* linker.c (generic_link_add_symbol_list): If symbol is common,
[binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD
6
7 GLD is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GLD is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GLD; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "bfdlink.h"
25 #include "genlink.h"
26
27 /*
28 SECTION
29 Linker Functions
30
31 @cindex Linker
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
37 memory.
38
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
48
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
54 proper.
55
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
61
62 @menu
63 @* Creating a Linker Hash Table::
64 @* Adding Symbols to the Hash Table::
65 @* Performing the Final Link::
66 @end menu
67
68 INODE
69 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
70 SUBSECTION
71 Creating a linker hash table
72
73 @cindex _bfd_link_hash_table_create in target vector
74 @cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
80
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
87
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
98 pointer to it.
99
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
105
106 INODE
107 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
108 SUBSECTION
109 Adding symbols to the hash table
110
111 @cindex _bfd_link_add_symbols in target vector
112 @cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
121 link.
122
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
125
126 @menu
127 @* Differing file formats::
128 @* Adding symbols from an object file::
129 @* Adding symbols from an archive::
130 @end menu
131
132 INODE
133 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
134 SUBSUBSECTION
135 Differing file formats
136
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
148
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
154
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
163
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
167 hash table entry.
168
169 INODE
170 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
171 SUBSUBSECTION
172 Adding symbols from an object file
173
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
182
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
187
188 @findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section>> for an undefined
196 symbol or <<bfd_com_section>> for a common symbol.
197
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
204
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
212
213 INODE
214 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
215 SUBSUBSECTION
216 Adding symbols from an archive
217
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
224
225 @findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
236
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
246
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
257 linker hash table.
258
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
264
265 INODE
266 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
267 SUBSECTION
268 Performing the final link
269
270 @cindex _bfd_link_final_link in target vector
271 @cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
282
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
286
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
290
291 @menu
292 @* Information provided by the linker::
293 @* Relocating the section contents::
294 @* Writing the symbol table::
295 @end menu
296
297 INODE
298 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
299 SUBSUBSECTION
300 Information provided by the linker
301
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
304
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
309
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocateable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files. The <<written>> field in the
381 <<bfd_link_hash_entry>> structure may be used to determine
382 which entries in the hash table have not already been written
383 out.
384
385 The <<strip>> field of the <<bfd_link_info>> structure
386 controls which symbols are written out. The possible values
387 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
388 then the <<keep_hash>> field of the <<bfd_link_info>>
389 structure is a hash table of symbols to keep; each symbol
390 should be looked up in this hash table, and only symbols which
391 are present should be included in the output file.
392
393 If the <<strip>> field of the <<bfd_link_info>> structure
394 permits local symbols to be written out, the <<discard>> field
395 is used to further controls which local symbols are included
396 in the output file. If the value is <<discard_l>>, then all
397 local symbols which begin with a certain prefix are discarded;
398 this prefix is described by the <<lprefix>> and
399 <<lprefix_len>> fields of the <<bfd_link_info>> structure.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static struct bfd_hash_entry *generic_link_hash_newfunc
410 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
411 const char *));
412 static boolean generic_link_add_object_symbols
413 PARAMS ((bfd *, struct bfd_link_info *));
414 static boolean generic_link_check_archive_element
415 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
416 static boolean generic_link_add_symbol_list
417 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **));
418 static boolean generic_add_output_symbol
419 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
420 static boolean default_fill_link_order
421 PARAMS ((bfd *, struct bfd_link_info *, asection *,
422 struct bfd_link_order *));
423 static boolean default_indirect_link_order
424 PARAMS ((bfd *, struct bfd_link_info *, asection *,
425 struct bfd_link_order *));
426
427 /* The link hash table structure is defined in bfdlink.h. It provides
428 a base hash table which the backend specific hash tables are built
429 upon. */
430
431 /* Routine to create an entry in the link hash table. */
432
433 struct bfd_hash_entry *
434 _bfd_link_hash_newfunc (entry, table, string)
435 struct bfd_hash_entry *entry;
436 struct bfd_hash_table *table;
437 const char *string;
438 {
439 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
440
441 /* Allocate the structure if it has not already been allocated by a
442 subclass. */
443 if (ret == (struct bfd_link_hash_entry *) NULL)
444 ret = ((struct bfd_link_hash_entry *)
445 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
446
447 /* Call the allocation method of the superclass. */
448 ret = ((struct bfd_link_hash_entry *)
449 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
450
451 /* Initialize the local fields. */
452 ret->type = bfd_link_hash_new;
453 ret->written = false;
454 ret->next = NULL;
455
456 return (struct bfd_hash_entry *) ret;
457 }
458
459 /* Initialize a link hash table. The BFD argument is the one
460 responsible for creating this table. */
461
462 boolean
463 _bfd_link_hash_table_init (table, abfd, newfunc)
464 struct bfd_link_hash_table *table;
465 bfd *abfd;
466 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
467 struct bfd_hash_table *,
468 const char *));
469 {
470 table->creator = abfd->xvec;
471 table->undefs = NULL;
472 table->undefs_tail = NULL;
473 return bfd_hash_table_init (&table->table, newfunc);
474 }
475
476 /* Look up a symbol in a link hash table. If follow is true, we
477 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
478 the real symbol. */
479
480 struct bfd_link_hash_entry *
481 bfd_link_hash_lookup (table, string, create, copy, follow)
482 struct bfd_link_hash_table *table;
483 const char *string;
484 boolean create;
485 boolean copy;
486 boolean follow;
487 {
