(enum bfd_reloc_code_real): Put simple power-to-two relocs together, and add
[binutils-gdb.git] / bfd / reloc.c
1 /* BFD support for handling relocation entries.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /*
22 SECTION
23 Relocations
24
25 BFD maintains relocations in much the same was as it maintains
26 symbols; they are left alone until required, then read in
27 en-mass and traslated into an internal form. There is a common
28 routine <<bfd_perform_relocation>> which acts upon the
29 canonical form to to the actual fixup.
30
31 Note that relocations are maintained on a per section basis,
32 whilst symbols are maintained on a per BFD basis.
33
34 All a back end has to do to fit the BFD interface is to create
35 as many <<struct reloc_cache_entry>> as there are relocations
36 in a particular section, and fill in the right bits:
37
38 @menu
39 @* typedef arelent::
40 @* howto manager::
41 @end menu
42
43 */
44 #include "bfd.h"
45 #include "sysdep.h"
46 #include "libbfd.h"
47 #include "seclet.h"
48 /*
49 DOCDD
50 INODE
51 typedef arelent, howto manager, Relocations, Relocations
52
53 SUBSECTION
54 typedef arelent
55
56 This is the structure of a relocation entry:
57
58 CODE_FRAGMENT
59 .
60 .typedef enum bfd_reloc_status
61 .{
62 . {* No errors detected *}
63 . bfd_reloc_ok,
64 .
65 . {* The relocation was performed, but there was an overflow. *}
66 . bfd_reloc_overflow,
67 .
68 . {* The address to relocate was not within the section supplied. *}
69 . bfd_reloc_outofrange,
70 .
71 . {* Used by special functions *}
72 . bfd_reloc_continue,
73 .
74 . {* Unused *}
75 . bfd_reloc_notsupported,
76 .
77 . {* Unsupported relocation size requested. *}
78 . bfd_reloc_other,
79 .
80 . {* The symbol to relocate against was undefined. *}
81 . bfd_reloc_undefined,
82 .
83 . {* The relocation was performed, but may not be ok - presently
84 . generated only when linking i960 coff files with i960 b.out
85 . symbols. *}
86 . bfd_reloc_dangerous
87 . }
88 . bfd_reloc_status_type;
89 .
90 .
91 .typedef struct reloc_cache_entry
92 .{
93 . {* A pointer into the canonical table of pointers *}
94 . struct symbol_cache_entry **sym_ptr_ptr;
95 .
96 . {* offset in section *}
97 . bfd_size_type address;
98 .
99 . {* addend for relocation value *}
100 . bfd_vma addend;
101 .
102 . {* Pointer to how to perform the required relocation *}
103 . CONST struct reloc_howto_struct *howto;
104 .
105 .} arelent;
106
107 */
108
109 /*
110 DESCRIPTION
111
112 Here is a description of each of the fields within a relent:
113
114 o sym_ptr_ptr
115
116 The symbol table pointer points to a pointer to the symbol
117 associated with the relocation request. This would naturally
118 be the pointer into the table returned by the back end's
119 get_symtab action. @xref{Symbols}. The symbol is referenced
120 through a pointer to a pointer so that tools like the linker
121 can fix up all the symbols of the same name by modifying only
122 one pointer. The relocation routine looks in the symbol and
123 uses the base of the section the symbol is attached to and the
124 value of the symbol as the initial relocation offset. If the
125 symbol pointer is zero, then the section provided is looked up.
126
127 o address
128
129 The address field gives the offset in bytes from the base of
130 the section data which owns the relocation record to the first
131 byte of relocatable information. The actual data relocated
132 will be relative to this point - for example, a relocation
133 type which modifies the bottom two bytes of a four byte word
134 would not touch the first byte pointed to in a big endian
135 world.
