PR29262, memory leak in pr_function_type
[binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright (C) 1995-2022 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain,
24 sac@cygnus.com
25
26 PE/PEI rearrangement (and code added): Donn Terry
27 Softway Systems, Inc. */
28
29 /* Hey look, some documentation [and in a place you expect to find it]!
30
31 The main reference for the pei format is "Microsoft Portable Executable
32 and Common Object File Format Specification 4.1". Get it if you need to
33 do some serious hacking on this code.
34
35 Another reference:
36 "Peering Inside the PE: A Tour of the Win32 Portable Executable
37 File Format", MSJ 1994, Volume 9.
38
39 The *sole* difference between the pe format and the pei format is that the
40 latter has an MSDOS 2.0 .exe header on the front that prints the message
41 "This app must be run under Windows." (or some such).
42 (FIXME: Whether that statement is *really* true or not is unknown.
43 Are there more subtle differences between pe and pei formats?
44 For now assume there aren't. If you find one, then for God sakes
45 document it here!)
46
47 The Microsoft docs use the word "image" instead of "executable" because
48 the former can also refer to a DLL (shared library). Confusion can arise
49 because the `i' in `pei' also refers to "image". The `pe' format can
50 also create images (i.e. executables), it's just that to run on a win32
51 system you need to use the pei format.
52
53 FIXME: Please add more docs here so the next poor fool that has to hack
54 on this code has a chance of getting something accomplished without
55 wasting too much time. */
56
57 #include "libpei.h"
58
59 static bool (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bool pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bool (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
72 NULL;
73 #else
74 coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
76 #endif
77
78 static bool pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
80
81 #define coff_mkobject pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
83
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code. */
86 typedef asection * asection_ptr;
87
88 typedef struct
89 {
90 bfd * abfd;
91 bfd_byte * data;
92 struct bfd_in_memory * bim;
93 unsigned short magic;
94
95 arelent * reltab;
96 unsigned int relcount;
97
98 coff_symbol_type * sym_cache;
99 coff_symbol_type * sym_ptr;
100 unsigned int sym_index;
101
102 unsigned int * sym_table;
103 unsigned int * table_ptr;
104
105 combined_entry_type * native_syms;
106 combined_entry_type * native_ptr;
107
108 coff_symbol_type ** sym_ptr_table;
109 coff_symbol_type ** sym_ptr_ptr;
110
111 unsigned int sec_index;
112
113 char * string_table;
114 char * string_ptr;
115 char * end_string_ptr;
116
117 SYMENT * esym_table;
118 SYMENT * esym_ptr;
119
120 struct internal_reloc * int_reltab;
121 }
122 pe_ILF_vars;
123 #endif /* COFF_IMAGE_WITH_PE */
124
125 bfd_cleanup coff_real_object_p
126 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
127 \f
128 #ifndef NO_COFF_RELOCS
129 static void
130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
131 {
132 RELOC *reloc_src = (RELOC *) src;
133 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
134
135 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
136 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
140 #endif
141 }
142
143 static unsigned int
144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
145 {
146 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
148
149 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
152
153 #ifdef SWAP_OUT_RELOC_OFFSET
154 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
155 #endif
156 #ifdef SWAP_OUT_RELOC_EXTRA
157 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
158 #endif
159 return RELSZ;
160 }
161 #endif /* not NO_COFF_RELOCS */
162
163 #ifdef COFF_IMAGE_WITH_PE
164 #undef FILHDR
165 #define FILHDR struct external_PEI_IMAGE_hdr
166 #endif
167
168 static void
169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
170 {
171 FILHDR *filehdr_src = (FILHDR *) src;
172 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
173
174 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
175 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
176 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
178 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
179 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
180
181 /* Other people's tools sometimes generate headers with an nsyms but
182 a zero symptr. */
183 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
184 {
185 filehdr_dst->f_nsyms = 0;
186 filehdr_dst->f_flags |= F_LSYMS;
187 }
188
189 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
190 }
191
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_pex64
195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
196 #elif defined COFF_WITH_pep
197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
198 #else
199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
200 #endif
201
202 static void
203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
204 {
205 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
206 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
207
208 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
209
210 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
211 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
212 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
213 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
214 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
215 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
216 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
217
218 /* MS handles overflow of line numbers by carrying into the reloc
219 field (it appears). Since it's supposed to be zero for PE
220 *IMAGE* format, that's safe. This is still a bit iffy. */
221 #ifdef COFF_IMAGE_WITH_PE
222 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
