* elf32-ppc.c (struct ppc_dyn_relocs): New.
[binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Written by Cygnus Solutions.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /* Most of this hacked by Steve Chamberlain,
26 sac@cygnus.com
27
28 PE/PEI rearrangement (and code added): Donn Terry
29 Softway Systems, Inc. */
30
31 /* Hey look, some documentation [and in a place you expect to find it]!
32
33 The main reference for the pei format is "Microsoft Portable Executable
34 and Common Object File Format Specification 4.1". Get it if you need to
35 do some serious hacking on this code.
36
37 Another reference:
38 "Peering Inside the PE: A Tour of the Win32 Portable Executable
39 File Format", MSJ 1994, Volume 9.
40
41 The *sole* difference between the pe format and the pei format is that the
42 latter has an MSDOS 2.0 .exe header on the front that prints the message
43 "This app must be run under Windows." (or some such).
44 (FIXME: Whether that statement is *really* true or not is unknown.
45 Are there more subtle differences between pe and pei formats?
46 For now assume there aren't. If you find one, then for God sakes
47 document it here!)
48
49 The Microsoft docs use the word "image" instead of "executable" because
50 the former can also refer to a DLL (shared library). Confusion can arise
51 because the `i' in `pei' also refers to "image". The `pe' format can
52 also create images (i.e. executables), it's just that to run on a win32
53 system you need to use the pei format.
54
55 FIXME: Please add more docs here so the next poor fool that has to hack
56 on this code has a chance of getting something accomplished without
57 wasting too much time. */
58
59 #include "libpei.h"
60
61 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
62 #ifndef coff_bfd_print_private_bfd_data
63 NULL;
64 #else
65 coff_bfd_print_private_bfd_data;
66 #undef coff_bfd_print_private_bfd_data
67 #endif
68
69 static bfd_boolean pe_print_private_bfd_data (bfd *, void *);
70 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
71
72 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
73 #ifndef coff_bfd_copy_private_bfd_data
74 NULL;
75 #else
76 coff_bfd_copy_private_bfd_data;
77 #undef coff_bfd_copy_private_bfd_data
78 #endif
79
80 static bfd_boolean pe_bfd_copy_private_bfd_data (bfd *, bfd *);
81 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
82
83 #define coff_mkobject pe_mkobject
84 #define coff_mkobject_hook pe_mkobject_hook
85
86 #ifdef COFF_IMAGE_WITH_PE
87 /* This structure contains static variables used by the ILF code. */
88 typedef asection * asection_ptr;
89
90 typedef struct
91 {
92 bfd * abfd;
93 bfd_byte * data;
94 struct bfd_in_memory * bim;
95 unsigned short magic;
96
97 arelent * reltab;
98 unsigned int relcount;
99
100 coff_symbol_type * sym_cache;
101 coff_symbol_type * sym_ptr;
102 unsigned int sym_index;
103
104 unsigned int * sym_table;
105 unsigned int * table_ptr;
106
107 combined_entry_type * native_syms;
108 combined_entry_type * native_ptr;
109
110 coff_symbol_type ** sym_ptr_table;
111 coff_symbol_type ** sym_ptr_ptr;
112
113 unsigned int sec_index;
114
115 char * string_table;
116 char * string_ptr;
117 char * end_string_ptr;
118
119 SYMENT * esym_table;
120 SYMENT * esym_ptr;
121
122 struct internal_reloc * int_reltab;
123 }
124 pe_ILF_vars;
125 #endif /* COFF_IMAGE_WITH_PE */
126
127 const bfd_target *coff_real_object_p
128 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
129 \f
130 #ifndef NO_COFF_RELOCS
131 static void
132 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
133 {
134 RELOC *reloc_src = (RELOC *) src;
135 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
136
137 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
138 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
139 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
140 #ifdef SWAP_IN_RELOC_OFFSET
141 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
142 #endif
143 }
144
145 static unsigned int
146 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
147 {
148 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
149 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
150
151 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
152 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
153 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
154
155 #ifdef SWAP_OUT_RELOC_OFFSET
156 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
157 #endif
158 #ifdef SWAP_OUT_RELOC_EXTRA
159 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
160 #endif
161 return RELSZ;
162 }
163 #endif /* not NO_COFF_RELOCS */
164
165 #ifdef COFF_IMAGE_WITH_PE
166 #undef FILHDR
167 #define FILHDR struct external_PEI_IMAGE_hdr
168 #endif
169
170 static void
171 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
172 {
173 FILHDR *filehdr_src = (FILHDR *) src;
174 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
175
176 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
177 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
178 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
179 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
180 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
181 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
182
183 /* Other people's tools sometimes generate headers with an nsyms but
184 a zero symptr. */
185 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
186 {
187 filehdr_dst->f_nsyms = 0;
188 filehdr_dst->f_flags |= F_LSYMS;
189 }
190
191 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
192 }
193
194 #ifdef COFF_IMAGE_WITH_PE
195 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
196 #elif defined COFF_WITH_pex64
