bfd/
[binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
5 Free Software Foundation, Inc.
6 Written by Cygnus Support.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25 /*
26 SECTION
27 Sections
28
29 The raw data contained within a BFD is maintained through the
30 section abstraction. A single BFD may have any number of
31 sections. It keeps hold of them by pointing to the first;
32 each one points to the next in the list.
33
34 Sections are supported in BFD in <<section.c>>.
35
36 @menu
37 @* Section Input::
38 @* Section Output::
39 @* typedef asection::
40 @* section prototypes::
41 @end menu
42
43 INODE
44 Section Input, Section Output, Sections, Sections
45 SUBSECTION
46 Section input
47
48 When a BFD is opened for reading, the section structures are
49 created and attached to the BFD.
50
51 Each section has a name which describes the section in the
52 outside world---for example, <<a.out>> would contain at least
53 three sections, called <<.text>>, <<.data>> and <<.bss>>.
54
55 Names need not be unique; for example a COFF file may have several
56 sections named <<.data>>.
57
58 Sometimes a BFD will contain more than the ``natural'' number of
59 sections. A back end may attach other sections containing
60 constructor data, or an application may add a section (using
61 <<bfd_make_section>>) to the sections attached to an already open
62 BFD. For example, the linker creates an extra section
63 <<COMMON>> for each input file's BFD to hold information about
64 common storage.
65
66 The raw data is not necessarily read in when
67 the section descriptor is created. Some targets may leave the
68 data in place until a <<bfd_get_section_contents>> call is
69 made. Other back ends may read in all the data at once. For
70 example, an S-record file has to be read once to determine the
71 size of the data. An IEEE-695 file doesn't contain raw data in
72 sections, but data and relocation expressions intermixed, so
73 the data area has to be parsed to get out the data and
74 relocations.
75
76 INODE
77 Section Output, typedef asection, Section Input, Sections
78
79 SUBSECTION
80 Section output
81
82 To write a new object style BFD, the various sections to be
83 written have to be created. They are attached to the BFD in
84 the same way as input sections; data is written to the
85 sections using <<bfd_set_section_contents>>.
86
87 Any program that creates or combines sections (e.g., the assembler
88 and linker) must use the <<asection>> fields <<output_section>> and
89 <<output_offset>> to indicate the file sections to which each
90 section must be written. (If the section is being created from
91 scratch, <<output_section>> should probably point to the section
92 itself and <<output_offset>> should probably be zero.)
93
94 The data to be written comes from input sections attached
95 (via <<output_section>> pointers) to
96 the output sections. The output section structure can be
97 considered a filter for the input section: the output section
98 determines the vma of the output data and the name, but the
99 input section determines the offset into the output section of
100 the data to be written.
101
102 E.g., to create a section "O", starting at 0x100, 0x123 long,
103 containing two subsections, "A" at offset 0x0 (i.e., at vma
104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
105 structures would look like:
106
107 | section name "A"
108 | output_offset 0x00
109 | size 0x20
110 | output_section -----------> section name "O"
111 | | vma 0x100
112 | section name "B" | size 0x123
113 | output_offset 0x20 |
114 | size 0x103 |
115 | output_section --------|
116
117 SUBSECTION
118 Link orders
119
120 The data within a section is stored in a @dfn{link_order}.
121 These are much like the fixups in <<gas>>. The link_order
122 abstraction allows a section to grow and shrink within itself.
123
124 A link_order knows how big it is, and which is the next
125 link_order and where the raw data for it is; it also points to
126 a list of relocations which apply to it.
127
128 The link_order is used by the linker to perform relaxing on
129 final code. The compiler creates code which is as big as
130 necessary to make it work without relaxing, and the user can
131 select whether to relax. Sometimes relaxing takes a lot of
132 time. The linker runs around the relocations to see if any
133 are attached to data which can be shrunk, if so it does it on
134 a link_order by link_order basis.
135
136 */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libbfd.h"
141 #include "bfdlink.h"
142
143 /*
144 DOCDD
145 INODE
146 typedef asection, section prototypes, Section Output, Sections
147 SUBSECTION
148 typedef asection
149
150 Here is the section structure:
151
152 CODE_FRAGMENT
153 .
154 .typedef struct bfd_section
155 .{
156 . {* The name of the section; the name isn't a copy, the pointer is
157 . the same as that passed to bfd_make_section. *}
158 . const char *name;
159 .
160 . {* A unique sequence number. *}
161 . int id;
162 .
163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
164 . int index;
165 .
166 . {* The next section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *next;
168 .
169 . {* The previous section in the list belonging to the BFD, or NULL. *}
170 . struct bfd_section *prev;
171 .
172 . {* The field flags contains attributes of the section. Some
173 . flags are read in from the object file, and some are
174 . synthesized from other information. *}
175 . flagword flags;
176 .
177 .#define SEC_NO_FLAGS 0x000
178 .
179 . {* Tells the OS to allocate space for this section when loading.
180 . This is clear for a section containing debug information only. *}
181 .#define SEC_ALLOC 0x001
182 .
183 . {* Tells the OS to load the section from the file when loading.
184 . This is clear for a .bss section. *}
185 .#define SEC_LOAD 0x002
186 .
187 . {* The section contains data still to be relocated, so there is
188 . some relocation information too. *}
189 .#define SEC_RELOC 0x004
190 .
191 . {* A signal to the OS that the section contains read only data. *}
192 .#define SEC_READONLY 0x008
193 .
194 . {* The section contains code only. *}
195 .#define SEC_CODE 0x010
196 .
197 . {* The section contains data only. *}
198 .#define SEC_DATA 0x020
199 .
200 . {* The section will reside in ROM. *}
201 .#define SEC_ROM 0x040
202 .
