sim: trace: document alu/fpu/vpu trace options better
[binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2015 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x000
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x001
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x002
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x004
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x008
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x010
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x020
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x040
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x080
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section has GOT references. This flag is only for the
225 . linker, and is currently only used by the elf32-hppa back end.
226 . It will be set if global offset table references were detected
227 . in this section, which indicate to the linker that the section
228 . contains PIC code, and must be handled specially when doing a
229 . static link. *}
230 .#define SEC_HAS_GOT_REF 0x800
231 .
232 . {* The section contains common symbols (symbols may be defined
233 . multiple times, the value of a symbol is the amount of
234 . space it requires, and the largest symbol value is the one
235 . used). Most targets have exactly one of these (which we
236 . translate to bfd_com_section_ptr), but ECOFF has two. *}
237 .#define SEC_IS_COMMON 0x1000
238 .
239 . {* The section contains only debugging information. For
240 . example, this is set for ELF .debug and .stab sections.
241 . strip tests this flag to see if a section can be
242 . discarded. *}
243 .#define SEC_DEBUGGING 0x2000
244 .
245 . {* The contents of this section are held in memory pointed to
246 . by the contents field. This is checked by bfd_get_section_contents,
247 . and the data is retrieved from memory if appropriate. *}
248 .#define SEC_IN_MEMORY 0x4000
249 .
250 . {* The contents of this section are to be excluded by the
251 . linker for executable and shared objects unless those
252 . objects are to be further relocated. *}
253 .#define SEC_EXCLUDE 0x8000
254 .
255 . {* The contents of this section are to be sorted based on the sum of
256 . the symbol and addend values specified by the associated relocation
257 . entries. Entries without associated relocation entries will be
258 . appended to the end of the section in an unspecified order. *}
259 .#define SEC_SORT_ENTRIES 0x10000
260 .
261 . {* When linking, duplicate sections of the same name should be
262 . discarded, rather than being combined into a single section as
263 . is usually done. This is similar to how common symbols are
264 . handled. See SEC_LINK_DUPLICATES below. *}
265 .#define SEC_LINK_ONCE 0x20000
266 .
267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268 . should handle duplicate sections. *}
269 .#define SEC_LINK_DUPLICATES 0xc0000
270 .
271 . {* This value for SEC_LINK_DUPLICATES means that duplicate
272 . sections with the same name should simply be discarded. *}
273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
274 .
275 . {* This value for SEC_LINK_DUPLICATES means that the linker
276 . should warn if there are any duplicate sections, although
277 . it should still only link one copy. *}
278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279 .
280 . {* This value for SEC_LINK_DUPLICATES means that the linker
281 . should warn if any duplicate sections are a different size. *}
282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283 .
284 . {* This value for SEC_LINK_DUPLICATES means that the linker
285 . should warn if any duplicate sections contain different
286 . contents. *}
287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289 .
290 . {* This section was created by the linker as part of dynamic
291 . relocation or other arcane processing. It is skipped when
292 . going through the first-pass output, trusting that someone
293 . else up the line will take care of it later. *}
294 .#define SEC_LINKER_CREATED 0x100000
295 .
296 . {* This section should not be subject to garbage collection.
297 . Also set to inform the linker that this section should not be
298 . listed in the link map as discarded. *}
299 .#define SEC_KEEP 0x200000
300 .
301 . {* This section contains "short" data, and should be placed
302 . "near" the GP. *}
303 .#define SEC_SMALL_DATA 0x400000
304 .
305 . {* Attempt to merge identical entities in the section.
306 . Entity size is given in the entsize field. *}
307 .#define SEC_MERGE 0x800000
308 .
309 . {* If given with SEC_MERGE, entities to merge are zero terminated
310 . strings where entsize specifies character size instead of fixed
311 . size entries. *}
312 .#define SEC_STRINGS 0x1000000
313 .
314 . {* This section contains data about section groups. *}
315 .#define SEC_GROUP 0x2000000
316 .
317 . {* The section is a COFF shared library section. This flag is
318 . only for the linker. If this type of section appears in
319 . the input file, the linker must copy it to the output file
320 . without changing the vma or size. FIXME: Although this
321 . was originally intended to be general, it really is COFF
322 . specific (and the flag was renamed to indicate this). It
323 . might be cleaner to have some more general mechanism to
324 . allow the back end to control what the linker does with
325 . sections. *}
326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
327 .
328 . {* This input section should be copied to output in reverse order
329 . as an array of pointers. This is for ELF linker internal use
330 . only. *}
331 .#define SEC_ELF_REVERSE_COPY 0x4000000
332 .
333 . {* This section contains data which may be shared with other
334 . executables or shared objects. This is for COFF only. *}
335 .#define SEC_COFF_SHARED 0x8000000
336 .
337 . {* This section should be compressed. This is for ELF linker
338 . internal use only. *}
339 .#define SEC_ELF_COMPRESS 0x8000000
340 .
341 . {* When a section with this flag is being linked, then if the size of
342 . the input section is less than a page, it should not cross a page
343 . boundary. If the size of the input section is one page or more,
344 . it should be aligned on a page boundary. This is for TI
345 . TMS320C54X only. *}
346 .#define SEC_TIC54X_BLOCK 0x10000000
347 .
348 . {* This section should be renamed. This is for ELF linker
349 . internal use only. *}
350 .#define SEC_ELF_RENAME 0x10000000
351 .
352 . {* Conditionally link this section; do not link if there are no
353 . references found to any symbol in the section. This is for TI
354 . TMS320C54X only. *}
355 .#define SEC_TIC54X_CLINK 0x20000000
356 .