488 struct bfd_link_hash_entry *ret;
489
490 ret = ((struct bfd_link_hash_entry *)
491 bfd_hash_lookup (&table->table, string, create, copy));
492
493 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
494 {
495 while (ret->type == bfd_link_hash_indirect
496 || ret->type == bfd_link_hash_warning)
497 ret = ret->u.i.link;
498 }
499
500 return ret;
501 }
502
503 /* Traverse a generic link hash table. The only reason this is not a
504 macro is to do better type checking. This code presumes that an
505 argument passed as a struct bfd_hash_entry * may be caught as a
506 struct bfd_link_hash_entry * with no explicit cast required on the
507 call. */
508
509 void
510 bfd_link_hash_traverse (table, func, info)
511 struct bfd_link_hash_table *table;
512 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
513 PTR info;
514 {
515 bfd_hash_traverse (&table->table,
516 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
517 func),
518 info);
519 }
520
521 /* Add a symbol to the linker hash table undefs list. */
522
523 INLINE void
524 bfd_link_add_undef (table, h)
525 struct bfd_link_hash_table *table;
526 struct bfd_link_hash_entry *h;
527 {
528 BFD_ASSERT (h->next == NULL);
529 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
530 table->undefs_tail->next = h;
531 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
532 table->undefs = h;
533 table->undefs_tail = h;
534 }
535 \f
536 /* Routine to create an entry in an generic link hash table. */
537
538 static struct bfd_hash_entry *
539 generic_link_hash_newfunc (entry, table, string)
540 struct bfd_hash_entry *entry;
541 struct bfd_hash_table *table;
542 const char *string;
543 {
544 struct generic_link_hash_entry *ret =
545 (struct generic_link_hash_entry *) entry;
546
547 /* Allocate the structure if it has not already been allocated by a
548 subclass. */
549 if (ret == (struct generic_link_hash_entry *) NULL)
550 ret = ((struct generic_link_hash_entry *)
551 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
552
553 /* Call the allocation method of the superclass. */
554 ret = ((struct generic_link_hash_entry *)
555 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
556 table, string));
557
558 /* Set local fields. */
559 ret->sym = NULL;
560
561 return (struct bfd_hash_entry *) ret;
562 }
563
564 /* Create an generic link hash table. */
565
566 struct bfd_link_hash_table *
567 _bfd_generic_link_hash_table_create (abfd)
568 bfd *abfd;
569 {
570 struct generic_link_hash_table *ret;
571
572 ret = ((struct generic_link_hash_table *)
573 bfd_xmalloc (sizeof (struct generic_link_hash_table)));
574 if (! _bfd_link_hash_table_init (&ret->root, abfd,
575 generic_link_hash_newfunc))
576 {
577 free (ret);
578 return (struct bfd_link_hash_table *) NULL;
579 }
580 return &ret->root;
581 }
582 \f
583 /* Generic function to add symbols from an object file to the global
584 hash table. */
585
586 boolean
587 _bfd_generic_link_add_symbols (abfd, info)
588 bfd *abfd;
589 struct bfd_link_info *info;
590 {
591 boolean ret;
592
593 switch (bfd_get_format (abfd))
594 {
595 case bfd_object:
596 ret = generic_link_add_object_symbols (abfd, info);
597 break;
598 case bfd_archive:
599 ret = _bfd_generic_link_add_archive_symbols
600 (abfd, info, generic_link_check_archive_element);
601 break;
602 default:
603 bfd_error = wrong_format;
604 ret = false;
605 }
606
607 /* If we might be using the C based alloca function, make sure we
608 have dumped the symbol tables we just allocated. */
609 #ifndef __GNUC__
610 #ifndef alloca
611 alloca (0);
612 #endif
613 #endif
614
615 return ret;
616 }
617
618 /* Add symbols from an object file to the global hash table. */
619
620 static boolean
621 generic_link_add_object_symbols (abfd, info)
622 bfd *abfd;
623 struct bfd_link_info *info;
624 {
625 size_t symsize;
626 asymbol **symbols;
627 bfd_size_type symbol_count;
628
629 symsize = get_symtab_upper_bound (abfd);
630 symbols = (asymbol **) alloca (symsize);
631 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
632
633 return generic_link_add_symbol_list (abfd, info, symbol_count, symbols);
634 }
635 \f
636 /* We build a hash table of all symbols defined in an archive. */
637
638 /* An archive symbol may be defined by multiple archive elements.
639 This linked list is used to hold the elements. */
640
641 struct archive_list
642 {
643 struct archive_list *next;
644 int indx;
645 };
646
647 /* An entry in an archive hash table. */
648
649 struct archive_hash_entry
650 {
651 struct bfd_hash_entry root;
652 /* Where the symbol is defined. */
653 struct archive_list *defs;
654 };
655
656 /* An archive hash table itself. */
657
658 struct archive_hash_table
659 {
660 struct bfd_hash_table table;
661 };
662
663 static struct bfd_hash_entry *archive_hash_newfunc
664 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
665 static boolean archive_hash_table_init
666 PARAMS ((struct archive_hash_table *,
667 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
668 struct bfd_hash_table *,
669 const char *)));
670
671 /* Create a new entry for an archive hash table. */
672
673 static struct bfd_hash_entry *
674 archive_hash_newfunc (entry, table, string)
675 struct bfd_hash_entry *entry;
676 struct bfd_hash_table *table;
677 const char *string;
678 {
679 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
680
681 /* Allocate the structure if it has not already been allocated by a
682 subclass. */
683 if (ret == (struct archive_hash_entry *) NULL)
684 ret = ((struct archive_hash_entry *)
685 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
686
687 /* Call the allocation method of the superclass. */
688 ret = ((struct archive_hash_entry *)
689 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
690
691 /* Initialize the local fields. */
692 ret->defs = (struct archive_list *) NULL;
693
694 return (struct bfd_hash_entry *) ret;
695 }
696
697 /* Initialize an archive hash table. */
698
699 static boolean
700 archive_hash_table_init (table, newfunc)
701 struct archive_hash_table *table;
702 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
703 struct bfd_hash_table *,
704 const char *));
705 {
706 return bfd_hash_table_init (&table->table, newfunc);
707 }
708
709 /* Look up an entry in an archive hash table. */
710
711 #define archive_hash_lookup(t, string, create, copy) \
712 ((struct archive_hash_entry *) \
713 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
714
715 /* Free an archive hash table. */
716
717 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
718
719 /* Generic function to add symbols from an archive file to the global
720 hash file. This function presumes that the archive symbol table
721 has already been read in (this is normally done by the
722 bfd_check_format entry point). It looks through the undefined and
723 common symbols and searches the archive symbol table for them. If
724 it finds an entry, it includes the associated object file in the
725 link.
726
727 The old linker looked through the archive symbol table for
728 undefined symbols. We do it the other way around, looking through
729 undefined symbols for symbols defined in the archive. The
730 advantage of the newer scheme is that we only have to look through
731 the list of undefined symbols once, whereas the old method had to
732 re-search the symbol table each time a new object file was added.
733
734 The CHECKFN argument is used to see if an object file should be
735 included. CHECKFN should set *PNEEDED to true if the object file
736 should be included, and must also call the bfd_link_info
737 add_archive_element callback function and handle adding the symbols
738 to the global hash table. CHECKFN should only return false if some
739 sort of error occurs.