197 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
198 #elif defined COFF_WITH_pep
199 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
200 #else
201 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
202 #endif
203
204 static void
205 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
206 {
207 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
208 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
209
210 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
211
212 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
213 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
214 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
215 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
216 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
217 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
218 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
219
220 /* MS handles overflow of line numbers by carrying into the reloc
221 field (it appears). Since it's supposed to be zero for PE
222 *IMAGE* format, that's safe. This is still a bit iffy. */
223 #ifdef COFF_IMAGE_WITH_PE
224 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
225 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
226 scnhdr_int->s_nreloc = 0;
227 #else
228 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
229 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
230 #endif
231
232 if (scnhdr_int->s_vaddr != 0)
233 {
234 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
235 /* Do not cut upper 32-bits for 64-bit vma. */
236 #ifndef COFF_WITH_pex64
237 scnhdr_int->s_vaddr &= 0xffffffff;
238 #endif
239 }
240
241 #ifndef COFF_NO_HACK_SCNHDR_SIZE
242 /* If this section holds uninitialized data and is from an object file
243 or from an executable image that has not initialized the field,
244 or if the image is an executable file and the physical size is padded,
245 use the virtual size (stored in s_paddr) instead. */
246 if (scnhdr_int->s_paddr > 0
247 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
248 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
249 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
250 /* This code used to set scnhdr_int->s_paddr to 0. However,
251 coff_set_alignment_hook stores s_paddr in virt_size, which
252 only works if it correctly holds the virtual size of the
253 section. */
254 scnhdr_int->s_size = scnhdr_int->s_paddr;
255 #endif
256 }
257
258 static bfd_boolean
259 pe_mkobject (bfd * abfd)
260 {
261 pe_data_type *pe;
262 bfd_size_type amt = sizeof (pe_data_type);
263
264 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
265
266 if (abfd->tdata.pe_obj_data == 0)
267 return FALSE;
268
269 pe = pe_data (abfd);
270
271 pe->coff.pe = 1;
272
273 /* in_reloc_p is architecture dependent. */
274 pe->in_reloc_p = in_reloc_p;
275
276 return TRUE;
277 }
278
279 /* Create the COFF backend specific information. */
280
281 static void *
282 pe_mkobject_hook (bfd * abfd,
283 void * filehdr,
284 void * aouthdr ATTRIBUTE_UNUSED)
285 {
286 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
287 pe_data_type *pe;
288
289 if (! pe_mkobject (abfd))
290 return NULL;
291
292 pe = pe_data (abfd);
293 pe->coff.sym_filepos = internal_f->f_symptr;
294 /* These members communicate important constants about the symbol
295 table to GDB's symbol-reading code. These `constants'
296 unfortunately vary among coff implementations... */
297 pe->coff.local_n_btmask = N_BTMASK;
298 pe->coff.local_n_btshft = N_BTSHFT;
299 pe->coff.local_n_tmask = N_TMASK;
300 pe->coff.local_n_tshift = N_TSHIFT;
301 pe->coff.local_symesz = SYMESZ;
302 pe->coff.local_auxesz = AUXESZ;
303 pe->coff.local_linesz = LINESZ;
304
305 pe->coff.timestamp = internal_f->f_timdat;
306
307 obj_raw_syment_count (abfd) =
308 obj_conv_table_size (abfd) =
309 internal_f->f_nsyms;
310
311 pe->real_flags = internal_f->f_flags;
312
313 if ((internal_f->f_flags & F_DLL) != 0)
314 pe->dll = 1;
315
316 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
317 abfd->flags |= HAS_DEBUG;
318
319 #ifdef COFF_IMAGE_WITH_PE
320 if (aouthdr)
321 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
322 #endif
323
324 #ifdef ARM
325 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
326 coff_data (abfd) ->flags = 0;
327 #endif
328
329 return (void *) pe;
330 }
331
332 static bfd_boolean
333 pe_print_private_bfd_data (bfd *abfd, void * vfile)
334 {
335 FILE *file = (FILE *) vfile;
336
337 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
338 return FALSE;
339
340 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
341 return TRUE;
342
343 fputc ('\n', file);
344
345 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
346 }
347
348 /* Copy any private info we understand from the input bfd
349 to the output bfd. */
350
351 static bfd_boolean
352 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
353 {
354 /* PR binutils/716: Copy the large address aware flag.
355 XXX: Should we be copying other flags or other fields in the pe_data()
356 structure ? */
357 if (pe_data (obfd) != NULL
358 && pe_data (ibfd) != NULL
359 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
360 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
361
362 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
363 return FALSE;
364
365 if (pe_saved_coff_bfd_copy_private_bfd_data)
366 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
367
368 return TRUE;
369 }
370
371 #define coff_bfd_copy_private_section_data \
372 _bfd_XX_bfd_copy_private_section_data
373
374 #define coff_get_symbol_info _bfd_XX_get_symbol_info
375
376 #ifdef COFF_IMAGE_WITH_PE
377 \f
378 /* Code to handle Microsoft's Image Library Format.
