Automatic date update in version.in
[binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bool generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bool generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bool *);
410 static bool generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bool generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bool default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bool default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bool);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bool
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bool ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = true;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol.
488
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
499 .
500 */
501
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 const char *string,
505 bool create,
506 bool copy,
507 bool follow)
508 {
509 struct bfd_link_hash_entry *ret;
510
511 if (table == NULL || string == NULL)
512 return NULL;
513
514 ret = ((struct bfd_link_hash_entry *)
515 bfd_hash_lookup (&table->table, string, create, copy));
516
517 if (follow && ret != NULL)
518 {
519 while (ret->type == bfd_link_hash_indirect
520 || ret->type == bfd_link_hash_warning)
521 ret = ret->u.i.link;
522 }
523
524 return ret;
525 }
526
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
530
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 struct bfd_link_info *info,
534 const char *string,
535 bool create,
536 bool copy,
537 bool follow)
538 {
539 size_t amt;
540
541 if (info->wrap_hash != NULL)
542 {
543 const char *l;
544 char prefix = '\0';
545
546 l = string;
547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 {
549 prefix = *l;
550 ++l;
551 }
552
553 #undef WRAP
554 #define WRAP "__wrap_"
555
556 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
557 {
558 char *n;
559 struct bfd_link_hash_entry *h;
560
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
563
564 amt = strlen (l) + sizeof WRAP + 1;
565 n = (char *) bfd_malloc (amt);
566 if (n == NULL)
567 return NULL;
568
569 n[0] = prefix;
570 n[1] = '\0';
571 strcat (n, WRAP);
572 strcat (n, l);
573 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
574 free (n);
575 return h;
576 }
577
578 #undef REAL
579 #define REAL "__real_"
580
581 if (*l == '_'
582 && startswith (l, REAL)
583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 false, false) != NULL)
585 {
586 char *n;
587 struct bfd_link_hash_entry *h;
588
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
592
593 amt = strlen (l + sizeof REAL - 1) + 2;
594 n = (char *) bfd_malloc (amt);
595 if (n == NULL)
596 return NULL;
597
598 n[0] = prefix;
599 n[1] = '\0';
600 strcat (n, l + sizeof REAL - 1);
601 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
602 free (n);
603 return h;
604 }
605
606 #undef REAL
607 }
608
609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
610 }
611
612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
613 and the remainder is found in wrap_hash, return the real symbol. */
614
615 struct bfd_link_hash_entry *
616 unwrap_hash_lookup (struct bfd_link_info *info,
617 bfd *input_bfd,
618 struct bfd_link_hash_entry *h)
619 {
620 const char *l = h->root.string;
621
622 if (*l == bfd_get_symbol_leading_char (input_bfd)
623 || *l == info->wrap_char)
624 ++l;
625
626 if (startswith (l, WRAP))
627 {
628 l += sizeof WRAP - 1;
629
630 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
631 {
632 char save = 0;
633 if (l - (sizeof WRAP - 1) != h->root.string)
634 {
635 --l;
636 save = *l;
637 *(char *) l = *h->root.string;
638 }
639 h = bfd_link_hash_lookup (info->hash, l, false, false, false);
640 if (save)
641 *(char *) l = save;
642 }
643 }
644 return h;
645 }
646 #undef WRAP
647
648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
649 in the treatment of warning symbols. When warning symbols are
650 created they replace the real symbol, so you don't get to see the
651 real symbol in a bfd_hash_traverse. This traversal calls func with
652 the real symbol. */
653
654 void
655 bfd_link_hash_traverse
656 (struct bfd_link_hash_table *htab,
657 bool (*func) (struct bfd_link_hash_entry *, void *),
658 void *info)
659 {
660 unsigned int i;
661
662 htab->table.frozen = 1;
663 for (i = 0; i < htab->table.size; i++)
664 {
665 struct bfd_link_hash_entry *p;
666
667 p = (struct bfd_link_hash_entry *) htab->table.table[i];
668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
670 goto out;
671 }
672 out:
673 htab->table.frozen = 0;
674 }
675
676 /* Add a symbol to the linker hash table undefs list. */
677
678 void
679 bfd_link_add_undef (struct bfd_link_hash_table *table,
680 struct bfd_link_hash_entry *h)
681 {
682 BFD_ASSERT (h->u.undef.next == NULL);
683 if (table->undefs_tail != NULL)
684 table->undefs_tail->u.undef.next = h;
685 if (table->undefs == NULL)
686 table->undefs = h;
687 table->undefs_tail = h;
688 }
689
690 /* The undefs list was designed so that in normal use we don't need to
691 remove entries. However, if symbols on the list are changed from
692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
693 bfd_link_hash_new for some reason, then they must be removed from the
694 list. Failure to do so might result in the linker attempting to add
695 the symbol to the list again at a later stage. */
696
697 void
698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
699 {
700 struct bfd_link_hash_entry **pun;
701
702 pun = &table->undefs;
703 while (*pun != NULL)
704 {
705 struct bfd_link_hash_entry *h = *pun;
706
707 if (h->type == bfd_link_hash_new
708 || h->type == bfd_link_hash_undefweak)
709 {
710 *pun = h->u.undef.next;
711 h->u.undef.next = NULL;
712 if (h == table->undefs_tail)
713 {
714 if (pun == &table->undefs)
715 table->undefs_tail = NULL;
716 else
717 /* pun points at an u.undef.next field. Go back to
718 the start of the link_hash_entry. */
719 table->undefs_tail = (struct bfd_link_hash_entry *)
720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
721 break;
722 }
723 }
724 else
725 pun = &h->u.undef.next;
726 }
727 }
728 \f
729 /* Routine to create an entry in a generic link hash table. */
730
731 struct bfd_hash_entry *
732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
733 struct bfd_hash_table *table,
734 const char *string)
735 {
736 /* Allocate the structure if it has not already been allocated by a
737 subclass. */
738 if (entry == NULL)
739 {
740 entry = (struct bfd_hash_entry *)
741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
742 if (entry == NULL)
743 return entry;
744 }
745
746 /* Call the allocation method of the superclass. */
747 entry = _bfd_link_hash_newfunc (entry, table, string);
748 if (entry)
749 {
750 struct generic_link_hash_entry *ret;
751
752 /* Set local fields. */
753 ret = (struct generic_link_hash_entry *) entry;
754 ret->written = false;
755 ret->sym = NULL;
756 }
757
758 return entry;
759 }
760
761 /* Create a generic link hash table. */
762
763 struct bfd_link_hash_table *
764 _bfd_generic_link_hash_table_create (bfd *abfd)
765 {
766 struct generic_link_hash_table *ret;
767 size_t amt = sizeof (struct generic_link_hash_table);
768
769 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
770 if (ret == NULL)
771 return NULL;
772 if (! _bfd_link_hash_table_init (&ret->root, abfd,
773 _bfd_generic_link_hash_newfunc,
774 sizeof (struct generic_link_hash_entry)))
775 {
776 free (ret);
777 return NULL;
778 }
779 return &ret->root;
780 }
781
782 void
783 _bfd_generic_link_hash_table_free (bfd *obfd)
784 {
785 struct generic_link_hash_table *ret;
786
787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
788 ret = (struct generic_link_hash_table *) obfd->link.hash;
789 bfd_hash_table_free (&ret->root.table);
790 free (ret);
791 obfd->link.hash = NULL;
792 obfd->is_linker_output = false;
793 }
794
795 /* Grab the symbols for an object file when doing a generic link. We
796 store the symbols in the outsymbols field. We need to keep them
797 around for the entire link to ensure that we only read them once.
798 If we read them multiple times, we might wind up with relocs and
799 the hash table pointing to different instances of the symbol
800 structure. */
801
802 bool
803 bfd_generic_link_read_symbols (bfd *abfd)
804 {
805 if (bfd_get_outsymbols (abfd) == NULL)
806 {
807 long symsize;
808 long symcount;
809
810 symsize = bfd_get_symtab_upper_bound (abfd);
811 if (symsize < 0)
812 return false;
813 abfd->outsymbols = bfd_alloc (abfd, symsize);
814 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
815 return false;
816 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
817 if (symcount < 0)
818 return false;
819 abfd->symcount = symcount;
820 }
821
822 return true;
823 }
824 \f
825 /* Indicate that we are only retrieving symbol values from this
826 section. We want the symbols to act as though the values in the
827 file are absolute. */
828
829 void
830 _bfd_generic_link_just_syms (asection *sec,
831 struct bfd_link_info *info ATTRIBUTE_UNUSED)
832 {
833 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
834 sec->output_section = bfd_abs_section_ptr;
835 sec->output_offset = sec->vma;
836 }
837
838 /* Copy the symbol type and other attributes for a linker script
839 assignment from HSRC to HDEST.
