (! generic_linker)
2588 {
2589 asymbol **sympp;
2590 asymbol **symppend;
2591
2592 /* Get the canonical symbols. The generic linker will always
2593 have retrieved them by this point, but we are being called by
2594 a specific linker, presumably because we are linking
2595 different types of object files together. */
2596 if (!bfd_generic_link_read_symbols (input_bfd))
2597 return false;
2598
2599 /* Since we have been called by a specific linker, rather than
2600 the generic linker, the values of the symbols will not be
2601 right. They will be the values as seen in the input file,
2602 not the values of the final link. We need to fix them up
2603 before we can relocate the section. */
2604 sympp = _bfd_generic_link_get_symbols (input_bfd);
2605 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2606 for (; sympp < symppend; sympp++)
2607 {
2608 asymbol *sym;
2609 struct bfd_link_hash_entry *h;
2610
2611 sym = *sympp;
2612
2613 if ((sym->flags & (BSF_INDIRECT
2614 | BSF_WARNING
2615 | BSF_GLOBAL
2616 | BSF_CONSTRUCTOR
2617 | BSF_WEAK)) != 0
2618 || bfd_is_und_section (bfd_asymbol_section (sym))
2619 || bfd_is_com_section (bfd_asymbol_section (sym))
2620 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2621 {
2622 /* sym->udata may have been set by
2623 generic_link_add_symbol_list. */
2624 if (sym->udata.p != NULL)
2625 h = (struct bfd_link_hash_entry *) sym->udata.p;
2626 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2627 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2628 bfd_asymbol_name (sym),
2629 false, false, true);
2630 else
2631 h = bfd_link_hash_lookup (info->hash,
2632 bfd_asymbol_name (sym),
2633 false, false, true);
2634 if (h != NULL)
2635 set_symbol_from_hash (sym, h);
2636 }
2637 }
2638 }
2639
2640 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2641 && input_section->size != 0)
2642 {
2643 /* Group section contents are set by bfd_elf_set_group_contents. */
2644 if (!output_bfd->output_has_begun)
2645 {
2646 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2647 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2648 goto error_return;
2649 }
2650 new_contents = output_section->contents;
2651 BFD_ASSERT (new_contents != NULL);
2652 BFD_ASSERT (input_section->output_offset == 0);
2653 }
2654 else
2655 {
2656 /* Get and relocate the section contents. */
2657 sec_size = (input_section->rawsize > input_section->size
2658 ? input_section->rawsize
2659 : input_section->size);
2660 contents = (bfd_byte *) bfd_malloc (sec_size);
2661 if (contents == NULL && sec_size != 0)
2662 goto error_return;
2663 new_contents = (bfd_get_relocated_section_contents
2664 (output_bfd, info, link_order, contents,
2665 bfd_link_relocatable (info),
2666 _bfd_generic_link_get_symbols (input_bfd)));
2667 if (!new_contents)
2668 goto error_return;
2669 }
2670
2671 /* Output the section contents. */
2672 loc = (input_section->output_offset
2673 * bfd_octets_per_byte (output_bfd, output_section));
2674 if (! bfd_set_section_contents (output_bfd, output_section,
2675 new_contents, loc, input_section->size))
2676 goto error_return;
2677
2678 free (contents);
2679 return true;
2680
2681 error_return:
2682 free (contents);
2683 return false;
2684 }
2685
2686 /* A little routine to count the number of relocs in a link_order
2687 list. */
2688
2689 unsigned int
2690 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2691 {
2692 register unsigned int c;
2693 register struct bfd_link_order *l;
2694
2695 c = 0;
2696 for (l = link_order; l != NULL; l = l->next)
2697 {
2698 if (l->type == bfd_section_reloc_link_order
2699 || l->type == bfd_symbol_reloc_link_order)
2700 ++c;
2701 }
2702
2703 return c;
2704 }
2705
2706 /*
2707 FUNCTION
2708 bfd_link_split_section
2709
2710 SYNOPSIS
2711 bool bfd_link_split_section (bfd *abfd, asection *sec);
2712
2713 DESCRIPTION
2714 Return nonzero if @var{sec} should be split during a
2715 reloceatable or final link.