203 . {* The section contains constructor information. This section
204 . type is used by the linker to create lists of constructors and
205 . destructors used by <<g++>>. When a back end sees a symbol
206 . which should be used in a constructor list, it creates a new
207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208 . the symbol to it, and builds a relocation. To build the lists
209 . of constructors, all the linker has to do is catenate all the
210 . sections called <<__CTOR_LIST__>> and relocate the data
211 . contained within - exactly the operations it would peform on
212 . standard data. *}
213 .#define SEC_CONSTRUCTOR 0x080
214 .
215 . {* The section has contents - a data section could be
216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
217 . <<SEC_HAS_CONTENTS>> *}
218 .#define SEC_HAS_CONTENTS 0x100
219 .
220 . {* An instruction to the linker to not output the section
221 . even if it has information which would normally be written. *}
222 .#define SEC_NEVER_LOAD 0x200
223 .
224 . {* The section contains thread local data. *}
225 .#define SEC_THREAD_LOCAL 0x400
226 .
227 . {* The section has GOT references. This flag is only for the
228 . linker, and is currently only used by the elf32-hppa back end.
229 . It will be set if global offset table references were detected
230 . in this section, which indicate to the linker that the section
231 . contains PIC code, and must be handled specially when doing a
232 . static link. *}
233 .#define SEC_HAS_GOT_REF 0x800
234 .
235 . {* The section contains common symbols (symbols may be defined
236 . multiple times, the value of a symbol is the amount of
237 . space it requires, and the largest symbol value is the one
238 . used). Most targets have exactly one of these (which we
239 . translate to bfd_com_section_ptr), but ECOFF has two. *}
240 .#define SEC_IS_COMMON 0x1000
241 .
242 . {* The section contains only debugging information. For
243 . example, this is set for ELF .debug and .stab sections.
244 . strip tests this flag to see if a section can be
245 . discarded. *}
246 .#define SEC_DEBUGGING 0x2000
247 .
248 . {* The contents of this section are held in memory pointed to
249 . by the contents field. This is checked by bfd_get_section_contents,
250 . and the data is retrieved from memory if appropriate. *}
251 .#define SEC_IN_MEMORY 0x4000
252 .
253 . {* The contents of this section are to be excluded by the
254 . linker for executable and shared objects unless those
255 . objects are to be further relocated. *}
256 .#define SEC_EXCLUDE 0x8000
257 .
258 . {* The contents of this section are to be sorted based on the sum of
259 . the symbol and addend values specified by the associated relocation
260 . entries. Entries without associated relocation entries will be
261 . appended to the end of the section in an unspecified order. *}
262 .#define SEC_SORT_ENTRIES 0x10000
263 .
264 . {* When linking, duplicate sections of the same name should be
265 . discarded, rather than being combined into a single section as
266 . is usually done. This is similar to how common symbols are
267 . handled. See SEC_LINK_DUPLICATES below. *}
268 .#define SEC_LINK_ONCE 0x20000
269 .
270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271 . should handle duplicate sections. *}
272 .#define SEC_LINK_DUPLICATES 0xc0000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that duplicate
275 . sections with the same name should simply be discarded. *}
276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if there are any duplicate sections, although
280 . it should still only link one copy. *}
281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282 .
283 . {* This value for SEC_LINK_DUPLICATES means that the linker
284 . should warn if any duplicate sections are a different size. *}
285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286 .
287 . {* This value for SEC_LINK_DUPLICATES means that the linker
288 . should warn if any duplicate sections contain different
289 . contents. *}
290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292 .
293 . {* This section was created by the linker as part of dynamic
294 . relocation or other arcane processing. It is skipped when
295 . going through the first-pass output, trusting that someone
296 . else up the line will take care of it later. *}
297 .#define SEC_LINKER_CREATED 0x100000
298 .
299 . {* This section should not be subject to garbage collection.
300 . Also set to inform the linker that this section should not be
301 . listed in the link map as discarded. *}
302 .#define SEC_KEEP 0x200000
303 .
304 . {* This section contains "short" data, and should be placed
305 . "near" the GP. *}
306 .#define SEC_SMALL_DATA 0x400000
307 .
308 . {* Attempt to merge identical entities in the section.
309 . Entity size is given in the entsize field. *}
310 .#define SEC_MERGE 0x800000
311 .
312 . {* If given with SEC_MERGE, entities to merge are zero terminated
313 . strings where entsize specifies character size instead of fixed
314 . size entries. *}
315 .#define SEC_STRINGS 0x1000000
316 .
317 . {* This section contains data about section groups. *}
318 .#define SEC_GROUP 0x2000000
319 .
320 . {* The section is a COFF shared library section. This flag is
321 . only for the linker. If this type of section appears in
322 . the input file, the linker must copy it to the output file
323 . without changing the vma or size. FIXME: Although this
324 . was originally intended to be general, it really is COFF
325 . specific (and the flag was renamed to indicate this). It
326 . might be cleaner to have some more general mechanism to
327 . allow the back end to control what the linker does with
328 . sections. *}
329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
330 .
331 . {* This input section should be copied to output in reverse order
332 . as an array of pointers. This is for ELF linker internal use
333 . only. *}
334 .#define SEC_ELF_REVERSE_COPY 0x4000000
335 .
336 . {* This section contains data which may be shared with other
337 . executables or shared objects. This is for COFF only. *}
338 .#define SEC_COFF_SHARED 0x8000000
339 .
340 . {* When a section with this flag is being linked, then if the size of
341 . the input section is less than a page, it should not cross a page
342 . boundary. If the size of the input section is one page or more,
343 . it should be aligned on a page boundary. This is for TI
344 . TMS320C54X only. *}
345 .#define SEC_TIC54X_BLOCK 0x10000000
346 .
347 . {* Conditionally link this section; do not link if there are no
348 . references found to any symbol in the section. This is for TI
349 . TMS320C54X only. *}
350 .#define SEC_TIC54X_CLINK 0x20000000
351 .
352 . {* Indicate that section has the no read flag set. This happens
353 . when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
355 .
356 . {* End of section flags. *}
357 .
358 . {* Some internal packed boolean fields. *}
359 .
360 . {* See the vma field. *}
361 . unsigned int user_set_vma : 1;
362 .