223 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
224 scnhdr_int->s_nreloc = 0;
225 #else
226 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
227 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
228 #endif
229
230 if (scnhdr_int->s_vaddr != 0)
231 {
232 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
233 /* Do not cut upper 32-bits for 64-bit vma. */
234 #if !defined(COFF_WITH_pex64) && !defined(COFF_WITH_peAArch64)
235 scnhdr_int->s_vaddr &= 0xffffffff;
236 #endif
237 }
238
239 #ifndef COFF_NO_HACK_SCNHDR_SIZE
240 /* If this section holds uninitialized data and is from an object file
241 or from an executable image that has not initialized the field,
242 or if the image is an executable file and the physical size is padded,
243 use the virtual size (stored in s_paddr) instead. */
244 if (scnhdr_int->s_paddr > 0
245 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
246 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
247 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
248 /* This code used to set scnhdr_int->s_paddr to 0. However,
249 coff_set_alignment_hook stores s_paddr in virt_size, which
250 only works if it correctly holds the virtual size of the
251 section. */
252 scnhdr_int->s_size = scnhdr_int->s_paddr;
253 #endif
254 }
255
256 static bool
257 pe_mkobject (bfd * abfd)
258 {
259 pe_data_type *pe;
260 size_t amt = sizeof (pe_data_type);
261
262 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
263
264 if (abfd->tdata.pe_obj_data == 0)
265 return false;
266
267 pe = pe_data (abfd);
268
269 pe->coff.pe = 1;
270
271 /* in_reloc_p is architecture dependent. */
272 pe->in_reloc_p = in_reloc_p;
273
274 /* Default DOS message string. */
275 pe->dos_message[0] = 0x0eba1f0e;
276 pe->dos_message[1] = 0xcd09b400;
277 pe->dos_message[2] = 0x4c01b821;
278 pe->dos_message[3] = 0x685421cd;
279 pe->dos_message[4] = 0x70207369;
280 pe->dos_message[5] = 0x72676f72;
281 pe->dos_message[6] = 0x63206d61;
282 pe->dos_message[7] = 0x6f6e6e61;
283 pe->dos_message[8] = 0x65622074;
284 pe->dos_message[9] = 0x6e757220;
285 pe->dos_message[10] = 0x206e6920;
286 pe->dos_message[11] = 0x20534f44;
287 pe->dos_message[12] = 0x65646f6d;
288 pe->dos_message[13] = 0x0a0d0d2e;
289 pe->dos_message[14] = 0x24;
290 pe->dos_message[15] = 0x0;
291
292 memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
293 return true;
294 }
295
296 /* Create the COFF backend specific information. */
297
298 static void *
299 pe_mkobject_hook (bfd * abfd,
300 void * filehdr,
301 void * aouthdr ATTRIBUTE_UNUSED)
302 {
303 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
304 pe_data_type *pe;
305
306 if (! pe_mkobject (abfd))
307 return NULL;
308
309 pe = pe_data (abfd);
310 pe->coff.sym_filepos = internal_f->f_symptr;
311 /* These members communicate important constants about the symbol
312 table to GDB's symbol-reading code. These `constants'
313 unfortunately vary among coff implementations... */
314 pe->coff.local_n_btmask = N_BTMASK;
315 pe->coff.local_n_btshft = N_BTSHFT;
316 pe->coff.local_n_tmask = N_TMASK;
317 pe->coff.local_n_tshift = N_TSHIFT;
318 pe->coff.local_symesz = SYMESZ;
319 pe->coff.local_auxesz = AUXESZ;
320 pe->coff.local_linesz = LINESZ;
321
322 pe->coff.timestamp = internal_f->f_timdat;
323
324 obj_raw_syment_count (abfd) =
325 obj_conv_table_size (abfd) =
326 internal_f->f_nsyms;
327
328 pe->real_flags = internal_f->f_flags;
329
330 if ((internal_f->f_flags & F_DLL) != 0)
331 pe->dll = 1;
332
333 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
334 abfd->flags |= HAS_DEBUG;
335
336 #ifdef COFF_IMAGE_WITH_PE
337 if (aouthdr)
338 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
339 #endif
340
341 #ifdef ARM
342 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
343 coff_data (abfd) ->flags = 0;
344 #endif
345
346 memcpy (pe->dos_message, internal_f->pe.dos_message,
347 sizeof (pe->dos_message));
348
349 return (void *) pe;
350 }
351
352 static bool
353 pe_print_private_bfd_data (bfd *abfd, void * vfile)
354 {
355 FILE *file = (FILE *) vfile;
356
357 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
358 return false;
359
360 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
361 return true;
362
363 fputc ('\n', file);
364
365 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
366 }
367
368 /* Copy any private info we understand from the input bfd
369 to the output bfd. */
370
371 static bool
372 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
373 {
374 /* PR binutils/716: Copy the large address aware flag.
375 XXX: Should we be copying other flags or other fields in the pe_data()
376 structure ? */
377 if (pe_data (obfd) != NULL
378 && pe_data (ibfd) != NULL
379 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
380 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
381
382 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
383 return false;
384
385 if (pe_saved_coff_bfd_copy_private_bfd_data)
386 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
387
388 return true;
389 }
390
391 #define coff_bfd_copy_private_section_data \
392 _bfd_XX_bfd_copy_private_section_data
393
394 #define coff_get_symbol_info _bfd_XX_get_symbol_info
395
396 #ifdef COFF_IMAGE_WITH_PE
397 \f
398 /* Code to handle Microsoft's Image Library Format.
399 Also known as LINK6 format.
400 Documentation about this format can be found at:
401
402 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
403
404 /* The following constants specify the sizes of the various data
405 structures that we have to create in order to build a bfd describing
406 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
407 and SIZEOF_IDATA7 below is to allow for the possibility that we might
408 need a padding byte in order to ensure 16 bit alignment for the section's
409 contents.
410
411 The value for SIZEOF_ILF_STRINGS is computed as follows:
412
413 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
414 per symbol for their names (longest section name is .idata$x).