2716
2717 .#define bfd_link_split_section(abfd, sec) \
2718 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2719 .
2720
2721 */
2722
2723 bool
2724 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2725 asection *sec ATTRIBUTE_UNUSED)
2726 {
2727 return false;
2728 }
2729
2730 /*
2731 FUNCTION
2732 bfd_section_already_linked
2733
2734 SYNOPSIS
2735 bool bfd_section_already_linked (bfd *abfd,
2736 asection *sec,
2737 struct bfd_link_info *info);
2738
2739 DESCRIPTION
2740 Check if @var{data} has been already linked during a reloceatable
2741 or final link. Return TRUE if it has.
2742
2743 .#define bfd_section_already_linked(abfd, sec, info) \
2744 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2745 .
2746
2747 */
2748
2749 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2750 once into the output. This routine checks each section, and
2751 arrange to discard it if a section of the same name has already
2752 been linked. This code assumes that all relevant sections have the
2753 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2754 section name. bfd_section_already_linked is called via
2755 bfd_map_over_sections. */
2756
2757 /* The hash table. */
2758
2759 static struct bfd_hash_table _bfd_section_already_linked_table;
2760
2761 /* Support routines for the hash table used by section_already_linked,
2762 initialize the table, traverse, lookup, fill in an entry and remove
2763 the table. */
2764
2765 void
2766 bfd_section_already_linked_table_traverse
2767 (bool (*func) (struct bfd_section_already_linked_hash_entry *, void *),
2768 void *info)
2769 {
2770 bfd_hash_traverse (&_bfd_section_already_linked_table,
2771 (bool (*) (struct bfd_hash_entry *, void *)) func,
2772 info);
2773 }
2774
2775 struct bfd_section_already_linked_hash_entry *
2776 bfd_section_already_linked_table_lookup (const char *name)
2777 {
2778 return ((struct bfd_section_already_linked_hash_entry *)
2779 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2780 true, false));
2781 }
2782
2783 bool
2784 bfd_section_already_linked_table_insert
2785 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2786 asection *sec)
2787 {
2788 struct bfd_section_already_linked *l;
2789
2790 /* Allocate the memory from the same obstack as the hash table is
2791 kept in. */
2792 l = (struct bfd_section_already_linked *)
2793 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2794 if (l == NULL)
2795 return false;
2796 l->sec = sec;
2797 l->next = already_linked_list->entry;
2798 already_linked_list->entry = l;
2799 return true;
2800 }
2801
2802 static struct bfd_hash_entry *
2803 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2804 struct bfd_hash_table *table,
2805 const char *string ATTRIBUTE_UNUSED)
2806 {
2807 struct bfd_section_already_linked_hash_entry *ret =
2808 (struct bfd_section_already_linked_hash_entry *)
2809 bfd_hash_allocate (table, sizeof *ret);
2810
2811 if (ret == NULL)
2812 return NULL;
2813
2814 ret->entry = NULL;
2815
2816 return &ret->root;
2817 }
2818
2819 bool
2820 bfd_section_already_linked_table_init (void)
2821 {
2822 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2823 already_linked_newfunc,
2824 sizeof (struct bfd_section_already_linked_hash_entry),
2825 42);
2826 }
2827
2828 void
2829 bfd_section_already_linked_table_free (void)
2830 {
2831 bfd_hash_table_free (&_bfd_section_already_linked_table);
2832 }
2833
2834 /* Report warnings as appropriate for duplicate section SEC.
