* reloc.c (_bfd_relocate_contents): Permit bitfield relocations to
[binutils-gdb.git] / bfd / reloc.c
1 /* BFD support for handling relocation entries.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Relocations
25
26 BFD maintains relocations in much the same way it maintains
27 symbols: they are left alone until required, then read in
28 en-mass and translated into an internal form. A common
29 routine <<bfd_perform_relocation>> acts upon the
30 canonical form to do the fixup.
31
32 Relocations are maintained on a per section basis,
33 while symbols are maintained on a per BFD basis.
34
35 All that a back end has to do to fit the BFD interface is to create
36 a <<struct reloc_cache_entry>> for each relocation
37 in a particular section, and fill in the right bits of the structures.
38
39 @menu
40 @* typedef arelent::
41 @* howto manager::
42 @end menu
43
44 */
45
46 /* DO compile in the reloc_code name table from libbfd.h. */
47 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
48
49 #include "bfd.h"
50 #include "sysdep.h"
51 #include "bfdlink.h"
52 #include "libbfd.h"
53 /*
54 DOCDD
55 INODE
56 typedef arelent, howto manager, Relocations, Relocations
57
58 SUBSECTION
59 typedef arelent
60
61 This is the structure of a relocation entry:
62
63 CODE_FRAGMENT
64 .
65 .typedef enum bfd_reloc_status
66 .{
67 . {* No errors detected *}
68 . bfd_reloc_ok,
69 .
70 . {* The relocation was performed, but there was an overflow. *}
71 . bfd_reloc_overflow,
72 .
73 . {* The address to relocate was not within the section supplied. *}
74 . bfd_reloc_outofrange,
75 .
76 . {* Used by special functions *}
77 . bfd_reloc_continue,
78 .
79 . {* Unsupported relocation size requested. *}
80 . bfd_reloc_notsupported,
81 .
82 . {* Unused *}
83 . bfd_reloc_other,
84 .
85 . {* The symbol to relocate against was undefined. *}
86 . bfd_reloc_undefined,
87 .
88 . {* The relocation was performed, but may not be ok - presently
89 . generated only when linking i960 coff files with i960 b.out
90 . symbols. If this type is returned, the error_message argument
91 . to bfd_perform_relocation will be set. *}
92 . bfd_reloc_dangerous
93 . }
94 . bfd_reloc_status_type;
95 .
96 .
97 .typedef struct reloc_cache_entry
98 .{
99 . {* A pointer into the canonical table of pointers *}
100 . struct symbol_cache_entry **sym_ptr_ptr;
101 .
102 . {* offset in section *}
103 . bfd_size_type address;
104 .
105 . {* addend for relocation value *}
106 . bfd_vma addend;
107 .
108 . {* Pointer to how to perform the required relocation *}
109 . reloc_howto_type *howto;
110 .
111 .} arelent;
112
113 */
114
115 /*
116 DESCRIPTION
117
118 Here is a description of each of the fields within an <<arelent>>:
119
120 o <<sym_ptr_ptr>>
121
122 The symbol table pointer points to a pointer to the symbol
123 associated with the relocation request. It is
124 the pointer into the table returned by the back end's
125 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
126 through a pointer to a pointer so that tools like the linker
127 can fix up all the symbols of the same name by modifying only
128 one pointer. The relocation routine looks in the symbol and
129 uses the base of the section the symbol is attached to and the
130 value of the symbol as the initial relocation offset. If the
131 symbol pointer is zero, then the section provided is looked up.
132
133 o <<address>>
134
135 The <<address>> field gives the offset in bytes from the base of
136 the section data which owns the relocation record to the first
137 byte of relocatable information. The actual data relocated
138 will be relative to this point; for example, a relocation
139 type which modifies the bottom two bytes of a four byte word
140 would not touch the first byte pointed to in a big endian
141 world.
142
143 o <<addend>>
144
145 The <<addend>> is a value provided by the back end to be added (!)
146 to the relocation offset. Its interpretation is dependent upon
147 the howto. For example, on the 68k the code:
148
149
150 | char foo[];
151 | main()
152 | {
153 | return foo[0x12345678];
154 | }
155
156 Could be compiled into:
157
158 | linkw fp,#-4
159 | moveb @@#12345678,d0
160 | extbl d0
161 | unlk fp
162 | rts
163
164
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
168
169 |RELOCATION RECORDS FOR [.text]:
170 |offset type value
171 |00000006 32 _foo
172 |
173 |00000000 4e56 fffc ; linkw fp,#-4
174 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
175 |0000000a 49c0 ; extbl d0
176 |0000000c 4e5e ; unlk fp
177 |0000000e 4e75 ; rts
178
179
180 Using coff and an 88k, some instructions don't have enough
181 space in them to represent the full address range, and
182 pointers have to be loaded in two parts. So you'd get something like:
183
184
185 | or.u r13,r0,hi16(_foo+0x12345678)
186 | ld.b r2,r13,lo16(_foo+0x12345678)
187 | jmp r1
188
189
190 This should create two relocs, both pointing to <<_foo>>, and with
191 0x12340000 in their addend field. The data would consist of:
192
193
194 |RELOCATION RECORDS FOR [.text]:
195 |offset type value
196 |00000002 HVRT16 _foo+0x12340000
197 |00000006 LVRT16 _foo+0x12340000
198 |
199 |00000000 5da05678 ; or.u r13,r0,0x5678
200 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
201 |00000008 f400c001 ; jmp r1
202
203
204 The relocation routine digs out the value from the data, adds
205 it to the addend to get the original offset, and then adds the
206 value of <<_foo>>. Note that all 32 bits have to be kept around
207 somewhere, to cope with carry from bit 15 to bit 16.
208
209 One further example is the sparc and the a.out format. The
210 sparc has a similar problem to the 88k, in that some
211 instructions don't have room for an entire offset, but on the
212 sparc the parts are created in odd sized lumps. The designers of
213 the a.out format chose to not use the data within the section
214 for storing part of the offset; all the offset is kept within
215 the reloc. Anything in the data should be ignored.
216
217 | save %sp,-112,%sp
218 | sethi %hi(_foo+0x12345678),%g2
219 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
220 | ret
221 | restore
222
223 Both relocs contain a pointer to <<foo>>, and the offsets
224 contain junk.
225
226
227 |RELOCATION RECORDS FOR [.text]:
228 |offset type value
229 |00000004 HI22 _foo+0x12345678
230 |00000008 LO10 _foo+0x12345678
231 |
232 |00000000 9de3bf90 ; save %sp,-112,%sp
233 |00000004 05000000 ; sethi %hi(_foo+0),%g2
234 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
235 |0000000c 81c7e008 ; ret
236 |00000010 81e80000 ; restore
237
238
239 o <<howto>>
240
241 The <<howto>> field can be imagined as a
242 relocation instruction. It is a pointer to a structure which
243 contains information on what to do with all of the other
244 information in the reloc record and data section. A back end
245 would normally have a relocation instruction set and turn
246 relocations into pointers to the correct structure on input -
247 but it would be possible to create each howto field on demand.
248
249 */
250
251 /*
252 SUBSUBSECTION
253 <<enum complain_overflow>>
254
255 Indicates what sort of overflow checking should be done when
256 performing a relocation.
257
258 CODE_FRAGMENT
259 .
260 .enum complain_overflow
261 .{
262 . {* Do not complain on overflow. *}
263 . complain_overflow_dont,
264 .
265 . {* Complain if the bitfield overflows, whether it is considered
266 . as signed or unsigned. *}
267 . complain_overflow_bitfield,
268 .
269 . {* Complain if the value overflows when considered as signed
270 . number. *}
271 . complain_overflow_signed,
272 .
273 . {* Complain if the value overflows when considered as an
274 . unsigned number. *}
275 . complain_overflow_unsigned
276 .};
277
278 */
279
280 /*
281 SUBSUBSECTION
282 <<reloc_howto_type>>
283
284 The <<reloc_howto_type>> is a structure which contains all the
285 information that libbfd needs to know to tie up a back end's data.
286
287 CODE_FRAGMENT
288 .struct symbol_cache_entry; {* Forward declaration *}
289 .
290 .struct reloc_howto_struct
291 .{
292 . {* The type field has mainly a documentary use - the back end can
293 . do what it wants with it, though normally the back end's
294 . external idea of what a reloc number is stored
295 . in this field. For example, a PC relative word relocation
296 . in a coff environment has the type 023 - because that's
297 . what the outside world calls a R_PCRWORD reloc. *}
298 . unsigned int type;
299 .
300 . {* The value the final relocation is shifted right by. This drops
301 . unwanted data from the relocation. *}
302 . unsigned int rightshift;
303 .
304 . {* The size of the item to be relocated. This is *not* a
305 . power-of-two measure. To get the number of bytes operated
306 . on by a type of relocation, use bfd_get_reloc_size. *}
307 . int size;
308 .
309 . {* The number of bits in the item to be relocated. This is used
310 . when doing overflow checking. *}
311 . unsigned int bitsize;
312 .
313 . {* Notes that the relocation is relative to the location in the
314 . data section of the addend. The relocation function will
315 . subtract from the relocation value the address of the location
316 . being relocated. *}
317 . boolean pc_relative;
318 .
319 . {* The bit position of the reloc value in the destination.
320 . The relocated value is left shifted by this amount. *}
321 . unsigned int bitpos;
322 .
323 . {* What type of overflow error should be checked for when
324 . relocating. *}
325 . enum complain_overflow complain_on_overflow;
326 .
327 . {* If this field is non null, then the supplied function is
328 . called rather than the normal function. This allows really
329 . strange relocation methods to be accomodated (e.g., i960 callj
330 . instructions). *}
331 . bfd_reloc_status_type (*special_function)
332 . PARAMS ((bfd *abfd,
333 . arelent *reloc_entry,
334 . struct symbol_cache_entry *symbol,
335 . PTR data,
336 . asection *input_section,
337 . bfd *output_bfd,
338 . char **error_message));
339 .
340 . {* The textual name of the relocation type. *}
341 . char *name;
342 .
343 . {* When performing a partial link, some formats must modify the
344 . relocations rather than the data - this flag signals this.*}
345 . boolean partial_inplace;
346 .
347 . {* The src_mask selects which parts of the read in data
348 . are to be used in the relocation sum. E.g., if this was an 8 bit
349 . bit of data which we read and relocated, this would be
350 . 0x000000ff. When we have relocs which have an addend, such as
351 . sun4 extended relocs, the value in the offset part of a
352 . relocating field is garbage so we never use it. In this case
353 . the mask would be 0x00000000. *}
354 . bfd_vma src_mask;
355 .
356 . {* The dst_mask selects which parts of the instruction are replaced
357 . into the instruction. In most cases src_mask == dst_mask,
358 . except in the above special case, where dst_mask would be
359 . 0x000000ff, and src_mask would be 0x00000000. *}
360 . bfd_vma dst_mask;
361 .
362 . {* When some formats create PC relative instructions, they leave
363 . the value of the pc of the place being relocated in the offset
364 . slot of the instruction, so that a PC relative relocation can
365 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
366 . Some formats leave the displacement part of an instruction
367 . empty (e.g., m88k bcs); this flag signals the fact.*}
368 . boolean pcrel_offset;
369 .
370 .};
371
372 */
373
374 /*
375 FUNCTION
376 The HOWTO Macro
377
378 DESCRIPTION
379 The HOWTO define is horrible and will go away.
380
381
382 .#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
383 . {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
384
385 DESCRIPTION
386 And will be replaced with the totally magic way. But for the
387 moment, we are compatible, so do it this way.
388
389
390 .#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
391 .