379 Also known as LINK6 format.
380 Documentation about this format can be found at:
381
382 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
383
384 /* The following constants specify the sizes of the various data
385 structures that we have to create in order to build a bfd describing
386 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
387 and SIZEOF_IDATA7 below is to allow for the possibility that we might
388 need a padding byte in order to ensure 16 bit alignment for the section's
389 contents.
390
391 The value for SIZEOF_ILF_STRINGS is computed as follows:
392
393 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
394 per symbol for their names (longest section name is .idata$x).
395
396 There will be two symbols for the imported value, one the symbol name
397 and one with _imp__ prefixed. Allowing for the terminating nul's this
398 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
399
400 The strings in the string table must start STRING__SIZE_SIZE bytes into
401 the table in order to for the string lookup code in coffgen/coffcode to
402 work. */
403 #define NUM_ILF_RELOCS 8
404 #define NUM_ILF_SECTIONS 6
405 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
406
407 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
408 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
409 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
410 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
411 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
412 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
413 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
414 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
415 + 21 + strlen (source_dll) \
416 + NUM_ILF_SECTIONS * 9 \
417 + STRING_SIZE_SIZE)
418 #define SIZEOF_IDATA2 (5 * 4)
419
420 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
421 #ifdef COFF_WITH_pex64
422 #define SIZEOF_IDATA4 (2 * 4)
423 #define SIZEOF_IDATA5 (2 * 4)
424 #else
425 #define SIZEOF_IDATA4 (1 * 4)
426 #define SIZEOF_IDATA5 (1 * 4)
427 #endif
428
429 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
430 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
431 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
432
433 #define ILF_DATA_SIZE \
434 + SIZEOF_ILF_SYMS \
435 + SIZEOF_ILF_SYM_TABLE \
436 + SIZEOF_ILF_NATIVE_SYMS \
437 + SIZEOF_ILF_SYM_PTR_TABLE \
438 + SIZEOF_ILF_EXT_SYMS \
439 + SIZEOF_ILF_RELOCS \
440 + SIZEOF_ILF_INT_RELOCS \
441 + SIZEOF_ILF_STRINGS \
442 + SIZEOF_IDATA2 \
443 + SIZEOF_IDATA4 \
444 + SIZEOF_IDATA5 \
445 + SIZEOF_IDATA6 \
446 + SIZEOF_IDATA7 \
447 + SIZEOF_ILF_SECTIONS \
448 + MAX_TEXT_SECTION_SIZE
449
450 /* Create an empty relocation against the given symbol. */
451
452 static void
453 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
454 bfd_vma address,
455 bfd_reloc_code_real_type reloc,
456 struct bfd_symbol ** sym,
457 unsigned int sym_index)
458 {
459 arelent * entry;
460 struct internal_reloc * internal;
461
462 entry = vars->reltab + vars->relcount;
463 internal = vars->int_reltab + vars->relcount;
464
465 entry->address = address;
466 entry->addend = 0;
467 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
468 entry->sym_ptr_ptr = sym;
469
470 internal->r_vaddr = address;
471 internal->r_symndx = sym_index;
472 internal->r_type = entry->howto->type;
473
474 vars->relcount ++;
475
476 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
477 }
478
479 /* Create an empty relocation against the given section. */
480
481 static void
482 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
483 bfd_vma address,
484 bfd_reloc_code_real_type reloc,
485 asection_ptr sec)
486 {
487 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
488 coff_section_data (vars->abfd, sec)->i);
489 }
490
491 /* Move the queued relocs into the given section. */
492
493 static void
494 pe_ILF_save_relocs (pe_ILF_vars * vars,
495 asection_ptr sec)
496 {
497 /* Make sure that there is somewhere to store the internal relocs. */
498 if (coff_section_data (vars->abfd, sec) == NULL)
499 /* We should probably return an error indication here. */
500 abort ();
501
502 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
503 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
504
505 sec->relocation = vars->reltab;
506 sec->reloc_count = vars->relcount;
507 sec->flags |= SEC_RELOC;
508
509 vars->reltab += vars->relcount;
510 vars->int_reltab += vars->relcount;
511 vars->relcount = 0;
512
513 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
514 }
515
516 /* Create a global symbol and add it to the relevant tables. */
517
518 static void
519 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
520 const char * prefix,
521 const char * symbol_name,
522 asection_ptr section,
523 flagword extra_flags)
524 {
525 coff_symbol_type * sym;
526 combined_entry_type * ent;
527 SYMENT * esym;
528 unsigned short sclass;
529
530 if (extra_flags & BSF_LOCAL)
531 sclass = C_STAT;
532 else
533 sclass = C_EXT;
534
535 #ifdef THUMBPEMAGIC
536 if (vars->magic == THUMBPEMAGIC)
537 {
538 if (extra_flags & BSF_FUNCTION)
539 sclass = C_THUMBEXTFUNC;
540 else if (extra_flags & BSF_LOCAL)
541 sclass = C_THUMBSTAT;
542 else
543 sclass = C_THUMBEXT;
544 }
545 #endif
546
547 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
548
549 sym = vars->sym_ptr;
550 ent = vars->native_ptr;
551 esym = vars->esym_ptr;
552
553 /* Copy the symbol's name into the string table. */
554 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
555
556 if (section == NULL)
557 section = bfd_und_section_ptr;
558
559 /* Initialise the external symbol. */
560 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
561 esym->e.e.e_offset);
562 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
563 esym->e_sclass[0] = sclass;
564
565 /* The following initialisations are unnecessary - the memory is
566 zero initialised. They are just kept here as reminders. */
567