2835 Return FALSE if we decide to keep SEC after all. */
2836
2837 bool
2838 _bfd_handle_already_linked (asection *sec,
2839 struct bfd_section_already_linked *l,
2840 struct bfd_link_info *info)
2841 {
2842 switch (sec->flags & SEC_LINK_DUPLICATES)
2843 {
2844 default:
2845 abort ();
2846
2847 case SEC_LINK_DUPLICATES_DISCARD:
2848 /* If we found an LTO IR match for this comdat group on
2849 the first pass, replace it with the LTO output on the
2850 second pass. We can't simply choose real object
2851 files over IR because the first pass may contain a
2852 mix of LTO and normal objects and we must keep the
2853 first match, be it IR or real. */
2854 if (sec->owner->lto_output
2855 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2856 {
2857 l->sec = sec;
2858 return false;
2859 }
2860 break;
2861
2862 case SEC_LINK_DUPLICATES_ONE_ONLY:
2863 info->callbacks->einfo
2864 /* xgettext:c-format */
2865 (_("%pB: ignoring duplicate section `%pA'\n"),
2866 sec->owner, sec);
2867 break;
2868
2869 case SEC_LINK_DUPLICATES_SAME_SIZE:
2870 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2871 ;
2872 else if (sec->size != l->sec->size)
2873 info->callbacks->einfo
2874 /* xgettext:c-format */
2875 (_("%pB: duplicate section `%pA' has different size\n"),
2876 sec->owner, sec);
2877 break;
2878
2879 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2880 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2881 ;
2882 else if (sec->size != l->sec->size)
2883 info->callbacks->einfo
2884 /* xgettext:c-format */
2885 (_("%pB: duplicate section `%pA' has different size\n"),
2886 sec->owner, sec);
2887 else if (sec->size != 0)
2888 {
2889 bfd_byte *sec_contents, *l_sec_contents = NULL;
2890
2891 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2892 info->callbacks->einfo
2893 /* xgettext:c-format */
2894 (_("%pB: could not read contents of section `%pA'\n"),
2895 sec->owner, sec);
2896 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2897 &l_sec_contents))
2898 info->callbacks->einfo
2899 /* xgettext:c-format */
2900 (_("%pB: could not read contents of section `%pA'\n"),
2901 l->sec->owner, l->sec);
2902 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2903 info->callbacks->einfo
2904 /* xgettext:c-format */
2905 (_("%pB: duplicate section `%pA' has different contents\n"),
2906 sec->owner, sec);
2907
2908 free (sec_contents);
2909 free (l_sec_contents);
2910 }
2911 break;
2912 }
2913
2914 /* Set the output_section field so that lang_add_section
2915 does not create a lang_input_section structure for this
2916 section. Since there might be a symbol in the section
2917 being discarded, we must retain a pointer to the section
2918 which we are really going to use. */
2919 sec->output_section = bfd_abs_section_ptr;
2920 sec->kept_section = l->sec;
2921 return true;
2922 }
2923
2924 /* This is used on non-ELF inputs. */
2925
2926 bool
2927 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2928 asection *sec,
2929 struct bfd_link_info *info)
2930 {
2931 const char *name;
2932 struct bfd_section_already_linked *l;
2933 struct bfd_section_already_linked_hash_entry *already_linked_list;
2934
2935 if ((sec->flags & SEC_LINK_ONCE) == 0)
2936 return false;
2937
2938 /* The generic linker doesn't handle section groups. */
2939 if ((sec->flags & SEC_GROUP) != 0)
2940 return false;
2941
2942 /* FIXME: When doing a relocatable link, we may have trouble
2943 copying relocations in other sections that refer to local symbols
2944 in the section being discarded. Those relocations will have to
2945 be converted somehow; as of this writing I'm not sure that any of
2946 the backends handle that correctly.