392 DESCRIPTION
393 Helper routine to turn a symbol into a relocation value.
394
395 .#define HOWTO_PREPARE(relocation, symbol) \
396 . { \
397 . if (symbol != (asymbol *)NULL) { \
398 . if (bfd_is_com_section (symbol->section)) { \
399 . relocation = 0; \
400 . } \
401 . else { \
402 . relocation = symbol->value; \
403 . } \
404 . } \
405 .}
406
407 */
408
409 /*
410 FUNCTION
411 bfd_get_reloc_size
412
413 SYNOPSIS
414 unsigned int bfd_get_reloc_size (reloc_howto_type *);
415
416 DESCRIPTION
417 For a reloc_howto_type that operates on a fixed number of bytes,
418 this returns the number of bytes operated on.
419 */
420
421 unsigned int
422 bfd_get_reloc_size (howto)
423 reloc_howto_type *howto;
424 {
425 switch (howto->size)
426 {
427 case 0: return 1;
428 case 1: return 2;
429 case 2: return 4;
430 case 3: return 0;
431 case 4: return 8;
432 case 8: return 16;
433 case -2: return 4;
434 default: abort ();
435 }
436 }
437
438 /*
439 TYPEDEF
440 arelent_chain
441
442 DESCRIPTION
443
444 How relocs are tied together in an <<asection>>:
445
446 .typedef struct relent_chain {
447 . arelent relent;
448 . struct relent_chain *next;
449 .} arelent_chain;
450
451 */
452
453 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
454 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
455
456 /*
457 FUNCTION
458 bfd_check_overflow
459
460 SYNOPSIS
461 bfd_reloc_status_type
462 bfd_check_overflow
463 (enum complain_overflow how,
464 unsigned int bitsize,
465 unsigned int rightshift,
466 unsigned int addrsize,
467 bfd_vma relocation);
468
469 DESCRIPTION
470 Perform overflow checking on @var{relocation} which has
471 @var{bitsize} significant bits and will be shifted right by
472 @var{rightshift} bits, on a machine with addresses containing
473 @var{addrsize} significant bits. The result is either of
474 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
475
476 */
477
478 bfd_reloc_status_type
479 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
480 enum complain_overflow how;
481 unsigned int bitsize;
482 unsigned int rightshift;
483 unsigned int addrsize;
484 bfd_vma relocation;
485 {
486 bfd_vma fieldmask, addrmask, signmask, ss, a;
487 bfd_reloc_status_type flag = bfd_reloc_ok;
488
489 a = relocation;
490
491 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
492 we'll be permissive: extra bits in the field mask will
493 automatically extend the address mask for purposes of the
494 overflow check. */
495 fieldmask = N_ONES (bitsize);
496 addrmask = N_ONES (addrsize) | fieldmask;
497
498 switch (how)
499 {
500 case complain_overflow_dont:
501 break;
502
503 case complain_overflow_signed:
504 /* If any sign bits are set, all sign bits must be set. That
505 is, A must be a valid negative address after shifting. */
506 a = (a & addrmask) >> rightshift;
507 signmask = ~ (fieldmask >> 1);
508 ss = a & signmask;
509 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
510 flag = bfd_reloc_overflow;
511 break;
512
513 case complain_overflow_unsigned:
514 /* We have an overflow if the address does not fit in the field. */
515 a = (a & addrmask) >> rightshift;
516 if ((a & ~ fieldmask) != 0)
517 flag = bfd_reloc_overflow;
518 break;
519
520 case complain_overflow_bitfield:
521 /* Bitfields are sometimes signed, sometimes unsigned. We
522 overflow if the value has some, but not all, bits set outside
523 the field, or if it has any bits set outside the field but
524 the sign bit is not set. */
525 a >>= rightshift;
526 if ((a & ~ fieldmask) != 0)
527 {
528 signmask = (fieldmask >> 1) + 1;
529 ss = (signmask << rightshift) - 1;
530 if ((ss | relocation) != ~ (bfd_vma) 0)
531 flag = bfd_reloc_overflow;
532 }
533 break;
534
535 default:
536 abort ();
537 }
538
539 return flag;
540 }
541
542 /*
543 FUNCTION
544 bfd_perform_relocation
545
546 SYNOPSIS
547 bfd_reloc_status_type
548 bfd_perform_relocation
549 (bfd *abfd,
550 arelent *reloc_entry,
551 PTR data,
552 asection *input_section,
553 bfd *output_bfd,
554 char **error_message);
555
556 DESCRIPTION
557 If @var{output_bfd} is supplied to this function, the
558 generated image will be relocatable; the relocations are
559 copied to the output file after they have been changed to
560 reflect the new state of the world. There are two ways of
561 reflecting the results of partial linkage in an output file:
562 by modifying the output data in place, and by modifying the
563 relocation record. Some native formats (e.g., basic a.out and
564 basic coff) have no way of specifying an addend in the
565 relocation type, so the addend has to go in the output data.
566 This is no big deal since in these formats the output data
567 slot will always be big enough for the addend. Complex reloc
568 types with addends were invented to solve just this problem.
569 The @var{error_message} argument is set to an error message if
570 this return @code{bfd_reloc_dangerous}.
571
572 */
573
574
575 bfd_reloc_status_type
576 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
577 error_message)
578 bfd *abfd;
579 arelent *reloc_entry;
580 PTR data;
581 asection *input_section;
582 bfd *output_bfd;
583 char **error_message;
584 {
585 bfd_vma relocation;
586 bfd_reloc_status_type flag = bfd_reloc_ok;
587 bfd_size_type addr = reloc_entry->address;
588 bfd_vma output_base = 0;
589 reloc_howto_type *howto = reloc_entry->howto;
590 asection *reloc_target_output_section;
591 asymbol *symbol;
592
593 symbol = *(reloc_entry->sym_ptr_ptr);
594 if (bfd_is_abs_section (symbol->section)
595 && output_bfd != (bfd *) NULL)
596 {
597 reloc_entry->address += input_section->output_offset;
598 return bfd_reloc_ok;
599 }
600
601 /* If we are not producing relocateable output, return an error if
602 the symbol is not defined. An undefined weak symbol is
603 considered to have a value of zero (SVR4 ABI, p. 4-27). */
604 if (bfd_is_und_section (symbol->section)
605 && (symbol->flags & BSF_WEAK) == 0
606 && output_bfd == (bfd *) NULL)
607 flag = bfd_reloc_undefined;
608
609 /* If there is a function supplied to handle this relocation type,
610 call it. It'll return `bfd_reloc_continue' if further processing
611 can be done. */
612 if (howto->special_function)
613 {
614 bfd_reloc_status_type cont;
615 cont = howto->special_function (abfd, reloc_entry, symbol, data,
616 input_section, output_bfd,
617 error_message);
618 if (cont != bfd_reloc_continue)
619 return cont;
620 }
621
622 /* Is the address of the relocation really within the section? */
623 if (reloc_entry->address > input_section->_cooked_size)
624 return bfd_reloc_outofrange;
625
626 /* Work out which section the relocation is targetted at and the
627 initial relocation command value. */
628
629 /* Get symbol value. (Common symbols are special.) */
630 if (bfd_is_com_section (symbol->section))
631 relocation = 0;
632 else
633 relocation = symbol->value;
634
635
636 reloc_target_output_section = symbol->section->output_section;
637
638 /* Convert input-section-relative symbol value to absolute. */
639 if (output_bfd && howto->partial_inplace == false)
640 output_base = 0;
641 else
642 output_base = reloc_target_output_section->vma;
643
644 relocation += output_base + symbol->section->output_offset;
645
646 /* Add in supplied addend. */
647 relocation += reloc_entry->addend;
648
649 /* Here the variable relocation holds the final address of the
650 symbol we are relocating against, plus any addend. */
651
652 if (howto->pc_relative == true)
653 {
654 /* This is a PC relative relocation. We want to set RELOCATION
655 to the distance between the address of the symbol and the
656 location. RELOCATION is already the address of the symbol.
657
658 We start by subtracting the address of the section containing
659 the location.
660
661 If pcrel_offset is set, we must further subtract the position
662 of the location within the section. Some targets arrange for
663 the addend to be the negative of the position of the location
664 within the section; for example, i386-aout does this. For
665 i386-aout, pcrel_offset is false. Some other targets do not
666 include the position of the location; for example, m88kbcs,
667 or ELF. For those targets, pcrel_offset is true.
668
669 If we are producing relocateable output, then we must ensure
670 that this reloc will be correctly computed when the final
671 relocation is done. If pcrel_offset is false we want to wind
672 up with the negative of the location within the section,
673 which means we must adjust the existing addend by the change
674 in the location within the section. If pcrel_offset is true
675 we do not want to adjust the existing addend at all.
676
677 FIXME: This seems logical to me, but for the case of
678 producing relocateable output it is not what the code
679 actually does. I don't want to change it, because it seems
680 far too likely that something will break. */
681
682 relocation -=
683 input_section->output_section->vma + input_section->output_offset;
684
685 if (howto->pcrel_offset == true)
686 relocation -= reloc_entry->address;
687 }
688
689 if (output_bfd != (bfd *) NULL)
690 {
691 if (howto->partial_inplace == false)
692 {
693 /* This is a partial relocation, and we want to apply the relocation
694 to the reloc entry rather than the raw data. Modify the reloc
695 inplace to reflect what we now know. */
696 reloc_entry->addend = relocation;
697 reloc_entry->address += input_section->output_offset;
698 return flag;
699 }
700 else
701 {
702 /* This is a partial relocation, but inplace, so modify the
703 reloc record a bit.
704
705 If we've relocated with a symbol with a section, change
706 into a ref to the section belonging to the symbol. */
707
708 reloc_entry->address += input_section->output_offset;
709
710 /* WTF?? */
711 if (abfd->xvec->flavour == bfd_target_coff_flavour
712 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
713 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
714 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
715 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
716 {
717 #if 1
718 /* For m68k-coff, the addend was being subtracted twice during
719 relocation with -r. Removing the line below this comment
720 fixes that problem; see PR 2953.
721
722 However, Ian wrote the following, regarding removing the line below,
723 which explains why it is still enabled: --djm
724
725 If you put a patch like that into BFD you need to check all the COFF
726 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
727 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
728 problem in a different way. There may very well be a reason that the
729 code works as it does.
730
731 Hmmm. The first obvious point is that bfd_perform_relocation should
732 not have any tests that depend upon the flavour. It's seem like
733 entirely the wrong place for such a thing. The second obvious point
734 is that the current code ignores the reloc addend when producing
735 relocateable output for COFF. That's peculiar. In fact, I really
736 have no idea what the point of the line you want to remove is.
737
738 A typical COFF reloc subtracts the old value of the symbol and adds in
739 the new value to the location in the object file (if it's a pc
740 relative reloc it adds the difference between the symbol value and the
741 location). When relocating we need to preserve that property.
742
743 BFD handles this by setting the addend to the negative of the old
744 value of the symbol. Unfortunately it handles common symbols in a
745 non-standard way (it doesn't subtract the old value) but that's a
746 different story (we can't change it without losing backward
747 compatibility with old object files) (coff-i386 does subtract the old
748 value, to be compatible with existing coff-i386 targets, like SCO).
749
750 So everything works fine when not producing relocateable output. When
751 we are producing relocateable output, logically we should do exactly
752 what we do when not producing relocateable output. Therefore, your
753 patch is correct. In fact, it should probably always just set
754 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
755 add the value into the object file. This won't hurt the COFF code,
756 which doesn't use the addend; I'm not sure what it will do to other
757 formats (the thing to check for would be whether any formats both use
758 the addend and set partial_inplace).