568 /* Initialise the internal symbol structure. */
569 ent->u.syment.n_sclass = sclass;
570 ent->u.syment.n_scnum = section->target_index;
571 ent->u.syment._n._n_n._n_offset = (bfd_hostptr_t) sym;
572
573 sym->symbol.the_bfd = vars->abfd;
574 sym->symbol.name = vars->string_ptr;
575 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
576 sym->symbol.section = section;
577 sym->native = ent;
578
579 * vars->table_ptr = vars->sym_index;
580 * vars->sym_ptr_ptr = sym;
581
582 /* Adjust pointers for the next symbol. */
583 vars->sym_index ++;
584 vars->sym_ptr ++;
585 vars->sym_ptr_ptr ++;
586 vars->table_ptr ++;
587 vars->native_ptr ++;
588 vars->esym_ptr ++;
589 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
590
591 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
592 }
593
594 /* Create a section. */
595
596 static asection_ptr
597 pe_ILF_make_a_section (pe_ILF_vars * vars,
598 const char * name,
599 unsigned int size,
600 flagword extra_flags)
601 {
602 asection_ptr sec;
603 flagword flags;
604
605 sec = bfd_make_section_old_way (vars->abfd, name);
606 if (sec == NULL)
607 return NULL;
608
609 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
610
611 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
612
613 bfd_set_section_alignment (vars->abfd, sec, 2);
614
615 /* Check that we will not run out of space. */
616 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
617
618 /* Set the section size and contents. The actual
619 contents are filled in by our parent. */
620 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
621 sec->contents = vars->data;
622 sec->target_index = vars->sec_index ++;
623
624 /* Advance data pointer in the vars structure. */
625 vars->data += size;
626
627 /* Skip the padding byte if it was not needed.
628 The logic here is that if the string length is odd,
629 then the entire string length, including the null byte,
630 is even and so the extra, padding byte, is not needed. */
631 if (size & 1)
632 vars->data --;
633
634 /* Create a coff_section_tdata structure for our use. */
635 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
636 vars->data += sizeof (struct coff_section_tdata);
637
638 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
639
640 /* Create a symbol to refer to this section. */
641 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
642
643 /* Cache the index to the symbol in the coff_section_data structure. */
644 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
645
646 return sec;
647 }
648
649 /* This structure contains the code that goes into the .text section
650 in order to perform a jump into the DLL lookup table. The entries
651 in the table are index by the magic number used to represent the
652 machine type in the PE file. The contents of the data[] arrays in
653 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
654 The SIZE field says how many bytes in the DATA array are actually
655 used. The OFFSET field says where in the data array the address
656 of the .idata$5 section should be placed. */
657 #define MAX_TEXT_SECTION_SIZE 32
658
659 typedef struct
660 {
661 unsigned short magic;
662 unsigned char data[MAX_TEXT_SECTION_SIZE];
663 unsigned int size;
664 unsigned int offset;
665 }
666 jump_table;
667
668 static jump_table jtab[] =
669 {
670 #ifdef I386MAGIC
671 { I386MAGIC,
672 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
673 8, 2
674 },
675 #endif
676
677 #ifdef AMD64MAGIC
678 { AMD64MAGIC,
679 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
680 8, 2
681 },
682 #endif
683
684 #ifdef MC68MAGIC
685 { MC68MAGIC,
686 { /* XXX fill me in */ },
687 0, 0
688 },
689 #endif
690
691 #ifdef MIPS_ARCH_MAGIC_WINCE
692 { MIPS_ARCH_MAGIC_WINCE,
693 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
694 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
695 16, 0
696 },
697 #endif
698
699 #ifdef SH_ARCH_MAGIC_WINCE
700 { SH_ARCH_MAGIC_WINCE,
701 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
702 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
703 12, 8
704 },
705 #endif
706
707 #ifdef ARMPEMAGIC
708 { ARMPEMAGIC,
709 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
710 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
711 12, 8
712 },
713 #endif
714
715 #ifdef THUMBPEMAGIC
716 { THUMBPEMAGIC,
717 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
718 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
719 16, 12
720 },
721 #endif
722 { 0, { 0 }, 0, 0 }
723 };
724
725 #ifndef NUM_ENTRIES
726 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
727 #endif
728
729 /* Build a full BFD from the information supplied in a ILF object. */
730
731 static bfd_boolean
732 pe_ILF_build_a_bfd (bfd * abfd,
733 unsigned int magic,
734 char * symbol_name,
735 char * source_dll,
736 unsigned int ordinal,
737 unsigned int types)
738 {
739 bfd_byte * ptr;
740 pe_ILF_vars vars;
741 struct internal_filehdr internal_f;
742 unsigned int import_type;
743 unsigned int import_name_type;
744 asection_ptr id4, id5, id6 = NULL, text = NULL;
745 coff_symbol_type ** imp_sym;
746 unsigned int imp_index;
747
748 /* Decode and verify the types field of the ILF structure. */
749 import_type = types & 0x3;
750 import_name_type = (types & 0x1c) >> 2;
751
752 switch (import_type)
753 {
754 case IMPORT_CODE:
755 case IMPORT_DATA:
756 break;
757
758 case IMPORT_CONST:
759 /* XXX code yet to be written. */
760 _bfd_error_handler (_("%B: Unhandled import type; %x"),
761 abfd, import_type);
762 return FALSE;
763
764 default:
765 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
766 abfd, import_type);
767 return FALSE;
768 }
769
770 switch (import_name_type)
771 {
772 case IMPORT_ORDINAL:
773 case IMPORT_NAME:
774 case IMPORT_NAME_NOPREFIX:
775 case IMPORT_NAME_UNDECORATE:
776 break;
777
778 default:
779 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
780 abfd, import_name_type);
781 return FALSE;
782 }
783
784 /* Initialise local variables.