363 . {* A mark flag used by some of the linker backends. *}
364 . unsigned int linker_mark : 1;
365 .
366 . {* Another mark flag used by some of the linker backends. Set for
367 . output sections that have an input section. *}
368 . unsigned int linker_has_input : 1;
369 .
370 . {* Mark flag used by some linker backends for garbage collection. *}
371 . unsigned int gc_mark : 1;
372 .
373 . {* Section compression status. *}
374 . unsigned int compress_status : 2;
375 .#define COMPRESS_SECTION_NONE 0
376 .#define COMPRESS_SECTION_DONE 1
377 .#define DECOMPRESS_SECTION_SIZED 2
378 .
379 . {* The following flags are used by the ELF linker. *}
380 .
381 . {* Mark sections which have been allocated to segments. *}
382 . unsigned int segment_mark : 1;
383 .
384 . {* Type of sec_info information. *}
385 . unsigned int sec_info_type:3;
386 .#define SEC_INFO_TYPE_NONE 0
387 .#define SEC_INFO_TYPE_STABS 1
388 .#define SEC_INFO_TYPE_MERGE 2
389 .#define SEC_INFO_TYPE_EH_FRAME 3
390 .#define SEC_INFO_TYPE_JUST_SYMS 4
391 .
392 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
393 . unsigned int use_rela_p:1;
394 .
395 . {* Bits used by various backends. The generic code doesn't touch
396 . these fields. *}
397 .
398 . unsigned int sec_flg0:1;
399 . unsigned int sec_flg1:1;
400 . unsigned int sec_flg2:1;
401 . unsigned int sec_flg3:1;
402 . unsigned int sec_flg4:1;
403 . unsigned int sec_flg5:1;
404 .
405 . {* End of internal packed boolean fields. *}
406 .
407 . {* The virtual memory address of the section - where it will be
408 . at run time. The symbols are relocated against this. The
409 . user_set_vma flag is maintained by bfd; if it's not set, the
410 . backend can assign addresses (for example, in <<a.out>>, where
411 . the default address for <<.data>> is dependent on the specific
412 . target and various flags). *}
413 . bfd_vma vma;
414 .
415 . {* The load address of the section - where it would be in a
416 . rom image; really only used for writing section header
417 . information. *}
418 . bfd_vma lma;
419 .
420 . {* The size of the section in octets, as it will be output.
421 . Contains a value even if the section has no contents (e.g., the
422 . size of <<.bss>>). *}
423 . bfd_size_type size;
424 .
425 . {* For input sections, the original size on disk of the section, in
426 . octets. This field should be set for any section whose size is
427 . changed by linker relaxation. It is required for sections where
428 . the linker relaxation scheme doesn't cache altered section and
429 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
430 . targets), and thus the original size needs to be kept to read the
431 . section multiple times. For output sections, rawsize holds the
432 . section size calculated on a previous linker relaxation pass. *}
433 . bfd_size_type rawsize;
434 .
435 . {* The compressed size of the section in octets. *}
436 . bfd_size_type compressed_size;
437 .
438 . {* Relaxation table. *}
439 . struct relax_table *relax;
440 .
441 . {* Count of used relaxation table entries. *}
442 . int relax_count;
443 .
444 .
445 . {* If this section is going to be output, then this value is the
446 . offset in *bytes* into the output section of the first byte in the
447 . input section (byte ==> smallest addressable unit on the
448 . target). In most cases, if this was going to start at the
449 . 100th octet (8-bit quantity) in the output section, this value
450 . would be 100. However, if the target byte size is 16 bits
451 . (bfd_octets_per_byte is "2"), this value would be 50. *}
452 . bfd_vma output_offset;
453 .
454 . {* The output section through which to map on output. *}
455 . struct bfd_section *output_section;
456 .
457 . {* The alignment requirement of the section, as an exponent of 2 -
458 . e.g., 3 aligns to 2^3 (or 8). *}
459 . unsigned int alignment_power;
460 .
461 . {* If an input section, a pointer to a vector of relocation
462 . records for the data in this section. *}
463 . struct reloc_cache_entry *relocation;
464 .
465 . {* If an output section, a pointer to a vector of pointers to
466 . relocation records for the data in this section. *}
467 . struct reloc_cache_entry **orelocation;
468 .
469 . {* The number of relocation records in one of the above. *}
470 . unsigned reloc_count;
471 .
472 . {* Information below is back end specific - and not always used
473 . or updated. *}
474 .
475 . {* File position of section data. *}
476 . file_ptr filepos;
477 .
478 . {* File position of relocation info. *}
479 . file_ptr rel_filepos;
480 .
481 . {* File position of line data. *}
482 . file_ptr line_filepos;
483 .
484 . {* Pointer to data for applications. *}
485 . void *userdata;
486 .
487 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
488 . contents. *}
489 . unsigned char *contents;
490 .
491 . {* Attached line number information. *}
492 . alent *lineno;
493 .
494 . {* Number of line number records. *}
495 . unsigned int lineno_count;
496 .
497 . {* Entity size for merging purposes. *}
498 . unsigned int entsize;
499 .
500 . {* Points to the kept section if this section is a link-once section,
501 . and is discarded. *}
502 . struct bfd_section *kept_section;
503 .
504 . {* When a section is being output, this value changes as more
505 . linenumbers are written out. *}
506 . file_ptr moving_line_filepos;
507 .
508 . {* What the section number is in the target world. *}
509 . int target_index;
510 .
511 . void *used_by_bfd;
512 .
513 . {* If this is a constructor section then here is a list of the
514 . relocations created to relocate items within it. *}
515 . struct relent_chain *constructor_chain;
516 .
517 . {* The BFD which owns the section. *}
518 . bfd *owner;
519 .
520 . {* A symbol which points at this section only. *}
521 . struct bfd_symbol *symbol;
522 . struct bfd_symbol **symbol_ptr_ptr;
523 .
