* linker.c (_bfd_generic_final_link): Set reloc_count to 0 before
[binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993, 94 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "bfdlink.h"
25 #include "genlink.h"
26
27 /*
28 SECTION
29 Linker Functions
30
31 @cindex Linker
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
37 memory.
38
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
48
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
54 proper.
55
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
61
62 @menu
63 @* Creating a Linker Hash Table::
64 @* Adding Symbols to the Hash Table::
65 @* Performing the Final Link::
66 @end menu
67
68 INODE
69 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
70 SUBSECTION
71 Creating a linker hash table
72
73 @cindex _bfd_link_hash_table_create in target vector
74 @cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
80
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
87
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
98 pointer to it.
99
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
105
106 INODE
107 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
108 SUBSECTION
109 Adding symbols to the hash table
110
111 @cindex _bfd_link_add_symbols in target vector
112 @cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
121 link.
122
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
125
126 @menu
127 @* Differing file formats::
128 @* Adding symbols from an object file::
129 @* Adding symbols from an archive::
130 @end menu
131
132 INODE
133 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
134 SUBSUBSECTION
135 Differing file formats
136
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
148
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
154
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
163
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
167 hash table entry.
168
169 INODE
170 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
171 SUBSUBSECTION
172 Adding symbols from an object file
173
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
182
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
187
188 @findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section>> for an undefined
196 symbol or <<bfd_com_section>> for a common symbol.
197
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
204
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
212
213 INODE
214 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
215 SUBSUBSECTION
216 Adding symbols from an archive
217
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
224
225 @findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
236
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
246
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
257 linker hash table.
258
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
264
265 INODE
266 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
267 SUBSECTION
268 Performing the final link
269
270 @cindex _bfd_link_final_link in target vector
271 @cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
282
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
286
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
290
291 @menu
292 @* Information provided by the linker::
293 @* Relocating the section contents::
294 @* Writing the symbol table::
295 @end menu
296
297 INODE
298 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
299 SUBSUBSECTION
300 Information provided by the linker
301
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
304
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
309
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information. They also describe relocs that must be
317 created by the BFD backend, but do not correspond to any input
318 file; this is used to support -Ur, which builds constructors
319 while generating a relocateable object file.
320
321 INODE
322 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
323 SUBSUBSECTION
324 Relocating the section contents
325
326 The <<_bfd_final_link>> function should look through the
327 <<link_order>> structures attached to each section of the
328 output file. Each <<link_order>> structure should either be
329 handled specially, or it should be passed to the function
330 <<_bfd_default_link_order>> which will do the right thing
331 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
332
333 For efficiency, a <<link_order>> of type
334 <<bfd_indirect_link_order>> whose associated section belongs
335 to a BFD of the same format as the output BFD must be handled
336 specially. This type of <<link_order>> describes part of an
337 output section in terms of a section belonging to one of the
338 input files. The <<_bfd_final_link>> function should read the
339 contents of the section and any associated relocs, apply the
340 relocs to the section contents, and write out the modified
341 section contents. If performing a relocateable link, the
342 relocs themselves must also be modified and written out.
343
344 @findex _bfd_relocate_contents
345 @findex _bfd_final_link_relocate
346 The functions <<_bfd_relocate_contents>> and
347 <<_bfd_final_link_relocate>> provide some general support for
348 performing the actual relocations, notably overflow checking.
349 Their arguments include information about the symbol the
350 relocation is against and a <<reloc_howto_type>> argument
351 which describes the relocation to perform. These functions
352 are defined in <<reloc.c>>.
353
354 The a.out function which handles reading, relocating, and
355 writing section contents is <<aout_link_input_section>>. The
356 actual relocation is done in <<aout_link_input_section_std>>
357 and <<aout_link_input_section_ext>>.
358
359 INODE
360 Writing the symbol table, , Relocating the section contents, Performing the Final Link
361 SUBSUBSECTION
362 Writing the symbol table
363
364 The <<_bfd_final_link>> function must gather all the symbols
365 in the input files and write them out. It must also write out
366 all the symbols in the global hash table. This must be
367 controlled by the <<strip>> and <<discard>> fields of the
368 <<bfd_link_info>> structure.
369
370 The local symbols of the input files will not have been
371 entered into the linker hash table. The <<_bfd_final_link>>
372 routine must consider each input file and include the symbols
373 in the output file. It may be convenient to do this when
374 looking through the <<link_order>> structures, or it may be
375 done by stepping through the <<input_bfds>> list.
376
377 The <<_bfd_final_link>> routine must also traverse the global
378 hash table to gather all the externally visible symbols. It
379 is possible that most of the externally visible symbols may be
380 written out when considering the symbols of each input file,
381 but it is still necessary to traverse the hash table since the
382 linker script may have defined some symbols that are not in
383 any of the input files. The <<written>> field in the
384 <<bfd_link_hash_entry>> structure may be used to determine
385 which entries in the hash table have not already been written
386 out.
387
388 The <<strip>> field of the <<bfd_link_info>> structure
389 controls which symbols are written out. The possible values
390 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
391 then the <<keep_hash>> field of the <<bfd_link_info>>
392 structure is a hash table of symbols to keep; each symbol
393 should be looked up in this hash table, and only symbols which
394 are present should be included in the output file.
395
396 If the <<strip>> field of the <<bfd_link_info>> structure
397 permits local symbols to be written out, the <<discard>> field
398 is used to further controls which local symbols are included
399 in the output file. If the value is <<discard_l>>, then all
400 local symbols which begin with a certain prefix are discarded;
401 this prefix is described by the <<lprefix>> and
402 <<lprefix_len>> fields of the <<bfd_link_info>> structure.
403
404 The a.out backend handles symbols by calling
405 <<aout_link_write_symbols>> on each input BFD and then
406 traversing the global hash table with the function
407 <<aout_link_write_other_symbol>>. It builds a string table
408 while writing out the symbols, which is written to the output
409 file at the end of <<NAME(aout,final_link)>>.