740
741 For some formats, such as a.out, it is possible to look through an
742 object file but not actually include it in the link. The
743 archive_pass field in a BFD is used to avoid checking the symbols
744 of an object files too many times. When an object is included in
745 the link, archive_pass is set to -1. If an object is scanned but
746 not included, archive_pass is set to the pass number. The pass
747 number is incremented each time a new object file is included. The
748 pass number is used because when a new object file is included it
749 may create new undefined symbols which cause a previously examined
750 object file to be included. */
751
752 boolean
753 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
754 bfd *abfd;
755 struct bfd_link_info *info;
756 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
757 boolean *pneeded));
758 {
759 carsym *arsyms;
760 carsym *arsym_end;
761 register carsym *arsym;
762 int pass;
763 struct archive_hash_table arsym_hash;
764 int indx;
765 struct bfd_link_hash_entry **pundef;
766
767 if (! bfd_has_map (abfd))
768 {
769 bfd_error = no_symbols;
770 return false;
771 }
772
773 arsyms = bfd_ardata (abfd)->symdefs;
774 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
775
776 /* In order to quickly determine whether an symbol is defined in
777 this archive, we build a hash table of the symbols. */
778 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
779 return false;
780 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
781 {
782 struct archive_hash_entry *arh;
783 struct archive_list *l;
784
785 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
786 if (arh == (struct archive_hash_entry *) NULL)
787 return false;
788 l = (struct archive_list *) alloca (sizeof (struct archive_list));
789 l->next = arh->defs;
790 arh->defs = l;
791 l->indx = indx;
792 }
793
794 pass = 1;
795
796 /* New undefined symbols are added to the end of the list, so we
797 only need to look through it once. */
798 pundef = &info->hash->undefs;
799 while (*pundef != (struct bfd_link_hash_entry *) NULL)
800 {
801 struct bfd_link_hash_entry *h;
802 struct archive_hash_entry *arh;
803 struct archive_list *l;
804
805 h = *pundef;
806
807 /* When a symbol is defined, it is not necessarily removed from
808 the list. */
809 if (h->type != bfd_link_hash_undefined
810 && h->type != bfd_link_hash_common)
811 {
812 /* Remove this entry from the list, for general cleanliness
813 and because we are going to look through the list again
814 if we search any more libraries. We can't remove the
815 entry if it is the tail, because that would lose any
816 entries we add to the list later on. */
817 if (*pundef != info->hash->undefs_tail)
818 *pundef = (*pundef)->next;
819 else
820 pundef = &(*pundef)->next;
821 continue;
822 }
823
824 /* Look for this symbol in the archive symbol map. */
825 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
826 if (arh == (struct archive_hash_entry *) NULL)
827 {
828 pundef = &(*pundef)->next;
829 continue;
830 }
831
832 /* Look at all the objects which define this symbol. */
833 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
834 {
835 bfd *element;
836 boolean needed;
837
838 /* If the symbol has gotten defined along the way, quit. */
839 if (h->type != bfd_link_hash_undefined
840 && h->type != bfd_link_hash_common)
841 break;
842
843 element = bfd_get_elt_at_index (abfd, l->indx);
844 if (element == (bfd *) NULL)
845 return false;
846
847 /* If we've already included this element, or if we've
848 already checked it on this pass, continue. */
849 if (element->archive_pass == -1
850 || element->archive_pass == pass)
851 continue;
852
853 /* If we can't figure this element out, just ignore it. */
854 if (! bfd_check_format (element, bfd_object))
855 {
856 element->archive_pass = -1;
857 continue;
858 }
859
860 /* CHECKFN will see if this element should be included, and
861 go ahead and include it if appropriate. */
862 if (! (*checkfn) (element, info, &needed))
863 return false;
864
865 if (! needed)
866 element->archive_pass = pass;
867 else
868 {
869 element->archive_pass = -1;
870
871 /* Increment the pass count to show that we may need to
872 recheck object files which were already checked. */
873 ++pass;
874 }
875 }
876
877 pundef = &(*pundef)->next;
878 }
879
880 archive_hash_table_free (&arsym_hash);
881
882 return true;
883 }
884 \f
885 /* See if we should include an archive element. */
886
887 static boolean
888 generic_link_check_archive_element (abfd, info, pneeded)
889 bfd *abfd;
890 struct bfd_link_info *info;
891 boolean *pneeded;
892 {
893 size_t symsize;
894 asymbol **symbols;
895 bfd_size_type symbol_count;
896 asymbol **pp, **ppend;
897
898 *pneeded = false;
899
900 symsize = get_symtab_upper_bound (abfd);
901 symbols = (asymbol **) alloca (symsize);
902 symbol_count = bfd_canonicalize_symtab (abfd, symbols);
903
904 pp = symbols;
905 ppend = symbols + symbol_count;
906 for (; pp < ppend; pp++)
907 {
908 asymbol *p;
909 struct bfd_link_hash_entry *h;
910
911 p = *pp;
912
913 /* We are only interested in globally visible symbols. */
914 if (! bfd_is_com_section (p->section)
915 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
916 continue;
917
918 /* We are only interested if we know something about this
919 symbol, and it is undefined or common. An undefined weak
920 symbol (type bfd_link_hash_weak) is not considered to be a
921 reference when pulling files out of an archive. See the SVR4
922 ABI, p. 4-27. */
923 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
924 false, true);
925 if (h == (struct bfd_link_hash_entry *) NULL
926 || (h->type != bfd_link_hash_undefined
927 && h->type != bfd_link_hash_common))
928 continue;
929
930 /* P is a symbol we are looking for. */
931
932 if (! bfd_is_com_section (p->section))
933 {
934 /* This object file defines this symbol, so pull it in. */
935 if (! (*info->callbacks->add_archive_element) (info, abfd,
936 bfd_asymbol_name (p)))
937 return false;
938 if (! generic_link_add_symbol_list (abfd, info, symbol_count,
939 symbols))
940 return false;
941 *pneeded = true;
942 return true;
943 }
944
945 /* P is a common symbol. */
946
947 if (h->type == bfd_link_hash_undefined)
948 {
949 bfd *symbfd;
950
951 symbfd = h->u.undef.abfd;
952 if (symbfd == (bfd *) NULL)
953 {
954 /* This symbol was created as undefined from outside
955 BFD. We assume that we should link in the object