2947
2948 It is tempting to instead not discard link once sections when
2949 doing a relocatable link (technically, they should be discarded
2950 whenever we are building constructors). However, that fails,
2951 because the linker winds up combining all the link once sections
2952 into a single large link once section, which defeats the purpose
2953 of having link once sections in the first place. */
2954
2955 name = bfd_section_name (sec);
2956
2957 already_linked_list = bfd_section_already_linked_table_lookup (name);
2958
2959 l = already_linked_list->entry;
2960 if (l != NULL)
2961 {
2962 /* The section has already been linked. See if we should
2963 issue a warning. */
2964 return _bfd_handle_already_linked (sec, l, info);
2965 }
2966
2967 /* This is the first section with this name. Record it. */
2968 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2969 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2970 return false;
2971 }
2972
2973 /* Choose a neighbouring section to S in OBFD that will be output, or
2974 the absolute section if ADDR is out of bounds of the neighbours. */
2975
2976 asection *
2977 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2978 {
2979 asection *next, *prev, *best;
2980
2981 /* Find preceding kept section. */
2982 for (prev = s->prev; prev != NULL; prev = prev->prev)
2983 if ((prev->flags & SEC_EXCLUDE) == 0
2984 && !bfd_section_removed_from_list (obfd, prev))
2985 break;
2986
2987 /* Find following kept section. Start at prev->next because
2988 other sections may have been added after S was removed. */
2989 if (s->prev != NULL)
2990 next = s->prev->next;
2991 else
2992 next = s->owner->sections;
2993 for (; next != NULL; next = next->next)
2994 if ((next->flags & SEC_EXCLUDE) == 0
2995 && !bfd_section_removed_from_list (obfd, next))
2996 break;
2997
2998 /* Choose better of two sections, based on flags. The idea
2999 is to choose a section that will be in the same segment
3000 as S would have been if it was kept. */
3001 best = next;
3002 if (prev == NULL)
3003 {
3004 if (next == NULL)
3005 best = bfd_abs_section_ptr;
3006 }
3007 else if (next == NULL)
3008 best = prev;
3009 else if (((prev->flags ^ next->flags)
3010 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3011 {
3012 if (((next->flags ^ s->flags)
3013 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3014 /* We prefer to choose a loaded section. Section S
3015 doesn't have SEC_LOAD set (it being excluded, that
3016 part of the flag processing didn't happen) so we
3017 can't compare that flag to those of NEXT and PREV. */
3018 || ((prev->flags & SEC_LOAD) != 0
3019 && (next->flags & SEC_LOAD) == 0))
3020 best = prev;
3021 }
3022 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3023 {
3024 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3025 best = prev;
3026 }
3027 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3028 {
3029 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3030 best = prev;
3031 }
3032 else
3033 {
3034 /* Flags we care about are the same. Prefer the following
3035 section if that will result in a positive valued sym. */
3036 if (addr < next->vma)
3037 best = prev;
3038 }
3039
3040 return best;
3041 }
3042
3043 /* Convert symbols in excluded output sections to use a kept section. */
3044
3045 static bool
3046 fix_syms (struct bfd_link_hash_entry *h, void *data)
3047 {
3048 bfd *obfd = (bfd *) data;
3049
3050 if (h->type == bfd_link_hash_defined
3051 || h->type == bfd_link_hash_defweak)
3052 {
3053 asection *s = h->u.def.section;
3054 if (s != NULL
3055 && s->output_section != NULL
3056 && (s->output_section->flags & SEC_EXCLUDE) != 0
3057 && bfd_section_removed_from_list (obfd, s->output_section))
3058 {
3059 asection *op;
3060
3061 h->u.def.value += s->output_offset + s->output_section->vma;
3062 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3063 h->u.def.value -= op->vma;
3064 h->u.def.section = op;
3065 }
3066 }
3067
3068 return true;
3069 }
3070
3071 void
3072 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3073 {
3074 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3075 }
3076
3077 /*
3078 FUNCTION
3079 bfd_generic_define_common_symbol
3080
3081 SYNOPSIS
3082 bool bfd_generic_define_common_symbol
3083 (bfd *output_bfd, struct bfd_link_info *info,
3084 struct bfd_link_hash_entry *h);
3085
3086 DESCRIPTION
3087 Convert common symbol @var{h} into a defined symbol.
3088 Return TRUE on success and FALSE on failure.
3089
3090 .#define bfd_define_common_symbol(output_bfd, info, h) \
3091 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3092 .
3093 */
3094
3095 bool
3096 bfd_generic_define_common_symbol (bfd *output_bfd,
3097 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3098 struct bfd_link_hash_entry *h)
3099 {
3100 unsigned int power_of_two;
3101 bfd_vma alignment, size;
3102 asection *section;
3103
3104 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3105
3106 size = h->u.c.size;
3107 power_of_two = h->u.c.p->alignment_power;
3108 section = h->u.c.p->section;
3109
3110 /* Increase the size of the section to align the common symbol.