357 . {* This section contains vliw code. This is for Toshiba MeP only. *}
358 .#define SEC_MEP_VLIW 0x20000000
359 .
360 . {* Indicate that section has the no read flag set. This happens
361 . when memory read flag isn't set. *}
362 .#define SEC_COFF_NOREAD 0x40000000
363 .
364 . {* End of section flags. *}
365 .
366 . {* Some internal packed boolean fields. *}
367 .
368 . {* See the vma field. *}
369 . unsigned int user_set_vma : 1;
370 .
371 . {* A mark flag used by some of the linker backends. *}
372 . unsigned int linker_mark : 1;
373 .
374 . {* Another mark flag used by some of the linker backends. Set for
375 . output sections that have an input section. *}
376 . unsigned int linker_has_input : 1;
377 .
378 . {* Mark flag used by some linker backends for garbage collection. *}
379 . unsigned int gc_mark : 1;
380 .
381 . {* Section compression status. *}
382 . unsigned int compress_status : 2;
383 .#define COMPRESS_SECTION_NONE 0
384 .#define COMPRESS_SECTION_DONE 1
385 .#define DECOMPRESS_SECTION_SIZED 2
386 .
387 . {* The following flags are used by the ELF linker. *}
388 .
389 . {* Mark sections which have been allocated to segments. *}
390 . unsigned int segment_mark : 1;
391 .
392 . {* Type of sec_info information. *}
393 . unsigned int sec_info_type:3;
394 .#define SEC_INFO_TYPE_NONE 0
395 .#define SEC_INFO_TYPE_STABS 1
396 .#define SEC_INFO_TYPE_MERGE 2
397 .#define SEC_INFO_TYPE_EH_FRAME 3
398 .#define SEC_INFO_TYPE_JUST_SYMS 4
399 .#define SEC_INFO_TYPE_TARGET 5
400 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
401 .
402 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
403 . unsigned int use_rela_p:1;
404 .
405 . {* Bits used by various backends. The generic code doesn't touch
406 . these fields. *}
407 .
408 . unsigned int sec_flg0:1;
409 . unsigned int sec_flg1:1;
410 . unsigned int sec_flg2:1;
411 . unsigned int sec_flg3:1;
412 . unsigned int sec_flg4:1;
413 . unsigned int sec_flg5:1;
414 .
415 . {* End of internal packed boolean fields. *}
416 .
417 . {* The virtual memory address of the section - where it will be
418 . at run time. The symbols are relocated against this. The
419 . user_set_vma flag is maintained by bfd; if it's not set, the
420 . backend can assign addresses (for example, in <<a.out>>, where
421 . the default address for <<.data>> is dependent on the specific
422 . target and various flags). *}
423 . bfd_vma vma;
424 .
425 . {* The load address of the section - where it would be in a
426 . rom image; really only used for writing section header
427 . information. *}
428 . bfd_vma lma;
429 .
430 . {* The size of the section in octets, as it will be output.
431 . Contains a value even if the section has no contents (e.g., the
432 . size of <<.bss>>). *}
433 . bfd_size_type size;
434 .
435 . {* For input sections, the original size on disk of the section, in
436 . octets. This field should be set for any section whose size is
437 . changed by linker relaxation. It is required for sections where
438 . the linker relaxation scheme doesn't cache altered section and
439 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
440 . targets), and thus the original size needs to be kept to read the
441 . section multiple times. For output sections, rawsize holds the
442 . section size calculated on a previous linker relaxation pass. *}
443 . bfd_size_type rawsize;
444 .
445 . {* The compressed size of the section in octets. *}
446 . bfd_size_type compressed_size;
447 .
448 . {* Relaxation table. *}
449 . struct relax_table *relax;
450 .
451 . {* Count of used relaxation table entries. *}
452 . int relax_count;
453 .
454 .
455 . {* If this section is going to be output, then this value is the
456 . offset in *bytes* into the output section of the first byte in the
457 . input section (byte ==> smallest addressable unit on the
458 . target). In most cases, if this was going to start at the
459 . 100th octet (8-bit quantity) in the output section, this value
460 . would be 100. However, if the target byte size is 16 bits
461 . (bfd_octets_per_byte is "2"), this value would be 50. *}
462 . bfd_vma output_offset;
463 .
464 . {* The output section through which to map on output. *}
465 . struct bfd_section *output_section;
466 .
467 . {* The alignment requirement of the section, as an exponent of 2 -
468 . e.g., 3 aligns to 2^3 (or 8). *}
469 . unsigned int alignment_power;
470 .
471 . {* If an input section, a pointer to a vector of relocation
472 . records for the data in this section. *}
473 . struct reloc_cache_entry *relocation;
474 .
475 . {* If an output section, a pointer to a vector of pointers to
476 . relocation records for the data in this section. *}
477 . struct reloc_cache_entry **orelocation;
478 .
479 . {* The number of relocation records in one of the above. *}
480 . unsigned reloc_count;
481 .
482 . {* Information below is back end specific - and not always used
483 . or updated. *}
484 .
485 . {* File position of section data. *}
486 . file_ptr filepos;
487 .
488 . {* File position of relocation info. *}
489 . file_ptr rel_filepos;
490 .
491 . {* File position of line data. *}
492 . file_ptr line_filepos;
493 .
494 . {* Pointer to data for applications. *}
495 . void *userdata;
496 .
497 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
498 . contents. *}
499 . unsigned char *contents;
500 .
501 . {* Attached line number information. *}
502 . alent *lineno;
503 .