956 file. This is for the -u option in the linker. */
957 if (! (*info->callbacks->add_archive_element)
958 (info, abfd, bfd_asymbol_name (p)))
959 return false;
960 *pneeded = true;
961 return true;
962 }
963
964 /* Turn the symbol into a common symbol but do not link in
965 the object file. This is how a.out works. Object
966 formats that require different semantics must implement
967 this function differently. This symbol is already on the
968 undefs list. We add the section to a common section
969 attached to symbfd to ensure that it is in a BFD which
970 will be linked in. */
971 h->type = bfd_link_hash_common;
972 h->u.c.size = bfd_asymbol_value (p);
973 if (p->section == &bfd_com_section)
974 h->u.c.section = bfd_make_section_old_way (symbfd, "COMMON");
975 else
976 h->u.c.section = bfd_make_section_old_way (symbfd,
977 p->section->name);
978 h->u.c.section->flags = SEC_ALLOC;
979 }
980 else
981 {
982 /* Adjust the size of the common symbol if necessary. This
983 is how a.out works. Object formats that require
984 different semantics must implement this function
985 differently. */
986 if (bfd_asymbol_value (p) > h->u.c.size)
987 h->u.c.size = bfd_asymbol_value (p);
988 }
989 }
990
991 /* This archive element is not needed. */
992 return true;
993 }
994
995 /* Add the symbol from an object file to the global hash table. */
996
997 static boolean
998 generic_link_add_symbol_list (abfd, info, symbol_count, symbols)
999 bfd *abfd;
1000 struct bfd_link_info *info;
1001 bfd_size_type symbol_count;
1002 asymbol **symbols;
1003 {
1004 asymbol **pp, **ppend;
1005
1006 pp = symbols;
1007 ppend = symbols + symbol_count;
1008 for (; pp < ppend; pp++)
1009 {
1010 asymbol *p;
1011
1012 p = *pp;
1013
1014 if ((p->flags & (BSF_INDIRECT
1015 | BSF_WARNING
1016 | BSF_GLOBAL
1017 | BSF_CONSTRUCTOR
1018 | BSF_WEAK)) != 0
1019 || bfd_get_section (p) == &bfd_und_section
1020 || bfd_is_com_section (bfd_get_section (p))
1021 || bfd_get_section (p) == &bfd_ind_section)
1022 {
1023 const char *name;
1024 const char *string;
1025 struct generic_link_hash_entry *h;
1026
1027 name = bfd_asymbol_name (p);
1028 if ((p->flags & BSF_INDIRECT) != 0
1029 || p->section == &bfd_ind_section)
1030 string = bfd_asymbol_name ((asymbol *) p->value);
1031 else if ((p->flags & BSF_WARNING) != 0)
1032 {
1033 /* The name of P is actually the warning string, and the
1034 value is actually a pointer to the symbol to warn
1035 about. */
1036 string = name;
1037 name = bfd_asymbol_name ((asymbol *) p->value);
1038 }
1039 else
1040 string = NULL;
1041
1042 /* We pass the constructor argument as false, for
1043 compatibility. As backends are converted they can
1044 arrange to pass the right value (the right value is the
1045 size of a function pointer if gcc uses collect2 for the
1046 object file format, zero if it does not).
1047 FIXME: We pass the bitsize as 32, which is just plain
1048 wrong, but actually doesn't matter very much. */
1049 if (! (_bfd_generic_link_add_one_symbol
1050 (info, abfd, name, p->flags, bfd_get_section (p),
1051 p->value, string, false, 0, 32,
1052 (struct bfd_link_hash_entry **) &h)))
1053 return false;
1054
1055 /* Save the BFD symbol so that we don't lose any backend
1056 specific information that may be attached to it. We only
1057 want this one if it gives more information than the
1058 existing one; we don't want to replace a defined symbol
1059 with an undefined one. This routine may be called with a
1060 hash table other than the generic hash table, so we only
1061 do this if we are certain that the hash table is a
1062 generic one. */
1063 if (info->hash->creator == abfd->xvec)
1064 {
1065 if (h->sym == (asymbol *) NULL
1066 || (bfd_get_section (p) != &bfd_und_section
1067 && (! bfd_is_com_section (bfd_get_section (p))
1068 || (bfd_get_section (h->sym) == &bfd_und_section))))
1069 {
1070 h->sym = p;
1071 /* BSF_OLD_COMMON is a hack to support COFF reloc
1072 reading, and it should go away when the COFF
1073 linker is switched to the new version. */
1074 if (bfd_is_com_section (bfd_get_section (p)))
1075 p->flags |= BSF_OLD_COMMON;
1076 }
1077 }
1078 }
1079 }
1080
1081 return true;
1082 }
1083 \f
1084 /* We use a state table to deal with adding symbols from an object
1085 file. The first index into the state table describes the symbol
1086 from the object file. The second index into the state table is the
1087 type of the symbol in the hash table. */
1088
1089 /* The symbol from the object file is turned into one of these row
1090 values. */
1091
1092 enum link_row
1093 {
1094 UNDEF_ROW, /* Undefined. */
1095 UNDEFW_ROW, /* Weak undefined. */
1096 DEF_ROW, /* Defined. */
1097 DEFW_ROW, /* Weak defined. */
1098 COMMON_ROW, /* Common. */
1099 INDR_ROW, /* Indirect. */
1100 WARN_ROW, /* Warning. */
1101 SET_ROW /* Member of set. */
1102 };
1103
1104 /* The actions to take in the state table. */
1105
1106 enum link_action
1107 {
1108 FAIL, /* Abort. */
1109 UND, /* Mark symbol undefined. */
1110 WEAK, /* Mark symbol weak undefined. */
1111 DEF, /* Mark symbol defined. */
1112 COM, /* Mark symbol common. */
1113 CREF, /* Possibly warn about common reference to defined symbol. */
1114 CDEF, /* Define existing common symbol. */
1115 NOACT, /* No action. */
1116 BIG, /* Mark symbol common using largest size. */
1117 MDEF, /* Multiple definition error. */
1118 IND, /* Make indirect symbol. */
1119 SET, /* Add value to set. */
1120 MWARN, /* Make warning symbol. */
1121 WARN, /* Issue warning. */
1122 CYCLE, /* Repeat with symbol pointed to. */
1123 WARNC /* Issue warning and then CYCLE. */
1124 };
1125
1126 /* The state table itself. The first index is a link_row and the
1127 second index is a bfd_link_hash_type. */
1128
1129 static const enum link_action link_action[8][7] =
1130 {
1131 /* current\prev new undef weak def com indr warn */
1132 /* UNDEF_ROW */ {UND, NOACT, NOACT, NOACT, NOACT, CYCLE, WARNC },
1133 /* UNDEFW_ROW */ {WEAK, WEAK, NOACT, NOACT, NOACT, CYCLE, WARNC },
1134 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, CDEF, CYCLE, CYCLE },
1135 /* DEFW_ROW */ {DEF, DEF, DEF, NOACT, NOACT, CYCLE, CYCLE },
1136 /* COMMON_ROW */ {COM, COM, COM, CREF, BIG, CYCLE, WARNC },
1137 /* INDR_ROW */ {IND, IND, IND, MDEF, MDEF, MDEF, WARNC },
1138 /* WARN_ROW */ {MWARN, WARN, WARN, MWARN, MWARN, MWARN, NOACT },
1139 /* SET_ROW */ {SET, SET, SET, SET, SET, CYCLE, WARNC }
1140 };
1141
1142 /* Add a symbol to the global hash table.
