* linker.c (generic_link_check_achive_element): Set SEC_ALLOC flag
[binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD
6
7 GLD is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GLD is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GLD; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "bfdlink.h"
25 #include "genlink.h"
26
27 /*
28 SECTION
29 Linker Functions
30
31 @cindex Linker
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
37 memory.
38
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
48
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
54 proper.
55
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
61
62 @menu
63 @* Creating a Linker Hash Table::
64 @* Adding Symbols to the Hash Table::
65 @* Performing the Final Link::
66 @end menu
67
68 INODE
69 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
70 SUBSECTION
71 Creating a linker hash table
72
73 @cindex _bfd_link_hash_table_create in target vector
74 @cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
80
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
87
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
98 pointer to it.
99
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
105
106 INODE
107 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
108 SUBSECTION
109 Adding symbols to the hash table
110
111 @cindex _bfd_link_add_symbols in target vector
112 @cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
121 link.
122
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
125
126 @menu
127 @* Differing file formats::
128 @* Adding symbols from an object file::
129 @* Adding symbols from an archive::
130 @end menu
131
132 INODE
133 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
134 SUBSUBSECTION
135 Differing file formats
136
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
148
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
154
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
163
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
167 hash table entry.
168
169 INODE
170 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
171 SUBSUBSECTION
172 Adding symbols from an object file
173
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
182
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
187
188 @findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section>> for an undefined
196 symbol or <<bfd_com_section>> for a common symbol.
197
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
204
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
212
213 INODE
214 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
215 SUBSUBSECTION
216 Adding symbols from an archive
217
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
224
225 @findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
236
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
246
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
257 linker hash table.
258
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
264
265 INODE
266 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
267 SUBSECTION
268 Performing the final link
269
270 @cindex _bfd_link_final_link in target vector
271 @cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
282
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
286
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
290
291 @menu
292 @* Information provided by the linker::
293 @* Relocating the section contents::
294 @* Writing the symbol table::
295 @end menu
296
297 INODE
298 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
299 SUBSUBSECTION
300 Information provided by the linker
301
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
304
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
309
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocateable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files. The <<written>> field in the
381 <<bfd_link_hash_entry>> structure may be used to determine
382 which entries in the hash table have not already been written
383 out.
384
385 The <<strip>> field of the <<bfd_link_info>> structure
386 controls which symbols are written out. The possible values
387 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
388 then the <<keep_hash>> field of the <<bfd_link_info>>
389 structure is a hash table of symbols to keep; each symbol
390 should be looked up in this hash table, and only symbols which
391 are present should be included in the output file.
392
393 If the <<strip>> field of the <<bfd_link_info>> structure
394 permits local symbols to be written out, the <<discard>> field
395 is used to further controls which local symbols are included
396 in the output file. If the value is <<discard_l>>, then all
397 local symbols which begin with a certain prefix are discarded;
398 this prefix is described by the <<lprefix>> and
399 <<lprefix_len>> fields of the <<bfd_link_info>> structure.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static struct bfd_hash_entry *generic_link_hash_newfunc
410 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
411 const char *));
412 static boolean generic_link_add_object_symbols
413 PARAMS ((bfd *, struct bfd_link_info *));
414 static boolean generic_link_check_archive_element
415 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
416 static boolean generic_link_add_symbol_list
417 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **));
418 static boolean generic_add_output_symbol
419 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
420 static boolean default_fill_link_order
421 PARAMS ((bfd *, struct bfd_link_info *, asection *,
422 struct bfd_link_order *));
423 static boolean default_indirect_link_order
424 PARAMS ((bfd *, struct bfd_link_info *, asection *,
425 struct bfd_link_order *));
426
427 /* The link hash table structure is defined in bfdlink.h. It provides
428 a base hash table which the backend specific hash tables are built
429 upon. */
430
431 /* Routine to create an entry in the link hash table. */
432
433 struct bfd_hash_entry *
434 _bfd_link_hash_newfunc (entry, table, string)
435 struct bfd_hash_entry *entry;
436 struct bfd_hash_table *table;
437 const char *string;
438 {
439 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
440
441 /* Allocate the structure if it has not already been allocated by a
442 subclass. */
443 if (ret == (struct bfd_link_hash_entry *) NULL)
444 ret = ((struct bfd_link_hash_entry *)
445 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
446
447 /* Call the allocation method of the superclass. */
448 ret = ((struct bfd_link_hash_entry *)
449 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
450
451 /* Initialize the local fields. */
452 ret->type = bfd_link_hash_new;
453 ret->written = false;
454 ret->next = NULL;
455
456 return (struct bfd_hash_entry *) ret;
457 }
458
459 /* Initialize a link hash table. The BFD argument is the one
460 responsible for creating this table. */
461
462 boolean
463 _bfd_link_hash_table_init (table, abfd, newfunc)
464 struct bfd_link_hash_table *table;
465 bfd *abfd;
466 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
467 struct bfd_hash_table *,
468 const char *));
469 {
470 table->creator = abfd->xvec;
471 table->undefs = NULL;
472 table->undefs_tail = NULL;
473 return bfd_hash_table_init (&table->table, newfunc);
474 }
475
476 /* Look up a symbol in a link hash table. If follow is true, we
477 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
478 the real symbol. */
479
480 struct bfd_link_hash_entry *
481 bfd_link_hash_lookup (table, string, create, copy, follow)
482 struct bfd_link_hash_table *table;
483 const char *string;
484 boolean create;
485 boolean copy;
486 boolean follow;
487 {