410 */
411
412 static struct bfd_hash_entry *generic_link_hash_newfunc
413 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
414 const char *));
415 static boolean generic_link_add_symbols
416 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
417 static boolean generic_link_add_object_symbols
418 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
419 static boolean generic_link_check_archive_element_no_collect
420 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
421 static boolean generic_link_check_archive_element_collect
422 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
423 static boolean generic_link_check_archive_element
424 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
425 static boolean generic_link_add_symbol_list
426 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
427 boolean collect));
428 static boolean generic_add_output_symbol
429 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
430 static boolean default_fill_link_order
431 PARAMS ((bfd *, struct bfd_link_info *, asection *,
432 struct bfd_link_order *));
433 static boolean default_indirect_link_order
434 PARAMS ((bfd *, struct bfd_link_info *, asection *,
435 struct bfd_link_order *));
436
437 /* The link hash table structure is defined in bfdlink.h. It provides
438 a base hash table which the backend specific hash tables are built
439 upon. */
440
441 /* Routine to create an entry in the link hash table. */
442
443 struct bfd_hash_entry *
444 _bfd_link_hash_newfunc (entry, table, string)
445 struct bfd_hash_entry *entry;
446 struct bfd_hash_table *table;
447 const char *string;
448 {
449 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
450
451 /* Allocate the structure if it has not already been allocated by a
452 subclass. */
453 if (ret == (struct bfd_link_hash_entry *) NULL)
454 ret = ((struct bfd_link_hash_entry *)
455 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
456 if (ret == (struct bfd_link_hash_entry *) NULL)
457 {
458 bfd_set_error (bfd_error_no_memory);
459 return NULL;
460 }
461
462 /* Call the allocation method of the superclass. */
463 ret = ((struct bfd_link_hash_entry *)
464 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
465
466 if (ret)
467 {
468 /* Initialize the local fields. */
469 ret->type = bfd_link_hash_new;
470 ret->written = false;
471 ret->next = NULL;
472 }
473
474 return (struct bfd_hash_entry *) ret;
475 }
476
477 /* Initialize a link hash table. The BFD argument is the one
478 responsible for creating this table. */
479
480 boolean
481 _bfd_link_hash_table_init (table, abfd, newfunc)
482 struct bfd_link_hash_table *table;
483 bfd *abfd;
484 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
485 struct bfd_hash_table *,
486 const char *));
487 {
488 table->creator = abfd->xvec;
489 table->undefs = NULL;
490 table->undefs_tail = NULL;
491 return bfd_hash_table_init (&table->table, newfunc);
492 }
493
494 /* Look up a symbol in a link hash table. If follow is true, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 the real symbol. */
497
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (table, string, create, copy, follow)
500 struct bfd_link_hash_table *table;
501 const char *string;
502 boolean create;
503 boolean copy;
504 boolean follow;
505 {
506 struct bfd_link_hash_entry *ret;
507
508 ret = ((struct bfd_link_hash_entry *)
509 bfd_hash_lookup (&table->table, string, create, copy));
510
511 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
512 {
513 while (ret->type == bfd_link_hash_indirect
514 || ret->type == bfd_link_hash_warning)
515 ret = ret->u.i.link;
516 }
517
518 return ret;
519 }
520
521 /* Traverse a generic link hash table. The only reason this is not a
522 macro is to do better type checking. This code presumes that an
523 argument passed as a struct bfd_hash_entry * may be caught as a
524 struct bfd_link_hash_entry * with no explicit cast required on the
525 call. */
526
527 void
528 bfd_link_hash_traverse (table, func, info)
529 struct bfd_link_hash_table *table;
530 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
531 PTR info;
532 {
533 bfd_hash_traverse (&table->table,
534 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
535 func),
536 info);
537 }
538
539 /* Add a symbol to the linker hash table undefs list. */
540
541 INLINE void
542 bfd_link_add_undef (table, h)
543 struct bfd_link_hash_table *table;
544 struct bfd_link_hash_entry *h;
545 {
546 BFD_ASSERT (h->next == NULL);
547 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
548 table->undefs_tail->next = h;
549 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
550 table->undefs = h;
551 table->undefs_tail = h;
552 }
553 \f
554 /* Routine to create an entry in an generic link hash table. */
555
556 static struct bfd_hash_entry *
557 generic_link_hash_newfunc (entry, table, string)
558 struct bfd_hash_entry *entry;
559 struct bfd_hash_table *table;
560 const char *string;
561 {
562 struct generic_link_hash_entry *ret =
563 (struct generic_link_hash_entry *) entry;
564
565 /* Allocate the structure if it has not already been allocated by a
566 subclass. */
567 if (ret == (struct generic_link_hash_entry *) NULL)
568 ret = ((struct generic_link_hash_entry *)
569 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
570 if (ret == (struct generic_link_hash_entry *) NULL)
571 {
572 bfd_set_error (bfd_error_no_memory);
573 return NULL;
574 }
575
576 /* Call the allocation method of the superclass. */
577 ret = ((struct generic_link_hash_entry *)
578 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
579 table, string));
580
581 if (ret)
582 {
583 /* Set local fields. */
584 ret->sym = NULL;
585 }
586
587 return (struct bfd_hash_entry *) ret;
588 }
589
590 /* Create an generic link hash table. */
591
592 struct bfd_link_hash_table *
593 _bfd_generic_link_hash_table_create (abfd)
594 bfd *abfd;
595 {
596 struct generic_link_hash_table *ret;
597
598 ret = ((struct generic_link_hash_table *)
599 malloc (sizeof (struct generic_link_hash_table)));
600 if (!ret)
601 {
602 bfd_set_error (bfd_error_no_memory);
603 return (struct bfd_link_hash_table *) NULL;
604 }
605 if (! _bfd_link_hash_table_init (&ret->root, abfd,
606 generic_link_hash_newfunc))
607 {
608 free (ret);
609 return (struct bfd_link_hash_table *) NULL;
610 }
611 return &ret->root;
612 }
613 \f
614 /* Generic function to add symbols to from an object file to the
615 global hash table. This version does not automatically collect
616 constructors by name. */
617
618 boolean
619 _bfd_generic_link_add_symbols (abfd, info)
620 bfd *abfd;
621 struct bfd_link_info *info;
622 {
623 return generic_link_add_symbols (abfd, info, false);
624 }
625
626 /* Generic function to add symbols from an object file to the global
627 hash table. This version automatically collects constructors by
628 name, as the collect2 program does. It should be used for any
629 target which does not provide some other mechanism for setting up
630 constructors and destructors; these are approximately those targets
631 for which gcc uses collect2 and do not support stabs. */
632
633 boolean
634 _bfd_generic_link_add_symbols_collect (abfd, info)
635 bfd *abfd;
636 struct bfd_link_info *info;
637 {
638 return generic_link_add_symbols (abfd, info, true);
639 }
640
641 /* Add symbols from an object file to the global hash table. */
642
643 static boolean
644 generic_link_add_symbols (abfd, info, collect)
645 bfd *abfd;
646 struct bfd_link_info *info;
647 boolean collect;
648 {
649 boolean ret;
650
651 switch (bfd_get_format (abfd))
652 {
653 case bfd_object:
654 ret = generic_link_add_object_symbols (abfd, info, collect);
655 break;
656 case bfd_archive:
657 ret = (_bfd_generic_link_add_archive_symbols
658 (abfd, info,
659 (collect
660 ? generic_link_check_archive_element_collect
661 : generic_link_check_archive_element_no_collect)));
662 break;
663 default:
664 bfd_set_error (bfd_error_wrong_format);
665 ret = false;
666 }
667
668 return ret;
669 }
670
671 /* Add symbols from an object file to the global hash table. */
672
673 static boolean
674 generic_link_add_object_symbols (abfd, info, collect)
675 bfd *abfd;
676 struct bfd_link_info *info;
677 boolean collect;
678 {
679 size_t symsize;
680 asymbol **symbols;
681 bfd_size_type symbol_count;
682 boolean result;
683
684 symsize = get_symtab_upper_bound (abfd);
685 symbols = (asymbol **) malloc (symsize);
686 if (symbols == NULL && symsize != 0)
687 {
688 bfd_set_error (bfd_error_no_memory);
689 return false;
690 }
691 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
692
693 result = generic_link_add_symbol_list (abfd, info, symbol_count, symbols,
694 collect);
695 free (symbols);
696 return result;
697 }
698 \f
699 /* We build a hash table of all symbols defined in an archive. */
700
701 /* An archive symbol may be defined by multiple archive elements.
702 This linked list is used to hold the elements. */
703
704 struct archive_list
705 {
706 struct archive_list *next;
707 int indx;
708 };
709
710 /* An entry in an archive hash table. */
711
712 struct archive_hash_entry
713 {
714 struct bfd_hash_entry root;
715 /* Where the symbol is defined. */
716 struct archive_list *defs;
717 };
718
719 /* An archive hash table itself. */
720
721 struct archive_hash_table
722 {
723 struct bfd_hash_table table;
724 };
725
726 static struct bfd_hash_entry *archive_hash_newfunc
727 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
728 static boolean archive_hash_table_init
729 PARAMS ((struct archive_hash_table *,
730 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
731 struct bfd_hash_table *,
732 const char *)));
733
734 /* Create a new entry for an archive hash table. */
735
736 static struct bfd_hash_entry *
737 archive_hash_newfunc (entry, table, string)
738 struct bfd_hash_entry *entry;
739 struct bfd_hash_table *table;
740 const char *string;
741 {
742 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
743
744 /* Allocate the structure if it has not already been allocated by a
745 subclass. */
746 if (ret == (struct archive_hash_entry *) NULL)
747 ret = ((struct archive_hash_entry *)
748 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
749 if (ret == (struct archive_hash_entry *) NULL)
750 {
751 bfd_set_error (bfd_error_no_memory);
752 return NULL;
753 }
754
755 /* Call the allocation method of the superclass. */
756 ret = ((struct archive_hash_entry *)
757 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
758
759 if (ret)
760 {
761 /* Initialize the local fields. */
762 ret->defs = (struct archive_list *) NULL;
763 }
764
765 return (struct bfd_hash_entry *) ret;
766 }
767
768 /* Initialize an archive hash table. */
769
770 static boolean
771 archive_hash_table_init (table, newfunc)
772 struct archive_hash_table *table;
773 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
774 struct bfd_hash_table *,
775 const char *));
776 {
777 return bfd_hash_table_init (&table->table, newfunc);
778 }
779
780 /* Look up an entry in an archive hash table. */
781
782 #define archive_hash_lookup(t, string, create, copy) \
783 ((struct archive_hash_entry *) \
784 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
785
786 /* Free an archive hash table. */
787
788 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
789
790 /* Generic function to add symbols from an archive file to the global
791 hash file. This function presumes that the archive symbol table
792 has already been read in (this is normally done by the
793 bfd_check_format entry point). It looks through the undefined and
794 common symbols and searches the archive symbol table for them. If
795 it finds an entry, it includes the associated object file in the
796 link.