415
416 There will be two symbols for the imported value, one the symbol name
417 and one with _imp__ prefixed. Allowing for the terminating nul's this
418 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
419
420 The strings in the string table must start STRING__SIZE_SIZE bytes into
421 the table in order to for the string lookup code in coffgen/coffcode to
422 work. */
423 #define NUM_ILF_RELOCS 8
424 #define NUM_ILF_SECTIONS 6
425 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
426
427 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
428 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
429 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
430 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
431 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
432 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
433 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
434 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
435 + 21 + strlen (source_dll) \
436 + NUM_ILF_SECTIONS * 9 \
437 + STRING_SIZE_SIZE)
438 #define SIZEOF_IDATA2 (5 * 4)
439
440 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
441 #ifdef COFF_WITH_pex64
442 #define SIZEOF_IDATA4 (2 * 4)
443 #define SIZEOF_IDATA5 (2 * 4)
444 #else
445 #define SIZEOF_IDATA4 (1 * 4)
446 #define SIZEOF_IDATA5 (1 * 4)
447 #endif
448
449 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
450 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
451 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
452
453 #define ILF_DATA_SIZE \
454 + SIZEOF_ILF_SYMS \
455 + SIZEOF_ILF_SYM_TABLE \
456 + SIZEOF_ILF_NATIVE_SYMS \
457 + SIZEOF_ILF_SYM_PTR_TABLE \
458 + SIZEOF_ILF_EXT_SYMS \
459 + SIZEOF_ILF_RELOCS \
460 + SIZEOF_ILF_INT_RELOCS \
461 + SIZEOF_ILF_STRINGS \
462 + SIZEOF_IDATA2 \
463 + SIZEOF_IDATA4 \
464 + SIZEOF_IDATA5 \
465 + SIZEOF_IDATA6 \
466 + SIZEOF_IDATA7 \
467 + SIZEOF_ILF_SECTIONS \
468 + MAX_TEXT_SECTION_SIZE
469
470 /* Create an empty relocation against the given symbol. */
471
472 static void
473 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
474 bfd_vma address,
475 bfd_reloc_code_real_type reloc,
476 struct bfd_symbol ** sym,
477 unsigned int sym_index)
478 {
479 arelent * entry;
480 struct internal_reloc * internal;
481
482 entry = vars->reltab + vars->relcount;
483 internal = vars->int_reltab + vars->relcount;
484
485 entry->address = address;
486 entry->addend = 0;
487 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
488 entry->sym_ptr_ptr = sym;
489
490 internal->r_vaddr = address;
491 internal->r_symndx = sym_index;
492 internal->r_type = entry->howto ? entry->howto->type : 0;
493
494 vars->relcount ++;
495
496 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
497 }
498
499 /* Create an empty relocation against the given section. */
500
501 static void
502 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
503 bfd_vma address,
504 bfd_reloc_code_real_type reloc,
505 asection_ptr sec)
506 {
507 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
508 coff_section_data (vars->abfd, sec)->i);
509 }
510
511 /* Move the queued relocs into the given section. */
512
513 static void
514 pe_ILF_save_relocs (pe_ILF_vars * vars,
515 asection_ptr sec)
516 {
517 /* Make sure that there is somewhere to store the internal relocs. */
518 if (coff_section_data (vars->abfd, sec) == NULL)
519 /* We should probably return an error indication here. */
520 abort ();
521
522 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
523 coff_section_data (vars->abfd, sec)->keep_relocs = true;
524
525 sec->relocation = vars->reltab;
526 sec->reloc_count = vars->relcount;
527 sec->flags |= SEC_RELOC;
528
529 vars->reltab += vars->relcount;
530 vars->int_reltab += vars->relcount;
531 vars->relcount = 0;
532
533 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
534 }
535
536 /* Create a global symbol and add it to the relevant tables. */
537
538 static void
539 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
540 const char * prefix,
541 const char * symbol_name,
542 asection_ptr section,
543 flagword extra_flags)
544 {
545 coff_symbol_type * sym;
546 combined_entry_type * ent;
547 SYMENT * esym;
548 unsigned short sclass;
549
550 if (extra_flags & BSF_LOCAL)
551 sclass = C_STAT;
552 else
553 sclass = C_EXT;
554
555 #ifdef THUMBPEMAGIC
556 if (vars->magic == THUMBPEMAGIC)
557 {
558 if (extra_flags & BSF_FUNCTION)
559 sclass = C_THUMBEXTFUNC;
560 else if (extra_flags & BSF_LOCAL)
561 sclass = C_THUMBSTAT;
562 else
563 sclass = C_THUMBEXT;
564 }
565 #endif
566
567 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
568
569 sym = vars->sym_ptr;
570 ent = vars->native_ptr;
571 esym = vars->esym_ptr;
572
573 /* Copy the symbol's name into the string table. */
574 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
575
576 if (section == NULL)
577 section = bfd_und_section_ptr;
578
579 /* Initialise the external symbol. */
580 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
581 esym->e.e.e_offset);
582 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
583 esym->e_sclass[0] = sclass;
584
585 /* The following initialisations are unnecessary - the memory is
586 zero initialised. They are just kept here as reminders. */
587
588 /* Initialise the internal symbol structure. */
589 ent->u.syment.n_sclass = sclass;
590 ent->u.syment.n_scnum = section->target_index;
591 ent->u.syment._n._n_n._n_offset = (uintptr_t) sym;
592 ent->is_sym = true;
593
594 sym->symbol.the_bfd = vars->abfd;
595 sym->symbol.name = vars->string_ptr;
596 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
597 sym->symbol.section = section;
598 sym->native = ent;
599
600 * vars->table_ptr = vars->sym_index;
601 * vars->sym_ptr_ptr = sym;
602
603 /* Adjust pointers for the next symbol. */
604 vars->sym_index ++;
605 vars->sym_ptr ++;
606 vars->sym_ptr_ptr ++;
607 vars->table_ptr ++;
608 vars->native_ptr ++;
609 vars->esym_ptr ++;
610 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
611
612 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
613 }
614
615 /* Create a section. */
616
617 static asection_ptr
618 pe_ILF_make_a_section (pe_ILF_vars * vars,
619 const char * name,
620 unsigned int size,
621 flagword extra_flags)
622 {
623 asection_ptr sec;
624 flagword flags;
625 intptr_t alignment;
626
627 sec = bfd_make_section_old_way (vars->abfd, name);
628 if (sec == NULL)
629 return NULL;
630
631 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
632
633 bfd_set_section_flags (sec, flags | extra_flags);
634
635 bfd_set_section_alignment (sec, 2);
636
637 /* Check that we will not run out of space. */
638 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
639
640 /* Set the section size and contents. The actual
641 contents are filled in by our parent. */
642 bfd_set_section_size (sec, (bfd_size_type) size);
643 sec->contents = vars->data;
644 sec->target_index = vars->sec_index ++;
645
646 /* Advance data pointer in the vars structure. */
647 vars->data += size;
648
649 /* Skip the padding byte if it was not needed.