488 struct bfd_link_hash_entry *ret;
489
490 ret = ((struct bfd_link_hash_entry *)
491 bfd_hash_lookup (&table->table, string, create, copy));
492
493 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
494 {
495 while (ret->type == bfd_link_hash_indirect
496 || ret->type == bfd_link_hash_warning)
497 ret = ret->u.i.link;
498 }
499
500 return ret;
501 }
502
503 /* Traverse a generic link hash table. The only reason this is not a
504 macro is to do better type checking. This code presumes that an
505 argument passed as a struct bfd_hash_entry * may be caught as a
506 struct bfd_link_hash_entry * with no explicit cast required on the
507 call. */
508
509 void
510 bfd_link_hash_traverse (table, func, info)
511 struct bfd_link_hash_table *table;
512 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
513 PTR info;
514 {
515 bfd_hash_traverse (&table->table,
516 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
517 func),
518 info);
519 }
520
521 /* Add a symbol to the linker hash table undefs list. */
522
523 INLINE void
524 bfd_link_add_undef (table, h)
525 struct bfd_link_hash_table *table;
526 struct bfd_link_hash_entry *h;
527 {
528 BFD_ASSERT (h->next == NULL);
529 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
530 table->undefs_tail->next = h;
531 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
532 table->undefs = h;
533 table->undefs_tail = h;
534 }
535 \f
536 /* Routine to create an entry in an generic link hash table. */
537
538 static struct bfd_hash_entry *
539 generic_link_hash_newfunc (entry, table, string)
540 struct bfd_hash_entry *entry;
541 struct bfd_hash_table *table;
542 const char *string;
543 {
544 struct generic_link_hash_entry *ret =
545 (struct generic_link_hash_entry *) entry;
546
547 /* Allocate the structure if it has not already been allocated by a
548 subclass. */
549 if (ret == (struct generic_link_hash_entry *) NULL)
550 ret = ((struct generic_link_hash_entry *)
551 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
552
553 /* Call the allocation method of the superclass. */
554 ret = ((struct generic_link_hash_entry *)
555 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
556 table, string));
557
558 /* Set local fields. */
559 ret->sym = NULL;
560
561 return (struct bfd_hash_entry *) ret;
562 }
563
564 /* Create an generic link hash table. */
565
566 struct bfd_link_hash_table *
567 _bfd_generic_link_hash_table_create (abfd)
568 bfd *abfd;
569 {
570 struct generic_link_hash_table *ret;
571
572 ret = ((struct generic_link_hash_table *)
573 bfd_xmalloc (sizeof (struct generic_link_hash_table)));
574 if (! _bfd_link_hash_table_init (&ret->root, abfd,
575 generic_link_hash_newfunc))
576 {
577 free (ret);
578 return (struct bfd_link_hash_table *) NULL;
579 }
580 return &ret->root;
581 }
582 \f
583 /* Generic function to add symbols from an object file to the global
584 hash table. */
585
586 boolean
587 _bfd_generic_link_add_symbols (abfd, info)
588 bfd *abfd;
589 struct bfd_link_info *info;
590 {
591 boolean ret;
592
593 switch (bfd_get_format (abfd))
594 {
595 case bfd_object:
596 ret = generic_link_add_object_symbols (abfd, info);
597 break;
598 case bfd_archive:
599 ret = _bfd_generic_link_add_archive_symbols
600 (abfd, info, generic_link_check_archive_element);
601 break;
602 default:
603 bfd_error = wrong_format;
604 ret = false;
605 }
606
607 /* If we might be using the C based alloca function, make sure we
608 have dumped the symbol tables we just allocated. */
609 #ifndef __GNUC__
610 #ifndef alloca
611 alloca (0);
612 #endif
613 #endif
614
615 return ret;
616 }
617
618 /* Add symbols from an object file to the global hash table. */
619
620 static boolean
621 generic_link_add_object_symbols (abfd, info)
622 bfd *abfd;
623 struct bfd_link_info *info;
624 {
625 size_t symsize;
626 asymbol **symbols;
627 bfd_size_type symbol_count;
628
629 symsize = get_symtab_upper_bound (abfd);
630 symbols = (asymbol **) alloca (symsize);
631 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
632
633 return generic_link_add_symbol_list (abfd, info, symbol_count, symbols);
634 }
635 \f
636 /* We build a hash table of all symbols defined in an archive. */
637
638 /* An archive symbol may be defined by multiple archive elements.
639 This linked list is used to hold the elements. */
640
641 struct archive_list
642 {
643 struct archive_list *next;
644 int indx;
645 };
646
647 /* An entry in an archive hash table. */
648
649 struct archive_hash_entry
650 {
651 struct bfd_hash_entry root;
652 /* Where the symbol is defined. */
653 struct archive_list *defs;
654 };
655
656 /* An archive hash table itself. */
657
658 struct archive_hash_table
659 {
660 struct bfd_hash_table table;
661 };
662
663 static struct bfd_hash_entry *archive_hash_newfunc
664 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
665 static boolean archive_hash_table_init
666 PARAMS ((struct archive_hash_table *,
667 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
668 struct bfd_hash_table *,
669 const char *)));
670
671 /* Create a new entry for an archive hash table. */
672
673 static struct bfd_hash_entry *
674 archive_hash_newfunc (entry, table, string)
675 struct bfd_hash_entry *entry;
676 struct bfd_hash_table *table;
677 const char *string;
678 {
679 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
680
681 /* Allocate the structure if it has not already been allocated by a
682 subclass. */
683 if (ret == (struct archive_hash_entry *) NULL)
684 ret = ((struct archive_hash_entry *)
685 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
686
687 /* Call the allocation method of the superclass. */
688 ret = ((struct archive_hash_entry *)
689 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
690
691 /* Initialize the local fields. */
692 ret->defs = (struct archive_list *) NULL;
693
694 return (struct bfd_hash_entry *) ret;
695 }
696
697 /* Initialize an archive hash table. */
698
699 static boolean
700 archive_hash_table_init (table, newfunc)
701 struct archive_hash_table *table;
702 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
703 struct bfd_hash_table *,
704 const char *));
705 {
706 return bfd_hash_table_init (&table->table, newfunc);
707 }
708
709 /* Look up an entry in an archive hash table. */
710
711 #define archive_hash_lookup(t, string, create, copy) \
712 ((struct archive_hash_entry *) \
713 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
714
715 /* Free an archive hash table. */
716
717 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
718
719 /* Generic function to add symbols from an archive file to the global
720 hash file. This function presumes that the archive symbol table
721 has already been read in (this is normally done by the
722 bfd_check_format entry point). It looks through the undefined and
723 common symbols and searches the archive symbol table for them. If
724 it finds an entry, it includes the associated object file in the
725 link.
726
727 The old linker looked through the archive symbol table for
728 undefined symbols. We do it the other way around, looking through
729 undefined symbols for symbols defined in the archive. The
730 advantage of the newer scheme is that we only have to look through
731 the list of undefined symbols once, whereas the old method had to
732 re-search the symbol table each time a new object file was added.
733
734 The CHECKFN argument is used to see if an object file should be
735 included. CHECKFN should set *PNEEDED to true if the object file
736 should be included, and must also call the bfd_link_info
737 add_archive_element callback function and handle adding the symbols
738 to the global hash table. CHECKFN should only return false if some
739 sort of error occurs.