504 . {* Number of line number records. *}
505 . unsigned int lineno_count;
506 .
507 . {* Entity size for merging purposes. *}
508 . unsigned int entsize;
509 .
510 . {* Points to the kept section if this section is a link-once section,
511 . and is discarded. *}
512 . struct bfd_section *kept_section;
513 .
514 . {* When a section is being output, this value changes as more
515 . linenumbers are written out. *}
516 . file_ptr moving_line_filepos;
517 .
518 . {* What the section number is in the target world. *}
519 . int target_index;
520 .
521 . void *used_by_bfd;
522 .
523 . {* If this is a constructor section then here is a list of the
524 . relocations created to relocate items within it. *}
525 . struct relent_chain *constructor_chain;
526 .
527 . {* The BFD which owns the section. *}
528 . bfd *owner;
529 .
530 . {* A symbol which points at this section only. *}
531 . struct bfd_symbol *symbol;
532 . struct bfd_symbol **symbol_ptr_ptr;
533 .
534 . {* Early in the link process, map_head and map_tail are used to build
535 . a list of input sections attached to an output section. Later,
536 . output sections use these fields for a list of bfd_link_order
537 . structs. *}
538 . union {
539 . struct bfd_link_order *link_order;
540 . struct bfd_section *s;
541 . } map_head, map_tail;
542 .} asection;
543 .
544 .{* Relax table contains information about instructions which can
545 . be removed by relaxation -- replacing a long address with a
546 . short address. *}
547 .struct relax_table {
548 . {* Address where bytes may be deleted. *}
549 . bfd_vma addr;
550 .
551 . {* Number of bytes to be deleted. *}
552 . int size;
553 .};
554 .
555 .{* Note: the following are provided as inline functions rather than macros
556 . because not all callers use the return value. A macro implementation
557 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
558 . compilers will complain about comma expressions that have no effect. *}
559 .static inline bfd_boolean
560 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
561 .{
562 . ptr->userdata = val;
563 . return TRUE;
564 .}
565 .
566 .static inline bfd_boolean
567 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
568 .{
569 . ptr->vma = ptr->lma = val;
570 . ptr->user_set_vma = TRUE;
571 . return TRUE;
572 .}
573 .
574 .static inline bfd_boolean
575 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
576 .{
577 . ptr->alignment_power = val;
578 . return TRUE;
579 .}
580 .
581 .{* These sections are global, and are managed by BFD. The application
582 . and target back end are not permitted to change the values in
583 . these sections. *}
584 .extern asection _bfd_std_section[4];
585 .
586 .#define BFD_ABS_SECTION_NAME "*ABS*"
587 .#define BFD_UND_SECTION_NAME "*UND*"
588 .#define BFD_COM_SECTION_NAME "*COM*"
589 .#define BFD_IND_SECTION_NAME "*IND*"
590 .
591 .{* Pointer to the common section. *}
592 .#define bfd_com_section_ptr (&_bfd_std_section[0])
593 .{* Pointer to the undefined section. *}
594 .#define bfd_und_section_ptr (&_bfd_std_section[1])
595 .{* Pointer to the absolute section. *}
596 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
597 .{* Pointer to the indirect section. *}
598 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
599 .
600 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
601 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
602 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
603 .
604 .#define bfd_is_const_section(SEC) \
605 . ( ((SEC) == bfd_abs_section_ptr) \
606 . || ((SEC) == bfd_und_section_ptr) \
607 . || ((SEC) == bfd_com_section_ptr) \
608 . || ((SEC) == bfd_ind_section_ptr))
609 .
610 .{* Macros to handle insertion and deletion of a bfd's sections. These
611 . only handle the list pointers, ie. do not adjust section_count,
612 . target_index etc. *}
613 .#define bfd_section_list_remove(ABFD, S) \
614 . do \
615 . { \
616 . asection *_s = S; \
617 . asection *_next = _s->next; \
618 . asection *_prev = _s->prev; \
619 . if (_prev) \
620 . _prev->next = _next; \
621 . else \
622 . (ABFD)->sections = _next; \
623 . if (_next) \
624 . _next->prev = _prev; \
625 . else \
626 . (ABFD)->section_last = _prev; \
627 . } \
628 . while (0)
629 .#define bfd_section_list_append(ABFD, S) \
630 . do \
631 . { \
632 . asection *_s = S; \
633 . bfd *_abfd = ABFD; \
634 . _s->next = NULL; \
635 . if (_abfd->section_last) \
636 . { \
637 . _s->prev = _abfd->section_last; \
638 . _abfd->section_last->next = _s; \
639 . } \
640 . else \
641 . { \
642 . _s->prev = NULL; \
643 . _abfd->sections = _s; \
644 . } \
645 . _abfd->section_last = _s; \
646 . } \
647 . while (0)
648 .#define bfd_section_list_prepend(ABFD, S) \
649 . do \
650 . { \
651 . asection *_s = S; \
652 . bfd *_abfd = ABFD; \
653 . _s->prev = NULL; \
654 . if (_abfd->sections) \
655 . { \
656 . _s->next = _abfd->sections; \
657 . _abfd->sections->prev = _s; \
658 . } \
659 . else \
660 . { \
661 . _s->next = NULL; \
662 . _abfd->section_last = _s; \
663 . } \
664 . _abfd->sections = _s; \
665 . } \
666 . while (0)
667 .#define bfd_section_list_insert_after(ABFD, A, S) \
668 . do \
669 . { \
670 . asection *_a = A; \
671 . asection *_s = S; \
672 . asection *_next = _a->next; \
673 . _s->next = _next; \
674 . _s->prev = _a; \
675 . _a->next = _s; \
676 . if (_next) \
677 . _next->prev = _s; \
678 . else \
679 . (ABFD)->section_last = _s; \
680 . } \
681 . while (0)
682 .#define bfd_section_list_insert_before(ABFD, B, S) \
683 . do \
684 . { \
685 . asection *_b = B; \
686 . asection *_s = S; \
687 . asection *_prev = _b->prev; \
688 . _s->prev = _prev; \
689 . _s->next = _b; \
690 . _b->prev = _s; \
691 . if (_prev) \
692 . _prev->next = _s; \
693 . else \
694 . (ABFD)->sections = _s; \
695 . } \
696 . while (0)
697 .#define bfd_section_removed_from_list(ABFD, S) \
698 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
699 .