136
137 o addend
138
139 The addend is a value provided by the back end to be added (!)
140 to the relocation offset. Its interpretation is dependent upon
141 the howto. For example, on the 68k the code:
142
143
144 | char foo[];
145 | main()
146 | {
147 | return foo[0x12345678];
148 | }
149
150 Could be compiled into:
151
152 | linkw fp,#-4
153 | moveb @@#12345678,d0
154 | extbl d0
155 | unlk fp
156 | rts
157
158
159 This could create a reloc pointing to foo, but leave the
160 offset in the data (something like)
161
162
163 |RELOCATION RECORDS FOR [.text]:
164 |offset type value
165 |00000006 32 _foo
166 |
167 |00000000 4e56 fffc ; linkw fp,#-4
168 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
169 |0000000a 49c0 ; extbl d0
170 |0000000c 4e5e ; unlk fp
171 |0000000e 4e75 ; rts
172
173
174 Using coff and an 88k, some instructions don't have enough
175 space in them to represent the full address range, and
176 pointers have to be loaded in two parts. So you'd get something like:
177
178
179 | or.u r13,r0,hi16(_foo+0x12345678)
180 | ld.b r2,r13,lo16(_foo+0x12345678)
181 | jmp r1
182
183
184 This should create two relocs, both pointing to _foo, and with
185 0x12340000 in their addend field. The data would consist of:
186
187
188 |RELOCATION RECORDS FOR [.text]:
189 |offset type value
190 |00000002 HVRT16 _foo+0x12340000
191 |00000006 LVRT16 _foo+0x12340000
192
193 |00000000 5da05678 ; or.u r13,r0,0x5678
194 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
195 |00000008 f400c001 ; jmp r1
196
197
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset and then adds the
200 value of _foo. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created odd sized lumps. The designers of
207 the a.out format chose not to use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Any thing in the data should be ignored.
210
211 | save %sp,-112,%sp
212 | sethi %hi(_foo+0x12345678),%g2
213 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
214 | ret
215 | restore
216
217 Both relocs contains a pointer to foo, and the offsets would
218 contain junk.
219
220
221 |RELOCATION RECORDS FOR [.text]:
222 |offset type value
223 |00000004 HI22 _foo+0x12345678
224 |00000008 LO10 _foo+0x12345678
225
226 |00000000 9de3bf90 ; save %sp,-112,%sp
227 |00000004 05000000 ; sethi %hi(_foo+0),%g2
228 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
229 |0000000c 81c7e008 ; ret
230 |00000010 81e80000 ; restore
231
232
233 o howto
234
235 The howto field can be imagined as a
236 relocation instruction. It is a pointer to a struct which
237 contains information on what to do with all the other
238 information in the reloc record and data section. A back end
239 would normally have a relocation instruction set and turn
240 relocations into pointers to the correct structure on input -
241 but it would be possible to create each howto field on demand.
242
243 */
244
245
246 /*
247 SUBSUBSECTION
248 <<reloc_howto_type>>
249
250 The <<reloc_howto_type>> is a structure which contains all the
251 information that BFD needs to know to tie up a back end's data.
252
253 CODE_FRAGMENT
254 .struct symbol_cache_entry; {* Forward declaration *}
255 .
256 .typedef CONST struct reloc_howto_struct
257 .{
258 . {* The type field has mainly a documetary use - the back end can
259 . to what it wants with it, though the normally the back end's
260 . external idea of what a reloc number would be would be stored
261 . in this field. For example, the a PC relative word relocation
262 . in a coff environment would have the type 023 - because that's
263 . what the outside world calls a R_PCRWORD reloc. *}
264 . unsigned int type;
265 .
266 . {* The value the final relocation is shifted right by. This drops
267 . unwanted data from the relocation. *}
268 . unsigned int rightshift;
269 .
270 . {* The size of the item to be relocated - 0, is one byte, 1 is 2
271 . bytes, 2 is four bytes. A negative value indicates that the
272 . result is to be subtracted from the data. *}
273 . int size;
274 .
275 . {* Now obsolete? But m68k-coff still uses it... *}
276 . unsigned int bitsize;
277 .
278 . {* Notes that the relocation is relative to the location in the
279 . data section of the addend. The relocation function will
280 . subtract from the relocation value the address of the location
281 . being relocated. *}
282 . boolean pc_relative;
283 .
284 . unsigned int bitpos;
285 .
286 . {* Now obsolete *}
287 . boolean absolute;
288 .
289 . {* Causes the relocation routine to return an error if overflow
290 . is detected when relocating. *}
291 . boolean complain_on_overflow;
292 .
293 . {* If this field is non null, then the supplied function is
294 . called rather than the normal function. This allows really
295 . strange relocation methods to be accomodated (e.g., i960 callj
296 . instructions). *}
297 . bfd_reloc_status_type (*special_function)
298 . PARAMS ((bfd *abfd,
299 . arelent *reloc_entry,
300 . struct symbol_cache_entry *symbol,
301 . PTR data,
302 . asection *input_section,
303 . bfd *output_bfd));
304 .
305 . {* The textual name of the relocation type. *}
306 . char *name;
307 .
308 . {* When performing a partial link, some formats must modify the
309 . relocations rather than the data - this flag signals this.*}
310 . boolean partial_inplace;
311 .