740
741 For some formats, such as a.out, it is possible to look through an
742 object file but not actually include it in the link. The
743 archive_pass field in a BFD is used to avoid checking the symbols
744 of an object files too many times. When an object is included in
745 the link, archive_pass is set to -1. If an object is scanned but
746 not included, archive_pass is set to the pass number. The pass
747 number is incremented each time a new object file is included. The
748 pass number is used because when a new object file is included it
749 may create new undefined symbols which cause a previously examined
750 object file to be included. */
751
752 boolean
753 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
754 bfd *abfd;
755 struct bfd_link_info *info;
756 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
757 boolean *pneeded));
758 {
759 carsym *arsyms;
760 carsym *arsym_end;
761 register carsym *arsym;
762 int pass;
763 struct archive_hash_table arsym_hash;
764 int indx;
765 struct bfd_link_hash_entry **pundef;
766
767 if (! bfd_has_map (abfd))
768 {
769 bfd_error = no_symbols;
770 return false;
771 }
772
773 arsyms = bfd_ardata (abfd)->symdefs;
774 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
775
776 /* In order to quickly determine whether an symbol is defined in
777 this archive, we build a hash table of the symbols. */
778 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
779 return false;
780 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
781 {
782 struct archive_hash_entry *arh;
783 struct archive_list *l;
784
785 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
786 if (arh == (struct archive_hash_entry *) NULL)
787 return false;
788 l = (struct archive_list *) alloca (sizeof (struct archive_list));
789 l->next = arh->defs;
790 arh->defs = l;
791 l->indx = indx;
792 }
793
794 pass = 1;
795
796 /* New undefined symbols are added to the end of the list, so we
797 only need to look through it once. */
798 pundef = &info->hash->undefs;
799 while (*pundef != (struct bfd_link_hash_entry *) NULL)
800 {
801 struct bfd_link_hash_entry *h;
802 struct archive_hash_entry *arh;
803 struct archive_list *l;
804
805 h = *pundef;
806
807 /* When a symbol is defined, it is not necessarily removed from
808 the list. */
809 if (h->type != bfd_link_hash_undefined
810 && h->type != bfd_link_hash_common)
811 {
812 /* Remove this entry from the list, for general cleanliness
813 and because we are going to look through the list again
814 if we search any more libraries. We can't remove the
815 entry if it is the tail, because that would lose any
816 entries we add to the list later on. */
817 if (*pundef != info->hash->undefs_tail)
818 *pundef = (*pundef)->next;
819 else
820 pundef = &(*pundef)->next;
821 continue;
822 }
823
824 /* Look for this symbol in the archive symbol map. */
825 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
826 if (arh == (struct archive_hash_entry *) NULL)
827 {
828 pundef = &(*pundef)->next;
829 continue;
830 }
831
832 /* Look at all the objects which define this symbol. */
833 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
834 {
835 bfd *element;
836 boolean needed;
837
838 /* If the symbol has gotten defined along the way, quit. */
839 if (h->type != bfd_link_hash_undefined
840 && h->type != bfd_link_hash_common)
841 break;
842
843 element = bfd_get_elt_at_index (abfd, l->indx);
844 if (element == (bfd *) NULL)
845 return false;
846
847 /* If we've already included this element, or if we've
848 already checked it on this pass, continue. */
849 if (element->archive_pass == -1
850 || element->archive_pass == pass)
851 continue;
852
853 /* If we can't figure this element out, just ignore it. */
854 if (! bfd_check_format (element, bfd_object))
855 {
856 element->archive_pass = -1;
857 continue;
858 }
859
860 /* CHECKFN will see if this element should be included, and
861 go ahead and include it if appropriate. */
862 if (! (*checkfn) (element, info, &needed))
863 return false;
864
865 if (! needed)
866 element->archive_pass = pass;
867 else
868 {
869 element->archive_pass = -1;
870
871 /* Increment the pass count to show that we may need to
872 recheck object files which were already checked. */
873 ++pass;
874 }
875 }
876
877 pundef = &(*pundef)->next;
878 }
879
880 archive_hash_table_free (&arsym_hash);
881
882 return true;
883 }
884 \f
885 /* See if we should include an archive element. */
886
887 static boolean
888 generic_link_check_archive_element (abfd, info, pneeded)
889 bfd *abfd;
890 struct bfd_link_info *info;
891 boolean *pneeded;
892 {
893 size_t symsize;
894 asymbol **symbols;
895 bfd_size_type symbol_count;
896 asymbol **pp, **ppend;
897
898 *pneeded = false;
899
900 symsize = get_symtab_upper_bound (abfd);
901 symbols = (asymbol **) alloca (symsize);
902 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
903
904 pp = symbols;
905 ppend = symbols + symbol_count;
906 for (; pp < ppend; pp++)
907 {
908 asymbol *p;
909 struct bfd_link_hash_entry *h;
910
911 p = *pp;
912
913 /* We are only interested in globally visible symbols. */
914 if (! bfd_is_com_section (p->section)
915 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
916 continue;
917
918 /* We are only interested if we know something about this
919 symbol, and it is undefined or common. An undefined weak
920 symbol (type bfd_link_hash_weak) is not considered to be a
921 reference when pulling files out of an archive. See the SVR4
922 ABI, p. 4-27. */
923 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
924 false, true);
925 if (h == (struct bfd_link_hash_entry *) NULL
926 || (h->type != bfd_link_hash_undefined
927 && h->type != bfd_link_hash_common))
928 continue;
929
930 /* P is a symbol we are looking for. */
931
932 if (! bfd_is_com_section (p->section))
933 {
934 /* This object file defines this symbol, so pull it in. */
935 if (! (*info->callbacks->add_archive_element) (info, abfd,
936 bfd_asymbol_name (p)))
937 return false;
938 if (! generic_link_add_symbol_list (abfd, info, symbol_count,
939 symbols))
940 return false;
941 *pneeded = true;
942 return true;
943 }
944
945 /* P is a common symbol. */
946
947 if (h->type == bfd_link_hash_undefined)
948 {
949 bfd *symbfd;
950
951 symbfd = h->u.undef.abfd;
952 if (symbfd == (bfd *) NULL)