650 The logic here is that if the string length is odd,
651 then the entire string length, including the null byte,
652 is even and so the extra, padding byte, is not needed. */
653 if (size & 1)
654 vars->data --;
655
656 /* PR 18758: See note in pe_ILF_buid_a_bfd. We must make sure that we
657 preserve host alignment requirements. The BFD_ASSERTs in this
658 functions will warn us if we run out of room, but we should
659 already have enough padding built in to ILF_DATA_SIZE. */
660 #if GCC_VERSION >= 3000
661 alignment = __alignof__ (struct coff_section_tdata);
662 #else
663 alignment = 8;
664 #endif
665 vars->data
666 = (bfd_byte *) (((intptr_t) vars->data + alignment - 1) & -alignment);
667
668 /* Create a coff_section_tdata structure for our use. */
669 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
670 vars->data += sizeof (struct coff_section_tdata);
671
672 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
673
674 /* Create a symbol to refer to this section. */
675 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
676
677 /* Cache the index to the symbol in the coff_section_data structure. */
678 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
679
680 return sec;
681 }
682
683 /* This structure contains the code that goes into the .text section
684 in order to perform a jump into the DLL lookup table. The entries
685 in the table are index by the magic number used to represent the
686 machine type in the PE file. The contents of the data[] arrays in
687 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
688 The SIZE field says how many bytes in the DATA array are actually
689 used. The OFFSET field says where in the data array the address
690 of the .idata$5 section should be placed. */
691 #define MAX_TEXT_SECTION_SIZE 32
692
693 typedef struct
694 {
695 unsigned short magic;
696 unsigned char data[MAX_TEXT_SECTION_SIZE];
697 unsigned int size;
698 unsigned int offset;
699 }
700 jump_table;
701
702 static const jump_table jtab[] =
703 {
704 #ifdef I386MAGIC
705 { I386MAGIC,
706 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
707 8, 2
708 },
709 #endif
710
711 #ifdef AMD64MAGIC
712 { AMD64MAGIC,
713 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
714 8, 2
715 },
716 #endif
717
718 #ifdef MC68MAGIC
719 { MC68MAGIC,
720 { /* XXX fill me in */ },
721 0, 0
722 },
723 #endif
724
725 #ifdef MIPS_ARCH_MAGIC_WINCE
726 { MIPS_ARCH_MAGIC_WINCE,
727 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
728 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
729 16, 0
730 },
731 #endif
732
733 #ifdef SH_ARCH_MAGIC_WINCE
734 { SH_ARCH_MAGIC_WINCE,
735 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
736 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
737 12, 8
738 },
739 #endif
740
741 #ifdef AARCH64MAGIC
742 /* We don't currently support jumping to DLLs, so if
743 someone does try emit a runtime trap. Through UDF #0. */
744 { AARCH64MAGIC,
745 { 0x00, 0x00, 0x00, 0x00 },
746 4, 0
747 },
748
749 #endif
750
751 #ifdef ARMPEMAGIC
752 { ARMPEMAGIC,
753 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
754 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
755 12, 8
756 },
757 #endif
758
759 #ifdef THUMBPEMAGIC
760 { THUMBPEMAGIC,
761 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
762 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
763 16, 12
764 },
765 #endif
766 { 0, { 0 }, 0, 0 }
767 };
768
769 #ifndef NUM_ENTRIES
770 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
771 #endif
772
773 /* Build a full BFD from the information supplied in a ILF object. */
774
775 static bool
776 pe_ILF_build_a_bfd (bfd * abfd,
777 unsigned int magic,
778 char * symbol_name,
779 char * source_dll,
780 unsigned int ordinal,
781 unsigned int types)
782 {
783 bfd_byte * ptr;
784 pe_ILF_vars vars;
785 struct internal_filehdr internal_f;
786 unsigned int import_type;
787 unsigned int import_name_type;
788 asection_ptr id4, id5, id6 = NULL, text = NULL;
789 coff_symbol_type ** imp_sym;
790 unsigned int imp_index;
791 intptr_t alignment;
792
793 /* Decode and verify the types field of the ILF structure. */
794 import_type = types & 0x3;
795 import_name_type = (types & 0x1c) >> 2;
796
797 switch (import_type)
798 {
799 case IMPORT_CODE:
800 case IMPORT_DATA:
801 break;
802
803 case IMPORT_CONST:
804 /* XXX code yet to be written. */
805 /* xgettext:c-format */
806 _bfd_error_handler (_("%pB: unhandled import type; %x"),
807 abfd, import_type);
808 return false;
809
810 default:
811 /* xgettext:c-format */
812 _bfd_error_handler (_("%pB: unrecognized import type; %x"),
813 abfd, import_type);
814 return false;
815 }
816
817 switch (import_name_type)
818 {
819 case IMPORT_ORDINAL:
820 case IMPORT_NAME:
821 case IMPORT_NAME_NOPREFIX:
822 case IMPORT_NAME_UNDECORATE:
823 break;
824
825 default:
826 /* xgettext:c-format */
827 _bfd_error_handler (_("%pB: unrecognized import name type; %x"),
828 abfd, import_name_type);
829 return false;
830 }
831
832 /* Initialise local variables.
833
834 Note these are kept in a structure rather than being
835 declared as statics since bfd frowns on global variables.