312 . {* The src_mask is used to select what parts of the read in data
313 . are to be used in the relocation sum. E.g., if this was an 8 bit
314 . bit of data which we read and relocated, this would be
315 . 0x000000ff. When we have relocs which have an addend, such as
316 . sun4 extended relocs, the value in the offset part of a
317 . relocating field is garbage so we never use it. In this case
318 . the mask would be 0x00000000. *}
319 . bfd_vma src_mask;
320 .
321 . {* The dst_mask is what parts of the instruction are replaced
322 . into the instruction. In most cases src_mask == dst_mask,
323 . except in the above special case, where dst_mask would be
324 . 0x000000ff, and src_mask would be 0x00000000. *}
325 . bfd_vma dst_mask;
326 .
327 . {* When some formats create PC relative instructions, they leave
328 . the value of the pc of the place being relocated in the offset
329 . slot of the instruction, so that a PC relative relocation can
330 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
331 . Some formats leave the displacement part of an instruction
332 . empty (e.g., m88k bcs), this flag signals the fact.*}
333 . boolean pcrel_offset;
334 .
335 .} reloc_howto_type;
336
337 */
338
339 /*
340 FUNCTION
341 the HOWTO macro
342
343 DESCRIPTION
344 The HOWTO define is horrible and will go away.
345
346
347 .#define HOWTO(C, R,S,B, P, BI, ABS, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
348 . {(unsigned)C,R,S,B, P, BI, ABS,O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
349
350 DESCRIPTION
351 And will be replaced with the totally magic way. But for the
352 moment, we are compatible, so do it this way..
353
354
355 .#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,false,false,FUNCTION, NAME,false,0,0,IN)
356 .
357 DESCRIPTION
358 Helper routine to turn a symbol into a relocation value.
359
360 .#define HOWTO_PREPARE(relocation, symbol) \
361 . { \
362 . if (symbol != (asymbol *)NULL) { \
363 . if (bfd_is_com_section (symbol->section)) { \
364 . relocation = 0; \
365 . } \
366 . else { \
367 . relocation = symbol->value; \
368 . } \
369 . } \
370 .}
371
372 */
373
374 /*
375 TYPEDEF
376 reloc_chain
377
378 DESCRIPTION
379
380 How relocs are tied together
381
382 .typedef unsigned char bfd_byte;
383 .
384 .typedef struct relent_chain {
385 . arelent relent;
386 . struct relent_chain *next;
387 .} arelent_chain;
388
389 */
390
391
392
393 /*
394 FUNCTION
395 bfd_perform_relocation
396
397 SYNOPSIS
398 bfd_reloc_status_type
399 bfd_perform_relocation
400 (bfd * abfd,
401 arelent *reloc_entry,
402 PTR data,
403 asection *input_section,
404 bfd *output_bfd);
405
406 DESCRIPTION
407 If an output_bfd is supplied to this function the generated
408 image will be relocatable, the relocations are copied to the
409 output file after they have been changed to reflect the new
410 state of the world. There are two ways of reflecting the
411 results of partial linkage in an output file; by modifying the
412 output data in place, and by modifying the relocation record.
413 Some native formats (e.g., basic a.out and basic coff) have no
414 way of specifying an addend in the relocation type, so the
415 addend has to go in the output data. This is no big deal
416 since in these formats the output data slot will always be big
417 enough for the addend. Complex reloc types with addends were
418 invented to solve just this problem.
419
420 */
421
422
423 bfd_reloc_status_type
424 DEFUN(bfd_perform_relocation,(abfd,
425 reloc_entry,
426 data,
427 input_section,
428 output_bfd),
429 bfd *abfd AND
430 arelent *reloc_entry AND
431 PTR data AND
432 asection *input_section AND
433 bfd *output_bfd)
434 {
435 bfd_vma relocation;
436 bfd_reloc_status_type flag = bfd_reloc_ok;
437 bfd_size_type addr = reloc_entry->address ;
438 bfd_vma output_base = 0;
439 reloc_howto_type *howto = reloc_entry->howto;
440 asection *reloc_target_output_section ;
441
442 asymbol *symbol;
443
444 symbol = *( reloc_entry->sym_ptr_ptr);
445 if ((symbol->section == &bfd_abs_section)
446 && output_bfd != (bfd *)NULL)
447 {
448 reloc_entry->address += input_section->output_offset;
449
450 return bfd_reloc_ok;
451
452 }
453
454 if ((symbol->section == &bfd_und_section) && output_bfd == (bfd *)NULL) {
455 flag = bfd_reloc_undefined;
456 }
457
458 if (howto->special_function) {
459 bfd_reloc_status_type cont;
460 cont = howto->special_function(abfd,
461 reloc_entry,
462 symbol,
463 data,
464 input_section,
465 output_bfd);
466 if (cont != bfd_reloc_continue) return cont;
467 }
468
469 /*
470 Work out which section the relocation is targetted at and the
471 initial relocation command value.