953 {
954 /* This symbol was created as undefined from outside
955 BFD. We assume that we should link in the object
956 file. This is for the -u option in the linker. */
957 if (! (*info->callbacks->add_archive_element)
958 (info, abfd, bfd_asymbol_name (p)))
959 return false;
960 *pneeded = true;
961 return true;
962 }
963
964 /* Turn the symbol into a common symbol but do not link in
965 the object file. This is how a.out works. Object
966 formats that require different semantics must implement
967 this function differently. This symbol is already on the
968 undefs list. We add the section to a common section
969 attached to symbfd to ensure that it is in a BFD which
970 will be linked in. */
971 h->type = bfd_link_hash_common;
972 h->u.c.size = bfd_asymbol_value (p);
973 if (p->section == &bfd_com_section)
974 h->u.c.section = bfd_make_section_old_way (symbfd, "COMMON");
975 else
976 h->u.c.section = bfd_make_section_old_way (symbfd,
977 p->section->name);
978 h->u.c.section->flags = SEC_ALLOC;
979 }
980 else
981 {
982 /* Adjust the size of the common symbol if necessary. This
983 is how a.out works. Object formats that require
984 different semantics must implement this function
985 differently. */
986 if (bfd_asymbol_value (p) > h->u.c.size)
987 h->u.c.size = bfd_asymbol_value (p);
988 }
989 }
990
991 /* This archive element is not needed. */
992 return true;
993 }
994
995 /* Add the symbol from an object file to the global hash table. */
996
997 static boolean
998 generic_link_add_symbol_list (abfd, info, symbol_count, symbols)
999 bfd *abfd;
1000 struct bfd_link_info *info;
1001 bfd_size_type symbol_count;
1002 asymbol **symbols;
1003 {
1004 asymbol **pp, **ppend;
1005
1006 pp = symbols;
1007 ppend = symbols + symbol_count;
1008 for (; pp < ppend; pp++)
1009 {
1010 asymbol *p;
1011
1012 p = *pp;
1013
1014 if ((p->flags & (BSF_INDIRECT
1015 | BSF_WARNING
1016 | BSF_GLOBAL
1017 | BSF_CONSTRUCTOR
1018 | BSF_WEAK)) != 0
1019 || bfd_get_section (p) == &bfd_und_section
1020 || bfd_is_com_section (bfd_get_section (p))
1021 || bfd_get_section (p) == &bfd_ind_section)
1022 {
1023 const char *name;
1024 const char *string;
1025 struct generic_link_hash_entry *h;
1026
1027 name = bfd_asymbol_name (p);
1028 if ((p->flags & BSF_INDIRECT) != 0
1029 || p->section == &bfd_ind_section)
1030 string = bfd_asymbol_name ((asymbol *) p->value);
1031 else if ((p->flags & BSF_WARNING) != 0)
1032 {
1033 /* The name of P is actually the warning string, and the
1034 value is actually a pointer to the symbol to warn
1035 about. */
1036 string = name;
1037 name = bfd_asymbol_name ((asymbol *) p->value);
1038 }
1039 else
1040 string = NULL;
1041
1042 /* We pass the constructor argument as false, for
1043 compatibility. As backends are converted they can
1044 arrange to pass the right value (the right value is the
1045 size of a function pointer if gcc uses collect2 for the
1046 object file format, zero if it does not).
1047 FIXME: We pass the bitsize as 32, which is just plain
1048 wrong, but actually doesn't matter very much. */
1049 if (! (_bfd_generic_link_add_one_symbol
1050 (info, abfd, name, p->flags, bfd_get_section (p),
1051 p->value, string, false, 0, 32,
1052 (struct bfd_link_hash_entry **) &h)))
1053 return false;
1054
1055 /* Save the BFD symbol so that we don't lose any backend
1056 specific information that may be attached to it. We only
1057 want this one if it gives more information than the
1058 existing one; we don't want to replace a defined symbol
1059 with an undefined one. This routine may be called with a
1060 hash table other than the generic hash table, so we only
1061 do this if we are certain that the hash table is a
1062 generic one. */
1063 if (info->hash->creator == abfd->xvec)
1064 {
1065 if (h->sym == (asymbol *) NULL
1066 || (bfd_get_section (p) != &bfd_und_section
1067 && (! bfd_is_com_section (bfd_get_section (p))
1068 || (bfd_get_section (h->sym) == &bfd_und_section))))
1069 h->sym = p;
1070 }
1071 }
1072 }
1073
1074 return true;
1075 }
1076 \f
1077 /* We use a state table to deal with adding symbols from an object
1078 file. The first index into the state table describes the symbol
1079 from the object file. The second index into the state table is the
1080 type of the symbol in the hash table. */
1081
1082 /* The symbol from the object file is turned into one of these row
1083 values. */
1084
1085 enum link_row
1086 {
1087 UNDEF_ROW, /* Undefined. */
1088 UNDEFW_ROW, /* Weak undefined. */
1089 DEF_ROW, /* Defined. */
1090 DEFW_ROW, /* Weak defined. */
1091 COMMON_ROW, /* Common. */
1092 INDR_ROW, /* Indirect. */
1093 WARN_ROW, /* Warning. */
1094 SET_ROW /* Member of set. */
1095 };
1096
1097 /* The actions to take in the state table. */
1098
1099 enum link_action
1100 {
1101 FAIL, /* Abort. */
1102 UND, /* Mark symbol undefined. */
1103 WEAK, /* Mark symbol weak undefined. */
1104 DEF, /* Mark symbol defined. */
1105 COM, /* Mark symbol common. */
1106 CREF, /* Possibly warn about common reference to defined symbol. */
1107 CDEF, /* Define existing common symbol. */
1108 NOACT, /* No action. */
1109 BIG, /* Mark symbol common using largest size. */
1110 MDEF, /* Multiple definition error. */
1111 IND, /* Make indirect symbol. */
1112 SET, /* Add value to set. */
1113 MWARN, /* Make warning symbol. */
1114 WARN, /* Issue warning. */
1115 CYCLE, /* Repeat with symbol pointed to. */
1116 WARNC /* Issue warning and then CYCLE. */
1117 };
1118
1119 /* The state table itself. The first index is a link_row and the
1120 second index is a bfd_link_hash_type. */
1121
1122 static const enum link_action link_action[8][7] =
1123 {
1124 /* current\prev new undef weak def com indr warn */
1125 /* UNDEF_ROW */ {UND, NOACT, NOACT, NOACT, NOACT, CYCLE, WARNC },
1126 /* UNDEFW_ROW */ {WEAK, WEAK, NOACT, NOACT, NOACT, CYCLE, WARNC },
1127 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, CDEF, CYCLE, CYCLE },
1128 /* DEFW_ROW */ {DEF, DEF, DEF, NOACT, NOACT, CYCLE, CYCLE },
1129 /* COMMON_ROW */ {COM, COM, COM, CREF, BIG, CYCLE, WARNC },
1130 /* INDR_ROW */ {IND, IND, IND, MDEF, MDEF, MDEF, WARNC },
1131 /* WARN_ROW */ {MWARN, WARN, WARN, MWARN, MWARN, MWARN, NOACT },
1132 /* SET_ROW */ {SET, SET, SET, SET, SET, CYCLE, WARNC }
1133 };
1134
1135 /* Add a symbol to the global hash table.