1143 ABFD is the BFD the symbol comes from.
1144 NAME is the name of the symbol.
1145 FLAGS is the BSF_* bits associated with the symbol.
1146 SECTION is the section in which the symbol is defined; this may be
1147 bfd_und_section or bfd_com_section.
1148 VALUE is the value of the symbol, relative to the section.
1149 STRING is used for either an indirect symbol, in which case it is
1150 the name of the symbol to indirect to, or a warning symbol, in
1151 which case it is the warning string.
1152 COPY is true if NAME or STRING must be copied into locally
1153 allocated memory if they need to be saved.
1154 CONSTRUCTOR is true if we should automatically collect gcc
1155 constructor or destructor names.
1156 BITSIZE is the number of bits in constructor or set entries.
1157 HASHP, if not NULL, is a place to store the created hash table
1158 entry. */
1159
1160 boolean
1161 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1162 string, copy, constructor, bitsize, hashp)
1163 struct bfd_link_info *info;
1164 bfd *abfd;
1165 const char *name;
1166 flagword flags;
1167 asection *section;
1168 bfd_vma value;
1169 const char *string;
1170 boolean copy;
1171 boolean constructor;
1172 unsigned int bitsize;
1173 struct bfd_link_hash_entry **hashp;
1174 {
1175 enum link_row row;
1176 struct bfd_link_hash_entry *h;
1177 boolean cycle;
1178
1179 if (section == &bfd_ind_section
1180 || (flags & BSF_INDIRECT) != 0)
1181 row = INDR_ROW;
1182 else if ((flags & BSF_WARNING) != 0)
1183 row = WARN_ROW;
1184 else if ((flags & BSF_CONSTRUCTOR) != 0)
1185 row = SET_ROW;
1186 else if (section == &bfd_und_section)
1187 {
1188 if ((flags & BSF_WEAK) != 0)
1189 row = UNDEFW_ROW;
1190 else
1191 row = UNDEF_ROW;
1192 }
1193 else if ((flags & BSF_WEAK) != 0)
1194 row = DEFW_ROW;
1195 else if (bfd_is_com_section (section))
1196 row = COMMON_ROW;
1197 else
1198 row = DEF_ROW;
1199
1200 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1201 if (h == (struct bfd_link_hash_entry *) NULL)
1202 {
1203 if (hashp != (struct bfd_link_hash_entry **) NULL)
1204 *hashp = NULL;
1205 return false;
1206 }
1207
1208 if (info->notice_hash != (struct bfd_hash_table *) NULL
1209 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1210 != (struct bfd_hash_entry *) NULL))
1211 {
1212 if (! (*info->callbacks->notice) (info, name, abfd, section, value))
1213 return false;
1214 }
1215
1216 if (hashp != (struct bfd_link_hash_entry **) NULL)
1217 *hashp = h;
1218
1219 do
1220 {
1221 enum link_action action;
1222
1223 cycle = false;
1224 action = link_action[(int) row][(int) h->type];
1225 switch (action)
1226 {
1227 case FAIL:
1228 abort ();
1229 case UND:
1230 h->type = bfd_link_hash_undefined;
1231 h->u.undef.abfd = abfd;
1232 bfd_link_add_undef (info->hash, h);
1233 break;
1234 case WEAK:
1235 h->type = bfd_link_hash_weak;
1236 h->u.undef.abfd = abfd;
1237 break;
1238 case CDEF:
1239 BFD_ASSERT (h->type == bfd_link_hash_common);
1240 if (! ((*info->callbacks->multiple_common)
1241 (info, name,
1242 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1243 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1244 return false;
1245 /* Fall through. */
1246 case DEF:
1247 h->type = bfd_link_hash_defined;
1248 h->u.def.section = section;
1249 h->u.def.value = value;
1250
1251 /* If we have been asked to, we act like collect2 and
1252 identify all functions that might be global constructors
1253 and destructors and pass them up in a callback. We only
1254 do this for certain object file types, since many object
1255 file types can handle this automatically. */
1256 if (constructor && name[0] == '_')
1257 {
1258 const char *s;
1259
1260 /* A constructor or destructor name starts like this:
1261 _+GLOBAL_[_.$][ID][_.$]
1262 where the first [_.$] and the second are the same
1263 character (we accept any character there, in case a
1264 new object file format comes along with even worse
1265 naming restrictions). */
1266
1267 #define CONS_PREFIX "GLOBAL_"
1268 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1269
1270 s = name + 1;
1271 while (*s == '_')
1272 ++s;
1273 if (s[0] == 'G'
1274 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1275 {
1276 char c;
1277
1278 c = s[CONS_PREFIX_LEN + 1];
1279 if ((c == 'I' || c == 'D')
1280 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1281 {
1282 if (! ((*info->callbacks->constructor)
1283 (info,
1284 c == 'I' ? true : false, bitsize,
1285 name, abfd, section, value)))
1286 return false;
1287 }
1288 }
1289 }
1290
1291 break;
1292 case COM:
1293 if (h->type == bfd_link_hash_new)
1294 bfd_link_add_undef (info->hash, h);
1295 h->type = bfd_link_hash_common;
1296 h->u.c.size = value;
1297 if (section == &bfd_com_section)
1298 {
1299 h->u.c.section = bfd_make_section_old_way (abfd, "COMMON");
1300 h->u.c.section->flags = SEC_ALLOC;
1301 }
1302 else if (section->owner != abfd)
1303 {
1304 h->u.c.section = bfd_make_section_old_way (abfd, section->name);
1305 h->u.c.section->flags = SEC_ALLOC;
1306 }
1307 else
1308 h->u.c.section = section;
1309 break;
1310 case NOACT:
1311 break;
1312 case BIG:
1313 BFD_ASSERT (h->type == bfd_link_hash_common);
1314 if (! ((*info->callbacks->multiple_common)
1315 (info, name,
1316 h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
1317 abfd, bfd_link_hash_common, value)))
1318 return false;
1319 if (value > h->u.c.size)
1320 h->u.c.size = value;
1321 break;
1322 case CREF:
1323 BFD_ASSERT (h->type == bfd_link_hash_defined);
1324 if (! ((*info->callbacks->multiple_common)
1325 (info, name,