524 . {* Early in the link process, map_head and map_tail are used to build
525 . a list of input sections attached to an output section. Later,
526 . output sections use these fields for a list of bfd_link_order
527 . structs. *}
528 . union {
529 . struct bfd_link_order *link_order;
530 . struct bfd_section *s;
531 . } map_head, map_tail;
532 .} asection;
533 .
534 .{* Relax table contains information about instructions which can
535 . be removed by relaxation -- replacing a long address with a
536 . short address. *}
537 .struct relax_table {
538 . {* Address where bytes may be deleted. *}
539 . bfd_vma addr;
540 .
541 . {* Number of bytes to be deleted. *}
542 . int size;
543 .};
544 .
545 .{* These sections are global, and are managed by BFD. The application
546 . and target back end are not permitted to change the values in
547 . these sections. *}
548 .extern asection std_section[4];
549 .
550 .#define BFD_ABS_SECTION_NAME "*ABS*"
551 .#define BFD_UND_SECTION_NAME "*UND*"
552 .#define BFD_COM_SECTION_NAME "*COM*"
553 .#define BFD_IND_SECTION_NAME "*IND*"
554 .
555 .{* Pointer to the common section. *}
556 .#define bfd_com_section_ptr (&std_section[0])
557 .{* Pointer to the undefined section. *}
558 .#define bfd_und_section_ptr (&std_section[1])
559 .{* Pointer to the absolute section. *}
560 .#define bfd_abs_section_ptr (&std_section[2])
561 .{* Pointer to the indirect section. *}
562 .#define bfd_ind_section_ptr (&std_section[3])
563 .
564 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
565 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
566 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
567 .
568 .#define bfd_is_const_section(SEC) \
569 . ( ((SEC) == bfd_abs_section_ptr) \
570 . || ((SEC) == bfd_und_section_ptr) \
571 . || ((SEC) == bfd_com_section_ptr) \
572 . || ((SEC) == bfd_ind_section_ptr))
573 .
574 .{* Macros to handle insertion and deletion of a bfd's sections. These
575 . only handle the list pointers, ie. do not adjust section_count,
576 . target_index etc. *}
577 .#define bfd_section_list_remove(ABFD, S) \
578 . do \
579 . { \
580 . asection *_s = S; \
581 . asection *_next = _s->next; \
582 . asection *_prev = _s->prev; \
583 . if (_prev) \
584 . _prev->next = _next; \
585 . else \
586 . (ABFD)->sections = _next; \
587 . if (_next) \
588 . _next->prev = _prev; \
589 . else \
590 . (ABFD)->section_last = _prev; \
591 . } \
592 . while (0)
593 .#define bfd_section_list_append(ABFD, S) \
594 . do \
595 . { \
596 . asection *_s = S; \
597 . bfd *_abfd = ABFD; \
598 . _s->next = NULL; \
599 . if (_abfd->section_last) \
600 . { \
601 . _s->prev = _abfd->section_last; \
602 . _abfd->section_last->next = _s; \
603 . } \
604 . else \
605 . { \
606 . _s->prev = NULL; \
607 . _abfd->sections = _s; \
608 . } \
609 . _abfd->section_last = _s; \
610 . } \
611 . while (0)
612 .#define bfd_section_list_prepend(ABFD, S) \
613 . do \
614 . { \
615 . asection *_s = S; \
616 . bfd *_abfd = ABFD; \
617 . _s->prev = NULL; \
618 . if (_abfd->sections) \
619 . { \
620 . _s->next = _abfd->sections; \
621 . _abfd->sections->prev = _s; \
622 . } \
623 . else \
624 . { \
625 . _s->next = NULL; \
626 . _abfd->section_last = _s; \
627 . } \
628 . _abfd->sections = _s; \
629 . } \
630 . while (0)
631 .#define bfd_section_list_insert_after(ABFD, A, S) \
632 . do \
633 . { \
634 . asection *_a = A; \
635 . asection *_s = S; \
636 . asection *_next = _a->next; \
637 . _s->next = _next; \
638 . _s->prev = _a; \
639 . _a->next = _s; \
640 . if (_next) \
641 . _next->prev = _s; \
642 . else \
643 . (ABFD)->section_last = _s; \
644 . } \
645 . while (0)
646 .#define bfd_section_list_insert_before(ABFD, B, S) \
647 . do \
648 . { \
649 . asection *_b = B; \
650 . asection *_s = S; \
651 . asection *_prev = _b->prev; \
652 . _s->prev = _prev; \
653 . _s->next = _b; \
654 . _b->prev = _s; \
655 . if (_prev) \
656 . _prev->next = _s; \
657 . else \
658 . (ABFD)->sections = _s; \
659 . } \
660 . while (0)
661 .#define bfd_section_removed_from_list(ABFD, S) \
662 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
663 .
664 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
665 . {* name, id, index, next, prev, flags, user_set_vma, *} \
666 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
667 . \
668 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
669 . 0, 0, 1, 0, \
670 . \
671 . {* segment_mark, sec_info_type, use_rela_p, *} \
672 . 0, 0, 0, \
673 . \
674 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
675 . 0, 0, 0, 0, 0, 0, \
676 . \
677 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
678 . 0, 0, 0, 0, 0, 0, 0, \
679 . \
680 . {* output_offset, output_section, alignment_power, *} \
681 . 0, &SEC, 0, \
682 . \
683 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
684 . NULL, NULL, 0, 0, 0, \
685 . \
686 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
687 . 0, NULL, NULL, NULL, 0, \
688 . \
689 . {* entsize, kept_section, moving_line_filepos, *} \
690 . 0, NULL, 0, \
691 . \
692 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
693 . 0, NULL, NULL, NULL, \
694 . \
695 . {* symbol, symbol_ptr_ptr, *} \
696 . (struct bfd_symbol *) SYM, &SEC.symbol, \
697 . \
698 . {* map_head, map_tail *} \
699 . { NULL }, { NULL } \
700 . }
701 .