472 */
473
474
475 if (bfd_is_com_section (symbol->section)) {
476 relocation = 0;
477 }
478 else {
479 relocation = symbol->value;
480 }
481
482
483 reloc_target_output_section = symbol->section->output_section;
484
485 if (output_bfd && howto->partial_inplace==false) {
486 output_base = 0;
487 }
488 else {
489 output_base = reloc_target_output_section->vma;
490
491 }
492
493 relocation += output_base + symbol->section->output_offset;
494
495 relocation += reloc_entry->addend;
496
497 if(reloc_entry->address > input_section->_cooked_size)
498 {
499 return bfd_reloc_outofrange;
500 }
501
502
503 if (howto->pc_relative == true)
504 {
505 /*
506 Anything which started out as pc relative should end up that
507 way too.
508
509 There are two ways we can see a pcrel instruction. Sometimes
510 the pcrel displacement has been partially calculated, it
511 includes the distance from the start of the section to the
512 instruction in it (e.g., sun3), and sometimes the field is
513 totally blank - e.g., m88kbcs.
514 */
515
516
517 relocation -=
518 input_section->output_section->vma + input_section->output_offset;
519
520 if (howto->pcrel_offset == true) {
521 relocation -= reloc_entry->address;
522 }
523 }
524
525 if (output_bfd!= (bfd *)NULL)
526 {
527 if ( howto->partial_inplace == false)
528 {
529 /*
530 This is a partial relocation, and we want to apply the relocation
531 to the reloc entry rather than the raw data. Modify the reloc
532 inplace to reflect what we now know.
533 */
534 reloc_entry->addend = relocation ;
535 reloc_entry->address += input_section->output_offset;
536 return flag;
537 }
538 else
539 {
540 /* This is a partial relocation, but inplace, so modify the
541 reloc record a bit.
542
543 If we've relocated with a symbol with a section, change
544 into a ref to the section belonging to the symbol
545 */
546
547 reloc_entry->address += input_section->output_offset;
548
549 if (abfd->xvec->flavour == bfd_target_coff_flavour)
550 {
551 relocation -= reloc_entry->addend;
552 reloc_entry->addend = 0;
553 }
554 else
555 {
556 reloc_entry->addend = relocation ;
557 }
558 }
559 }
560 else
561 {
562 reloc_entry->addend = 0;
563 }
564
565
566 if (howto->complain_on_overflow && howto->pc_relative)
567 {
568 /* We can detect overflow safely here */
569
570 bfd_signed_vma reloc_max = (1 << (howto->bitsize - 1))-1;
571 bfd_signed_vma reloc_min = ~(reloc_max);
572
573 if ((bfd_signed_vma) relocation > reloc_max
574 || (bfd_signed_vma) relocation < reloc_min)
575 {
576 flag = bfd_reloc_overflow;
577 }
578 }
579
580 /*
581 Either we are relocating all the way, or we don't want to apply
582 the relocation to the reloc entry (probably because there isn't
583 any room in the output format to describe addends to relocs)
584 */
585 relocation >>= howto->rightshift;
586
587 /* Shift everything up to where it's going to be used */
588
589 relocation <<= howto->bitpos;
590
591 /* Wait for the day when all have the mask in them */
592
593 /* What we do:
594 i instruction to be left alone
595 o offset within instruction
596 r relocation offset to apply
597 S src mask
598 D dst mask
599 N ~dst mask
600 A part 1
601 B part 2
602 R result
603
604 Do this:
605 i i i i i o o o o o from bfd_get<size>
606 and S S S S S to get the size offset we want
607 + r r r r r r r r r r to get the final value to place
608 and D D D D D to chop to right size
609 -----------------------
610 A A A A A
611 And this:
612 ... i i i i i o o o o o from bfd_get<size>
613 and N N N N N get instruction
614 -----------------------
615 ... B B B B B
616
617 And then:
618 B B B B B
619 or A A A A A
620 -----------------------
621 R R R R R R R R R R put into bfd_put<size>
622 */
623
624 #define DOIT(x) \
625 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
626
627 switch (howto->size)
628 {
629 case 0:
630 {
631 char x = bfd_get_8(abfd, (char *)data + addr);
632 DOIT(x);
633 bfd_put_8(abfd,x, (unsigned char *) data + addr);
634 }
635 break;
636
637 case 1:
638 if (relocation)
639 {
640 short x = bfd_get_16(abfd, (bfd_byte *)data + addr);
641 DOIT(x);
642 bfd_put_16(abfd, x, (unsigned char *)data + addr);
643 }
644 break;
645 case 2:
646 if (relocation)
647 {
648 long x = bfd_get_32 (abfd, (bfd_byte *) data + addr);
649 DOIT (x);
650 bfd_put_32 (abfd, x, (bfd_byte *)data + addr);
651 }
652 break;
653 case -2:
654 {
655 long x = bfd_get_32(abfd, (bfd_byte *) data + addr);
656 relocation = -relocation;
657 DOIT(x);
658 bfd_put_32(abfd,x, (bfd_byte *)data + addr);
659 }
660 break;
661
662 case 3:
663
664 /* Do nothing */
665 break;
666 default:
667 return bfd_reloc_other;
668 }
669
670 return flag;
671 }
672
673
674
675 /*
676 DOCDD
677 INODE
678 howto manager, , typedef arelent, Relocations
679
680 SECTION
681 The howto manager
682
683 When an application wants to create a relocation, but doesn't
684 know what the target machine might call it, it can find out by
685 using this bit of code.