836
837 We are going to construct the contents of the BFD in memory,
838 so allocate all the space that we will need right now. */
839 vars.bim
840 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
841 if (vars.bim == NULL)
842 return false;
843
844 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
845 vars.bim->buffer = ptr;
846 vars.bim->size = ILF_DATA_SIZE;
847 if (ptr == NULL)
848 goto error_return;
849
850 /* Initialise the pointers to regions of the memory and the
851 other contents of the pe_ILF_vars structure as well. */
852 vars.sym_cache = (coff_symbol_type *) ptr;
853 vars.sym_ptr = (coff_symbol_type *) ptr;
854 vars.sym_index = 0;
855 ptr += SIZEOF_ILF_SYMS;
856
857 vars.sym_table = (unsigned int *) ptr;
858 vars.table_ptr = (unsigned int *) ptr;
859 ptr += SIZEOF_ILF_SYM_TABLE;
860
861 vars.native_syms = (combined_entry_type *) ptr;
862 vars.native_ptr = (combined_entry_type *) ptr;
863 ptr += SIZEOF_ILF_NATIVE_SYMS;
864
865 vars.sym_ptr_table = (coff_symbol_type **) ptr;
866 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
867 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
868
869 vars.esym_table = (SYMENT *) ptr;
870 vars.esym_ptr = (SYMENT *) ptr;
871 ptr += SIZEOF_ILF_EXT_SYMS;
872
873 vars.reltab = (arelent *) ptr;
874 vars.relcount = 0;
875 ptr += SIZEOF_ILF_RELOCS;
876
877 vars.int_reltab = (struct internal_reloc *) ptr;
878 ptr += SIZEOF_ILF_INT_RELOCS;
879
880 vars.string_table = (char *) ptr;
881 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
882 ptr += SIZEOF_ILF_STRINGS;
883 vars.end_string_ptr = (char *) ptr;
884
885 /* The remaining space in bim->buffer is used
886 by the pe_ILF_make_a_section() function. */
887
888 /* PR 18758: Make sure that the data area is sufficiently aligned for
889 struct coff_section_tdata. __alignof__ is a gcc extension, hence
890 the test of GCC_VERSION. For other compilers we assume 8 byte
891 alignment. */
892 #if GCC_VERSION >= 3000
893 alignment = __alignof__ (struct coff_section_tdata);
894 #else
895 alignment = 8;
896 #endif
897 ptr = (bfd_byte *) (((intptr_t) ptr + alignment - 1) & -alignment);
898
899 vars.data = ptr;
900 vars.abfd = abfd;
901 vars.sec_index = 0;
902 vars.magic = magic;
903
904 /* Create the initial .idata$<n> sections:
905 [.idata$2: Import Directory Table -- not needed]
906 .idata$4: Import Lookup Table
907 .idata$5: Import Address Table
908
909 Note we do not create a .idata$3 section as this is
910 created for us by the linker script. */
911 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
912 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
913 if (id4 == NULL || id5 == NULL)
914 goto error_return;
915
916 /* Fill in the contents of these sections. */
917 if (import_name_type == IMPORT_ORDINAL)
918 {
919 if (ordinal == 0)
920 /* See PR 20907 for a reproducer. */
921 goto error_return;
922
923 #if defined(COFF_WITH_pex64) || defined(COFF_WITH_peAArch64)
924 ((unsigned int *) id4->contents)[0] = ordinal;
925 ((unsigned int *) id4->contents)[1] = 0x80000000;
926 ((unsigned int *) id5->contents)[0] = ordinal;
927 ((unsigned int *) id5->contents)[1] = 0x80000000;
928 #else
929 * (unsigned int *) id4->contents = ordinal | 0x80000000;
930 * (unsigned int *) id5->contents = ordinal | 0x80000000;
931 #endif
932 }
933 else
934 {
935 char * symbol;
936 unsigned int len;
937
938 /* Create .idata$6 - the Hint Name Table. */
939 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
940 if (id6 == NULL)
941 goto error_return;
942
943 /* If necessary, trim the import symbol name. */
944 symbol = symbol_name;
945
946 /* As used by MS compiler, '_', '@', and '?' are alternative
947 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
948 '@' used for fastcall (in C), '_' everywhere else. Only one
949 of these is used for a symbol. We strip this leading char for
950 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
951 PE COFF 6.0 spec (section 8.3, Import Name Type). */
952
953 if (import_name_type != IMPORT_NAME)
954 {
955 char c = symbol[0];
956
957 /* Check that we don't remove for targets with empty
958 USER_LABEL_PREFIX the leading underscore. */
959 if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
960 || c == '@' || c == '?')
961 symbol++;
962 }
963
964 len = strlen (symbol);
965 if (import_name_type == IMPORT_NAME_UNDECORATE)
966 {
967 /* Truncate at the first '@'. */
968 char *at = strchr (symbol, '@');
969
970 if (at != NULL)
971 len = at - symbol;
972 }
973
974 id6->contents[0] = ordinal & 0xff;
975 id6->contents[1] = ordinal >> 8;
976
977 memcpy ((char *) id6->contents + 2, symbol, len);
978 id6->contents[len + 2] = '\0';
979 }
980
981 if (import_name_type != IMPORT_ORDINAL)
982 {
983 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
984 pe_ILF_save_relocs (&vars, id4);
985
986 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
987 pe_ILF_save_relocs (&vars, id5);
988 }
989
990 /* Create an import symbol. */
991 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
992 imp_sym = vars.sym_ptr_ptr - 1;
993 imp_index = vars.sym_index - 1;
994
995 /* Create extra sections depending upon the type of import we are dealing with. */
996 switch (import_type)
997 {
998 int i;
999
1000 case IMPORT_CODE:
1001 /* CODE functions are special, in that they get a trampoline that
1002 jumps to the main import symbol. Create a .text section to hold it.