3111 The alignment must be a power of two. But if the section does
3112 not have any alignment requirement then do not increase the
3113 alignment unnecessarily. */
3114 if (power_of_two)
3115 alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
3116 else
3117 alignment = 1;
3118 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3119 section->size += alignment - 1;
3120 section->size &= -alignment;
3121
3122 /* Adjust the section's overall alignment if necessary. */
3123 if (power_of_two > section->alignment_power)
3124 section->alignment_power = power_of_two;
3125
3126 /* Change the symbol from common to defined. */
3127 h->type = bfd_link_hash_defined;
3128 h->u.def.section = section;
3129 h->u.def.value = section->size;
3130
3131 /* Increase the size of the section. */
3132 section->size += size;
3133
3134 /* Make sure the section is allocated in memory, and make sure that
3135 it is no longer a common section. */
3136 section->flags |= SEC_ALLOC;
3137 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3138 return true;
3139 }
3140
3141 /*
3142 FUNCTION
3143 _bfd_generic_link_hide_symbol
3144
3145 SYNOPSIS
3146 void _bfd_generic_link_hide_symbol
3147 (bfd *output_bfd, struct bfd_link_info *info,
3148 struct bfd_link_hash_entry *h);
3149
3150 DESCRIPTION
3151 Hide symbol @var{h}.
3152 This is an internal function. It should not be called from
3153 outside the BFD library.
3154
3155 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3156 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3157 .
3158 */
3159
3160 void
3161 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3162 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3163 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3164 {
3165 }
3166
3167 /*
3168 FUNCTION
3169 bfd_generic_define_start_stop
3170
3171 SYNOPSIS
3172 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3173 (struct bfd_link_info *info,
3174 const char *symbol, asection *sec);
3175
3176 DESCRIPTION
3177 Define a __start, __stop, .startof. or .sizeof. symbol.
3178 Return the symbol or NULL if no such undefined symbol exists.
3179
3180 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3181 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3182 .
3183 */
3184
3185 struct bfd_link_hash_entry *
3186 bfd_generic_define_start_stop (struct bfd_link_info *info,
3187 const char *symbol, asection *sec)
3188 {
3189 struct bfd_link_hash_entry *h;
3190
3191 h = bfd_link_hash_lookup (info->hash, symbol, false, false, true);
3192 if (h != NULL
3193 && !h->ldscript_def
3194 && (h->type == bfd_link_hash_undefined
3195 || h->type == bfd_link_hash_undefweak))
3196 {
3197 h->type = bfd_link_hash_defined;
3198 h->u.def.section = sec;
3199 h->u.def.value = 0;
3200 return h;
3201 }
3202 return NULL;
3203 }
3204
3205 /*
3206 FUNCTION
3207 bfd_find_version_for_sym
3208
3209 SYNOPSIS
3210 struct bfd_elf_version_tree * bfd_find_version_for_sym
3211 (struct bfd_elf_version_tree *verdefs,
3212 const char *sym_name, bool *hide);
3213
3214 DESCRIPTION
3215 Search an elf version script tree for symbol versioning
3216 info and export / don't-export status for a given symbol.
3217 Return non-NULL on success and NULL on failure; also sets
3218 the output @samp{hide} boolean parameter.