686
687 */
688
689 /*
690 TYPEDEF
691 bfd_reloc_code_type
692
693 DESCRIPTION
694 The insides of a reloc code
695
696 CODE_FRAGMENT
697 .
698 .typedef enum bfd_reloc_code_real
699 .
700 .{
701 . {* 64 bits wide, simple reloc *}
702 . BFD_RELOC_64,
703 . {* 64 bits, PC-relative *}
704 . BFD_RELOC_64_PCREL,
705 .
706 . {* 32 bits wide, simple reloc *}
707 . BFD_RELOC_32,
708 . {* 32 bits, PC-relative *}
709 . BFD_RELOC_32_PCREL,
710 .
711 . {* 16 bits wide, simple reloc *}
712 . BFD_RELOC_16,
713 . {* 16 bits, PC-relative *}
714 . BFD_RELOC_16_PCREL,
715 .
716 . {* 8 bits wide, simple *}
717 . BFD_RELOC_8,
718 . {* 8 bits wide, pc relative *}
719 . BFD_RELOC_8_PCREL,
720 . {* 8 bits wide, but used to form an address like 0xffnn *}
721 . BFD_RELOC_8_FFnn,
722 .
723 . {* The type of reloc used to build a contructor table - at the
724 . moment probably a 32 bit wide abs address, but the cpu can
725 . choose. *}
726 .
727 . BFD_RELOC_CTOR,
728 .
729 . {* High 22 bits of 32-bit value; simple reloc. *}
730 . BFD_RELOC_HI22,
731 . {* Low 10 bits. *}
732 . BFD_RELOC_LO10,
733 .
734 . {* Reloc types used for i960/b.out. *}
735 . BFD_RELOC_24_PCREL,
736 . BFD_RELOC_I960_CALLJ,
737 .
738 . {* 32-bit pc-relative, shifted right 2 bits (i.e., 30-bit
739 . word displacement, e.g. for SPARC) *}
740 . BFD_RELOC_32_PCREL_S2,
741 .
742 . {* now for the sparc/elf codes *}
743 . BFD_RELOC_NONE, {* actually used *}
744 . BFD_RELOC_SPARC_WDISP22,
745 . BFD_RELOC_SPARC22,
746 . BFD_RELOC_SPARC13,
747 . BFD_RELOC_SPARC_BASE13,
748 . BFD_RELOC_SPARC_GOT10,
749 . BFD_RELOC_SPARC_GOT13,
750 . BFD_RELOC_SPARC_GOT22,
751 . BFD_RELOC_SPARC_PC10,
752 . BFD_RELOC_SPARC_PC22,
753 . BFD_RELOC_SPARC_WPLT30,
754 . BFD_RELOC_SPARC_COPY,
755 . BFD_RELOC_SPARC_GLOB_DAT,
756 . BFD_RELOC_SPARC_JMP_SLOT,
757 . BFD_RELOC_SPARC_RELATIVE,
758 . BFD_RELOC_SPARC_UA32,
759 .
760 . {* this one is a.out specific? *}
761 . BFD_RELOC_SPARC_BASE22,
762 .