840 The default implementation does nothing. */
841 void
842 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
843 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
844 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
845 {
846 }
847
848 /* Generic function to add symbols from an object file to the
849 global hash table. */
850
851 bool
852 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
853 {
854 bool ret;
855
856 switch (bfd_get_format (abfd))
857 {
858 case bfd_object:
859 ret = generic_link_add_object_symbols (abfd, info);
860 break;
861 case bfd_archive:
862 ret = (_bfd_generic_link_add_archive_symbols
863 (abfd, info, generic_link_check_archive_element));
864 break;
865 default:
866 bfd_set_error (bfd_error_wrong_format);
867 ret = false;
868 }
869
870 return ret;
871 }
872
873 /* Add symbols from an object file to the global hash table. */
874
875 static bool
876 generic_link_add_object_symbols (bfd *abfd,
877 struct bfd_link_info *info)
878 {
879 bfd_size_type symcount;
880 struct bfd_symbol **outsyms;
881
882 if (!bfd_generic_link_read_symbols (abfd))
883 return false;
884 symcount = _bfd_generic_link_get_symcount (abfd);
885 outsyms = _bfd_generic_link_get_symbols (abfd);
886 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
887 }
888 \f
889 /* Generic function to add symbols from an archive file to the global
890 hash file. This function presumes that the archive symbol table
891 has already been read in (this is normally done by the
892 bfd_check_format entry point). It looks through the archive symbol
893 table for symbols that are undefined or common in the linker global
894 symbol hash table. When one is found, the CHECKFN argument is used
895 to see if an object file should be included. This allows targets
896 to customize common symbol behaviour. CHECKFN should set *PNEEDED
897 to TRUE if the object file should be included, and must also call
898 the bfd_link_info add_archive_element callback function and handle
899 adding the symbols to the global hash table. CHECKFN must notice
900 if the callback indicates a substitute BFD, and arrange to add
901 those symbols instead if it does so. CHECKFN should only return
902 FALSE if some sort of error occurs. */
903
904 bool
905 _bfd_generic_link_add_archive_symbols
906 (bfd *abfd,
907 struct bfd_link_info *info,
908 bool (*checkfn) (bfd *, struct bfd_link_info *,
909 struct bfd_link_hash_entry *, const char *, bool *))
910 {
911 bool loop;
912 bfd_size_type amt;
913 unsigned char *included;
914
915 if (! bfd_has_map (abfd))
916 {
917 /* An empty archive is a special case. */
918 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
919 return true;
920 bfd_set_error (bfd_error_no_armap);
921 return false;
922 }
923
924 amt = bfd_ardata (abfd)->symdef_count;
925 if (amt == 0)
926 return true;
927 amt *= sizeof (*included);
928 included = (unsigned char *) bfd_zmalloc (amt);
929 if (included == NULL)
930 return false;
931
932 do
933 {
934 carsym *arsyms;
935 carsym *arsym_end;
936 carsym *arsym;
937 unsigned int indx;
938 file_ptr last_ar_offset = -1;
939 bool needed = false;
940 bfd *element = NULL;
941
942 loop = false;
943 arsyms = bfd_ardata (abfd)->symdefs;
944 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
945 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
946 {
947 struct bfd_link_hash_entry *h;
948 struct bfd_link_hash_entry *undefs_tail;
949
950 if (included[indx])
951 continue;
952 if (needed && arsym->file_offset == last_ar_offset)
953 {
954 included[indx] = 1;
955 continue;
956 }
957
958 if (arsym->name == NULL)
959 goto error_return;
960
961 h = bfd_link_hash_lookup (info->hash, arsym->name,
962 false, false, true);
963
964 if (h == NULL
965 && info->pei386_auto_import
966 && startswith (arsym->name, "__imp_"))
967 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
968 false, false, true);
969 if (h == NULL)
970 continue;
971
972 if (h->type != bfd_link_hash_undefined
973 && h->type != bfd_link_hash_common)
974 {
975 if (h->type != bfd_link_hash_undefweak)
976 /* Symbol must be defined. Don't check it again. */
977 included[indx] = 1;
978 continue;
979 }
980
981 if (last_ar_offset != arsym->file_offset)
982 {
983 last_ar_offset = arsym->file_offset;
984 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
985 if (element == NULL
986 || !bfd_check_format (element, bfd_object))
987 goto error_return;
988 }
989
990 undefs_tail = info->hash->undefs_tail;
991
992 /* CHECKFN will see if this element should be included, and
993 go ahead and include it if appropriate. */
994 if (! (*checkfn) (element, info, h, arsym->name, &needed))
995 goto error_return;
996
997 if (needed)
998 {
999 unsigned int mark;
1000
1001 /* Look backward to mark all symbols from this object file
1002 which we have already seen in this pass. */
1003 mark = indx;
1004 do
1005 {
1006 included[mark] = 1;
1007 if (mark == 0)
1008 break;
1009 --mark;
1010 }
1011 while (arsyms[mark].file_offset == last_ar_offset);
1012
1013 if (undefs_tail != info->hash->undefs_tail)
1014 loop = true;
1015 }
1016 }
1017 } while (loop);
1018
1019 free (included);
1020 return true;
1021
1022 error_return:
1023 free (included);
1024 return false;
1025 }
1026 \f
1027 /* See if we should include an archive element. */
1028
1029 static bool
1030 generic_link_check_archive_element (bfd *abfd,
1031 struct bfd_link_info *info,
1032 struct bfd_link_hash_entry *h,
1033 const char *name ATTRIBUTE_UNUSED,
1034 bool *pneeded)
1035 {
1036 asymbol **pp, **ppend;
1037
1038 *pneeded = false;
1039
1040 if (!bfd_generic_link_read_symbols (abfd))
1041 return false;
1042
1043 pp = _bfd_generic_link_get_symbols (abfd);
1044 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1045 for (; pp < ppend; pp++)
1046 {
1047 asymbol *p;
1048
1049 p = *pp;
1050
1051 /* We are only interested in globally visible symbols. */
1052 if (! bfd_is_com_section (p->section)
1053 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1054 continue;
1055
1056 /* We are only interested if we know something about this
1057 symbol, and it is undefined or common. An undefined weak
1058 symbol (type bfd_link_hash_undefweak) is not considered to be
1059 a reference when pulling files out of an archive. See the
1060 SVR4 ABI, p. 4-27. */
1061 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1062 false, true);
1063 if (h == NULL
1064 || (h->type != bfd_link_hash_undefined
1065 && h->type != bfd_link_hash_common))
1066 continue;
1067
1068 /* P is a symbol we are looking for. */
1069
1070 if (! bfd_is_com_section (p->section)
1071 || (h->type == bfd_link_hash_undefined
1072 && h->u.undef.abfd == NULL))
1073 {
1074 /* P is not a common symbol, or an undefined reference was
1075 created from outside BFD such as from a linker -u option.
1076 This object file defines the symbol, so pull it in. */
1077 *pneeded = true;
1078 if (!(*info->callbacks
1079 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1080 &abfd))
1081 return false;
1082 /* Potentially, the add_archive_element hook may have set a
1083 substitute BFD for us. */
1084 return bfd_link_add_symbols (abfd, info);
1085 }
1086
1087 /* P is a common symbol. */
1088
1089 if (h->type == bfd_link_hash_undefined)
1090 {
1091 bfd *symbfd;
1092 bfd_vma size;
1093 unsigned int power;
1094
1095 /* Turn the symbol into a common symbol but do not link in
1096 the object file. This is how a.out works. Object
1097 formats that require different semantics must implement
1098 this function differently. This symbol is already on the
1099 undefs list. We add the section to a common section
1100 attached to symbfd to ensure that it is in a BFD which
1101 will be linked in. */
1102 symbfd = h->u.undef.abfd;
1103 h->type = bfd_link_hash_common;
1104 h->u.c.p = (struct bfd_link_hash_common_entry *)
1105 bfd_hash_allocate (&info->hash->table,
1106 sizeof (struct bfd_link_hash_common_entry));
1107 if (h->u.c.p == NULL)
1108 return false;
1109
1110 size = bfd_asymbol_value (p);
1111 h->u.c.size = size;
1112
1113 power = bfd_log2 (size);
1114 if (power > 4)
1115 power = 4;
1116 h->u.c.p->alignment_power = power;
1117
1118 if (p->section == bfd_com_section_ptr)
1119 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1120 else
1121 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1122 p->section->name);
1123 h->u.c.p->section->flags |= SEC_ALLOC;
1124 }
1125 else
1126 {
1127 /* Adjust the size of the common symbol if necessary. This
1128 is how a.out works. Object formats that require
1129 different semantics must implement this function
1130 differently. */
1131 if (bfd_asymbol_value (p) > h->u.c.size)
1132 h->u.c.size = bfd_asymbol_value (p);
1133 }
1134 }
1135
1136 /* This archive element is not needed. */
1137 return true;
1138 }
1139
1140 /* Add the symbols from an object file to the global hash table. ABFD
1141 is the object file. INFO is the linker information. SYMBOL_COUNT
1142 is the number of symbols. SYMBOLS is the list of symbols. */
1143
1144 static bool
1145 generic_link_add_symbol_list (bfd *abfd,
1146 struct bfd_link_info *info,
1147 bfd_size_type symbol_count,
1148 asymbol **symbols)
1149 {
1150 asymbol **pp, **ppend;
1151
1152 pp = symbols;
1153 ppend = symbols + symbol_count;
1154 for (; pp < ppend; pp++)
1155 {
1156 asymbol *p;
1157
1158 p = *pp;
1159
1160 if ((p->flags & (BSF_INDIRECT
1161 | BSF_WARNING
1162 | BSF_GLOBAL
1163 | BSF_CONSTRUCTOR
1164 | BSF_WEAK)) != 0
1165 || bfd_is_und_section (bfd_asymbol_section (p))
1166 || bfd_is_com_section (bfd_asymbol_section (p))
1167 || bfd_is_ind_section (bfd_asymbol_section (p)))
1168 {
1169 const char *name;
1170 const char *string;
1171 struct generic_link_hash_entry *h;
1172 struct bfd_link_hash_entry *bh;
1173
1174 string = name = bfd_asymbol_name (p);
1175 if (((p->flags & BSF_INDIRECT) != 0
1176 || bfd_is_ind_section (p->section))
1177 && pp + 1 < ppend)
1178 {
1179 pp++;
1180 string = bfd_asymbol_name (*pp);
1181 }
1182 else if ((p->flags & BSF_WARNING) != 0
1183 && pp + 1 < ppend)
1184 {
1185 /* The name of P is actually the warning string, and the
1186 next symbol is the one to warn about. */
1187 pp++;
1188 name = bfd_asymbol_name (*pp);
1189 }
1190
1191 bh = NULL;
1192 if (! (_bfd_generic_link_add_one_symbol
1193 (info, abfd, name, p->flags, bfd_asymbol_section (p),
1194 p->value, string, false, false, &bh)))
1195 return false;
1196 h = (struct generic_link_hash_entry *) bh;
1197
1198 /* If this is a constructor symbol, and the linker didn't do
1199 anything with it, then we want to just pass the symbol
1200 through to the output file. This will happen when
1201 linking with -r. */
1202 if ((p->flags & BSF_CONSTRUCTOR) != 0
1203 && (h == NULL || h->root.type == bfd_link_hash_new))
1204 {
1205 p->udata.p = NULL;
1206 continue;
1207 }
1208
1209 /* Save the BFD symbol so that we don't lose any backend
1210 specific information that may be attached to it. We only
1211 want this one if it gives more information than the
1212 existing one; we don't want to replace a defined symbol
1213 with an undefined one. This routine may be called with a
1214 hash table other than the generic hash table, so we only
1215 do this if we are certain that the hash table is a
1216 generic one. */
1217 if (info->output_bfd->xvec == abfd->xvec)
1218 {
1219 if (h->sym == NULL
1220 || (! bfd_is_und_section (bfd_asymbol_section (p))
1221 && (! bfd_is_com_section (bfd_asymbol_section (p))
1222 || bfd_is_und_section (bfd_asymbol_section (h->sym)))))
1223 {
1224 h->sym = p;
1225 /* BSF_OLD_COMMON is a hack to support COFF reloc
1226 reading, and it should go away when the COFF
1227 linker is switched to the new version. */
1228 if (bfd_is_com_section (bfd_asymbol_section (p)))
1229 p->flags |= BSF_OLD_COMMON;
1230 }
1231 }
1232
1233 /* Store a back pointer from the symbol to the hash
1234 table entry for the benefit of relaxation code until
1235 it gets rewritten to not use asymbol structures.
1236 Setting this is also used to check whether these
1237 symbols were set up by the generic linker. */
1238 p->udata.p = h;
1239 }
1240 }
1241
1242 return true;
1243 }
1244 \f
1245 /* We use a state table to deal with adding symbols from an object
1246 file. The first index into the state table describes the symbol
1247 from the object file. The second index into the state table is the
1248 type of the symbol in the hash table. */
1249
1250 /* The symbol from the object file is turned into one of these row
1251 values. */
1252
1253 enum link_row
1254 {
1255 UNDEF_ROW, /* Undefined. */
1256 UNDEFW_ROW, /* Weak undefined. */
1257 DEF_ROW, /* Defined. */
1258 DEFW_ROW, /* Weak defined. */
1259 COMMON_ROW, /* Common. */
1260 INDR_ROW, /* Indirect. */
1261 WARN_ROW, /* Warning. */
1262 SET_ROW /* Member of set. */
1263 };
1264
1265 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1266 #undef FAIL
1267
1268 /* The actions to take in the state table. */
1269
1270 enum link_action
1271 {
1272 FAIL, /* Abort. */
1273 UND, /* Mark symbol undefined. */
1274 WEAK, /* Mark symbol weak undefined. */
1275 DEF, /* Mark symbol defined. */
1276 DEFW, /* Mark symbol weak defined. */
1277 COM, /* Mark symbol common. */
1278 REF, /* Mark defined symbol referenced. */
1279 CREF, /* Possibly warn about common reference to defined symbol. */
1280 CDEF, /* Define existing common symbol. */
1281 NOACT, /* No action. */
1282 BIG, /* Mark symbol common using largest size. */
1283 MDEF, /* Multiple definition error. */
1284 MIND, /* Multiple indirect symbols. */
1285 IND, /* Make indirect symbol. */
1286 CIND, /* Make indirect symbol from existing common symbol. */
1287 SET, /* Add value to set. */
1288 MWARN, /* Make warning symbol. */
1289 WARN, /* Warn if referenced, else MWARN. */
1290 CYCLE, /* Repeat with symbol pointed to. */
1291 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1292 WARNC /* Issue warning and then CYCLE. */
1293 };
1294
1295 /* The state table itself. The first index is a link_row and the
1296 second index is a bfd_link_hash_type. */
1297
1298 static const enum link_action link_action[8][8] =
1299 {
1300 /* current\prev new undef undefw def defw com indr warn */
1301 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1302 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1303 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MIND, CYCLE },
1304 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1305 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1306 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1307 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1308 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1309 };
1310
1311 /* Most of the entries in the LINK_ACTION table are straightforward,
1312 but a few are somewhat subtle.