702 */
703
704 /* We use a macro to initialize the static asymbol structures because
705 traditional C does not permit us to initialize a union member while
706 gcc warns if we don't initialize it. */
707 /* the_bfd, name, value, attr, section [, udata] */
708 #ifdef __STDC__
709 #define GLOBAL_SYM_INIT(NAME, SECTION) \
710 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
711 #else
712 #define GLOBAL_SYM_INIT(NAME, SECTION) \
713 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
714 #endif
715
716 /* These symbols are global, not specific to any BFD. Therefore, anything
717 that tries to change them is broken, and should be repaired. */
718
719 static const asymbol global_syms[] =
720 {
721 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
722 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
723 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
724 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
725 };
726
727 #define STD_SECTION(NAME, IDX, FLAGS) \
728 BFD_FAKE_SECTION(std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
729
730 asection std_section[] = {
731 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
732 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
733 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
734 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
735 };
736 #undef STD_SECTION
737
738 /* Initialize an entry in the section hash table. */
739
740 struct bfd_hash_entry *
741 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
742 struct bfd_hash_table *table,
743 const char *string)
744 {
745 /* Allocate the structure if it has not already been allocated by a
746 subclass. */
747 if (entry == NULL)
748 {
749 entry = (struct bfd_hash_entry *)
750 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
751 if (entry == NULL)
752 return entry;
753 }
754
755 /* Call the allocation method of the superclass. */
756 entry = bfd_hash_newfunc (entry, table, string);
757 if (entry != NULL)
758 memset (&((struct section_hash_entry *) entry)->section, 0,
759 sizeof (asection));
760
761 return entry;
762 }
763
764 #define section_hash_lookup(table, string, create, copy) \
765 ((struct section_hash_entry *) \
766 bfd_hash_lookup ((table), (string), (create), (copy)))
767
768 /* Create a symbol whose only job is to point to this section. This
769 is useful for things like relocs which are relative to the base
770 of a section. */
771
772 bfd_boolean
773 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
774 {
775 newsect->symbol = bfd_make_empty_symbol (abfd);
776 if (newsect->symbol == NULL)
777 return FALSE;
778
779 newsect->symbol->name = newsect->name;
780 newsect->symbol->value = 0;
781 newsect->symbol->section = newsect;
782 newsect->symbol->flags = BSF_SECTION_SYM;
783
784 newsect->symbol_ptr_ptr = &newsect->symbol;
785 return TRUE;
786 }
787
788 /* Initializes a new section. NEWSECT->NAME is already set. */
789
790 static asection *
791 bfd_section_init (bfd *abfd, asection *newsect)
792 {
793 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
794
795 newsect->id = section_id;
796 newsect->index = abfd->section_count;
797 newsect->owner = abfd;
798
799 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
800 return NULL;
801
802 section_id++;
803 abfd->section_count++;
804 bfd_section_list_append (abfd, newsect);
805 return newsect;
806 }
807
808 /*
809 DOCDD
810 INODE
811 section prototypes, , typedef asection, Sections
812 SUBSECTION
813 Section prototypes
814
815 These are the functions exported by the section handling part of BFD.
816 */
817
818 /*
819 FUNCTION
820 bfd_section_list_clear
821
822 SYNOPSIS
823 void bfd_section_list_clear (bfd *);
824
825 DESCRIPTION
826 Clears the section list, and also resets the section count and
827 hash table entries.
828 */
829
830 void
831 bfd_section_list_clear (bfd *abfd)
832 {
833 abfd->sections = NULL;
834 abfd->section_last = NULL;
835 abfd->section_count = 0;
836 memset (abfd->section_htab.table, 0,
837 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
838 }
839
840 /*
841 FUNCTION
842 bfd_get_section_by_name
843
844 SYNOPSIS
845 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
846
847 DESCRIPTION
848 Run through @var{abfd} and return the one of the
849 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
850 @xref{Sections}, for more information.
851
852 This should only be used in special cases; the normal way to process
853 all sections of a given name is to use <<bfd_map_over_sections>> and
854 <<strcmp>> on the name (or better yet, base it on the section flags
855 or something else) for each section.
856 */
857
858 asection *
859 bfd_get_section_by_name (bfd *abfd, const char *name)
860 {
861 struct section_hash_entry *sh;
862
863 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
864 if (sh != NULL)
865 return &sh->section;
866
867 return NULL;
868 }
869
870 /*
871 FUNCTION
872 bfd_get_section_by_name_if
873
874 SYNOPSIS
875 asection *bfd_get_section_by_name_if
876 (bfd *abfd,
877 const char *name,
878 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
879 void *obj);
880
881 DESCRIPTION
882 Call the provided function @var{func} for each section
883 attached to the BFD @var{abfd} whose name matches @var{name},
884 passing @var{obj} as an argument. The function will be called
885 as if by
886
887 | func (abfd, the_section, obj);
888
889 It returns the first section for which @var{func} returns true,
890 otherwise <<NULL>>.
891
892 */
893
894 asection *
895 bfd_get_section_by_name_if (bfd *abfd, const char *name,
896 bfd_boolean (*operation) (bfd *,
897 asection *,
898 void *),
899 void *user_storage)
900 {
901 struct section_hash_entry *sh;
902 unsigned long hash;
903
904 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
905 if (sh == NULL)
906 return NULL;
907
908 hash = sh->root.hash;
909 do
910 {
911 if ((*operation) (abfd, &sh->section, user_storage))
912 return &sh->section;
913 sh = (struct section_hash_entry *) sh->root.next;
914 }
915 while (sh != NULL && sh->root.hash == hash
916 && strcmp (sh->root.string, name) == 0);
917
918 return NULL;
919 }
920
921 /*
922 FUNCTION
923 bfd_get_unique_section_name
924
925 SYNOPSIS
926 char *bfd_get_unique_section_name
927 (bfd *abfd, const char *templat, int *count);
928
929 DESCRIPTION
930 Invent a section name that is unique in @var{abfd} by tacking
931 a dot and a digit suffix onto the original @var{templat}. If
932 @var{count} is non-NULL, then it specifies the first number
933 tried as a suffix to generate a unique name. The value
934 pointed to by @var{count} will be incremented in this case.