1326 h->u.def.section->owner, bfd_link_hash_defined, (bfd_vma) 0,
1327 abfd, bfd_link_hash_common, value)))
1328 return false;
1329 break;
1330 case MDEF:
1331 {
1332 asection *msec;
1333 bfd_vma mval;
1334
1335 switch (h->type)
1336 {
1337 case bfd_link_hash_defined:
1338 msec = h->u.def.section;
1339 mval = h->u.def.value;
1340 break;
1341 case bfd_link_hash_common:
1342 msec = &bfd_com_section;
1343 mval = h->u.c.size;
1344 break;
1345 case bfd_link_hash_indirect:
1346 msec = &bfd_ind_section;
1347 mval = 0;
1348 break;
1349 default:
1350 abort ();
1351 }
1352
1353 if (! ((*info->callbacks->multiple_definition)
1354 (info, name, msec->owner, msec, mval, abfd, section,
1355 value)))
1356 return false;
1357 }
1358 break;
1359 case IND:
1360 {
1361 struct bfd_link_hash_entry *inh;
1362
1363 /* STRING is the name of the symbol we want to indirect
1364 to. */
1365 inh = bfd_link_hash_lookup (info->hash, string, true, copy,
1366 false);
1367 if (inh == (struct bfd_link_hash_entry *) NULL)
1368 return false;
1369 if (inh->type == bfd_link_hash_new)
1370 {
1371 inh->type = bfd_link_hash_undefined;
1372 inh->u.undef.abfd = abfd;
1373 bfd_link_add_undef (info->hash, inh);
1374 }
1375 h->type = bfd_link_hash_indirect;
1376 h->u.i.link = inh;
1377 }
1378 break;
1379 case SET:
1380 if (! (*info->callbacks->add_to_set) (info, h, bitsize, abfd,
1381 section, value))
1382 return false;
1383 break;
1384 case WARN:
1385 case WARNC:
1386 if (h->u.i.warning != NULL)
1387 {
1388 if (! (*info->callbacks->warning) (info, h->u.i.warning))
1389 return false;
1390 /* Only issue a warning once. */
1391 h->u.i.warning = NULL;
1392 }
1393 if (action == WARN)
1394 break;
1395 /* Fall through. */
1396 case CYCLE:
1397 h = h->u.i.link;
1398 cycle = true;
1399 break;
1400 case MWARN:
1401 {
1402 struct bfd_link_hash_entry *sub;
1403
1404 /* STRING is the warning to give. */
1405 sub = ((struct bfd_link_hash_entry *)
1406 bfd_hash_allocate (&info->hash->table,
1407 sizeof (struct bfd_link_hash_entry)));
1408 *sub = *h;
1409 h->type = bfd_link_hash_warning;
1410 h->u.i.link = sub;
1411 if (! copy)
1412 h->u.i.warning = string;
1413 else
1414 {
1415 char *w;
1416
1417 w = bfd_hash_allocate (&info->hash->table,
1418 strlen (string) + 1);
1419 strcpy (w, string);
1420 h->u.i.warning = w;
1421 }
1422 }
1423 break;
1424 }
1425 }
1426 while (cycle);
1427
1428 return true;
1429 }
1430 \f
1431 /* Generic final link routine. */
1432
1433 boolean
1434 _bfd_generic_final_link (abfd, info)
1435 bfd *abfd;
1436 struct bfd_link_info *info;
1437 {
1438 bfd *sub;
1439 asection *o;
1440 struct bfd_link_order *p;
1441 size_t outsymalloc;
1442 struct generic_write_global_symbol_info wginfo;
1443
1444 abfd->outsymbols = (asymbol **) NULL;
1445 abfd->symcount = 0;
1446 outsymalloc = 0;
1447
1448 /* Build the output symbol table. This also reads in the symbols
1449 for all the input BFDs, keeping them in the outsymbols field. */
1450 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1451 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1452 return false;
1453
1454 /* Accumulate the global symbols. */
1455 wginfo.output_bfd = abfd;
1456 wginfo.psymalloc = &outsymalloc;
1457 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1458 _bfd_generic_link_write_global_symbol,
1459 (PTR) &wginfo);
1460
1461 if (info->relocateable)
1462 {
1463 /* Allocate space for the output relocs for each section. */
1464 for (o = abfd->sections;
1465 o != (asection *) NULL;
1466 o = o->next)
1467 {
1468 o->reloc_count = 0;
1469 for (p = o->link_order_head;
1470 p != (struct bfd_link_order *) NULL;
1471 p = p->next)
1472 {
1473 if (p->type == bfd_indirect_link_order)
1474 {
1475 asection *input_section;
1476 bfd *input_bfd;
1477 bfd_size_type relsize;
1478 arelent **relocs;
1479 bfd_size_type reloc_count;
1480
1481 input_section = p->u.indirect.section;
1482 input_bfd = input_section->owner;
1483 relsize = bfd_get_reloc_upper_bound (input_bfd,
1484 input_section);
1485 relocs = (arelent **) bfd_xmalloc (relsize);
1486 reloc_count =
1487 bfd_canonicalize_reloc (input_bfd, input_section,
1488 relocs,
1489 bfd_get_outsymbols (input_bfd));
1490 BFD_ASSERT (reloc_count == input_section->reloc_count);
1491 o->reloc_count += reloc_count;
1492 free (relocs);
1493 }
1494 }
1495 if (o->reloc_count > 0)
1496 {
1497 o->orelocation = ((arelent **)
1498 bfd_alloc (abfd,
1499 (o->reloc_count
1500 * sizeof (arelent *))));
1501 /* Reset the count so that it can be used as an index
1502 when putting in the output relocs. */
1503 o->reloc_count = 0;
1504 }
1505 }
1506 }
1507
1508 /* Handle all the link order information for the sections. */
1509 for (o = abfd->sections;
1510 o != (asection *) NULL;
1511 o = o->next)
1512 {
1513 for (p = o->link_order_head;
1514 p != (struct bfd_link_order *) NULL;
1515 p = p->next)
1516 {
1517 if (! _bfd_default_link_order (abfd, info, o, p))
1518 return false;
1519 }
1520 }
1521
1522 return true;
1523 }
1524
1525 /* Add an output symbol to the output BFD. */
1526
1527 static boolean
1528 generic_add_output_symbol (output_bfd, psymalloc, sym)
1529 bfd *output_bfd;
1530 size_t *psymalloc;
1531 asymbol *sym;
1532 {
1533 if (output_bfd->symcount >= *psymalloc)
1534 {
1535 asymbol **newsyms;
1536
1537 if (*psymalloc == 0)
1538 *psymalloc = 124;
1539 else
1540 *psymalloc *= 2;
1541 if (output_bfd->outsymbols == (asymbol **) NULL)
1542 newsyms = (asymbol **) malloc (*psymalloc * sizeof (asymbol *));
1543 else
1544 newsyms = (asymbol **) realloc (output_bfd->outsymbols,
1545 *psymalloc * sizeof (asymbol *));