3219
3220 */
3221
3222 struct bfd_elf_version_tree *
3223 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3224 const char *sym_name,
3225 bool *hide)
3226 {
3227 struct bfd_elf_version_tree *t;
3228 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3229 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3230
3231 local_ver = NULL;
3232 global_ver = NULL;
3233 star_local_ver = NULL;
3234 star_global_ver = NULL;
3235 exist_ver = NULL;
3236 for (t = verdefs; t != NULL; t = t->next)
3237 {
3238 if (t->globals.list != NULL)
3239 {
3240 struct bfd_elf_version_expr *d = NULL;
3241
3242 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3243 {
3244 if (d->literal || strcmp (d->pattern, "*") != 0)
3245 global_ver = t;
3246 else
3247 star_global_ver = t;
3248 if (d->symver)
3249 exist_ver = t;
3250 d->script = 1;
3251 /* If the match is a wildcard pattern, keep looking for
3252 a more explicit, perhaps even local, match. */
3253 if (d->literal)
3254 break;
3255 }
3256
3257 if (d != NULL)
3258 break;
3259 }
3260
3261 if (t->locals.list != NULL)
3262 {
3263 struct bfd_elf_version_expr *d = NULL;
3264
3265 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3266 {
3267 if (d->literal || strcmp (d->pattern, "*") != 0)
3268 local_ver = t;
3269 else
3270 star_local_ver = t;
3271 /* If the match is a wildcard pattern, keep looking for
3272 a more explicit, perhaps even global, match. */
3273 if (d->literal)
3274 {
3275 /* An exact match overrides a global wildcard. */
3276 global_ver = NULL;
3277 star_global_ver = NULL;
3278 break;
3279 }
3280 }
3281
3282 if (d != NULL)
3283 break;
3284 }
3285 }
3286
3287 if (global_ver == NULL && local_ver == NULL)
3288 global_ver = star_global_ver;
3289
3290 if (global_ver != NULL)
3291 {
3292 /* If we already have a versioned symbol that matches the
3293 node for this symbol, then we don't want to create a
3294 duplicate from the unversioned symbol. Instead hide the
3295 unversioned symbol. */
3296 *hide = exist_ver == global_ver;
3297 return global_ver;
3298 }
3299
3300 if (local_ver == NULL)
3301 local_ver = star_local_ver;
3302
3303 if (local_ver != NULL)
3304 {
3305 *hide = true;
3306 return local_ver;
3307 }
3308
3309 return NULL;
3310 }
3311
3312 /*
3313 FUNCTION
3314 bfd_hide_sym_by_version
3315
3316 SYNOPSIS
3317 bool bfd_hide_sym_by_version
3318 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3319
3320 DESCRIPTION
3321 Search an elf version script tree for symbol versioning
3322 info for a given symbol. Return TRUE if the symbol is hidden.
3323
3324 */
3325
3326 bool
3327 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3328 const char *sym_name)
3329 {
3330 bool hidden = false;
3331 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3332 return hidden;
3333 }
3334
3335 /*
3336 FUNCTION
3337 bfd_link_check_relocs
3338
3339 SYNOPSIS
3340 bool bfd_link_check_relocs
3341 (bfd *abfd, struct bfd_link_info *info);
3342
3343 DESCRIPTION
3344 Checks the relocs in ABFD for validity.
3345 Does not execute the relocs.
3346 Return TRUE if everything is OK, FALSE otherwise.
3347 This is the external entry point to this code.
3348 */
3349
3350 bool
3351 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3352 {
3353 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3354 }
3355
3356 /*
3357 FUNCTION
3358 _bfd_generic_link_check_relocs
3359
3360 SYNOPSIS
3361 bool _bfd_generic_link_check_relocs
3362 (bfd *abfd, struct bfd_link_info *info);
3363
3364 DESCRIPTION
3365 Stub function for targets that do not implement reloc checking.
3366 Return TRUE.
3367 This is an internal function. It should not be called from
3368 outside the BFD library.
3369 */
3370
3371 bool
3372 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3373 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3374 {
3375 return true;
3376 }
3377
3378 /*
3379 FUNCTION
3380 bfd_merge_private_bfd_data
3381
3382 SYNOPSIS
3383 bool bfd_merge_private_bfd_data
3384 (bfd *ibfd, struct bfd_link_info *info);
3385
3386 DESCRIPTION
3387 Merge private BFD information from the BFD @var{ibfd} to the
3388 the output file BFD when linking. Return <<TRUE>> on success,
3389 <<FALSE>> on error. Possible error returns are:
3390
3391 o <<bfd_error_no_memory>> -
3392 Not enough memory exists to create private data for @var{obfd}.
3393
3394 .#define bfd_merge_private_bfd_data(ibfd, info) \
3395 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3396 . (ibfd, info))
3397 */
3398
3399 /*
3400 INTERNAL_FUNCTION
3401 _bfd_generic_verify_endian_match
3402
3403 SYNOPSIS
3404 bool _bfd_generic_verify_endian_match
3405 (bfd *ibfd, struct bfd_link_info *info);