797
798 The old linker looked through the archive symbol table for
799 undefined symbols. We do it the other way around, looking through
800 undefined symbols for symbols defined in the archive. The
801 advantage of the newer scheme is that we only have to look through
802 the list of undefined symbols once, whereas the old method had to
803 re-search the symbol table each time a new object file was added.
804
805 The CHECKFN argument is used to see if an object file should be
806 included. CHECKFN should set *PNEEDED to true if the object file
807 should be included, and must also call the bfd_link_info
808 add_archive_element callback function and handle adding the symbols
809 to the global hash table. CHECKFN should only return false if some
810 sort of error occurs.
811
812 For some formats, such as a.out, it is possible to look through an
813 object file but not actually include it in the link. The
814 archive_pass field in a BFD is used to avoid checking the symbols
815 of an object files too many times. When an object is included in
816 the link, archive_pass is set to -1. If an object is scanned but
817 not included, archive_pass is set to the pass number. The pass
818 number is incremented each time a new object file is included. The
819 pass number is used because when a new object file is included it
820 may create new undefined symbols which cause a previously examined
821 object file to be included. */
822
823 boolean
824 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
825 bfd *abfd;
826 struct bfd_link_info *info;
827 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
828 boolean *pneeded));
829 {
830 carsym *arsyms;
831 carsym *arsym_end;
832 register carsym *arsym;
833 int pass;
834 struct archive_hash_table arsym_hash;
835 int indx;
836 struct bfd_link_hash_entry **pundef;
837
838 if (! bfd_has_map (abfd))
839 {
840 bfd_set_error (bfd_error_no_symbols);
841 return false;
842 }
843
844 arsyms = bfd_ardata (abfd)->symdefs;
845 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
846
847 /* In order to quickly determine whether an symbol is defined in
848 this archive, we build a hash table of the symbols. */
849 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
850 return false;
851 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
852 {
853 struct archive_hash_entry *arh;
854 struct archive_list *l, **pp;
855
856 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
857 if (arh == (struct archive_hash_entry *) NULL)
858 goto error_return;
859 l = (struct archive_list *)
860 obstack_alloc (&(&(&arsym_hash)->table)->memory,
861 sizeof (struct archive_list));
862 if (l == NULL)
863 {
864 bfd_set_error (bfd_error_no_memory);
865 goto error_return;
866 }
867 l->indx = indx;
868 for (pp = &arh->defs;
869 *pp != (struct archive_list *) NULL;
870 pp = &(*pp)->next)
871 ;
872 *pp = l;
873 l->next = NULL;
874 }
875
876 pass = 1;
877
878 /* New undefined symbols are added to the end of the list, so we
879 only need to look through it once. */
880 pundef = &info->hash->undefs;
881 while (*pundef != (struct bfd_link_hash_entry *) NULL)
882 {
883 struct bfd_link_hash_entry *h;
884 struct archive_hash_entry *arh;
885 struct archive_list *l;
886
887 h = *pundef;
888
889 /* When a symbol is defined, it is not necessarily removed from
890 the list. */
891 if (h->type != bfd_link_hash_undefined
892 && h->type != bfd_link_hash_common)
893 {
894 /* Remove this entry from the list, for general cleanliness
895 and because we are going to look through the list again
896 if we search any more libraries. We can't remove the
897 entry if it is the tail, because that would lose any
898 entries we add to the list later on. */
899 if (*pundef != info->hash->undefs_tail)
900 *pundef = (*pundef)->next;
901 else
902 pundef = &(*pundef)->next;
903 continue;
904 }
905
906 /* Look for this symbol in the archive symbol map. */
907 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
908 if (arh == (struct archive_hash_entry *) NULL)
909 {
910 pundef = &(*pundef)->next;
911 continue;
912 }
913
914 /* Look at all the objects which define this symbol. */
915 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
916 {
917 bfd *element;
918 boolean needed;
919
920 /* If the symbol has gotten defined along the way, quit. */
921 if (h->type != bfd_link_hash_undefined
922 && h->type != bfd_link_hash_common)
923 break;
924
925 element = bfd_get_elt_at_index (abfd, l->indx);
926 if (element == (bfd *) NULL)
927 goto error_return;
928
929 /* If we've already included this element, or if we've
930 already checked it on this pass, continue. */
931 if (element->archive_pass == -1
932 || element->archive_pass == pass)
933 continue;
934
935 /* If we can't figure this element out, just ignore it. */
936 if (! bfd_check_format (element, bfd_object))
937 {
938 element->archive_pass = -1;
939 continue;
940 }
941
942 /* CHECKFN will see if this element should be included, and
943 go ahead and include it if appropriate. */
944 if (! (*checkfn) (element, info, &needed))
945 goto error_return;
946
947 if (! needed)
948 element->archive_pass = pass;
949 else
950 {
951 element->archive_pass = -1;
952
953 /* Increment the pass count to show that we may need to
954 recheck object files which were already checked. */
955 ++pass;
956 }
957 }
958
959 pundef = &(*pundef)->next;
960 }
961
962 archive_hash_table_free (&arsym_hash);
963
964 return true;
965
966 error_return:
967 archive_hash_table_free (&arsym_hash);
968 return false;
969 }
970 \f
971 /* See if we should include an archive element. This version is used
972 when we do not want to automatically collect constructors based on
973 the symbol name, presumably because we have some other mechanism
974 for finding them. */
975
976 static boolean
977 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
978 bfd *abfd;
979 struct bfd_link_info *info;
980 boolean *pneeded;
981 {
982 return generic_link_check_archive_element (abfd, info, pneeded, false);
983 }
984
985 /* See if we should include an archive element. This version is used
986 when we want to automatically collect constructors based on the
987 symbol name, as collect2 does. */
988
989 static boolean
990 generic_link_check_archive_element_collect (abfd, info, pneeded)
991 bfd *abfd;
992 struct bfd_link_info *info;
993 boolean *pneeded;
994 {
995 return generic_link_check_archive_element (abfd, info, pneeded, true);
996 }
997
998 /* See if we should include an archive element. Optionally collect
999 constructors. */
1000
1001 static boolean
1002 generic_link_check_archive_element (abfd, info, pneeded, collect)
1003 bfd *abfd;
1004 struct bfd_link_info *info;
1005 boolean *pneeded;
1006 boolean collect;
1007 {
1008 size_t symsize;
1009 asymbol **symbols = NULL;
1010 bfd_size_type symbol_count;
1011 asymbol **pp, **ppend;
1012
1013 *pneeded = false;
1014
1015 symsize = get_symtab_upper_bound (abfd);
1016 symbols = (asymbol **) malloc (symsize);
1017 if (symbols == NULL && symsize != 0)
1018 {
1019 bfd_set_error (bfd_error_no_memory);
1020 goto error_return;
1021 }
1022
1023 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
1024
1025 pp = symbols;
1026 ppend = symbols + symbol_count;
1027 for (; pp < ppend; pp++)
1028 {
1029 asymbol *p;
1030 struct bfd_link_hash_entry *h;
1031
1032 p = *pp;
1033
1034 /* We are only interested in globally visible symbols. */
1035 if (! bfd_is_com_section (p->section)
1036 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1037 continue;
1038
1039 /* We are only interested if we know something about this
1040 symbol, and it is undefined or common. An undefined weak