935 */
936
937 char *
938 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
939 {
940 int num;
941 unsigned int len;
942 char *sname;
943
944 len = strlen (templat);
945 sname = (char *) bfd_malloc (len + 8);
946 if (sname == NULL)
947 return NULL;
948 memcpy (sname, templat, len);
949 num = 1;
950 if (count != NULL)
951 num = *count;
952
953 do
954 {
955 /* If we have a million sections, something is badly wrong. */
956 if (num > 999999)
957 abort ();
958 sprintf (sname + len, ".%d", num++);
959 }
960 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
961
962 if (count != NULL)
963 *count = num;
964 return sname;
965 }
966
967 /*
968 FUNCTION
969 bfd_make_section_old_way
970
971 SYNOPSIS
972 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
973
974 DESCRIPTION
975 Create a new empty section called @var{name}
976 and attach it to the end of the chain of sections for the
977 BFD @var{abfd}. An attempt to create a section with a name which
978 is already in use returns its pointer without changing the
979 section chain.
980
981 It has the funny name since this is the way it used to be
982 before it was rewritten....
983
984 Possible errors are:
985 o <<bfd_error_invalid_operation>> -
986 If output has already started for this BFD.
987 o <<bfd_error_no_memory>> -
988 If memory allocation fails.
989
990 */
991
992 asection *
993 bfd_make_section_old_way (bfd *abfd, const char *name)
994 {
995 asection *newsect;
996
997 if (abfd->output_has_begun)
998 {
999 bfd_set_error (bfd_error_invalid_operation);
1000 return NULL;
1001 }
1002
1003 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1004 newsect = bfd_abs_section_ptr;
1005 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1006 newsect = bfd_com_section_ptr;
1007 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1008 newsect = bfd_und_section_ptr;
1009 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1010 newsect = bfd_ind_section_ptr;
1011 else
1012 {
1013 struct section_hash_entry *sh;
1014
1015 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1016 if (sh == NULL)
1017 return NULL;
1018
1019 newsect = &sh->section;
1020 if (newsect->name != NULL)
1021 {
1022 /* Section already exists. */
1023 return newsect;
1024 }
1025
1026 newsect->name = name;
1027 return bfd_section_init (abfd, newsect);
1028 }
1029
1030 /* Call new_section_hook when "creating" the standard abs, com, und
1031 and ind sections to tack on format specific section data.
1032 Also, create a proper section symbol. */
1033 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1034 return NULL;
1035 return newsect;
1036 }
1037
1038 /*
1039 FUNCTION
1040 bfd_make_section_anyway_with_flags
1041
1042 SYNOPSIS
1043 asection *bfd_make_section_anyway_with_flags
1044 (bfd *abfd, const char *name, flagword flags);
1045
1046 DESCRIPTION
1047 Create a new empty section called @var{name} and attach it to the end of
1048 the chain of sections for @var{abfd}. Create a new section even if there
1049 is already a section with that name. Also set the attributes of the
1050 new section to the value @var{flags}.
1051
1052 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1053 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1054 o <<bfd_error_no_memory>> - If memory allocation fails.
1055 */
1056
1057 sec_ptr
1058 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1059 flagword flags)
1060 {
1061 struct section_hash_entry *sh;
1062 asection *newsect;
1063
1064 if (abfd->output_has_begun)
1065 {
1066 bfd_set_error (bfd_error_invalid_operation);
1067 return NULL;
1068 }
1069
1070 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1071 if (sh == NULL)
1072 return NULL;
1073
1074 newsect = &sh->section;
1075 if (newsect->name != NULL)
1076 {
1077 /* We are making a section of the same name. Put it in the
1078 section hash table. Even though we can't find it directly by a
1079 hash lookup, we'll be able to find the section by traversing
1080 sh->root.next quicker than looking at all the bfd sections. */
1081 struct section_hash_entry *new_sh;
1082 new_sh = (struct section_hash_entry *)
1083 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1084 if (new_sh == NULL)
1085 return NULL;
1086
1087 new_sh->root = sh->root;
1088 sh->root.next = &new_sh->root;
1089 newsect = &new_sh->section;
1090 }
1091
1092 newsect->flags = flags;
1093 newsect->name = name;
1094 return bfd_section_init (abfd, newsect);
1095 }
1096
1097 /*
1098 FUNCTION
1099 bfd_make_section_anyway
1100
1101 SYNOPSIS
1102 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1103
1104 DESCRIPTION
1105 Create a new empty section called @var{name} and attach it to the end of
1106 the chain of sections for @var{abfd}. Create a new section even if there
1107 is already a section with that name.
1108
1109 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1110 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1111 o <<bfd_error_no_memory>> - If memory allocation fails.
1112 */
1113
1114 sec_ptr
1115 bfd_make_section_anyway (bfd *abfd, const char *name)
1116 {
1117 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1118 }
1119
1120 /*
1121 FUNCTION
1122 bfd_make_section_with_flags
1123
1124 SYNOPSIS
1125 asection *bfd_make_section_with_flags
1126 (bfd *, const char *name, flagword flags);
1127
1128 DESCRIPTION
1129 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1130 bfd_set_error ()) without changing the section chain if there is already a
1131 section named @var{name}. Also set the attributes of the new section to
1132 the value @var{flags}. If there is an error, return <<NULL>> and set
1133 <<bfd_error>>.