763 . {* start-sanitize-v9 *}
764 . BFD_RELOC_SPARC_WDISP19,
765 . BFD_RELOC_SPARC_10,
766 . BFD_RELOC_SPARC_11,
767 .#define BFD_RELOC_SPARC_64 BFD_RELOC_64
768 . BFD_RELOC_SPARC_OLO10,
769 . BFD_RELOC_SPARC_HH22,
770 . BFD_RELOC_SPARC_HM10,
771 . BFD_RELOC_SPARC_LM22,
772 . BFD_RELOC_SPARC_PC_HH22,
773 . BFD_RELOC_SPARC_PC_HM10,
774 . BFD_RELOC_SPARC_PC_LM22,
775 . BFD_RELOC_SPARC_WDISP16,
776 . BFD_RELOC_SPARC_GLOB_JMP,
777 . BFD_RELOC_SPARC_LO7,
778 . {* end-sanitize-v9 *}
779 . {* Bits 27..2 of the relocation address shifted right 2 bits;
780 . simple reloc otherwise. *}
781 . BFD_RELOC_MIPS_JMP,
782 .
783 . {* signed 16-bit pc-relative, shifted right 2 bits (e.g. for MIPS) *}
784 . BFD_RELOC_16_PCREL_S2,
785 .
786 . {* High 16 bits of 32-bit value; simple reloc. *}
787 . BFD_RELOC_HI16,
788 . {* High 16 bits of 32-bit value but the low 16 bits will be sign
789 . extended and added to form the final result. If the low 16
790 . bits form a negative number, we need to add one to the high value
791 . to compensate for the borrow when the low bits are added. *}
792 . BFD_RELOC_HI16_S,
793 . {* Low 16 bits. *}
794 . BFD_RELOC_LO16,
795 .
796 . {* 16 bit relocation relative to the global pointer. *}
797 . BFD_RELOC_MIPS_GPREL,
798 .
799 . {* These are, so far, specific to HPPA processors. I'm not sure that
800 . some don't duplicate other reloc types, such as BFD_RELOC_32 and
801 . _32_PCREL. Also, many more were in the list I got that don't
802 . fit in well in the model BFD uses, so I've omitted them for now.
803 . If we do make this reloc type get used for code that really does
804 . implement the funky reloc types, they'll have to be added to this
805 . list. *}
806 . BFD_RELOC_HPPA_32,
807 . BFD_RELOC_HPPA_11,
808 . BFD_RELOC_HPPA_14,
809 . BFD_RELOC_HPPA_17,
810 . BFD_RELOC_HPPA_L21,
811 . BFD_RELOC_HPPA_R11,
812 . BFD_RELOC_HPPA_R14,
813 . BFD_RELOC_HPPA_R17,
814 . BFD_RELOC_HPPA_LS21,
815 . BFD_RELOC_HPPA_RS11,
816 . BFD_RELOC_HPPA_RS14,
817 . BFD_RELOC_HPPA_RS17,
818 . BFD_RELOC_HPPA_LD21,
819 . BFD_RELOC_HPPA_RD11,
820 . BFD_RELOC_HPPA_RD14,
821 . BFD_RELOC_HPPA_RD17,
822 . BFD_RELOC_HPPA_LR21,
823 . BFD_RELOC_HPPA_RR14,
824 . BFD_RELOC_HPPA_RR17,
825 . BFD_RELOC_HPPA_GOTOFF_11,
826 . BFD_RELOC_HPPA_GOTOFF_14,
827 . BFD_RELOC_HPPA_GOTOFF_L21,
828 . BFD_RELOC_HPPA_GOTOFF_R11,
829 . BFD_RELOC_HPPA_GOTOFF_R14,
830 . BFD_RELOC_HPPA_GOTOFF_LS21,
831 . BFD_RELOC_HPPA_GOTOFF_RS11,
832 . BFD_RELOC_HPPA_GOTOFF_RS14,
833 . BFD_RELOC_HPPA_GOTOFF_LD21,
834 . BFD_RELOC_HPPA_GOTOFF_RD11,
835 . BFD_RELOC_HPPA_GOTOFF_RD14,
836 . BFD_RELOC_HPPA_GOTOFF_LR21,
837 . BFD_RELOC_HPPA_GOTOFF_RR14,
838 . BFD_RELOC_HPPA_DLT_32,
839 . BFD_RELOC_HPPA_DLT_11,
840 . BFD_RELOC_HPPA_DLT_14,