759
760 When I wanted to make coff-i386 produce relocateable output, I ran
761 into the problem that you are running into: I wanted to remove that
762 line. Rather than risk it, I made the coff-i386 relocs use a special
763 function; it's coff_i386_reloc in coff-i386.c. The function
764 specifically adds the addend field into the object file, knowing that
765 bfd_perform_relocation is not going to. If you remove that line, then
766 coff-i386.c will wind up adding the addend field in twice. It's
767 trivial to fix; it just needs to be done.
768
769 The problem with removing the line is just that it may break some
770 working code. With BFD it's hard to be sure of anything. The right
771 way to deal with this is simply to build and test at least all the
772 supported COFF targets. It should be straightforward if time and disk
773 space consuming. For each target:
774 1) build the linker
775 2) generate some executable, and link it using -r (I would
776 probably use paranoia.o and link against newlib/libc.a, which
777 for all the supported targets would be available in
778 /usr/cygnus/progressive/H-host/target/lib/libc.a).
779 3) make the change to reloc.c
780 4) rebuild the linker
781 5) repeat step 2
782 6) if the resulting object files are the same, you have at least
783 made it no worse
784 7) if they are different you have to figure out which version is
785 right
786 */
787 relocation -= reloc_entry->addend;
788 #endif
789 reloc_entry->addend = 0;
790 }
791 else
792 {
793 reloc_entry->addend = relocation;
794 }
795 }
796 }
797 else
798 {
799 reloc_entry->addend = 0;
800 }
801
802 /* FIXME: This overflow checking is incomplete, because the value
803 might have overflowed before we get here. For a correct check we
804 need to compute the value in a size larger than bitsize, but we
805 can't reasonably do that for a reloc the same size as a host
806 machine word.
807 FIXME: We should also do overflow checking on the result after
808 adding in the value contained in the object file. */
809 if (howto->complain_on_overflow != complain_overflow_dont
810 && flag == bfd_reloc_ok)
811 flag = bfd_check_overflow (howto->complain_on_overflow,
812 howto->bitsize,
813 howto->rightshift,
814 bfd_arch_bits_per_address (abfd),
815 relocation);
816
817 /*
818 Either we are relocating all the way, or we don't want to apply
819 the relocation to the reloc entry (probably because there isn't
820 any room in the output format to describe addends to relocs)
821 */
822
823 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
824 (OSF version 1.3, compiler version 3.11). It miscompiles the
825 following program:
826
827 struct str
828 {
829 unsigned int i0;
830 } s = { 0 };
831
832 int
833 main ()
834 {
835 unsigned long x;
836
837 x = 0x100000000;
838 x <<= (unsigned long) s.i0;
839 if (x == 0)
840 printf ("failed\n");
841 else
842 printf ("succeeded (%lx)\n", x);
843 }
844 */
845
846 relocation >>= (bfd_vma) howto->rightshift;
847
848 /* Shift everything up to where it's going to be used */
849
850 relocation <<= (bfd_vma) howto->bitpos;
851
852 /* Wait for the day when all have the mask in them */
853
854 /* What we do:
855 i instruction to be left alone
856 o offset within instruction
857 r relocation offset to apply
858 S src mask
859 D dst mask
860 N ~dst mask
861 A part 1
862 B part 2
863 R result
864
865 Do this:
866 i i i i i o o o o o from bfd_get<size>
867 and S S S S S to get the size offset we want
868 + r r r r r r r r r r to get the final value to place
869 and D D D D D to chop to right size
870 -----------------------
871 A A A A A
872 And this:
873 ... i i i i i o o o o o from bfd_get<size>
874 and N N N N N get instruction
875 -----------------------
876 ... B B B B B
877
878 And then:
879 B B B B B
880 or A A A A A
881 -----------------------
882 R R R R R R R R R R put into bfd_put<size>
883 */
884
885 #define DOIT(x) \
886 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
887
888 switch (howto->size)
889 {
890 case 0:
891 {
892 char x = bfd_get_8 (abfd, (char *) data + addr);
893 DOIT (x);
894 bfd_put_8 (abfd, x, (unsigned char *) data + addr);
895 }
896 break;
897
898 case 1:
899 {
900 short x = bfd_get_16 (abfd, (bfd_byte *) data + addr);
901 DOIT (x);
902 bfd_put_16 (abfd, x, (unsigned char *) data + addr);
903 }
904 break;
905 case 2:
906 {
907 long x = bfd_get_32 (abfd, (bfd_byte *) data + addr);
908 DOIT (x);
909 bfd_put_32 (abfd, x, (bfd_byte *) data + addr);
910 }
911 break;
912 case -2:
913 {
914 long x = bfd_get_32 (abfd, (bfd_byte *) data + addr);
915 relocation = -relocation;
916 DOIT (x);
917 bfd_put_32 (abfd, x, (bfd_byte *) data + addr);
918 }
919 break;
920
921 case -1:
922 {
923 long x = bfd_get_16 (abfd, (bfd_byte *) data + addr);
924 relocation = -relocation;
925 DOIT (x);
926 bfd_put_16 (abfd, x, (bfd_byte *) data + addr);
927 }
928 break;
929
930 case 3:
931 /* Do nothing */
932 break;
933
934 case 4:
935 #ifdef BFD64
936 {
937 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + addr);
938 DOIT (x);
939 bfd_put_64 (abfd, x, (bfd_byte *) data + addr);
940 }
941 #else
942 abort ();
943 #endif
944 break;
945 default:
946 return bfd_reloc_other;
947 }
948
949 return flag;
950 }
951
952 /*
953 FUNCTION
954 bfd_install_relocation
955
956 SYNOPSIS
957 bfd_reloc_status_type
958 bfd_install_relocation
959 (bfd *abfd,
960 arelent *reloc_entry,
961 PTR data, bfd_vma data_start,
962 asection *input_section,
963 char **error_message);
964
965 DESCRIPTION
966 This looks remarkably like <<bfd_perform_relocation>>, except it
967 does not expect that the section contents have been filled in.
968 I.e., it's suitable for use when creating, rather than applying
969 a relocation.
970
971 For now, this function should be considered reserved for the
972 assembler.
973
974 */
975
976
977 bfd_reloc_status_type
978 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
979 input_section, error_message)
980 bfd *abfd;
981 arelent *reloc_entry;
982 PTR data_start;
983 bfd_vma data_start_offset;
984 asection *input_section;
985 char **error_message;
986 {
987 bfd_vma relocation;
988 bfd_reloc_status_type flag = bfd_reloc_ok;
989 bfd_size_type addr = reloc_entry->address;
990 bfd_vma output_base = 0;
991 reloc_howto_type *howto = reloc_entry->howto;
992 asection *reloc_target_output_section;
993 asymbol *symbol;
994 bfd_byte *data;
995
996 symbol = *(reloc_entry->sym_ptr_ptr);
997 if (bfd_is_abs_section (symbol->section))
998 {
999 reloc_entry->address += input_section->output_offset;
1000 return bfd_reloc_ok;
1001 }
1002
1003 /* If there is a function supplied to handle this relocation type,
1004 call it. It'll return `bfd_reloc_continue' if further processing
1005 can be done. */
1006 if (howto->special_function)
1007 {
1008 bfd_reloc_status_type cont;
1009
1010 /* XXX - The special_function calls haven't been fixed up to deal
1011 with creating new relocations and section contents. */
1012 cont = howto->special_function (abfd, reloc_entry, symbol,
1013 /* XXX - Non-portable! */
1014 ((bfd_byte *) data_start
1015 - data_start_offset),
1016 input_section, abfd, error_message);
1017 if (cont != bfd_reloc_continue)
1018 return cont;
1019 }
1020
1021 /* Is the address of the relocation really within the section? */
1022 if (reloc_entry->address > input_section->_cooked_size)
1023 return bfd_reloc_outofrange;
1024
1025 /* Work out which section the relocation is targetted at and the
1026 initial relocation command value. */
1027
1028 /* Get symbol value. (Common symbols are special.) */
1029 if (bfd_is_com_section (symbol->section))
1030 relocation = 0;
1031 else
1032 relocation = symbol->value;
1033
1034 reloc_target_output_section = symbol->section->output_section;
1035
1036 /* Convert input-section-relative symbol value to absolute. */
1037 if (howto->partial_inplace == false)
1038 output_base = 0;
1039 else
1040 output_base = reloc_target_output_section->vma;
1041
1042 relocation += output_base + symbol->section->output_offset;
1043
1044 /* Add in supplied addend. */
1045 relocation += reloc_entry->addend;
1046
1047 /* Here the variable relocation holds the final address of the
1048 symbol we are relocating against, plus any addend. */
1049
1050 if (howto->pc_relative == true)
1051 {
1052 /* This is a PC relative relocation. We want to set RELOCATION
1053 to the distance between the address of the symbol and the
1054 location. RELOCATION is already the address of the symbol.
1055
1056 We start by subtracting the address of the section containing
1057 the location.
1058
1059 If pcrel_offset is set, we must further subtract the position
1060 of the location within the section. Some targets arrange for
1061 the addend to be the negative of the position of the location
1062 within the section; for example, i386-aout does this. For
1063 i386-aout, pcrel_offset is false. Some other targets do not
1064 include the position of the location; for example, m88kbcs,
1065 or ELF. For those targets, pcrel_offset is true.
1066
1067 If we are producing relocateable output, then we must ensure
1068 that this reloc will be correctly computed when the final
1069 relocation is done. If pcrel_offset is false we want to wind
1070 up with the negative of the location within the section,
1071 which means we must adjust the existing addend by the change
1072 in the location within the section. If pcrel_offset is true
1073 we do not want to adjust the existing addend at all.
1074
1075 FIXME: This seems logical to me, but for the case of
1076 producing relocateable output it is not what the code
1077 actually does. I don't want to change it, because it seems
1078 far too likely that something will break. */
1079
1080 relocation -=
1081 input_section->output_section->vma + input_section->output_offset;
1082
1083 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1084 relocation -= reloc_entry->address;
1085 }
1086
1087 if (howto->partial_inplace == false)
1088 {
1089 /* This is a partial relocation, and we want to apply the relocation
1090 to the reloc entry rather than the raw data. Modify the reloc
1091 inplace to reflect what we now know. */
1092 reloc_entry->addend = relocation;
1093 reloc_entry->address += input_section->output_offset;
1094 return flag;
1095 }
1096 else
1097 {
1098 /* This is a partial relocation, but inplace, so modify the
1099 reloc record a bit.
1100
1101 If we've relocated with a symbol with a section, change
1102 into a ref to the section belonging to the symbol. */
1103
1104 reloc_entry->address += input_section->output_offset;
1105
1106 /* WTF?? */
1107 if (abfd->xvec->flavour == bfd_target_coff_flavour
1108 && strcmp (abfd->xvec->name, "aixcoff-rs6000") != 0
1109 && strcmp (abfd->xvec->name, "xcoff-powermac") != 0
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112 {
1113 #if 1
1114 /* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1117
1118 However, Ian wrote the following, regarding removing the line below,
1119 which explains why it is still enabled: --djm
1120
1121 If you put a patch like that into BFD you need to check all the COFF
1122 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124 problem in a different way. There may very well be a reason that the
1125 code works as it does.
1126
1127 Hmmm. The first obvious point is that bfd_install_relocation should
1128 not have any tests that depend upon the flavour. It's seem like
1129 entirely the wrong place for such a thing. The second obvious point
1130 is that the current code ignores the reloc addend when producing
1131 relocateable output for COFF. That's peculiar. In fact, I really
1132 have no idea what the point of the line you want to remove is.
1133
1134 A typical COFF reloc subtracts the old value of the symbol and adds in
1135 the new value to the location in the object file (if it's a pc
1136 relative reloc it adds the difference between the symbol value and the
1137 location). When relocating we need to preserve that property.