1041 symbol (type bfd_link_hash_weak) is not considered to be a
1042 reference when pulling files out of an archive. See the SVR4
1043 ABI, p. 4-27. */
1044 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1045 false, true);
1046 if (h == (struct bfd_link_hash_entry *) NULL
1047 || (h->type != bfd_link_hash_undefined
1048 && h->type != bfd_link_hash_common))
1049 continue;
1050
1051 /* P is a symbol we are looking for. */
1052
1053 if (! bfd_is_com_section (p->section))
1054 {
1055 /* This object file defines this symbol, so pull it in. */
1056 if (! (*info->callbacks->add_archive_element) (info, abfd,
1057 bfd_asymbol_name (p)))
1058 goto error_return;
1059 if (! generic_link_add_symbol_list (abfd, info, symbol_count,
1060 symbols, collect))
1061 goto error_return;
1062 *pneeded = true;
1063 goto successful_return;
1064 }
1065
1066 /* P is a common symbol. */
1067
1068 if (h->type == bfd_link_hash_undefined)
1069 {
1070 bfd *symbfd;
1071
1072 symbfd = h->u.undef.abfd;
1073 if (symbfd == (bfd *) NULL)
1074 {
1075 /* This symbol was created as undefined from outside
1076 BFD. We assume that we should link in the object
1077 file. This is for the -u option in the linker. */
1078 if (! (*info->callbacks->add_archive_element)
1079 (info, abfd, bfd_asymbol_name (p)))
1080 goto error_return;
1081 *pneeded = true;
1082 goto successful_return;
1083 }
1084
1085 /* Turn the symbol into a common symbol but do not link in
1086 the object file. This is how a.out works. Object
1087 formats that require different semantics must implement
1088 this function differently. This symbol is already on the
1089 undefs list. We add the section to a common section
1090 attached to symbfd to ensure that it is in a BFD which
1091 will be linked in. */
1092 h->type = bfd_link_hash_common;
1093 h->u.c.size = bfd_asymbol_value (p);
1094 if (p->section == &bfd_com_section)
1095 h->u.c.section = bfd_make_section_old_way (symbfd, "COMMON");
1096 else
1097 h->u.c.section = bfd_make_section_old_way (symbfd,
1098 p->section->name);
1099 h->u.c.section->flags = SEC_ALLOC;
1100 }
1101 else
1102 {
1103 /* Adjust the size of the common symbol if necessary. This
1104 is how a.out works. Object formats that require
1105 different semantics must implement this function
1106 differently. */
1107 if (bfd_asymbol_value (p) > h->u.c.size)
1108 h->u.c.size = bfd_asymbol_value (p);
1109 }
1110 }
1111
1112 /* This archive element is not needed. */
1113
1114 successful_return:
1115 if (symbols != NULL)
1116 free (symbols);
1117 return true;
1118
1119 error_return:
1120 if (symbols != NULL)
1121 free (symbols);
1122 return false;
1123 }
1124
1125 /* Add the symbols from an object file to the global hash table. ABFD
1126 is the object file. INFO is the linker information. SYMBOL_COUNT
1127 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1128 is true if constructors should be automatically collected by name
1129 as is done by collect2. */
1130
1131 static boolean
1132 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1133 bfd *abfd;
1134 struct bfd_link_info *info;
1135 bfd_size_type symbol_count;
1136 asymbol **symbols;
1137 boolean collect;
1138 {
1139 asymbol **pp, **ppend;
1140
1141 pp = symbols;
1142 ppend = symbols + symbol_count;
1143 for (; pp < ppend; pp++)
1144 {
1145 asymbol *p;
1146
1147 p = *pp;
1148
1149 if ((p->flags & (BSF_INDIRECT
1150 | BSF_WARNING
1151 | BSF_GLOBAL
1152 | BSF_CONSTRUCTOR
1153 | BSF_WEAK)) != 0
1154 || bfd_get_section (p) == &bfd_und_section
1155 || bfd_is_com_section (bfd_get_section (p))
1156 || bfd_get_section (p) == &bfd_ind_section)
1157 {
1158 const char *name;
1159 const char *string;
1160 struct generic_link_hash_entry *h;
1161
1162 name = bfd_asymbol_name (p);
1163 if ((p->flags & BSF_INDIRECT) != 0
1164 || p->section == &bfd_ind_section)
1165 string = bfd_asymbol_name ((asymbol *) p->value);
1166 else if ((p->flags & BSF_WARNING) != 0)
1167 {
1168 /* The name of P is actually the warning string, and the
1169 value is actually a pointer to the symbol to warn
1170 about. */
1171 string = name;
1172 name = bfd_asymbol_name ((asymbol *) p->value);
1173 }
1174 else
1175 string = NULL;
1176
1177 if (! (_bfd_generic_link_add_one_symbol
1178 (info, abfd, name, p->flags, bfd_get_section (p),
1179 p->value, string, false, collect,
1180 (struct bfd_link_hash_entry **) &h)))
1181 return false;
1182
1183 /* Save the BFD symbol so that we don't lose any backend
1184 specific information that may be attached to it. We only
1185 want this one if it gives more information than the
1186 existing one; we don't want to replace a defined symbol
1187 with an undefined one. This routine may be called with a
1188 hash table other than the generic hash table, so we only
1189 do this if we are certain that the hash table is a
1190 generic one. */
1191 if (info->hash->creator == abfd->xvec)
1192 {
1193 if (h->sym == (asymbol *) NULL
1194 || (bfd_get_section (p) != &bfd_und_section
1195 && (! bfd_is_com_section (bfd_get_section (p))
1196 || (bfd_get_section (h->sym) == &bfd_und_section))))
1197 {
1198 h->sym = p;
1199 /* BSF_OLD_COMMON is a hack to support COFF reloc
1200 reading, and it should go away when the COFF
1201 linker is switched to the new version. */
1202 if (bfd_is_com_section (bfd_get_section (p)))
1203 p->flags |= BSF_OLD_COMMON;
1204 }
1205 }
1206 }
1207 }
1208
1209 return true;
1210 }
1211 \f
1212 /* We use a state table to deal with adding symbols from an object
1213 file. The first index into the state table describes the symbol
1214 from the object file. The second index into the state table is the
1215 type of the symbol in the hash table. */
1216
1217 /* The symbol from the object file is turned into one of these row
1218 values. */
1219
1220 enum link_row
1221 {
1222 UNDEF_ROW, /* Undefined. */
1223 UNDEFW_ROW, /* Weak undefined. */
1224 DEF_ROW, /* Defined. */
1225 DEFW_ROW, /* Weak defined. */
1226 COMMON_ROW, /* Common. */
1227 INDR_ROW, /* Indirect. */
1228 WARN_ROW, /* Warning. */
1229 SET_ROW /* Member of set. */
1230 };
1231
1232 /* The actions to take in the state table. */
1233
1234 enum link_action
1235 {
1236 FAIL, /* Abort. */
1237 UND, /* Mark symbol undefined. */
1238 WEAK, /* Mark symbol weak undefined. */
1239 DEF, /* Mark symbol defined. */
1240 COM, /* Mark symbol common. */
1241 CREF, /* Possibly warn about common reference to defined symbol. */
1242 CDEF, /* Define existing common symbol. */
1243 NOACT, /* No action. */
1244 BIG, /* Mark symbol common using largest size. */
1245 MDEF, /* Multiple definition error. */
1246 IND, /* Make indirect symbol. */
1247 SET, /* Add value to set. */
1248 MWARN, /* Make warning symbol. */
1249 WARN, /* Issue warning. */
1250 CYCLE, /* Repeat with symbol pointed to. */
1251 WARNC /* Issue warning and then CYCLE. */
1252 };
1253
1254 /* The state table itself. The first index is a link_row and the
1255 second index is a bfd_link_hash_type. */
1256
1257 static const enum link_action link_action[8][7] =
1258 {
1259 /* current\prev new undef weak def com indr warn */
1260 /* UNDEF_ROW */ {UND, NOACT, NOACT, NOACT, NOACT, CYCLE, WARNC },
1261 /* UNDEFW_ROW */ {WEAK, WEAK, NOACT, NOACT, NOACT, CYCLE, WARNC },
1262 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, CDEF, CYCLE, CYCLE },
1263 /* DEFW_ROW */ {DEF, DEF, DEF, NOACT, NOACT, CYCLE, CYCLE },
1264 /* COMMON_ROW */ {COM, COM, COM, CREF, BIG, CYCLE, WARNC },
1265 /* INDR_ROW */ {IND, IND, IND, MDEF, MDEF, MDEF, WARNC },
1266 /* WARN_ROW */ {MWARN, WARN, WARN, MWARN, MWARN, MWARN, NOACT },
1267 /* SET_ROW */ {SET, SET, SET, SET, SET, CYCLE, WARNC }
1268 };
1269
1270 /* Add a symbol to the global hash table.