1313
1314 A reference to an indirect symbol (UNDEF_ROW/indr or
1315 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1316 symbol and to the symbol the indirect symbol points to.
1317
1318 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1319 causes the warning to be issued.
1320
1321 A common definition of an indirect symbol (COMMON_ROW/indr) is
1322 treated as a multiple definition error. Likewise for an indirect
1323 definition of a common symbol (INDR_ROW/com).
1324
1325 An indirect definition of a warning (INDR_ROW/warn) does not cause
1326 the warning to be issued.
1327
1328 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1329 warning is created for the symbol the indirect symbol points to.
1330
1331 Adding an entry to a set does not count as a reference to a set,
1332 and no warning is issued (SET_ROW/warn). */
1333
1334 /* Return the BFD in which a hash entry has been defined, if known. */
1335
1336 static bfd *
1337 hash_entry_bfd (struct bfd_link_hash_entry *h)
1338 {
1339 while (h->type == bfd_link_hash_warning)
1340 h = h->u.i.link;
1341 switch (h->type)
1342 {
1343 default:
1344 return NULL;
1345 case bfd_link_hash_undefined:
1346 case bfd_link_hash_undefweak:
1347 return h->u.undef.abfd;
1348 case bfd_link_hash_defined:
1349 case bfd_link_hash_defweak:
1350 return h->u.def.section->owner;
1351 case bfd_link_hash_common:
1352 return h->u.c.p->section->owner;
1353 }
1354 /*NOTREACHED*/
1355 }
1356
1357 /* Add a symbol to the global hash table.
1358 ABFD is the BFD the symbol comes from.
1359 NAME is the name of the symbol.
1360 FLAGS is the BSF_* bits associated with the symbol.
1361 SECTION is the section in which the symbol is defined; this may be
1362 bfd_und_section_ptr or bfd_com_section_ptr.
1363 VALUE is the value of the symbol, relative to the section.
1364 STRING is used for either an indirect symbol, in which case it is
1365 the name of the symbol to indirect to, or a warning symbol, in
1366 which case it is the warning string.
1367 COPY is TRUE if NAME or STRING must be copied into locally
1368 allocated memory if they need to be saved.
1369 COLLECT is TRUE if we should automatically collect gcc constructor
1370 or destructor names as collect2 does.
1371 HASHP, if not NULL, is a place to store the created hash table
1372 entry; if *HASHP is not NULL, the caller has already looked up
1373 the hash table entry, and stored it in *HASHP. */
1374
1375 bool
1376 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1377 bfd *abfd,
1378 const char *name,
1379 flagword flags,
1380 asection *section,
1381 bfd_vma value,
1382 const char *string,
1383 bool copy,
1384 bool collect,
1385 struct bfd_link_hash_entry **hashp)
1386 {
1387 enum link_row row;
1388 struct bfd_link_hash_entry *h;
1389 struct bfd_link_hash_entry *inh = NULL;
1390 bool cycle;
1391
1392 BFD_ASSERT (section != NULL);
1393
1394 if (bfd_is_ind_section (section)
1395 || (flags & BSF_INDIRECT) != 0)
1396 {
1397 row = INDR_ROW;
1398 /* Create the indirect symbol here. This is for the benefit of
1399 the plugin "notice" function.
1400 STRING is the name of the symbol we want to indirect to. */
1401 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1402 copy, false);
1403 if (inh == NULL)
1404 return false;
1405 }
1406 else if ((flags & BSF_WARNING) != 0)
1407 row = WARN_ROW;
1408 else if ((flags & BSF_CONSTRUCTOR) != 0)
1409 row = SET_ROW;
1410 else if (bfd_is_und_section (section))
1411 {
1412 if ((flags & BSF_WEAK) != 0)
1413 row = UNDEFW_ROW;
1414 else
1415 row = UNDEF_ROW;
1416 }
1417 else if ((flags & BSF_WEAK) != 0)
1418 row = DEFW_ROW;
1419 else if (bfd_is_com_section (section))
1420 {
1421 row = COMMON_ROW;
1422 if (!bfd_link_relocatable (info)
1423 && name != NULL
1424 && name[0] == '_'
1425 && name[1] == '_'
1426 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1427 _bfd_error_handler
1428 (_("%pB: plugin needed to handle lto object"), abfd);
1429 }
1430 else
1431 row = DEF_ROW;
1432
1433 if (hashp != NULL && *hashp != NULL)
1434 h = *hashp;
1435 else
1436 {
1437 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1438 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1439 else
1440 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1441 if (h == NULL)
1442 {
1443 if (hashp != NULL)
1444 *hashp = NULL;
1445 return false;
1446 }
1447 }
1448
1449 if (info->notice_all
1450 || (info->notice_hash != NULL
1451 && bfd_hash_lookup (info->notice_hash, name, false, false) != NULL))
1452 {
1453 if (! (*info->callbacks->notice) (info, h, inh,
1454 abfd, section, value, flags))
1455 return false;
1456 }
1457
1458 if (hashp != NULL)
1459 *hashp = h;
1460
1461 do
1462 {
1463 enum link_action action;
1464 int prev;
1465
1466 prev = h->type;
1467 /* Treat symbols defined by early linker script pass as undefined. */
1468 if (h->ldscript_def)
1469 prev = bfd_link_hash_undefined;
1470 cycle = false;
1471 action = link_action[(int) row][prev];
1472 switch (action)
1473 {
1474 case FAIL:
1475 abort ();
1476
1477 case NOACT:
1478 /* Do nothing. */
1479 break;
1480
1481 case UND:
1482 /* Make a new undefined symbol. */
1483 h->type = bfd_link_hash_undefined;
1484 h->u.undef.abfd = abfd;
1485 bfd_link_add_undef (info->hash, h);
1486 break;
1487
1488 case WEAK:
1489 /* Make a new weak undefined symbol. */
1490 h->type = bfd_link_hash_undefweak;
1491 h->u.undef.abfd = abfd;
1492 break;
1493
1494 case CDEF:
1495 /* We have found a definition for a symbol which was
1496 previously common. */
1497 BFD_ASSERT (h->type == bfd_link_hash_common);
1498 (*info->callbacks->multiple_common) (info, h, abfd,
1499 bfd_link_hash_defined, 0);
1500 /* Fall through. */
1501 case DEF:
1502 case DEFW:
1503 {
1504 enum bfd_link_hash_type oldtype;
1505
1506 /* Define a symbol. */
1507 oldtype = h->type;
1508 if (action == DEFW)
1509 h->type = bfd_link_hash_defweak;
1510 else
1511 h->type = bfd_link_hash_defined;
1512 h->u.def.section = section;
1513 h->u.def.value = value;
1514 h->linker_def = 0;
1515 h->ldscript_def = 0;
1516
1517 /* If we have been asked to, we act like collect2 and
1518 identify all functions that might be global
1519 constructors and destructors and pass them up in a
1520 callback. We only do this for certain object file
1521 types, since many object file types can handle this
1522 automatically. */
1523 if (collect && name[0] == '_')
1524 {
1525 const char *s;
1526
1527 /* A constructor or destructor name starts like this:
1528 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1529 the second are the same character (we accept any
1530 character there, in case a new object file format
1531 comes along with even worse naming restrictions). */
1532
1533 #define CONS_PREFIX "GLOBAL_"
1534 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1535
1536 s = name + 1;
1537 while (*s == '_')
1538 ++s;
1539 if (s[0] == 'G' && startswith (s, CONS_PREFIX))
1540 {
1541 char c;
1542
1543 c = s[CONS_PREFIX_LEN + 1];
1544 if ((c == 'I' || c == 'D')
1545 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1546 {
1547 /* If this is a definition of a symbol which
1548 was previously weakly defined, we are in
1549 trouble. We have already added a
1550 constructor entry for the weak defined
1551 symbol, and now we are trying to add one
1552 for the new symbol. Fortunately, this case
1553 should never arise in practice. */
1554 if (oldtype == bfd_link_hash_defweak)
1555 abort ();
1556
1557 (*info->callbacks->constructor) (info, c == 'I',
1558 h->root.string, abfd,
1559 section, value);
1560 }
1561 }
1562 }
1563 }
1564
1565 break;
1566
1567 case COM:
1568 /* We have found a common definition for a symbol. */
1569 if (h->type == bfd_link_hash_new)
1570 bfd_link_add_undef (info->hash, h);
1571 h->type = bfd_link_hash_common;
1572 h->u.c.p = (struct bfd_link_hash_common_entry *)
1573 bfd_hash_allocate (&info->hash->table,
1574 sizeof (struct bfd_link_hash_common_entry));
1575 if (h->u.c.p == NULL)
1576 return false;
1577
1578 h->u.c.size = value;
1579
1580 /* Select a default alignment based on the size. This may
1581 be overridden by the caller. */
1582 {
1583 unsigned int power;
1584
1585 power = bfd_log2 (value);
1586 if (power > 4)
1587 power = 4;
1588 h->u.c.p->alignment_power = power;
1589 }
1590
1591 /* The section of a common symbol is only used if the common
1592 symbol is actually allocated. It basically provides a
1593 hook for the linker script to decide which output section
1594 the common symbols should be put in. In most cases, the
1595 section of a common symbol will be bfd_com_section_ptr,
1596 the code here will choose a common symbol section named
1597 "COMMON", and the linker script will contain *(COMMON) in
1598 the appropriate place. A few targets use separate common
1599 sections for small symbols, and they require special
1600 handling. */
1601 if (section == bfd_com_section_ptr)
1602 {
1603 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1604 h->u.c.p->section->flags |= SEC_ALLOC;
1605 }
1606 else if (section->owner != abfd)
1607 {
1608 h->u.c.p->section = bfd_make_section_old_way (abfd,
1609 section->name);
1610 h->u.c.p->section->flags |= SEC_ALLOC;
1611 }
1612 else
1613 h->u.c.p->section = section;
1614 h->linker_def = 0;
1615 h->ldscript_def = 0;
1616 break;
1617
1618 case REF:
1619 /* A reference to a defined symbol. */
1620 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1621 h->u.undef.next = h;
1622 break;
1623
1624 case BIG:
1625 /* We have found a common definition for a symbol which
1626 already had a common definition. Use the maximum of the
1627 two sizes, and use the section required by the larger symbol. */
1628 BFD_ASSERT (h->type == bfd_link_hash_common);
1629 (*info->callbacks->multiple_common) (info, h, abfd,
1630 bfd_link_hash_common, value);
1631 if (value > h->u.c.size)
1632 {
1633 unsigned int power;
1634
1635 h->u.c.size = value;
1636
1637 /* Select a default alignment based on the size. This may
1638 be overridden by the caller. */
1639 power = bfd_log2 (value);
1640 if (power > 4)
1641 power = 4;
1642 h->u.c.p->alignment_power = power;
1643
1644 /* Some systems have special treatment for small commons,
1645 hence we want to select the section used by the larger
1646 symbol. This makes sure the symbol does not go in a