1138
1139 BFD handles this by setting the addend to the negative of the old
1140 value of the symbol. Unfortunately it handles common symbols in a
1141 non-standard way (it doesn't subtract the old value) but that's a
1142 different story (we can't change it without losing backward
1143 compatibility with old object files) (coff-i386 does subtract the old
1144 value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146 So everything works fine when not producing relocateable output. When
1147 we are producing relocateable output, logically we should do exactly
1148 what we do when not producing relocateable output. Therefore, your
1149 patch is correct. In fact, it should probably always just set
1150 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151 add the value into the object file. This won't hurt the COFF code,
1152 which doesn't use the addend; I'm not sure what it will do to other
1153 formats (the thing to check for would be whether any formats both use
1154 the addend and set partial_inplace).
1155
1156 When I wanted to make coff-i386 produce relocateable output, I ran
1157 into the problem that you are running into: I wanted to remove that
1158 line. Rather than risk it, I made the coff-i386 relocs use a special
1159 function; it's coff_i386_reloc in coff-i386.c. The function
1160 specifically adds the addend field into the object file, knowing that
1161 bfd_install_relocation is not going to. If you remove that line, then
1162 coff-i386.c will wind up adding the addend field in twice. It's
1163 trivial to fix; it just needs to be done.
1164
1165 The problem with removing the line is just that it may break some
1166 working code. With BFD it's hard to be sure of anything. The right
1167 way to deal with this is simply to build and test at least all the
1168 supported COFF targets. It should be straightforward if time and disk
1169 space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
1181 right
1182 */
1183 relocation -= reloc_entry->addend;
1184 #endif
1185 reloc_entry->addend = 0;
1186 }
1187 else
1188 {
1189 reloc_entry->addend = relocation;
1190 }
1191 }
1192
1193 /* FIXME: This overflow checking is incomplete, because the value
1194 might have overflowed before we get here. For a correct check we
1195 need to compute the value in a size larger than bitsize, but we
1196 can't reasonably do that for a reloc the same size as a host
1197 machine word.
1198 FIXME: We should also do overflow checking on the result after
1199 adding in the value contained in the object file. */
1200 if (howto->complain_on_overflow != complain_overflow_dont)
1201 flag = bfd_check_overflow (howto->complain_on_overflow,
1202 howto->bitsize,
1203 howto->rightshift,
1204 bfd_arch_bits_per_address (abfd),
1205 relocation);
1206
1207 /*
1208 Either we are relocating all the way, or we don't want to apply
1209 the relocation to the reloc entry (probably because there isn't
1210 any room in the output format to describe addends to relocs)
1211 */
1212
1213 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1214 (OSF version 1.3, compiler version 3.11). It miscompiles the
1215 following program:
1216
1217 struct str
1218 {
1219 unsigned int i0;
1220 } s = { 0 };
1221
1222 int
1223 main ()
1224 {
1225 unsigned long x;
1226
1227 x = 0x100000000;
1228 x <<= (unsigned long) s.i0;
1229 if (x == 0)
1230 printf ("failed\n");
1231 else
1232 printf ("succeeded (%lx)\n", x);
1233 }
1234 */
1235
1236 relocation >>= (bfd_vma) howto->rightshift;
1237
1238 /* Shift everything up to where it's going to be used */
1239
1240 relocation <<= (bfd_vma) howto->bitpos;
1241
1242 /* Wait for the day when all have the mask in them */
1243
1244 /* What we do:
1245 i instruction to be left alone
1246 o offset within instruction
1247 r relocation offset to apply
1248 S src mask
1249 D dst mask
1250 N ~dst mask
1251 A part 1
1252 B part 2
1253 R result
1254
1255 Do this:
1256 i i i i i o o o o o from bfd_get<size>
1257 and S S S S S to get the size offset we want
1258 + r r r r r r r r r r to get the final value to place
1259 and D D D D D to chop to right size
1260 -----------------------
1261 A A A A A
1262 And this:
1263 ... i i i i i o o o o o from bfd_get<size>
1264 and N N N N N get instruction
1265 -----------------------
1266 ... B B B B B
1267
1268 And then:
1269 B B B B B
1270 or A A A A A
1271 -----------------------
1272 R R R R R R R R R R put into bfd_put<size>
1273 */
1274
1275 #define DOIT(x) \
1276 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1277
1278 data = (bfd_byte *) data_start + (addr - data_start_offset);
1279
1280 switch (howto->size)
1281 {
1282 case 0:
1283 {
1284 char x = bfd_get_8 (abfd, (char *) data);
1285 DOIT (x);
1286 bfd_put_8 (abfd, x, (unsigned char *) data);
1287 }
1288 break;
1289
1290 case 1:
1291 {
1292 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1293 DOIT (x);
1294 bfd_put_16 (abfd, x, (unsigned char *) data);
1295 }
1296 break;
1297 case 2:
1298 {
1299 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1300 DOIT (x);
1301 bfd_put_32 (abfd, x, (bfd_byte *) data);
1302 }
1303 break;
1304 case -2:
1305 {
1306 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1307 relocation = -relocation;
1308 DOIT (x);
1309 bfd_put_32 (abfd, x, (bfd_byte *) data);
1310 }
1311 break;
1312
1313 case 3:
1314 /* Do nothing */
1315 break;
1316
1317 case 4:
1318 {
1319 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1320 DOIT (x);
1321 bfd_put_64 (abfd, x, (bfd_byte *) data);
1322 }
1323 break;
1324 default:
1325 return bfd_reloc_other;
1326 }
1327
1328 return flag;
1329 }
1330
1331 /* This relocation routine is used by some of the backend linkers.
1332 They do not construct asymbol or arelent structures, so there is no
1333 reason for them to use bfd_perform_relocation. Also,
1334 bfd_perform_relocation is so hacked up it is easier to write a new
1335 function than to try to deal with it.
1336
1337 This routine does a final relocation. Whether it is useful for a
1338 relocateable link depends upon how the object format defines
1339 relocations.
1340
1341 FIXME: This routine ignores any special_function in the HOWTO,
1342 since the existing special_function values have been written for
1343 bfd_perform_relocation.
1344
1345 HOWTO is the reloc howto information.
1346 INPUT_BFD is the BFD which the reloc applies to.
1347 INPUT_SECTION is the section which the reloc applies to.
1348 CONTENTS is the contents of the section.
1349 ADDRESS is the address of the reloc within INPUT_SECTION.
1350 VALUE is the value of the symbol the reloc refers to.
1351 ADDEND is the addend of the reloc. */
1352
1353 bfd_reloc_status_type
1354 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1355 value, addend)
1356 reloc_howto_type *howto;
1357 bfd *input_bfd;
1358 asection *input_section;
1359 bfd_byte *contents;
1360 bfd_vma address;
1361 bfd_vma value;
1362 bfd_vma addend;
1363 {
1364 bfd_vma relocation;
1365
1366 /* Sanity check the address. */
1367 if (address > input_section->_raw_size)
1368 return bfd_reloc_outofrange;
1369
1370 /* This function assumes that we are dealing with a basic relocation
1371 against a symbol. We want to compute the value of the symbol to
1372 relocate to. This is just VALUE, the value of the symbol, plus
1373 ADDEND, any addend associated with the reloc. */
1374 relocation = value + addend;
1375
1376 /* If the relocation is PC relative, we want to set RELOCATION to
1377 the distance between the symbol (currently in RELOCATION) and the
1378 location we are relocating. Some targets (e.g., i386-aout)
1379 arrange for the contents of the section to be the negative of the
1380 offset of the location within the section; for such targets
1381 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1382 simply leave the contents of the section as zero; for such
1383 targets pcrel_offset is true. If pcrel_offset is false we do not
1384 need to subtract out the offset of the location within the
1385 section (which is just ADDRESS). */
1386 if (howto->pc_relative)
1387 {
1388 relocation -= (input_section->output_section->vma
1389 + input_section->output_offset);
1390 if (howto->pcrel_offset)
1391 relocation -= address;
1392 }
1393
1394 return _bfd_relocate_contents (howto, input_bfd, relocation,
1395 contents + address);
1396 }
1397
1398 /* Relocate a given location using a given value and howto. */
1399
1400 bfd_reloc_status_type
1401 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1402 reloc_howto_type *howto;
1403 bfd *input_bfd;
1404 bfd_vma relocation;
1405 bfd_byte *location;
1406 {
1407 int size;
1408 bfd_vma x;
1409 boolean overflow;
1410 unsigned int rightshift = howto->rightshift;
1411 unsigned int bitpos = howto->bitpos;
1412
1413 /* If the size is negative, negate RELOCATION. This isn't very
1414 general. */
1415 if (howto->size < 0)
1416 relocation = -relocation;
1417
1418 /* Get the value we are going to relocate. */
1419 size = bfd_get_reloc_size (howto);
1420 switch (size)
1421 {
1422 default:
1423 case 0:
1424 abort ();
1425 case 1:
1426 x = bfd_get_8 (input_bfd, location);
1427 break;
1428 case 2:
1429 x = bfd_get_16 (input_bfd, location);
1430 break;
1431 case 4:
1432 x = bfd_get_32 (input_bfd, location);
1433 break;
1434 case 8:
1435 #ifdef BFD64
1436 x = bfd_get_64 (input_bfd, location);
1437 #else
1438 abort ();
1439 #endif
1440 break;
1441 }
1442
1443 /* Check for overflow. FIXME: We may drop bits during the addition
1444 which we don't check for. We must either check at every single
1445 operation, which would be tedious, or we must do the computations
1446 in a type larger than bfd_vma, which would be inefficient. */
1447 overflow = false;
1448 if (howto->complain_on_overflow != complain_overflow_dont)
1449 {
1450 bfd_vma addrmask, fieldmask, signmask, ss;
1451 bfd_vma a, b, sum;
1452
1453 /* Get the values to be added together. For signed and unsigned
1454 relocations, we assume that all values should be truncated to
1455 the size of an address. For bitfields, all the bits matter.
1456 See also bfd_check_overflow. */
1457 fieldmask = N_ONES (howto->bitsize);
1458 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1459 a = relocation;
1460 b = x & howto->src_mask;
1461
1462 switch (howto->complain_on_overflow)
1463 {
1464 case complain_overflow_signed:
1465 a = (a & addrmask) >> rightshift;
1466
1467 /* If any sign bits are set, all sign bits must be set.
1468 That is, A must be a valid negative address after
1469 shifting. */
1470 signmask = ~ (fieldmask >> 1);
1471 ss = a & signmask;
1472 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1473 overflow = true;
1474
1475 /* We only need this next bit of code if the sign bit of B
1476 is below the sign bit of A. This would only happen if
1477 SRC_MASK had fewer bits than BITSIZE. Note that if
1478 SRC_MASK has more bits than BITSIZE, we can get into
1479 trouble; we would need to verify that B is in range, as
1480 we do for A above. */
1481 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1482 if ((b & signmask) != 0)
1483 {
1484 /* Set all the bits above the sign bit. */
1485 b -= signmask <<= 1;
1486 }
1487
1488 b = (b & addrmask) >> bitpos;
1489
1490 /* Now we can do the addition. */
1491 sum = a + b;
1492
1493 /* See if the result has the correct sign. Bits above the
1494 sign bit are junk now; ignore them. If the sum is
1495 positive, make sure we did not have all negative inputs;
1496 if the sum is negative, make sure we did not have all
1497 positive inputs. The test below looks only at the sign
1498 bits, and it really just
1499 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1500 */
1501 signmask = (fieldmask >> 1) + 1;
1502 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1503 overflow = true;
1504
1505 break;
1506
1507 case complain_overflow_unsigned:
1508 /* Checking for an unsigned overflow is relatively easy:
1509 trim the addresses and add, and trim the result as well.