700 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
701 . {* name, id, index, next, prev, flags, user_set_vma, *} \
702 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
703 . \
704 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
705 . 0, 0, 1, 0, \
706 . \
707 . {* segment_mark, sec_info_type, use_rela_p, *} \
708 . 0, 0, 0, \
709 . \
710 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
711 . 0, 0, 0, 0, 0, 0, \
712 . \
713 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
714 . 0, 0, 0, 0, 0, 0, 0, \
715 . \
716 . {* output_offset, output_section, alignment_power, *} \
717 . 0, &SEC, 0, \
718 . \
719 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
720 . NULL, NULL, 0, 0, 0, \
721 . \
722 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
723 . 0, NULL, NULL, NULL, 0, \
724 . \
725 . {* entsize, kept_section, moving_line_filepos, *} \
726 . 0, NULL, 0, \
727 . \
728 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
729 . 0, NULL, NULL, NULL, \
730 . \
731 . {* symbol, symbol_ptr_ptr, *} \
732 . (struct bfd_symbol *) SYM, &SEC.symbol, \
733 . \
734 . {* map_head, map_tail *} \
735 . { NULL }, { NULL } \
736 . }
737 .
738 */
739
740 /* We use a macro to initialize the static asymbol structures because
741 traditional C does not permit us to initialize a union member while
742 gcc warns if we don't initialize it. */
743 /* the_bfd, name, value, attr, section [, udata] */
744 #ifdef __STDC__
745 #define GLOBAL_SYM_INIT(NAME, SECTION) \
746 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
747 #else
748 #define GLOBAL_SYM_INIT(NAME, SECTION) \
749 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
750 #endif
751
752 /* These symbols are global, not specific to any BFD. Therefore, anything
753 that tries to change them is broken, and should be repaired. */
754
755 static const asymbol global_syms[] =
756 {
757 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
758 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
759 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
760 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
761 };
762
763 #define STD_SECTION(NAME, IDX, FLAGS) \
764 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
765
766 asection _bfd_std_section[] = {
767 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
768 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
769 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
770 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
771 };
772 #undef STD_SECTION
773
774 /* Initialize an entry in the section hash table. */
775
776 struct bfd_hash_entry *
777 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
778 struct bfd_hash_table *table,
779 const char *string)
780 {
781 /* Allocate the structure if it has not already been allocated by a
782 subclass. */
783 if (entry == NULL)
784 {
785 entry = (struct bfd_hash_entry *)
786 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
787 if (entry == NULL)
788 return entry;
789 }
790
791 /* Call the allocation method of the superclass. */
792 entry = bfd_hash_newfunc (entry, table, string);
793 if (entry != NULL)
794 memset (&((struct section_hash_entry *) entry)->section, 0,
795 sizeof (asection));
796
797 return entry;
798 }
799
800 #define section_hash_lookup(table, string, create, copy) \
801 ((struct section_hash_entry *) \
802 bfd_hash_lookup ((table), (string), (create), (copy)))
803
804 /* Create a symbol whose only job is to point to this section. This
805 is useful for things like relocs which are relative to the base
806 of a section. */
807
808 bfd_boolean
809 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
810 {
811 newsect->symbol = bfd_make_empty_symbol (abfd);
812 if (newsect->symbol == NULL)
813 return FALSE;
814
815 newsect->symbol->name = newsect->name;
816 newsect->symbol->value = 0;
817 newsect->symbol->section = newsect;
818 newsect->symbol->flags = BSF_SECTION_SYM;
819
820 newsect->symbol_ptr_ptr = &newsect->symbol;
821 return TRUE;
822 }
823
824 /* Initializes a new section. NEWSECT->NAME is already set. */
825
826 static asection *
827 bfd_section_init (bfd *abfd, asection *newsect)
828 {
829 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
830
831 newsect->id = section_id;
832 newsect->index = abfd->section_count;
833 newsect->owner = abfd;
834
835 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
836 return NULL;
837
838 section_id++;
839 abfd->section_count++;
840 bfd_section_list_append (abfd, newsect);
841 return newsect;
842 }
843
844 /*
845 DOCDD
846 INODE
847 section prototypes, , typedef asection, Sections
848 SUBSECTION
849 Section prototypes
850
851 These are the functions exported by the section handling part of BFD.
852 */
853
854 /*
855 FUNCTION
856 bfd_section_list_clear
857
858 SYNOPSIS
859 void bfd_section_list_clear (bfd *);
860
861 DESCRIPTION
862 Clears the section list, and also resets the section count and
863 hash table entries.