1136 ABFD is the BFD the symbol comes from.
1137 NAME is the name of the symbol.
1138 FLAGS is the BSF_* bits associated with the symbol.
1139 SECTION is the section in which the symbol is defined; this may be
1140 bfd_und_section or bfd_com_section.
1141 VALUE is the value of the symbol, relative to the section.
1142 STRING is used for either an indirect symbol, in which case it is
1143 the name of the symbol to indirect to, or a warning symbol, in
1144 which case it is the warning string.
1145 COPY is true if NAME or STRING must be copied into locally
1146 allocated memory if they need to be saved.
1147 CONSTRUCTOR is true if we should automatically collect gcc
1148 constructor or destructor names.
1149 BITSIZE is the number of bits in constructor or set entries.
1150 HASHP, if not NULL, is a place to store the created hash table
1151 entry. */
1152
1153 boolean
1154 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1155 string, copy, constructor, bitsize, hashp)
1156 struct bfd_link_info *info;
1157 bfd *abfd;
1158 const char *name;
1159 flagword flags;
1160 asection *section;
1161 bfd_vma value;
1162 const char *string;
1163 boolean copy;
1164 boolean constructor;
1165 unsigned int bitsize;
1166 struct bfd_link_hash_entry **hashp;
1167 {
1168 enum link_row row;
1169 struct bfd_link_hash_entry *h;
1170 boolean cycle;
1171
1172 if (section == &bfd_ind_section
1173 || (flags & BSF_INDIRECT) != 0)
1174 row = INDR_ROW;
1175 else if ((flags & BSF_WARNING) != 0)
1176 row = WARN_ROW;
1177 else if ((flags & BSF_CONSTRUCTOR) != 0)
1178 row = SET_ROW;
1179 else if (section == &bfd_und_section)
1180 {
1181 if ((flags & BSF_WEAK) != 0)
1182 row = UNDEFW_ROW;
1183 else
1184 row = UNDEF_ROW;
1185 }
1186 else if ((flags & BSF_WEAK) != 0)
1187 row = DEFW_ROW;
1188 else if (bfd_is_com_section (section))
1189 row = COMMON_ROW;
1190 else
1191 row = DEF_ROW;
1192
1193 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1194 if (h == (struct bfd_link_hash_entry *) NULL)
1195 {
1196 if (hashp != (struct bfd_link_hash_entry **) NULL)
1197 *hashp = NULL;
1198 return false;
1199 }
1200
1201 if (info->notice_hash != (struct bfd_hash_table *) NULL
1202 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1203 != (struct bfd_hash_entry *) NULL))
1204 {
1205 if (! (*info->callbacks->notice) (info, name, abfd, section, value))
1206 return false;
1207 }
1208
1209 if (hashp != (struct bfd_link_hash_entry **) NULL)
1210 *hashp = h;
1211
1212 do
1213 {
1214 enum link_action action;
1215
1216 cycle = false;
1217 action = link_action[(int) row][(int) h->type];
1218 switch (action)
1219 {
1220 case FAIL:
1221 abort ();
1222 case UND:
1223 h->type = bfd_link_hash_undefined;
1224 h->u.undef.abfd = abfd;
1225 bfd_link_add_undef (info->hash, h);
1226 break;
1227 case WEAK:
1228 h->type = bfd_link_hash_weak;
1229 h->u.undef.abfd = abfd;
1230 break;
1231 case CDEF:
1232 BFD_ASSERT (h->type == bfd_link_hash_common);
1233 if (! ((*info->callbacks->multiple_common)
1234 (info, name,
1235 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1236 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1237 return false;
1238 /* Fall through. */
1239 case DEF:
1240 h->type = bfd_link_hash_defined;
1241 h->u.def.section = section;
1242 h->u.def.value = value;
1243
1244 /* If we have been asked to, we act like collect2 and
1245 identify all functions that might be global constructors
1246 and destructors and pass them up in a callback. We only
1247 do this for certain object file types, since many object
1248 file types can handle this automatically. */
1249 if (constructor && name[0] == '_')
1250 {
1251 const char *s;
1252
1253 /* A constructor or destructor name starts like this:
1254 _+GLOBAL_[_.$][ID][_.$]
1255 where the first [_.$] and the second are the same
1256 character (we accept any character there, in case a
1257 new object file format comes along with even worse
1258 naming restrictions). */
1259
1260 #define CONS_PREFIX "GLOBAL_"
1261 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1262
1263 s = name + 1;
1264 while (*s == '_')
1265 ++s;
1266 if (s[0] == 'G'
1267 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1268 {
1269 char c;
1270
1271 c = s[CONS_PREFIX_LEN + 1];
1272 if ((c == 'I' || c == 'D')
1273 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1274 {
1275 if (! ((*info->callbacks->constructor)
1276 (info,
1277 c == 'I' ? true : false, bitsize,
1278 name, abfd, section, value)))
1279 return false;
1280 }
1281 }
1282 }
1283
1284 break;
1285 case COM:
1286 if (h->type == bfd_link_hash_new)
1287 bfd_link_add_undef (info->hash, h);
1288 h->type = bfd_link_hash_common;
1289 h->u.c.size = value;
1290 if (section == &bfd_com_section)
1291 {
1292 h->u.c.section = bfd_make_section_old_way (abfd, "COMMON");
1293 h->u.c.section->flags = SEC_ALLOC;
1294 }
1295 else if (section->owner != abfd)
1296 {
1297 h->u.c.section = bfd_make_section_old_way (abfd, section->name);
1298 h->u.c.section->flags = SEC_ALLOC;
1299 }
1300 else
1301 h->u.c.section = section;
1302 break;
1303 case NOACT:
1304 break;
1305 case BIG:
1306 BFD_ASSERT (h->type == bfd_link_hash_common);
1307 if (! ((*info->callbacks->multiple_common)
1308 (info, name,
1309 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1310 abfd, bfd_link_hash_common, value)))
1311 return false;
1312 if (value > h->u.c.size)
1313 h->u.c.size = value;
1314 break;
1315 case CREF:
1316 BFD_ASSERT (h->type == bfd_link_hash_defined);
1317 if (! ((*info->callbacks->multiple_common)
1318 (info, name,