1510 Overflow is normally indicated when the result does not
1511 fit in the field. However, we also need to consider the
1512 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1513 input is 0x80000000, and bfd_vma is only 32 bits; then we
1514 will get sum == 0, but there is an overflow, since the
1515 inputs did not fit in the field. Instead of doing a
1516 separate test, we can check for this by or-ing in the
1517 operands when testing for the sum overflowing its final
1518 field. */
1519 a = (a & addrmask) >> rightshift;
1520 b = (b & addrmask) >> bitpos;
1521 sum = (a + b) & addrmask;
1522 if ((a | b | sum) & ~ fieldmask)
1523 overflow = true;
1524
1525 break;
1526
1527 case complain_overflow_bitfield:
1528 /* Much like unsigned, except no trimming with addrmask. In
1529 addition, the sum overflows if there is a carry out of
1530 the bfd_vma, i.e., the sum is less than either input
1531 operand. */
1532 a >>= rightshift;
1533 b >>= bitpos;
1534
1535 /* Bitfields are sometimes used for signed numbers; for
1536 example, a 13-bit field sometimes represents values in
1537 0..8191 and sometimes represents values in -4096..4095.
1538 If the field is signed and a is -4095 (0x1001) and b is
1539 -1 (0x1fff), the sum is -4096 (0x1000), but (0x1001 +
1540 0x1fff is 0x3000). It's not clear how to handle this
1541 everywhere, since there is not way to know how many bits
1542 are significant in the relocation, but the original code
1543 assumed that it was fully sign extended, and we will keep
1544 that assumption. */
1545 signmask = (fieldmask >> 1) + 1;
1546
1547 if ((a & ~ fieldmask) != 0)
1548 {
1549 /* Some bits out of the field are set. This might not
1550 be a problem: if this is a signed bitfield, it is OK
1551 iff all the high bits are set, including the sign
1552 bit. We'll try setting all but the most significant
1553 bit in the original relocation value: if this is all
1554 ones, we are OK, assuming a signed bitfield. */
1555 ss = (signmask << rightshift) - 1;
1556 if ((ss | relocation) != ~ (bfd_vma) 0)
1557 overflow = true;
1558 a &= fieldmask;
1559 }
1560
1561 /* We just assume (b & ~ fieldmask) == 0. */
1562
1563 /* We explicitly permit wrap around if this relocation
1564 covers the high bit of an address. The Linux kernel
1565 relies on it, and it is the only way to write assembler
1566 code which can run when loaded at a location 0x80000000
1567 away from the location at which it is linked. */
1568 if (howto->bitsize + rightshift
1569 == bfd_arch_bits_per_address (input_bfd))
1570 break;
1571
1572 sum = a + b;
1573 if (sum < a || (sum & ~ fieldmask) != 0)
1574 {
1575 /* There was a carry out, or the field overflow. Test
1576 for signed operands again. Here is the overflow test
1577 is as for complain_overflow_signed. */
1578 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1579 overflow = true;
1580 }
1581
1582 break;
1583
1584 default:
1585 abort ();
1586 }
1587 }
1588
1589 /* Put RELOCATION in the right bits. */
1590 relocation >>= (bfd_vma) rightshift;
1591 relocation <<= (bfd_vma) bitpos;
1592
1593 /* Add RELOCATION to the right bits of X. */
1594 x = ((x & ~howto->dst_mask)
1595 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1596
1597 /* Put the relocated value back in the object file. */
1598 switch (size)
1599 {
1600 default:
1601 case 0:
1602 abort ();
1603 case 1:
1604 bfd_put_8 (input_bfd, x, location);
1605 break;
1606 case 2:
1607 bfd_put_16 (input_bfd, x, location);
1608 break;
1609 case 4:
1610 bfd_put_32 (input_bfd, x, location);
1611 break;
1612 case 8:
1613 #ifdef BFD64
1614 bfd_put_64 (input_bfd, x, location);
1615 #else
1616 abort ();
1617 #endif
1618 break;
1619 }
1620
1621 return overflow ? bfd_reloc_overflow : bfd_reloc_ok;
1622 }
1623
1624 /*
1625 DOCDD
1626 INODE
1627 howto manager, , typedef arelent, Relocations
1628
1629 SECTION
1630 The howto manager
1631
1632 When an application wants to create a relocation, but doesn't
1633 know what the target machine might call it, it can find out by
1634 using this bit of code.
1635
1636 */
1637
1638 /*
1639 TYPEDEF
1640 bfd_reloc_code_type
1641
1642 DESCRIPTION
1643 The insides of a reloc code. The idea is that, eventually, there
1644 will be one enumerator for every type of relocation we ever do.
1645 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1646 return a howto pointer.
1647
1648 This does mean that the application must determine the correct
1649 enumerator value; you can't get a howto pointer from a random set
1650 of attributes.
1651
1652 SENUM
1653 bfd_reloc_code_real
1654
1655 ENUM
1656 BFD_RELOC_64
1657 ENUMX
1658 BFD_RELOC_32
1659 ENUMX
1660 BFD_RELOC_26
1661 ENUMX
1662 BFD_RELOC_24
1663 ENUMX
1664 BFD_RELOC_16
1665 ENUMX
1666 BFD_RELOC_14
1667 ENUMX
1668 BFD_RELOC_8
1669 ENUMDOC
1670 Basic absolute relocations of N bits.
1671
1672 ENUM
1673 BFD_RELOC_64_PCREL
1674 ENUMX
1675 BFD_RELOC_32_PCREL
1676 ENUMX
1677 BFD_RELOC_24_PCREL
1678 ENUMX
1679 BFD_RELOC_16_PCREL
1680 ENUMX
1681 BFD_RELOC_12_PCREL
1682 ENUMX
1683 BFD_RELOC_8_PCREL
1684 ENUMDOC
1685 PC-relative relocations. Sometimes these are relative to the address
1686 of the relocation itself; sometimes they are relative to the start of
1687 the section containing the relocation. It depends on the specific target.
1688
1689 The 24-bit relocation is used in some Intel 960 configurations.
1690
1691 ENUM
1692 BFD_RELOC_32_GOT_PCREL
1693 ENUMX
1694 BFD_RELOC_16_GOT_PCREL
1695 ENUMX
1696 BFD_RELOC_8_GOT_PCREL
1697 ENUMX
1698 BFD_RELOC_32_GOTOFF
1699 ENUMX
1700 BFD_RELOC_16_GOTOFF
1701 ENUMX
1702 BFD_RELOC_LO16_GOTOFF
1703 ENUMX
1704 BFD_RELOC_HI16_GOTOFF
1705 ENUMX
1706 BFD_RELOC_HI16_S_GOTOFF
1707 ENUMX
1708 BFD_RELOC_8_GOTOFF
1709 ENUMX
1710 BFD_RELOC_32_PLT_PCREL
1711 ENUMX
1712 BFD_RELOC_24_PLT_PCREL
1713 ENUMX
1714 BFD_RELOC_16_PLT_PCREL
1715 ENUMX
1716 BFD_RELOC_8_PLT_PCREL
1717 ENUMX
1718 BFD_RELOC_32_PLTOFF
1719 ENUMX
1720 BFD_RELOC_16_PLTOFF
1721 ENUMX
1722 BFD_RELOC_LO16_PLTOFF
1723 ENUMX
1724 BFD_RELOC_HI16_PLTOFF
1725 ENUMX
1726 BFD_RELOC_HI16_S_PLTOFF
1727 ENUMX
1728 BFD_RELOC_8_PLTOFF
1729 ENUMDOC
1730 For ELF.
1731
1732 ENUM
1733 BFD_RELOC_68K_GLOB_DAT
1734 ENUMX
1735 BFD_RELOC_68K_JMP_SLOT
1736 ENUMX
1737 BFD_RELOC_68K_RELATIVE
1738 ENUMDOC
1739 Relocations used by 68K ELF.
1740
1741 ENUM
1742 BFD_RELOC_32_BASEREL
1743 ENUMX
1744 BFD_RELOC_16_BASEREL
1745 ENUMX
1746 BFD_RELOC_LO16_BASEREL
1747 ENUMX
1748 BFD_RELOC_HI16_BASEREL
1749 ENUMX
1750 BFD_RELOC_HI16_S_BASEREL
1751 ENUMX
1752 BFD_RELOC_8_BASEREL
1753 ENUMX
1754 BFD_RELOC_RVA
1755 ENUMDOC
1756 Linkage-table relative.
1757
1758 ENUM
1759 BFD_RELOC_8_FFnn
1760 ENUMDOC
1761 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1762
1763 ENUM
1764 BFD_RELOC_32_PCREL_S2
1765 ENUMX
1766 BFD_RELOC_16_PCREL_S2
1767 ENUMX
1768 BFD_RELOC_23_PCREL_S2
1769 ENUMDOC
1770 These PC-relative relocations are stored as word displacements --
1771 i.e., byte displacements shifted right two bits. The 30-bit word
1772 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1773 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1774 signed 16-bit displacement is used on the MIPS, and the 23-bit
1775 displacement is used on the Alpha.
1776
1777 ENUM
1778 BFD_RELOC_HI22
1779 ENUMX
1780 BFD_RELOC_LO10
1781 ENUMDOC
1782 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1783 the target word. These are used on the SPARC.
1784
1785 ENUM
1786 BFD_RELOC_GPREL16
1787 ENUMX
1788 BFD_RELOC_GPREL32
1789 ENUMDOC
1790 For systems that allocate a Global Pointer register, these are
1791 displacements off that register. These relocation types are
1792 handled specially, because the value the register will have is
1793 decided relatively late.
1794
1795
1796 ENUM
1797 BFD_RELOC_I960_CALLJ
1798 ENUMDOC
1799 Reloc types used for i960/b.out.
1800
1801 ENUM
1802 BFD_RELOC_NONE
1803 ENUMX
1804 BFD_RELOC_SPARC_WDISP22
1805 ENUMX
1806 BFD_RELOC_SPARC22
1807 ENUMX
1808 BFD_RELOC_SPARC13
1809 ENUMX
1810 BFD_RELOC_SPARC_GOT10
1811 ENUMX
1812 BFD_RELOC_SPARC_GOT13
1813 ENUMX
1814 BFD_RELOC_SPARC_GOT22
1815 ENUMX
1816 BFD_RELOC_SPARC_PC10
1817 ENUMX
1818 BFD_RELOC_SPARC_PC22
1819 ENUMX
1820 BFD_RELOC_SPARC_WPLT30
1821 ENUMX
1822 BFD_RELOC_SPARC_COPY
1823 ENUMX
1824 BFD_RELOC_SPARC_GLOB_DAT
1825 ENUMX
1826 BFD_RELOC_SPARC_JMP_SLOT
1827 ENUMX
1828 BFD_RELOC_SPARC_RELATIVE
1829 ENUMX
1830 BFD_RELOC_SPARC_UA32
1831 ENUMDOC
1832 SPARC ELF relocations. There is probably some overlap with other
1833 relocation types already defined.