864 */
865
866 void
867 bfd_section_list_clear (bfd *abfd)
868 {
869 abfd->sections = NULL;
870 abfd->section_last = NULL;
871 abfd->section_count = 0;
872 memset (abfd->section_htab.table, 0,
873 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
874 abfd->section_htab.count = 0;
875 }
876
877 /*
878 FUNCTION
879 bfd_get_section_by_name
880
881 SYNOPSIS
882 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
883
884 DESCRIPTION
885 Return the most recently created section attached to @var{abfd}
886 named @var{name}. Return NULL if no such section exists.
887 */
888
889 asection *
890 bfd_get_section_by_name (bfd *abfd, const char *name)
891 {
892 struct section_hash_entry *sh;
893
894 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
895 if (sh != NULL)
896 return &sh->section;
897
898 return NULL;
899 }
900
901 /*
902 FUNCTION
903 bfd_get_next_section_by_name
904
905 SYNOPSIS
906 asection *bfd_get_next_section_by_name (asection *sec);
907
908 DESCRIPTION
909 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
910 return the next most recently created section attached to the same
911 BFD with the same name. Return NULL if no such section exists.
912 */
913
914 asection *
915 bfd_get_next_section_by_name (asection *sec)
916 {
917 struct section_hash_entry *sh;
918 const char *name;
919 unsigned long hash;
920
921 sh = ((struct section_hash_entry *)
922 ((char *) sec - offsetof (struct section_hash_entry, section)));
923
924 hash = sh->root.hash;
925 name = sec->name;
926 for (sh = (struct section_hash_entry *) sh->root.next;
927 sh != NULL;
928 sh = (struct section_hash_entry *) sh->root.next)
929 if (sh->root.hash == hash
930 && strcmp (sh->root.string, name) == 0)
931 return &sh->section;
932
933 return NULL;
934 }
935
936 /*
937 FUNCTION
938 bfd_get_linker_section
939
940 SYNOPSIS
941 asection *bfd_get_linker_section (bfd *abfd, const char *name);
942
943 DESCRIPTION
944 Return the linker created section attached to @var{abfd}
945 named @var{name}. Return NULL if no such section exists.
946 */
947
948 asection *
949 bfd_get_linker_section (bfd *abfd, const char *name)
950 {
951 asection *sec = bfd_get_section_by_name (abfd, name);
952
953 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
954 sec = bfd_get_next_section_by_name (sec);
955 return sec;
956 }
957
958 /*
959 FUNCTION
960 bfd_get_section_by_name_if
961
962 SYNOPSIS
963 asection *bfd_get_section_by_name_if
964 (bfd *abfd,
965 const char *name,
966 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
967 void *obj);
968
969 DESCRIPTION
970 Call the provided function @var{func} for each section
971 attached to the BFD @var{abfd} whose name matches @var{name},
972 passing @var{obj} as an argument. The function will be called
973 as if by
974
975 | func (abfd, the_section, obj);
976
977 It returns the first section for which @var{func} returns true,
978 otherwise <<NULL>>.
979
980 */
981
982 asection *
983 bfd_get_section_by_name_if (bfd *abfd, const char *name,
984 bfd_boolean (*operation) (bfd *,
985 asection *,
986 void *),
987 void *user_storage)
988 {
989 struct section_hash_entry *sh;
990 unsigned long hash;
991
992 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
993 if (sh == NULL)
994 return NULL;
995
996 hash = sh->root.hash;
997 do
998 {
999 if ((*operation) (abfd, &sh->section, user_storage))
1000 return &sh->section;
1001 sh = (struct section_hash_entry *) sh->root.next;
1002 }
1003 while (sh != NULL && sh->root.hash == hash
1004 && strcmp (sh->root.string, name) == 0);
1005
1006 return NULL;
1007 }
1008
1009 /*
1010 FUNCTION
1011 bfd_get_unique_section_name
1012
1013 SYNOPSIS
1014 char *bfd_get_unique_section_name
1015 (bfd *abfd, const char *templat, int *count);
1016
1017 DESCRIPTION
1018 Invent a section name that is unique in @var{abfd} by tacking
1019 a dot and a digit suffix onto the original @var{templat}. If
1020 @var{count} is non-NULL, then it specifies the first number
1021 tried as a suffix to generate a unique name. The value
1022 pointed to by @var{count} will be incremented in this case.
1023 */
1024
1025 char *
1026 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1027 {
1028 int num;
1029 unsigned int len;
1030 char *sname;
1031
1032 len = strlen (templat);
1033 sname = (char *) bfd_malloc (len + 8);
1034 if (sname == NULL)
1035 return NULL;
1036 memcpy (sname, templat, len);
1037 num = 1;
1038 if (count != NULL)
1039 num = *count;
1040
1041 do
1042 {
1043 /* If we have a million sections, something is badly wrong. */
1044 if (num > 999999)
1045 abort ();
1046 sprintf (sname + len, ".%d", num++);
1047 }
1048 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1049
1050 if (count != NULL)
1051 *count = num;
1052 return sname;
1053 }
1054
1055 /*
1056 FUNCTION
1057 bfd_make_section_old_way
1058
1059 SYNOPSIS
1060 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1061
1062 DESCRIPTION
1063 Create a new empty section called @var{name}
1064 and attach it to the end of the chain of sections for the
1065 BFD @var{abfd}. An attempt to create a section with a name which
1066 is already in use returns its pointer without changing the
1067 section chain.
1068
1069 It has the funny name since this is the way it used to be
1070 before it was rewritten....