841 . BFD_RELOC_HPPA_DLT_L21,
842 . BFD_RELOC_HPPA_DLT_R11,
843 . BFD_RELOC_HPPA_DLT_R14,
844 . BFD_RELOC_HPPA_ABS_CALL_11,
845 . BFD_RELOC_HPPA_ABS_CALL_14,
846 . BFD_RELOC_HPPA_ABS_CALL_17,
847 . BFD_RELOC_HPPA_ABS_CALL_L21,
848 . BFD_RELOC_HPPA_ABS_CALL_R11,
849 . BFD_RELOC_HPPA_ABS_CALL_R14,
850 . BFD_RELOC_HPPA_ABS_CALL_R17,
851 . BFD_RELOC_HPPA_ABS_CALL_LS21,
852 . BFD_RELOC_HPPA_ABS_CALL_RS11,
853 . BFD_RELOC_HPPA_ABS_CALL_RS14,
854 . BFD_RELOC_HPPA_ABS_CALL_RS17,
855 . BFD_RELOC_HPPA_ABS_CALL_LD21,
856 . BFD_RELOC_HPPA_ABS_CALL_RD11,
857 . BFD_RELOC_HPPA_ABS_CALL_RD14,
858 . BFD_RELOC_HPPA_ABS_CALL_RD17,
859 . BFD_RELOC_HPPA_ABS_CALL_LR21,
860 . BFD_RELOC_HPPA_ABS_CALL_RR14,
861 . BFD_RELOC_HPPA_ABS_CALL_RR17,
862 . BFD_RELOC_HPPA_PCREL_CALL_11,
863 . BFD_RELOC_HPPA_PCREL_CALL_12,
864 . BFD_RELOC_HPPA_PCREL_CALL_14,
865 . BFD_RELOC_HPPA_PCREL_CALL_17,
866 . BFD_RELOC_HPPA_PCREL_CALL_L21,
867 . BFD_RELOC_HPPA_PCREL_CALL_R11,
868 . BFD_RELOC_HPPA_PCREL_CALL_R14,
869 . BFD_RELOC_HPPA_PCREL_CALL_R17,
870 . BFD_RELOC_HPPA_PCREL_CALL_LS21,
871 . BFD_RELOC_HPPA_PCREL_CALL_RS11,
872 . BFD_RELOC_HPPA_PCREL_CALL_RS14,
873 . BFD_RELOC_HPPA_PCREL_CALL_RS17,
874 . BFD_RELOC_HPPA_PCREL_CALL_LD21,
875 . BFD_RELOC_HPPA_PCREL_CALL_RD11,
876 . BFD_RELOC_HPPA_PCREL_CALL_RD14,
877 . BFD_RELOC_HPPA_PCREL_CALL_RD17,
878 . BFD_RELOC_HPPA_PCREL_CALL_LR21,
879 . BFD_RELOC_HPPA_PCREL_CALL_RR14,
880 . BFD_RELOC_HPPA_PCREL_CALL_RR17,
881 . BFD_RELOC_HPPA_PLABEL_32,
882 . BFD_RELOC_HPPA_PLABEL_11,
883 . BFD_RELOC_HPPA_PLABEL_14,
884 . BFD_RELOC_HPPA_PLABEL_L21,
885 . BFD_RELOC_HPPA_PLABEL_R11,
886 . BFD_RELOC_HPPA_PLABEL_R14,
887 . BFD_RELOC_HPPA_UNWIND_ENTRY,
888 . BFD_RELOC_HPPA_UNWIND_ENTRIES,
889 .
890 . {* this must be the highest numeric value *}
891 . BFD_RELOC_UNUSED
892 . } bfd_reloc_code_real_type;
893 */
894
895
896
897 /*
898 SECTION
899 bfd_reloc_type_lookup
900
901 SYNOPSIS
902 CONST struct reloc_howto_struct *
903 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
904
905 DESCRIPTION
906 This routine returns a pointer to a howto struct which when
907 invoked, will perform the supplied relocation on data from the
908 architecture noted.
909
910 */
911
912
913 CONST struct reloc_howto_struct *
914 DEFUN(bfd_reloc_type_lookup,(abfd, code),
915 bfd *abfd AND
916 bfd_reloc_code_real_type code)
917 {
918 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
919 }
920
921 static reloc_howto_type bfd_howto_32 =
922 HOWTO(0, 00,2,32,false,0,false,true,0,"VRT32", false,0xffffffff,0xffffffff,true);
923
924
925 /*
926 INTERNAL_FUNCTION
927 bfd_default_reloc_type_lookup
928
929 SYNOPSIS
930 CONST struct reloc_howto_struct *bfd_default_reloc_type_lookup
931 (bfd *abfd AND
932 bfd_reloc_code_real_type code);