1834
1835 ENUM
1836 BFD_RELOC_SPARC_BASE13
1837 ENUMX
1838 BFD_RELOC_SPARC_BASE22
1839 ENUMDOC
1840 I think these are specific to SPARC a.out (e.g., Sun 4).
1841
1842 ENUMEQ
1843 BFD_RELOC_SPARC_64
1844 BFD_RELOC_64
1845 ENUMX
1846 BFD_RELOC_SPARC_10
1847 ENUMX
1848 BFD_RELOC_SPARC_11
1849 ENUMX
1850 BFD_RELOC_SPARC_OLO10
1851 ENUMX
1852 BFD_RELOC_SPARC_HH22
1853 ENUMX
1854 BFD_RELOC_SPARC_HM10
1855 ENUMX
1856 BFD_RELOC_SPARC_LM22
1857 ENUMX
1858 BFD_RELOC_SPARC_PC_HH22
1859 ENUMX
1860 BFD_RELOC_SPARC_PC_HM10
1861 ENUMX
1862 BFD_RELOC_SPARC_PC_LM22
1863 ENUMX
1864 BFD_RELOC_SPARC_WDISP16
1865 ENUMX
1866 BFD_RELOC_SPARC_WDISP19
1867 ENUMX
1868 BFD_RELOC_SPARC_7
1869 ENUMX
1870 BFD_RELOC_SPARC_6
1871 ENUMX
1872 BFD_RELOC_SPARC_5
1873 ENUMEQX
1874 BFD_RELOC_SPARC_DISP64
1875 BFD_RELOC_64_PCREL
1876 ENUMX
1877 BFD_RELOC_SPARC_PLT64
1878 ENUMX
1879 BFD_RELOC_SPARC_HIX22
1880 ENUMX
1881 BFD_RELOC_SPARC_LOX10
1882 ENUMX
1883 BFD_RELOC_SPARC_H44
1884 ENUMX
1885 BFD_RELOC_SPARC_M44
1886 ENUMX
1887 BFD_RELOC_SPARC_L44
1888 ENUMX
1889 BFD_RELOC_SPARC_REGISTER
1890 ENUMDOC
1891 SPARC64 relocations
1892
1893 ENUM
1894 BFD_RELOC_SPARC_REV32
1895 ENUMDOC
1896 SPARC little endian relocation
1897
1898 ENUM
1899 BFD_RELOC_ALPHA_GPDISP_HI16
1900 ENUMDOC
1901 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1902 "addend" in some special way.
1903 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1904 writing; when reading, it will be the absolute section symbol. The
1905 addend is the displacement in bytes of the "lda" instruction from
1906 the "ldah" instruction (which is at the address of this reloc).
1907 ENUM
1908 BFD_RELOC_ALPHA_GPDISP_LO16
1909 ENUMDOC
1910 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1911 with GPDISP_HI16 relocs. The addend is ignored when writing the
1912 relocations out, and is filled in with the file's GP value on
1913 reading, for convenience.
1914
1915 ENUM
1916 BFD_RELOC_ALPHA_GPDISP
1917 ENUMDOC
1918 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1919 relocation except that there is no accompanying GPDISP_LO16
1920 relocation.
1921
1922 ENUM
1923 BFD_RELOC_ALPHA_LITERAL
1924 ENUMX
1925 BFD_RELOC_ALPHA_ELF_LITERAL
1926 ENUMX
1927 BFD_RELOC_ALPHA_LITUSE
1928 ENUMDOC
1929 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1930 the assembler turns it into a LDQ instruction to load the address of
1931 the symbol, and then fills in a register in the real instruction.
1932
1933 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1934 section symbol. The addend is ignored when writing, but is filled
1935 in with the file's GP value on reading, for convenience, as with the
1936 GPDISP_LO16 reloc.
1937
1938 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1939 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1940 but it generates output not based on the position within the .got
1941 section, but relative to the GP value chosen for the file during the
1942 final link stage.
1943
1944 The LITUSE reloc, on the instruction using the loaded address, gives
1945 information to the linker that it might be able to use to optimize
1946 away some literal section references. The symbol is ignored (read
1947 as the absolute section symbol), and the "addend" indicates the type
1948 of instruction using the register:
1949 1 - "memory" fmt insn
1950 2 - byte-manipulation (byte offset reg)
1951 3 - jsr (target of branch)
1952
1953 The GNU linker currently doesn't do any of this optimizing.
1954
1955 ENUM
1956 BFD_RELOC_ALPHA_HINT
1957 ENUMDOC
1958 The HINT relocation indicates a value that should be filled into the
1959 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1960 prediction logic which may be provided on some processors.
1961
1962 ENUM
1963 BFD_RELOC_ALPHA_LINKAGE
1964 ENUMDOC
1965 The LINKAGE relocation outputs a linkage pair in the object file,
1966 which is filled by the linker.
1967
1968 ENUM
1969 BFD_RELOC_ALPHA_CODEADDR
1970 ENUMDOC
1971 The CODEADDR relocation outputs a STO_CA in the object file,
1972 which is filled by the linker.
1973
1974 ENUM
1975 BFD_RELOC_MIPS_JMP
1976 ENUMDOC
1977 Bits 27..2 of the relocation address shifted right 2 bits;
1978 simple reloc otherwise.
1979
1980 ENUM
1981 BFD_RELOC_MIPS16_JMP
1982 ENUMDOC
1983 The MIPS16 jump instruction.
1984
1985 ENUM
1986 BFD_RELOC_MIPS16_GPREL
1987 ENUMDOC
1988 MIPS16 GP relative reloc.
1989
1990 ENUM
1991 BFD_RELOC_HI16
1992 ENUMDOC
1993 High 16 bits of 32-bit value; simple reloc.
1994 ENUM
1995 BFD_RELOC_HI16_S
1996 ENUMDOC
1997 High 16 bits of 32-bit value but the low 16 bits will be sign
1998 extended and added to form the final result. If the low 16
1999 bits form a negative number, we need to add one to the high value
2000 to compensate for the borrow when the low bits are added.
2001 ENUM
2002 BFD_RELOC_LO16
2003 ENUMDOC
2004 Low 16 bits.
2005 ENUM
2006 BFD_RELOC_PCREL_HI16_S
2007 ENUMDOC
2008 Like BFD_RELOC_HI16_S, but PC relative.
2009 ENUM
2010 BFD_RELOC_PCREL_LO16
2011 ENUMDOC
2012 Like BFD_RELOC_LO16, but PC relative.
2013
2014 ENUMEQ
2015 BFD_RELOC_MIPS_GPREL
2016 BFD_RELOC_GPREL16
2017 ENUMDOC
2018 Relocation relative to the global pointer.
2019
2020 ENUM
2021 BFD_RELOC_MIPS_LITERAL
2022 ENUMDOC
2023 Relocation against a MIPS literal section.
2024
2025 ENUM
2026 BFD_RELOC_MIPS_GOT16
2027 ENUMX
2028 BFD_RELOC_MIPS_CALL16
2029 ENUMEQX
2030 BFD_RELOC_MIPS_GPREL32
2031 BFD_RELOC_GPREL32
2032 ENUMX
2033 BFD_RELOC_MIPS_GOT_HI16
2034 ENUMX
2035 BFD_RELOC_MIPS_GOT_LO16
2036 ENUMX
2037 BFD_RELOC_MIPS_CALL_HI16
2038 ENUMX
2039 BFD_RELOC_MIPS_CALL_LO16
2040 ENUMX
2041 BFD_RELOC_MIPS_SUB
2042 ENUMX
2043 BFD_RELOC_MIPS_GOT_PAGE
2044 ENUMX
2045 BFD_RELOC_MIPS_GOT_OFST
2046 ENUMX
2047 BFD_RELOC_MIPS_GOT_DISP
2048 COMMENT
2049 ENUMDOC
2050 MIPS ELF relocations.
2051
2052 COMMENT
2053
2054 ENUM
2055 BFD_RELOC_386_GOT32
2056 ENUMX
2057 BFD_RELOC_386_PLT32
2058 ENUMX
2059 BFD_RELOC_386_COPY
2060 ENUMX
2061 BFD_RELOC_386_GLOB_DAT
2062 ENUMX
2063 BFD_RELOC_386_JUMP_SLOT
2064 ENUMX
2065 BFD_RELOC_386_RELATIVE
2066 ENUMX
2067 BFD_RELOC_386_GOTOFF
2068 ENUMX
2069 BFD_RELOC_386_GOTPC
2070 ENUMDOC
2071 i386/elf relocations
2072
2073 ENUM
2074 BFD_RELOC_NS32K_IMM_8
2075 ENUMX
2076 BFD_RELOC_NS32K_IMM_16
2077 ENUMX
2078 BFD_RELOC_NS32K_IMM_32
2079 ENUMX
2080 BFD_RELOC_NS32K_IMM_8_PCREL
2081 ENUMX
2082 BFD_RELOC_NS32K_IMM_16_PCREL
2083 ENUMX
2084 BFD_RELOC_NS32K_IMM_32_PCREL
2085 ENUMX
2086 BFD_RELOC_NS32K_DISP_8
2087 ENUMX
2088 BFD_RELOC_NS32K_DISP_16
2089 ENUMX
2090 BFD_RELOC_NS32K_DISP_32
2091 ENUMX
2092 BFD_RELOC_NS32K_DISP_8_PCREL
2093 ENUMX
2094 BFD_RELOC_NS32K_DISP_16_PCREL
2095 ENUMX
2096 BFD_RELOC_NS32K_DISP_32_PCREL
2097 ENUMDOC
2098 ns32k relocations
2099
2100 ENUM
2101 BFD_RELOC_PPC_B26
2102 ENUMX
2103 BFD_RELOC_PPC_BA26
2104 ENUMX
2105 BFD_RELOC_PPC_TOC16
2106 ENUMX
2107 BFD_RELOC_PPC_B16
2108 ENUMX
2109 BFD_RELOC_PPC_B16_BRTAKEN
2110 ENUMX
2111 BFD_RELOC_PPC_B16_BRNTAKEN
2112 ENUMX
2113 BFD_RELOC_PPC_BA16
2114 ENUMX
2115 BFD_RELOC_PPC_BA16_BRTAKEN
2116 ENUMX
2117 BFD_RELOC_PPC_BA16_BRNTAKEN
2118 ENUMX
2119 BFD_RELOC_PPC_COPY
2120 ENUMX
2121 BFD_RELOC_PPC_GLOB_DAT
2122 ENUMX
2123 BFD_RELOC_PPC_JMP_SLOT
2124 ENUMX
2125 BFD_RELOC_PPC_RELATIVE
2126 ENUMX
2127 BFD_RELOC_PPC_LOCAL24PC
2128 ENUMX
2129 BFD_RELOC_PPC_EMB_NADDR32
2130 ENUMX
2131 BFD_RELOC_PPC_EMB_NADDR16
2132 ENUMX
2133 BFD_RELOC_PPC_EMB_NADDR16_LO
2134 ENUMX
2135 BFD_RELOC_PPC_EMB_NADDR16_HI
2136 ENUMX
2137 BFD_RELOC_PPC_EMB_NADDR16_HA
2138 ENUMX
2139 BFD_RELOC_PPC_EMB_SDAI16
2140 ENUMX
2141 BFD_RELOC_PPC_EMB_SDA2I16
2142 ENUMX
2143 BFD_RELOC_PPC_EMB_SDA2REL
2144 ENUMX
2145 BFD_RELOC_PPC_EMB_SDA21
2146 ENUMX
2147 BFD_RELOC_PPC_EMB_MRKREF
2148 ENUMX
2149 BFD_RELOC_PPC_EMB_RELSEC16
2150 ENUMX
2151 BFD_RELOC_PPC_EMB_RELST_LO
2152 ENUMX
2153 BFD_RELOC_PPC_EMB_RELST_HI
2154 ENUMX
2155 BFD_RELOC_PPC_EMB_RELST_HA
2156 ENUMX
2157 BFD_RELOC_PPC_EMB_BIT_FLD
2158 ENUMX
2159 BFD_RELOC_PPC_EMB_RELSDA
2160 ENUMDOC
2161 Power(rs6000) and PowerPC relocations.
2162
2163 ENUM
2164 BFD_RELOC_CTOR
2165 ENUMDOC
2166 The type of reloc used to build a contructor table - at the moment
2167 probably a 32 bit wide absolute relocation, but the target can choose.