785
786 Note these are kept in a structure rather than being
787 declared as statics since bfd frowns on global variables.
788
789 We are going to construct the contents of the BFD in memory,
790 so allocate all the space that we will need right now. */
791 vars.bim
792 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
793 if (vars.bim == NULL)
794 return FALSE;
795
796 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
797 vars.bim->buffer = ptr;
798 vars.bim->size = ILF_DATA_SIZE;
799 if (ptr == NULL)
800 goto error_return;
801
802 /* Initialise the pointers to regions of the memory and the
803 other contents of the pe_ILF_vars structure as well. */
804 vars.sym_cache = (coff_symbol_type *) ptr;
805 vars.sym_ptr = (coff_symbol_type *) ptr;
806 vars.sym_index = 0;
807 ptr += SIZEOF_ILF_SYMS;
808
809 vars.sym_table = (unsigned int *) ptr;
810 vars.table_ptr = (unsigned int *) ptr;
811 ptr += SIZEOF_ILF_SYM_TABLE;
812
813 vars.native_syms = (combined_entry_type *) ptr;
814 vars.native_ptr = (combined_entry_type *) ptr;
815 ptr += SIZEOF_ILF_NATIVE_SYMS;
816
817 vars.sym_ptr_table = (coff_symbol_type **) ptr;
818 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
819 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
820
821 vars.esym_table = (SYMENT *) ptr;
822 vars.esym_ptr = (SYMENT *) ptr;
823 ptr += SIZEOF_ILF_EXT_SYMS;
824
825 vars.reltab = (arelent *) ptr;
826 vars.relcount = 0;
827 ptr += SIZEOF_ILF_RELOCS;
828
829 vars.int_reltab = (struct internal_reloc *) ptr;
830 ptr += SIZEOF_ILF_INT_RELOCS;
831
832 vars.string_table = (char *) ptr;
833 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
834 ptr += SIZEOF_ILF_STRINGS;
835 vars.end_string_ptr = (char *) ptr;
836
837 /* The remaining space in bim->buffer is used
838 by the pe_ILF_make_a_section() function. */
839 vars.data = ptr;
840 vars.abfd = abfd;
841 vars.sec_index = 0;
842 vars.magic = magic;
843
844 /* Create the initial .idata$<n> sections:
845 [.idata$2: Import Directory Table -- not needed]
846 .idata$4: Import Lookup Table
847 .idata$5: Import Address Table
848
849 Note we do not create a .idata$3 section as this is
850 created for us by the linker script. */
851 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
852 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
853 if (id4 == NULL || id5 == NULL)
854 goto error_return;
855
856 /* Fill in the contents of these sections. */
857 if (import_name_type == IMPORT_ORDINAL)
858 {
859 if (ordinal == 0)
860 /* XXX - treat as IMPORT_NAME ??? */
861 abort ();
862
863 #ifdef COFF_WITH_pex64
864 ((unsigned int *) id4->contents)[0] = ordinal;
865 ((unsigned int *) id4->contents)[1] = 0x80000000;
866 ((unsigned int *) id5->contents)[0] = ordinal;
867 ((unsigned int *) id5->contents)[1] = 0x80000000;
868 #else
869 * (unsigned int *) id4->contents = ordinal | 0x80000000;
870 * (unsigned int *) id5->contents = ordinal | 0x80000000;
871 #endif
872 }
873 else
874 {
875 char * symbol;
876 unsigned int len;
877
878 /* Create .idata$6 - the Hint Name Table. */
879 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
880 if (id6 == NULL)
881 goto error_return;
882
883 /* If necessary, trim the import symbol name. */
884 symbol = symbol_name;
885
886 /* As used by MS compiler, '_', '@', and '?' are alternative
887 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
888 '@' used for fastcall (in C), '_' everywhere else. Only one
889 of these is used for a symbol. We strip this leading char for
890 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
891 PE COFF 6.0 spec (section 8.3, Import Name Type). */
892
893 if (import_name_type != IMPORT_NAME)
894 {
895 char c = symbol[0];
896
897 /* Check that we don't remove for targets with empty
898 USER_LABEL_PREFIX the leading underscore. */
899 if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
900 || c == '@' || c == '?')