1647 small common section if it is now too large. */
1648 if (section == bfd_com_section_ptr)
1649 {
1650 h->u.c.p->section
1651 = bfd_make_section_old_way (abfd, "COMMON");
1652 h->u.c.p->section->flags |= SEC_ALLOC;
1653 }
1654 else if (section->owner != abfd)
1655 {
1656 h->u.c.p->section
1657 = bfd_make_section_old_way (abfd, section->name);
1658 h->u.c.p->section->flags |= SEC_ALLOC;
1659 }
1660 else
1661 h->u.c.p->section = section;
1662 }
1663 break;
1664
1665 case CREF:
1666 /* We have found a common definition for a symbol which
1667 was already defined. */
1668 (*info->callbacks->multiple_common) (info, h, abfd,
1669 bfd_link_hash_common, value);
1670 break;
1671
1672 case MIND:
1673 /* Multiple indirect symbols. This is OK if they both point
1674 to the same symbol. */
1675 if (h->u.i.link->type == bfd_link_hash_defweak)
1676 {
1677 /* It is also OK to redefine a symbol that indirects to
1678 a weak definition. So for sym@ver -> sym@@ver where
1679 sym@@ver is weak and we have a new strong sym@ver,
1680 redefine sym@@ver. Of course if there exists
1681 sym -> sym@@ver then this also redefines sym. */
1682 h = h->u.i.link;
1683 cycle = true;
1684 break;
1685 }
1686 if (string != NULL && strcmp (h->u.i.link->root.string, string) == 0)
1687 break;
1688 /* Fall through. */
1689 case MDEF:
1690 /* Handle a multiple definition. */
1691 (*info->callbacks->multiple_definition) (info, h,
1692 abfd, section, value);
1693 break;
1694
1695 case CIND:
1696 /* Create an indirect symbol from an existing common symbol. */
1697 BFD_ASSERT (h->type == bfd_link_hash_common);
1698 (*info->callbacks->multiple_common) (info, h, abfd,
1699 bfd_link_hash_indirect, 0);
1700 /* Fall through. */
1701 case IND:
1702 if (inh->type == bfd_link_hash_indirect
1703 && inh->u.i.link == h)
1704 {
1705 _bfd_error_handler
1706 /* xgettext:c-format */
1707 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1708 abfd, name, string);
1709 bfd_set_error (bfd_error_invalid_operation);
1710 return false;
1711 }
1712 if (inh->type == bfd_link_hash_new)
1713 {
1714 inh->type = bfd_link_hash_undefined;
1715 inh->u.undef.abfd = abfd;
1716 bfd_link_add_undef (info->hash, inh);
1717 }
1718
1719 /* If the indirect symbol has been referenced, we need to
1720 push the reference down to the symbol we are referencing. */
1721 if (h->type != bfd_link_hash_new)
1722 {
1723 /* ??? If inh->type == bfd_link_hash_undefweak this
1724 converts inh to bfd_link_hash_undefined. */
1725 row = UNDEF_ROW;
1726 cycle = true;
1727 }
1728
1729 h->type = bfd_link_hash_indirect;
1730 h->u.i.link = inh;
1731 /* Not setting h = h->u.i.link here means that when cycle is
1732 set above we'll always go to REFC, and then cycle again
1733 to the indirected symbol. This means that any successful
1734 change of an existing symbol to indirect counts as a
1735 reference. ??? That may not be correct when the existing
1736 symbol was defweak. */
1737 break;
1738
1739 case SET:
1740 /* Add an entry to a set. */
1741 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1742 abfd, section, value);
1743 break;
1744
1745 case WARNC:
1746 /* Issue a warning and cycle, except when the reference is
1747 in LTO IR. */
1748 if (h->u.i.warning != NULL
1749 && (abfd->flags & BFD_PLUGIN) == 0)
1750 {
1751 (*info->callbacks->warning) (info, h->u.i.warning,
1752 h->root.string, abfd, NULL, 0);
1753 /* Only issue a warning once. */
1754 h->u.i.warning = NULL;
1755 }
1756 /* Fall through. */
1757 case CYCLE:
1758 /* Try again with the referenced symbol. */
1759 h = h->u.i.link;
1760 cycle = true;
1761 break;
1762
1763 case REFC:
1764 /* A reference to an indirect symbol. */
1765 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1766 h->u.undef.next = h;
1767 h = h->u.i.link;
1768 cycle = true;
1769 break;
1770
1771 case WARN:
1772 /* Warn if this symbol has been referenced already from non-IR,
1773 otherwise add a warning. */
1774 if ((!info->lto_plugin_active
1775 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1776 || h->non_ir_ref_regular
1777 || h->non_ir_ref_dynamic)
1778 {
1779 (*info->callbacks->warning) (info, string, h->root.string,
1780 hash_entry_bfd (h), NULL, 0);
1781 break;
1782 }
1783 /* Fall through. */
1784 case MWARN:
1785 /* Make a warning symbol. */
1786 {
1787 struct bfd_link_hash_entry *sub;
1788
1789 /* STRING is the warning to give. */
1790 sub = ((struct bfd_link_hash_entry *)
1791 ((*info->hash->table.newfunc)
1792 (NULL, &info->hash->table, h->root.string)));
1793 if (sub == NULL)
1794 return false;
1795 *sub = *h;
1796 sub->type = bfd_link_hash_warning;
1797 sub->u.i.link = h;
1798 if (! copy)
1799 sub->u.i.warning = string;
1800 else
1801 {
1802 char *w;
1803 size_t len = strlen (string) + 1;
1804
1805 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1806 if (w == NULL)
1807 return false;
1808 memcpy (w, string, len);
1809 sub->u.i.warning = w;
1810 }
1811
1812 bfd_hash_replace (&info->hash->table,
1813 (struct bfd_hash_entry *) h,
1814 (struct bfd_hash_entry *) sub);
1815 if (hashp != NULL)
1816 *hashp = sub;
1817 }
1818 break;
1819 }
1820 }
1821 while (cycle);
1822
1823 return true;
1824 }
1825 \f
1826 /* Generic final link routine. */
1827
1828 bool
1829 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1830 {
1831 bfd *sub;
1832 asection *o;
1833 struct bfd_link_order *p;
1834 size_t outsymalloc;
1835 struct generic_write_global_symbol_info wginfo;
1836
1837 abfd->outsymbols = NULL;
1838 abfd->symcount = 0;
1839 outsymalloc = 0;
1840
1841 /* Mark all sections which will be included in the output file. */
1842 for (o = abfd->sections; o != NULL; o = o->next)
1843 for (p = o->map_head.link_order; p != NULL; p = p->next)
1844 if (p->type == bfd_indirect_link_order)
1845 p->u.indirect.section->linker_mark = true;
1846
1847 /* Build the output symbol table. */
1848 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1849 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1850 return false;
1851
1852 /* Accumulate the global symbols. */
1853 wginfo.info = info;
1854 wginfo.output_bfd = abfd;
1855 wginfo.psymalloc = &outsymalloc;
1856 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1857 _bfd_generic_link_write_global_symbol,
1858 &wginfo);
1859
1860 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1861 shouldn't really need one, since we have SYMCOUNT, but some old
1862 code still expects one. */
1863 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1864 return false;
1865
1866 if (bfd_link_relocatable (info))
1867 {
1868 /* Allocate space for the output relocs for each section. */
1869 for (o = abfd->sections; o != NULL; o = o->next)
1870 {
1871 o->reloc_count = 0;
1872 for (p = o->map_head.link_order; p != NULL; p = p->next)
1873 {
1874 if (p->type == bfd_section_reloc_link_order
1875 || p->type == bfd_symbol_reloc_link_order)
1876 ++o->reloc_count;
1877 else if (p->type == bfd_indirect_link_order)
1878 {
1879 asection *input_section;
1880 bfd *input_bfd;
1881 long relsize;
1882 arelent **relocs;
1883 asymbol **symbols;
1884 long reloc_count;
1885
1886 input_section = p->u.indirect.section;
1887 input_bfd = input_section->owner;
1888 relsize = bfd_get_reloc_upper_bound (input_bfd,
1889 input_section);
1890 if (relsize < 0)
1891 return false;
1892 relocs = (arelent **) bfd_malloc (relsize);
1893 if (!relocs && relsize != 0)
1894 return false;
1895 symbols = _bfd_generic_link_get_symbols (input_bfd);
1896 reloc_count = bfd_canonicalize_reloc (input_bfd,
1897 input_section,
1898 relocs,
1899 symbols);
1900 free (relocs);
1901 if (reloc_count < 0)
1902 return false;
1903 BFD_ASSERT ((unsigned long) reloc_count
1904 == input_section->reloc_count);
1905 o->reloc_count += reloc_count;
1906 }
1907 }
1908 if (o->reloc_count > 0)
1909 {
1910 bfd_size_type amt;
1911
1912 amt = o->reloc_count;
1913 amt *= sizeof (arelent *);
1914 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1915 if (!o->orelocation)
1916 return false;
1917 o->flags |= SEC_RELOC;
1918 /* Reset the count so that it can be used as an index
1919 when putting in the output relocs. */
1920 o->reloc_count = 0;
1921 }
1922 }
1923 }
1924
1925 /* Handle all the link order information for the sections. */
1926 for (o = abfd->sections; o != NULL; o = o->next)
1927 {
1928 for (p = o->map_head.link_order; p != NULL; p = p->next)
1929 {
1930 switch (p->type)
1931 {
1932 case bfd_section_reloc_link_order:
1933 case bfd_symbol_reloc_link_order:
1934 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1935 return false;
1936 break;
1937 case bfd_indirect_link_order:
1938 if (! default_indirect_link_order (abfd, info, o, p, true))
1939 return false;
1940 break;
1941 default:
1942 if (! _bfd_default_link_order (abfd, info, o, p))
1943 return false;
1944 break;
1945 }
1946 }
1947 }
1948
1949 return true;
1950 }
1951
1952 /* Add an output symbol to the output BFD. */
1953
1954 static bool
1955 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1956 {
1957 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1958 {
1959 asymbol **newsyms;
1960 bfd_size_type amt;
1961
1962 if (*psymalloc == 0)
1963 *psymalloc = 124;
1964 else
1965 *psymalloc *= 2;
1966 amt = *psymalloc;
1967 amt *= sizeof (asymbol *);
1968 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1969 if (newsyms == NULL)
1970 return false;
1971 output_bfd->outsymbols = newsyms;
1972 }
1973
1974 output_bfd->outsymbols[output_bfd->symcount] = sym;
1975 if (sym != NULL)
1976 ++output_bfd->symcount;
1977
1978 return true;
1979 }
1980
1981 /* Handle the symbols for an input BFD. */
1982
1983 bool
1984 _bfd_generic_link_output_symbols (bfd *output_bfd,
1985 bfd *input_bfd,
1986 struct bfd_link_info *info,
1987 size_t *psymalloc)
1988 {
1989 asymbol **sym_ptr;
1990 asymbol **sym_end;
1991
1992 if (!bfd_generic_link_read_symbols (input_bfd))
1993 return false;
1994
1995 /* Create a filename symbol if we are supposed to. */
1996 if (info->create_object_symbols_section != NULL)
1997 {
1998 asection *sec;
1999
2000 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2001 {
2002 if (sec->output_section == info->create_object_symbols_section)
2003 {
2004 asymbol *newsym;
2005
2006 newsym = bfd_make_empty_symbol (input_bfd);
2007 if (!newsym)
2008 return false;
2009 newsym->name = bfd_get_filename (input_bfd);