3406
3407 DESCRIPTION
3408 Can be used from / for bfd_merge_private_bfd_data to check that
3409 endianness matches between input and output file. Returns
3410 TRUE for a match, otherwise returns FALSE and emits an error.
3411 */
3412
3413 bool
3414 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3415 {
3416 bfd *obfd = info->output_bfd;
3417
3418 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3419 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3420 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3421 {
3422 if (bfd_big_endian (ibfd))
3423 _bfd_error_handler (_("%pB: compiled for a big endian system "
3424 "and target is little endian"), ibfd);
3425 else
3426 _bfd_error_handler (_("%pB: compiled for a little endian system "
3427 "and target is big endian"), ibfd);
3428 bfd_set_error (bfd_error_wrong_format);
3429 return false;
3430 }
3431
3432 return true;
3433 }
3434
3435 int
3436 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3437 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3438 {
3439 return 0;
3440 }
3441
3442 bool
3443 _bfd_nolink_bfd_relax_section (bfd *abfd,
3444 asection *section ATTRIBUTE_UNUSED,
3445 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3446 bool *again ATTRIBUTE_UNUSED)
3447 {
3448 return _bfd_bool_bfd_false_error (abfd);
3449 }
3450
3451 bfd_byte *
3452 _bfd_nolink_bfd_get_relocated_section_contents
3453 (bfd *abfd,
3454 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3455 struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3456 bfd_byte *data ATTRIBUTE_UNUSED,
3457 bool relocatable ATTRIBUTE_UNUSED,
3458 asymbol **symbols ATTRIBUTE_UNUSED)
3459 {
3460 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3461 }
3462
3463 bool
3464 _bfd_nolink_bfd_lookup_section_flags
3465 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3466 struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3467 asection *section)
3468 {
3469 return _bfd_bool_bfd_false_error (section->owner);
3470 }
3471
3472 bool
3473 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3474 const asection *sec ATTRIBUTE_UNUSED)
3475 {
3476 return _bfd_bool_bfd_false_error (abfd);
3477 }
3478
3479 const char *
3480 _bfd_nolink_bfd_group_name (bfd *abfd,
3481 const asection *sec ATTRIBUTE_UNUSED)
3482 {
3483 return _bfd_ptr_bfd_null_error (abfd);
3484 }
3485
3486 bool
3487 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3488 {
3489 return _bfd_bool_bfd_false_error (abfd);
3490 }
3491
3492 struct bfd_link_hash_table *
3493 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3494 {
3495 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3496 }
3497
3498 void
3499 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3500 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3501 {
3502 }
3503
3504 void
3505 _bfd_nolink_bfd_copy_link_hash_symbol_type
3506 (bfd *abfd ATTRIBUTE_UNUSED,
3507 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3508 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3509 {
3510 }
3511
3512 bool
3513 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3514 {
3515 return _bfd_bool_bfd_false_error (abfd);
3516 }
3517
3518 bool
3519 _bfd_nolink_section_already_linked (bfd *abfd,
3520 asection *sec ATTRIBUTE_UNUSED,
3521 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3522 {
3523 return _bfd_bool_bfd_false_error (abfd);
3524 }
3525
3526 bool
3527 _bfd_nolink_bfd_define_common_symbol
3528 (bfd *abfd,
3529 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3530 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3531 {
3532 return _bfd_bool_bfd_false_error (abfd);
3533 }
3534
3535 struct bfd_link_hash_entry *
3536 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3537 const char *name ATTRIBUTE_UNUSED,
3538 asection *sec)
3539 {
3540 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3541 }
3542
3543 /* Return false if linker should avoid caching relocation infomation
3544 and symbol tables of input files in memory. */
3545
3546 bool
3547 _bfd_link_keep_memory (struct bfd_link_info * info)
3548 {
3549 bfd *abfd;
3550 bfd_size_type size;
3551
3552 if (!info->keep_memory)
3553 return false;
3554
3555 if (info->max_cache_size == (bfd_size_type) -1)
3556 return true;
3557
3558 abfd = info->input_bfds;
3559 size = info->cache_size;
3560 do
3561 {
3562 if (size >= info->max_cache_size)
3563 {
3564 /* Over the limit. Reduce the memory usage. */
3565 info->keep_memory = false;
3566 return false;
3567 }
3568 if (!abfd)
3569 break;
3570 size += abfd->alloc_size;
3571 abfd = abfd->link.next;
3572 }
3573 while (1);
3574
3575 return true;
3576 }