1546 if (newsyms == (asymbol **) NULL)
1547 {
1548 bfd_error = no_memory;
1549 return false;
1550 }
1551 output_bfd->outsymbols = newsyms;
1552 }
1553
1554 output_bfd->outsymbols[output_bfd->symcount] = sym;
1555 ++output_bfd->symcount;
1556
1557 return true;
1558 }
1559
1560 /* Handle the symbols for an input BFD. */
1561
1562 boolean
1563 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
1564 bfd *output_bfd;
1565 bfd *input_bfd;
1566 struct bfd_link_info *info;
1567 size_t *psymalloc;
1568 {
1569 size_t symsize;
1570 asymbol **sym_ptr;
1571 asymbol **sym_end;
1572
1573 symsize = get_symtab_upper_bound (input_bfd);
1574 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
1575 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
1576 input_bfd->outsymbols);
1577
1578 /* Create a filename symbol if we are supposed to. */
1579 if (info->create_object_symbols_section != (asection *) NULL)
1580 {
1581 asection *sec;
1582
1583 for (sec = input_bfd->sections;
1584 sec != (asection *) NULL;
1585 sec = sec->next)
1586 {
1587 if (sec->output_section == info->create_object_symbols_section)
1588 {
1589 asymbol *newsym;
1590
1591 newsym = bfd_make_empty_symbol (input_bfd);
1592 newsym->name = input_bfd->filename;
1593 newsym->value = 0;
1594 newsym->flags = BSF_LOCAL | BSF_FILE;
1595 newsym->section = sec;
1596
1597 if (! generic_add_output_symbol (output_bfd, psymalloc,
1598 newsym))
1599 return false;
1600
1601 break;
1602 }
1603 }
1604 }
1605
1606 /* Adjust the values of the globally visible symbols, and write out
1607 local symbols. */
1608 sym_ptr = bfd_get_outsymbols (input_bfd);
1609 sym_end = sym_ptr + bfd_get_symcount (input_bfd);
1610 for (; sym_ptr < sym_end; sym_ptr++)
1611 {
1612 asymbol *sym;
1613 struct generic_link_hash_entry *h;
1614 boolean output;
1615
1616 h = (struct generic_link_hash_entry *) NULL;
1617 sym = *sym_ptr;
1618 if ((sym->flags & (BSF_INDIRECT
1619 | BSF_WARNING
1620 | BSF_GLOBAL
1621 | BSF_CONSTRUCTOR
1622 | BSF_WEAK)) != 0
1623 || bfd_get_section (sym) == &bfd_und_section
1624 || bfd_is_com_section (bfd_get_section (sym))
1625 || bfd_get_section (sym) == &bfd_ind_section)
1626 {
1627 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
1628 bfd_asymbol_name (sym),
1629 false, false, true);
1630 if (h != (struct generic_link_hash_entry *) NULL)
1631 {
1632 /* Force all references to this symbol to point to
1633 the same area in memory. It is possible that
1634 this routine will be called with a hash table
1635 other than a generic hash table, so we double
1636 check that. */
1637 if (info->hash->creator == input_bfd->xvec)
1638 {
1639 if (h->sym != (asymbol *) NULL)
1640 *sym_ptr = sym = h->sym;
1641 }
1642
1643 switch (h->root.type)
1644 {
1645 default:
1646 case bfd_link_hash_new:
1647 abort ();
1648 case bfd_link_hash_undefined:
1649 case bfd_link_hash_weak:
1650 break;
1651 case bfd_link_hash_defined:
1652 sym->value = h->root.u.def.value;
1653 sym->section = h->root.u.def.section;
1654 sym->flags |= BSF_GLOBAL;
1655 break;
1656 case bfd_link_hash_common:
1657 sym->value = h->root.u.c.size;
1658 sym->flags |= BSF_GLOBAL;
1659 /* We do not set the section of the symbol to
1660 c.section. c.section is saved so that we know
1661 where to allocate the symbol if we define it. In
1662 this case the type is still bfd_link_hash_common,
1663 so we did not define it, so we do not want to use
1664 that section. */
1665 BFD_ASSERT (bfd_is_com_section (sym->section));
1666 break;
1667 }
1668 }
1669 }
1670
1671 /* This switch is straight from the old code in
1672 write_file_locals in ldsym.c. */
1673 if (info->strip == strip_some
1674 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
1675 false, false)
1676 == (struct bfd_hash_entry *) NULL))
1677 output = false;
1678 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
1679 {
1680 /* If this symbol is marked as occurring now, rather
1681 than at the end, output it now. This is used for
1682 COFF C_EXT FCN symbols. FIXME: There must be a
1683 better way. */
1684 if (bfd_asymbol_bfd (sym) == input_bfd
1685 && (sym->flags & BSF_NOT_AT_END) != 0)
1686 output = true;
1687 else
1688 output = false;
1689 }
1690 else if (sym->section == &bfd_ind_section)
1691 output = false;
1692 else if ((sym->flags & BSF_DEBUGGING) != 0)
1693 {
1694 if (info->strip == strip_none)
1695 output = true;
1696 else
1697 output = false;
1698 }
1699 else if (sym->section == &bfd_und_section
1700 || bfd_is_com_section (sym->section))
1701 output = false;
1702 else if ((sym->flags & BSF_LOCAL) != 0)
1703 {
1704 if ((sym->flags & BSF_WARNING) != 0)
1705 output = false;
1706 else
1707 {
1708 switch (info->discard)
1709 {
1710 default:
1711 case discard_all:
1712 output = false;
1713 break;
1714 case discard_l:
1715 if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
1716 && (info->lprefix_len == 1
1717 || strncmp (bfd_asymbol_name (sym), info->lprefix,
1718 info->lprefix_len) == 0))
1719 output = false;
1720 else
1721 output = true;
1722 break;
1723 case discard_none:
1724 output = true;
1725 break;
1726 }
1727 }
1728 }
1729 else if ((sym->flags & BSF_CONSTRUCTOR))
1730 {
1731 if (info->strip != strip_all)
1732 output = true;
1733 else
1734 output = false;
1735 }
1736 else
1737 abort ();
1738
1739 if (output)
1740 {
1741 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
1742 return false;
1743 if (h != (struct generic_link_hash_entry *) NULL)
1744 h->root.written = true;
1745 }
1746 }
1747
1748 return true;
1749 }
1750
1751 /* Write out a global symbol, if it hasn't already been written out.