1003 First we need to look up its contents in the jump table. */
1004 for (i = NUM_ENTRIES (jtab); i--;)
1005 {
1006 if (jtab[i].size == 0)
1007 continue;
1008 if (jtab[i].magic == magic)
1009 break;
1010 }
1011 /* If we did not find a matching entry something is wrong. */
1012 if (i < 0)
1013 abort ();
1014
1015 /* Create the .text section. */
1016 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
1017 if (text == NULL)
1018 goto error_return;
1019
1020 /* Copy in the jump code. */
1021 memcpy (text->contents, jtab[i].data, jtab[i].size);
1022
1023 /* Create a reloc for the data in the text section. */
1024 #ifdef MIPS_ARCH_MAGIC_WINCE
1025 if (magic == MIPS_ARCH_MAGIC_WINCE)
1026 {
1027 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
1028 (struct bfd_symbol **) imp_sym,
1029 imp_index);
1030 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
1031 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
1032 (struct bfd_symbol **) imp_sym,
1033 imp_index);
1034 }
1035 else
1036 #endif
1037 #ifdef AMD64MAGIC
1038 if (magic == AMD64MAGIC)
1039 {
1040 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1041 BFD_RELOC_32_PCREL, (asymbol **) imp_sym,
1042 imp_index);
1043 }
1044 else
1045 #endif
1046 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1047 BFD_RELOC_32, (asymbol **) imp_sym,
1048 imp_index);
1049
1050 pe_ILF_save_relocs (& vars, text);
1051 break;
1052
1053 case IMPORT_DATA:
1054 break;
1055
1056 default:
1057 /* XXX code not yet written. */
1058 abort ();
1059 }
1060
1061 /* Initialise the bfd. */
1062 memset (& internal_f, 0, sizeof (internal_f));
1063
1064 internal_f.f_magic = magic;
1065 internal_f.f_symptr = 0;
1066 internal_f.f_nsyms = 0;
1067 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1068
1069 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1070 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1071 goto error_return;
1072
1073 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1074 goto error_return;
1075
1076 coff_data (abfd)->pe = 1;
1077 #ifdef THUMBPEMAGIC
1078 if (vars.magic == THUMBPEMAGIC)
1079 /* Stop some linker warnings about thumb code not supporting interworking. */
1080 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1081 #endif
1082
1083 /* Switch from file contents to memory contents. */
1084 bfd_cache_close (abfd);
1085
1086 abfd->iostream = (void *) vars.bim;
1087 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1088 abfd->iovec = &_bfd_memory_iovec;
1089 abfd->where = 0;
1090 abfd->origin = 0;
1091 obj_sym_filepos (abfd) = 0;
1092
1093 /* Now create a symbol describing the imported value. */
1094 switch (import_type)
1095 {
1096 case IMPORT_CODE:
1097 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1098 BSF_NOT_AT_END | BSF_FUNCTION);
1099
1100 break;
1101
1102 case IMPORT_DATA:
1103 /* Nothing to do here. */
1104 break;
1105
1106 default:
1107 /* XXX code not yet written. */
1108 abort ();
1109 }
1110
1111 /* Create an import symbol for the DLL, without the .dll suffix. */
1112 ptr = (bfd_byte *) strrchr (source_dll, '.');
1113 if (ptr)
1114 * ptr = 0;
1115 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1116 if (ptr)
1117 * ptr = '.';
1118
1119 /* Point the bfd at the symbol table. */
1120 obj_symbols (abfd) = vars.sym_cache;
1121 abfd->symcount = vars.sym_index;
1122
1123 obj_raw_syments (abfd) = vars.native_syms;
1124 obj_raw_syment_count (abfd) = vars.sym_index;
1125
1126 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1127 obj_coff_keep_syms (abfd) = true;
1128
1129 obj_convert (abfd) = vars.sym_table;
1130 obj_conv_table_size (abfd) = vars.sym_index;
1131
1132 obj_coff_strings (abfd) = vars.string_table;
1133 obj_coff_keep_strings (abfd) = true;
1134
1135 abfd->flags |= HAS_SYMS;
1136
1137 return true;
1138
1139 error_return:
1140 free (vars.bim->buffer);
1141 free (vars.bim);
1142 return false;
1143 }
1144
1145 /* We have detected a Image Library Format archive element.