1071
1072 Possible errors are:
1073 o <<bfd_error_invalid_operation>> -
1074 If output has already started for this BFD.
1075 o <<bfd_error_no_memory>> -
1076 If memory allocation fails.
1077
1078 */
1079
1080 asection *
1081 bfd_make_section_old_way (bfd *abfd, const char *name)
1082 {
1083 asection *newsect;
1084
1085 if (abfd->output_has_begun)
1086 {
1087 bfd_set_error (bfd_error_invalid_operation);
1088 return NULL;
1089 }
1090
1091 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1092 newsect = bfd_abs_section_ptr;
1093 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1094 newsect = bfd_com_section_ptr;
1095 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1096 newsect = bfd_und_section_ptr;
1097 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1098 newsect = bfd_ind_section_ptr;
1099 else
1100 {
1101 struct section_hash_entry *sh;
1102
1103 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1104 if (sh == NULL)
1105 return NULL;
1106
1107 newsect = &sh->section;
1108 if (newsect->name != NULL)
1109 {
1110 /* Section already exists. */
1111 return newsect;
1112 }
1113
1114 newsect->name = name;
1115 return bfd_section_init (abfd, newsect);
1116 }
1117
1118 /* Call new_section_hook when "creating" the standard abs, com, und
1119 and ind sections to tack on format specific section data.
1120 Also, create a proper section symbol. */
1121 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1122 return NULL;
1123 return newsect;
1124 }
1125
1126 /*
1127 FUNCTION
1128 bfd_make_section_anyway_with_flags
1129
1130 SYNOPSIS
1131 asection *bfd_make_section_anyway_with_flags
1132 (bfd *abfd, const char *name, flagword flags);
1133
1134 DESCRIPTION
1135 Create a new empty section called @var{name} and attach it to the end of
1136 the chain of sections for @var{abfd}. Create a new section even if there
1137 is already a section with that name. Also set the attributes of the
1138 new section to the value @var{flags}.
1139
1140 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1141 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1142 o <<bfd_error_no_memory>> - If memory allocation fails.
1143 */
1144
1145 sec_ptr
1146 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1147 flagword flags)
1148 {
1149 struct section_hash_entry *sh;
1150 asection *newsect;
1151
1152 if (abfd->output_has_begun)
1153 {
1154 bfd_set_error (bfd_error_invalid_operation);
1155 return NULL;
1156 }
1157
1158 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1159 if (sh == NULL)
1160 return NULL;
1161
1162 newsect = &sh->section;
1163 if (newsect->name != NULL)
1164 {
1165 /* We are making a section of the same name. Put it in the
1166 section hash table. Even though we can't find it directly by a
1167 hash lookup, we'll be able to find the section by traversing
1168 sh->root.next quicker than looking at all the bfd sections. */
1169 struct section_hash_entry *new_sh;
1170 new_sh = (struct section_hash_entry *)
1171 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1172 if (new_sh == NULL)
1173 return NULL;
1174
1175 new_sh->root = sh->root;
1176 sh->root.next = &new_sh->root;
1177 newsect = &new_sh->section;
1178 }
1179
1180 newsect->flags = flags;
1181 newsect->name = name;
1182 return bfd_section_init (abfd, newsect);
1183 }
1184
1185 /*
1186 FUNCTION
1187 bfd_make_section_anyway
1188
1189 SYNOPSIS
1190 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1191
1192 DESCRIPTION
1193 Create a new empty section called @var{name} and attach it to the end of
1194 the chain of sections for @var{abfd}. Create a new section even if there
1195 is already a section with that name.
1196
1197 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1198 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1199 o <<bfd_error_no_memory>> - If memory allocation fails.
1200 */
1201
1202 sec_ptr
1203 bfd_make_section_anyway (bfd *abfd, const char *name)
1204 {
1205 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1206 }
1207
1208 /*
1209 FUNCTION
1210 bfd_make_section_with_flags
1211
1212 SYNOPSIS
1213 asection *bfd_make_section_with_flags
1214 (bfd *, const char *name, flagword flags);
1215
1216 DESCRIPTION
1217 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1218 bfd_set_error ()) without changing the section chain if there is already a
1219 section named @var{name}. Also set the attributes of the new section to
1220 the value @var{flags}. If there is an error, return <<NULL>> and set
1221 <<bfd_error>>.
1222 */
1223
1224 asection *
1225 bfd_make_section_with_flags (bfd *abfd, const char *name,
1226 flagword flags)
1227 {
1228 struct section_hash_entry *sh;
1229 asection *newsect;
1230
1231 if (abfd->output_has_begun)
1232 {
1233 bfd_set_error (bfd_error_invalid_operation);
1234 return NULL;
1235 }
1236
1237 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1238 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1239 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1240 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1241 return NULL;
1242
1243 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1244 if (sh == NULL)
1245 return NULL;
1246
1247 newsect = &sh->section;
1248 if (newsect->name != NULL)
1249 {
1250 /* Section already exists. */
1251 return NULL;
1252 }
1253
1254 newsect->name = name;
1255 newsect->flags = flags;
1256 return bfd_section_init (abfd, newsect);
1257 }
1258
1259 /*
1260 FUNCTION
1261 bfd_make_section
1262
1263 SYNOPSIS
1264 asection *bfd_make_section (bfd *, const char *name);
1265
1266 DESCRIPTION
1267 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1268 bfd_set_error ()) without changing the section chain if there is already a
1269 section named @var{name}. If there is an error, return <<NULL>> and set
1270 <<bfd_error>>.