1271 ABFD is the BFD the symbol comes from.
1272 NAME is the name of the symbol.
1273 FLAGS is the BSF_* bits associated with the symbol.
1274 SECTION is the section in which the symbol is defined; this may be
1275 bfd_und_section or bfd_com_section.
1276 VALUE is the value of the symbol, relative to the section.
1277 STRING is used for either an indirect symbol, in which case it is
1278 the name of the symbol to indirect to, or a warning symbol, in
1279 which case it is the warning string.
1280 COPY is true if NAME or STRING must be copied into locally
1281 allocated memory if they need to be saved.
1282 COLLECT is true if we should automatically collect gcc constructor
1283 or destructor names as collect2 does.
1284 HASHP, if not NULL, is a place to store the created hash table
1285 entry. */
1286
1287 boolean
1288 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1289 string, copy, collect, hashp)
1290 struct bfd_link_info *info;
1291 bfd *abfd;
1292 const char *name;
1293 flagword flags;
1294 asection *section;
1295 bfd_vma value;
1296 const char *string;
1297 boolean copy;
1298 boolean collect;
1299 struct bfd_link_hash_entry **hashp;
1300 {
1301 enum link_row row;
1302 struct bfd_link_hash_entry *h;
1303 boolean cycle;
1304
1305 if (section == &bfd_ind_section
1306 || (flags & BSF_INDIRECT) != 0)
1307 row = INDR_ROW;
1308 else if ((flags & BSF_WARNING) != 0)
1309 row = WARN_ROW;
1310 else if ((flags & BSF_CONSTRUCTOR) != 0)
1311 row = SET_ROW;
1312 else if (section == &bfd_und_section)
1313 {
1314 if ((flags & BSF_WEAK) != 0)
1315 row = UNDEFW_ROW;
1316 else
1317 row = UNDEF_ROW;
1318 }
1319 else if ((flags & BSF_WEAK) != 0)
1320 row = DEFW_ROW;
1321 else if (bfd_is_com_section (section))
1322 row = COMMON_ROW;
1323 else
1324 row = DEF_ROW;
1325
1326 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1327 if (h == (struct bfd_link_hash_entry *) NULL)
1328 {
1329 if (hashp != (struct bfd_link_hash_entry **) NULL)
1330 *hashp = NULL;
1331 return false;
1332 }
1333
1334 if (info->notice_hash != (struct bfd_hash_table *) NULL
1335 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1336 != (struct bfd_hash_entry *) NULL))
1337 {
1338 if (! (*info->callbacks->notice) (info, name, abfd, section, value))
1339 return false;
1340 }
1341
1342 if (hashp != (struct bfd_link_hash_entry **) NULL)
1343 *hashp = h;
1344
1345 do
1346 {
1347 enum link_action action;
1348
1349 cycle = false;
1350 action = link_action[(int) row][(int) h->type];
1351 switch (action)
1352 {
1353 case FAIL:
1354 abort ();
1355 case UND:
1356 h->type = bfd_link_hash_undefined;
1357 h->u.undef.abfd = abfd;
1358 bfd_link_add_undef (info->hash, h);
1359 break;
1360 case WEAK:
1361 h->type = bfd_link_hash_weak;
1362 h->u.undef.abfd = abfd;
1363 break;
1364 case CDEF:
1365 BFD_ASSERT (h->type == bfd_link_hash_common);
1366 if (! ((*info->callbacks->multiple_common)
1367 (info, name,
1368 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1369 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1370 return false;
1371 /* Fall through. */
1372 case DEF:
1373 h->type = bfd_link_hash_defined;
1374 h->u.def.section = section;
1375 h->u.def.value = value;
1376
1377 /* If we have been asked to, we act like collect2 and
1378 identify all functions that might be global constructors
1379 and destructors and pass them up in a callback. We only
1380 do this for certain object file types, since many object
1381 file types can handle this automatically. */
1382 if (collect && name[0] == '_')
1383 {
1384 const char *s;
1385
1386 /* A constructor or destructor name starts like this:
1387 _+GLOBAL_[_.$][ID][_.$]
1388 where the first [_.$] and the second are the same
1389 character (we accept any character there, in case a
1390 new object file format comes along with even worse
1391 naming restrictions). */
1392
1393 #define CONS_PREFIX "GLOBAL_"
1394 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1395
1396 s = name + 1;
1397 while (*s == '_')
1398 ++s;
1399 if (s[0] == 'G'
1400 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1401 {
1402 char c;
1403
1404 c = s[CONS_PREFIX_LEN + 1];
1405 if ((c == 'I' || c == 'D')
1406 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1407 {
1408 if (! ((*info->callbacks->constructor)
1409 (info,
1410 c == 'I' ? true : false,
1411 name, abfd, section, value)))
1412 return false;
1413 }
1414 }
1415 }
1416
1417 break;
1418 case COM:
1419 if (h->type == bfd_link_hash_new)
1420 bfd_link_add_undef (info->hash, h);
1421 h->type = bfd_link_hash_common;
1422 h->u.c.size = value;
1423 if (section == &bfd_com_section)
1424 {
1425 h->u.c.section = bfd_make_section_old_way (abfd, "COMMON");
1426 h->u.c.section->flags = SEC_ALLOC;
1427 }
1428 else if (section->owner != abfd)
1429 {
1430 h->u.c.section = bfd_make_section_old_way (abfd, section->name);
1431 h->u.c.section->flags = SEC_ALLOC;
1432 }
1433 else
1434 h->u.c.section = section;
1435 break;
1436 case NOACT:
1437 break;
1438 case BIG:
1439 BFD_ASSERT (h->type == bfd_link_hash_common);
1440 if (! ((*info->callbacks->multiple_common)
1441 (info, name,
1442 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1443 abfd, bfd_link_hash_common, value)))
1444 return false;
1445 if (value > h->u.c.size)
1446 h->u.c.size = value;
1447 break;
1448 case CREF:
1449 BFD_ASSERT (h->type == bfd_link_hash_defined);
1450 if (! ((*info->callbacks->multiple_common)
1451 (info, name,
1452 h->u.def.section->owner, bfd_link_hash_defined, (bfd_vma) 0,
1453 abfd, bfd_link_hash_common, value)))
1454 return false;
1455 break;
1456 case MDEF:
1457 {
1458 asection *msec;
1459 bfd_vma mval;
1460
1461 switch (h->type)
1462 {
1463 case bfd_link_hash_defined:
1464 msec = h->u.def.section;
1465 mval = h->u.def.value;
1466 break;
1467 case bfd_link_hash_common:
1468 msec = &bfd_com_section;
1469 mval = h->u.c.size;
1470 break;
1471 case bfd_link_hash_indirect:
1472 msec = &bfd_ind_section;
1473 mval = 0;
1474 break;
1475 default:
1476 abort ();
1477 }
1478
1479 if (! ((*info->callbacks->multiple_definition)
1480 (info, name, msec->owner, msec, mval, abfd, section,
1481 value)))
1482 return false;
1483 }
1484 break;
1485 case IND:
1486 {
1487 struct bfd_link_hash_entry *inh;
1488
1489 /* STRING is the name of the symbol we want to indirect
1490 to. */
1491 inh = bfd_link_hash_lookup (info->hash, string, true, copy,
1492 false);
1493 if (inh == (struct bfd_link_hash_entry *) NULL)
1494 return false;
1495 if (inh->type == bfd_link_hash_new)
1496 {
1497 inh->type = bfd_link_hash_undefined;
1498 inh->u.undef.abfd = abfd;
1499 bfd_link_add_undef (info->hash, inh);
1500 }
1501 h->type = bfd_link_hash_indirect;
1502 h->u.i.link = inh;
1503 }
1504 break;
1505 case SET:
1506 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1507 abfd, section, value))
1508 return false;
1509 break;
1510 case WARN:
1511 case WARNC:
1512 if (h->u.i.warning != NULL)
1513 {
1514 if (! (*info->callbacks->warning) (info, h->u.i.warning))
1515 return false;
1516 /* Only issue a warning once. */
1517 h->u.i.warning = NULL;
1518 }
1519 if (action == WARN)