2010 newsym->value = 0;
2011 newsym->flags = BSF_LOCAL | BSF_FILE;
2012 newsym->section = sec;
2013
2014 if (! generic_add_output_symbol (output_bfd, psymalloc,
2015 newsym))
2016 return false;
2017
2018 break;
2019 }
2020 }
2021 }
2022
2023 /* Adjust the values of the globally visible symbols, and write out
2024 local symbols. */
2025 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2026 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2027 for (; sym_ptr < sym_end; sym_ptr++)
2028 {
2029 asymbol *sym;
2030 struct generic_link_hash_entry *h;
2031 bool output;
2032
2033 h = NULL;
2034 sym = *sym_ptr;
2035 if ((sym->flags & (BSF_INDIRECT
2036 | BSF_WARNING
2037 | BSF_GLOBAL
2038 | BSF_CONSTRUCTOR
2039 | BSF_WEAK)) != 0
2040 || bfd_is_und_section (bfd_asymbol_section (sym))
2041 || bfd_is_com_section (bfd_asymbol_section (sym))
2042 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2043 {
2044 if (sym->udata.p != NULL)
2045 h = (struct generic_link_hash_entry *) sym->udata.p;
2046 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2047 {
2048 /* This case normally means that the main linker code
2049 deliberately ignored this constructor symbol. We
2050 should just pass it through. This will screw up if
2051 the constructor symbol is from a different,
2052 non-generic, object file format, but the case will
2053 only arise when linking with -r, which will probably
2054 fail anyhow, since there will be no way to represent
2055 the relocs in the output format being used. */
2056 h = NULL;
2057 }
2058 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2059 h = ((struct generic_link_hash_entry *)
2060 bfd_wrapped_link_hash_lookup (output_bfd, info,
2061 bfd_asymbol_name (sym),
2062 false, false, true));
2063 else
2064 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2065 bfd_asymbol_name (sym),
2066 false, false, true);
2067
2068 if (h != NULL)
2069 {
2070 /* Force all references to this symbol to point to
2071 the same area in memory. It is possible that
2072 this routine will be called with a hash table
2073 other than a generic hash table, so we double
2074 check that. */
2075 if (info->output_bfd->xvec == input_bfd->xvec)
2076 {
2077 if (h->sym != NULL)
2078 *sym_ptr = sym = h->sym;
2079 }
2080
2081 switch (h->root.type)
2082 {
2083 default:
2084 case bfd_link_hash_new:
2085 abort ();
2086 case bfd_link_hash_undefined:
2087 break;
2088 case bfd_link_hash_undefweak:
2089 sym->flags |= BSF_WEAK;
2090 break;
2091 case bfd_link_hash_indirect:
2092 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2093 /* fall through */
2094 case bfd_link_hash_defined:
2095 sym->flags |= BSF_GLOBAL;
2096 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2097 sym->value = h->root.u.def.value;
2098 sym->section = h->root.u.def.section;
2099 break;
2100 case bfd_link_hash_defweak:
2101 sym->flags |= BSF_WEAK;
2102 sym->flags &=~ BSF_CONSTRUCTOR;
2103 sym->value = h->root.u.def.value;
2104 sym->section = h->root.u.def.section;
2105 break;
2106 case bfd_link_hash_common:
2107 sym->value = h->root.u.c.size;
2108 sym->flags |= BSF_GLOBAL;
2109 if (! bfd_is_com_section (sym->section))
2110 {
2111 BFD_ASSERT (bfd_is_und_section (sym->section));
2112 sym->section = bfd_com_section_ptr;
2113 }
2114 /* We do not set the section of the symbol to
2115 h->root.u.c.p->section. That value was saved so
2116 that we would know where to allocate the symbol
2117 if it was defined. In this case the type is
2118 still bfd_link_hash_common, so we did not define
2119 it, so we do not want to use that section. */
2120 break;
2121 }
2122 }
2123 }
2124
2125 if ((sym->flags & BSF_KEEP) == 0
2126 && (info->strip == strip_all
2127 || (info->strip == strip_some
2128 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2129 false, false) == NULL)))
2130 output = false;
2131 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2132 {
2133 /* If this symbol is marked as occurring now, rather
2134 than at the end, output it now. This is used for
2135 COFF C_EXT FCN symbols. FIXME: There must be a
2136 better way. */
2137 if (bfd_asymbol_bfd (sym) == input_bfd
2138 && (sym->flags & BSF_NOT_AT_END) != 0)
2139 output = true;
2140 else
2141 output = false;
2142 }
2143 else if ((sym->flags & BSF_KEEP) != 0)
2144 output = true;
2145 else if (bfd_is_ind_section (sym->section))
2146 output = false;
2147 else if ((sym->flags & BSF_DEBUGGING) != 0)
2148 {
2149 if (info->strip == strip_none)
2150 output = true;
2151 else
2152 output = false;
2153 }
2154 else if (bfd_is_und_section (sym->section)
2155 || bfd_is_com_section (sym->section))
2156 output = false;
2157 else if ((sym->flags & BSF_LOCAL) != 0)
2158 {
2159 if ((sym->flags & BSF_WARNING) != 0)
2160 output = false;
2161 else
2162 {
2163 switch (info->discard)
2164 {
2165 default:
2166 case discard_all:
2167 output = false;
2168 break;
2169 case discard_sec_merge:
2170 output = true;
2171 if (bfd_link_relocatable (info)
2172 || ! (sym->section->flags & SEC_MERGE))
2173 break;
2174 /* FALLTHROUGH */
2175 case discard_l:
2176 if (bfd_is_local_label (input_bfd, sym))
2177 output = false;
2178 else
2179 output = true;
2180 break;
2181 case discard_none:
2182 output = true;
2183 break;
2184 }
2185 }
2186 }
2187 else if ((sym->flags & BSF_CONSTRUCTOR))
2188 {
2189 if (info->strip != strip_all)
2190 output = true;
2191 else
2192 output = false;
2193 }
2194 else if (sym->flags == 0
2195 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2196 /* LTO doesn't set symbol information. We get here with the
2197 generic linker for a symbol that was "common" but no longer
2198 needs to be global. */
2199 output = false;
2200 else
2201 abort ();
2202
2203 /* If this symbol is in a section which is not being included
2204 in the output file, then we don't want to output the
2205 symbol. */
2206 if (!bfd_is_abs_section (sym->section)
2207 && bfd_section_removed_from_list (output_bfd,
2208 sym->section->output_section))
2209 output = false;
2210
2211 if (output)
2212 {
2213 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2214 return false;
2215 if (h != NULL)
2216 h->written = true;
2217 }
2218 }
2219
2220 return true;
2221 }
2222
2223 /* Set the section and value of a generic BFD symbol based on a linker
2224 hash table entry. */
2225
2226 static void
2227 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2228 {
2229 switch (h->type)
2230 {
2231 default:
2232 abort ();
2233 break;
2234 case bfd_link_hash_new:
2235 /* This can happen when a constructor symbol is seen but we are
2236 not building constructors. */
2237 if (sym->section != NULL)
2238 {
2239 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2240 }
2241 else
2242 {
2243 sym->flags |= BSF_CONSTRUCTOR;
2244 sym->section = bfd_abs_section_ptr;
2245 sym->value = 0;
2246 }
2247 break;
2248 case bfd_link_hash_undefined:
2249 sym->section = bfd_und_section_ptr;
2250 sym->value = 0;
2251 break;
2252 case bfd_link_hash_undefweak:
2253 sym->section = bfd_und_section_ptr;
2254 sym->value = 0;
2255 sym->flags |= BSF_WEAK;
2256 break;
2257 case bfd_link_hash_defined:
2258 sym->section = h->u.def.section;
2259 sym->value = h->u.def.value;
2260 break;
2261 case bfd_link_hash_defweak:
2262 sym->flags |= BSF_WEAK;
2263 sym->section = h->u.def.section;
2264 sym->value = h->u.def.value;
2265 break;
2266 case bfd_link_hash_common:
2267 sym->value = h->u.c.size;
2268 if (sym->section == NULL)
2269 sym->section = bfd_com_section_ptr;
2270 else if (! bfd_is_com_section (sym->section))
2271 {
2272 BFD_ASSERT (bfd_is_und_section (sym->section));
2273 sym->section = bfd_com_section_ptr;
2274 }
2275 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2276 break;
2277 case bfd_link_hash_indirect:
2278 case bfd_link_hash_warning:
2279 /* FIXME: What should we do here? */
2280 break;
2281 }
2282 }
2283
2284 /* Write out a global symbol, if it hasn't already been written out.
2285 This is called for each symbol in the hash table. */
2286
2287 bool
2288 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2289 void *data)
2290 {
2291 struct generic_write_global_symbol_info *wginfo =
2292 (struct generic_write_global_symbol_info *) data;
2293 asymbol *sym;
2294
2295 if (h->written)
2296 return true;
2297
2298 h->written = true;
2299
2300 if (wginfo->info->strip == strip_all
2301 || (wginfo->info->strip == strip_some
2302 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2303 false, false) == NULL))
2304 return true;
2305
2306 if (h->sym != NULL)
2307 sym = h->sym;
2308 else
2309 {
2310 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2311 if (!sym)
2312 return false;
2313 sym->name = h->root.root.string;
2314 sym->flags = 0;
2315 }
2316
2317 set_symbol_from_hash (sym, &h->root);
2318
2319 sym->flags |= BSF_GLOBAL;
2320
2321 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2322 sym))
2323 {
2324 /* FIXME: No way to return failure. */
2325 abort ();
2326 }
2327
2328 return true;
2329 }
2330
2331 /* Create a relocation. */
2332
2333 bool
2334 _bfd_generic_reloc_link_order (bfd *abfd,
2335 struct bfd_link_info *info,
2336 asection *sec,
2337 struct bfd_link_order *link_order)
2338 {
2339 arelent *r;
2340
2341 if (! bfd_link_relocatable (info))
2342 abort ();
2343 if (sec->orelocation == NULL)
2344 abort ();
2345
2346 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2347 if (r == NULL)
2348 return false;
2349
2350 r->address = link_order->offset;
2351 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2352 if (r->howto == 0)
2353 {
2354 bfd_set_error (bfd_error_bad_value);
2355 return false;
2356 }
2357
2358 /* Get the symbol to use for the relocation. */
2359 if (link_order->type == bfd_section_reloc_link_order)
2360 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2361 else
2362 {
2363 struct generic_link_hash_entry *h;
2364
2365 h = ((struct generic_link_hash_entry *)
2366 bfd_wrapped_link_hash_lookup (abfd, info,
2367 link_order->u.reloc.p->u.name,
2368 false, false, true));
2369 if (h == NULL
2370 || ! h->written)
2371 {
2372 (*info->callbacks->unattached_reloc)
2373 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2374 bfd_set_error (bfd_error_bad_value);
2375 return false;
2376 }
2377 r->sym_ptr_ptr = &h->sym;
2378 }
2379
2380 /* If this is an inplace reloc, write the addend to the object file.