1271 */
1272
1273 asection *
1274 bfd_make_section (bfd *abfd, const char *name)
1275 {
1276 return bfd_make_section_with_flags (abfd, name, 0);
1277 }
1278
1279 /*
1280 FUNCTION
1281 bfd_set_section_flags
1282
1283 SYNOPSIS
1284 bfd_boolean bfd_set_section_flags
1285 (bfd *abfd, asection *sec, flagword flags);
1286
1287 DESCRIPTION
1288 Set the attributes of the section @var{sec} in the BFD
1289 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1290 <<FALSE>> on error. Possible error returns are:
1291
1292 o <<bfd_error_invalid_operation>> -
1293 The section cannot have one or more of the attributes
1294 requested. For example, a .bss section in <<a.out>> may not
1295 have the <<SEC_HAS_CONTENTS>> field set.
1296
1297 */
1298
1299 bfd_boolean
1300 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1301 sec_ptr section,
1302 flagword flags)
1303 {
1304 section->flags = flags;
1305 return TRUE;
1306 }
1307
1308 /*
1309 FUNCTION
1310 bfd_rename_section
1311
1312 SYNOPSIS
1313 void bfd_rename_section
1314 (bfd *abfd, asection *sec, const char *newname);
1315
1316 DESCRIPTION
1317 Rename section @var{sec} in @var{abfd} to @var{newname}.
1318 */
1319
1320 void
1321 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1322 {
1323 struct section_hash_entry *sh;
1324
1325 sh = (struct section_hash_entry *)
1326 ((char *) sec - offsetof (struct section_hash_entry, section));
1327 sh->section.name = newname;
1328 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1329 }
1330
1331 /*
1332 FUNCTION
1333 bfd_map_over_sections
1334
1335 SYNOPSIS
1336 void bfd_map_over_sections
1337 (bfd *abfd,
1338 void (*func) (bfd *abfd, asection *sect, void *obj),
1339 void *obj);
1340
1341 DESCRIPTION
1342 Call the provided function @var{func} for each section
1343 attached to the BFD @var{abfd}, passing @var{obj} as an
1344 argument. The function will be called as if by
1345
1346 | func (abfd, the_section, obj);
1347
1348 This is the preferred method for iterating over sections; an
1349 alternative would be to use a loop:
1350
1351 | asection *p;
1352 | for (p = abfd->sections; p != NULL; p = p->next)
1353 | func (abfd, p, ...)
1354
1355 */
1356
1357 void
1358 bfd_map_over_sections (bfd *abfd,
1359 void (*operation) (bfd *, asection *, void *),
1360 void *user_storage)
1361 {
1362 asection *sect;
1363 unsigned int i = 0;
1364
1365 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1366 (*operation) (abfd, sect, user_storage);
1367
1368 if (i != abfd->section_count) /* Debugging */
1369 abort ();
1370 }
1371
1372 /*
1373 FUNCTION
1374 bfd_sections_find_if
1375
1376 SYNOPSIS
1377 asection *bfd_sections_find_if
1378 (bfd *abfd,
1379 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1380 void *obj);
1381
1382 DESCRIPTION
1383 Call the provided function @var{operation} for each section
1384 attached to the BFD @var{abfd}, passing @var{obj} as an
1385 argument. The function will be called as if by
1386
1387 | operation (abfd, the_section, obj);
1388
1389 It returns the first section for which @var{operation} returns true.
1390
1391 */
1392
1393 asection *
1394 bfd_sections_find_if (bfd *abfd,
1395 bfd_boolean (*operation) (bfd *, asection *, void *),
1396 void *user_storage)
1397 {
1398 asection *sect;
1399
1400 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1401 if ((*operation) (abfd, sect, user_storage))
1402 break;
1403
1404 return sect;
1405 }
1406
1407 /*
1408 FUNCTION
1409 bfd_set_section_size
1410
1411 SYNOPSIS
1412 bfd_boolean bfd_set_section_size
1413 (bfd *abfd, asection *sec, bfd_size_type val);
1414
1415 DESCRIPTION
1416 Set @var{sec} to the size @var{val}. If the operation is
1417 ok, then <<TRUE>> is returned, else <<FALSE>>.
1418
1419 Possible error returns:
1420 o <<bfd_error_invalid_operation>> -
1421 Writing has started to the BFD, so setting the size is invalid.
1422
1423 */
1424
1425 bfd_boolean
1426 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1427 {
1428 /* Once you've started writing to any section you cannot create or change
1429 the size of any others. */
1430
1431 if (abfd->output_has_begun)
1432 {
1433 bfd_set_error (bfd_error_invalid_operation);
1434 return FALSE;
1435 }
1436
1437 ptr->size = val;
1438 return TRUE;
1439 }
1440
1441 /*
1442 FUNCTION
1443 bfd_set_section_contents
1444
1445 SYNOPSIS
1446 bfd_boolean bfd_set_section_contents
1447 (bfd *abfd, asection *section, const void *data,
1448 file_ptr offset, bfd_size_type count);
1449
1450 DESCRIPTION
1451 Sets the contents of the section @var{section} in BFD
1452 @var{abfd} to the data starting in memory at @var{data}. The
1453 data is written to the output section starting at offset
1454 @var{offset} for @var{count} octets.
1455
1456 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1457 returns are:
1458 o <<bfd_error_no_contents>> -
1459 The output section does not have the <<SEC_HAS_CONTENTS>>
1460 attribute, so nothing can be written to it.
1461 o and some more too
1462
1463 This routine is front end to the back end function
1464 <<_bfd_set_section_contents>>.