1134 */
1135
1136 asection *
1137 bfd_make_section_with_flags (bfd *abfd, const char *name,
1138 flagword flags)
1139 {
1140 struct section_hash_entry *sh;
1141 asection *newsect;
1142
1143 if (abfd->output_has_begun)
1144 {
1145 bfd_set_error (bfd_error_invalid_operation);
1146 return NULL;
1147 }
1148
1149 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1150 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1151 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1152 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1153 return NULL;
1154
1155 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1156 if (sh == NULL)
1157 return NULL;
1158
1159 newsect = &sh->section;
1160 if (newsect->name != NULL)
1161 {
1162 /* Section already exists. */
1163 return NULL;
1164 }
1165
1166 newsect->name = name;
1167 newsect->flags = flags;
1168 return bfd_section_init (abfd, newsect);
1169 }
1170
1171 /*
1172 FUNCTION
1173 bfd_make_section
1174
1175 SYNOPSIS
1176 asection *bfd_make_section (bfd *, const char *name);
1177
1178 DESCRIPTION
1179 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1180 bfd_set_error ()) without changing the section chain if there is already a
1181 section named @var{name}. If there is an error, return <<NULL>> and set
1182 <<bfd_error>>.
1183 */
1184
1185 asection *
1186 bfd_make_section (bfd *abfd, const char *name)
1187 {
1188 return bfd_make_section_with_flags (abfd, name, 0);
1189 }
1190
1191 /*
1192 FUNCTION
1193 bfd_set_section_flags
1194
1195 SYNOPSIS
1196 bfd_boolean bfd_set_section_flags
1197 (bfd *abfd, asection *sec, flagword flags);
1198
1199 DESCRIPTION
1200 Set the attributes of the section @var{sec} in the BFD
1201 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1202 <<FALSE>> on error. Possible error returns are:
1203
1204 o <<bfd_error_invalid_operation>> -
1205 The section cannot have one or more of the attributes
1206 requested. For example, a .bss section in <<a.out>> may not
1207 have the <<SEC_HAS_CONTENTS>> field set.
1208
1209 */
1210
1211 bfd_boolean
1212 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1213 sec_ptr section,
1214 flagword flags)
1215 {
1216 section->flags = flags;
1217 return TRUE;
1218 }
1219
1220 /*
1221 FUNCTION
1222 bfd_rename_section
1223
1224 SYNOPSIS
1225 void bfd_rename_section
1226 (bfd *abfd, asection *sec, const char *newname);
1227
1228 DESCRIPTION
1229 Rename section @var{sec} in @var{abfd} to @var{newname}.
1230 */
1231
1232 void
1233 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1234 {
1235 struct section_hash_entry *sh;
1236
1237 sh = (struct section_hash_entry *)
1238 ((char *) sec - offsetof (struct section_hash_entry, section));
1239 sh->section.name = newname;
1240 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1241 }
1242
1243 /*
1244 FUNCTION
1245 bfd_map_over_sections
1246
1247 SYNOPSIS
1248 void bfd_map_over_sections
1249 (bfd *abfd,
1250 void (*func) (bfd *abfd, asection *sect, void *obj),
1251 void *obj);
1252
1253 DESCRIPTION
1254 Call the provided function @var{func} for each section
1255 attached to the BFD @var{abfd}, passing @var{obj} as an
1256 argument. The function will be called as if by
1257
1258 | func (abfd, the_section, obj);
1259
1260 This is the preferred method for iterating over sections; an
1261 alternative would be to use a loop:
1262
1263 | section *p;
1264 | for (p = abfd->sections; p != NULL; p = p->next)
1265 | func (abfd, p, ...)
1266
1267 */
1268
1269 void
1270 bfd_map_over_sections (bfd *abfd,
1271 void (*operation) (bfd *, asection *, void *),
1272 void *user_storage)
1273 {
1274 asection *sect;
1275 unsigned int i = 0;
1276
1277 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1278 (*operation) (abfd, sect, user_storage);
1279
1280 if (i != abfd->section_count) /* Debugging */
1281 abort ();
1282 }
1283
1284 /*
1285 FUNCTION
1286 bfd_sections_find_if
1287
1288 SYNOPSIS
1289 asection *bfd_sections_find_if
1290 (bfd *abfd,
1291 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1292 void *obj);
1293
1294 DESCRIPTION
1295 Call the provided function @var{operation} for each section
1296 attached to the BFD @var{abfd}, passing @var{obj} as an
1297 argument. The function will be called as if by
1298
1299 | operation (abfd, the_section, obj);
1300
1301 It returns the first section for which @var{operation} returns true.
1302
1303 */
1304
1305 asection *
1306 bfd_sections_find_if (bfd *abfd,
1307 bfd_boolean (*operation) (bfd *, asection *, void *),
1308 void *user_storage)
1309 {
1310 asection *sect;
1311
1312 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1313 if ((*operation) (abfd, sect, user_storage))
1314 break;
1315
1316 return sect;
1317 }
1318
1319 /*
1320 FUNCTION
1321 bfd_set_section_size
1322
1323 SYNOPSIS
1324 bfd_boolean bfd_set_section_size
1325 (bfd *abfd, asection *sec, bfd_size_type val);
1326
1327 DESCRIPTION
1328 Set @var{sec} to the size @var{val}. If the operation is
1329 ok, then <<TRUE>> is returned, else <<FALSE>>.
1330
1331 Possible error returns:
1332 o <<bfd_error_invalid_operation>> -
1333 Writing has started to the BFD, so setting the size is invalid.
1334
1335 */
1336
1337 bfd_boolean
1338 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1339 {
1340 /* Once you've started writing to any section you cannot create or change
1341 the size of any others. */
1342
1343 if (abfd->output_has_begun)
1344 {
1345 bfd_set_error (bfd_error_invalid_operation);
1346 return FALSE;
1347 }
1348
1349 ptr->size = val;
1350 return TRUE;
1351 }
1352
1353 /*
1354 FUNCTION
1355 bfd_set_section_contents
1356
1357 SYNOPSIS
1358 bfd_boolean bfd_set_section_contents
1359 (bfd *abfd, asection *section, const void *data,
1360 file_ptr offset, bfd_size_type count);
1361
1362 DESCRIPTION
1363 Sets the contents of the section @var{section} in BFD
1364 @var{abfd} to the data starting in memory at @var{data}. The
1365 data is written to the output section starting at offset
1366 @var{offset} for @var{count} octets.