1752 This is called for each symbol in the hash table. */
1753
1754 boolean
1755 _bfd_generic_link_write_global_symbol (h, data)
1756 struct generic_link_hash_entry *h;
1757 PTR data;
1758 {
1759 struct generic_write_global_symbol_info *wginfo =
1760 (struct generic_write_global_symbol_info *) data;
1761 asymbol *sym;
1762
1763 if (h->root.written)
1764 return true;
1765
1766 if (h->sym != (asymbol *) NULL)
1767 {
1768 sym = h->sym;
1769 BFD_ASSERT (strcmp (bfd_asymbol_name (sym), h->root.root.string) == 0);
1770 }
1771 else
1772 {
1773 sym = bfd_make_empty_symbol (wginfo->output_bfd);
1774 sym->name = h->root.root.string;
1775 sym->flags = 0;
1776 }
1777
1778 switch (h->root.type)
1779 {
1780 default:
1781 case bfd_link_hash_new:
1782 abort ();
1783 case bfd_link_hash_undefined:
1784 sym->section = &bfd_und_section;
1785 sym->value = 0;
1786 break;
1787 case bfd_link_hash_weak:
1788 sym->section = &bfd_und_section;
1789 sym->value = 0;
1790 sym->flags |= BSF_WEAK;
1791 case bfd_link_hash_defined:
1792 sym->section = h->root.u.def.section;
1793 sym->value = h->root.u.def.value;
1794 break;
1795 case bfd_link_hash_common:
1796 sym->value = h->root.u.c.size;
1797 /* Do not set the section; see _bfd_generic_link_output_symbols. */
1798 BFD_ASSERT (bfd_is_com_section (sym->section));
1799 break;
1800 case bfd_link_hash_indirect:
1801 case bfd_link_hash_warning:
1802 /* FIXME: What should we do here? */
1803 break;
1804 }
1805
1806 sym->flags |= BSF_GLOBAL;
1807
1808 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
1809 sym))
1810 {
1811 /* FIXME: No way to return failure. */
1812 abort ();
1813 }
1814
1815 h->root.written = true;
1816
1817 return true;
1818 }
1819 \f
1820 /* Allocate a new link_order for a section. */
1821
1822 struct bfd_link_order *
1823 bfd_new_link_order (abfd, section)
1824 bfd *abfd;
1825 asection *section;
1826 {
1827 struct bfd_link_order *new;
1828
1829 new = ((struct bfd_link_order *)
1830 bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
1831
1832 new->type = bfd_undefined_link_order;
1833 new->offset = 0;
1834 new->size = 0;
1835 new->next = (struct bfd_link_order *) NULL;
1836
1837 if (section->link_order_tail != (struct bfd_link_order *) NULL)
1838 section->link_order_tail->next = new;
1839 else
1840 section->link_order_head = new;
1841 section->link_order_tail = new;
1842
1843 return new;
1844 }
1845
1846 /* Default link order processing routine. */
1847
1848 boolean
1849 _bfd_default_link_order (abfd, info, sec, link_order)
1850 bfd *abfd;
1851 struct bfd_link_info *info;
1852 asection *sec;
1853 struct bfd_link_order *link_order;
1854 {
1855 switch (link_order->type)
1856 {
1857 case bfd_undefined_link_order:
1858 default:
1859 abort ();
1860 case bfd_indirect_link_order:
1861 return default_indirect_link_order (abfd, info, sec, link_order);
1862 case bfd_fill_link_order:
1863 return default_fill_link_order (abfd, info, sec, link_order);
1864 }
1865 }
1866
1867 /* Default routine to handle a bfd_fill_link_order. */
1868
1869 /*ARGSUSED*/
1870 static boolean
1871 default_fill_link_order (abfd, info, sec, link_order)
1872 bfd *abfd;
1873 struct bfd_link_info *info;
1874 asection *sec;
1875 struct bfd_link_order *link_order;
1876 {
1877 size_t size;
1878 char *space;
1879 size_t i;
1880 int fill;
1881
1882 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
1883
1884 size = (size_t) link_order->size;
1885 space = (char *) alloca (size);
1886 fill = link_order->u.fill.value;
1887 for (i = 0; i < size; i += 2)
1888 space[i] = fill >> 8;
1889 for (i = 1; i < size; i += 2)
1890 space[i] = fill;
1891 return bfd_set_section_contents (abfd, sec, space,
1892 (file_ptr) link_order->offset,
1893 link_order->size);
1894 }
1895
1896 /* Default routine to handle a bfd_indirect_link_order. */
1897
1898 static boolean
1899 default_indirect_link_order (output_bfd, info, output_section, link_order)
1900 bfd *output_bfd;
1901 struct bfd_link_info *info;
1902 asection *output_section;
1903 struct bfd_link_order *link_order;
1904 {
1905 asection *input_section;
1906 bfd *input_bfd;
1907 bfd_byte *contents;
1908
1909 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
1910
1911 if (link_order->size == 0)
1912 return true;
1913
1914 input_section = link_order->u.indirect.section;
1915 input_bfd = input_section->owner;
1916
1917 BFD_ASSERT (input_section->output_section == output_section);
1918 BFD_ASSERT (input_section->output_offset == link_order->offset);
1919 BFD_ASSERT (bfd_section_size (input_bfd, input_section) == link_order->size);
1920
1921 if (info->relocateable
1922 && input_section->reloc_count > 0
1923 && output_section->orelocation == (arelent **) NULL)
1924 {
1925 /* Space has not been allocated for the output relocations.
1926 This can happen when we are called by a specific backend
1927 because somebody is attempting to link together different
1928 types of object files. Handling this case correctly is
1929 difficult, and sometimes impossible. */
1930 abort ();
1931 }
1932
1933 /* Get the canonical symbols. The generic linker will always have
1934 retrieved them by this point, but we may be being called by a
1935 specific linker when linking different types of object files
1936 together. */
1937 if (bfd_get_outsymbols (input_bfd) == (asymbol **) NULL)
1938 {
1939 size_t symsize;
1940
1941 symsize = get_symtab_upper_bound (input_bfd);
1942 input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
1943 input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
1944 input_bfd->outsymbols);
1945 }
1946
1947 /* Get and relocate the section contents. */
1948 contents = (bfd_byte *) alloca (bfd_section_size (input_bfd, input_section));
1949 contents = (bfd_get_relocated_section_contents
1950 (output_bfd, info, link_order, contents, info->relocateable,
1951 bfd_get_outsymbols (input_bfd)));
1952
1953 /* Output the section contents. */
1954 if (! bfd_set_section_contents (output_bfd, output_section, (PTR) contents,
1955 link_order->offset, link_order->size))
1956 return false;
1957
1958 return true;
1959 }