2168 It generally does map to one of the other relocation types.
2169
2170 ENUM
2171 BFD_RELOC_ARM_PCREL_BRANCH
2172 ENUMDOC
2173 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2174 not stored in the instruction.
2175 ENUM
2176 BFD_RELOC_ARM_IMMEDIATE
2177 ENUMX
2178 BFD_RELOC_ARM_OFFSET_IMM
2179 ENUMX
2180 BFD_RELOC_ARM_SHIFT_IMM
2181 ENUMX
2182 BFD_RELOC_ARM_SWI
2183 ENUMX
2184 BFD_RELOC_ARM_MULTI
2185 ENUMX
2186 BFD_RELOC_ARM_CP_OFF_IMM
2187 ENUMX
2188 BFD_RELOC_ARM_ADR_IMM
2189 ENUMX
2190 BFD_RELOC_ARM_LDR_IMM
2191 ENUMX
2192 BFD_RELOC_ARM_LITERAL
2193 ENUMX
2194 BFD_RELOC_ARM_IN_POOL
2195 ENUMX
2196 BFD_RELOC_ARM_OFFSET_IMM8
2197 ENUMX
2198 BFD_RELOC_ARM_HWLITERAL
2199 ENUMX
2200 BFD_RELOC_ARM_THUMB_ADD
2201 ENUMX
2202 BFD_RELOC_ARM_THUMB_IMM
2203 ENUMX
2204 BFD_RELOC_ARM_THUMB_SHIFT
2205 ENUMX
2206 BFD_RELOC_ARM_THUMB_OFFSET
2207 ENUMX
2208 BFD_RELOC_ARM_GOT12
2209 ENUMX
2210 BFD_RELOC_ARM_GOT32
2211 ENUMX
2212 BFD_RELOC_ARM_JUMP_SLOT
2213 ENUMX
2214 BFD_RELOC_ARM_COPY
2215 ENUMX
2216 BFD_RELOC_ARM_GLOB_DAT
2217 ENUMX
2218 BFD_RELOC_ARM_PLT32
2219 ENUMX
2220 BFD_RELOC_ARM_RELATIVE
2221 ENUMX
2222 BFD_RELOC_ARM_GOTOFF
2223 ENUMX
2224 BFD_RELOC_ARM_GOTPC
2225 ENUMDOC
2226 These relocs are only used within the ARM assembler. They are not
2227 (at present) written to any object files.
2228
2229 ENUM
2230 BFD_RELOC_SH_PCDISP8BY2
2231 ENUMX
2232 BFD_RELOC_SH_PCDISP12BY2
2233 ENUMX
2234 BFD_RELOC_SH_IMM4
2235 ENUMX
2236 BFD_RELOC_SH_IMM4BY2
2237 ENUMX
2238 BFD_RELOC_SH_IMM4BY4
2239 ENUMX
2240 BFD_RELOC_SH_IMM8
2241 ENUMX
2242 BFD_RELOC_SH_IMM8BY2
2243 ENUMX
2244 BFD_RELOC_SH_IMM8BY4
2245 ENUMX
2246 BFD_RELOC_SH_PCRELIMM8BY2
2247 ENUMX
2248 BFD_RELOC_SH_PCRELIMM8BY4
2249 ENUMX
2250 BFD_RELOC_SH_SWITCH16
2251 ENUMX
2252 BFD_RELOC_SH_SWITCH32
2253 ENUMX
2254 BFD_RELOC_SH_USES
2255 ENUMX
2256 BFD_RELOC_SH_COUNT
2257 ENUMX
2258 BFD_RELOC_SH_ALIGN
2259 ENUMX
2260 BFD_RELOC_SH_CODE
2261 ENUMX
2262 BFD_RELOC_SH_DATA
2263 ENUMX
2264 BFD_RELOC_SH_LABEL
2265 ENUMDOC
2266 Hitachi SH relocs. Not all of these appear in object files.
2267
2268 ENUM
2269 BFD_RELOC_THUMB_PCREL_BRANCH9
2270 ENUMX
2271 BFD_RELOC_THUMB_PCREL_BRANCH12
2272 ENUMX
2273 BFD_RELOC_THUMB_PCREL_BRANCH23
2274 ENUMDOC
2275 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2276 be zero and is not stored in the instruction.
2277
2278 ENUM
2279 BFD_RELOC_ARC_B22_PCREL
2280 ENUMDOC
2281 Argonaut RISC Core (ARC) relocs.
2282 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2283 not stored in the instruction. The high 20 bits are installed in bits 26
2284 through 7 of the instruction.
2285 ENUM
2286 BFD_RELOC_ARC_B26
2287 ENUMDOC
2288 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2289 stored in the instruction. The high 24 bits are installed in bits 23
2290 through 0.
2291
2292 ENUM
2293 BFD_RELOC_D10V_10_PCREL_R
2294 ENUMDOC
2295 Mitsubishi D10V relocs.
2296 This is a 10-bit reloc with the right 2 bits
2297 assumed to be 0.
2298 ENUM
2299 BFD_RELOC_D10V_10_PCREL_L
2300 ENUMDOC
2301 Mitsubishi D10V relocs.
2302 This is a 10-bit reloc with the right 2 bits
2303 assumed to be 0. This is the same as the previous reloc
2304 except it is in the left container, i.e.,
2305 shifted left 15 bits.
2306 ENUM
2307 BFD_RELOC_D10V_18
2308 ENUMDOC
2309 This is an 18-bit reloc with the right 2 bits
2310 assumed to be 0.
2311 ENUM
2312 BFD_RELOC_D10V_18_PCREL
2313 ENUMDOC
2314 This is an 18-bit reloc with the right 2 bits
2315 assumed to be 0.
2316
2317 ENUM
2318 BFD_RELOC_D30V_6
2319 ENUMDOC
2320 Mitsubishi D30V relocs.
2321 This is a 6-bit absolute reloc.
2322 ENUM
2323 BFD_RELOC_D30V_9_PCREL
2324 ENUMDOC
2325 This is a 6-bit pc-relative reloc with
2326 the right 3 bits assumed to be 0.
2327 ENUM
2328 BFD_RELOC_D30V_9_PCREL_R
2329 ENUMDOC
2330 This is a 6-bit pc-relative reloc with
2331 the right 3 bits assumed to be 0. Same
2332 as the previous reloc but on the right side
2333 of the container.
2334 ENUM
2335 BFD_RELOC_D30V_15
2336 ENUMDOC
2337 This is a 12-bit absolute reloc with the
2338 right 3 bitsassumed to be 0.
2339 ENUM
2340 BFD_RELOC_D30V_15_PCREL
2341 ENUMDOC
2342 This is a 12-bit pc-relative reloc with
2343 the right 3 bits assumed to be 0.
2344 ENUM
2345 BFD_RELOC_D30V_15_PCREL_R
2346 ENUMDOC
2347 This is a 12-bit pc-relative reloc with
2348 the right 3 bits assumed to be 0. Same
2349 as the previous reloc but on the right side
2350 of the container.
2351 ENUM
2352 BFD_RELOC_D30V_21
2353 ENUMDOC
2354 This is an 18-bit absolute reloc with
2355 the right 3 bits assumed to be 0.
2356 ENUM
2357 BFD_RELOC_D30V_21_PCREL
2358 ENUMDOC
2359 This is an 18-bit pc-relative reloc with
2360 the right 3 bits assumed to be 0.
2361 ENUM
2362 BFD_RELOC_D30V_21_PCREL_R
2363 ENUMDOC
2364 This is an 18-bit pc-relative reloc with
2365 the right 3 bits assumed to be 0. Same
2366 as the previous reloc but on the right side
2367 of the container.
2368 ENUM
2369 BFD_RELOC_D30V_32
2370 ENUMDOC
2371 This is a 32-bit absolute reloc.
2372 ENUM
2373 BFD_RELOC_D30V_32_PCREL
2374 ENUMDOC
2375 This is a 32-bit pc-relative reloc.
2376
2377 ENUM
2378 BFD_RELOC_M32R_24
2379 ENUMDOC
2380 Mitsubishi M32R relocs.
2381 This is a 24 bit absolute address.
2382 ENUM
2383 BFD_RELOC_M32R_10_PCREL
2384 ENUMDOC
2385 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2386 ENUM
2387 BFD_RELOC_M32R_18_PCREL
2388 ENUMDOC
2389 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2390 ENUM
2391 BFD_RELOC_M32R_26_PCREL
2392 ENUMDOC
2393 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2394 ENUM
2395 BFD_RELOC_M32R_HI16_ULO
2396 ENUMDOC
2397 This is a 16-bit reloc containing the high 16 bits of an address
2398 used when the lower 16 bits are treated as unsigned.
2399 ENUM
2400 BFD_RELOC_M32R_HI16_SLO
2401 ENUMDOC
2402 This is a 16-bit reloc containing the high 16 bits of an address
2403 used when the lower 16 bits are treated as signed.
2404 ENUM
2405 BFD_RELOC_M32R_LO16
2406 ENUMDOC
2407 This is a 16-bit reloc containing the lower 16 bits of an address.
2408 ENUM
2409 BFD_RELOC_M32R_SDA16
2410 ENUMDOC
2411 This is a 16-bit reloc containing the small data area offset for use in
2412 add3, load, and store instructions.
2413
2414 ENUM
2415 BFD_RELOC_V850_9_PCREL
2416 ENUMDOC
2417 This is a 9-bit reloc
2418 ENUM
2419 BFD_RELOC_V850_22_PCREL
2420 ENUMDOC
2421 This is a 22-bit reloc
2422
2423 ENUM
2424 BFD_RELOC_V850_SDA_16_16_OFFSET
2425 ENUMDOC
2426 This is a 16 bit offset from the short data area pointer.
2427 ENUM
2428 BFD_RELOC_V850_SDA_15_16_OFFSET
2429 ENUMDOC
2430 This is a 16 bit offset (of which only 15 bits are used) from the
2431 short data area pointer.
2432 ENUM
2433 BFD_RELOC_V850_ZDA_16_16_OFFSET
2434 ENUMDOC
2435 This is a 16 bit offset from the zero data area pointer.
2436 ENUM
2437 BFD_RELOC_V850_ZDA_15_16_OFFSET
2438 ENUMDOC
2439 This is a 16 bit offset (of which only 15 bits are used) from the
2440 zero data area pointer.
2441 ENUM
2442 BFD_RELOC_V850_TDA_6_8_OFFSET
2443 ENUMDOC
2444 This is an 8 bit offset (of which only 6 bits are used) from the
2445 tiny data area pointer.
2446 ENUM
2447 BFD_RELOC_V850_TDA_7_8_OFFSET
2448 ENUMDOC
2449 This is an 8bit offset (of which only 7 bits are used) from the tiny
2450 data area pointer.
2451 ENUM
2452 BFD_RELOC_V850_TDA_7_7_OFFSET
2453 ENUMDOC
2454 This is a 7 bit offset from the tiny data area pointer.
2455 ENUM
2456 BFD_RELOC_V850_TDA_16_16_OFFSET
2457 ENUMDOC
2458 This is a 16 bit offset from the tiny data area pointer.
2459 COMMENT
2460 ENUM
2461 BFD_RELOC_V850_TDA_4_5_OFFSET
2462 ENUMDOC
2463 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2464 data area pointer.
2465 ENUM
2466 BFD_RELOC_V850_TDA_4_4_OFFSET
2467 ENUMDOC
2468 This is a 4 bit offset from the tiny data area pointer.
2469 ENUM
2470 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2471 ENUMDOC
2472 This is a 16 bit offset from the short data area pointer, with the
2473 bits placed non-contigously in the instruction.