1146 Decode the element and return the appropriate target. */
1147
1148 static bfd_cleanup
1149 pe_ILF_object_p (bfd * abfd)
1150 {
1151 bfd_byte buffer[14];
1152 bfd_byte * ptr;
1153 char * symbol_name;
1154 char * source_dll;
1155 unsigned int machine;
1156 bfd_size_type size;
1157 unsigned int ordinal;
1158 unsigned int types;
1159 unsigned int magic;
1160
1161 /* Upon entry the first six bytes of the ILF header have
1162 already been read. Now read the rest of the header. */
1163 if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1164 return NULL;
1165
1166 ptr = buffer;
1167
1168 machine = H_GET_16 (abfd, ptr);
1169 ptr += 2;
1170
1171 /* Check that the machine type is recognised. */
1172 magic = 0;
1173
1174 switch (machine)
1175 {
1176 case IMAGE_FILE_MACHINE_UNKNOWN:
1177 case IMAGE_FILE_MACHINE_ALPHA:
1178 case IMAGE_FILE_MACHINE_ALPHA64:
1179 case IMAGE_FILE_MACHINE_IA64:
1180 break;
1181
1182 case IMAGE_FILE_MACHINE_I386:
1183 #ifdef I386MAGIC
1184 magic = I386MAGIC;
1185 #endif
1186 break;
1187
1188 case IMAGE_FILE_MACHINE_AMD64:
1189 #ifdef AMD64MAGIC
1190 magic = AMD64MAGIC;
1191 #endif
1192 break;
1193
1194 case IMAGE_FILE_MACHINE_R3000:
1195 case IMAGE_FILE_MACHINE_R4000:
1196 case IMAGE_FILE_MACHINE_R10000:
1197
1198 case IMAGE_FILE_MACHINE_MIPS16:
1199 case IMAGE_FILE_MACHINE_MIPSFPU:
1200 case IMAGE_FILE_MACHINE_MIPSFPU16:
1201 #ifdef MIPS_ARCH_MAGIC_WINCE
1202 magic = MIPS_ARCH_MAGIC_WINCE;
1203 #endif
1204 break;
1205
1206 case IMAGE_FILE_MACHINE_SH3:
1207 case IMAGE_FILE_MACHINE_SH4:
1208 #ifdef SH_ARCH_MAGIC_WINCE
1209 magic = SH_ARCH_MAGIC_WINCE;
1210 #endif
1211 break;
1212
1213 case IMAGE_FILE_MACHINE_ARM:
1214 #ifdef ARMPEMAGIC
1215 magic = ARMPEMAGIC;
1216 #endif
1217 break;
1218
1219 case IMAGE_FILE_MACHINE_ARM64:
1220 #ifdef AARCH64MAGIC
1221 magic = AARCH64MAGIC;
1222 #endif
1223 break;
1224
1225 case IMAGE_FILE_MACHINE_THUMB:
1226 #ifdef THUMBPEMAGIC
1227 {
1228 extern const bfd_target TARGET_LITTLE_SYM;
1229
1230 if (abfd->xvec == & TARGET_LITTLE_SYM)
1231 magic = THUMBPEMAGIC;
1232 }
1233 #endif
1234 break;
1235
1236 case IMAGE_FILE_MACHINE_POWERPC:
1237 /* We no longer support PowerPC. */
1238 default:
1239 _bfd_error_handler
1240 /* xgettext:c-format */
1241 (_("%pB: unrecognised machine type (0x%x)"
1242 " in Import Library Format archive"),
1243 abfd, machine);
1244 bfd_set_error (bfd_error_malformed_archive);
1245
1246 return NULL;
1247 break;
1248 }
1249
1250 if (magic == 0)
1251 {
1252 _bfd_error_handler
1253 /* xgettext:c-format */
1254 (_("%pB: recognised but unhandled machine type (0x%x)"
1255 " in Import Library Format archive"),
1256 abfd, machine);
1257 bfd_set_error (bfd_error_wrong_format);
1258
1259 return NULL;
1260 }
1261
1262 /* We do not bother to check the date.
1263 date = H_GET_32 (abfd, ptr); */
1264 ptr += 4;
1265
1266 size = H_GET_32 (abfd, ptr);
1267 ptr += 4;
1268
1269 if (size == 0)
1270 {
1271 _bfd_error_handler
1272 (_("%pB: size field is zero in Import Library Format header"), abfd);
1273 bfd_set_error (bfd_error_malformed_archive);
1274
1275 return NULL;
1276 }
1277
1278 ordinal = H_GET_16 (abfd, ptr);
1279 ptr += 2;
1280
1281 types = H_GET_16 (abfd, ptr);
1282 /* ptr += 2; */
1283
1284 /* Now read in the two strings that follow. */
1285 ptr = (bfd_byte *) _bfd_alloc_and_read (abfd, size, size);
1286 if (ptr == NULL)
1287 return NULL;
1288
1289 symbol_name = (char *) ptr;
1290 /* See PR 20905 for an example of where the strnlen is necessary. */
1291 source_dll = symbol_name + strnlen (symbol_name, size - 1) + 1;
1292
1293 /* Verify that the strings are null terminated. */
1294 if (ptr[size - 1] != 0
1295 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1296 {
1297 _bfd_error_handler
1298 (_("%pB: string not null terminated in ILF object file"), abfd);
1299 bfd_set_error (bfd_error_malformed_archive);
1300 bfd_release (abfd, ptr);
1301 return NULL;
1302 }
1303
1304 /* Now construct the bfd. */
1305 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1306 source_dll, ordinal, types))
1307 {
1308 bfd_release (abfd, ptr);
1309 return NULL;
1310 }
1311
1312 return _bfd_no_cleanup;
1313 }
1314
1315 static void
1316 pe_bfd_read_buildid (bfd *abfd)
1317 {
1318 pe_data_type *pe = pe_data (abfd);
1319 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1320 asection *section;
1321 bfd_byte *data = 0;
1322 bfd_size_type dataoff;
1323 unsigned int i;
1324 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
1325 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
1326
1327 if (size == 0)
1328 return;
1329
1330 addr += extra->ImageBase;
1331
1332 /* Search for the section containing the DebugDirectory. */
1333 for (section = abfd->sections; section != NULL; section = section->next)
1334 {
1335 if ((addr >= section->vma) && (addr < (section->vma + section->size)))
1336 break;
1337 }
1338
1339 if (section == NULL)
1340 return;
1341
1342 if (!(section->flags & SEC_HAS_CONTENTS))
1343 return;
1344
1345 dataoff = addr - section->vma;
1346
1347 /* PR 20605 and 22373: Make sure that the data is really there.