1319 h->u.def.section->owner, bfd_link_hash_defined, (bfd_vma) 0,
1320 abfd, bfd_link_hash_common, value)))
1321 return false;
1322 break;
1323 case MDEF:
1324 {
1325 asection *msec;
1326 bfd_vma mval;
1327
1328 switch (h->type)
1329 {
1330 case bfd_link_hash_defined:
1331 msec = h->u.def.section;
1332 mval = h->u.def.value;
1333 break;
1334 case bfd_link_hash_common:
1335 msec = &bfd_com_section;
1336 mval = h->u.c.size;
1337 break;
1338 case bfd_link_hash_indirect:
1339 msec = &bfd_ind_section;
1340 mval = 0;
1341 break;
1342 default:
1343 abort ();
1344 }
1345
1346 if (! ((*info->callbacks->multiple_definition)
1347 (info, name, msec->owner, msec, mval, abfd, section,
1348 value)))
1349 return false;
1350 }
1351 break;
1352 case IND:
1353 {
1354 struct bfd_link_hash_entry *inh;
1355
1356 /* STRING is the name of the symbol we want to indirect
1357 to. */
1358 inh = bfd_link_hash_lookup (info->hash, string, true, copy,
1359 false);
1360 if (inh == (struct bfd_link_hash_entry *) NULL)
1361 return false;
1362 if (inh->type == bfd_link_hash_new)
1363 {
1364 inh->type = bfd_link_hash_undefined;
1365 inh->u.undef.abfd = abfd;
1366 bfd_link_add_undef (info->hash, inh);
1367 }
1368 h->type = bfd_link_hash_indirect;
1369 h->u.i.link = inh;
1370 }
1371 break;
1372 case SET:
1373 if (! (*info->callbacks->add_to_set) (info, h, bitsize, abfd,
1374 section, value))
1375 return false;
1376 break;
1377 case WARN:
1378 case WARNC:
1379 if (h->u.i.warning != NULL)
1380 {
1381 if (! (*info->callbacks->warning) (info, h->u.i.warning))
1382 return false;
1383 /* Only issue a warning once. */
1384 h->u.i.warning = NULL;
1385 }
1386 if (action == WARN)
1387 break;
1388 /* Fall through. */
1389 case CYCLE:
1390 h = h->u.i.link;
1391 cycle = true;
1392 break;
1393 case MWARN:
1394 {
1395 struct bfd_link_hash_entry *sub;
1396
1397 /* STRING is the warning to give. */
1398 sub = ((struct bfd_link_hash_entry *)
1399 bfd_hash_allocate (&info->hash->table,
1400 sizeof (struct bfd_link_hash_entry)));
1401 *sub = *h;
1402 h->type = bfd_link_hash_warning;
1403 h->u.i.link = sub;
1404 if (! copy)
1405 h->u.i.warning = string;
1406 else
1407 {
1408 char *w;
1409
1410 w = bfd_hash_allocate (&info->hash->table,
1411 strlen (string) + 1);
1412 strcpy (w, string);
1413 h->u.i.warning = w;
1414 }
1415 }
1416 break;
1417 }
1418 }
1419 while (cycle);
1420
1421 return true;
1422 }
1423 \f
1424 /* Generic final link routine. */
1425
1426 boolean
1427 _bfd_generic_final_link (abfd, info)
1428 bfd *abfd;
1429 struct bfd_link_info *info;
1430 {
1431 bfd *sub;
1432 asection *o;
1433 struct bfd_link_order *p;
1434 size_t outsymalloc;
1435 struct generic_write_global_symbol_info wginfo;
1436
1437 abfd->outsymbols = (asymbol **) NULL;
1438 abfd->symcount = 0;
1439 outsymalloc = 0;
1440
1441 /* Build the output symbol table. This also reads in the symbols
1442 for all the input BFDs, keeping them in the outsymbols field. */
1443 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1444 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1445 return false;
1446
1447 /* Accumulate the global symbols. */
1448 wginfo.output_bfd = abfd;
1449 wginfo.psymalloc = &outsymalloc;
1450 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1451 _bfd_generic_link_write_global_symbol,
1452 (PTR) &wginfo);
1453
1454 if (info->relocateable)
1455 {
1456 /* Allocate space for the output relocs for each section. */
1457 for (o = abfd->sections;
1458 o != (asection *) NULL;
1459 o = o->next)
1460 {
1461 o->reloc_count = 0;
1462 for (p = o->link_order_head;
1463 p != (struct bfd_link_order *) NULL;
1464 p = p->next)
1465 {
1466 if (p->type == bfd_indirect_link_order)
1467 {
1468 asection *input_section;
1469 bfd *input_bfd;
1470 bfd_size_type relsize;
1471 arelent **relocs;
1472 bfd_size_type reloc_count;
1473
1474 input_section = p->u.indirect.section;
1475 input_bfd = input_section->owner;
1476 relsize = bfd_get_reloc_upper_bound (input_bfd,
1477 input_section);
1478 relocs = (arelent **) bfd_xmalloc (relsize);
1479 reloc_count =
1480 bfd_canonicalize_reloc (input_bfd, input_section,
1481 relocs,
1482 bfd_get_outsymbols (input_bfd));
1483 BFD_ASSERT (reloc_count == input_section->reloc_count);
1484 o->reloc_count += reloc_count;
1485 free (relocs);
1486 }
1487 }
1488 if (o->reloc_count > 0)
1489 {
1490 o->orelocation = ((arelent **)
1491 bfd_alloc (abfd,
1492 (o->reloc_count
1493 * sizeof (arelent *))));
1494 /* Reset the count so that it can be used as an index
1495 when putting in the output relocs. */
1496 o->reloc_count = 0;
1497 }
1498 }
1499 }
1500
1501 /* Handle all the link order information for the sections. */
1502 for (o = abfd->sections;
1503 o != (asection *) NULL;
1504 o = o->next)
1505 {
1506 for (p = o->link_order_head;
1507 p != (struct bfd_link_order *) NULL;
1508 p = p->next)
1509 {
1510 if (! _bfd_default_link_order (abfd, info, o, p))
1511 return false;
1512 }
1513 }
1514
1515 return true;
1516 }
1517
1518 /* Add an output symbol to the output BFD. */
1519
1520 static boolean
1521 generic_add_output_symbol (output_bfd, psymalloc, sym)
1522 bfd *output_bfd;
1523 size_t *psymalloc;
1524 asymbol *sym;
1525 {
1526 if (output_bfd->symcount >= *psymalloc)
1527 {
1528 asymbol **newsyms;
1529
1530 if (*psymalloc == 0)
1531 *psymalloc = 124;
1532 else
1533 *psymalloc *= 2;
1534 if (output_bfd->outsymbols == (asymbol **) NULL)
1535 newsyms = (asymbol **) malloc (*psymalloc * sizeof (asymbol *));
1536 else
1537 newsyms = (asymbol **) realloc (output_bfd->outsymbols,
1538 *psymalloc * sizeof (asymbol *));