2474 ENUM
2475 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2476 ENUMDOC
2477 This is a 16 bit offset from the zero data area pointer, with the
2478 bits placed non-contigously in the instruction.
2479 ENUM
2480 BFD_RELOC_V850_CALLT_6_7_OFFSET
2481 ENUMDOC
2482 This is a 6 bit offset from the call table base pointer.
2483 ENUM
2484 BFD_RELOC_V850_CALLT_16_16_OFFSET
2485 ENUMDOC
2486 This is a 16 bit offset from the call table base pointer.
2487 COMMENT
2488
2489 ENUM
2490 BFD_RELOC_MN10300_32_PCREL
2491 ENUMDOC
2492 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2493 instruction.
2494 ENUM
2495 BFD_RELOC_MN10300_16_PCREL
2496 ENUMDOC
2497 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2498 instruction.
2499
2500 ENUM
2501 BFD_RELOC_TIC30_LDP
2502 ENUMDOC
2503 This is a 8bit DP reloc for the tms320c30, where the most
2504 significant 8 bits of a 24 bit word are placed into the least
2505 significant 8 bits of the opcode.
2506
2507 ENUM
2508 BFD_RELOC_FR30_48
2509 ENUMDOC
2510 This is a 48 bit reloc for the FR30 that stores 32 bits.
2511 ENUM
2512 BFD_RELOC_FR30_20
2513 ENUMDOC
2514 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2515 two sections.
2516 ENUM
2517 BFD_RELOC_FR30_6_IN_4
2518 ENUMDOC
2519 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2520 4 bits.
2521 ENUM
2522 BFD_RELOC_FR30_8_IN_8
2523 ENUMDOC
2524 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2525 into 8 bits.
2526 ENUM
2527 BFD_RELOC_FR30_9_IN_8
2528 ENUMDOC
2529 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2530 into 8 bits.
2531 ENUM
2532 BFD_RELOC_FR30_10_IN_8
2533 ENUMDOC
2534 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2535 into 8 bits.
2536 ENUM
2537 BFD_RELOC_FR30_9_PCREL
2538 ENUMDOC
2539 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2540 short offset into 8 bits.
2541 ENUM
2542 BFD_RELOC_FR30_12_PCREL
2543 ENUMDOC
2544 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2545 short offset into 11 bits.
2546
2547 ENUM
2548 BFD_RELOC_MCORE_PCREL_IMM8BY4
2549 ENUMX
2550 BFD_RELOC_MCORE_PCREL_IMM11BY2
2551 ENUMX
2552 BFD_RELOC_MCORE_PCREL_IMM4BY2
2553 ENUMX
2554 BFD_RELOC_MCORE_PCREL_32
2555 ENUMX
2556 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2557 ENUMX
2558 BFD_RELOC_MCORE_RVA
2559 ENUMDOC
2560 Motorola Mcore relocations.
2561
2562 ENUM
2563 BFD_RELOC_VTABLE_INHERIT
2564 ENUMX
2565 BFD_RELOC_VTABLE_ENTRY
2566 ENUMDOC
2567 These two relocations are used by the linker to determine which of
2568 the entries in a C++ virtual function table are actually used. When
2569 the --gc-sections option is given, the linker will zero out the entries
2570 that are not used, so that the code for those functions need not be
2571 included in the output.
2572
2573 VTABLE_INHERIT is a zero-space relocation used to describe to the
2574 linker the inheritence tree of a C++ virtual function table. The
2575 relocation's symbol should be the parent class' vtable, and the
2576 relocation should be located at the child vtable.
2577
2578 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2579 virtual function table entry. The reloc's symbol should refer to the
2580 table of the class mentioned in the code. Off of that base, an offset
2581 describes the entry that is being used. For Rela hosts, this offset
2582 is stored in the reloc's addend. For Rel hosts, we are forced to put
2583 this offset in the reloc's section offset.
2584
2585 ENDSENUM
2586 BFD_RELOC_UNUSED
2587 CODE_FRAGMENT
2588 .
2589 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
2590 */
2591
2592
2593 /*
2594 FUNCTION
2595 bfd_reloc_type_lookup
2596
2597 SYNOPSIS
2598 reloc_howto_type *
2599 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
2600
2601 DESCRIPTION
2602 Return a pointer to a howto structure which, when
2603 invoked, will perform the relocation @var{code} on data from the
2604 architecture noted.
2605
2606 */
2607
2608
2609 reloc_howto_type *
2610 bfd_reloc_type_lookup (abfd, code)
2611 bfd *abfd;
2612 bfd_reloc_code_real_type code;
2613 {
2614 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
2615 }
2616
2617 static reloc_howto_type bfd_howto_32 =
2618 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
2619
2620
2621 /*
2622 INTERNAL_FUNCTION
2623 bfd_default_reloc_type_lookup
2624
2625 SYNOPSIS
2626 reloc_howto_type *bfd_default_reloc_type_lookup
2627 (bfd *abfd, bfd_reloc_code_real_type code);
2628
2629 DESCRIPTION
2630 Provides a default relocation lookup routine for any architecture.
2631
2632
2633 */
2634
2635 reloc_howto_type *
2636 bfd_default_reloc_type_lookup (abfd, code)
2637 bfd *abfd;
2638 bfd_reloc_code_real_type code;
2639 {
2640 switch (code)
2641 {
2642 case BFD_RELOC_CTOR:
2643 /* The type of reloc used in a ctor, which will be as wide as the
2644 address - so either a 64, 32, or 16 bitter. */
2645 switch (bfd_get_arch_info (abfd)->bits_per_address)
2646 {
2647 case 64:
2648 BFD_FAIL ();
2649 case 32:
2650 return &bfd_howto_32;
2651 case 16:
2652 BFD_FAIL ();
2653 default:
2654 BFD_FAIL ();
2655 }
2656 default:
2657 BFD_FAIL ();
2658 }
2659 return (reloc_howto_type *) NULL;
2660 }
2661
2662 /*
2663 FUNCTION
2664 bfd_get_reloc_code_name
2665
2666 SYNOPSIS
2667 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
2668
2669 DESCRIPTION
2670 Provides a printable name for the supplied relocation code.
2671 Useful mainly for printing error messages.
2672 */
2673
2674 const char *
2675 bfd_get_reloc_code_name (code)
2676 bfd_reloc_code_real_type code;
2677 {
2678 if (code > BFD_RELOC_UNUSED)
2679 return 0;
2680 return bfd_reloc_code_real_names[(int)code];
2681 }
2682
2683 /*
2684 INTERNAL_FUNCTION
2685 bfd_generic_relax_section
2686
2687 SYNOPSIS
2688 boolean bfd_generic_relax_section
2689 (bfd *abfd,
2690 asection *section,
2691 struct bfd_link_info *,
2692 boolean *);
2693
2694 DESCRIPTION
2695 Provides default handling for relaxing for back ends which
2696 don't do relaxing -- i.e., does nothing.
2697 */
2698
2699 /*ARGSUSED*/
2700 boolean
2701 bfd_generic_relax_section (abfd, section, link_info, again)
2702 bfd *abfd;
2703 asection *section;
2704 struct bfd_link_info *link_info;
2705 boolean *again;
2706 {
2707 *again = false;
2708 return true;
2709 }
2710
2711 /*
2712 INTERNAL_FUNCTION
2713 bfd_generic_gc_sections
2714
2715 SYNOPSIS
2716 boolean bfd_generic_gc_sections
2717 (bfd *, struct bfd_link_info *);
2718
2719 DESCRIPTION
2720 Provides default handling for relaxing for back ends which
2721 don't do section gc -- i.e., does nothing.
2722 */
2723
2724 /*ARGSUSED*/
2725 boolean
2726 bfd_generic_gc_sections (abfd, link_info)
2727 bfd *abfd;
2728 struct bfd_link_info *link_info;
2729 {
2730 return true;
2731 }
2732
2733 /*
2734 INTERNAL_FUNCTION
2735 bfd_generic_get_relocated_section_contents
2736
2737 SYNOPSIS
2738 bfd_byte *
2739 bfd_generic_get_relocated_section_contents (bfd *abfd,
2740 struct bfd_link_info *link_info,
2741 struct bfd_link_order *link_order,
2742 bfd_byte *data,
2743 boolean relocateable,
2744 asymbol **symbols);
2745
2746 DESCRIPTION
2747 Provides default handling of relocation effort for back ends
2748 which can't be bothered to do it efficiently.
2749
2750 */
2751
2752 bfd_byte *
2753 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
2754 relocateable, symbols)
2755 bfd *abfd;
2756 struct bfd_link_info *link_info;
2757 struct bfd_link_order *link_order;
2758 bfd_byte *data;
2759 boolean relocateable;
2760 asymbol **symbols;
2761 {
2762 /* Get enough memory to hold the stuff */
2763 bfd *input_bfd = link_order->u.indirect.section->owner;
2764 asection *input_section = link_order->u.indirect.section;
2765
2766 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
2767 arelent **reloc_vector = NULL;
2768 long reloc_count;
2769
2770 if (reloc_size < 0)
2771 goto error_return;
2772
2773 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
2774 if (reloc_vector == NULL && reloc_size != 0)
2775 goto error_return;
2776
2777 /* read in the section */
2778 if (!bfd_get_section_contents (input_bfd,
2779 input_section,
2780 (PTR) data,
2781 0,
2782 input_section->_raw_size))
2783 goto error_return;
2784
2785 /* We're not relaxing the section, so just copy the size info */
2786 input_section->_cooked_size = input_section->_raw_size;
2787 input_section->reloc_done = true;
2788
2789 reloc_count = bfd_canonicalize_reloc (input_bfd,
2790 input_section,
2791 reloc_vector,
2792 symbols);
2793 if (reloc_count < 0)
2794 goto error_return;
2795
2796 if (reloc_count > 0)
2797 {
2798 arelent **parent;
2799 for (parent = reloc_vector; *parent != (arelent *) NULL;
2800 parent++)
2801 {
2802 char *error_message = (char *) NULL;
2803 bfd_reloc_status_type r =
2804 bfd_perform_relocation (input_bfd,
2805 *parent,
2806 (PTR) data,
2807 input_section,
2808 relocateable ? abfd : (bfd *) NULL,
2809 &error_message);
2810
2811 if (relocateable)
2812 {
2813 asection *os = input_section->output_section;
2814
2815 /* A partial link, so keep the relocs */
2816 os->orelocation[os->reloc_count] = *parent;
2817 os->reloc_count++;
2818 }
2819
2820 if (r != bfd_reloc_ok)
2821 {
2822 switch (r)
2823 {
2824 case bfd_reloc_undefined:
2825 if (!((*link_info->callbacks->undefined_symbol)
2826 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
2827 input_bfd, input_section, (*parent)->address)))
2828 goto error_return;
2829 break;
2830 case bfd_reloc_dangerous:
2831 BFD_ASSERT (error_message != (char *) NULL);
2832 if (!((*link_info->callbacks->reloc_dangerous)
2833 (link_info, error_message, input_bfd, input_section,
2834 (*parent)->address)))
2835 goto error_return;
2836 break;
2837 case bfd_reloc_overflow:
2838 if (!((*link_info->callbacks->reloc_overflow)
2839 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
2840 (*parent)->howto->name, (*parent)->addend,
2841 input_bfd, input_section, (*parent)->address)))
2842 goto error_return;
2843 break;
2844 case bfd_reloc_outofrange:
2845 default:
2846 abort ();
2847 break;
2848 }
2849
2850 }
2851 }
2852 }
2853 if (reloc_vector != NULL)
2854 free (reloc_vector);
2855 return data;
2856
2857 error_return:
2858 if (reloc_vector != NULL)
2859 free (reloc_vector);
2860 return NULL;
2861 }