901 symbol++;
902 }
903
904 len = strlen (symbol);
905 if (import_name_type == IMPORT_NAME_UNDECORATE)
906 {
907 /* Truncate at the first '@'. */
908 char *at = strchr (symbol, '@');
909
910 if (at != NULL)
911 len = at - symbol;
912 }
913
914 id6->contents[0] = ordinal & 0xff;
915 id6->contents[1] = ordinal >> 8;
916
917 memcpy ((char *) id6->contents + 2, symbol, len);
918 id6->contents[len + 2] = '\0';
919 }
920
921 if (import_name_type != IMPORT_ORDINAL)
922 {
923 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
924 pe_ILF_save_relocs (&vars, id4);
925
926 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
927 pe_ILF_save_relocs (&vars, id5);
928 }
929
930 /* Create extra sections depending upon the type of import we are dealing with. */
931 switch (import_type)
932 {
933 int i;
934
935 case IMPORT_CODE:
936 /* Create a .text section.
937 First we need to look up its contents in the jump table. */
938 for (i = NUM_ENTRIES (jtab); i--;)
939 {
940 if (jtab[i].size == 0)
941 continue;
942 if (jtab[i].magic == magic)
943 break;
944 }
945 /* If we did not find a matching entry something is wrong. */
946 if (i < 0)
947 abort ();
948
949 /* Create the .text section. */
950 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
951 if (text == NULL)
952 goto error_return;
953
954 /* Copy in the jump code. */
955 memcpy (text->contents, jtab[i].data, jtab[i].size);
956
957 /* Create an import symbol. */
958 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
959 imp_sym = vars.sym_ptr_ptr - 1;
960 imp_index = vars.sym_index - 1;
961
962 /* Create a reloc for the data in the text section. */
963 #ifdef MIPS_ARCH_MAGIC_WINCE
964 if (magic == MIPS_ARCH_MAGIC_WINCE)
965 {
966 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
967 (struct bfd_symbol **) imp_sym,
968 imp_index);
969 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
970 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
971 (struct bfd_symbol **) imp_sym,
972 imp_index);
973 }
974 else
975 #endif
976 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
977 BFD_RELOC_32, (asymbol **) imp_sym,
978 imp_index);
979
980 pe_ILF_save_relocs (& vars, text);
981 break;
982
983 case IMPORT_DATA:
984 break;
985
986 default:
987 /* XXX code not yet written. */
988 abort ();
989 }
990
991 /* Initialise the bfd. */
992 memset (& internal_f, 0, sizeof (internal_f));
993
994 internal_f.f_magic = magic;
995 internal_f.f_symptr = 0;
996 internal_f.f_nsyms = 0;
997 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
998
999 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1000 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1001 goto error_return;
1002
1003 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1004 goto error_return;
1005
1006 coff_data (abfd)->pe = 1;
1007 #ifdef THUMBPEMAGIC
1008 if (vars.magic == THUMBPEMAGIC)
1009 /* Stop some linker warnings about thumb code not supporting interworking. */
1010 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1011 #endif
1012
1013 /* Switch from file contents to memory contents. */
1014 bfd_cache_close (abfd);
1015
1016 abfd->iostream = (void *) vars.bim;
1017 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1018 abfd->iovec = &_bfd_memory_iovec;
1019 abfd->where = 0;
1020 abfd->origin = 0;
1021 obj_sym_filepos (abfd) = 0;
1022
1023 /* Now create a symbol describing the imported value. */
1024 switch (import_type)
1025 {
1026 case IMPORT_CODE:
1027 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1028 BSF_NOT_AT_END | BSF_FUNCTION);
1029
1030 /* Create an import symbol for the DLL, without the
1031 .dll suffix. */
1032 ptr = (bfd_byte *) strrchr (source_dll, '.');
1033 if (ptr)
1034 * ptr = 0;
1035 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1036 if (ptr)
1037 * ptr = '.';
1038 break;
1039
1040 case IMPORT_DATA:
1041 /* Nothing to do here. */
1042 break;
1043
1044 default:
1045 /* XXX code not yet written. */
1046 abort ();
1047 }
1048
1049 /* Point the bfd at the symbol table. */
1050 obj_symbols (abfd) = vars.sym_cache;
1051 bfd_get_symcount (abfd) = vars.sym_index;
1052
1053 obj_raw_syments (abfd) = vars.native_syms;
1054 obj_raw_syment_count (abfd) = vars.sym_index;
1055
1056 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1057 obj_coff_keep_syms (abfd) = TRUE;
1058
1059 obj_convert (abfd) = vars.sym_table;
1060 obj_conv_table_size (abfd) = vars.sym_index;
1061
1062 obj_coff_strings (abfd) = vars.string_table;
1063 obj_coff_keep_strings (abfd) = TRUE;
1064
1065 abfd->flags |= HAS_SYMS;
1066
1067 return TRUE;
1068
1069 error_return:
1070 if (vars.bim->buffer != NULL)
1071 free (vars.bim->buffer);
1072 free (vars.bim);
1073 return FALSE;
1074 }
1075
1076 /* We have detected a Image Library Format archive element.