1539 if (newsyms == (asymbol **) NULL)
1540 {
1541 bfd_error = no_memory;
1542 return false;
1543 }
1544 output_bfd->outsymbols = newsyms;
1545 }
1546
1547 output_bfd->outsymbols[output_bfd->symcount] = sym;
1548 ++output_bfd->symcount;
1549
1550 return true;
1551 }
1552
1553 /* Handle the symbols for an input BFD. */
1554
1555 boolean
1556 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
1557 bfd *output_bfd;
1558 bfd *input_bfd;
1559 struct bfd_link_info *info;
1560 size_t *psymalloc;
1561 {
1562 size_t symsize;
1563 asymbol **sym_ptr;
1564 asymbol **sym_end;
1565
1566 symsize = get_symtab_upper_bound (input_bfd);
1567 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
1568 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
1569 input_bfd->outsymbols);
1570
1571 /* Create a filename symbol if we are supposed to. */
1572 if (info->create_object_symbols_section != (asection *) NULL)
1573 {
1574 asection *sec;
1575
1576 for (sec = input_bfd->sections;
1577 sec != (asection *) NULL;
1578 sec = sec->next)
1579 {
1580 if (sec->output_section == info->create_object_symbols_section)
1581 {
1582 asymbol *newsym;
1583
1584 newsym = bfd_make_empty_symbol (input_bfd);
1585 newsym->name = input_bfd->filename;
1586 newsym->value = 0;
1587 newsym->flags = BSF_LOCAL | BSF_FILE;
1588 newsym->section = sec;
1589
1590 if (! generic_add_output_symbol (output_bfd, psymalloc,
1591 newsym))
1592 return false;
1593
1594 break;
1595 }
1596 }
1597 }
1598
1599 /* Adjust the values of the globally visible symbols, and write out
1600 local symbols. */
1601 sym_ptr = bfd_get_outsymbols (input_bfd);
1602 sym_end = sym_ptr + bfd_get_symcount (input_bfd);
1603 for (; sym_ptr < sym_end; sym_ptr++)
1604 {
1605 asymbol *sym;
1606 struct generic_link_hash_entry *h;
1607 boolean output;
1608
1609 h = (struct generic_link_hash_entry *) NULL;
1610 sym = *sym_ptr;
1611 if ((sym->flags & (BSF_INDIRECT
1612 | BSF_WARNING
1613 | BSF_GLOBAL
1614 | BSF_CONSTRUCTOR
1615 | BSF_WEAK)) != 0
1616 || bfd_get_section (sym) == &bfd_und_section
1617 || bfd_is_com_section (bfd_get_section (sym))
1618 || bfd_get_section (sym) == &bfd_ind_section)
1619 {
1620 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
1621 bfd_asymbol_name (sym),
1622 false, false, true);
1623 if (h != (struct generic_link_hash_entry *) NULL)
1624 {
1625 /* Force all references to this symbol to point to
1626 the same area in memory. It is possible that
1627 this routine will be called with a hash table
1628 other than a generic hash table, so we double
1629 check that. */
1630 if (info->hash->creator == input_bfd->xvec)
1631 {
1632 if (h->sym != (asymbol *) NULL)
1633 *sym_ptr = sym = h->sym;
1634 }
1635
1636 switch (h->root.type)
1637 {
1638 default:
1639 case bfd_link_hash_new:
1640 abort ();
1641 case bfd_link_hash_undefined:
1642 case bfd_link_hash_weak:
1643 break;
1644 case bfd_link_hash_defined:
1645 sym->value = h->root.u.def.value;
1646 sym->section = h->root.u.def.section;
1647 sym->flags |= BSF_GLOBAL;
1648 break;
1649 case bfd_link_hash_common:
1650 sym->value = h->root.u.c.size;
1651 sym->flags |= BSF_GLOBAL;
1652 /* We do not set the section of the symbol to
1653 c.section. c.section is saved so that we know
1654 where to allocate the symbol if we define it. In
1655 this case the type is still bfd_link_hash_common,
1656 so we did not define it, so we do not want to use
1657 that section. */
1658 BFD_ASSERT (bfd_is_com_section (sym->section));
1659 break;
1660 }
1661 }
1662 }
1663
1664 /* This switch is straight from the old code in
1665 write_file_locals in ldsym.c. */
1666 if (info->strip == strip_some
1667 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
1668 false, false)
1669 == (struct bfd_hash_entry *) NULL))
1670 output = false;
1671 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
1672 {
1673 /* If this symbol is marked as occurring now, rather
1674 than at the end, output it now. This is used for
1675 COFF C_EXT FCN symbols. FIXME: There must be a
1676 better way. */
1677 if (bfd_asymbol_bfd (sym) == input_bfd
1678 && (sym->flags & BSF_NOT_AT_END) != 0)
1679 output = true;
1680 else
1681 output = false;
1682 }
1683 else if (sym->section == &bfd_ind_section)
1684 output = false;
1685 else if ((sym->flags & BSF_DEBUGGING) != 0)
1686 {
1687 if (info->strip == strip_none)
1688 output = true;
1689 else
1690 output = false;
1691 }
1692 else if (sym->section == &bfd_und_section
1693 || bfd_is_com_section (sym->section))
1694 output = false;
1695 else if ((sym->flags & BSF_LOCAL) != 0)
1696 {
1697 if ((sym->flags & BSF_WARNING) != 0)
1698 output = false;
1699 else
1700 {
1701 switch (info->discard)
1702 {
1703 default:
1704 case discard_all:
1705 output = false;
1706 break;
1707 case discard_l:
1708 if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
1709 && (info->lprefix_len == 1
1710 || strncmp (bfd_asymbol_name (sym), info->lprefix,
1711 info->lprefix_len) == 0))
1712 output = false;
1713 else
1714 output = true;
1715 break;
1716 case discard_none:
1717 output = true;
1718 break;
1719 }
1720 }
1721 }
1722 else if ((sym->flags & BSF_CONSTRUCTOR))
1723 {
1724 if (info->strip != strip_all)
1725 output = true;
1726 else
1727 output = false;
1728 }
1729 else
1730 abort ();
1731
1732 if (output)
1733 {
1734 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
1735 return false;
1736 if (h != (struct generic_link_hash_entry *) NULL)
1737 h->root.written = true;
1738 }
1739 }
1740
1741 return true;
1742 }
1743
1744 /* Write out a global symbol, if it hasn't already been written out.