1520 break;
1521 /* Fall through. */
1522 case CYCLE:
1523 h = h->u.i.link;
1524 cycle = true;
1525 break;
1526 case MWARN:
1527 {
1528 struct bfd_link_hash_entry *sub;
1529
1530 /* STRING is the warning to give. */
1531 sub = ((struct bfd_link_hash_entry *)
1532 bfd_hash_allocate (&info->hash->table,
1533 sizeof (struct bfd_link_hash_entry)));
1534 if (!sub)
1535 {
1536 bfd_set_error (bfd_error_no_memory);
1537 return false;
1538 }
1539 *sub = *h;
1540 h->type = bfd_link_hash_warning;
1541 h->u.i.link = sub;
1542 if (! copy)
1543 h->u.i.warning = string;
1544 else
1545 {
1546 char *w;
1547
1548 w = bfd_hash_allocate (&info->hash->table,
1549 strlen (string) + 1);
1550 strcpy (w, string);
1551 h->u.i.warning = w;
1552 }
1553 }
1554 break;
1555 }
1556 }
1557 while (cycle);
1558
1559 return true;
1560 }
1561 \f
1562 /* Generic final link routine. */
1563
1564 boolean
1565 _bfd_generic_final_link (abfd, info)
1566 bfd *abfd;
1567 struct bfd_link_info *info;
1568 {
1569 bfd *sub;
1570 asection *o;
1571 struct bfd_link_order *p;
1572 size_t outsymalloc;
1573 struct generic_write_global_symbol_info wginfo;
1574
1575 abfd->outsymbols = (asymbol **) NULL;
1576 abfd->symcount = 0;
1577 outsymalloc = 0;
1578
1579 /* Build the output symbol table. This also reads in the symbols
1580 for all the input BFDs, keeping them in the outsymbols field. */
1581 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1582 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1583 return false;
1584
1585 /* Accumulate the global symbols. */
1586 wginfo.info = info;
1587 wginfo.output_bfd = abfd;
1588 wginfo.psymalloc = &outsymalloc;
1589 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1590 _bfd_generic_link_write_global_symbol,
1591 (PTR) &wginfo);
1592
1593 if (info->relocateable)
1594 {
1595 /* Allocate space for the output relocs for each section. */
1596 for (o = abfd->sections;
1597 o != (asection *) NULL;
1598 o = o->next)
1599 {
1600 o->reloc_count = 0;
1601 for (p = o->link_order_head;
1602 p != (struct bfd_link_order *) NULL;
1603 p = p->next)
1604 {
1605 if (p->type == bfd_section_reloc_link_order
1606 || p->type == bfd_symbol_reloc_link_order)
1607 ++o->reloc_count;
1608 else if (p->type == bfd_indirect_link_order)
1609 {
1610 asection *input_section;
1611 bfd *input_bfd;
1612 bfd_size_type relsize;
1613 arelent **relocs;
1614 bfd_size_type reloc_count;
1615
1616 input_section = p->u.indirect.section;
1617 input_bfd = input_section->owner;
1618 relsize = bfd_get_reloc_upper_bound (input_bfd,
1619 input_section);
1620 relocs = (arelent **) malloc ((size_t) relsize);
1621 if (!relocs && relsize != 0)
1622 {
1623 bfd_set_error (bfd_error_no_memory);
1624 return false;
1625 }
1626 reloc_count =
1627 bfd_canonicalize_reloc (input_bfd, input_section,
1628 relocs,
1629 bfd_get_outsymbols (input_bfd));
1630 BFD_ASSERT (reloc_count == input_section->reloc_count);
1631 o->reloc_count += reloc_count;
1632 free (relocs);
1633 }
1634 }
1635 if (o->reloc_count > 0)
1636 {
1637 o->orelocation = ((arelent **)
1638 bfd_alloc (abfd,
1639 (o->reloc_count
1640 * sizeof (arelent *))));
1641 if (!o->orelocation)
1642 {
1643 bfd_set_error (bfd_error_no_memory);
1644 return false;
1645 }
1646 o->flags |= SEC_RELOC;
1647 /* Reset the count so that it can be used as an index
1648 when putting in the output relocs. */
1649 o->reloc_count = 0;
1650 }
1651 }
1652 }
1653
1654 /* Handle all the link order information for the sections. */
1655 for (o = abfd->sections;
1656 o != (asection *) NULL;
1657 o = o->next)
1658 {
1659 for (p = o->link_order_head;
1660 p != (struct bfd_link_order *) NULL;
1661 p = p->next)
1662 {
1663 switch (p->type)
1664 {
1665 case bfd_section_reloc_link_order:
1666 case bfd_symbol_reloc_link_order:
1667 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1668 return false;
1669 break;
1670 default:
1671 if (! _bfd_default_link_order (abfd, info, o, p))
1672 return false;
1673 break;
1674 }
1675 }
1676 }
1677
1678 return true;
1679 }
1680
1681 /* Add an output symbol to the output BFD. */
1682
1683 static boolean
1684 generic_add_output_symbol (output_bfd, psymalloc, sym)
1685 bfd *output_bfd;
1686 size_t *psymalloc;
1687 asymbol *sym;
1688 {
1689 if (output_bfd->symcount >= *psymalloc)
1690 {
1691 asymbol **newsyms;
1692
1693 if (*psymalloc == 0)
1694 *psymalloc = 124;
1695 else
1696 *psymalloc *= 2;
1697 if (output_bfd->outsymbols == (asymbol **) NULL)
1698 newsyms = (asymbol **) malloc (*psymalloc * sizeof (asymbol *));
1699 else
1700 newsyms = (asymbol **) realloc (output_bfd->outsymbols,
1701 *psymalloc * sizeof (asymbol *));
1702 if (newsyms == (asymbol **) NULL)
1703 {
1704 bfd_set_error (bfd_error_no_memory);
1705 return false;
1706 }
1707 output_bfd->outsymbols = newsyms;
1708 }
1709
1710 output_bfd->outsymbols[output_bfd->symcount] = sym;
1711 ++output_bfd->symcount;
1712
1713 return true;
1714 }
1715
1716 /* Handle the symbols for an input BFD. */
1717
1718 boolean
1719 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
1720 bfd *output_bfd;
1721 bfd *input_bfd;
1722 struct bfd_link_info *info;
1723 size_t *psymalloc;
1724 {
1725 size_t symsize;
1726 asymbol **sym_ptr;
1727 asymbol **sym_end;
1728
1729 /* Do not clobber outsymbols if they have already been created. */
1730 if (input_bfd->outsymbols == NULL)
1731 {
1732 symsize = get_symtab_upper_bound (input_bfd);
1733 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
1734 if (!input_bfd->outsymbols)
1735 {
1736 bfd_set_error (bfd_error_no_memory);
1737 return false;
1738 }
1739 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
1740 input_bfd->outsymbols);
1741 }
1742
1743 /* Create a filename symbol if we are supposed to. */
1744 if (info->create_object_symbols_section != (asection *) NULL)
1745 {
1746 asection *sec;
1747
1748 for (sec = input_bfd->sections;
1749 sec != (asection *) NULL;
1750 sec = sec->next)
1751 {
1752 if (sec->output_section == info->create_object_symbols_section)
1753 {
1754 asymbol *newsym;
1755
1756 newsym = bfd_make_empty_symbol (input_bfd);
1757 if (!newsym)
1758 return false;
1759 newsym->name = input_bfd->filename;
1760 newsym->value = 0;
1761 newsym->flags = BSF_LOCAL | BSF_FILE;
1762 newsym->section = sec;
1763
1764 if (! generic_add_output_symbol (output_bfd, psymalloc,
1765 newsym))
1766 return false;
1767
1768 break;
1769 }
1770 }
1771 }
1772
1773 /* Adjust the values of the globally visible symbols, and write out
1774 local symbols. */
1775 sym_ptr = bfd_get_outsymbols (input_bfd);
1776 sym_end = sym_ptr + bfd_get_symcount (input_bfd);
1777 for (; sym_ptr < sym_end; sym_ptr++)
1778 {
1779 asymbol *sym;
1780 struct generic_link_hash_entry *h;
1781 boolean output;
1782
1783 h = (struct generic_link_hash_entry *) NULL;
1784 sym = *sym_ptr;
1785 if ((sym->flags & (BSF_INDIRECT
1786 | BSF_WARNING
1787 | BSF_GLOBAL
1788 | BSF_CONSTRUCTOR
1789 | BSF_WEAK)) != 0
1790 || bfd_get_section (sym) == &bfd_und_section
1791 || bfd_is_com_section (bfd_get_section (sym))
1792 || bfd_get_section (sym) == &bfd_ind_section)
1793 {
1794 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