2381 Otherwise, store it in the reloc addend. */
2382 if (! r->howto->partial_inplace)
2383 r->addend = link_order->u.reloc.p->addend;
2384 else
2385 {
2386 bfd_size_type size;
2387 bfd_reloc_status_type rstat;
2388 bfd_byte *buf;
2389 bool ok;
2390 file_ptr loc;
2391
2392 size = bfd_get_reloc_size (r->howto);
2393 buf = (bfd_byte *) bfd_zmalloc (size);
2394 if (buf == NULL && size != 0)
2395 return false;
2396 rstat = _bfd_relocate_contents (r->howto, abfd,
2397 (bfd_vma) link_order->u.reloc.p->addend,
2398 buf);
2399 switch (rstat)
2400 {
2401 case bfd_reloc_ok:
2402 break;
2403 default:
2404 case bfd_reloc_outofrange:
2405 abort ();
2406 case bfd_reloc_overflow:
2407 (*info->callbacks->reloc_overflow)
2408 (info, NULL,
2409 (link_order->type == bfd_section_reloc_link_order
2410 ? bfd_section_name (link_order->u.reloc.p->u.section)
2411 : link_order->u.reloc.p->u.name),
2412 r->howto->name, link_order->u.reloc.p->addend,
2413 NULL, NULL, 0);
2414 break;
2415 }
2416 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2417 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2418 free (buf);
2419 if (! ok)
2420 return false;
2421
2422 r->addend = 0;
2423 }
2424
2425 sec->orelocation[sec->reloc_count] = r;
2426 ++sec->reloc_count;
2427
2428 return true;
2429 }
2430 \f
2431 /* Allocate a new link_order for a section. */
2432
2433 struct bfd_link_order *
2434 bfd_new_link_order (bfd *abfd, asection *section)
2435 {
2436 size_t amt = sizeof (struct bfd_link_order);
2437 struct bfd_link_order *new_lo;
2438
2439 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2440 if (!new_lo)
2441 return NULL;
2442
2443 new_lo->type = bfd_undefined_link_order;
2444
2445 if (section->map_tail.link_order != NULL)
2446 section->map_tail.link_order->next = new_lo;
2447 else
2448 section->map_head.link_order = new_lo;
2449 section->map_tail.link_order = new_lo;
2450
2451 return new_lo;
2452 }
2453
2454 /* Default link order processing routine. Note that we can not handle
2455 the reloc_link_order types here, since they depend upon the details
2456 of how the particular backends generates relocs. */
2457
2458 bool
2459 _bfd_default_link_order (bfd *abfd,
2460 struct bfd_link_info *info,
2461 asection *sec,
2462 struct bfd_link_order *link_order)
2463 {
2464 switch (link_order->type)
2465 {
2466 case bfd_undefined_link_order:
2467 case bfd_section_reloc_link_order:
2468 case bfd_symbol_reloc_link_order:
2469 default:
2470 abort ();
2471 case bfd_indirect_link_order:
2472 return default_indirect_link_order (abfd, info, sec, link_order,
2473 false);
2474 case bfd_data_link_order:
2475 return default_data_link_order (abfd, info, sec, link_order);
2476 }
2477 }
2478
2479 /* Default routine to handle a bfd_data_link_order. */
2480
2481 static bool
2482 default_data_link_order (bfd *abfd,
2483 struct bfd_link_info *info,
2484 asection *sec,
2485 struct bfd_link_order *link_order)
2486 {
2487 bfd_size_type size;
2488 size_t fill_size;
2489 bfd_byte *fill;
2490 file_ptr loc;
2491 bool result;
2492
2493 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2494
2495 size = link_order->size;
2496 if (size == 0)
2497 return true;
2498
2499 fill = link_order->u.data.contents;
2500 fill_size = link_order->u.data.size;
2501 if (fill_size == 0)
2502 {
2503 fill = abfd->arch_info->fill (size, info->big_endian,
2504 (sec->flags & SEC_CODE) != 0);
2505 if (fill == NULL)
2506 return false;
2507 }
2508 else if (fill_size < size)
2509 {
2510 bfd_byte *p;
2511 fill = (bfd_byte *) bfd_malloc (size);
2512 if (fill == NULL)
2513 return false;
2514 p = fill;
2515 if (fill_size == 1)
2516 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2517 else
2518 {
2519 do
2520 {
2521 memcpy (p, link_order->u.data.contents, fill_size);
2522 p += fill_size;
2523 size -= fill_size;
2524 }
2525 while (size >= fill_size);
2526 if (size != 0)
2527 memcpy (p, link_order->u.data.contents, (size_t) size);
2528 size = link_order->size;
2529 }
2530 }
2531
2532 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2533 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2534
2535 if (fill != link_order->u.data.contents)
2536 free (fill);
2537 return result;
2538 }
2539
2540 /* Default routine to handle a bfd_indirect_link_order. */
2541
2542 static bool
2543 default_indirect_link_order (bfd *output_bfd,
2544 struct bfd_link_info *info,
2545 asection *output_section,
2546 struct bfd_link_order *link_order,
2547 bool generic_linker)
2548 {
2549 asection *input_section;
2550 bfd *input_bfd;
2551 bfd_byte *contents = NULL;
2552 bfd_byte *new_contents;
2553 bfd_size_type sec_size;
2554 file_ptr loc;
2555
2556 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2557
2558 input_section = link_order->u.indirect.section;
2559 input_bfd = input_section->owner;
2560 if (input_section->size == 0)
2561 return true;
2562
2563 BFD_ASSERT (input_section->output_section == output_section);
2564 BFD_ASSERT (input_section->output_offset == link_order->offset);
2565 BFD_ASSERT (input_section->size == link_order->size);
2566
2567 if (bfd_link_relocatable (info)
2568 && input_section->reloc_count > 0
2569 && output_section->orelocation == NULL)
2570 {
2571 /* Space has not been allocated for the output relocations.
2572 This can happen when we are called by a specific backend
2573 because somebody is attempting to link together different
2574 types of object files. Handling this case correctly is
2575 difficult, and sometimes impossible. */
2576 _bfd_error_handler
2577 /* xgettext:c-format */
2578 (_("attempt to do relocatable link with %s input and %s output"),
2579 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2580 bfd_set_error (bfd_error_wrong_format);
2581 return false;
2582 }
2583
2584 if (! generic_linker)
2585 {
2586 asymbol **sympp;
2587 asymbol **symppend;
2588
2589 /* Get the canonical symbols. The generic linker will always
2590 have retrieved them by this point, but we are being called by
2591 a specific linker, presumably because we are linking
2592 different types of object files together. */
2593 if (!bfd_generic_link_read_symbols (input_bfd))
2594 return false;
2595
2596 /* Since we have been called by a specific linker, rather than
2597 the generic linker, the values of the symbols will not be
2598 right. They will be the values as seen in the input file,
2599 not the values of the final link. We need to fix them up
2600 before we can relocate the section. */
2601 sympp = _bfd_generic_link_get_symbols (input_bfd);
2602 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2603 for (; sympp < symppend; sympp++)
2604 {
2605 asymbol *sym;
2606 struct bfd_link_hash_entry *h;
2607
2608 sym = *sympp;
2609
2610 if ((sym->flags & (BSF_INDIRECT
2611 | BSF_WARNING
2612 | BSF_GLOBAL
2613 | BSF_CONSTRUCTOR
2614 | BSF_WEAK)) != 0
2615 || bfd_is_und_section (bfd_asymbol_section (sym))
2616 || bfd_is_com_section (bfd_asymbol_section (sym))
2617 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2618 {
2619 /* sym->udata may have been set by
2620 generic_link_add_symbol_list. */
2621 if (sym->udata.p != NULL)
2622 h = (struct bfd_link_hash_entry *) sym->udata.p;
2623 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2624 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2625 bfd_asymbol_name (sym),
2626 false, false, true);
2627 else
2628 h = bfd_link_hash_lookup (info->hash,
2629 bfd_asymbol_name (sym),
2630 false, false, true);
2631 if (h != NULL)
2632 set_symbol_from_hash (sym, h);
2633 }
2634 }
2635 }
2636
2637 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2638 && input_section->size != 0)
2639 {
2640 /* Group section contents are set by bfd_elf_set_group_contents. */
2641 if (!output_bfd->output_has_begun)
2642 {
2643 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2644 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2645 goto error_return;
2646 }
2647 new_contents = output_section->contents;
2648 BFD_ASSERT (new_contents != NULL);
2649 BFD_ASSERT (input_section->output_offset == 0);
2650 }
2651 else
2652 {
2653 /* Get and relocate the section contents. */
2654 sec_size = (input_section->rawsize > input_section->size
2655 ? input_section->rawsize
2656 : input_section->size);
2657 contents = (bfd_byte *) bfd_malloc (sec_size);
2658 if (contents == NULL && sec_size != 0)
2659 goto error_return;
2660 new_contents = (bfd_get_relocated_section_contents
2661 (output_bfd, info, link_order, contents,
2662 bfd_link_relocatable (info),
2663 _bfd_generic_link_get_symbols (input_bfd)));
2664 if (!new_contents)
2665 goto error_return;
2666 }
2667
2668 /* Output the section contents. */
2669 loc = (input_section->output_offset
2670 * bfd_octets_per_byte (output_bfd, output_section));
2671 if (! bfd_set_section_contents (output_bfd, output_section,
2672 new_contents, loc, input_section->size))
2673 goto error_return;
2674
2675 free (contents);
2676 return true;
2677
2678 error_return:
2679 free (contents);
2680 return false;
2681 }
2682
2683 /* A little routine to count the number of relocs in a link_order
2684 list. */
2685
2686 unsigned int
2687 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2688 {
2689 register unsigned int c;
2690 register struct bfd_link_order *l;
2691
2692 c = 0;
2693 for (l = link_order; l != NULL; l = l->next)
2694 {
2695 if (l->type == bfd_section_reloc_link_order
2696 || l->type == bfd_symbol_reloc_link_order)
2697 ++c;
2698 }
2699
2700 return c;
2701 }
2702
2703 /*
2704 FUNCTION
2705 bfd_link_split_section
2706
2707 SYNOPSIS
2708 bool bfd_link_split_section (bfd *abfd, asection *sec);
2709
2710 DESCRIPTION
2711 Return nonzero if @var{sec} should be split during a
2712 reloceatable or final link.
2713
2714 .#define bfd_link_split_section(abfd, sec) \
2715 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2716 .
2717
2718 */
2719
2720 bool
2721 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2722 asection *sec ATTRIBUTE_UNUSED)
2723 {
2724 return false;
2725 }
2726
2727 /*
2728 FUNCTION
2729 bfd_section_already_linked
2730
2731 SYNOPSIS
2732 bool bfd_section_already_linked (bfd *abfd,
2733 asection *sec,
2734 struct bfd_link_info *info);
2735
2736 DESCRIPTION
2737 Check if @var{data} has been already linked during a reloceatable
2738 or final link. Return TRUE if it has.
2739
2740 .#define bfd_section_already_linked(abfd, sec, info) \
2741 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2742 .