1745 This is called for each symbol in the hash table. */
1746
1747 boolean
1748 _bfd_generic_link_write_global_symbol (h, data)
1749 struct generic_link_hash_entry *h;
1750 PTR data;
1751 {
1752 struct generic_write_global_symbol_info *wginfo =
1753 (struct generic_write_global_symbol_info *) data;
1754 asymbol *sym;
1755
1756 if (h->root.written)
1757 return true;
1758
1759 if (h->sym != (asymbol *) NULL)
1760 {
1761 sym = h->sym;
1762 BFD_ASSERT (strcmp (bfd_asymbol_name (sym), h->root.root.string) == 0);
1763 }
1764 else
1765 {
1766 sym = bfd_make_empty_symbol (wginfo->output_bfd);
1767 sym->name = h->root.root.string;
1768 sym->flags = 0;
1769 }
1770
1771 switch (h->root.type)
1772 {
1773 default:
1774 case bfd_link_hash_new:
1775 abort ();
1776 case bfd_link_hash_undefined:
1777 sym->section = &bfd_und_section;
1778 sym->value = 0;
1779 break;
1780 case bfd_link_hash_weak:
1781 sym->section = &bfd_und_section;
1782 sym->value = 0;
1783 sym->flags |= BSF_WEAK;
1784 case bfd_link_hash_defined:
1785 sym->section = h->root.u.def.section;
1786 sym->value = h->root.u.def.value;
1787 break;
1788 case bfd_link_hash_common:
1789 sym->value = h->root.u.c.size;
1790 /* Do not set the section; see _bfd_generic_link_output_symbols. */
1791 BFD_ASSERT (bfd_is_com_section (sym->section));
1792 break;
1793 case bfd_link_hash_indirect:
1794 case bfd_link_hash_warning:
1795 /* FIXME: What should we do here? */
1796 break;
1797 }
1798
1799 sym->flags |= BSF_GLOBAL;
1800
1801 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
1802 sym))
1803 {
1804 /* FIXME: No way to return failure. */
1805 abort ();
1806 }
1807
1808 h->root.written = true;
1809
1810 return true;
1811 }
1812 \f
1813 /* Allocate a new link_order for a section. */
1814
1815 struct bfd_link_order *
1816 bfd_new_link_order (abfd, section)
1817 bfd *abfd;
1818 asection *section;
1819 {
1820 struct bfd_link_order *new;
1821
1822 new = ((struct bfd_link_order *)
1823 bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
1824
1825 new->type = bfd_undefined_link_order;
1826 new->offset = 0;
1827 new->size = 0;
1828 new->next = (struct bfd_link_order *) NULL;
1829
1830 if (section->link_order_tail != (struct bfd_link_order *) NULL)
1831 section->link_order_tail->next = new;
1832 else
1833 section->link_order_head = new;
1834 section->link_order_tail = new;
1835
1836 return new;
1837 }
1838
1839 /* Default link order processing routine. */
1840
1841 boolean
1842 _bfd_default_link_order (abfd, info, sec, link_order)
1843 bfd *abfd;
1844 struct bfd_link_info *info;
1845 asection *sec;
1846 struct bfd_link_order *link_order;
1847 {
1848 switch (link_order->type)
1849 {
1850 case bfd_undefined_link_order:
1851 default:
1852 abort ();
1853 case bfd_indirect_link_order:
1854 return default_indirect_link_order (abfd, info, sec, link_order);
1855 case bfd_fill_link_order:
1856 return default_fill_link_order (abfd, info, sec, link_order);
1857 }
1858 }
1859
1860 /* Default routine to handle a bfd_fill_link_order. */
1861
1862 /*ARGSUSED*/
1863 static boolean
1864 default_fill_link_order (abfd, info, sec, link_order)
1865 bfd *abfd;
1866 struct bfd_link_info *info;
1867 asection *sec;
1868 struct bfd_link_order *link_order;
1869 {
1870 size_t size;
1871 char *space;
1872 size_t i;
1873 int fill;
1874
1875 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
1876
1877 size = (size_t) link_order->size;
1878 space = (char *) alloca (size);
1879 fill = link_order->u.fill.value;
1880 for (i = 0; i < size; i += 2)
1881 space[i] = fill >> 8;
1882 for (i = 1; i < size; i += 2)
1883 space[i] = fill;
1884 return bfd_set_section_contents (abfd, sec, space,
1885 (file_ptr) link_order->offset,
1886 link_order->size);
1887 }
1888
1889 /* Default routine to handle a bfd_indirect_link_order. */
1890
1891 static boolean
1892 default_indirect_link_order (output_bfd, info, output_section, link_order)
1893 bfd *output_bfd;
1894 struct bfd_link_info *info;
1895 asection *output_section;
1896 struct bfd_link_order *link_order;
1897 {
1898 asection *input_section;
1899 bfd *input_bfd;
1900 bfd_byte *contents;
1901
1902 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
1903
1904 if (link_order->size == 0)
1905 return true;
1906
1907 input_section = link_order->u.indirect.section;
1908 input_bfd = input_section->owner;
1909
1910 BFD_ASSERT (input_section->output_section == output_section);
1911 BFD_ASSERT (input_section->output_offset == link_order->offset);
1912 BFD_ASSERT (bfd_section_size (input_bfd, input_section) == link_order->size);
1913
1914 if (info->relocateable
1915 && input_section->reloc_count > 0
1916 && output_section->orelocation == (arelent **) NULL)
1917 {
1918 /* Space has not been allocated for the output relocations.
1919 This can happen when we are called by a specific backend
1920 because somebody is attempting to link together different
1921 types of object files. Handling this case correctly is
1922 difficult, and sometimes impossible. */
1923 abort ();
1924 }
1925
1926 /* Get the canonical symbols. The generic linker will always have
1927 retrieved them by this point, but we may be being called by a
1928 specific linker when linking different types of object files
1929 together. */
1930 if (bfd_get_outsymbols (input_bfd) == (asymbol **) NULL)
1931 {
1932 size_t symsize;
1933
1934 symsize = get_symtab_upper_bound (input_bfd);
1935 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
1936 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
1937 input_bfd->outsymbols);
1938 }
1939
1940 /* Get and relocate the section contents. */
1941 contents = (bfd_byte *) alloca (bfd_section_size (input_bfd, input_section));
1942 contents = (bfd_get_relocated_section_contents
1943 (output_bfd, info, link_order, contents, info->relocateable,
1944 bfd_get_outsymbols (input_bfd)));
1945
1946 /* Output the section contents. */
1947 if (! bfd_set_section_contents (output_bfd, output_section, (PTR) contents,
1948 link_order->offset, link_order->size))
1949 return false;
1950
1951 return true;
1952 }