1077 Decode the element and return the appropriate target. */
1078
1079 static const bfd_target *
1080 pe_ILF_object_p (bfd * abfd)
1081 {
1082 bfd_byte buffer[16];
1083 bfd_byte * ptr;
1084 char * symbol_name;
1085 char * source_dll;
1086 unsigned int machine;
1087 bfd_size_type size;
1088 unsigned int ordinal;
1089 unsigned int types;
1090 unsigned int magic;
1091
1092 /* Upon entry the first four buyes of the ILF header have
1093 already been read. Now read the rest of the header. */
1094 if (bfd_bread (buffer, (bfd_size_type) 16, abfd) != 16)
1095 return NULL;
1096
1097 ptr = buffer;
1098
1099 /* We do not bother to check the version number.
1100 version = H_GET_16 (abfd, ptr); */
1101 ptr += 2;
1102
1103 machine = H_GET_16 (abfd, ptr);
1104 ptr += 2;
1105
1106 /* Check that the machine type is recognised. */
1107 magic = 0;
1108
1109 switch (machine)
1110 {
1111 case IMAGE_FILE_MACHINE_UNKNOWN:
1112 case IMAGE_FILE_MACHINE_ALPHA:
1113 case IMAGE_FILE_MACHINE_ALPHA64:
1114 case IMAGE_FILE_MACHINE_IA64:
1115 break;
1116
1117 case IMAGE_FILE_MACHINE_I386:
1118 #ifdef I386MAGIC
1119 magic = I386MAGIC;
1120 #endif
1121 break;
1122
1123 case IMAGE_FILE_MACHINE_AMD64:
1124 #ifdef AMD64MAGIC
1125 magic = AMD64MAGIC;
1126 #endif
1127 break;
1128
1129 case IMAGE_FILE_MACHINE_M68K:
1130 #ifdef MC68AGIC
1131 magic = MC68MAGIC;
1132 #endif
1133 break;
1134
1135 case IMAGE_FILE_MACHINE_R3000:
1136 case IMAGE_FILE_MACHINE_R4000:
1137 case IMAGE_FILE_MACHINE_R10000:
1138
1139 case IMAGE_FILE_MACHINE_MIPS16:
1140 case IMAGE_FILE_MACHINE_MIPSFPU:
1141 case IMAGE_FILE_MACHINE_MIPSFPU16:
1142 #ifdef MIPS_ARCH_MAGIC_WINCE
1143 magic = MIPS_ARCH_MAGIC_WINCE;
1144 #endif
1145 break;
1146
1147 case IMAGE_FILE_MACHINE_SH3:
1148 case IMAGE_FILE_MACHINE_SH4:
1149 #ifdef SH_ARCH_MAGIC_WINCE
1150 magic = SH_ARCH_MAGIC_WINCE;
1151 #endif
1152 break;
1153
1154 case IMAGE_FILE_MACHINE_ARM:
1155 #ifdef ARMPEMAGIC
1156 magic = ARMPEMAGIC;
1157 #endif
1158 break;
1159
1160 case IMAGE_FILE_MACHINE_THUMB:
1161 #ifdef THUMBPEMAGIC
1162 {
1163 extern const bfd_target TARGET_LITTLE_SYM;
1164
1165 if (abfd->xvec == & TARGET_LITTLE_SYM)
1166 magic = THUMBPEMAGIC;
1167 }
1168 #endif
1169 break;
1170
1171 case IMAGE_FILE_MACHINE_POWERPC:
1172 /* We no longer support PowerPC. */
1173 default:
1174 _bfd_error_handler
1175 (_("%B: Unrecognised machine type (0x%x)"
1176 " in Import Library Format archive"),
1177 abfd, machine);
1178 bfd_set_error (bfd_error_malformed_archive);
1179
1180 return NULL;
1181 break;
1182 }
1183
1184 if (magic == 0)
1185 {
1186 _bfd_error_handler
1187 (_("%B: Recognised but unhandled machine type (0x%x)"
1188 " in Import Library Format archive"),
1189 abfd, machine);
1190 bfd_set_error (bfd_error_wrong_format);
1191
1192 return NULL;
1193 }
1194
1195 /* We do not bother to check the date.