2743
2744 */
2745
2746 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2747 once into the output. This routine checks each section, and
2748 arrange to discard it if a section of the same name has already
2749 been linked. This code assumes that all relevant sections have the
2750 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2751 section name. bfd_section_already_linked is called via
2752 bfd_map_over_sections. */
2753
2754 /* The hash table. */
2755
2756 static struct bfd_hash_table _bfd_section_already_linked_table;
2757
2758 /* Support routines for the hash table used by section_already_linked,
2759 initialize the table, traverse, lookup, fill in an entry and remove
2760 the table. */
2761
2762 void
2763 bfd_section_already_linked_table_traverse
2764 (bool (*func) (struct bfd_section_already_linked_hash_entry *, void *),
2765 void *info)
2766 {
2767 bfd_hash_traverse (&_bfd_section_already_linked_table,
2768 (bool (*) (struct bfd_hash_entry *, void *)) func,
2769 info);
2770 }
2771
2772 struct bfd_section_already_linked_hash_entry *
2773 bfd_section_already_linked_table_lookup (const char *name)
2774 {
2775 return ((struct bfd_section_already_linked_hash_entry *)
2776 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2777 true, false));
2778 }
2779
2780 bool
2781 bfd_section_already_linked_table_insert
2782 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2783 asection *sec)
2784 {
2785 struct bfd_section_already_linked *l;
2786
2787 /* Allocate the memory from the same obstack as the hash table is
2788 kept in. */
2789 l = (struct bfd_section_already_linked *)
2790 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2791 if (l == NULL)
2792 return false;
2793 l->sec = sec;
2794 l->next = already_linked_list->entry;
2795 already_linked_list->entry = l;
2796 return true;
2797 }
2798
2799 static struct bfd_hash_entry *
2800 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2801 struct bfd_hash_table *table,
2802 const char *string ATTRIBUTE_UNUSED)
2803 {
2804 struct bfd_section_already_linked_hash_entry *ret =
2805 (struct bfd_section_already_linked_hash_entry *)
2806 bfd_hash_allocate (table, sizeof *ret);
2807
2808 if (ret == NULL)
2809 return NULL;
2810
2811 ret->entry = NULL;
2812
2813 return &ret->root;
2814 }
2815
2816 bool
2817 bfd_section_already_linked_table_init (void)
2818 {
2819 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2820 already_linked_newfunc,
2821 sizeof (struct bfd_section_already_linked_hash_entry),
2822 42);
2823 }
2824
2825 void
2826 bfd_section_already_linked_table_free (void)
2827 {
2828 bfd_hash_table_free (&_bfd_section_already_linked_table);
2829 }
2830
2831 /* Report warnings as appropriate for duplicate section SEC.
2832 Return FALSE if we decide to keep SEC after all. */
2833
2834 bool
2835 _bfd_handle_already_linked (asection *sec,
2836 struct bfd_section_already_linked *l,
2837 struct bfd_link_info *info)
2838 {
2839 switch (sec->flags & SEC_LINK_DUPLICATES)
2840 {
2841 default:
2842 abort ();
2843
2844 case SEC_LINK_DUPLICATES_DISCARD:
2845 /* If we found an LTO IR match for this comdat group on
2846 the first pass, replace it with the LTO output on the
2847 second pass. We can't simply choose real object
2848 files over IR because the first pass may contain a
2849 mix of LTO and normal objects and we must keep the
2850 first match, be it IR or real. */
2851 if (sec->owner->lto_output
2852 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2853 {
2854 l->sec = sec;
2855 return false;
2856 }
2857 break;
2858
2859 case SEC_LINK_DUPLICATES_ONE_ONLY:
2860 info->callbacks->einfo
2861 /* xgettext:c-format */
2862 (_("%pB: ignoring duplicate section `%pA'\n"),
2863 sec->owner, sec);
2864 break;
2865
2866 case SEC_LINK_DUPLICATES_SAME_SIZE:
2867 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2868 ;
2869 else if (sec->size != l->sec->size)
2870 info->callbacks->einfo
2871 /* xgettext:c-format */
2872 (_("%pB: duplicate section `%pA' has different size\n"),
2873 sec->owner, sec);
2874 break;
2875
2876 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2877 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2878 ;
2879 else if (sec->size != l->sec->size)
2880 info->callbacks->einfo
2881 /* xgettext:c-format */
2882 (_("%pB: duplicate section `%pA' has different size\n"),
2883 sec->owner, sec);
2884 else if (sec->size != 0)
2885 {
2886 bfd_byte *sec_contents, *l_sec_contents = NULL;
2887
2888 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2889 info->callbacks->einfo
2890 /* xgettext:c-format */
2891 (_("%pB: could not read contents of section `%pA'\n"),
2892 sec->owner, sec);
2893 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2894 &l_sec_contents))
2895 info->callbacks->einfo
2896 /* xgettext:c-format */
2897 (_("%pB: could not read contents of section `%pA'\n"),
2898 l->sec->owner, l->sec);
2899 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2900 info->callbacks->einfo
2901 /* xgettext:c-format */
2902 (_("%pB: duplicate section `%pA' has different contents\n"),
2903 sec->owner, sec);
2904
2905 free (sec_contents);
2906 free (l_sec_contents);
2907 }
2908 break;
2909 }
2910
2911 /* Set the output_section field so that lang_add_section
2912 does not create a lang_input_section structure for this
2913 section. Since there might be a symbol in the section
2914 being discarded, we must retain a pointer to the section
2915 which we are really going to use. */
2916 sec->output_section = bfd_abs_section_ptr;
2917 sec->kept_section = l->sec;
2918 return true;
2919 }
2920
2921 /* This is used on non-ELF inputs. */
2922
2923 bool
2924 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2925 asection *sec,
2926 struct bfd_link_info *info)
2927 {
2928 const char *name;
2929 struct bfd_section_already_linked *l;
2930 struct bfd_section_already_linked_hash_entry *already_linked_list;
2931
2932 if ((sec->flags & SEC_LINK_ONCE) == 0)
2933 return false;
2934
2935 /* The generic linker doesn't handle section groups. */
2936 if ((sec->flags & SEC_GROUP) != 0)
2937 return false;
2938
2939 /* FIXME: When doing a relocatable link, we may have trouble
2940 copying relocations in other sections that refer to local symbols
2941 in the section being discarded. Those relocations will have to
2942 be converted somehow; as of this writing I'm not sure that any of
2943 the backends handle that correctly.
2944
2945 It is tempting to instead not discard link once sections when
2946 doing a relocatable link (technically, they should be discarded
2947 whenever we are building constructors). However, that fails,
2948 because the linker winds up combining all the link once sections
2949 into a single large link once section, which defeats the purpose
2950 of having link once sections in the first place. */
2951
2952 name = bfd_section_name (sec);
2953
2954 already_linked_list = bfd_section_already_linked_table_lookup (name);
2955
2956 l = already_linked_list->entry;
2957 if (l != NULL)
2958 {
2959 /* The section has already been linked. See if we should
2960 issue a warning. */
2961 return _bfd_handle_already_linked (sec, l, info);
2962 }
2963
2964 /* This is the first section with this name. Record it. */
2965 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2966 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2967 return false;
2968 }
2969
2970 /* Choose a neighbouring section to S in OBFD that will be output, or
2971 the absolute section if ADDR is out of bounds of the neighbours. */
2972
2973 asection *
2974 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2975 {
2976 asection *next, *prev, *best;
2977
2978 /* Find preceding kept section. */
2979 for (prev = s->prev; prev != NULL; prev = prev->prev)
2980 if ((prev->flags & SEC_EXCLUDE) == 0
2981 && !bfd_section_removed_from_list (obfd, prev))
2982 break;
2983
2984 /* Find following kept section. Start at prev->next because
2985 other sections may have been added after S was removed. */
2986 if (s->prev != NULL)
2987 next = s->prev->next;
2988 else
2989 next = s->owner->sections;
2990 for (; next != NULL; next = next->next)
2991 if ((next->flags & SEC_EXCLUDE) == 0
2992 && !bfd_section_removed_from_list (obfd, next))
2993 break;
2994
2995 /* Choose better of two sections, based on flags. The idea
2996 is to choose a section that will be in the same segment
2997 as S would have been if it was kept. */
2998 best = next;
2999 if (prev == NULL)
3000 {
3001 if (next == NULL)
3002 best = bfd_abs_section_ptr;
3003 }
3004 else if (next == NULL)
3005 best = prev;
3006 else if (((prev->flags ^ next->flags)
3007 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3008 {
3009 if (((next->flags ^ s->flags)
3010 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3011 /* We prefer to choose a loaded section. Section S
3012 doesn't have SEC_LOAD set (it being excluded, that
3013 part of the flag processing didn't happen) so we
3014 can't compare that flag to those of NEXT and PREV. */
3015 || ((prev->flags & SEC_LOAD) != 0
3016 && (next->flags & SEC_LOAD) == 0))
3017 best = prev;
3018 }
3019 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3020 {
3021 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3022 best = prev;
3023 }
3024 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3025 {
3026 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3027 best = prev;
3028 }
3029 else
3030 {
3031 /* Flags we care about are the same. Prefer the following
3032 section if that will result in a positive valued sym. */
3033 if (addr < next->vma)
3034 best = prev;
3035 }
3036
3037 return best;
3038 }
3039
3040 /* Convert symbols in excluded output sections to use a kept section. */
3041
3042 static bool
3043 fix_syms (struct bfd_link_hash_entry *h, void *data)
3044 {
3045 bfd *obfd = (bfd *) data;
3046
3047 if (h->type == bfd_link_hash_defined
3048 || h->type == bfd_link_hash_defweak)
3049 {
3050 asection *s = h->u.def.section;
3051 if (s != NULL
3052 && s->output_section != NULL
3053 && (s->output_section->flags & SEC_EXCLUDE) != 0
3054 && bfd_section_removed_from_list (obfd, s->output_section))
3055 {
3056 asection *op;
3057
3058 h->u.def.value += s->output_offset + s->output_section->vma;
3059 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3060 h->u.def.value -= op->vma;
3061 h->u.def.section = op;
3062 }
3063 }
3064
3065 return true;
3066 }
3067
3068 void
3069 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3070 {
3071 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3072 }
3073
3074 /*
3075 FUNCTION
3076 bfd_generic_define_common_symbol
3077
3078 SYNOPSIS
3079 bool bfd_generic_define_common_symbol
3080 (bfd *output_bfd, struct bfd_link_info *info,
3081 struct bfd_link_hash_entry *h);
3082
3083 DESCRIPTION
3084 Convert common symbol @var{h} into a defined symbol.
3085 Return TRUE on success and FALSE on failure.
3086
3087 .#define bfd_define_common_symbol(output_bfd, info, h) \
3088 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3089 .
3090 */
3091
3092 bool
3093 bfd_generic_define_common_symbol (bfd *output_bfd,
3094 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3095 struct bfd_link_hash_entry *h)
3096 {
3097 unsigned int power_of_two;
3098 bfd_vma alignment, size;
3099 asection *section;
3100
3101 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3102
3103 size = h->u.c.size;
3104 power_of_two = h->u.c.p->alignment_power;
3105 section = h->u.c.p->section;
3106
3107 /* Increase the size of the section to align the common symbol.
3108 The alignment must be a power of two. But if the section does
3109 not have any alignment requirement then do not increase the
3110 alignment unnecessarily. */
3111 if (power_of_two)
3112 alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
3113 else
3114 alignment = 1;
3115 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3116 section->size += alignment - 1;
3117 section->size &= -alignment;
3118
3119 /* Adjust the section's overall alignment if necessary. */
3120 if (power_of_two > section->alignment_power)
3121 section->alignment_power = power_of_two;
3122
3123 /* Change the symbol from common to defined. */
3124 h->type = bfd_link_hash_defined;
3125 h->u.def.section = section;
3126 h->u.def.value = section->size;
3127
3128 /* Increase the size of the section. */
3129 section->size += size;
3130
3131 /* Make sure the section is allocated in memory, and make sure that
3132 it is no longer a common section. */
3133 section->flags |= SEC_ALLOC;
3134 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3135 return true;
3136 }
3137
3138 /*
3139 FUNCTION
3140 _bfd_generic_link_hide_symbol
3141
3142 SYNOPSIS
3143 void _bfd_generic_link_hide_symbol
3144 (bfd *output_bfd, struct bfd_link_info *info,
3145 struct bfd_link_hash_entry *h);
3146
3147 DESCRIPTION
3148 Hide symbol @var{h}.
3149 This is an internal function. It should not be called from
3150 outside the BFD library.