1367
1368 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1369 returns are:
1370 o <<bfd_error_no_contents>> -
1371 The output section does not have the <<SEC_HAS_CONTENTS>>
1372 attribute, so nothing can be written to it.
1373 o and some more too
1374
1375 This routine is front end to the back end function
1376 <<_bfd_set_section_contents>>.
1377
1378 */
1379
1380 bfd_boolean
1381 bfd_set_section_contents (bfd *abfd,
1382 sec_ptr section,
1383 const void *location,
1384 file_ptr offset,
1385 bfd_size_type count)
1386 {
1387 bfd_size_type sz;
1388
1389 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1390 {
1391 bfd_set_error (bfd_error_no_contents);
1392 return FALSE;
1393 }
1394
1395 sz = section->size;
1396 if ((bfd_size_type) offset > sz
1397 || count > sz
1398 || offset + count > sz
1399 || count != (size_t) count)
1400 {
1401 bfd_set_error (bfd_error_bad_value);
1402 return FALSE;
1403 }
1404
1405 if (!bfd_write_p (abfd))
1406 {
1407 bfd_set_error (bfd_error_invalid_operation);
1408 return FALSE;
1409 }
1410
1411 /* Record a copy of the data in memory if desired. */
1412 if (section->contents
1413 && location != section->contents + offset)
1414 memcpy (section->contents + offset, location, (size_t) count);
1415
1416 if (BFD_SEND (abfd, _bfd_set_section_contents,
1417 (abfd, section, location, offset, count)))
1418 {
1419 abfd->output_has_begun = TRUE;
1420 return TRUE;
1421 }
1422
1423 return FALSE;
1424 }
1425
1426 /*
1427 FUNCTION
1428 bfd_get_section_contents
1429
1430 SYNOPSIS
1431 bfd_boolean bfd_get_section_contents
1432 (bfd *abfd, asection *section, void *location, file_ptr offset,
1433 bfd_size_type count);
1434
1435 DESCRIPTION
1436 Read data from @var{section} in BFD @var{abfd}
1437 into memory starting at @var{location}. The data is read at an
1438 offset of @var{offset} from the start of the input section,
1439 and is read for @var{count} bytes.
1440
1441 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1442 flag set are requested or if the section does not have the
1443 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1444 with zeroes. If no errors occur, <<TRUE>> is returned, else
1445 <<FALSE>>.
1446
1447 */
1448 bfd_boolean
1449 bfd_get_section_contents (bfd *abfd,
1450 sec_ptr section,
1451 void *location,
1452 file_ptr offset,
1453 bfd_size_type count)
1454 {
1455 bfd_size_type sz;
1456
1457 if (section->flags & SEC_CONSTRUCTOR)
1458 {
1459 memset (location, 0, (size_t) count);
1460 return TRUE;
1461 }
1462
1463 if (abfd->direction != write_direction && section->rawsize != 0)
1464 sz = section->rawsize;
1465 else
1466 sz = section->size;
1467 if ((bfd_size_type) offset > sz
1468 || count > sz
1469 || offset + count > sz
1470 || count != (size_t) count)
1471 {
1472 bfd_set_error (bfd_error_bad_value);
1473 return FALSE;
1474 }
1475
1476 if (count == 0)
1477 /* Don't bother. */
1478 return TRUE;
1479
1480 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1481 {
1482 memset (location, 0, (size_t) count);
1483 return TRUE;
1484 }
1485
1486 if ((section->flags & SEC_IN_MEMORY) != 0)
1487 {
1488 if (section->contents == NULL)
1489 {
1490 /* This can happen because of errors earlier on in the linking process.
1491 We do not want to seg-fault here, so clear the flag and return an
1492 error code. */
1493 section->flags &= ~ SEC_IN_MEMORY;
1494 bfd_set_error (bfd_error_invalid_operation);
1495 return FALSE;
1496 }
1497
1498 memcpy (location, section->contents + offset, (size_t) count);
1499 return TRUE;
1500 }
1501
1502 return BFD_SEND (abfd, _bfd_get_section_contents,
1503 (abfd, section, location, offset, count));
1504 }
1505
1506 /*
1507 FUNCTION
1508 bfd_malloc_and_get_section
1509
1510 SYNOPSIS
1511 bfd_boolean bfd_malloc_and_get_section
1512 (bfd *abfd, asection *section, bfd_byte **buf);
1513
1514 DESCRIPTION
1515 Read all data from @var{section} in BFD @var{abfd}
1516 into a buffer, *@var{buf}, malloc'd by this function.
1517 */
1518
1519 bfd_boolean
1520 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1521 {
1522 *buf = NULL;
1523 return bfd_get_full_section_contents (abfd, sec, buf);
1524 }
1525 /*
1526 FUNCTION
1527 bfd_copy_private_section_data
1528
1529 SYNOPSIS
1530 bfd_boolean bfd_copy_private_section_data
1531 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1532
1533 DESCRIPTION
1534 Copy private section information from @var{isec} in the BFD
1535 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1536 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1537 returns are:
1538
1539 o <<bfd_error_no_memory>> -
1540 Not enough memory exists to create private data for @var{osec}.
1541
1542 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1543 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1544 . (ibfd, isection, obfd, osection))
1545 */
1546
1547 /*
1548 FUNCTION
1549 bfd_generic_is_group_section
1550
1551 SYNOPSIS
1552 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1553
1554 DESCRIPTION
1555 Returns TRUE if @var{sec} is a member of a group.
1556 */
1557
1558 bfd_boolean
1559 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1560 const asection *sec ATTRIBUTE_UNUSED)
1561 {
1562 return FALSE;
1563 }
1564
1565 /*
1566 FUNCTION
1567 bfd_generic_discard_group
1568
1569 SYNOPSIS
1570 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1571
1572 DESCRIPTION
1573 Remove all members of @var{group} from the output.
1574 */
1575
1576 bfd_boolean
1577 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1578 asection *group ATTRIBUTE_UNUSED)
1579 {
1580 return TRUE;
1581 }