933
934 DESCRIPTION
935 Provides a default relocation lookup routine for any architecture.
936
937
938 */
939
940 CONST struct reloc_howto_struct *
941 DEFUN(bfd_default_reloc_type_lookup, (abfd, code),
942 bfd *abfd AND
943 bfd_reloc_code_real_type code)
944 {
945 switch (code)
946 {
947 case BFD_RELOC_CTOR:
948 /* The type of reloc used in a ctor, which will be as wide as the
949 address - so either a 64, 32, or 16 bitter.. */
950 switch (bfd_get_arch_info (abfd)->bits_per_address) {
951 case 64:
952 BFD_FAIL();
953 case 32:
954 return &bfd_howto_32;
955 case 16:
956 BFD_FAIL();
957 default:
958 BFD_FAIL();
959 }
960 default:
961 BFD_FAIL();
962 }
963 return (CONST struct reloc_howto_struct *)NULL;
964 }
965
966
967 /*
968 INTERNAL_FUNCTION
969 bfd_generic_relax_section
970
971 SYNOPSIS
972 boolean bfd_generic_relax_section
973 (bfd *abfd,
974 asection *section,
975 asymbol **symbols);
976
977 DESCRIPTION
978 Provides default handling for relaxing for back ends which
979 don't do relaxing -- i.e., does nothing.
980 */
981
982 boolean
983 DEFUN(bfd_generic_relax_section,(abfd, section, symbols),
984 bfd *abfd AND
985 asection *section AND
986 asymbol **symbols)
987 {
988
989 return false;
990
991 }
992
993
994 /*
995 INTERNAL_FUNCTION
996 bfd_generic_get_relocated_section_contents
997
998 SYNOPSIS
999 bfd_byte *
1000 bfd_generic_get_relocated_section_contents (bfd *abfd,
1001 struct bfd_seclet *seclet,
1002 bfd_byte *data,
1003 boolean relocateable);
1004
1005 DESCRIPTION
1006 Provides default handling of relocation effort for back ends
1007 which can't be bothered to do it efficiently.
1008
1009 */
1010
1011 bfd_byte *
1012 DEFUN(bfd_generic_get_relocated_section_contents,(abfd,
1013 seclet,
1014 data,
1015 relocateable),
1016 bfd *abfd AND
1017 struct bfd_seclet *seclet AND
1018 bfd_byte *data AND
1019 boolean relocateable)
1020 {
1021 extern bfd_error_vector_type bfd_error_vector;
1022
1023 /* Get enough memory to hold the stuff */
1024 bfd *input_bfd = seclet->u.indirect.section->owner;
1025 asection *input_section = seclet->u.indirect.section;
1026
1027
1028
1029 size_t reloc_size = bfd_get_reloc_upper_bound(input_bfd, input_section);
1030 arelent **reloc_vector = (arelent **) alloca(reloc_size);
1031
1032 /* read in the section */
1033 bfd_get_section_contents(input_bfd,
1034 input_section,
1035 data,
1036 0,
1037 input_section->_raw_size);
1038
1039 /* We're not relaxing the section, so just copy the size info */
1040 input_section->_cooked_size = input_section->_raw_size;
1041 input_section->reloc_done = true;
1042
1043
1044 if (bfd_canonicalize_reloc(input_bfd,
1045 input_section,
1046 reloc_vector,
1047 seclet->u.indirect.symbols) )
1048 {
1049 arelent **parent;
1050 for (parent = reloc_vector; * parent != (arelent *)NULL;
1051 parent++)
1052 {
1053 bfd_reloc_status_type r=
1054 bfd_perform_relocation(input_bfd,
1055 *parent,
1056 data,
1057 input_section,
1058 relocateable ? abfd : (bfd *) NULL);
1059
1060 if (relocateable)
1061 {
1062 asection *os = input_section->output_section;
1063
1064 /* A partial link, so keep the relocs */
1065 os->orelocation[os->reloc_count] = *parent;
1066 os->reloc_count++;
1067 }
1068
1069 if (r != bfd_reloc_ok)
1070 {
1071 switch (r)
1072 {
1073 case bfd_reloc_undefined:
1074 bfd_error_vector.undefined_symbol(*parent, seclet);
1075 break;
1076 case bfd_reloc_dangerous:
1077 bfd_error_vector.reloc_dangerous(*parent, seclet);
1078 break;
1079 case bfd_reloc_outofrange:
1080 case bfd_reloc_overflow:
1081 bfd_error_vector.reloc_value_truncated(*parent, seclet);
1082 break;
1083 default:
1084 abort();
1085 break;
1086 }
1087
1088 }
1089 }
1090 }
1091
1092
1093 return data;
1094
1095
1096 }