3151
3152 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3153 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3154 .
3155 */
3156
3157 void
3158 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3159 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3160 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3161 {
3162 }
3163
3164 /*
3165 FUNCTION
3166 bfd_generic_define_start_stop
3167
3168 SYNOPSIS
3169 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3170 (struct bfd_link_info *info,
3171 const char *symbol, asection *sec);
3172
3173 DESCRIPTION
3174 Define a __start, __stop, .startof. or .sizeof. symbol.
3175 Return the symbol or NULL if no such undefined symbol exists.
3176
3177 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3178 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3179 .
3180 */
3181
3182 struct bfd_link_hash_entry *
3183 bfd_generic_define_start_stop (struct bfd_link_info *info,
3184 const char *symbol, asection *sec)
3185 {
3186 struct bfd_link_hash_entry *h;
3187
3188 h = bfd_link_hash_lookup (info->hash, symbol, false, false, true);
3189 if (h != NULL
3190 && !h->ldscript_def
3191 && (h->type == bfd_link_hash_undefined
3192 || h->type == bfd_link_hash_undefweak))
3193 {
3194 h->type = bfd_link_hash_defined;
3195 h->u.def.section = sec;
3196 h->u.def.value = 0;
3197 return h;
3198 }
3199 return NULL;
3200 }
3201
3202 /*
3203 FUNCTION
3204 bfd_find_version_for_sym
3205
3206 SYNOPSIS
3207 struct bfd_elf_version_tree * bfd_find_version_for_sym
3208 (struct bfd_elf_version_tree *verdefs,
3209 const char *sym_name, bool *hide);
3210
3211 DESCRIPTION
3212 Search an elf version script tree for symbol versioning
3213 info and export / don't-export status for a given symbol.
3214 Return non-NULL on success and NULL on failure; also sets
3215 the output @samp{hide} boolean parameter.
3216
3217 */
3218
3219 struct bfd_elf_version_tree *
3220 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3221 const char *sym_name,
3222 bool *hide)
3223 {
3224 struct bfd_elf_version_tree *t;
3225 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3226 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3227
3228 local_ver = NULL;
3229 global_ver = NULL;
3230 star_local_ver = NULL;
3231 star_global_ver = NULL;
3232 exist_ver = NULL;
3233 for (t = verdefs; t != NULL; t = t->next)
3234 {
3235 if (t->globals.list != NULL)
3236 {
3237 struct bfd_elf_version_expr *d = NULL;
3238
3239 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3240 {
3241 if (d->literal || strcmp (d->pattern, "*") != 0)
3242 global_ver = t;
3243 else
3244 star_global_ver = t;
3245 if (d->symver)
3246 exist_ver = t;
3247 d->script = 1;
3248 /* If the match is a wildcard pattern, keep looking for
3249 a more explicit, perhaps even local, match. */
3250 if (d->literal)
3251 break;
3252 }
3253
3254 if (d != NULL)
3255 break;
3256 }
3257
3258 if (t->locals.list != NULL)
3259 {
3260 struct bfd_elf_version_expr *d = NULL;
3261
3262 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3263 {
3264 if (d->literal || strcmp (d->pattern, "*") != 0)
3265 local_ver = t;
3266 else
3267 star_local_ver = t;
3268 /* If the match is a wildcard pattern, keep looking for
3269 a more explicit, perhaps even global, match. */
3270 if (d->literal)
3271 {
3272 /* An exact match overrides a global wildcard. */
3273 global_ver = NULL;
3274 star_global_ver = NULL;
3275 break;
3276 }
3277 }
3278
3279 if (d != NULL)
3280 break;
3281 }
3282 }
3283
3284 if (global_ver == NULL && local_ver == NULL)
3285 global_ver = star_global_ver;
3286
3287 if (global_ver != NULL)
3288 {
3289 /* If we already have a versioned symbol that matches the
3290 node for this symbol, then we don't want to create a
3291 duplicate from the unversioned symbol. Instead hide the
3292 unversioned symbol. */
3293 *hide = exist_ver == global_ver;
3294 return global_ver;
3295 }
3296
3297 if (local_ver == NULL)
3298 local_ver = star_local_ver;
3299
3300 if (local_ver != NULL)
3301 {
3302 *hide = true;
3303 return local_ver;
3304 }
3305
3306 return NULL;
3307 }
3308
3309 /*
3310 FUNCTION
3311 bfd_hide_sym_by_version
3312
3313 SYNOPSIS
3314 bool bfd_hide_sym_by_version
3315 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3316
3317 DESCRIPTION
3318 Search an elf version script tree for symbol versioning
3319 info for a given symbol. Return TRUE if the symbol is hidden.
3320
3321 */
3322
3323 bool
3324 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3325 const char *sym_name)
3326 {
3327 bool hidden = false;
3328 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3329 return hidden;
3330 }
3331
3332 /*
3333 FUNCTION
3334 bfd_link_check_relocs
3335
3336 SYNOPSIS
3337 bool bfd_link_check_relocs
3338 (bfd *abfd, struct bfd_link_info *info);
3339
3340 DESCRIPTION
3341 Checks the relocs in ABFD for validity.
3342 Does not execute the relocs.
3343 Return TRUE if everything is OK, FALSE otherwise.
3344 This is the external entry point to this code.
3345 */
3346
3347 bool
3348 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3349 {
3350 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3351 }
3352
3353 /*
3354 FUNCTION
3355 _bfd_generic_link_check_relocs
3356
3357 SYNOPSIS
3358 bool _bfd_generic_link_check_relocs
3359 (bfd *abfd, struct bfd_link_info *info);
3360
3361 DESCRIPTION
3362 Stub function for targets that do not implement reloc checking.
3363 Return TRUE.
3364 This is an internal function. It should not be called from
3365 outside the BFD library.
3366 */
3367
3368 bool
3369 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3370 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3371 {
3372 return true;
3373 }
3374
3375 /*
3376 FUNCTION
3377 bfd_merge_private_bfd_data
3378
3379 SYNOPSIS
3380 bool bfd_merge_private_bfd_data
3381 (bfd *ibfd, struct bfd_link_info *info);
3382
3383 DESCRIPTION
3384 Merge private BFD information from the BFD @var{ibfd} to the
3385 the output file BFD when linking. Return <<TRUE>> on success,
3386 <<FALSE>> on error. Possible error returns are:
3387
3388 o <<bfd_error_no_memory>> -
3389 Not enough memory exists to create private data for @var{obfd}.
3390
3391 .#define bfd_merge_private_bfd_data(ibfd, info) \
3392 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3393 . (ibfd, info))
3394 */
3395
3396 /*
3397 INTERNAL_FUNCTION
3398 _bfd_generic_verify_endian_match
3399
3400 SYNOPSIS
3401 bool _bfd_generic_verify_endian_match
3402 (bfd *ibfd, struct bfd_link_info *info);
3403
3404 DESCRIPTION
3405 Can be used from / for bfd_merge_private_bfd_data to check that
3406 endianness matches between input and output file. Returns
3407 TRUE for a match, otherwise returns FALSE and emits an error.
3408 */
3409
3410 bool
3411 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3412 {
3413 bfd *obfd = info->output_bfd;
3414
3415 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3416 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3417 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3418 {
3419 if (bfd_big_endian (ibfd))
3420 _bfd_error_handler (_("%pB: compiled for a big endian system "
3421 "and target is little endian"), ibfd);
3422 else
3423 _bfd_error_handler (_("%pB: compiled for a little endian system "
3424 "and target is big endian"), ibfd);
3425 bfd_set_error (bfd_error_wrong_format);
3426 return false;
3427 }
3428
3429 return true;
3430 }
3431
3432 int
3433 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3434 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3435 {
3436 return 0;
3437 }
3438
3439 bool
3440 _bfd_nolink_bfd_relax_section (bfd *abfd,
3441 asection *section ATTRIBUTE_UNUSED,
3442 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3443 bool *again ATTRIBUTE_UNUSED)
3444 {
3445 return _bfd_bool_bfd_false_error (abfd);
3446 }
3447
3448 bfd_byte *
3449 _bfd_nolink_bfd_get_relocated_section_contents
3450 (bfd *abfd,
3451 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3452 struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3453 bfd_byte *data ATTRIBUTE_UNUSED,
3454 bool relocatable ATTRIBUTE_UNUSED,
3455 asymbol **symbols ATTRIBUTE_UNUSED)
3456 {
3457 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3458 }
3459
3460 bool
3461 _bfd_nolink_bfd_lookup_section_flags
3462 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3463 struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3464 asection *section)
3465 {
3466 return _bfd_bool_bfd_false_error (section->owner);
3467 }
3468
3469 bool
3470 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3471 const asection *sec ATTRIBUTE_UNUSED)
3472 {
3473 return _bfd_bool_bfd_false_error (abfd);
3474 }
3475
3476 const char *
3477 _bfd_nolink_bfd_group_name (bfd *abfd,
3478 const asection *sec ATTRIBUTE_UNUSED)
3479 {
3480 return _bfd_ptr_bfd_null_error (abfd);
3481 }
3482
3483 bool
3484 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3485 {
3486 return _bfd_bool_bfd_false_error (abfd);
3487 }
3488
3489 struct bfd_link_hash_table *
3490 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3491 {
3492 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3493 }
3494
3495 void
3496 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3497 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3498 {
3499 }
3500
3501 void
3502 _bfd_nolink_bfd_copy_link_hash_symbol_type
3503 (bfd *abfd ATTRIBUTE_UNUSED,
3504 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3505 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3506 {
3507 }
3508
3509 bool
3510 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3511 {
3512 return _bfd_bool_bfd_false_error (abfd);
3513 }
3514
3515 bool
3516 _bfd_nolink_section_already_linked (bfd *abfd,
3517 asection *sec ATTRIBUTE_UNUSED,
3518 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3519 {
3520 return _bfd_bool_bfd_false_error (abfd);
3521 }
3522
3523 bool
3524 _bfd_nolink_bfd_define_common_symbol
3525 (bfd *abfd,
3526 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3527 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3528 {
3529 return _bfd_bool_bfd_false_error (abfd);
3530 }
3531
3532 struct bfd_link_hash_entry *
3533 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3534 const char *name ATTRIBUTE_UNUSED,
3535 asection *sec)
3536 {
3537 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3538 }
3539
3540 /* Return false if linker should avoid caching relocation infomation
3541 and symbol tables of input files in memory. */
3542
3543 bool
3544 _bfd_link_keep_memory (struct bfd_link_info * info)
3545 {
3546 bfd *abfd;
3547 bfd_size_type size;
3548
3549 if (!info->keep_memory)
3550 return false;
3551
3552 if (info->max_cache_size == (bfd_size_type) -1)
3553 return true;
3554
3555 abfd = info->input_bfds;
3556 size = info->cache_size;
3557 do
3558 {
3559 if (size >= info->max_cache_size)
3560 {
3561 /* Over the limit. Reduce the memory usage. */
3562 info->keep_memory = false;
3563 return false;
3564 }
3565 if (!abfd)
3566 break;
3567 size += abfd->alloc_size;
3568 abfd = abfd->link.next;
3569 }
3570 while (1);
3571
3572 return true;
3573 }