1348 Note - since we are dealing with unsigned quantities we have
1349 to be careful to check for potential overflows. */
1350 if (dataoff >= section->size
1351 || size > section->size - dataoff)
1352 {
1353 _bfd_error_handler
1354 (_("%pB: error: debug data ends beyond end of debug directory"),
1355 abfd);
1356 return;
1357 }
1358
1359 /* Read the whole section. */
1360 if (!bfd_malloc_and_get_section (abfd, section, &data))
1361 {
1362 free (data);
1363 return;
1364 }
1365
1366 /* Search for a CodeView entry in the DebugDirectory */
1367 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
1368 {
1369 struct external_IMAGE_DEBUG_DIRECTORY *ext
1370 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
1371 struct internal_IMAGE_DEBUG_DIRECTORY idd;
1372
1373 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
1374
1375 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
1376 {
1377 char buffer[256 + 1];
1378 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
1379
1380 /*
1381 The debug entry doesn't have to have to be in a section, in which
1382 case AddressOfRawData is 0, so always use PointerToRawData.
1383 */
1384 if (_bfd_XXi_slurp_codeview_record (abfd,
1385 (file_ptr) idd.PointerToRawData,
1386 idd.SizeOfData, cvinfo))
1387 {
1388 struct bfd_build_id* build_id = bfd_alloc (abfd,
1389 sizeof (struct bfd_build_id) + cvinfo->SignatureLength);
1390 if (build_id)
1391 {
1392 build_id->size = cvinfo->SignatureLength;
1393 memcpy(build_id->data, cvinfo->Signature,
1394 cvinfo->SignatureLength);
1395 abfd->build_id = build_id;
1396 }
1397 }
1398 break;
1399 }
1400 }
1401
1402 free (data);
1403 }
1404
1405 static bfd_cleanup
1406 pe_bfd_object_p (bfd * abfd)
1407 {
1408 bfd_byte buffer[6];
1409 struct external_DOS_hdr dos_hdr;
1410 struct external_PEI_IMAGE_hdr image_hdr;
1411 struct internal_filehdr internal_f;
1412 struct internal_aouthdr internal_a;
1413 bfd_size_type opt_hdr_size;
1414 file_ptr offset;
1415 bfd_cleanup result;
1416
1417 /* Detect if this a Microsoft Import Library Format element. */
1418 /* First read the beginning of the header. */
1419 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1420 || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1421 {
1422 if (bfd_get_error () != bfd_error_system_call)
1423 bfd_set_error (bfd_error_wrong_format);
1424 return NULL;
1425 }
1426
1427 /* Then check the magic and the version (only 0 is supported). */
1428 if (H_GET_32 (abfd, buffer) == 0xffff0000
1429 && H_GET_16 (abfd, buffer + 4) == 0)
1430 return pe_ILF_object_p (abfd);
1431
1432 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1433 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1434 != sizeof (dos_hdr))
1435 {
1436 if (bfd_get_error () != bfd_error_system_call)
1437 bfd_set_error (bfd_error_wrong_format);
1438 return NULL;
1439 }
1440
1441 /* There are really two magic numbers involved; the magic number
1442 that says this is a NT executable (PEI) and the magic number that
1443 determines the architecture. The former is IMAGE_DOS_SIGNATURE, stored in
1444 the e_magic field. The latter is stored in the f_magic field.
1445 If the NT magic number isn't valid, the architecture magic number
1446 could be mimicked by some other field (specifically, the number
1447 of relocs in section 3). Since this routine can only be called
1448 correctly for a PEI file, check the e_magic number here, and, if
1449 it doesn't match, clobber the f_magic number so that we don't get
1450 a false match. */
1451 if (H_GET_16 (abfd, dos_hdr.e_magic) != IMAGE_DOS_SIGNATURE)
1452 {
1453 bfd_set_error (bfd_error_wrong_format);
1454 return NULL;
1455 }
1456
1457 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1458 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1459 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1460 != sizeof (image_hdr)))
1461 {
1462 if (bfd_get_error () != bfd_error_system_call)
1463 bfd_set_error (bfd_error_wrong_format);
1464 return NULL;
1465 }
1466
1467 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1468 {
1469 bfd_set_error (bfd_error_wrong_format);
1470 return NULL;
1471 }
1472
1473 /* Swap file header, so that we get the location for calling
1474 real_object_p. */
1475 bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1476
1477 if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1478 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1479 {
1480 bfd_set_error (bfd_error_wrong_format);
1481 return NULL;
1482 }
1483
1484 memcpy (internal_f.pe.dos_message, dos_hdr.dos_message,
1485 sizeof (internal_f.pe.dos_message));
1486
1487 /* Read the optional header, which has variable size. */
1488 opt_hdr_size = internal_f.f_opthdr;
1489
1490 if (opt_hdr_size != 0)
1491 {
1492 bfd_size_type amt = opt_hdr_size;
1493 bfd_byte * opthdr;
1494
1495 /* PR 17521 file: 230-131433-0.004. */
1496 if (amt < sizeof (PEAOUTHDR))
1497 amt = sizeof (PEAOUTHDR);
1498
1499 opthdr = _bfd_alloc_and_read (abfd, amt, opt_hdr_size);
1500 if (opthdr == NULL)
1501 return NULL;
1502 if (amt > opt_hdr_size)
1503 memset (opthdr + opt_hdr_size, 0, amt - opt_hdr_size);
1504
1505 bfd_set_error (bfd_error_no_error);
1506 bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a);
1507 if (bfd_get_error () != bfd_error_no_error)
1508 return NULL;
1509 }
1510
1511
1512 result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1513 (opt_hdr_size != 0
1514 ? &internal_a
1515 : (struct internal_aouthdr *) NULL));
1516
1517
1518 if (result)
1519 {
1520 /* Now the whole header has been processed, see if there is a build-id */
1521 pe_bfd_read_buildid(abfd);
1522 }
1523
1524 return result;
1525 }
1526
1527 #define coff_object_p pe_bfd_object_p
1528 #endif /* COFF_IMAGE_WITH_PE */