1465
1466 */
1467
1468 bfd_boolean
1469 bfd_set_section_contents (bfd *abfd,
1470 sec_ptr section,
1471 const void *location,
1472 file_ptr offset,
1473 bfd_size_type count)
1474 {
1475 bfd_size_type sz;
1476
1477 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1478 {
1479 bfd_set_error (bfd_error_no_contents);
1480 return FALSE;
1481 }
1482
1483 sz = section->size;
1484 if ((bfd_size_type) offset > sz
1485 || count > sz
1486 || offset + count > sz
1487 || count != (size_t) count)
1488 {
1489 bfd_set_error (bfd_error_bad_value);
1490 return FALSE;
1491 }
1492
1493 if (!bfd_write_p (abfd))
1494 {
1495 bfd_set_error (bfd_error_invalid_operation);
1496 return FALSE;
1497 }
1498
1499 /* Record a copy of the data in memory if desired. */
1500 if (section->contents
1501 && location != section->contents + offset)
1502 memcpy (section->contents + offset, location, (size_t) count);
1503
1504 if (BFD_SEND (abfd, _bfd_set_section_contents,
1505 (abfd, section, location, offset, count)))
1506 {
1507 abfd->output_has_begun = TRUE;
1508 return TRUE;
1509 }
1510
1511 return FALSE;
1512 }
1513
1514 /*
1515 FUNCTION
1516 bfd_get_section_contents
1517
1518 SYNOPSIS
1519 bfd_boolean bfd_get_section_contents
1520 (bfd *abfd, asection *section, void *location, file_ptr offset,
1521 bfd_size_type count);
1522
1523 DESCRIPTION
1524 Read data from @var{section} in BFD @var{abfd}
1525 into memory starting at @var{location}. The data is read at an
1526 offset of @var{offset} from the start of the input section,
1527 and is read for @var{count} bytes.
1528
1529 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1530 flag set are requested or if the section does not have the
1531 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1532 with zeroes. If no errors occur, <<TRUE>> is returned, else
1533 <<FALSE>>.
1534
1535 */
1536 bfd_boolean
1537 bfd_get_section_contents (bfd *abfd,
1538 sec_ptr section,
1539 void *location,
1540 file_ptr offset,
1541 bfd_size_type count)
1542 {
1543 bfd_size_type sz;
1544
1545 if (section->flags & SEC_CONSTRUCTOR)
1546 {
1547 memset (location, 0, (size_t) count);
1548 return TRUE;
1549 }
1550
1551 if (abfd->direction != write_direction && section->rawsize != 0)
1552 sz = section->rawsize;
1553 else
1554 sz = section->size;
1555 if ((bfd_size_type) offset > sz
1556 || count > sz
1557 || offset + count > sz
1558 || count != (size_t) count)
1559 {
1560 bfd_set_error (bfd_error_bad_value);
1561 return FALSE;
1562 }
1563
1564 if (count == 0)
1565 /* Don't bother. */
1566 return TRUE;
1567
1568 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1569 {
1570 memset (location, 0, (size_t) count);
1571 return TRUE;
1572 }
1573
1574 if ((section->flags & SEC_IN_MEMORY) != 0)
1575 {
1576 if (section->contents == NULL)
1577 {
1578 /* This can happen because of errors earlier on in the linking process.
1579 We do not want to seg-fault here, so clear the flag and return an
1580 error code. */
1581 section->flags &= ~ SEC_IN_MEMORY;
1582 bfd_set_error (bfd_error_invalid_operation);
1583 return FALSE;
1584 }
1585
1586 memmove (location, section->contents + offset, (size_t) count);
1587 return TRUE;
1588 }
1589
1590 return BFD_SEND (abfd, _bfd_get_section_contents,
1591 (abfd, section, location, offset, count));
1592 }
1593
1594 /*
1595 FUNCTION
1596 bfd_malloc_and_get_section
1597
1598 SYNOPSIS
1599 bfd_boolean bfd_malloc_and_get_section
1600 (bfd *abfd, asection *section, bfd_byte **buf);
1601
1602 DESCRIPTION
1603 Read all data from @var{section} in BFD @var{abfd}
1604 into a buffer, *@var{buf}, malloc'd by this function.
1605 */
1606
1607 bfd_boolean
1608 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1609 {
1610 *buf = NULL;
1611 return bfd_get_full_section_contents (abfd, sec, buf);
1612 }
1613 /*
1614 FUNCTION
1615 bfd_copy_private_section_data
1616
1617 SYNOPSIS
1618 bfd_boolean bfd_copy_private_section_data
1619 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1620
1621 DESCRIPTION
1622 Copy private section information from @var{isec} in the BFD
1623 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1624 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1625 returns are:
1626
1627 o <<bfd_error_no_memory>> -
1628 Not enough memory exists to create private data for @var{osec}.
1629
1630 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1631 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1632 . (ibfd, isection, obfd, osection))
1633 */
1634
1635 /*
1636 FUNCTION
1637 bfd_generic_is_group_section
1638
1639 SYNOPSIS
1640 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1641
1642 DESCRIPTION
1643 Returns TRUE if @var{sec} is a member of a group.
1644 */
1645
1646 bfd_boolean
1647 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1648 const asection *sec ATTRIBUTE_UNUSED)
1649 {
1650 return FALSE;
1651 }
1652
1653 /*
1654 FUNCTION
1655 bfd_generic_discard_group
1656
1657 SYNOPSIS
1658 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1659
1660 DESCRIPTION
1661 Remove all members of @var{group} from the output.
1662 */
1663
1664 bfd_boolean
1665 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1666 asection *group ATTRIBUTE_UNUSED)
1667 {
1668 return TRUE;
1669 }