1196 date = H_GET_32 (abfd, ptr); */
1197 ptr += 4;
1198
1199 size = H_GET_32 (abfd, ptr);
1200 ptr += 4;
1201
1202 if (size == 0)
1203 {
1204 _bfd_error_handler
1205 (_("%B: size field is zero in Import Library Format header"), abfd);
1206 bfd_set_error (bfd_error_malformed_archive);
1207
1208 return NULL;
1209 }
1210
1211 ordinal = H_GET_16 (abfd, ptr);
1212 ptr += 2;
1213
1214 types = H_GET_16 (abfd, ptr);
1215 /* ptr += 2; */
1216
1217 /* Now read in the two strings that follow. */
1218 ptr = (bfd_byte *) bfd_alloc (abfd, size);
1219 if (ptr == NULL)
1220 return NULL;
1221
1222 if (bfd_bread (ptr, size, abfd) != size)
1223 {
1224 bfd_release (abfd, ptr);
1225 return NULL;
1226 }
1227
1228 symbol_name = (char *) ptr;
1229 source_dll = symbol_name + strlen (symbol_name) + 1;
1230
1231 /* Verify that the strings are null terminated. */
1232 if (ptr[size - 1] != 0
1233 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1234 {
1235 _bfd_error_handler
1236 (_("%B: string not null terminated in ILF object file."), abfd);
1237 bfd_set_error (bfd_error_malformed_archive);
1238 bfd_release (abfd, ptr);
1239 return NULL;
1240 }
1241
1242 /* Now construct the bfd. */
1243 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1244 source_dll, ordinal, types))
1245 {
1246 bfd_release (abfd, ptr);
1247 return NULL;
1248 }
1249
1250 return abfd->xvec;
1251 }
1252
1253 static const bfd_target *
1254 pe_bfd_object_p (bfd * abfd)
1255 {
1256 bfd_byte buffer[4];
1257 struct external_PEI_DOS_hdr dos_hdr;
1258 struct external_PEI_IMAGE_hdr image_hdr;
1259 struct internal_filehdr internal_f;
1260 struct internal_aouthdr internal_a;
1261 file_ptr opt_hdr_size;
1262 file_ptr offset;
1263
1264 /* Detect if this a Microsoft Import Library Format element. */
1265 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1266 || bfd_bread (buffer, (bfd_size_type) 4, abfd) != 4)
1267 {
1268 if (bfd_get_error () != bfd_error_system_call)
1269 bfd_set_error (bfd_error_wrong_format);
1270 return NULL;
1271 }
1272
1273 if (H_GET_32 (abfd, buffer) == 0xffff0000)
1274 return pe_ILF_object_p (abfd);
1275
1276 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1277 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1278 != sizeof (dos_hdr))
1279 {
1280 if (bfd_get_error () != bfd_error_system_call)
1281 bfd_set_error (bfd_error_wrong_format);
1282 return NULL;
1283 }
1284
1285 /* There are really two magic numbers involved; the magic number
1286 that says this is a NT executable (PEI) and the magic number that
1287 determines the architecture. The former is DOSMAGIC, stored in
1288 the e_magic field. The latter is stored in the f_magic field.
1289 If the NT magic number isn't valid, the architecture magic number
1290 could be mimicked by some other field (specifically, the number
1291 of relocs in section 3). Since this routine can only be called
1292 correctly for a PEI file, check the e_magic number here, and, if
1293 it doesn't match, clobber the f_magic number so that we don't get
1294 a false match. */
1295 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1296 {
1297 bfd_set_error (bfd_error_wrong_format);
1298 return NULL;
1299 }
1300
1301 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1302 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1303 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1304 != sizeof (image_hdr)))
1305 {
1306 if (bfd_get_error () != bfd_error_system_call)
1307 bfd_set_error (bfd_error_wrong_format);
1308 return NULL;
1309 }
1310
1311 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1312 {
1313 bfd_set_error (bfd_error_wrong_format);
1314 return NULL;
1315 }
1316
1317 /* Swap file header, so that we get the location for calling
1318 real_object_p. */
1319 bfd_coff_swap_filehdr_in (abfd, (PTR)&image_hdr, &internal_f);
1320
1321 if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1322 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1323 {
1324 bfd_set_error (bfd_error_wrong_format);
1325 return NULL;
1326 }
1327
1328 /* Read the optional header, which has variable size. */
1329 opt_hdr_size = internal_f.f_opthdr;
1330
1331 if (opt_hdr_size != 0)
1332 {
1333 PTR opthdr;
1334
1335 opthdr = bfd_alloc (abfd, opt_hdr_size);
1336 if (opthdr == NULL)
1337 return NULL;
1338 if (bfd_bread (opthdr, opt_hdr_size, abfd)
1339 != (bfd_size_type) opt_hdr_size)
1340 return NULL;
1341
1342 bfd_coff_swap_aouthdr_in (abfd, opthdr, (PTR) & internal_a);
1343 }
1344
1345 return coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1346 (opt_hdr_size != 0
1347 ? &internal_a
1348 : (struct internal_aouthdr *) NULL));
1349 }
1350
1351 #define coff_object_p pe_bfd_object_p
1352 #endif /* COFF_IMAGE_WITH_PE */