1795 bfd_asymbol_name (sym),
1796 false, false, true);
1797 if (h != (struct generic_link_hash_entry *) NULL)
1798 {
1799 /* Force all references to this symbol to point to
1800 the same area in memory. It is possible that
1801 this routine will be called with a hash table
1802 other than a generic hash table, so we double
1803 check that. */
1804 if (info->hash->creator == input_bfd->xvec)
1805 {
1806 if (h->sym != (asymbol *) NULL)
1807 *sym_ptr = sym = h->sym;
1808 }
1809
1810 switch (h->root.type)
1811 {
1812 default:
1813 case bfd_link_hash_new:
1814 abort ();
1815 case bfd_link_hash_undefined:
1816 case bfd_link_hash_weak:
1817 break;
1818 case bfd_link_hash_defined:
1819 sym->value = h->root.u.def.value;
1820 sym->section = h->root.u.def.section;
1821 sym->flags |= BSF_GLOBAL;
1822 break;
1823 case bfd_link_hash_common:
1824 sym->value = h->root.u.c.size;
1825 sym->flags |= BSF_GLOBAL;
1826 if (! bfd_is_com_section (sym->section))
1827 {
1828 BFD_ASSERT (sym->section == &bfd_und_section);
1829 sym->section = &bfd_com_section;
1830 }
1831 /* We do not set the section of the symbol to
1832 h->root.u.c.section. That value was saved so
1833 that we would know where to allocate the symbol
1834 if it was defined. In this case the type is
1835 still bfd_link_hash_common, so we did not define
1836 it, so we do not want to use that section. */
1837 break;
1838 }
1839 }
1840 }
1841
1842 /* This switch is straight from the old code in
1843 write_file_locals in ldsym.c. */
1844 if (info->strip == strip_some
1845 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
1846 false, false)
1847 == (struct bfd_hash_entry *) NULL))
1848 output = false;
1849 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
1850 {
1851 /* If this symbol is marked as occurring now, rather
1852 than at the end, output it now. This is used for
1853 COFF C_EXT FCN symbols. FIXME: There must be a
1854 better way. */
1855 if (bfd_asymbol_bfd (sym) == input_bfd
1856 && (sym->flags & BSF_NOT_AT_END) != 0)
1857 output = true;
1858 else
1859 output = false;
1860 }
1861 else if (sym->section == &bfd_ind_section)
1862 output = false;
1863 else if ((sym->flags & BSF_DEBUGGING) != 0)
1864 {
1865 if (info->strip == strip_none)
1866 output = true;
1867 else
1868 output = false;
1869 }
1870 else if (sym->section == &bfd_und_section
1871 || bfd_is_com_section (sym->section))
1872 output = false;
1873 else if ((sym->flags & BSF_LOCAL) != 0)
1874 {
1875 if ((sym->flags & BSF_WARNING) != 0)
1876 output = false;
1877 else
1878 {
1879 switch (info->discard)
1880 {
1881 default:
1882 case discard_all:
1883 output = false;
1884 break;
1885 case discard_l:
1886 if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
1887 && (info->lprefix_len == 1
1888 || strncmp (bfd_asymbol_name (sym), info->lprefix,
1889 info->lprefix_len) == 0))
1890 output = false;
1891 else
1892 output = true;
1893 break;
1894 case discard_none:
1895 output = true;
1896 break;
1897 }
1898 }
1899 }
1900 else if ((sym->flags & BSF_CONSTRUCTOR))
1901 {
1902 if (info->strip != strip_all)
1903 output = true;
1904 else
1905 output = false;
1906 }
1907 else
1908 abort ();
1909
1910 if (output)
1911 {
1912 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
1913 return false;
1914 if (h != (struct generic_link_hash_entry *) NULL)
1915 h->root.written = true;
1916 }
1917 }
1918
1919 return true;
1920 }
1921
1922 /* Write out a global symbol, if it hasn't already been written out.
1923 This is called for each symbol in the hash table. */
1924
1925 boolean
1926 _bfd_generic_link_write_global_symbol (h, data)
1927 struct generic_link_hash_entry *h;
1928 PTR data;
1929 {
1930 struct generic_write_global_symbol_info *wginfo =
1931 (struct generic_write_global_symbol_info *) data;
1932 asymbol *sym;
1933
1934 if (h->root.written)
1935 return true;
1936
1937 h->root.written = true;
1938
1939 if (wginfo->info->strip == strip_all
1940 || (wginfo->info->strip == strip_some
1941 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
1942 false, false) == NULL))
1943 return true;
1944
1945 if (h->sym != (asymbol *) NULL)
1946 {
1947 sym = h->sym;
1948 BFD_ASSERT (strcmp (bfd_asymbol_name (sym), h->root.root.string) == 0);
1949 }
1950 else
1951 {
1952 sym = bfd_make_empty_symbol (wginfo->output_bfd);
1953 if (!sym)
1954 return false;
1955 sym->name = h->root.root.string;
1956 sym->flags = 0;
1957 }
1958
1959 switch (h->root.type)
1960 {
1961 default:
1962 case bfd_link_hash_new:
1963 abort ();
1964 case bfd_link_hash_undefined:
1965 sym->section = &bfd_und_section;
1966 sym->value = 0;
1967 break;
1968 case bfd_link_hash_weak:
1969 sym->section = &bfd_und_section;
1970 sym->value = 0;
1971 sym->flags |= BSF_WEAK;
1972 break;
1973 case bfd_link_hash_defined:
1974 sym->section = h->root.u.def.section;
1975 sym->value = h->root.u.def.value;
1976 break;
1977 case bfd_link_hash_common:
1978 sym->value = h->root.u.c.size;
1979 if (! bfd_is_com_section (sym->section))
1980 {
1981 BFD_ASSERT (sym->section == &bfd_und_section);
1982 sym->section = &bfd_com_section;
1983 }
1984 /* Do not set the section; see _bfd_generic_link_output_symbols. */
1985 break;
1986 case bfd_link_hash_indirect:
1987 case bfd_link_hash_warning:
1988 /* FIXME: What should we do here? */
1989 break;
1990 }
1991
1992 sym->flags |= BSF_GLOBAL;
1993
1994 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
1995 sym))
1996 {
1997 /* FIXME: No way to return failure. */
1998 abort ();
1999 }
2000
2001 return true;
2002 }
2003
2004 /* Create a relocation. */
2005
2006 boolean
2007 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2008 bfd *abfd;
2009 struct bfd_link_info *info;
2010 asection *sec;
2011 struct bfd_link_order *link_order;
2012 {
2013 arelent *r;
2014
2015 if (! info->relocateable)
2016 abort ();
2017 if (sec->orelocation == (arelent **) NULL)
2018 abort ();
2019
2020 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2021 if (r == (arelent *) NULL)
2022 {
2023 bfd_set_error (bfd_error_no_memory);
2024 return false;
2025 }
2026
2027 r->address = link_order->offset;
2028 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2029 if (r->howto == (const reloc_howto_type *) NULL)
2030 {
2031 bfd_set_error (bfd_error_bad_value);
2032 return false;
2033 }
2034
2035 /* Get the symbol to use for the relocation. */
2036 if (link_order->type == bfd_section_reloc_link_order)
2037 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2038 else
2039 {
2040 struct generic_link_hash_entry *h;
2041
2042 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2043 link_order->u.reloc.p->u.name,
2044 false, false, true);
2045 if (h == (struct generic_link_hash_entry *) NULL
2046 || ! h->root.written)
2047 {
2048 if (! ((*info->callbacks->unattached_reloc)
2049 (info, link_order->u.reloc.p->u.name,
2050 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2051 return false;
2052 bfd_set_error (bfd_error_bad_value);
2053 return false;
2054 }
2055 r->sym_ptr_ptr = &h->sym;
2056 }
2057
2058 /* If this is an inplace reloc, write the addend to the object file.
2059 Otherwise, store it in the reloc addend. */
2060 if (! r->howto->partial_inplace)
2061 r->addend = link_order->u.reloc.p->addend;
2062 else
2063 {
2064 bfd_size_type size;
2065 bfd_reloc_status_type rstat;
2066 bfd_byte *buf;
2067 boolean ok;
2068
2069 size = bfd_get_reloc_size (r->howto);
2070 buf = (bfd_byte *) bfd_zmalloc (size);
2071 if (buf == (bfd_byte *) NULL)
2072 {
2073 bfd_set_error (bfd_error_no_memory);
2074 return false;
2075 }
2076 rstat = _bfd_relocate_contents (r->howto, abfd,
2077 link_order->u.reloc.p->addend, buf);
2078 switch (rstat)
2079 {
2080 case bfd_reloc_ok:
2081 break;
2082 default:
2083 case bfd_reloc_outofrange:
2084 abort ();
2085 case bfd_reloc_overflow:
2086 if (! ((*info->callbacks->reloc_overflow)
2087 (info,
2088 (link_order->type == bfd_section_reloc_link_order
2089 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2090 : link_order->u.reloc.p->u.name),
2091 r->howto->name, link_order->u.reloc.p->addend,
2092 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2093 {
2094 free (buf);
2095 return false;
2096 }
2097 break;
2098 }
2099 ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2100 (file_ptr) link_order->offset, size);
2101 free (buf);
2102 if (! ok)
2103 return false;
2104
2105 r->addend = 0;
2106 }
2107
2108 sec->orelocation[sec->reloc_count] = r;
2109 ++sec->reloc_count;
2110
2111 return true;
2112 }
2113 \f
2114 /* Allocate a new link_order for a section. */
2115
2116 struct bfd_link_order *
2117 bfd_new_link_order (abfd, section)
2118 bfd *abfd;
2119 asection *section;
2120 {
2121 struct bfd_link_order *new;
2122
2123 new = ((struct bfd_link_order *)
2124 bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
2125 if (!new)
2126 {
2127 bfd_set_error (bfd_error_no_memory);
2128 return NULL;
2129 }
2130
2131 new->type = bfd_undefined_link_order;
2132 new->offset = 0;
2133 new->size = 0;
2134 new->next = (struct bfd_link_order *) NULL;
2135
2136 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2137 section->link_order_tail->next = new;
2138 else
2139 section->link_order_head = new;
2140 section->link_order_tail = new;
2141
2142 return new;
2143 }
2144
2145 /* Default link order processing routine. Note that we can not handle
2146 the reloc_link_order types here, since they depend upon the details
2147 of how the particular backends generates relocs. */
2148
2149 boolean
2150 _bfd_default_link_order (abfd, info, sec, link_order)
2151 bfd *abfd;
2152 struct bfd_link_info *info;
2153 asection *sec;
2154 struct bfd_link_order *link_order;
2155 {
2156 switch (link_order->type)
2157 {
2158 case bfd_undefined_link_order:
2159 case bfd_section_reloc_link_order:
2160 case bfd_symbol_reloc_link_order:
2161 default:
2162 abort ();
2163 case bfd_indirect_link_order:
2164 return default_indirect_link_order (abfd, info, sec, link_order);
2165 case bfd_fill_link_order:
2166 return default_fill_link_order (abfd, info, sec, link_order);
2167 case bfd_data_link_order:
2168 return bfd_set_section_contents (abfd, sec,
2169 (PTR) link_order->u.data.contents,
2170 (file_ptr) link_order->offset,
2171 link_order->size);
2172 }
2173 }
2174
2175 /* Default routine to handle a bfd_fill_link_order. */
2176
2177 /*ARGSUSED*/
2178 static boolean
2179 default_fill_link_order (abfd, info, sec, link_order)
2180 bfd *abfd;
2181 struct bfd_link_info *info;
2182 asection *sec;
2183 struct bfd_link_order *link_order;
2184 {
2185 size_t size;
2186 char *space;
2187 size_t i;
2188 int fill;
2189 boolean result;
2190
2191 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2192
2193 size = (size_t) link_order->size;
2194 space = (char *) malloc (size);
2195 if (space == NULL && size != 0)
2196 {
2197 bfd_set_error (bfd_error_no_memory);
2198 return false;
2199 }
2200
2201 fill = link_order->u.fill.value;
2202 for (i = 0; i < size; i += 2)
2203 space[i] = fill >> 8;
2204 for (i = 1; i < size; i += 2)
2205 space[i] = fill;
2206 result = bfd_set_section_contents (abfd, sec, space,
2207 (file_ptr) link_order->offset,
2208 link_order->size);
2209 free (space);
2210 return result;
2211 }
2212
2213 /* Default routine to handle a bfd_indirect_link_order. */
2214
2215 static boolean
2216 default_indirect_link_order (output_bfd, info, output_section, link_order)
2217 bfd *output_bfd;
2218 struct bfd_link_info *info;
2219 asection *output_section;
2220 struct bfd_link_order *link_order;
2221 {
2222 asection *input_section;
2223 bfd *input_bfd;
2224 bfd_byte *contents = NULL;
2225 bfd_byte *new_contents;
2226
2227 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2228
2229 if (link_order->size == 0)
2230 return true;
2231
2232 input_section = link_order->u.indirect.section;
2233 input_bfd = input_section->owner;
2234
2235 BFD_ASSERT (input_section->output_section == output_section);
2236 BFD_ASSERT (input_section->output_offset == link_order->offset);
2237 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2238
2239 if (info->relocateable
2240 && input_section->reloc_count > 0
2241 && output_section->orelocation == (arelent **) NULL)
2242 {
2243 /* Space has not been allocated for the output relocations.
2244 This can happen when we are called by a specific backend
2245 because somebody is attempting to link together different
2246 types of object files. Handling this case correctly is
2247 difficult, and sometimes impossible. */
2248 abort ();
2249 }
2250
2251 /* Get the canonical symbols. The generic linker will always have
2252 retrieved them by this point, but we may be being called by a
2253 specific linker when linking different types of object files
2254 together. */
2255 if (bfd_get_outsymbols (input_bfd) == (asymbol **) NULL)
2256 {
2257 size_t symsize;
2258
2259 symsize = get_symtab_upper_bound (input_bfd);
2260 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
2261 if (!input_bfd->outsymbols)
2262 {
2263 bfd_set_error (bfd_error_no_memory);
2264 return false;
2265 }
2266 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
2267 input_bfd->outsymbols);
2268 }
2269
2270 /* Get and relocate the section contents. */
2271 contents = (bfd_byte *) malloc (bfd_section_size (input_bfd, input_section));
2272 if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2273 {
2274 bfd_set_error (bfd_error_no_memory);
2275 goto error_return;
2276 }
2277 new_contents = (bfd_get_relocated_section_contents
2278 (output_bfd, info, link_order, contents, info->relocateable,
2279 bfd_get_outsymbols (input_bfd)));
2280 if (!new_contents)
2281 goto error_return;
2282
2283 /* Output the section contents. */
2284 if (! bfd_set_section_contents (output_bfd, output_section,
2285 (PTR) new_contents,
2286 link_order->offset, link_order->size))
2287 goto error_return;
2288
2289 if (contents != NULL)
2290 free (contents);
2291 return true;
2292
2293 error_return:
2294 if (contents != NULL)
2295 free (contents);
2296 return false;
2297 }
2298
2299 /* A little routine to count the number of relocs in a link_order
2300 list. */
2301
2302 unsigned int
2303 _bfd_count_link_order_relocs (link_order)
2304 struct bfd_link_order *link_order;
2305 {
2306 register unsigned int c;
2307 register struct bfd_link_order *l;
2308
2309 c = 0;
2310 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2311 {
2312 if (l->type == bfd_section_reloc_link_order
2313 || l->type == bfd_symbol_reloc_link_order)
2314 ++c;
2315 }
2316
2317 return c;
2318 }